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Abstract 

 

Since the advent of high-throughput technologies, the understanding of microbial 

biodiversity has rapidly transformed. Amplicon sequencing of phylogenetic makers, 

especially 16S rRNA genes has now become a well-adopted tool to discover microbial 

taxonomic diversities in virtually all habitats, aquatic, terrestrial, local or global 

ecosystems. Although high-throughput sequencing, such as Illumina-based technologies 

(e.g. MiSeq), has revolutionized microbial ecology, the adoption of amplicon 

sequencing for environmental microbial community analysis is challenging due to the 

problem of low base diversity of the target region. In this study, a new phasing 

amplicon sequencing approach (PAS) was developed by shifting sequencing phases 

among different community samples from both directions via adding various numbers 

of bases (0–7) as spacers to both forward and reverse primers. Our results first indicated 

that the PAS method substantially ameliorated the problem of unbalanced base 

composition. Second, the PAS method substantially improved the sequence read base 

quality (an average of 10 % higher of bases above Q30). Third, the PAS method 

effectively increased raw sequence throughput (~15 % more raw reads). In addition, the 

PAS method significantly increased effective reads (9–47 %) and the effective read 

sequence length (16–96 more bases) after quality trim at Q30 with window 5. In 

addition, the PAS method reduced half of the sequencing errors (0.54–1.1 % less). 

Finally, two-step PCR amplification of the PAS method effectively ameliorated the 

amplification biases introduced by the long-barcoded PCR primers. The developed 
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strategy is robust for 16S rRNA gene amplicon sequencing, and a similar strategy could 

also be used for sequencing other genes important to ecosystem functional processes. 

 To facilitate the analysis of the data produced from the amplicon sequencing 

technologies, a data analysis pipeline is developed and is running to serve more than 

200 users with the data processing and preliminary analysis for the amplicon sequences. 

The publicly available pipelines, such as QIIME(Caporaso, Kuczynski et al. 2010, 

Caporaso, Lauber et al. 2012) and MOTHUR (Schloss, Westcott et al. 2009), are mostly 

standalone services and need minimum program skills to perform the analysis. Our 

pipeline provides a more user-friendly interface through webpage and users will only 

need to click buttons rather than type command lines to perform the basic data analysis. 

Besides the convenient operations, the Galaxy platform provides an organized way to 

upload, store, track and share the data histories from different projects. The pipeline is 

also flexible to add new programs that are developed by others and the data source is 

not limited to 16S rRNAs but also functional gene amplicon sequences. The pipeline 

has served the research community for several years, and more than a dozen papers are 

published using this pipeline.  

A practical application of amplicon sequencing was followed to discover the 

biodiversity of microbial fungal communities in six North American forests soils. The 

biodiversity of fungi has been studied across many habitats, but the spatial patterns of 

fungi diversity and the possible mechanisms behind them still need exploration. In this 

study, the soil fungal samples were collected from six forest sites across a wide range of 

latitudes in North America with a nested design in each site to uncover the diversity 

pattern of the soil fungal communities in forest systems. The richness of fungi follows a 
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clear latitudinal gradient, where temperature, precipitation, pH and nitrogen 

concentration also contribute to the prediction of the richness of the soil fungal 

communities. The compositions of fungal communities are distinct from each other 

across six forest sites. The main drivers of alpha diversity of fungi in forest soil are 

latitude, along with the mean annual temperature, precipitation, soil pH, soil total 

carbon, and soil total nitrogen. These seven variables can be used to predict the α-

diversity of the soil fungal communities, and more than 70% variance can be explained 

by these variables only. As for the β-diversity, the dissimilarities among the fungal 

communities increases significantly as the distance between the sampling sites become 

larger. The distance-decay curve explains this pattern and indicates that the turnover 

rates of the fungal species are different in the local and continental scales. We further 

proved that, the key drivers of the difference in fungal community composition highly 

depends on the spatial scale, and the geographic distance is the major contributor to 

explain these differences. In summary, this study of the fungal communities in the 

North American forest soils has shown several patterns along with the possible drivers 

behind them, which presents insights into the nature of soil fungal communities.  

When the advanced high-throughput technologies have enabled researchers to 

gain unprecedented insights of the diversity of microbial communities without culturing 

and identify individuals, the merely knowing the answer to “who is there” is no longer 

enough, the question now is to link the ‘measurable’ community structures to the 

ecosystem functioning. If this connection can be set up, then it is possible to understand 

that how the disturbances brought by the human activities and global climate change 

will change the ecosystem functioning carried out by microbial communities. 
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Functional diversity, which measures the range of things that organisms do in the 

surrounding ecosystem has shown its power in linking the microbial communities to the 

dynamics of ecosystems. In the final part of this study, we provide a framework using 

Rao’s entropy to quantify microbial functional diversity based on GeoChip (a high-

throughput functional gene array), and the phylogenetic distances between each probe is 

considered in the calculation. This index falls into the category of trait-based functional 

diversity, with the advantages of pre-selected key functional traits related to functional 

ecosystem designed in GeoChip. This functional diversity index can be partitioned into 

α- and β- diversity, which extends the understanding of functional diversity pattern into 

different temporal or spatial scales. The functional redundancy can also be defined 

following the definition of the functional diversity, which is more like a measure of 

gene similarity or convergence, rather than the traditionally defined ‘functional 

redundancy’ for multiple functionalities in an ecosystem. Given the hypothesis that 

sequence similarity leads to function similarity, the new definition of functional 

redundancy can reveal the redundant level of functional traits in the same gene. We 

applied this functional diversity framework to study the dynamic changes over a 9-

month period of microbial communities in a contaminated groundwater system (with 

U(VI), SO4
2-, NO3

-, etc.,) after a one-time EVO (emulsified vegetable oil) amendment, 

which has been proven that it can effectively reduce U(VI) for a considerable time 

period (around one year). Using the acetate production as the measurement of EVO 

degradation process, the functional diversity of the key gene responsible for degradation 

of EVO significantly correlate with the function itself (R2 = 0.685, p-0.021), where the 

other functional indices such as the gene richness did not show such a strong 
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relationship. When using functional diversity to profile the whole community functional 

structure, statistical tests also proved that the change of environmental variables does 

shift the community functional structure, while this connection is not as clear if using 

other indices to represent the community functional structures. In summary, the new 

framework of function diversity integrates both functional traits and their phylogenetic 

signals, which has been proven to be a more sensitive indicator of ecological functions 

than traditionally used gene richness. 
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Chapter 1: Introduction 

1.1 Microbial biodiversity and current challenges 

Biodiversity, the variability among living organisms from all ecosystems including 

terrestrial, marine, atmosphere and others, forms the foundation of the ecosystem 

services which is closely related to the wellbeing of our planet (McCann 2000, Tilman, 

Reich et al. 2006, Wagg, Bender et al. 2014). This complex and dynamic variation has 

experienced dramatically changes at the hands of humans (Vorosmarty, McIntyre et al. 

2010, Bennett, Cramer et al. 2015). The change of biodiversity will have great effect 

upon our ecosystems (Sala, Chapin et al. 2000) and will compromise the stability and 

well-functioning of the ecosystems in local or even global scales (Bracken, Friberg et 

al. 2008, Wagg, Bender et al. 2014). Therefore, studying biodiversity can not only help 

further describe the image of our world with the cognition of the living organisms who 

shared the same environment with us, but also will provide insights to protect our living 

environment and keep it well-functioning against the changes of atmospheric carbon 

dioxide, climate, vegetation, and human activities, such as land use. Microorganisms, as 

the most abundant and diverse members on the planet, they contribute greatly towards 

the function in our ecosystems, such as global carbon cycling, nutrient availability, 

human health and disease development for all living organisms (Colwell 1997, Fitter, 

Gilligan et al. 2005, Nielsen, Ayres et al. 2011, Singh 2015, Delgado-Baquerizo, 

Maestre et al. 2016). Their small body size, short generation time and genetic plasticity 

give microorganism the capability of rapidly adaptation to the change of the 

environment. Therefore, the diversity of microorganisms are good bioindicators of the 
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perturbations of environment and ecosystems stability (Bouchez, Blieux et al. 2016, 

Karimi, Maron et al. 2017). 

There are several ways to classify biodiversity. From the spatial scale at which 

the samples are taken to measure the diversity, it can be separated into alpha, beta and 

gamma diversity. These concepts were first introduced in 1960 (Whittaker 1960).  

Alpha diversity is the diversity of a relative small area at local scale, such as plot, study 

site, which is frequently expressed as species richness or other low-order Hill number 

(Tuomisto 2010).  Gamma diversity is the total species diversity of a relatively large 

area comparing to alpha diversity, such as a landscape. Gemma diversity usually 

corresponds to the regional or global scale (Whittaker 1960). Beta diversity is defined 

as the difference or ratio between the reginal and local species diversity, that is the beta 

diversity can be calculated from gamma and alpha diversity. Beta diversity represents 

the differentiation among habitats, so it often can be represented as the pairwise 

dissimilarities among habitats.  

 In terms of species assembly, taxonomic diversity (TD) is the most commonly 

used diversity measurement, which plotted as taxonomic richness in species level often 

with some reference to temporal and geographic scale. TD describes the existence and 

abundance of taxonomic units, without the any consideration of the relationships 

between these units and related functionalities they may possess, which are often the 

potential goal to study biodiversity in most areas. Phylogenic diversity (PD) take the 

phylogenic information among the species into account. To be more specific, if the 

community comprised by species that are phylogenetically close to each other, the PD 

of this community is lower than the community consists of divergent species from the 
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evolutionary perspective. Functional diversity measures the functional divergence of a 

community using functional traits processed by the members from this community. 

Each functional trait can be considered as a function that the members contribute to the 

ecosystem.  

However, the study of microorganism in the environment has not been easy due 

to their extremely small size, enormous diversity and complex interactions with the 

environment surround them. The major challenges before the high-throughput 

metagenomics technology was developed, is the unculturable nature of the majority 

microorganisms in the world. The majority of microbial diversity cannot even be 

detected using traditional lab techniques, so the study of the diversity pattern of 

microbes are restricted to extremely small scale. This kind of biodiversity studies did 

provide insights into some simple principles that may or may not exist when the scope 

is larger, but they certainly uncapable to uncover the diversity patterns of the most 

abundant and various organisms on earth.  

1.2 Amplicon sequencing technology and taxonomic diversities 

High throughput sequencing technology was inspired by the completion of human 

genome project in 2003, and its advent has opened a new era for the field of 

microbiology ecology during the last decade. The high-throughput feature of this 

technology provides a way to explore complex communities in depth. The high-

throughput sequencing technologies are also called the next-generation sequencing 

(comparing to Sanger method) where sequencing reactions are produced in parallel and 

output enormous number of sequencing reads directly. The next generation sequencing 

technology (NGS) have been evolving since its birth, leading to higher and higher yield, 
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dropping cost, improving sequencing quality and longer read lengths (Goodwin, 

McPherson et al. 2016).  

 Amplicon sequencing, as one of the most important application of NGS, is 

widely applied to study the microbial composition patterns in our bodies (Grice, Kong 

et al. 2009), in the oceans (Sogin, Morrison et al. 2006), and in our planet (Lauber, 

Hamady et al. 2009). Amplicon sequencing targets for specific gene markers, such as 

small subunit rRNA gene (16S rRNA gene, 18s rRNA genes) and use them to profile 

the taxonomic structure of microbial community, because the ubiquity and conservation 

of these markers. High-throughput sequence reads combining with barcode indexing, 

have allowed investigating a large number of microbial communities in depth 

simultaneously, which largely expend the biodiversity study scales in the field of 

microbial ecology (Herlemann, Labrenz et al. 2011).   

 With millions of reads in a single run, computational tools to store, integrate, 

preprocess, and analyze these sequencing data are required extensively. There are many 

amplicon sequencing data analysis pipelines available for public to use, such as the 

popular QIIME (Caporaso, Kuczynski et al. 2010) and Mothur (Schloss, Westcott et al. 

2009). However, to use such pipelines still requires users to install the tools and do a 

minimum command typing, and for each step, it is difficult and tedious to keep track of 

the parameter used and the corresponding output files without any standardization. 

Besides, the scale and collaborations of the metagenome research projects have become 

larger and more complicated, the need to share and interactively deal with the data has 

become a management issue if users only install the pipelines on their own computers. 
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Therefore, more convenient and up-to-date bioinformatic tools are always in great 

needs. 

1.3 Functional diversities and functional gene array (GeoChip) 

Functional diversity studies have received noticeably increased attentions during recent 

decades. Linking the biodiversity to the ecosystem processes has always been a crucial 

step for ecologists to understand ecosystem functioning and predict the possible effect 

from the loss of biodiversity caused by human activities and global climate change. 

Functional diversity is defined as “the value and the range of those species and 

organismal traits that influence ecosystem functioning” (Laureto, Cianciaruso et al. 

2015). Functional diversity is based on the functional traits, which directly influence 

organism performance or fitness (Mouillot, Graham et al. 2013). The selection of 

functional traits determines what functions to be studied and how accurate can the 

functional diversity index explains the functional space of the species. With the 

definition of functional index and careful selection of functional traits, the researchers 

can investigate two major relations: how the species affect ecosystem functioning and 

adapt to the change of the environment in return (Gagic, Bartomeus et al. 2015).  

1.3.1 Measuring functional diversity 

In the early development of functional diversity, researchers started to focus on 

different ways that organisms use resources and classified species with similar patterns 

together assuming they would respond to environmental change similarly, and these 

classifications were termed “guild” or “functional groups” (Blondel 2003). At this time, 

the classification always relies on expert opinions, which makes the process subjective 

and artificial. As the global effects of human activities, climate changes became 
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growing concerns, interests of these “functional groups” have increased gradually. 

Understanding how the species react to these changes will affect ecosystem functions, 

instead of just studying the distribution pattern of  organisms, has become research 

focus and thus stimulate the application of the concept: functional diversity (Laureto, 

Cianciaruso et al. 2015). Around 2000s, to make the comparison across studies possible, 

researchers introduced the idea of functional traits, so that same traits can be used and 

measured across different studies (Cornelissen, Lavorel et al. 2003). From then on, trait-

based studies have become a popular tool for understanding the importance of the 

functional diversity in maintaining ecosystem function, and the response of species 

when the environmental changes in return (Hooper, Chapin et al. 2005, Balvanera, 

Pfisterer et al. 2006, Martiny, Jones et al. 2015, Perronne, Munoz et al. 2017, Colin, 

Villeger et al. 2018).  

 To estimate functional diversity, the first key step is to select appropriate traits. 

However, choosing traits can represent true functions and feasible to measure at the 

same time is not a simple task. Based on different research questions and function of 

interest, functional traits can be adopted, modified, and created. And the more specific 

and explicit the function of interest is defined, it is more likely to make reasonable and 

informative choices. The number of traits that used to measure functional diversity is 

also an important choice. If the number is too small, which means the species will 

occupy only a small proportion of the functional space, can lead to insufficient 

presentation of the function and increase the functional redundancy since species will 

more similar based on only a few traits. When a greater number of traits are included, 

the species will become more unique to each other in terms of function capabilities 
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(Petchey and Gaston 2006).  When the variance explained by the traits selected are not 

increased after adding new traits, then the number of traits selected probably can make 

good estimation of the functions.  

 There are variety of approaches available in the literature to calculate functional 

diversity given a set of selected functional traits (Petchey and Gaston 2006, Mouchet, 

Villeger et al. 2010, Schmera, Heino et al. 2017). These methodology concepts using 

multiple traits include but not limited to: functional group richness, functional attribute 

diversity (FAD) (Walker, Kinzig et al. 1999), average functional attribute diversity 

(AFAD) (Heemsbergen, Berg et al. 2004), modified functional attribute diversity 

(MFAD) (Schmera, Eros et al. 2009), functional diversity (FD) (Petchey and Gaston 

2002), generalized functional diversity (GFD) (Mouchet, Guilhaumon et al. 2008),  

functional richness (FRic) (Cornwell, Schwilk et al. 2006), Rao’s quadratic entropy (Q), 

(Rao 1982, Botta-Dukat 2005), functional divergence (FDiv) (Villeger, Mason et al. 

2008), functional evenness (FEve) (Villeger, Mason et al. 2008).  Using artificial 

dataset representing different community assembly rules, the relationship of these 

indices have been proved to measure different faucet of the functional diversity, where 

some of the indices are highly similar (Mouchet, Villeger et al. 2010). Among these 

indices, Q, FDiv, FEve take the abundance of trait values into account, while others 

only consider the absence/presence of the trait.  

 Rao’s quadratic entropy, defined in (Rao 1982), incorporates the pairwise 

distance among taxa and weighted by the relative abundance of these taxa, which takes 

into account the differences between traits and also the abundance difference for 

different traits. It has become the most frequently used measure of functional diversity, 
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since it not only fulfills a priori criteria (Mason, MacGillivray et al. 2003, Botta-Dukat 

2005) for diversity indices, but it also quantifies the divergence and richness aspect of 

functional diversity (Mouchet, Villeger et al. 2010). In addition, Rao’s entropy, like 

classical diversity indices, can be partitioned into α and β components (Ricotta 2005, 

Hardy and Senterre 2007, Villeger and Mouillot 2008). The partitioning process can 

help to reveal the function diversity patterns among and within community, and to 

investigate community assembly rules which may differ at different spatial levels. 

Traditionally, for additive petitioning, the total functional diversity (γ) is the sum of the 

average within-community diversity (α̅) and the among-community diversity (β). 

However, when decoupling the functional diversity into α and β components using 

Rao’s entropy, the simple average of within-community diversity (α̅) might exceed the 

total diversity (γ), so weighted average within-community should be used to avoid 

negative among-community diversity (β) (Villeger and Mouillot 2008). Another 

important aspect of trait composition is functional redundancy (Laureto, Cianciaruso et 

al. 2015), which can be observed when functional diversity more rapidly reaches 

saturation than species richness. Functional redundancy represents the functional 

similarity among species, and highly similar species are usually expected to participate 

similar functionality in the ecosystem, which can be considered functional redundant 

(de Bello, Leps et al. 2007). Functional redundancy can influence the stability and 

resilience of a community by maintaining ecosystem functioning when loss of species 

diversity (Naeem 1998, Pillar, Blanco et al. 2013). Using Rao’s entropy, the functional 

redundancy can be defined as the difference between Gini-Simpson diversity index and 

the functional diversity (Rao’s entropy), where the former didn’t consider the 
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dissimilarities between traits (taxa). So, when the dissimilarity between different taxa is 

higher, the difference between Gini-Simpson diversity and Rao’s entropy be smaller, 

which means the functional redundancy is lower, since the taxa are distinct from each 

other and cannot be considered the same or redundant (Ricotta, de Bello et al. 2016).  

1.3.2 Microbial functional diversity and GeoChip 

Microorganisms as a most abundant and diverse members on earth, provide essential 

services to the ecosystem which can directly affect the wellbeing of all other living 

forms. Though the diversity of microorganisms is high, only very small percentage of 

them is recognized due to their invisible and unculturable nature, leaving a big gap in 

knowledge. Fortunately, the continuous development and improvement of technology, 

make the detecting and studying indivisible organisms possible, and start a new era of 

the microbial biodiversity research. Besides the enormous taxonomic diversity of 

microorganisms, the linkage between microbial diversity and ecosystem functions have 

received more and more attentions by the concern that losing microbial diversity will 

undermine ecosystem functions due to human activities and recent climate change. In 

the early days, traditional ways to study functional diversity of microorganisms are 

measuring certain microbial functions from various microbial communities under 

different conditions. Using such methods, functional diversity can be represented by, for 

example, microbial biomass, key enzyme activities involving nutrient cycling 

(Kandeler, Kampichler et al. 1996), different substrate unitization pattern using 

commercially viable Biolog plates (Zak, Willig et al. 1994, Preston-Mafham, Boddy et 

al. 2002).  These methodologies are limited in the number of functions can be studies, 

and the activities or functions measured in situ instead of real environment are not 
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necessarily reflect the real microbial functions in the ecosystem. With the advent of 

high-throughput technologies such as microarray and sequencing, microorganisms that 

cannot be seen or cultivated can be detect and identified by their genetic signature, 

which offers great opportunities to examine the relationship between the microbial 

communities and ecosystem functioning. So now, the microbial functional diversity 

indicates the potential ability of microorganisms to express functions in the 

environment, which is a promising indicator of the actual microbial metabolic activities, 

that is the function of the system. 

GeoChip is a functional gene array designed with probes targeting key genes 

involved in various ecosystem process (He, Deng et al. 2010, Tu, Yu et al. 2014). The 

newest version of GeoChip (version 5.0) contains about 1.6 million probes targeting 

more than 1,590 genes (Zhou, He et al. 2015) that are categorized by their roles in the 

ecosystem functioning, such as carbon, nitrogen sulfur and phosphorus cycling, energy 

metabolism, antibiotic resistance, metal homeostasis and resistance, secondary 

metabolism, organic remediation, stress responses, bacteriophages and virulence. 

Geochip is a powerful to study the function composition and structure of microbial 

communities, with close-format design avoiding reproducibility issue that may cause by 

inadequate random sampling effort (Zhou, He et al. 2015). In general, community 

DNAs are extracted, labeled with fluorescent dyes and hybridized with GeoChip slides. 

The resulting digital images are processed and translated into signal intensity for each 

probe, with higher signal intensity indicating higher abundance of the gene this probe 

targeting at. Given functional profile resulting from GeoChip analysis, gene abundance 

and richness (probe numbers) can be derived easily. If we each gene represents one 
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microbial function, then we can also calculate functional diversity for this function by 

analyzing the probes belong to this gene. These probes can be treated as taxa, or traits 

for this specific gene, and the definition of functional diversity using Rao’s entropy, if 

the distance among these probes can be provided, then we can calculate the function 

diversity for this function. Using this approach, one can not only observe the functional 

potential using gene abundance and richness as traditional ways, but also investigate 

how the microbial functional composition and structure changed under different 

environmental conditions for each individual gene. The combination of GeoChip and 

functional diversity will provide a novel insight to the underlying mechanisms of the 

linkage between microbial communities and ecosystem functioning. 

