
 MODIFIED MCLAREN-MARSAGLIA PSEUDO-

 RANDOM NUMBER GENERATOR AND

 STOCHASTIC KEY AGREEMENT

 By

 RICHARD LLOYD CHURCHILL

 Bachelor of Science in Chemistry and Philosophy

 Oklahoma State University

 Stillwater, Oklahoma

 1980

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215189237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

 MODIFIED MCLAREN-MARSAGLIA PSEUDO-

 RANDOM NUMBER GENERATOR AND

 STOCHASTIC KEY AGREEMENT

 Thesis Approved:

 Dr. H. K. Dai

 Thesis Adviser

 Dr. John P. Chandler

 Dr. Douglas Heisterkamp

 Dr. Mark E. Payton

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Some Basics Regarding Cryptographic Systems and Their Goals1
 Session Keys and Public Key Encryption ..3
 Bennett and Brassard Key Agreement and Continuing Research5
 Issues and Goals in Cryptology and Randomness ...8
 Pseudo-Random Number Generators (PRNGs)...9
 Periodic Generators ..10
 Aperiodic Generators ...11
 Evaluating Generators ..13
 BSI AIS 20 ...13
 FIPS Publication 140 ...16
 IEEE Standards 1363 ...17
 Other Test Software ...17
 The Problem Addressed ...19
 Some Existing Alternatives Based Upon Mathematical Problems20
 Zero-Knowledge Proofs and Key Agreement Protocols28

II. A SURVEY OF STREAM CIPHERS ..33

 Stream Ciphers ...37
 Introduction to a Brief Survey of Modern Stream Ciphers....................................39
 Vernam Ciphers and One-Time Pads ..40
 Electro-Mechanical Ciphers...44
 Digital Stream Ciphers ...45
 Linear-Feedback Shift Registers (LFSR)...46
 Linear Complexity ...48
 LFSR Based Stream Ciphers ...50
 Geffe Generator and Correlation ...51
 Pless Generator ..53
 Jennings Generator...53
 Stop-and-Go Generators ..54
 Decimating and Shrinking Generators ...55
 Multispeed Inner-Product Generator ...56
 Gollmann Cascade Generator ..56
 Summation and Threshold Generators...57
 Feedback with Carry Shift Registers (FCSR) ..57
 Nonlinear-Feedback Shift Registers (NFSR)...59
 A5 ...60
 SEAL..61
 Scream..62

iv

 WAKE..62
 Complexity-Theoretic Stream Ciphers ..63
 Linear Congruential Generators ...64

III. MIXING AND MATCHING USING A MCLAREN-MARSAGLIA THEME ...66

 The McLaren-Marsaglia Algorithm ...67
 Cryptanalysis of McLaren-Marsaglia ..68
 The Bays-Durham Generator ...72
 Modifying McLaren-Marsaglia ...73
 Bit-Selection ..77
 Some Cryptographic Considerations ...89
 Further Modifications of the McLaren-Marsaglia Mechanism93
 Deterministic Aperiodicity...98

IV. KEY AGREEMENT ...105

 Themes and Goals ..105
 The Basic Scheme: Walk-through ...108
 The Basic Protocol A: Formal Description ..111
 Observations Regarding Protocol A ..112
 Section..123

V. ANALYSIS AND CONCLUSION ...127

 Apparent Randomness of the Produced Bit-Stream ..130
 Confidentiality ...132
 Brute Force Time Requirements ..143
 Using the χ Square Test ...150
 Meet-in-the-Middle ..151
 Differential Cryptanalysis ..156
 Man in the Middle ..157
 Design Issues ...158
 Performance Results ..161

REFERENCES ..164

APPENDICES ...179

v

LIST OF TABLES

Table Page

 Correlation in the Geffe generator ..51
 Correlation and the XOR operation ..52
 Probability a value x is absent from V based on size of V and bits per entry77
 Growth of number of candidate input string pairs
 Assuming n bits of output and input strings of 2n bits ...80
 A slice through the state table in BitBlendOpt() ...96

vi

LIST OF FIGURES

Figure Page

 A Linear Feedback Shift Register ...46
 Galois configuration of an LFSR ..47
 Example of a Feedback with Carry Shift Register (FCSR)58
 Generalized structure of the aperiodic generators used ..113
 Injection of material from axr into PRNGs B and C ..115
 The relationship between b, rp and bxrp ..116
 Processing of bxrp to obtain m..117
 Generation of bit string k from bit-string m, using gernator/PRNG D121
 Flow of operations and data in Protocol B..123
 Electronic Codebook (ECB) Mode Encryption and Decryption179
 Cipher Block Chaining (CBC) Mode Encryption and Decryption181
 Cipher Feedback (CFB) Mode Encryption and Decryption182
 Output Feedback (OFB) Mode Encryption and Decryption184
 Counter (CTR or CM) Mode Encryption and Decryption185

1

CHAPTER I

INTRODUCTION

The intent of this thesis is to provide a description and implementation of a scheme whereby two

parties may agree upon a set of random binary digits, which may be used for cryptographic

purposes, and which provides sufficient security in the process of agreement to regard the result

as reasonably cryptographically strong. The difficulty in providing a new approach to solving

this problem warrants some justification, as well as a discussion of why it is difficult.

Some Basics Regarding Cryptographic Systems and Their Goals

Cryptographic systems are a critical part of the overall modern security environment. While

encryption algorithms, or ciphers, have a long history in communications, they play an

increasingly critical role in modern communications. This increase may be ascribed to the

importance of telecommunications networks, such as the Internet, as described by Metcalfe’s Law

[1]. This “rule of thumb” states that the value of a telecommunications network increases

proportionally to the square of the number of compatible items attached to it. Various

formulations of this “law” substitute terms such as “user” and “devices” for “compatible items.”

But, as a rule of thumb and a description of the ability of networks to increase in value as they

grow, along with increasing the value of attached items, these alternate formulations are

interchangeable according to circumstance. This increase in value often entails the need to

protect the items information attached cryptographically.

2

The fundamental goals of cryptographic systems are confidentiality, integrity and availability [2].

Confidentiality assures that information is known only to those trusted with it. Integrity assures

that it is not inappropriately altered. Availability assures that it can be accessed when needed.

By extension, more refined cases of each may be identified, such as authentication and non-

repudiation. Authentication includes such concerns as assurance that entities are who or what

they claim to be. Non-repudiation deals with assurance that those who have handled information,

or more importantly originated it or agreed to it, cannot later deny having done so. In seeking to

achieve the latter two goals, confidentiality plays a critical role. “Secrets” play a role in assuring

availability by preventing unauthorized destruction or alteration of information, as well as

assurance of origin.

Cryptographic mechanisms and protocols rely heavily upon the difficulty of guessing or

predicting numbers, passwords or pass phrases. In defining protocols and mechanisms, these

numbers are often specified as being secret and in many cases random. These random numbers

play a large number of pivotal roles in cryptographic protocols, including as keys for encryption

and decryption, nonces, initialization vectors and more. Many passwords and pass phrases being

used to generate numbers that hopefully display good apparent randomness. In practice such

numbers rarely are truly random, as they are generated by pseudo-random number generators

(PRNGs), or using chaotic processes related to user actions. Thus, the process of generating

numbers that are either truly random or sufficiently apparently so is one of the central problems

of cryptographic systems. In many cases, these random numbers must be shared in some manner

for the cryptographic protocols to work correctly. Such is the case with session keys, which may

be used to encrypt the bulk of communications between two parties.

Cryptographic keys play a central role in security, as was first described clearly by Auguste

Kerckhoffs [3] [4] and further described by Claude Shannon [5]. In brief, the fundamental

3

principles he laid out are that in communication using ciphers the cipher system must be assumed

to be known, and therefore the security of the system rests in the keys used.

Session Keys and Public Key Encryption

A session key is a key used to allow the parties participating in a communication to efficiently

encrypt and decrypt the traffic of that communication. Such communications are typically

conducted using a symmetric cipher. A symmetric cipher is one that uses the same key to both

encrypt plaintext and decrypt the resultant ciphertext. Since both the participants must have

copies of this key to communicate, yet the key must be kept secret for the contents of the

exchanges to be secure from unauthorized parties, the participants must have some means by

which to either agree upon or communicate the session key among them.

Historically, there have been many approaches to deal with the problems posed by session keys,

but the present state of cryptographic art uses a specific class of ciphers to facilitate such

exchanges. These are public key cryptosystems. Such systems rely on algorithms that are

assumed to be difficult to reverse. They use separate but related keys to encrypt and decrypt

messages. Due to the nature of their underlying mathematical problems, the algorithms are

generally slow, when compared to symmetric key ciphers, and are thus not suitable replacements

for symmetric key systems where performance is an issue. This is typically the case when

extended communications will occur or are voluminous, and when data streams are involved.

The relationship between the keys of key pairs in a public key system, one key called public, the

other private, is that each member of a pair may be used to reverse encryption by its mate: The

public key will decrypt messages encrypted with the private key, and the private key will decrypt

messages encrypted using the public key. Further, it is assumed that though the keys are derived

from the same material, the private key cannot be easily deduced from the public key.

4

The assumption of difficulty is often referred to as the Diffie-Hellman assumption or conjecture,

which is related to the Diffie-Hellman problem. This was developed in relation to the

development of the Diffie-Hellman key exchange [6][7][8] (which discussed in greater detail later

in this chapter). The Diffie-Hellman problem is simple. Given a large integer g (called the

generator) and large prime n, such that g is primitive mod n (in simple terms, all integers in the

interval [1, n) can be expressed as integral powers of g), a pair of values gx mod n and gy mod n,

determine gxy mod n, when x and y are not known. The assumption or conjecture is that this is a

difficult problem to solve for the selected generator used by the public key cipher system in

question. While the problem itself is applicable only to mathematically-based public key systems

that utilize exponentiation, the conjecture, when generalized to mathematics-based public key

systems, is common to all such systems that are presumed secure. If the mathematical problem

upon which a system is based is subsequently found to be less difficult than previously believed,

the system is correspondingly weakened.

An example of presumed difficulty less than at first believed is the Diffie-Hellman key exchange

protocol, which is based on the discrete logarithm problem. While Diffie-Hellman is still

believed to be secure if the keys are properly selected, the selection process is more critical than

at first believed, and significant efforts and progress at solving discrete logarithm problems has

been made [9][10].

Another public key system is the ubiquitous RSA [11], developed by Rivest, Shamir and

Adelman. It is based on the difficulty of determining the prime factors of very large numbers.

While the factorization problem is still considered hard, the ever increasing power of computers,

combined with the development of massively parallel attack schemes, has continually eroded the

effective strength of keys of shorter length. Where 512-bit RSA keys might once have sufficed,

the European Union recommended that after 1998 only keys of 1024 bits and longer should be

used. Further, R.D. Silverman of RSA Laboratories stated in 2000 [12], “We do not believe that

5

any public key size specified today should be used to protect something whose lifetime is more

than 20 years.” Of particular concern should be the development of an algorithm for quantum

computing platforms by Peter Shor. It provides a means of computing the prime factors of

numbers in polynomial time [13]. While quantum computing remains formative, and the error

term in this algorithm grows with increases in the size of the number to be factored, we must

anticipate that these problems will eventually be resolved, rendering RSA in effective for

cryptographic purposes. Even if these problems are not completely resolved, and the error term

in Shor’s algorithm cannot be tightly limited, any decrease in the search space that may result

from its application will still constitute a potentially crippling weakening of the RSA protocol.

This conclusion should be extended to all mathematically based systems. It is safer to assume

that there will always be a better mathematician, and computing power will always increase. A

compounding problem is that discovery of a faster way to solve any of these problems will not

necessarily be made public, as it may be to the advantage of the discoverers to keep the

development secret. This is clearly demonstrated by the sale of German Enigma machines to

other nations by the victorious Allies following World War II, without the disclaimer that the

Allies had broken the Enigma cipher system [14].

Bennett and Brassard Key Agreement and Continuing Research

In 1984, Bennett and Brassard published a paper [15] proposing means by which two parties

could perform a series of communications whereby they would agree on a set of random bits

securely. The claim that these could then be used as a one-time pad (OTP, discussed in chapter 2)

for encryption was significant, as a correctly implemented OTP system is provably perfect [5].

The Bennett-Brassard system utilizes a dedicated optical fiber channel between the two

correspondents, plus a public side-channel. Both ends of this channel must be equipped with a

polarizing filter that can be switched between orientations rapidly, and a random number

6

generator. One end (Alice’s) is equipped with a photo emitter capable of emitting single photons.

The other is equipped with a detector capable of detecting individual photons. Alice and Bob

first agree which of the possible polarizations of photons represent binary 1’s and which 0’s.

Alice starts the process by sending a stream of individual photons, each polarized to one of the

agreed orientations randomly, with Alice recording the orientations. Bob uses his random

number generator to “guess” the orientation of each incoming photon. As this guess is expressed

as an orientation of the polarizing filter he possesses, Bob will either detect a photon, having

guessed right, or not, having guessed wrong. Bob records both his guesses and whether or not he

received a photon corresponding to that guess.

After Alice has sent some agreed number of photons, Bob sends Alice his guesses as to the

orientations of the photons. As Alice knows the orientations of the photons sent, she confirms

which guesses were correct. Additional steps allow Alice and Bob to confirm that bits (referred

to as qubits in a quantum mechanical application) were in fact received correctly, and that nobody

was attempting to eavesdrop on the process.

Due to the properties of polarized photons (as sent over the dedicated channel), the scheme is

provably secure against passive eavesdropping on that channel, since any measurement of those

photons by an eavesdropper will perturb the results, while passive eavesdropping cannot

determine the orientation of the photons.

While the scheme is not without problems, such as the need for the dedicated optical fiber

channel, it is interesting both because it was the first effective quantum cryptographic protocol

proposed, and it does not rely upon a mathematical problem that is assumed to be hard to solve.

While it might be broken via a radically improved understanding of quantum behaviors, the

present understanding of these behaviors preclude a successful break.

7

The Bennett-Brassard scheme, as well as subsequent quantum cryptographic proposals, highlights

some currents in modern cryptography. One current is the continuing effort to produce ever

stronger, more secure means of communicating sensitive information. Another is the importance,

the value, and the difficulty, of two parties being able to agree upon a set of random numbers that

may be used in establishing cryptographically secure communications.

Regarding the first current, the previously mentioned efforts to find faster ways to solve the

mathematical problems underlying public key systems, the on-going cryptanalysis targeting

current symmetric ciphers, and the efforts to develop newer, stronger ones, illustrate at least a

perception of risk and a desire to mitigate such risk before it becomes substantial. An

examination of the Advanced Encryption Standard (AES) competition and continuing analysis of

its winner helps clarify the issue.

In 1997, the U.S. National Institute of Standards and Technology (NIST) announced a

competition for a replacement for the Data Encryption Standard (DES), followed later in the year

by a request for submissions. By mid-1998, fifteen proposals were submitted to NIST, and then

to the public for analysis. From these, five finalists were selected, with limited numbers and

types of corrections to the proposals to deal with flaws identified in the first round. From the

finalists, the Rijndael algorithm was selected in 2000 as the new AES algorithm. Since then, the

AES cipher has been subject to continuing cryptanalysis, with improvements in analytical

techniques gaining steadily, if slowly [16][17].

The second current includes the effort to develop communications schemes that utilize quantum

mechanical phenomena in order to achieve security. The Bennett-Brassard proposal was the first

entrant in the quantum field. Subsequent proposals exploit phenomena such as quantum

entanglement. While some progress has been made in this realm, there are also significant

problems, not least the potential for statutory restrictions.

8

A further illustration of the second current is the number and variety of PRNGs that have been

and continue to be developed. These developments are in no small part due to the problems with

existing generators, including performance issues and exploitable flaws.

Issues and Goals in Cryptology and Randomness

If the pseudo-random number generator (PRNG) used in a cryptographic application is well

designed, correctly implemented and properly used, there is generally no significant loss in

security due to its substitution for a random number generator (RNG). The problems for the

cryptographer are to determine when the use of a PRNG is appropriate and safe, which PRNG to

use and how to use it safely.

Where “true” random numbers are required in the absence of a suitable hardware random number

generator (RNG), chaotic processes, based upon user input device events and timing, are typically

used. But, these are incapable of generating large volumes of random material. They are at best

expedients for limited cases, such as providing the seed for a PRNG, which is then used to

generate longer sequences of pseudo-random values.

Techniques utilizing physical phenomena continue to be developed, and improve the generation

rates that can be achieved. Yet, the problem for most applications remains generation of large

quantities of numbers that are sufficiently apparently random, and thus “secure,” by software

means alone, and thus by PRNGs.

By use of the adjective “secure” for a pseudo-random number, a cryptologist means a number

that, when taken as a member of a sequence generated by a PRNG, displays certain

characteristics relative to the sequence and its place in that sequence, depending on the

application to which the number will be applied. Ideally, it should be impossible to determine the

value of any element of such a sequence, even if given the algorithm used to generate it, plus all

elements of the sequence preceding and following it, but not the seed or state of the generator that

9

produced the sequence. It should even be impossible to determine any element of the sequence

given the state of the generator immediately after it was generated.

Such goals are extremely difficult to achieve, and when achieved may be too expensive, in one or

more senses, to be practical for a given application. Fortunately, not all applications for random

values in cryptology require ideal characteristics. Thus, cryptologists are left with the problem of

developing or selecting PRNGs that are suitable for varied applications and environments.

From the degree to which a PRNG achieves the ideal characteristics sought, we draw the

distinction between “strong” generators and “weak” generators, and must deal with the problem

of determining the relative strength of different generators. “Cryptographically strong”

generators are those that most nearly attain the ideal goals.

Pseudo-Random Number Generators (PRNGs)

Due to the close relationship between PRNGs and synchronous stream ciphers, such ciphers are

dealt with in the brief survey found in Chapter II: Many synchronous stream ciphers utilize

PRNGs, generally in complex combinations, as the sources of the running keys. Any “good”

PRNG (meaning “cryptographically strong”) can be used as a basis for a synchronous stream

cipher. For purposes of the implementation contained in this thesis, specific PRNGs are used as

feeds for mixing algorithms. But, as the mechanism described is a selection and mixing process

that uses multiple PRNGs as sources, as well as an RNG as a source of noise, the basic process is

in reality agnostic regarding the constituent PRNGs used in any implementation of the scheme, so

long as those PRNGs satisfy the requirements for the level of security to be achieved, and all

parties involved have identical implementations. It is therefore appropriate to be cognizant of the

types and varieties of PRNGs (and implicitly stream ciphers) available, as well as their relative

advantages and drawbacks.

10

The study of PRNGs, both for purposes of developing better ones and identifying the weaknesses

of existing ones, is the stuff of the intelligence and security agencies around the world that seek to

read others’ communications or keep their own nations’ secure, as well as academia, corporations

and interested individuals, including criminals. While research has provided a number of PRNGs

that are to varying degrees considered cryptographically strong, all such PRNGs fall into either of

two categories, both of which entail very real problems. The vast majority are periodic, which

means that the output stream eventually repeats itself in a fixed pattern of fixed length. Such

repetitive sequences are sometimes called linear recursions. In contrast, aperiodic generators do

not repeat in a fixed, recurring pattern, even though subsequences will recur at irregular intervals.

Periodic Generators

The most common forms of PRNGs are periodic. Such generators fairly rapidly reach a state that

serves as the entry-point into a cycle that is repeated ad infinitum. Many start in such a state. In

general, the length of the cycle a generator may achieve depends on the size of the internal state

of the generator. For a given internal state size, and barring external inputs, the size of that state

sets an upper bound for the length of the cycle that may be achieved. But, the relationships

between state size and cycle length, and cycle length and cryptographic strength are not

monotonically increasing functions. Some generators can fall into degenerate cycles that are far

shorter than might be expected based on the size of the internal state. (See the discussion of non-

linear feedback shift registers in Chapter II for additional discussion of this problem.)

Some PRNGs with very large internal states and long periods are far weaker, in cryptographic

terms, than other PRNGs with shorter periods. For example, consider the cases of the Mersenne

Twister (MT) and Blum-Blum-Shub (BBS) PRNGs. The MT generator is exceptionally fast in

operation, and has an exceptionally long period. Yet, it is cryptographically weak. Its internal

state can be determined easily, given a sample of several hundred consecutive outputs, since each

11

successive output reveals a distinct portion of the internal state of the generator, and that state

changes substantially only once every 624 32-bit outputs. In large part due to performance

constraints, almost all implementations of the BBS generator have smaller internal states and

shorter periods than the MT generator, yet they are cryptographically stronger. This is because

only a small fraction of the internal state is ever seen in the output stream, and these portions are

in a sense “disjoint,” the internal state of the generator being substantially altered with each

output. (Both the MT and BBS generators will be discussed in greater detail in Chapter II.)

The presence of a repeating cycle of outputs is a flaw in PRNGs for many applications. Like the

MT generator, many PRNGs are subject to effective cryptanalysis given a relatively small sample

of consecutive outputs, as so much information about the internal state of the generator may be

derived from those outputs. Even for cryptographically strong generators, the sheer volume of

outputs required for some applications (encrypted video, for example) may exhaust a PRNG’s

cycle. Once the cycle has been exhausted, it may not be necessary to determine the internal state,

or even the generator used. Also, since any repeating cycle can be treated as a linear recursion,

and a linear feedback register generated from that recursion will reproduce the recursion, even

discovery of subsequences by an attacker may render a generator compromised. (See Chapter II

for a discussion of the Berlekamp-Massey algorithm.)

Aperiodic Generators

The less studied class of PRNGs is comprised of aperiodic generators. The most easily

recognized members of this class are based upon irrational numbers. As these numbers cannot be

expressed as simple fractions, they have infinite, non-repeating sequences of digits in the

fractional portion of their representation, regardless of the integer base used to express them.

While techniques exist for the calculation of arbitrary segments of the fractional portion of some

irrational numbers, the space and time required becomes large as the order of the digits decreases.

12

Thus, though it may be possible to calculate vast numbers of digits in such manner, the volume

and time demands of many cryptographic applications can make this impractical.

A newer group of members of this class are based upon the structure of quasi-crystals. Quasi-

crystals are similar to crystals in that they have a distinct structure displaying many of the

characteristics of crystals, but they lack the precise, regular lattice of true crystals. The small

variations in structure can be used as a source for non-repeating series of values (think of drawing

a line across a quasi-crystal’s face, then measuring the distance of successive “closest” atoms to

that line, from the line), or as a computational model (determining the same distances).

Therefore, quasi-crystals can, at least theoretically, provide infinite length sequences of non-

repeating values. Practical considerations, however, intervene. Just as an actual quasi-crystal has

limited dimensions (however vast these may be in terms of the number of atoms involved), the

state and precision of a computational model of a quasi-crystal will limit the sequence to a

repeating cycle, once the computational state duplicates any prior state, and increasing the state

size or numerical precision of the model eventually limits the practicality of the approach in any

case.

Thus, both of these groups still encounter the same fundamental problems. All real computing

environments are finite. And as with conventional PRNGs, computer environments have a finite

number of possible states. The number of theoretically possible states is simply far larger than

for most well-studied conventional PRNGs. Therefore, absent external input, once a system

enters a state previously entered, it will proceed to the same state it entered following the prior

occurrence of that state, and computation of the desired sequences will eventually fail.

It is should be evident that in order to achieve effective aperiodicity, without running afoul the

limitations of cost, space, etc., a PRNG must utilize some form of external random or chaotic

13

stimulus. Means by which such external stimuli may be injected into a PRNG will be discussed

in Chapters III and IV.

Evaluating Generators

Regardless of the specific PRNG in question, some means of evaluating the strength of that

PRNG is needed. How can it be determined whether it is effective at generating sequences that

are sufficiently apparently random to justify treating them as random? There must be some

means of determining success, and more importantly to identify failure. The growing importance

of the Internet and the commerce it supports has forced governments and governmental agencies,

as well as standards bodies, to address this question publicly. While many nations have produced

or adopted standards or specifications, it is reasonable to limit concern to a few from major

industrial nations or duly recognized standards bodies. Such standards must provide descriptions

of their requirements, include testing procedures that are reasonably consistent and thorough, and

help in defining goals further.

Three specifications for evaluating PRNG are considered here. These are the U.S. Federal

Information Processing Standard (FIPS) publication 140-2 [18], Institute of Electrical and

Electronics Engineers (IEEE) specification 1363, and Bundesamt für Sicherheit in der

Informationstechnik (BSI) AIS 20, version 1 [19]. The National Institute for Science and

Technology (NIST) is another source of information regarding test suites.

BSI AIS 20

The Bundesamt für Sicherheit in der Informationstechnik (BSI – Germany’s Federal Office for

Information Security) has published a set of requirements for four classes of deterministic random

number generators [19]. While other standards and specifications exist (i.e. FIPS 140-2), the

problem is often finding an understandable description of the classification system, and of the

means of testing proposed algorithms’ compliance with the requirements. The BSI “Application

14

Notes and Interpretation of the Scheme,” AIS 20, version one, “Functionality classes and

evaluation methodology for deterministic random number generators,” provides such

descriptions.

In this and other standards, a PRNG is defined by a 5-tuple),,,,(ApRS ψϕ comprised of a finite

set of generator states)(S , a set of possible outputs)(R , a state function):(SS →ϕ , an

output function):(RS →ψ and a probability metric of the random distribution of the seed

)(Ap .

This application note defines four classes of deterministic random number generators: K1, K2,

K3 and K4. (For our purposes, deterministic random number generators are identically pseudo-

random number generators, and we will use the latter term, though quotations may include

either.) Membership in any class implies membership in the next lower class, with the K4 class

being the “strongest” in cryptographic terms. Thus, any K4 class generator is a member of K3,

and recursively K2 and K1.

Without delving into the detailed requirements for each class, the base, additive requirements for

these classes are as follows.

K1 – There is a high probability that disjoint subsequences of the output stream are

distinct.

K2 – The output must pass the tests specified in the AIS 20 document.

K3 – The entropy of the seed probability metric must be adequately high, and it must be

“practically impossible” for an attacker to determine the predecessor and successor

outputs of any subsequence of outputs shorter than the cycle of the generator, given the

defining tuple, but not the state of the generator at any point in the subsequence.

15

K4 – “It must be practically impossible for an adversary to work out the predecessor

random number ri-1 from knowledge of the internal state si. The adversary's assumed

attack potential depends here on the strength of mechanism. Even using the most

advanced know-how currently available, the probability of guessing (realized by a

reasonable partial exhaustion) may at most be negligibly greater than if si were not

known. It is assumed that the adversary knows the defining 5-tuple.” (The salience of the

requirement regarding predecessor internal states will be discussed later, in conjunction

with Vernam ciphers, One-Time-Pads and Claude Shannon’s work.) The objective of

this is, “Protection against reconstruction of old random numbers from a known internal

state.”

BSI AIS 20, version 1, specifies the tests for randomness that must be passed to satisfy the

requirement for membership in the K2 class. These are labeled T1 through T5. Basic

descriptions of these tests are as follows.

T1 – monobit test – the number of one-valued bits, in 20,000 bits of output, is in the

range (9654, 10346), and the number of zero-valued bits is in the same range.

T2 – poker test – the values of four-bit groups (nybbles) are near equally distributed.

T3 – run test – the numbers of runs of ones, or of zeroes, of various lengths, fall within

statistically acceptable ranges.

T4 – long run test – no runs of 34 bits in length or longer occur.

T5 – autocorrelation test – there can be no consistent correlation between bit values at

regular intervals.

These tests must not be regarded as “complete” in any sense, but serve as a basic set that provides

reasonable assurance of the ability of a PRNG to produce output sequences of moderate length

16

that display reasonably apparently random characteristics, and satisfy the requirement for the K2

class of generators. Source code in C for these tests is contained in Appendix B.

FIPS Publication 140

The U.S. government has a long-established standards agency, the National Institute of Standards

and Technology (NIST), which, among many other standards, has published a growing series of

Federal Information Processing Standards (FIPS). NIST’s FIPS publication 140 series,

comprised of versions 140-1, 140-2 and 140-3 (Draft), is the U.S. Federal standard addressing the

security of cryptographic modules, including PRNGs. As does the BSI AIS 20 specification, the

series defines security levels and requirements for meeting them. But, rather than addressing

PRNGs only, the FIPS 140 series addresses a much broader range of topics, including PRNGs.

Specifically, Annex C: Approved Random Number Generators (Draft), July 21, 2009, lists a total

of six deterministic random number generators that have been approved. No non-deterministic

ones are listed. No specific tests for validation of PRNGs are given, but the discussion of their

use is important in understanding why the problem of designing or selecting PRNGs is critical to

cryptographic systems.

Relative to the requirements of the FIPS publication 140 series, the NIST has the Cryptographic

Module Validation Program (CMVP), which performs testing on cryptographic modules as a

means of assuring users of the characteristics and strength of software and hardware modules.

The CMVP is a function of the NIST’s Computer Security Division, Computer Security Resource

Center (CSRC). The CMVP utilizes accredited test laboratories to test the performance of

characteristics of modules, rather than providing test suites.

What guidance the NIST, in the form of the CSRC, provides is reference to applicable

international standards: ISO/IEC19790 and ISO/IEC 24759, which were derived from FIPS 140-1

and 140-2. The whole is thus circular, and not as supportive of self-testing as might be desired.

17

IEEE Standards 1363

The Institute of Electrical and Electronics Engineers (IEEE) is an accredited international

standards body, and as such has forayed into the field on many fronts, both sponsoring periodicals

and conferences with associated proceedings. The primary standards developed by IEEE

regarding security and encryption are the IEEE 1363 specification family, composed of IEEE

1363-2000 IEEE Standard Specifications for Public Key Cryptography and IEEE 1363a-2004

Standard Specifications for Public Key Cryptography – Amendment 1, Additional Techniques.

Continuing efforts include proposed standards IEEE P1363.1 Draft Standard for Public-Key

Cryptographic Techniques Based on Hard Problems over Lattices, IEEE P1363.2 Draft Standard

for Specifications for Password-based Public Key Cryptographic Techniques and IEEE P1363.3

Draft Standard for Indentity-based Public Key Cryptography Using Pairing.

While these standards deal with numerous public-key crypto-systems, specifying protocols and

algorithms, virtually all of which require use of either random values of random number

generators, they are largely silent on the issues pertaining to such generators, relying on other

sources for such issues. It is perhaps an indication of the difficult of the overall problem of

random number and pseudo-random number generators that the issue is deferred to other sources.

Still, these standards are interesting from many perspectives, and particularly their discussions of

and reliance upon “hard problems.” Despite the interesting character of these standards, and their

dependence upon quality random numbers, they are not particularly useful for the present

problem.

Other Test Software

Test suites for the quality of a sequence of pseudo-random outputs are problematic, since the fact

that all pseudo-random generators are deterministic, but the “good” ones are of sufficient

complexity that any correlations that may exist in their output streams may be difficult to identify,

18

and thus to test for. The problem for those developing tests for any problem beyond the simple

and clearly understood set (such as those identified and tested for in the AIS 20 test suite) is thus

to identify potential correlations, probabilistic skewing, etc., and develop tests for them, without

necessarily knowing whether any generator may display the hypothesized problem. Yet any such

problem, once identified, may present an exploitable opening in some number of generators.

Considerable and on-going academic and practical study of the problem has produced a

substantial body of literature. Working groups sponsored by governmental agencies contribute to

this body on a regular basis.

The National Institute for Science and Technology (NIST) maintains a list of “commercial”

PRNG test batteries, but with the caveat that these are not endorsed by NIST. These are the

following.

The pLab Project – a Web site maintained by Peter Hellekalek of the University of

Salzberg, with a test suite maintained by Richard Simard of the University of

Montreal.

The Information Security Research Centre – a project maintained by Information

Security Institute of the Queensland University of Technology.

The Information Security Research Centre (Crypt-X) – a subproject of the Information

Security Institute of the Queensland University of Technology that deals with

“black box” testing of random number generators (viewed as stream ciphers),

block ciphers and key generators.

The DIEHARD Test Suite – a test suite and project maintained by Florida State

University, and a direct ancestor of the DIEHARDER test suite (which is not

listed by NIST).

19

FIPS 140-2 – dealt with above.

ENT – a project of John Walker, Fourmilab, Switzerland.

Any of these may be appropriate as a source of more complete and formal testing of a random or

pseudo-random number generator’s output, but are regarded as beyond the present scope, which

focuses on the mixing and selection methods described in Chapter IV.

The Problem Addressed

The inspiration for this thesis is the Bennett-Brassard protocol, and on the belief that problems

presently regarded as hard may prove less so in the future. Relying as Bennett-Brassard does

upon quantum physical properties and specialized hardware, its wide-spread implementation is

presently problematic. In particular, the problems of generating individual photons and detecting

them at great distances with sufficient consistency to allow agreement on long strings of random

bits are consequential. Single mode optical fibers of sufficient quality to reliably carry individual

photons over distances of thousands of miles do not at present exist, and certainly have not been

laid in sufficient numbers to afford dedicated two-party links for any meaningful population.

Similarly, the equipment necessary to reliably produce single photons travelling in the right

direction to pass through a polarizing filter and then down an optical fiber is common and

affordable. Neither is the equipment to reliably detect individual photons. Thus, the question

addressed here is whether and how at least some of the qualities found in Bennett-Brassard may

be achieved without resorting to quantum phenomena and putatively hard mathematical

problems.

The scheme described and implemented here utilizes a set of PRNGs, coupled with a selection

and mixing process, applied to a string of random bits shared by two or more parties, to agree

upon a shorter string of bit values, with the property that the mechanism injects aperiodicity into

the selection and mixing process. As the overall scheme is indifferent to the PRNGs used,

20

Chapter II is a survey of stream ciphers. This is appropriate since especially for synchronous

stream ciphers, we may regard stream cipher algorithms as being PRNGs. Chapter 3 examines

bit selection and mixing functions based on the McLaren-Marsaglia PRNG. These functions

provide the basis for the overall schemes selection and mixing functions. Chapter IV describes

the implementation of the scheme, with explanations of the components and their interactions.

Chapter V deals with the questions of performance, and with the security of the scheme.

Some Existing Alternatives Based Upon Mathematical Problems

As noted at several points in this thesis, key agreement protocols (which inherently includes key

exchange or transmission protocols) already exist. They are critical elements in the existing

cryptographic landscape. But, what are they? And, why look for an alternative?

As previously discussed in lesser detail, the Diffie-Hellman [6][7][8] key agreement protocol was

the first publicly developed and discussed key-exchange protocol, and is either the basis of or

useable in several other key-exchange protocols. Its security is based on the presumed difficulty

of calculating discrete logarithms. As it is so central to the development of several protocols, and

illustrates some of the problems the protocol presented in this thesis attempts to address, it is

worth a longer, more detailed discussion.

The Diffie-Hellman protocol is as follows.

By prior arrangement, Alice and Bob select two numbers, n and g, such that n is a large prime,

and g (called the generator) is primitive mod n. These numbers need not be kept secret. When

Alice and Bob need an agreed secret key k, they do the following.

1. Alice chooses random integer x, computes X = gx mod n, and sends X to Bob, while Bob

chooses random integer y, computes Y = gy mod n, and sends Y to Alice. Both x and y

should be ‘large.’

21

2. Alice computes k = Yx mod n, and Bob computes k’ = Xy mod n.

Since n is prime and g is primitive mod n, we have

 .modmodmodmodmod knXngngngnYk yxxyyx yx

′======

The presumed security derives from the problem of calculating discrete logarithms, base g, which

is related to the problem of factoring large integers, hence the requirement that n be large. Since

an eavesdropper will at most know n, g, X, and Y, but neither x nor y, the protocol is believed

secure against eavesdropping, absent efficient means to determine discrete logarithms base g.

But, a successful guess of either x or y will produce k, compromising the communications.

Analysis [20] has shown that not only must n be both large and prime, (n – 1) / 2 must also be

prime. While this assures that the Pohlig-Hellman algorithm [20] will not reveal x or y, it also

limits the number of primes that may be used, as the selection of n is limited by the Sophie

Germain primes. Whether this is an exploitable fact remains an open question, but given the fact

that the distribution of primes becomes progressively sparser among integers as magnitude

increases, further thinning of eligible primes cannot be regarded as wholly harmless. Even with

selection of a g that is primitive mod n, problems arise, as this reveals low-order bits of x and y

[21]. As a result, g may be selected based upon its generation of a large subset of n, rather than

being primitive.

An additional problem [21] is that if an attacker can cause any level of bias in the selection

processes for the integers x and y used by Alice and Bob, the discrete logarithm problem can be

simplified, thus weakening the system.

One of the reasons the Diffie-Hellman protocol is not used widely for key-exchange is that it

provides no authentication, and is thus susceptible to a man-in-the-middle attack. If an attacker

can intercept X and Y and substitute his own values for these, he is in a position to read all traffic

22

between Alice and Bob. Even if he is quickly detected, the information already intercepted may

prove damaging. Authentication can be added to the protocol, but involves use of certificates,

which add their own problems to the overall scheme.

Knapsack problems as a basis for public key systems were first explored (at least publically) by

Merkle and Hellman [22][23], and extended to include authentication by Shamir [24]. The

problem is based upon a super-increasing series. That is, the series S is super-increasing if for

any element .,
1∑ =

>∈
i

j jii ssSs Given a sum of members of S, it is easy to solve the problem

of which elements of S are elements of the sum. (This is the easy knapsack problem.) At the

same time, it is possible to construct a non-super-increasing series that is still increasing, from the

super-increasing series, such that the two series have the same solution. The non-super-

increasing series problem is much harder. The pair of series comprise a key pair, with the super-

increasing series being the private key, and the non-super-increasing series the public key.

Unfortunately, though the mathematics is interesting, the solution isn’t as the knapsack problem

has been successfully attacked, and by several cryptographers, as have variations on the theme.

Schneier [25] discusses many of these attacks and variants in some detail, therefore the details are

left to that resource.

The most common public-key system in current usage is the RSA key exchange protocol, which

is a member of the broad family of RSA protocols. Developed by Rivest, Shamir and Adleman

[11], it relies upon the difficulty of factoring very large numbers into their constituent primes.

The core concepts of the mechanism are as follows.

To generate keys, select two large primes p and q, and calculate n = pq and φ = (p – 1)(q – 1).

Select an integer value e, the encryption exponent, such that gcd(e, φ) = 1, then calculate d, the

unique decryption exponent, using the extended Euclidean Algorithm. (The integers d and e are

23

multiplicative inverses of each other mod φ, since de mod φ = 1.) The public key is n and e, and

the secret key is n and d.

The ciphertext c of a plaintext message m (treated as a number in the range [0, n -1]) is obtained

by computing me mod n = c. The plaintext message is obtained from the ciphertext by computing

cd mod n = m.

As noted elsewhere, the strength of this system has continually eroded, though it hasn’t been

broken: the problem is one of increasing computational power. There is a problem, though. As

stated by Schneier [25], “It is conjectured that the security of RSA depends on the problem of

factoring large numbers.” There is, at present no proof that factorization is required, only the

present understanding of the problem which indicates that this is so. As previously noted, Shor’s

algorithm [26], or some other advance in factoring may yet prove a serious problem for RSA’s

security. In any case, the RSA algorithm tends to be very slow, particularly when using long

keys, which are also presumably the more secure ones.

Menezes, van Oorschot and Vanstone [21] address one way in which the factoring problem might

be avoided. Any method that can derive d directly from e and n would significantly simplify

factoring n. Whether such a method may be discovered is an open question.

Another problem discussed in [21] is “unconcealed” messages, which are defined as messages

that encrypt to themselves – m = me mod n. Two easily identified cases of this are when m equals

0 or 1. Other unconcealed messages are more difficult to identify beforehand, and are dependent

upon p, q, d and e. The number of such messages can be computed exactly as (gcd(e – 1, p – 1) +

1)(gcd(e – 1, q – 1) + 1). Fortunately, this number tends to be small, with random or small e, but

does require that ciphertexts be compared with the plaintext in order to prevent sending any

unconcealed messages. A convenient way to deal with unconcealed messages is to add a random

nonce and re-encrypt.

24

Other potential problems discussed in [21] include those related to small values for d or e (when

sending identical or similar messages to more than one recipient), small message spaces, and

common modulus issues.

In particular, a common modulus creates an opportunity for more efficient factorization of a

modulus. If multiple key-pairs use the same modulus, obtaining the d and e as a pair from any

one of the individuals using that modulus simplifies factoring that modulus. Then, using the

public (e) encryption exponent and modulus yields the private key component d.

Additional issues addressed include the recommendations that the difference between p and q not

be small (since then qp ≈ and np ≈), and that both p and q be “strong” primes (p is strong

if p – 1 has a large prime factor r, p + 1 has a large prime factor, and r – 1 has a large prime

factor).

Pohlig and Hellman [27][20] developed an asymmetric cipher system that is not actually a public

key system. Both members of a key pair must remain secret. As with RSA, it relies on the

property that C = Pe mod n and P = Cd mod n, where e and d are inverse relative to a selected

modulus, P is the plaintext and C is the ciphertext. Its security will be broken if an efficient

means for calculating e = logPC mod n can be found, though some security remains so long as n

remains secret, as an attacker must determine n before launching such an attack.

While Pohlig-Hellman is an alternative to the scheme developed and discussed in this thesis, it is

slow by comparison, suffering the same order of performance as RSA encryption. (While e may

be selected to minimize the number of operations to be performed, d, its corresponding

decryption exponent, is unlikely to share that characteristic, and thus require more operations in

the decryption than in the encryption.) It may also be viewed as an adjunct, allowing either a

form of super-encryption of portions of the data-stream used to agree upon a random bit

sequence, or as a means performing periodic re-keying.

25

Rabin public key encryption [28] is a “provably” secure system, since there exists a proof that, for

a passive eavesdropper, the recovery of plaintext from a given ciphertext is equivalent to

factoring. It isn’t, however, based upon the factoring problem. Rather, it is based on the problem

of finding square roots modulo n = pq, where p and q are large primes congruent to 3 mod 4. The

primes p and q are the private key, while n is the public key. Note that this dispenses with the

encryption and decryption exponents used in RSA, but at the cost of a more complicated

decryption mechanism. A secondary problem is that it cannot be used to encrypt random bit

strings, since decryption produces a set of four candidate solutions. In the case of a message that

is a random bit string, there is no way to determine which is correct, unless a known marker is

added to the original message. Therefore, this system is not discussed further in its original form,

here, but in a modified form developed by Williams [29] that addresses this deficiency.

In the Rabin-Williams public key system p and q are again large primes, but now we have that

8mod3≡p and 8mod7≡q . Also, N = pq. The revised scheme uses the Jacobi

symbol/function, and is also provably equivalent to factoring. Several other variants have been

developed, but all suffer from one serious problem. They all fall to a chosen plaintext attack.

Thus, they cannot be used in any situation where an attacker can select the message to be

encrypted, such as when they are used in digital signatures.

ElGamal [30][31] is yet another eponymous public key system. It relies on the problem of

discrete logarithms in a finite field. Select a large prime p, and two random numbers g and x,

both less than p, and calculate y = gx mod p. The public key is y, g and p, while the private key is

the public key plus x. To encrypt a message m (which is in the range [0, p – 1]), select a random

k relatively prime to p – 1. Compute a = gk mod p and b = ykm mod p. The ciphertext is a and b,

which are each of the same length as p and m. The plaintext is recovered as m = b/ax mod p. As

Schneier [25] notes, this is Diffie-Hellman, but with y added to the key via the multiplication by

yk.

26

While the schemes discussed thus far are generally problems involving exponentiation in one

form or another, other approaches have been proposed. Robert McEliece [32] developed a

scheme based on Goppa codes, which are a class of error-correction codes. While the scheme has

several advantages, and is one of the earliest publically proposed public key systems, it is rarely

used due to the size of the public keys required, and more recently due to the attacks that have

been developed against it. The public key is an n by n matrix G = SG’P, where S is a k by k non-

singular matrix, G’ a k by n generator matrix for a Goppa code correctly up to t errors, and P is an

n by n permutation matrix. The private key is the three matrices S, G’ and P. Encryption with

the public key of message m of n bits is accomplished by calculating c = mG + z, where c is the

resulting ciphertext, and z is a random n bit vector with a Hamming distance relative to m of t or

fewer bits. Decryption is accomplished by calculating m’ such that m’G has a Hamming distance

of t or less with respect to cP-1, using the Goppa decoding algorithm, then calculating m = m’S-1.

While this is much faster than RSA and several other public key systems, the public key for a

minimal secure key pair is 219 bits, and ciphertexts are twice as long as their corresponding

plaintexts. At first, there were unsubstantiated claims of successful attacks against McEliece

[33], though the veracity of the claims are suspect, as they include no support for those claims.

However, subsequent efforts have proven more effective, with the best attack being a parallel

attack requiring no communications between nodes developed by Bernstein, Lange and Peters

[34], involving a work factor of only about 260. While this attack is against the original

parameters published by McEliece, it must be expected that subsequent attacks against the later

versions will follow at some point.

The problems with encryption based on error correcting codes lies in the fact that the encrypted

material must contain sufficient information to both convey the message and allow detection and

correction of the “errors” in the ciphertext. Such problems are discussed by Chabaud [35].

27

Yet another direction that has been explored involves the use of discrete polynomials in finite

fields. Koblitz [36] and Miller [37] independently proposed system based upon elliptical curves

that fall into this category, and a great deal of work has ensued.

Elliptical curves have the advantage of being relatively fast algorithms, but also have problems.

As this topic is very rich and complex, a full discussion is beyond the present scope. Interested

readers are urged to reference Rosing [38] for an accessible (if older) discussion of the

implementation, performance and problems elliptic curve cryptography, or the somewhat more

recent Hankerson, Menezes and Vanstone [39] for further information. A detailed search of

current literature is also recommended, as developments are near continuous.

Other polynomial-based systems have been developed outside the area of elliptic curves.

Kravitz-Reed [40], Müller-Nöbauer [41][42] (using Dickson polynomials), Lidl- Müller [43][44]

and LUC (by Smith andLennon) [45][46] are examples.

Note that in all the above schemes, the cryptanalytic problem faced by any attacker is a single

problem that is presumed to be “hard,” and thus to impart cryptographic strength. In the case of

the Rabin public key system, the proof of strength is really just a proof that the problem is as

difficult as a problem for which there is no proof of difficulty. While any or all of these problems

may ultimately be proven to be as hard as presumed, this cannot be counted upon. Absent a proof

that a problem is in fact hard, its use in a cryptosystem is an example of the Diffie-Hellman

assumption, and thus suspect. The history of cryptology is, if anything, a history of presumed

hard problems being found less difficult than thought.

Of a different form are public key systems based upon finite automatons, as have been developed

by Tao Renji [47][48][49][50]. The strength of these systems is based upon the problem of

factoring two composed finite automatons. As such automatons may be implemented as matrix

operations, composition are relatively straightforward and result in manageable operations. As

28

discussed by Renji, if one of the automatons is non-linear, but of relatively weak form

(possessing a weak inverse), composition with another automaton, even a linear one, results in an

automaton without an inverse.

The keys for such systems are large, when compared to RSA keys offering comparable security,

and this makes the approach unsuitable for some applications, but the operations using those keys

are generally much faster than RSA encryption and decryption. But, as the difficulty of factoring

composed automatons is presumed, rather than proven, concerns about the validity of the implicit

Diffie-Hellman assumption remain, and it remains worth considering mechanisms that do not

incorporate such an assumption in the arguments for their cryptographic strength.

Zero-Knowledge Proofs and Key Agreement Protocols

Of interest in many applications is the problem of how one participant in a conversation can

prove knowledge of some fact without revealing the substance of that fact. An example where

this is the case is as follows.

One party (Alice) has information a second party (Bob) wants, but Alice wants to be paid for that

information. Rather than risking not being paid by revealing the information to Bob before she is

paid, Alice insists on being paid first. Bob is concerned that payment might be made, then

nothing revealed by Alice as she does not possess that information. Therefore, he insists on proof

that Alice actually possesses the information first. For example’s sake, let us assume Alice has an

account with a business news service that allows her to see stock prices in real-time, while Bob

can only see them with a 30 minute delay. Alice is willing to share her account access with Bob

if he pays her for that access. Bob can get Alice to prove she has such an account by asking her

questions that she can answer correctly, in a timely manner, only if she has the access she claims.

Bob asks Alice the exact bid and ask prices for a set of stocks at specific times over the course of

a trading day. If Alice has the access she claims, she will be able to send Bob the required

29

information effectively immediately upon receipt of the queries. Bob can then compare the times

the responses were sent to the time the queries were sent, and the reported prices to the actual

prices he sees 30 minutes after the query/response pair. If Bob selects stocks with volatile prices,

and Alice is always right, sending the information upon receipt of the query, she probably has the

access she claims. The more times she is correct, the more certain that she has the access

claimed. However, if she is significantly wrong at all, or is off in terms of time by a meaningful

amount, it indicates that she does not have the claimed access.

Note that in the above process, knowledge is passed by Alice to Bob, but not information

regarding her account password. The information she passes to Bob is obtained using her

password to her account, but contains nothing derived from her password. Thus, the process is

zero-knowledge with regard to the password Alice is using.

Zero-knowledge proofs serve very useful purposes other than as described in the example above.

One of these is authentication of identity without revealing personal information. Another related

use is proof of possessing a password without actually transmitting the password. This latter

category is of interest here, as these techniques leads to protocols for agreement among two or

more parties upon a secure key, though these are not, in a strict sense, zero-knowledge proofs.

As pointed out by Schneier [25], an unfortunate fact of zero-knowledge proofs of identity is that

they are susceptible to man-in-the-middle attacks. The process is simple. If Mallory wishes to

convince Bob that she is Alice, she places herself where she can intercept all traffic between

Alice and Bob. When Bob asks Alice a question using the protocol, Mallory intercepts the

question, but passes it on to Alice, posing as Bob. Alice answers the question, and Mallory again

intercepts the message, and passes it to Bob, posing as Alice. As the protocol continues, Mallory

repeats this process as necessary, until Bob is satisfied that Alice has correctly proven her

identity. Mallory has no idea what Alice knows, but Bob is now convinced that Mallory is Alice,

30

and Mallory is free to exploit the deception. The same applies to related protocols, provided

Mallory can successfully interpose herself between the correspondents. The primary exception is

in key agreement protocols, where, unless Mallory is able to break the encrypted traffic, or as in

the case of Diffie-Hellman based systems substitute her own exponents in for Alice’s and Bob’s,

she will have convinced one or both that she is the other, but remain unable to read the traffic

using the resulting keys.

Zero-knowledge key agreement protocols are not, in the strictest sense, zero-knowledge proofs

[21], in that they exchange information derived from the passwords or other materials used in

arriving at an agreed key. However, the information is generally sufficiently abstracted, through

hashing, modular arithmetic, etc., that this material is at least presumably difficult to determine

from the exchanged information. Still these protocols provide an alternative to the material

presented in Chapter IV.

Bellovin and Merritt [51][52] presented several methods for agreeing upon a secret key based

upon a shared password. Some of these proved weak, but those that were not were developed

further, expanding to include client-server environments. The basic idea is for one party to

encrypt a public key that is “ephemeral” (meaning it will be used only for the present key

negotiation, or “once”) using the shared password. This is encrypted ephemeral public key is sent

to the second party, who decrypts the public key using the shared password. The two parties then

negotiate a session key using the ephemeral key pair.

This approach strengthens more usual public key schemes by making the ephemeral public key

public in no sense. Thus, any cryptanalysis must start with breaking the encryption of the

ephemeral. Once that is accomplished, an attack upon the ephemeral public key can commence.

This has the advantage of increasing the effective cost of breaking the key exchange process by

31

ensuring that the initial cost of cracking the password-based encryption still leaves the problem of

breaking a new public key each time the protocol is invoked.

The liabilities of these protocols include the costs of repeatedly generating public/private key

pairs, and of the actual operation of the public key protocol in negotiating the session key.

Further, the problem of the Diffie-Hellman conjecture remains. If a truly trivial solution to the

public key system used is found, breaking the password-based encryption essentially solves the

whole protocol. Conversely, so long as an effective attack against the public key protocol is non-

trivial, the cost of a continuing attack upon communications between the two (or more) parties

may remain effectively prohibitive, relative to the value to be derived from the attack.

Jablon [53][54] developed a scheme called “Simple Password Exponential Key Exchange,” or

SPEKE. This is essentially Diffie-Hellman key exchange, but with the generator g derived from

a previously agreed password and a large, randomly selected safe prime (meaning a prime p such

that 2p + 1 is also a prime) via a hash function. Since the parties to the exchange will derive the

same key if and only if they use the same password, a key verification protocol will allow the two

to determine that they indeed share the password used.

As this scheme requires an attacker to know the generator g, or the password and prime used to

generate g, which are not public information, it offers a layer of protection not present in the

purely public key Diffie-Hellman protocol, but once g is discovered by whatever means, any

effective attack on Diffie-Hellman will also break this protocol. The users of this protocol also

have the overhead of the Diffie-Hellman protocol as an inherent cost of using the scheme.

Unfortunately for general application of SPEKE, a U.S. patent (6226383) was issued to Jablon on

May 1, 2001.

It is interesting to note that Blum, Feldman and Micali [55] proved that two parties who share a

common random sequence of bits possess enough information for a non-interactive zero-

32

knowledge proof of identity: communication during the proof is unidirectional, from Alice to

Bob, after which Bob knows Alice is who she claims to be. Their protocol is based upon a three-

color coloring of a graph using information derived from the shared material. Unfortunately, full

exploration of their protocol is well beyond the scope of this thesis.

One way to understand the validity of such a scheme is to consider a vastly simplified zero-

knowledge proof of identity based upon two parties sharing a One-time Pad. Assume Alice needs

to prove she is who she is to Bob. As the two share a One-time Pad, she could simply send a

message to Bob that is intelligible, once decrypted. So long as Bob believes only Alice has a

copy of the pad, the fact that he is able to decrypt an intelligible message is sufficient proof of

identity. This is not zero-knowledge in the sense that Alice has revealed a portion of the pad to

Bob (who already knows it), and a third party who can obtain a copy of the plaintext can

determine the key material used. (Thus Alice cannot send Bob a message that is fixed in content,

or very predictable.) However, it is in the sense that she has not revealed the remainder of the

pad she and Bob share. A stronger approach is for Alice to send Bob a random string encrypted

with the One-time Pad. Bob must be able to identify the plaintext as “correct,” which would

require additional interaction, but for the fact that the One-time Pad provides such material.

Thus, if Alice wishes to prove her identity to Bob to within a (2n – 1) / 2n probability, she can

XOR the first n bits from the One-time Pad she shares with Bob with the next n bits of that pad,

and send the result to Bob. Upon receipt of this n-bit string, Bob XOR’s it with the first n bits

from his pad. If the result equals the next n bits from his pad, he is correspondingly certain that

Alice in fact is Alice.

Again, this is not a substitute for Blum-Feldman-Micali, or any comparable protocol, but should

demonstrate clearly that shared secrets composed of some number of random bits provide strong,

non-interactive proof of identity.

33

 CHAPTER II

A SURVEY OF STREAM CIPHERS

Ciphers may be classified in a number of ways. The most direct approach starts with how the

keys are handled, then addresses the ways the keys and plaintexts interact to arrive at a ciphertext.

This avoids the problems of trying to classify them based upon algorithms, which are complicated

by the fact that different algorithms can arrive at the same result. For example, any cipher, using

any number Pseudo-Random Number Generators (PRNGs), that yields a repeating or periodic

output sequence of key material is logically equivalent to some Linear Feedback Shift Register

(LFSR) of equal linear complexity. (This fact is discussed in conjunction with LFSRs later in this

chapter.)

The most basic divide between classes of cipher systems is that between secret key systems and

public key systems. Secret key systems are also often called symmetric key systems, since the

same key is used both to encrypt a plaintext message and to decrypt the resulting ciphertext.

Thus, the algorithms used for encryption and decryption are easily reversible, given the secret

key. The security messages encrypted by symmetric key systems relies entirely upon the strength

of the algorithm and the keys being kept secret, shared only by trusted parties. As all parties who

must be able to decrypt a given message must have a copy of the key used to encrypt the

message, the agreement upon a key, whether by negotiation, physical delivery, or any other

34

means, in a manner that maintains the secrecy of the key, is one of the central problems of secret

key cipher systems.

Public key systems are markedly different from symmetric key systems, and not entirely public,

despite the name. They utilize algorithms that are reversible (else decryption would be

impossible), but not easily so with the same key. Rather, they utilize key pairs, and algorithms

that utilize both members of a key pair to complete an encryption/decryption cycle. So long as

the “private” member of a pair cannot practically be derived from the “public” member of the

pair, the public key may be made reasonably freely available to anyone. Due to the

“complementary” nature of the key pairs, either may be used to encrypt a message which can then

be relatively easily decrypted using the other member of the pair. Thus, the public key can then

used to securely send messages to parties holding the corresponding private key, as only the

parties able to use the private key will be able to easily decipher messages encrypted using the

public key. The reverse is not the case. Messages encrypted using the private key must be

presumed easily deciphered by anyone, since the public key is expected to be public knowledge.

But, so long as the private key is held only by those who “should” have it, the result is a message

that can be trusted to be from such a “proper” private key holder. Due to this property, in many

digital signature protocols, a public key is contained as plaintext in the digital signature

associated with the signed and encrypted message, so that the signature may be authenticated and

thus the message. For publicly accessible documents, the encrypted “message” need not be the

entire body of the document. It may be a suitably secure message digest generated from the

document signed using the system.

If two parties each have distinct key pairs, and publish their respective public keys, secure

bidirectional communication can be achieved by means of double encryption. An example of this

is the following. Alice wishes to send Bob a message, and wants to be sure that Bob will know

35

that the message could only have been sent by her, as well as that only Bob can decipher it. She

has Bob’s public key, and has the necessary tools to use that public key, as well as having a key

pair of her own for this public key system. As the two have shared their public keys (the

mechanism of such sharing is unimportant for this discussion), she knows Bob can decrypt

messages encrypted using her private key, as well as being able to decrypt messages encrypted

using his public key. Therefore, she encrypts her message using her private key, then encrypts

that ciphertext again using Bob’s public key. She then sends the doubly encrypted ciphertext to

Bob, and tells him that it is from her, and the order in which she used their respective keys to

encrypt the message. Bob then decrypts the ciphertext using his private key, then decrypts the

result using Alice’s public key. Assuming both Alice and Bob have been suitably careful, and

nobody has obtained either’s private keys by nefarious means, Bob will know that only Alice

could have sent the message, and only he could have decrypted it.

As wonderful as this sounds, public key systems are not used for routine communications. They

are too slow in operation for rapid, high volume communications, much less for high volume

real-time communications. Instead, symmetric key systems are used for the majority of

communications, as they are typically “cheaper” in terms of time and processing requirements.

Public key systems are typically used to agree upon or exchange the secret “session” keys used

for the bulk of communications, as well as for digital signatures and such, which are much lower

volume activities.

Secret/symmetric key systems may be divided into two broad categories: block ciphers and

stream ciphers. The simplest way to differentiate between the two types has to do with the size of

the data elements each encrypts. Block ciphers typically deal with fixed-length blocks of data

that are comparatively large, compared to stream ciphers. These blocks are rarely less than 64

bits in length, and generally of some power of two in size. Two commonly used block ciphers are

36

the algorithms defined by the Data Encryption Standard (DES) and Advanced Encryption

Standard (AES), and the International Data Encryption Algorithm (IDEA), which use 64-bit, 128-

bit and 64-bit blocks respectively. In contrast, stream ciphers typically deal with bits, or small,

individual tokens, such as bytes, in the communications medium they are used in.

A second distinguishing characteristic is often described in terms of time. Block cipher

algorithms operating in Electronic Codebook (ECB) mode are not concerned with the temporal

ordering or sequence of the material enciphered. They perform the transform algorithm using the

secret key to encrypt or decrypt blocks, without regard to any other blocks that have been or will

be encrypted using the same key. Neither are they primarily concerned with real-time

requirements. While efficiency and speed of encryption and decryption are important

considerations, emphasis is on exploiting large block sizes and keys to achieve desired

characteristics, such as uniform probability distribution and diffusion effects. Block ordering

effects are imposed by operating modes superimposed on top of the basic block cipher

transformation. (See Appendix A for a discussion of block cipher modes.) Only when

encryption modes involving feedback, counter behavior and the like are used is there a strong

sense of ordering, with resultant effects in the contents of the ciphertext blocks produced.

Stream ciphers are designed to deal with data streams that are often inherently ordered, and, when

intended for use in applications that require real-time behavior, are designed to support the

necessary data rates with the available computational resources. Even the names of the two

classes of stream ciphers explicitly address their synchronization behaviors.

The distinction between block and stream ciphers isn’t always clear. Block ciphers are

sometimes used as the bases of stream ciphers. In Counter Mode (CM) (see Appendix A) a block

cipher transform is used as a pseudo-random number generator (PRNG) to generate a running

37

key, resulting in a synchronous stream cipher. Cipher Feedback (CFB) and Output Feedback

(OFB) modes use a block cipher to construct self-synchronized stream ciphers. Conversely, self-

synchronizing stream ciphers in many ways resemble block ciphers running in CFB or OFB

mode, though they usually operate on much smaller blocks. (See the following discussion for the

distinction between synchronous and self-synchronizing stream ciphers.)

The greatest differences between block ciphers and stream ciphers are seen at the extremes of the

two classes of ciphers. The most fundamental of these is that stream ciphers implicitly entail

some form of memory, while block cipher algorithms do not. This can be seen in the facts that

stream ciphers use a keystream generator, successive outputs from the generator are derived from

the key plus the state of the generator at the start of a cycle, the state is updated during or at the

end of the cycle, and the state of the generator is retained for use in the next cycle. As stated

above, a block cipher algorithm only performs a transform on a block, based upon the key,

retaining no state information (except perhaps a fixed key schedule derived from the key)

between successive iterations. Any memory associated with a block cipher is an artifact of the

operating mode in which the transform is used.

Stream Ciphers

Stream ciphers may be divided into two distinct classes. The first type generates a keystream,

which is then logically combined (usually by an exclusive-or (XOR)) with the plaintext bits or

bytes in sequence. The second uses previously generated ciphertext in the process of generating

the keystream used to encrypt subsequent plaintext. These are referred to as synchronous and

self-synchronizing stream ciphers, respectively. The reason for this nomenclature involves the

fact that, since the keystream of a synchronous stream cipher is generated independently of the

plaintext encrypted with it, the sender and recipient must have their respective copies of the

cipher algorithm synchronized in order for decryption to be successful. The next state of a

38

synchronous stream cipher is in a sense “closed,” and entirely determined by the immediate prior

state of the cipher algorithm, regardless of the prior plaintext. In contrast, for a self-

synchronizing stream cipher, the next state is determined by the prior state including the effects

from prior ciphertext generated, plus the data element being encrypted.

One way to see the difference between a synchronous and a self-synchronizing cipher is via the

following sets of functional definitions [21]. A synchronous stream cipher may be described as

follows.

).,(

),,(

),,(1

iii

ii

ii

mzhc

kgz

kf

=

=

=+

σ

σσ

Here, σ0 is the initial state (as determined by key k), f the next state function, zi the i-th element of

the keystream produced by the generator function g, mi the i-th plaintext symbol, and ci the i-th

ciphertext symbol. Self-synchronizing stream ciphers can be described as follows.

).,(

),,(

),,,...,,(11

iii

ii

ititii

mzhc

kgz

ccc

=

=

= −+−−

σ

σ

The symbols here have the same meaning as before, except that σ0 = (ci-t,ci-t+ 1,…,ci-1) is the initial

state, which may or may not be secret. The material composing the initial state is often referred

to as an Initialization Vector (IV). IVs arise frequently in cryptographic systems, including in

various block cipher modes, hash functions and authentication protocols.

Since each element of the keystream is determined by the prior t ciphertext symbols plus the key

k, we can see that, even if symbols are inserted into or deleted from a message stream, the

keystream generator g will resynchronize after t correct ciphertext symbols are received in proper

order.

39

It is worth reinforcing the fact that we are dealing with two distinct keys: the formal key and the

keystream or “running key” constructed by the keystream generator. For both synchronous and

self-synchronizing ciphers, any keystream generated is effectively the product of a PRNG. In

fact, any PRNG may be used as a keystream generator, or as a component of one. Conversely,

stream ciphers may be used as PRNGs, or as components, in both cryptographic and non-

cryptographic applications.

Another important observation regarding stream ciphers is that while the running key resulting

from operation of a strong stream cipher and a specific initialization key may be used for a

significant span of time, re-use of the initialization key is typically a very bad idea. Such re-use

results in the re-use of the same sequence of keystream bits or bytes. Ciphertexts encrypted with

the same running key sequences can be XOR’ed together to produce an XOR of the plaintexts,

which represents a vast simplification of the problem for an attacker. In comparison, a key for a

block cipher may typically be used repeatedly, for extended periods, so long as the mode used is

not one that acts as a stream cipher.

Introduction to a Brief Survey of Modern Stream Ciphers

As the bulk of this thesis revolves around PRNGs used as stream ciphers, any alternate

implementation’s effectiveness must depend in part on the PRNGs utilized. We recognize the

relationship between stream ciphers and PRNGs, and will here briefly examine several stream

ciphers, including some that are poor ciphers, but good PRNGs in terms of bit-wise randomness.

We will not examine any prior to the Vernam cipher, which may be regarded as the first

“modern” stream cipher, as it was expressly developed for use in automated electronic

telecommunication, and many stream ciphers are in fact Vernam ciphers using specific PRNGs as

keystream generators, or components thereof.

40

While an understanding of the means and methods of cryptanalysis is important for analyzing

cipher systems, regardless of the type, mention and description of specific cryptanalytic attacks

and processes will be limited to points where they are of specific interest, as the field is both

broad and deep. For a survey of ciphers it is more important to know that a system has known

weaknesses than to know the details of them in depth. The details of such matters are left to the

references cited, which deal with them in much greater depth than is appropriate here, as well as

specifically to Bruce Schneier’s Applied Cryptography, which served as the initial source for

much of the following material.

Vernam Ciphers and One-Time Pads

Gilbert S. Vernam, working for AT&T during World War I, developed a scheme for

automatically encrypting the Baudot character codes for use in the then current teletype systems.

In its more generalized forms, this scheme and the descendant ciphers now bear his name. In

practical terms, we can consider all synchronous stream ciphers to be Vernam ciphers, and all

self-synchronizing stream ciphers as Vernam ciphers with feedback.

In its original form, a specialized teletype machine with a paper tape reader was used to logically

combine, character by character, messages typed on the machine, with a key contained on a paper

tape mounted in the reader, in an operation that is effectively an XOR. The result of this was a

ciphertext, which was transmitted over the TTY system to a recipient, or recorded on a paper tape

which could later be fed into a teletype machine for transmission. Upon receipt, depending on the

equipment at the receiving station, either of two scheme could be used. In the first, the receiving

teletype machine could, if equipped with a paper tape reader and a copy of the key tape, perform

the inverse operation to produce the plaintext. In the second, a paper tape copy of the ciphertext

could be produced. This tape could then be fed into a combiner, equipped with a tape reader and

key tape, which could then perform the inverse operation using the key tape to produce the

41

plaintext. As the key tape could be made as long as desired, within the limits of practical

usability, with arbitrary key contents, the result was a relatively robust, automated system that

required little knowledge and effort on the part of the operators. Indeed the teletype operators did

not need to be involved in the encryption and decryption processes at all, thereby increasing the

security of the system if they were excluded.

This system is extremely general, and adaptable to any bit- or token-oriented system of

communication. As such, it is regarded as one of the most important developments in the history

of cryptography. However, it suffers from serious flaws. The most important of these is that if

the key is not random, displaying some structure that can be predicted, or if the key is re-used, so

that different ciphertexts generated with the same key segment may be compared and analyzed,

the result is a weak cipher. In cases where the logical combining operation is an XOR, it is easy

to describe the process by which a Vernam cipher may be broken.

If two ciphertexts encrypted with the same key are aligned with respect to the key, then XORed,

the result is an XOR of the two plaintexts. Where characters in the two plaintexts match, in terms

of relative position in the respective streams, the result is a null. The 2χ (chi-square) test may be

used to determine whether a trial alignment is correct. Once the alignment has been determined,

many of the cryptanalytic tools that are effective against older poly-alphabetic ciphers are

effective, but “educated guesses” can radically simplify the process. By simply selecting a small

number of words that have a high probability of appearing in either ciphertext, then XOR’ing

these in successive positions in the XOR of the two ciphertexts, a correct alignment will result in

plaintext. This process is easily automated. The more ciphertexts that are found using the same

key segment, the more rapid and effective the process becomes.

Captain (later Major General) Joseph Mauborgne, U.S. Army Signal Corps, soon observed that, if

the Vernam cipher key tape was random, and of equal or greater length than the plaintext, the

42

resulting ciphertext would be difficult or impossible to break if the key were never re-used.

Though it was not called such at the time, this specific implementation of the Vernam cipher

became known as the One-Time Pad system, or simply OTP.

Claude Shannon’s 1949 paper on cryptography [5] deals with the problems of cryptanalysis of

OTP, as well as the more general questions of the relationships between key, block and plaintext

lengths and the overall cryptographic strength of any cipher system. In that paper he proved

several things, including that a properly implemented OTP is unbreakable and thus perfect.

Further, any perfect cipher system must be a homologue of OTP. The requirements for a properly

implemented OTP are that the key is secret, random, as long as the plaintext, never re-used, and

destroyed upon use.

In the absence of the OTP key used to encipher a plaintext, all possible plaintexts of equal or

shorter length as the ciphertext are equally as probable solutions, meaning no solution is possible,

regardless of the cryptanalytic methods used. It is also impossible to determine whether a

specific plaintext corresponds to a specific ciphertext with any reliability beyond whether the

plaintext is of equal or shorter length, absent additional explicit evidence linking the two. Given

these facts, if an innocuous text of the same length as a ciphertext is retained, and both the actual

plaintext and OTP key destroyed, there is no way to prove that the innocuous text was not the

plaintext, absent other definitive evidence.

The effect of encrypting a byte with OTP is the same as randomly selecting one of 256 mono-

alphabetic substitution ciphers and applying it to the plaintext byte, since byte values must range

from 0x00 to 0xFF (8 bit hexadecimal 0 to FF, using standard C notation). This point is worth

reinforcing. There are only 25628 = possible cipher key bytes for byte encryption using the

XOR encryption function, and one of these (0x00) leaves the plaintext unchanged. This is a very

small number when compared with the 1!256− mono-alphabetic substitution ciphers that are

43

possible with random mapping. This is true of all Vernam ciphers that use the XOR operation as

the combining function for the plaintext and keystream. The same problem applies to other

simple combining functions, such as byte-wise addition or subtraction modulo 256. While this is

not a problem in correctly implemented OTP systems, for non-OTP Vernam ciphers, the result is

a much simplified process of guessing the keystream bytes when multiple messages encrypted

using the same keystream segment are available.

The primary problems with OTP are not cryptanalytic in nature. They are logistical and

operational. OTP requires an amount of key material equal to the amount of traffic to be

encrypted. The key material must be truly random, and never reused. The key material must be

distributed in an absolutely secure manner, and completely, irreversibly destroyed upon use. A

requirement for simultaneous, bidirectional communication compounds the logistical problem,

and loss of synchronization can cause significant problems.

While storage media, including flash drives, Digital Video Discs and Blu-ray® Discs, now offer

simple means of storing and transporting massive amounts of data, the complete destruction of

such media can be problematic, as well as expensive, as even small fragments of surviving

material may be sufficient to decrypt portions of ciphertexts that may be “embarrassing.” This

can be seen via the VENONA program, which was a joint effort among several Western allies to

extract information from masses of Soviet OTP traffic. Despite a very low yield, the insights

gained were reckoned as well worth the decades of effort spent.

The success of the VENONA program is useful in illustrating the difficult of correctly

implementing and operating an OTP system over long periods of time. The success of the

VENONA program became possible when the Soviets were forced to take shortcuts in operating

their OTP system due to logistical problems, including the difficulty of generating and

distributing large volumes of random key material.

44

Apart from other logistical problems, the physical transport of such media represents a significant

risk, when an adversary possesses high motivation and ample resources. And, despite the high

capacities of modern media, encryption of high-resolution video streams will rapidly exhaust key

material regardless of the media used for distribution.

Electro-Mechanical Ciphers

The Twentieth Century also saw the development of electro-mechanical encryption technology.

Two inventions in particular deserve note: the Enigma and Lorenz machines. Both were used by

the Germans during World War II, were successfully broken by Allied intelligence services, and

are exemplars of the problems associated with such systems.

While there are significant differences in the rotors used in these machines, as well as other rotor-

based equipment, the basic structure is the same. Each rotor has a set of electrical contacts on one

side that are connected in an arbitrary or random pattern to contacts on the other side of the rotor.

Thus, the connections through the rotors change as the rotors are rotated relative to the

surrounding hardware. When a series of such rotors are used, and they are independently rotated

as plaintext is enciphered, the combinatorial effects can be quite large. Yet, the basic operation is

the same. At any given moment prior to an input key being pressed, the circuits effectively

embody one mono-alphabetic substitution cipher. Pressing an input key selects the corresponding

ciphertext or plaintext character, and upon release reconfigures the rotor system to select another

mono-alphabetic cipher for use in encrypting the next input character.

Both the Enigma and Lorenz systems exhibit a fundamental problem with rotor-based electro-

mechanical cipher systems. While a rotor may embody any arbitrary set of connections between

the opposite sides of the rotor, the rotors are themselves static devices. Once a rotor has been

manufactured, the mapping is fixed. While it is possible to produce sets of rotors that implement

all possible mappings, this isn’t practical. Rotors are bulky and expensive. Thus, the number of

45

different rotors tends to be small, and the internal mappings of the rotors part of the “secret”

required to maintain security. Using the rotors in series (or with the added complication of

bidirectional traversal, as in the Enigma machines), with differing step rates for the rotors and

regular changes to the rotors in the working set and their order in that set, complicates the

encryption achieved.

The lack of flexibility in mechanical devices is a serious liability. The World War II Allies’

success in breaking both the Enigma and Lorenz machines used by the Germans, demonstrates

the liabilities of such devices. In particular, the breaking of both of these cipher machines

demonstrates of the validity of Kerckhoffs’ principle that the security of a cipher system must

depend on the secrecy of the keys used, rather on the secrecy of the mechanism.

In the end, the flexibility that may be achieved in digital systems, and particularly in software-

based digital systems, has turned cipher development away from relatively inflexible electro-

mechanical systems.

Digital Stream Ciphers

Digital stream cipher systems gain a considerable advantage over manual and mechanical systems

in the fact that digital processing allows a much wider range of operations, with substantially

lower risk of error. While many digital stream ciphers retain the Vernam cipher’s XOR operation

as the combining function (and thus are in fact instances of Vernam ciphers), with the attendant

limitation on character mappings, the potential for generating very good pseudo-random

keystreams is a substantial advantage over the earlier electro-mechanical systems, as well as the

original Vernam cipher with looped paper tapes. As a result, there are now several decades and

untold thousands of man-hours of research on digital ciphers, including digital stream ciphers.

46

Linear Feedback Shift Register (LFSR)

One of the most common and useful mechanisms in cryptography is the linear feedback shift

register, or LSFR. The technique is perhaps best described in conjunction with a diagram.

132 output bit

A Linear Feedback Shift Register

The crossed circle represents the bit-wise logical exclusive or (XOR) operation.

The operation of an LFSR is simple. Specific bits in the register are designated “taps.” When the

LFSR is pumped for a bit value, the bits corresponding to the taps are sampled and XORed

together to produce a new bit. The register is then shifted in whatever direction specified, and the

new bit inserted at the end opposite the shift direction. The output is the bit at the end opposite

the inserted bit.

An LFSR will have a maximal period only under specific conditions. The selection of taps is

critical to achieving this goal.

If the LFSR register is treated as an array of coefficients of a polynomial in the Galois field

GF(2), plus an implicit 1, and the taps correspond to the non-zero coefficients of a primitive

polynomial of degree n, where n is the length of the shift register, the resulting LFSR will have a

maximal period equal to 2n – 1. For the present purposes, we may regard a primitive polynomial

as a polynomial that is irreducible (meaning it has no real factors), divides 1
12 +

−n

x , and does not

divide xd + 1 for any d that divides 2n – 1.

47

LFSRs are easily implemented in hardware. In software, they can be slow. Schneier [25] gives

the following sample in C for an LFSR for the polynomial p(x) = x32 + x7 + x5 + x3 + x2 + x + 1.

(This matches the above figure and the following discussion regarding Galois LFSRs.)

int LFSR()
{
 static unsigned long ShiftRegister = 1;
 /* Anything but 0. */
 ShiftRegister = ((((ShiftRegister >> 31)
 ^ (ShiftRegister >> 6)
 ^ (ShiftRegister >> 4)
 ^ (ShiftRegister >> 2)
 ^ (ShiftRegister >> 1)
 ^ (ShiftRegister))
 & 0x00000001) << 31)
 | (ShiftRegister >> 1);
 return ShiftRegister & 0x00000001;
}

 C code for a software-based LFSR

As can be readily seen, this is considerable of work for a single bit of output. There are two

relatively simple ways this can be at least partially rectified. The first is to use what is called the

“Galois configuration” for implementing the LFSR, as illustrated by the following diagram and

code sample.