1.4 Foci of this study 

As the advanced high-throughput technologies enable researchers to gain unprecedented 

insights of microbial communities without culturing and identify individuals, the study 

of microbial diversities has entered a new era. Along with the development of the field, 

technologies have been kept improving to produce more data with higher efficiency and 

accuracy; pipelines were developed to standardized the raw data processing steps and 

generate biological manful results that can be further interpreted and explained; new 

data analysis methods are invented to investigate the data in different perspectives and 

mining for patterns hidden behind the massive information. This dissertation aimed to 

contribute to the field of microbial biodiversity study in terms of technology, data 

analyzing pipeline and research methods. 

In Chapter 2, a new phasing amplicon sequencing approach is proposed to 

improve the low diversity issue that causing sequencing problems using Illumnia 
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sequencing platform. A spacer with random length (0-7 base) is added to the primer 

(both forward and reversed), which will shift the sequencing phases differently to avoid 

the low diversity caused by the conserved region in the targeted genes. This method has 

been proved to successfully solve the low-diversity issue of targeted gene sequences 

and dramatically increase the accuracy of the amplicon sequencing results. A data 

analysis pipeline was development to process the amplicon sequencing data and provide 

preliminary interpretation of the data. The pipeline was built on Galaxy planform run by 

a Linux server, and it provide an interactive webpage service for users to upload, 

analyze, store, share, and track sequencing datasets and their analytical results. The 

pipeline is flexible for adding new analytical tools and is not limited to the analysis of 

16S rRNA gene sequences. Mock communities from 33 know strains were used to 

evaluate the new phasing approach, and the data processing methods. The sequencing 

error rate, chimera rate, were decreased by phasing technology and the quality of the 

sequencing results is also improved, in terms of effective read length and number. 

In chapter 3, the amplicon sequencing technology is used to study the 

biodiversity pattern of soil fungal communities from six forest sites in North America. 

ITS (nuclear ribosomal internal transcribed spacer) region is used as the phylogenetic 

marker and the sequence reads are analyzed through the pipeline constructed in Chapter 

2. The results showed that the biodiversity of microbial fungal communities follows 

some basic rules that has been discovered in macroecology. One is that the α-diversity 

follows the latitude gradient, in other words, the soil fungal community has higher 

diversity when closer to equator. Another is distance-decay pattern, which indicates that 

as the geographic distance become larger, the soil fungal community become less 
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similar. We also investigated the potential mechanisms behind the α- and β-diversity 

patterns shown in the fungal communities. The key driver of the α-diversity, consist 

with the latitude gradient pattern, is the latitude, followed by temperature, precipitation, 

soil pH, total carbon and total nitrogen in soil. The plant richness is the most correlated 

factor with the fungal richness, however, it can be completely expressed as linear 

combinations of other environmental variables, which is why it is not contained in the 

final model. The drivers behind the β-diversity are different in different spatial scale. 

This study provides the traditional analyze methods to study microbial biodiversity and 

add more insights of the mechanisms behind fungal biodiversity patterns to the whole 

picture.  

In Chapter 4, in order to link microbial community to ecosystem functioning, 

another aspect of biodiversity, functional diversity has been studied, and a new 

framework has been proposed to calculate a new functional diversity index based on 

GeoChip data in combine with phylogenetic linkage between the individual 

taxon/probe. Rao’s entropy was used to combine these two pieces of information and a 

functional diversity can be calculated for each single gene. The diversity index can be 

partitioned into α- and β- diversities and extend the investigation of functional diversity 

pattern into different spatial scales. Functional redundancy can also be defined using 

this framework, though it differs from the traditionally defined redundancy, it can 

provide information such as gene similarity, which can also be help to understand the 

community assembly processes. The application of this newly development method has 

showed a stronger relationship between gene functional index and the corresponding 

ecosystem function, such as biodegradation of EVO (emulsified vegetable oil). When 
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using functional diversity as the unit to profile the functional structure of the whole 

community, the new index also reveals that the environmental variables govern the 

shifts of microbial functional structure, while the traditionally used gene richness did 

not show this pattern. In summary, the new proposed function diversity index possesses 

a closer relationship to the ecosystem functioning, which would help to understand how 

the environment change will affect the microbial functional diversity and further, the 

ecosystem functions.  

Chapter 5 summarized the work of this dissertation and indicate the significance 

of this study and the contribution it made to the field.  
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Chapter 2: Phasing amplicon sequencing on Illumina Miseq 

2.1 Abstract 

Although high-throughput sequencing, such as Illumina-based technologies (e.g. 

MiSeq), has revolutionized microbial ecology, adaptation of amplicon sequencing for 

environmental microbial community analysis is challenging due to the problem of low 

base diversity. A new phasing amplicon sequencing approach (PAS) was developed by 

shifting sequencing phases among different community samples from both directions 

via adding various numbers of bases (0–7) as spacers to both forward and reverse 

primers. Our results first indicated that the PAS method substantially ameliorated the 

problem of unbalanced base composition. Second, the PAS method substantially 

improved the sequence read base quality (an average of 10 % higher of bases above 

Q30). Third, the PAS method effectively increased raw sequence throughput (~15 % 

more raw reads). In addition, the PAS method significantly increased effective reads (9–

47 %) and the effective read sequence length (16–96 more bases) after quality trim at 

Q30 with window 5. In addition, the PAS method reduced half of the sequencing errors 

(0.54–1.1 % less). Finally, two-step PCR amplification of the PAS method effectively 

ameliorated the amplification biases introduced by the long-barcoded PCR primers. 

Conclusion: The developed strategy is robust for 16S rRNA gene amplicon sequencing. 

In addition, a similar strategy could also be used for sequencing other genes important 

to ecosystem functional processes 

Keywords: Next generation sequencing, Low diversity sample, Amplicon sequencing, 

Illumina Miseq, Microbial community, Phasing primer, Microbial ecology 
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2.2 Introduction 

Microorganisms are the most abundant diverse life forms on Earth, and they are almost 

everywhere (Whitman, Coleman et al. 1998). Microbial activities contribute greatly to 

many critical ecosystem functions. But due to their vast diversity and as-yet 

uncultivated nature, how to detect, identify, quantify and characterize them are some of 

the great challenges for researchers. In the last couple of decades, the development of 

high-throughput sequencing technologies has provided microbiologists ways to tackle 

these challenges and discover the microbial world in a whole new perspective. One of 

the most common application in microbial ecology is sequencing amplified gene 

makers (also called amplicons), such as 16S ribosomal RNA gene, fungal ITS region, 

nifH gene (Dethlefsen, Huse et al. 2008, Nilsson, Ryberg et al. 2009, Silva, Schloter-

Hai et al. 2013) to study the phylogenetic/functional diversity and structure of microbial 

communities (Caporaso, Lauber et al. 2012, Faith, Guruge et al. 2013, Tromas, Fortin et 

al. 2017). There are various next generation sequencing (NGS) technologies are 

available right now, and the Illumina platform (e.g., HiSeq2000, MiSeq) has become an 

common option due to its lower cost, rapid analysis process, and higher accuracy 

(Bartram, Lynch et al. 2011, Caporaso, Lauber et al. 2012, Faith, Guruge et al. 2013, 

Sikkema-Raddatz, Johansson et al. 2013, Tromas, Fortin et al. 2017, Gaby, Rishishwar 

et al. 2018). It is anticipated that the MiSeq platform in particular will be a dominant 

sequencing technology for microbial ecology studies due to its great flexibility, fast-

turnaround time, longer sequence reads and high accuracy (Gibson, Shokralla et al. 

2014, Nelson, Morrison et al. 2014, Schirmer, Ijaz et al. 2015).  
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 In amplicon sequencing, to decrease experimental cost and maximize the 

capability of sequencing technology, different community samples are often sequenced 

together in a single Hiseq lane or Miseq run via the use of barcodes, which are added 

during PCR amplification (Krueger, Andrews et al. 2011). However, low sequence 

diversity or unbalanced base composition in template DNA sequences are inherently 

problematic in amplicon sequencing with Illumina sequencing technologies, because 

they can affect sequence output, quality, and error rate due to problems in cluster 

identification, focusing, phasing/pre-phasing and color matrix estimation (Krueger, 

Andrews et al. 2011). Innovations such as new reagents kit (Lundberg, Yourstone et al. 

2013) has been proposed to mitigate the issues, but it is still challenging. Frameshifting 

with different length of barcodes  (3–6 bases, three bases difference) (Hummelen, 

Fernandes et al. 2010) and short spacers (0–5 bases) (Lundberg, Yourstone et al. 2013) 

have been used to shift sequences in template DNA, but these shifts are inadequate, 

especially for the region with continuous homopolymer. For example, there are five 

‘GGG’, three ‘GGGG’, and one ‘GGGGG’ homopolymers within the 16S rRNA gene 

v4 region. Recently, longer spacers (0–7 bases) were used in a dual-indexing primer 

design for reducing the number of barcoded primers in multiplex 16S rRNA gene 

amplicon sequencing and higher quality of sequence reads were reported (Kozich, 

Westcott et al. 2013, Fadrosh, Ma et al. 2014). This design put spacers of 0–7 bases 

after indices of 12 bases in both forward and reverse primers, which are positioned after 

the Illumina HP10 or HP11 (Illumina, San Diego, CA, USA) sequencing primers. 

Therefore, the sequencing for both forward and reverse reads starts at the indices of the 

forward and reverse primers, sacrificing a total 24 bases of the paired end reads, which 
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will be essential for some long amplicon sequencing if assembly of the paired end reads 

is desired. 

 Here, we developed a new 16S rRNA gene-based amplicon sequencing strategy 

to ameliorate the problems associated with low diversity. In our phasing primer design, 

spacers of 0–7 bases are arranged in a complementary fashion in the forward and 

reverse primers so that the total length of the spacers is 7 bases in all paired end reads. 

With this spacer design, the total number of added bases between the forward and 

reverse primers is limited to 7 bases as to maximize the useful length of each amplicon 

sequence and to minimize any quality bias among sequence reads resulting from using 

different primer combinations. The single index of 12 bases is positioned between the 

Illumina adapter, which is used to hybridize the template DNA to the oligo on the 

Miseq flow cell, and the HP11 sequencing primer in the reverse primer. The index is 

sequenced separately so that it does not take spaces in the paired end sequence reads. In 

addition, a two-steps PCR amplification procedure is used to eliminate possible bias 

introduced by extra components in the long phasing primers (besides the bias 

introduced by target gene primers). A systematic comparison was made between Miseq 

runs of phasing and un-phasing methods in terms of throughput, sequence length, error 

rates and biases. Our results indicated that this strategy substantially increases sequence 

output, reads number and quality, and decreases sequencing errors, and hence can serve 

as a robust approach for reliably sequencing amplicons of large-scale samples from 

various communities.  
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2.3 Material and Methods 

2.3.1 Samples, mock community design and DNA extraction  

We’ve sequenced samples, including soils, ground waters, sea waters, bioreactor 

cultures, and saliva samples, used for PAS and non-PAS comparisons were collected 

from various locations and experiments. A neutral black soil planted with maize 

collected from Hailun, China in 2011 was used to compare one- and two-step PCR. 

Community DNA was extracted by freeze-grinding plus sodium dodecyl sulfate (SDS) 

lysis as described previously (Zhou, Bruns et al. 1996). Crude DNA extracts were 

purified by electrophoresis on a 0.7 % low melting agarose gel, followed by phenol 

extraction (Xie, Wu et al. 2012). DNA quality was assessed based on the absorbance 

ratios of 260/280 nm and 260/230 nm using a NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA) and the DNA concentration was 

quantified using a PicoGreen (Life Technologies, Grand Island, NY, USA) assay with a 

FLUOstar Optima (BMG Labtech, Jena, Germany). 

The mock community (Table S1. Mock bacterial community species and details 

Sequence name 

 

Taxonomy  
(Phyla or class) 

Source 
Insert 
length 

(nt)
b
 

Acidobacteria Acidobacteria Drinking water 1359 
Actinobacteria Actinobacteria Wastewater reactor 1392 
Bacteroidetes clone 1 Bacteroidetes Wastewater reactor 1355 
Bacteroidetes clone 2 Bacteroidetes Drinking water 1352 

Caldisericum exile OP5 
DSMZ culture collection‐
13637 

1426 

Chlorobi Chlorobi Surface water 1374 
Cyanobacteria Cyanobacteria Surface water 1324 

Deferribacter desulfuricans Deferribacteres 
DSMZ culture collection‐
14783 

1410 

Deinococcus indicus Deinococcus‐Thermus DSMZ culture collection‐1537 1366 
Desulfurispirillum 
alkaliphilum 

Chrysiogenetes DSMZ culture collection‐1827 1375 

Dictyoglomus thermophilum Dictyoglomi DSMZ culture collection‐396 1415 
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Fibrobacter succinogenes S85 Fibrobacteres 
Donated by Isaac Cann, 
University of Illinois‐Urbana 
Champaign 

 

1372 

Gemmatimonadetes Gemmatimonadetes Wastewater reactor 1360 

Leptotrichia hofstadii Fusobacteria 
DSMZ culture collection‐
21561 

1367 

Mycoplasma orale Firmicutes DSMZ culture collection‐1915 1375 
Nitrospira Nitrospirae Wastewater reactor 1376 
 

Persephonella hydrogeniphiia 
H3 

Aquificae 
Donated by Anne Louise 
Reysenbach, Portland State 
University 

 

1389 

Planctomycetes Planctomycetes Wastewater reactor 1376 

Protochlamydia amoebophilia Chlamydiae 
Donated by Mathias Horn, 
University of Vienna 

1360 

Spirochaetes Spirochaetae Surface water 1396 

Sulfurihydrogenibium 
yellowstonense 

Aquificae 
Donated by Anne Louise 
Reysenbach, Portland State 
University 

 

1378 

Synergistetes Synergistetes Surface water 1355 
 

Syntrophobacter 
fumaroxidans 

Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 117) 

 

1415 

 

Syntrophococcus 
sucromutans 

Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(ATCC# 43584) 

 

1380 

 

Syntrophomonas bryantii Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 314A) 

 

1412 

 

Syntrophothermus lipocalidus Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 1268) 

 

1500 

 

Syntrophus buswellii Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 2612A) 

 

1413 

 

Syntrophus gentianae Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 
(DMZ# 8423) 

 

1412 

Thermodesulfobacterium 
commune 

Thermodesulfobacteri 
a 

 

DSMZ culture collection‐2178 
 

1422 

Thermomicrobium roseum Chloroflexi DSMZ culture collection‐5159 1371 

Thermotoga neapolitana Thermotogae. 
Donated by Claire Vielle, 
Michigan State University 

1412 

Verrucomicrobia Verrucomicrobia Surface water 1379 
Victivallis vadensis Lentisphaerae DSMZ culture collection‐8748 1360 

 
a The mock community was a gift from Dr. Lutgarde Raskin, Department of Civil and Environmental 
Engineering, University of Michigan, United States of America. 
b The insertions are near full length 16S rDNA sequences. 
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), which contained plasmids carrying near full length 16S rRNA gene sequences 

of 33 bacteria from different phyla or species at 109 copies/μl, was a gift from Dr. 

Lutgarde Raskin, University of Michigan (Pinto and Raskin 2012). 

2.3.2 PCR primers and amplification 

The primers used for library preparation for the non-phasing sequencing runs were gifts 

from Dr. Rob Knight, University of Colorado, Department of Chemistry & 

Biochemistry, the design of which was described previously (Caporaso, Lauber et al. 

2012). These primers contained the Illumina adapter, a pad and a linker of two bases 

and barcodes on the reverse primers. For the two-step PCR amplification, primers 

[515F, 5′-GTGCCAGCMGCCGCGGTAA-3′ and 806R, 5′-

GGACTACHVGGGTWTCTAAT-3′] targeting the V4 region of both bacterial and 

archaeal 16S rDNA without added components were used in the first step to avoid extra 

bias introduced by spacers and other added component. 

The base diversity of sequences in sample libraries affects MiSeq amplicon 

sequencing in both data throughput and quality. The first 11 bases are particularly 

critical for cluster identification (first 7 bases) and color matrix estimation (first 11 

bases). To increase the base diversity in sequences of sample libraries within V4 region, 

phasing primers were designed and used in the second step of the two-step PCR. 

Spacers of different length (0–7 bases) were added between the sequencing primer and 

the target gene primer in each of the 8 forward and reverse primer sets. To ensure that 

the total length of the amplified sequences do not vary with the primer set used, the 

forward and reverse primers were used in a complementary fashion so that all of the 

extended primer sets have exactly 7 extra bases as the spacer for sequencing phase shift. 
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Barcodes were added to the reverse primer between the sequencing primer and the 

adaptor (Additional file 2: Table S2A, B; Additional file 1: Figure S3E-G). The reverse 

phasing primers contained (5′ to 3′) an Illumina adapter for reverse PCR (24 bases), 

unique barcodes (12 bases), the Illumina reverse read sequencing primer (35 bases), 

spacers (0–7 bases), and the target reverse primer 806R (20 bases). The forward phasing 

primers included (from 5′ to 3′) an Illumina adapter for forward PCR (25 bases), the 

Illumina forward read sequencing primer (33 bases), spacers (0–7 bases), and the target 

forward primer 515F (19 bases). These primers were then used in the second step PCR. 
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Figure 2.1 Phasing amplicon sequencing technology in four steps (a) first step PCR (b) second 

step PCR (c) adding spacers (d) products from the phasing technology 

 

Tagged PCR products were generated using primer pairs with unique barcodes 

through either one or two-step PCR with non-phasing or phasing primers. The addition 

of extra components (spacers, adaptors, barcodes, etc.) to primers may introduce 

additional PCR bias due to their varying affinities to the upstream sequences of the 

target region. To minimize the potential additional bias, a two-step PCR (Fig 2.1) was 

used for library preparation of phasing sequencing runs. In this strategy, target-only 

primers were used in the first PCR reaction to amplify the target gene and that product 

was then used in the second PCR using primers containing all of the additional 

components. In the one-step PCR, reactions were carried out in a 50 μl reaction: 5 μl 

10 × PCR buffer II (including dNTPs), 0.5 U high fidelity AccuPrime™ Taq DNA 

polymerase (Life Technologies), 0.4 μM of both forward and reverse primers, 10 ng soil 

DNA or 1 μl mock community of 20x dilution (start solution contained 1×109 copies 

per μl). Samples were amplified using the following program: denaturation at 94 °C for 

1 min, and 30 cycles of 94 °C for 20 s, 53 °C for 25 s, and 68 °C for 45 s, with a final 

extension at 68 °C for 10 min. 

In the two-step PCR, the first round was carried out in a 50 μl reaction as 

described above using target-only forward and reverse primers. Reactions were 

performed in triplicate and the sample amplification program described above was used 

except that only 10 cycles were performed. To remove residual first step PCR primers, 

the genomic DNA templates, and those uncompleted short PCR products, the triplicate 

products from the first round PCR were combined, purified with an Agencourt® 

AMPure XP kit (Beckman Coulter, Beverly, MA, USA), eluted in 50 μl water, and 
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aliquoted into three new PCR tubes (15 μL each). The second round PCR used a 25 μl 

reaction (2.5 μl 10 × PCR buffer II (including dNTPs), 0.25 U high fidelity 

AccuPrime™ Taq DNA polymerase (Life Technologies), 0.4 μM of both forward and 

reverse primers, 15 μl aliquot of the first-round purified PCR product). Phasing primers 

were used in this second round PCR with the barcode on the reverse primers. The 

amplifications were cycled 20 times following the above program. Positive PCR 

products were confirmed by agarose gel electrophoresis. PCR products from triplicate 

reactions were combined and quantified with PicoGreen. 

PCR products from samples to be sequenced in the same MiSeq run (generally 

3 × 96 = 288 samples) were pooled at equal molality. The pooled mixture was purified 

with a QIAquick Gel Extraction Kit (QIAGEN Sciences, Germantown, MD, USA) and 

re-quantified with PicoGreen. To keep the PCR product measurements consistent, PCR 

mixtures that had been previously sequenced were used as standards when a new PCR 

mixture was quantified. The concentration of the new PCR mixture was adjusted based 

on the current measurements and previous measurements of the standard PCR mixtures 

[adjusted new PCR mixture concentration = the measured concentration of the new PCR 

mixture × (the current measurement of the standard PCR mixture/the previous 

measurement of the standard PCR mixture)]. 

2.3.3 Illumina MiSeq sequencing 

Sample libraries for sequencing were prepared according to the MiSeq™ Reagent Kit 

Preparation Guide (Illumina, San Diego, CA, USA) as described previously [5]. Briefly, 

first, the combined sample library was diluted to 2 nM. Then, sample denaturation was 

performed by mixing 10 μl of the diluted library and 10 μl of 0.2 N fresh NaOH and 
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incubated 5 min at room temperature. 980 μL of chilled Illumina HT1 buffer was added 

to the denatured DNA and mixed to make a 20 pM library. Finally, the 20pM library 

was further adjusted to reach the desired concentration for sequencing, for example, 625 

μl of the 20 pM library was mixed with 375 μl of chilled Illumina HT1 buffer to make a 

12.5 pM library. The final concentration of the library used for sequencing was 

determined based on the targeted cluster density. Based on manufacture protocol, the 

range of cluster density of 500 K/mm2–1,200 K/mm2 is recommended. The library for 

sequencing was mixed with a proportion of a Phix library of the same concentration. 

For the sequencing runs using Illumina’s MiSeq Control Software version 1.1.1 and 

Real Time Analysis (RTA) version earlier than v1.17.28, Phix DNA spikes were 

adjusted to 10–20 % for phasing runs and 30–50 % for non-phasing. The incorrect 

hardcode matrix and phasing estimations were avoided by altering the MiSeq 

Configuration.xml file to use hardcode matrix and phasing/pre-phasing rates from a 

normal PhiX DNA run (Additional file 1: Note S1). For the sequencing runs using 

MiSeq Control Software v2.2.0 with RTA v1.17.28 or later, PhiX DNA was adjusted to 

about 10–15 % for all runs. 

A 500-cycle v1 or v2 MiSeq reagent cartridge (Illumina) was thawed for 1 h in a 

water bath, inverted ten times to mix the thawed reagents, and stored at 4 °C for a short 

time until use. For non-phasing primer runs, customized sequencing primers for 

forward, reverse, and index reads were added to the corresponding wells on the reagent 

cartridge prior to being loaded as described previously [5]. Sequencing was performed 

for 251, 12, and 251 cycles for forward, index, and reverse reads, respectively. 
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Sequencing runs were monitored in real time using the Illumina Sequencing Viewer for 

cluster density, percentage of clusters passing filter, phasing/pre-phasing ratios, % base, 

error rates, % reads with quality score ≥30, and other parameters. RTA software 

v1.17.28 or earlier versions uses the first 4 bases for initial identification of clusters, and 

the first 11 bases for cluster variation. 

(http://supportres.illumina.com/documents/documentation/system_documentation/mise

q/miseq_v2.2_software_release_notes.pdf). RTA v1.18.42 uses the first 7 bases for 

cluster identification and the first 11 cycles for color matrix estimation 

(http://supportres.illumina.com/documents/documentation/system_documentation/mise

q/miseq-updater-v2-3-software-release-notes.pdf). 

2.3.4 Data analysis and amplicon sequence data analysis pipeline 

To analyze the amplicon sequencing data, a series of data processing procedure needs to 

performed to get meaningful biological information out of the data. There are many 

amplicon sequencing data analysis pipelines available for public to use, such as the 

popular QIIME (Caporaso, Kuczynski et al. 2010) and Mothur (Schloss, Westcott et al. 

2009). However, to use such pipelines still requires users to install the tools and do a 

minimum command typing, and for each step, it is difficult and tedious to keep track of 

the parameter used and the corresponding output files without any standardization. 

Besides, the scale and collaborations of the metagenome research projects have become 

larger and more complicated, the need to share and interactively deal with the data has 

become a management issue if users only install the pipelines on their own computers. 

Therefore, we developed a data analysis pipeline for amplicon sequencing data analysis 

based on the Galaxy (Blankenberg, Gordon et al. 2010) platform, which allowing users 
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without any programming experiences to perform the analysis and manipulate the data 

using a point and click interface. The pipeline was installed in our Linux server with all 

the selected public toolkits and self-written scripts integrated into it, and the users can 

access the pipeline through the website http://zhoulab5.rccc.ou.edu:8080 after setting up 

accounts from the administers. The user can upload the raw sequencing data into the 

pipeline and starting to process them by selecting the tools listed aside. For each step, 

after setting up the input files and parameters required by the tool, the running process 

will automatically store the parameters in the output files, which will appear in the data 

history panel after the computational job is done. And once the processing steps and the 

parameters in each step are decided, one can create workflows to connect every step and 

the next time there’s a similar dataset, users can run this workflow by one click and get 

the final results. This feature in Galaxy gives the flexibility for users who would like to 

explore tools and parameters to optimize the results, but most importantly, provides a 

convenient way for users who just want to get the final results without any 

complications. The user accounts information is protected by passwords but the users 

can share the data histories (a dataset with all the intermediate and final result files) 

through the pipeline by providing the other user’s information (email address in our 

case). In this way, not only we can save the extra space to store the shared data, but also 

it allows users to share the whole processing steps including the data analysis tools with 

the parameters they use, which will avoid confusions and give the whole data 

processing procedure more clarity and transparency.  

The major processes included in our pipeline are shown in Figure 2.2. There are 

two major steps in the pipeline: filtering the sequences and generate operational 

http://zhoulab5.rccc.ou.edu:8080/
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taxonomic units (OTUs). In the first part, the sequences are first trimmed with their 

qualities, followed by checking for short and ambiguous fragments, and finally checked 

for chimeras. The references used for chimera checking are stored in the data libraries 

of the pipeline so that users can access them easily, which provides a standardization for 

all the datasets get processed through this pipeline. For the second part, there are many 

algorithms can be used to classify sequences into similar taxonomic groups, and we list 

several most commonly used ones: UCLUST (Edgar 2010), UPARSE (Edgar 2013), 

CD-HIT (Fu, Niu et al. 2012), and McClust (Scrucca, Fop et al. 2016).  
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Figure 2.2 Miseq amplicon sequencing pipeline flowchart. (a) data pre-processing from reads to 

OTUs (b) basic statistical and phylogenetic analysis 

Our pipeline also adds the ability to process functional gene amplicon sequencing data 

other than the traditional taxonomic markers such as 16S rRNA and ITS. To process the 

sequences for functional gene amplicon data, an additional step should be made during 

the filtering process: checking the open reading frames (Wang, Quensen et al. 2013). 

This will ensure the correctness when the DNA sequences are translated into protein 

sequences, and it can also remove some erroneous sequences, such as those contains 

termination codon in the middle of the sequences. And we also keep tracking of the 

reference sequences that can be used for different functional genes to allow accurate 

chimera checking steps and future classification steps.  

 The analysis of the OTUs are the most important part for the researchers to solve 

the corresponding research questions. We provide some basic tools which can be 

directly performed after the OTU table is generated. For example, we provided the tools 

that can generate the rarefaction curve based on the rarefied sequencing number and 

corresponding OTU numbers, which can be used to evaluate if the sequencing depth is 
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enough to cover the possible species in the environment and the calculated Chao value 

can also be as a measure of alpha diversity in each group of samples. The taxonomic 

classification is another necessary tool for users to assign possible taxonomic 

information to their sequences based on what is already known to the academic public. 

The RDP classifier (Wang, Garrity et al. 2007) are used for such a task for the and 

resampling. These tools can help users to get a general picture of the data and provide 

direction for more detailed and specific analysis in the future.  

2.4 Results  

2.4.1 Basic sequencing properties using phasing strategy 

The V4 version of the 16S rRNA gene is commonly targeted for sequencing with the 

primer set 515F and 806R, which has high sequence coverage for both bacteria and 

archaea. This will produce an approximate 292 base-pair fragment including these two 

primers and a 253 base-pair amplicon excluding the primer sets. For optimal sequencing 

results using Illumina sequencing, the base diversity across a set of amplicon sequences 

would have an even diversity at each position so that each base (A, T, G, C) would be 

present in 25% of the sequences at any given position. However, the base diversity in 

this region of the 16S rRNA gene is very low. Of the first 100 base positions, 63% and 

79% of positions in the forward and reverse sequences have one base with frequencies 

greater than 75% respectively. To overcome this problem of unbalanced base 

distribution, we use the strategy of a complimentary spacer pair containing a variable 

number of bases (0-7 bp, but always equaling 7 bases between the two) inserted in both 

the forward and reverse primers between the sequencing and target amplification 

sections of the primers. In this way, the sequencing phase will shift among different 
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community samples and thus increasing the base diversity at individual positions. After 

adding these spaces, the base composition in this region is more balance and the 

difference in nucleotide frequency for most positions is less than 30% Error! 

Reference source not found.Figure 2.2 (a, b). The frequencies of the 4 bases in the 

first 12 bases before and after the primer shift in both forward and reverse reads are 

shown in the Error! Reference source not found. (c, d, e, f), and it is clear that this 

phasing amplicon sequencing strategy substantially improved the base composition 

balance.  

 

 

Figure 2.3 Impact of phasing primers on base frequency distributions. Differences between the 

maximum and minimum base frequencies at each sequence position were estimated before and 

after primer shift for forward (a) and reverse (b) sequences. Base frequencies of the first 12 

positions of the forward sequences before (c) and after (d) primer shift, and the reverse 

sequences before (e) and after primer (f) shift. 
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2.4.2 Effective reads number and read lengths 

To determine whether this PAS (phasing amplicon sequencing) strategy is consistently 

better than non-PAS in terms of sequence output, sequence quality and effective read 

length, the experimental data from different PAS runs were analyzed. These sequencing 

runs were used to determine the diversity of 8.731 microbial communities from diverse 

habitats such as soil, sediment, groundwater, bioreactors, wastewater treatment plants 

and human oral and guts.  The percentage of sequence clusters passing the filter 

decreased for both PAS and non-PAS runs as the cluster density goes higher, but the 

PAS runs decrease slower (smaller slope) than the non-PAS runs Figure 2.4a. At the 

same time, the number of sequences reads also increased more when using the PAS 

strategy Figure 2.4a. In addition, the average percentage of bases with > Q30 at the last 

cycle was significantly higher (p < 0.001) for PAS runs (forward, 93.5 %; reverse, 

88.4 %) than for non-PAS runs (forward, 86.3 %; reverse, 78.5 %) (Figure 2.4b). These 

results indicated that the PAS method provided high resolution for sequence cluster 

identification, and therefore, maximized the sequence read output, and significantly 

improved sequence read quality due to the balanced fluorescence signal intensity. 
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Figure 2.4 Sequence output, read length and sequence quality comparisons between the PAS 

and non-PAS approaches. 

 

 

The PAS method was further evaluated by comparing the average read length 

after quality trim at Q30 and Q20 with the trimming window set at 5 or 2. The 

percentage of effective sequence reads, which refer to those sequences for which at least 

80 % of all bases in the theoretical length have scores of >Q30 or >Q20 (e.g. 

200 bp for 2 × 250 bp paired end reads), were also evaluated. The average read length 

for both forward and reverse sequences were significantly longer after quality 

trimming in PAS runs than in non-PAS runs. This was especially obvious at high cluster 

densities and at Q30 with the quality trimming window set at 5 (Figure 2.4c). 
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 More importantly, the percentage of effective reads were considerably higher for PAS 

runs than for non-PAS runs for both forward and reverse sequences and for combined 

full-length sequences (253 bp) at all cluster densities compared, particularly at high 

sequence cluster densities and at Q30 for the reverse reads (Figure 2.4d). 

2.4.3 Error rate analysis using mock communities 

To determine whether PAS affects sequencing error, a mock community containing full 

length, plasmid-borne 16S rDNA sequences from 33 (Table S1) different bacterial 

phyla or classes (Ahn, Costa et al. 1996) was sequenced using both PAS and non-PAS 

methods (both sequencing runs were performed after the Illumina RTA software was 

upgraded to version 1.17.28). The relative abundance of the strains from the sequencing 

results and their expected value in three communities (Bm1, Bm2, Bm3) with different 

proportional compositions are shown in Figure 2.5. There are three strategies used: non-

PAS, PAS with one-step PCR and PAS with two-step PCR. A two-step PCR 

amplification strategy is to amplify the target gene with standard primers at a low cycle 

number (e.g. 10 cycles followed by a second PCR amplification using the PCR products 

from the first step PCR and long barcoded primers with spacers.  
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Figure 2.5 Three mock communities with different member distribution to detect PCR bias 

among different bacteria strains due to target gene primer preference 

 

From the correlations between the real relative abundance and their expected 

values (Table 2.1), the sequencing results from the Bm1 community, which has 33 

trains evenly distributed, does not have significant correlations with their expected 

values, whereas the other two communities have much more consistent results as 

expected using different sequencing strategies. And from Table 2.1, the PAS strategy 

using one-step PCR seems can produce community distributions closer to the real 

distribution than the other two strategies (non-PAS and PAS with two-step PCR). The 
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correlations between the three strategies (Error! Reference source not found.) shows 

that the PAS with one-step and two-step PCR are the strategies that produce the more 

similar results (>86.33%). 

Table 2.1 Pearson correlations between mock community stain relative abundances and their 

expected values 

Mock 

Community 
Sequencing Strategy r p-value 

Mock1 (Bm1) 

old primer 0.0000 1 

one-step 0.0000 1 

two-step 0.0000 1 

Mock2 (Bm2) 

old primer 0.7799 <0.001 

one-step 0.8614 <0.001 

two-step 0.8504 <0.001 

Mock3 (Bm3) 

old primer 0.8909 <0.001 

one-step 0.9518 <0.001 

two-step 0.8779 <0.001 

 

The error rate was calculated during every data processing step and based on the results, 

the PAS method can reduce sequencing errors. The average sequencing error rate of the 

raw sequence reads was significantly lower (p < 0.0001) for PAS than non-PAS runs 

(1.17 vs 1.71 % for forward sequences, 0.77 vs 1.87 % for reverse sequences). Much 

higher error rates were observed for non-PAS runs both before the 100th cycle and in 

the last 97 cycles. The higher raw sequence error rates for both forward and reverse 

reads in the non-PAS run was comparable to other reported error rates (Kozich, 

Westcott et al. 2013). Also, although sequence quality trimming significantly reduced 

error rates for all the approaches, error rates were still considerably higher for non-PAS 

than PAS runs. In addition, due to higher sequencing errors and subsequently stricter 

quality trimming, the percentage of effective sequence reads and combined sequences 

was substantially lower for non-PAS runs than PAS runs. These results indicate that the 

PAS method not only increased the number of effective sequence reads and read length 
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but also reduced sequencing errors. One way that the PAS method reduces sequence 

error rates could be the higher quality of the sequencing reads obtained using this 

method. Another reason could be that PAS has a relatively lower percentage of chimera 

formation during PCR amplification due to fewer amplification cycles at both 

amplification steps and preliminary evidence indicates that fewer chimera are present 

with PAS.  

2.4.4 Potential bias source for OTU composition in mock communities  

The final OTU number (hypothetical species) in the mock communities from all the 

sequencing strategies are higher than 33, which indicating there are non-expected 

sequences generated from the sequencing process. Since we have proved that the PAS 

have dramatically increase the quality of the sequences from the above sections, the 

major concern is what kind of bias exist in the sequences produced by PAS. The first 

possible step that can introduce the bias are the PCR implication process. As shown in 

Figure 2.6a, if using only one-step PCR, the community composition will be separated 

into 8 groups, where each group has the same spacer added (0-7 bp length). This 

indicates that using only one-step PCR will generate sequences depend on the spacer 

added, instead of the original targeting region. When using two-step PCR, the 8 groups 

appear no substantial differences in the final community structure, which means the 

second step of PCR have reduce the possibility of the artificial sequences generated 

from the PAS spacers.  

The second and the most possible bias source the chimeras Figure 2.6b that also 

formed during the PCR process. The real chimera rate is estimated by using the 

UCHIME (Edgar, Haas et al. 2011) and providing the 16S rRNA sequences of  the 33 
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strains used in our mock communities. As in the final results that used to generate 

OTUs, the chimeras are removed by using UCHIME and the 16S rRNA Greengene 

(DeSantis, Hugenholtz et al. 2006) database, to represent the normal situation that the 

community members are unknown in advance. For sequences before any quality 

trimming, the non-PAS and one-step PCR strategy produces as much as 10% chimeric 

sequences, while the two-step PCR strategy has a chimera rate slightly less than 6%. 

After applying UCHIME to remove the potential chimeras without any prior 

knowledge, the chimera rate will drop below 2% using the two-step PCR strategy, 

which the other two strategies will have around 3% chimeras in the sequences.  

 
Figure 2.6 The bias introduced from various sources: DNA samples, PCR amplification, 

sequencing process and data analysis 

 

The sequencing quality is another reason there are bias in the sequencing results, since 

sequencing error will generate sequences that different from the targets and will appear 

as different strains in the final OTUs. The most important reason for pre-processing the 
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sequences in the first place is to trim or discard any sequence reads that have low 

qualities, which can be estimated by the QC score from the Illumina sequencing results. 

These scores are stored in the FASTQ format along with the sequence content. The 

trimming process will remove or trim the sequence regions below certain quality 

threshold, and the averaging window of the quality scores is also applied to represent 

possible strategies to clean up low quality sequences. Normally people use Q-score of 

20 and window size of 5 as the standards, which is comparatively less strict than other 

criteria people used in the publications. When more stringent trimming criteria is used, 

the error rate of the sequences should decrease, but the errors cannot be eliminated by 

using most stringent criteria. From the results, the criteria of Q20 and window size 5 

can perform equally well as other criteria in terms of error rate in both PAS strategies, 

so it is not necessary to use higher standards to trim the sequences. Spurious sequences, 

which appears much less frequently in the samples than normal sequence, such as 

singletons and doubletons, can be viewed as noises as well. Even though, the reason of 

the generation of these spurious sequences cannot be specifically distinguished, we can 

remove these potential errors by removing these sequences. The error rate and OTU 

numbers are both decreased after removal of singletons, and since there are only a few 

doubletons exists in our sequences, the effect of doubletons removal is not significant.  

 

2.5 Discussion 

The phasing amplicon sequencing overcomes the low diversity and unbalanced base 

distribution issue, which will cause problems to form correct clusters during the 

Illumina sequencing processes. There are other efforts have been made to solve this 
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problem as well, such as by shifting the sequencing phases of amplicons by using 

staggered barcodes (3-6 bases) or spacers of (1-5 bases), but these methods achieved not 

sufficient sequence position shifts based on the simulation of the base distribution after 

adding bases to the 5’ end of the primers. Using a 1-5 base spacer, there would be only 

6 primers available (i.e. 0 bases, 1, bases, etc.), so the base distribution would still be 

unbalance even in the first base position, since 6 is not a multiple of 4 (the number of 

base available). A similar problem exists with the 3-6 staggered base barcode design. 

These findings suggest that a larger frame shift of at least 8 bases would be necessary to 

increase base diversity across the length of the entire amplicon. An additional concern is 

that using primers of varying length will results amplicon sequences of different 

length and quality bias among amplicon sequences due to their length differences. So, 

to address these issues, the PAS strategy developed here uses a complimentary spacer 

pair containing a variable number of bases (0–7 bp, but always equaling 7 bases 

between the two) inserted in both the forward and reverse primers between the 

sequencing and target amplification sections of the primer to shift sequencing phases 

among different community samples, increasing the base diversity at individual 

positions.  

The difference between the number of effective combined sequences in the PAS 

and non-PAS methods was less than that between either the forward or reverse 

reads. This was most likely due to the relatively short amplicons generated from the 16S 

rDNA v4 region. Short reads are still a concern for amplicon sequencing with Illumina 

platforms even with the 2x300 bp paired end kit. If there is a relatively low base 

diversity, read length after quality trimming will be much shorter than expected, 
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especially when the quality trimming is done under highly stringent conditions, e.g. 

Q30. For many functional genes, such as nirK, nirS, amoA, and dsr, it is difficult to find 

primers to generate amplicons of appropriate length, so relatively longer amplicons 

(over 500 bp) must be selected. The results here indicated that PAS method effectively 

improved sequence read quality and length, which are critical for sequencing longer 

amplicons, assembling paired-end reads and increasing overall sequencing accuracy.  

Since spacers and other components were added to the phasing primers before 

the target primer sequences, additional PCR amplification bias could be introduced. 

Using two-step PCR should reduce biases because the standard primers do not have 

added components, and when using the PCR products as target in the second run, the 

targets will not have up- or down-stream sequences to avoid biases introduced by the 

added components. The results indicated that the long primers with added components 

did introduce extra amplification biases with one-step PCR amplification while no 

apparent bias was introduced by the two-step PCR amplification. In addition, PCR 

amplification bias among technical replicates was also present with the one-step PCR 

when primers without spacers were used (data not shown). Therefore, the use of a two-

step PCR approach is necessary if phasing primers or primers with added components 

are used for amplicon library preparation. 

2.6 Conclusion 

In summary, although the Illumina MiSeq and other high-throughput sequencing 

technologies are promising and powerful tools, adopting these technologies for 

analyzing microbial communities is challenging. A novel amplicon sequencing 

approach was developed by shifting sequencing phases among different community 
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samples from both directions via adding a total of 7 bases to both forward and reverse 

primers as spacers. Our results indicate that this approach effectively increases raw 

sequence throughput, read quality and effective read sequence length, and reduces 

sequencing errors. Analysis of MiSeq sequencing runs showed that PAS provides a 

robust approach for reliably analyzing microbial communities of diverse composition 

from a variety of habitats. In addition, our results indicate that a two-step PCR 

amplification strategy effectively ameliorates PCR amplification biases introduced by 

the use of long barcoded PCR primers. The use of a single barcode makes it easy 

to utilize the complementary phasing primers among samples, but multiplex amplicon 

sequencing requires a large number of barcoded primers, increasing the upfront 

costs of this method. However, despite this initial outlay, the cost per sample for the 

PAS method is similar to other methods. After a careful comparison of the PAS method 

described in this paper and other phasing methods (Hummelen, Macklaim et al. 2011, 

Kozich, Westcott et al. 2013, Lundberg, Yourstone et al. 2013, Fadrosh, Ma et al. 

2014), the PAS method has the following unique features: i) sufficient sequence 

position frame shift among samples to increase base diversity across the entire 

sequence; ii) minimum base sacrifice by sequencing barcodes in separate reads (index 

reads); iii) a complementary spacer design that adds a combined 7-base spacer to both 

the forward and reverse primers, minimizing the total number of bases added, 

maximizing the amplicon sequence length, and  avoiding quality biases caused by 

differences in amplicon sequence lengths; iv) a two-step PCR strategy that eliminates 

the potential extra PCR bias caused by added PCR primer components, v) lower PCR 

cycles in both first and second step PCR to reduce chimeras. In addition, this study is 
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the first time to systematically and thoroughly evaluate a phasing method for Miseq 

amplicon sequencing in terms of data output, sequence quality, error rate, and bias. 