 Galois configuration of an LFSR

Here is a code sample, based on Schneier’s example.

int Galois_LFSR()
{
 static unsigned long ShiftRegister = 1;
 retVal = 0;

48

 if (ShiftRegister & 0x00000001)
 {
 ShiftRegister = ((ShiftRegister >> 1)
 ^ 0x80000057)| 0x80000000;
 retVal = 1;
 }
 else
 ShiftRegister >>= 1;

 return retVal;
}

This is still considerable work to produce a single bit. But, as many PRNGs and stream ciphers

utilize two or more LFSRs, implementing Galois configurations in parallel can speed the process,

particularly if all the parallel LFSRs use the same primitive polynomial. They can also be

implemented to support differing tap vectors for each, and even differing lengths, at some cost in

performance. (This is done in the implementation presented in Appendix C.)

Linear Complexity

The concept of linear complexity arises directly from the study of LFSR generators. Any finite

generator (meaning a generator with a fixed, finite number of internal states) will produce a finite,

repeating output stream. Regardless of the length of the period, the output stream represents a

linear recursion. Thus, for any finite generator, it is possible to construct an LFSR that exactly

duplicates the output behavior of the generator. This can be seen in the trivial case of a generator

with period of p bits being mimicked by a shift register p bits long, with a single tap at bit 1.

The linear complexity of a generator is the length of the shortest LFSR that can produce the same

output stream. The concept is useful in determining whether a generator may be

cryptographically useful, but is not a determining factor. A high linear complexity is necessary

for a cryptographically strong generator, but having a high linear complexity is far from being

proof of strength. On the other hand, a low linear complexity is sure indication that a generator is

49

cryptographically weak. A common example, noted by Rueppel [56] and others [25], is the

following sequence.

 ...000011010010001.0
10

1

1 1

=
∑∑

∞

= =i
j

i

j

This sequence has unbounded linear complexity, since it has no period, and thus cannot be

generated by an LFSR, but is not cryptographically strong. It is too predictable, once the pattern

is discerned, and the occurrence of 1’s is far too sparse for most applications.

Part of the importance of the linear complexity of a generator is that it determines how easily the

cipher can be broken by the Berlekamp-Massey algorithm. [57] If a generator has a linear

complexity of L, this algorithm can generate the coefficients of an LFSR that will duplicate the

behavior of the generator, given 2L consecutive bits, in order, of the output sequence generated

by it.

It should be apparent that the period of a generator will limit its linear complexity. For a maximal

LFSR of length n, n = L, but for any LFSR the length of that LFSR is the upper bound for its

linear complexity. Thus, a good cryptographic generator must have both a long period and high

linear complexity. These two characteristics must be coupled with a third requirement: that

without knowledge of the current state, yet with knowledge of the prior output, an attacker must

not be able to guess the value of the next bit output with greater probability than 0.5.

Other research into cryptographic complexity has produced interesting and useful results. The

maximum order complexity of a sequence, as defined by Jansen and Boekee [58], is the length of

the minimal feedback shift register (of any type, not just linear ones) that can produce the

sequence. For random sequences of length n, the expected maximum order complexity will be

approximately 2 lg n. Jansen and Boekee also presented a linear-time algorithm for computing

this value.

50

The Ziv-Lempel complexity measure [59] quantifies the rate of appearance of new patterns

within sequences, and may well prove to be a good test of the overall randomness of sequences.

But, this approach had limited implications in the analysis of linear recursions with regard to

producing corresponding generators into the 1990s.

Further development of these and other algorithms along the lines of the Berlekamp-Massey

algorithm, must be expected to yield progressively stronger tools for cryptanalysis of linear

recursions generated by any type of shift register, linear or non-linear, or by any other means.

Still, Berlekamp-Massey remains a powerful and useful tool. Any linear recursions can be

reduced to an LFSR by it, and it thus serves as a good initial tool in the cryptanalysis of PRNGs.

As a consequence of this discussion, it should be seen that stream ciphers that produce linear

recursions will likely suffer increasing vulnerability to analytical attacks. Therefore, practical

means of introducing meaningful aperiodicity into keystreams is of increasing interest.

LFSR Based Stream Ciphers

As noted, any PRNG can be used to generate the keystream for a Vernam cipher, and as such will

generally bear the name of the PRNG used. Combining PRNGs to produce non-linear results, or

simply to complicate matters, is a frequently used approach. Given their ease of implementation,

that they are easily altered or tapped at points other than the standard output, and that they are

able to replicate the behavior of any generator producing a linear recursion, LFSRs are frequently

used in such composite systems, despite the fact that a single LFSR, no matter its length, is

almost axiomatically a cryptographically weak PRNG.

The manner of composition of constituent PRNGs is important. The first example given below is

used to illustrate this fact, while others will be discussed more briefly.

51

Geffe Generator and Correlation

This is a simple multiplexer scheme using three LFSRs. It is also a cautionary tale. The Geffe

generator [60] consists of two LFSRs used as feeds to a multiplexer, while a third LFSR is used

as the selector, yielding a non-linear output mechanism.

If the feed LFSRs, designated A and B, yield bits a and b respectively, and the selector generator

S yields bit s, the ouput o is given by the equation () ()bsaso ∧¬⊕∧= .

While this may appear effective in obfuscating the feed generators, notice that half the time the

output will be a, but that when b is the output, a equals o half of the time. The same is true of the

output relative to b. This can be seen in the following table.

s a b o a = o b = o
0 0 0 0 T T
0 0 1 1 F T
0 1 0 0 F T
0 1 1 1 T T
1 0 0 0 T T
1 0 1 0 T F
1 1 0 1 T F
1 1 1 1 T T

 Correlation in the Geffe generator

This means that there is a high correlation between the feeds and the output, as describe by E.L.

Key [61], and by Zeng, et al. [62][63] An attacker can isolate either feed generator for attack. If

the tap sequences are known, an unsuccessful guess at the state will produce a 0.5 rate of

agreement with the output stream, while a successful guess will produce a rate of agreement of

0.75. The feed generators can be attacked in sequence, which then reveals the output of the

selector. This can then be attacked any number of ways, depending on the generator used, as

shown by Zeng, et al., as well as via the Berlekamp-Massey algorithm.

Generalizing the Geffe generator does not improve matters much. With n fill generators and lg n

generators (or a single generator clocked at lg n times the rate of the others) used to select which

52

fill generator will provide the final output (essentially implementing an n-to-1 multiplexer), the

outputs of each fill generator will correlate with the final output at a rate of (1/n) + 0.5, since each

fill generator will produce 1/n output bits, but will otherwise match the output bit half the time.

This behavior serves as a good introduction to the problem of correlation, and to correlation

immunity. As can be seen with the Geffe generator, what may seem to be an effective scheme of

mixing two or more generators can have unfortunate characteristics that are not readily apparent

to an inexperienced person.

It is worth noting that, apart from the fact that it is easily reversible, the XOR operation is

commonly used in cryptography due to its lack of strong correlation between the individual inputs

and the result. This can be seen in the following table.

a b c a ⊕ b ⊕ c = x a = x b = x c = x
0 0 0 0 T T T
0 0 1 1 F F T
0 1 0 1 F T F
0 1 1 0 T F F
1 0 0 1 T F F
1 0 1 0 F T F
1 1 0 0 F F T
1 1 1 1 T T T

 Correlation and the XOR operation

Despite the positive characteristics of the XOR operation, it must still be used with care, as it

does not in itself protect against correlation attacks, nor guarantee high linear complexity, as will

be seen below.

The problem of selecting a combining function is far from simple. Correlation immunity is not a

matter of “it is or it isn’t,” but of degree. A combining function is considered to be m-th order

correlation immune if, for all subsets of the m random variables (m less than n), the output of the

combining function of n variables (including the m random ones) is statistically independent of

the m random variables. [56]

53

Unfortunately, as Rueppel [56] explains in great detail, high correlation immunity also tends to

reduce the linear complexity of a generator. If we define the non-linear order of a generator as

the maximum number of terms n appearing in the algebraic expression of the combining function,

and recognize that the linear complexity of the aggregate generator tends to increase with higher

non-linear order, we can see that high degrees of correlation immunity tend to reduce the linear

complexity of the aggregate. In fact, if the generator output is balanced (as many ones as zeroes),

the non-linear order of the generator must be less than or equal to n – m – 1, for 1 ≤ m ≤ (n – 2).

A partial solution to this trade-off is to incorporate memory into the combining function, which

tends to obscure correlations between component generators and the aggregate output by

spreading the effects of component variables over more outputs. This will eventually lead to the

discussion of Feedback with Carry Shift Registers (FCSR), which incorporate memory in the

form of additive carries.

Pless Generator

This generator [64] uses eight LFSRs to drive four JK flip-flops, acting as non-linear combiners,

and interleaves the resulting bits in an attempt to avoid exploitation of the behavior of flip-flops:

the output identifies both the input and the next output. As this falls to both a divide-and-conquer

attack (exploiting the interleaving) [65] and a correlation attack [66], it demonstrates that mere

multiplication of LSFRs does not necessarily increase the strength of the resulting generator.

Jennings Generator

A markedly different approach [67][68][69], this generator combines two LFSRs, used laterally

instead of sequentially, plus a multiplexer and a filter/mapping function between one LFSR and

the multiplexer inputs. The other LFSR provides the selector/address feeds for the multiplexer.

One bit is selected by the multiplexer for each cycle. As each LSFR is clocked, the tap-bits of

both are modified and the result shifted, so that the input and address bits vary significantly with

54

time. This shows that complexity does not afford security, as it falls to both a meet-in-the-middle

consistency attack [70], and a linear consistency attack [62][71].

Stop-and-Go Generators

There are several generators that use one or more of a set of LFSRs as means of controlling the

clocking of other LFSRs in the set. The simplest is the Beth-Piper Stop-and-go generator [72]

which uses the first generator to clock the second, the output of which is XORed with the output

from the third. The first and third LFSRs are clocked by the same signal. Despite the otherwise

good characteristics of the XOR used to generate the final output, it is subject to a correlation

attack by Zeng, et al. [63]

The Alternating Stop-and-Go generator [73] also uses three LFSRs, which must be of different

lengths, with the clocking of the second and third controlled by the first. When the output from

the first is a one, the second LFSR is clocked; when it is zero, the third is clocked. The final

output is the XOR of the output of the second and third generators. While there is a correlation

attack against this generator, it is not very effective, as the correlation is weak, so that the

generator remains relatively sound, and has been proposed for use in other schemes as recently as

2009 [74].

The Bilateral Stop-and-Go generator [62] uses only two LFSRs of the same length, but they

interact with regard to clocking. When either LFSR yields a one at time t, and a zero at t + 1, its

mate is not clocked at t + 2. The output is the XOR of the two LFSRs. Analysis of this generator

has concluded that the linear complexity is roughly its period. In the above referenced paper,

Zeng, et al. stated that “… no evident key redundancy has been observed in this system.”

Unfortunately, from a software perspective this is not a very useful generator. While physically

simple, it can be slow in software when compared to many alternatives, due to the need to handle

clocking of the two LFSRs separately.

55

Decimating and Shrinking Generators

Another approach involves discarding portions of the output of an LFSR in order to conceal the

pattern produced by the underlying LFSR. Such generators, using single LFSRs, may also be

referred to as self-decimating. Generators of this type have been proposed by Rueppel [75] and

by Chambers and Gollman [76]. An inherent problem with this approach is that the resultant

output streams are still linear recursions, and thus still subject to analysis using the Berlekamp-

Massey algorithm, if sufficient portions of the keystream can be isolated, while the periods of the

generators are effectively shortened by the discarding process.

The basic approach in self-decimating generators is to use some portion of the state of the LFSR

to control how the LFSR is clocked. When the function applied to the state yields a zero, the

LFSR is clocked some number of times (d), else it is clocked a different number of times (k).

While the shortening of the period is important, the selection of d and k relative to the LFSR used

is especially important. If d, k, p (the period of the LFSR) and the output sequence of the LFSR

are pathologically related, and there exist integers i and j such that id + jk = p, and the function

used to clock the LFSR yields i occurrences of d clocking and j of k, the period of the generator

will be reduced by i(d – 1) + j(k – 1) bits, with result that the linear complexity of the decimating

generator may be significantly less than that of the LFSR. The problems with both self-

decimating generators were amply revealed by Zeng, et al. [63].

Generalization of this leads to the shrinking approach. These schemes use multiple LFSRs.

Here, the set of LFSRs is clocked, and the output from one generator (or subset of generators as

determined by some function) is used to determine whether the output of another generator (or

subset) will be used as the output of the aggregate, resulting in the discarding of roughly half the

possible outputs. Generators of this type have been proposed by Coppersmith and Grossman

[77][78], and a self-shrinking, single LFSR variant by Meier [79].

56

Shrinking generators have a problem with regard to their output rates. If the gating LFSR

produces a sequence of zeroes, which indicate the output of the other is to be discarded, no output

will be generated by the aggregate generator. Thus, there may be relatively substantial gaps in

the stream’s timing.

The self-shrinking generator uses successive output bits from a single LFSR. If the first of a pair

of bits is a zero, the second is discarded, and two more bits generated, and the process repeated

until the first bit of the pair is a one. If the first bit is a one, the second is used as the output. As

the concept is not restricted to use of LFSRs, it should be noted that if the period of the PRNG is

even, the period of the self-shrinking generator will be roughly half that of the PRNG used.

Multispeed Inner-Product Generator

A generator with a similar motivation to the self-decimating generators, but moving in the

opposite direct with regard to use of bits was propose by Massey and Rueppel [80]. Rather than

clocking some number of time and skipping most of those bits, two LFSRs are clocked at a given

frequency and d times that frequency, respectively, the results AND’ed, then XOR’ed. Zeng, et

al. [63], demonstrated that this was not very effective, as the internal state of the generator can be

determined from n1 + n2 + log2d bits of the output, where n1 and n2 are the lengths of the two

LFSRs, and d the frequency multiple used.

Gollmann Cascade Generator

This generator is related to the stop-and-go generators. It uses a series of LFSRs to modify the

clocking of successive LFSRs, and is related to the Stop-and-Go generators. Proposed by

Gollman [81][82], the linear complexity can be quite high, but as the number and interplay of the

generators creates a complex implementation in software, they are not of interest here.

57

Summation and Threshold Generators

Threshold generators operate on the assumption that a large number of independent generators

can obfuscate the operation of the individual generators [83]. If an odd number of generators,

each with relatively prime lengths and using primitive polynomials, are allowed to “vote” on the

output result, the output will be whichever value (ones or zeroes) was produced by the majority of

the component generators. The problem is that the fact of “voting” means that there will be

correlation between the output and a majority of the LFSRs for each output bit. Thus, as Schneier

observes [25], the generator effectively leaks information about the component LFSRs with each

output bit.

The summation generator, proposed by Rueppel [56][84] couples two LFSRs. The output at any

given time is the sum of the outputs of the two LFSRs, plus the “carry” from the prior sum. It has

been shown that this is equivalent to a feedback with carry shift register, and can be analyzed as

such [85], as well as being subject to correlation attacks [86][87][88]. More generators could

easily be used and their outputs summed, but these remain feedback with carry shift registers built

by other means.

Feedback with Carry Shift Register (FCSR)

Feedback Shift Registers are not constrained to only use linear feedback that is an XOR of the

feedback bits [21][25]. A very natural extension of the approach is the Feedback with Carry Shift

Register. In this mechanism, the feedback bits are summed with the prior sum divided by 2 (the

“carry” register), to produce a new sum, and use the lowest order bit (sum mod 2) as the “re-fill”

bit for the shift register.

58

 Example of a Feedback with Carry Shift Register (FCS) [25]

Since the carry register would otherwise overflow, there must be at least lg t bits in the carry

register for t taps.

FCSR registers are distinguished from LFSRs in several regards beyond the use of the carry

register in place of the XOR of tap bits. Among these is the shortened period relative to the

internal states – some states that are otherwise plausible may never occur in the cycle of the

FCSR. While some of these states may occur, they do not occur within the repeating cycle of the

generator. They occur only during an initial series of iterations when the FCSR has yet to settle

into its cycle.

Perhaps the worst characteristic of FCSRs is that not all initial states will produce a maximum

length cycle [21][25]. It is even possible, for some FCSRs, to create situations where the output

degenerates to a short, fixed string, as well illustrated in two examples by Schneier. Thus, there

is a problem with “weak keys,” such as sometimes found in block ciphers, potentially made far

worse when “disastrous” initial states are selected, as again illustrated by Schneier’s examples,

which devolve rapidly to constant streams of ones.

The maximum period for a FCSR will be q – 1, with q as determined by the following equation, if

the value q is prime, and has a primitive root of 2.

 12...222
3

3

2

2

1

1 −++++= n
n

a
a

a
a

a
a qqqqq

59

where the assorted ai are the tap numbers, up through n.

FCSRs are susceptible to many of the analytical tools available against LFSRs, with some

adaptation [89][85][90][91], including a modified form of the Berlekamp-Massey algorithm,

though the analysis may need to be delayed until the FCSRs involved have entered their repeating

cycles. At worst, the Berlekamp-Massey algorithm may be used to produce a LFSR that is

functionally equivalent to a given FCSR, once the initial extra-cyclic outputs have been excluded.

(This LFSR may be very long!) Many varieties of LFSR-based generators exist in corresponding

forms based either only upon FCSRs, or an intermingling of FCSRs and LFSRs.

Nonlinear-Feedback Shift Registers (NFSR)

The feedback functions used with shift registers need not be limited to XOR and additive carry

functions [21][25]. Any function on the binary field is suitable, so long as the resulting

implementation produces a suitable output sequence. Thus, if we consider the full range of

Boolean functions on n variables, where n is the length of a shift register, we have a much richer

vocabulary of feedback shift registers available than described by the LFSR and FCSR classes,

and enter the realm of the Non-linear Feedback Shift Register (NFSR). The number of Boolean

functions of n variables is quite large for any large n, and is given by .2)(2n

nbooleans = As large

as this number is, for large n, the only functions of interest are those that produce a balanced

output stream. This is a much smaller number than all possible Boolean functions on n variable,

but is still quite large.

 .
2

2
)(_

1

=

−n

n

nbooleansbalanced

The same problem arises with NFSRs as with FCSRs, in that they are more difficult to analyze,

and are prone to producing undesirable behaviors, such as short periods or constant output

60

streams, when poorly designed or are initialized with weak keys. Still, for any PRNG or stream

cipher using one or more LFSRs, there is a corresponding design using NFSRs of some form, and

the resulting implementations remain subject to analysis with the Berlekamp-Massey algorithm

(though the result may be an extremely long LFSR) and others.

As with all deterministic algorithms, the upper bound on the period of any NFSR is 2n, where n is

the number of bits in the internal state. In the case of LFSRs, this is the length of the shift

register. In FCSRs it includes the state of the carry mechanism. Any additional state information

in an NFSR would also apply, but without altering the upper bound relative to the size of the

internal state.

A5

The A5 cipher family [92] was one of the most widely used ciphers families, due to its use in the

GSM digital cellular telephone standard. The grouping is not due to inherent features across the

A5 ciphers, but their application domain in GSM phone systems.

There are two stream ciphers in the family: A5/1 and A5/2. (There is also the KASUMI cipher

that is often referred to as A5/3, though this is technically a block cipher and not within the

present scope.) Both A5/1 and A5/2 are relatively weak, with A5/2 cipher particularly so [93].

A5/1 is constructed using three LFSRs of lengths 19, 22 and 23, and polynomials x18 + x17 + x16 +

1, x21 + x20 + 1 and x22 + x21 + x20 + x7 + 1, respectively, though in reversed order from the

previous discussion of LFSRs. The outputs of the three are XOR’ed to produce the output. As a

complication, clocking of the three LSFRs is not synchronized. Rather, bits 8, 10 and 10 in the

respective LFSRs are used to control clocking. Individual LFSRs are clocked whenever the

clocking bit agrees with one or more of the other clocking bits. Thus, A5/1 is a Stop-and-Go

generator, though it uses tapping points other than the outputs of the LFSRs to control the

clocking.

61

The key length of the A5/1 is 54 bits, while the internal state is 64 bits. This must be regarded as

an unfortunately short key, as there is a very effective attack that can be performed in real-time

[94]. Known plaintext attacks are also effective, and for older GSM phones protocol flaws can be

exploited to great effect [95].

A5/2 is constructed from four LFSRs, but is so weak that it is breakable in real-time with

inexpensive equipment [95].

SEAL

The Self-optimized Encryption Algorithm, or SEAL, was developed by a well-regarded

cryptanalyst named Don Coppersmith, along with Phillip Rogaway [96][97]. It is patented, with

the patent rights held by IBM.

A cipher being developed by a respected cryptanalyst is often a good sign. In this case, it seems

to be a very good sign, but not quite good enough. Coppersmith has since helped to develop

Scream [98], which is described as “a more secure SEAL,” in the paper where it was described.

Both borrow much from block ciphers.

SEAL is highly optimized for software implementation, and has the marked advantage that it

actually defines a function family, so that individual outputs may be calculated directly, rather

than in sequence. This makes SEAL at least somewhat useful as a cipher for storage media, since

individual 32-bit portions of file of up to 64 Kbytes may be decrypted directly. It is also useful in

environments where occasional messages are lost in transmission, since the state of the cipher

need not be stored, only the key and the value n.

SEAL also has the reputation of being the fastest reasonably-strong stream cipher available, being

able to encipher and decipher at a rate of better than two bits per CPU clock cycle, on modern 32-

bit processors.

62

SEAL incorporates three tables, called R, S, and T (of 256, 256 and 512 32-bit entries each), and

uses the Secure Hash Algorithm (SHA) to massage the 160-bit key to fill them. Table T is in

practical terms an S-box. It also requires several registers, plus an additional up to 64 Kbytes of

memory, so despite being efficient in software, it requires enough space that there are many

space-constrained applications for which it is not practical.

Cryptanalysis has not fully broken SEAL, but both χ 2 and correlation attacks have made progress

against it [99][100]. Much of this progress is explicitly due to the restricted size of table T, as

three iterations of transforms using T produce a range of only 227 possible values, rather than the

more desirable 232.

Scream

As noted in the discussion of SEAL, Scream [98] borrows heavily from block ciphers, and

particularly from the Advanced Encryption Standard (AES). Scream exists in two forms, both of

which have round functions based on AES, but modified for 64-bit blocks, rather than 128-bit

ones. They differ in the S-boxes used. Scream-F uses the AES S-boxes as defined. Scream uses

S-boxes that are derived from the key.

Apart from the AES features, the structure of Scream is quite similar to SEAL. It uses a 128-bit

key, with a 128-bit nonce, and is almost as efficient as SEAL in terms of its rate of encryption

and decryption.

WAKE

David Wheeler’s Word Auto Key Encryption cipher [101] is, for obvious reasons, called WAKE.

It is a stream cipher with feedback, driven by a relatively simple PRNG producing 32-bit blocks.

Thus, it achieves a very high encryption rate. However, it borrows greatly from block cipher

concepts, particularly in its use of an S-box.

63

The S-box is constructed from the key, and is composed of 256 32-bit entries, with the highest-

order bytes consisting of all possible 8-bit values. Construction of the S-box is ill-defined by

Wheeler, but can be performed as the implementer chooses, in any case, using any reasonably

good PRNG or source of random data, provided the highest-order bytes of the entries display the

required characteristic.

The remainder of the structure is composed of a set of four 32-bit registers, with four instances of

a mixing function defined as follows.

 .)8)((),(255)^(yxSyxyxMz +⊕>>+==

Here, “a >> b” is a right shift of a by b places, and “S(x+y)^255” indicates the contents of the S-box

at the position indicated by the lowest order eight bits of x + y.

The encryption and update cycle is as follows.

).,(

),,(

),,(

),,(

,

11

11

11

1

++

++

++

+

=

=

=

=

⊕=

iii

iii

iii

iii

iii

CDMD

BCMC

ABMB

cAMA

Dpc

The simplicity and speed of the cipher are its downfall, as it is vulnerable to both chosen plaintext

and chosen ciphertext attacks [21][25]. Also, the feedback mechanism is not designed to provide

the self-synchronization found in some stream ciphers.

Complexity-Theoretic Stream Ciphers

Rather than limit the design of stream ciphers to simple mechanisms arranged in depth, these

ciphers seek to use what are believed to be “hard” problems as the basis for generators. They can

also be referred to as “number theoretic” generators, as they utilize what are believed to be hard

64

to solve number theoretical problems as their basis. Several have been designed, with four being

listed by Schneier [25]: Shamir’s PRNG [102], the Blum-Micali generator [103], RSA [104][105]

and Blum-Blum-Shub (BBS) [106]. All four of these are based on the use of large prime

numbers, and three (Shamir’s, RSA and BBS) are related closely enough to be regarded as

variations on the RSA theme.

These last three use large primes p and q, just as the RSA public key cipher system does, but with

slight changes, or with no changes at all, as in Shamir’s and RSA PRNG. BBS requires that p

and q be congruent to 3 mod 4, and rather than using the equation xi+1 = xi
e mod N (where N = pq)

uses xi+1 = xi
2 mod N, with the lowest-order bit being used as the output.

BBS has a number of interesting properties, not least of which is that it is possible to compute xi

directly, rather than sequentially. Further, it can be shown that for a given N, lg(lg(N)) bits are

indistinguishable from random. But, more importantly, these lg(lg(N)) bits are unpredictable in

sequence both forward and backward, making BBS a particularly good cryptographic PRNG.

Congruential Generators

A very common PRNG that must be addressed, despite being unsuitable as a cryptographic

PRNG or as a stream cipher, was introduced by Lehmer [107]. Linear congruential generators

(LCG) are simple, fast and ubiquitous for non-critical applications. All LCGs are described by

the recursion

,mod)(1 mbaXX ii +=+

where Xi is the i-th value in the sequence, and a, b and m are constants.

Selection of the constants a, b and m is critical. If chosen correctly, the LCG will have a range

from 0 to m – 1 and a period of m. Such LCGs are said to be maximal period generators. Knuth

[108] spends considerable space discussing the selection of these constants, and the reader is

65

recommended to read that discussion if interested in LCGs. But, as Schneier [25] points out,

LCGs are predictable. In his words, “Unfortunately, linear congruential generators cannot be

used for cryptography; they are predictable.”

Schneier [25], as well as Menezes, van Oorschot and Vanstone [21] cite numerous papers on the

cryptanalysis of LCGs, and also of closely related generators. Of particular interesting is Joan

Boyar’s cryptanalysis [109][110] of quadratic and cubic generators, which have the following

forms.

 ,mod)(2
1 mcbXaXX iii ++=+ and .mod)(23

1 mdcXbXaXX iiii +++=+

Others extended Boyar’s methods to polynomial congruential generators [111][112][113].

Discarding low-order bits does not materially improve matters. [114]

The only conclusion that may be safely drawn about congruential generators in cryptographic

applications is that they should not be used in any critical application requiring any level of

security.

66

CHAPTER III

MIXING AND MATCHING USING A MCLAREN-MARSAGLIA THEME

While it is easy to design an algorithm to produce what one believes to be a good PRNG, the fact

is that it is very easy to be wrong. In some cases, the problem with a specific generator is that an

implementer uses it in a situation for which it was never intended, and thus is ill-suited. A good

example of this is a generator proposed by McLaren and Marsaglia in 1965 [115], and

subsequently discussed by Donald Knuth [108] under the name Algorithm M. The algorithm has

a very simple structure, and allows the integration of two PRNGs into a single generator. Given

Knuth’s discussion of the algorithm, some implementers believed (and continue to believe) it

would disrupt the underlying patterns inherent in both component generators, yielding a

composite generator that is cryptographically strong. While the concept is interesting, and very

useful in many applications, implementation of the algorithm as described has proven unsuitable

for cryptographic applications, as will be discussed in detail later.

Attempts have been made to modify the concept, primarily by altering the way the central feature

of the mechanism (a shuffling array) is managed. But, certain of the problems with the approach

remain after such changes. It is contended here that the concept’s failure in cryptographic

applications is not fundamental to the concept of shuffling, which may be viewed as a form of

non-linear combining operation. The specific implementation issues result in four related,

cryptanalytically exploitable flaws. To varying degrees, these problems may be ameliorated by

67

appropriate changes in implementation, and generalizations of certain aspects of the mechanism.

As one of these altered forms is exploited in the key-agreement scheme presented here, it is

necessary to first discuss the algorithm and why it is cryptographically weak.

The McLaren-Marsaglia Algorithm

As described by Knuth [108], the algorithm uses three objects: two generators to produce

sequences <Xn> and <Yn>, and a shuffling table V of k entries. The mechanism is initialized by

filling V with the first k values from <Xn>. We quote Knuth’s description of the algorithm

directly as follows, noting that the value m used references a linear congruential PRNG being

used to generate the <Yn> sequence.

“M1. [Generate X, Y] Set X and Y to the next members of the sequences <Xn> and <Yn>,
respectively.

M2. [Extract j] Set j � kY/m, where m is the modulus used in the sequence <Yn>; that

is, j is a random value, 0 ≤ j < k, determined by Y.

M3. [Exchange] Output V[j] and then set V[j] � X.”

Subsequently, Knuth stated the following.

“On intuitive grounds, it appears safe to predict that the sequence obtained by applying
Algorithm M will satisfy virtually anyone’s requirements for randomness in a computer-
generated sequence, because the relationship between nearby terms of the output has
been almost entirely obliterated. Furthermore, the time required to generate this sequence
is only slightly more than twice as long as it takes to generate the sequence <Xn> alone.”

The problem with intuition is that it is sometimes wrong. In the present instance, relying upon

Knuth’s first statement has led some to rely upon this intuitive view of the McLaren-Marsaglia

algorithm as useful in cryptography. This is not the case, as was well shown by Charles T. Retter

[116][117]. The algorithm was never intended for such use, as shown in the original paper by

McLaren and Marsaglia [115]. Still, the algorithm is relatively efficient, as per Knuth’s second

statement, and the fundamental concept has distinct merits. If we view the shuffling array V as

being akin to non-linear combining functions, and generalize on that basis, the idea of combining

68

two PRNGs using a non-linear combiner is useful, and is discussed at length in the following

sections.

(Note that from this point forward we will drop the subscripted n in <Xn> and <Yn> as

unnecessary and potentially confusing. Also, <X> and <Y> may be used synonymously for the

generators used to produce X and Y, as well as the sequence the generator produces.)

Cryptanalysis of McLaren-Marsaglia

There are at least four flaws in McLaren-Marsaglia generators when used for cryptographic

purposes. These flaws are closely related. Three were effectively exploited by Charles Retter in

his key-search attack [117]. The first flaw is that all outputs from the composite generator are

unaltered outputs from <X>, as V contains only values generated by <X>. The re-ordering of the

<X> generator outputs leaves those values unaltered, and they remain identifiable as outputs from

<X>, and <X> only. In terms such as discussed in Chapter II, there is a complete correlation

between the output of a McLaren-Marsaglia generator and the output of its <X> generator, if we

ignore the re-ordering. As a result, <X> may be cryptanalyzed separately from <Y>.

The second flaw, as per Retter [116], is that the average number of iterations of the composite

generator between the point when a specific element from <X> is placed in V and its appearance

in the output stream will be roughly k. So long as the size of V (which is k) is significantly

smaller than R, the range of values elements in <X> may assume, this is an exploitable feature of

the composite generator, since for the overall distribution of individual values in <X> will

otherwise be one occurrence per R values.

The third flaw is that the initial contents of V, once replaced by new values, have no bearing on

subsequent outputs. The entry in V used to provide the next output of the composite generator is

solely determined by <Y>, and the contents of that entry are replaced. Thus, even if we chose to

initialize V with truly random values, the effects of these initial values are completely lost once

69

all k entries in V have been updated over the course of repeated invocations. If we contrast this

with what would happen were we to exclusive-or (XOR) the freshly generated X with the

contents of the entry in V, we can see in this case that the initial contents of V persist in effect,

rather than disappearing. The effect of this one change on Retter’s strategy is significant, as it

would be necessary to guess the contents of V as well as the state of the <X> generator. Notice,

though, that if an attacker has a list of outputs from the composite generator, these were entries in

V, and thus strong clues to the state of V at the start of the sequence, particularly for small values

of k.

The fourth flaw is an implementation issue, rather than a conceptual one. Many implementations

of McLaren-Marsaglia use a mixing array of 32-bit values. This has the dual effect of limiting

the number of elements in the <X> sequence that may be stored in V and making individual

elements in that sequence clearly distinguishable in their occurrences within the <X> sequence.

On the former point, given a shuffling array of 32 bit entries, in most applications it is impractical

to provide a shuffling array sufficiently large as to contain more than a small fraction of all

possible 32-bit values. For example, if k = 210, there can be no more than 210 / 232 = 2-22 of all

possible 32-bit values in V. Assuming a uniform distribution of output values from <X>, any

given value will only occur, on average once every 232 outputs from <X> and the composite

McLaren-Marsaglia generator. Thus, as illustrated below in examining Retter’s attack, it is

relatively easy to generate trial output sequences for <X> and determine whether the guess it

represents is a good candidate as a solution for <X>. Using smaller values in the shuffling array

doesn’t necessarily solve this problem, as Retter illustrated his attack against an implementation

using 8-bit values, and a shuffling array not much smaller than 256 entries. Thus, it can be seen

that the size of the shuffling array relative to the range of values it may contain is an important

consideration, also as discussed below.

70

To understand how these problems interact, consider a sequence <T> of 232 32-bit values such

that no 32-bit value occurs more than once in <T>. If we take this sequence, concatenate copies

repeatedly any number of times, and then apply a special “permutation” or shuffle to obtain the

sequence <S>, such that given a value at position i in the original, unshuffled sequence, that value

is displaced to the “right” some random number of positions and the average displacement is d

where d is small relative to 232, with elements that would be shifted past the end of the sequence

wrapped around to the start, then rotate the whole sequence <S> a random number of places, the

result may seem reasonably random. However, we can still determine the relative alignment of

segments in this sequence to the original sequence <T>.

The way this alignment can be determined is simple. We select a value at some location in <S>

then find that value in the original sequence <T>. We align <T> to <S> using that pair of

locations as indices, and shift <T> left one position. We then examine the distances from the

values in <T> to their nearest occurrences in <S>. Since we know that m is small relative to

|<T>| = 232, if no distances are negative, then <T> and <S> are aligned. If any nearest distances

are negative, we shift the alignment of <T> in that direction by |d| + 1 positions, where |d| is the

absolute value of largest negative distance. We can then verify the alignment by again checking

the displacements from the occurrence of a value in <T> to the nearest occurrence in <S>, as

aligned. If none of the distances is negative, <T> is properly aligned relative to <S>.

The process just described is in essence Retter’s attack [116][117], which first isolates the <X>

sequence, and thus the generator producing it, for cryptanalysis. While Retter’s description starts

with the assumption that a McLaren-Marsaglia generator is being used to generate a stream

cipher, and includes a known-plaintext attack as the starting point, a more rigorous starting point

is that the output sequence is known, as this conforms with a strong form of Kerckhoffs' axiom:

everything is known, except the key (in this case the state/seed of the McLaren-Marsaglia

generator). Retter’s cryptanalysis of the McLaren-Marsaglia generator also differs from the

71

alignment problem described in that only a portion of <S>, k (the size of V), and the generators

for <X> and <Y> are known, and the average delay between insertion of a value into V and its

output from the composite generator is as well.

Retter’s demonstration of the attack is based on a simplified model, with the <X> sequence being

byte values, rather than 32-bits or larger. Despite a shuffling array size of 100 entries, and a long

maximum delay, the fact that the table size is smaller than the range of values bytes may assume,

resulting in the average delay from a value’s insertion to its appearance in the output stream being

equal to k, the correlation between a correct key/seed guess and average delay remains very

strong.

In Retter’s attack, a random seed for the <X> generator is selected, and a sequence of outputs

generated based on that seed. These values are then checked against a known sample sequence

from <S>. If there are no or few appearances of the generated values in the sample, we select

another random seed, generate a sequence of outputs using it, and try again. Otherwise, the

delays between the appearances of values in the trial sequence and their occurrence in the output

stream are determined and averaged. If the average is near the table size, k, the guess is close,

and can be refined. If the average is large, approaching R/2, a new seed and trial sequence is

again generated, and the process repeated. This attack closes on a solution for the state of the

<X> generator rapidly, when compared to a brute force attack on V, <X> and <Y>, as it is

bounded by the state size of the <X> generator alone.

Note that the key for a stream cipher and the state are not necessarily identical in size. The key is

used to initialize the mechanism, but there may be additional initialization material that is not part

of the key, yet may be changed as a result of the ciphers operation over time. In Retter’s

published form of his attack, the key and state are synonymous, but this need not be the case.

72

The time required for Retter’s attack varies with the resources available, the size of the sample

output from the McLaren-Marsaglia generator, the period and complexity of the <X> generator,

and k. Cryptanalysis of the <Y> sequence can then be done separately.

The Bays-Durham Generator

The McLaren-Marsaglia generator is not the only shuffling algorithm. Immediately following his

description and discussion of McLaren-Marsaglia, Knuth [108] presents an algorithm developed

by Bays and Durham [118], titling it “Algorithm B.” We shall follow Knuth’s description.

Like the McLaren-Marsaglia generator, the Bays-Durham generator incorporates a shuffling array

V. However, utilization of this shuffling vector is different from McLaren-Marsaglia, as it uses

the same PRNG to both fill shuffling array V and to select entries in V for output.

In operation (assuming the <X> generator is a linear congruential generator) the Bays-Durham

generator is initialized by filling the shuffling array V (of k entries) with the first k outputs from

the <X> generator, and setting generator, and setting Y to the next (k + 1) output. Index j is then

calculated as ,/ mkYj = where m is the modulus of the <X> generator. Set Y equal to V[j].

Pump the <X> generator for a value and set V[j] to that value. Output Y.

For non-cryptographic applications, this is a very good PRNG. As only one PRNG is required,

and the overhead of indexing the shuffling array is low (comparable to McLaren-Marsaglia), it is

faster than McLaren-Marsaglia, assuming the same <X> generator is used for both.

For cryptographic purposes (a use for which it was never intended), this approach suffers the

same liabilities with regard to the size and contents of the shuffling array that McLaren-Marsaglia

does, but adds a new liability in that the output at any given point tells a cryptanalyst what

shuffling array entry will provide the next output.

73

For the purposes of this thesis, the Bays-Durham approach does not offer the same opportunities

for injection of aperiodicity, nor of non-linear combining functions, as does the McLaren-

Marsaglia scheme. It is therefore noted as considered, and not discussed further, though it might

be used as part of a constituent generator for the protocols discussed in Chapter IV.

Modifying McLaren-Marsaglia

Various suggestions have been made as to how the McLaren-Marsaglia approach may be

improved, in the cryptographic sense or otherwise. A proposal by Tyanev, Petkova and Tyaneva

[119] is an example. As noted in the previous section, one of the basic flaws in the McLaren-

Marsaglia approach is that the outputs of the composite generator are outputs of the <X>

generator, another is the size of the shuffling array relative to the range of values the outputs may

assume, and a third is the unaltered passage of inputs from <X> through the mechanism to the

output stream. To varying degrees, such modifications address these problems. As interesting as

many of these are, they complicate the cryptanalysis of a McLaren-Marsaglia generator only by

increments. Indeed, the first of two modifications by Tyanev, et al. [119] merely changes the way

the <Y> sequence is used to access the shuffling array V, which does nothing to complicate

Retter’s attack. Thus, in order to rehabilitate the McLaren-Marsaglia concept, other

modifications may appropriately be examined.

Perhaps the most serious flaw of McLaren-Marsaglia in many implementations is the size of the

shuffling array relative to the range of output values. Even with schemes that hash two or more

entries in V together, the size of the shuffling array strongly affects the strength of the result. For

example, if we assume the output function selects three entries in the shuffling array V (each

entry being 32-bits long) and performs a hashing operation using the contents of those entries,

assuming that there are no repetitions of values in V, if k = 64, we can still have at most 643 =

262,144 different values as possible outputs for any invocation, assuming no collisions.

74

Significant as this number is, it is still a small fraction of the range of values a 32-bit integer may

assume.

With such considerations, it appears prudent to find other ways to increase the available range of

outputs from V, at any point in the period of the composite generator, relative to the range of all

possible outputs. Fortunately, there is a simple approach that accomplishes this in cryptographic

applications, and two considerations lead in the same direction.

First, it can be seen that the effectiveness of Retter’s attack [117] derives from the difference in

expected delays in the appearance of values in the output stream, given wrong guesses as to the

state of the <X> generator, and correct or near-correct guesses. (A “near correct” guess is one

that corresponds to the state of the generator near the point in the sequence for which we are

making a guess.) This difference derives from the values of k and R. As Retter showed, with k =

100 and R = 256, good guesses result in delays averaging k iterations after insertion, and bad ones

in delays averaging R/2. But, if ,2/Rk ≥ this attack cannot readily differentiate between good

and bad guesses.

Second, whereas many implementations of the McLaren-Marsaglia algorithm treat the output

from the <X> generator as a stream of 32-bit or larger values, Retter [116][117] and Schneier

[25] implement V as an array of bytes, while Knuth [108] does not discuss the size of the entries

in V at all. We are not bound by the implementation of the <X> generator to any specific size of

elements in V, provided we are not dealing with floating point values, or with values that must

conform to some non-uniform distribution. We can treat the <X> stream as we choose, as bits,

nybbles, bytes, etc., and remain fully in the spirit of McLaren-Marsaglia. The interpretation of a

bit or group of bits is, after all, completely arbitrary. Thus, we may treat <X> as a bit stream, and

impose any organization on it we choose.

75

An example of how we can do this is treating the outputs from the <X> generator as groups of

bytes which can be regrouped as we choose. Thus, where we might have chosen k = 256 due to

space constraints when dealing with a shuffling array of 32-bit values, we could use the same

space for an array of bytes where k = 1024. While one effect is unfortunate – it takes 40 bits to

independently index four bytes – there are positive effects in terms of dealing with Retter’s

attack. A 256-entry array of 32-bit values can contain at most 28 / 232 = 2-24 of all possible 32-bit

values. On the other hand, a 1024-entry array of random bytes will contain an average of four of

each of the possible values. Since the probability of a specific byte value being absent from a

byte-array of this size is ,018173.0)2/)12((102488 ≅− there is a small but reasonable

probability that any possible 32-bit value may be produced by randomly selecting four entries and

concatenating them to produce a 32-bit value. This is the approach used by Schneier [25], who

presents the algorithm using a table of 213 = 8192 entries, with the recommendation “… the larger

the better.”

Viewed as a byte-stream, the output will tend to contain occurrences of every possible byte value,

on average, once per 256 bytes output. This means that the average delay for an arbitrary wrong

guess of the seed of the <X> generator will display an average delay of R/2 = 128 bytes, as

predicted by Retter, but the average delay before the appearance of any one byte value and an

arbitrary point in the output stream will also be 128 bytes. We cannot readily differentiate

between any two bytes of the same value and their point of origin in the <X> byte sequence,

unless there is an uneven distribution of the value in that sequence that results in large gaps

between clusters of occurrences. While a statistical analysis of the distribution of byte values in

the <X> sequence and the output stream may well yield positive results in trying to isolate the

<X> generator, increasing the number of entries in V will tend to reduce the effectiveness of this

approach by decreasing the probability that V will become seriously depleted with respect to any

byte value.

76

Here is an implementation of the byte-based construction of 32-bit outputs, with k = 1024.

unsigned long Xn(); // generator for <X>
unsigned long Yn4(int *in); // generator for <Y>, mod’ed to provide four
 // indices in the range 0 to 1023, inclusive

unsigned char V[1024]; // the byte-structured shuffling array

unsigned long BitMatchStream()
{
 int indices[4]; // for the indices used
 int i; // a counter
 unsigned long fill; // used to re-fill V slots
 unsigned long out = 0; // for the result

 Yn4(indices);
 fill = Xn();

 for (i = 0; i < 4; i++)
 {
 out = (out << 8) | (unsigned long) (V[indices[i]]);
 V[indices[i]] = (unsigned char) (fill & 0x000000ffL);
 fill = fill >> 8;
 }

 return out;
}

Byte-based McLaren-Marsaglia with 32-bit outputs

Some of the flaws of the McLaren-Marsaglia scheme remain even with this approach. In

particular, the contents of V do not contribute meaningful added complexity in terms of the size

of the internal state that must be determined for the composite generator. A correct guess of the

states of the <X> and <Y> generators at any point will eventually, once the initial contents of V

have been replaced, allow determination of the new contents of V, and lead to a complete

solution. Fortunately, the opportunities for modifying the McLaren-Marsaglia mechanism have

not been exhausted, as will be discussed later.

As a 1024-byte shuffling array is too large for some applications, treating the <X> data stream as

a stream of even smaller units may be considered, though at the cost of additional problems in

indexing elements in V. Treating the <X> sequence as a stream of 4-bit nybbles is useful, as V

may require less space while decreasing the probability that an arbitrary value is not present in V.

This effect may be seen in the following table. Note that even if byte locations are used to store

77

the nybbles in V, a 256-entry table of nybbles would occupy the same space as a 256-entry byte

table, with a dramatic reduction in the probability that any given value would be absent, but

require twice the number of indexing bits.\

The following table offers a comparison between shuffling arrays with 4-bit and 8-bit entries. As

with prior discussions, V is the shuffling array (viewed her as a set of values), k is the size of V in

entries, and

kbbVxP)2/)12(()(−=∉

is the probability that a particular b-bit value is not present in V. As can be seen, for a given table

size (relative to the entry size) the smaller entry size offers a slightly lower probability that a

value will be absent from V for even small array sizes. This advantage increases with increasing

table size (again relative to the entry size).

bits/entry

 8 k 256 512 1024 2048 4096

 P(x∉V) 3.67E-01 1.35E-01 1.82E-02 3.30E-04 1.09E-07

4 k 16 32 64 128 256

P(x∉V) 3.561E-01 1.268E-01 1.608E-02 2.584E-04 6.68E-08

Probability a value x is absent from

V based on size of V and bits per entry

Bit-Selection

When the <X> input stream is treated purely as a bit-stream, the problem of indexing becomes

acute. Something as simple as a 32-bit bit-wise shuffling array would appear to require a total of

40 bits of indexing material to produce a byte of output. The bits to be used must also be

assembled into the required size blocks, and bit positions in V refilled from <X>. An alternative

to indexing is an idea from Bennett and Brassard. In their proposed scheme for agreeing upon a

One-Time Pad using quantum phenomena, they use a system of bit-matching. When a random

78

bit (encoded as a single polarized photon) sent by Alice is correctly guessed (via the photon’s

polarization) by Bob, the value of that bit is used as a bit in the key-stream being generated.

There are several ways this type of bit-matching may be adapted to the present problem.

The first method is to treat both the <X> and <Y> sequences as bit-streams, and do the same bit-

match operation as used in the Bennett-Brassard paper: corresponding bits in the two bit-streams

that match in value are used in the output stream. Another is to again treat both sequences as bit-

streams, and select the bit values in <X> corresponding to 1-bits in <Y> for the output stream

(though the same effect is obtained if we select bit values in <X> based on 0 bits in <Y>). Other

selection and output functions are also applicable. All such methods have much the same effect,

though selecting different bits, and thus generating different output streams. Each requires, on

average, the use of two <X> sequence bits, and two <Y> sequence bits to generate one output bit.

A code sample illustrating how this may be done is presented here.

unsigned long Xn(); // generator for <X>
unsigned long Yn(); // generator for <Y>

unsigned long BitMatchStream2()
{
 static unsigned long xyMask = 0;
 static unsigned long xBuff = 0;
 static unsigned long yBuff = 0;
 unsigned long oBuff = 0;
 int oCnt = 0;
 unsigned long val = 0;

 while (oCnt < 32) // while needing more bits for output ...
 {
 if (xyMask == 0) // indicates buffers are empty
 {
 xBuff = Xn(); // refill buffs, set bit select at first
bit
 yBuff = Yn();
 xyMask = 0x80000000;
 }

 val = xBuff & xyMask; // grab a bit in <X> stream

 if ((yBuff & xyMask) == val) // check for a bit match and do
 // the following if matched
 {
 oBuff = (oBuff << 1) | ((val != 0) ? 1 : 0);
 oCnt++;
 xyMask = xyMask >> 1;

79

 }
 }

 oCnt = 0;

 return oBuff;
}

Bit selection from <X> based on matching <Y> bits

This technique does not match the McLaren-Marsaglia structure, since we do not have a shuffling

array. Thus, for a single pass through the <X> sequence, the bits output are in the same order they

were in within <X>. This must be regarded as a liability, since an attacker would have roughly

half the bits in some segment of <X> in their correct order, given a sample of the resulting output

stream. The number of complete bit sequences from <X> that could yield a given sample is large,

especially given the fact that, though the length of the segment from which the sample’s bits were

extracted will be unknown, the length will tend towards twice the number of bits in the sample,

particularly as the sample size increases. The number of possible source bit-string pairs that

could generate a known n-bit bit-stream is given by the following, where C is the number of

corresponding bit sequences.

.2 ni

ni n

i
C −

∞

=
∑

=

Note that there is an assumed ordering of the two strings, which is appropriate for the

cryptographic environment. Thus, if string A = 0110 and B = 0101, we do not regard this as

being the same as A’ = 0101 and B’ = 0110, even though the result is the same for both string

pairs. In the cryptanalysis of any such implementation in a PRNG, the sources of the respective

strings are highly relevant.

While the summation is infinite, in practical terms an attacker would be concerned only with the

region where i is near 2n. Still, this is not very helpful to an attacker. Consider the following

80

case. A bit-matching process yields the 4-bit pattern 0101. If we know that this was generated

from a pair of 8-bit sequences, the above equation tells us that there are

112016*702
!4!4

!8
2

4

8 448 ==

=

 −

8-bit string pairs that could have generated this four-bit pattern. As n increases, the ratio of

potential generating pairs to the number of values 22n can assume increases rapidly, though

certainly not as rapidly as 24n, which is the number of possible 2n-bit pairs, ignoring matches.

One of the possible <X> generating streams is 00110011. Since any 0-bit is indistinguishable

from any other, as is any 1-bit from any other 1-bit, we are left with 16 different patterns selecting

the known bits that would produce that pattern, and, even if we know the source pattern was the

one used, no means by which to conclude which bits were in fact used in the output. Such a

determination requires knowledge of the <Y> bit-stream that was used.

The following table illustrates the combinatorial growth rate for an n-bit output stream, assuming

only 2n bit input streams (as in the i = 2n case in the above summation formula) were used to

generate the output. Note that the righ-hand shows the relative growth rate of the factorial piece

of the problem set – the distribution of the selected bits within the input strings.

n 2
2n

 (2
n
)((2n)!/(n!)

2
) (2n)!/(n!)

2
2

n

4 256 1120 4.375

8 65536 3294720 50.273

16 4.29E+09 3.939E+13 9171.759

32 1.84E+19 7.871E+27 4.27E+08

64 3.4E+38 4.418E+56 1.3E+18

Growth of number of candidate input string pairs,

assuming n bits of output and input strings of 2n bits.

Stirling’s approximation for large factorials is also useful for understanding the relative growth

rates, and is given here.

81

n

e

n
nn

≈ π2!

From this it can be clearly seen that the number of corresponding string pairs increases rapidly,

with increasing n, since we can substitute this approximation into the formula for corresponding

string pairs. For the case of n bits generated from 2n-bit strings, we have the following

approximation for the factorial portion of the formula.

.
2

2

2
2

2

2
4

!!

)!2(2 2

2

2

2

2

n

e

n
n

e

n
n

e

n
n

e

n
n

nn

n

n

n n

n

n

n

n

π
π

π

π

π
=

=

≈=

This gives us the following approximation for the number of corresponding input strings of 2n

bits, yielding an output string of n bits, where n is large.

.
2

2
2

2
2 32

nnn

n n
n

n
n

ππ
=≈

A useful observation here is that if the sequences <X> and <Y> are random bit-streams, the bits

output by the above algorithm will also be random. If these bits-streams are produced by PRNGs,

but they are bit-wise apparently random (meaning that there is no practical means by which to

accurately predict whether the next bit to be generated will be a 1 or a 0 except to know the state

of the PRNG at that point in the sequence, even with knowledge of all prior outputs), the output

from the bit-matching algorithm will likewise be bit-wise apparently random. We can then

reasonably conclude that if the generators for <X> and <Y> are both “good” (meaning bit-wise

apparently random, satisfying various tests of randomness, etc.) and independent (they do not

produce the same output stream nor cycle period, and there is no internal relationship between

their separate outputs), successful cryptanalysis of the output stream from the bit-matching

82

process, in order to determine upcoming bits in their correct positions with reasonable likelihood,

should require that both generators be solved.

With a standard McLaren-Marsaglia implementation using byte or larger entries in V and k

significantly less than R / 2 (R being the range of possible values for entries in V, and k the table

size), the fact that a correct solution for <X> yields a rolling window of possible outputs, solving

<Y> may be unnecessary, as the probability of a correct prediction of the next output will be

related to 1 / k, rather than 1 / R, as would be the case for a truly random output.

There is a potential downside to this scheme. If we consider cases where the periods of <X> and

<Y> differ, the composite period will be equal to the least common multiple (LCM) of the two

periods. Given a very large LCM (such as when the periods of the two generators are relatively

prime), we should anticipate all bits in the <X> sequence to be eventually used in the composite

output stream, or at least the vast majority being present. Since, segment-wise, the bits will be

ordered, there may well be a way to exploit the ordering of the bits to reconstruct the original

sequence produced by <X>. This must be regarded as a potentially serious flaw, barring some

mechanism to further obscure the ordering of the bits, though at present we do not anticipate this

being exploitable.

There is an alternative to straight bit-matching that uses the same concept as a means of virtual

indexing, and partially shuffles the bits obtained from <X>, and more closely conforms to the

McLaren-Marsaglia model. In this approach, <X> and <Y> are still treated as bit-streams, but the

<X> bits are used to refill locations in a bit-table that serves as V, while bits from <Y> are used to

select bits in V for output. A code sample follows, illustrating this technique.

unsigned long Xn(); // generator for <X>
unsigned long Yn(); // generator for <Y>

unsigned long BitMatchShuffle()
{
 static unsigned long iFlag = false;
 static unsigned long xMask = 0;

83

 static unsigned long xBuff = 0;
 static unsigned long yMask = 0;
 static unsigned long yBuff = 0;
 static unsigned long vArray = 0;
 unsigned long oBuff = 0;
 int oCnt = 0;
 unsigned long val = 0;

 if (iFlag == false) // init shuffling array if not already done
 {
 vArray = Xn();
 iFlag = true;
 }

 while (oCnt < 32) // until enough bits are gathered ...
 {
 if (xMask == 0) // refill <X> buffer if spent & set selector
 {
 xBuff = Xn();
 xMask = 0x80000000;
 }

 if (yMask == 0) // refill <Y> buffer if spent & set selector
 {
 yBuff = Yn();
 yMask = 0x80000000;
 }

 val = vArray & yMask; // grab a shuffling array bit value

 if ((yBuff & yMask) == val) // if <Y> bit matches, copy bit to
output
 // and update accordingly
 {
 oBuff = (oBuff << 1) | ((val != 0) ? 1 : 0);
 oCnt++;
 vArray = (vArray & !yMask) | ((xBuff & xMask) ? yMask : 0);
 xMask = xMask >> 1;
 }

 yMask = yMask >> 1; // shift to next mask bit
 }

 oCnt = 0;

 return oBuff;
}

Bit-matching via a shuffling array

Here, the output stream is a bit-wise “permutation” of <X> in much the same way that the

original form of McLaren-Marsaglia shuffles the <X> to produce a “permutation” of <X>, with

two important exceptions. First, a bit inserted into the table is only tested for possible output

once per cycle through the table, which may prove to be a flaw. Second, if V is initialized with

random bit values, the effects of these bits will tend to persist well past their replacement in V:

84

these bits, and the subsequent states of V are important elements in the overall state and output

cycle of the composite generator.

The persistence of effect can be seen by considering a single bit position, and the effect of

changing the value of that bit. Given an initialization of V, if we change one bit from a 1 to a 0,

we will change the point of insertion of the next output bit value from <X> by either changing

from insertion of that bit at that position to not inserting it, or from non-insertion to insertion. In

the former case (non-insertion), the bit value will be inserted at a later point in the process, likely

in a different position in V, and its effect in the output stream is thus displaced, as well as the bits

it and its successor values in that position will be tested against from <Y>. In the latter case

(insertion), the same argument applies, with the bit value from <X> being inserted in a different

position, along with the resultant change in bits from <Y> it and the position’s (in V) successor

values will be tested against.

The distribution of bits from the source stream (<X>) into the permuted output stream follows a

reasonably consistent pattern. Since the point of comparison in a shuffling array of k bits returns

to the same location only once every k comparisons, normal operation of the process will force a

minimum shift that averages k/2 positions in the output stream, and the probability that the bit

will be output as a result of any given test of its position (and value) in the shuffling array is 0.5,

assuming the <Y> bit-stream is random.

Since all the bits from <X> appear in the output stream of this shuffling algorithm, it would seem

that an attacker is given a substantial edge in determining <X>. This is not the case. An attacker

faces the problem that any two bits of the same value are indistinguishable from each other, and

averages are just that – averages. An attacker cannot easily tell whether a particular bit value in

the output stream originated from any given point in the <X> input sequence. Depending on how

many bits are output between the point a bit is placed in the shuffling array and its first

85

examination as a potential bit-match, the first possible appearance of that bit may be anywhere

from being the very next to k bits later, and there is no guarantee it will be output in that interval.

The probability distribution for any number of bits from zero to k – 1 being output before a bit

position can be re-tested against the next <Y> sequence bit for use as output is given by the

binomial distribution. For k = 32, the average number of bits output before the same position is

retested is 15.5, and the probability that some number of bits outside the 14-to-18 range will be

output before a given bit is first examined is better than 0.47, but there is only a 0.5 probability

that the bit will appear at that point in that cycle through testing the bits in V. If a larger bit-

vector is used (say k = 64), both the separation between placement of a bit in V and its first test,

and the number of bits that may be output between tests of the bit in V increase.

The probability that a given bit is the first bit output after its insertion into the shuffling table is

simple, when assuming random <X> and <Y>, and is the probability that no other bit is used as

output before it is. Since the probability that the contents of any given bit position will be used as

output is 0.5 (assuming random <Y>) for a table of k bits that bit position in questions probability

of use as next output source in the first cycle through the table (following the prior use/insertion)

is 0.5k-1 * 0.5 = 0.5k. For each successive pass, the probability decreases by a factor of 0.5k, so the

probability that the position will provide the next output bit value by the following.

∑
∞

=1 2

1

i
ik

Calculation of the probability of an individual bit in V having a specific delay in the output

sequence greater than zero is non-trivial. The calculation involves infinite series and binary

distributions over large sequences. For example, if we want to know the probability that a bit will

appear in the output stream the second time it is tested, and is the i-th bit (i < k) output after its

initial insertion into V, with k bits in the shuffling array, we end up determining the probability

86

for all distributions of i – 1 bits output in 2(k – 1) trials, times the probability that the position is

not used in the first pass, times the probability that it is used in the second. The overall

probability is, then, a summation of an infinite series of such calculations.

How effective this approach may be in countering Retter’s attack is related to the same question

with regard to other output unit sizes. In Schneier’s words [25], “… the bigger the better,” when

it comes to the dimensions of V. We expect that for large shuffling tables the effectiveness will

tend to decline with increasing values of k, when k > R. In the case of bit-shuffling, it might well

prove that an analysis of local “bit density,” meaning the ratio of 1’s and 0’s in segments of <X>

and the output, will provide an effective means of attack, since the ratio of 1’s to 0’s will in V at

any given time will tend to be reflected in the output sequence.

It must be recognized that true bit-wise sampling of the contents of V is a slow process. For every

n bits of output from the composite generator, n bit replacements in V, and an average of 2n bit-

tests, must be performed. A tabular approach can speed this some, as illustrated in the following

code sample, and introduces a step in the development of more complex mixing methods.

unsigned long Xn();
unsigned long Yn();

int bits[16][16] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
{0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1},
{0, 1, 1, 3, 0, 1, 1, 3, 0, 1, 1, 3, 0, 1, 1, 3},
{0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 4, 2, 2, 1},
{0, 1, 0, 1, 2, 5, 1, 3, 0, 1, 0, 1, 2, 5, 1, 3},
{0, 0, 2, 1, 2, 1, 6, 3, 0, 0, 2, 1, 2, 1, 6, 3},
{0, 1, 1, 3, 1, 3, 3, 7, 0, 1, 1, 3, 1, 3, 3, 7},
{0, 0, 0, 0, 0, 0, 0, 0, 8, 4, 4, 2, 4, 2, 2, 1},
{0, 1, 0, 1, 0, 1, 0, 1, 4, 9, 2, 5, 2, 5, 1, 3},
{0, 0, 2, 1, 0, 0, 2, 1, 4, 2, 10, 5, 2, 1, 6, 3},
{0, 1, 1, 3, 0, 1, 1, 3, 2, 5, 5, 11, 1, 3, 3, 7},
{0, 0, 0, 0, 4, 2, 2, 1, 4, 2, 2, 1, 12, 6, 6, 3},
{0, 1, 0, 1, 2, 5, 1, 3, 2, 5, 1, 3, 6, 13, 3, 7},
{0, 0, 2, 1, 2, 1, 6, 3, 2, 1, 6, 3, 6, 3, 14, 7},
{0, 1, 1, 3, 1, 3, 3, 7, 1, 3, 3, 7, 3, 7, 7, 15}};

int shifts[16][16] = {
{4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0},
{3, 4, 2, 3, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 0, 1},
{3, 2, 4, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 2, 1},

87

{2, 3, 3, 4, 1, 2, 2, 3, 1, 2, 2, 3, 0, 1, 1, 2},
{3, 2, 2, 1, 4, 3, 3, 2, 2, 1, 1, 0, 3, 2, 2, 1},
{2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2},
{2, 1, 3, 2, 3, 2, 4, 3, 1, 0, 2, 1, 2, 1, 3, 2},
{1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3},
{3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1},
{2, 3, 1, 2, 1, 2, 0, 1, 3, 4, 2, 3, 2, 3, 1, 2},
{2, 1, 3, 2, 1, 0, 2, 1, 3, 2, 4, 3, 2, 1, 3, 2},
{1, 2, 2, 3, 0, 1, 1, 2, 2, 3, 3, 4, 1, 2, 2, 3},
{2, 1, 1, 0, 3, 2, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2},
{1, 2, 0, 1, 2, 3, 1, 2, 2, 3, 1, 2, 3, 4, 2, 3},
{1, 0, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 2, 4, 3},
{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}};

int set[16][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14},
{0, 0, 1, 1, 4, 4, 5, 5, 8, 8, 9, 9, 12, 12, 13, 13},
{0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12},
{0, 0, 1, 1, 2, 2, 3, 3, 8, 8, 9, 9, 10, 10, 11, 11},
{0, 0, 0, 0, 2, 2, 2, 2, 8, 8, 8, 8, 10, 10, 10, 10},
{0, 0, 0, 0, 1, 1, 1, 1, 8, 8, 8, 8, 9, 9, 9, 9},
{0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8},
{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7},
{0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6},
{0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5},
{0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4},
{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3},
{0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

unsigned long bitSpigot()
{
 static unsigned long V;
 static int flag = 0;
 static unsigned long long outBuff = 0;
 static int outBuffDepth = 0;
 static unsigned long long bitQueue = 0;
 static int bitQueueDepth = 0;
 static unsigned long mskQueue = 0;
 static int mskQueueDepth = 0;
 unsigned long outVal;

 if (flag == 0)
 {
 flag = -1;
 V = Xn();
 }

 while (outBuffDepth < 32)
 {
 unsigned long temp = 0;
 unsigned long i, j, k, l;

 if (bitQueueDepth < 4)
 {
 bitQueue |= (((unsigned long long) Xn())
 << (32 – bitQueueDepth));
 bitQueueDepth += 32;
 }

88

 if (mskQueueDepth == 0)
 {
 mskQueue = Yn();
 mskQueueDepth = 32;
 }

 V = (V >> 28) | (V << 4); // rotates V.

 i = V & 0x0000000fL;

 mskQueue = (mskQueue >> 28) // rotates mskQueue
 | (mskQueue << 4);
 mskQueueDepth -= 4; // bits are “spent”

 j = mskQueue & 0x0000000fL;

 k = (unsigned long) ((bitQueue & 0xf000000000000000L) >> 60);
 l = i ^ j;

 outBuff = (outBuff << shifts[i][j])
 | ((unsigned long long) bits[i][j]);
 outBuffDepth += (unsigned long long) shifts[i][j];

 V = (V & (0xfffffff0L | l)) | set[l][i];

 bitQueue = bitQueue << shifts[i][j];
 bitQueueDepth -= shifts[i][j];
 }

 outVal = (unsigned long) (outQueue & 0xffffffffL);
 outBuff = outBuff >> 32;
 outBuffDepth = outBuffDepth - 32;

 return outVal;
}

Table-based bit-wise shuffling

Note how the sampling has been revised. The low-order nybble of V is used after V has been

rotated, rather than keeping explicit track of the current location in V. Also, as we place groups

of up to four bits in the output buffer at a time, we will regularly push up to three bits above the

region in the output buffer that will be used for the imminent output. Since we are free to sample

as we wish in V, given the McLaren-Marsaglia model, this makes no objectionable difference,

and improves the shuffling process, since such “over buffered” bits may remain in the output

buffer for extended periods.

There are several things that may be done to increase the occurrence and effect of such over-

buffering. By increasing the dimensions of the arrays used, and the associated number of bits

89

operated on per cycle of the loop, and also by constructing first bytes, then final outputs from

bytes, the over-buffering, and thus the shuffling effects can be increased.

Some Cryptographic Considerations

One serious liability remains incompletely addressed at this point. The data units output by the

composite generator, whether bits, bytes or other constructs, remain “raw” outputs from the <X>

generator, though shuffled. However indistinguishable any one bit or byte is from any other of

the same value may be, the obfuscation of the <X> output is purely a result of localized shuffling.

In the case of bit shuffling, the probability of a bit’s appearance at successive points in the output

stream is not smoothly decreasing. It displays regions of relatively higher probability which only

tend to fade, but remain present, spaced at roughly k / 2 intervals. This cannot be regarded as

fully satisfactory, from a security standpoint. The redeeming qualities of the bit-wise McLaren-

Marsaglia scheme in this regard are that the permutation is less limited in scope, being effected

and varied over the full cycle of the <Y> generator while the DES permutations are limited to

within each 64-bit cipher block, and it is at least pseudo-random as determined by the <Y>

generator while the DES permutation is static. The fact remains that, if there are as yet unknown

means to exploit the one-to-one mapping of bits from their original locations in the <X> sequence

to their positions in the composite generator’s output that are faster than a brute force attack, and

thus to “break” the generator, discovery of such means must be presumed to eventually occur.

By analogy, we can view the <X> sequence of a McLaren-Marsaglia generator as a plaintext to be

encrypted, the <Y> sequence as the key used to perform that encryption, and the intervening

mechanism being the cipher algorithm. As such, we can analyze some of the problems of the

McLaren-Marsaglia approach using cryptographic concepts.

A basic objective of cipher design is to provide a mechanism that, whenever possible, forces an

attacker to perform a brute force attack on the cipher key, when trying to crack a ciphertext. The

90

size of the key-space and the degree to which an attacker is forced to perform either random or

systematic trials of possible keys in that key-space play a substantial role in determining the

ultimate strength of a cipher. Thus, it is necessary to understand the effect key size has on cipher

strength, as well as how and when an attacker may conclude that a ciphertext has been

successfully decrypted, and the key used in its encryption found. For this, the concept of “unicity

distance” is useful, even though it was originally developed as a tool for examining the

comparative strength of ciphers, to determine when one could reasonably conclude a

cryptanalytic attack had been successful.

Unicity distance was defined by Claude Shannon in one of the most important papers ever written

on cryptography [5]. In it he laid out the theoretical foundation of secure ciphers, and proved that

the only perfect cipher systems are One-time Pads (OTP) or homologues of OTP. In this paper,

he defined the unicity distance of a ciphertext as the ratio of the entropy of the key to the

redundancy of the underlying plaintext. The definition of unicity distance is

()
,

D

keyspaceH
U =

where, U is the unicity distance, keyspace the size of the key-space, H(keyspace) the entropy of a

randomly selected key, and D the redundancy of the plaintext.

A common illustration of the meaning of these terms, and of unicity distance, uses DES as an

example. In DES, the effective key length is 56 bits. (It’s specification is in terms of eight 8-bit

bytes, including a leading parity bit in each byte that is otherwise ignored.) If the key-space is

assumed to contain no weak keys, there are 256 possible keys, and the entropy of that key-space is

H(k) = lg(256) = 56. In English plaintext, there are 26 letters. Ignoring punctuation,

capitalization, white-space, etc., the amount of data carried in an individual character is lg(26) ≅

4.7. Analysis of textual material in English reveals that there are generally only about 1.5 bits

91

worth of real information conveyed per character, so that D ≅ 4.7 – 1.5 = 3.2. Thus, the unicity

distance for English plaintext encrypted with DES is U ≅ 56 / 3.2 = 17.5. This means that in

order to determine whether a ciphertext of an English plaintext has been correctly decrypted using

a particular key, an attacker ordinarily must decipher at least 17.5 characters worth of plaintext.

As DES uses a 64-bit cipher block, this means that decryption of three blocks of a ciphertext that

produces a meaningful English plaintext is generally sufficient to conclude that the correct key

has been found.

If the <Y> sequence is assumed to be random, and we treat it as a key encrypting the <X>, while

noting that the <X> sequence, if also random, has a redundancy of zero, we see that the entropy of

<Y> is equal to its length in bits, and the limit of U as D approaches zero is infinity. We would

thus expect the encryption of the <X> to approach the strength of OTP, or equal it; effectively, the

output is random. This is not the case when the <X> and <Y> sequences are generated by

PRNGs.

At best, we can view the seeds of the two generators as the collective key for the mutual

encryption of the two sequences, and the redundancy of the “encrypted” material as being non-

zero but small, if the PRNGs used are “good.” If we assume the redundancy of the output bit-

stream is 1 per bit, and the entropy equals the initial state (seed) of the composite generator, then

the unicity distance of the generator is equal to the size of the combined seeds plus any other

random material used to initialize the McLaren-Marsaglia mechanism. While the assumption that

the bit-wise redundancy of the output equals 1 is purely a guess, it is a reasonable one for many

types of PRNGs. Since PRNGs are deterministic, every bit output by a PRNG is an indicator of

its internal state, and thus every bit output reveals information about the internal state of the

generator. If a PRNG is designed such that every bit of the seed influences every bit of the output

stream, each output reveals information about all bits of the internal state. Viewed as a mapping,

92

any PRNG maps one seed to one output sequence. It is reasonable to believe that, for a “good”

PRNG, the point at which the mapping can be identified requires at least as many bits of output as

are contained in the seed. Thus, we may well expect that the best way to increase the unicity

distance of a PRNG is to increase the effective size of the seed.

A standard goal in the design of block ciphers is that, given any key, a change of any single bit in

the plaintext enciphered using that key should result in a 0.5 probability for each bit in the

resulting ciphertext block changing as well. The same is sought for single-bit changes in keys.

This diffusion of the effect of single bit changes, in both the plaintext and the key used, is part of

what gives the better block ciphers their strength. Understanding why this is desirable is

relatively simple.

Consider a cipher that does not behave like this. Rather, a single bit change in either the key or

the plaintext will result in only a single bit change in the ciphertext. As a result, it is possible to

analyze groups of ciphertexts with regard to the differences, and thereby gain at least some

information about the keys and underlying plaintexts associated with ciphertexts. Where single

bit differences are found, it is reasonable to suspect that either the plaintext or the key may differ

by a single bit. Thus, if one message can be cracked, the other should easily follow. This is the

basis of differential cryptanalysis, wherein patterns of differences resulting from bit-changes in

keys and plaintexts are analyzed and used to help in breaking ciphertexts. While far more

complex patterns of changes occur in many block ciphers, when the probabilities for bit-level

differences in ciphertexts, relative to single bit changes in plaintexts and keys, are not uniformly

very near 0.5, the potential for an effective differential analysis attack exists.

From this, it should be evident that part of the problem with the common form of the McLaren-

Marsaglia scheme, when viewed as a means of enciphering the <X> sequence by <Y> based

shuffling lies in the fact that the bits in <X> are not altered, just displaced. The same is true of all

93

the indexed shuffling approaches down to the bit level, though considerable strength (in the

cryptographic sense) may be obtained by finer-grain decomposition of the <X> sequence and

increased k. Only when we get to the bit-matching-with-shuffling do we see individual output-bit

probabilities changing based upon individual bit changes in the <X> and <Y> sequences, or the

initial contents.

If a single bit in the bit-wise shuffling table is changed, the effect is to insert or delete a bit from

the output sequence. While this may not appear to be much of a change, this shifting of the

subsequent bits has the effect of altering, on a 0.5 probability basis, the values in all bit-positions

that follow the insertion or deletion. The same is true of single bit changes in the <X> and <Y>

sequences. Still, it would be better if, rather than changes associated with bit-positions, more

pervasive changes were induced.

Further Modification of the McLaren-Marsaglia Mechanism

In the table-based, bit-wise approach to we can see that there is no particular reason why we must

select bits for output from V based on bit-matching except to preserve the permutation character

of McLaren-Marsaglia. The number and values of bits selected via the bits[][] and shifts[][]

arrays could as easily be arranged in a random manner. Likewise, the bits inserted into V from

the set[][] array can be arbitrary. There is also no reason, apart from the space required, not to

view the bits[][], shifts[][] and set[][] arrays as slices through larger, three-dimensional arrays, to

view V as part of a more complex internal state, and to use the contents of V as indexing material

for the third dimension for these arrays. The contents of these three dimensional arrays can then

be filled with arbitrary values selected and arranged to obfuscate the individual indices used.

With such an implementation, the tabular-bit-matching form of the McLaren-Marsaglia algorithm

can be viewed as a special case of this more general form. The following code sample illustrates

this approach.

94

#define OBITS_MASK 0x007f
#define SBITS_MASK 0x0380
#define SBITS_SHFT 7
#define NBITS_MASK 0xfc00
#define NBITS_SHFT 10

// the following is a place-holder as the full array is large.

unsigned short SFrame[64][16][16];

// the following are place-holders for the fill and index generators

unsigned long Xn(void);
unsigned long Yn(void);

unsigned long bitBlendOpt()
{
 unsigned long retVal = 0;

 static unsigned long long state = 0LL;
 static unsigned long long xQ = 0L;
 static int xBits = 0;
 static unsigned long long yQ = 0L;
 static int yBits = 0;
 static unsigned long long oQ = 0L;
 static int oBits = 0L;

 // some temporary variables to hold

 unsigned long tState = 0L; // for 6 of 64 bits, state
 unsigned long txQ = 0L; // for 4 bits, fill buffer
 unsigned long tyQ = 0L; // for 4 bits, index buffer

 unsigned long temp; // for SFrame entry used
 unsigned long tout; // bits to insert in output
 unsigned long tshft; // # bits to be inserted
 unsigned long tstat; // new state bits

 if (state == 0LL) // initialize the state if needed.
 {
 state = (unsigned long long) Yn()
 ^ (unsigned long long) Xn();
 state = state << 32;
 state |= (unsigned long long) Yn()
 | (unsigned long long) Xn();
 }

 // loop until we have enough output bits

 while (oBits < 32)
 {
 if (xBits < 4) // ensure we have enough fill bits
 {
 xQ |= ((unsigned long long) Xn()) << xBits;
 xBits += 32;
 }

 if (yBits < 4) // ensure we have enough index bits
 {
 yQ |= ((unsigned long long) Yn()) << yBits;
 yBits += 32;
 }

95

 // grab 6 state bits, plus 4 fill and 4 index bits

 tState = (unsigned long) (state & 0x3fLL);
 txQ = (unsigned long) (xQ & 0xfLL);
 tyQ = (unsigned long) (yQ & 0xfLL);

 temp = (unsigned long) SFrame[tState][txQ][tyQ];
 tout = temp & OBITS_MASK;
 tshft = (temp & SBITS_MASK) >> SBITS_SHFT;
 tstat = (temp & NBITS_MASK) >> NBITS_SHFT;

 // shift output queue to make room for new bits then append them

 oQ = (oQ << tshft) | (unsigned long long) tout;
 oBits += tshft;

 // note: only 5 state bits modified, and a shift of only 3, which
 // helps propagate bit diffusion

 state = (state & 0xffffffffffffffd0LL)
 ^ (unsigned long long) ((SFrame[tState][txQ][tyQ]
 & NBITS_MASK) >> NBITS_SHFT);
 state = (state << 61) | (state >> 3);

 // shift 'expended' fill & index bits off the ends of queues

 xQ = xQ >> 4; // note: could shift/sub min(4, outbits)
 xBits -= 4; // rather than a fixed 4 bits

 yQ = yQ >> 4;
 yBits -= 4;
 }

 retVal = (unsigned long) (oQ & 0xffffffffLL);

 oQ = oQ >> 32;
 oBits -= 32;

 return retVal;
}

 C code for the BitBlendOpt() function

Analysis of this scheme is difficult, since, with arbitrary or random sets of three values in the

SFrame.bits[][][], SFrame.shifts[][][] and SFrame.set[][][] arrays (which are notional in the above

code, and referred to as bits, shifts and set arrays in the following discussion) associated with the

state, <X> and <Y> indices means that there is no necessary logical or mathematical relationship

between any of the indices and the values selected using them. A simpler case illustrates the

issues.