While this strategy was developed and tested on the 16S rRNA gene, it has also been 

used successfully on ITS for fungi, 18S rRNA genes for protist, and other functional 

genes including bacterial and archaeal amoA, nifH, mcrA, and pmoA (not shown here), 

indicating its applicability for sequencing many different genes. 
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Chapter 3: The diversity pattern of soil fungal microbial community in 

North America forest systems 

3.1 Abstract 

The diversity of fungi has been studied in studied across many habitats, but the pattern 

of fungi diversity still needs to be revealed. In this study, the soil fungal samples were 

collected from six forest sites across a wide range of latitudes in North America with a 

nested design in each site to uncover the diversity pattern of the soil fungal communities 

in forest systems. The richness of fungi follows a clear latitudinal gradient, where 

temperature, precipitation, pH and nitrogen concentration also contribute to the 

prediction of the richness of the soil fungal communities. The compositions of fungal 

communities are distinct from each other across six forest sites. The main drivers of 

alpha diversity of fungi in forest soil is latitude, along with the mean annual 

temperature, precipitation, soil pH, soil total carbon, and soil total nitrogen. These seven 

variables can be used to predict the α-diversity of the soil fungal communities, and more 

than 70% variance can be explained by these variables only. As for the β-diversity, the 

dissimilarities among the fungal communities increases significantly as the distance 

between the sampling sites become larger. The distance-decay curve explains this 

pattern and indicate that the turnover rates of the fungal species are different in the local 

and continental scales. We further proved that, the key drivers of the difference in 

fungal community composition highly depends on the spatial scale, and the geographic 

distance is the major contributor to explain these differences. In summary, this study of 

the fungal communities in the North American forest soils have shown several patterns 
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along with the possible drivers behind them, which presents insights to the nature of soil 

fungal communities.  
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3.2 Introduction 

Fungi are eukaryotic microorganisms that play fundamental ecological roles as 

decomposers, mutualists, or pathogens of plants and animals; they drive carbon cycling 

in forecast soils, mediate mineral nutrition of plants, and alleviate carbon limitations of 

other soil organisms. Fungi comprise some 100,000 described species, but the actual 

extent of global fungal diversity is estimated at 0.8 million to 5.1 million species 

(Fierer, Strickland et al. 2009).  The biomass and relative proportions of microbial 

groups, including fungi, co-vary with the concentration of growth-limiting nutrients in 

soils and plant tissues. Such patterns suggest that the distribution of microbes reflects 

latitudinal variation in ecosystem nutrient dynamics. Richness of nearly all terrestrial 

and marine microorganisms in negatively related to increase latitude – a pattern 

attribute to the combined effects of climate, niche conservatism, and rates of 

evolutionary radiation and extinction (Hillebrand 2004). Although morphological 

species of unicellular microbes are usually cosmopolitan (Finlay 2002), there is growing 

evidence that the distribution of microorganisms is shaped by macroecological and 

community assembly process. 

 Since the high-throughput sequencing technology has enabled researchers to 

detect the hidden diversity of microorganisms , the fungal diversity has been studied for 

different taxonomic and functional groups (Nguyen, Williams et al. 2016), extreme 

environment (Grum-Grzhimaylo, Georgieva et al. 2016), airborne species (Woo, An et 

al. 2018) or human related groups (Sharpe, Bearman et al. 2015). However, the fungal 

diversity patterns and the possible mechanisms behind them are still need more data and 

evidence to uncover. A global fungal distribution survey (Tedersoo, Bahram et al. 2014) 
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was conducted and samples were collected from various environments at large 

geographic scale. The study showed that the distance from equator and mean annual 

precipitation were best predictor of soil fungal richness, while other environmental 

variables may drive the distribution of different taxonomic or functional groups. 

Temperature also has been shown to be a decisive factor of the fungal richness through 

the maritime Antarctic, the most rapidly warming region in response to the 

recent climate change (Newsham, Hopkins et al. 2016). Soil pH was also an 

important factor that can shape the fungal community along an altitudinal gradient 

(Wang, Zheng et al. 2015).  These independent studies have revealed some part of the 

complexity behind the diversity pattern of fungi and there are no standard conclusions 

can be drawn for all the fungal communities.  

In this study, we used a dataset collected from the soils of six forest sites across 

North America. The sampling sites were designed in a nested way so that the existence 

of the area-species pattern, or the distance-decay pattern can be easily detected and 

evaluated. The six forests are from various locations with different latitudes, average 

annual temperatures, annual precipitations, soil pHs, and other environmental variables. 

These factors can be used to build models to predict soil fungal richness while 

distinguish which is the dominant factor that drives the diversity pattern of fungal. The 

patterns of β-diversity can also be examined when the differences between the microbial 

fungal communities can be calculated and used as the indicator of fungal β-diversity. In 

summary, we are trying to uncover the diversity patterns of soil fungal community and 

understand what are the main factors influence these patterns. 
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3.3 Material and Methods 

3.3.1 Six forest sites and sampling strategy 

The soil samples were collected in a continental-scale survey from six forest sites in 

North America, as illustrated in Fig 3.1. Since the soil microbes can be locally adapted 

to edaphic characteristics at the scale of only a few meters (Belotte, Curien et al. 2003), 

and also can respond to the environmental factors as mass effects in a larger scale 

(Logue and Lindstrom 2010), we sampled the soils at multiple spatial scales to quantify 

the microbial fungal diversity in both small and large-spatial scales.  

Six forest sites located in North America are: H.J. Andrews (AND, coniferous 

forest, 44°12′44.2″N, 122°15′19″W), Coweeta (CWT, deciduous forest, 35°3′37.2″N, 

83°25′49.02″W), Harvard (HFR, deciduous forest, 42°32′16.08″N, 72°11′24″W), 

Luquillo (LUQ, tropical rainforest, 18°18′N, 65°48′W), Niwot Ridge (NWT, alpine 

tundra, 39°59′24″N, 105°22′48″W) and Barro Colorado Island (BCI, tropical rainforest, 

9°09′N, 79°51′W). These selected sites represented typical forest ecosystems in North 

America, from boreal to tropical forests. The latitudes range from 9°N to 44°N and the 

temperature varies from 2.5°C to 25.7°C. The sites can also be differentiated by other 

variations including average annual temperature, plant species richness, annual 

precipitation, soil moisture, and pH, as shown in Table 3.1. The mean temperature and 

average annual precipitation were calculated from the hourly temperature and annual 

precipitation data collected through the nearest weather stations on sites. 

At each forest site, 21 soil samples were collected at meter-scale using a nested 

design at distance of 1, 10, 50, 100, 200m in cardinal direction (Figure 3.1), where at 

each sampling spot, 9 soil cores were collected evenly from a 1-m2 area (~10cm depth, 
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Oakfield Apparatus Company model HA). Soils were kept on ice in the field, then at 

−20 °C (LUQ, CWT, AND and NWT) or −80 °C (BCI and HFR) until shipped 

overnight on dry ice to the Institute for Environmental Genomics at the University of 

Oklahoma. 

Table 3.1 Summary of site characteristics for the six forest sites 

Sites 
Latitude 

(°N) 

Elevation 

(m) 

Mean 

temperature 

(°C) 

Precipitation 

(mm) 

Soil 

moisture 

(%) 

Soil 

pH 

Plant 

species 

number 

BCI 9.16 157 25.71 2383.0 31.43 5.87 263 

LUQ 18.32 386 23.62 3069.2 40.53 5.06 93 

CWT 35.05 864 12.62 1853.8 30.28 4.72 49 

AND 44.23 860 8.94 1587.4 36.88 5.28 18 

HFR 42.54 356 8.27 1128.7 34.35 3.84 25 

NWT 40.04 3186 2.50 481.6 16.00 4.83 5 

 

 

 
Figure 3.1 Sampling sites and sampling strategy with nested design. At each site, 21 nested 

samples were collected at distance of 1, 10, 50, 100 and 200 m. Nine soil cores were collected 

and composited in each sampling site for microbial and soil analysis. The sites information can 

be found at the project website: http://macroeco.lternet.edu. 

 

3.3.2 Metadata collection 

The Plant species were surveyed using a modified ‘Gentry plot’ methodology whereby 

five 0.1-ha Gentry plots were established by B.J. Enquist, V. Buzzard and S.et al. 

within the 25-ha plot within each site. Mean annual temperature and average annual 
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precipitation were calculated from hourly data collected from onsite weather stations. 

The soil moisture was measured by putting 1.5 g soil into 65 °C oven until a constant 

weight was reached. The percentage of the original weight loss after oven drying was 

calculated as the soil moisture content (%). Soil pH was measured in a soil suspension 

with a soil: water ratio of 1:2.5 (weight: volume) using a standard protocol described 

previously (Zhou, Deng et al. 2016). The soil C and N contents were measured by a 

LECO TruSpec Carbon and Nitrogen Analyzer (LECO Corporation, St. Joseph, MI) in 

the Soil, Water and Forage Analytical Laboratory at the Oklahoma State University 

(Stillwater, OK). In the same analytical laboratory, the soil NH4
+ and NO3

− contents 

were extracted from the soils with 1 m KCl and measured by a Lachat QuikChem 8500 

series 2 instrument (Lachat, Loveland, CO). More detailed information about this 

project and metadata collection can be found at http://macroeco.lternet.edu/. 

3.3.3 DNA extraction and Illumina sequencing 

Soil DNA was extracted using the grinding SDS-based DNA extraction method as 

previously described (Zhou, Bruns et al. 1996). The quality was assessed based on 

spectrometry absorbance at wavelengths of 230, 260 and 280 nm (ratios of absorbance 

at 260/280 nm ∼1.8 and 260/230 nm >1.7) detected by a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies). DNA concentration was measured by 

PicoGreen using a FLUOstar OPTIMA fluorescence plate reader (BMG LABTECH, 

Jena, Germany). 

 The phasing amplicon sequencing approach (Wu, Wen et al. 2015) was used. an 

amplicon of 309 bp (not including the primers) in ITS2 region was targeted using the 

primers: gITS7F, GTGARTCATCGARTCTTTG and ITS4R, 

http://macroeco.lternet.edu/
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TCCTCCGCTTATTGATATGC. To avoid extra PCR bias that could be introduced by 

the added components in the long primers used for PCR library preparation, a Two-step 

PCR was performed for ITS amplicon sequencing. Forward and reverse primers were 

used so that the total length of the amplified sequences remain constant. The extra bases 

spacers were added to the forward and reverse primer set in a complementary manner to 

ensure that the exact seven bases for sequencing phase shift. The primers in both 

direction contains the Illumina adaptor, the Illumina sequencing primer, a spacer, the 

ITS primer and a 12-base barcode in the reverse primer to distinguish the samples. To 

do the two-step PCR, the first round PCR was carried out in a 50 µl reaction containing 

5µl 10× PCR buffer II, 0.5 U high-fidelity AccuPrimerTaq DNA polymerase (Life 

Technologies), 0.4 µM of both forward and reverse primers and 10 ng soil DNA. 

Reactions were performed in triplicate and the sample amplification was performed in 

10 cycles, with the annealing temperature was 56°C for ITS.  The triplicate products 

from the first round PCR were combined, purified with an Agencourt AMPure XP kit 

(Beckman Coulter, Beverly, MA, USA), eluted in 50 µl water and aliquoted into three 

new PCR tubes (15 µl each). The second round PCR used a 25 µl reaction containing 

2.5 µl 10 × PCR buffer II (including dNTPs), 0.25 U high-fidelity AccuPrime Taq DNA 

polymerase (Life Technologies), 0.4 µM of both forward and reverse phasing primers 

and 15 µl aliquot of the first round purified PCR product. The amplifications were 

cycled 20 times following the above program. Positive PCR products were confirmed 

by agarose gel electrophoresis. PCR products from triplicate reactions were combined 

and quantified with PicoGreen. 
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PCR products from samples to be sequenced in the same MiSeq run (generally 3 

× 96=288 samples) were pooled at equal molality. The pooled mixture was purified 

with a QIAquick Gel Extraction kit (Qiagen Sciences, Germantown, MD, USA) and re-

quantified with PicoGreen. Sample libraries for sequencing were prepared according to 

the MiSeq Reagent Kit Preparation Guide (Illumina, San Diego, CA, USA) as described 

previously (Wu, Wen et al. 2015). First, the combined sample library was diluted to 

2 nM. Then, sample denaturation was performed by mixing 10 μl of the diluted library 

and 10 µl of 0.2 N fresh NaOH and incubated 5 min at room temperature. A measure of 

980 µl of chilled Illumina HT1 buffer was added to the denatured DNA and mixed to 

make a 20 pM library. Finally, the 20 pM library was further adjusted to the desired 

concentration (∼12 pM) for sequencing using chilled HT1 buffer. The library for 

sequencing was mixed with a certain proportion of a Phix library of the same 

concentration to achieve a 10% Phix spike. 

A 300-cycle v1 (for 16S ribosomal DNA, rDNA) or 500-cycle v2 (for ITS or 

nifH) MiSeq reagent cartridge (Illumina) was thawed for 1 h in a water bath, inverted 10 

times to mix the thawed reagents and stored at 4 °C for a short time until use. For 16S 

rDNA sequencing, customized sequencing primers for forward, reverse and index reads 

were added to the corresponding wells on the reagent cartridge before being loaded as 

described previously (Wu, Wen et al. 2015). Sequencing was performed for 251, 12 and 

251 cycles for forward, index and reverse reads, respectively. 

3.3.4 Sequence processing and annotation 

The raw ITS sequences were collected in Miseq sequencing machine in FASTQ format. 

First, the sequences were mapped into samples using the barcode information in each 
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sequence with no mismatch allowed. Then the forward and reversed reads were joined 

together as a single sequence using FLASH (Magoc and Salzberg 2011) program when 

there were at least 10bp overlap and <5% mismatches between the two reads. To further 

control the quality of the sequences, BTRIM (Kong 2011) was used to filter the 

sequences with the threshold of QC > 20 over 5bp window size. Any joined sequences 

with ambiguous bases or with length less than 200bp were discarded. Thereafter, U-

CHIME (Edgar, Haas et al. 2011) was used to remove chimeras by searching against 

UNITE ITS reference dataset released on Jan 12th, 2016. Operational taxonomic units 

(OTUs) were clustered using UCLUST (Edgar 2010) with the identity similarity of 

97%. Thereafter, the reads of OTUs were re-assigned back to their samples and a matrix 

with 126 samples as columns and all OTUs as rows was generated for each data set. 

The OTUs appeared in only one sample were considered as singletons and excluded 

from most of the statistical analysis.  

 For the classification of the ITS sequences, the representative sequences 

generated in the OTU clustering process were used to identify the taxonomic 

information for all the sequences belong to the corresponding OTUs. First, the 

representative sequences were searched against UNITE database (Koljalg, Nilsson et al. 

2013) using BLASTn (Altschul, Gish et al. 1990) to find the closest hit with known 

taxonomic classification.  The UNITE database released on 11.20.2016 was used as 

references and reference sequences without identified genus information are not 

included in the BLAST search. We relied on 90, 85, 80 and 75% sequence identity as 

criterion to assign OTUs in Genus, family, order and class level respectively. The 

search result with e-values > e-20 are not considered. We followed Index Fungorum 
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(www.indexfungorum.org) for genus to phylum level taxonomy of fungi as suggested in 

FHiTHINGS (Dannemiller, Reeves et al. 2014). The taxonomy database used in 

FHiTHINGS is complemented and sorted with new genera to match the up-to-date 

UNITE sequence. Then  we used the lowest common ancestor algorithm implemented 

in FHiTHINGS (Dannemiller, Reeves et al. 2014) to classify these sequences. For the 

ambiguous classification from the lowest common ancestor algorithm, RDP (Wang, 

Garrity et al. 2007) ITS classifier was further used to classify these sequences with the 

Warcup training set provided in the RDP website. And sequences were re-classified in 

the phylum level with the confidence level no less than 0.5.   

To assign potential function groups known for fungi community, FUNGuild 

(Nguyen, Song et al. 2016) was applied to find the most possible match for the OTUs. 

We use USEARCH (Edgar 2010) to search for most close sequences in UNITE 

database for each OTU based on their global similarities. The taxonomic information of 

the best match is assigned to each OTU and further analyzed by FUNGuild to assign 

functional groups based on their databases. To ensure accuracy, taxonomy information 

is kept when the query sequence matched to ≥93% similarity in the UNITE database.  

3.3.5 Statistical methods 

The OTU richness, Shannon index and Chao1 value are used to estimate the α-diversity 

of the fungal community from the forest soil samples. One-way ANOVA are applied to 

test the overall community differences in α-diversity indices (OTU richness and 

Shannon index) among six forest sites, and Turkey’s test are used as post-hoc tests to 

further analyze the difference between taxonomic groups in different levels. To 

investigate the best environmental predictors of fungal richness (OTU number), we used 

http://www.indexfungorum.org/
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multiple linear regression in mixed models as implemented in R package “lme4”, which 

adds random effects to the model to account for site variations that cannot be explained 

by the predictors. After removing variables with collinearity, it is not surprised that the 

full model using all the rest environmental variables does not have random site effects 

(the variance of random intercepts is very close or equals to zero) upon the fungal 

richness, which means that the variables included in the full model explains all the 

variations between sites that can affect the OTU numbers. Then we used both backward 

selection method (stats::step function in R) and manually removing the least significant 

predictors, to reduce the model to best possible model consist of the best predictors. The 

models are chosen based on their AIC scores. The relative importance of these richness 

predictors is determined by the forward selection process based on adjust R squares as 

implemented in the “adespatial” package in R. This selection process can also help to 

validate the selected model by constrain the accumulated alpha value at a significant 

level. 

 The fungal community dissimilarities between different sampling sites can be 

used to estimate β-diversity. Bray-Curtis distance between each fungal community is 

used to calculate the dissimilarities. Mantel test using Pearson correlation showed that 

the dissimilarities using OTU abundance and OTU richness profiles are highly 

correlated with r=0.9022 and p-value<0.001, so we use the OTU richness dissimilarities 

to estimate the β-diversity between samples, to reduce the potential bias introduced by 

the abundance.  

 To investigate the distance decay relationship, we used the distance-decay curve 

to estimate the turnover rate of the fungal species in these forests. The turnover rate can 
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be estimated through the coefficient (slope) of a linear least squares regression between 

the log transformation of the distance and the log transformation of the similarity 

between the fungal microbial communities from these forest sites (Martiny, Eisen et al. 

2011). This approach uses comparisons of the communities rather than the estimation of 

species richness in an area. To get the distance-decay curve, distances between each 

plot within one site is calculated directly from the nested sampling design strategy as 

shown in  Error! Reference source not found.. The distance between sampling sites 

are transformed from the latitudinal and longitudinal coordinates using ‘haversine’ 

method implemented in package “geosphere” in R, which account for the spherical 

nature of earth, but ignoring the ellipsoidal effects. The total distance-decay relationship 

of all the 126 samples were observed as well as the distance-decay curves for the six 

forest sites separately. The z-score represents the species-area relationship can be also 

estimated from the slope of the distance-decay curve as demonstrated in the previous 

study (Green, Holmes et al. 2004). The distance-decay slope should be negative two 

times the z-score based on the definition. The samples, not the distance matrix cells 

were permuted 999 times to get a randomized slope distribution, and the observed slope 

was compared to the distribution to test for significance (Martiny, Eisen et al. 2011).  

 To discover the relationships between environmental factors and the fungal 

diversity, multiple regression models were used. The environmental factors were 

standardized first, and simple linear regression was performed to detect the collinearity. 

The plant richness/diversity and elevation data were removed from the candidate factors 

due to the collinearity with other factors, which means they can be retrieved from the 

linear combination. We used the fixed effect model (“lme4” package in R) to remove 
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the effect of autocorrelation within sites. It is interesting that we found the random 

effects of the site variable was zero or indistinguishable from zero when using different 

subset of predictors, which indicates the site effect can explain no more variance than 

the other predictor. Therefore, we only use the regular multiple linear regressions for 

the fungal richness prediction purpose. The environmental factors were selected using 

the forward and backward selection criteria based on AICs (Akaike information 

criterion) using the ‘step’ function in the “stats” package in R. After the final factors 

were selected to build the best prediction model, the relative importance of these 

components was determined using the forward selection method based on accumulated 

adjusted R square, as implemented in the “adespatial” package in R. 

3.4 Results  

3.4.1 Sequencing results 

A total of 4,944,616 ITS sequences were obtained for 126 samples from six forest sites 

after merging the raw pair-end reads. The OTU picking analysis revealed that the 

sequences were clustered into 30222 OTUs after filtering low-quality and potential 

chimeric reads. Among these OTUs, 24.4% (7378) OTUs were singletons, which 

contain only one sequence across all the samples. These singleton OTUs were discarded 

as they are commonly considered erroneous sequences. All the samples were randomly 

resampled at 19727 sequences per sample and the 21954 OTUs still remaining are used 

for the further statistical analysis. 

Across all the soil samples, most ITS sequences belonged to a small number of 

OTUs and the majority of the OTUs were much less abundant. For example, the top 200 

(0.9%) of the most abundant OTUs covered 40.85% of all the sequences, and the top 
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2000 (9.1%) of the most abundant OTUs covered 83.93% of all the sequences. The 

most single abundant OTU (classified as a member of Ascomycota) accounted for 

1.57% of all the sequences. Among the six forest sites, the majority (71.63%) of the 

OTUs is unique to the site, which means that they were only found in one site. Only 

1912 (8.71%) OTUs were found in at least 3 sites, but these OTUs represented 64.13% 

of all the sequences from all the sampling sites.  

3.4.2 Fungal community composition across the six forest sites 

The taxonomic annotation analysis shows that the fungal communities sampled from 

the six forest soils in North America covers most major phyla of fungi. However, there 

were still 2155 (9.82%) OTUs (accounted for 1.76% sequences) cannot be classified at 

the phylum level neither by comparison to the annotated sequences in UNITE database 

at 75% similarity level, nor by the Naïve Bayesian RDP classifier with 50% confidence 

level. Among the fungi phyla, Basidiomycota (48.03%) and Ascomycota (47.85%) 

encompassed the largest proportion of the classified sequences (Figure 3.2), and the rest 

sequences belonged to Chytridiomycota (0.13%), Zygomycota (1.43%) and 

Glomeromycota (0.71%).  
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Figure 3.2 Relative sequence abundance assigned to major fungal phyla and classes. The left 

panel is the relative portion of all the ITS amplicon sequences collected from the six forest soils; 

the right panel shows the detailed taxa group distribution in each of the forest site. 