Consider a bits array that contains four-bit values, and a shifts array that contains a value of 4 in

all locations, so that it may essentially be ignored. If we consider the array slice-wise, based on

96

the first index (which will correspond to tState value above), and require that each column and

each row contain one instance of each possible four-bit value, we can see that for any txQ value

that might be used, any four-bit value may be obtained based upon the tyQ value. This means

that analysis of the output stream to determine the <X> and <Y> streams, and from them the states

of the associated generators, will likely be difficult. Within the bits array there will be 1024

occurrences of each nybble value. Requiring that, for any txQ/tyQ pair, the list of values indexed

by tState must contain equal numbers of each possible value (thus, four instances of each of the

16 values), it can be seen that there will be 1024 instances of each value in the bits array. Given

an output nybble, plus a guess regarding the associate txQ or tyQ value that generated it, there are

64 different combinations of tState and either txQ or tyQ that could have yielded that output

nybble.

If we view a slice through the bits array based upon a given value of tState, we have a

row/column permutation of the following array, the contents of which are hexadecimal.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 2 3 4 5 6 7 8 9 A B C D E F 0

2 2 3 4 5 6 7 8 9 A B C D E F 0 1

3 3 4 5 6 7 8 9 A B C D E F 0 1 2

4 4 5 6 7 8 9 A B C D E F 0 1 2 3

5 5 6 7 8 9 A B C D E F 0 1 2 3 4

6 6 7 8 9 A B C D E F 0 1 2 3 4 5

7 7 8 9 A B C D E F 0 1 2 3 4 5 6

8 8 9 A B C D E F 0 1 2 3 4 5 6 7

9 9 A B C D E F 0 1 2 3 4 5 6 7 8

A A B C D E F 0 1 2 3 4 5 6 7 8 9

B B C D E F 0 1 2 3 4 5 6 7 8 9 A

C C D E F 0 1 2 3 4 5 6 7 8 9 A B

D D E F 0 1 2 3 4 5 6 7 8 9 A B C

E E F 0 1 2 3 4 5 6 7 8 9 A B C D

F F 0 1 2 3 4 5 6 7 8 9 A B C D E

 A slice through the state table in BitBlendOpt()

97

By a row/column permutation we mean that the rows may be re-arranged in any order, and the

columns likewise rearranged, and the resulting array will retain the property that each row and

column contains one each of all possible 4-bit values.

If we re-label the row and column indices with letters, we can recognize this array as essentially a

form of Vigenère cipher tableau. This would ordinarily be regarded as very bad, as the standard

Vigenère cipher is remarkably weak: cipher keys used in classical Vigenère ciphers are relatively

short sequences of characters, yielding to straight-forward cryptanalysis that exploits the key

length. However, there are also similarities between this array and the SBox structures in many

block ciphers.

The classic Vigenère cipher suffers from the standard problems of many older stream ciphers.

Encrypting plaintexts with significant redundancy, using short keys that are often words or

phrases and the absence of diffusion in the resulting ciphertext allow multiple forms of attack.

The present case is markedly different. We can view either the <X> or the <Y> sequence as the

key, and the other as the plaintext to be encrypted with it. Assuming these generators are

reasonably good, with long periods, the redundancy of the “plaintext” will be low, and the key-

length long. When we add the further complication of the state data to the process, resulting in

use of many distinct tableaus, we may expect the result to be more difficult to attack than a

classical Vigenère cipher.

If we consider only the key length, initially, treating <Y> as the key, the entropy of the key will

be related to the size of the elements of <Y> and its period. Again assuming that <Y> is random,

with 32-bit elements and a 232 period, H(keyspace) = 237. Using an estimate of D = 1 as before,

for the redundancy of our pseudo-random <X>, we have U = 237 as an upper bound for a single

tableau, and would be exact for <Y> if it were a random sequence of 232 32-bit values repeated.

The actual unicity distance when using pseudo-random <X> and <Y> and a single tableau would

98

be on the order of the size of the internal states of the two PRNGs, and, with the addition of the

internal state of BitBlendOpt, would likely include some number of bits worth of that state to

account for the multiple tableaus of the SFrame, which would, as per Kerckhoffs’ principle, be

presumed known by an attacker.

Deterministic Aperiodicity

As one of the intrinsic problems with most PRNGs is that they are both deterministic and

periodic, and the available means of generating aperiodic sequences are limited, it is worth

considering the applicability of the revised McLaren-Marsaglia generators to the problem of

providing aperiodic generators. The standard computational source for aperiodic sequences is

found in the realm of irrational numbers, while a more recent area of exploration has involved the

geometry of quasi-crystals. Both have their drawbacks.

Quasi-crystals are intriguing in that they display the characteristics of crystals without displaying

the precise structure and symmetries of true crystals. The inter-atomic distances within the

structure vary in non-repeating ways that resemble in some ways the behavior of irrational

numbers. While we regard the issues surrounding use of computationally derived values based

on quasi-crystal structures as beyond the necessary scope of this thesis, we note that the problems

are similar to the use of irrational numbers: high-precision mathematics are required, and the

process is computationally intensive. Irrational numbers, and the subset of irrational numbers

comprised of transcendental numbers, are more readily understood, and sufficient to the

following discussion.

It is possible to generate a reasonably apparently random sequence by selecting a suitable

irrational number, and applying a simple algebraic function to it that preserves the irrationality of

the result. Historically, the problem with this has been the computational resources required to

produce any significant number of digits, and the easy with which errors can arise. The history of

99

the computation of π serves as an excellent example of these problems. While the number of

digits that have been computed has passed the billion digit mark, this was a decidedly non-trivial

feat. Further, until recently, it was generally necessary to compute all prior digits of such

numbers in order to compute any specific digit. For high-volume applications, such expensive

processes are not suitable.

Some developments in the means of computing at least some irrational numbers have

significantly improved the situation with regard to the computational cost. Work published in

1997 by Bailey, Borwein and Plouffe [120] showed that a class of irrational numbers can be

computed in polynomially logarithmic space and polynomial time. Members of this class are of

the following form.

 ∑
∞

=

=
1)(

)(

k
ck kqb

kp
v

where p and q are polynomials with integer coefficients, c a positive integer, and b the base.

Intriguingly, one of the members of this class is π, with the following form.

,
68

1

58

1

48

2

18

4

16

1

0
∑

∞

=

+

−
+

−
+

−
+

=
i

i iiii
π

where 16 is the base.

Even more interesting is that with this formulation it is possible to compute individual digits of ,

and other members of this class, without computing all prior, higher-order digits. The

computation requirements for the d-th digit, base b for members of this class are given by Bailey,

et al. [120], as follows.

).(log)1(dspace O=

100

)).(log()1(ddOtime O=

While this represents a significant improvement over previous techniques, in terms of time and

space, for very high values of d, the time and space required are still significant. Thus, while the

approach must be regarded as far more interesting and useful for purposes of generating aperiodic

sequences, means of efficiently using such sequences are desirable.

It can be seen that if we were to replace the <X> sequence in a standard McLaren-Marsaglia

generator with successive segments of an irrational number, the resulting generator would

produce an aperiodic output stream. This would not obviate the problem posed by Retter’s

attack, though. It would remain effective, since, given the irrational number used, an attacker

would need only select d and proceed. Likewise, replacing the <Y> generator with an irrational

number digit stream changes the output sequence, but not the problem. The <X> can still be

solved for independently from <Y>, though the time and space requirements for the attack scale

with the algorithm used to calculate the irrational number if the <X> sequence is based upon an

irrational. In fact, there is no obvious benefit gained from selecting and using a second,

unrelated, irrational number, so that both <X> and <Y> are aperiodic. All the benefits of

aperiodicity to be had are obtained with use of just one irrational number in the context of one of

the generators.

The revised forms of the McLaren-Marsaglia algorithm can be used, as well as the straight-

forward bit-matching algorithm, providing either the <X> or <Y> generator with aperiodicity. In

each case, the output becomes aperiodic, though the efficiency of the use of that irrational

numbers digit sequence varies. With the straight-forward bit-matching scheme, only half the bits

would be used, and so for very long sequences generated, the computational cost increases faster

than if every bit is used. Thus, it appears that, unless the computational cost can be further

reduced, or only short sequences need be generated, this is not a very practical approach.

101

The BitMatchShuffle() algorithm makes more efficient use of the <X> sequence than does either

of the BitMatchStream() algorithms, but not of the <Y> sequence. Thus, BitMatchShuffle() is

more appropriate for use in generating aperiodic sequences using an irrational sequence

generating algorithm, but only as the <X> generator. The BitSpigot() form of this generator is the

more efficient, and thus is preferable to BitMatchShuffle(), but with the same limitation.

BitBlendOpt() can also yield good results, but since the <X> and <Y> generators are treated in an

essentially identical manner, it makes no difference which is implemented via an irrational

number technique, though, again, using that technique for both likely adds not improvement in

terms of aperiodicity, just computational cost.

Another method of injecting aperiodicity via irrational number digit sequences is practical with

the BitBlendOpt() scheme. If we added a mechanism for inserting some number of bits from the

irrational digit stream into either the <X> or <Y> sequence on a periodic basis, a number of

benefits accrue.

#define OBITS_MASK 0x007f
#define SBITS_MASK 0x0380
#define SBITS_SHFT 7
#define NBITS_MASK 0xfc00
#define NBITS_SHFT 10
#define INTERVAL 4

// the following is a place-holder as the full array is large.

unsigned short SFrame[64][16][16];

// the following are place-holders for the fill and index generators

unsigned long Xn(void);
unsigned long Yn(void);
unsigned char Ir(void); // returns single bit from irrational seq.

unsigned long bitBlendAperiodic()
{
 unsigned long retVal = 0;

 static unsigned long long state = 0LL;
 static unsigned long long xQ = 0L;
 static int xBits = 0;
 static unsigned long long yQ = 0L;
 static int yBits = 0;
 static unsigned long long oQ = 0L;
 static int oBits = 0L;
 static int intr = INTERVAL;

102

 // some temporary variables to hold

 unsigned long tState = 0L; // for 6 bits of state
 unsigned long txQ = 0L; // for 4 bits of X buffer
 unsigned long tyQ = 0L; // for 4 bits of Y buffer

 unsigned long temp; // for SFrame entry used
 unsigned long tout; // bits to insert in output
 unsigned long tshft; // num bits to be inserted
 unsigned long tstat; // new state bits

 if (state == 0LL) // initialize the state if needed.
 {
 state = (unsigned long long) Yn()
 ^ (unsigned long long) Xn();
 state = state << 32;
 state |= (unsigned long long) Yn()
 | (unsigned long long) Xn();
 }

 // loop until we have enough output bits

 while (oBits < 32)
 {
 if (xBits < 4) // ensure we have enough fill bits
 {
 xQ |= ((unsigned long long) Xn()) << xBits;
 xBits += 32;
 }

 if (yBits < 4) // ensure we have enough index bits
 {
 yQ |= ((unsigned long long) Yn()) << yBits;
 yBits += 32;
 }

 if (intr == 0)
 {
 xQ |= (((unsigned long long) Ir()) << xBits);
 xBits++;
 intr = INTERVAL;
 }
 else intr--;

 // grab 6 state bits, plus 4 fill and 4 index bits

 tState = (unsigned long) (state & 0x3fLL);
 txQ = (unsigned long) (xQ & 0xfLL);
 tyQ = (unsigned long) (yQ & 0xfLL);

 temp = (unsigned long) SFrame[tState][txQ][tyQ];
 tout = temp & OBITS_MASK;
 tshft = (temp & SBITS_MASK) >> SBITS_SHFT;
 tstat = (temp & NBITS_MASK) >> NBITS_SHFT;

 // shift output queue to make room for new bits then append them

 oQ = (oQ << tshft) | (unsigned long long) tout;
 oBits += tshft;

 // note: only 5 state bits modified, and a shift of only 3, which
 // helps propagate bit diffusion

103

 state = (state & 0xffffffffffffffd0LL)
 ^ (unsigned long long) ((SFrame[tState][txQ][tyQ]
 & NBITS_MASK) >> NBITS_SHFT);
 state = (state << 61) | (state >> 3);

 // shift 'expended' fill & index bits off the end of their queues

 xQ = xQ >> 4; // note: could shift/sub min(4, outbits)
 xBits -= 4; // rather than a fixed 4 bits

 yQ = yQ >> 4;
 yBits -= 4;
 }

 retVal = (unsigned long) (oQ & 0xffffffffLL);

 oQ = oQ >> 32;
 oBits -= 32;

 return retVal;
}

 C code for bitBlendAperiodic()

Insertion of the extra bit into the <X> sequence will alter the alignment of the <X> and <Y>

sequences relative to each other, and result in bit-aligned operation of the overall generator, rather

than word-aligned operation. The two component generators will have their outputs word-

aligned once per 32 bit-insertions, but the overall alignment will shift continually throughout the

operation of the composite generator. Also, the inserted bits will have continuing effects upon

the bit-values in state, and the period of the <X> sequence is artificially extended by the inserted

bits. Finally, the output sequence that results is aperiodic.

Such an insertion technique can be applied to some of the other methods discussed. In the bit-

matching schemes, buffering of the input streams can accommodate the inserted bits, but

knowledge of the generators used, and a successful guess regarding the seeds used for the

conventional generators, leaves less analysis to be performed than in BitBlendAperiodic(), since

the produced sequence is largely a matter of single bit shifts of one generating sequence relative

to the other, and the injected bits from the irrational sequence are immediately determined from

the output sequence relative to the un-injected sequence component generator sequence.

104

The exceptions to simple bit-injection are the techniques that involve only dicing the <X>

sequence into smaller multi-bit blocks and placing them into a shuffling array organized as a

multiple of R entries. In those cases, the injection is simpler if done on the basis of identically

sized blocks, rather than bit-wise. However, the lack of diffusion obtained via the state variable

of the BitBlendAperiodic() technique means that the output stream remains largely a periodic

sequence of raw outputs from the periodic PRNG used as the <X> generator, with irregularly

inserted aperiodic components. It is difficult to regard this as a robust solution to the problem of

aperiodicity.

It should be noted that they basic structure of the McLaren-Marsaglia variants need not be altered

to incorporate such aperiodicity. The insertion of the irrational bit-stream material can be done

within the component <X> or <Y> generators, since the fundamental structure of McLaren-

Marsaglia and its variants is equally adaptable to any suitable component generators. If handled

this way, a straight-forward XOR of a standard PRNG’s output with the irrational digit stream

might be considered, too. The result would, for all variants, be aperiodic, and tend to conceal the

outputs from both the standard PRNG and the irrational bit-stream, just with any combiner

function, but still suffers from the full cost of generating the irrational bit-stream.

105

CHAPTER IV

KEY AGREEMENT

Having explored some of the possible variants of the McLaren-Marsaglia generator scheme, we

return to one of the initial questions asked: Can we replicate at least some of the hypothesized

strengths of the Bennett-Brassard key agreement process without relying on quantum phenomena,

or even on mathematically “hard” problems? We start with the assumption that the two parties

share some information that is secret, held only by the two correspondents, and that at least one

correspondent has a true, hardware-based random number generator. We will then describe a

process, based in large part on some of the McLaren-Marsaglia variants described in the previous

chapter, by which the correspondents can agree upon a set of bits, and discuss the associated

security/confidentiality issues associated with this scheme.

Themes and Goals

As discussed in Chapter I, the Bennett-Brassard quantum mechanics-based key agreement

protocol is a major inspiration for the present effort, as is the problem posed by the Diffie-

Hellman conjecture. The Diffie-Hellman conjecture is the assumption present in many proofs of

security that the mathematical problem a particular algorithm is based on is difficult to solve, and

cannot be reliably solved in a time-frame that would imply unacceptable risk in using the

algorithm or protocol. Typical examples are the assumption that it is prohibitively difficult to

106

factor very large integers into their prime factors, and that the discrete logarithm of a very large

number in an arbitrary base is very difficult to calculate.

With regard to the Bennett-Brassard protocol (see Chapter I for a detailed description), problems

include the difficulty and cost of providing a dedicated optical fiber connection between two

remote points, let alone a network of such connections, the ability to generate single photons

polarized to the desired orientations and to detect individual photons at the receiver’s end of a

fiber, loss of photons over long distances due to defects and impurities in the fiber, etc. Still,

however theoretical parts of the scheme remain, a protocol that allows two parties to securely

agree upon a string of random bits suitable for use as One-Time Pad (OTP) key material is both

brilliant in conception and inspirational, particularly since the protocol places no reliance upon

any form of Diffie-Hellman conjecture about a mathematical problem.

The inspiration derived from the Bennett-Brassard protocol is easily understood. Personal

experience tends to demonstrate that for any problem, if there is at least one way to solve the

problem, then there are likely others. Thus, the question is raised whether other secure means of

agreeing upon a set of bits, without relying on a mathematical problem that is presumed to be

hard or quantum phenomena, can be developed.

Also as discussed in Chapter I, “secure” is a relative term. While in a theoretical sense the

Bennett-Brassard protocol is perfectly secure, when fully implemented, its practical

implementation may be a different matter, particularly as the problem of reliably generating,

transmitting and detecting single photons remains a serious challenge. One-Time Pads (OTP) are

provably perfectly secure, yet of sufficient difficulty in practical use to warrant the continued use

of systems that are less than perfect. Even systems designed by highly knowledgeable and

experienced professionals can contain flaws that take years of analysis to identify and exploit.

Thus, as a first effort, it is too much to expect a flawless system. Therefore, for the present effort,

107

perfection will not be expected, but a very low probability of successfully guessing the state of

the mechanisms, coupled with a degree of complexity in analysis that presents no obvious easily

exploitable internal flaws, may be regarded as success.

The examination of variations based loosely on the McLaren-Marsaglia pseudo-random number

generator (PRNG) served as a means to identify components that offer both flexibility and

extendibility. Two forms of one of the examined variations are used in the proposed protocols

discussed and implemented here.

The bit_blend scheme, wherein the McLaren-Marsaglia mixing array is reinterpreted as a state

vector for selection of an arbitrary mixing function for combining the inputs from the two

component generators of the <Xn> and <Yn> bit-sequences, is used in two distinct ways. In the

first, used in the A, B and C generators of the protocols described below, conventional PRNGs are

used to provide the <Xn> and <Yn> bit-sequences. In the second way, the D generator discussed

below, the <Xn> and <Yn> sequences are derived from the random bit-string that is the sole

communication between the two parties to the key agreement within the presented protocol. The

derivation of the bit-strings finally used as inputs to D is performed using the outputs of the A, B

and C generators, in a manner intended to create a combinatorial problem of sufficient

complexity to make cryptanalysis, in an effort to determine the initial or ending state of the

process, difficult enough to warrant the appellation “secure” for the overall process.

Two additional processes are used in the overall process. First, where the Bennett-Brassard

protocol discards roughly half the initially transmitted random bits as a consequence of the

guessing process in its first phase, here we apply the bit-matching process discussed in the

previous chapter as a means of increasing the combinatorial complexity of cryptanalyzing the

proposed protocols. Second, we utilize a portion of the random bits transmitted to inject

108

aperiodicity into the scheme, in an effort to preclude use of such tools as the Berlekamp-Massey

algorithm to produce linear feedback shift register (LFSR) analogs to components of the scheme.

The Basic Scheme: Walk-through

To start the process, the two parties to the key-agreement process, Alice and Bob, have identical

sets of PRNGs, A, B, C and D (the mechanisms being public knowledge), and identical initial

states for these generators and the overall mechanism (which are presumed to be a secret jointly

held by Alice and Bob, and agreed upon by a mechanism outside the scope of this discussion).

The structure of the component generators is of the BitBlendOpt() type previously discussed.

Alice also has a true random number generator (RNG).

Alice and Bob decide they need a shared, secure, random bit-string to use in conducting a

confidential exchange. They proceed as follows.

Alice generates a 32 bit long string of random bits, r, using her RNG. Using her saved copy of

the initial state of the PRNG A, she generates a 32 bit long value using A and calls it a, then saves

the new state of A. While keeping a copy of r for later, she XOR’s the a and r bit strings together

to produce bit string axr. Alice sends a copy of axr to Bob, and saves the new state of A. Notice

that a acts as a Vernam cipher key with respect to r, or inversely that r acts as an OTP cipher key

for a.

When Bob receives axr from Alice, he initializes his copy of the A with the identical copy of the

initial state he shared with Alice, then generates his own copy of the a, and saves the new state of

A for later, just as Alice did. Bob then XOR’s his copy of a with the copy of axr he received

from Alice to obtain a copy of r.

As Alice and Bob now both have identical copies of string r, they both take the lowest-order 15

bits of r and insert them into the <X> bit buffer of their respective initial states of the PRNG B.

109

Thus, the modified states of the two copies of B held by Alice and Bob are still identical. They

then take the next lowest-order 14 bits of r and insert these bits into the <X> bit buffer of their

copies of PRNG C. Again, as the modifications are identical, the resulting states are identical.

Notice that both B and C now have had true random data injected into their states.

Using her RNG, Alice now generates a random 1024 bit long bit string and calls it rp, and saves a

copy for later. Using her now modified initial state of generator B, she generates the 1024 bit

long bit string b. She XOR’s bit string b with bit string rp to produce bit string bxrp, which she

sends to Bob. Again, we have that the string pair acts as cipher keys for each other. The string b

is a Vernam cipher key with respect to rp, while rp is an OTP cipher key with respect to b.

Upon receiving bxrp from Alice, Bob uses his modified initial state of generator B to generate his

own copy of b. Bob XOR’s this copy of b with his copy of bxrp to obtain a copy of rp.

As Alice and Bob now share exact copies of the initial states of generators C (as modified above)

and D, and have exact copies of r and rp, they both proceed as follows.

Both Alice and Bob initialize their copies of generator C with their shared, modified initial state

for that generator, and generate a 1024 bit long bit string which they label c, then save the new

state of C for later communications. They both create an empty bit string m, then perform a bit-

by-bit comparison of c with rp. When corresponding bits in c and rp are equal, they append that

bit value to bit string m, repeating the process for all bits in c and rp. At the end of this process,

they will have identical copies of bit string m. They then truncate m to a multiple of eight bits in

length, yielding a set of full bytes. Next, they take the highest-order three bits from r and use

these as an integer value. They add four to this value, and count backwards that many bytes from

the end of m. If there are still at least four bytes to the “right” of this position (they haven’t

backed up past the start of m), they remove four bytes from m starting at this position, and insert

these bits to the <X> bit buffer of their saved new saved states of A, and each saves this again

110

revised state for the next round. Notice again that random material has been injected into the

state of A, just as such material was injected into the states of B and C earlier.

Both Alice and Bob will now use their identical copies of m as the source for the <X> and <Y>

input sequences to the D generator, starting at index 0 for the <X> input and the other end for the

<Y> input, stopping when the indices meet in the middle. This is truly random material, and thus

the output from D will be random. They load their stored, identical initial states of D and proceed

as described above, appending the output bytes to an initially empty bit string k, and saving the

ending state of D for later communications.

Alice and Bob now have identical new states for A, B, C and D, and identical byte strings k.

Thus, they are free to use the agreed-upon bit string k as they may choose, while being able to

repeat the process (using freshly generated random bit strings r’, r’’, …, and rp’, rp’’, …) to

generate additional random bit strings k’, k’’ , ..., as needed. The new states of A, B, C and D,

saved at the end of each invocation of the protocol, are not purely the products of deterministic

processes upon a finite state, since random material obtained directly or derived from the r and rp

bit strings was either injected into the input streams (in the cases of A, B and C, thereby randomly

modifying their states during invocation of these generators) or provide the entirety of the input

streams (as is the case with D, resulting in corresponding random alterations to the state of D).

Thus, so long as the successive r and rp bit strings fed into the protocol are random, and the

modified states of the mechanism’s components are correctly saved between invocations, the

resulting sequence of states will be aperiodic, as will the sequences generated by A, B and C. The

output from D is, again, effectively random, given the random material fed to it as both input

streams.

As discussed further below, the preprocessing of r and rp to generate axr and bxrp by Alice is not

strictly necessary. An alternate version of the protocol eliminates this preprocessing by having

111

Alice generate the axr and bxrp random bit strings directly, and sending these to Bob, whereupon

both Alice treats them in the same manner as described above by Bob.

The Basic Protocol A: Formal Description

Let us assume that the correspondents, Alice and Bob, have agreed upon three PRNG algorithms

of the BitBlend() type (designated A, B and C) and their initial seeds, are kept secret. They have

also agreed upon a stream-based bit-matching algorithm M, and upon an algorithm based on

BitBlendOpt(), referred to as BitBlendRan() (which will be described in more detail later) and

designated D, with its initial state also secret. Alice also has a non-deterministic RNG,

designated R. The exchange and agreement process is as follows in Protocol A.

Protocol A

1. Alice generates a block of 32 bits (designated r) and a block of 1024 bits (designated rp)

using R, her non-deterministic random number generator.

2. Alice pumps PRNG A for a 32-bit pseudo-random value a, and XORs this with r,

generated in step 1 to produce the 32-bit block axr, then sends axr to Bob.

3. Alice inserts the lowest-order 15 bits from r (bits 17 through 31) into the xQ buffer of B.

4. Alice pumps B for a 1024-bit pseudo-random bit string b, XORs this with rp to produce

the 1024-bit string bxrp, and sends this to Bob.

5. When Bob receives axr, he pumps his copy of A to obtain a, then XORs this with axr to

obtain the bit block r.

6. Bob inserts the lowest-order 15 bits from r into the xQ buffer of his copy of B, then

pumps his copy of B to produce his own copy of the 1024-bit string b.

7. When Bob receives bxrp, he XORs this with b to obtain rp.

8. Both Alice and Bob insert bits 3 through 16 (14 bits) of r into the xQ buffer of their

respective copies of C, and pump these to obtain matching 1024-bit strings c.

112

9. Both Alice and Bob use their copies of M to do a bit-match selection of bits using c and

rp, producing the bit-string m, which they truncate to a length of 8/ml = bytes. (Note

that this may be an odd number of bytes.)

10. If ,12≥l Alice and Bob use bits 0 to 2 of r (as integer o) to select four bytes from m

(viewed as a byte array) starting at m[l – (o + 4)], remove them from m and insert them

into the xQ buffers of their respective copies of A, else no action is taken.

11. Both Alice and Bob split their copies of m in half, and using the first half (2/l bytes)

into D as the <X> bit-sequence for D, with nybbles flipped in order within bytes, and the

second half (2/l bytes) in reverse nibble order as the <Y> bit-sequence for D. D is

pumped until <X> is exhausted to yield the bit-block k, a block of agreed bits.

12. Alice and Bob repeat steps 1 through 11 until they have as many bits of agreed material

as required.

Observations Regarding Protocol A

While the walk-through of a prior section may be sufficient to understand this process, it is a

complicated process, with many components that are not themselves simple. Thus some

additional explanations of the various components used, and their interactions, may help, while

more detailed analysis will follow in Chapter V.

The composite generators A, B and C were developed in Chapter IV specifically to provide means

by which aperiodicity could be injected into what might otherwise have been purely periodic

components of the scheme. A diagram, in generalized form, of these generators may be of use

here, in order to clarify how the aperiodicity is injected via these three generators, and such a

diagram is presented now.

113

Generalized structure of the aperiodic generators used

Ignoring for the moment the components α, β and γ, we observe that two component generators,

<X> and <Y>, along with the mechanism state, provide input to an indexing function I, which

selects entries in two tables. One table provides the output from an invocation of the mechanism,

while the other is used to modify the state. If both <X> and <Y> are periodic, deterministic

PRNGs, the overall mechanism will be periodic. From the discussion in prior chapters, we

understand that this may be regarded as a weakness, since various tools, such as the Berlekamp-

Massey algorithm, allow an attacker to eventually generate an LFSR that exactly replicates the

output of the mechanism, given a sufficient sample of outputs. (We recognize, though, both that

this LFSR may be extraordinarily long, and that we must anticipate use of far more advanced and

powerful tools that would produce more useful results more quickly than Berlekamp-Massey.)

Due to the construction of these generators, there are three points at which we can easily inject

additional material into the mechanism. The three points where this may be accomplished are

indicated by the boxes labeled α, β and γ. In the cases of α and β, simply inserting bits into the

buffers for the component PRNGs <X> and <Y> will result in overall aperiodicity for the

114

mechanism, though we are also free to apply any kind of mixing function to the process of

injection. However, it is simple, and quite effective in achieving aperiodicity, to simply inject

bits at either α or β on a regular basis.

While γ indicates that we may also inject material into the state component, the means of

injection is not into a stream of bits. Instead we must replace bits in state, or perform some form

of hashing of the injected material with the state, in order to obtain the desired effect. As the goal

is to simply inject aperiodicity, any one of the three locations has its merits, but we need use only

one. The one selected in the discussions in Chapter III was at the point labeled α, and merely

insert the injected material into the bit-stream.

Selection of this point (into the <X> bit-stream at α) and this method for injecting material into

the mechanism provides one additional useful feature to the mechanism. The alignment of bits

between the <X> and <Y> inputs will be shifted relative to each other each time material is

injected into (or we might say “appended to”) the buffer holding outputs from <X>. While we

will not discuss the benefits of this in detail, we note that it allows manipulation of the relative

periods of <X> and <Y> with respect to each other.

The mechanism as described is used to implement the PRNGs A, B and C of the protocol. A

further change is introduced in PRNG D of the protocol. In that generator, we dispense

completely with the <X> and <Y> component PRNGs, and use random material derived from the

bit-string r as inputs. Since this material is random, there is no need to inject any aperiodic

material at α, β or γ, and therefore none is injected.

Returning now to the protocol itself, the random bit-string r is used to inject aperiodicity into the

B and C PRNGs, and indirectly into the A PRNG, all three of which conform to the structure

described above. But, as we wish to maintain good cryptographic strength, these bits cannot be

communicated as plaintext. Thus, A is used to generate a Vernam cipher key a, which encrypts r

115

as the ciphertext axr. And, as previously noted, we can also regard a as being encrypted by the

random bit string r. Three bits of r are used to select 32 bits from m (provided m is long enough)

to be used to inject aperiodicity into A in a subsequent iteration of the cycle. We can visualize

this via the following diagram.

Injection of material from axr into PRNGs B and C.

In the above diagram, a, r and axr are shown as being composed of 4 bytes each, but we could as

easily scale these string lengths to any desired length, to either scale up or scale down the

mechanism, allocating bits for injection and indexing as required by the modified scale. The

point is that B and C are made aperiodic by these injections, regardless of scale, since r is a

random bit string, and thus aperiodic.

The processing of bit-strings b and rp by Alice to generate the bit-string bxrp is straight-forward,

as is the processing of b and bxrp by Bob to extract the rp Alice generated using her non-

deterministic RNG R. The second operation is merely undoes the first, so that both Alice and

Bob have the same bit-string rp, with which to continue the process. This is illustrated by the

following diagram.

116

The relationship between b, rp and bxrp.

The above diagram is trivial, but should be recognized as a standard Vernam cipher. It is useful

to recognize also that the trio of bit-strings, b, rp and bxrp, are such that an XOR of any two

produces the third. The same is true of the bits-strings a, r and axr. These facts are the basis of

the adaptation of Protocol A into Protocol B.

As will be discussed in the following section regarding Protocol B, the whole objective of Alice

sending the bit-string bxrp to Bob is so they can both end up with matching bit-strings rp, which

they can then further process to eventually agree upon bit-string k. Thus, it doesn’t really matter

whether Alice generates rp or bxrp using her hardware RNG. If she skips the pre-processing of

rp to obtain bxrp, and instead generates a random bxrp, then follows Bob’s steps in the procedure

to generate rp, there is no practical difference in the result, thought he actual agreed bits will

differ. The agreed bit-string will still be random and still agreed upon by both Alice and Bob. By

the same reasoning, whether Alice generates a random bit-string r, or a random bit-string axr

makes no difference in the result, so long as she produces the same bit-string r that Bob will

generate from axr.

117

The further processing of the bits in bit-string rp gets more complicated to visualize. The bit-

matching process used in the protocol discards some number of bits from rp to obtain bit-string

m. Assuming PRNG C produces an essentially random bit-string c, the process will, on average,

discard half the bits in rp. But, that is only an average. Since it is more convenient to deal with

groups of bits, such as bytes (8-bit octets) or 32-bit quadlets (4 bytes), some number of bits, from

0 to 7, with be discarded from m, so as to yield a string of bytes. While we could trim m to an

even multiple of 16 bits, at this point, planning as we are to use what is left byte-wise from each

end, it is useful to remember that instead processing from the ends and discarding a possible

“odd” middle byte adds a small factor of uncertainty to the process, and uncertainty is what we

want to inflict upon any attacker. The following diagram illustrates the processing of bxrp to

obtain bit-string m.

Processing of bxrp to obtain m.

118

As may be seen in the above diagram, the processing of the bits in bxrp uses the outputs from

PRNGs B (bit-string b)and C (bit-string c) directly. The states of those two generators were

altered as a result of the processing of bit-string axr, in the manner previously describe, by

injection of the bits from bit-string/block a, as previously shown. Also, it can be seen that bits are

extracted following the bit-matching process for use in altering the state of PRNG A. None of the

bits so used are used for any other purpose.

As the bits extracted from rp are random (and therefore aperiodic), and selected after the bit-

matching process applied using M, and match the amount of material in A’s <X> sequence

required to generate the next a block, successive a blocks are an aperiodic sequence, and are in

fact random. The r sequence is thus encrypted with a Vernam cipher that possesses at least some

of the characteristics of OTP, as bit-string a has unbounded linear complexity. While there is a

very small probability that m will not contain sufficient material to re-seed A, the probability is

believed sufficiently small, and sufficiently difficult to detect in the routine operation of the

scheme, as to be secure, despite the fact that it means that the axr encryption is not a true

homologue of OTP. Part of the confidence in this lies in the fact that the distributions of

probabilities for all possible lengths of m, given that b and rp are 1024 bits in length, means that

there will likely be many thousands of iterations of the cycle before the backup PRNG A will be

invoked. Outside the occurrence of that event, the axr encryption is very OTP-like, as it involves

a random key-stream.

Assuming random behavior in the bit string c, the probabilities of the various possible lengths of

m in bits is found via the binomial distribution. On average, m will contain 512 bits, ignoring

truncation to byte bounds, and the probability that there will be 96 bits or fewer is on the order of

1751014.6 −× .

119

While the B PRNG/generator is not random, it is aperiodic due to the injection of the bits from

the random bit string r, at the start of each cycle, and thus has an unbounded linear complexity.

Further, the state of B at the point before generating b, but after insertion of bits from r, is

effectively a randomly selected state out of 215 possible states B could have been initialized in.

Still the encryption of rp must be regarded as inadequate for its immediate use as the agreed bit

sequence, at this point, since direct use of these bits would allow eventual cryptanalysis of the b

bit string. (We choose to assume the worst: that, if we applied no additional layers of protection

to the process, an attacker would eventually obtain samples of matching r, rp and k bit strings, a

match between plaintext (rp) and ciphertext (bxrp) would reveal the Vernam cipher key (b).)

Therefore, we apply the additional major steps of bit-matching to discard roughly half of the bits

in rp (using the C generator and M bit-matcher to obtain m), extracting (in the vast majority of

cases) 32 bits from the m sequence for use in the A generator (the bits extracted from m are not

used further in deriving the agreed bit string k in the present cycle), and finally performing a bit-

blending operation on the bits in m, using D, to arrive at an agreed bit-string k.

The bit-matching process, using the bit-string c that PRNG C generates, discards half of the bits

in rp, on average. Unfortunately, the bit-matching process means that there is a high correlation

between the resulting bits (m) and the output of generator C. All the remaining bits in m match

bits in the c bit-sequence, largely in order. But, several factors obscure this fact from an attacker.

First, the attacker does not see the rp bit string in unencrypted, unprocessed form, since it is

transmitted encrypted by bit string b. As previously observed, bit string b is, until the bit string k

produced using it is known to the attacker, effectively encrypted with a OTP (since rp is random),

even as rp is in turn encrypted by the Vernam cipher key b. This is believed to severely limit an

attacker’s ability to cryptanalyze it by forward analysis, potentially to brute force methods only,

as per Shannon [5], one guess is as good as another, in the absence of corroborating evidence.

120

We can also view the situation with regard to bit-string c inversely. Bits in c are selected at

random by the bits in rp, or bits in string rp with random values are selected pseudo-randomly by

bits in string c. Further, as shown in the previous chapter, the number of bit-sequence pairs that

can produce the same matched bits displays factorial growth as the number of bits subjected to

the matching process increases.

Another complicating factor is the bits from bit string r injected into the xQ buffer of C (holding

output from C’s <X> generator). As these bits are random, they introduce aperiodicity into C,

with the result that C, like B, has unbounded linear complexity.

Finally, there are the matched bits either discarded as insufficient to construct a full byte or

extracted for use in A. If the number of matching bits between strings c and rp are not congruent

to 0 mod 8, |m| mod 8 bits will be discarded at the end of the matching process as not being part

of a complete byte. If, after the extra bits at the end of m have been discarded and the re-seeding

bits to be used with A have been removed, the length of the modified string m is an odd number

of bytes long, a further eight bits will be discarded from the middle of the m string. These are

never seen outside the operation of the protocol, so that an attacker will not know whether any

were thus discarded, nor are their precise origins within bit string rp.

Extraction of the bits to be injected into the A generator is performed using the highest order bits

in r (bits 0 through 2). Since this extraction occurs after the matching process, the bits extracted

from rp are not consecutive in rp, or are at least extremely unlikely to be consecutive. Coupled

with the randomized point of extraction from m, an attacker is left with the problem of

determining both the values of the bits extracted and their origins within rp, and further increases

the spurious solutions that must eventually be recognized as such before a definitive cryptanalytic

solution can be accepted.

121

An attacker may simply guess the values of bits used in the cross-/re-seeding processes, but this is

a brute force attack. While a brute force attack with a complexity of 264 cannot be regarded as

particularly difficult, its multiplicative effect on any hypothesized attack on other parts of the

scheme faster than brute force is likely to be significant.

One issue, previously mentioned, with regard to the extraction of the bits to be injected into A is

that there is no guarantee that there will be enough bits in m to provide the required bits at the

location specified by the bits from r. The fact that A has a defined but randomly re-seeded <X>

generator means that the deficiencies will be made up by that generator, and further that the state

of the <X> generator is at least marginally relevant to the cryptanalysis of the overall scheme,

though far less so than other constituent generators. The entropy of that generator’s seed and

state are not wholly lost to the overall scheme, however marginal its effect.

The final step in the process is the bit-blending of the two halves of what remains of m. As the

two halves are derived from an aperiodic stream of bits, the blending process will yield a bit

string that is aperiodic and has an unbounded linear complexity. On average, the yield will be

about 232 bits (or 29 bytes) for every 1056 bits of random material used. The following diagram

completes the illustration of the overall process.

Generation of bit-string k from bit-string m, using generator/PRNG D

122

This last step uses the reduced bit-string m, which is the product of first discarding half of the bits

in bit-string rp, then trimming to arrive at an even byte length. Now, due to the fact that the final

reduction using generator D operates on bytes, a further byte of m may be discarded from the

middle, if m is not an even number of bytes in length. And, we again note that, since the bits in

the trimmed m are random, the output from D will also be random.

The entire process described in Protocol A is deterministic. Yet, because the data processed is

random, the effect of the process is to map a pair of random bit-strings (r and rp) to another,

shorter bit-string (k) while preserving the randomness of the bit-strings that served as input.

It is again observed that Protocol A can be modified to achieve the same result without the pre-

processing performed by Alice in steps 1 through 4. This is a direct result of the fact that r and rp

are random bit strings.

In any correct implementation of OTP cryptography, the strength of the system derives from the

fact that a random bit value XOR’ed with a non-random bit value results in a random bit value.

The ciphertext produced is an encryption of all possible plaintexts of the same length, with equal

probability. XOR’ing the ciphertext with the plaintext produces the original random key.

Changing the perspective slightly, if we treat the plaintext as a Vernam cipher key used to encrypt

a random bit-string, XOR’ing the plaintext “key” with the ciphertext produces the random bit-

string.

If R is used to generate axr and bxrp directly, both Alice and Bob can treat both in the same

manner, starting with Bob’s handling of axr in step 5 of Protocol A. This change results

in the flow of operations illustrated in the following diagram, which integrates the pieces

presented above.

123

B

C ...

...

...

...
bit

match

...

...

bxrp

b

c

rp

m
...

m

D

...

k

A

G

axr

a

r

Flow of operations and data in Protocol B

Formal description of Protocol B must be provided, and follows here.

Protocol B

1. Alice generates a random bit string of bits axr, of 32 bits, and a random bit string bxrp, of

1024 bits, using random number generator R, and sends these to Bob.

124

2. Alice and Bob pump their respective copies of A to obtain a, then XOR this with axr to

obtain the bit-string r.

3. They insert the lowest-order 15 bits from r into their respective xQ buffers of their copies

of B.

4. Both pump their copies of B to obtain b, and XOR this with bxrp to obtain rp.

5. They insert bits 3 through 16 (14 bits) of r into the xQ buffer of their copies C, and pump

these copies of C to obtain matching 1024-bit blocks c.

6. They use M to do a bit-match selection of bits using c and rp, producing m, which they

truncate as in Protocol A.

7. Provided there are at least 12 bytes in m, they use bits 0 through 2 of r, as integer o, to

select 32 bits, starting at m[l – (o + 4)]. These bits are removed from m and inserted into

the xQ buffer of their respective copies of A. Otherwise, they use the xQ backup

generator for A to satisfy the requirements for pumping that PRNG.

8. Both Alice and Bob split their copies of m in half as in Protocol A, and feed the first half

into D as the <X> sequence stream, and the second half as the <Y> sequence stream. D is

pumped until the <X> and <Y> sequences are exhausted (they meet in the middle of m) to

yield the bit string k.

9. Alice and Bob repeat steps 1 through 8 until they have as many bits of agreed key

material as they require.

Note that in step 1 of Protocol B it isn’t necessary that Alice generate the random bits for axr and

bxrp. “Generate” can be loosely interpreted as “selects,” with complete freedom to use random

bit strings from any sources she chooses. The sole requirement is that the sequences selected

must be random.

As for the use made of the end product of the process (bit-string k), the Alice and Bob may make

any use of it they wish that requires agreement on a set of random bits. This may be as session

125

keys, message IDs, or anything else desired and appropriate according to the security

requirements of the application, and the relative strength of the constituent <X> and <Y>

sequence generators used in A, B and C. This includes use of k as a Vernam cipher key-stream, as

a block cipher session key, or as updates to the “counter” when using block cipher counter mode.

(See Appendix A regarding counter mode.) Such applications will be subject to the requirements

and restrictions described in Chapter I, and according to the to-be-determined strength of the

protocols described here. Discussion of the strength of these protocols is dealt with in Chapter V.

Issues Not Covered or Briefly So

A number of issues regarding the above protocols are not dealt with in this document. Among

these are the means by which the transmission of the axr and bxrp bit-sequences from Alice to

Bob occurs, including how assurance of successful receipt may be obtained, and how the initial

seeds or states for the various components come into possession of the correspondents.

As far distribution is concerned, we can simply assume distribution of the initial state, or a set of

initial states allowing re-initialization at some prescribed intervals. While the volume of material

that may be distributed and used as OTP key material is now much greater than in the past (on the

order of terabytes, with distribution via a disk drive, at present) real-time video applications must

still be recognized as capable of consuming that OTP material at a rate making such distribution

impractical. Repeated such distributions create security problems in their own right, while single

distributions are less risky. As the presented mechanism allows real-time replenishment of

agreed random bit strings, if it proves sufficiently secure, it will tend to minimize that original

material problem relative to the long-term operating costs.

Another issue not covered is the selection of the component generators to be used, beyond some

basic observations. The protocols above are not inherently tied to any specific PRNGs in roles as

126

the <X> and <Y> generators of A, B and C. Any PRNGs that satisfy the requirements of the

target applications may be used.

The overall performance of the protocols is highly dependent upon the constituent PRNGs, and

how those PRNGs are implemented. While the core mechanisms are relatively efficient, and their

performance is discussed in Chapter V, the performance of an implementation of these protocols

will tend to be dominated by the performance of the constituent PRNGs, particularly if these are

slow. For example, use of software-based Blum-Blum-Shub (BBS) generators on a single

processor will yield very slow performance relative to highly parallelized hardware

implementations of efficient generators such is LFSRs. Such considerations are discussed only

briefly in the following chapter.

Finally, though an implementation of Protocol B is provided in Appendix C (less the requisite

RNG R, which must be a hardware solution), this is provided primarily as a test-bed for the

overall scheme, and thus does not use particularly strong PRNGs as constituent generators. That

implementation is used to verify correctness, not as an in any sense “mandatory” implementation,

just as the explicit integer values used in the above protocol descriptions may be altered in any

extrapolation of the overall scheme.

127

CHAPTER V

ANALYSIS AND CONCLUSION

In cryptography, there is no point to proposing an algorithm, protocol or anything else without

offering some analysis of how that proposal addresses a cryptographic problem. Due to the

character of cryptanalysis, which is as much an art as a science, no analysis by a tyro in the field

can be regarded as conclusive, particularly as even the best efforts of a seasoned expert can miss

salient points that may prove fatal to scheme [14][25]. Only when a rigorous formal proof is

given can a conclusion be reached, rather than an inference.

Claude Shannon’s proof [5] that a One-Time Pad (OTP) provides perfect encryption is a rare

exception to the general rule that cryptographic systems do not have rigorous proofs of strength.

Many cryptographic algorithms for which any type of proof exists rely upon the Diffie-Hellman

conjecture as a fundamental premise. If that conjecture can be shown to be false in any such

instance, the proof is refuted, and the algorithm may well prove to be weak.

Shannon’s proof of OTP’s strength is a major reason for the structure of the present scheme.

Rather than rely upon a conjecture that some of the various aspects of the scheme constitute

“hard” problems, it is believed that incorporating a problem that is demonstrably impossible is a

better approach and will lead to a stronger argument for the scheme’s strength, even in the

absence of a formal proof of the security of the system as a whole.

128

The “hard” problems relied upon by many cryptographic systems are based can be solved, given

unlimited time and resources. Such problems include the factoring of very large numbers,

determining discrete logarithms, etc., as previously discussed. These have not been proven to be

impractically hard. They are simply presumed to be so, based upon the present understanding of

these problems. In contrast, OTP is provably impossible to break, given a correct implementation

and proper operation.

Use of an OTP-like construct in the protocol does not imbue the protocol with perfection. In OTP

ciphers, the attacker can never say with certainty whether a particular cryptogram used a

particular OTP key if the key and the plaintext are destroyed as required by the implementation

described by Shannon. In the present proposal, we must assume, as per a strong form of

Kerckhoffs’ principle [3][4], that an attacker will eventually know both the axr and bxrp bit-

strings transmitted as well as the resulting bit string k. (See Chapter IV for descriptions of these

and other portions of the protocol.) The random bit sequence used to derive k is latent within any

copy of bxrp, and is derivable from bxrp if the derived bit-string is also known. Likewise, the

material latent within the axr bit-string may potentially be derived from the agreed bit-string. The

cryptanalytic question is therefore whether an attacker possessing these substantial clues

regarding the state (or key) to the agreement mechanism can derive that state from those bit

strings in a way that compromises the scheme, given reasonably anticipatable resources and time.

Thus it may be seen that we cannot claim strength of mechanism simply from asserting that, like

OTP, we start with random bit-strings r and rp (or axr and bxrp, in the case of Protocol B), and

therefore are perfectly secure. Rather, we can say we have a firm foundation for parts of the

scheme, but must show that this security is not fatally compromised by other elements of the

system, and must justify claims of security in the remainder of the system, at least within the

limits of the author’s knowledge and experience.

129

To claim at least some strength, we must show that the element of Shannon’s proof that applies is

the entropy continually injected by use of random sequences, and that, coupled with the

combinatorial problems posed by the scheme, this entropy is not wasted, that the scale of the

problem left an attacker remains sufficiently intractable, for a sufficiently long period between re-

keying, that there is an acceptable level of risk associated with the scheme.

Note the distinction between re-seeding and re-keying. Re-seeding is the process by which we

inject new, random material into the various composite generators as part of the normal operation

of the mechanisms. Re-keying is the replacement of substantial portions of the overall state

outside normal operation. Re-seeding is a continuing regenerative process that is intended to

make a cryptanalyst’s problem of identifying the mechanisms internal state more difficult by

removing periodicity, and occurs within the operation of the protocol. Re-keying (at least with

complete state replacement) forces the cryptanalyst to start over from scratch, and occurs outside

the operation of the protocol.

Having said all this, it is important to reinforce one truth with regard to cryptography: it is

exceedingly easy to be wrong. Two highly relevant quotes are worth offering here. The first is

from David Kahn [14].

“Few false ideas have more firmly gripped the minds of so many intelligent men than the
one that, if they just tried, they could invent a cipher that no one could break.”

The second quote is from Bruce Schneier [25], the first sentence of which has come to be known

as “Schneier’s Law.” The latter two sentences are of particular relevance here.

“Anyone, from the most clueless amateur to the best cryptographer, can create an
algorithm that he himself can’t break. It is not even hard. What is hard is creating an
algorithm that no one else can break, even after years of analysis. And the only way to
prove that is to subject the algorithm to years of analysis by the best cryptographers
around.”

Given the time and resource constraints of a thesis, this protocol has not been subjected to the

years of analysis by the seasoned cryptographers who might prove its ultimate worth or

130

worthlessness. It is the intention of the author that it will be submitted for far more extensive

analysis, above and beyond anything the author is presently capable of.

What is believed of the presented protocol by the author is that it is composed of parts that have

merits, as well as flaws, that the flaws of the individual components have been, to the best of the

author’s ability, addressed by the other parts, but not that the scheme as a whole is therefore

sound, cryptographically strong and secure as a result. Rather, it is believed that it demonstrates

some methods of worth, and that these may be further refined and developed. Indeed, given the

inherent difficulty of cryptography, and of designing good algorithms and protocols, the author

will be pleased if any part of this protocol is carried forward into better, stronger solutions in the

future, and thrilled if it is shown to be robust with minimal changes. But, the present problem is

to show that care and good thought has gone into an idea and its implementation, and that the

result is worthy of further study.

Apparent Randomness of the Produced Bit-Stream

The first consideration to be addressed is whether the scheme is capable of delivering what it is

intended to provide: an agreed upon string of apparently random bits shared by two or more

parties, wherein the apparent randomness is sufficient to afford some level of security from their

use. That two parties will, given identical initial states and algorithms, end the processes

described with agreement upon strings of bits is here regarded as true, without formal proof. The

processes described here are deterministic. Apart from re-keying, all randomness incorporated in

the scheme is shared completely, leaving no window for divergence apart from system faults or

external interference, both of which lie largely beyond the scope of this thesis. (Re-keying is a

separate process not dealt with in depth here.) This leaves the question of what is meant by

“apparently random.”

131

In the present instance, by “apparently random” we mean that, taken by itself, the agreed upon

bit-string k produced is such that given any prefix of k we cannot predict with much greater than

0.5 probability of being correct the next bit in the sequence, and given any suffix of k we cannot

infer with much greater than 0.5 probability of being correct the value of the bit that immediately

preceded that suffix. In other words, we must show that we cannot distinguish k from a truly

random sequence of bits. The demonstration of this is in two parts.

The first is via testing multiple output strings from the algorithm using an implementation of the

BSI AIS 20 test suite. While numerous other test packages could have been used, the decision

was to limit testing to a single, well-understood package. If this test is not passed, no amount of

theoretical argument can substitute for the failure. The output sequences from 10 runs of 64

blocks all passed, giving reasonable assurance of at least minimal apparent randomness.

The second part of showing the result is apparently random, given random inputs, is based in

theory. It can be summarized in a single statement: The resulting bit string k is random, provided

the input strings r and rp (or axr and bxrp) are random, precisely because k is derived from them.

This is a very unsatisfactory assertion without some support. An informal proof is as follows.

The axr and bxrp bit-strings may be regarded as either random bit strings in their own right (in

the case of Protocol B) or as the product of the exclusive or (XOR) of a random strings of bits

with pseudo-random bit-strings of equal length (in the case of Protocol A). As per Shannon [5],

the XOR operation preserves entropy. Therefore axr and bxrp preserve entropy, or randomness,

regardless of which protocol applies. The first step of the process, for both axr and bxrp is an

XOR of the output from a PRNG with the subject string. As the initial axr and bxrp strings are

random, the results preserve entropy and are putatively random. (In the case of Protocol A, at this

point we have recovered r and rp, which were random in the first place.) In the next step dealing

with the rp string, the output of yet another PRNG is used to select bits based upon value and

132

position, yielding the m bit-string. As the value of each individual bit in rp is random, and its

selection or non-selection as output from this step is determined by the value of that bit, the result

is again random. Alternatively, we can view the process as using the bits in rp to randomly select

bits in b, which is itself a random process and logically identical to using b to select bits in the

random string rp. In the third step of processing, now dealing with m, yet another composite

PRNG is used, with the m bit-string used to provide its feeds. As these bits in m are random, the

output bit-string (k), which is the result of selecting four-bit values based upon those feeds, with

equal probability for any bit in the output being a one or a zero, is itself random.

However random the resulting bit-string k is, given random axr and bxrp, the system is

deterministic relative to both the state of the mechanisms and the inputs. There is an important

distinction to be drawn here. So long as the result of a sequence of operations depends solely on

the initial input and state, which are random, and any change to the input or state results in an

uniform probability of change in the output (each bit in the output has a 0.5 probability of

changing), the result of the process is apparently random, but the process itself is deterministic.

One way to think of this is with regard to a periodic PRNG. If the seed of such a PRNG is

randomly selected, with uniform probability for all bits, we have in effect selected a random point

in the output sequence of the PRNG via the random selection of the initial state. Assuming a

sufficiently long period with good apparent randomness, any portion of the PRNG’s output

sequence thus selected, taken in isolation, is effectively random, provided it is no longer than the

seed, while the cycle generated by the PRNG is not random since it is determined by the

algorithm. The entropy of the output sequence declines as the output sequence increases in length

past the length of the seed. This is why cryptanalysis is possible for non-OTP systems. Only in

OTP and its homologues is cryptanalysis impossible, and only because entropy is preserved,

never decreasing, throughout. Therefore, we must understand the process embodied in the

protocols and the implementation not as an encryption process, but as a synthesis or distillation

133

process, whereby a pair of random input streams are used to generate bits that are apparently

random in behavior.

Confidentiality

The next question that must be addressed is whether the result affords useable confidentiality

when the initial state of the mechanism is secret. This is far the more difficult question to answer.

Again, by Kerckhoffs’ criteria, we must presume that communications are monitored by an

attacker, and thus the attacker will have copies of the axr and bxrp bit-strings. Using a strong

interpretation of Kerckhoffs’ principle, we assume not only that the axr and bxrp bit-strings are

known by an attacker, but also the k bit-strings that result from processing axr and bxrp

sequences, and that the real task of the attacker is to determine the internal state, or key, of the

mechanism associated with a given axr/bxrp/k triplet. Once an attacker has determined the state,

the subsequent output strings can be determined by the attacker upon receipt of sequential axr and

bxrp strings. Therefore, as per Kerckhoffs, the confidentiality of the system must derive not from

the secrecy of the scheme, but from the key, which is in this case the initial state of the

mechanism, and the difficulty of deriving the key from the input and output bit-strings.

The most vexing problem in the analysis of any cryptographic scheme is that the types of attacks

that may be developed in response to a new algorithm cannot be readily predicted. Known

attacks can be analyzed with regard to the scheme being examined, but not unknown and yet-to-

be-developed ones. There are many extant attacks in literature, though the applicability of any

one to a particular scheme varies dramatically from extremely effective to wholly pointless. This

fact has contributed significantly to the design of the scheme presented. The intent has been to

rely only upon simple mechanisms that are relatively easy to analyze and as near devoid of

reliance on any form of Diffie-Hellman conjecture, or even upon mathematical operations, as

practical.

134

The most basic form of attack, brute force, must be discussed when analyzing any cryptographic

system. Correlation issues must be considered when a scheme entails the interplay between

component PRNGs. Periodicity, specifically with regard to the Berlekamp-Massey algorithm,

must be addressed when dealing with deterministic systems of PRNGs. Differential attacks must

also be considered, as non-uniform probabilities associated with the behavior of an algorithm, or

resulting from the composition of the data structures used, can be effectively lethal to a system.

Some forms of analysis and attack are avoided by the fact that this is not a cipher system, per se.

There is no encryption of a plaintext to form a ciphertext. The process is essentially a decryption

process that derives the output string k from the random input strings, based upon the secret key,

which is the initial state of the mechanism. In particular, the bit-matching process, in discarding

roughly half of all bits in rp, is not reversible so that rp can be definitively derived from k, even

though cryptanalysis may well allow eventual determination of the state that maps r and rp to k.

The scheme provides means by which two correspondents may agree upon a string of apparently

random bits in what is intended to be a secure manner. Ciphers are used to gain confidentiality

through obfuscation of the plaintext encrypted. Plaintext generally incorporates some degree of

redundancy in the message itself: the components of the plaintext relate to each other in ways that

help to ensure the understandability of that plaintext by its intended recipient. Also, a cipher

system must provide means, some inverse function, utilizing either a symmetric key or a member

of a key set, to decipher the ciphertext and recover the original plaintext message. Here, we wish

to preclude such inverse operations as far as is practical.

In certain senses, there is a “message” (axr and bxrp together, and ultimately k, which is derived

from them) embedded within the material transmitted by Alice to Bob. There is also redundancy,

in that a significant number of bits are discarded from bxrp (and derivatively from rp) as it is

processed to determine k. These discarded bits are redundant in a different sense than extra

information contained in ordinary plaintexts. Their contribution to the string k is their non-

135

participation, obscuring the point of origin of the bits within bxrp, that are used to generate the

output string k. Their non-participation also helps to determine the length of the m bit-string.

This being the case, it should be possible to determine the unicity distance of the encrypted

“message” k.

Given the definition ,/)(DkeyspaceHU = where U is unicity distance, H(keyspace) the

entropy of the keyspace and D the redundancy of the plaintext in bits per character, we can

observe certain facts. First, the “alphabet” of k, the putative plaintext, is binary digits. Second,

H(keyspace) is non-zero for any keyspace that is non-empty if individual keys are selected

randomly.

The third observation is more complex, but critical to the analysis. When D above is referred to

as the redundancy of the message, the meanings of both “redundant” and “message” must be

understood clearly. Obviously, the bit-string k is the message Alice wants Bob to receive, as well

as possess herself. But, Alice does not select any specific k. Rather, in using random r/rp (or

axr/bxrp), she randomly selects one of the possible outputs from the mechanism, given the

current state. This means that there are putatively ()
i

i
∑

=

124

0

82 distinct possible outputs from which

Alice is randomly selecting for each r/rp block.

As regards redundancy in k, it is simplest to consider more typical messages. In human

languages, particularly in their written form, much of the material conveyed, is in excess of the

minimum required to convey meaning, but is present in part to reduce ambiguity and improve

understandability. This gives us such things as the distinctions between the words “to,” “too” and

“two,” as well as the difference between the definite article “the” and the indefinite articles “a”

and “an.” This is constructive redundancy in the sense that the excess information helps to

confirm the meaning of the text by a human reader. It also provides “aid and comfort” to

136

cryptanalysts by reducing the range of distinct, meaningful messages that may be encoded in a

given number of characters in a “human” language.

In the case of the k bit-string discussed here, there is no constructive redundancy. There is no

redundancy of any kind. Each bit is independent of the others. Changing any one bit changes the

message, and depending on the use made of k, can completely alter the results. For example, if k

is used as a session key for a symmetric cipher, such as AES, the ciphertext resulting from that

single bit change will be substantially different from that produce without that change in k. So, if

we consider D in the definition of unicity distance relative to the k bit-string, D = 0. Taking this

view of k, the limit as D approaches zero in the above framing of unicity distance is infinity, for

any non-zero constant H(keyspace).

The next question is then, “What is the value of H(keyspace)?” In part, the answer to that is

simple. If the initial state is random, H(keyspace) = n, where n is the number of binary digits in

the key (for binary keys) or log2(keyspace), making the problem determining what constitutes the

key, and thus its length. That depends on the r bit-string, the implementations and states of the

generators used as constituents of B and C, the state vectors of the B, C and D generators, as well

as what of that material is secret, what known.

Note that the states PRNG A’s constituent generator are not considered in this, nor is the State

vector of A itself. This requires explanation. As the probability that bit string m will be shorter

than the re-seeding threshold is very low, 32 bits extracted from the m bit-string will usually be

used in lieu of the output of one of A’s constituent generators (the <X> generator), the output

from A (the bit-string a) is in fact random. Thus, bit string axr is random with regard to both bit

strings a and r. By this we mean that, since r is random, and the <X> input string to PRNG A is

also random (making the output from PRNG A random), and the bit-wise XOR of bit strings a

137

and r preserves the entropy of both, bit string axr retains the entropy of both bit strings, and thus

is as random as either.

Without some additional information regarding the r and the re-seeding 32-bt re-seeding bit string

taken from rp, there appears to be no effective means whereby axr can be cryptanalyzed more

rapidly than simply guessing what bit string r may be. Even if the A composite generator’s <X>

generator were invoked with some regularity, the problem of cryptanalysis appears to remain

difficult, though aggregate state of PRNG A would start to contribute in a more conventional

sense to the effective key length. Fortunately, invocation of A’s <X> generator has been found to

be very rare.

From such considerations, it is believed important to any alternative implementation of the

overall scheme presented that varies the lengths of the various bit-strings that the probability of

not re-seeding A from m remain low, and that the number of re-seeding bits equal the length of r.

This will likely mean that A does not play a direct role in H(keyspace), when considering the

cryptanalysis of bxrp and k. An attacker need not cryptanalyze axr, only guess the effects on the

states of the B and C generators, or, if the mechanism proves weaker than intended, derive the

values obtained from axr based on cryptanalysis of bxrp and k.

This may be considered a flaw in the system, but it is believed that it helps r continue to inject

entropy into the system with each cycle, at least until a solution for B, C and D has been found.

At that point, with the re-seeding bits for A revealed before the next cycle, the process of breaking

A can begin with good effect. It is therefore believed justifiable that, though the state of A is part

of the key material for the overall system, it can and should excluded from determining the

effective key length in determining the unicity distance with respect to bxrp and k, if for no other

reason than an abundance of caution in that determination.

138

Unfortunately, such analysis is not very revealing with regard to the overall cryptographic

strength of the agreement scheme. Unicity distance is an indication of how much material must

be successfully decrypted in order to be certain that the key used is the correct key. With the

assumption that an attacker will eventually obtain significant samples of the axr, bxrp and k bit-

strings, the fact that the function that takes axr and bxrp to k, given some specific initial state,

means that we must expect that, with unlimited time and resources, an attacker will eventually be

able to determine the initial state from a sufficiently large set of these bit-strings. But, under the

specified assumptions, this unbounded value indicates that, if all else is found to be reasonably

secure, a certain amount of uncertainty remains for quite some time in any solution process.

Having raised the question of redundancy, and observed that there is redundancy in the bxrp bit-

string transmitted by Alice to Bob, we must account for this relative to the Unicity distance in

some manner. The problem with incorporating this redundancy in the calculation is that though

we may regard bxrp as a message, it is ciphertext, not plaintext, and as much of it will usually be

discarded, the redundancy is not constructive in the sense of making the “plaintext” string k more

easily understandable. Therefore it believed that it plays no factor in the Unicity distance.

The distribution of lengths of k depends directly on four factors. The first is the selection process

from rp using the C generator in the bit-matching process. Assuming the process is random, with

a 0.5 probability for selection of any one bit, the resulting bit-string m will display lengths that

conform to the binomial distribution. At this point, the second and third factors come into play.

The process of selecting the re-seeding bits for A removes some number of bits (32 bits, in the

present implementation) if the total length of m is above a threshold. This process requires (for

the sake of simplicity in the presented implementation) that m be truncated to a length congruent

to 0 mod 8. Thus, 32 bits, plus 0 to 7 bits are discarded or otherwise removed at this point.

Finally, the bit blending that occurs as the final step requires (again for simplicity) that only an

even number of bytes from the m bit-string be used in generating k. This results in “discarding”

139

either 0 or 8 bits. Any exact calculation of the average |k| must account for these factors, but we

are left with the fact that it is only an average, and that we will still see a “binomial like”

distribution of lengths, predominantly about the mean.

If we examine carefully the contribution discarded bits make to the security of the scheme, we

return to the following equation, first introduced in Chapter III, which give the number of

possible ordered bit-string pairs that could produce a specific bit-string of length n.

 .2 ni

ni n

i
C −

∞

=
∑

=

Now we are dealing with a specific instance. We know the actual lengths of the compared input

strings, and the length of the resulting matched-bit string, and so are not dealing with a

summation over all possible input string lengths. Therefore, we can calculate the exact number of

ordered input string pairs that can produce the same result, ignoring for the moment that bits will

be removed from m.

 .2
||

|| ||||
,

mrp
mrp m

rp
C −

=

If there are matched bits that are omitted due to an incomplete byte at the end of the matching

process, the result is a little more complicated, as we have the following.

 ,2
||

|| ||||
,,

mrp
omrp om

rp
C −

+
=

where o is the number of omitted matching bits, and m is now the matched bits the attacker “sees”

as output from the matching process. Initially, an attacker will know neither the number nor the

140

values of the bits that matched but were discarded, though he may subsequently either guess

them, or learn their values as a result of analysis. Therefore, an attacker will have to deal with a

number of other possibilities, due to the additional bit omissions. The above equation now

becomes, in most cases, the following, once we have also accounted for the 32 bits extracted for

use in PRNG A.

 ,2
32||2

|| 3||2||
,322,

+−
+

++
≅ krp

okrp ok

rp
C

where k is the agreed bits string, and o is an integer in the range [0, 15]. (Note that the “+3” in

the exponent above accounts for the eight possible placements of the eight different placements of

the 32 bits that are removed for use in PRNG A. Also, the calculated number of complementary

string pairs is no-longer exact, since repetitive patterns in the region where the 32 bits extracted

for use in PRNG A can produce the same results regardless of the exact segment extracted.)

Now, an attacker does not initially know how many matches are not represented in bit-string k,

plus the very probable 32 bits used in re-seeding A, and the maximum number has increased from

7 to 15. Initially, the attacker knows k, and thus its length. The number of possible rp/c bit-string

pairs that could have created k is thus the sum of cases where o ranges from 0 to 15. As for the

placement of the excluded bits, he initially knows roughly where 8 bits may have been removed

from the middle of m, where any of the 0 to 7 “odd” bits were (at the end of the otherwise

matching bits), and the 8 places where the 32 bits injected into A were originally in m (as a block

from the last 8 bytes of m).

The overall probability distribution for |k| is messy, thanks to the threshold question. For lengths

below the threshold for extraction of re-seeding bits, the tail function for the binomial distribution

is useful. Because it really matters little where and whether a byte and from zero to seven bits are

discarded for processing, we can sum the probabilities of individual lengths of m prior to discard,

141

in blocks of 16 bit lengths. For example, the probability that k is an empty string is given by the

tail of the binomial distribution from 0 to 15 bits over a 0 to 1024 bit domain. The probability

that k is 8 bits in length is the tail probability from 0 to 31 bits minus the tail probability from 0 to

7 bits, etc, up to the threshold. At the threshold and above there will be an additional set of

probabilities associated with four bytes removed for lengths greater than the threshold. Still these

disjoint probability domains can be calculated in a reasonably straightforward manner, despite the

overlap. It just takes time and high-precision computations, when |rp| is large.

Trials using the actual implementation presented produces information that, over very large

numbers of blocks, may be expected to approximate the theoretical probability distribution. Such

trials were run, with 1,000,000 1,056-bit blocks (bit strings axr and bxrp combined) processed in

two separate runs. The average observed for these combined runs was 29.307 bytes per block

processed.

Consider now the combinatorial problem of the system in generalized terms. For any given bit-

string k produced by the mechanism with initial state s, we would expect that there would be, on

average, |r||rp| / |k| separate r/rp bit-string pairs that would map to the k bit-string generated, since

the mechanism embodies a many-to-one mapping. In other words, we can think of it as a

function ,: 2
||||||

2
ksrpr GGf →++ where s is the state of the mechanism at the start of a cycle, and

thus |s| is the size of that state in binary digits, and G2 is the set {0, 1}. For a fixed initial state s,

the mapping function becomes .: 2
||||

2
krpr GGf →′ + Further, since k varies freely with each cycle,

given the results of two successive cycles concatenated without specification of the boundaries

between the successive k bit-strings, it is not possible to definitively state where the boundaries

between different k sequences lie without knowledge of the initial state, even when the applicable

axr and bxrp bit-strings are known. Therefore, depending on how the k bits are used, it may not

be possible to isolate an axr, bxrp, k triplet for analysis without knowledge of s.

142

This consideration does not lead to a claim of additional strength, but to recognition that we are in

reality determining a “lower bound” on the cryptographic strength (or “the difficulty of reaching a

cryptanalytic solution”) of the proposed scheme, given the assumptions made regarding its use.

The most important of these are that the initial state of the mechanism on its first invocation is

random, as are the r/rp or axr/bxrp bit-string pairs used as inputs, depending on the protocol used.

With the extreme interpretation of Kerckhoffs’ criteria, and the resulting assumptions regarding

analysis of the scheme, we believe a sounder argument for what strength is claimed can be made

thereby. We therefore assume that, given a set of plausible solutions, and a known sequence of

communications and products, the spurious solutions will over time be eliminated as inconsistent

with subsequent products, resulting in increasing confidence in those that remain, despite the

uncertainty imposed by an attacker not knowing the boundaries between successive k strings

generated.

Restating the above for clarity, since in practical applications an attacker cannot expect to know

the boundaries between successive k sequences relative to the corresponding r and rp sequences

communicated, an attacker must continually guess at the boundaries, or determine the initial state

for the cycle so as to determine the boundaries. The number of plausible solutions at the start of

cryptanalysis will be significantly greater than |axr||bxrp| / |k| due to the combination of this

uncertainty and the random characters of r and rp. But, we choose not to claim additional

strength for the scheme based upon this, in order to derive what we regard as a good, conservative

conclusion. It is believed that the system is bounded by the single axr, bxrp, k triple, and that the

system can be no weaker than the difficulty of solving for a, b and c bit-strings used (and thus the

states A, B and C) plus the contents of the state vector of D, for a single r/rp/k triple, as carried

forward through attacks on subsequent triples, barring some unfortunate and as yet unidentified

flaw in the scheme or the implementation presented.

143

Returning at last to the question of H(keystream), and to reiterate the point, for purposes of

determining the entropy of the keyspace with regard to cryptanalysis of the derivation of k from r

and rp, we regard the key of the presented scheme to be comprised of the combined states the

constituent generators of the B and C generators, plus the state vectors of B, C and D generators,

plus r from the current cycle of the mechanism.

While the constituent generators are explicitly given for the presented implementation, these are

mere examples, and are easily replaced. Selection of LFSRs for their implementation is solely

due to their linear complexity being well understood.

Brute Force Time Requirements

While it is extraordinarily brazen to claim that a brute force attack is the only means by which a

system may be successfully cryptanalyzed, no analysis of a cryptographic scheme can ignore the

question of what such an attack would entail. If a brute force attack is not sufficiently expensive

in terms of time and resources as to be impractical, given the scheme’s application domain, the

system must be regarded as insecure from the start.

What constitutes an inadequate problem from the perspective of someone considering a brute

force attack changes with time due to improved tools and the resources available to an attacker.

This can be seen in the history of the Data Encryption Standard (DES), and its demise as a viable

block cipher in critical security applications [121]. DES was seen as potentially inadequate even

during the adoption process [25], as the effective 56-bit key length was not perceived to constitute

a long-term difficult problem. Reviewers anticipated the development of systems of sufficient

power and flexibility to render such a short key ineffective. Thanks in part to the construction of

the DES Cracker by the Electronic Frontiers Foundation (EFF) [121], this expectation was proven

correct. While the full breadth and depth of such developments cannot be easily foreseen, some

assumptions must be made for analysis to be meaningful.

144

At present, the potential of quantum computing is still largely unknown. An algorithm for

quickly factoring very large numbers into their constituent primes has been proposed [26]. This

should be regarded as a cautionary warning for cryptographic systems that rely on presumably

very hard mathematical problems, and thus entail the Diffie-Hellman conjecture, even though

there are arguments that the algorithm involves sufficient compounding error terms to render it

ineffective. Even if such counter-arguments are true, it should be recognized that if the algorithm

merely reduces the search space in factoring large numbers, it will materially weaken all systems

that rely upon factorization being a hard problem. The present scheme starts with a One-Time

Pad(OTP)-like approach. In OTP there is no mathematical relationship between plaintext, key

and ciphertext that may be exploited directly. Absent such a potentially exploitable mathematical

relationship, our assumption is that, while quantum computers may radically increase the power

of computing systems, and thus decrease the time required to conduct trials in a brute force

attack, there will be no algorithmic solution to the fundamental problem of the entropy of random

data streams that collapse the computational complexity from exponential time (i.e. powers of 2,

when dealing with collections random bit values, where brute force attacks lie) to polynomial

time or better.

This is much like the Diffie-Hellman Conjecture used in the proofs of the strength of many

cryptographic systems, implicitly or explicitly. The difference lies in the fact that while the

associated mathematical problems of such schemes are presumed to be hard, OTP is provably

impossible of solution when correctly implemented [5]. We therefore regard reliance upon the

entropy of the inputs as reasonable cause to believe that quantum computers (which are as yet not

fully realized) will speed the process of performing brute force attacks, possibly radically, but not

provide a solution to the problem of the entropy in random key material or states.

Again, with the assumption that the mixing tables used in PRNGs A, B, C and D, the attacker has

the axr, bxrp and k bit-strings for one complete cycle (including the bounds of this k) plus an

145

arbitrary number of additional, contiguous samples of the three bit-strings (though not necessarily

the bounds of the additional k bit-strings), and the taps used for the component generators, the

state vectors in A, B, C and D may be treated as the key in the specific instance, when we

temporarily ignore the states of the component generators. As such, we have as many bits of

secret key as there are bits in these state vectors (256 bits), and successfully guessing these

contents will “solve” the given instance of the scheme. The problem for the attacker is to

determine the plausible keys that associate the known axr and bxrp bit-strings with the known k

output bit-string, then eliminate the spurious keys (keys that appear to work, but are not in fact

the key used) until the actual key is revealed.

Remembering the decision to deal with r as key material (for calculation purposes) rather than A

in its totality, we have 224 bits of key material to consider, having replaced 64 bits with 32.

Taken at face value, this is a reasonably long key, and a brute-force attack upon a random key of

this length can be expected to take a very long time, unless attacked massively in parallel.

To illustrate the time required to solve for the key, let us assume that we have access to 232

systems that can each test 232 of these values per second. This means that it would take 2224 / 264

= 2160 seconds to try all possible keys. There are 60 * 60 * 24 * 365 = 31,536,000 seconds in

most years. This is less than 225, the smallest integer power of two greater than the number of

seconds in a year. Using 225 as the number of seconds in a year, it would take 2160 / 225 = 2135

years to try all possible keys. As the age of the universe is estimated to be about 234 years, it

would take over 2135 / 234 = 2101 times that span to test all possible keys, given the above systems

and assumptions.

In more practical terms, we would have a 0.5 probability of successfully guessing the key. Even

if we increase the systems to 264 and the number of trials per second by each to 264, the result is

still 236 times the present age of the universe to reach a 0.5 probability of success.

146

If we now reincorporate the states of the constituent generators for B and C, and deal with those

explicitly as LFSRs, those four constituent generators have linear complexities of LB1, LB2, LC1

and LC2, (assuming LB = LB1 + LB2, etc.) which may be summed and treated simply as L. Adding

this complexity to the above, we see that a brute force attack will entail 2L times more time to

achieve a 0.5 probability of success. By selecting constituents such that L is at least 229, we can

surpass the estimated number of atoms in the universe (excluding dark matter) times the present

age of the universe as the time required to reach that 0.5 probability of solution.

The ability to easily expand the size of the keyspace by incorporating constituent generators of

any desired linear complexity was deliberately designed into the scheme, so that an implementer

can easily control the risk associated with the scheme by varying the linear complexity of the

constituent generators, as well as the frequency of re-keying.

With regard to elimination of spurious keys, we should expect the following to describe the

problem for a given axr/bxrp/k triplet.

,2 ||)(kkeyspaceH
spuriousKeys −≈

where Keysspurious is the approximate number of spurious keys, and H(keyspace) and k are as

already discussed. While this in itself does not guarantee any advantage against an attacker (an

attack might be found that efficiently eliminates spurious keys immediately), to the extent that an

attack does not eliminate all spurious keys an attacker is left with the problem of eliminating them

via additional operations. Thus, again, it is believed that the ability to aggressively scale up the

keyspace by increasing the linear complexity of component generators will allow implementers to

scale alternative implementations to the threats faced and the sensitivity of the use made of the

agreed upon bit-strings.