 

 

The main phylogenetic fungal groups were present in all the six forest soils, but 

their relative portions varied across these sites. For example, the ratio of Basidiomycota 

to Ascomycota species abundance was highest (1.75) in AND, the temperate conifer 

forest, but lowest (0.47) in LUQ, one of the tropical forests. When only considering the 

richness, the ratio of Basidiomycota to Ascomycota OTUs was still highest (0.71) in 

AND, and lowest (0.42) in LUQ.  Glomeromycota were also relatively more diverse in 

LUQ (2.72%) while Zygomycota OTU richness peaked (3.79%) in HFR, the temperate 

deciduous forest. Chytridiomycota accounted for a small proportion of OTU richness 

across six sites (0.43% ± 0.13%). 

Besides the taxonomic groups, the fungal functional groups, also called ‘guild’ 

in FUNGuild (Nguyen, Song et al. 2016) program, also show differences in the studying 

sites. There are three trophic modes based on the nutrient source: symbiotroph, 
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pathotroph and saprotroph, which can be further categorized into more detailed ‘guilds’ 

as shown in Figure 3.3(b). The FUNGuild pipeline assign these functional annotations 

based on the taxonomic classification, especially the species information, so the 

sequences that cannot be classified or with ambiguous species information cannot be 

annotated. With the current FUNGuild database, we can see that only 8% to 30% 

sequences as shown in Figure 3.3(a), Figure 3.3(Figure 3.3 (c) can be annotated with 

the functional groups. It is interesting that the percentage of the sequences can be 

annotated is decreasing as the mean annual temperature increases, which indicates that 

the sites with higher temperature contains more soil fungal species that have not yet 

been recorded or studied. This is consistent with the alpha diversity pattern, that tropical 

sites tend to have higher diversity than the temperate and boreal sites, as discussed in 

the section before. In the temperate and boreal forest sites, the most abundant guilds are 

the ectomycorrhizal fungi and undefined saprotrophs in the soil, which matches well 

with previous studies (Hogberg, Baath et al. 2003, Buee, Reich et al. 2009, Nguyen, 

Song et al. 2016). The relative abundances of undefined saprotroph are also high in the 

two tropical forest sites BCI and LUQ, while the ectomycorrhizal species relative 

abundances are much lower than their abundances from the other four sites. 
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Figure 3.3 Fungal functional group distribution across the six forest sites, as defined in 

FUNGuild (Nguyen, Song et al. 2016). (a) Relative abundance of trophic modes in different 

sites; (b) relationship between the top abundant guilds and corresponding trophic modes; (c) 

relative abundance of guild among the sites.  

 

3.4.3 α-diversity pattern and its drivers 

The α-diversity of the fungal communities were estimated using Chao1, OTU 

richness and Shannon diversity index as shown in Figure 3.4. The ANOVA test of 

these three indexes confirmed that the fungal communities from the six forest soils were 

significantly different from each other, with all the p-values less than 0.001. To further 

investigate which communities were different, post hoc tests were used to separate the 

fungal communities into groups with different α-diversity indexes (Figure 3.4). The 



62 

rainforest BCI site had much higher α-diversity than other sites. For the Chao1 richness 

index, the six forest sites were separated into three groups, in which BCI from forest 

with the lowest latitude belonged to the group with the highest Chao1 value, while the 

three sites with the highest latitudes (AND, HFR, NWT) belonged to the group that had 

the lowest Chao1 estimations. The OTU richness followed the same pattern as the 

Chao1 index and were separated into the same three groups. The differences in the 

Shannon diversity index from the fungal communities did not show a latitude related 

pattern as clear as the ones showed from the richness estimators. 

Chao1 OTU richness Shannon
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Figure 3.4. α-diversity indexes of fungal communities across six forest soils. Three indexes: 

Chao1, OTU richness and Shannon diversity were used for estimating the α-diversity of the soil 

fungal communities. The ANOVA post hoc test separate the sites into groups that have 

significantly different α-diversities to each other. 

 

 The distribution of each taxonomic group (phylum) across the six sites, and 

ANOVA test was used to test the difference among the six forest sites as shown in 

Figure 3.5. The species/OTU richness was calculated as the number of OTUs belonged 

to each phylum, while the relative abundance also takes the OTU abundance (sequence 
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number) into consideration. From the result we can see that the species/OTU richness 

generally decreases as the average annual temperature of the site drops. There are a few 

exceptions when the richness didn’t strictly follow the temperature gradient, such as 

Ascomycota in HWT, Zygomycota in HFR, etc., but most of the phyla richness does 

show this clear pattern in both abundant phyla and less abundant ones. On the contrary, 

there are no clear pattern between the site annual temperature and the relative 

abundance of the phyla, and the distribution of different phyla does not show any 

similar patterns. The ANOVA post-hoc analysis indicates there exist significant 

differences between the sample sites in both the species/OTU abundance and relative 

abundance. But the sites belong to the same type of forests does not necessarily have 

similar phylum distribution in terms of OTU richness and abundance. 

 

 
Figure 3.5 ANOVA test of the fungal phylum distribution across six forest sites. The top two 

figures show the OTU richness (a) and relative abundance (b) of the two most abundant phyla 

Basidiomycota and Ascomycota and the ANOVA post-hoc analysis results; the lower two 
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figures show the distribution of the rest phyla with their OTU richness (c) and relative 

abundance (d) and the ANOVA test result. The post-hoc analysis used Tukey HSD to test 

whether the means are significantly different from each other.   

 

The best model using multiple linear regression include six variables: latitude, 

temperature, precipitation, soil pH, total carbon and total nitrogen in soil. In fact, the 

backward selection from the full set of predictors leads to a model including ammonium 

concentration besides the six variables in the final model. However, even the 

ammonium concentration does explain more variation in fungal richness as proved by R 

square value in the forward selection process, the selection will stop at five variables 

(without total carbon and total nitrogen) in the model to maintain a significant alpha 

value which is less than 0.05. If we use the other six variables as predictors, forward 

selection process will include all of them and the random site affect is still zero after 

removing ammonium concentration as a predictor.  In fact, removing any one of the 

final six predictors, will results in non-zero random site effects. Therefore, we exclude 

the ammonium concentration in the final model and keep the other six variables. The 

model is significant with adjusted R square of 0.7476, with all the variables has a 

significant contribution as listed in Error! Reference source not found.. The model 

suggested that latitude is the top contributor, followed by precipitation, pH, total carbon, 

total nitrogen and temperature. 

The variation partitioning analysis results (Figure 3.6) shows the explaining power of 

the environmental variables in the best multiple regression model. With the model, 

25.24% variation of the species richness cannot be explained, while the rest of the 

variation can be explained by the six predictors in three groups. Soil variables include 

soil pH, total carbon, total nitrogen; climate variable include mean annual temperature 
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and precipitation; and latitude is treated as the third group to represent the locations of 

the fungal microbial communities. After controlling for soil and climate factors, latitude 

itself can attribute 2.73% to the species richness variation. When use the same set of 

environmental factors to predict the Shannon index (α-diversity with species 

abundance), 72.20% of the variation cannot be explained and climate variables (mean 

annual temperature and precipitation) contributes only 0.52% to the variation in the 

Shannon index when other factors are controlled for. 

 
 
Figure 3.6 Variation partitioning analysis of fungal community (a) richness and (b) Shannon 

index. All the explaining variables are from the best multiple regression model. Soil variables 

include soil pH, total carbon, total nitrogen; climate variable include mean annual temperature 

and precipitation. The numbers indicate the percentage of the variation that can be explained by 

certain group of the factors. 

 

3.4.4 β-diversity and distance-decay pattern 

The detrended correspondence analysis reveals that the fungal communities from the 

same forest site were more similar and therefor tended to cluster together, while the 

fungal communities from the different sites were well separated in the DCA biplot 

(Error! Reference source not found.). The samples were distributed along with the 
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DCA1 axis as the latitude of the samples decreased, while the samples from the two 

tropical forest sites were well separated along the DCA2 axis. To further demonstrate 

the dissimilarities among the fungal communities in these six sites, three non-parametric 

multivariant dissimilarity analysis were performed. These dissimilarity tests all 

confirmed that the fungal community structures from different forest soil were 

significant different from each other with p-values ≤ 0.001.  

 The relative importance of environmental factors versus geographic distance to 

the fungal community similarity differed across different spatial distances (Table 2.2 

Results of the multiple regression on matrices analysis by spatial scale). Geographic distances 

had a strong effect at all the spatial scales we measured, from within sites to all the sites 

across continental scales. It is expected that the geographic distances have a larger 

effect at the continental scale (coefficient b=0.73), and the effect is the minimum when 

measured at a local scale (b=0.255, within sites). The relative importance of other 

environmental variables also varied by scale. Soil moisture seems has no effect on the 

fungal community structures at any scale, while the total soil carbon can only explain a 

small portion of the variation between sites. The concentration of nitrate and soil pH are 

important at all the scales to explain the dissimilarities among the fungal communities. 

Since the annual mean temperature and elevation are the same for samples from each 

site, there are no within-sites variances, but they do explain some of the variances 

exists, especially at the site level.  

Table 2.2 Results of the multiple regression on matrices analysis by spatial scale 

 
within sites between sites All scales  

R2 = 0.255 R2 = 0.428 R2 = 0.651  

Ln(geographic distance) 0.338** 0.303** 0.73**  

Total carbon     

Ammonium 0.134**  0.048**  
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Nitrate 0.103* 0.049* 0.053**  

pH 0.242** 0.096** 0.071**  

Moisture     

Temperature na 0.478** 0.092**  

Elevation na    

if a partial regression coefficient is reported, the p <= 0.05, * p <= 0.01, **p<=0.001 

 

Within the six distinct forest sites, fungal community OTU similarity decayed 

significantly with distance in different rates as shown in Figure 3.7 and Error! 

Reference source not found.. All the six regression coefficients are statistically 

different than zero, even though the absolute values are small. Permutation test results 

indicate that these distance decay patterns we observed cannot be achieved by random 

permuted samples. We also calculated taxa-area z-score from the slopes of these 

distance decay curves. To determine whether the site variables are the main factors 

affect the z-score, we computed the correlations between site variables and the z-scores. 

Interestingly, the site elevation has the most significant Pearson correlation (ρ) of -0.949 

(p = 0.0039), while the latitude does not have a significant correlation with their z-

scores (ρ = -0.407, p =0.423). The temperature is the other factor also highly correlated 

with the z-score (ρ = 0.755, p =0.083). When remove the effect of temperature, the 

partial correlation between the elevation and the z-scores is still significant (ρ = -0.878, 

p =0.005). 



68 

  
Figure 3.7 The distance-decay of similarity for microbial fungal OTUs in (A) six sites (B) all 

sites. The statistics of each plot and regression are listed in table 3.3. 

 

Table 3.3 Summary statistics for the fungal OTU distance-decay in the six forest sites in North 

America (* denotes the slope in the linear regression model is significantly different than zero 

with p<0.001) 
 

Sites 
Within sites regression statistics 

Permutation 

test 

slope r2 z score p-value 

BCI -0.0764 0.382* 0.0382 <0.01 

LUQ -0.0850 0.1467* 0.0425 <0.01 

CWT -0.0730 0.2152* 0.0365 <0.01 

AND -0.0673 0.17* 0.0337 <0.01 

HFR -0.0820 0.37086* 0.0410 <0.01 

NWT -0.0317 0.1194* 0.0159 <0.01 

 

3.5 Discussion 

The fungal microbial communities have distinct community composition across the six 

forest sites in North America. The overlap between these six sites are extremely low in 

the number of OTUs, even between the same type of forests (e.g., tropical forests for 

BCI and LUQ). This means that the local communities how a high degree of spatial 

autocorrelation, while communities with longer distances have a higher level of 

community dissimilarity. This finding provides the support of the existence of 
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endemism of soil fungal species in North America, which are consistent with the results 

from other studies of fungal communities (Robeson, King et al. 2011, Talbot, Bruns et 

al. 2014). As a consequence of geographic endemism, soil fungal communities 

displayed a significant distance-decay pattern from local to continental scale. The z-

score (from 0.0159 to 0.0425) in the distance-decay curve in this study is smaller than 

the z-score reported previously (Feinstein and Blackwood 2012) at site level, and it 

increased when the special scale become larger (z = 0.095). This pattern has also been 

observed for microorganisms and it indicates that dispersal limitation is possible for 

microorganisms at larger special scales, which will cause the z-score to increase. 

Various environmental variables such as mean annual temperature, soil pH and soil 

chemistry, can explain some of the differences between the distinct fungal communities, 

spatial distance are the major factor contributes to the diversity differences at different 

forest sites.  

Soil fungal richness has shown to follow the latitudinal pattern, which means 

that the closer to the equator the fungal community is, the higher species number it has, 

consistent with bacteria and macro organisms. The most intuitive way to explain this 

pattern is that the environmental conditions do changes along with the latitude gradient, 

such as temperature and precipitation. It has been shown that, given the metabolic 

theory of ecology, temperature can better predict the taxonomic and phylogenetic 

distances than other environmental variables, such as soil pH (Zhou, Deng et al. 2016). 

This explains why the latitude, which is highly correlated with the soil temperature, are 

the most important factor that can be used to explain the differences in the α-diversity of 

the fungal communities. The fact that latitude has the most predictable power in 
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multiple linear regression model and it still contribute to the richness variance alone 

after controlling for these two variables, reveals that latitude alone is an important 

indicator of the fungal richness. It may be the evidence to prove the hypothesis that all 

the species are originated from the equator. The reason could also be that there are 

environmental variables that we didn’t measure correlate with latitude but not with 

other variables that we did measure.  

Generally, it is expected to find that fungal abundance along altitudinal 

(elevation) gradients should decrease, since the increase of elevation usually indicates a 

harsher environment (Margesin, Jud et al. 2009). In our study, however, elevation is not 

directly linked the fungal community abundance or diversity. It could due to the reason 

that the sites are not distributed along an altitude gradient in the local scale, therefore 

the environmental gradients created by the elevation differences can not be captured in 

such scale. But interestingly, the z-score in the distance decay curve, has shown a 

significant correlation with the elevation, which indicating dispersal limitation may play 

an important role when shaping the fungal (and/or fungal related plant) community 

structure along the altitude gradient. 

The predictive power is only limited to the fungal species richness but not to the 

α-diversity with the abundance considered. As shown by the results of ANOVA test 

(Figure 3.4, Figure 3.5), there’s no clear pattern shown between the Shannon index and 

the temperature gradient or latitude gradient. And the most significant explainers that 

can predict the fungal richness can only explain less than 30% variance of the fungal 

diversity measured by Shannon index (Figure 3.6). It is argued that the accurate 

measurement of abundance is difficult due to underlying PCR bias (Bellemain, Carlsen 
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et al. 2010) and the poor correlation between the amount of targeted genes and cell 

biomass (von Wintzingerode, Gobel et al. 1997), thus it is hard to use as an index in 

microbial ecology. It is also possible that the abundances of microorganism species are 

more likely controlled by the complicated micro-environment and are subject to more 

complex ecosystem dynamics involved more variables than could be measured.  

3.6 Conclusions 

In this study, we explore the soil fungal communities in six forest sites across North 

America. We have observed that the soil fungal community are diverse at the 

continental scale, with distinct taxonomic and functional composition. The α-diversity 

display a strong latitudinal gradient, which means the sites that are closer to the equator 

have a higher number of species. As demonstrated in the mixed linear regression model, 

latitude along with the mean annual temperature, precipitation, soil pH, soil total 

carbon, and soil total nitrogen. These seven variables can be used to predict the α-

diversity of the soil fungal communities, and more than 70% variance can be explained 

by these variables only. Even though the plant richness is the most correlated variables 

with fungal species richness, which is expected due to the strong association between 

fungal species and plants, the plant richness is not included in the prediction model, 

since it can be explained by the linear combination of the other variables mentioned 

above. So, these environmental factors can also be used as predictors of plant species 

richness and it is possible that they will also affect the fungal communities indirectly 

through the plants, along with the direct influence upon the fungal species themselves. 

As for the β-diversity, the dissimilarities among the fungal communities increases 

significantly as the distance between the sampling sites become larger. This pattern can 
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be shown in the distance-decay curve, which provides a quotative way to estimate the 

turnover rate for the fungal species in the forest soil systems. The key drivers of the 

difference in fungal community composition highly depends on the spatial scale, and 

the geographic distance is the major contributor to explain these differences. In 

summary, this study of the fungal communities in the North American forest soils have 

shown several patterns along with the possible drivers behind them, which presents 

insights to the nature of soil fungal communities. These patterns are consistent with 

those observed in microorganisms, which seems universal to all the living organisms.   
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Chapter 4: Microbial Functional diversity and Ecosystem functioning 

 Abstract 

Elucidating the relationships between biodiversity and ecosystem functioning is one of 

the grand challenges in ecology, particularly in microbial ecology. Microorganisms, as 

the most abundant and diverse group of life on earth, are involved in essential 

ecosystem functioning and services around the planet. Although high-throughput 

metagenomic technologies provide massive, rich data on studying microbial 

biodiversity, its importance in ecosystem processes is highly controversial. One of the 

main reasons for such heavy debate is the difficulty in defining microbial functional 

traits and their diversity.  Here we developed a novel framework to characterize 

microbial functional diversity based on high throughput metagenomics technologies, 

mainly GeoChip-based functional gene arrays. We also used GeoChip to analyze 

groundwater microbiomes from highly contaminated wells before and after one-time 

Emulsified vegetable oil (EVO) injection at the Oak Ridge Field Research Center (Oak 

Ridge, TN). The new developed framework was used to assess microbial functional 

diversity changes in the groundwater microbiomes after the EVO injection. Our results 

indicate that comparing to gene richness and other functional indices, the functional 

diversity of the key gene (FTHFS) directly related to the EVO degradation is more 

closely linked to the actual biodegradation activities. Other genes involved in the 

following reduction of contaminants also showed significant correlations between their 

functional diversity and corresponding environmental variables.  In addition, the 

differences in the environmental variables during this dynamic succession can explain a 

significant part of the differences in microbial community functional structures 
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constructed using functional diversity. These results suggest that the new developed 

functional diversity index can provide extended insights of the functional community 

structures and showed a closer linkage to the ecosystem functioning. Application of this 

framework will be helpful to understand the community assembly process and the 

mechanisms behind the biodiversity and ecosystem functioning (BDEF) relationships. 
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 Introduction 

Ecosystems are extremely dynamic systems consists of variance living organisms and 

the environment around them. These components interact and influence with each other 

and form complex interaction networks and the stability of these networks reflects the 

equilibrium of the ecosystems.  The diversity of organisms plays crucial part to keep the 

structure of the networks, and the loss of such diversity can have detrimental effects 

upon the network stability and left the ecosystem fragile and vulnerable to changes in 

the environment. Thus, over the last decades, biodiversity and its response to 

environmental changes are central issues in ecology and for society. Microorganisms 

are the main engines of the Earth biogeochemistry cycles, and the changes of their 

biodiversity will lead to changes in the ecosystem stability and its functioning. It is 

generally believed that more diverse system could perform better than less diversity 

system in terms of ecosystem functioning due to the functional differences among 

various functional groups and the niche complementarity of different species. However, 

controversial results have been obtained (Flynn et al 2011; Cardinale et al. 2012; 

Nielsen et al. 2011; Zhou et al. 2015). Particularly the mechanisms underlying 

biodiversity-ecosystem functioning (BDEF) relationship are hotly debated (Tilman, 

Houston, Duffy 2008). One of the main reasons for such controversy and debates is 

originated from the use of different facets of biodiversity (Zhou et al. 2015).   

Functional diversity is a developing concept and can be measured using various 

indices (Pavoine and Bonsall 2011). Among the existing mathematical frame works, 

Rao’s quadratic approach has several advantages. First, it allows different dimensions 

of biodiversity (e.g., taxonomic, phylogenetic and functional diversity) within the same 
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mathematical framework. The Rao’s method incorporates both the relative abundance 

of taxa and a measure of the pairwise differences between taxa (Ricotta 2005). Hence, it 

provides information on both functional evenness and divergence, which are two 

components should be included in functional diversity studies according to Pavoine and 

Bonsall 2011. Second, the Rao quadratic entropy approach provides a general 

framework for partitioning biodiversity into three components: α, β, and γ diversity 

(Ricotta 2005, Pavoine and Bonsall 2011). In addition, Rao’s approach provides direct 

measure of functional redundancy (de Bello, Leps et al. 2007, de Bello, Lavergne et al. 

2010), which is one of the few methods to measure functional redundancy within and 

among biological communities.  Finally, various comparative studies suggested that this 

approach quite accurate (Clark, Flynn et al. 2012, Gagic, Bartomeus et al. 2015). All of 

these unique characteristics of the Rao’s quadratic entropy index are very attractive for 

biodiversity analysis because it could open new perspectives to understand mechanisms 

shaping community assembly and the turnover along spatial, temporal and 

environmental gradients. Thus, in this study, we will use Rao’s quadratic entropy to 

quantify functional diversity of a functional gene in a microbial community. 

 Mathematical framework of functional diversity  

4.3.1 Functional traits and GeoChip database 

For simple functional trait, individual gene in the genome can represent the presence or 

absence of the trait. To quantify theses functional traits of microbial community, closed 

format functional gene microarray can be used to measure the potential ability of 

corresponding functional genes. GeoChip (Tu, Yu et al. 2014) is a functional gene array 

contains probes targeting functional genes involves in various ecosystem functions and 
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ecological processes, such as carbon degradation, nitrogen cycling, stress responses, 

virulence, hydrogen production, etc,. It can be used as a powerful tool to monitor the 

functional composition and structure of microbial communities in response to different 

environmental conditions. In the past decade, the GeoChip has been kept up to date by 

updating and re-designing to accommodate continuously expanding public sequence 

databases. In the most recent GeoChip version (GeoChip 5.0), there are about 167,000 

probes targeting more than 1,590 functional genes, which can be classified into several 

generalized functional categories, such as carbon, nitrogen, sulfur, phosphorus cycling, 

energy metabolism, organic remediation, stress response, bacteriophages, and virulence 

(Zhou, He et al. 2015).   