147

The first problem with these calculations is that we do not know what technological and scientific

advances may eventually come from quantum computing, from continuing developments in more

conventional technologies, or from as yet unimagined technologies. Nor do we know that a brute

force attack is the best form of attack. Indeed it is unlikely that this would be the case. What we

can say with confidence is that they scheme is not trivially weak with respect to a brute force

attack.

Two closely related questions need to be addressed: “Is it necessary to attack the full key at one

time?” and “Can the key be attacked in parts?” Whether the key can be solved for in parts is

related to the meet-in-the-middle attack, which is discussed later, but is a broader question than

addressed by that attack alone. Here we are concerned not with an attack that separates the

phases of the process, but attempts to attack the contents of the state vectors of the B, C and D

PRNGs in “slices,” since we use only a small portion of each state in processing nybble pairs

from the <X> and <Y> bit-sequences in each phase. The potential also exists in the presented

implementation due to the fact that the respective phases of the process interact through the

passage of information from bxrp through those phases to the output string k, without all parts of

the key being explicitly involved within all of the phases.

There is interaction between the A, B and C PRNGs via the “cross pollination” that uses the r bit-

string to inject aperiodicity into the B and C PRNGs, and bits from rp (as filtered by the bit-

matching process using C) to inject aperiodicity into PRNG A. We have previously recognized

that A may be cryptanalyzed independently of B and C. Having removed PRNG A from

consideration as intrinsic to security with regard to brute force attacks (though we retain its state

as secret), we limit ourselves to considering the B, C and D PRNGs. We believe the answers to

the two questions are yes and no, respectively – with regard to the B, C and D PRNGs, and with

certain caveats. The reason lies in the operation of the D generator, and the order in which the

results of the bit-matching process are fed into D.

148

Note that D is distinct in this scheme in that it has no component generators, and instead accepts

the reduced m string as its feeds for both <X> and <Y>, operating from opposite ends of m. It is

otherwise the same, using the common dTable and sTable pair to select both an output and a state

update value. The dTable itself is constructed to ensure that, given random feed values from the

<X> and <Y> sequences, there is an equal probability for all possible 4-bit nybble values to be

produced. Also, the state update values obtained from sTable are 14 bits in length, with one and

only one occurrence of each in the frame. It is this last point that is of particular interest here. At

each point in the process of deriving k from bxrp, any single bit change in the result of a step is

carried forward. A single bit change in b will have the effect of “flipping” a bit in rp and vice

versa. Any single bit change in c will insert or delete a bit in m, as will any single bit change in

rp. When m is fed into D, this carry-forward of bit deltas becomes important, as the shifting of

the alignment of bits within bytes of m will be reflected in all succeeding bytes. With the tail of

m being fed into D in reverse order, all such changes are automatically reflected in the state

update value obtained from the sTable. All subsequent blending of m in D thus reflects all single

bit changes in every stage of the process, while retaining equal probability of output on a per-bit

basis, thereby achieving diffusion of effect similar to that sought in block ciphers. Only in cases

where a bit delta is in a deleted tail of m (or not incorporated into m due to an incomplete byte at

the end) will such a change have no immediate effect. Only in cases of the bit delta being in the

possible incomplete byte at the end of processing rp will the effect be lost entirely. Otherwise,

the effects of the single bit delta will be carried forward into the processing of all subsequent

blocks.

A second relevant observation here is that there is vast freedom between m and k. Given the 64-

bit state vector, we can safely observe that there are 264 different possible mappings from m to k

given a random state of PRNG D. On a per-nybble basis, any of the 256 possible combinations of

two arbitrary nybbles from m can produce the same output nybble, and any output nybble in k can

149

be the product of any pair of values of nybbles from m, in both cases with the specific

combinations depending on the state vector bits used. Thus, it is believed that the nybble-wise

approach to teasing out a solution for PRNG D (meaning the contents of its state vector) only

produces the set of plausible solutions, which is effectively the same as attacking the D as a

whole.

A third observation returns to the combinatorial problem presented by the bit-matching process

that produced m, as discussed in the previous chapter. The number of different pairs of strings rp

and c that could produce any given m bit-string is vast, and compounded by the deletions for re-

seeding A, which may occur at any of eight starting points in m.

Finally we return to the fact that rp is random, and as such encrypts b perfectly … at least until

the corresponding k bit-string is known.

The combination of these facts means that, any guess as to the state of B (including constituent

generators) produces a result that is essentially meaningless without a correct guess with regard to

the states of C and D. Whether rp (in Protocol A) or bxrp (in Protocol B) is the initial random

bit-string doesn’t matter. Shannon’s analysis of OTP applies, and the corresponding bit-string

can be viewed as encrypting any string of bits of equal length.

With a guess as to the full states of B and C, the result (m) remains essentially meaningless,

without a plausible guess regarding the state vector of D, with the 64 bits of that vector defining

one of 264 possible mappings from m to k.

Thus the one severable point in the process of a brute force attack lies between the state of A and

the combined states of B, C and D.

150

Using the χχχχ-Square Test

One of the most ubiquitous classical tools in cryptanalysis, the χ−square test, has broad

applications beyond cryptography. In cryptanalysis, it provides a means of identifying deviations

from the distribution that would be expected from a set of what would preferably be independent

random variables. In the present implementation, and the scheme generalized by varying the

lengths of the r, rp, re-seeding strings, and constituent generators, the whole of the result still

depends upon the random values input, either as r and rp or axr and bxrp. As truly random input

streams will not diverge from the expected essentially equi-distribution of output values over long

periods, the test isn’t relevant. It will only yield an indication of how closely a particular sub-

sequence of random bits conformed to anticipated random behavior. Therefore, we believe it has

no practical application in the cryptanalysis of the scheme.

To claim this, it must be shown in some manner that the results will not be biased in an

exploitable way. While we can justifiably assert that the product of combining two strings, one

random and the other pseudo-random, via bit-wise XOR is in turn random, when we perform a

substitution, even when the substitution is based upon a random/pseudo-random string pair, we

must show by some means that the resulting substitution produces equi-probable results.

Unfortunately, this must be done by inspection, here.

If we examine the dTable used by A, B, C and D closely, we can see that the table as a whole is

regularly structured, with an equal number of occurrences of each of the sixteen possible output

nybbles present. Further, if we select any one of the three variables used to access the dTable, we

see that the 2D slice through the 3D table thereby selected is also regularly structured, with equal

numbers of occurrences of the possible output values. Selecting any two of the indexing

variables results in a 1D column, row or line through the 3D frame, with equal numbers of each

of the possible outputs. Finally, we can pick any three values for indexing, and see that if we

151

change either of the four-bit indices we must change one of the other indices to obtain the same

value. The “odd” case is that of the six-bit index obtained from the state vector. In this case, a

change of from 1 to 15 in the value of this index requires one of the other indices to change in

order to obtain the same value as with the original three indices. Though it is not obvious that

this structure and behavior guarantees uniform distribution of output values, given uniform

distributions of input values, it does. For any two random 4-bit indices into dTable, there is an

equal probability for every possible 4-bit result.

Meet-in-the-Middle

As mentioned earlier, an attack that might be effective, since the distinct steps in the scheme

operate with distinct PRNGs and separate initial states or keys for those PRNGs, is the meet-in-

the-middle attack. In this type of attack, the idea is to work from both ends, plaintext and

ciphertext, simultaneously, working towards a common point between these ends. When that

mid-point is reached from either end, the resulting partial solution can be compared against a

catalog of partial solutions from the other end. If a matching partial solution match is found, the

key produced from the two partial keys is a plausible solution. As the catalog of partial solutions

from each end grows, the probability that a match, and thus a plausible full solution, will be found

increases more rapidly than one might expect.

Where this attack is effective, the improvement in solution probability derives from the “birthday

phenomenon.”

The meet-in-the-middle approach works in cases when there is a point in the encryption process

where either different keys are used at either side of the point, or the key schedule is divided in a

way that has a similar effect with respect to a single key. This attack is why double encryption

(use of either two passes of the same cipher or two different ciphers in sequence, with separate

152

keys for each pass) does not offer a significant improvement in the strength of encryptions, even

when the combined keys are twice as long as the keys used by the individual ciphers alone.

It is believed that, provided the periods of the A and B generators are very long, starting from the

axr/bxrp strings is not very productive, due to the fact that these bit-strings are analogous to an

OTP cryptogram. In the case of PRNG A, the <X> bit-string is random, so that any possible value

of length |r| is equally likely. If the period of PRNG B is 22048 bits or greater (assuming no

injection of random material from bit-string r), and is otherwise “well behaved” as per statistical

tests of apparent randomness, we may reasonably expect all possible 1024 bit values to appear at

some point in the generator’s cycle, with a high probability that each will appear once in 1024-bit

aligned blocks. Using 32 independent, parallel LFSRs (as is the case in the present

implementation), this cycle length can be approached or passed by using LFSRs of 64 bits or

longer. The present implementation supports LFSRs of this length, and can be easily expanded to

support arbitrary length LFSRs. In such a situation, we know of no way to discern a plausible

solution for rp (as derived from bxrp and b), and thus for b, since no matter what either bit-string

was in reality, the other of the bxrp / b pair can still cause rp to take on any possible 1024-bit

value.

If the periods of the A and B PRNGs are short, relative to the range of binary values the r and rp

bit-strings may assume, the situation changes. For example, if the period of the B composite

generator is less or equal to 21024 – 1 bits, there will be less than the full range of 21024 unique

1024 bit values in the cycle b might otherwise have, at least with alignment to rp in repeated

iterations of the cycle. As the period decreases, the number of possible values b may assume

(viewed as a binary number) decreases accordingly. Thus, care must be taken to ensure that the

period of the B generator is longer than 2|b|, where |b| is the length of b in bits.

153

The picture also changes if we consider cryptanalysis of multiple bxrp bit-strings. While the

insertion of the 15 random bits into one of the component generators of B’s contributions

complicates matters by shifting the alignment of the sub-generators of that stream relative to the

other component generator, the number of different points in the overall cycle that may be

reached is limited to 215 for each bxrp string processed.

Estimates of the complexity of the problem for an attacker will vary greatly, depending on the

generators used to implement the B and C PRNGs and their periods, as well as the

implementation of the A generator. Taken in isolation, though, a reasonable estimate may be

arrived at. Consider the implementation of the C generator in Appendix C. As the sub-

component LFSR generators’ shift registers are all of 31 bits long, the periods individually are 231

– 1 bits. “Ganged” 32 across as they are, the equivalent of a generator with a period of 32(231 –

1). While the linear complexity is straightforward to estimate at 32 * 31 = 992, which is shorter

than |rp| in the presented implementation, it is still long enough that, with the regular injection of

the re-seeding material, there will not be a sequence of twice that from the <X> side of the

composite to apply the Berlekamp-Massey algorithm to. Further, as this is used in the bit

matching process, the resulting m is random in any case.

As this stage is a many-to-one mapping process, working backwards through it is problematic.

There will always be multiple plausible solutions. As seen in Chapter 3, the bit-matching process

involves a factorial scaled problem, which is in this case compounded with intentional and

incidental deletions of bits from the process. Given a guess regarding the contribution of the state

vector of C to a given nybble of m we still must have good guess for the contributions of the

constituent generators, and are then left with the problems of guessing how many bits of m this

may have yielded, if any, and their relative position in m. In short, there is at best only marginal

necessary synchronization between the value and position of a bit in m, and the sequential states

C went through to produce it from rp. Thus, working forward from rp through the matching

154

process is expected to be the far easier process, since the process is deterministic, once a guess is

made regarding the state of C.

In order have a meet-in-the-middle attack we must now work backwards from k, with the

assumption that the attacker knows k, and its length, as per the strong form of Kerckhoffs’

criteria. Though we don’t face the same sort of problem as is posed by trying to work backwards

through the bit-matching process, we still have the complication of dealing with a many-to-one

mapping process in reverse. In this case, we know where in m two of the indices used in

obtaining a nybble of k came from, but we don’t know what those indices were, nor which index

came from which half of m.

Given any known output string k, the m string used to produce it had to be |k| / 4 bytes in length at

minimum. From this, |k| / 4 nybble index pairs are extracted. Except when the two indices are

equal, we again note that we do not know which half of m each came from. That means that,

when trying to work backwards through the final stage, we have (15 / 16) bits of uncertainty for

each nybble of k, or 15 bits of uncertainty for each eight bytes in k. We regard this as a “self-

inflicted wound” of sorts in the cryptanalytic process on top of the fundamental problem of

guessing the indices used in the first place. For that part of the problem, the key material in

question is the internal state vector of D, which is 64 bits in length, six bits of which are used for

indexing. The other eight bits used for indexing are from m, which is what an attacker is

attempting to determine. This means the attacker is left to guess at the nybble pair that, along

with the state material, was used to derive a nybble in k.

For every four bit nybble value in k, there are 1024 index triples that could have produced it,

since there 16,384 entries in the dTable, as well as the sTable, and equal numbers of each nybble

value in it. With a guess at the state vectors six bit contribution, there remain 16 different ways to

obtain that nybble based upon the other two indices, which is equivalent to an added 4 bits of

155

uncertainty per nybble of k on top of the six bits from the guess regarding the contents of the state

vector. This adds up to 10.9375 bits of uncertainty for each nybble in k, when working

backwards, or, for the approximate average case of 29 bytes of k, 634.375 bits worth of

uncertainty. This exceeds the number of bits in the state vector of D by 570.375 bits. Thus,

piecemeal guessing regarding the inputs to and state of D appears very inefficient. The degree to

which such a process can be made more efficient, or exploiting the incompatibilities that will tend

to arise with incompatible combinations of indices after the state vector has rotated back to its

initial alignment, is yet to be determined.

An alternative to this approach is to guess the initial contents of the state vector of D, then

determine the pairs of <X> and <Y> sequence nybbles required to produce the a given nybble of

k. Since for any 6-bit fragment of D’s state vector used there are 16 plausible input nybble pairs

that would produce the same result, we have 1658 = 262 m bit-strings (ignoring the end-ordering

discussed previously) that are consistent with any guess of the initial state vector contents of D,

each yielding a different ending state. This appears to mean that the space requirements for

storing candidate solutions will rapidly become unwieldy, since for all 264 possible initial states of

D to store the corresponding candidate strings would require space for 2122 such candidates,

assuming 29 bytes in k. If we are dealing with an implementation where A, B and C have very

long periods, the “middle” would appear to be problematic in its own right.

While we expect that a more efficient approach to this back-analysis of the last stage of the

process to exist, it is quite possible that forward analysis (working from bxrp to k) rather than a

meet-in-the-middle attack, will be substantially simpler, and more likely to produce results.

Still, a method not included in the present implementation that might well render a meet-in-the-

middle attack to expensive is quite simple. We could, if we chose, add a step following the

generation of the complete a, b, c and k bit-strings where the state vectors just used are XOR’ed

156

with the state vector of the next generator to be used. Thus, once we had generated a and

extracted r, we would XOR the A’s state vector with that of B. After generation of b, we would

likewise XOR B’s state vector into C’s, then C’s into D’s and finally D’s back into A’s. This

would spread the effect of key material and input strings more widely throughout the whole

process, likely denying an attacker the ability to separate the phases in a manner that would allow

a meet-in-the-middle attack. But, while this might help improve the resistance of the scheme to

attack, particularly a meet-in-the-middle attack, it is not inconceivable that it could introduces

weaknesses. As we are exploring alternatives, and wish to examine the effectiveness of the

components and phases as presented here, that idea is left for future research.

Differential Cryptanalysis

This form of attack is based upon a careful examination of the behavior of ciphertexts based upon

chosen plaintexts, following the composition process through the respective rounds of a cipher

algorithm, using a given key. It is a form of chosen plaintext attack, which means the attacker

finds some means to induce the target to encrypt plaintexts with desired properties using the same

key.

An attacker starts by selecting a set pairs of plaintexts, all displaying fixed differences. When

encrypting these plaintexts with the same key, the attacker examines the behavior of the

encryption process, round by round. In this process, the attacker will be able to discern

differences in the resulting ciphertexts, as well as commonalities, associated with the differences

selected in the plaintexts, via which he can assign probabilities to certain keys for any pair of

plaintexts possessing only those targeted differences. After some number of such message pairs,

dependent upon the cipher used, the attacker will be able to determine the key used.

For this attack to work against the present scheme, we must first accept that we are dealing with

an encryption process, and that k is in effect a ciphertext. For purposes of argument, this is not

157

difficult to stipulate. But, the attacker must be able to identify plaintexts and ciphertexts which

pair-wise display specific differences, when encrypted using the same key. Since the key changes

for each cycle through the process, and Alice is presumed to have a true random number

generator or access to reliable source of such, the attacker is faced with a first problem. How

does he get the requisite plaintext/ciphertext pairs, with the requisite fixed differences in the

plaintexts, all using the same key? That the attacker can and will is difficult to accept as a

stipulation. Being able to subvert use of Alice’s RNG or source of randomness requires a level of

trust by Alice, or access to Alice’s equipment, that makes a differential attack seem a wasted

effort. Likewise, inducing Alice to start all exchanges with the same key/initial state is difficult

to envision. As Bob will have updated his key after any cycle, the next cycle will fail to produce

agreed material, as synchronization between Alice’s and Bob’s copies of the mechanism and

states will have been lost, giving both a sure indication that something is wrong.

Man in the Middle

In this attack, and attacker places himself logically between Alice and Bob, and impersonates

each to the other, thereby becoming the conduit by which the two communicate. If done

effectively, this attack can strip all confidentiality from the communications between Alice and

Bob, as neither is aware that they are not communicating directly with each other.

As the present scheme assumes that Alice and Bob share identical copies of the initial state, any

exchange between them that does not use that shared secret material results in different bit-strings

being produced by each. An attacker is not assumed in this attack to be privy to this information.

If he passes communicated information along unaltered he has accomplished nothing, he is

become merely an eavesdropper. If he alters the axr or bxrp bit-string, Bob will produce a

different bit sequence than Alice. When Alice and Bob try to communicate using their differing

158

bit sequences, the result will be gibberish to both, making it clear that something is wrong, while

the attacker remains in the dark about the messages encrypted using the divergent k bit-strings.

To be effective, the man in the middle must be able to get Alice and Bob to use initial states that

he knows, whether this is a pair he creates for both, or separate pairs to share with Alice and Bob

individually. Under such circumstances, virtually any system is broken, even systems based upon

entangled pairs of sub-atomic particles, in the latter case. Thus, again, the problem from which

the loss of security arises is far worse than a flaw in the scheme.

Design Issues

While the implementation presented here relies upon several linear feedback shift registers

(LFSR), there is nothing in the scheme that mandates that the component PRNGs of the

composite PRNGs A, B and C must be of any particular type. However, as any linear recurrence

can be replicated by an LFSR, it is deemed sufficient to base analysis of the state upon LFSRs,

and upon the size of the state of the scheme as implemented with them.

The first consideration with regard to any implementation is whether equivalents to the A, B and

C PRNGs may be implemented as LFSRs, regardless of the actual implementation of those

PRNGs. In the absence of the injected aperiodicity for all three of these composite PRNGs, such

analysis is straightforward. Despite the mixing mechanism (which may be viewed as a non-linear

combiner) present in all three of the composite PRNGs and PRNG D, they would naturally

produce linear recursions, being deterministic, and thus would be subject to analysis with the

Berlekamp-Massey algorithm, yielding an LFSR replicating the behavior and output. With the

injection of random bits into the state vectors at regular intervals, generation of a linear

recurrence is avoided, but the issue must be dealt with in greater detail than that.

The present implementation, which is intended as an example and as an object for analysis, uses

LSFRs exclusively as the component generators for A, B and C. The manner in which these

159

components are combined varies by the lengths of the individual LFSRs. As per prior discussion,

the linear complexity L of any of these (the taps selected for being a primitive polynomial) is its

length, and the Berlekamp-Massey algorithm will yield an equivalent LFSR of length L, given 2L

bits of sequential output. From this it should be apparent that the higher the linear complexity of

the constituent LFSRs the better for the cryptographic strength of the system. Coupled with the

discussion regarding meet-in-the-middle attacks, we favor linear complexities greater than 2048,

and would implement the scheme thus for real-world applications.

As also noted in the discussion of meet-in-the-middle attacks, a feature considered but not

implemented is successive XOR’ing of state vectors, from A to B to C to D and back to A, in

order to distribute the effects of the re-seeding bits more broadly throughout the phases and the

resulting agreed bits. This was not done in order to gain a better understanding of any flaws in

the main operations of the scheme, once it has been submitted to a much broader audience.

Identification of specific flaws in these phases will significantly assist in any subsequent

development of the scheme, particularly with regard to correcting weaknesses in the overall

scheme that may result from those flaws.

Other possible changes include increasing the lengths of the axr bit-string, and the number of bits

extracted from the m bit-string for re-seeding the A generator. While this would reduce the

eventual number of agreed bits per cycle, the increased number of bits in r and thus available to

re-seed B and C would serve to increase the disruption in the output sequences from B and C.

Additional bits might also be used to directly alter the state vector of D. Whether and how much

such changes might improve the scheme are open questions, but it can be observed that number

of bits injected, and their randomness, serve to select from among possible “jump targets” in the

otherwise strictly periodic cycle of the composite generator with the new alignment of bits from

<X> and <Y>. An increase in the number of bits injected will almost certainly improve the

preservation of entropy between cycles processing successive axr and bxrp input string pairs.

160

Changing the point in the initial, unmodified m bit-string where the re-seeding bits for A are

extracted, so that the tail of the full bytes of matched bits will have a more immediate effect,

within the cycle in which they arise, rather than during the processing of the next blocks of input

data, may be worthwhile.

Another idea that was considered but not incorporated is to retain the non-selected bits in rp

during the bit-matching process between bit-strings c and rp. This can be easily accomplished by

adding one more table to the bit-matching process. Thus if n bits from a nybble matched, 4 – n

bits would be appended to an m’ bit string. Performing a bit-blending operation similar to the

present operation of D, but using m and m’, the longer of which would provide the re-seeding bits

for A and the shorter (after removal of the bits for re-seeding A) determining the maximum length

of the resulting k, would serve to increase the output ratio of agreed bits to input bits. It would

lose what is believed to be the very positive effect of the folding of the m bit-string as is presently

performed in D.

A second idea for using the non-matched bits (m’ as above) is to perform some hash function on

these bits to obtain a number of bits that would be used to directly alter the state vectors of some

or all of the A, B, C and D PRNGs. Good hash functions can be slow, and as such lead to the

exclusion of the idea from the presented scheme and implementation. Direct alteration of the

state vectors would increase the discontinuity between successive utilizations of the affected

PRNGs, and likely help in maintaining entropy across multiple cycles. Such a change has been

deferred until an examination of suitable hash functions can be performed

While one of the minor objectives in the design of the presented protocols and implementation

was a simple enough process to remain fast, while hopefully remaining reasonably

cryptographically strong, the fact that the process is as fast as it is (see performance results in the

following section) means that increasing the number of phases can be considered.

161

Performance Results

No analysis of an algorithm can avoid certain empirical tests regarding performance and

repeatability, and any algorithm intending to produce sequences with a high degree of

apparent randomness must deal with the verification of the apparent randomness of the

output. Such testing has been performed on the implementation presented here.

In terms of performance, on a PC running Microsoft Windows 7 ©, Home Basic, with a

1.6 GHz Atom processor and 1 GB of RAM, 1000 runs, processing 1000 blocks per run,

required five minutes, 21 seconds, including file I/O and system overhead in processing

batch file commands, and produced an average of 29.254 bytes of output per block

processed.

Another run totaling the processing of one million blocks was conducted on the same

system, using different keys from those in the timing trial above, to again test the average

number of outputs per run. The average was found to be 29.360 bytes per run.

In terms of repeatability, multiple runs starting with the same key and input data were

performed to determine whether the outputs remained consistent. The manner of the

testing was as follows. A key file was generated, and an input file of 64 blocks produced.

The algorithm was run on the input file and the results saved, along with the resulting

updated key file. The input file was split in half, and the algorithm run on the first half,

using the previously generated initial key. The results were saved, along with the

updated key. The algorithm was run on the second half using the updated key from

processing the first half. The results at the end of this pass were compared with the

previously generated results for processing all 64 blocks, as well as the updated key file

162

from processing all blocks. These were found to match identically in content. The input

data was quartered, and processing repeated in like manner on the quarters, with

comparisons of results and updated keys at mid and end points. These were again found

to match. This process was repeated with cutting the input file into eighths and

sixteenths, comparing intermediate results and keys where applicable, and all producing

the expected identical results.

For ten runs each from the two above referenced systems, using the same initial keys and

input files for corresponding runs, the results different systems were compared. These

were found to be identical.

Subjecting the outputs from ten runs, each on distinct input files of 64 blocks and distinct

keys, to the BSI AIS 20 test suite produced passes for all ten files.

Two sets of five runs each on 64 blocks were performed, with matching input files pairs

per run but different key files, and the five result file pairs XOR’ed, then the resulting

files tested using the BSI AIS 20 test suite. All five files passed.

Five runs each on two different sets of 64 block files, with identical keys pair-wise

between batches, were performed and the results XOR’ed together and tested with the

BSI AIS 20 test suite. All five of these files passed.

From the above empirical testing, we conclude that the algorithm is consistent and

repeatable, and with random keys and input streams produce good apparently random

results, within the limits of the BSI AIS 20 test suite’s limitations.

163

REFERENCES

[1] Shapiro, C. and Varian, H.R., Information Rules, Harvard Business Press, 1999,

ISBN 087584863X.

[2] Bishop, M. and Venkatramaanayya, S. S., Introduction to Computer Security,

Pearson Education, Inc., 2005.

[3] Kerckoff, Auguste, “La cryptographie militaries,” Journal des Sciences

Militaires, vol. IX, Jan. 1883, pages 5-83.

[4] Kerckoff, Auguste, “La cryptographie militaries,” Journal des Sciences

Militaires, vol. IX, Feb. 1883, pages 161-191.

[5] Shannon, Claude. "Communication Theory of Secrecy Systems", Bell System

Technical Journal, vol.28(4), 1949, pp. 656 – 715.

[6] Diffie, Whitfield, and Hellman, Martin E., “New Directions in Cryptography,”

IEEE Transactions on Information Theory, vol. 22, Nov. 1976, pp. 644 – 654.

[7] Hellman, M. E., Diffie, W., and Merkle, R. C., “Cryptographic Apparatus and

Method,” U.S. Patent #4,200,770, 29 April 1980.

[8] Hellman, M.E., Diffie, W., and Merkle, R.C., ““Cryptographic Apparatus and

Method,” Canada Patent #1,121,480, 6 April 1982.

164

[9] den Boer, B., “Diffie-Hellman is as strong as discrete log for certain primes,”

Crypto 88, Lecture Notes in Computer Science 403, Springer-Verlag, 1988.

[10] Boney, D., and Lipton, R. J., “Algorithms for black-box fields and their

application to cryptography,” Advances in Cryptography, CRYPTO 96, Lecture

Notes in Computer Science 1070, Springer-Verlag, 1996, pp. 283 – 297.

[11] Rivest, R., Shamir, A. and Adleman, L., “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Communications of the ACM 21 (2),

1978, pp 120 – 126.

[12] Various Authors, “Trust and Security Challenges in Cyberspace,” from Brussels

Workshop, 7-8 Dec 2000.

[13] Shor, Peter W., "Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer", SIAM J. Comput. 26 (5), 1997,

pp. 1484–1509.

[14] Kahn, David, The Codebreakers: The Comprehensive History of Secret

Communications, second edition, Scribner, 1996.

[15] Bennett, C. H., and Brassard, G., “Quantum Cryptography: Public key

distribution and coin tossing,” Proceedings of the IEEE International conference

on Computers, Systems and Signal Processing, Bangalore, 1984, p. 175.

[16] Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D. and Whiting,

D.,”Improved Cryptanalysis of Rijndael,” Fast Software Encryption, 2000, pp.

213 – 230.

165

[17] Biryukom, A. and Khovratovich, D., “Related-key Cryptanalysis of the Full

AES-192 and AES-256,” http://eprint.iacr.org/2009/317

[18] “Security Requirements for Cryptographic Modules,” Federal Information

Processing Standard 140-2, National Institute of Standards and Technology, Dec.

2, 2002.

[19] Schindler, W., “Functionality Classes and Evaluation Methodology for

Deterministic Random Number Generators: AIS 20,” version 1, Bundesamt für

Sicherheit in der Informationstechnik, Dec. 2, 1999.

[20] Pohlig, S.C., and Hellman, M.E., “An Improved Algorithm for Computing

Logarithms in GF(p) and Its Cryptographic Significance,” IEEE Transactions on

Information Theory, v. 24, n. 1, Jan 1978, pp. 106 – 111.

[21] Menezes, A. J., van Oorschot, P. C. and Vanstone, S. A., Handbook of Applied

Cryptography, CRC Press, 1997.

[22] Merkle, R.C. and Hellman, M.E., “Hiding Information and Signatures in

Trapdoor Knapsacks,” IEEE Transactions on Information Theory, v. 24, n 5,

Sep. 1978, pp. 525 – 530.

[23] Hellman, M.E., “The Mathematics of Public-Key Cryptography,” Scientific

American, v. 241, n. 8, Aug. 1979, pp. 146 – 157.

[24] Shamir, A., “A Fast Signature Scheme,” MIT Laboratory for Computer Science,

Technical Memorandum, MIT/LCS/TM-107, Massachusetts Institute of

Technology, July 1978.

166

[25] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in

C, second edition, John Wiley & Sons, Inc., 1996.

[26] Shor, P., "Algorithms for Quantum Computation: Discrete Logarithms and

Factoring," Proceedings 35th Annual Symposium on Foundations of Computer

Science (1994), pp. 124 – 134.

[27] Hellman, M.E. and Pohlig, S.C., “Exponentiation Cryptographic Apparatus and

Method,” U.S. Patent #4,424,414, 3 Jan. 1984.

[28] Rabin, M.O., “Digital Signatures and Public-Key Functions as Intractable as

Factorizations,” MIT Laboratory for Computer Science, Technical Report,

MIT/LCS/TR-212, Jan 1979.

[29] Williams, E.A., “A Modification fo the RSA Public-Key Encryption Procedure,”

IEEE Transactions on Information Theory, v IT-26, n. 6, Nov. 1980, pp. 726 –

729.

[30] ElGamal, T., “A Public-Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms,” Advances in Cryptology: Proceedings of CRYPTO 84,

Springer-Verlag, 1985, pp. 10 – 18.

[31] ElGamal, T., “A Public-Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms,” IEEE Transactions on Information Theory, v. IT-31, n.4,

1985, pp. 469 – 472.

[32] McEliece, R.J., “A Public-Key Crytosystem Based on Algebraic Coding

Theory,” Deep Space Network Progress Report 42 – 44, Jet Propulsion

Laboratory, California Institute of Technology, 1978, pp. 114 – 116.

167

[33] Korzhik, V.I. and Turkin, A.I., “Cryptanalysis of McEliece’s Public-Key

Cryptosystem,” Advances in Cryptology – EUROCRYPT ’91 Proceedings,

Springer-Verlag, 1991, pp. 68 – 70.

[34] Bernstein, D.J., Lange, T. and Peters, C., "Attacking and Defending the McEliece

Cryptosystem," Proceedings of the 2nd International Workshop on Post-

Quantum Cryptography, Lecture Notes In Computer Science 5299, 2008, pp. 31

– 46.

[35] Chabaud, F, “On the Security of Some Cryptosystems Based on Error-Correcting

Codes,” Advances in Cryptology, EUROCRYPT ‘94 Proceedings, Springer-

Verlag, 1995, pp. 131 – 139.

[36] Koblitz, N., “Elliptic Curve Cryptosystems,” Mathematics of Computation, v. 48,

n. 177, 1987, pp. 203 – 209.

[37] Miller, V.S., “Use of Elliptic Curves in Cryptography,” Advances in Cryptology

– CRYPTO ’85 Proceedings, Springer-Verlag, 1986, pp. 417 – 426.

[38] Rosing, M., Implementing Elliptic Curve Cryptography, Manning Publications,

1998.

[39] Hankerson, D., Menezes, A.J. and Vanstone, S., Guide to Elliptic Curve

Cryptography, Springer, 2004.

[40] Kravitz, D. and Reed, I., “Extensions of RSA Cryptostructure: A Galois

Approach,” Electronics Letters, v. 18, n. 6, March 1982, pp. 255 – 256.

[41] Müller, W.B. and Nöbauer, W., “Some Remarks on Public-Key Cryptography,”

Studia Scientiarum Mathematicarum Hungarica, v. 16, 1981, pp. 71-76.

168

[42] Müller, W.B. and Nöbauer, W., “Cryptanalysis of the Dickson Scheme,”

Andvances in Cryptology – EUROCRYPT ’85 Proceedings, Springer-Verlag,

1986, pp. 50 – 61.

[43] Müller, W.B., “Polynomial Functions in Modern Cryptology,” Contributions to

General Algebra 3: Proceedings of the Vienna Conference, Vienna: Hölder-

Pichler-Tempsky, 1985, pp. 7 – 32.

[44] Lidl, R. and Müller, W.B., “Permutation Polynomials in RSA-Cryptosystems,”

Advances in Cryptology: Proceedings of Crypto 83, Plenum Press, 1984, pp. 293

– 301.

[45] Smith, P., “LUC Public-Key Encryption,” Dr. Dobb’s Journal, v. 18, n. 1, Jan.

1993, pp 44 – 49.

[46] Smith, P. and Lennon, M., “LUC: A New Public Key System,” Proceedings of

the Ninth International Conference on Information Security, IFIP/sec 1993,

North Holland: Elsevier Science Publishers, 1993, pp. 91 – 111.

[47] Renji, T. and Shihua, C., “A Finite Automaton Public Key Cryptosystem and

Digital Signatures,” Chinese Journal of Computers, v. 8, 1985, pp. 401 – 409.

[48] Renji, T. and Shihua, C., “Two Varieties of Finite Automaton Public Key

Cryptosystems and Digital Signature,” Journal of Computer Science and

Technology, v. 1, 1986, pp. 9 – 18.

[49] Renji, T. and Shihua, C., “An Implementation of Indentity-based Cryptosystems

and Signature Schemes by Finite Automaton Public Key Cryptosystems,”

CHINACRYPT ’92, Bejing Science Press, 1992, pp. 87 – 104.

169

[50] Renji, T. and Shihua, C., “Note on Finite Automaton Public Key

Cryptosystems,” CHINACRYPT ’94, Xidian, China, 11 – 15 Nov. 1994, pp. 76 –

80.

[51] Bellovin, S.M. and Merritt, M., “Encrypted Key Exchange: Password-Based

Protocols Secure Against Dictionary Attacks,” Proceedings of the1992 IEEE

Symposium on Security and Privacy, IEEE, May 1992, p. 72ff.

[52] Bellovin, S.M. and Merritt, M., “,” Proceedings of the 1st ACM Conference on

Computer and Communications Security, ACM Press, 1993, pp. 244 – 250.

[53] Jablon, D., “Strong Password-Only Authenticated Key Exchange,” Computer

Communication Review (ACM SIGCOMM) 26 (5), 1996, pp. 5 – 26.

[54] Jablon, D., “Extended Password Key Exchange Protocols Immune to Dictionary

Attack,” Proceedings of the Sixth Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WET-ICE ’97), IEEE Computer

Society, 1997, pp. 248 – 255.

[55] Blum, M., Feldman, P. and Micali, S., “Non-Interactive Zero-Knowledge and Its

Applications,” STOC ’88 Proceedings of the twentieth annual ACM symposium

on Theory of computing, ACM, 1988, pp. 103 – 112.

[56] Rueppel, R.A., Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.

[57] Massey, J.L., “Shift-Register Synthesis and BCH Decoding,” IEEE Transactions

on Information Theory, v. IT-15, n. 1, Jan. 1969, pp 122 – 127.

170

[58] Jansen, C.J.A, and Boekee, D.E., “The shortest feedback shift register that can

generate a given sequence,” Advances in Cryptography – EUROCRYPT ’89

(LNCS 435), Springer-Verlag, 1990, pp. 90 – 99.

[59] Ziv, J. and Lempel, A., “On the complexity of finite sequences,” IEEE

Transactions on Information Theory, 22, 1976, pp. 75 – 81.

[60] Geffe, P.R., “How to Protect Data With Ciphers That are Really Hard to Break,”

Electronics, v. 46, n. 1, Jan. 1973, pp. 99 – 101.

[61] Key, E.L., “An Analysis of the Structure and Complexity of Nonlinear Binary

Sequence Generators,” IEEE Transactions on Information Theory, v. IT-22, n. 6,

Nov. 1976, pp. 732 – 736.

[62] Zeng, K.C., Yang, C.-H. and Rao, T.R.N., “On the Linear Consistency Test

(LCT) in Cryptanalysis with Applications,” Advances in Cryptology – Crypto ’89

Proceedings, Springer-Verlag, 1990, pp. 164 – 174.

[63] Zeng, K.C., Yang, C.-H., Wei, D.-Y. and Rao, T.R.N., “Pseudorandom Bit

Generators in Stream-Cipher Cryptography,” IEEE Computer, v. 24, n. 2, Feb.

1991, pp. 8 – 17.

[64] Pless, V.S., “Encryption Schemes for Computer Confidentiality,” IEEE

Transactions on Computing, v. C-26, n. 11, Nov. 1977, pp. 1133 – 1136.

[65] Rubin, F, “Decrypting a Stream Cipher Based on J-K Flip-Flops,” IEEE

Transactions on Computing, v. C-28, n. 7, Jul. 1979, pp. 483 – 487.

[66] Siegenthaler, T., “Decrypting a Class of Stream Ciphers Using Ciphertext Only,”

IEEE Transactions on Computing, v. C-34, Jan. 1985, pp. 81 – 85.

171

[67] Jennings, S.M., “A Special Class of Binary Sequences,” Ph.D. Dissertation,

University of London, 1980.

[68] Jennings, S.M., “Multiplexed Sequences: Some Properties of the Minimum

Polynomial,” Lecture Notes in Computer Science 149; Cryptography:

Proceedings of the Workshop on Cryptography, Springer-Verlag, 1983, pp. 189 –

206.

[69] Jennings, S.M., “Autocorrelation Function of the Multiplexed Sequence,” IEEE

Proceedings, v 131, n. 2, Apr. 1984, pp. 169-172.

[70] Anderson, R.J., “Solving a Class of Stream Ciphers,” Cryptologia, v. 14, n. 3,

Jul. 1990, pp. 285 – 288.

[71] Dawson, E. and Clark, A., “Cryptanalysis of Universal Logic Sequences,”

Advances in Cryptology – EUROCRYPT ’93 Proceedings, Springer-Verlag, pre-

print, publication date unknown.

[72] Beth, T., and Piper, F.C., “The Stop-and-Go Generator,” Advances in

Cryptography: Proceedings of EUROCRYPT 84, Springer-Verlag, 1984, pp. 88 –

92.

[73] Gunther, C.G., “Alternating Step Generators Controlled by De Bruijn

Sequences,” Advances in Cryptology – EUROCRYPT ’87 Proceedings, Springer-

Verlag, 1988, pp. 5 – 14.

[74] Strobel, D., “Side Channel Analysis Attacks on Stream Ciphers,” Masters Thesis,

Ruhr-Universität Bochum, Mar. 2009.

172

[75] Rueppel, R.A., “When Shift Registers Clock Themselves,” Advances in

Cryptology – EUROCRYPT ’87 Proceedings, Spinger-Verlag, 1987, pp. 53 – 64.

[76] Chambers, W.G. and Gollman, D., “Generators for Sequences with Near-

Maximal Linear Equivalence,” IEEE Proceedings, v. 135, pt. E, n. 1, Jan. 1988,

pp. 67 – 69.

[77] Coppersmith, D. and Grossman, E., “Generators for Certain Alternating Groups

of Applications to Cryptography,” SIAM Journal on Applied Mathematics, v. 29,

n. 4, Dec. 1975, pp. 624 – 627.

[78] Coppersmith, D., Krawczyk, H. and Mansour, Y., “The Shrinking Generator,”

Advances in Cryptology – CRYPTO ’93 Proceedings, Springer-Verlag, 1994, pp.

22 – 39.

[79] Meier, W., “On the Security of the IDEA Block Cipher,” Advances in Cryptology

– EUROCRYPT ’93 Proceedings, Springer-Verlag, 1994, pp. 371 – 385.

[80] Massey, J.L. and Rueppel, R.A. “Linear Ciphers and Random Sequence

Generators with Multiple Clocks,” Advances in Cryptology: Proceedings of

EUROCRYPT 84, Springer-Verlag, 1985, pp. 74 – 87.

[81] Gollman, D., “Kaskadenschaltungen taktgesteuerter Schreiberegister als

Pseudozufallszahlengeneratoren,” Ph.D. dissertation, Universitat Linz, 1983.

[82] Chambers, W.G. and Gollman, D., “Lock-In Effect in Cascades of Clock-

Controlled Shift Registers,” Advances in Cryptology – EUROCRYPT ’88

Proceedings, Springer-Verlag, 1988, pp. 331 – 343.

173

[83] Bruer, J.O., “On Pseudo Random Sequences as Crypto Generators,” Proceedings

of the International Zurich Seminar on Digital Communications, Switzerland,

1984.

[84] Rueppel, R.A., “Correlation Immunity and the Summation Combiner,” Advances

in Cryptology – EUROCRYPT ’85, Springer-Verlag, 1986, pp. 260 – 272.

[85] Klapper, A. and Goresky, M., “2-adic Shift Registers,” Fast Software

Encryption, Cambridge Security Workshop Proceedings, Springer-Verlag, 1994,

pp. 174 – 178.

[86] Meier, W. and Staffelbach, O., “Correlation Properties of Combiners with

Memory in Stream Ciphers,” Advances in Cryptography – EUROCRYPT ’90

Poceedings, Springer-Verlag, 1991, pp. 204 – 213.

[87] Meier, W. and Staffelbach, O., “Correlation Properties of Combiners with

Memory in Stream Ciphers,” Journal of Crytology, v. 5, n. 1, 1992, pp. 67 – 86..

[88] Mihajlevic, M.J. and Golic, J.D., “Convergence of a Bayesian Iterative Error-

Correction Procedure to a Noisy Shift Register Sequence,” Advances in

Cryptology – EUROCRYPT ’92 Proceedings, Springer-Verlag, 1993, pp 124 –

137.

[89] Goresky, M. and Klapper, A., “Feedback Registes Based on Ramified Extension

of the 2-adic Numbers,” Advances in Cryptology – EUROCRYPT ’94

Proceedings, Springer-Verlag, 1995, unknown.

[90] Klapper, A. and Goresky, M., “Feedback with Carry Shift Registers over Finite

Fields,” K.U. Leuven Workshop on Cryptographic Algorithms, Springer-Verlag,

1995.

174

[91] Klapper, A. and Goresky, M., “Large Period Nearly de Bruijn FCSR Sequences,”

Advances in Cryptology – EUROCRYPT ’95 Proceedings, Springer-Verlag,

1995, pp 263 – 273.

[92] Xu, S.B, He, D.K. and Wang, X.M., “An Implementation of the GSM General

Data Encryption Algorithm A5,” CHINACRYPT ’94, Xadian, China, 11 – 15

Nov. 1994, pp. 287 – 291.

[93] Anderson, R.J., “On Fibonacci Keystream Generators,” K.U. Leuven Workshop

on Cryptographic Algorithms, Springer-Verlag, unknown.

[94] Gueneysu, T., Kasper, T., Novotný, M., Paar, C. and Rupp, A., "Cryptanalysis

with COPACOBANA". Transactions on Computers, 57, Nov. 2008, pp. 1498 –

1513.

[95] Barkan, E., Biham, E. and Keller, N., "Instant Ciphertext-Only Cryptanalysis of

GSM Encrypted Communication," Crypto 2003, 2003, pp. 600 – 616.

[96] Coppersmith, D. and Rogaway, P., “SOFTWARE EFFICIENT

PSEUDORANDOM FUNCTION AND THE USE THEREOF FOR

ENCRYPTION,” U.S. Patent 5,454,039, 26 Sept., 1995.

[97] Coppersmith, D. and Rogaway, P., “COMPUTER READABLE DEVICE

IMPLEMENTING A SOFTWARE-EFFICIENT PSEUDORANDOM

FUNCTION ENCRYPTION,” U.S. Patent 5,675,652, 7 Oct., 1997.

[98] Halevi, S., Coppersmith, D. and Jutla, C., “Scream: a software-efficient stream

cipher,” IBM T.J. Watson Research Center, June 5, 2002.

175

[99] Handschuh, H. and Gilbert, H., “χ 2 Cryptanalysis of the SEAL Encryption

Algorithm,” Fast Software Encryption, FSE ’97, LNCS, 1997, pp. 1 – 12.

[100] Fluhrer, S.R., “Cryptanalysis of the SEAL 3.0 Psuedorandom Function Family,”

Lecture Notes in Computer Science, 2002, vol. 2355/2002, 2002, pp. 333 – 334.

[101] Wheeler, D.J., “A Bulk Data Encryption Algorithm,” Fast Software Encryption,

Cambridge Security Workshop Proceedings, Springer-Verlag, 1994, pp. 127 –

134.

[102] Shamir, A., “On the Generation of Cryptographically Strong Pseudo-Random

Sequences,” Lecture Notes in Computer Science 62: 8th International Colloquium

on Automata, Languages, and Programming, Spring Verlag, 1981.

[103] Blum, M. and Micali, S., “How to Generate Cryptogrphically-Strong Sequences

of Pseudo-Random Bits,” SIAM Journal of Computing, v. 13, n. 4, Nov. 1984,

pp. 850 – 864.

[104] Alexi, W, Chor, B.-Z., Goldreich, O., and Schnorr, C.P., “RSA and Rabin

Functions: Certain Parts Are as Hard as the Whole,” Proceedings of the 25th

IEEE Symposium on the Foundations of Computer Science, 1984, pp. 449 – 457/

[105] Alexi, W, Chor, B.-Z., Goldreich, O., and Schnorr, C.P., “RSA and Rabin

Functions: Certain Parts Are as Hard as the Whole,” SIAM Journal on

Computing, v. 17, n. 2, April 1988, pp. 194 – 209.

[106] Blum, L., Blum, M. and Shub, M., “A Simple Unpredictable Pseudo-Random

Number Generator,” SIAM Journal on Computering, v. 15, n. 2, 1986, pp. 364 –

383.

176

[107] Lehmer, D., “Mathematical Methods in Large-Scale Computing Units,”

Proceedings of the 2nd Symposium on Large-Scale Digital Calculating Machines,

Harvard University Press, 1951, pp. 141 – 146.

[108] Knuth, Donald E., The Art of Computer Programming: Seminumerical

Algorithms, second edition, Addison-Wesley, 1981.

[109] Plumstead, J. Boyar, “Inferring a sequence generated by a linear congruence,”

Proceedings of the IEEE 23rd Annual Symposium on Foundations of Computer

Science, 1982, pp. 153 – 159.

[110] Plumstead, J. Boyar, “Inferring a sequence generated by a linear congruence,”

Advances in Cryptology – Proceedings of Crypto ‘82, 1983, pp. 317 – 319.

[111] Lagarias, J.C. and Reed, J., “Unique Extrapolation of Polynomial Recurrences,”

SIAM Journal on Computing, v. 17, n. 2, April 1988, pp. 342 – 362.

[112] Krawczyk, H., “How to Predict Congruential Generator,” Advances in

Cryptology – CRYTO ’89 Proceedings, Springer-Verlag, 1990, pp. 138 – 153.

[113] Krawczyk, H., “How to Predict Congruential Generator,” Journal of Algorithms,

v. 13, n. 4, December 1992, pp. 527 – 545.

[115] MacLaren M. D. and Marsaglia G., Uniform Random Number Generators,

Journal of the Association for Computing Machinery, vol. 12, N 1, Jan. 1965.

[116] Retter, Charles T., “Cryptanalysis of a McLaren-Marsaglia System,”

Cryptologia, volume 8, number 2, April 1984, pages 97-108.

[117] Retter, Charles T., “A Key-search Attack on McLaren-Marsaglia Systems,”

Cryptologia, volume 9, number 2, April 1985, pages 114-130.

177

[118] Bays, C. and Durham, S.D., “Improving a Poor Random Number Generator,”

ACM Transactions on Mathematical Software, v. 2, n. 1, March 1976, pp. 59 –

64.

[119] Tyanev, D., Petkova Y., Tyaneva A., "New Elements in the Method of McLaren-

Marsaglia," Conference Proceedings of TEHNONAV 2002, 2002, p. 402 – 404.

[120] Bailey, D., Borwein, P. and Plouffe, S., “On the rapid computation of various

polylogarithmic constants,”Mathematics of Computation, vol. 66, no. 218, April

1997, pp. 903 – 913.

[121] Gilmore, J., Cracking DES: Secrets of Encryption Research, Wiretap Politics &

Chip Design, Electronic Frontiers Foundation, 1998.

[122] “DES MODES OF OPERATION,” Federal Information Processing Standard 81,

National Institute of Standards and Technology, Dec. 2, 1980, revised Nov. 20,

1981.

.

178

APPPENDICES

APPENDIX A – BLOCK CIPHER MODES

For detailed discussions of block ciphers modes, see [122][21] and [25].

Symmetric block ciphers (referred to here as block ciphers) are typically defined in terms of a

binary bit-block size n, a keyspace K (we are not concerned with the length of a key), an

encryption function nn VKVE →×: (where Vn is a bit vector of n bits), and a decryption

function nn VKVD →×: , such that D(E(M, k), k) = M = E(D(M, k), k), where M is an n-bit

block, and Kk ∈ . For a given key k, if any two plaintext blocks are equal, the resulting

ciphertext blocks will be equal, and vice versa, since for that key k the encryption and decryption

functions define one-to-one mappings between plaintext blocks and ciphertext blocks.

Encryption

Function
key

Encryption

Function
key

Encryption

Function
key

Plaintext1 Plaintext2 Plaintext3

Ciphertext1 Ciphertext2 Ciphertext3

Decryption

Function
key

Decryption

Function
key

Decryption

Function
key

Ciphertext1 Ciphertext2 Ciphertext3

Plaintext1 Plaintext2 Plaintext3

Electornic Codebook (ECB) Mode Encryption and Decryption

179

Encryption of multiple blocks in a single message (whether text, an image or anything else) using

only the plaintext broken into n-bit blocks and the key k is said to be performed in electronic

codebook (ECB) mode. While this is certainly a legitimate way to encrypt a message or a file, it

is broadly agreed that it is not a good idea. One reason for this is the one-to-one mapping

between plaintext and ciphertext. If two blocks in a long plaintext are the same, the resulting

ciphertext blocks will be the same. This is particularly noticeable when encrypting certain types

of diagrams and images. In many cases, the nature of the diagram will be clearly identifiable in

the encrypted message or file when the ciphertext is viewed as if it were an image of the correct

dimensions. And, there is worse that can happen. Suppose Mike is in a position to conduct a

man-in-the-middle attack, and further is able to obtain the plaintexts corresponding to any

ciphertext Alice wishes to send to Bob. It may well be possible for Mike to rearrange the

ciphertext blocks, insert duplicates of some blocks and delete others in a manner that will allow

him to completely change the meaning of the message Bob will decrypt, without having to know

the key used by Alice to encrypt the plaintext. If Mike does not have access to the plaintexts, he

can still garble the message, by inserting or deleting ciphertext blocks, as well as replacing

blocks. In the former case, Bob may have no way of knowing that the message he decrypts is not

what Alice intended, while in the latter case Alice and Bob may decide they are dealing with a

man in the middle, or conclude that there is a problem with the communications medium or such.

To deal with some of the problems that may arise when using ECB mode encryption, it is

common to superimpose operating modes on top of the encryption and decryption functions.

Many operating modes have been developed, but some are more common than others. Four,

including ECB mode, are defined in FIPS 81 [122].

One common mode is cipher-block chaining (CBC) mode. In this mode, encryption is initiated

by XOR’ing the first plaintext block with an initialization vector (IV) of equal length. This IV

may be secret, if the correspondents wish, but is typically not a secret. The result of this XOR

180

operation is then encrypted using a session key, thus producing the first ciphertext block. This is

then XOR’ed with the next plaintext block, the result of which is encrypted using the session key

to produce the second ciphertext block. The process is repeated, with each ciphertext block being

XOR’ed with the next plaintext block. The following diagram illustrates both the encryption

process and the decryption process.

Cipher-block Chaining (CBC) Mode Encryption and Decryption

This approach has several advantages over ECB mode. First, each ciphertext block is the product

of encrypting more than just a plaintext block, incorporating the previous ciphertext block into

each block encryption. Thus, there is a greatly reduced risk that two plaintext blocks that are

identical will produce the same ciphertext. Also, even if Mike has access to the corresponding

plaintext, he cannot rearrange the ciphertext blocks to alter the meaning of the plaintext, since

rearrangement will result in both the moved block and the one following it (in both its original

and new locations) being indecipherable.

181

In CBC mode, even if a packet is garbled due to problems in a communications network, once

“clean” ciphertext blocks start to arrive, decryption can continue, since the first undamaged

ciphertext block received will allow successful decryption of the next ciphertext block, if it too is

undamaged.

One drawback of CBC mode is that random read/write access in a CBC-mode encrypted file is

problematic. Changes in any one ciphertext block are propagated through all succeeding blocks.

If the plaintext of a single block must be changed, all subsequent blocks in the file must first be

decrypted. They must then re-encrypted serially starting from the altered block’s ciphertext.

Also, bit errors in communication that result in framing errors are irrecoverable without trial and

error in re-establishing the correct framing following the lots bits.

Another commonly used mode is cipher feedback (CFB) mode, which is illustrated in the

following diagram.

Cipher Feedback (CFB) Mode Encryption and Decryption

182

Careful examination of CFB mode reveals that it converts a symmetric block cipher into a self-

synchronized stream cipher. Note also that the decryption function is not used, since use of it

would not produce identical results for XOR’ing with the current ciphertext block to yield the

plaintext.

Like CBC mode, alteration of the decrypted plaintext via insertions, deletions and rearrangements

are prevented byte CFB mode. But, CFB mode also allows real-time communication, since

decryption of a ciphertext block can begin without having received the complete block. This is at

the cost of losing the diffusion of plaintext bits within the resulting ciphertext blocks,

As with CBC mode, CFB mode is not suitable in cases where random read/write access to an

encrypted file is required, as again, changes to any one ciphertext block will propagate through all

succeeding blocks.

Output feedback (OFB) mode converts a symmetric block cipher into a synchronous stream

cipher running key (key-stream) generator, as can be seen in the diagram of the encryption and

decryption processes on the next page. This is a straight-forward Vernam cipher.

As may be seen in that diagram, an IV is used, but the output for the encryption of the IV is used

directly as portion of a synchronous stream cipher running key, and is also fed into the encryption

function to produce the next block of running key bits/bytes. Again, this mode is not suitable

where random read-write access within an encrypted file is required, but this time because one

must generate the running key from the IV to the output block used to encrypt the block to be

edited.

Notice that, like CFB mode, both encryption and decryption in OFP mode use the encryption

function of the block cipher, since the processes must produce the same running key stream in

order to maintain the symmetry of encryption and decryption. Further, and also as in CFB mode,

there is no diffusion of the plaintext within the individual ciphertext blocks.

183

Output Feedback (OFB) Mode Encryption and Decryption

Counter mode (either CTR or CM) is yet another mode that converts a block cipher into a

synchronous stream cipher key generator. The result is again a straight-forward Vernam cipher.

As may be seen in the diagram on the next page, the key is used to encrypt an IV that has been

combined with a running count, here shown as the function f(n), where n is the block number in

both the plaintext and the resulting ciphertext. Ordinarily f(n) = n. But, this is not necessarily the

case. All that is required is that both Alice and Bob be able to easily generate the value f(n), so as

to maintain synchronization. The function f can as easily produce a pseudo random sequence.

So long as a user can easily generate f(n) for arbitrary n, without computing all prior values, CTR

mode can be used to encrypt files requiring read-write access, though insertion or deletion of

material still represents a problem. Also, there is considerable flexibility in how the IV (also

sometimes called a nonce) and the counter value may be combined. If the sum of their lengths

equals n, the block length, they can be concatenated. Or, they may be added, XOR’ed,

184

subtracted, hashed, or any other agreed operation yielding the requisite number of bits. Thus, as

in the diagram, we can simply view a function ,: npo VVVg →× where o and p are the lengths

of the IV and counter bit-blocks, respectively. We can then use g(IV, f(n)) to indicate the nonce

used in generating the running key for block n of both the plaintext and ciphertext.

Counter (CTR or CM) Mode Encryption and Decryption

Both OFB and CTR modes allow pre-computation of running key sequences, and thus are highly

suitable for real-time applications, so long as the average data rate of the encrypted traffic does

not exceed the ability to compute the running key ahead of need.

For block ciphers, the use of the secret key depends upon the mode used. In the modes that are in

fact stream ciphers, the same problem as with stream cipher keys pertains: reinitiating

communications with the same key results in use of a running key that begins at the same point in

its cycle as a prior initialization with that key. This is a very bad idea, as discussed in the context

185

of Vernam ciphers. If an attacker XOR’s two message segments enciphered with the same

running key, the result is the XOR of the two plaintexts. It is important to remember, though, the

distinction between the key used to initialize the cipher and the running key the cipher algorithm

produces. It is the re-initiation with the same key that is the problem, not continued

communication using the same running key, but continued from the last state of the cipher

algorithm.

For “pure” block cipher modes such as ECB and CBC modes (and not CFB, OFB, CTR or other

modes that are effectively stream ciphers), a key may be re-used, provided one is cautious about

such re-use. For example, if two plaintexts contain identical first blocks and are encrypted with

the same key the first ciphertexts blocks with also be identical. This will continue for CBC as

long as the successive plaintext blocks are identical, but will end with the first non-matching

plaintext blocks. For ECB the situation is, as previously stated, much worse, as identical

plaintext blocks encrypt identically, regardless of position, when using the same key.

For OFB and CTR, all identical blocks in the same positions in the plaintexts will encrypt

identically, when using the same key. The situation is more complex with CFB, as the encryption

of any block depends upon the prior block. Thus, the second and successive of two or more

consecutive identical plaintext blocks (in content and placement) will encrypt identically, when

using the same key.

Excluding ECB, it is possible to generalize the observations above regarding CFB, OFB and CTR

to block cipher modes that produce stream ciphers: key re-use is not a good idea, just as is the

case with Vernam ciphers generally. But, this must be understood in terms of re-use in the form

of re-initialization of the cipher state. Provided the cycle of the running key generated using a

given cipher key is not exhausted, continued use of the running key from the last state reached is

not a problem, in and of itself.

186

Appendix B: Test Code

The following pages contain the C language source code for the Bundesamt für
Sicherheit in der Informationstechnik BSI AIS 20 test of random behavior. The file is a
“free standing” source file in that it requires no additional header files than the standard C
library headers specified in the source file itself.

187

//===

// BSI_test_suite.cpp

//

// This file contains the source code for an implementation of the required

// tests enumerated and described in the following document.

//

// Bundesamt für Sicherheit in der Informationstechnik (BSI):

// Application Notes and Interpretation of the Scheme (AIS),

// AIS 20, Version 1,

// 2 December, 1999.

//

// This test suite is essentially stripped of most error detection code, so

// as to improve the clarity of the source code. Equally, efficiency is some-

// what sacrificed for clarity. While this set of tests is stated to be man-

// datory by the BSI, it should not be taken as a definitive test suite. Other

// organizations, standards and specifications exist and differ from this set

// of test. Many have good rationales. Still, as a mandatory set, these tests

// serve as a sound basis for evaluating the apparent randomness of any pseudo-

// random number generator.

//

// Compilation and linking of this file, and the naming of the resultant

// executable is operating system and user dependent. As such, the user is

// left to perform such actions. However, this file has been compiled and run

// on both Windows and Unix systems, and functioned correctly in all cases.

// Thus, no significant difficulties are foreseen in creating the executable,

// and ensuring that it does in fact execute.

188

//

// To use the executable generated by compilation of this file, at a command

// line prompt, in a directory from which the executable can be executed, enter

// the following command line.

//

// <executable_name> <input_file_name> <output_file_name>

//

// Where <executable_name is the name of the executable file as per the user

// determination, <input_file_name> is the name (including any required path

// specification) of the input file of random outputs from a generator, con-

// taining at least 20,000 bits, or 2,500 bytes, in binary format, with big-

// endian ordering, and <output_file_name> is the name (including any required

// path specification) of the file that will contain the results, in ASCII

// text characters, of the tests on the input file.

// Elegence would dictate that separate tests should be broken out into

// separate functions, but it is regarded as unnecessary for this simple a

// program.

//---

// Being a very simple program, we need little by way of IO libraries and

// functions.

#include <stdio.h>

// We need to define a few constants symbolically for readability, etc.

189

#define BIT_COUNT 20000 // the required number of bits to test

#define NYBBLE_COUNT 5000 // BIT_COUNT / 4

#define BYTE_COUNT 2500 // BIT_COUNT / 8

#define BITS_BYTES 8 // number of bits per byte

//===

// int main (int argc, char *argv[])

// This is where all the work is done.

int main (int argc, char *argv[])

{

 int i;

 int j;

 int k;

 int one_cnt = 0;

 int zero_cnt = 0;

 char c;

 char ac[20000];

 FILE *ipf;

 FILE *opf;

 // To start, we have to convert the file containing the binary stream of

 // generator outputs to a more manageable format for conducting the BSI

 // required tests. We can perform the mono-bit test concurrently, and

 // do so here. Technically, we don't need to count zeroes, but we do so

 // as a check against the count of ones. As previously noted, error

190

 // detection is almost non-existent. The input file is assumed to be

 // of the correct length.

 ipf = fopen(argv[1], "rb");

 for (i = 0, j = 0; i < BYTE_COUNT; i++, j += 8)

 {

 // get a byte

 c = getc(ipf);

 // Cycle through the bits, converting to char values.

 // We assume a big-endian orientation throughout.

 for (k = 0; k < BITS_BYTES; k++, c = c << 1)

 {

 if ((c & 0x80) == 0x80)

 {

 ac[(j + k)] = 0x01;

 one_cnt++;

 }

 else

 {

 ac[(j + k)] = 0x00;

 zero_cnt++;

 }

191

 }

 }

 // The mono-bit test has been completed, so write the results to the

 // output file.

 fprintf(opf, "Test 1 : Mono-bit test : %d ones and %d zeroes.\n",

 one_cnt, zero_cnt);

 fprintf(opf, " Passing range is 9654 < # ones < 10346.\n");

 if ((9654 < one_cnt) && (one_cnt < 10346))

 fprintf(opf, " Test passed\n\n");

 else

 fprintf(opf, " Test FAILED\n\n");

 // Now, perform the bit-run test. Both the bit-run and long-run tests can

 // be performed concurrently, which we do here. For readability, the run

 // count array entry 0 is unused, allowing the number of runs of 1 to 5

 // bits to be counted in entries with the corresponding index. Entry 6

 // will contain the count of all runs of 6 or more bits, and entry 7 the

 // number of runs of 34 bits and longer.

 int run;

 int run_cnt[8] = {0, 0, 0, 0, 0, 0, 0, 0};

 char current;

192

 for (i = 1, run = 1, current = ac[0]; i < BIT_COUNT; i++)

 {

 if (ac[i] == current)

 run++;

 else

 {

 if (run <= 5)

 run_cnt[run]++;

 else

 {

 run_cnt[6]++;

 if (run >= 34)

 run_cnt[7]++;

 }

 run = 1;

 current = ac[i];

 }

 }

 // Whatever the last bit was, it is part of a run, so we need to account

 // for it.

 if (run <= 5)

 run_cnt[run]++;

193

 else

 {

 run_cnt[6]++;

 if (run >= 34)

 run_cnt[7]++;

 }

 // Now we write the results of the run test.

 fprintf(opf, "Test 3 : Run test --\n");

 fprintf(opf, " Run length occurences upper lower\n");

 fprintf(opf, " 1 %4d 2267 2733",

 run_cnt[1]);

 if ((2267 <= run_cnt[1]) && (run_cnt[1] <= 2733))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

 fprintf(opf, " Run length occurences upper lower\n");

 fprintf(opf, " 2 %4d 1079 1421",

 run_cnt[2]);

 if ((1079 <= run_cnt[2]) && (run_cnt[2] <= 1421))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

194

 fprintf(opf, " Run length occurences upper lower\n");

 fprintf(opf, " 3 %4d 502 748",

 run_cnt[3]);

 if ((502 <= run_cnt[3]) && (run_cnt[3] <= 748))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

 fprintf(opf, " Run length occurences upper lower\n");

 fprintf(opf, " 4 %4d 233 402",

 run_cnt[4]);

 if ((233 <= run_cnt[4]) && (run_cnt[4] <= 402))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

 fprintf(opf, " Run length occurences upper lower\n");

 fprintf(opf, " 5 %4d 90 223",

 run_cnt[5]);

 if ((90 <= run_cnt[1]) && (run_cnt[5] <= 223))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

 fprintf(opf, " Run length occurences upper lower\n");

195

 fprintf(opf, " 6+ %6d 90 223",

 run_cnt[6]);

 if ((90 <= run_cnt[6]) && (run_cnt[6] <= 223))

 fprintf(opf, "passed\n");

 else

 fprintf(opf, "FAILED\n");

 // The long-run test fails if there are any runs of 34 bits or longer.

 fprintf(opf, "Long run tests: %d 34+ bit runs occurred.\n", run_cnt[7]);

 if (run_cnt[7] == 0)

 fprintf(opf, " Test passed.\n");

 else

 fprintf(opf, " Test FAILED.\n");

 // The poker test examines nybble values, checking for any skewing in the

 // distribution of values.

 int nybble;

 int values[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

 double chi = 0.0;

 for (i = 0; i < NYBBLE_COUNT; i += 4)

 {

 nybble = (ac[i] << 3) + (ac[i + 1] << 2) + (ac[i + 2] << 1) + ac[i + 3];

 values[nybble]++;

196

 }

 for (i = 0; i < 16; i++)

 chi = ((double) values[i]) * ((double) values[i]);

 chi = (chi * (16.0 / 5000.0)) - 5000.0;

 // Write the poker test results.

 fprintf(opf, "Test 2 : Poker test : chi = %f.\n", chi);

 fprintf(opf, " Valid range is 1.03 < chi < 57.4.\n");

 if ((1.03 < chi) && (chi < 57.4))

 fprintf(opf, " Test passed\n\n");

 else

 fprintf(opf, " Test FAILED\n\n");

 // The autocorrelation test is the most time-consuming, as it involves 5000

 // iternations of an inner loop, for each of 5000 iternations of its outer

 // loop, each with 5000 iterations of the inner loop, or 25,000,000 passes

 // through the inner loop. Each iteration of the outer loop constitutes a

 // test pass, and failure of any of the 'outer' iternations represents a

 // failure of the test as a whole.

 int tau;

 int sum;

197

 int tau_flag = 0;

 for (tau = 1; tau <= 5000; tau++)

 {

 sum = 0;

 for (i = 0; i < 5000; i++)

 {

 sum += (ac[i] ^ ac[(i + tau)]);

 }

 if ((2326 < sum) && (sum < 2674))

 {

 tau_flag = -1;

 fprintf(opf, "Autocorrelation test FAILED for tau = %d\n", tau);

 }

 }

 if (tau_flag == 0)

 fprintf(opf, "Autocorrelation test passed.\n");

 fclose(opf);

 return 0;

}

198

Appendix C: Key Agreement Code.

The following pages contain the C language code for an implementation of the key agreement

Protocol B. The code is broken into three files: agree.c, polyLFSR.h and tables.h.

199

//===

// agree.c

//

// This file is the base for the key agreement scheme of Protocol B. It is

// designed to process a sequence of 1056 bit blocks, stored as binary data in

// in input file, to produce a result string, based upon the state stored in a

// second input file. The output string of bits, plus the ending state of the

// generator, are written to files. The usage is as follows.

//

// agree n <in> <out> <in_state> <out_state>

//

// where

// n is the number of 1056 bit / 132 byte blocks to be processed

// <in> is the name of the file containing those blocks

// <out> is the name of the file to write agreed bits/bytes to

// <in_state> is the initial state file

// <out_state> is the end state file

//

// The executable uses material from tables.h and polyLFSR.h. Therefore,

// to build the executable, place those two files in the same directory with

// agree.c, and use the following command on a Unix or Linux system.

//

// gcc -o agree agree.c

//

#include <stdio.h>

200

#include <stdlib.h>

#include "tables.h"

#include "polyLFSR.h"

#define ASIZE 4

#define BSIZE 128

// The following declarations lay out the memory required to support the four

// composite generators: A, B, C and D. The first three of these are "full"

// generators, in that they have two separate input generators (these are their

// "constituent" generators) used as the <Xn> and <Yn> sequence sources in the

// McLaren-Marsaglia generators they are loosely based on. Thus there are bit

// queues (?xQ and ?yQ) for each, along with a counter to keep track of how

// many unused bits remain in these queues. The D generator is the exception.

// It is identical in operation to the other three except that the <Xn> and

// <Yn> generators are replaced with the matched bit sequence generaged from rp

// and the output from C.

// Implementation in C is strightforward, but a C++ implementation, wherein

// each of the generators could be implemented as instances of appropriate

// classes, would be simple, too. Implementation of these memory declarations

// could also have been done using struct typedefs, but the intent is to expose

// as much of the structure as possible as clearly as possible.

// Note that while it is necessary to keep track of the number of bits in the

// <Xn> and <Yn> buffers, this is not the case with the current position in

// the state vector, as it is rotated left with each nybble generated, and thus

201

// is auto-aligned.

unsigned long long AxQ = 0LL; // the <Xn> buffer

int AxQbits = 0; // the number of bits therein

unsigned long long AyQ = 0LL; // the <Yn> buffer

int AyQbits = 0; // the number of bits in that buffer

unsigned long long Astate = 0LL; // the state of the A composite generator

unsigned long long BxQ = 0LL;

int BxQbits = 0;

unsigned long long ByQ = 0LL;

int ByQbits = 0;

unsigned long long Bstate = 0LL;

unsigned long long CxQ = 0LL;

int CxQbits = 0;

unsigned long long CyQ = 0LL;

int CyQbits = 0;

unsigned long long Cstate = 0LL;

unsigned long long Dstate = 0LL;

// The following data declarations are in a sense excessive. The b_array and

// c_array are never used at the same time, and thus could easily be merged so

// as to reuse the space. or even omitted, if we chose to implement the rp

// extraction and bit matching slightly differently. We are erring on the side

202

// of clerity and ease of debugging in all such cases.

// The data areas themselves are self-explanatory. work_array[] is used to

// hold axr at first, then bxrp. As bxrp is long, and subject to much

// processing, each of the B and C output strings used are stored, as are other

// working arrays. The r_array and a_array are used to process axr, and are

// handled similarly, though processing is in only one "layer."

unsigned char work_array[BSIZE]; // for storing axr, bxrp and rp

unsigned char a_array[ASIZE]; // the output from A

unsigned char r_array[ASIZE]; //

unsigned char b_array[BSIZE]; // the output from B

unsigned char c_array[BSIZE]; // the output from C

unsigned char match_array[BSIZE]; // matched bits after application of

 // matching process on rp and c

unsigned char k_array[BSIZE]; // the final output string

//===

// void ping(int i)

//

// This function is used in debugging, and provides a very simple way to

// show progress. It can be ignored ...

void ping(int i)

203

{

 printf("PING: %d\n", i);

 return;

}

//===

// void usage()

//

// This function simply displays the usage data to stdout.

void usage()

{

 printf("Usage:\n agree n <in> <out> <in_state> <out_state>\n");

 printf("where\n n - the number blocks to be processed\n");

 printf(" <in> - is the name of the input file\n");

 printf(" <out> - is the name of the output file\n");

 printf(" <in_state> is the initial state file\n");

 printf(" <out_state> is the end state file\n");

 return;

}

//===

// int loadState(FILE *fp)

//

// This function extracts the state information for the A, B, C and D

204

// generators, including the bit buffers for the A, B and C generators. As

// some compilers have problems with reading long long using any of the scanf()

// functions, the unsigned long long items are stored in the file as pairs of

// unsigned longs in hexadecimal format.

int loadState(FILE *fp)

{

 int retCode = 0;

 unsigned long a, b;

 fscanf(fp, "%lx %lx %x\n", &a, &b, &AxQbits);

 AxQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx %x\n", &a, &b, &AyQbits);

 AyQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx\n", &a, &b);

 Astate = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx %x\n", &a, &b, &BxQbits);

 BxQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx %x\n", &a, &b, &ByQbits);

 ByQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx\n", &a, &b);

 Bstate = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx %x\n", &a, &b, &CxQbits);

 CxQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

205

 fscanf(fp, "%lx %lx %x\n", &a, &b, &CyQbits);

 CyQ = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx\n", &a, &b);

 Cstate = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 fscanf(fp, "%lx %lx\n", &a, &b);

 Dstate = (((unsigned long long) a) << 32) | ((unsigned long long) b);

 return retCode;

}

//===

// int intialize(FILE *fp)

int initialize(FILE * fp)

{

 int retCode;

 if ((retCode = loadState(fp)) == 0)

 {

 if ((retCode = loadGenerators(fp)) != 0)

 printf("Could not load generators.\n");

 }

 else

 printf("Could not load state.\n");

206

 return retCode;

}

//===

// int get_data(FILE *fp, unsigned char *a, unsigned char *b)

//

// This function gets a block of data for processing, and assumes certain

// facts regarding the structure of the data to be read and stored. It assumes

// that the target arrays are of sufficient size, and that there are two such

// targets, with sizes ASIZE and BSIZE.

// The data to be reach is assumed to be binary in nature, not ASCII text,

// though there is nothing to preclude that.

// The return value indicates whether an error occurred in reading the data

// via a value of 0 returned for no errors, and -1 for an error. Error testing

// is limited to an EOF. Note that the j counter/index will be 128 only if the

// expected number of bytes have been read.

int get_data(FILE *fp, unsigned char *a, unsigned char *b)

{

 int i = 0; // counter/index for the first array

 int j = 0; // counter/index for the second array

 int c; // target for getc(fp), which returns an int.

 // For ASIZE bytes, read from the input file into the a[] array, bailing if

 // an EOF is encountered.

207

 while (i < ASIZE)

 {

 if ((c = fgetc(fp)) == EOF) break;

 *(a + i) = (unsigned char) c;

 i++;

 }

 // only if the first ASIZE bytes were successfully read, read BSIZE bytes

 // into the b[] array, again bailing if an EOF is encountered.

 if (i == ASIZE)

 {

 while (j < BSIZE)

 {

 if ((c = fgetc(fp)) == EOF) break;

 *(b + j) = (unsigned char) c;

 j++;

 }

 }

 // return the correct return value/code: 0 if the data was read correctly,

 // or -1 if not.

 return ((j == BSIZE) ? 0 : -1);

208

}

//===

// unsigned long myRand(unsigned long (*rX) (void),

// unsigned long (*rY) (void),

// unsigned long long *xQ,

// int *xQbits,

// unsigned long long *yQ,

// int *yQbits,

// unsigned long long *state)

//

// This function "pumps" the composite generator defined by the parameters

// passed, it is designed so that the <Xn> and <Yn> may be of any type. The

// function maintains the xQ, yQ, and state. The value generated is returned.

// The dTable and sTable arrays used are assumed to be within scope and

// defined as required. (see tables.h)

unsigned long myRand(unsigned long (* rX)(void),

 unsigned long (* rY)(void),

 unsigned long long *xQ,

 int *xQbits,

 unsigned long long *yQ,

 int *yQbits,

 unsigned long long *state)

{

 int i = 0; // the counter

209

 int jj, kk, ll; // indices for accessing dTable/sTable entries

 unsigned long v; // a temporary value returned by a PRNG

 unsigned long outVal = 0; // where we put what is generated and returned

 while (i < 8)

 {

 if (*xQbits <= 4)

 {

 v = (*rX)();

 *xQ = *xQ | (((unsigned long long) v) << *xQbits);

 *xQbits += 32;

 }

 if (*yQbits <= 4)

 {

 v = (*rY)();

 *yQ = *yQ | (((unsigned long long) v) << *yQbits);

 *yQbits += 32;

 }

 jj = (int) (*state & 0x3FLL);

 *state = (*state >> 4) | (*state << 60);

 kk = (int) (*xQ & 0x0000000FLL);

 *xQ = (*xQ >> 4);

 *xQbits = *xQbits - 4;

210

 ll = (int) (*yQ & 0x0000000FLL);

 *yQ = (*yQ >> 4);

 *yQbits = *yQbits - 4;

 outVal = (outVal << 4) | ((unsigned long) (dTable[jj][kk][ll] & 0x0F));

 *state ^= ((unsigned long long) sTable[jj][kk][ll]) & 0x3FFFLL;

 i++;

 }

 return outVal;

}

//===

// int fill_a()

//

// This function fills the a array, using the A composite generator. We

// perform a 'manual' insertion from the unsigned long A produces in order to

// ensure that implementations on Bit-Endian and Little-Endian processors still

// behave the same.

int fill_a()

{

 unsigned long val;

211

 val = myRand(genAx, genAy, &AxQ, &AxQbits, &AyQ, &AyQbits, &Astate);

 a_array[0] = (unsigned char) ((val >> 24) & 0xFFL);

 a_array[1] = (unsigned char) ((val >> 16) & 0xFFL);

 a_array[2] = (unsigned char) ((val >> 8) & 0xFFL);

 a_array[3] = (unsigned char) (val & 0xFFL);

 return 0;

}

//===

// int fill_bc()

//

// This function uses the B and C composite generators to fill the contents

// of the b and c byte arrays, which will be used to first perform a Vernam

// decipher of the bxrp bit sequence, then to do the bit matching process

// between rp and c.

int fill_bc()

{

 unsigned long ii;

 unsigned long val;

 // we deal with blocks of four bytes in a "Big-endian" manner, manually, to

 // ensure compatibility between different processors with different

 // -endianism.