4.3.2 Rao’s quadratic entropy   

Assume that m microbial communities are analyzed with high throughput metagenomic 

technologies such as sequencing (both shotgun and amplicon sequencing) and 

functional gene arrays. A total of n numbers of homologous functional genes (e.g., nirK, 

nifH, amoA, nosZ) important to ecosystem functioning are detected. Under each 

functional gene of interest, numerous gene sequences or probes were detected. Based on 

certain sequence thresholds, these individual sequences from each functional gene can 

be grouped together as individual operational unites (OTUs). The individual OTUs 

obtained by sequencing or the probes detected by hybridization could represent 

individual microbial genera, species or populations, depending on the taxonomic 

resolutions. For convenience of description below, we refer to individual OTUs or 

probes as individual taxa. The number of sequences of OTU or the intensity of a probe 

represents the taxon abundance. The sequence or hybridization data for each taxon 
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across various microbial communities can be tabulated as Table S1. Here, we treat 

individual functional genes detected as individual functional traits of a microbial 

community because they are important signatures for community functioning. In the 

following, we will describe approach on how to measure microbial functional diversity 

in a microbial community based on Rao’s quadratic entropy. 

4.3.2.1 Functional diversity 

 Let 𝑠𝑘 be the number of taxa of the 𝑘𝑡ℎ functional trait (gene) detected across all 

communities, and 𝑥𝑖𝑘𝑙 represent the abundance of the 𝑖𝑡ℎ taxa of the 𝑘𝑡ℎ functional trait 

in the 𝑙𝑡ℎ community (𝑖 ∈ (1,2, … , 𝑠𝑘); 𝑘 ∈ (1,2, … 𝑛); 𝑙 ∈ (1,2, … 𝑚)). Therefore, for 

the 𝑘𝑡ℎ gene, we have the abundance matrix 𝑋𝑠𝑘×𝑚 = [𝑥𝑖𝑘𝑙] across all 𝑚  communities. 

The relative abundance 𝑝𝑖𝑘𝑙 is the proportion of the abundance of the 𝑖𝑡ℎ taxon of the 

𝑘𝑡ℎ gene in the 𝑙𝑡ℎ community to the abundance of all the taxa detected for this gene in 

this community, which can be denoted as in equation (1), where 𝑖 ∈ (1,2, … , 𝑠𝑘); 𝑘 ∈

(1,2, … 𝑛); 𝑙 ∈ (1,2, … 𝑚) and ∑ 𝑝𝑖𝑘𝑙 = 1
𝑠𝑘
𝑖=1 . 

 𝑝𝑖𝑘𝑙 =  
𝑥𝑖𝑘𝑙

∑ 𝑥𝑖𝑘𝑙
𝑠𝑘

𝑖=1

 (1) 

 

 Based on the Rao’s quadratic entropy (Rao 1982), the functional diversity of the 

𝑘𝑡ℎ gene in the 𝑙𝑡ℎ community can be calculated as  

 𝐹𝐷𝑘𝑙
𝛼 =  ∑ ∑ 𝑑𝑖𝑗𝑘

𝑠𝑘
𝑗=1

𝑠𝑘
𝑖=1 𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙 = 2 ∑ 𝑑𝑖𝑗𝑘

𝑠𝑘
𝑖>𝑗 𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙   

(2) 

where α denotes this is the α-diversity of funtional trait 𝑘;  𝑑𝑖𝑗𝑘 is the pairwise 

dissimilarity or divergence between taxon 𝑖 and 𝑗 for the 𝑘𝑡ℎ functional trait. 𝐹𝐷𝑘𝑙
𝛼  
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measures the functional α-diversity of the 𝑘𝑡ℎ gene in the 𝑙𝑡ℎcommunity, which is the 

average difference between any two selected taxa of the 𝑘𝑡ℎgene in the 𝑙𝑡ℎ community.  

 The variance  of the unbiased 𝐹𝐷𝑘𝑙
𝛼  can be estimated (Shimatani 2001) by  

 
𝑣𝑎𝑟(𝐹𝐷𝑘𝑙

𝛼 ) =  
4

𝑆𝑘(𝑆𝑘−1)
[(3 − 2𝑆𝑘)(2 ∑ 𝑑𝑖𝑗𝑘

𝑠𝑘
𝑖>𝑗 𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙)

2

+

(𝑛 − 2) ∑ 𝑑𝑖𝑗𝑘𝑑𝑖𝑡𝑘𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙𝑝𝑡𝑘𝑙
𝑠𝑘
𝑖,𝑗,𝑡 + ∑ 𝑑𝑖𝑗𝑘

2𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙
𝑠𝑘
𝑖>𝑗 ]  

(3) 

Therefore, gerenal significant test based on normal distribution with this variance can 

be used to test the difference between different microbial communities. 

4.3.2.2 Partition of functional diverity (α, β and γ-diversity) 

Partitioning biodiversity into different spatial components of (α, β and γ) is important to 

disentangle the processes and mechanisms shaping biodiverist and tis turnover 

(Meynard, Devictor et al. 2011). The diversity within a community is defined as α-

diveristy, while the diversity between communities is usually defined as β-diversity. 

The overall diversity in a region, including both α and β-diversity is defined as γ-

diversity (Whittaker 1960). When α and γ-diversity are known, the β-diversity can be 

calculated either by muliplicative (β = γ/α̅) or additive ways (β = γ − α̅) (Lande 

1996). Since Lande's publication, the additive diversity partition has rapidly become a 

unifying framework that provides a quantitative description of the within- and between-

community diversity at different levels of organization. Based on the additive 

definition, the partition of Rao’s entropy in to α and β component has been proved both 

mathematically feasible and biologically meaningful (Ricotta 2005, Villeger and 

Mouillot 2008, de Bello, Lavergne et al. 2010).  



80 

To calculate functional γ-diversity in a region, all local communities examined 

are pooled as a single smapling unit. Let 𝑆𝑘 be the total number of taxa in the region, 

and 𝑃𝑖𝑘 be the regional relative abundance of the 𝑖𝑡ℎ taxon for the 𝑘𝑡ℎ trait (gene), that 

is  

 𝑃𝑖𝑘 =
∑ 𝑥𝑖𝑘𝑙

𝑚
𝑙

∑ ∑ 𝑥𝑖𝑘𝑙
𝑆𝑘
𝑖=1

𝑚
𝑙

 (4) 

Note that 𝑚 is the total number of the local communities, and the difference between 

Eq.1 and Eq.4 is that Eq.4 combines all the local commnities as a single community. 

Therefore, the regional functional γ-diversity for the 𝑘𝑡ℎ trait (gene) can be defined as 

 𝐹𝐷𝑘
𝛾

=  ∑ ∑ 𝑑𝑖𝑗𝑘
𝑆𝑘
𝑗=1

𝑆𝑘
𝑖=1 𝑝𝑖𝑘𝑝𝑗𝑘  

(5) 

Therefore, the additive functional β-diversity (𝐹𝐷𝑘
β
) for the 𝑘𝑡ℎ trait is the difference 

between the functional γ-diversity and the average funcitonal α-diversity across all 

communities: 

 
𝐹𝐷𝑘

β
=  𝐹𝐷𝑘

γ
− 𝐹𝐷𝑘

α̅̅ ̅̅ ̅̅  
(6) 

As argued in (Villeger and Mouillot 2008), to avoid negative functional β-diversity, in 

the equation (Eq. 6), the average of the should be defined as the weighted average of the 

α-diversity, where the weight (𝑤𝑘𝑙) should be the proportion of the 𝑘𝑡ℎ trait’s 

abundance associated with the 𝑙𝑡ℎ community in the whole region (𝑚 is the community 

number in the region): 

 
𝐹𝐷𝑘

α̅̅ ̅̅ ̅̅ = ∑ 𝑤𝑘𝑙
𝑚
𝑙 𝐹𝐷𝑘𝑙

𝛼    
(6) 

the weight 𝑤𝑘𝑙 is calculated as: 
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𝑤𝑘𝑙 =   ∑ 𝑥𝑖𝑘𝑙

𝑠𝑘
𝑖 (∑ ∑ 𝑥𝑖𝑘𝑙

𝑠𝑘
𝑖

𝑚
𝑙 )⁄  and ∑ 𝑤𝑘𝑙

𝑚
𝑙 = 1 

(6) 

 

4.3.2.3 Corrected functional α, β and γ diversity 

When the distances between taa is all equal to 1, meaning that each taxa is uniq from 

each other, the Rao’s entropy becomes Gini-Simpson index. Due to the biased 

estimation of species diversity indeices, β-diversity estimated using Gini-Simpson’s 

formulation is always underestimated (de Bello, Leps et al. 2007, Jost 2007), Also, 

neither the additive or multiplicative estimation of β-diversity is ecologically 

meaningful when applied to Gini-Simpson’s index (Ricotta and Szeidl 2009). Such bias 

can be resolved by introducing the Rao’s equivalent number of species as a ‘corrected’ 

form for the diversity index, where 𝑐 means ‘corrected’: 

 𝐹𝐷𝑘𝑙
𝛼,𝑐 =  1 (1 − 𝐹𝐷𝑘𝑙

𝛼 )⁄  
(7) 

Similarly, the corrected form of functional γ-diversity is: 

 𝐹𝐷𝑘
𝛾,𝑐

=  1 (1 − 𝐹𝐷𝑘
𝛾

)⁄  
(8) 

And the corrected form of functional β-diversity is: 

 
𝐹𝐷𝑘

𝛽,𝑐
=  𝐹𝐷𝑘

𝛾,𝑐
− 𝐹𝐷𝑘𝑙

𝛼,𝑐̅̅ ̅̅ ̅̅ ̅ = 𝐹𝐷𝑘
𝛾,𝑐

− ∑ 𝑤𝑘𝑙
𝑚
𝑙 𝐹𝐷𝑘𝑙

𝛼,𝑐
  

(9) 

4.3.2.4 Functional redundancy   

Generally, taxonomic diversity (TD) in a microbial community is estimated based on 

phylogenetic markers such as 16S rRNA or 18S rRNA and ITS (Zhou, He et al. 2015). 

If gene markers are capable of reflecting the differences among individual populations 

or taxa, they can be used to measure taxonomic diversity of different functional 
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assemblages or groups. Previous studies indicated that many functional genes important 

to biogeochemical cycling can provide species/strain level resolution (Tiquia, Wu et al. 

2004, Zhou, He et al. 2015), and hence functional genes can be used as markers for 

measuring taxonomic diversity of various functional guilds. Determining the linkage 

between taxonomic linkage between taxonomic and functional diversity is critical to 

understanding the relationship between biodiversity and ecosystem functioning, but 

they are poorly understood in ecology (Micheli and Halpern 2005). It is generally 

believed that changes in functional diversity rather than taxonomic composition affect 

the resistance and resilience of ecological community structure (Bellwood, Hoey et al. 

2003). Functional redundancy, i.e., the number of taxonomically distinct taxa which 

perform similar ecological functions, is critical concept in ecology. However, it is 

difficult to define functional redundancy in microbial ecology due to the lack of 

connections between taxonomy/phylogeny and functions. Rao’s quadratic approach 

provides a direct estimation of functional diversity and the functional redundancy (FR) 

can be defined as the difference between taxa diversity and functional diversity (Pillar, 

Blanco et al. 2013).  

 When 𝑑𝑖𝑗𝑘 = 1 for a all 𝑖 ≠ 𝑗, the 𝐹𝐷𝑘𝑙
𝛼  in Eq (2) becomes Gini-Simpson 

diversity (D), which can used as the estimation of taxonomic diversity that was 

measured by the functional gene maker: 

 

𝑇𝐷𝑘𝑙
𝛼 =  ∑ ∑ 𝑝𝑖𝑘𝑙𝑝𝑗𝑘𝑙

𝑠𝑘
𝑗≠𝑖

𝑠𝑘
𝑖=1   

= ∑ 𝑝𝑖𝑘𝑙
𝑠𝑘
𝑖=1 × ∑ 𝑝𝑗𝑘𝑙

𝑠𝑘
𝑗=1 − ∑ 𝑝𝑖𝑘𝑙

2𝑠𝑘
𝑖=1 = 1 − ∑ 𝑝𝑖𝑘𝑙

2𝑠𝑘
𝑖=1  

(9) 
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Therefore, from Eq (2) and Eq (9), the functional redundancy of the functional 

redundancy can be defined as (de Bello, Leps et al. 2007): 

 𝐹𝑅𝑘𝑙 =   𝑇𝐷𝑘𝑙
𝛼 − 𝐹𝐷𝑘𝑙

𝛼   
(10) 

Or in the more recenlty defined form as (Ricotta, de Bello et al. 2016):  

 𝐹𝑅𝑘𝑙 =   (𝑇𝐷𝑘𝑙
𝛼 − 𝐹𝐷𝑘𝑙

𝛼 ) 𝑇𝐷𝑘𝑙
𝛼⁄   

(11) 

4.3.2.5 Community level functional diversity and redundancy 

The definitions in the above sections are all focus on a single functional trait (gene), the 

𝑘𝑡ℎ trait in the 𝑙𝑡ℎ community. Generally, a community 𝑙 has different types of 

functional traits, such as traits related to nitrification, denitrification, nitrogen fixation, 

carbon decomposition, and sulfate reduction. The overall functional α-diversity of the 

𝑙𝑡ℎ community can be expressed as  

 𝐹𝐷𝑙
𝛼 =   ∑ 𝑞𝑘𝑙

𝑛
𝑘=1 𝐹𝐷𝑘𝑙

𝛼  , 
(12) 

where 𝑞𝑘𝑙 can be 1 (for unweighted) or the proportion of abundance of the 𝑘𝑡ℎ 

functional trait in the 𝑙𝑡ℎ community (for weighted):  

 𝑞𝑘𝑙 =   ∑ 𝑥𝑖𝑘𝑙
𝑠𝑘
𝑖 (∑ ∑ 𝑥𝑖𝑘𝑙

𝑠𝑘
𝑖

𝑛
𝑘 )⁄  , and ∑ 𝑞𝑘𝑙 = 1𝑛

𝑘  
(13) 

4.3.3 Quantifying distances between taxa 

In the definition (Eq 2) of functional diversity 𝐹𝐷𝑘𝑙
𝛼 , the relative abundance 𝑝𝑖𝑘𝑙 can be 

interpreted from the signal intensity of functional gene arrays, while 𝑑𝑖𝑗𝑘, the pairwise 

dissimilarity between taxon 𝑖 and 𝑗 for the 𝑘𝑡ℎ functional trait, needs to be provided 

additionally. Unlike animal and plants, there are not much information available for 
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functional traits from individual taxa due to the unculturable nature of most 

microorganisms. Fortunately, the DNA sequencing technology can provide rich 

phylogenetic information about the degree of the relatedness of taxa in a microbial 

community.  

For correct spatial partition (α, β, γ) of biological diversity, one of the primary 

mathematical requirements is that the estimated quadratic diversity should be concave 

(Ricotta 2005), that is the total diversity in a set of communities should be greater than 

or equal to the weighted or average diversity within the communities (Lande 1996). 

Then the total taxa diversity in a pooled set of communities can be partitioned into 

additive components of within-community and between-community diversity. The 

Rao’s quadratic entropy is proved to be concave if the taxa distance is Euclidean 

(Ricotta 2005). The Euclidean distance matrix can be simply obtained by taking the 

elementwise square root of the distance matrix extracted from a phylogenetic tree, 

rooted or unrooted (de Vienne, Aguileta et al. 2011). In addition, the Rao’s method 

should be estimated based on ultrametric distance to assure the index reaches its 

maximal value when all the taxa are retained (Pavoine, Ollier et al. 2005). A distance 

matrix 𝐷 = [𝑑𝑖𝑗] is ultrametric if and only if 𝑑𝑖𝑖 = 0, 𝑑𝑖𝑗 ≥ 0 and 𝑑𝑖𝑗 ≤ max (𝑑𝑖𝑡, 𝑑𝑡𝑗), 

for all taxa 𝑖, 𝑗, 𝑡. The distance matrix obtained from a phylogenetic tree with all tips are 

equidistant from the root, such as trees generated using UPGMA clustering algorithm 

(Sokal 1958), is ultrametric (Pavoine, Ollier et al. 2005). Using ultrametric distances in 

Rao’s entropy diversity will avoid the situation that the index reaches its maximum 

when only several extreme taxa exist while others are absent, which is usually the case 

when using just Euclidean distances (Botta-Dukat 2005, Pavoine, Ollier et al. 2005). 
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Finally, the pairwise distance (𝑑𝑖𝑗𝑘) should vary from 0 to 1 (Botta-Dukat 2005, de 

Bello, Lavergne et al. 2010). If 𝑑𝑖𝑗𝑘 = 1 for all taxa, then Rao’s quadratic approach 

becomes Gini-Simpson diversity (Botta-Dukat 2005). Thus having 𝑑𝑖𝑗𝑘 ranges from 0 

to 1 have the advantage for generalized framework for different diversity indexes. 

 Two major types of phylogenetic approaches can be used to estimate taxon 

divergences: distance-based methods and tree-based methods. Among distance-based 

methods, one could simply use pairwise sequence dissimilarity (1 – similarity) to 

quantify the differences between two taxa, which is also called p-distance (Nei 2000). 

However, direct estimation of sequence similarity based on nucleotide sequences 

generally underestimates the differences among different organisms due to mutation 

saturation (i.e., some of the nucleotide positions may have experienced multiple 

substitution events) (Van de Peer 2009). Thus, the pairwise dissimilarity among taxa 

can generally be corrected based on different evolutionary models, such as Jukes-Cantor 

distance (Jukes TH 1969), Tajima-Nei distance (Tajima and Nei 1984), Tamura 3-

parameter distance (Tamura 1992), and Tamura-Nei distance (Tamura and Nei 1993). 

These estimated phylogenetic distances are not Euclidean distances, but they can be 

transformed into Euclidean distances by simply taking element-wise square root of the 

distance matrix (Legendre and Anderson 1999, de Vienne, Aguileta et al. 2011).  

However, distance-based approaches could not catch enough phylogenetic 

information because phylogenetic trees are not used so that the relationships among 

multiple species (> 3) are not clear. A phylogenetic tree, a branching diagram or "tree" 

showing the inferred evolutionary relationships among various biological species or 

other entities, is the best way to catch the relationships among different taxa.  Thus, we 
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will also use phylogenetic tree-based approaches to estimate the divergences among 

different taxa.   Three major approaches are often used to construct phylogenetic trees, 

including distance-matrix methods (UPGMA, neighbor joining), maximum parsimony, 

and maximum likelihood. While the tree constructed by UPGMA is ultrametric, others 

are not. In an ultrametric phylogenetic tree, i.e. a tree in which all tips have the same 

distance to the root, and the distances extracted from an ultrametric tree is ultrametric 

distances. 

 
Figure 4.1 Distance pattern using different distance methods. (A) Direct distance with 

evolutionary models (B) Phylogenetic distances extract from trees constructed using three 

method: maximum likelihood, neighbor joining, UPGMA. (C) ultrametric distances from time-

corrected phylogenetic trees. 

 

 There are two ways to calculate pairwise taxa distances based on phylogenetic 

trees. (i) Node numbers-based methods: The 𝑑𝑖𝑗𝑘 can be defined as the number of 

internodes from the species level to the lowest level of the phylogenetic tree in which a 

common ancestor of tax 𝑖 and 𝑗 share (Guiasu and Guiasu 2010, p 710-711). The 

estimated phylogenetic distance should be transformed as Euclidean distance and be 

standardized to vary from 0 to 1. (ii) Branch lengths-based methods. Similarly, several 

ways can be used to estimate pairwise phylogenetic distances between species based on 

branch lengths. The first is to directly calculate branch lengths based on the output files 

generated by various phylogenetic programs (Gaith et al 1992, Allen et al. 2007; Chao, 
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2010). The phylogenetic distances based on branch lengths can then be transformed into 

Euclidean distance and standardized to vary from 0 to 1.  Another is to render the non-

ultrametric trees to ultrametric tree by relaxing global clock assumption or by post hoc 

tree transformation via penalized likelihood rate smoothing (Sanderson 2002).   Then 

pairwise cophenetic distances can be estimated based on ultrametric tree using the 

method from the ape package (Paradis et al. 2004) (Fig. 1). The cophenetic distances 

can then be standardized to vary from 0 to 1 to represent the phylogenetic divergence 

among taxa (de Oliveura et al. 2014). However, based on the original algorithm, 

cophenetic distance approach may loss distance information as the finer level. 

Theoretically, the former (directly estimating branch length) is preferred.  In addition, 

one could also use divergence time as estimating the species difference as described 

previously (Hardy and Senterre 2007). The divergence time can be estimated based on 

phylogenetic tree (Sanderson 2002). 
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Figure 4.2  Conceptual framework of functional diversity profiles from GeoChip data 

 

4.3.4 Pipeline construction 

First, DNA sequences their corresponding protein sequences extracted from GeoChip 

database from three versions: GeoChip3, GeoChip4 and GeoChip5 (Table 4.1). For 

each version, separated framework are constructed, since the sequences have been 

changing dramatically during the these GeoChip development processes, and earlier 

versions probably contain outdated or later updated sequences, but they are still 

meaningful to analyze studies using these GeoChip versions. There are different sub-

versions for each GeoChip versions, and the most manufactured sub-versions are 

selected to cover the core genes relating to the essential ecological processes by design. 
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For the purpose of diversity analysis, genes have less than 10 sequences are not 

considered in the framework. After the extraction, the DNA sequences are corrected for 

open reading frames by comparison to their protein sequences using FrameBot program. 

The DNA sequences cannot be corrected (by inserting or deleting bases) will be 

discarded from the framework. To obtain the distances among taxa (represented by 

DNA sequences here), the DNA sequences for each gene are aligned using MUSCLE in 

MEGA7 as protein encoded sequences. The sequences are manually checked to remove 

short sequences (cannot overlap with others) and noisy sequences (from homologs, or 

annotation error), which will ensure successful alignments. For many functional genes, 

sequence diversities are very high, and to make sure there are enough common overlaps 

between sequences to allow alignment, pair-wise deletion with at least 95% site 

coverage are used during the alignment.  

Table 4.1 The functional genes and categories included in the framework 

Gene Category 

GeoChip3 GeoChip4 GeoChip5 

Gene 

No. 

Probe 

No. 

Gene 

No. 

Probe 

No. 

Gene 

No. 

Probe 

No. 

Carbon Cycling 32 3576 83 25103 99 19164 

Nitrogen 15 2981 18 7405 28 5846 

Organic 

Remediation 
86 6703 98 8879 74 10133 

Phosphorus 3 566 2 892 6 3099 

Sulfur 4 1083 15 4603 24 4108 

Other 1 1123 2 65 58 9892 

Antibiotic resistance 10 1118 10 1534   

Energy process 2 94 4 508   

Metal Resistance 30 3892 40 9557   

Bacteria phage   21 445   

Bioleaching   15 275   

Fungi function   64 3737   

Soil benefit   20 1559   

Soil borne pathogen   23 497   

Stress   40 9414 86 25155 

virulence   10 1433 89 10943 
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Electron transfer     8 659 

Metal Homeostasis     98 40472 

Secondary 

metabolism 
    41 3604 

Virus     54 2290 

Total  183 21136 465 75906 665 135365 

 

Three phylogenetic tree construction algorithms (neighbor joining, maximum 

likelihood, UPGMA) are used to build functional gene trees. In these algorithms, the 

building process started from one or a couple of sequences and then adding other 

sequences as new tips gradually. Even strategies can be used to select the initial 

sequences and decide the adding orders of the rest sequences, the high diversity of the 

functional sequences always leads to ties among sequences to be chosen at a certain 

point. Therefore, the initial orders of the input sequences are crucial for the final gene 

tree structures. In other words, change of the orders of the sequences will lead to 

different tree structure in all the three methods. Therefore, to find the most reasonable 

trees, we shuffle the alignment 100 times to obtain 100 trees for each gene using every 

method and extract the distances between taxa from these trees (using cophenetic 

function in R). We assume that each tree structure is reasonable to some extent, so the 

most reliable distances should be the one that are most correlated with the average of 

100 distance matrix extracted from the 100 trees with different structures. Using this 

strategy, one final distance matrix can be generated for each gene using each tree 

construction method. The distance matrix is normalized to 0 and 1 in order to be 

suitable for Rao’s entropy calculation.  The final functional diversity is calculated using 

Rao’s entropy (divc function in R package ‘ade4’) for each gene from the GeoChip 

microarray data and the distance matrix between taxa from this gene. The GeoChip 
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profile provides the abundance for each taxon in different communities, and the 

distance matrix provides the dissimilarity measures among these taxa.  

 
Figure 4.3 Development of functional diversity framework and databases 

 

 Applications and results 

4.4.1 Groundwater dataset  

To test the new index of functional diversity using Geochip, we use a dataset from high 

contaminated (U(IV), Fe(III), NO3
-, SO4

2-) groundwater samples, where EVO 

(emulsified vegetable oil) was injected from three injection wells, and samples were 

collected before the injection and after 4, 17, 31, 80, 140, 269 days from one upgradient 

well (W8) as control well and seven downgradient wells (W1-W7) as monitor wells. 

More detailed site information and sampling processes are described previously (Zhang, 

Wu et al. 2015). EVO amendment has been shown to promote U(VI) reduction 

efficiently in this site, and stimulate the aquifer microbial community with the changes 
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in the composition (Gihring, Zhang et al. 2011) and related function response (Chourey, 

Nissen et al. 2013, Zhang, Wu et al. 2015). The GeoChip analysis of these groundwater 

samples has shown a dynamic succession of key genes/groups involved in EVO 

degradation, and reduction of NO3
-, SO4

2-, and some other heavy metal contaminations. 

The functional diversity index proposed in this study was used to investigate the 

functional structure change after the EVO injection stimulates the microbial community 

in this groundwater system. The analysis was based on GeoChip 3.0, including 181 

functional genes in seven gene categories (Table 4.1), which covers ~80% of all the 

proves detected in the experiment. Ultrametric distance between each probe (taxa) 

extracted from a time-dated phylogenic tree were used as the dissimilarity measures in 

the Rao’s entropy definition.  

 Key geochemical variables were changed significantly during the 9-month 

monitoring period after EVO ejection. Before injection (Day 0), the groundwater 

samples contained a considerable amount of NO3
- (0.2150.16 mM), SO4

2- (1.14±0.11 

mM) and U(VI) (8.06±2.33 µM), but the concentration of acetate was below detectable 

(FigureS3). After EVO amendment, substantial acetate production was observed in the 

seven downgradient wells, along with the obvious reduction of NO3
-, SO4

2-, U(VI), 

Fe(III) and Mn(IV) were also detected comparing to the concentrations in the control 

well. Among these, the concentrations of acetate in control well were remained 

undetectable during the whole observation period, which indicates that the acetate 

observed in the monitor wells after ejection of EVO was from the presumed 

biodegradation of EVO. Then the acetate will stimulate the growth of microbes that 

participate in the reduction process of U(VI), NO3
-, SO4

2-, Fe(III) and other metal 
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contaminations. Therefore, the observed acetate concentration will not accumulate and 

can be used as an indicator of EVO degradation process carried out by the microbial 

community in the site. 

4.4.2 Linking functional diversity to ecosystem functions 

One of the key genes that are involved in the degradation of EVO is FTHFS (also 

known as fhs and encodes for formyltetrahydrofolate synthetase), which involved in 

acetogenesis for acetate production. Correlations between this gene and the 

concentration of acetate detected in the monitoring wells after EVO injection are shown 

in Figure 4.3.  The functional richness (probe numbers) and functional abundance 

(summed probe signal intensity) of FTHFS gene is not significantly related to the 

production of acetate (p > 0.05), while the Shannon, Gini-Simpson and functional 

diversity calculated in our new framework showed significant correlations with the 

concentration of acetate. Among the diversity indices showed strong relationship to the 

biodegradation of EVO, functional diversity has the highest correlation (R2 = 0.625, p = 

0.021). 
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Figure 4.4 Linear relationship between function (acetate concentration) and FTHFS gene α-

diversity indices (gene abundance, gene richness, Shannon index, Gini-Simpson index, 

functional diversity calculated in this paper and corrected functional diveristy). For each 

sample, gene abundance is calculated as the sum of all the probe log-transformed signal 

intensity; gene richness is the total number of probes detected. FD (corrected) is the corrected 

version of functional diversity, which is calculated as 1/(1-FD) 

 

 To further explain the correlation between functional traits and ecological 

process (in our case, FTHFS functional diversity and EVO biodegradation), the 

functional indices were standardized into same scale and plotted together along the 

EVO degradation progress over time (Figure 4.5). The gene abundance and gene 

richness showed almost the same trend, except when the gene abundance dropped more 

quickly than the gene richness after one month of the EVO injection. Both indices 

began to increase at the earliest time point (Day 4) that were monitored and peaked at 

Day 17, where they began to drop gradually and returned to almost the same level at the 

end (Day 269). Interestingly, the functional diversity of FTHFS gene didn’t increase 

immediately as the gene richness and abundance did, but it dropped at the beginning 

and reached the lowest point at Day 4. After 4 days, the FTHFS functional diversity 
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kept increasing until Day 31 and then began to decrease. This change of functional 

diversity of FTHFS was highly consistent with the change of its presumed function: 

acetate production. The concentration of acetate only began to increase dramatically 

after Day 4 and also reached its highest level at Day 31. There was a second peak at 

Day 140 for both FTHFS functional diversity and acetate production, which probably 

due to other unreported input of organic carbon source into the system or other 

environmental variable changes that can accelerate the biodegradation process.  

 
Figure 4.5 FTHFS gene diversity indices and function (acetate concentration) changes along 

time. All the indices were standardized to fit the same scale (0 to 1). 

 

From this figure, the functional diversity of FTHFS gene shows a stronger 

linkage to the ecological process it participates in, comparing to the gene abundance and 

richness. At the beginning stage (from Day 0 to Day 4), the addition of new carbon 

source stimulates the microbial functional response by increase the corresponding gene 

richness capable of utilizing it, but also allows species with a narrower functional range 

to outgrow others, leading to a decrease in functional diversity. At this stage, the EVO 

degradation process starts but the efficiency is not high. After Day 4, the functional 
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diversity starts to increase along with the gene richness and abundance, indicating used-

to-be rare species have adapted to the EVO and starts to grow better and participate in 

the biodegradation process. At this stage, the function carried out by FTFHS gene also 

increases with all the indices, since all the conditions are in favor of the degradation 

process. When the EVO availability declines as time goes by, the gene richness and 

abundance also decrease, while the functional diversity does not get affected at first 

(Day 17) until the resources cannot support for the minimum species richness to hold 

the diversity (after Day 31). The fact that acetate production peaks around the same 

time as the functional diversity reaches highest level, but not gene richness and 

abundance, shows that not all the gene richness or abundance are involved in the 

process. As for the functional redundancy (gene similarity), with more specified functional 

traits are selected at the beginning stage of disturbance, the gene similarity reaches its highest 

level at Day 4. Then the gene similarity decreases as time goes by, but still higher at the end of 

the monitor period than before EVO ejection. Detailed probe signal intensity profile is 

shown in Figure 4.6. The probes are listed in the order of the ultrametic phylogenetic 

tree constructed based on their corresponding sequences. The pattern observed here 

explained the functional diversity of FTHFS gene change over time. There are only four 

probes/taxa that are significantly correlate with the acetate production when averaging 

their signal intensity by the time point. The abundance of the most correlate taxa (df = 

5, p = 0.004) is low, while the abundance of the dominate taxon is not correlated with 

the acetate production, which to some level demonstrated that functional taxa acting in a 

complementary way might be the reason behind the linkage between the microbial 

functional diversity and their functions. 
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Figure 4.6 Heatmap of detailed signal intensity of FTHFS probes included in GeoChip3.0. The 

left panel shows the ultrametric tree, from which the distances used to calculate the functional 

diversity is extracted. The right panel are the species names for the probes detected in this 

experiment. The red arrows point at the four probes/taxa has significant correlation with acetate 

concentration, with p-values of the correlation listed behind. 

 

Besides FTHFS, the correlations between key functional gene/groups and 

corresponding microbial processes that take place after EVO ejection are listed in Table 

4.2. As mentioned above, FTHFS gene encoding for formyltetrahydrofolate synthetase 

involved in acetogenesis, shows strong correlations with the EVO degradation process 

(acetate concentration), where the functional diversity is most correlated index listed. 

EVO amendment also stimulate genes involved in the sequential reduction of NO3
-, 

SO4
2-, Fe(II) and U(VI), and other heavy metal ions which all co-exist in this 

groundwater system. The concentration of these electron acceptors can be also used as a 

measure of ecological functions (Jax 2005). For nitrogen cycling, key genes involved in 

nitrate reduction are evaluated for their relationship with the NO3
- concentration. Strong 

correlations were found from these functional traits including genes related to reduction 

from nitrate to nitrite (narG and napA), nitrite reduction (nirK/S), assimilatory reduction 



98 

of nitrate (nasA, nirA/B). Sulfate reducing bacteria (SRR) are frequently detected in 

groundwater system with U(VI) contamination, which are believed to play important 

roles in the bioremediation in such sites. The genes (dsrAB) encoding dissimilarity 

sulfate reductase also showed strong relationships between their diversity and sulfate 

concentration. Energy metabolism genes, such as cytochromes are demonstrated to be 

involved in U(VI) reduction (Shelobolina, Coppi et al. 2007), and the functional 

diversity of cytochromes are significantly related to the U(VI) level, while the richness 

of another gene (hydrogenases) responsible for transfer H2 to cytochromes and later to 

U(VI) shows strong correlations to the U(VI) level as well.  

Table 4.2 Correlation between ecological functions and related genes a 

 
a Pearson correlation between ecological function and gene diversity is measured using the 

averaged gene indices and chemical concentrations at each observation time point. Bold font 

indicates significant correlation with * p<0.05, ** p<0.01 

 Functional diversity shows an overall tighter linkage to the chemical 

concentrations over other indices such as gene richness, Shannon diversity and Gini-

Simpson index. When correlations are detected using more than one diversity indices, 

the functional diversity usually showed more significant relationships (for example, 

nirS, napA), and it also can capture the relationship that cannot be captured by the other 

Function  Gene  Gene Category 
Gene 

abundance 
Gene 

richness 
Shannon 

(H') 
Gini-

Simpson (D) 
Functional 
diversity 

FD 
(corrected) 

Acetate FTHFS (fhs) Acetogenesis 0.708 0.746 0.813* 0.801* 0.828* 0.741 

NO3
- 

narG 

Denitrification 

-0.458 -0.742 -0.751 -0.657 -0.424 -0.427 

nirK -0.148 -0.618 -0.581 -0.421 -0.864* -0.861* 

nirS -0.24 -0.789* -0.852* -0.832* 0.887** 0.923** 

norB -0.017 -0.695 -0.714 -0.618 -0.564 -0.724 

nosz -0.54 -0.748 -0.76* -0.683 -0.416 -0.404 

napa Dissimilatory N 
reduction 

-0.581 -0.749 -0.789* -0.848* -0.9** -0.804* 

nrfa -0.476 -0.631 -0.54 -0.409 -0.185 -0.167 

nasa 
Assimilatory N 

reduction 

0.5 -0.636 -0.756* -0.76* -0.8* -0.846* 

nirA 0.0456 -0.446 -0.344 -0.272 -0.584 -0.668 

nirB 0.0712 -0.743 -0.796* -0.803* -0.834* -0.866* 

SO4
2- 

dsrA Sulfite 
reduction 

-0.484 -0.846* -0.862* -0.824* -0.732 -0.722 

dsrB -0.212 -0.735 -0.841* -0.865* 0.777* 0.781* 

U 
cytochrome 

Energy process 
-0.611 -0.669 -0.662 -0.581 -0.811* -0.81* 

hydrogenase -0.644 -0.759* -0.628 -0.521 -0.412 -0.404 
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indices (nirK, cytochrome). It is interesting that some functional diversity showed 

opposite relationships with corresponding functions, comparing to other diversity 

measures, such as nirS and dsrB (Figure S4), which indicates the presumed assumption 

that higher functional diversity will possess function potential should be considered 

carefully for different functional trait under different environment conditions. There are 

several possible reasons. One is that the function measurement, such as SO4
2- 

concentration, cannot accurately reflect the microbial functional activities, so the 

linkage might be biased. Another possible reason is that most ecosystem functions, such 

as sulfate reduction, are complex functions that rely on multiple functional traits (genes) 

to accomplish, where single gene and function correlations might not hold. 

4.4.3 Shifts of the overall functional structures of microbial communities 

For traditional GeoChip analysis, probe signals were used to represent microbial 

community functional structure for each sample. In our new framework, given the 

functional diversity calculated for each gene, functional profile of microbial 

community can be expressed in a more concise and informative way. To test whether 

there are substantial shifts in the functional structures of the microbial community 

before and after EVO injection, different functional indices and three different non-

parametric multivariate statistical tests are used. The functional indices selected 

construct community functional profiles include probe-based indices (probe signal 

intensity) and gene-based indices (gene richness, abundance, Shannon index and 

functional diversity). Three statistical tests are: analysis of similarity (ANOSIM); 

non-parametric multivariate analysis of variance (Adonis); and multi-response 

permutation procedure (MRPP). Three methods showed practically the same pattern 
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of the community dissimilarities for each functional index tested, so only the 

PERMANOVA (Adonis) results are shown in Table S6. Based on these tests, the 

functional community structures differed substantially after EVO injection using both 

probes signal intensity and gene diversity indices (Table S6). When using probe 

signal intensity to present community functional structure, only samples from Day 

31, Day 80 and Day 140 showed no significant dissimilarities from each other, while 

all the other samples are statistically different from each other. When using gene-

based functional profiles, more similarities among samples are found (e.g., Day 4 vs 

Day140, Day 17 vs Day 31), and test results using gene-diversity-based indices 

(Shannon index and function diversity) are almost identical (except for Day 140 vs 

Ctrl).    

Table 4.3 Mantel test of correlation between differences in microbial functional structures and 

the differences in environmental variables 

Functional index 
Mantel 

n a Distance methods b ρ c p 

All probes 12987 Bray-Curtis 0.0685 0.095 

FD probes d 10670 Bray-Curtis 0.0711 0.090 

Gene abundance 187 Euclidean -0.0223 0.613 

Gene richness 187 Euclidean 0.0768 0.131 

Shannon index (H’) 187 Euclidean 0.0887 0.093 

Gini-Simpson diversity (D) 187 Euclidean 0.1086 0.053 

Functional diversity 187 Euclidean 0.1398 0.010 

FD (corrected) 187 Euclidean 0.1075 0.044 
a n is the number of probes or genes that represent functional unit in the functional profiles 
b when calculate community distance based on GeoChip probe signals, Bray-Curtis dissimilarity 

is used to account for missing values; Euclidean distance is used for other gene-based indices 
c Spearman rank correlation (ρ) is used 
d FD probes are the probes selected into the functional diversity framework, where probes must 

belong to genes with more than 10 probes, and also the sequences used to design the probe are 

of high quality and well aligned with other sequences belong to the same gene 

 

Mantel test is used to further determine whether the differences observed in 

the microbial functional structures are correlated with the change of geochemical 
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variables during the EVO degradation process (Table 4.3). The geochemical 

variables used are pH, and concentrations of acetate, Cl, Ag, Al, Ba, Ca, Cr, Ga, K, 

Mg, Sr, Zn, NO3
-, Fe(II), Mn(II), U(VI), and SO4

2-. To deal with large amount of 

missing data in GeoChip probe signals, Bray-Curtis similarity distances were used 

for probe-based index when calculating the functional distance between two 

microbial communities. For gene-based indices, the information of each gene is 

evaluated and summarized, so the index values are continuous and rarely contain 

missing data and Euclidean distance method is used to represent the dissimilarities 

among community structures. Among all the indices tested, only community 

structures represented by the functional diversity and corrected functional diversity 

showed significant correlations with the 18 geochemical variables (p = 0.010 and 

0.044). When the community functional structure is divided in to different functional 

categories, the correlations between each division of the community functional 

structures and environment are listed in Figure S8. The Mantel test results indicate 

that, when using other indices, such as probe signal intensity or gene richness, the 

functional structures of microbial community are more likely shaped by other factors 

other than the environmental factors provided in the test, even though these variables 

represent the major changes occurred during the EVO degradation process.  Multiple 

regression on distance matrices analysis (MRM) was applied to show the relative 

importance of each geochemical variable to the microbial community structure 

represented by functional diversity (Table S7). The best predictor of the community 

functional structure is U(VI) level (R2 = 0.079, p = 0.001), followed by SO4
2- (R2 = 
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0.033, p = 0.001), acetate (R2 = 0.019, p = 0.026), Fe(II) (R2 = 0.020, p = 0.033), Al 

(R2 = 0.011, p = 0.016) and Ga (R2 = 0.017, p = 0.011). 

 Discussion 

Generally, functional gene abundance and diversity can explain more of the 

ecosystem function, comparing the taxonomic structure of microbial community 

(Graham, Knelman et al. 2016). In GeoChip-based analysis, the functional structure is 

traditionally constructed from individual taxon/probe level (Tu, Yu et al. 2014, Xue, 

Yuan et al. 2016) and functional diversity is represented by the gene richness (probe 

number). While the finer resolution (probe level) can provide more detailed information 

of community structures, it also brings unexpected variances that may not contribute to 

the relationship with the ecosystem functioning (Table S6). The functional diversity 

index defined in this study aggregates related information from individual taxon and 

provide a higher-level depiction of the functional structure of the whole community. 

The results showed that the whole functional profile of microbial community 

represented by gene-level functional diversity, comparing to the probe-level community 

structure, has stronger linkage to the environmental variables, which can also be 

interpreted as ecosystem functions in certain context (Jax 2005). The gene-level 

aggregation of functional diversity also enables the partition of α and β diversity (Lande 

1996, Ricotta 2005, Villeger and Mouillot 2008, de Bello, Lavergne et al. 2010), which 

can provide a different perspective of understanding the assembly mechanism of the 

functional structure of microbial communities. 

When define functional diversity, if individual functional units annotated with 

the same gene name are considered the same in terms of function potential, the 
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functional diversity of this gene will become gene richness. However, differences in the 

gene sequences leads to probable different protein structures, and thus possible different 

mechanisms to carry out their functions. It is generally believed that more similar 

sequences lead to more similar functions. There are also significant differences when 

very similar protein function in different species, and sometimes even in the same 

organism. To better discriminate these differences can improve the prediction of their 

ability to function in a ecosystem together. Distances extracted from the phylogenetic 

trees of gene sequences can reflect such differences accompanied by their evolutionary 

histories. Such differences in gene can sometimes explain the various response when 

encounter disturbance and changes in the surrounding environment, which defines the 

term ‘response diversity’ (Mori, Furukawa et al. 2013). More phylogenetically related 

genes should response similarly, but lateral gene transfer can obscure this pattern, that is 

the reason why the functional diversity cannot completely represent functional response 

diversity. 

It is generally believed that higher functional redundancy means the higher 

ecosystem stability in terms of its functions. Functioning of an ecosystem includes 

various processes and services, and functional redundancy can be observed in two ways. 

One is that when additional taxa added to the system and the function numbers 

(functional diversity) do not change, then there is function redundancy, in other words, 

the added taxa is functionally redundant. The other is that when losing a member or 

members, the system keeps the same functioning, then the system is functionally 

redundant. Both scenarios can be tested and proved when communities with different 

taxonomic diversity profiles have similar functional diversity profiles. An example from 
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human oral and fecal microbial communities (part of the NIH Human Microbiome 

Project data), shows that given tremendously diverse 16S profiles, the function profiles 

of these communities are remarkably similar (Lozupone, Stombaugh et al. 2012), 

indicating the existence of functional redundancy in the human microbiota. The 

functional diversity proposed by this work can serve this purpose to investigate the 

functional redundancy in terms of whole system functioning when comparing the 

community, the taxonomic diversity and functional diversity profiles. But careful 

conclusions should be made when the generality of functional redundancy has been 

challenged, since the species role changes in different environment, which can result in 

drastically different biodiversity and ecosystem function relationships (Fetzer, Johst et 

al. 2015). 