212

 for (ii = 0; ii < 128; ii += 4)

 {

 val = myRand(&genBx, &genBy, &BxQ, &BxQbits, &ByQ, &ByQbits, &Bstate);

 b_array[ii] = (unsigned char) ((val >> 24) & 0xFFL);

 b_array[ii + 1] = (unsigned char) ((val >> 16) & 0xFFL);

 b_array[ii + 2] = (unsigned char) ((val >> 8) & 0xFFL);

 b_array[ii + 3] = (unsigned char) (val & 0xFFL);

 }

 for (ii = 0; ii < 128; ii += 4)

 {

 val = myRand(&genCx, &genCy, &CxQ, &CxQbits, &CyQ, &CyQbits, &Cstate);

 c_array[ii] = (unsigned char) ((val >> 24) & 0xFFL);

 c_array[ii + 1] = (unsigned char) ((val >> 16) & 0xFFL);

 c_array[ii + 2] = (unsigned char) ((val >> 8) & 0xFFL);

 c_array[ii + 3] = (unsigned char) (val & 0xFFL);

 }

 return 0;

}

//===

// int skew_bc(unsigned char *aa)

213

//

// This function inserts the requisite bits from the characcter string at

// aa into the <Xn> bit buffers for the B and C composite generators. The low

// order 15 bits are inserted into B's buffer, and the next higher 14 bits into

// C's buffer. The net effect, if the contents of aa are random, is to make

// B and C aperiodic. In addition, the outputs of the <Xn> and <Yn> generators

// of the two are shifted relative to each other, so that only once every 32

// cycles (in the case of B), or every 16 (in the case of C), do the save bit

// generators (the individual LFSRs) align pair-wise, between <Xn> and <Yn>.

// at each such occurrence, the bits from each are "out of phase" relative to

// their previous alignment. The highest order three bits are returned, and

// are used in subsequent aperiodization of A.

int skew_bc(unsigned char *aa)

{

 unsigned long long ii = 0LL;

 ii = (((unsigned long long) aa[0]) << 24)

 | (((unsigned long long) aa[1]) << 16)

 | (((unsigned long long) aa[2]) << 8)

 | (unsigned long long) aa[3];

 BxQ |= ((((unsigned long long) ii) && 0x07FFFLL) << BxQbits);

 BxQbits += 15;

 CxQ |= (((((unsigned long long) ii) >> 15) && 0x03FFFLL) << CxQbits);

214

 CxQbits += 14;

 return (int) ((aa[0] >> 29) & 0x00000007);

}

//===

//int skew_a(unsigned char *ca,

// int n,

// int bias)

//

// This function inserts 32 bits from the matched bit array into the AxQ

// bit buffer, ensuring the desired aperiodicity of the A generator. If there

// are not enough bits,

int skew_a(unsigned char *ca,

 int n,

 int bias)

{

 int ii = 0;

 int jj = 0;

 unsigned long skew = 0;

 // look back from the end of the matched bit buffer by 4 + bias, which

 // effectively means we'll extract bits starting at ca[n - (4 + bias)]

 // ... if at all.

215

 ii = n - (4 + bias);

 if (ii > 4) // only extract and skew if there are at least 96 bits

 {

 skew = (unsigned long) ca[ii];

 skew = (skew << 8) + (unsigned long) ca[ii + 1];

 skew = (skew << 8) + (unsigned long) ca[ii + 2];

 skew = (skew << 8) + (unsigned long) ca[ii + 3];

 for (jj = ii; jj < (n - 4); jj++)

 {

 ca[jj] = ca[(jj + 4)];

 }

 AxQ = AxQ | (((unsigned long long) skew) << AxQbits);

 AxQbits += 32;

 }

 return ((ii > 4) ? (n - 4) : n);

}

//===

// void vernam_crypt(unsigned char me[], ke[], unsigned int n)

//

// This function performs a simple Vernam cipher encrypt/decrypt. Which is

// performed is determined by the contents of me[]. If it contains a plaintext

216

// the operation is encryption. If it is a ciphertext, it is a decryption.

// Whereas typical Vernam ciphers (other than OTP) would use the PRNG key-

// generator directly, use of arrays allows more generality, including OTP

// encryption and decryption.

// No error checking is performed on the length of the key (ke[]) and

// message (me[]).

void vernam_crypt(unsigned char *me, // message to be [en|de]crypted.

 unsigned char *ke, // key to be used.

 unsigned int n) // number of bytes in the input arrays.

{

 int ii; // an index.

 // [En|De]cryption is a simple, incremental XOR of the two arrays, with the

 // resulting [plain|cipher]text placed in me[].

 for (ii = 0; ii < n; ii++)

 {

 *(me + ii) ^= *(ke + ii);

 }

 return;

}

//===

// int crp_match(unsigned char rp], c[], ma[], int n)

217

//

// This function performs a bit-match process between the c[] and rp[]

// arrays to reduce the number of bits to be used in subsequent steps.

// As rp[] will contain the random bitstream to be massaged into the agreed

// random bits and c[] the output of a PRNG, the process may be viewed altern-

// atively as either randomly selecting pseudo-random bits (in c[]), or as

// pseudo-randomly selecting random bits (in rp[]). In either view, the result

// is placed in ma[], and may be regarded as random.

// The match[][] array is structured to contain the number of bits that

// match in the two nybbles used as indices into the array in the low-order

// nybble of the entries, while the high nybble of each entry ccntains the

// matching bit values packed to the right.

int crp_match(unsigned char rp[], // random byte stream.

 unsigned char c[], // byte stream from PRNG C().

 unsigned char ma[], // output array of matching bits/bytes.

 unsigned int n) // number of bytes in c[] and rp[].

{

 // Match data array contains the number of bits that match in the indices

 // of each entry, in the low-order nybble, and the bits that match, packed

 // to the right, in the high-order bits.

 static unsigned char match[16][16] = {

 {0x04, 0x03, 0x03, 0x02, 0x03, 0x02, 0x02, 0x01,

 0x03, 0x02, 0x02, 0x01, 0x02, 0x01, 0x01, 0x00},

 {0x03, 0x14, 0x02, 0x13, 0x02, 0x13, 0x01, 0x12,

218

 0x02, 0x13, 0x01, 0x12, 0x01, 0x12, 0x00, 0x11},

 {0x03, 0x02, 0x24, 0x13, 0x02, 0x01, 0x23, 0x12,

 0x02, 0x01, 0x23, 0x12, 0x01, 0x00, 0x22, 0x11},

 {0x02, 0x13, 0x13, 0x34, 0x01, 0x12, 0x12, 0x33,

 0x01, 0x12, 0x12, 0x33, 0x00, 0x11, 0x11, 0x32},

 {0x03, 0x02, 0x02, 0x01, 0x44, 0x23, 0x23, 0x12,

 0x02, 0x01, 0x01, 0x00, 0x43, 0x22, 0x22, 0x11},

 {0x02, 0x13, 0x01, 0x12, 0x23, 0x54, 0x12, 0x33,

 0x01, 0x12, 0x00, 0x11, 0x22, 0x53, 0x11, 0x32},

 {0x02, 0x01, 0x23, 0x12, 0x23, 0x12, 0x64, 0x33,

 0x01, 0x00, 0x22, 0x11, 0x22, 0x11, 0x63, 0x32},

 {0x01, 0x12, 0x12, 0x33, 0x12, 0x33, 0x33, 0x74,

 0x00, 0x11, 0x11, 0x32, 0x11, 0x32, 0x32, 0x73},

 {0x03, 0x02, 0x02, 0x01, 0x02, 0x01, 0x01, 0x00,

 0x84, 0x43, 0x43, 0x22, 0x43, 0x22, 0x22, 0x11},

 {0x02, 0x13, 0x01, 0x12, 0x01, 0x12, 0x00, 0x11,

 0x43, 0x94, 0x22, 0x53, 0x22, 0x53, 0x11, 0x32},

 {0x02, 0x01, 0x23, 0x12, 0x01, 0x00, 0x22, 0x11,

 0x43, 0x22, 0xA4, 0x53, 0x22, 0x11, 0x63, 0x32},

 {0x01, 0x12, 0x12, 0x33, 0x00, 0x11, 0x11, 0x32,

 0x22, 0x00, 0x53, 0xB4, 0x11, 0x32, 0x32, 0x73},

 {0x02, 0x01, 0x01, 0x00, 0x43, 0x22, 0x22, 0x11,

 0x43, 0x22, 0x22, 0x11, 0xC4, 0x63, 0x63, 0x32},

 {0x01, 0x12, 0x00, 0x11, 0x22, 0x22, 0x11, 0x32,

 0x22, 0x53, 0x11, 0x32, 0x63, 0xD4, 0x32, 0x73},

 {0x01, 0x00, 0x22, 0x11, 0x22, 0x11, 0x63, 0x32,

219

 0x22, 0x11, 0x63, 0x32, 0x63, 0x32, 0xE4, 0x73},

 {0x00, 0x11, 0x11, 0x32, 0x11, 0x32, 0x32, 0x73,

 0x11, 0x32, 0x32, 0x73, 0x32, 0x73, 0x73, 0xF4}

 };

 int ii; // an index into the input arrays.

 int bits = 0; // number of matching bits buffered.

 int cnt = 0; // number of matching bytes.

 unsigned int jj; // index into match[] from c[].

 unsigned int kk; // index into match[] from m[].

 unsigned int ll; // number of matched bits, this test.

 unsigned int mm; // matched bits, this try.

 unsigned int out = 0; // buffer for bits not yet grouped.

 for (ii = 0; ii < n; ii++)

 {

 // Do a bit-match selection between the bytes in c and those in rp.

 // note that can do the nybble-wise matching either low-nybble-first

 // or high-nybble-first. The ordering used here is low-nybble-first,

 // which achieves a limited mixing of the output bits. This in itself

 // is not significant, but coupled with other swizzling operations it

 // increases the uncertainty of relationship between an output bit from

 // the aggregate process and any given bit in the input, which is the

 // bxrp array.

 // For each nybble, extract corresponding bits from the current bytes

 // of c and rp, then use these values of indices into the match table.

220

 // The byte extracted contains the number of matching bits in the two

 // indices in the low-order nybble, and the values of the matching bits

 // packed to the right in the high-order nybble. The bits obtained are

 // appended to the out buffer, and the number of bits in the buffer

 // is updated.

 jj = (unsigned int) (c[ii] & 0x0F);

 kk = (unsigned int) (rp[ii] & 0x0F);

 ll = (unsigned int) (match[jj][kk] & 0x0F);

 mm = (unsigned int) ((match[jj][kk] >> 4) & 0x0F);

 out = ((out << ll) | mm);

 bits += ll;

 jj = (unsigned int) ((c[ii] >> 4) & 0x0F);

 kk = (unsigned int) ((rp[ii] >> 4) & 0x0F);

 ll = (unsigned int) (match[jj][kk] & 0x0F);

 mm = (unsigned int) ((match[jj][kk] >> 4) & 0x0F);

 out = ((out << ll) | mm);

 bits += ll;

 // If there are enough bits for a byte in the buffer, copy these to the

 // target array (ma), increment the byte count, update the bit count,

 // and shift the buffer to account for the bits removed.

 // Note that if any bits are pushed into the buffer further than the

 // right-most eight bits, such bits will remain in the buffer. Thus,

 // additional scrambling will occur if such bits are eventually placed

221

 // in the output array. Such bits may in fact be discarded, along with

 // any other bits that were insufficient to form a byte when teh last

 // nybble has been porcessed.

 if (bits >= 8)

 {

 ma[cnt] = (unsigned char) (out & 0xFF);

 out = (out >> 8);

 bits = bits - 8;

 cnt++;

 }

 }

 // Return the full count of bytes generated through the bit-matching.

 return cnt;

}

//===

// int mk_blend(unsigned long long *s, unsigned char m[], k[], int n)

//

// This function performs the blending operation between the opposing ends

// of the matched bits array. The process starts at the ends and works towards

// the middle.

int mk_blend(unsigned long long *s, // state for the mixing process.

222

 unsigned char *m, // matched bits from prior step.

 unsigned char *k, // the output array.

 unsigned int n) // number of bytes in m[].

{

 int ii = 0; // 'left' index into m[].

 int jj = n - 1; // 'right' index into m[].

 int aa; // first index into t[] and d[].

 int bb; // second index into t[] and d[].

 int cc; // third index into t[] and d[].

 unsigned long temp; // temp for modifying state *s.

 // We only deal with even numbers of bytes. If m[] contains an odd number

 // of bytes, the end-test for the operational loop will stop before it

 // process the middle byte, since m[] is processed from the ends towards

 // the middle, and the end-test is satisfied if ii == jj.

 for (; ii < jj; ii++, jj--)

 {

 // Extract the needed indices for the first nybble

 aa = (m[ii] >> 4) & 0x0F;

 bb = m[jj] & 0x0F;

 cc = *s & 0x3F;

 k[ii] = (dTable[aa][bb][cc] & 0x0F);

 // adjust the state vector

223

 temp = (((unsigned long long) sTable[aa][bb][cc]) & 0x3FFFLL);

 *s = ((*s >> 4) & 0x0FFFFFFFFFFFFFFFLL)

 | ((*s << 28) & 0xF000000000000000LL);

 *s ^= temp;

 // extract the indices for the second nybble

 aa = m[ii] & 0x0F;

 bb = (m[jj] >> 4) & 0x0F;

 cc = *s & 0x3F;

 k[ii] |= ((dTable[aa][bb][cc] & 0x0F) << 4);

 // adjust the state vector again

 temp = (((unsigned long long) sTable[aa][bb][cc]) & 0x3FFFLL);

 *s = ((*s >> 4) & 0x0FFFFFFFFFFFFFFFLL)

 | ((*s << 28) & 0xF000000000000000LL);

 *s ^= temp;

 }

 return (n >> 1);

}

//===

// void write_output(FILE *fp, unsigned char *k, int n)

224

//

// This function writes teh agreed bits (as binary bytes) to the output

// file. It is very simple, and requires very little explanation.

void write_output(FILE *fp, unsigned char *k, int n)

{

 int ii;

 for (ii = 0; ii < n; ii++)

 {

 putc(*(k + ii), fp);

 }

 return;

}

//===

// int saveState(FILE *fp)

//

// This function deals with saving the states of the composite generators,

// with regard to the buffered bits and the bit counts, as well as the state

// vectors, but uses the saveGenerators() function in polyLFSR to save the

// shift registers themselves.

int saveState(FILE *fp)

{

225

 fprintf(fp, "%x %x %x\n", (unsigned long) ((AxQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (AxQ & 0xFFFFFFFFL),

 AxQbits);

 fprintf(fp, "%x %x %x\n", (unsigned long) ((AyQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (AyQ & 0xFFFFFFFFL),

 AyQbits);

 fprintf(fp, "%x %x\n", (unsigned long) ((Astate >> 32) & 0xFFFFFFFFL),

 (unsigned long) (Astate & 0xFFFFFFFFL));

 fprintf(fp, "%x %x %x\n", (unsigned long) ((BxQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (BxQ & 0xFFFFFFFFL),

 BxQbits);

 fprintf(fp, "%x %x %x\n", (unsigned long) ((AyQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (ByQ & 0xFFFFFFFFL),

 ByQbits);

 fprintf(fp, "%x %x\n", (unsigned long) ((Bstate >> 32) & 0xFFFFFFFFL),

 (unsigned long) (Bstate & 0xFFFFFFFFL));

 fprintf(fp, "%x %x %x\n", (unsigned long) ((CxQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (CxQ & 0xFFFFFFFFL),

 CxQbits);

 fprintf(fp, "%x %x %x\n", (unsigned long) ((CyQ >> 32) & 0xFFFFFFFFL),

 (unsigned long) (CyQ & 0xFFFFFFFFL),

 CyQbits);

 fprintf(fp, "%x %x\n", (unsigned long) ((Cstate >> 32) & 0xFFFFFFFFL),

 (unsigned long) (Cstate & 0xFFFFFFFFL));

226

 fprintf(fp, "%x %x\n", (unsigned long) ((Dstate >> 32) & 0xFFFFFFFFL),

 (unsigned long) (Dstate & 0xFFFFFFFFL));

 saveGenerators(fp);

 return 0;

}

//===

// int main(int argc, char *argv[])

//

// This is the driving function of the process. Five command line argu-

// ments are required to run the program, as described above in usage().

// The basic operation of main is performed in a loop which tests for an

// end of the input file by reading an input line, as well as testing for the

// exhaustion of the count passed in command line.

int main(int argc, char *argv[])

{

 int n = 0; // Byte counts.

 int blocks = 0; // Number of blocks.

 int bias = 0; // Distance in bytes from end, matched

 // bits to extract A skew bits.

 FILE *ipf; // Pointer to material input file.

 FILE *opf; // Pointer to agreed key output file.

227

 FILE *isf; // Pointer to input state file.

 FILE *osf; // Pointer to output state file.

 // need to set up file io and the number of blocks to process

 if (argc != 6)

 {

 printf("Invalid command line.\n");

 usage();

 goto myExit;

 }

 blocks = atoi(argv[1]);

 ipf = fopen(argv[2], "rb");

 opf = fopen(argv[3], "wb");

 isf = fopen(argv[4], "r");

 osf = fopen(argv[5], "w");

 if ((ipf == (FILE *) NULL) || (opf == (FILE *) NULL)

 || (isf == (FILE *) NULL) || (osf == (FILE *) NULL))

 {

 printf("One of the required files could not be opened.\n");

 usage();

 goto myLongExit;

 }

228

 // must have the initial state, so load it and intialize the process to

 // that agreed state.

 if (initialize(isf) != 0)

 {

 goto myLongExit;

 }

 while ((get_data(ipf, r_array, work_array) == 0) && (blocks-- > 0))

 {

// printf("axr = %02x %02x %02x %02x\n", r_array[0], r_array[1], r_array[2], r_array[3]);

 fill_a();

// printf("a = %02x %02x %02x %02x\n", a_array[0], a_array[1], a_array[2], a_array[3]);

 vernam_crypt(r_array, a_array, 4);

// printf("r = %02x %02x %02x %02x\n", r_array[0], r_array[1], r_array[2], r_array[3]);

 bias = skew_bc(work_array);

 fill_bc();

 vernam_crypt(work_array, b_array, 128);

229

 n = crp_match(work_array, c_array, match_array, 128);

 n = skew_a(work_array, n, bias);

 mk_blend(&Dstate, match_array, k_array, n);

 write_output(opf, k_array, (n / 2));

 }

 // since we intend to use the revised state of the agreement process in

 // subsequent agreement processes, we must save the revised state. IF we

 // were to take security seriously, we might consider using a suitable tool

 // to destroy the key file initially loaded, but as this is a didactic

 // implementation, and we may also be concerned about verifying the data

 // received was correct, this is not done here.

 saveState(osf);

 // regardless of whether the process was completed, we will be polite and

 // close any open files.

myLongExit:

 if (isf != (FILE *) NULL) fclose(isf);

 if (osf != (FILE *) NULL) fclose(osf);

 if (ipf != (FILE *) NULL) fclose(ipf);

 if (opf != (FILE *) NULL) fclose(opf);

230

myExit:

 return 0;

}

231

//==

// polyLFSR.h

//

// Contained herein are components necessary for the loading and saving of

// the overall state of the application, and specifically what may be regarded

// as the 'key', which changes

// This file contains the definitions of the Galois configuration LFSRs

// used as the constituent PRNGs of the A, B and C generators in Protocols

// A and B. As implemented, these are "banks" of 32 LFSRs, all of the Galois

// configuration, which can be operated in parallel, providing significantly

// more bits per cycle than via a single LFSR. LFSRs of lengths up to 64 are

// supported by the code, though only the g2 and g5 generators below use long

// polynomials/shift registers.

// Several changes may be made to improve the efficiency of the generators

// with regard to loading and saving state and operation. Carrying a

// 'length' value, so that we avoid unnecessary reads and writes, as well as

// not continuing the update process past the end of the polynomial, for

// example, would help overall efficiency.

// While the polynomials are defined herein, and are thus 'static', there

// is no requirement that this be so for the protocols supported. The poly-

// nomials could as easily be regarded as "key material" to be determined upon

// initial establishment of the ends of the exchange (meaning giving the

// initial states to Alice and Bob). This would involve an expansion of the

// saved state and additional initialization code, but does not represent a

// significant problem.

232

// set the maximum size of the various tables used by the ganged Galois config-

// uration LFSRs.

#define MAX_BITS 64

// For each of the six ganged Galois LFSR sets, the taps are provided for

// verification of the polynomials.

// 31,3 31,6 31,9,5,1 31,10,6,5,2,1

// 35,11,9,7,6,1 35,11,10,6,5,1 35,11,10,7,6,4 35,11,10,9,6,4

// 35,10,8,7,4,3 35,10,9,1 35,11,6,5 35,11,8,5

// 35,9,6,2 35,10,4,3 35,10,7,3 35,10,8,7,4,3

// 36,9,7,1 37,9,7,6,5,1 36,12,8,4,2,1 36,13,9,6

// 37,6,4,1 37,9,2,1 37,10,5,4 37,11,6,1

// 38,6,5,1 38,9,8,5,4,1 38,11,5,2 38,11,6,4

// 39,4 39,9,8,5,4,1 39,10,9,5,2,1 39,11,9,2,1

// Three tables are used for each ganged set of LFSRs. The first will contain

// the actual bits in the virtualized shift registers, the second the bits

// corresponding to the taps of the LFSRs, and the third a set of masks used

// to remove extraneous 1's from the first table at initialization. This

// removal should not be necessary, in normal operation of the generators, but

// which the state file is creeated their use simplifies the process of

// ensuring that there are no extraneous bits present, and thereby helps in

// verification of the correctness of the processes involved.

233

// Start of the g0 specification

unsigned long g0Bits[MAX_BITS];

unsigned long g0Taps[MAX_BITS] = {

 0x00000000ul, 0x3C40EDC7ul, 0x10082223ul, 0x80870000ul, // 00 - 03

 0x03852A5Cul, 0x343042E6ul, 0x5F285980ul, 0x0A83C000ul, // 04 - 07

 0x00912044ul, 0x2948D477ul, 0x17C70202ul, 0x0F300134ul, // 08 - 11

 0x00002000ul, 0x00001000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 16 - 19

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 20 - 23

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0xF0000000ul, // 28 - 31

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x0FFF0000ul, // 32 - 35

 0x0000F000ul, 0x00000F00ul, 0x000000F0ul, 0x0000000Ful, // 36 - 39

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned long g0Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

234

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0x0FFFFFFFul, 0x0FFFFFFFul, 0x0FFFFFFFul, 0x0FFFFFFFul,

 0x0000FFFFul, 0x00000FFFul, 0x000000FFul, 0x0000000Ful,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned int g0Here = 0;

// Start of the g1 specification

// 32,9,5,3 32,11,5,2 32,11,10,7,6,2 32,12,11,6,5,3

// 33,8,5,1 33,9,8,3 33,10,7,3 33,11,5,2

// 34,9,5,1 34,10,8,5 34,11,7,2 34,12,8,7,5,1

// 35,2 35,9,8,5 35,10,9,1 35,11,10,9

// 36,9,4,3 36,10,6,1 36,11 36,12,6,5

// 37,9,2,1 37,10,6,5,2,1 37,11,9,7,6,2 37,11,10,9,5,4

// 38,9,3,2 38,10,9,6,5,4 38,11,8,5 38,12,9,8,7,4

// 39,10,7,6,5,3,2,1 39,10,9,5,4,3 39,11,7,1 39,11,9,5,4,3,2,1

235

unsigned long g1Bits[MAX_BITS];

unsigned long g1Taps[MAX_BITS] = {

 0x00000000ul, 0x08924C0Bul, 0x61280E89ul, 0x9600808Dul, // 00 - 03

 0x00008155ul, 0xC9D4156Dul, 0x30005648ul, 0x2230021Aul, // 04 - 07

 0x0C940030ul, 0x84878BD5ul, 0x2243454Cul, 0x71212323ul, // 08 - 11

 0x10101010ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 16 - 19

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 20 - 23

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 28 - 31

 0xF0000000ul, 0x0F000000ul, 0x00F00000ul, 0x000F0000ul, // 32 - 35

 0x0000F000ul, 0x00000F00ul, 0x000000F0ul, 0x0000000Ful, // 36 - 39

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 40 - 43

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 44 - 47

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 48 - 51

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 52 - 55

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 56 - 59

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul // 60 - 63

 };

unsigned long g1Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

236

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0x0FFFFFFFul, 0x00FFFFFFul, 0x000FFFFFul,

 0x0000FFFFul, 0x00000FFFul, 0x000000FFul, 0x0000000Ful,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned int g1Here = 0;

// Start of the g2 specification

// 32,22,2,1 33,20 34,27,2,1 35,33

// 36,25 37,5,4,3,2,1 38,6,5,1 39,35

// 40,38,21,19 41,38 42,41,20,19 43,42,38,37

// 44,43,18,17 45,44,42,41 46,45,26,25 47,42

// 48,47,21,20 49,40 50,49,24,23 51,50,36,35

// 52,49 53,52,38,37 54,53,18,17 55,31

// 56,55,35,34 57,50 58,39 59,58,38,37

// 60,59 61,60,46,45 62,61,6,5 63,62

unsigned long g2Bits[MAX_BITS];

237

unsigned long g2Taps[MAX_BITS] = {

 0x00000000ul, 0xA6000000ul, 0xA4000000ul, 0x04000000ul, // 00 - 03

 0x04000000ul, 0x06000002ul, 0x02000002ul, 0x00000000ul, // 04 - 07

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 08 - 11

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00080200ul, 0x00080200ul, 0x00A00000ul, // 16 - 19

 0x40208000ul, 0x00808000ul, 0x80000000ul, 0x00002000ul, // 20 - 23

 0x00002000ul, 0x08020000ul, 0x00020000ul, 0x20000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000100ul, // 28 - 31

 0x80000000ul, 0x50000000ul, 0x20000080ul, 0x11001080ul, // 32 - 35

 0x08001000ul, 0x04000410ul, 0x02D00410ul, 0x01100020ul, // 36 - 39

 0x00804000ul, 0x00640000ul, 0x00350000ul, 0x00180000ul, // 40 - 43

 0x000C0000ul, 0x00060004ul, 0x00020004ul, 0x00018000ul, // 44 - 47

 0x00008000ul, 0x00006800ul, 0x00003040ul, 0x00001000ul, // 48 - 51

 0x00000C00ul, 0x00000600ul, 0x00000200ul, 0x00000180ul, // 52 - 55

 0x00000080ul, 0x00000040ul, 0x00000030ul, 0x00000010ul, // 56 - 59

 0x0000000Cul, 0x00000006ul, 0x00000003ul, 0x00000001ul // 60 - 63

 };

unsigned long g2Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

238

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0x7FFFFFFFul, 0x3FFFFFFFul, 0x1FFFFFFFul,

 0x0FFFFFFFul, 0x07FFFFFFul, 0x03FFFFFFul, 0x01FFFFFFul,

 0x00FFFFFFul, 0x007FFFFFul, 0x003FFFFFul, 0x001FFFFFul,

 0x000FFFFFul, 0x0007FFFFul, 0x0003FFFFul, 0x0001FFFFul,

 0x0000FFFFul, 0x00007FFFul, 0x00003FFFul, 0x00001FFFul,

 0x00000FFFul, 0x000007FFul, 0x000003FFul, 0x000001FFul,

 0x000000FFul, 0x0000007Ful, 0x0000003Ful, 0x0000001Ful,

 0x0000000Ful, 0x00000007ul, 0x00000003ul, 0x00000001ul

 };

unsigned int g2Here = 0;

// Start of the g3 specification

// 31,8,6,2 31,9,3,1 31,9,5,1 31,9,8,4

// 31,10,5,3,2,1 31,10,7,5,3,1 31,10,7,6,5,2 31,10,9,1

// 31,10,9,7,4,2 31,10,9,8,5,3 31,10,9,8,6,3 31,10,9,8,7,1

// 31,11,2,1 31,11,7,5,4,3 31,11,7,6,5,3 31,11,9,1

// 31,11,9,6,5,4 31,11,9,7 31,11,4,3 31,10,9,6,3,2

// 31,10,8,7,2,1 31,10,8,6,5,4 31,10,8,5,4,3 31,10,6,5,2,1

// 31,9,8,7,4,1 31,9,8,4,3,2 31,9,7,6,4,1 31,9,5,4

// 31,8,7,5 31,8,5,3,2,1 31,6,4,2 31,3

unsigned long g3Bits[MAX_BITS];

unsigned long g3Taps[MAX_BITS] = {

 0x00000000ul, 0x6D1909A4ul, 0x8A881946ul, 0x4C663245ul, // 00 - 03

239

 0x1084A6F2ul, 0x2E46871Cul, 0x82229522ul, 0x069648A8ul, // 04 - 07

 0x90700ECCul, 0x71F1D0F0ul, 0x0FF01F00ul, 0x000FE000ul, // 08 - 11

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 16 - 19

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 20 - 23

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0xFFFFFFFFul, // 28 - 31

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned long g3Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

240

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned int g3Here = 0;

// Start of the g4 specification

// 31,3 31,6 31,9,5,1 31,10,6,5,2,1

// 35,11,9,7,6,1 35,11,10,6,5,1 35,11,10,7,6,4 35,11,10,9,6,4

// 35,10,8,7,4,3 35,10,9,1 35,11,6,5 35,11,8,5

// 35,9,6,2 35,10,4,3 35,10,7,3 35,10,8,7,4,3

// 36,9,7,1 37,9,7,6,5,1 36,12,8,4,2,1 36,13,9,6

// 37,6,4,1 37,9,2,1 37,10,5,4 37,11,6,1

// 38,6,5,1 38,9,8,5,4,1 38,11,5,2 38,11,6,4

// 39,4 39,9,8,5,4,1 39,10,9,5,2,1 39,11,9,2,1

unsigned long g4Bits[MAX_BITS];

unsigned long g4Taps[MAX_BITS] = {

 0x00000000ul, 0x3C40EDC7ul, 0x10082223ul, 0x80870000ul, // 00 - 03

 0x03852A5Cul, 0x343042E6ul, 0x5F285980ul, 0x0A83C000ul, // 04 - 07

 0x00912044ul, 0x2948D477ul, 0x17C70202ul, 0x0F300134ul, // 08 - 11

241

 0x00002000ul, 0x00001000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 16 - 19

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 20 - 23

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0xF0000000ul, // 28 - 31

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x0FFF0000ul, // 32 - 35

 0x0000F000ul, 0x00000F00ul, 0x000000F0ul, 0x0000000Ful, // 36 - 39

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned long g4Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0x0FFFFFFFul, 0x0FFFFFFFul, 0x0FFFFFFFul, 0x0FFFFFFFul,

 0x0000FFFFul, 0x00000FFFul, 0x000000FFul, 0x0000000Ful,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

242

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

 };

unsigned int g4Here = 0;

// Start of the g5 specification

// 32,22,2,1 33,20 34,27,2,1 35,33

// 36,25 37,5,4,3,2,1 38,6,5,1 39,35

// 40,38,21,19 41,38 42,41,20,19 43,42,38,37

// 44,43,18,17 45,44,42,41 46,45,26,25 47,42

// 48,47,21,20 49,40 50,49,24,23 51,50,36,35

// 52,49 53,52,38,37 54,53,18,17 55,31

// 56,55,35,34 57,50 58,39 59,58,38,37

// 60,59 61,60,46,45 62,61,6,5 63,62

unsigned long g5Bits[MAX_BITS];

unsigned long g5Taps[MAX_BITS] = {

 0x00000000ul, 0xA6000000ul, 0xA4000000ul, 0x04000000ul, // 00 - 03

 0x04000000ul, 0x06000002ul, 0x02000002ul, 0x00000000ul, // 04 - 07

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 08 - 11

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 12 - 15

 0x00000000ul, 0x00080200ul, 0x00080200ul, 0x00A00000ul, // 16 - 19

243

 0x40208000ul, 0x00808000ul, 0x80000000ul, 0x00002000ul, // 20 - 23

 0x00002000ul, 0x08020000ul, 0x00020000ul, 0x20000000ul, // 24 - 27

 0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000100ul, // 28 - 31

 0x80000000ul, 0x50000000ul, 0x20000080ul, 0x11001080ul, // 32 - 35

 0x08001000ul, 0x04000410ul, 0x02D00410ul, 0x01100020ul, // 36 - 39

 0x00804000ul, 0x00640000ul, 0x00350000ul, 0x00180000ul, // 40 - 43

 0x000C0000ul, 0x00060004ul, 0x00020004ul, 0x00018000ul, // 44 - 47

 0x00008000ul, 0x00006800ul, 0x00003040ul, 0x00001000ul, // 48 - 51

 0x00000C00ul, 0x00000600ul, 0x00000200ul, 0x00000180ul, // 52 - 55

 0x00000080ul, 0x00000040ul, 0x00000030ul, 0x00000010ul, // 56 - 59

 0x0000000Cul, 0x00000006ul, 0x00000003ul, 0x00000001ul // 60 - 63

 };

unsigned long g5Mask[MAX_BITS] = {

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul, 0xFFFFFFFFul,

 0xFFFFFFFFul, 0x7FFFFFFFul, 0x3FFFFFFFul, 0x1FFFFFFFul,

 0x0FFFFFFFul, 0x07FFFFFFul, 0x03FFFFFFul, 0x01FFFFFFul,

 0x00FFFFFFul, 0x007FFFFFul, 0x003FFFFFul, 0x001FFFFFul,

 0x000FFFFFul, 0x0007FFFFul, 0x0003FFFFul, 0x0001FFFFul,

 0x0000FFFFul, 0x00007FFFul, 0x00003FFFul, 0x00001FFFul,

244

 0x00000FFFul, 0x000007FFul, 0x000003FFul, 0x000001FFul,

 0x000000FFul, 0x0000007Ful, 0x0000003Ful, 0x0000001Ful,

 0x0000000Ful, 0x00000007ul, 0x00000003ul, 0x00000001ul

 };

unsigned int g5Here = 0;

//===

// unsigned long galois32(unsigned long *bits,

// unsigned long *taps,

// unsigned int *here)

// This function "operates" the ganged LFSRs of each six generators above,

// when passed the appropriate pointers. The '*bits' pointer indicates where

// the contents of the virtualized shift registers may be found, the '*taps'

// pointer where the tap masks are to be found, and '*here' points to where the

// current index to the "lowest order" bits of the LFSRs may be found.

// As the operation rotates throw the bits storage area, rather than doing

// an actual shift of the bits in the "registers", the cost of moving all that

// data is avoided.

// It was decided NOT to provide a struct typedef corresponding to the

// ganged generators, primarily to avoid the confusion that sometimes arises

// during a cursory reay of code that relies heavily upon such typedefs.

unsigned long galois32(unsigned long *bits,

 unsigned long *taps,

 unsigned int *here)

{

245

 unsigned int i; // a counter

 unsigned long out; // stores the output value(s)

 out = bits[*here]; // get the output for this cycle

 // loop through the bit fields that correspond to the bit positions in the

 // individual LFSRs. again, this could be made more efficient by using the

 // actual length of the longest of the LFSRs, which would necessarily be

 // passed as another parameter, unless we were to create a struct typedef

 // corresponding to the component generators.

 for (i = 1; i < MAX_BITS; i++)

 {

 bits[((*here + i) % MAX_BITS)] ^= (out & taps[i]);

 }

 // clear the just used output bit field to avoid extraneous (and thus

 // erroneous) feedback into the generator, and update the current location

 // in the LFSRs.

 bits[*here] = 0UL;

 *here = (*here + 1) % MAX_BITS;

 // return the output bits.

 return out;

246

}

//===

// unsigned long genAx()

// unsigned long genAy()

// unsigned long genBx()

// unsigned long genBy()

// unsigned long genCx()

// unsigned long genCy()

//

// These six functions are provided as "hooks" to the appropriate component

// PRNGs for the A, B and C composite generators. The reason for their use is

// to simplify the calls to the component generators within agree.c, where they

// are passed, via pointers to them, to the code that pumps the composite

// generators. Such references and calls can be confusing enough without the

// added complication of passing parameters to the functions referenced via

// pointers.

unsigned long genAx()

{

 return galois32(g0Bits, g0Taps, &g0Here);

}

unsigned long genAy()

{

 return galois32(g1Bits, g1Taps, &g1Here);

247

}

unsigned long genBx()

{

 return galois32(g2Bits, g2Taps, &g2Here);

}

unsigned long genBy()

{

 return galois32(g3Bits, g3Taps, &g3Here);

}

unsigned long genCx()

{

 return galois32(g4Bits, g4Taps, &g4Here);

}

unsigned long genCy()

{

 return galois32(g5Bits, g5Taps, &g5Here);

}

//===

// int loadGenerators(FILE *fp)

// This function performs a straightforward load of the state stored in

// the file indicated by '*fp'. The data in that file is stored as six columns

248

// of unsigned longs in hexadecimal format, with each column representing one

// of the six component generators to be restored. As the data is stored with

// the lowest order bit fields in position zero, no accounting need be kept of

// where in the operation of the generators processing was halted prior to

// storing the state.

// Note that it would be simple to insert values into the file to indicate

// how many bits the longest LFSR contains, and to load the generators appro-

// priately. A malloc() could then be used to allocate as much space as needed

// for the generators. In a more general implementation, this would be fully

// appropriate, but would unnecessarily complicate the present example. The

// same types of observations can be made regarding the taps and masks. Again,

// to simplify the present example, such generalizations were not implemented.

int loadGenerators(FILE *fp)

{

 int i; // a counter/index

 int retCode = 0; // return code for detecting faults

 // loop through the lines of the state file, filling in the bit field array

 // that is the current state of the LFSRs.

 for (i = 0; i < MAX_BITS; i++)

 {

 // read one value from each of the six columns of data

 fscanf(fp, "%lx %lx %lx %lx %lx %lx",

249

 &g0Bits[i], &g1Bits[i], &g2Bits[i],

 &g3Bits[i], &g4Bits[i], &g5Bits[i]);

 // mask out any stray ones, thereby removing bits that might cause

 // erroneous feedback in any of the LFSRs. this is redundant, but

 // it is better to be safe.

 g0Bits[i] &= g0Mask[i];

 g1Bits[i] &= g1Mask[i];

 g2Bits[i] &= g2Mask[i];

 g3Bits[i] &= g3Mask[i];

 g4Bits[i] &= g4Mask[i];

 g5Bits[i] &= g5Mask[i];

 }

 g0Here = 0;

 g1Here = 0;

 g2Here = 0;

 g3Here = 0;

 g4Here = 0;

 g5Here = 0;

 return retCode;

}

//===

250

// int saveGenerators(FILE *fp)

// This function saves the current state of the six constituent ganged

// LFSRs. The file writing process is performed in such a way that it is not

// necessary to know the alignment of the LFSRs as they rotated (rather than

// being shifted) through the 'g#Bits[]' storage area.

// As described above, the ganged LFSRs are stored as columns in the file

// indicated by '*fp', as ASCII hexadecimal unsigned longs.

// The process here is generalized to account for the fact that the g0 and

// g1 ganged generators will operate at a different pace from the other four.

// In particular, as the g0 generator will be very infrequently pumped, and the

// g1 generator only once per cycle, while the other four will be pumped 32

// times per cycle, means that in most cases there will be an increasing dis-

// parity between the current location within the g0 and g1 generators. The

// disparity between the g2 through g5 generators is more irregular.

// As the g2 through g5 generators will be pumped the same number of times

// per cycle, barring incorporation explicitly stated LSFR lengths, i2 through

// i5 COULD be condensed into a single index, but have not been in anticipation

// of the incorporation of said explicit LFSR lengths, along with other planned

// revisions. The loss of efficiency is deemed inconsequential, and preserves

// the opportunity to use the code in other applications where the number of

// iterations may vary among all of the generators.

int saveGenerators(FILE *fp)

{

 int i, i0, i1, i2, i3, i4, i5; // a counter and indices

 int retCode = 0; // for capturing errors

251

 // set the initial values of the indices.

 i0 = g0Here; i1 = g1Here; i2 = g2Here;

 i3 = g3Here; i4 = g4Here; i5 = g5Here;

 // loop through the entire bits table, writing the corresponding positions

 // (relative to current locations) as a row in the output file.

 for (i = 0; i < MAX_BITS; i++)

 {

 fprintf(fp, "%lx %lx %lx %lx %lx %lx\n",

 g0Bits[i0], g1Bits[i1], g2Bits[i2],

 g3Bits[i3], g4Bits[i4], g5Bits[i5]);

 // update the indices.

 i0 = (i0 + 1) % MAX_BITS;

 i1 = (i1 + 1) % MAX_BITS;

 i2 = (i2 + 1) % MAX_BITS;

 i3 = (i3 + 1) % MAX_BITS;

 i4 = (i4 + 1) % MAX_BITS;

 i5 = (i5 + 1) % MAX_BITS;

 }

 return retCode;

252

}

253

//===

// tables.h

//

// This file contains the dTable and sTable 3D arrays used by the specific

// implementation of the bitBlend function in its two forms in agree.c. The

// dTable is constructed so that any given pair of <X> and <Y> sequence nybble

// inputs will display an equal probability of yielding any possible 4-bit

// output value, with the actual value determined by the third index, obtained

// from the state bit-field for the generator used. The sTable is constructed

// so that every combination of index values produces a unique 14-bit modifier

// for use in updating the state bit-field of the generator used.

unsigned char dTable[64][16][16] = {

 { {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

254

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e}

 },

 { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

255

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

256

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}

 },

 { {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

257

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00}

 },

 { {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

258

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01}

 },

 { {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

259

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02}

 },

 { {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

260

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

261

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03}

 },

 { {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

262

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04}

 },

 { {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

263

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05}

 },

 { {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

264

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06}

 },

 { {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

265

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

266

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}

 },

 { {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

267

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}

 },

 { {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

268

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}

 },

 { {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

269

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a}

270

 },

 { {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

271

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b}

 },

 { {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

272

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c}

 },

 { {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

273

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d}

 },

 { {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

274

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

275

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01}

 },

 { {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

276

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00}

 },

 { {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

277

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f}

 },

 { {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

278

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e}

 },

 { {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

279

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

280

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d}

 },

 { {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

281

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c}

 },

 { {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

282

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b}

 },

 { {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

283

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a}

 },

284

 { {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

285

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09}

 },

 { {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

286

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08}

 },

 { {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

287

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07}

 },

 { {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

288

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

289

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06}

 },

 { {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

290

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05}

 },

 { {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

291

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}

 },

 { {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

292

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}

 },

 { {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

293

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

294

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02}

 },

 { {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

295

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00}

 },

 { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

296

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01}

 },

 { {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

297

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02}

 },

 { {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

298

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

299

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03}

 },

 { {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

300

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04}

 },

 { {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

301

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05}

 },

 { {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

302

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06}

303

 },

 { {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

304

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}

 },

 { {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

305

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}

 },

 { {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

306

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}

 },

 { {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

307

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

308

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a}

 },

 { {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

309

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b}

 },

 { {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

310

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c}

 },

 { {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

311

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d}

 },

 { {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

312

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

313

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},

 {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e}

 },

 { {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e},

 {0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d},

 {0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04,

 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c},

 {0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03,

 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b},

 {0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02,

 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a},

 {0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01,

 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},

 {0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},

 {0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},

 {0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},

 {0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,

 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05},

 {0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

314

 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04},

 {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,

 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03},

 {0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,

 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02},

 {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01},

 {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00},

 {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}

 },

 { {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

315

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01}

 },

 { {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

316

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00}

 },

317

 { {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

318

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f}

 },

 { {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

319

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e}

 },

 { {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

320

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d}

 },

 { {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

321

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

322

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c}

 },

 { {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

323

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b}

 },

 { {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

324

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a}

 },

 { {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

325

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09}

 },

 { {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

326

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

327

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08}

 },

 { {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

328

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07}

 },

 { {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

329

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06}

 },

 { {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

330

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05}

 },

 { {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

331

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

332

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}

 },

 { {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

 {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

333

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}

 },

 { {0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,

 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

 {0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},

 {0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07,

 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f},

 {0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,

 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e},

 {0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05,

 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d},

 {0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c},

 {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,

334

 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b},

 {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,

 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a},

 {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09},

 {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,

 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08},

 {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f,

 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07},

 {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e,

 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06},

 {0x04, 0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d,

 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05},

 {0x03, 0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c,

 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},

 {0x02, 0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,

 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03},

 {0x01, 0x00, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a,

 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02}

 }

 };