 When considering different ecosystem functions or processes individually, it is 

possible that a microbial community is functionally redundant in one or several 

functions while not redundant in the others. In our framework, we defined functional 

redundancy based on the genetic similarity of the genes carrying out this function, 

which means, given certain distribution of individual genes fulfill the function, the more 

similar the genes are, the higher is the functional redundancy, since losing individuals 

become less significant in terms of the genetic potential to achieve this function. This is 

the reason when the redundancy of FTHFS is high, decreasing gene richness did not 

lead to a direct decrease in the EVO degradation process (Figure 4.5). Studying single 

function redundancy is necessary when the scope of the whole ecosystem functioning is 

hard to define or when specific ecosystem process is the research interest. However, for 

complex ecosystem function that requires many genes, such as photosynthesis and 
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methanogenesis (Martiny, Treseder et al. 2013), it is hard to measure the functional 

redundancy using this definition. 

 Conclusion 

This study provides a framework to detect ecologically related functional traits 

represented by genes for microbial community and calculate the functional diversity by 

combining the functional richness and phylogenetic signals contained in these traits. 

The application of this functional diversity framework to the groundwater microbial 

communities with EVO amendment shows that the functional diversity has a strong 

linkage to the corresponding ecosystem functions and can be a powerful to investigate 

the functionally assembly of the microbial community under different conditions.  The 

functional diversity can be partitioned into α and β diversities and offer more insights of 

community differences and the potential mechanisms behind these differences. Along 

the functional diversity index, functional redundancy can also be defined and can be 

used to evaluate if a simple function trait is redundant in the system in terms of the 

genetic similarity of the corresponding genes that carry out this function. In summary, 

the functional diversity defined in this study can construct the functional profile of 

 microbial communities with more information, which can may provide a stronger 

linkage to the ecosystem functions and help researchers to understand this linkage 

better. 
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Chapter 5: Summary and output 

 

This dissertation has contributed to the field of microbial diversity in serval ways. First, 

we proposed a new phasing amplicon sequencing approach (PAS) was developed to 

conquer the issue that low-base-diversity caused during the Illumina sequencing 

process. This method adding diversity to the sequencing targets by shifting sequencing 

phases among different community samples via adding various numbers of bases (0–7) 

as spacers to both forward and reverse primers. Our results show that the PAS method 

substantially ameliorated the problem of unbalanced base composition. improved the 

sequence read base quality (an average of 10 % higher of bases above Q30). The PAS 

method also effectively increased raw sequence throughput (~15 % more raw reads) and 

significantly increased effective reads (9–47 %) and the effective read sequence length 

(16–96 more bases) after quality trim at Q30 with window 5. In addition, the PAS 

method reduced half of the sequencing errors (0.54–1.1 % less). Combined with two-

step PCR amplification of the PAS method effectively ameliorated the amplification 

biases introduced by the long-barcoded PCR primers. The developed strategy is robust 

for 16S rRNA gene amplicon sequencing, and potentially for other gene markers 

important to the ecosystem functional processes. Second, a data analysis pipeline for 

amplicon sequences has been established to serve the research communities. The 

pipeline provides the most commonly used programs to process amplicon sequencing 

data for genes such as 16S rRNA, ITS, nifH, and other genetic markers. The pipeline 

was based on Galaxy platform, which provide a user-friendly interface makes code-free 

analysis of the amplicon sequencing data possible. The pipeline has already been set up 
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and kept running for several years and get involved in dozens of projects from more 

than 200 users. The related publications are listed in the end of this section. Third, a 

practical application of amplicon sequencing investigated the biodiversity pattern of 

microbial fungal communities in six North American forests soils, which adds more 

insights to the global fungal biogeographic distribution patterns. In this part, the soil 

fungal samples were collected from six forest sites across a wide range of latitudes in 

North America with a nested design in each site. The compositions of fungal 

communities are distinct from each other across six forest sites. The main drivers of 

alpha diversity of fungi in forest soil is latitude, along with the mean annual 

temperature, precipitation, soil pH, soil total carbon, and soil total nitrogen. These seven 

variables can be used to predict the α-diversity of the soil fungal communities, and more 

than 70% variance can be explained by these variables only. As for the β-diversity, the 

dissimilarities among the fungal communities increases significantly as the distance 

between the sampling sites become larger. The distance-decay curve explains this 

pattern and indicate that the turnover rates of the fungal species are different in the local 

and continental scales. We further proved that, the key drivers of the difference in 

fungal community composition highly depends on the spatial scale, and the geographic 

distance is the major contributor to explain these differences. Finally, we provide a new 

framework to quantify microbial functional diversity based on Rao’s entropy using 

GeoChip (a high-throughput functional gene array), and the phylogenetic distances 

between each probe is considered in the calculation. α- and β- diversity can also be 

investigated from this index, which extends the understanding of functional diversity 

pattern into different temporal or spatial scales. We applied this functional diversity 
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framework to study the dynamic changes over a 9-month period of microbial 

communities in a contaminated groundwater system (with U(VI), SO4
2-, NO3

-, etc.,) 

after a one-time EVO (emulsified vegetable oil) amendment. The results show that the 

new defined functional diversity index is not only a better indicator of ecosystem 

functions when only single function is considered, but also a more appropriate index to 

represent the whole microbial functional structure, which shows more interactions to the 

ecosystem it belongs to. This framework also enables the comparison of the functional 

structures between different microbial communities from various studies, as long the 

GeoChip version is the same. 
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Appendix A Supplementary Figures 

 

  
Figure S1. Detrended correspondence analyses (DCA) for fungal microbial communities in 

the six forest sites, including two tropical forest, three temperate forest and one boreal forest 

sites. These communities are clearly separated and tend to cluster by the types of the forest. 
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Figure S2. The sequence distribution of fungal microbial community across six forest sites 

based on different trophic modes.  
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Figure S3. Changes of geochemical variables during the 9-month monitor time after the EVO 

ejection. The black dots indicate the corresponding variable concentrations in the control well at 

the same time points.  (*The concentration of U(VI) is measured in µM instead of mM.) 
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Figure S4. The detailed GeoChip functional profile for dsrA (upper) and dsrB (lower) 

genes, and their diversity indices change across time.  



114 

Appendix B Supplementary Tables 

Table S1. Mock bacterial community species and details 

Sequence name 

 

Taxonomy  
(Phyla or class) 

Source 
Insert 
length 

(nt)
b
 

Acidobacteria Acidobacteria Drinking water 1359 
Actinobacteria Actinobacteria Wastewater reactor 1392 
Bacteroidetes clone 1 Bacteroidetes Wastewater reactor 1355 
Bacteroidetes clone 2 Bacteroidetes Drinking water 1352 

Caldisericum exile OP5 
DSMZ culture collection‐
13637 

1426 

Chlorobi Chlorobi Surface water 1374 
Cyanobacteria Cyanobacteria Surface water 1324 

Deferribacter desulfuricans Deferribacteres 
DSMZ culture collection‐
14783 

1410 

Deinococcus indicus Deinococcus‐Thermus DSMZ culture collection‐1537 1366 
Desulfurispirillum 
alkaliphilum 

Chrysiogenetes DSMZ culture collection‐1827 1375 

Dictyoglomus thermophilum Dictyoglomi DSMZ culture collection‐396 1415 

 

Fibrobacter succinogenes S85 Fibrobacteres 
Donated by Isaac Cann, 
University of Illinois‐Urbana 
Champaign 

 

1372 

Gemmatimonadetes Gemmatimonadetes Wastewater reactor 1360 

Leptotrichia hofstadii Fusobacteria 
DSMZ culture collection‐
21561 

1367 

Mycoplasma orale Firmicutes DSMZ culture collection‐1915 1375 
Nitrospira Nitrospirae Wastewater reactor 1376 
 

Persephonella hydrogeniphiia 
H3 

Aquificae 
Donated by Anne Louise 
Reysenbach, Portland State 
University 

 

1389 

Planctomycetes Planctomycetes Wastewater reactor 1376 

Protochlamydia amoebophilia Chlamydiae 
Donated by Mathias Horn, 
University of Vienna 

1360 

Spirochaetes Spirochaetae Surface water 1396 

Sulfurihydrogenibium 
yellowstonense 

Aquificae 
Donated by Anne Louise 
Reysenbach, Portland State 
University 

 

1378 

Synergistetes Synergistetes Surface water 1355 
 

Syntrophobacter 
fumaroxidans 

Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 117) 

 

1415 

 

Syntrophococcus 
sucromutans 

Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(ATCC# 43584) 

 

1380 

 

Syntrophomonas bryantii Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 314A) 

 

1412 

 

Syntrophothermus lipocalidus Firmicutes 
Donated by Syed Hashsham, 
Michigan State University 
(DSMZ# 1268) 

 

1500 

 

Syntrophus buswellii Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 

 

1413 
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(DSMZ# 2612A) 

 

Syntrophus gentianae Deltaproteobacteria 
Donated by Syed Hashsham, 
Michigan State University 
(DMZ# 8423) 

 

1412 

Thermodesulfobacterium 
commune 

Thermodesulfobacteri 
a 

 

DSMZ culture collection‐2178 
 

1422 

Thermomicrobium roseum Chloroflexi DSMZ culture collection‐5159 1371 

Thermotoga neapolitana Thermotogae. 
Donated by Claire Vielle, 
Michigan State University 

1412 

Verrucomicrobia Verrucomicrobia Surface water 1379 
Victivallis vadensis Lentisphaerae DSMZ culture collection‐8748 1360 

 
a The mock community was a gift from Dr. Lutgarde Raskin, Department of Civil and Environmental 
Engineering, University of Michigan, United States of America. 
b The insertions are near full length 16S rDNA sequences. 
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Table S2. Correlations of the strain relative abundance between different sequencing 

strategies.  

Mock community Sequencing strategy 
Correlation (r)* 

old primer one-step 

Mock1 (Bm1) 
one-step 0.6858 - 

two-step 0.5949 0.8633 

Mock2 (Bm2) 
one-step 0.9297 - 

two-step 0.9426 0.9746 

Mock3 (Bm3) 
one-step 0.9342 - 

two-step 0.9024 0.9640 

(* All the correlations are significant with p-value < 0.001) 
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Table S3. Non-parametric multivariate dissimilarity tests of fungal microbial community 

structure across six forest sites and between any two sites.  

Sites 

MRPP anosim adonis 

Jaccard Bray Curtis Jaccard Bray Curtis Jaccard Bray Curtis 

Delta p Delta p R p R p F p F p 

Whole 0.780 0.001 0.993 0.001 11.797 0.001 0.838 0.001 0.969 0.001 8.578 0.001 

BCI vs LUQ 0.836 0.001 0.995 0.001 6.476 0.001 0.878 0.001 0.884 0.001 5.223 0.001 

BCI vs CWT 0.797 0.001 1.000 0.001 11.898 0.001 0.861 0.001 1.000 0.001 7.878 0.001 

BCI vs AND 0.787 0.001 1.000 0.001 12.961 0.001 0.850 0.001 0.998 0.001 8.588 0.001 

BCI vs HFR 0.789 0.001 1.000 0.001 12.776 0.001 0.829 0.001 1.000 0.001 9.985 0.001 

BCI vs NWT 0.767 0.001 1.000 0.001 14.521 0.001 0.818 0.001 0.979 0.001 10.654 0.001 

LUQ vs CWT 0.814 0.001 0.988 0.001 9.960 0.001 0.878 0.001 0.983 0.001 6.604 0.001 

LUQ vs AND 0.805 0.001 1.000 0.001 11.356 0.001 0.867 0.001 1.000 0.001 7.459 0.001 

LUQ vs HFR 0.806 0.001 1.000 0.001 11.083 0.001 0.845 0.001 1.000 0.001 8.704 0.001 

LUQ vs NWT 0.784 0.001 1.000 0.001 13.154 0.001 0.834 0.001 1.000 0.001 9.641 0.001 

CWT vs AND 0.765 0.001 1.000 0.001 11.990 0.001 0.850 0.001 0.977 0.001 7.202 0.001 

CWT vs HFR 0.767 0.001 0.997 0.001 9.508 0.001 0.829 0.001 0.942 0.001 7.850 0.001 

CWT vs NWT 0.745 0.001 1.000 0.001 14.992 0.001 0.817 0.001 1.000 0.001 9.926 0.001 

AND vs HFR 0.757 0.001 0.999 0.001 11.786 0.001 0.817 0.001 0.972 0.001 9.329 0.001 

AND vs NWT 0.735 0.001 0.999 0.001 12.200 0.001 0.806 0.001 0.909 0.001 8.760 0.001 

HFR vs NWT 0.737 0.001 1.000 0.001 13.796 0.001 0.785 0.001 0.998 0.001 12.177 0.001 

MRPP, multi-response permutation procedures; Adonis, permutational multivariate analysis of 

variance using distance matrices; ANOSIM, analysis of similarity. Results presented are based 

on distance matrices calculated with Bray-Curtis and Jaccard index. All tests are significant 

with p-values < 0.05. 
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Table S4. The distribution of fungal microbial communities across six forest sites based 

on their growth morphology 
 

Growth Morphology AND BCI CWT LUQ HFR NWT 

- a 146305 68115 152085 93479 153239 139365 

NULL a 39989 41600 65266 49986 67687 50711 

Agaricoid 49495 10144 51479 9432 102300 54698 

Resupinate 34691 3238 18320 1008 12381 58428 

Microfungus 8136 19364 4979 36976 16550 26329 

DarkSeptateEndophyte 18799 526 11577 93 10531 20381 

Clavarioid 17871 289 12950 335 6863 7780 

Gasteroid 14755 7101 6167 903 3570 11258 

FacultativeYeast 7056 2578 1145 6032 1238 7479 

Agaricoid,Corticioid,Gasteroid, 

Pleurotoid,orSecotioid 
6210 21 11104 578 5763 15 

CupFungus 9805 10 734 7 351 9686 

Hydnoid 1504 3856 7876 3 160 3671 

Boletoid 3215 132 756 10 8612 2325 

Yeast 1477 1705 1392 3024 1127 414 

Tremelloid-Yeast 816 393 1732 3409 660 256 

Agaricoid-Polyporoid 90 2 2 2 9 6777 

Agaricoid-Gasteroid-Secotioid 165 4860 44 77 2 1 

DarkSeptateMicrofungus 50 0 850 1 2351 7 

Polyporoid 26 437 62 377 21 0 

Thallus 24 32 58 6 17 393 

FacultativeYeast-Microfungus 1 0 92 0 36 18 

CorticioidFungusorThallus 18 1 0 0 103 16 

Phalloid 0 0 0 31 0 0 

Microfungus;FacultativeYeast 

(Tedersooetal.2014) 
4 0 5 0 2 7 

Corticioid 0 0 0 0 8 0 

No species information b 53765 249863 65592 208498 20686 14252 

 
a The ‘-’ and ‘NULL’ annotations from FunGuild program indicates growth morphology 

information was not included in the database. 
b For the sequences cannot be classified into species (no hit in the references), the functional and 

growth morphology information cannot be predicted.   



119 

Table S5. Fungal richness predictors in final multiple linear regression models 

Variables Coefficients Pr(>|t|) a R2 AdjR2Cum p-valueb 

Lat -0.401 *** 0.595 0.5919 0.001 

pH 0.313 *** 0.056 0.6458 0.001 

Total nitrogen -0.296 *** 0.018 0.6618 0.012 

Total carbon -0.259 ** 0.014 0.6739 0.018 

Temp 0.855 *** 0.010 0.6821 0.042 

Precipitation -0.623 *** 0.065 0.7476 0.001 

 
a: significant level of multiple linear regression 
b: forward selection α criteria, must <0.05 to ensure the significance of the model 
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Table S6. Significant tests (PERMAONOVA*) of the overall community functional structure 

changes before and after EVO injection 

 
*Permutational multivariate analysis of variance using distance matrices uses ‘adonis’ function 

from ‘vegan’ package in R. Significance tests were carried out using F-tests based on sequential 

sums of squares from permutations of the raw data. Group ‘Ctrl’ are the samples collected from 

well 8 across different time points. All the p-values < 0.05 are marked in bold. 

 

  

Community groups 
All probes FD probes Gene richness Gene abundance Shannon index (H') Functional diversity 

F p F p F p F p F p F p 

All 3.862 0.001 3.874 0.001 3.755 0.001 3.305 0.001 4.029 0.001 3.754 0.001 

Day0 vs Day4 3.408 0.001 3.423 0.009 1.964 0.020 1.812 0.014 2.248 0.028 2.328 0.011 

Day0 vs Day17 5.346 0.002 5.365 0.002 3.777 0.001 4.138 0.001 5.565 0.002 5.903 0.001 

Day0 vs Day31 2.496 0.021 2.519 0.015 3.088 0.004 2.942 0.009 3.506 0.005 3.684 0.002 

Day0 vs Day80 2.959 0.007 2.985 0.001 3.662 0.003 3.739 0.002 4.415 0.001 4.678 0.002 

Day0 vs Day140 3.325 0.010 3.340 0.010 3.109 0.004 3.609 0.004 3.525 0.006 3.608 0.010 

Day0 vs Day269 3.551 0.014 3.547 0.009 1.937 0.033 1.834 0.029 2.076 0.028 2.112 0.025 

Day0 vs Ctrl 3.437 0.019 3.417 0.016 2.198 0.011 2.150 0.018 2.167 0.022 2.243 0.014 

Day4 vs Day17 2.136 0.009 2.122 0.011 1.560 0.015 1.375 0.020 1.944 0.029 1.923 0.033 

Day4 vs Day31 2.017 0.014 2.005 0.013 1.581 0.020 1.332 0.035 1.323 0.138 1.322 0.151 

Day4 vs Day80 1.852 0.004 1.836 0.003 1.798 0.001 1.506 0.002 1.807 0.008 1.796 0.013 

Day4 vs Day140 2.178 0.023 2.204 0.011 1.286 0.135 1.277 0.081 1.553 0.096 1.523 0.118 

Day4 vs Day269 6.799 0.002 6.791 0.001 1.937 0.002 1.772 0.001 2.316 0.003 2.269 0.002 

Day4 vs Ctrl 7.576 0.001 7.523 0.002 1.954 0.009 1.637 0.009 1.984 0.035 1.980 0.040 

Day17 vs Day31 2.345 0.006 2.350 0.006 1.232 0.187 1.403 0.098 1.256 0.218 1.251 0.195 

Day17 vs Day80 2.522 0.001 2.527 0.003 1.032 0.502 1.086 0.432 2.134 0.019 2.095 0.017 

Day17 vs Day140 3.084 0.001 3.118 0.001 1.040 0.453 1.221 0.280 2.026 0.034 1.952 0.031 

Day17 vs Day269 9.030 0.003 9.070 0.001 2.661 0.003 3.142 0.004 4.870 0.002 4.652 0.002 

Day17 vs Ctrl 10.247 0.002 10.219 0.002 2.641 0.013 2.691 0.018 3.982 0.004 3.929 0.006 

Day31 vs Day80 1.479 0.062 1.498 0.072 0.873 0.733 0.750 0.850 1.133 0.284 1.131 0.291 

Day31 vs Day140 1.805 0.061 1.814 0.049 0.954 0.503 1.063 0.386 0.984 0.418 0.985 0.428 

Day31 vs Day269 4.779 0.001 4.806 0.003 1.889 0.011 2.118 0.008 2.591 0.006 2.539 0.006 

Day31 vs Ctrl 4.983 0.001 4.969 0.002 1.836 0.041 1.702 0.064 1.876 0.060 1.876 0.069 

Day80 vs Day140 1.476 0.121 1.498 0.098 1.163 0.239 1.255 0.259 1.125 0.301 1.117 0.297 

Day80 vs Day269 5.447 0.001 5.483 0.002 2.516 0.001 2.524 0.001 3.546 0.002 3.427 0.001 

Day80 vs Ctrl 6.843 0.002 6.870 0.001 2.794 0.003 2.453 0.020 3.086 0.004 3.068 0.002 

Day140 vs Day269 5.733 0.001 5.777 0.003 1.985 0.028 2.576 0.009 2.648 0.012 2.528 0.009 

Day140 vs Ctrl 7.017 0.002 7.025 0.001 2.327 0.023 2.773 0.018 2.175 0.045 2.121 0.051 

Day269 vs Ctrl 3.838 0.002 3.855 0.001 0.832 0.690 0.881 0.590 1.078 0.360 1.076 0.320 
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Table S7. Multiple regression on distance matrices analysis of microbial community functional diversity and environmental variables 
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Table S8 Mantel test of correlation between differences in detailed microbial functional structures and environmental variables 

(p<0.05 is marked in bold font) 

Function categories 
Gene Abundance Gene richness Shannon index Gini-Simpson Functional diversity FD probes 

rho p rho p rho p rho p rho p rho p 

Antibiotic resistance 0.008 0.416 0.010 0.416 0.033 0.305 0.070 0.172 0.098 0.085 0.010 0.433 

Carbon cycling -0.013 0.541 0.073 0.143 0.069 0.151 0.062 0.184 0.093 0.086 -0.014 0.563 

Energy process 0.003 0.456 0.068 0.145 0.053 0.211 0.035 0.310 0.135 0.041 -0.052 0.769 

Metal Resistance -0.010 0.533 0.067 0.165 0.096 0.096 0.134 0.043 0.156 0.022 0.018 0.395 

Nitrogen -0.001 0.474 0.066 0.172 0.083 0.141 0.113 0.088 0.140 0.045 0.020 0.386 

Organic Remediation -0.010 0.529 0.056 0.216 0.066 0.170 0.063 0.187 0.065 0.173 0.012 0.422 

Phosphorus 0.018 0.347 0.073 0.149 0.108 0.080 0.098 0.086 0.118 0.007 0.040 0.282 

Sulphur -0.029 0.650 0.057 0.205 0.025 0.352 -0.002 0.481 0.081 0.067 0.019 0.391 

Other category -0.009 0.523 0.052 0.187 0.038 0.265 -0.029 0.623 -0.071 0.846 0.105 0.058 
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