unsigned short sTable[64][16][16] = {

 { {0x11ae, 0x1f51, 0x030f, 0x084f, 0x2d5b, 0x3c6f, 0x1ac5, 0x2e5c,

 0x296a, 0x0a9b, 0x0aa7, 0x1dca, 0x1fac, 0x1d51, 0x2cc1, 0x0b2e},

 {0x1659, 0x0a3e, 0x3b16, 0x2bbb, 0x16fc, 0x16f7, 0x32e2, 0x37ff,

335

 0x10a8, 0x3abf, 0x25f8, 0x147f, 0x351c, 0x2272, 0x2646, 0x2d30},

 {0x27b5, 0x148b, 0x0032, 0x35f0, 0x18da, 0x17c3, 0x1152, 0x2852,

 0x0d77, 0x1824, 0x2695, 0x0bcf, 0x0bba, 0x0b1f, 0x050e, 0x3cb8},

 {0x06c2, 0x0f5f, 0x2a45, 0x3cf6, 0x1292, 0x0aeb, 0x01d7, 0x3eaf,

 0x2845, 0x3a7a, 0x2387, 0x0c78, 0x07be, 0x07ef, 0x0129, 0x30d4},

 {0x2b76, 0x2b0d, 0x344a, 0x1b40, 0x348c, 0x3f7c, 0x214f, 0x135e,

 0x351e, 0x39d5, 0x1654, 0x1274, 0x3745, 0x1ef0, 0x115c, 0x2482},

 {0x3ccf, 0x3cc9, 0x03ab, 0x3f1f, 0x0325, 0x334a, 0x059b, 0x3416,

 0x3ca1, 0x24a9, 0x2d77, 0x0189, 0x0354, 0x34c3, 0x1691, 0x061b},

 {0x2a53, 0x3937, 0x249f, 0x34eb, 0x1783, 0x2540, 0x3a5d, 0x12cf,

 0x17d7, 0x182e, 0x2cb1, 0x1491, 0x2284, 0x00aa, 0x2b09, 0x104f},

 {0x0e9c, 0x3a03, 0x346a, 0x2b60, 0x37c7, 0x10a7, 0x3db4, 0x39bf,

 0x0087, 0x268d, 0x25ce, 0x2ebd, 0x147a, 0x0c5f, 0x025b, 0x2b8d},

 {0x18df, 0x2cc7, 0x2d10, 0x1e49, 0x2da8, 0x1ae3, 0x2896, 0x1b25,

 0x13f2, 0x136e, 0x1fae, 0x27f5, 0x0af0, 0x1571, 0x1a00, 0x2c3e},

 {0x27c1, 0x0f32, 0x0551, 0x2efd, 0x3f4f, 0x09fe, 0x380f, 0x0fe1,

 0x0bff, 0x168d, 0x0451, 0x0669, 0x0173, 0x1130, 0x082b, 0x0635},

 {0x37e0, 0x220e, 0x39b1, 0x03c4, 0x02f7, 0x13a5, 0x3e2d, 0x3dda,

 0x2778, 0x301a, 0x1de7, 0x024f, 0x14a0, 0x2ce8, 0x3651, 0x338c},

 {0x1798, 0x25d9, 0x0d76, 0x2f72, 0x0854, 0x3115, 0x16d8, 0x3f91,

 0x0eae, 0x1f09, 0x318c, 0x2002, 0x2218, 0x19bb, 0x1a5a, 0x3748},

 {0x32dd, 0x1474, 0x2071, 0x2247, 0x3be3, 0x3cd9, 0x2c51, 0x3160,

 0x236f, 0x1b80, 0x2614, 0x2cf5, 0x3e99, 0x1035, 0x398a, 0x33cf},

 {0x3947, 0x0ba4, 0x3fec, 0x2ba4, 0x0a5c, 0x3c4c, 0x1b29, 0x1913,

 0x3654, 0x2ae3, 0x21e8, 0x2114, 0x311b, 0x0ac7, 0x1e54, 0x19fb},

 {0x0525, 0x069e, 0x1086, 0x3d0b, 0x2c63, 0x2a40, 0x3aa4, 0x3e6b,

336

 0x1730, 0x2c2e, 0x24ed, 0x05e4, 0x14e3, 0x29f7, 0x08ba, 0x1722},

 {0x3a72, 0x00ab, 0x2fb6, 0x2381, 0x0f25, 0x14b9, 0x1289, 0x2e8e,

 0x027c, 0x0ccd, 0x3439, 0x332f, 0x1874, 0x1ed8, 0x3ca0, 0x0624}

 },

 { {0x1daa, 0x2dca, 0x3bdf, 0x3ce6, 0x1679, 0x10e9, 0x35ee, 0x01da,

 0x0498, 0x1165, 0x028c, 0x2196, 0x174a, 0x2953, 0x204f, 0x3513},

 {0x3f1d, 0x2023, 0x2ec2, 0x3339, 0x2233, 0x3370, 0x25e2, 0x10f5,

 0x2075, 0x3fcc, 0x1fde, 0x1ed9, 0x1e2f, 0x1f5e, 0x3abd, 0x0449},

 {0x338e, 0x01c0, 0x3b2e, 0x04c1, 0x3035, 0x1270, 0x0e7c, 0x0e83,

 0x24a7, 0x277f, 0x3adc, 0x31ef, 0x015d, 0x0e8b, 0x2c5f, 0x0178},

 {0x3754, 0x2b11, 0x34b7, 0x0738, 0x29fb, 0x1342, 0x1ca7, 0x37eb,

 0x0ae0, 0x260e, 0x3563, 0x1c7b, 0x383a, 0x0dd0, 0x0366, 0x3c3d},

 {0x17a8, 0x2f91, 0x14f4, 0x1cf4, 0x0218, 0x357f, 0x120d, 0x072d,

 0x1c0c, 0x2b81, 0x22c1, 0x30fe, 0x0742, 0x065a, 0x27b3, 0x197b},

 {0x2035, 0x38fa, 0x2ad6, 0x02ed, 0x2827, 0x02c4, 0x1bb5, 0x3da5,

 0x346b, 0x13e4, 0x0e46, 0x1f5b, 0x2e83, 0x29a5, 0x0f9f, 0x1863},

 {0x2560, 0x069f, 0x2d8c, 0x3884, 0x1f36, 0x2df0, 0x034a, 0x02aa,

 0x0088, 0x3835, 0x30f5, 0x2be9, 0x11a6, 0x3eeb, 0x1719, 0x1708},

 {0x08ec, 0x0a7b, 0x1673, 0x2d67, 0x181b, 0x3172, 0x3cd6, 0x1c25,

 0x1a4c, 0x3f11, 0x2587, 0x2678, 0x00b8, 0x0623, 0x1ead, 0x00b1},

 {0x170e, 0x1eb9, 0x1d10, 0x0c5a, 0x3a19, 0x0cc3, 0x11fa, 0x2f81,

 0x3733, 0x2a0b, 0x15c6, 0x122f, 0x18a7, 0x00de, 0x0184, 0x3dbd},

 {0x0bb0, 0x0a99, 0x0dd9, 0x2ce6, 0x1c8a, 0x3735, 0x0a5f, 0x1a83,

 0x3fc3, 0x1c33, 0x3725, 0x272a, 0x1ecf, 0x2322, 0x0133, 0x134d},

 {0x2ae0, 0x0829, 0x187e, 0x37cd, 0x30de, 0x346d, 0x1b03, 0x028b,

 0x004f, 0x1077, 0x08f0, 0x1f39, 0x1244, 0x392a, 0x0b12, 0x37b8},

337

 {0x3b4f, 0x1803, 0x25f6, 0x3a2c, 0x35dd, 0x0fcf, 0x0fc5, 0x1c02,

 0x1973, 0x256e, 0x3bf7, 0x1e60, 0x0603, 0x29d6, 0x3683, 0x1f1f},

 {0x3ee4, 0x3517, 0x1fd1, 0x08e2, 0x210c, 0x28b7, 0x00d2, 0x0f2e,

 0x2324, 0x3458, 0x39d1, 0x1a13, 0x08aa, 0x00b3, 0x28e7, 0x2634},

 {0x330e, 0x1663, 0x13f7, 0x10b3, 0x3e6a, 0x16d3, 0x0625, 0x1178,

 0x269f, 0x22bd, 0x3028, 0x27bc, 0x2e5a, 0x2bb2, 0x2e3c, 0x1340},

 {0x1764, 0x26da, 0x3ffc, 0x1699, 0x02d5, 0x1696, 0x3eac, 0x3b59,

 0x0b8b, 0x0296, 0x3953, 0x056c, 0x3a91, 0x3f9e, 0x166a, 0x26a8},

 {0x19f1, 0x2940, 0x22b6, 0x01a0, 0x23b0, 0x3c29, 0x1a82, 0x1187,

 0x0a2d, 0x04a1, 0x2d40, 0x3fd0, 0x0900, 0x36e2, 0x2a91, 0x3c49}

 },

 { {0x3e0d, 0x33f3, 0x222a, 0x1ee4, 0x0cdb, 0x17ab, 0x2a8e, 0x0ab6,

 0x2564, 0x148a, 0x2a7e, 0x386b, 0x3636, 0x3cd5, 0x3024, 0x3b23},

 {0x3220, 0x3990, 0x2ce2, 0x3071, 0x1a5e, 0x1593, 0x26c6, 0x3b85,

 0x34c8, 0x32ce, 0x2a74, 0x39c0, 0x070d, 0x25e7, 0x1229, 0x08df},

 {0x22dc, 0x30e2, 0x3b83, 0x0ee3, 0x1c09, 0x3a06, 0x04f2, 0x0605,

 0x2d8b, 0x2c5b, 0x2fde, 0x0c37, 0x0ad2, 0x362a, 0x0ba1, 0x18c8},

 {0x240e, 0x062f, 0x17c6, 0x0671, 0x2901, 0x1b51, 0x0b63, 0x35a9,

 0x1804, 0x08b2, 0x33f5, 0x376c, 0x0d33, 0x074a, 0x180d, 0x2b32},

 {0x22c0, 0x0048, 0x1a1c, 0x1add, 0x3c7a, 0x01ed, 0x026a, 0x319c,

 0x1967, 0x204b, 0x0ee4, 0x2236, 0x1246, 0x0593, 0x08a5, 0x2eb9},

 {0x2c22, 0x0fe3, 0x3df7, 0x1d77, 0x332e, 0x2d1e, 0x0cc1, 0x2e81,

 0x127e, 0x1d40, 0x0937, 0x077b, 0x1781, 0x33da, 0x3d7c, 0x132d},

 {0x0a77, 0x11e6, 0x0176, 0x0bd0, 0x0156, 0x152c, 0x1c29, 0x02c5,

 0x10b8, 0x2279, 0x0ab5, 0x0389, 0x0884, 0x1eb5, 0x2472, 0x253e},

 {0x3d9a, 0x0e43, 0x2d91, 0x2f8f, 0x06bb, 0x3378, 0x3bfe, 0x1421,

338

 0x2a9c, 0x0bdb, 0x0d7e, 0x37ef, 0x3ccd, 0x35a7, 0x3e5e, 0x34b9},

 {0x2684, 0x2f57, 0x3061, 0x3ac9, 0x08a9, 0x379b, 0x212b, 0x37e4,

 0x01ba, 0x0ffc, 0x271d, 0x3ab9, 0x0482, 0x2ef0, 0x3ff3, 0x13c2},

 {0x06be, 0x004c, 0x227a, 0x3635, 0x3ef9, 0x0843, 0x0f34, 0x01eb,

 0x28e9, 0x1920, 0x1fbf, 0x3d4c, 0x3b8d, 0x22cf, 0x1d50, 0x3433},

 {0x3e87, 0x0a01, 0x32c1, 0x21ee, 0x38ae, 0x239f, 0x2908, 0x32fa,

 0x3e70, 0x328b, 0x1260, 0x2fc4, 0x04d1, 0x34ca, 0x0bd5, 0x105b},

 {0x21fe, 0x2e6d, 0x3cf5, 0x0bb7, 0x160a, 0x222b, 0x3f0b, 0x07ce,

 0x296f, 0x2446, 0x1428, 0x241f, 0x016b, 0x318a, 0x18f6, 0x204c},

 {0x0cda, 0x2a24, 0x2019, 0x20db, 0x140c, 0x1e1b, 0x1c05, 0x2d20,

 0x3692, 0x298e, 0x3432, 0x3597, 0x28f0, 0x3b4e, 0x1f8a, 0x126d},

 {0x3b70, 0x0963, 0x1172, 0x2549, 0x0447, 0x33c8, 0x38a4, 0x01a3,

 0x10e6, 0x1174, 0x0770, 0x13f5, 0x188b, 0x3182, 0x1a19, 0x0334},

 {0x12ec, 0x3c1f, 0x0b1d, 0x12d0, 0x009b, 0x184c, 0x0013, 0x2296,

 0x0081, 0x0338, 0x3bd8, 0x08a6, 0x039c, 0x3b01, 0x125c, 0x0e01},

 {0x147e, 0x3e82, 0x1286, 0x142a, 0x01e7, 0x3c64, 0x1ca1, 0x0e53,

 0x3541, 0x375b, 0x0300, 0x2099, 0x023e, 0x1b7d, 0x13f6, 0x084d}

 },

 { {0x0d79, 0x1f2d, 0x3cb2, 0x02d9, 0x0fff, 0x28a6, 0x1da1, 0x3c09,

 0x0df8, 0x11a0, 0x247e, 0x2d35, 0x14bf, 0x209c, 0x28e5, 0x177c},

 {0x03e7, 0x3b22, 0x031e, 0x1fce, 0x0192, 0x39dc, 0x11b3, 0x310b,

 0x30d0, 0x3b8e, 0x0c03, 0x22fc, 0x0e2c, 0x2820, 0x2115, 0x1222},

 {0x048b, 0x1161, 0x0901, 0x0139, 0x232e, 0x1aa1, 0x0615, 0x0830,

 0x2dc3, 0x29d5, 0x1fa6, 0x37a6, 0x11eb, 0x0abc, 0x25d0, 0x3b9d},

 {0x32df, 0x3f99, 0x1276, 0x1f13, 0x3c7d, 0x18ba, 0x2996, 0x2815,

 0x2032, 0x0f0e, 0x2358, 0x3554, 0x362d, 0x3509, 0x39da, 0x03fa},

339

 {0x3a3a, 0x0b2c, 0x1525, 0x3319, 0x3cfe, 0x345d, 0x016d, 0x3d24,

 0x3b8b, 0x0231, 0x1bd1, 0x2dc8, 0x3246, 0x1df3, 0x3acd, 0x3e3c},

 {0x2e8a, 0x02e3, 0x2a37, 0x3790, 0x18cc, 0x3ab0, 0x2572, 0x2990,

 0x272c, 0x2b89, 0x3de6, 0x3ffd, 0x1c54, 0x2e44, 0x359a, 0x2aa6},

 {0x1420, 0x200f, 0x0910, 0x3958, 0x0bec, 0x0aa6, 0x1a0e, 0x233c,

 0x0faa, 0x39fa, 0x1224, 0x1d9e, 0x3b84, 0x0977, 0x28eb, 0x1364},

 {0x1ef7, 0x3b64, 0x29f1, 0x2f9a, 0x1821, 0x2c7b, 0x2310, 0x30e0,

 0x3c9a, 0x04da, 0x15ce, 0x1a41, 0x31dd, 0x1e4a, 0x337a, 0x3948},

 {0x3210, 0x0cca, 0x1d03, 0x0d8b, 0x3cd8, 0x18e6, 0x314f, 0x1aab,

 0x3333, 0x0571, 0x1dfe, 0x11a7, 0x0596, 0x17d4, 0x3bbe, 0x1071},

 {0x39e7, 0x2420, 0x09a1, 0x2258, 0x38d7, 0x11ec, 0x07d6, 0x2e41,

 0x3fd8, 0x0f76, 0x223e, 0x33de, 0x023d, 0x1c41, 0x34fa, 0x1bf2},

 {0x10e0, 0x1b10, 0x3180, 0x3476, 0x23df, 0x3343, 0x23de, 0x1681,

 0x2c62, 0x2f56, 0x199f, 0x1969, 0x0278, 0x1882, 0x2462, 0x1563},

 {0x32c8, 0x31b4, 0x04d2, 0x06bc, 0x283b, 0x3a9f, 0x2a68, 0x27c4,

 0x265b, 0x1597, 0x32ec, 0x0981, 0x0e97, 0x3ad1, 0x18c2, 0x1f7a},

 {0x3e92, 0x26d9, 0x3c42, 0x2c8a, 0x1438, 0x20a5, 0x33b3, 0x13ef,

 0x2184, 0x2b2f, 0x0f1c, 0x28b1, 0x3e4e, 0x2b08, 0x0c2f, 0x3891},

 {0x071e, 0x3856, 0x29c6, 0x2b6b, 0x141a, 0x1a61, 0x2110, 0x28c8,

 0x0124, 0x1cb4, 0x1732, 0x0193, 0x3cbe, 0x2b67, 0x0873, 0x04a6},

 {0x3849, 0x0051, 0x0ea0, 0x3eba, 0x0d9f, 0x35b8, 0x1f08, 0x2209,

 0x12da, 0x056e, 0x2db4, 0x3f72, 0x2874, 0x20c5, 0x3ecd, 0x2d6d},

 {0x206f, 0x0945, 0x0839, 0x0037, 0x1d6b, 0x2a5a, 0x0b88, 0x322a,

 0x1c17, 0x1258, 0x169a, 0x0045, 0x3c47, 0x1af1, 0x15c0, 0x1f4e}

 },

 { {0x261a, 0x3b6d, 0x033d, 0x35d9, 0x0b09, 0x330a, 0x1b8b, 0x2da5,

340

 0x1b6f, 0x06a0, 0x1818, 0x3b4d, 0x20eb, 0x174e, 0x3f69, 0x3eb5},

 {0x3641, 0x1d41, 0x133f, 0x29c9, 0x26d3, 0x2012, 0x3588, 0x335f,

 0x2961, 0x05ec, 0x3cea, 0x06e0, 0x01ff, 0x1b91, 0x14f8, 0x2559},

 {0x0a60, 0x28fc, 0x0e91, 0x1848, 0x28bd, 0x3f36, 0x0758, 0x254e,

 0x0f9d, 0x0cc8, 0x1182, 0x1dfd, 0x17de, 0x3fb7, 0x35fa, 0x1b9d},

 {0x3134, 0x04bb, 0x20b2, 0x173b, 0x059d, 0x39d9, 0x30ec, 0x2a1b,

 0x16ce, 0x1892, 0x2fab, 0x2f6d, 0x33bc, 0x2784, 0x2cda, 0x01bd},

 {0x0009, 0x253f, 0x14f0, 0x26fa, 0x0595, 0x0e7f, 0x00a1, 0x38d5,

 0x1b30, 0x1476, 0x390e, 0x0b6a, 0x1e28, 0x0e65, 0x116f, 0x19fd},

 {0x29d7, 0x09ea, 0x3025, 0x11e7, 0x3a71, 0x33f0, 0x1a50, 0x0e2e,

 0x3586, 0x0812, 0x3a8d, 0x1009, 0x1d18, 0x1105, 0x3274, 0x0e38},

 {0x0720, 0x0065, 0x104d, 0x123c, 0x26dd, 0x07d9, 0x0613, 0x1fc7,

 0x217d, 0x109b, 0x269a, 0x0b17, 0x0e02, 0x18a8, 0x1fa3, 0x185d},

 {0x350d, 0x1b65, 0x0c9b, 0x2c64, 0x2e0a, 0x2a72, 0x1f34, 0x02af,

 0x003b, 0x163c, 0x1271, 0x0d48, 0x2663, 0x2f93, 0x132e, 0x04cd},

 {0x38d6, 0x3949, 0x1fed, 0x21df, 0x1435, 0x0364, 0x2318, 0x0ec0,

 0x06f9, 0x0633, 0x0e20, 0x108c, 0x213b, 0x1934, 0x2aad, 0x16bd},

 {0x3396, 0x309b, 0x0096, 0x3713, 0x0579, 0x34a4, 0x0a4f, 0x0871,

 0x3f8e, 0x0930, 0x2d0a, 0x3fe7, 0x0344, 0x2ba3, 0x13e9, 0x39a4},

 {0x03e0, 0x2960, 0x3bf9, 0x0ff7, 0x39bb, 0x34dc, 0x3c60, 0x12d9,

 0x34f8, 0x1d00, 0x1570, 0x3915, 0x1502, 0x264f, 0x02d6, 0x3969},

 {0x2c5d, 0x12f0, 0x1eec, 0x2622, 0x1adc, 0x0dbb, 0x340e, 0x3a86,

 0x134b, 0x1ec9, 0x3938, 0x3e9c, 0x3259, 0x1c60, 0x0666, 0x3e18},

 {0x2207, 0x066d, 0x30ac, 0x3ae6, 0x2d97, 0x0c73, 0x08e3, 0x1802,

 0x1ffe, 0x38c5, 0x1f80, 0x114b, 0x23fc, 0x3f28, 0x1d88, 0x0e74},

 {0x2a47, 0x368f, 0x11f4, 0x1f20, 0x25c4, 0x3cba, 0x3522, 0x07b6,

341

 0x3dc8, 0x272b, 0x2dcb, 0x3ae1, 0x351a, 0x0827, 0x382e, 0x2c37},

 {0x3138, 0x3fb2, 0x3db1, 0x086d, 0x386c, 0x0284, 0x0960, 0x1d78,

 0x0a98, 0x2ab9, 0x20b5, 0x2a8c, 0x203b, 0x1fc4, 0x03ea, 0x15b0},

 {0x0dcb, 0x3b9c, 0x22ab, 0x1190, 0x2045, 0x07c3, 0x19c8, 0x3be7,

 0x2e58, 0x278b, 0x1def, 0x32e5, 0x2d70, 0x3795, 0x1c4f, 0x1723}

 },

 { {0x2dce, 0x0788, 0x091f, 0x3af2, 0x1dff, 0x26ea, 0x36a3, 0x1859,

 0x0f0b, 0x0885, 0x00e5, 0x3f21, 0x03a6, 0x113e, 0x0916, 0x1531},

 {0x1711, 0x1c94, 0x396e, 0x0809, 0x1b19, 0x229a, 0x08cf, 0x20e0,

 0x18e4, 0x2f2b, 0x35bb, 0x07eb, 0x1504, 0x05d2, 0x3c73, 0x0cd8},

 {0x08e0, 0x2771, 0x04d5, 0x3c35, 0x3482, 0x0822, 0x1112, 0x1f05,

 0x0a3b, 0x30be, 0x1ad2, 0x2f66, 0x2cbe, 0x0d90, 0x251b, 0x2773},

 {0x1c90, 0x1669, 0x34d8, 0x3301, 0x1aa8, 0x17ba, 0x37bd, 0x2876,

 0x2470, 0x1e5a, 0x280e, 0x0710, 0x3429, 0x04ed, 0x2ef9, 0x24bc},

 {0x0e9e, 0x34f5, 0x12eb, 0x0fe2, 0x34b2, 0x14fd, 0x2acd, 0x16e5,

 0x0359, 0x0532, 0x0e2d, 0x290a, 0x10e3, 0x0a35, 0x0ed6, 0x3e02},

 {0x2cf0, 0x1fdc, 0x1a2d, 0x04c9, 0x014c, 0x0ced, 0x1f12, 0x26f0,

 0x13b0, 0x37e8, 0x2a3a, 0x11e0, 0x0d45, 0x310f, 0x29d1, 0x0462},

 {0x0a75, 0x0813, 0x24c9, 0x3626, 0x1a53, 0x1fd9, 0x186a, 0x0fbc,

 0x04ac, 0x1a89, 0x25f7, 0x1993, 0x3b8a, 0x113a, 0x3d6a, 0x3ee1},

 {0x3ebb, 0x0d82, 0x0f2c, 0x39ec, 0x19b9, 0x0b6b, 0x0a97, 0x046f,

 0x141f, 0x08e9, 0x3bf3, 0x1396, 0x22cd, 0x054e, 0x3529, 0x2a8d},

 {0x245f, 0x0665, 0x1017, 0x2259, 0x39c3, 0x3038, 0x2fbb, 0x044f,

 0x360f, 0x0232, 0x318f, 0x1962, 0x0502, 0x38ee, 0x2da9, 0x110b},

 {0x3eec, 0x0ad9, 0x38dc, 0x10d0, 0x0f7c, 0x380a, 0x2b62, 0x2329,

 0x0aa9, 0x31c8, 0x2629, 0x3766, 0x388c, 0x1e16, 0x0c7a, 0x081b},

342

 {0x03f9, 0x1c32, 0x2c7f, 0x3601, 0x2eac, 0x2ea6, 0x1ec5, 0x3451,

 0x21c6, 0x3206, 0x0cdc, 0x193b, 0x0e41, 0x1a60, 0x14e1, 0x00b0},

 {0x1c89, 0x0b70, 0x2216, 0x2d93, 0x0070, 0x040a, 0x365d, 0x1204,

 0x0375, 0x2392, 0x10c5, 0x061f, 0x32e9, 0x3d0a, 0x2ed3, 0x0d6e},

 {0x0074, 0x3f27, 0x1cb9, 0x1b98, 0x2e26, 0x22f3, 0x1e7d, 0x0cb7,

 0x251f, 0x3cac, 0x00be, 0x1c36, 0x237e, 0x3d17, 0x0182, 0x3515},

 {0x3317, 0x0953, 0x3c71, 0x167e, 0x095e, 0x0fc0, 0x0a6b, 0x0d75,

 0x3e7a, 0x286f, 0x0fb0, 0x2c21, 0x2be0, 0x30f2, 0x1063, 0x1249},

 {0x3630, 0x37d6, 0x3716, 0x2a35, 0x056f, 0x2106, 0x0752, 0x01f2,

 0x2375, 0x31ed, 0x19b7, 0x0391, 0x08b9, 0x1896, 0x2193, 0x2f70},

 {0x0af7, 0x0a59, 0x0f20, 0x211a, 0x2f2e, 0x11d1, 0x165a, 0x0bbf,

 0x1d05, 0x14ac, 0x2240, 0x09ff, 0x0b4a, 0x07f1, 0x1236, 0x06e9}

 },

 { {0x11ac, 0x39e6, 0x1016, 0x1bd9, 0x0b6d, 0x2804, 0x09b9, 0x255a,

 0x3ce7, 0x3787, 0x17dd, 0x3f04, 0x04ef, 0x068a, 0x038e, 0x0aa2},

 {0x1f03, 0x0103, 0x32d8, 0x30b6, 0x11b0, 0x2167, 0x0e1a, 0x32d5,

 0x249e, 0x311a, 0x111f, 0x0322, 0x29f6, 0x3c43, 0x2205, 0x12d6},

 {0x3d5c, 0x2f59, 0x28e4, 0x2bdb, 0x3cb9, 0x2199, 0x0a4a, 0x19b3,

 0x0e05, 0x2b0c, 0x2b1b, 0x1c7f, 0x17c4, 0x30e9, 0x2533, 0x3c31},

 {0x1fba, 0x3297, 0x1445, 0x00fd, 0x130a, 0x0f16, 0x08fe, 0x07e0,

 0x2503, 0x228f, 0x13bf, 0x3b5c, 0x36f4, 0x377f, 0x2869, 0x20e4},

 {0x3d97, 0x1a9a, 0x2f08, 0x125b, 0x0d8e, 0x1bc0, 0x034c, 0x002a,

 0x1150, 0x2c4b, 0x0406, 0x26c8, 0x020c, 0x205b, 0x139e, 0x2d3f},

 {0x1b37, 0x3566, 0x099f, 0x036c, 0x2ddb, 0x0456, 0x3758, 0x3deb,

 0x0f03, 0x0f14, 0x0f19, 0x1cd1, 0x26f8, 0x3d57, 0x02f9, 0x03a7},

 {0x21cd, 0x39f5, 0x3348, 0x16f9, 0x1a2f, 0x0a71, 0x3572, 0x371b,

343

 0x12dc, 0x365f, 0x192c, 0x12bc, 0x0b84, 0x2277, 0x1a9c, 0x3d7d},

 {0x2a21, 0x29bf, 0x3846, 0x0d1e, 0x3d1f, 0x080d, 0x150d, 0x0ef4,

 0x1ed3, 0x096d, 0x3b39, 0x2fb8, 0x01f5, 0x377a, 0x137a, 0x1ed6},

 {0x070c, 0x22d5, 0x336d, 0x154d, 0x234c, 0x3570, 0x39e2, 0x06af,

 0x3373, 0x03bc, 0x36fe, 0x26c0, 0x3834, 0x251d, 0x3ddf, 0x3cbd},

 {0x0f78, 0x32eb, 0x10c9, 0x3489, 0x202b, 0x366c, 0x054d, 0x044c,

 0x1403, 0x2f55, 0x393e, 0x3ba4, 0x0a4d, 0x0007, 0x21f8, 0x1bed},

 {0x0b31, 0x03e6, 0x03f3, 0x0e1f, 0x0c5b, 0x06a2, 0x1ba1, 0x38d2,

 0x09db, 0x03fd, 0x355e, 0x0400, 0x0d52, 0x34df, 0x1aeb, 0x3b1d},

 {0x2db6, 0x1703, 0x1879, 0x06f7, 0x3168, 0x2c95, 0x0250, 0x2ab5,

 0x3b52, 0x069b, 0x2728, 0x2281, 0x1f1d, 0x045b, 0x2ef3, 0x23b8},

 {0x2840, 0x1c81, 0x27c7, 0x1393, 0x1bc1, 0x3627, 0x0e13, 0x2c80,

 0x1f0b, 0x33d8, 0x33be, 0x2366, 0x1295, 0x2595, 0x1bc2, 0x2293},

 {0x0d11, 0x3c38, 0x131a, 0x22fd, 0x1d0f, 0x0f15, 0x053d, 0x2915,

 0x1949, 0x309c, 0x097c, 0x05a8, 0x2ed4, 0x3dd6, 0x06d7, 0x18ad},

 {0x2d44, 0x3050, 0x36cf, 0x1079, 0x16cb, 0x39ab, 0x1bbb, 0x26e7,

 0x2bcf, 0x28db, 0x23f8, 0x0011, 0x0ca6, 0x1ddb, 0x1e7e, 0x3f6b},

 {0x3be1, 0x1b16, 0x21b6, 0x2fa9, 0x2775, 0x1ab2, 0x2aa0, 0x3858,

 0x3a84, 0x035b, 0x1004, 0x2f0a, 0x2450, 0x2d57, 0x2b18, 0x343c}

 },

 { {0x2068, 0x1094, 0x3c3f, 0x2de3, 0x0561, 0x2fda, 0x1923, 0x319d,

 0x2b56, 0x228b, 0x0130, 0x02a0, 0x2e0d, 0x1a57, 0x3824, 0x0b9e},

 {0x1537, 0x23b9, 0x3e88, 0x0f70, 0x2bf8, 0x3ac6, 0x3cc4, 0x171b,

 0x2f16, 0x19df, 0x3aea, 0x0b2b, 0x0a39, 0x001a, 0x2a60, 0x3b51},

 {0x1dfb, 0x3153, 0x3971, 0x046e, 0x3f4d, 0x1cba, 0x2017, 0x13d8,

 0x382f, 0x2556, 0x0e03, 0x129e, 0x3662, 0x10af, 0x1c9c, 0x0664},

344

 {0x0a93, 0x0c17, 0x1c12, 0x2c69, 0x368d, 0x237b, 0x2673, 0x0145,

 0x0897, 0x37a5, 0x276d, 0x356c, 0x0a2c, 0x2d22, 0x3b65, 0x010c},

 {0x1147, 0x1d23, 0x39f0, 0x0682, 0x1310, 0x089a, 0x23ac, 0x09b8,

 0x1158, 0x1f4b, 0x0a43, 0x3005, 0x0320, 0x23e8, 0x01e3, 0x1d55},

 {0x0ecd, 0x22a3, 0x270e, 0x3dbb, 0x1ba6, 0x396c, 0x14a2, 0x259e,

 0x1040, 0x2619, 0x2cfb, 0x1252, 0x2854, 0x0dc2, 0x0c28, 0x1b56},

 {0x0750, 0x18f5, 0x2e4f, 0x2998, 0x17ec, 0x2615, 0x33d2, 0x0d5a,

 0x0fb8, 0x01fa, 0x2b9e, 0x1cf3, 0x3756, 0x39d8, 0x1dac, 0x01f1},

 {0x15d8, 0x2a9a, 0x204e, 0x06eb, 0x15e9, 0x24d7, 0x05f4, 0x20f5,

 0x3354, 0x1232, 0x1e01, 0x24d4, 0x2e11, 0x1171, 0x3a25, 0x2031},

 {0x343a, 0x2c73, 0x3da1, 0x0859, 0x36ed, 0x24f3, 0x3232, 0x2cb0,

 0x1639, 0x215e, 0x0536, 0x193f, 0x09ee, 0x08da, 0x137f, 0x2c03},

 {0x3db0, 0x2b19, 0x130f, 0x0895, 0x1e77, 0x036f, 0x3ac7, 0x3bc0,

 0x2d48, 0x3ae9, 0x3183, 0x2345, 0x0801, 0x388f, 0x00fa, 0x2478},

 {0x1ce0, 0x2a08, 0x037e, 0x32da, 0x14ec, 0x0988, 0x3302, 0x3e85,

 0x3431, 0x2cc4, 0x285e, 0x1a85, 0x2826, 0x1237, 0x386d, 0x1bb8},

 {0x12a8, 0x2c3a, 0x1bc7, 0x2309, 0x2d09, 0x01cf, 0x2c29, 0x3ff9,

 0x11df, 0x3ad6, 0x25a4, 0x0068, 0x3fe3, 0x344f, 0x3a8f, 0x051a},

 {0x0ce0, 0x12b9, 0x33db, 0x0eb8, 0x25e6, 0x0b6e, 0x0c33, 0x3ce5,

 0x0f3f, 0x1e30, 0x28a1, 0x0a56, 0x358c, 0x107b, 0x3780, 0x3d4d},

 {0x04a7, 0x0a45, 0x0cea, 0x33b2, 0x0a24, 0x3e29, 0x0033, 0x2f64,

 0x3ebf, 0x2436, 0x2624, 0x13e1, 0x1c2c, 0x2fc7, 0x3dba, 0x36d9},

 {0x06e4, 0x2793, 0x19a4, 0x0658, 0x3bb5, 0x1f5f, 0x1667, 0x3bb0,

 0x0938, 0x0117, 0x1b61, 0x00f6, 0x2121, 0x0f8d, 0x1c4b, 0x3d04},

 {0x0afb, 0x3ca5, 0x18c5, 0x0b9d, 0x1788, 0x3e8f, 0x03fc, 0x2abf,

 0x1698, 0x21a9, 0x1b34, 0x1241, 0x2034, 0x13c1, 0x2578, 0x25a9}

345

 },

 { {0x03ae, 0x19bc, 0x3c97, 0x23cf, 0x0d9b, 0x30a6, 0x3793, 0x0dfb,

 0x2d52, 0x2ff4, 0x1901, 0x3fea, 0x3f64, 0x0f9b, 0x3667, 0x313e},

 {0x3689, 0x23ba, 0x3364, 0x1a66, 0x0095, 0x0c8e, 0x1e66, 0x18d5,

 0x3c37, 0x3562, 0x225a, 0x34dd, 0x292c, 0x1287, 0x3ff4, 0x3f62},

 {0x3603, 0x345e, 0x2fdf, 0x1508, 0x1350, 0x1894, 0x2b65, 0x21cb,

 0x2c45, 0x13eb, 0x320f, 0x1e6e, 0x0531, 0x37f8, 0x16c2, 0x2802},

 {0x17cc, 0x2e18, 0x3f88, 0x315b, 0x3775, 0x1bba, 0x36d0, 0x3462,

 0x01a1, 0x0fef, 0x1a17, 0x27b2, 0x2571, 0x0168, 0x2c9f, 0x1f70},

 {0x1d36, 0x2ae2, 0x1c19, 0x0ebf, 0x0c8c, 0x2ccd, 0x2ac5, 0x3311,

 0x14da, 0x240c, 0x00bc, 0x2e31, 0x0108, 0x0a17, 0x2e8b, 0x25fd},

 {0x2010, 0x020f, 0x3b14, 0x27b4, 0x10b0, 0x2829, 0x13ba, 0x1595,

 0x1308, 0x3b30, 0x3f10, 0x32c5, 0x3332, 0x14e0, 0x13e7, 0x39f1},

 {0x1486, 0x0941, 0x3580, 0x0ac0, 0x1217, 0x1049, 0x26d2, 0x34c5,

 0x2c6e, 0x065c, 0x30ef, 0x0ef1, 0x3568, 0x0b11, 0x27b0, 0x2c30},

 {0x2bac, 0x0c5c, 0x1bae, 0x13c6, 0x147c, 0x12c0, 0x21c7, 0x231e,

 0x255b, 0x2554, 0x151e, 0x2b0b, 0x15fa, 0x0281, 0x1592, 0x33fb},

 {0x07a6, 0x1f73, 0x197f, 0x257e, 0x094c, 0x02b5, 0x1a65, 0x0177,

 0x24c3, 0x19ab, 0x3c91, 0x3116, 0x38e4, 0x2caf, 0x2401, 0x2362},

 {0x1e90, 0x0a9a, 0x1155, 0x31c7, 0x3170, 0x1813, 0x0e2f, 0x2f76,

 0x0a61, 0x1e2d, 0x0714, 0x1c08, 0x283c, 0x2bd4, 0x0ed4, 0x36bb},

 {0x0fe0, 0x2cbf, 0x31a1, 0x0706, 0x255e, 0x1dd7, 0x1197, 0x29e1,

 0x2a4a, 0x1099, 0x086b, 0x2951, 0x1484, 0x3819, 0x047e, 0x041d},

 {0x3537, 0x279f, 0x2364, 0x2404, 0x30ae, 0x33f9, 0x02c2, 0x32ea,

 0x38c9, 0x23ed, 0x0987, 0x3a31, 0x2212, 0x3386, 0x1d6f, 0x3201},

 {0x2a05, 0x3253, 0x2a26, 0x12df, 0x3042, 0x1059, 0x2173, 0x2fe5,

346

 0x2eff, 0x13af, 0x303b, 0x1cfc, 0x3244, 0x0397, 0x152e, 0x0bfb},

 {0x3822, 0x28ae, 0x15f3, 0x12e7, 0x12c6, 0x0c25, 0x0ae7, 0x3217,

 0x2a84, 0x3a33, 0x0fa0, 0x2dee, 0x032e, 0x0da2, 0x0fc2, 0x0c13},

 {0x280a, 0x2267, 0x2df5, 0x0d5f, 0x046c, 0x1022, 0x2437, 0x0547,

 0x2bc6, 0x3208, 0x1c59, 0x1fc8, 0x3fa0, 0x313d, 0x0fea, 0x1977},

 {0x18ef, 0x1b38, 0x0746, 0x15a9, 0x3327, 0x39b3, 0x145e, 0x129d,

 0x1b68, 0x1262, 0x0358, 0x3174, 0x1e7a, 0x3e16, 0x096a, 0x1b84}

 },

 { {0x0b00, 0x035a, 0x1c6e, 0x1744, 0x17c8, 0x0bab, 0x3dee, 0x31b2,

 0x292d, 0x19c5, 0x16b2, 0x23f4, 0x1754, 0x2ede, 0x2dc1, 0x0ea4},

 {0x2122, 0x08e8, 0x0e5c, 0x3155, 0x247d, 0x1a15, 0x3687, 0x0df5,

 0x0a38, 0x09af, 0x0ff6, 0x03a1, 0x04fb, 0x0f4e, 0x1d74, 0x1d7e},

 {0x01c7, 0x124f, 0x3622, 0x3e3b, 0x0a52, 0x1494, 0x28a9, 0x0e9f,

 0x238f, 0x105e, 0x0cf8, 0x3047, 0x30c4, 0x2e38, 0x01e4, 0x2b85},

 {0x1de5, 0x0d35, 0x1210, 0x1478, 0x3ad9, 0x28de, 0x2f17, 0x225d,

 0x2bc5, 0x3e61, 0x0e94, 0x18fa, 0x2685, 0x0648, 0x2379, 0x2bff},

 {0x01d4, 0x15b3, 0x1e96, 0x3f58, 0x1370, 0x3722, 0x0776, 0x3952,

 0x258d, 0x3222, 0x0cc0, 0x2131, 0x32f4, 0x1564, 0x0cd4, 0x0857},

 {0x2a28, 0x1858, 0x1d21, 0x1940, 0x0e07, 0x29b3, 0x08b3, 0x299c,

 0x0b74, 0x1d26, 0x0d31, 0x0f77, 0x337f, 0x3f8b, 0x0e4e, 0x038a},

 {0x3c54, 0x185a, 0x300b, 0x3e63, 0x0eff, 0x3173, 0x3582, 0x1b2e,

 0x107f, 0x3471, 0x0aa3, 0x270c, 0x2d84, 0x3181, 0x270b, 0x262f},

 {0x2c40, 0x1ad1, 0x088e, 0x2435, 0x2cce, 0x2b0f, 0x3902, 0x2c31,

 0x2c81, 0x22db, 0x38a0, 0x27af, 0x3956, 0x19ff, 0x0249, 0x24b0},

 {0x1ed2, 0x248a, 0x2adf, 0x2e59, 0x3749, 0x0a64, 0x20c1, 0x2eb7,

 0x2ca1, 0x0372, 0x167a, 0x2cff, 0x038f, 0x2800, 0x07ca, 0x0c4d},

347

 {0x1380, 0x31a3, 0x141b, 0x3128, 0x08fa, 0x1415, 0x372b, 0x0f90,

 0x3bd6, 0x22c3, 0x0326, 0x2fe7, 0x0935, 0x06ec, 0x1702, 0x34ed},

 {0x2463, 0x3e8b, 0x199a, 0x342f, 0x2542, 0x2b22, 0x3c1c, 0x1167,

 0x3278, 0x0a1e, 0x0e5e, 0x1efc, 0x0e76, 0x2e5d, 0x2f21, 0x280c},

 {0x1689, 0x3003, 0x2924, 0x0097, 0x2d69, 0x0d1b, 0x268b, 0x169c,

 0x38c4, 0x246b, 0x2129, 0x1f9a, 0x0fed, 0x0465, 0x2b4e, 0x0f40},

 {0x1bfb, 0x0546, 0x0bfe, 0x0d7d, 0x2da4, 0x2635, 0x02eb, 0x0be7,

 0x1dd9, 0x23ca, 0x0cbe, 0x2d45, 0x0ace, 0x0d41, 0x26c5, 0x3d20},

 {0x1adf, 0x2ee6, 0x2b1e, 0x2527, 0x3955, 0x0c96, 0x219d, 0x3ea1,

 0x3b1c, 0x06c0, 0x136d, 0x39e1, 0x376a, 0x36c3, 0x0523, 0x1006},

 {0x3d54, 0x03e8, 0x3277, 0x3cf1, 0x2903, 0x1239, 0x0cb2, 0x0d19,

 0x3031, 0x1c26, 0x17d1, 0x1911, 0x34d1, 0x0bd6, 0x02d3, 0x34ba},

 {0x2f79, 0x2a12, 0x2eee, 0x12c7, 0x11a2, 0x234a, 0x0072, 0x0e0a,

 0x3d8d, 0x395b, 0x2d9d, 0x3841, 0x0634, 0x3e54, 0x3b9e, 0x1c61}

 },

 { {0x0084, 0x267b, 0x296d, 0x2cee, 0x35cc, 0x2720, 0x1843, 0x2378,

 0x1eae, 0x1ee8, 0x2d18, 0x33d0, 0x0e6c, 0x3357, 0x2632, 0x2e2b},

 {0x35b4, 0x2c42, 0x04dc, 0x08ad, 0x19ba, 0x0172, 0x2523, 0x1185,

 0x1847, 0x1288, 0x0511, 0x27d6, 0x3eca, 0x0bc0, 0x1e79, 0x0dc6},

 {0x0dfc, 0x0308, 0x0905, 0x0505, 0x0e9a, 0x0290, 0x1033, 0x1e05,

 0x15f4, 0x066c, 0x3a66, 0x0a23, 0x3cbf, 0x1771, 0x2204, 0x26ee},

 {0x10b1, 0x3e64, 0x0560, 0x161c, 0x26d8, 0x221b, 0x1cf8, 0x0f4a,

 0x132c, 0x191b, 0x2c72, 0x126f, 0x0728, 0x0f9a, 0x1eda, 0x2c2b},

 {0x3ac0, 0x0411, 0x16a6, 0x2966, 0x2580, 0x007f, 0x2b30, 0x1c2b,

 0x1373, 0x3995, 0x0e9b, 0x3a5c, 0x0c31, 0x2f32, 0x0311, 0x1b70},

 {0x2476, 0x2cbd, 0x1117, 0x2243, 0x1068, 0x0bce, 0x2d59, 0x363b,

348

 0x2ee7, 0x0545, 0x3e00, 0x1fe0, 0x35d2, 0x3b7c, 0x033e, 0x3518},

 {0x0711, 0x1a1b, 0x1506, 0x2e57, 0x0d42, 0x2e6f, 0x0cd2, 0x1f0f,

 0x0089, 0x36ab, 0x370d, 0x2356, 0x0f81, 0x397b, 0x31ae, 0x2394},

 {0x1850, 0x2643, 0x2174, 0x10cf, 0x1bde, 0x3bc8, 0x2d79, 0x1740,

 0x30cb, 0x31a7, 0x0195, 0x2b48, 0x0692, 0x2f7a, 0x1b9a, 0x37a4},

 {0x2b90, 0x3da0, 0x3853, 0x17ce, 0x2433, 0x3d3f, 0x38de, 0x1925,

 0x21f9, 0x09bc, 0x1228, 0x1f87, 0x266f, 0x1e69, 0x006b, 0x1974},

 {0x34b0, 0x261c, 0x33e4, 0x29f3, 0x34e2, 0x0c8b, 0x3a61, 0x317c,

 0x2591, 0x2535, 0x366b, 0x27a0, 0x1bc9, 0x38d9, 0x2a51, 0x264e},

 {0x2aa7, 0x3e07, 0x22ae, 0x3604, 0x04de, 0x3c96, 0x04df, 0x3be9,

 0x23e7, 0x2977, 0x1439, 0x0f51, 0x0ce8, 0x27a3, 0x2731, 0x18ce},

 {0x0ce4, 0x2303, 0x0f61, 0x05a0, 0x1964, 0x1d62, 0x326a, 0x1829,

 0x1da5, 0x1947, 0x2494, 0x2e79, 0x3fc5, 0x196b, 0x1ccb, 0x264d},

 {0x16ee, 0x11dd, 0x1026, 0x0fa1, 0x1f69, 0x10aa, 0x2082, 0x318e,

 0x09c2, 0x26d1, 0x19fa, 0x238c, 0x1b9e, 0x3442, 0x2f83, 0x3fcb},

 {0x3c75, 0x2567, 0x2227, 0x3d49, 0x0d05, 0x331a, 0x1dcb, 0x3f66,

 0x14bc, 0x36a8, 0x07f8, 0x1a1d, 0x0415, 0x1869, 0x33e5, 0x12fe},

 {0x2a4c, 0x2e60, 0x1e3a, 0x3638, 0x3923, 0x24f8, 0x2e46, 0x304e,

 0x2fef, 0x3eef, 0x1faf, 0x0c11, 0x19cc, 0x2daf, 0x063c, 0x3aaa},

 {0x11d0, 0x382c, 0x1dd1, 0x0ba7, 0x279e, 0x2bef, 0x291c, 0x2ff5,

 0x334f, 0x2f7e, 0x0a82, 0x36c1, 0x23d6, 0x1ac7, 0x1d68, 0x38b2}

 },

 { {0x3ef3, 0x1828, 0x2e87, 0x35d1, 0x2baf, 0x140e, 0x04b2, 0x3178,

 0x1a6c, 0x127b, 0x3f7d, 0x10c3, 0x2691, 0x3f24, 0x1a96, 0x2938},

 {0x2d9a, 0x080a, 0x0980, 0x0104, 0x1a81, 0x1dd6, 0x3684, 0x28f2,

 0x11f8, 0x2aac, 0x3655, 0x13e6, 0x1037, 0x3321, 0x217e, 0x115e},

349

 {0x03c9, 0x346e, 0x1bdf, 0x01bc, 0x0f11, 0x16c8, 0x3771, 0x1d47,

 0x2e47, 0x3833, 0x1314, 0x1b73, 0x16c4, 0x0972, 0x2e6c, 0x231a},

 {0x0d2c, 0x04c7, 0x25df, 0x0bac, 0x27de, 0x144f, 0x1e81, 0x1c04,

 0x3f1a, 0x2842, 0x0374, 0x3a5f, 0x121c, 0x183b, 0x0508, 0x1fcd},

 {0x2e3b, 0x07cf, 0x387a, 0x2e73, 0x1176, 0x3717, 0x111e, 0x0f65,

 0x2583, 0x0833, 0x026e, 0x082d, 0x14bd, 0x3efd, 0x3d75, 0x190b},

 {0x0cf0, 0x0d87, 0x1293, 0x3867, 0x2c9b, 0x32c9, 0x087c, 0x16b9,

 0x2262, 0x1941, 0x186e, 0x1d97, 0x2954, 0x2266, 0x2ca4, 0x399f},

 {0x3f70, 0x3122, 0x2263, 0x1378, 0x06ac, 0x1e2c, 0x2b58, 0x1758,

 0x3c83, 0x2252, 0x07ec, 0x13ad, 0x0994, 0x1647, 0x2f6a, 0x25bf},

 {0x3ba1, 0x1943, 0x2736, 0x04db, 0x0f33, 0x110f, 0x1f02, 0x3659,

 0x3927, 0x0ec9, 0x3131, 0x1d1f, 0x32b4, 0x2666, 0x25bc, 0x3d4e},

 {0x2008, 0x3353, 0x315c, 0x30af, 0x1ad3, 0x0741, 0x0d04, 0x1ce3,

 0x1fa2, 0x180f, 0x04cc, 0x056d, 0x0cb0, 0x1294, 0x3af9, 0x3add},

 {0x34b6, 0x3007, 0x2f11, 0x01db, 0x11f3, 0x2004, 0x1988, 0x366e,

 0x1d6e, 0x217c, 0x1ea3, 0x2669, 0x02d0, 0x2cfa, 0x0b69, 0x1aed},

 {0x325b, 0x2adb, 0x1ebb, 0x357e, 0x20ac, 0x1f4a, 0x26e5, 0x1fd8,

 0x2c74, 0x266b, 0x3673, 0x0a7d, 0x1044, 0x2612, 0x11a8, 0x12ce},

 {0x0653, 0x098a, 0x1bce, 0x0730, 0x2afa, 0x13f9, 0x24d8, 0x1611,

 0x2d43, 0x102b, 0x0704, 0x340b, 0x2223, 0x1ac3, 0x09f6, 0x194d},

 {0x2841, 0x2894, 0x1b64, 0x021a, 0x3803, 0x035c, 0x3a99, 0x326e,

 0x2c6b, 0x1ebc, 0x2a48, 0x3455, 0x2553, 0x1b4e, 0x3ec2, 0x2de6},

 {0x2ceb, 0x1cb0, 0x1675, 0x2a85, 0x18f4, 0x0423, 0x21e3, 0x1c57,

 0x1a3d, 0x2af9, 0x2ea8, 0x0557, 0x001d, 0x259b, 0x3ea8, 0x33b1},

 {0x2aec, 0x15c7, 0x153b, 0x3500, 0x24d2, 0x28fe, 0x3d36, 0x0253,

 0x0377, 0x2c83, 0x059e, 0x215d, 0x11b9, 0x08db, 0x28ea, 0x3744},

350

 {0x05bf, 0x12c3, 0x20b6, 0x28be, 0x3c9c, 0x3cc8, 0x0621, 0x04b1,

 0x0ae8, 0x2441, 0x27d4, 0x316b, 0x1ee6, 0x0083, 0x248f, 0x2132}

 },

 { {0x1918, 0x2b9f, 0x349a, 0x3fb9, 0x2626, 0x02be, 0x361f, 0x3b1f,

 0x3d00, 0x218b, 0x1170, 0x28f9, 0x3e0b, 0x054b, 0x2b59, 0x353d},

 {0x0330, 0x3c05, 0x207e, 0x38b9, 0x32b2, 0x27d9, 0x0c27, 0x0b8f,

 0x0126, 0x00bb, 0x0b91, 0x3bc4, 0x2a94, 0x2bf9, 0x2893, 0x3703},

 {0x11a9, 0x3e37, 0x0329, 0x2108, 0x1642, 0x1ba3, 0x0828, 0x28e8,

 0x0c0e, 0x3865, 0x2552, 0x200e, 0x020a, 0x3c61, 0x2653, 0x1ae4},

 {0x1a56, 0x029c, 0x25fb, 0x2697, 0x3096, 0x2451, 0x1c37, 0x2276,

 0x1786, 0x13ea, 0x2d7d, 0x2b0e, 0x2fb0, 0x22be, 0x1700, 0x2f31},

 {0x3da6, 0x224c, 0x1548, 0x20b8, 0x339f, 0x138d, 0x3472, 0x0e0d,

 0x2892, 0x0e7e, 0x14e6, 0x0d57, 0x31d7, 0x12a7, 0x3a07, 0x14b1},

 {0x0098, 0x2d86, 0x157d, 0x3086, 0x27e8, 0x31a0, 0x1c16, 0x02cd,

 0x2f88, 0x0811, 0x20ff, 0x055c, 0x3438, 0x345b, 0x23bd, 0x08f6},

 {0x35b6, 0x0f71, 0x1b2f, 0x0d94, 0x2a99, 0x3efc, 0x0bb8, 0x1a27,

 0x2ac8, 0x1cab, 0x1a88, 0x304d, 0x1119, 0x2145, 0x25f2, 0x3124},

 {0x35d8, 0x0c2d, 0x2979, 0x22b3, 0x361c, 0x0476, 0x1c2e, 0x0d70,

 0x0a7f, 0x09ac, 0x3f8c, 0x14f9, 0x1e22, 0x33a7, 0x389c, 0x08d0},

 {0x1d80, 0x2976, 0x3c4a, 0x028a, 0x0559, 0x2d1c, 0x3b12, 0x01d3,

 0x096f, 0x231b, 0x18d8, 0x19c2, 0x0f18, 0x2467, 0x20ca, 0x0f08},

 {0x2c88, 0x3a16, 0x1ff9, 0x372a, 0x10b7, 0x0826, 0x24c6, 0x35ff,

 0x2c48, 0x1517, 0x3a5e, 0x3f44, 0x1bee, 0x0f85, 0x2e99, 0x222c},

 {0x1be0, 0x2524, 0x1f84, 0x3957, 0x0a1a, 0x3665, 0x1032, 0x1c38,

 0x0420, 0x1b5b, 0x275e, 0x3551, 0x3844, 0x1137, 0x112a, 0x3147},

 {0x207a, 0x1d4e, 0x1a28, 0x1736, 0x17b0, 0x0606, 0x2053, 0x0f7e,

351

 0x2aa8, 0x3fe2, 0x39b6, 0x1481, 0x28d4, 0x14b7, 0x3142, 0x32ba},

 {0x2c04, 0x3250, 0x152f, 0x25a2, 0x2570, 0x2eaa, 0x1e08, 0x1de9,

 0x2166, 0x384b, 0x25be, 0x2b1f, 0x1fe6, 0x28b9, 0x22b7, 0x35bf},

 {0x083f, 0x3a09, 0x2b98, 0x25aa, 0x2265, 0x383c, 0x2ae5, 0x1b32,

 0x091a, 0x1944, 0x23e2, 0x1cc7, 0x20d4, 0x179c, 0x2574, 0x1379},

 {0x04ee, 0x3e5f, 0x21d0, 0x2aeb, 0x2bb4, 0x1e5f, 0x0afd, 0x32f8,

 0x3f3f, 0x2688, 0x241e, 0x13a0, 0x1311, 0x0df7, 0x3aec, 0x29dd},

 {0x351b, 0x34c4, 0x05b3, 0x39c5, 0x35c2, 0x0147, 0x2988, 0x2344,

 0x2649, 0x1058, 0x1431, 0x1141, 0x2860, 0x26cb, 0x2e9f, 0x090d}

 },

 { {0x295f, 0x2722, 0x19b8, 0x391c, 0x2e08, 0x060c, 0x0a3d, 0x385f,

 0x0cb3, 0x06b9, 0x2260, 0x23a1, 0x08c8, 0x1388, 0x2411, 0x1d94},

 {0x0e19, 0x1cbb, 0x070b, 0x207d, 0x2ad1, 0x3747, 0x2546, 0x17d5,

 0x0d30, 0x3449, 0x1e15, 0x3ddb, 0x3c10, 0x0e18, 0x3895, 0x3786},

 {0x2eef, 0x2f62, 0x369d, 0x328c, 0x0632, 0x15f6, 0x2f23, 0x3705,

 0x06b6, 0x0331, 0x0f28, 0x25c1, 0x3a15, 0x118e, 0x18aa, 0x1e9a},

 {0x3777, 0x37d0, 0x1076, 0x0af8, 0x2b8c, 0x1819, 0x35c3, 0x073a,

 0x2428, 0x321b, 0x2dc9, 0x2186, 0x2712, 0x25f4, 0x2964, 0x05cd},

 {0x1510, 0x2d2b, 0x02f8, 0x3893, 0x1ec8, 0x3c5a, 0x0b39, 0x23a4,

 0x0f97, 0x1211, 0x05c7, 0x3d5f, 0x38a7, 0x2c96, 0x3d8a, 0x09d5},

 {0x2ddc, 0x1a0c, 0x0c57, 0x0681, 0x3c79, 0x226c, 0x2e12, 0x164d,

 0x16dd, 0x213d, 0x1be7, 0x0396, 0x02a9, 0x0fcb, 0x1b6b, 0x0b5d},

 {0x15b7, 0x05e2, 0x1e29, 0x356e, 0x3ec0, 0x0821, 0x3e3e, 0x3334,

 0x370f, 0x1b42, 0x1939, 0x2b91, 0x3c82, 0x0777, 0x156a, 0x235d},

 {0x17df, 0x2b8a, 0x3039, 0x2da6, 0x0488, 0x38fb, 0x12f6, 0x2e33,

 0x0e08, 0x2edb, 0x2f95, 0x1945, 0x2d4a, 0x352f, 0x2ea1, 0x2fae},

352

 {0x1cd3, 0x27b6, 0x14d6, 0x000e, 0x3648, 0x163f, 0x3b61, 0x1de1,

 0x1372, 0x0e0b, 0x0ea7, 0x2311, 0x0906, 0x03b6, 0x11b5, 0x0e10},

 {0x3337, 0x291d, 0x0b96, 0x3945, 0x35fd, 0x2e6e, 0x151f, 0x0d7c,

 0x055d, 0x16b0, 0x3ea2, 0x2135, 0x0b2a, 0x0469, 0x3737, 0x3b06},

 {0x2165, 0x36f2, 0x007e, 0x2f7d, 0x3aaf, 0x2105, 0x196f, 0x1ea1,

 0x011d, 0x0f75, 0x3288, 0x1e51, 0x3644, 0x0939, 0x283f, 0x1915},

 {0x1b23, 0x1c2a, 0x0636, 0x26a3, 0x242c, 0x13de, 0x26db, 0x042f,

 0x0256, 0x201a, 0x398e, 0x1a7c, 0x26a7, 0x3711, 0x2ad4, 0x1b2c},

 {0x1b96, 0x1b33, 0x34b5, 0x1363, 0x3672, 0x12ff, 0x3b97, 0x19f9,

 0x3c00, 0x037f, 0x385a, 0x30fa, 0x19be, 0x290c, 0x3cf0, 0x1dd4},

 {0x1dae, 0x29c5, 0x0856, 0x3b62, 0x0fb4, 0x02ee, 0x077e, 0x302d,

 0x3379, 0x3448, 0x38e7, 0x0cf7, 0x2627, 0x1666, 0x26bc, 0x2ba7},

 {0x2bde, 0x029a, 0x128b, 0x12c8, 0x08c3, 0x352c, 0x2f03, 0x3381,

 0x3b38, 0x28c2, 0x171e, 0x13f8, 0x03d1, 0x2e6b, 0x393b, 0x27b8},

 {0x24c0, 0x2faf, 0x356a, 0x0b62, 0x2313, 0x289f, 0x3c02, 0x2ecf,

 0x387f, 0x30bd, 0x3800, 0x3a59, 0x0aa4, 0x33cc, 0x21ed, 0x2f14}

 },

 { {0x29b1, 0x1791, 0x35bc, 0x3850, 0x1c64, 0x3ee7, 0x1db2, 0x0631,

 0x16f2, 0x3f41, 0x308a, 0x2d5e, 0x343b, 0x1ebe, 0x3f7b, 0x19d6},

 {0x2a71, 0x3ed4, 0x1e9d, 0x1a0a, 0x0267, 0x3101, 0x1443, 0x0cfb,

 0x1e27, 0x26bb, 0x0804, 0x02fa, 0x354e, 0x2982, 0x355d, 0x2352},

 {0x0836, 0x26c1, 0x175e, 0x332a, 0x2d0c, 0x26b1, 0x3193, 0x3982,

 0x0b26, 0x1931, 0x14af, 0x21d1, 0x12f8, 0x1ffa, 0x1db8, 0x3d2f},

 {0x203a, 0x31b6, 0x3544, 0x1159, 0x172f, 0x16da, 0x027e, 0x1e50,

 0x2abd, 0x0573, 0x0f91, 0x0101, 0x31cd, 0x216e, 0x157c, 0x0370},

 {0x3933, 0x19da, 0x1606, 0x057e, 0x16fb, 0x1714, 0x2e10, 0x3240,

353

 0x1be8, 0x0f5e, 0x0387, 0x197d, 0x1961, 0x3bcf, 0x2249, 0x12a6},

 {0x0d2b, 0x38bb, 0x1109, 0x0b79, 0x12aa, 0x21f4, 0x1223, 0x3b50,

 0x048f, 0x3e9a, 0x2130, 0x32fc, 0x1bb9, 0x1b47, 0x119e, 0x2b9a},

 {0x2be2, 0x1313, 0x3872, 0x0846, 0x3d15, 0x05dc, 0x2e0c, 0x385b,

 0x3270, 0x2054, 0x15cb, 0x2343, 0x2c84, 0x1c46, 0x0369, 0x1607},

 {0x261b, 0x1f3b, 0x0b14, 0x2bab, 0x1343, 0x3009, 0x1836, 0x05f5,

 0x0c71, 0x0deb, 0x3f4b, 0x35a8, 0x0bb4, 0x19a7, 0x2e78, 0x1516},

 {0x00cb, 0x2ffd, 0x290b, 0x3ea6, 0x0684, 0x093f, 0x37fb, 0x1fbe,

 0x06f4, 0x010b, 0x23c5, 0x2be5, 0x1d7d, 0x36f6, 0x358b, 0x0da7},

 {0x1bc3, 0x2052, 0x3faf, 0x346c, 0x0148, 0x1a7b, 0x342e, 0x3dfb,

 0x1d01, 0x32cc, 0x2e2e, 0x1423, 0x29ef, 0x1ddd, 0x25fa, 0x3a7c},

 {0x1436, 0x12a9, 0x214d, 0x1f4c, 0x03df, 0x3be2, 0x1805, 0x0ce5,

 0x0a1d, 0x2e84, 0x1360, 0x36cb, 0x36ff, 0x11b4, 0x38f5, 0x2014},

 {0x1aa7, 0x1838, 0x0769, 0x281e, 0x0d06, 0x3e59, 0x00e8, 0x1a20,

 0x17b1, 0x381f, 0x29ee, 0x3a81, 0x27fe, 0x0e29, 0x0030, 0x0874},

 {0x1e9f, 0x0d29, 0x01cc, 0x1524, 0x134e, 0x04f7, 0x1ac9, 0x2a18,

 0x3f0e, 0x108f, 0x1853, 0x0ff2, 0x2f09, 0x0f1d, 0x2222, 0x1d20},

 {0x1080, 0x3f15, 0x1a94, 0x3697, 0x1230, 0x1c00, 0x01b4, 0x0c2b,

 0x00f1, 0x1eb6, 0x2a09, 0x38e1, 0x1a69, 0x14c7, 0x11f0, 0x0234},

 {0x1bb1, 0x2138, 0x13c0, 0x2e85, 0x0f10, 0x00fb, 0x3c15, 0x2943,

 0x00d3, 0x3c2b, 0x21f7, 0x1811, 0x373a, 0x1234, 0x1ea9, 0x22d0},

 {0x20ce, 0x1905, 0x2c56, 0x010e, 0x0912, 0x181e, 0x1f93, 0x2a65,

 0x3aa7, 0x1dbd, 0x1fcf, 0x0204, 0x2aaf, 0x2eaf, 0x309f, 0x32f9}

 },

 { {0x3f4e, 0x329e, 0x17cd, 0x1d33, 0x2931, 0x060d, 0x2787, 0x3aca,

 0x263b, 0x25d5, 0x1a71, 0x23d5, 0x2464, 0x3b6b, 0x2e7d, 0x07db},

354

 {0x134c, 0x2a23, 0x3816, 0x1770, 0x13fc, 0x3dcc, 0x1627, 0x35c9,

 0x2d8f, 0x3875, 0x27ae, 0x2d75, 0x10d7, 0x1acf, 0x2d11, 0x17f3},

 {0x1a8c, 0x173f, 0x0515, 0x3bee, 0x19cb, 0x02ac, 0x1f77, 0x1ef6,

 0x08ca, 0x3b66, 0x017d, 0x2662, 0x0881, 0x30b7, 0x3f43, 0x30c1},

 {0x3bf0, 0x1184, 0x0cd5, 0x2dbd, 0x03be, 0x0541, 0x2f0c, 0x2739,

 0x3ebe, 0x3c6b, 0x0e1b, 0x1aa3, 0x30f9, 0x0fb1, 0x2652, 0x1ecb},

 {0x209b, 0x0bb1, 0x097a, 0x3ecc, 0x3b43, 0x3fe1, 0x074f, 0x19f0,

 0x2958, 0x0677, 0x3598, 0x0eeb, 0x3ea9, 0x1085, 0x10d5, 0x2c75},

 {0x20e2, 0x3254, 0x1b59, 0x156d, 0x1334, 0x3ca3, 0x1075, 0x0ec8,

 0x101f, 0x0399, 0x050c, 0x2170, 0x3fe9, 0x3827, 0x2bd0, 0x2a2d},

 {0x23cc, 0x0a49, 0x2dbc, 0x3c48, 0x0838, 0x19c9, 0x0bd2, 0x39df,

 0x3c80, 0x1e36, 0x1250, 0x35a2, 0x247b, 0x3aa3, 0x3212, 0x2bd5},

 {0x1750, 0x338b, 0x2c94, 0x3bd4, 0x1b60, 0x1bbf, 0x103c, 0x352d,

 0x06e8, 0x14db, 0x1a42, 0x0bd3, 0x12f7, 0x20e7, 0x0aad, 0x0df0},

 {0x1792, 0x0c5d, 0x0a8a, 0x15ca, 0x10ac, 0x2701, 0x3f23, 0x1825,

 0x1b1e, 0x3b4c, 0x22bf, 0x1031, 0x0091, 0x176c, 0x39ca, 0x2638},

 {0x393c, 0x3c8f, 0x3f06, 0x2b84, 0x2949, 0x2291, 0x364f, 0x308f,

 0x2373, 0x3ff8, 0x0dc7, 0x062a, 0x260b, 0x3d50, 0x31f1, 0x14b4},

 {0x1df4, 0x1acd, 0x10c6, 0x30db, 0x09ba, 0x3355, 0x2273, 0x370b,

 0x03db, 0x0425, 0x005e, 0x1965, 0x3397, 0x10d6, 0x1b01, 0x324e},

 {0x049f, 0x33ab, 0x0fce, 0x3de9, 0x3bd5, 0x3918, 0x3eaa, 0x00a3,

 0x371a, 0x05a6, 0x2e29, 0x2d81, 0x2444, 0x3829, 0x3a37, 0x2f49},

 {0x3340, 0x08f2, 0x3144, 0x1d19, 0x01ce, 0x220b, 0x06f2, 0x0b0f,

 0x3f4a, 0x15c2, 0x3291, 0x0e45, 0x06ca, 0x2897, 0x1951, 0x13ec},

 {0x35d0, 0x096e, 0x2e56, 0x0b02, 0x0a3c, 0x3ac3, 0x32bf, 0x030a,

 0x0c44, 0x3edf, 0x202e, 0x1c97, 0x34ef, 0x0426, 0x3634, 0x31b7},

355

 {0x180c, 0x3f93, 0x3dc2, 0x14e9, 0x3b92, 0x375f, 0x0552, 0x1345,

 0x2ee9, 0x3218, 0x34f6, 0x160c, 0x2376, 0x3881, 0x34ea, 0x2438},

 {0x2cf4, 0x0f3c, 0x365b, 0x1399, 0x1341, 0x3a01, 0x30d1, 0x3bfa,

 0x10ec, 0x28e2, 0x289d, 0x08d9, 0x1140, 0x0ee6, 0x098e, 0x19ec}

 },

 { {0x1556, 0x3df3, 0x17d9, 0x3f90, 0x175a, 0x067d, 0x0c2e, 0x11a5,

 0x15bb, 0x2b6d, 0x2a66, 0x0eb5, 0x243f, 0x030b, 0x12c5, 0x086a},

 {0x3960, 0x2746, 0x234f, 0x3f50, 0x15eb, 0x0ce9, 0x0fbb, 0x2de4,

 0x271c, 0x006f, 0x1aae, 0x1787, 0x0433, 0x196c, 0x3490, 0x206d},

 {0x349c, 0x09de, 0x2e74, 0x09da, 0x3176, 0x24fb, 0x0ceb, 0x1005,

 0x3823, 0x0ac8, 0x39de, 0x0a09, 0x1567, 0x1b95, 0x2aff, 0x098c},

 {0x3848, 0x3eb2, 0x11bc, 0x1497, 0x2794, 0x176f, 0x25f0, 0x141e,

 0x1619, 0x0eb4, 0x19ed, 0x1a07, 0x34f4, 0x2b63, 0x2974, 0x1ecd},

 {0x0e4d, 0x3ab3, 0x035f, 0x25d7, 0x0d4a, 0x0066, 0x3238, 0x049a,

 0x1fe3, 0x1c20, 0x140d, 0x2180, 0x1424, 0x161f, 0x075e, 0x37fd},

 {0x172d, 0x19e3, 0x2098, 0x0d39, 0x3363, 0x1cb3, 0x0de4, 0x0729,

 0x326c, 0x33c0, 0x0da0, 0x2561, 0x2dea, 0x274e, 0x22f1, 0x260c},

 {0x09b2, 0x0a88, 0x3dbc, 0x0f8b, 0x0d47, 0x11cf, 0x25ab, 0x283d,

 0x0fc6, 0x2de1, 0x0976, 0x17e9, 0x21c5, 0x2077, 0x1365, 0x3389},

 {0x304a, 0x14d8, 0x2d08, 0x0d3e, 0x368b, 0x1f76, 0x29d4, 0x1455,

 0x2deb, 0x03f1, 0x03d0, 0x08ac, 0x1af0, 0x2286, 0x035e, 0x2ed0},

 {0x0656, 0x177d, 0x1275, 0x31fb, 0x07d4, 0x0fa3, 0x1446, 0x0dfe,

 0x20b0, 0x1a3c, 0x35b3, 0x02f1, 0x3967, 0x017c, 0x2087, 0x05f2},

 {0x0512, 0x3125, 0x108a, 0x064f, 0x007c, 0x350e, 0x3150, 0x3b80,

 0x0c86, 0x1f55, 0x29f4, 0x13f4, 0x2fc3, 0x3298, 0x3a73, 0x0940},

 {0x0ad0, 0x3418, 0x0c34, 0x1c01, 0x2675, 0x0675, 0x324f, 0x27e4,

356

 0x170c, 0x0e28, 0x335e, 0x2623, 0x1edb, 0x2705, 0x0f53, 0x2142},

 {0x3ca9, 0x3696, 0x22f6, 0x28cf, 0x27f8, 0x04e1, 0x20cf, 0x2922,

 0x36dd, 0x1518, 0x3940, 0x0aea, 0x3b91, 0x0ca2, 0x0a5a, 0x09f1},

 {0x1218, 0x3e4f, 0x0226, 0x37f2, 0x1d13, 0x1381, 0x1abc, 0x0bd8,

 0x0763, 0x32e3, 0x2f2d, 0x3fb1, 0x2b3a, 0x3185, 0x298a, 0x377d},

 {0x0570, 0x3755, 0x0cee, 0x143b, 0x1b8d, 0x32f6, 0x0102, 0x0bf8,

 0x1e2e, 0x2530, 0x0609, 0x1ee1, 0x02f2, 0x3117, 0x36ba, 0x1928},

 {0x0c97, 0x0baa, 0x0f06, 0x3f92, 0x1c6c, 0x16d6, 0x1441, 0x0d4d,

 0x1301, 0x3f18, 0x0c23, 0x0974, 0x3677, 0x19f7, 0x0868, 0x205d},

 {0x1da8, 0x061d, 0x1e45, 0x024a, 0x2353, 0x2811, 0x3a5a, 0x250c,

 0x1d9a, 0x17e1, 0x0724, 0x297e, 0x2b34, 0x0378, 0x32cd, 0x2b42}

 },

 { {0x3c25, 0x30f3, 0x0b87, 0x3890, 0x2dcd, 0x2738, 0x062c, 0x378b,

 0x1298, 0x1d9b, 0x3699, 0x0903, 0x33d5, 0x3ca4, 0x1c28, 0x1e04},

 {0x3b31, 0x1023, 0x2e15, 0x2113, 0x24cd, 0x3a8e, 0x37b1, 0x3f5f,

 0x1997, 0x2c39, 0x18d4, 0x1742, 0x1a33, 0x3a85, 0x3c21, 0x0fdc},

 {0x3110, 0x0adc, 0x0d17, 0x371f, 0x12db, 0x1227, 0x3440, 0x310a,

 0x1c0b, 0x3c1a, 0x1dde, 0x0ecf, 0x0fb3, 0x0ebe, 0x02a7, 0x38d0},

 {0x1ab9, 0x3815, 0x2b2b, 0x2add, 0x385c, 0x11b6, 0x1442, 0x3e84,

 0x03d6, 0x18dd, 0x320c, 0x075c, 0x23a9, 0x35e7, 0x2647, 0x0235},

 {0x2d53, 0x2398, 0x0b1b, 0x01b8, 0x29fc, 0x09b5, 0x249d, 0x3c1e,

 0x0e4a, 0x14ff, 0x0641, 0x2b68, 0x0bef, 0x0440, 0x3cf8, 0x399c},

 {0x19a2, 0x2e28, 0x0e8e, 0x2b2a, 0x3656, 0x2bc9, 0x2c10, 0x2ecb,

 0x3d72, 0x088a, 0x1f3e, 0x372e, 0x139b, 0x19fe, 0x023a, 0x1622},

 {0x2feb, 0x2c13, 0x2b96, 0x07f9, 0x2102, 0x0ee0, 0x0c70, 0x2047,

 0x1e56, 0x35b1, 0x23e3, 0x0409, 0x1110, 0x3a75, 0x0611, 0x34e5},

357

 {0x11f2, 0x3615, 0x1936, 0x0abd, 0x016c, 0x307a, 0x1102, 0x3c52,

 0x3d12, 0x3adb, 0x08ce, 0x16a1, 0x24b4, 0x2ab1, 0x038b, 0x0413},

 {0x1fbc, 0x151b, 0x3812, 0x1e71, 0x3852, 0x15e6, 0x3492, 0x123a,

 0x170a, 0x3939, 0x2af6, 0x306b, 0x03e4, 0x1ff1, 0x0a84, 0x29ad},

 {0x1588, 0x3f8d, 0x26b3, 0x018d, 0x337c, 0x116d, 0x062b, 0x30a9,

 0x1eb2, 0x106d, 0x072e, 0x28ac, 0x2314, 0x1afa, 0x3904, 0x1323},

 {0x2d1f, 0x3360, 0x2af4, 0x26b2, 0x15c8, 0x008e, 0x38c7, 0x021d,

 0x1807, 0x242e, 0x265e, 0x1757, 0x3589, 0x1142, 0x0925, 0x35d7},

 {0x2ea5, 0x2ca3, 0x08c9, 0x3a0b, 0x0248, 0x0164, 0x3e65, 0x09e4,

 0x262c, 0x1767, 0x3ed5, 0x2cc6, 0x3e77, 0x025d, 0x233b, 0x03d3},

 {0x22ff, 0x0582, 0x3e9b, 0x0319, 0x3862, 0x1d65, 0x0e35, 0x2cd7,

 0x1646, 0x3731, 0x36c7, 0x3356, 0x0e1e, 0x3473, 0x3d29, 0x32af},

 {0x3870, 0x3c8d, 0x3341, 0x06e6, 0x1e10, 0x3df8, 0x1772, 0x0237,

 0x0020, 0x1a5b, 0x3ceb, 0x16f4, 0x3184, 0x2dc7, 0x3d7e, 0x09ad},

 {0x17a0, 0x2593, 0x0575, 0x39e0, 0x2215, 0x1d5f, 0x0caf, 0x3911,

 0x1c21, 0x027a, 0x0db1, 0x3ffb, 0x0797, 0x2a30, 0x27a4, 0x230a},

 {0x0a0f, 0x2c58, 0x1fc1, 0x2477, 0x11c0, 0x2fd3, 0x2d0e, 0x3cdb,

 0x021b, 0x3547, 0x21f0, 0x3bdb, 0x24ef, 0x092b, 0x313c, 0x38a9}

 },

 { {0x3831, 0x38a8, 0x09cd, 0x3674, 0x0494, 0x3002, 0x2386, 0x2e62,

 0x0d12, 0x1545, 0x2ac0, 0x2c60, 0x183c, 0x28cb, 0x1990, 0x0386},

 {0x1c0d, 0x1f9c, 0x15c9, 0x32e8, 0x360d, 0x0691, 0x28a4, 0x0af5,

 0x24e8, 0x26d5, 0x00ae, 0x37e7, 0x3491, 0x12a3, 0x3719, 0x08b7},

 {0x1904, 0x3c8a, 0x38e9, 0x2f74, 0x242b, 0x1e91, 0x2812, 0x3ca2,

 0x330b, 0x25b1, 0x3055, 0x0584, 0x135a, 0x0aca, 0x34d0, 0x1e97},

 {0x20d0, 0x1057, 0x2efa, 0x0771, 0x2b5c, 0x3b02, 0x0587, 0x0150,

358

 0x1c69, 0x0edf, 0x0c2c, 0x2e53, 0x1af4, 0x2886, 0x0637, 0x1f6c},

 {0x1369, 0x185b, 0x13d0, 0x14d4, 0x2229, 0x2dff, 0x3629, 0x0de0,

 0x1f14, 0x3caa, 0x3585, 0x0437, 0x26ad, 0x2d47, 0x19e0, 0x25ba},

 {0x2cab, 0x24c4, 0x2dad, 0x3612, 0x3e76, 0x3c85, 0x31a9, 0x3921,

 0x01ea, 0x1600, 0x0d2a, 0x0d9a, 0x3fed, 0x270f, 0x2f3c, 0x032d},

 {0x1120, 0x2c7e, 0x3ed2, 0x201d, 0x0c98, 0x053f, 0x1072, 0x33bf,

 0x31e4, 0x3c78, 0x3d25, 0x20f9, 0x2ca7, 0x0017, 0x05f3, 0x053b},

 {0x3493, 0x3e43, 0x0a85, 0x2ef4, 0x0d49, 0x0b3d, 0x1a01, 0x1fdf,

 0x1fe8, 0x0f1e, 0x233a, 0x05eb, 0x2713, 0x04fe, 0x3a90, 0x20bf},

 {0x32a6, 0x3c39, 0x2cc3, 0x0d84, 0x090b, 0x17d8, 0x102c, 0x104c,

 0x2e2a, 0x27b9, 0x1a4a, 0x39ef, 0x34fd, 0x3425, 0x0bd1, 0x184f},

 {0x2c67, 0x0410, 0x0a26, 0x2e77, 0x30a2, 0x3aed, 0x1f9d, 0x3ec4,

 0x2b15, 0x26c3, 0x3a2e, 0x3f60, 0x0ce6, 0x2543, 0x2907, 0x1c72},

 {0x1efd, 0x371c, 0x3783, 0x09f3, 0x27ad, 0x2210, 0x2192, 0x0b3a,

 0x0538, 0x278d, 0x0023, 0x2751, 0x3242, 0x1045, 0x1106, 0x160e},

 {0x00c9, 0x1001, 0x0f8a, 0x0aae, 0x015b, 0x39d7, 0x188d, 0x2bb3,

 0x192a, 0x03c8, 0x388e, 0x0baf, 0x1a77, 0x2299, 0x1559, 0x3064},

 {0x388d, 0x3408, 0x3efe, 0x1129, 0x17f6, 0x26aa, 0x1ff2, 0x3d6f,

 0x211b, 0x0304, 0x11a1, 0x3394, 0x2e76, 0x1bcc, 0x39c4, 0x277d},

 {0x194f, 0x2ad5, 0x324a, 0x0967, 0x012f, 0x254d, 0x1b83, 0x0d15,

 0x3878, 0x28fd, 0x33a6, 0x084a, 0x0049, 0x2c0a, 0x3bd3, 0x1a25},

 {0x16de, 0x1e3d, 0x139f, 0x2b4f, 0x3189, 0x1ea2, 0x28ca, 0x2285,

 0x3b41, 0x19ac, 0x161e, 0x2506, 0x312b, 0x1c06, 0x2a07, 0x283a},

 {0x0a87, 0x37c3, 0x1878, 0x13a9, 0x0d2f, 0x0b01, 0x0c93, 0x2b6a,

 0x266e, 0x10f0, 0x3a43, 0x333e, 0x0a12, 0x37d1, 0x0f67, 0x226b}

 },

359

 { {0x306a, 0x3e6c, 0x0e92, 0x0dca, 0x0120, 0x2b83, 0x2c02, 0x0487,

 0x05b8, 0x13bb, 0x288a, 0x3d08, 0x0170, 0x19d5, 0x0921, 0x223b},

 {0x2830, 0x1047, 0x264c, 0x1a54, 0x2502, 0x2def, 0x3584, 0x3136,

 0x0585, 0x0dd2, 0x33ae, 0x343f, 0x21ef, 0x017e, 0x2b7a, 0x3a70},

 {0x2f07, 0x2374, 0x19c0, 0x11ad, 0x2f27, 0x1d7a, 0x2d29, 0x1c4e,

 0x36f8, 0x38fd, 0x1d71, 0x37a2, 0x2ec4, 0x37e6, 0x172b, 0x2f02},

 {0x21aa, 0x3483, 0x23ef, 0x204a, 0x239a, 0x12bb, 0x2ae8, 0x39f7,

 0x214c, 0x2796, 0x0038, 0x3d61, 0x0df4, 0x1ad6, 0x1382, 0x37c2},

 {0x05c0, 0x0215, 0x21a6, 0x2af5, 0x2b8f, 0x3011, 0x1972, 0x2765,

 0x3f74, 0x034b, 0x35f6, 0x1f31, 0x1775, 0x0ada, 0x21bc, 0x16fd},

 {0x24f0, 0x2d3a, 0x28d6, 0x3ef0, 0x105a, 0x160f, 0x1055, 0x37bf,

 0x34f7, 0x3d5e, 0x2360, 0x1890, 0x09f0, 0x1a47, 0x2536, 0x1e4d},

 {0x19ea, 0x0daf, 0x18dc, 0x2df9, 0x3bec, 0x0ff8, 0x3806, 0x12e1,

 0x21eb, 0x01ab, 0x3fbe, 0x2d32, 0x17e8, 0x1948, 0x2ece, 0x2cdb},

 {0x2f1e, 0x3910, 0x34d5, 0x2eb3, 0x039b, 0x1513, 0x0886, 0x04f5,

 0x3c7f, 0x0619, 0x2a90, 0x1316, 0x2e23, 0x0e51, 0x136f, 0x1219},

 {0x2edf, 0x1073, 0x068e, 0x2350, 0x06a5, 0x0b78, 0x3973, 0x227e,

 0x2ab4, 0x33eb, 0x2f5d, 0x2cf8, 0x24eb, 0x162a, 0x2a10, 0x027f},

 {0x3a53, 0x2fa3, 0x3ea3, 0x05df, 0x197c, 0x1586, 0x1e8f, 0x30e5,

 0x23ce, 0x27dc, 0x1412, 0x3441, 0x0914, 0x1919, 0x24fa, 0x3d11},

 {0x015c, 0x18ec, 0x1b36, 0x01f7, 0x3fc7, 0x1bfe, 0x0258, 0x2576,

 0x2532, 0x1ad9, 0x2bc0, 0x0ca5, 0x218e, 0x2c3d, 0x310e, 0x1447},

 {0x3e56, 0x1cc6, 0x1d2f, 0x21f6, 0x352b, 0x109c, 0x0645, 0x01b5,

 0x0825, 0x057a, 0x2239, 0x189e, 0x2923, 0x15c4, 0x18f3, 0x0442},

 {0x2711, 0x30dc, 0x2b27, 0x263c, 0x0517, 0x241a, 0x2133, 0x2b16,

 0x2ed8, 0x02d4, 0x1ab8, 0x0031, 0x1c75, 0x130b, 0x0167, 0x367b},

360

 {0x071b, 0x3372, 0x29db, 0x3928, 0x059a, 0x0b7d, 0x2e42, 0x3f9f,

 0x20e8, 0x1b41, 0x23f3, 0x0427, 0x08bf, 0x0c32, 0x1a58, 0x3cde},

 {0x29bc, 0x1902, 0x1029, 0x2779, 0x2547, 0x2a03, 0x38cf, 0x1895,

 0x0743, 0x21c9, 0x091e, 0x2e1f, 0x37e9, 0x32f7, 0x024e, 0x34f0},

 {0x1f1b, 0x2a8a, 0x1281, 0x2b12, 0x066e, 0x2b40, 0x3e06, 0x322c,

 0x2efe, 0x1df1, 0x284e, 0x2833, 0x05c6, 0x1898, 0x0a28, 0x0e09}

 },

 { {0x1eca, 0x395f, 0x0a55, 0x1aa4, 0x291a, 0x0510, 0x29f8, 0x3ab8,

 0x395a, 0x2b93, 0x0110, 0x1b7c, 0x2b9b, 0x3157, 0x1eb3, 0x369b},

 {0x05bc, 0x21a7, 0x183f, 0x16ff, 0x3c6c, 0x2dc4, 0x0f88, 0x01ee,

 0x0e87, 0x06df, 0x25e3, 0x12a5, 0x3b54, 0x0e71, 0x0384, 0x2c6d},

 {0x24f1, 0x12de, 0x03b7, 0x2e1d, 0x28d9, 0x0dad, 0x0e12, 0x21a1,

 0x336b, 0x2cfe, 0x30fb, 0x3204, 0x0a96, 0x27d0, 0x3b0f, 0x03cc},

 {0x02c7, 0x0bf5, 0x0445, 0x3215, 0x128a, 0x23c8, 0x1430, 0x2ffe,

 0x0928, 0x3d27, 0x2bec, 0x0484, 0x0e84, 0x3453, 0x135c, 0x1367},

 {0x38c0, 0x0e17, 0x3811, 0x3034, 0x2b1a, 0x366a, 0x3f59, 0x2500,

 0x09d6, 0x364b, 0x391e, 0x1dc7, 0x1cbd, 0x2e17, 0x0d8a, 0x3789},

 {0x3b67, 0x362b, 0x33d6, 0x3ee3, 0x04b0, 0x0ff1, 0x28f4, 0x28df,

 0x2b54, 0x0c82, 0x0274, 0x00a8, 0x2957, 0x216c, 0x214b, 0x2d62},

 {0x3720, 0x341e, 0x183e, 0x1dfa, 0x119a, 0x2afb, 0x0e58, 0x3be8,

 0x394a, 0x1a45, 0x2fca, 0x150f, 0x2445, 0x1832, 0x17e2, 0x07a0},

 {0x089e, 0x3e7d, 0x3080, 0x0029, 0x2a41, 0x159c, 0x2a02, 0x0285,

 0x0d71, 0x1bf1, 0x2ac2, 0x3ef7, 0x1cf6, 0x05ea, 0x0a6d, 0x2a17},

 {0x3e24, 0x0887, 0x3723, 0x050d, 0x303d, 0x3b3f, 0x18c1, 0x1b99,

 0x23a3, 0x1371, 0x13cf, 0x1cb2, 0x1ce4, 0x221e, 0x3187, 0x2748},

 {0x2f5e, 0x33a0, 0x321d, 0x2c9d, 0x05da, 0x3020, 0x0280, 0x2027,

361

 0x3721, 0x279d, 0x2189, 0x1e3f, 0x3c14, 0x3292, 0x12f2, 0x1a92},

 {0x0c9e, 0x3390, 0x063a, 0x3ef5, 0x2055, 0x1a30, 0x06d2, 0x1585,

 0x02a4, 0x26a0, 0x0402, 0x0282, 0x1a87, 0x2f3b, 0x040d, 0x0fba},

 {0x06ee, 0x3dac, 0x3545, 0x2b7c, 0x25a5, 0x21b3, 0x29d8, 0x0da3,

 0x15e4, 0x0ff0, 0x33cd, 0x3d1e, 0x3a74, 0x13fb, 0x2150, 0x1d8f},

 {0x3fd6, 0x16e9, 0x07fe, 0x1cea, 0x21a8, 0x3a4e, 0x3f56, 0x250f,

 0x2369, 0x17fe, 0x18af, 0x34be, 0x1e3c, 0x1c5f, 0x097d, 0x06fb},

 {0x2b28, 0x325c, 0x1bf6, 0x1a5d, 0x2cca, 0x2a33, 0x3cf3, 0x2e27,

 0x348e, 0x2b00, 0x2788, 0x2a4b, 0x1916, 0x21c8, 0x2a06, 0x0917},

 {0x30a0, 0x1ca3, 0x2f50, 0x16ed, 0x049b, 0x36e8, 0x08b5, 0x1202,

 0x2038, 0x0c21, 0x1ba8, 0x2d27, 0x3328, 0x0c01, 0x33ea, 0x01dd},

 {0x084c, 0x2d9b, 0x10b5, 0x39b9, 0x2590, 0x3f38, 0x2c8c, 0x06e3,

 0x0d37, 0x0d5b, 0x32d2, 0x1760, 0x3f2b, 0x2789, 0x2935, 0x167c}

 },

 { {0x07e6, 0x1552, 0x0ae6, 0x3e8d, 0x0844, 0x1abe, 0x02b2, 0x3c4f,

 0x0834, 0x1598, 0x3a7e, 0x2cd9, 0x1e8e, 0x2457, 0x313b, 0x003d},

 {0x0e30, 0x123e, 0x1e21, 0x102f, 0x12be, 0x0690, 0x2220, 0x094f,

 0x31f5, 0x1520, 0x0afc, 0x23dd, 0x3594, 0x2eb8, 0x117a, 0x302a},

 {0x0a48, 0x20ef, 0x22f4, 0x02d1, 0x252c, 0x0798, 0x3530, 0x38b8,

 0x085f, 0x1538, 0x2c1d, 0x287d, 0x3b34, 0x2084, 0x3a36, 0x0e3e},

 {0x0c90, 0x3b88, 0x0312, 0x3669, 0x1bcf, 0x3565, 0x0d92, 0x2e35,

 0x1840, 0x08b4, 0x09c3, 0x3e57, 0x22fe, 0x0e8a, 0x3468, 0x3db8},

 {0x003c, 0x2dd3, 0x30d3, 0x0251, 0x2a32, 0x1960, 0x354b, 0x0ef6,

 0x0004, 0x294b, 0x2046, 0x0c6d, 0x1991, 0x2117, 0x3f6a, 0x3b21},

 {0x0005, 0x28b8, 0x3752, 0x223f, 0x3366, 0x2490, 0x0667, 0x15ff,

 0x0810, 0x219c, 0x02c9, 0x120b, 0x246e, 0x0888, 0x0c6f, 0x1c2d},

362

 {0x3d34, 0x2a54, 0x042c, 0x0205, 0x271b, 0x13ca, 0x070a, 0x2d61,

 0x2413, 0x13cb, 0x0548, 0x0aac, 0x22c9, 0x3ecb, 0x0419, 0x06b2},

 {0x2cc9, 0x148c, 0x1789, 0x376f, 0x2a7f, 0x03e5, 0x223c, 0x2e43,

 0x38e8, 0x3c6e, 0x0b50, 0x2510, 0x0d14, 0x1b46, 0x2a3c, 0x061a},

 {0x3b46, 0x3def, 0x1613, 0x1259, 0x0735, 0x1515, 0x1303, 0x159a,

 0x2195, 0x0ef5, 0x33fe, 0x1074, 0x336f, 0x23c3, 0x17c5, 0x2070},

 {0x1624, 0x366d, 0x2a27, 0x3bb3, 0x2f36, 0x1dc4, 0x327d, 0x18ed,

 0x1950, 0x0764, 0x1e9e, 0x3ccb, 0x22ad, 0x3d07, 0x3108, 0x0f94},

 {0x2a44, 0x0ffb, 0x02c6, 0x1e0e, 0x0796, 0x3a18, 0x0ed9, 0x064d,

 0x031d, 0x03d9, 0x243b, 0x38d4, 0x3943, 0x353f, 0x2a2a, 0x277e},

 {0x042e, 0x1891, 0x1b7a, 0x2b38, 0x3549, 0x3a87, 0x3798, 0x06d9,

 0x3dc1, 0x1cbf, 0x2f38, 0x1f81, 0x0323, 0x09ab, 0x36cc, 0x2866},

 {0x3de0, 0x0c85, 0x0d28, 0x1d45, 0x0d6d, 0x35de, 0x1f04, 0x3043,

 0x2723, 0x3e09, 0x0187, 0x294a, 0x0ca4, 0x200c, 0x39b2, 0x2936},

 {0x3dea, 0x1263, 0x0287, 0x19a3, 0x38c3, 0x16b7, 0x2e21, 0x23ea,

 0x24ba, 0x1d83, 0x3c0d, 0x1cc5, 0x0562, 0x39c7, 0x10ff, 0x352e},

 {0x29e8, 0x26a5, 0x3bc1, 0x3bdc, 0x1265, 0x1deb, 0x338d, 0x16a7,

 0x2245, 0x06f6, 0x0815, 0x2b88, 0x13d3, 0x37a9, 0x25ec, 0x3325},

 {0x143d, 0x138e, 0x0d0f, 0x1ae1, 0x3a9c, 0x16f8, 0x1682, 0x13ab,

 0x1fa4, 0x2c25, 0x3c7e, 0x0f57, 0x2a34, 0x0e47, 0x2539, 0x23e5}

 },

 { {0x1568, 0x29aa, 0x28e0, 0x2c1f, 0x2237, 0x26c4, 0x35b2, 0x23ae,

 0x3691, 0x1fe9, 0x3ec1, 0x397c, 0x0964, 0x0c51, 0x07c0, 0x1daf},

 {0x03a8, 0x0a2f, 0x3279, 0x1817, 0x37be, 0x1942, 0x14e2, 0x0f74,

 0x35c1, 0x1bd5, 0x0cae, 0x27f7, 0x0f52, 0x34fe, 0x27c9, 0x3b99},

 {0x1e4e, 0x2cd6, 0x2537, 0x38a1, 0x02fe, 0x1839, 0x3412, 0x2e71,

363

 0x3a30, 0x14f3, 0x1da7, 0x1427, 0x07c4, 0x26e3, 0x3d35, 0x1522},

 {0x09d3, 0x0c48, 0x0958, 0x303f, 0x0bbb, 0x0d96, 0x05d5, 0x3be6,

 0x03f6, 0x3d1b, 0x3f02, 0x2065, 0x39e5, 0x2846, 0x2eb1, 0x1728},

 {0x1ec0, 0x0ee2, 0x3105, 0x18f8, 0x055b, 0x13e5, 0x0e6a, 0x252a,

 0x21c4, 0x20fa, 0x128c, 0x2c0b, 0x2079, 0x2ccf, 0x11ea, 0x05ae},

 {0x0e0c, 0x2a62, 0x097f, 0x208b, 0x2679, 0x2548, 0x1fef, 0x1af3,

 0x33ac, 0x0d7a, 0x1833, 0x1761, 0x179b, 0x0c0b, 0x01e0, 0x0f2d},

 {0x2706, 0x1975, 0x0842, 0x0dde, 0x3c34, 0x1d06, 0x1c34, 0x240f,

 0x312f, 0x1b1c, 0x301f, 0x1490, 0x00dc, 0x3e30, 0x3d53, 0x3e32},

 {0x005d, 0x350c, 0x1648, 0x1437, 0x2692, 0x299d, 0x0e40, 0x0ed7,

 0x0151, 0x36b0, 0x08f5, 0x22ed, 0x0132, 0x07a5, 0x3c7b, 0x0d8d},

 {0x13f0, 0x1115, 0x0558, 0x235c, 0x2cdd, 0x213f, 0x191a, 0x21ca,

 0x17fd, 0x3768, 0x0f1b, 0x0e8d, 0x229e, 0x330d, 0x37de, 0x14e4},

 {0x2e6a, 0x08a3, 0x17f0, 0x29c7, 0x2168, 0x3d81, 0x0e78, 0x1a36,

 0x17b3, 0x383b, 0x3fc0, 0x1672, 0x1c7c, 0x1c55, 0x23b7, 0x1467},

 {0x0869, 0x1347, 0x1f0a, 0x147b, 0x1392, 0x0be4, 0x034d, 0x19e6,

 0x1499, 0x2458, 0x1a39, 0x3351, 0x356b, 0x2f9c, 0x193c, 0x0907},

 {0x3497, 0x2f44, 0x14f6, 0x3374, 0x07e9, 0x0b4f, 0x0fda, 0x3001,

 0x3706, 0x3880, 0x0f1f, 0x133b, 0x2074, 0x0e00, 0x2cec, 0x07b8},

 {0x0404, 0x2efc, 0x3912, 0x39fd, 0x12ca, 0x2fd7, 0x052c, 0x26a4,

 0x07d8, 0x19db, 0x3eb7, 0x2e24, 0x31fd, 0x3ff7, 0x178a, 0x24a6},

 {0x2b53, 0x0de2, 0x03ff, 0x1e4b, 0x3358, 0x3cb1, 0x2952, 0x3062,

 0x2708, 0x37e1, 0x07a7, 0x288f, 0x3512, 0x0773, 0x177b, 0x1472},

 {0x2d65, 0x2ea9, 0x26e9, 0x244b, 0x1bcd, 0x2921, 0x2e91, 0x386e,

 0x0638, 0x1101, 0x009e, 0x33bd, 0x1704, 0x1a93, 0x1a84, 0x2809},

 {0x2a43, 0x2cef, 0x3526, 0x075f, 0x0363, 0x1406, 0x0982, 0x36ac,

364

 0x297d, 0x35a1, 0x0376, 0x312e, 0x3661, 0x2cf6, 0x09f4, 0x08b6}

 },

 { {0x3f67, 0x21bd, 0x2887, 0x0bcc, 0x02c8, 0x07bc, 0x093b, 0x067f,

 0x3686, 0x1e62, 0x3503, 0x164c, 0x1f41, 0x136b, 0x188f, 0x19ae},

 {0x3b40, 0x27ef, 0x067e, 0x0fab, 0x1307, 0x0a42, 0x3c4b, 0x0046,

 0x095d, 0x2155, 0x3fae, 0x099a, 0x23c7, 0x33ba, 0x1caf, 0x32be},

 {0x0d62, 0x1c18, 0x35e9, 0x29cf, 0x323f, 0x3e1c, 0x23cd, 0x28b2,

 0x1eb1, 0x3f55, 0x3778, 0x2cd1, 0x3162, 0x3ce1, 0x21e0, 0x0bf2},

 {0x3613, 0x239d, 0x3f95, 0x027d, 0x3be5, 0x37f0, 0x0219, 0x15e0,

 0x3eb9, 0x0663, 0x1398, 0x236b, 0x00ef, 0x2ade, 0x36c0, 0x3303},

 {0x246a, 0x19b2, 0x1c1b, 0x214a, 0x20c7, 0x177f, 0x369c, 0x212a,

 0x1671, 0x3186, 0x04d8, 0x188e, 0x003e, 0x32ee, 0x3192, 0x21af},

 {0x2d36, 0x3704, 0x36d2, 0x38ba, 0x0694, 0x184e, 0x285a, 0x27e5,

 0x1f56, 0x273c, 0x2ca8, 0x0a22, 0x3129, 0x32b7, 0x2861, 0x13dc},

 {0x26f9, 0x2858, 0x2981, 0x127f, 0x0808, 0x181a, 0x07f6, 0x3f7a,

 0x3fb8, 0x1ac2, 0x2179, 0x3788, 0x07e5, 0x2416, 0x07ae, 0x129c},

 {0x30f8, 0x3059, 0x0286, 0x12ab, 0x052e, 0x2514, 0x1268, 0x1d5e,

 0x3323, 0x3ba7, 0x1751, 0x165d, 0x1282, 0x1929, 0x3bf5, 0x2d85},

 {0x0e80, 0x029f, 0x0475, 0x13d5, 0x1f19, 0x0345, 0x3959, 0x13d7,

 0x0d3c, 0x0e73, 0x36d7, 0x2589, 0x07fd, 0x1ef1, 0x17ad, 0x28dc},

 {0x12e0, 0x0c83, 0x2319, 0x1a55, 0x25cf, 0x3533, 0x3dc4, 0x33f7,

 0x03c0, 0x0b46, 0x13c7, 0x3463, 0x1514, 0x2668, 0x1a98, 0x014e},

 {0x0a02, 0x0a8c, 0x03ca, 0x0381, 0x3fd1, 0x3b6a, 0x35b9, 0x0003,

 0x3f5a, 0x0f37, 0x2e69, 0x2f2a, 0x0f96, 0x3a0d, 0x1693, 0x36b9},

 {0x1a34, 0x15a2, 0x2faa, 0x37a8, 0x0115, 0x2dcf, 0x3cfc, 0x2e00,

 0x03a3, 0x0016, 0x378e, 0x3b17, 0x1374, 0x1384, 0x0ac3, 0x16bf},

365

 {0x0b40, 0x1845, 0x18b2, 0x16af, 0x2264, 0x0288, 0x075d, 0x2ce5,

 0x1459, 0x23e9, 0x1aaf, 0x04f3, 0x195d, 0x10d3, 0x2613, 0x2275},

 {0x2a70, 0x1577, 0x1f85, 0x1173, 0x1b5a, 0x098b, 0x3e22, 0x0c15,

 0x1180, 0x0975, 0x0eb9, 0x20d6, 0x08cd, 0x3842, 0x0a7c, 0x298f},

 {0x1fbb, 0x215b, 0x2b6c, 0x06a1, 0x31d5, 0x1da4, 0x2a58, 0x2f04,

 0x076e, 0x15b4, 0x1dc2, 0x20a7, 0x2e92, 0x1bb0, 0x1309, 0x1fad},

 {0x28d0, 0x2f69, 0x3362, 0x2fbd, 0x398d, 0x2aae, 0x1e37, 0x01a4,

 0x3e25, 0x1b06, 0x37ae, 0x22c2, 0x05bd, 0x38ac, 0x2418, 0x0dec}

 },

 { {0x0800, 0x3257, 0x197a, 0x04cb, 0x2518, 0x3d7f, 0x32c2, 0x07f4,

 0x3f16, 0x3e40, 0x2326, 0x22af, 0x136c, 0x3e9f, 0x0ae2, 0x09a3},

 {0x01e1, 0x3523, 0x2208, 0x115b, 0x302e, 0x22c8, 0x0877, 0x19c7,

 0x146a, 0x0542, 0x0501, 0x101c, 0x0c55, 0x0e21, 0x2a7a, 0x0b37},

 {0x0660, 0x0050, 0x3072, 0x00b5, 0x2bf5, 0x0a13, 0x35db, 0x2805,

 0x3f1b, 0x0b94, 0x1e43, 0x3f32, 0x3e21, 0x2c28, 0x0458, 0x26b6},

 {0x079c, 0x0e89, 0x207b, 0x02bb, 0x2a3d, 0x22a5, 0x07c8, 0x12af,

 0x0221, 0x3a47, 0x0a6f, 0x3996, 0x14ef, 0x0317, 0x068b, 0x01c6},

 {0x0f0d, 0x02b6, 0x277a, 0x2dde, 0x0be5, 0x0805, 0x25b9, 0x2665,

 0x0109, 0x024b, 0x20e1, 0x3bf4, 0x0594, 0x26c2, 0x2569, 0x2b2e},

 {0x0bf4, 0x19cf, 0x028d, 0x37c9, 0x347d, 0x129b, 0x3fce, 0x0414,

 0x2a6d, 0x09e7, 0x035d, 0x0de8, 0x0a36, 0x2b7b, 0x2d51, 0x0008},

 {0x0f41, 0x3411, 0x2ded, 0x2391, 0x1b20, 0x0ade, 0x0c66, 0x2df8,

 0x007b, 0x3576, 0x2a1e, 0x1c91, 0x10d1, 0x1cbe, 0x03dd, 0x3a83},

 {0x2ab8, 0x216a, 0x1e06, 0x01fe, 0x36fd, 0x3874, 0x36dc, 0x35ae,

 0x0272, 0x341a, 0x15fd, 0x0332, 0x0c74, 0x0bfc, 0x259a, 0x1466},

 {0x0c02, 0x2112, 0x23a5, 0x18b0, 0x394c, 0x3fad, 0x1532, 0x3668,

366

 0x01e6, 0x10c2, 0x1dea, 0x3f65, 0x023c, 0x1897, 0x04ce, 0x030d},

 {0x1f4f, 0x1afb, 0x18ea, 0x2f2c, 0x18ca, 0x0355, 0x1a8b, 0x33cb,

 0x3aab, 0x1f61, 0x2dfe, 0x2913, 0x0f8e, 0x1ca0, 0x16cc, 0x06f0},

 {0x2085, 0x220c, 0x22c4, 0x0fe4, 0x1b31, 0x059f, 0x28d3, 0x2185,

 0x3864, 0x3d6b, 0x0b5e, 0x0a2b, 0x3342, 0x22ea, 0x2f41, 0x193a},

 {0x1695, 0x320a, 0x0790, 0x0e9d, 0x16dc, 0x392e, 0x3329, 0x3015,

 0x0421, 0x0fd1, 0x14fe, 0x1992, 0x297f, 0x0ec3, 0x2a38, 0x0f46},

 {0x0c35, 0x3316, 0x1fc2, 0x342a, 0x05ee, 0x03f4, 0x2f6f, 0x0efe,

 0x37aa, 0x3710, 0x172c, 0x1e6a, 0x2a46, 0x3de7, 0x1256, 0x0afa},

 {0x3d8b, 0x17f9, 0x32bb, 0x0749, 0x15dd, 0x121a, 0x3c03, 0x21d9,

 0x3d39, 0x04ba, 0x0dea, 0x22ef, 0x3bb7, 0x0040, 0x20ba, 0x396a},

 {0x1ca6, 0x0edd, 0x1886, 0x01aa, 0x2b3f, 0x3eea, 0x206a, 0x12cc,

 0x018c, 0x0b3c, 0x0c30, 0x3903, 0x18c7, 0x0ead, 0x28f1, 0x0217},

 {0x1bd0, 0x3a67, 0x37b6, 0x1394, 0x2cc0, 0x3556, 0x0b80, 0x1ff0,

 0x0b68, 0x3a41, 0x26ef, 0x1d64, 0x3148, 0x3ee5, 0x0f04, 0x2d49}

 },

 { {0x1e12, 0x08f3, 0x3107, 0x2660, 0x18c0, 0x34e9, 0x2407, 0x3a4f,

 0x0759, 0x1fec, 0x0a07, 0x1471, 0x246d, 0x12b1, 0x090a, 0x0d66},

 {0x08c5, 0x12e8, 0x137c, 0x106f, 0x16ba, 0x3741, 0x0bda, 0x0ce7,

 0x0a08, 0x1c43, 0x05d3, 0x2ba8, 0x099d, 0x0463, 0x0d13, 0x3048},

 {0x3d0c, 0x0b97, 0x28da, 0x0e66, 0x0524, 0x31c6, 0x1ee0, 0x05d6,

 0x0670, 0x3695, 0x2af1, 0x29de, 0x1b90, 0x0078, 0x1ea6, 0x0c0a},

 {0x2df2, 0x0e2b, 0x17db, 0x3718, 0x2f10, 0x1e4f, 0x3fe5, 0x0d3f,

 0x0761, 0x161b, 0x3b87, 0x392d, 0x33b8, 0x20bb, 0x0e0e, 0x243d},

 {0x20fc, 0x3169, 0x13a6, 0x0ccc, 0x30a7, 0x0f00, 0x0faf, 0x3c3c,

 0x05e6, 0x3802, 0x2b33, 0x39ed, 0x1f24, 0x1bef, 0x3b0a, 0x15b8},

367

 {0x39b4, 0x1132, 0x1ba5, 0x3430, 0x0ebc, 0x3ebc, 0x0348, 0x32ad,

 0x20fe, 0x0212, 0x0b58, 0x2f73, 0x3a9e, 0x3069, 0x1907, 0x3af5},

 {0x2a22, 0x1870, 0x2f8b, 0x3eda, 0x1c39, 0x2388, 0x09d2, 0x250d,

 0x2dab, 0x2e8f, 0x30c7, 0x0716, 0x132a, 0x0db3, 0x2471, 0x1ef2},

 {0x1550, 0x2bd8, 0x24fd, 0x3805, 0x3fac, 0x3e2f, 0x2bf1, 0x08e6,

 0x012b, 0x2758, 0x087e, 0x1c3c, 0x3fa1, 0x1ccf, 0x3b00, 0x198f},

 {0x3620, 0x0478, 0x3ac8, 0x3359, 0x1bb7, 0x2639, 0x1c73, 0x2c34,

 0x3f78, 0x2972, 0x3ffe, 0x2934, 0x151c, 0x0514, 0x022d, 0x1e09},

 {0x3406, 0x09bb, 0x18db, 0x3d89, 0x2ce0, 0x29d9, 0x2aaa, 0x16ae,

 0x1bdc, 0x2a5c, 0x34d4, 0x2d21, 0x1661, 0x0257, 0x1eef, 0x22d9},

 {0x0ddf, 0x261e, 0x3352, 0x122d, 0x3dd9, 0x0ee8, 0x2d89, 0x1485,

 0x38f2, 0x1720, 0x0755, 0x0067, 0x1b24, 0x158b, 0x000d, 0x1fc6},

 {0x0ce1, 0x0b66, 0x18ff, 0x2f71, 0x20d8, 0x12b7, 0x25c2, 0x298d,

 0x28bc, 0x3bea, 0x1c7a, 0x337d, 0x2f3d, 0x2b80, 0x226e, 0x39d3},

 {0x14ce, 0x0951, 0x1914, 0x0893, 0x0100, 0x1749, 0x3e44, 0x2e94,

 0x240d, 0x1e92, 0x2341, 0x0ffe, 0x0018, 0x3427, 0x0202, 0x3bcd},

 {0x1070, 0x1c9a, 0x3d6c, 0x0b1c, 0x3d4b, 0x002b, 0x1039, 0x2405,

 0x04fd, 0x1d0a, 0x0f80, 0x0c65, 0x2280, 0x0cbd, 0x2f20, 0x3a44},

 {0x1b17, 0x0b32, 0x0a74, 0x2af2, 0x3a46, 0x22b0, 0x1946, 0x3a11,

 0x1f38, 0x3bc2, 0x3d78, 0x28a3, 0x00c6, 0x3d51, 0x37ca, 0x2bf4},

 {0x086f, 0x3a1e, 0x39c1, 0x2683, 0x18ee, 0x06f1, 0x3154, 0x30d5,

 0x2c27, 0x3282, 0x1a4e, 0x30fd, 0x29ed, 0x21b8, 0x2f80, 0x20cc}

 },

 { {0x1d9f, 0x0ab4, 0x245b, 0x282d, 0x25cc, 0x005f, 0x2f8a, 0x3614,

 0x2601, 0x1d58, 0x3f73, 0x0310, 0x0f17, 0x1329, 0x3bab, 0x144e},

 {0x2c1a, 0x2b3d, 0x2278, 0x3709, 0x04fc, 0x2acf, 0x2f90, 0x2ed5,

368

 0x0f58, 0x14d9, 0x3640, 0x331d, 0x25da, 0x382b, 0x181d, 0x3a6e},

 {0x0b42, 0x1860, 0x2f6e, 0x067c, 0x1c1c, 0x302c, 0x2126, 0x2cb2,

 0x2596, 0x2020, 0x28d1, 0x3de2, 0x399e, 0x33d9, 0x304c, 0x3d9d},

 {0x1c6d, 0x1535, 0x31d2, 0x0f60, 0x1725, 0x26b7, 0x25f3, 0x1b8f,

 0x152d, 0x3e2e, 0x13b3, 0x08f4, 0x390a, 0x0214, 0x1636, 0x1af8},

 {0x3b7b, 0x3261, 0x0b0b, 0x1fc9, 0x0ad5, 0x0680, 0x114e, 0x3bba,

 0x21ba, 0x36a0, 0x11ca, 0x1d56, 0x069c, 0x25ed, 0x36e0, 0x3bfd},

 {0x2261, 0x2752, 0x16d4, 0x3013, 0x163d, 0x3198, 0x32dc, 0x204d,

 0x17ae, 0x10f9, 0x3b37, 0x2361, 0x1bd3, 0x0f54, 0x0d3a, 0x0e67},

 {0x27b1, 0x3608, 0x2b4c, 0x3229, 0x3b5a, 0x2813, 0x1631, 0x1c58,

 0x18b8, 0x26ab, 0x12ad, 0x1851, 0x359c, 0x381e, 0x3951, 0x2187},

 {0x100a, 0x333b, 0x040e, 0x2c89, 0x1881, 0x2618, 0x187c, 0x3cf9,

 0x1434, 0x0446, 0x056b, 0x0fe9, 0x2fb4, 0x281f, 0x0b9a, 0x2608},

 {0x1cda, 0x35cf, 0x33b0, 0x0b90, 0x2d4e, 0x0e61, 0x09c0, 0x3dff,

 0x0802, 0x1f21, 0x32fe, 0x0f89, 0x26f7, 0x1cd7, 0x2a5e, 0x05a5},

 {0x06b0, 0x1ff3, 0x13ee, 0x34ac, 0x1440, 0x3f33, 0x1a62, 0x2be3,

 0x121b, 0x2cd0, 0x122e, 0x0d0c, 0x1958, 0x2fa2, 0x08b0, 0x3112},

 {0x22a1, 0x3036, 0x3d68, 0x0ebd, 0x1dbc, 0x2d6a, 0x23fb, 0x0b47,

 0x278a, 0x079b, 0x0dae, 0x3fa3, 0x09a8, 0x3b04, 0x3ae4, 0x083d},

 {0x21b5, 0x2f54, 0x0cd6, 0x224b, 0x1cef, 0x2a11, 0x335a, 0x20b4,

 0x198b, 0x2483, 0x0899, 0x2242, 0x3ed1, 0x348a, 0x0196, 0x2daa},

 {0x3c66, 0x18ae, 0x0026, 0x1fa1, 0x3c04, 0x1d60, 0x24e4, 0x0879,

 0x3a3f, 0x2afd, 0x3e34, 0x1ecc, 0x289b, 0x0ea1, 0x2c7a, 0x1034},

 {0x11aa, 0x00ac, 0x374b, 0x3e0f, 0x00f7, 0x3ef6, 0x1fb3, 0x3304,

 0x3445, 0x011c, 0x0eee, 0x2ef8, 0x196a, 0x19d3, 0x03d2, 0x11ee},

 {0x0ef9, 0x1d0e, 0x2eed, 0x38f8, 0x2986, 0x23a0, 0x36e4, 0x3318,

369

 0x143c, 0x310c, 0x3894, 0x1cdd, 0x05b2, 0x3950, 0x3b9f, 0x22fb},

 {0x19e9, 0x0f2a, 0x1db6, 0x2363, 0x03ce, 0x06b4, 0x28c0, 0x09a2,

 0x28b4, 0x3383, 0x0d4e, 0x0620, 0x2231, 0x3166, 0x3e4d, 0x130e}

 },

 { {0x2100, 0x0aa1, 0x1fe7, 0x2fed, 0x04f8, 0x0581, 0x1c4c, 0x2408,

 0x12e6, 0x3417, 0x18d1, 0x3e6d, 0x3826, 0x2de5, 0x21b2, 0x17a6},

 {0x388b, 0x0e23, 0x050a, 0x0e55, 0x1d75, 0x0403, 0x13e2, 0x256b,

 0x2fc8, 0x328a, 0x3653, 0x3ba2, 0x06ff, 0x24ac, 0x04fa, 0x1542},

 {0x28d8, 0x20c3, 0x0ca1, 0x0d59, 0x3f31, 0x2dd6, 0x2945, 0x0105,

 0x111b, 0x312a, 0x1f53, 0x0289, 0x3481, 0x38ea, 0x3c18, 0x05c9},

 {0x3e90, 0x1628, 0x0717, 0x08d4, 0x276a, 0x0140, 0x3a5b, 0x1a91,

 0x2f15, 0x02e6, 0x07dd, 0x12a0, 0x29e7, 0x33e7, 0x0c06, 0x1a64},

 {0x0554, 0x165b, 0x1c47, 0x39aa, 0x3d71, 0x36b3, 0x0e04, 0x1acb,

 0x2ead, 0x3fd2, 0x0dd7, 0x15d0, 0x25f1, 0x1f1a, 0x28c6, 0x0cdf},

 {0x047a, 0x1269, 0x0c7f, 0x078b, 0x1687, 0x1212, 0x21ac, 0x17f5,

 0x005b, 0x3089, 0x0969, 0x218f, 0x384d, 0x2424, 0x3edc, 0x073e},

 {0x3326, 0x2e1c, 0x0d95, 0x05f9, 0x0688, 0x244e, 0x0166, 0x1f95,

 0x2c01, 0x1995, 0x069a, 0x3591, 0x18e8, 0x2dbf, 0x0497, 0x3ae3},

 {0x1226, 0x224e, 0x38f4, 0x2529, 0x0be8, 0x2bc8, 0x0336, 0x2968,

 0x3c95, 0x38db, 0x257b, 0x28b6, 0x22b4, 0x11e2, 0x0f83, 0x0c8d},

 {0x1b39, 0x2e4b, 0x122b, 0x2545, 0x0a1c, 0x2550, 0x1a32, 0x0b7e,

 0x226f, 0x2d0b, 0x245c, 0x085a, 0x312c, 0x260a, 0x083c, 0x2bbd},

 {0x2cae, 0x14f5, 0x221c, 0x3a34, 0x174f, 0x3f53, 0x34af, 0x156e,

 0x33fa, 0x394b, 0x27cb, 0x25a8, 0x1e1d, 0x00e1, 0x11e8, 0x21a2},

 {0x1f7b, 0x2ad7, 0x1db9, 0x1aa9, 0x22b2, 0x0f6e, 0x16a3, 0x2568,

 0x0878, 0x0c81, 0x32b6, 0x022c, 0x0044, 0x298c, 0x001e, 0x1c6a},

370

 {0x1c27, 0x0d64, 0x3286, 0x1d2a, 0x1463, 0x211f, 0x0eb6, 0x1fa9,

 0x3647, 0x394f, 0x1264, 0x305a, 0x1f74, 0x2d72, 0x17e7, 0x18a9},

 {0x3b18, 0x2ad3, 0x2b8e, 0x2c77, 0x332b, 0x2819, 0x05c5, 0x20f4,

 0x0b8d, 0x359e, 0x20e9, 0x1bda, 0x3736, 0x12ac, 0x05e3, 0x03a9},

 {0x1e47, 0x07f7, 0x0aff, 0x14df, 0x1156, 0x093d, 0x1a6f, 0x0eaf,

 0x0d54, 0x2fc2, 0x1bea, 0x1ed0, 0x200a, 0x2495, 0x27ec, 0x314e},

 {0x361d, 0x279a, 0x1b4b, 0x23d1, 0x195e, 0x30e6, 0x1f1c, 0x2e02,

 0x0225, 0x2658, 0x26f4, 0x2d8e, 0x2097, 0x2410, 0x35ea, 0x3d1a},

 {0x3409, 0x1495, 0x2fcd, 0x22e9, 0x1bd6, 0x0d5e, 0x080f, 0x1f60,

 0x2703, 0x0ce3, 0x25b0, 0x1304, 0x34a8, 0x2123, 0x381a, 0x0862}

 },

 { {0x1400, 0x21f3, 0x36d6, 0x1bbe, 0x18e3, 0x19bf, 0x300c, 0x2a5b,

 0x3fbc, 0x0de1, 0x2a56, 0x1a7e, 0x3093, 0x0957, 0x34ad, 0x374a},

 {0x316c, 0x048e, 0x0fbf, 0x25af, 0x0e8c, 0x0ad6, 0x12f1, 0x33c7,

 0x1d39, 0x30bb, 0x3eae, 0x083e, 0x2cde, 0x3fc8, 0x2f4c, 0x04ff},

 {0x0dd4, 0x0ec2, 0x262a, 0x0043, 0x1b78, 0x0c07, 0x18de, 0x041e,

 0x07b5, 0x0ca0, 0x3284, 0x3838, 0x0203, 0x0e88, 0x090e, 0x365e},

 {0x0df3, 0x02d7, 0x2d76, 0x322b, 0x0849, 0x1e57, 0x2621, 0x3814,

 0x1be6, 0x289c, 0x3d0e, 0x019a, 0x2128, 0x170d, 0x1d98, 0x0dd1},

 {0x3c2d, 0x1cb5, 0x1b7e, 0x15f7, 0x065f, 0x1087, 0x21ce, 0x3f20,

 0x2a13, 0x3ec6, 0x2431, 0x2a31, 0x0241, 0x0a83, 0x21d3, 0x2cac},

 {0x0eb1, 0x3de3, 0x21ec, 0x02e0, 0x31f4, 0x31db, 0x2d16, 0x2048,

 0x22a8, 0x33a1, 0x3b6e, 0x35b5, 0x0041, 0x3925, 0x322f, 0x0123},

 {0x244c, 0x2ca0, 0x2b06, 0x38f9, 0x3d38, 0x29b2, 0x13b6, 0x1f6e,

 0x3a96, 0x004e, 0x09a7, 0x2891, 0x3bcc, 0x165f, 0x2e3a, 0x227f},

 {0x3962, 0x3c06, 0x2ecc, 0x390c, 0x03c3, 0x10d8, 0x1d6d, 0x14b5,

371

 0x2513, 0x25b5, 0x39ce, 0x0436, 0x18d9, 0x23a7, 0x217b, 0x18f1},

 {0x1640, 0x222d, 0x3534, 0x146c, 0x3269, 0x25fc, 0x1d8a, 0x1e5c,

 0x0127, 0x1bc8, 0x3197, 0x26f1, 0x287a, 0x15b9, 0x0e8f, 0x1ebd},

 {0x2fa1, 0x2f68, 0x0328, 0x2c3b, 0x002f, 0x3a55, 0x18d2, 0x3e97,

 0x2c46, 0x0c72, 0x1f0e, 0x385d, 0x1b3d, 0x11c8, 0x39ad, 0x0e72},

 {0x0be0, 0x29a7, 0x0dcc, 0x3d16, 0x3e89, 0x119f, 0x255d, 0x3d98,

 0x2d4c, 0x1b79, 0x07fa, 0x2492, 0x3afd, 0x17f1, 0x1e6d, 0x013a},

 {0x00ad, 0x157b, 0x2ab2, 0x2b24, 0x1ab1, 0x2e9c, 0x11be, 0x0cb5,

 0x36b5, 0x258b, 0x0ff4, 0x0481, 0x1854, 0x2160, 0x0c4a, 0x056a},

 {0x0b0a, 0x190e, 0x2ffc, 0x2ff6, 0x2fe4, 0x2a2c, 0x383e, 0x0d46,

 0x146d, 0x181c, 0x15be, 0x0337, 0x31a4, 0x22c6, 0x112d, 0x14c3},

 {0x0392, 0x0ef8, 0x0eec, 0x3365, 0x1d79, 0x0be9, 0x0da9, 0x0b15,

 0x38cb, 0x282a, 0x3bff, 0x21b7, 0x21e6, 0x01fb, 0x13bc, 0x3781},

 {0x0047, 0x2fd9, 0x0c19, 0x2fe9, 0x2383, 0x1900, 0x0c62, 0x3145,

 0x3c11, 0x3b2a, 0x0566, 0x1091, 0x1752, 0x38d3, 0x09d4, 0x33c9},

 {0x057b, 0x2fe6, 0x2de9, 0x08ee, 0x09aa, 0x3e10, 0x3267, 0x2f85,

 0x367a, 0x189c, 0x3ada, 0x3b72, 0x1290, 0x1d27, 0x0504, 0x1b55}

 },

 { {0x2677, 0x0506, 0x35c0, 0x348b, 0x3ac4, 0x05ef, 0x08c4, 0x041b,

 0x0e42, 0x2be8, 0x1ee5, 0x1cf7, 0x2e64, 0x18cf, 0x0d97, 0x1de4},

 {0x32a9, 0x1d1d, 0x131e, 0x0157, 0x1dfc, 0x12b5, 0x2bfd, 0x3632,

 0x3e47, 0x21c2, 0x1083, 0x2039, 0x2f58, 0x2b25, 0x18f7, 0x0db9},

 {0x0a62, 0x0867, 0x196e, 0x2f39, 0x3d3c, 0x1b0b, 0x1e8a, 0x2838,

 0x0c7b, 0x1233, 0x3dd0, 0x1ed1, 0x09f7, 0x209e, 0x095c, 0x169d},

 {0x114a, 0x2c98, 0x0076, 0x3743, 0x10e1, 0x3a26, 0x350f, 0x37ba,

 0x2474, 0x1356, 0x28a7, 0x3e01, 0x0ae3, 0x01ef, 0x0bf1, 0x35cd},

372

 {0x201f, 0x1fa0, 0x1dd5, 0x2d99, 0x2c8b, 0x3ff0, 0x333f, 0x259d,

 0x0ebb, 0x3dab, 0x3e41, 0x249a, 0x1331, 0x1eb8, 0x0dfa, 0x2724},

 {0x3395, 0x04d7, 0x2f4e, 0x2c06, 0x1242, 0x28af, 0x36a2, 0x2799,

 0x356f, 0x3213, 0x3010, 0x17b7, 0x3d77, 0x1d3c, 0x3cb0, 0x1d59},

 {0x31d6, 0x1013, 0x10fd, 0x0942, 0x20f7, 0x07df, 0x0d50, 0x160d,

 0x3cec, 0x26d7, 0x0301, 0x08a1, 0x1339, 0x1d61, 0x04f1, 0x135d},

 {0x1e61, 0x3b36, 0x1a9f, 0x118a, 0x1107, 0x2c4e, 0x2fb3, 0x36e6,

 0x10e8, 0x1279, 0x0eed, 0x2011, 0x2904, 0x3b8f, 0x248c, 0x328d},

 {0x3c20, 0x0f27, 0x0d65, 0x0499, 0x3c3b, 0x3a0f, 0x1432, 0x3b63,

 0x2582, 0x0e4f, 0x1dbf, 0x0757, 0x0b93, 0x0eba, 0x0abb, 0x3f2d},

 {0x0feb, 0x1175, 0x2a6e, 0x2e51, 0x1d5c, 0x37cb, 0x2f53, 0x0a44,

 0x3f6f, 0x0f7f, 0x072b, 0x0ef7, 0x2d37, 0x1808, 0x2d68, 0x1064},

 {0x33b5, 0x2baa, 0x1ac6, 0x2a57, 0x17a4, 0x1410, 0x2774, 0x1cd8,

 0x2e2d, 0x06fc, 0x3b03, 0x1856, 0x03cb, 0x2674, 0x23f0, 0x101d},

 {0x1753, 0x127a, 0x2f45, 0x0b19, 0x05d8, 0x2224, 0x15f1, 0x3fb5,

 0x0fa4, 0x3ade, 0x3bc7, 0x33c2, 0x0574, 0x36c8, 0x1e70, 0x212d},

 {0x2863, 0x2d0d, 0x1926, 0x1153, 0x28e1, 0x37a0, 0x2443, 0x30f0,

 0x2620, 0x2f46, 0x08be, 0x1547, 0x1198, 0x3415, 0x2359, 0x1e72},

 {0x1c70, 0x37f3, 0x11fd, 0x087a, 0x092a, 0x15fb, 0x39c6, 0x1db4,

 0x261f, 0x0c18, 0x34f3, 0x3d43, 0x1f32, 0x269b, 0x038d, 0x1ade},

 {0x10ce, 0x04e9, 0x01a7, 0x0199, 0x11d4, 0x3fa8, 0x1b6e, 0x2ace,

 0x363c, 0x0e70, 0x11da, 0x0521, 0x3675, 0x0beb, 0x3df6, 0x1220},

 {0x175b, 0x2729, 0x22e3, 0x3516, 0x28ec, 0x0731, 0x3b53, 0x3226,

 0x20a8, 0x05e5, 0x049e, 0x1477, 0x0d53, 0x1589, 0x1a80, 0x0a6e}

 },

 { {0x3cc0, 0x06c6, 0x3adf, 0x194e, 0x191c, 0x3d76, 0x0015, 0x163a,

373

 0x0a25, 0x1ce9, 0x0b72, 0x1021, 0x0b6c, 0x2d73, 0x24d6, 0x27be},

 {0x36d3, 0x220f, 0x04a9, 0x14cf, 0x27cc, 0x0754, 0x0e82, 0x3514,

 0x1ddc, 0x16bb, 0x3b0b, 0x1c65, 0x2aea, 0x00ba, 0x33ce, 0x1fc0},

 {0x1fd7, 0x0f86, 0x2da0, 0x292a, 0x37c5, 0x3e1f, 0x11c3, 0x1d31,

 0x1996, 0x03e3, 0x2292, 0x30b4, 0x06d5, 0x2dfd, 0x3baa, 0x3db7},

 {0x0a92, 0x0b56, 0x00d8, 0x0169, 0x0c79, 0x1d4f, 0x21c3, 0x3cb7,

 0x08bc, 0x0db4, 0x1e58, 0x3245, 0x290e, 0x213a, 0x2566, 0x3c3e},

 {0x3714, 0x00f8, 0x08fb, 0x3b69, 0x3cae, 0x07ff, 0x1181, 0x0c1e,

 0x0495, 0x16be, 0x12fa, 0x391a, 0x1c0f, 0x1ba7, 0x2b26, 0x1534},

 {0x3997, 0x0e69, 0x1a0b, 0x2dba, 0x17b9, 0x1baf, 0x2e13, 0x254a,

 0x0588, 0x0787, 0x03ac, 0x0569, 0x3c19, 0x2021, 0x3599, 0x272d},

 {0x1766, 0x3e73, 0x1717, 0x1216, 0x1335, 0x112f, 0x109e, 0x373c,

 0x24b8, 0x32ab, 0x38ce, 0x2415, 0x3abe, 0x2a77, 0x00cf, 0x0064},

 {0x0837, 0x011f, 0x1efb, 0x1bfa, 0x2246, 0x0056, 0x2f4a, 0x106b,

 0x36b6, 0x34b8, 0x32e6, 0x1709, 0x2656, 0x1a9e, 0x2a20, 0x383f},

 {0x2b70, 0x0e36, 0x0f66, 0x180e, 0x2999, 0x2061, 0x1cfb, 0x37d7,

 0x0472, 0x062d, 0x340c, 0x0cf1, 0x167f, 0x2655, 0x1ae0, 0x1fb0},

 {0x2698, 0x0712, 0x1052, 0x02cc, 0x3fc9, 0x009d, 0x324c, 0x16f5,

 0x3919, 0x21e5, 0x1e34, 0x1f25, 0x2158, 0x3b15, 0x1ca2, 0x1090},

 {0x3e11, 0x1f44, 0x0e22, 0x0f42, 0x0077, 0x06fe, 0x1c95, 0x1385,

 0x2178, 0x047b, 0x1966, 0x0b51, 0x2402, 0x2440, 0x05d0, 0x3e71},

 {0x1e20, 0x266c, 0x2e40, 0x2962, 0x142e, 0x1733, 0x22d7, 0x1543,

 0x2f5b, 0x1326, 0x149c, 0x05b0, 0x14fc, 0x3e5a, 0x145a, 0x20fd},

 {0x2f18, 0x3e33, 0x32b1, 0x2b3e, 0x3e60, 0x064a, 0x1eac, 0x36e7,

 0x05a9, 0x3914, 0x08d7, 0x3564, 0x0a9f, 0x1008, 0x3c01, 0x2213},

 {0x244f, 0x0bcd, 0x1a4f, 0x12b6, 0x244d, 0x1b0f, 0x2577, 0x315e,

374

 0x3040, 0x0ffa, 0x3964, 0x0e6e, 0x278c, 0x3926, 0x3839, 0x319b},

 {0x2d33, 0x20dd, 0x0a86, 0x24f6, 0x0d21, 0x361e, 0x2da3, 0x1d2b,

 0x256d, 0x1b87, 0x2916, 0x208c, 0x02c3, 0x0da8, 0x1cd0, 0x3fdd},

 {0x2f8e, 0x23da, 0x20ae, 0x0ca7, 0x036d, 0x15af, 0x1954, 0x300a,

 0x24af, 0x2b4b, 0x3e39, 0x0678, 0x2cdc, 0x0327, 0x0709, 0x0997}

 },

 { {0x26a2, 0x3100, 0x3f54, 0x16d9, 0x2d66, 0x17b5, 0x11d2, 0x2389,

 0x22b9, 0x2a8b, 0x081d, 0x3fe6, 0x1464, 0x2fe2, 0x0a50, 0x10b9},

 {0x1c80, 0x1a23, 0x38aa, 0x3609, 0x3605, 0x01f9, 0x3e0c, 0x2ee8,

 0x08eb, 0x09f9, 0x3371, 0x319a, 0x22c5, 0x0479, 0x19e4, 0x1a75},

 {0x05ff, 0x314c, 0x1629, 0x0c40, 0x241b, 0x311f, 0x0f56, 0x1910,

 0x14a3, 0x1d28, 0x347a, 0x0544, 0x12c4, 0x276b, 0x3498, 0x04e4},

 {0x0a90, 0x269c, 0x250a, 0x0d2d, 0x0a76, 0x225f, 0x03f0, 0x3307,

 0x0be3, 0x0be1, 0x3eab, 0x085c, 0x1616, 0x3046, 0x0b64, 0x0860},

 {0x29c0, 0x11d6, 0x3d93, 0x131f, 0x10bf, 0x3b86, 0x15c3, 0x2d71,

 0x36c2, 0x1125, 0x0a4b, 0x1f01, 0x353b, 0x0927, 0x2083, 0x0e49},

 {0x3e93, 0x21db, 0x0c77, 0x07c6, 0x354d, 0x1815, 0x1d2e, 0x175c,

 0x3888, 0x19b6, 0x35cb, 0x39c2, 0x0e3f, 0x1b4c, 0x2c38, 0x2d3e},

 {0x100d, 0x3367, 0x34bf, 0x11f9, 0x21bb, 0x3a69, 0x1f5d, 0x212c,

 0x17b8, 0x29c3, 0x33f6, 0x1177, 0x1b69, 0x3866, 0x1867, 0x3ff6},

 {0x3cff, 0x3398, 0x0721, 0x28f7, 0x3eed, 0x09d8, 0x247f, 0x131c,

 0x3991, 0x295b, 0x2e04, 0x2e8c, 0x2eb4, 0x3920, 0x1814, 0x2d2c},

 {0x339e, 0x1c79, 0x0266, 0x2e32, 0x3054, 0x3b42, 0x377c, 0x1674,

 0x0f26, 0x240b, 0x06d8, 0x3ff1, 0x1a18, 0x35ad, 0x3f71, 0x2412},

 {0x2504, 0x1b27, 0x16c7, 0x236c, 0x08ab, 0x0b6f, 0x1ece, 0x1777,

 0x2e0f, 0x3bca, 0x10f4, 0x0d74, 0x2937, 0x3ba8, 0x1580, 0x2880},

375

 {0x2234, 0x3bb8, 0x3a7d, 0x25ae, 0x1a22, 0x3a4b, 0x262b, 0x347b,

 0x3a60, 0x2873, 0x00df, 0x058e, 0x02fc, 0x27ca, 0x26fb, 0x2a2e},

 {0x2342, 0x2f86, 0x0ec4, 0x2f05, 0x255c, 0x3249, 0x3c2f, 0x201e,

 0x2dd8, 0x0491, 0x36a4, 0x1d81, 0x2b74, 0x257f, 0x0f4f, 0x16e4},

 {0x2933, 0x3133, 0x2b5a, 0x16c3, 0x2b5e, 0x094a, 0x2ec7, 0x31cf,

 0x1abb, 0x20cb, 0x2ebe, 0x216d, 0x2d7c, 0x09d7, 0x24fe, 0x3820},

 {0x2146, 0x3507, 0x0700, 0x04bf, 0x1933, 0x006e, 0x2ff9, 0x1c30,

 0x27cf, 0x3300, 0x3797, 0x0a67, 0x1f17, 0x3c2a, 0x237a, 0x32a2},

 {0x16f1, 0x2664, 0x0d16, 0x17ea, 0x09a5, 0x3044, 0x3552, 0x33e3,

 0x0550, 0x1e0b, 0x344b, 0x01ad, 0x340d, 0x05e1, 0x1721, 0x168f},

 {0x1e87, 0x17f2, 0x1cb6, 0x17e6, 0x04dd, 0x1b48, 0x1482, 0x2e1e,

 0x3f6d, 0x339d, 0x0c4e, 0x2e0e, 0x1f2f, 0x19d1, 0x041a, 0x2e25}

 },

 { {0x0bd9, 0x14eb, 0x1e4c, 0x3a9d, 0x139d, 0x09fd, 0x0f55, 0x0c42,

 0x0f98, 0x1060, 0x250e, 0x07d1, 0x31fa, 0x3405, 0x3b0d, 0x35c5},

 {0x17a2, 0x1dd3, 0x05ba, 0x22de, 0x3d55, 0x3bbd, 0x0b2f, 0x3e8c,

 0x1fca, 0x02de, 0x015f, 0x2586, 0x09e1, 0x16f3, 0x147d, 0x0eea},

 {0x09e3, 0x0d80, 0x276c, 0x3560, 0x330f, 0x263d, 0x35e6, 0x1927,

 0x307c, 0x1397, 0x0949, 0x0a46, 0x05c4, 0x13b7, 0x2cf1, 0x32d6},

 {0x1a2b, 0x0aa0, 0x0c3e, 0x0a5d, 0x06da, 0x2423, 0x2afe, 0x1f35,

 0x2290, 0x13c8, 0x3976, 0x3421, 0x3d46, 0x32e7, 0x333a, 0x3863},

 {0x0e68, 0x1cfa, 0x3c53, 0x0699, 0x1743, 0x2c1e, 0x18c6, 0x33ad,

 0x1866, 0x1ae2, 0x32e4, 0x01a8, 0x09dd, 0x264a, 0x06ce, 0x0b53},

 {0x3b11, 0x3eb1, 0x36e1, 0x26c9, 0x0467, 0x0b5a, 0x34fb, 0x0471,

 0x2782, 0x1046, 0x350b, 0x1561, 0x2354, 0x186c, 0x3f3a, 0x22a7},

 {0x1ceb, 0x23d9, 0x2870, 0x221a, 0x35f9, 0x0292, 0x2b7e, 0x3cc5,

376

 0x2bcc, 0x32c6, 0x0f63, 0x0dfd, 0x04d3, 0x28c1, 0x0662, 0x1df6},

 {0x36ef, 0x00f2, 0x02c0, 0x2429, 0x1e74, 0x000f, 0x2f8d, 0x3813,

 0x3377, 0x1afc, 0x37b7, 0x15d7, 0x1fb2, 0x2e16, 0x0e11, 0x01d1},

 {0x0870, 0x2bca, 0x3c1b, 0x16aa, 0x3a56, 0x0bbe, 0x0324, 0x1214,

 0x2910, 0x0cad, 0x2ce1, 0x395e, 0x19d0, 0x034e, 0x1560, 0x1c7d},

 {0x3a0a, 0x2944, 0x21b1, 0x31b8, 0x07bd, 0x1841, 0x045c, 0x091b,

 0x12c2, 0x14c5, 0x1a6b, 0x2837, 0x0e1d, 0x00eb, 0x0e7b, 0x07bb},

 {0x1868, 0x3759, 0x33c6, 0x3b5d, 0x0fac, 0x3051, 0x0086, 0x1842,

 0x17e5, 0x24e9, 0x235e, 0x0b35, 0x3f3b, 0x2b44, 0x25b6, 0x0d0e},

 {0x1c24, 0x0503, 0x027b, 0x07c2, 0x1c85, 0x1092, 0x27f9, 0x3ae2,

 0x0600, 0x1062, 0x1c9b, 0x185f, 0x321c, 0x29e9, 0x0d40, 0x1c1d},

 {0x101a, 0x3676, 0x24c1, 0x0019, 0x320b, 0x2f42, 0x0a66, 0x37e5,

 0x20a4, 0x1581, 0x081c, 0x178d, 0x2c91, 0x1376, 0x0793, 0x2f6b},

 {0x3860, 0x0a9d, 0x02e2, 0x1d4c, 0x1d86, 0x00bf, 0x14a7, 0x3524,

 0x0d22, 0x32fb, 0x3e50, 0x0ee1, 0x05ca, 0x02e5, 0x082e, 0x3312},

 {0x00e0, 0x22ec, 0x1df7, 0x1d3f, 0x39bc, 0x05e8, 0x2396, 0x3143,

 0x13ae, 0x04c3, 0x3d70, 0x1d11, 0x3f2f, 0x103d, 0x08d2, 0x1b86},

 {0x03c2, 0x3cca, 0x2ff3, 0x1da9, 0x0bf6, 0x00d5, 0x1f8c, 0x1575,

 0x2e9a, 0x211d, 0x038c, 0x3384, 0x266d, 0x12ed, 0x0c87, 0x2648}

 },

 { {0x0db5, 0x2630, 0x3cdc, 0x0c4c, 0x0acc, 0x18bf, 0x3f47, 0x34a5,

 0x2853, 0x3dfc, 0x39bd, 0x0ef2, 0x00e7, 0x0962, 0x164a, 0x141d},

 {0x3faa, 0x3cc2, 0x02cf, 0x19a5, 0x1980, 0x0971, 0x22a0, 0x39af,

 0x1d1e, 0x1ee3, 0x3ad0, 0x2562, 0x0ef0, 0x1755, 0x146b, 0x1ac1},

 {0x3ece, 0x1066, 0x2d46, 0x3847, 0x092c, 0x168c, 0x332d, 0x2ef1,

 0x04b3, 0x0883, 0x0534, 0x3423, 0x21a5, 0x359f, 0x0855, 0x100c},

377

 {0x1500, 0x2148, 0x25db, 0x0c1a, 0x3dec, 0x2f99, 0x1d42, 0x23a8,

 0x2028, 0x0194, 0x3b79, 0x2bd3, 0x38fe, 0x3077, 0x3c99, 0x01cd},

 {0x1a72, 0x3b94, 0x1ef4, 0x1fe1, 0x3beb, 0x27d8, 0x1557, 0x0c1b,

 0x3420, 0x2f84, 0x1b3e, 0x3540, 0x2544, 0x14b6, 0x1201, 0x12e3},

 {0x24ce, 0x1144, 0x2950, 0x2e50, 0x279b, 0x1010, 0x1151, 0x05de,

 0x06e5, 0x02f5, 0x0931, 0x15e1, 0x1f90, 0x3446, 0x00ca, 0x0273},

 {0x0ac9, 0x1aef, 0x10fa, 0x37f9, 0x2b69, 0x24f2, 0x075a, 0x1b0c,

 0x1dcd, 0x3127, 0x02ef, 0x3e42, 0x09b7, 0x3a1f, 0x116a, 0x10ba},

 {0x2d50, 0x31e8, 0x37d2, 0x1729, 0x21d4, 0x1aea, 0x2d34, 0x130d,

 0x34e3, 0x10d9, 0x0c56, 0x0f0a, 0x1eaa, 0x31e2, 0x2641, 0x1cc2},

 {0x0c80, 0x3205, 0x0539, 0x3e45, 0x1dc5, 0x1b11, 0x391d, 0x1735,

 0x1a3b, 0x339c, 0x0473, 0x2610, 0x3225, 0x106a, 0x0fca, 0x0f92},

 {0x0876, 0x1a9d, 0x1d9d, 0x140b, 0x2c79, 0x326d, 0x16b6, 0x094e,

 0x11d3, 0x148e, 0x3dae, 0x0f09, 0x26c7, 0x2777, 0x3111, 0x16ad},

 {0x3bf8, 0x18d3, 0x03e2, 0x1ed4, 0x29b8, 0x31dc, 0x19b5, 0x1617,

 0x1fd6, 0x24ec, 0x0055, 0x39fc, 0x35c7, 0x11af, 0x2ee2, 0x3264},

 {0x0e4c, 0x3d52, 0x3c12, 0x025e, 0x303c, 0x1fd5, 0x0737, 0x31bf,

 0x11ef, 0x0ffd, 0x0727, 0x242a, 0x265a, 0x1f67, 0x152b, 0x008b},

 {0x1a7d, 0x37d4, 0x3633, 0x25d8, 0x1de2, 0x0966, 0x2821, 0x07f3,

 0x3ed7, 0x1284, 0x14be, 0x0c12, 0x32a1, 0x0d67, 0x053a, 0x24e2},

 {0x31c3, 0x1ea7, 0x14d7, 0x1b08, 0x0bde, 0x2e2f, 0x389b, 0x0e6f,

 0x2036, 0x106c, 0x1df9, 0x3f7e, 0x23b4, 0x249b, 0x3dd7, 0x2a25},

 {0x3617, 0x1864, 0x06c5, 0x0161, 0x3f6c, 0x072a, 0x3e69, 0x2f29,

 0x3738, 0x1253, 0x1146, 0x39dd, 0x15b2, 0x3cf7, 0x20c0, 0x3120},

 {0x00b2, 0x21c0, 0x2db3, 0x010a, 0x23e0, 0x30ba, 0x0ea5, 0x2268,

 0x26e6, 0x3480, 0x20f1, 0x2508, 0x0e34, 0x3810, 0x2a1a, 0x3dd3}

378

 },

 { {0x06bd, 0x0486, 0x23db, 0x08b8, 0x3906, 0x0ff3, 0x050f, 0x14ae,

 0x0f84, 0x2e7f, 0x1a5c, 0x2096, 0x311d, 0x0080, 0x1e38, 0x0d08},

 {0x1dba, 0x190c, 0x3c40, 0x0a06, 0x052b, 0x345a, 0x2372, 0x21de,

 0x1b52, 0x07f0, 0x18e2, 0x33e9, 0x1166, 0x0a81, 0x34e4, 0x1135},

 {0x160b, 0x2afc, 0x228a, 0x3f77, 0x2cf2, 0x1c7e, 0x1451, 0x3422,

 0x2603, 0x2da2, 0x295d, 0x3657, 0x02e1, 0x39b7, 0x07aa, 0x159d},

 {0x32a7, 0x1e5d, 0x3f76, 0x31e1, 0x0955, 0x0f4c, 0x128e, 0x0535,

 0x292b, 0x026b, 0x300d, 0x3d01, 0x2434, 0x2cfc, 0x1126, 0x30ca},

 {0x3ae5, 0x07a2, 0x1a52, 0x2c99, 0x3b13, 0x087f, 0x138f, 0x1cfd,

 0x0c9d, 0x004b, 0x374c, 0x27bf, 0x3f94, 0x0f9c, 0x1020, 0x11ba},

 {0x095a, 0x1a08, 0x2b1d, 0x3d86, 0x3be0, 0x2bb5, 0x2865, 0x1aca,

 0x054c, 0x3bb4, 0x02b8, 0x3023, 0x0696, 0x0073, 0x1cde, 0x1a68},

 {0x2872, 0x0f13, 0x1d52, 0x38cc, 0x38da, 0x1dbb, 0x3e67, 0x2493,

 0x37cf, 0x3fef, 0x16b5, 0x1411, 0x2c19, 0x2c09, 0x1f82, 0x3095},

 {0x0c9f, 0x1b4d, 0x1f88, 0x0255, 0x205e, 0x260f, 0x1b72, 0x0490,

 0x1454, 0x0646, 0x2bce, 0x3d8c, 0x07b4, 0x3f85, 0x3c26, 0x318d},

 {0x3265, 0x0d73, 0x00f4, 0x3c0c, 0x2aef, 0x3e1e, 0x23cb, 0x046a,

 0x1148, 0x1b76, 0x28a2, 0x0071, 0x3f49, 0x100b, 0x2526, 0x3cd0},

 {0x0ea8, 0x1f71, 0x17af, 0x019b, 0x12cb, 0x26ff, 0x3262, 0x1de8,

 0x18b1, 0x2909, 0x37a1, 0x1c52, 0x1f40, 0x080b, 0x3ba3, 0x1f3d},

 {0x085e, 0x1346, 0x329f, 0x0bc1, 0x001c, 0x0a04, 0x0341, 0x2ecd,

 0x02a6, 0x1036, 0x1885, 0x0bc6, 0x3fcd, 0x37ee, 0x17a5, 0x194a},

 {0x280f, 0x3075, 0x38f6, 0x1e48, 0x3af1, 0x3407, 0x1c3a, 0x1aa6,

 0x0ca8, 0x2f67, 0x03f8, 0x0483, 0x3b33, 0x1797, 0x0fb7, 0x26ec},

 {0x01fc, 0x2a82, 0x1826, 0x2a6f, 0x1ec3, 0x3088, 0x3966, 0x00c1,

379

 0x3146, 0x0c36, 0x04f4, 0x0260, 0x2b9d, 0x2948, 0x1f47, 0x195b},

 {0x2900, 0x0685, 0x3fdb, 0x3c89, 0x14fa, 0x0405, 0x2f22, 0x019e,

 0x0b08, 0x18fb, 0x3aa1, 0x34e1, 0x121f, 0x3d84, 0x2ed7, 0x1ce6},

 {0x3892, 0x20c4, 0x019d, 0x2a9e, 0x275b, 0x0cb8, 0x0e52, 0x1c45,

 0x192f, 0x23c4, 0x3f97, 0x30c3, 0x0647, 0x280b, 0x3308, 0x0bdd},

 {0x3200, 0x27c3, 0x1715, 0x1cd9, 0x150e, 0x1f8f, 0x2d82, 0x3b75,

 0x02e4, 0x01b2, 0x0cc2, 0x20f2, 0x0540, 0x1a7f, 0x2b14, 0x201c}

 },

 { {0x3900, 0x0c88, 0x1d17, 0x3ad3, 0x2397, 0x2d78, 0x118d, 0x1d2c,

 0x15bf, 0x2817, 0x1d34, 0x0832, 0x3698, 0x17fa, 0x384e, 0x0ab8},

 {0x12bd, 0x1e76, 0x1d8c, 0x18c9, 0x2e06, 0x1b57, 0x218d, 0x1612,

 0x0583, 0x103f, 0x229d, 0x1c74, 0x0753, 0x2ae9, 0x3843, 0x3bcb},

 {0x3760, 0x3796, 0x3707, 0x17ac, 0x21be, 0x23a6, 0x31f2, 0x2bc3,

 0x0dbf, 0x3543, 0x3c2e, 0x2eab, 0x3a95, 0x3ae0, 0x06b5, 0x019f},

 {0x20f8, 0x28a0, 0x3276, 0x1c96, 0x31a5, 0x3acc, 0x2ee4, 0x3499,

 0x02a8, 0x33dc, 0x3637, 0x3a20, 0x2f7b, 0x28c9, 0x1db0, 0x3239},

 {0x0acf, 0x0ec5, 0x0fdf, 0x1f99, 0x2e98, 0x10e4, 0x2654, 0x28ab,

 0x299e, 0x2835, 0x3fd7, 0x3e9e, 0x1837, 0x0ddc, 0x2bb6, 0x0961},

 {0x38f7, 0x136a, 0x370e, 0x1409, 0x3772, 0x3977, 0x37c0, 0x050b,

 0x1fb5, 0x3021, 0x1d3a, 0x0e95, 0x308b, 0x3cc7, 0x008a, 0x30e1},

 {0x2645, 0x34bd, 0x1ea0, 0x1f1e, 0x102d, 0x0ad1, 0x162b, 0x196d,

 0x32f3, 0x2c2a, 0x2eae, 0x2bdd, 0x037b, 0x3385, 0x0923, 0x04ec},

 {0x2fc1, 0x2cea, 0x1abd, 0x04eb, 0x3234, 0x1d08, 0x2e1b, 0x17e0,

 0x10a1, 0x2095, 0x0553, 0x0e57, 0x3e78, 0x1ad0, 0x3c4d, 0x24a8},

 {0x341c, 0x082a, 0x0ae4, 0x3221, 0x0984, 0x3afa, 0x0c3c, 0x1fe4,

 0x2e3e, 0x0276, 0x3dfe, 0x305c, 0x2147, 0x3af8, 0x06aa, 0x1162},

380

 {0x2672, 0x295e, 0x1f7f, 0x34e8, 0x2657, 0x2c65, 0x27aa, 0x1f10,

 0x3e1a, 0x0f3b, 0x233e, 0x1302, 0x185e, 0x0707, 0x3f29, 0x36c6},

 {0x128f, 0x0e37, 0x0112, 0x0a2a, 0x08e5, 0x3c5e, 0x0492, 0x39d2,

 0x2078, 0x067a, 0x1ff6, 0x3d18, 0x1844, 0x2625, 0x2081, 0x026d},

 {0x3aa8, 0x0d81, 0x2bf6, 0x346f, 0x0672, 0x3869, 0x23c2, 0x1e39,

 0x0353, 0x35e8, 0x0d58, 0x33b9, 0x10d4, 0x10f3, 0x183d, 0x15a4},

 {0x1c8e, 0x3821, 0x27ab, 0x282c, 0x2a86, 0x0530, 0x00a6, 0x10e5,

 0x1470, 0x2ccb, 0x2c3c, 0x099c, 0x173d, 0x34c1, 0x03aa, 0x0000},

 {0x1449, 0x0333, 0x026f, 0x1cdf, 0x299f, 0x2ec8, 0x340f, 0x3ad5,

 0x1d09, 0x1b92, 0x3b89, 0x15f8, 0x0b86, 0x03c7, 0x3519, 0x26de},

 {0x2ad8, 0x0022, 0x1dd0, 0x13b5, 0x256c, 0x3bb1, 0x2565, 0x1c48,

 0x247a, 0x3fbf, 0x076f, 0x1e88, 0x0cab, 0x17f8, 0x3616, 0x3edd},

 {0x1c1a, 0x0b3f, 0x2914, 0x36a9, 0x164b, 0x2154, 0x1710, 0x1426,

 0x3e05, 0x2acb, 0x39e3, 0x3975, 0x3434, 0x3e6e, 0x3984, 0x20f6}

 },

 { {0x0a53, 0x1f86, 0x0863, 0x0461, 0x1906, 0x0bb9, 0x16f6, 0x2d31,

 0x0da6, 0x22cb, 0x273e, 0x326b, 0x1987, 0x1a1e, 0x10f8, 0x0848},

 {0x1a49, 0x3607, 0x30eb, 0x30da, 0x0208, 0x1fb8, 0x049d, 0x2cd5,

 0x1b28, 0x3808, 0x3ce4, 0x269e, 0x3294, 0x0fd3, 0x21fa, 0x2b43},

 {0x10a9, 0x059c, 0x1d9c, 0x3f9b, 0x3454, 0x3000, 0x3929, 0x0c05,

 0x314d, 0x2153, 0x3fd3, 0x35e3, 0x3a6a, 0x2202, 0x037c, 0x378f},

 {0x0990, 0x0d02, 0x2ebc, 0x1ea5, 0x0f3d, 0x273b, 0x30bc, 0x2b35,

 0x1e35, 0x00c0, 0x23eb, 0x2ac7, 0x05e9, 0x031a, 0x1526, 0x236e},

 {0x10b2, 0x2bf0, 0x29e4, 0x1299, 0x1549, 0x1d44, 0x006d, 0x018a,

 0x10ab, 0x1778, 0x3504, 0x060a, 0x1d04, 0x13db, 0x1d73, 0x2818},

 {0x276f, 0x15e3, 0x262e, 0x0054, 0x1831, 0x3965, 0x1ba2, 0x1acc,

381

 0x2d83, 0x12f5, 0x1221, 0x3b58, 0x09bd, 0x3d47, 0x386f, 0x1d25},

 {0x3f9c, 0x2525, 0x0dbc, 0x1768, 0x0430, 0x199d, 0x007d, 0x073f,

 0x3199, 0x06e1, 0x1b26, 0x1af5, 0x2551, 0x0228, 0x3b71, 0x2592},

 {0x12e4, 0x0ccb, 0x079f, 0x3f61, 0x16fe, 0x0c0f, 0x362e, 0x29f5,

 0x2f6c, 0x1fdd, 0x11ce, 0x2304, 0x191e, 0x3b0e, 0x3a94, 0x0f01},

 {0x3019, 0x1635, 0x2340, 0x0d23, 0x0ce2, 0x294f, 0x1a2c, 0x00cd,

 0x109a, 0x1272, 0x06de, 0x1ab3, 0x2605, 0x1ad7, 0x27cd, 0x229f},

 {0x34a7, 0x206c, 0x12d2, 0x033b, 0x055f, 0x2fbf, 0x39f4, 0x102e,

 0x0de3, 0x3fba, 0x0a3f, 0x1b14, 0x3402, 0x1b67, 0x254f, 0x15ed},

 {0x02bd, 0x3a38, 0x3247, 0x21e1, 0x3df4, 0x0142, 0x1b81, 0x2a50,

 0x21dd, 0x36de, 0x0318, 0x37b3, 0x018b, 0x1ce8, 0x1d87, 0x1afe},

 {0x2479, 0x3de8, 0x3fd5, 0x38b1, 0x15d9, 0x0bc2, 0x127c, 0x0a41,

 0x3da9, 0x0002, 0x0904, 0x0209, 0x26cc, 0x1cac, 0x11f7, 0x070e},

 {0x14c9, 0x2460, 0x1c0a, 0x2dd2, 0x1a3e, 0x2f3e, 0x14a5, 0x18c4,

 0x3068, 0x3b7d, 0x2d92, 0x3985, 0x2183, 0x16bc, 0x0622, 0x2ee1},

 {0x3dd1, 0x1f50, 0x1f78, 0x1be9, 0x104e, 0x1983, 0x2043, 0x2151,

 0x1651, 0x05b6, 0x1e2a, 0x009a, 0x0e64, 0x0f05, 0x30e4, 0x349e},

 {0x010f, 0x16d0, 0x37f1, 0x2d98, 0x20e6, 0x3084, 0x24d9, 0x3502,

 0x18f0, 0x0ba2, 0x11c6, 0x3bac, 0x1599, 0x3d42, 0x1feb, 0x2335},

 {0x2594, 0x17eb, 0x334c, 0x29a9, 0x379c, 0x3a21, 0x1dcc, 0x32d9,

 0x1b22, 0x0b85, 0x022e, 0x097b, 0x3f52, 0x27bd, 0x319f, 0x239c}

 },

 { {0x1f00, 0x2cf3, 0x3290, 0x2dec, 0x07cb, 0x21c1, 0x2686, 0x00a5,

 0x089f, 0x25fe, 0x05f6, 0x2fe1, 0x0aba, 0x25dd, 0x1c1f, 0x0d18},

 {0x362c, 0x39fb, 0x20bc, 0x0ae1, 0x35fc, 0x03ef, 0x2468, 0x2fa7,

 0x0346, 0x1957, 0x37f6, 0x1414, 0x0394, 0x0911, 0x017a, 0x305e},

382

 {0x38ef, 0x1835, 0x3102, 0x2d28, 0x0602, 0x0bf9, 0x17ed, 0x2760,

 0x3a80, 0x0e79, 0x02a2, 0x31bd, 0x32b0, 0x3f82, 0x01c9, 0x043c},

 {0x258e, 0x0c91, 0x1876, 0x0383, 0x2d6c, 0x0519, 0x1921, 0x0c24,

 0x30b0, 0x34de, 0x2427, 0x0a58, 0x1eaf, 0x31e7, 0x3b55, 0x0dcd},

 {0x0d8f, 0x2e2c, 0x0932, 0x0599, 0x0913, 0x280d, 0x0fe8, 0x3331,

 0x291e, 0x37cc, 0x15aa, 0x1354, 0x058b, 0x3b5b, 0x1aee, 0x31b5},

 {0x046b, 0x0d3b, 0x3058, 0x1d07, 0x2447, 0x2ed2, 0x1bd4, 0x00e4,

 0x39b8, 0x3a8b, 0x0d27, 0x1461, 0x019c, 0x09c4, 0x0852, 0x1756},

 {0x0f29, 0x0090, 0x3d09, 0x233f, 0x153e, 0x11f5, 0x32f2, 0x3757,

 0x1291, 0x064b, 0x23b3, 0x3d83, 0x01c1, 0x38c1, 0x375d, 0x3338},

 {0x3b3e, 0x14a9, 0x256f, 0x1f83, 0x311c, 0x117d, 0x2e49, 0x38f1,

 0x198d, 0x036a, 0x222f, 0x2780, 0x0626, 0x2a04, 0x19aa, 0x110e},

 {0x0ba3, 0x02df, 0x3466, 0x0259, 0x33e0, 0x02ab, 0x0a1f, 0x11db,

 0x01d2, 0x0014, 0x23fe, 0x248b, 0x3fe4, 0x3c51, 0x1d70, 0x20d7},

 {0x279c, 0x0795, 0x140a, 0x3d2d, 0x317b, 0x1f3a, 0x2505, 0x3b07,

 0x144a, 0x09d0, 0x2607, 0x0a89, 0x0b9b, 0x3f1e, 0x2bed, 0x08ed},

 {0x16e0, 0x267a, 0x0206, 0x163e, 0x1199, 0x1645, 0x10ed, 0x232b,

 0x3898, 0x308e, 0x0564, 0x1c03, 0x05e0, 0x2041, 0x3753, 0x2d64},

 {0x3610, 0x1ad5, 0x2c6f, 0x3776, 0x302b, 0x089d, 0x058a, 0x26fd,

 0x14ee, 0x1d14, 0x018e, 0x2d1a, 0x135f, 0x0c1f, 0x209a, 0x2f75},

 {0x2696, 0x2333, 0x05a3, 0x2ea4, 0x11d7, 0x1aff, 0x1095, 0x36e5,

 0x2754, 0x1ec1, 0x0e5b, 0x309d, 0x3074, 0x141c, 0x188a, 0x285d},

 {0x0b52, 0x0263, 0x3d03, 0x0cfc, 0x02a5, 0x07a3, 0x05fb, 0x1000,

 0x3a35, 0x1afd, 0x1776, 0x3ac2, 0x2346, 0x2ebb, 0x2f01, 0x3361},

 {0x3f3e, 0x2091, 0x2687, 0x054a, 0x0480, 0x195f, 0x17e3, 0x09e9,

 0x3eb6, 0x382a, 0x2282, 0x0701, 0x3dde, 0x2843, 0x16ea, 0x2e7e},

383

 {0x2480, 0x0a8e, 0x3a78, 0x1553, 0x307e, 0x10eb, 0x0b99, 0x17fb,

 0x3ae8, 0x0220, 0x2d7a, 0x0c41, 0x1b5f, 0x3d2a, 0x2d00, 0x327c}

 },

 { {0x22d4, 0x28ed, 0x0924, 0x08d3, 0x1266, 0x3ce3, 0x3f0f, 0x33ca,

 0x00fc, 0x3e0e, 0x1306, 0x2b39, 0x0094, 0x13df, 0x24b1, 0x0a80},

 {0x04b9, 0x2b45, 0x1332, 0x1b09, 0x26bf, 0x00d0, 0x251c, 0x2511,

 0x20c8, 0x31ff, 0x3df1, 0x21ad, 0x245e, 0x3cad, 0x391b, 0x1ec7},

 {0x2a1d, 0x3219, 0x07ac, 0x2762, 0x3623, 0x3efa, 0x00bd, 0x1dd8,

 0x1b05, 0x254b, 0x0a8f, 0x314b, 0x2cc2, 0x29a8, 0x13aa, 0x1139},

 {0x1b8e, 0x14b3, 0x3765, 0x2371, 0x275c, 0x2bf2, 0x355c, 0x2735,

 0x283e, 0x32a8, 0x3382, 0x168a, 0x0d0a, 0x1e18, 0x365c, 0x15d5},

 {0x1ef5, 0x144d, 0x0bbc, 0x2307, 0x068c, 0x1f6a, 0x1487, 0x3ed0,

 0x10a2, 0x1b4a, 0x0dac, 0x2831, 0x0ece, 0x0417, 0x2501, 0x1d48},

 {0x29ac, 0x1e9b, 0x00c4, 0x28fb, 0x2c1b, 0x3c7c, 0x1a46, 0x0f95,

 0x2ec6, 0x122c, 0x241d, 0x32e0, 0x23c6, 0x3f86, 0x2b5b, 0x191f},

 {0x34b4, 0x2fac, 0x0ba6, 0x06cb, 0x2836, 0x3980, 0x0734, 0x0565,

 0x39f8, 0x3b2d, 0x121d, 0x25ea, 0x356d, 0x0277, 0x2238, 0x0f69},

 {0x3de4, 0x2452, 0x1cb7, 0x2dc2, 0x241c, 0x0702, 0x0df2, 0x2667,

 0x05ab, 0x2203, 0x37ce, 0x1ae6, 0x2022, 0x306f, 0x0725, 0x158f},

 {0x3727, 0x124d, 0x15a1, 0x3557, 0x084b, 0x03d4, 0x2899, 0x2d25,

 0x01b1, 0x1c6b, 0x29e6, 0x2256, 0x3a64, 0x00d7, 0x0eca, 0x1c22},

 {0x37f5, 0x1800, 0x0986, 0x15d6, 0x227c, 0x2ec9, 0x3030, 0x3c46,

 0x02b1, 0x1c6f, 0x04d9, 0x3bbc, 0x15ac, 0x1b93, 0x3ad7, 0x15ba},

 {0x187f, 0x17d3, 0x05c1, 0x0224, 0x01ac, 0x29be, 0x17e4, 0x12f9,

 0x252d, 0x0153, 0x38fc, 0x0fc1, 0x0f35, 0x133e, 0x0c8a, 0x3b60},

 {0x0823, 0x012c, 0x304b, 0x3d79, 0x20dc, 0x26b4, 0x375a, 0x2955,

384

 0x3c77, 0x01bb, 0x1615, 0x2380, 0x2257, 0x2763, 0x3032, 0x3a4d},

 {0x3469, 0x2791, 0x01d6, 0x02b3, 0x0457, 0x2003, 0x156b, 0x208a,

 0x37d8, 0x05cb, 0x1e1e, 0x02a3, 0x10c1, 0x2e96, 0x2aa1, 0x0e99},

 {0x348d, 0x05a4, 0x0356, 0x1a04, 0x1f3c, 0x3bb6, 0x2d6b, 0x0be2,

 0x0959, 0x25ac, 0x1959, 0x2cd4, 0x0616, 0x15ef, 0x3acf, 0x27a7},

 {0x1bf0, 0x14b0, 0x2ea2, 0x374e, 0x3501, 0x1a21, 0x1a12, 0x2769,

 0x2d3c, 0x2fa8, 0x1cf0, 0x30e3, 0x1999, 0x0335, 0x3c90, 0x208f},

 {0x1475, 0x33c3, 0x01b6, 0x06d0, 0x1c42, 0x3aeb, 0x230e, 0x0775,

 0x12f3, 0x1bd2, 0x2857, 0x27a9, 0x2766, 0x2104, 0x39a7, 0x2b72}

 },

 { {0x26b5, 0x0d43, 0x29ea, 0x0bed, 0x3ccc, 0x2ed6, 0x081a, 0x1c83,

 0x127d, 0x3ee2, 0x2c5c, 0x2b57, 0x1d4b, 0x1d43, 0x09a9, 0x3ec9},

 {0x0af1, 0x27fc, 0x1cd6, 0x16c1, 0x1bfc, 0x3090, 0x0c59, 0x06b7,

 0x0b82, 0x163b, 0x242d, 0x39eb, 0x04b5, 0x0722, 0x2088, 0x3c88},

 {0x2016, 0x0cd0, 0x0b5c, 0x272e, 0x3d0d, 0x0e59, 0x1b12, 0x35f1,

 0x2520, 0x01ec, 0x0f23, 0x1b6c, 0x3d4f, 0x143f, 0x036e, 0x3012},

 {0x2563, 0x226a, 0x11c9, 0x213e, 0x0c47, 0x38a2, 0x0639, 0x39c8,

 0x13d1, 0x2a49, 0x0c5e, 0x26be, 0x3daa, 0x36aa, 0x3073, 0x155f},

 {0x01a6, 0x1f06, 0x007a, 0x2507, 0x1f3f, 0x2c97, 0x039a, 0x2365,

 0x3158, 0x073b, 0x2709, 0x11fe, 0x092e, 0x38ca, 0x38be, 0x398c},

 {0x20f0, 0x3d65, 0x0af3, 0x297c, 0x088b, 0x26af, 0x3233, 0x245a,

 0x12d3, 0x39f2, 0x1fb6, 0x2163, 0x0175, 0x3ea4, 0x2b49, 0x125f},

 {0x1261, 0x3a3b, 0x3ec5, 0x30ee, 0x1358, 0x0b89, 0x16b4, 0x1353,

 0x392b, 0x372f, 0x3cda, 0x3b74, 0x277b, 0x3ab5, 0x3fc2, 0x32de},

 {0x28cc, 0x176d, 0x1dda, 0x3832, 0x3587, 0x3da2, 0x06fd, 0x32e1,

 0x1bab, 0x1cdb, 0x0fd2, 0x0748, 0x105c, 0x278e, 0x1576, 0x1333},

385

 {0x23ad, 0x369f, 0x23be, 0x22fa, 0x07ad, 0x043f, 0x07b2, 0x0179,

 0x1ca5, 0x288e, 0x3b3b, 0x0e3c, 0x3d1c, 0x22f0, 0x08ff, 0x0fbd},

 {0x2d60, 0x344d, 0x2744, 0x0367, 0x2ff1, 0x17c1, 0x0f4b, 0x1e7f,

 0x384c, 0x257a, 0x22ee, 0x2742, 0x34aa, 0x1457, 0x17be, 0x3f14},

 {0x3ce0, 0x3693, 0x13c9, 0x26b9, 0x26e2, 0x3621, 0x0fdd, 0x21fd,

 0x316f, 0x3a6b, 0x25e8, 0x133c, 0x1391, 0x25ad, 0x1038, 0x06ae},

 {0x1c10, 0x31b9, 0x1ad8, 0x0342, 0x2eb6, 0x1ab4, 0x36f7, 0x2b2d,

 0x3feb, 0x199b, 0x3404, 0x2d4f, 0x23fa, 0x27f4, 0x0e85, 0x2d4d},

 {0x29d3, 0x0933, 0x1620, 0x2519, 0x16d1, 0x3eb4, 0x0c7c, 0x1724,

 0x1f6f, 0x333d, 0x1f33, 0x2488, 0x22a4, 0x2bf3, 0x28a8, 0x1d8b},

 {0x1a97, 0x1e02, 0x2680, 0x3818, 0x1827, 0x36ce, 0x2d05, 0x0001,

 0x1160, 0x2971, 0x3114, 0x33e1, 0x155a, 0x2439, 0x3fa2, 0x1fa7},

 {0x2825, 0x198a, 0x377b, 0x3d48, 0x1779, 0x09b4, 0x27c6, 0x3801,

 0x1149, 0x2b31, 0x1b0a, 0x05f1, 0x1da2, 0x0eda, 0x22e2, 0x307d},

 {0x19eb, 0x18bd, 0x2377, 0x292e, 0x3b78, 0x1a1a, 0x376d, 0x16cd,

 0x3bd0, 0x31aa, 0x2172, 0x178c, 0x0cbf, 0x3bef, 0x28c5, 0x119b}

 },

 { {0x23f9, 0x1386, 0x28ff, 0x1124, 0x2fcc, 0x0424, 0x168e, 0x2994,

 0x2798, 0x095b, 0x31bc, 0x33f1, 0x1f64, 0x1888, 0x3209, 0x3cab},

 {0x1bf4, 0x09ef, 0x0946, 0x12d8, 0x34c6, 0x3571, 0x20ee, 0x04a4,

 0x3c5d, 0x06d1, 0x3922, 0x30a1, 0x3e94, 0x2631, 0x2906, 0x2487},

 {0x2b86, 0x0144, 0x1574, 0x065e, 0x2cf7, 0x36d5, 0x1cc1, 0x2807,

 0x0f9e, 0x2bd6, 0x1ec6, 0x2175, 0x03a2, 0x341d, 0x282e, 0x268a},

 {0x0f5c, 0x24dd, 0x14f2, 0x2159, 0x0d5c, 0x1b4f, 0x253a, 0x2d9c,

 0x37fc, 0x0dc5, 0x210e, 0x20e5, 0x3cf4, 0x18b9, 0x0dcf, 0x176e},

 {0x054f, 0x0bc5, 0x29bd, 0x0fec, 0x1498, 0x0983, 0x2426, 0x243e,

386

 0x1bbd, 0x324b, 0x2f5c, 0x0892, 0x20ec, 0x1602, 0x321f, 0x2810},

 {0x2461, 0x069d, 0x04e6, 0x1319, 0x1fc3, 0x2f9f, 0x205a, 0x249c,

 0x1b44, 0x117b, 0x292f, 0x0cbc, 0x36f1, 0x3d94, 0x022f, 0x2308},

 {0x06d3, 0x3167, 0x0dc4, 0x31e5, 0x0e33, 0x212f, 0x037d, 0x1e1f,

 0x1582, 0x1649, 0x2136, 0x301d, 0x2a97, 0x01f8, 0x09b3, 0x3d88},

 {0x1118, 0x203e, 0x2e36, 0x2fc5, 0x092f, 0x1587, 0x10e2, 0x17bb,

 0x0fc8, 0x282b, 0x1dce, 0x2bc1, 0x345c, 0x389d, 0x27ce, 0x157e},

 {0x015a, 0x07da, 0x122a, 0x1ba0, 0x0c1d, 0x3cb4, 0x3d0f, 0x2e1a,

 0x0713, 0x33f4, 0x12b8, 0x3c24, 0x1ae5, 0x0470, 0x38a3, 0x3511},

 {0x106e, 0x1f28, 0x1366, 0x3a89, 0x0b3b, 0x3295, 0x3dc7, 0x2af3,

 0x2e89, 0x3f81, 0x0a2e, 0x0010, 0x0865, 0x0956, 0x2269, 0x1f5c},

 {0x28aa, 0x17b2, 0x167b, 0x36fc, 0x0ed5, 0x34a2, 0x2f19, 0x174c,

 0x1c50, 0x244a, 0x30ce, 0x16a4, 0x31ce, 0x384f, 0x19d4, 0x368c},

 {0x3fee, 0x016f, 0x324d, 0x1a9b, 0x01c2, 0x2489, 0x30c8, 0x32fd,

 0x2315, 0x34a3, 0x35af, 0x05aa, 0x3fd9, 0x37dd, 0x186b, 0x1a0f},

 {0x29e5, 0x0061, 0x0059, 0x3a17, 0x1d2d, 0x33ff, 0x2a98, 0x3901,

 0x25a1, 0x01af, 0x16b8, 0x07b1, 0x1127, 0x3885, 0x299a, 0x058c},

 {0x2226, 0x289e, 0x207f, 0x11bf, 0x2661, 0x2c87, 0x2997, 0x06ea,

 0x2271, 0x363e, 0x0222, 0x26e1, 0x3457, 0x1ee7, 0x128d, 0x3c17},

 {0x3d85, 0x2727, 0x3851, 0x0add, 0x246c, 0x33af, 0x3794, 0x317d,

 0x0591, 0x3f2e, 0x297b, 0x3b32, 0x178f, 0x1c5b, 0x3da3, 0x39a5},

 {0x361a, 0x3532, 0x2a79, 0x1605, 0x3c57, 0x2395, 0x3b10, 0x263e,

 0x37ab, 0x1fd2, 0x0223, 0x2541, 0x2a16, 0x190f, 0x16fa, 0x0021}

 },

 { {0x1529, 0x3e20, 0x29c4, 0x3e79, 0x0f73, 0x314a, 0x2db1, 0x36b7,

 0x3dc3, 0x288b, 0x367e, 0x2a7d, 0x36ae, 0x21e4, 0x3596, 0x031b},

387

 {0x24e0, 0x39a9, 0x1317, 0x25d4, 0x27a8, 0x2fdc, 0x25ef, 0x1618,

 0x2633, 0x12c9, 0x04c6, 0x0e6b, 0x2884, 0x0b67, 0x231c, 0x1b6d},

 {0x11ed, 0x2c66, 0x257d, 0x162f, 0x0401, 0x1986, 0x3231, 0x00e6,

 0x36f3, 0x2be1, 0x0947, 0x1eee, 0x1c82, 0x1eb7, 0x09c1, 0x3c65},

 {0x2e5f, 0x2cbc, 0x31ba, 0x2c9a, 0x0654, 0x1b77, 0x2710, 0x0a91,

 0x3828, 0x05db, 0x0c6e, 0x139a, 0x1194, 0x22f9, 0x2de2, 0x0651},

 {0x31d9, 0x0a4e, 0x2fe3, 0x0eac, 0x3369, 0x2d7f, 0x0f59, 0x17b4,

 0x1e68, 0x2f96, 0x29b9, 0x0131, 0x3e46, 0x3d58, 0x009f, 0x1a8a},

 {0x3527, 0x22da, 0x22d6, 0x30c9, 0x29ec, 0x2878, 0x3c6d, 0x2640,

 0x3aa6, 0x1cb1, 0x3e95, 0x2060, 0x3a22, 0x1a29, 0x3f22, 0x0c29},

 {0x1328, 0x119c, 0x115d, 0x11a4, 0x1dec, 0x31a8, 0x3efb, 0x392f,

 0x3487, 0x23ab, 0x2fb9, 0x03b0, 0x202a, 0x3151, 0x2181, 0x3251},

 {0x0dc8, 0x0acd, 0x0a3a, 0x3cd2, 0x06b8, 0x0d86, 0x02ff, 0x0b4c,

 0x3ed9, 0x042b, 0x3d3d, 0x0732, 0x3746, 0x2f1f, 0x236a, 0x0116},

 {0x0edb, 0x315f, 0x28ba, 0x21ea, 0x3aa0, 0x1e65, 0x2188, 0x26e0,

 0x3a00, 0x0674, 0x07ed, 0x03fb, 0x1f9f, 0x0092, 0x31d4, 0x2b78},

 {0x2abc, 0x0fa2, 0x3268, 0x3488, 0x094b, 0x3b26, 0x0075, 0x1e3e,

 0x3346, 0x393a, 0x309a, 0x31c9, 0x22cc, 0x3cfd, 0x01b0, 0x1c5c},

 {0x181f, 0x2b7f, 0x14cb, 0x22a9, 0x14c1, 0x005c, 0x1f63, 0x3de5,

 0x1247, 0x1dcf, 0x2e5e, 0x2f9d, 0x0155, 0x1b2b, 0x0a63, 0x2e75},

 {0x3f8f, 0x1352, 0x3070, 0x1b21, 0x3e12, 0x2c57, 0x374d, 0x293d,

 0x2382, 0x3e5d, 0x369e, 0x0cd7, 0x2707, 0x2b79, 0x17d6, 0x19ad},

 {0x2834, 0x3d2c, 0x313a, 0x1f94, 0x32b9, 0x16c0, 0x04e7, 0x3e1d,

 0x1dc1, 0x2f26, 0x05f8, 0x120e, 0x1fdb, 0x37fe, 0x3510, 0x3c4e},

 {0x39d6, 0x3970, 0x0d9d, 0x00ce, 0x2c8f, 0x30f1, 0x1422, 0x3658,

 0x1801, 0x03c1, 0x0528, 0x2442, 0x3998, 0x34cc, 0x3241, 0x17c2},

388

 {0x281b, 0x3263, 0x19e8, 0x219f, 0x2927, 0x255f, 0x1d72, 0x3175,

 0x2338, 0x063e, 0x1930, 0x16a5, 0x16e7, 0x14f7, 0x1c07, 0x35d3},

 {0x230f, 0x1192, 0x0f3a, 0x06c9, 0x29cd, 0x3a4a, 0x1243, 0x2a9f,

 0x2399, 0x0cd1, 0x26d4, 0x2b4a, 0x077d, 0x2ce9, 0x3791, 0x1c66}

 },

 { {0x347c, 0x25e5, 0x0de9, 0x294e, 0x2e55, 0x381c, 0x297a, 0x3fa5,

 0x1189, 0x3f05, 0x1793, 0x32bc, 0x3dce, 0x3092, 0x2a89, 0x151d},

 {0x0d56, 0x0439, 0x28d7, 0x2270, 0x2de0, 0x2851, 0x1739, 0x3682,

 0x2cc8, 0x05f0, 0x23f2, 0x0a11, 0x3164, 0x3287, 0x10e7, 0x3477},

 {0x2d5f, 0x2da7, 0x0b06, 0x316d, 0x0035, 0x0978, 0x1d7c, 0x370a,

 0x093e, 0x1c53, 0x298b, 0x0ed0, 0x19bd, 0x3769, 0x1faa, 0x0b44},

 {0x1e6f, 0x02f4, 0x0c43, 0x2a5d, 0x0119, 0x3b6f, 0x34e0, 0x0661,

 0x32c0, 0x17ee, 0x25f5, 0x3e75, 0x1f9b, 0x06a6, 0x2bad, 0x1846},

 {0x05be, 0x18a6, 0x2ddd, 0x39fe, 0x0968, 0x223d, 0x2f00, 0x2855,

 0x36c9, 0x184b, 0x1134, 0x0a8d, 0x3f2a, 0x203c, 0x0ea3, 0x22c7},

 {0x1251, 0x220d, 0x2f2f, 0x23c9, 0x2721, 0x3e96, 0x2069, 0x0f8f,

 0x0610, 0x3ba6, 0x3978, 0x040f, 0x31fc, 0x2f47, 0x3d3a, 0x03fe},

 {0x3392, 0x12ef, 0x30d9, 0x0dee, 0x2d14, 0x1407, 0x2cd2, 0x0bfa,

 0x057d, 0x0106, 0x1f45, 0x07bf, 0x24bf, 0x1be2, 0x2bfa, 0x0365},

 {0x0347, 0x3935, 0x0d1a, 0x22d8, 0x1b43, 0x3d1d, 0x19f3, 0x2fbe,

 0x29dc, 0x2351, 0x028f, 0x1203, 0x1c4a, 0x025c, 0x11e9, 0x0340},

 {0x1780, 0x2573, 0x1d35, 0x2f82, 0x2244, 0x2859, 0x0898, 0x1143,

 0x0265, 0x150b, 0x13cd, 0x00ff, 0x013d, 0x3d66, 0x3bed, 0x2d03},

 {0x3c08, 0x04a3, 0x108b, 0x21d2, 0x01d0, 0x0835, 0x065d, 0x0efa,

 0x0f2f, 0x06a4, 0x23a2, 0x3330, 0x1e14, 0x10dc, 0x01b3, 0x1e86},

 {0x3855, 0x0896, 0x27f1, 0x2e61, 0x3d2b, 0x34bb, 0x121e, 0x12e5,

389

 0x1ca9, 0x04ae, 0x1390, 0x2ac1, 0x3d44, 0x063b, 0x3d3b, 0x1660},

 {0x3315, 0x0527, 0x10f6, 0x012a, 0x002d, 0x08de, 0x1c67, 0x2f87,

 0x043a, 0x1a35, 0x0689, 0x0e81, 0x33a2, 0x2d4b, 0x3db2, 0x1638},

 {0x393d, 0x0db2, 0x3026, 0x3e19, 0x1b18, 0x1665, 0x3a24, 0x357c,

 0x039f, 0x079a, 0x1eab, 0x082c, 0x3f08, 0x3ce2, 0x235f, 0x087d},

 {0x2fb5, 0x0163, 0x2089, 0x0024, 0x0e93, 0x2d39, 0x35b7, 0x1e5b,

 0x0a9c, 0x0b43, 0x154e, 0x0f2b, 0x1ad4, 0x040b, 0x39e4, 0x3a2b},

 {0x0cf9, 0x1e0d, 0x2a92, 0x3419, 0x0950, 0x134a, 0x2d26, 0x295c,

 0x2d07, 0x0fa6, 0x0c6b, 0x2c11, 0x3a04, 0x3d67, 0x2aed, 0x27a1},

 {0x26d0, 0x13a2, 0x3d4a, 0x11b7, 0x3539, 0x1572, 0x2733, 0x22f5,

 0x15df, 0x0861, 0x367c, 0x0b41, 0x35d4, 0x34ab, 0x11cd, 0x0d91}

 },

 { {0x2a15, 0x30d6, 0x27e9, 0x2e54, 0x2e9d, 0x1c2f, 0x24b2, 0x1d85,

 0x1330, 0x1b5c, 0x3272, 0x3e15, 0x2f78, 0x1f7c, 0x2a2b, 0x23d2},

 {0x0d0d, 0x2741, 0x0676, 0x17dc, 0x3e38, 0x0768, 0x293a, 0x11d5,

 0x0970, 0x2dbb, 0x3f9a, 0x35fb, 0x1794, 0x3c6a, 0x05fa, 0x146f},

 {0x3569, 0x1d53, 0x3ef4, 0x1f7e, 0x2b36, 0x31f0, 0x1ec2, 0x2d95,

 0x0e3b, 0x0ed2, 0x09e0, 0x18e9, 0x0432, 0x2d17, 0x101e, 0x09df},

 {0x2e90, 0x3a39, 0x1245, 0x36ca, 0x1b7f, 0x39f9, 0x0242, 0x2aa3,

 0x003a, 0x1a78, 0x3a0e, 0x0357, 0x300e, 0x1450, 0x3156, 0x1362},

 {0x09ce, 0x1b35, 0x0bb5, 0x1ae9, 0x24ad, 0x0b60, 0x178b, 0x36fa,

 0x1c78, 0x0b4b, 0x14a1, 0x3972, 0x0de6, 0x0500, 0x0b25, 0x245d},

 {0x2015, 0x31ab, 0x0c46, 0x16c9, 0x110c, 0x1726, 0x040c, 0x0817,

 0x07b9, 0x15f2, 0x3e51, 0x28f3, 0x3e8e, 0x307f, 0x0d6c, 0x3081},

 {0x0c20, 0x3954, 0x2473, 0x0c58, 0x01b9, 0x0d1c, 0x27eb, 0x2481,

 0x18d0, 0x0b0c, 0x179e, 0x22bc, 0x200d, 0x089c, 0x3a1b, 0x2217},

390

 {0x2b50, 0x24fc, 0x32a4, 0x15ea, 0x2b97, 0x3cdd, 0x2890, 0x33a3,

 0x2331, 0x3cc3, 0x1ca4, 0x18d7, 0x27fd, 0x2783, 0x157a, 0x02f6},

 {0x3ff2, 0x3006, 0x37f4, 0x3e86, 0x2a88, 0x06b1, 0x1e32, 0x1a14,

 0x2d6f, 0x2671, 0x24cb, 0x3702, 0x0b49, 0x286d, 0x07ab, 0x17a1},

 {0x1bf9, 0x1a51, 0x1aa0, 0x1a4d, 0x3aef, 0x061e, 0x38e0, 0x3688,

 0x13c4, 0x074b, 0x1fcb, 0x1594, 0x23aa, 0x0efb, 0x331b, 0x2455},

 {0x04e2, 0x30ad, 0x1f59, 0x0f87, 0x14e8, 0x183a, 0x317e, 0x1d37,

 0x3e72, 0x066b, 0x0152, 0x2862, 0x1297, 0x20c2, 0x2b92, 0x08fc},

 {0x140f, 0x3324, 0x2eea, 0x1215, 0x2c71, 0x120a, 0x2385, 0x3942,

 0x3281, 0x33f2, 0x2144, 0x28bf, 0x09f8, 0x118c, 0x0373, 0x394d},

 {0x11bd, 0x3dcf, 0x18ac, 0x07e8, 0x0f38, 0x0cff, 0x00b9, 0x295a,

 0x36d8, 0x3c94, 0x3dd8, 0x26fe, 0x2c23, 0x2f92, 0x170f, 0x3836},

 {0x31f8, 0x1041, 0x195c, 0x3ba9, 0x18e7, 0x2cd8, 0x1a09, 0x1d3b,

 0x25b2, 0x0882, 0x31ee, 0x10fb, 0x3cb6, 0x1b53, 0x213c, 0x0cf5},

 {0x3258, 0x186f, 0x20df, 0x1ccd, 0x1685, 0x0caa, 0x1952, 0x2745,

 0x193e, 0x032b, 0x3d02, 0x0698, 0x225b, 0x3af7, 0x08ea, 0x1909},

 {0x1cca, 0x32c3, 0x00b6, 0x04d0, 0x2235, 0x3681, 0x0b8c, 0x1fda,

 0x38f3, 0x09bf, 0x0fe7, 0x2a00, 0x0060, 0x0adf, 0x07fb, 0x12b0}

 },

 { {0x0eb3, 0x2ab6, 0x03b3, 0x1d91, 0x357b, 0x3cdf, 0x231d, 0x336e,

 0x2347, 0x27e3, 0x2390, 0x3e8a, 0x333c, 0x11fc, 0x09ec, 0x153d},

 {0x0291, 0x022b, 0x12b2, 0x0d6f, 0x3203, 0x28ef, 0x19d9, 0x2ad2,

 0x1ab5, 0x21d7, 0x2e3d, 0x270a, 0x2725, 0x0434, 0x3bad, 0x08dd},

 {0x11b2, 0x1053, 0x043b, 0x161a, 0x32ac, 0x0453, 0x014a, 0x2867,

 0x39ea, 0x1f27, 0x10ef, 0x271a, 0x38bc, 0x23c1, 0x27b7, 0x12ba},

 {0x0d26, 0x378a, 0x3f0a, 0x076c, 0x0e3a, 0x2cad, 0x3ec3, 0x2ada,

391

 0x2517, 0x2969, 0x0b1a, 0x047c, 0x3df2, 0x12fc, 0x24da, 0x301e},

 {0x0a68, 0x25e0, 0x0352, 0x18cb, 0x20e3, 0x3559, 0x29b5, 0x35f3,

 0x012e, 0x396b, 0x1976, 0x0321, 0x2824, 0x0782, 0x3a50, 0x1a8d},

 {0x05cf, 0x0ee5, 0x1b13, 0x0cac, 0x26e4, 0x3e49, 0x273f, 0x2a63,

 0x117f, 0x1d7b, 0x2b6e, 0x3961, 0x3a45, 0x2140, 0x198c, 0x1081},

 {0x3273, 0x35f2, 0x30f6, 0x1186, 0x1283, 0x3505, 0x1aa2, 0x1658,

 0x2b21, 0x1492, 0x1fd0, 0x19f4, 0x1078, 0x1ccc, 0x237d, 0x0f30},

 {0x1da6, 0x09eb, 0x2e97, 0x3daf, 0x274f, 0x19f6, 0x3202, 0x1601,

 0x182b, 0x1bdb, 0x29ce, 0x1e3b, 0x1f26, 0x13a7, 0x0657, 0x0d5d},

 {0x2b3b, 0x113c, 0x34ff, 0x31d1, 0x0146, 0x1c49, 0x1a24, 0x06c8,

 0x3b25, 0x24ae, 0x24a5, 0x1857, 0x146e, 0x268f, 0x13fe, 0x2700},

 {0x006c, 0x0254, 0x3896, 0x334d, 0x312d, 0x2e9b, 0x2a4d, 0x0362,

 0x21ff, 0x10d2, 0x2715, 0x1c23, 0x2c50, 0x3726, 0x041f, 0x2432},

 {0x3461, 0x2f5f, 0x1f9e, 0x07a9, 0x107c, 0x1209, 0x3fa7, 0x02e7,

 0x34da, 0x2616, 0x3bf2, 0x1551, 0x23f5, 0x229c, 0x3b6c, 0x3d9f},

 {0x1e7b, 0x3535, 0x0294, 0x1c77, 0x0fc4, 0x132f, 0x24cf, 0x096c,

 0x0aa8, 0x20d2, 0x1088, 0x0f12, 0x08f7, 0x24de, 0x0f72, 0x2c4d},

 {0x1539, 0x0b5b, 0x259f, 0x294c, 0x0e44, 0x05a2, 0x3091, 0x1be5,

 0x2ddf, 0x1cce, 0x2005, 0x3c28, 0x3c22, 0x0792, 0x0db6, 0x154a},

 {0x1a6a, 0x175f, 0x1edc, 0x0349, 0x0526, 0x1883, 0x39c9, 0x3762,

 0x26eb, 0x225e, 0x1e42, 0x38e2, 0x3bc6, 0x1163, 0x0e5f, 0x3e6f},

 {0x02e8, 0x0693, 0x0858, 0x3121, 0x306c, 0x0ae9, 0x2030, 0x35ba,

 0x0a51, 0x3bc9, 0x0093, 0x2e07, 0x0b30, 0x221d, 0x3f98, 0x0a7e},

 {0x3f6e, 0x25c3, 0x0740, 0x01a9, 0x2f94, 0x3e62, 0x3140, 0x3e3a,

 0x08f8, 0x3c0f, 0x2946, 0x3141, 0x28a5, 0x26f5, 0x3f75, 0x290d}

 },

392

 { {0x2832, 0x31eb, 0x2149, 0x1db7, 0x137e, 0x358a, 0x2ea3, 0x2b95,

 0x162c, 0x36a1, 0x13b4, 0x3c69, 0x1e64, 0x3f48, 0x2006, 0x10ad},

 {0x04a0, 0x24b3, 0x2f89, 0x0d36, 0x0293, 0x0902, 0x29e2, 0x043d,

 0x0efc, 0x2297, 0x284f, 0x0ab9, 0x2757, 0x35ca, 0x08fd, 0x3f68},

 {0x21d5, 0x117e, 0x281d, 0x2cb5, 0x360b, 0x38bd, 0x33fd, 0x323a,

 0x2d88, 0x04c5, 0x21cf, 0x0ed1, 0x0b18, 0x2ab7, 0x1830, 0x3cb3},

 {0x2c0d, 0x0fd4, 0x048c, 0x2be6, 0x206e, 0x077f, 0x3963, 0x0141,

 0x0428, 0x1657, 0x2b71, 0x24cc, 0x206b, 0x10b4, 0x114f, 0x0a5b},

 {0x3460, 0x3a8a, 0x3fda, 0x2ef5, 0x0d0b, 0x1dc0, 0x33c5, 0x20be,

 0x1e95, 0x07d7, 0x2206, 0x274d, 0x35ab, 0x3602, 0x0a40, 0x0a31},

 {0x108e, 0x10a6, 0x1b1f, 0x1f75, 0x0d60, 0x0745, 0x3c33, 0x1a1f,

 0x0125, 0x2120, 0x0398, 0x04c2, 0x3a54, 0x185c, 0x2c8d, 0x000b},

 {0x2770, 0x1c11, 0x09b1, 0x31ec, 0x0ea9, 0x0bad, 0x1387, 0x3066,

 0x3375, 0x15f0, 0x3d9e, 0x0af6, 0x38b0, 0x144b, 0x0eb0, 0x076b},

 {0x1584, 0x2f24, 0x06d4, 0x3ea7, 0x0279, 0x19de, 0x254c, 0x390f,

 0x2453, 0x25bb, 0x1c98, 0x34fc, 0x0a54, 0x11de, 0x0d69, 0x296c},

 {0x2fce, 0x3057, 0x3caf, 0x3c67, 0x2c20, 0x2367, 0x3f80, 0x34ae,

 0x0238, 0x2883, 0x0c49, 0x39ae, 0x0b33, 0x04cf, 0x230d, 0x3211},

 {0x080c, 0x1da3, 0x2a01, 0x1953, 0x077c, 0x156f, 0x0ca3, 0x1f0d,

 0x112e, 0x2cb7, 0x1956, 0x2905, 0x3761, 0x0507, 0x0a47, 0x20ed},

 {0x13c3, 0x3c07, 0x0b7b, 0x2611, 0x26ac, 0x349f, 0x3380, 0x1555,

 0x1e78, 0x0f45, 0x0197, 0x0af9, 0x1644, 0x308d, 0x0107, 0x3879},

 {0x0213, 0x2987, 0x387b, 0x12bf, 0x20d9, 0x3ecf, 0x08b1, 0x17ef,

 0x3da8, 0x2694, 0x1cd5, 0x1684, 0x2d1d, 0x30f4, 0x3cc1, 0x3c8b},

 {0x31b1, 0x0438, 0x365a, 0x3732, 0x36bd, 0x1d8d, 0x2302, 0x0aef,

 0x3b1b, 0x2a4e, 0x308c, 0x100f, 0x04f9, 0x3fc6, 0x0c38, 0x27df},

393

 {0x22e1, 0x2a52, 0x2856, 0x18f9, 0x0a65, 0x018f, 0x2871, 0x1614,

 0x315d, 0x09fb, 0x0c61, 0x074e, 0x124e, 0x1650, 0x2743, 0x0012},

 {0x1d99, 0x0fa8, 0x3a9b, 0x194b, 0x2d5d, 0x35d5, 0x3f3c, 0x1e0c,

 0x1a86, 0x180a, 0x28bb, 0x23b1, 0x2dfa, 0x071d, 0x02bf, 0x26f6},

 {0x0186, 0x38e3, 0x0c45, 0x2327, 0x0114, 0x1325, 0x1e82, 0x0fd0,

 0x042a, 0x0f0f, 0x164e, 0x2044, 0x0a6c, 0x12cd, 0x391f, 0x03b8}

 },

 { {0x031f, 0x1f48, 0x1280, 0x13d9, 0x1c4d, 0x371e, 0x3d5a, 0x05ed,

 0x1c40, 0x1fb1, 0x133a, 0x372d, 0x0ff9, 0x2bfc, 0x123b, 0x22eb},

 {0x08d5, 0x0bea, 0x1417, 0x2d5a, 0x1b15, 0x04ad, 0x2926, 0x0f8c,

 0x2759, 0x1b9b, 0x2bc7, 0x0c92, 0x331f, 0x087b, 0x034f, 0x2cb3},

 {0x2c9c, 0x0bae, 0x068d, 0x215a, 0x202c, 0x1b2d, 0x3c45, 0x2659,

 0x3fb4, 0x25eb, 0x3a2d, 0x29f9, 0x04b7, 0x04b4, 0x358d, 0x198e},

 {0x3c0e, 0x00f0, 0x1460, 0x19f8, 0x0ec1, 0x2c53, 0x3017, 0x1566,

 0x3060, 0x051b, 0x1462, 0x22b5, 0x151a, 0x32ed, 0x1523, 0x3eb8},

 {0x3350, 0x021e, 0x1865, 0x0d6b, 0x1e8c, 0x1737, 0x1d84, 0x164f,

 0x3fff, 0x0c22, 0x1a2e, 0x1231, 0x0e24, 0x15e5, 0x2a0a, 0x238a},

 {0x0a5e, 0x2dac, 0x21d6, 0x0fc7, 0x0d61, 0x3f12, 0x17d2, 0x2acc,

 0x1630, 0x334b, 0x2063, 0x2d42, 0x20c6, 0x2992, 0x2c00, 0x0e16},

 {0x22e7, 0x2823, 0x025f, 0x305f, 0x18ab, 0x2368, 0x3a2a, 0x2bdf,

 0x37a7, 0x36a7, 0x0a18, 0x2a67, 0x0ba9, 0x2b5f, 0x1ef3, 0x265f},

 {0x3305, 0x335d, 0x342c, 0x1d1c, 0x165e, 0x3b5f, 0x364a, 0x2e19,

 0x2ff8, 0x3546, 0x3152, 0x29da, 0x0807, 0x22e4, 0x01e2, 0x158d},

 {0x33a4, 0x2336, 0x048d, 0x2c2d, 0x3cc6, 0x06a3, 0x2bbe, 0x0bee,

 0x2d15, 0x20a9, 0x0b7c, 0x3414, 0x0e77, 0x1b3f, 0x3f0c, 0x0fe6},

 {0x02b0, 0x2143, 0x1a44, 0x1453, 0x063d, 0x2983, 0x103e, 0x1bac,

394

 0x3248, 0x2bb1, 0x3082, 0x1670, 0x08c0, 0x0b4d, 0x1aba, 0x367d},

 {0x271f, 0x1573, 0x0d68, 0x06ab, 0x065b, 0x34a6, 0x28ee, 0x0c9a,

 0x2dbe, 0x1f6b, 0x293f, 0x01e9, 0x2fad, 0x33fc, 0x3fc1, 0x1cc4},

 {0x045a, 0x1a59, 0x113f, 0x1e6c, 0x2df3, 0x02d2, 0x0c54, 0x142f,

 0x1872, 0x3857, 0x0772, 0x3e4b, 0x020b, 0x07af, 0x0819, 0x16a9},

 {0x15fe, 0x322e, 0x199e, 0x3dd4, 0x3413, 0x0371, 0x258f, 0x3f8a,

 0x3f51, 0x17bd, 0x2ff7, 0x3b8c, 0x06cc, 0x269d, 0x1632, 0x1e40},

 {0x0444, 0x3561, 0x2b46, 0x1f8b, 0x2f77, 0x1706, 0x1322, 0x2bbf,

 0x1b75, 0x3113, 0x03d7, 0x10b6, 0x30b2, 0x1e55, 0x0cec, 0x2ca6},

 {0x2090, 0x1955, 0x112b, 0x0380, 0x166c, 0x252e, 0x3252, 0x1922,

 0x28fa, 0x033a, 0x1f57, 0x104a, 0x0604, 0x389e, 0x2ec1, 0x01c3},

 {0x1a26, 0x0791, 0x02db, 0x0786, 0x2734, 0x1a10, 0x016a, 0x217f,

 0x15ee, 0x0b05, 0x2a2f, 0x1741, 0x2534, 0x2042, 0x208d, 0x2bcb}

 },

 { {0x2b10, 0x071a, 0x1a95, 0x05d4, 0x0316, 0x182d, 0x32ff, 0x0567,

 0x1641, 0x29ae, 0x1579, 0x19a8, 0x1a37, 0x1ac8, 0x1fbd, 0x2211},

 {0x3c30, 0x234d, 0x0299, 0x2bd7, 0x09a4, 0x2cdf, 0x29a4, 0x2062,

 0x2d7b, 0x1225, 0x211c, 0x0b10, 0x38d8, 0x3ad4, 0x3eee, 0x2086},

 {0x3a63, 0x2c4a, 0x3e31, 0x2af8, 0x05fe, 0x3bc3, 0x2f12, 0x1e26,

 0x0039, 0x0361, 0x131b, 0x03a0, 0x075b, 0x3a2f, 0x0bc4, 0x0e63},

 {0x0ac5, 0x058f, 0x1676, 0x1a6d, 0x3c9f, 0x3b9b, 0x0aab, 0x1c35,

 0x2f98, 0x03ad, 0x3a98, 0x3988, 0x3804, 0x2584, 0x2717, 0x2e01},

 {0x0ea2, 0x199c, 0x29a3, 0x2c68, 0x135b, 0x25de, 0x31cb, 0x3581,

 0x1aad, 0x174b, 0x2c0c, 0x1834, 0x1591, 0x22d2, 0x08c6, 0x3e91},

 {0x3d6e, 0x20d5, 0x3573, 0x3b1a, 0x380c, 0x0cd3, 0x144c, 0x38e6,

 0x2888, 0x30c2, 0x0464, 0x277c, 0x37c1, 0x332c, 0x3c3a, 0x1f15},

395

 {0x1820, 0x3993, 0x0ee9, 0x2ce3, 0x284a, 0x2321, 0x30b1, 0x10c8,

 0x02e9, 0x1082, 0x239e, 0x3191, 0x3f84, 0x3094, 0x02c1, 0x20b9},

 {0x2606, 0x0b0e, 0x2930, 0x2edd, 0x2f1c, 0x0e25, 0x111d, 0x1a74,

 0x0c68, 0x28f6, 0x3bf6, 0x1785, 0x1cae, 0x3106, 0x08cc, 0x088d},

 {0x1680, 0x023b, 0x2980, 0x0d34, 0x116e, 0x1f07, 0x18be, 0x2e4d,

 0x0618, 0x18f2, 0x01c4, 0x2f25, 0x2c6c, 0x379d, 0x2822, 0x3d21},

 {0x03b4, 0x12ea, 0x0f4d, 0x2808, 0x39cd, 0x3b5e, 0x2522, 0x2d55,

 0x03af, 0x1971, 0x0ede, 0x1f0c, 0x2498, 0x2b07, 0x23ec, 0x06ed},

 {0x18a2, 0x0890, 0x30c6, 0x2e93, 0x0247, 0x35d6, 0x24e3, 0x3685,

 0x2521, 0x263a, 0x32aa, 0x1061, 0x3c44, 0x37c6, 0x293e, 0x3f4c},

 {0x2ee0, 0x3dc5, 0x08a8, 0x05a1, 0x1aa5, 0x29c1, 0x3575, 0x2fd0,

 0x2d19, 0x2bbc, 0x03e1, 0x1d22, 0x175d, 0x2650, 0x2a29, 0x232d},

 {0x11f6, 0x1206, 0x16ef, 0x27dd, 0x3664, 0x373b, 0x2e9e, 0x1eea,

 0x3734, 0x10cb, 0x08d6, 0x24dc, 0x085d, 0x0642, 0x1e1a, 0x301c},

 {0x3f63, 0x0063, 0x2a87, 0x3c68, 0x349b, 0x0b9c, 0x3243, 0x1a03,

 0x27e6, 0x09ed, 0x28d2, 0x3b2b, 0x3ad2, 0x3f37, 0x10fc, 0x381b},

 {0x0154, 0x3470, 0x0b73, 0x0784, 0x385e, 0x2e67, 0x2fb7, 0x1a5f,

 0x3a68, 0x25ee, 0x0f0c, 0x1e83, 0x0134, 0x149f, 0x247c, 0x1633},

 {0x1011, 0x1998, 0x0cb6, 0x2fa0, 0x29bb, 0x0270, 0x2676, 0x37ea,

 0x1db1, 0x3b57, 0x1401, 0x0655, 0x2dc0, 0x2fba, 0x0c9c, 0x34a0}

 },

 { {0x397d, 0x380d, 0x3690, 0x2037, 0x3538, 0x10db, 0x0b5f, 0x293b,

 0x1746, 0x13e8, 0x3b19, 0x316a, 0x30ed, 0x24be, 0x2b8b, 0x2c14},

 {0x2f30, 0x23c0, 0x32a0, 0x06a8, 0x3dd2, 0x21a4, 0x0ab1, 0x10f2,

 0x0b0d, 0x35e2, 0x149a, 0x3b20, 0x2a39, 0x1d6a, 0x327a, 0x29c8},

 {0x2515, 0x3ed6, 0x00d1, 0x138c, 0x36db, 0x17c9, 0x1bc4, 0x2917,

396

 0x2e22, 0x01d9, 0x0262, 0x201b, 0x187d, 0x0d83, 0x195a, 0x0bd7},

 {0x30ab, 0x1113, 0x02b9, 0x002e, 0x08a2, 0x0422, 0x3ed8, 0x3309,

 0x2963, 0x3255, 0x2d02, 0x032c, 0x38b3, 0x19e1, 0x2be7, 0x10ea},

 {0x17a7, 0x0fc9, 0x2ffb, 0x0191, 0x371d, 0x0783, 0x0309, 0x0c89,

 0x2b73, 0x2fdb, 0x21cc, 0x16eb, 0x18cd, 0x1383, 0x22aa, 0x0614},

 {0x03b9, 0x04af, 0x05fd, 0x10da, 0x1fa5, 0x31af, 0x2ee5, 0x3afb,

 0x26ce, 0x0fc3, 0x14ba, 0x25dc, 0x101b, 0x043e, 0x2f43, 0x1c5d},

 {0x0b20, 0x0135, 0x354a, 0x2320, 0x067b, 0x3b05, 0x363a, 0x1978,

 0x0ad3, 0x0e2a, 0x2726, 0x2491, 0x1c8b, 0x0351, 0x3e7f, 0x35a6},

 {0x2e65, 0x0a8b, 0x0e15, 0x1429, 0x051f, 0x1a6e, 0x3555, 0x20aa,

 0x0448, 0x0a29, 0x3907, 0x2fcf, 0x1128, 0x39d4, 0x2419, 0x148f},

 {0x3d92, 0x21b9, 0x10de, 0x0bc8, 0x39f6, 0x15d4, 0x0a78, 0x3cbb,

 0x3715, 0x335b, 0x3930, 0x2797, 0x1e53, 0x113d, 0x33dd, 0x2e82},

 {0x109f, 0x374f, 0x09fa, 0x079d, 0x3e14, 0x25a3, 0x2330, 0x34e7,

 0x2f48, 0x0b92, 0x2024, 0x1480, 0x1014, 0x3d31, 0x1849, 0x1a76},

 {0x11ff, 0x15d3, 0x3583, 0x23e6, 0x3ef8, 0x3679, 0x3968, 0x2985,

 0x1ede, 0x2050, 0x08a4, 0x398b, 0x1bc6, 0x3d37, 0x1089, 0x11c5},

 {0x162d, 0x34d9, 0x2409, 0x3fb3, 0x364d, 0x0227, 0x1448, 0x1889,

 0x16a8, 0x00c2, 0x0b28, 0x2932, 0x0408, 0x2a83, 0x0bb3, 0x3bb9},

 {0x2bf7, 0x138b, 0x3484, 0x04be, 0x165c, 0x07f2, 0x373d, 0x3a88,

 0x1beb, 0x1985, 0x0f22, 0x155e, 0x2c49, 0x227d, 0x1a02, 0x309e},

 {0x273a, 0x3119, 0x0da4, 0x0f49, 0x2033, 0x0bb2, 0x1027, 0x1e73,

 0x289a, 0x372c, 0x155c, 0x3e74, 0x2d2f, 0x30d7, 0x0e26, 0x0f99},

 {0x3045, 0x1097, 0x14a4, 0x2254, 0x074d, 0x305d, 0x1852, 0x34f9,

 0x10f1, 0x3c87, 0x1348, 0x1baa, 0x3228, 0x3e26, 0x07ea, 0x240a},

 {0x1c3f, 0x0cba, 0x3fb6, 0x3a6f, 0x00af, 0x08d8, 0x3782, 0x29fa,

397

 0x0ba8, 0x38ff, 0x1ed5, 0x1327, 0x0243, 0x05d7, 0x3d80, 0x0c63}

 },

 { {0x294d, 0x3ea5, 0x0d1d, 0x3619, 0x24bb, 0x1edf, 0x190a, 0x0afe,

 0x2b13, 0x1468, 0x2690, 0x33a5, 0x0a4c, 0x1c68, 0x0eb2, 0x3447},

 {0x176a, 0x0201, 0x2d12, 0x0c09, 0x3cd3, 0x1e94, 0x21a3, 0x05b7,

 0x2ce4, 0x2f60, 0x044a, 0x2422, 0x0f5d, 0x0866, 0x07a4, 0x142b},

 {0x3ce9, 0x036b, 0x1d46, 0x2fd2, 0x0485, 0x29c2, 0x2f0b, 0x2a7b,

 0x1501, 0x3376, 0x3750, 0x2d24, 0x3171, 0x2c59, 0x36c5, 0x073c},

 {0x12d4, 0x3670, 0x3c76, 0x1208, 0x1015, 0x2103, 0x1b3a, 0x0934,

 0x1773, 0x257c, 0x2c0e, 0x2eeb, 0x1f98, 0x15f5, 0x1810, 0x00d6},

 {0x3542, 0x36d1, 0x3dc0, 0x0f7d, 0x2b4d, 0x2c36, 0x3a23, 0x138a,

 0x1a48, 0x25b8, 0x1003, 0x05a7, 0x19fc, 0x2e5b, 0x072f, 0x3934},

 {0x19a0, 0x1ee9, 0x37e3, 0x263f, 0x18e1, 0x166e, 0x3179, 0x231f,

 0x29f2, 0x14dc, 0x2288, 0x3fa4, 0x1626, 0x316e, 0x39a3, 0x338f},

 {0x307b, 0x1e63, 0x1a06, 0x1caa, 0x2fff, 0x0e39, 0x3494, 0x1ca8,

 0x09e2, 0x39a0, 0x099e, 0x11c7, 0x152a, 0x30dd, 0x354f, 0x36cd},

 {0x000a, 0x208e, 0x1496, 0x0fee, 0x33c1, 0x00a4, 0x2c2c, 0x0143,

 0x09a0, 0x041c, 0x28ce, 0x15e8, 0x2e3f, 0x21ae, 0x20cd, 0x2e8d},

 {0x2f4f, 0x3fd4, 0x2aa9, 0x04b8, 0x246f, 0x05e7, 0x3c58, 0x0fae,

 0x3cd4, 0x224f, 0x2fa4, 0x31c4, 0x23e4, 0x008d, 0x2716, 0x0dbd},

 {0x166d, 0x36e3, 0x0989, 0x0908, 0x1c13, 0x216f, 0x26cf, 0x2877,

 0x2941, 0x1051, 0x07c5, 0x1df8, 0x0314, 0x1fc5, 0x1efa, 0x3aad},

 {0x098f, 0x3c27, 0x2e88, 0x11e1, 0x2b1c, 0x361b, 0x24e6, 0x01a5,

 0x2a78, 0x162e, 0x084e, 0x3fde, 0x2325, 0x10be, 0x3e2a, 0x1f49},

 {0x1024, 0x0a73, 0x3b7a, 0x03e9, 0x0df1, 0x21e9, 0x149b, 0x1e17,

 0x3f01, 0x27a2, 0x0f5b, 0x29ab, 0x0d44, 0x2066, 0x2efb, 0x148d},

398

 {0x3f26, 0x0d9e, 0x3e55, 0x327f, 0x34f2, 0x3eff, 0x1822, 0x3b48,

 0x2c5a, 0x0a1b, 0x169e, 0x088f, 0x0650, 0x0f47, 0x3087, 0x2200},

 {0x272f, 0x1908, 0x3456, 0x1f52, 0x13b1, 0x05cc, 0x2198, 0x091c,

 0x0aaa, 0x1652, 0x39a6, 0x0875, 0x095f, 0x212e, 0x072c, 0x2e7c},

 {0x3163, 0x1d1a, 0x1ded, 0x38ad, 0x3aba, 0x0695, 0x237c, 0x0ac1,

 0x029d, 0x2a73, 0x3b49, 0x1111, 0x0416, 0x0099, 0x06dc, 0x3067},

 {0x0df9, 0x15b6, 0x1028, 0x1690, 0x357d, 0x0ea6, 0x3dbe, 0x3207,

 0x0668, 0x145b, 0x1b89, 0x0659, 0x0509, 0x1784, 0x2e34, 0x3779}

 },

 { {0x1dd2, 0x11bb, 0x1f18, 0x045d, 0x3d7b, 0x06c4, 0x304f, 0x30df,

 0x2598, 0x0ff5, 0x30a5, 0x39cb, 0x0388, 0x2920, 0x1536, 0x1321},

 {0x3474, 0x1c9f, 0x04e8, 0x3098, 0x23dc, 0x353e, 0x2c52, 0x1425,

 0x1823, 0x2c4f, 0x317f, 0x3899, 0x3845, 0x1489, 0x3882, 0x16e6},

 {0x0de5, 0x29b6, 0x3cef, 0x0390, 0x0774, 0x2009, 0x0da5, 0x03eb,

 0x2109, 0x15d2, 0x1395, 0x313f, 0x04a2, 0x29b7, 0x3c32, 0x12b4},

 {0x0eef, 0x04d6, 0x3f30, 0x3d69, 0x1f46, 0x233d, 0x1ce7, 0x00da,

 0x37b9, 0x1505, 0x0847, 0x2d01, 0x357a, 0x014b, 0x3450, 0x2475},

 {0x182a, 0x2f06, 0x3873, 0x1c99, 0x3349, 0x296e, 0x3313, 0x1465,

 0x07e4, 0x23f7, 0x0fd8, 0x0418, 0x0181, 0x0307, 0x3a29, 0x2839},

 {0x0db7, 0x19ce, 0x3a93, 0x27da, 0x09c7, 0x0489, 0x0a05, 0x194c,

 0x0188, 0x1d16, 0x370c, 0x0a6a, 0x2768, 0x2bda, 0x0443, 0x1533},

 {0x3b3d, 0x0840, 0x090c, 0x1af9, 0x2eb5, 0x0a15, 0x13a3, 0x0dc0,

 0x070f, 0x24e7, 0x2c18, 0x3ddc, 0x1884, 0x3dcb, 0x00ee, 0x2152},

 {0x03f7, 0x1d29, 0x1d30, 0x24a1, 0x3443, 0x366f, 0x2f97, 0x24b5,

 0x37b4, 0x0fbe, 0x0ccf, 0x3033, 0x08f1, 0x178e, 0x10fe, 0x3aa2},

 {0x2803, 0x3053, 0x3b3c, 0x34cb, 0x274c, 0x0537, 0x31e6, 0x1019,

399

 0x1efe, 0x31a2, 0x3afe, 0x1de0, 0x0025, 0x01d5, 0x24d0, 0x03de},

 {0x2e48, 0x0719, 0x259c, 0x29d0, 0x0936, 0x310d, 0x011b, 0x3acb,

 0x23f1, 0x19cd, 0x323e, 0x220a, 0x317a, 0x37ec, 0x07dc, 0x1389},

 {0x2902, 0x00fe, 0x123d, 0x1444, 0x3079, 0x0c14, 0x2fcb, 0x33ef,

 0x22f7, 0x104b, 0x17bc, 0x3a51, 0x013f, 0x2875, 0x057f, 0x27c5},

 {0x22a6, 0x3730, 0x20d1, 0x2ba6, 0x3de1, 0x35ef, 0x2456, 0x3649,

 0x2a6c, 0x30cd, 0x11c4, 0x1cc3, 0x1ab6, 0x024c, 0x1d67, 0x30a3},

 {0x25c5, 0x1d69, 0x16db, 0x28ad, 0x3d26, 0x3a3d, 0x342b, 0x0cd9,

 0x1bd8, 0x24f4, 0x2251, 0x0ded, 0x253d, 0x21f5, 0x1610, 0x0def},

 {0x2403, 0x37dc, 0x0926, 0x1e93, 0x033c, 0x103b, 0x1f22, 0x2232,

 0x19c6, 0x1359, 0x1be3, 0x06f3, 0x19e2, 0x1861, 0x2417, 0x20d3},

 {0x0644, 0x0598, 0x3aae, 0x0889, 0x1655, 0x2776, 0x3e52, 0x3680,

 0x1a38, 0x03b5, 0x35e5, 0x0555, 0x0d88, 0x359b, 0x1195, 0x2c0f},

 {0x26bd, 0x33b6, 0x1b2a, 0x1e67, 0x0b29, 0x3d60, 0x39a1, 0x399d,

 0x3118, 0x3887, 0x3235, 0x05d9, 0x0b07, 0x1d63, 0x2eca, 0x03b2}

 },

 { {0x25e1, 0x281a, 0x377e, 0x16cf, 0x044b, 0x0af4, 0x14aa, 0x35f8,

 0x3c92, 0x3e4a, 0x22bb, 0x0271, 0x1e11, 0x2d54, 0x3b9a, 0x2225},

 {0x0915, 0x1eba, 0x3c50, 0x2a0f, 0x226d, 0x1b1d, 0x0705, 0x03ba,

 0x1d66, 0x2201, 0x30c0, 0x25a6, 0x0e3d, 0x1c88, 0x0b7a, 0x15c5},

 {0x10dd, 0x3553, 0x14c4, 0x01dc, 0x004a, 0x1812, 0x2b52, 0x1a79,

 0x0a32, 0x32b5, 0x1300, 0x2eec, 0x3ddd, 0x1e8b, 0x04e0, 0x0c3d},

 {0x318b, 0x1483, 0x211e, 0x2bdc, 0x2b20, 0x0c4f, 0x12e9, 0x37d3,

 0x3628, 0x11e5, 0x1a31, 0x2001, 0x2df4, 0x2228, 0x351f, 0x3611},

 {0x31c2, 0x12d5, 0x1b94, 0x0395, 0x11c1, 0x1324, 0x2118, 0x0765,

 0x086e, 0x234b, 0x38c8, 0x05c2, 0x0210, 0x2d3d, 0x0fe5, 0x1b58},

400

 {0x04f0, 0x2cb6, 0x105d, 0x2f63, 0x039e, 0x0dd8, 0x2df7, 0x0393,

 0x1355, 0x2fd4, 0x2cbb, 0x3014, 0x2c54, 0x39db, 0x083a, 0x071f},

 {0x0cde, 0x36d4, 0x0058, 0x3d91, 0x1bec, 0x01bf, 0x1098, 0x37ad,

 0x13b8, 0x21ab, 0x1a4b, 0x076a, 0x38df, 0x0261, 0x030e, 0x2ef2},

 {0x0350, 0x25a7, 0x3854, 0x300f, 0x0c39, 0x2274, 0x14de, 0x24f5,

 0x1809, 0x3130, 0x0b48, 0x3645, 0x1e31, 0x3b24, 0x2973, 0x1402},

 {0x3567, 0x3a10, 0x2aa5, 0x3b7f, 0x0d07, 0x051c, 0x2786, 0x3784,

 0x0d63, 0x200b, 0x0a20, 0x21b0, 0x32ef, 0x3161, 0x3eb3, 0x01e8},

 {0x00a9, 0x001f, 0x1d96, 0x3db3, 0x112c, 0x04f6, 0x36ec, 0x2355,

 0x19f2, 0x1357, 0x0d2e, 0x19b4, 0x27f0, 0x1f4d, 0x1979, 0x053e},

 {0x1af2, 0x182c, 0x1970, 0x38b4, 0x2a93, 0x173c, 0x0cfa, 0x218a,

 0x0ac6, 0x17da, 0x39cf, 0x0b95, 0x331e, 0x3ae7, 0x1e2b, 0x344c},

 {0x1994, 0x1d49, 0x2a64, 0x0601, 0x179d, 0x0ae5, 0x03cd, 0x0fd6,

 0x3650, 0x1f43, 0x0b8e, 0x1981, 0x3a52, 0x1f29, 0x2df6, 0x114d},

 {0x0b65, 0x33d3, 0x2f4d, 0x0919, 0x3eb0, 0x24ff, 0x395c, 0x180b,

 0x0ed8, 0x039d, 0x088c, 0x006a, 0x2393, 0x1169, 0x3e2b, 0x07b0},

 {0x13ff, 0x0e1c, 0x37d5, 0x1351, 0x2253, 0x3981, 0x2c76, 0x2d63,

 0x36da, 0x3bfb, 0x2465, 0x02fd, 0x2ce7, 0x2190, 0x0d78, 0x149e},

 {0x07e3, 0x2fdd, 0x3c0b, 0x2f1b, 0x12a2, 0x2485, 0x3830, 0x1fab,

 0x38e5, 0x1d24, 0x091d, 0x29e0, 0x29b4, 0x17cf, 0x0245, 0x21a0},

 {0x219a, 0x2051, 0x18b6, 0x37fa, 0x27fa, 0x1c3d, 0x02ae, 0x1e6b,

 0x1790, 0x1511, 0x2a42, 0x3280, 0x2fc9, 0x013b, 0x3cf2, 0x3c74}

 },

 { {0x0ed3, 0x3459, 0x382d, 0x170b, 0x13cc, 0x21bf, 0x329c, 0x125d,

 0x0b98, 0x2575, 0x381d, 0x2e63, 0x0b71, 0x2965, 0x2fc0, 0x328e},

 {0x1664, 0x14fb, 0x1716, 0x2384, 0x3e5c, 0x3a57, 0x0185, 0x2248,

401

 0x2db0, 0x0ad7, 0x3a40, 0x060b, 0x30aa, 0x3d59, 0x1d76, 0x2111},

 {0x1816, 0x2c16, 0x234e, 0x14e5, 0x31e0, 0x2c85, 0x18d6, 0x1a73,

 0x1cdc, 0x0028, 0x3c1d, 0x3b93, 0x2dda, 0x1bf7, 0x2cf9, 0x0d7f},

 {0x3671, 0x092d, 0x1e1c, 0x265c, 0x1fd4, 0x3c9e, 0x3104, 0x3d90,

 0x0da1, 0x287b, 0x099b, 0x2469, 0x15e2, 0x2fd5, 0x10c4, 0x3af4},

 {0x19ee, 0x04bd, 0x3a48, 0x3b90, 0x2b6f, 0x13ce, 0x3ee8, 0x3a65,

 0x0799, 0x044d, 0x0cc9, 0x3188, 0x0ecb, 0x268c, 0x36c4, 0x29fd},

 {0x3149, 0x33c4, 0x24df, 0x2c70, 0x3426, 0x3a58, 0x0fb6, 0x0b76,

 0x1cee, 0x19d7, 0x3452, 0x0b1e, 0x2db7, 0x329d, 0x38b5, 0x1abf},

 {0x0e90, 0x1ae7, 0x3306, 0x00f9, 0x336c, 0x3712, 0x2a19, 0x20ad,

 0x1ef9, 0x189a, 0x29ff, 0x3d05, 0x108d, 0x0995, 0x2eba, 0x34d2},

 {0x290f, 0x34d3, 0x07b7, 0x36f9, 0x037a, 0x18a4, 0x10ae, 0x0441,

 0x22df, 0x2792, 0x326f, 0x2b23, 0x1255, 0x3e68, 0x1569, 0x2fec},

 {0x3dca, 0x1c31, 0x2a6b, 0x2a3b, 0x0d4c, 0x30e7, 0x0190, 0x06c7,

 0x2dcc, 0x011a, 0x1f6d, 0x0ab0, 0x129a, 0x1c62, 0x1692, 0x0e86},

 {0x2e80, 0x0a7a, 0x1096, 0x3bd7, 0x2c7c, 0x0082, 0x0062, 0x327e,

 0x20a6, 0x323b, 0x20bd, 0x1320, 0x1c14, 0x0bdf, 0x1875, 0x1114},

 {0x3f5c, 0x3bd2, 0x12d1, 0x258a, 0x0eab, 0x0e50, 0x1e52, 0x157f,

 0x37da, 0x1c3b, 0x26fc, 0x2fd8, 0x2767, 0x3076, 0x0ad8, 0x0f21},

 {0x2a0d, 0x12b3, 0x08ae, 0x096b, 0x3d3e, 0x20b1, 0x0149, 0x232f,

 0x2107, 0x0d38, 0x22a2, 0x1ea8, 0x1546, 0x35a4, 0x00c3, 0x1050},

 {0x08af, 0x232a, 0x376b, 0x3a42, 0x363f, 0x08d1, 0x1747, 0x3aac,

 0x01d8, 0x3f7f, 0x1dbe, 0x0162, 0x0cc5, 0x05dd, 0x158a, 0x11d9},

 {0x2651, 0x2349, 0x2c8e, 0x2895, 0x189d, 0x1738, 0x0522, 0x1932,

 0x063f, 0x1d02, 0x2e4e, 0x397e, 0x2b37, 0x0339, 0x37bb, 0x19dc},

 {0x3428, 0x3999, 0x2c86, 0x3a79, 0x137d, 0x2b66, 0x34ec, 0x1179,

402

 0x0e54, 0x3d8f, 0x3e9d, 0x16d2, 0x364e, 0x05f7, 0x3678, 0x36bf},

 {0x335c, 0x37ac, 0x0bb6, 0x19a9, 0x2b87, 0x2aab, 0x0382, 0x169b,

 0x3d96, 0x1963, 0x017b, 0x1d4a, 0x1fb9, 0x0e31, 0x0f36, 0x26d6}

 },

 { {0x228c, 0x2348, 0x0bfd, 0x0f48, 0x10cd, 0x2a55, 0x30b5, 0x3f2c,

 0x10c7, 0x0894, 0x16c5, 0x3159, 0x1d5d, 0x1007, 0x124a, 0x3b2f},

 {0x2e30, 0x397a, 0x0a16, 0x0b13, 0x2496, 0x3485, 0x26b8, 0x0459,

 0x358f, 0x228e, 0x34c7, 0x1054, 0x3624, 0x0315, 0x0ec6, 0x0244},

 {0x0e75, 0x227b, 0x0f82, 0x2ff2, 0x3a92, 0x2704, 0x05b9, 0x2139,

 0x08a7, 0x13d6, 0x1b66, 0x0ec7, 0x18b5, 0x2e66, 0x1c56, 0x32d4},

 {0x1e59, 0x0814, 0x1a40, 0x2c7d, 0x06f8, 0x228d, 0x3b4b, 0x337e,

 0x0563, 0x375c, 0x2d04, 0x1984, 0x2013, 0x21e7, 0x3889, 0x3dcd},

 {0x3f96, 0x3345, 0x27a6, 0x20b7, 0x24aa, 0x03bf, 0x1f72, 0x0113,

 0x276e, 0x008c, 0x0174, 0x2531, 0x3ce8, 0x2119, 0x1f37, 0x1a05},

 {0x2af0, 0x202f, 0x3bce, 0x27f3, 0x340a, 0x0f5a, 0x262d, 0x0543,

 0x3078, 0x2f61, 0x2864, 0x0643, 0x1254, 0x002c, 0x126a, 0x3e58},

 {0x32d0, 0x27bb, 0x2ef6, 0x0ac2, 0x1be1, 0x0450, 0x01df, 0x1713,

 0x154c, 0x19a1, 0x20c9, 0x2fd6, 0x0f7b, 0x1937, 0x0d6a, 0x2956},

 {0x1116, 0x0283, 0x124c, 0x3e3d, 0x2c15, 0x0fde, 0x3ab1, 0x3db6,

 0x21d8, 0x34c2, 0x052f, 0x1774, 0x1c76, 0x3663, 0x01fd, 0x15a3},

 {0x36e9, 0x2dc6, 0x2599, 0x3577, 0x28f5, 0x3f5d, 0x1ef8, 0x3ab2,

 0x236d, 0x2ac3, 0x21f1, 0x3e04, 0x028e, 0x2fb1, 0x0bca, 0x03ee},

 {0x2b47, 0x35a3, 0x35e1, 0x0d98, 0x0240, 0x3520, 0x24c7, 0x15bd,

 0x1748, 0x253b, 0x1b45, 0x1d82, 0x3c9d, 0x13f3, 0x1193, 0x30f7},

 {0x2134, 0x14d3, 0x376e, 0x30b9, 0x2127, 0x31d8, 0x27d1, 0x28f8,

 0x2c2f, 0x3af0, 0x125e, 0x39cc, 0x2255, 0x3063, 0x39ba, 0x369a},

403

 {0x1ada, 0x2750, 0x3afc, 0x373f, 0x2e4c, 0x2e7b, 0x1c0e, 0x0850,

 0x1cec, 0x239b, 0x2421, 0x1f66, 0x2b82, 0x0057, 0x0f64, 0x0d8c},

 {0x3368, 0x203d, 0x0233, 0x0be6, 0x38a6, 0x1677, 0x23f6, 0x3764,

 0x3876, 0x0229, 0x22ac, 0x216b, 0x1d0b, 0x3a97, 0x33e6, 0x167d},

 {0x351d, 0x26ca, 0x24b7, 0x3a13, 0x0518, 0x0576, 0x3190, 0x334e,

 0x062e, 0x1123, 0x2d7e, 0x09be, 0x0bd4, 0x1686, 0x12a1, 0x189b},

 {0x2ab0, 0x3a1a, 0x0992, 0x1623, 0x1509, 0x23d3, 0x1188, 0x15ae,

 0x2b5d, 0x0580, 0x08dc, 0x3c8c, 0x13da, 0x0c67, 0x27d5, 0x32f0},

 {0x27d3, 0x1f16, 0x10a0, 0x2753, 0x3a62, 0x02ca, 0x1f7d, 0x278f,

 0x2e03, 0x13ed, 0x1643, 0x02dd, 0x0a34, 0x103a, 0x258c, 0x1c5a}

 },

 { {0x1318, 0x205c, 0x00b4, 0x2bd9, 0x271e, 0x2d96, 0x0a95, 0x25ff,

 0x29ca, 0x34bc, 0x1121, 0x1b71, 0x166f, 0x2764, 0x2ffa, 0x01ca},

 {0x0cb4, 0x18b4, 0x1b50, 0x3cd1, 0x18fc, 0x1277, 0x3548, 0x26a1,

 0x2c90, 0x3d10, 0x23bc, 0x33df, 0x2323, 0x2057, 0x032a, 0x16a0},

 {0x04d4, 0x0e27, 0x2f51, 0x130c, 0x2ac9, 0x15a8, 0x3293, 0x2fe8,

 0x1aac, 0x1dad, 0x03f2, 0x24f7, 0x2b99, 0x35ec, 0x3b98, 0x2049},

 {0x30b3, 0x1bb2, 0x3b76, 0x0c50, 0x1fd3, 0x2bfb, 0x3abc, 0x2425,

 0x2689, 0x1d1b, 0x0198, 0x0dce, 0x021c, 0x0466, 0x0ba5, 0x0aee},

 {0x3fe8, 0x1f11, 0x3763, 0x343d, 0x23ff, 0x1cf1, 0x3109, 0x2c4c,

 0x1707, 0x07e2, 0x2d23, 0x1a63, 0x28b5, 0x235a, 0x0268, 0x342d},

 {0x1df0, 0x3f25, 0x274a, 0x07c9, 0x15bc, 0x0269, 0x321a, 0x17bf,

 0x197e, 0x11a3, 0x2040, 0x2076, 0x3b4a, 0x02d8, 0x05ce, 0x05ad},

 {0x0864, 0x33a9, 0x0f79, 0x0c16, 0x3799, 0x0aa5, 0x0f6a, 0x169f,

 0x2cb8, 0x3275, 0x3029, 0x3ca7, 0x15cf, 0x0747, 0x31ac, 0x0e5d},

 {0x274b, 0x30b8, 0x109d, 0x354c, 0x0dbe, 0x3103, 0x0f44, 0x102a,

404

 0x077a, 0x1b63, 0x03a5, 0x1a2a, 0x13d4, 0x3f83, 0x2c32, 0x2d8d},

 {0x38eb, 0x3a4c, 0x0bf7, 0x0617, 0x34cd, 0x373e, 0x25c8, 0x2f65,

 0x0b22, 0x0627, 0x31c0, 0x14f1, 0x1e07, 0x0fb2, 0x1084, 0x042d},

 {0x2c6a, 0x1da0, 0x1100, 0x25e4, 0x37af, 0x1f91, 0x1b7b, 0x0586,

 0x0918, 0x0a0c, 0x2879, 0x34db, 0x2b17, 0x159f, 0x2617, 0x1f68},

 {0x00d4, 0x14dd, 0x08ef, 0x1982, 0x32c7, 0x0306, 0x09b0, 0x1b85,

 0x3a28, 0x2740, 0x284c, 0x2849, 0x3d8e, 0x14ed, 0x0803, 0x3216},

 {0x3c72, 0x3401, 0x24c8, 0x017f, 0x0b16, 0x3314, 0x0d51, 0x3a49,

 0x2ad0, 0x0252, 0x248e, 0x287e, 0x0239, 0x015e, 0x31f3, 0x3cce},

 {0x3840, 0x261d, 0x07fc, 0x117c, 0x3e0a, 0x1ba4, 0x1b1b, 0x2466,

 0x2f7c, 0x3fe0, 0x0042, 0x0b24, 0x04bc, 0x09e8, 0x2eb2, 0x19af},

 {0x0d1f, 0x2bea, 0x1138, 0x15a6, 0x1d3d, 0x02ce, 0x18fd, 0x153c,

 0x14cd, 0x0c94, 0x3ef2, 0x020d, 0x0b38, 0x0cc6, 0x3b28, 0x0e06},

 {0x284b, 0x368a, 0x1336, 0x0a57, 0x1273, 0x3c5f, 0x2f4b, 0x08f9,

 0x176b, 0x1935, 0x14c0, 0x2137, 0x18bc, 0x0640, 0x0360, 0x1d0d},

 {0x2600, 0x0d00, 0x0bdc, 0x0e56, 0x0d9c, 0x31bb, 0x0cfe, 0x0578,

 0x0568, 0x052d, 0x1cfe, 0x09cf, 0x1030, 0x0b27, 0x1e85, 0x0c69}

 },

 { {0x2f7f, 0x02f3, 0x2585, 0x3e83, 0x3521, 0x39a8, 0x1418, 0x3c2c,

 0x3bfc, 0x2d13, 0x34e6, 0x3b1e, 0x2bd1, 0x12dd, 0x0cf2, 0x2db5},

 {0x116c, 0x2ae4, 0x3271, 0x0c04, 0x10bb, 0x1213, 0x27e2, 0x2609,

 0x2a9b, 0x0dc3, 0x3e7b, 0x2d1b, 0x3495, 0x1344, 0x2828, 0x3d19},

 {0x0e5a, 0x0468, 0x26ba, 0x09c5, 0x1e99, 0x2219, 0x20a3, 0x358e,

 0x22f8, 0x2e45, 0x3ede, 0x2026, 0x3ea0, 0x06a7, 0x179a, 0x3ab6},

 {0x35bd, 0x0171, 0x1ba9, 0x2a1f, 0x3230, 0x2bc4, 0x3ee6, 0x3435,

 0x27ac, 0x1205, 0x33aa, 0x03b1, 0x06ef, 0x24a3, 0x15da, 0x15a7},

405

 {0x013c, 0x202d, 0x066f, 0x3593, 0x05bb, 0x17ff, 0x0572, 0x10f7,

 0x2681, 0x02dc, 0x2718, 0x0313, 0x2714, 0x064e, 0x2e14, 0x0c3b},

 {0x09e6, 0x0a14, 0x3bae, 0x0493, 0x03bb, 0x11b1, 0x24a2, 0x14b8,

 0x3770, 0x3ca6, 0x22e5, 0x0b54, 0x3c36, 0x0036, 0x143a, 0x0c84},

 {0x1f42, 0x386a, 0x3177, 0x2101, 0x3a7b, 0x1c15, 0x177a, 0x2925,

 0x0cb1, 0x02cb, 0x1924, 0x15b1, 0x267f, 0x232c, 0x159b, 0x156c},

 {0x0f50, 0x3c41, 0x3941, 0x3056, 0x071c, 0x3af6, 0x39be, 0x2b01,

 0x3083, 0x33d4, 0x0891, 0x26b0, 0x36b4, 0x2064, 0x1dee, 0x1235},

 {0x27c8, 0x2d87, 0x00d9, 0x30a8, 0x2790, 0x22e0, 0x3320, 0x2029,

 0x16e2, 0x223a, 0x267d, 0x2d06, 0x022a, 0x252f, 0x360c, 0x2f0f},

 {0x1d6c, 0x1806, 0x29b0, 0x3886, 0x2dd1, 0x2e52, 0x2162, 0x05b4,

 0x2d0f, 0x3bd1, 0x2aba, 0x060e, 0x08bb, 0x2588, 0x26e8, 0x1eed},

 {0x0b4e, 0x16e3, 0x3666, 0x013e, 0x1862, 0x27d2, 0x1408, 0x3a14,

 0x09cc, 0x3a32, 0x2984, 0x355b, 0x2dd7, 0x0180, 0x339a, 0x31a6},

 {0x1b00, 0x18c3, 0x27f6, 0x36be, 0x3a0c, 0x305b, 0x30d8, 0x01e5,

 0x2919, 0x3fdc, 0x0a69, 0x0979, 0x1c1e, 0x1590, 0x0d93, 0x1108},

 {0x0778, 0x2a61, 0x0726, 0x1519, 0x1fb7, 0x1285, 0x14c2, 0x1493,

 0x3c59, 0x2a69, 0x1b88, 0x25cd, 0x3299, 0x166b, 0x2295, 0x1fee},

 {0x153f, 0x1479, 0x1ff7, 0x3344, 0x1312, 0x27c2, 0x0b75, 0x2885,

 0x2f3a, 0x3859, 0x2555, 0x3e03, 0x0a0e, 0x15dc, 0x1ac4, 0x1bad},

 {0x1edd, 0x3c56, 0x352a, 0x189f, 0x25c0, 0x2ea0, 0x243a, 0x0b45,

 0x3065, 0x0d32, 0x210a, 0x38b6, 0x1104, 0x217a, 0x36b2, 0x2a0c},

 {0x0c53, 0x0db0, 0x253c, 0x1d15, 0x009c, 0x07cc, 0x27ed, 0x2a75,

 0x3868, 0x0cef, 0x378c, 0x2af7, 0x09ae, 0x3e27, 0x3ded, 0x1a0d}

 },

 { {0x01f6, 0x37d9, 0x2f1a, 0x0592, 0x1fcc, 0x1b54, 0x07cd, 0x145d,

406

 0x3989, 0x3e48, 0x0922, 0x31c1, 0x31d3, 0x3d28, 0x347e, 0x3531},

 {0x31e9, 0x1796, 0x0295, 0x39a2, 0x04a5, 0x360a, 0x1cad, 0x17aa,

 0x0bf0, 0x209d, 0x2cc5, 0x2d38, 0x00ed, 0x3701, 0x04a8, 0x23d0},

 {0x36af, 0x09c8, 0x2918, 0x32cb, 0x3f09, 0x321e, 0x30ea, 0x251a,

 0x27e1, 0x251e, 0x2bb0, 0x31fe, 0x16ab, 0x1507, 0x048a, 0x37bc},

 {0x395d, 0x0ddd, 0x2fea, 0x18a1, 0x3508, 0x31cc, 0x132b, 0x15e7,

 0x36bc, 0x1f62, 0x14ca, 0x22e8, 0x08e7, 0x0d25, 0x34a1, 0x0452},

 {0x0943, 0x0dc1, 0x23bf, 0x2dd4, 0x1c8c, 0x33b7, 0x0985, 0x328f,

 0x1458, 0x1ab0, 0x303e, 0x1bfd, 0x19b1, 0x09fc, 0x21b4, 0x0a0d},

 {0x08e4, 0x0649, 0x2967, 0x29f0, 0x25e9, 0x0edc, 0x0fb9, 0x286b,

 0x3388, 0x29a6, 0x238d, 0x39ee, 0x2b41, 0x0e98, 0x3837, 0x288c},

 {0x0b3e, 0x3cfb, 0x296b, 0x1416, 0x171a, 0x27e0, 0x0845, 0x18a3,

 0x1267, 0x20ab, 0x26f2, 0x3f03, 0x218c, 0x3ac1, 0x2558, 0x1903},

 {0x3f00, 0x0455, 0x2d5c, 0x238b, 0x3d30, 0x05fc, 0x10a3, 0x31b0,

 0x2ba5, 0x02f0, 0x01a2, 0x2d90, 0x1637, 0x1989, 0x20a2, 0x1183},

 {0x0bc9, 0x2080, 0x2328, 0x3b44, 0x1377, 0x1278, 0x250b, 0x32a3,

 0x34cf, 0x10a4, 0x1880, 0x0f1a, 0x3936, 0x31f6, 0x24ca, 0x32bd},

 {0x0760, 0x079e, 0x01c5, 0x0db8, 0x387c, 0x3296, 0x113b, 0x2f0d,

 0x22dd, 0x2a3f, 0x230c, 0x2c5e, 0x2814, 0x05b1, 0x35f4, 0x00f5},

 {0x0683, 0x3e3f, 0x0e7a, 0x20ea, 0x24ea, 0x0138, 0x1065, 0x1f2c,

 0x07d0, 0x1048, 0x3223, 0x3742, 0x19c3, 0x13be, 0x26cd, 0x1938},

 {0x35f7, 0x0d20, 0x1af6, 0x000c, 0x0230, 0x2fa6, 0x37b0, 0x2795,

 0x242f, 0x2332, 0x3807, 0x0d24, 0x3f5e, 0x3467, 0x025a, 0x22d3},

 {0x260d, 0x2c33, 0x3b3a, 0x35f5, 0x0e4b, 0x26ed, 0x2bc2, 0x0a19,

 0x20a1, 0x1bcb, 0x1625, 0x2755, 0x2ca9, 0x00e3, 0x2dfc, 0x33b4},

 {0x0e96, 0x0f6c, 0x3700, 0x2c78, 0x353c, 0x032f, 0x1122, 0x0305,

407

 0x3b2c, 0x3cb5, 0x3642, 0x0818, 0x1af7, 0x118f, 0x2221, 0x331c},

 {0x0dba, 0x20da, 0x053c, 0x0679, 0x394e, 0x3444, 0x286a, 0x14d5,

 0x1968, 0x39f3, 0x158c, 0x25d6, 0x1bb3, 0x0c76, 0x029e, 0x0b03},

 {0x1583, 0x3cd7, 0x1530, 0x0cf4, 0x3e36, 0x0c52, 0x120c, 0x0d4b,

 0x3931, 0x2d2d, 0x235b, 0x1541, 0x2334, 0x13b9, 0x0c1c, 0x215c}

 },

 { {0x1adb, 0x2f0e, 0x01f4, 0x173a, 0x1157, 0x1456, 0x3728, 0x3391,

 0x1a16, 0x3924, 0x267e, 0x0697, 0x0264, 0x0e48, 0x061c, 0x3f07},

 {0x2fd1, 0x3aa5, 0x1cc0, 0x0d55, 0x2e70, 0x24c2, 0x29e3, 0x30cc,

 0x055a, 0x131d, 0x1656, 0x30a4, 0x2194, 0x105f, 0x375e, 0x2bd2},

 {0x34d7, 0x2898, 0x08c2, 0x389a, 0x2f40, 0x2fbc, 0x1e44, 0x1527,

 0x0b36, 0x311e, 0x0703, 0x32d1, 0x2ca2, 0x0eb7, 0x224a, 0x2a9d},

 {0x19ef, 0x3436, 0x1887, 0x1769, 0x014f, 0x34a9, 0x15b5, 0x329b,

 0x153a, 0x306e, 0x1bf8, 0x0158, 0x1ff4, 0x378d, 0x28d5, 0x2911},

 {0x17c0, 0x17b6, 0x2e95, 0x2579, 0x37f7, 0x02fb, 0x2e20, 0x29a0,

 0x2283, 0x2761, 0x03c6, 0x2018, 0x3e2c, 0x13fa, 0x0246, 0x0b34},

 {0x36f0, 0x0eaa, 0x1bbc, 0x3e5b, 0x1e9c, 0x3a6d, 0x3708, 0x36a5,

 0x1ff8, 0x0652, 0x3f57, 0x12c1, 0x3336, 0x2c47, 0x14c6, 0x0fd5},

 {0x3403, 0x19e7, 0x0aed, 0x1164, 0x1a3a, 0x397f, 0x00f3, 0x3506,

 0x1596, 0x0d01, 0x219e, 0x06cd, 0x389f, 0x3d9c, 0x37b5, 0x275d},

 {0x3550, 0x0920, 0x2a59, 0x2772, 0x3e53, 0x3bbb, 0x3c62, 0x0121,

 0x2fb2, 0x32db, 0x3f3d, 0x3d64, 0x2847, 0x02ea, 0x116b, 0x13bd},

 {0x11e3, 0x119d, 0x32ae, 0x3e08, 0x3dfd, 0x1a3f, 0x20af, 0x3625,

 0x2602, 0x2125, 0x1168, 0x2df1, 0x3be4, 0x177e, 0x10ca, 0x0577},

 {0x3773, 0x2d8a, 0x01c8, 0x1d89, 0x1ddf, 0x1ce2, 0x0762, 0x00dd,

 0x17fc, 0x0122, 0x2730, 0x3fab, 0x1b49, 0x1d92, 0x1734, 0x0d72},

408

 {0x0909, 0x37e2, 0x3b96, 0x3528, 0x2157, 0x20f3, 0x205f, 0x1855,

 0x3b82, 0x2305, 0x1e5e, 0x1be4, 0x02ad, 0x38b7, 0x110a, 0x18fe},

 {0x2d41, 0x07b3, 0x0df6, 0x1b74, 0x22b8, 0x31ca, 0x060f, 0x2d9e,

 0x2dd9, 0x2f9b, 0x3016, 0x0b81, 0x24d3, 0x2092, 0x085b, 0x1b8c},

 {0x2e72, 0x124b, 0x2c26, 0x2b29, 0x1ac0, 0x1305, 0x24ee, 0x2f35,

 0x051e, 0x1433, 0x2785, 0x16e1, 0x2da1, 0x20de, 0x31c5, 0x1578},

 {0x35e0, 0x3289, 0x3f89, 0x07d3, 0x3260, 0x362f, 0x1018, 0x3196,

 0x094d, 0x3fb0, 0x3099, 0x1131, 0x1bd7, 0x34b1, 0x2164, 0x1b6a},

 {0x0ab2, 0x1d93, 0x291f, 0x3979, 0x2637, 0x325d, 0x3df5, 0x0715,

 0x081e, 0x36a6, 0x171f, 0x350a, 0x0607, 0x0429, 0x19e5, 0x336a},

 {0x12fd, 0x3f39, 0x08c1, 0x1a11, 0x3e13, 0x348f, 0x1aec, 0x06f5,

 0x06c3, 0x00a2, 0x398f, 0x0841, 0x1634, 0x080e, 0x3b81, 0x1795}

 },

 { {0x2093, 0x1bf3, 0x238e, 0x0454, 0x26a6, 0x3a12, 0x13c5, 0x3097,

 0x0718, 0x39d0, 0x0513, 0x33ee, 0x28b3, 0x0236, 0x3aff, 0x2124},

 {0x2b94, 0x1cb8, 0x1cd4, 0x1e0f, 0x1069, 0x209f, 0x00e2, 0x18eb,

 0x2e7a, 0x1bff, 0x0fb5, 0x2749, 0x1ce5, 0x2581, 0x1799, 0x1e75},

 {0x0c60, 0x3579, 0x325a, 0x3639, 0x28b0, 0x1145, 0x379f, 0x2e05,

 0x1d3e, 0x302f, 0x33d7, 0x25d1, 0x11dc, 0x01b7, 0x15db, 0x2fa5},

 {0x28c7, 0x3983, 0x3126, 0x16f0, 0x31ad, 0x23e1, 0x3f42, 0x1df2,

 0x1a70, 0x2636, 0x268e, 0x3d99, 0x12f4, 0x15d1, 0x2eda, 0x22ba},

 {0x315a, 0x3137, 0x1b3c, 0x0687, 0x0d85, 0x1ae8, 0x27d7, 0x134f,

 0x1405, 0x3825, 0x3932, 0x1c3e, 0x3224, 0x1cff, 0x09c6, 0x2c3f},

 {0x15ad, 0x323d, 0x0111, 0x00c5, 0x0fad, 0x1c87, 0x3d41, 0x2699,

 0x2bcd, 0x29cb, 0x12d7, 0x30ff, 0x1154, 0x10c0, 0x0c2a, 0x2289},

 {0x0343, 0x0520, 0x3817, 0x2d80, 0x00ec, 0x2400, 0x1cd2, 0x3913,

409

 0x0824, 0x06db, 0x2dfb, 0x0d3d, 0x0549, 0x34d6, 0x0c6a, 0x3f19},

 {0x29af, 0x3908, 0x37df, 0x2844, 0x0e62, 0x12a4, 0x0136, 0x09f5,

 0x19c1, 0x078d, 0x186d, 0x22d1, 0x25b3, 0x284d, 0x1540, 0x093a},

 {0x0780, 0x1103, 0x27db, 0x1c86, 0x367f, 0x11fb, 0x2528, 0x2628,

 0x04c0, 0x3ee9, 0x0785, 0x3bde, 0x1473, 0x3d32, 0x3536, 0x0ecc},

 {0x2975, 0x3ff5, 0x3ead, 0x3085, 0x1b0d, 0x3861, 0x2f1d, 0x26df,

 0x2b75, 0x325e, 0x38dd, 0x2816, 0x0e14, 0x03c5, 0x0006, 0x37ed},

 {0x0303, 0x2747, 0x1fa8, 0x107a, 0x1ced, 0x0b9f, 0x0ee7, 0x098d,

 0x00db, 0x17cb, 0x1eb0, 0x3c84, 0x34ee, 0x210d, 0x03d5, 0x171d},

 {0x04e5, 0x1b3b, 0x1512, 0x1bf5, 0x3d63, 0x2557, 0x3db9, 0x12e2,

 0x2ba2, 0x229b, 0x3592, 0x3e81, 0x1f8d, 0x0a33, 0x02da, 0x1eb4},

 {0x3c55, 0x0b8a, 0x0c99, 0x291b, 0x2959, 0x1238, 0x27c0, 0x2beb,

 0x25cb, 0x01cb, 0x0ddb, 0x3f9d, 0x2adc, 0x0dda, 0x058d, 0x2e68},

 {0x2370, 0x1ff5, 0x3916, 0x2a3e, 0x2f3f, 0x1621, 0x2d74, 0x24b9,

 0x184d, 0x3347, 0x125a, 0x14cc, 0x3d33, 0x107d, 0x14a8, 0x00a0},

 {0x0fdb, 0x1093, 0x3a76, 0x0137, 0x3a6c, 0x2912, 0x2ab3, 0x3ba5,

 0x2a96, 0x3410, 0x230b, 0x3236, 0x2ea7, 0x0929, 0x3e7c, 0x13dd},

 {0x1554, 0x2edc, 0x2d9f, 0x07ba, 0x3877, 0x3b7e, 0x3df0, 0x0e60,

 0x133d, 0x3c81, 0x1544, 0x355a, 0x27ba, 0x1727, 0x1d32, 0x06cf}

 },

 { {0x11d8, 0x0ef3, 0x3f17, 0x2ad9, 0x3729, 0x09b6, 0x266a, 0x2a5f,

 0x3ab7, 0x15f9, 0x1ec4, 0x320e, 0x25c7, 0x30bf, 0x0cbb, 0x359d},

 {0x2756, 0x0d4f, 0x3c16, 0x2000, 0x0ba0, 0x2ac6, 0x1df5, 0x16e8,

 0x04c8, 0x07e1, 0x0673, 0x0a30, 0x0794, 0x3871, 0x2357, 0x26f3},

 {0x07c7, 0x345f, 0x03da, 0x1a90, 0x23d4, 0x09c9, 0x149d, 0x364c,

 0x0ac4, 0x23af, 0x3aee, 0x3774, 0x1452, 0x154f, 0x39e8, 0x2d58},

410

 {0x046d, 0x1697, 0x0aec, 0x35df, 0x2732, 0x2300, 0x31be, 0x3dc9,

 0x27e7, 0x11cc, 0x2a0e, 0x0474, 0x2007, 0x2298, 0x3ac5, 0x3d87},

 {0x0165, 0x076d, 0x0dd6, 0x3cbc, 0x1683, 0x02bc, 0x00c8, 0x2f9e,

 0x35c4, 0x2072, 0x2781, 0x1731, 0x0f24, 0x2294, 0x1002, 0x0efd},

 {0x0de7, 0x12fb, 0x1361, 0x1c51, 0x31e3, 0x1eff, 0x0c6c, 0x3bb2,

 0x1609, 0x0cfd, 0x224d, 0x2ae6, 0x14ab, 0x32c4, 0x21f2, 0x0b83},

 {0x0ab3, 0x210b, 0x012d, 0x25f9, 0x3464, 0x10bd, 0x2dae, 0x1c84,

 0x2ba9, 0x3b45, 0x1e0a, 0x3a3e, 0x2702, 0x142c, 0x10a5, 0x1e25},

 {0x1e24, 0x0c75, 0x1cc8, 0x3e28, 0x0590, 0x0d10, 0x3c9b, 0x064c,

 0x1db3, 0x24c5, 0x19d2, 0x13fd, 0x02b4, 0x1043, 0x3285, 0x3694},

 {0x33ec, 0x3c86, 0x21fb, 0x016e, 0x22ca, 0x003f, 0x0e32, 0x2b61,

 0x14bb, 0x31b3, 0x36b8, 0x13f1, 0x0767, 0x30c5, 0x0b7f, 0x32d7},

 {0x34f1, 0x0183, 0x2e4a, 0x17d0, 0x3652, 0x29df, 0x1705, 0x2dd0,

 0x0948, 0x0a10, 0x2737, 0x078f, 0x10cc, 0x0f07, 0x0034, 0x21da},

 {0x0460, 0x0999, 0x285c, 0x2b55, 0x08bd, 0x03bd, 0x32cf, 0x2c93,

 0x1b9f, 0x3165, 0x045e, 0x2b2c, 0x158e, 0x3751, 0x26a9, 0x3479},

 {0x25c6, 0x33f8, 0x1668, 0x2176, 0x081f, 0x0abf, 0x3974, 0x0bbd,

 0x07a8, 0x248d, 0x2c35, 0x16ec, 0x1d0c, 0x225c, 0x396d, 0x0973},

 {0x3740, 0x01f0, 0x0431, 0x0630, 0x1d7f, 0x388a, 0x0af2, 0x171c,

 0x29cc, 0x2644, 0x3135, 0x0756, 0x1ea4, 0x074c, 0x27fb, 0x021f},

 {0x174d, 0x0c7d, 0x3256, 0x1056, 0x0ca9, 0x2848, 0x0216, 0x3b77,

 0x24d5, 0x0dc9, 0x347f, 0x38c6, 0x066a, 0x1bdd, 0x2e39, 0x2670},

 {0x35a0, 0x37a3, 0x0993, 0x0abe, 0x15a0, 0x052a, 0x1b02, 0x1745,

 0x399a, 0x2fc6, 0x011e, 0x155d, 0x33e8, 0x2241, 0x2ec0, 0x06dd},

 {0x0385, 0x2171, 0x2177, 0x1fe5, 0x1608, 0x2de8, 0x2882, 0x19ca,

 0x3abb, 0x1899, 0x1562, 0x0529, 0x3f79, 0x3227, 0x1d95, 0x0fa7}

411

 },

 { {0x3400, 0x01f3, 0x2b04, 0x2719, 0x1d38, 0x0851, 0x3a82, 0x0fd9,

 0x190d, 0x2604, 0x118b, 0x1c5e, 0x35be, 0x39ff, 0x09d9, 0x3a27},

 {0x25a0, 0x09a6, 0x3d56, 0x3606, 0x2978, 0x001b, 0x2642, 0x172e,

 0x37b2, 0x04aa, 0x0a9e, 0x187b, 0x1f54, 0x1338, 0x0cdd, 0x3008},

 {0x0831, 0x0053, 0x3ec8, 0x1bb6, 0x344e, 0x1de6, 0x3809, 0x319e,

 0x15de, 0x1042, 0x2197, 0x38ab, 0x19c4, 0x3f5b, 0x35aa, 0x2161},

 {0x057c, 0x097e, 0x23ee, 0x2682, 0x06ad, 0x1cc9, 0x11cb, 0x2fe0,

 0x3767, 0x2693, 0x187a, 0x17f4, 0x3600, 0x06e7, 0x120f, 0x01de},

 {0x1de3, 0x2991, 0x215f, 0x1a99, 0x1ce1, 0x3322, 0x2dc5, 0x3992,

 0x2a95, 0x36fb, 0x1f92, 0x1503, 0x0a03, 0x28cd, 0x07d2, 0x25b7},

 {0x3c70, 0x078e, 0x2499, 0x0952, 0x03d8, 0x2025, 0x25c9, 0x275a,

 0x1cf5, 0x0d7b, 0x0a70, 0x0c10, 0x2459, 0x22e6, 0x1f97, 0x32a5},

 {0x1cbc, 0x3d13, 0x3d7a, 0x1067, 0x2a14, 0x1ab7, 0x0779, 0x10bc,

 0x0379, 0x2a76, 0x3ace, 0x1ace, 0x2ff0, 0x1688, 0x3335, 0x3d73},

 {0x2850, 0x031c, 0x2a36, 0x014d, 0x1f8e, 0x210f, 0x107e, 0x3da7,

 0x0a94, 0x2881, 0x2cd3, 0x1603, 0x010d, 0x2eb0, 0x3edb, 0x3004},

 {0x1b1a, 0x3b73, 0x09e5, 0x267c, 0x10df, 0x1257, 0x3ee0, 0x3052,

 0x3d5d, 0x05ac, 0x2ae1, 0x0dff, 0x3646, 0x0f6f, 0x3c13, 0x3018},

 {0x37db, 0x2bee, 0x18b7, 0x30fc, 0x2bae, 0x203f, 0x2806, 0x15cc,

 0x1bb4, 0x14d1, 0x06ba, 0x38a5, 0x055e, 0x0207, 0x16d5, 0x173e},

 {0x0f3e, 0x2448, 0x1b5d, 0x15ab, 0x35c6, 0x0853, 0x2116, 0x1b8a,

 0x1fe2, 0x3c23, 0x2e09, 0x3496, 0x1a67, 0x1b62, 0x159e, 0x2bb7},

 {0x2f13, 0x1d5b, 0x2fee, 0x3b35, 0x349d, 0x023f, 0x145c, 0x32b3,

 0x1ed7, 0x23d7, 0x3a1d, 0x0a37, 0x2de7, 0x3785, 0x368e, 0x3f45},

 {0x3f0d, 0x31de, 0x07c1, 0x1419, 0x0dd3, 0x0a79, 0x150a, 0x23bb,

412

 0x19d8, 0x2f5a, 0x0cb9, 0x08c7, 0x3214, 0x0e7d, 0x082f, 0x2a4f},

 {0x1413, 0x1763, 0x11f1, 0x089b, 0x0407, 0x1d57, 0x3578, 0x168b,

 0x3643, 0x20fb, 0x1f23, 0x139c, 0x17f7, 0x3ec7, 0x0b59, 0x07e7},

 {0x029b, 0x04ea, 0x13a1, 0x1b82, 0x35fe, 0x0744, 0x1ebf, 0x36b1,

 0x33bb, 0x0766, 0x0d89, 0x0211, 0x36f5, 0x0e6d, 0x184a, 0x0d09},

 {0x0b04, 0x3a77, 0x2c17, 0x3739, 0x0aaf, 0x114c, 0x00e9, 0x25b4,

 0x2c05, 0x2bb8, 0x286e, 0x2141, 0x2f34, 0x29d2, 0x083b, 0x34b3}

 },

 { {0x243c, 0x31df, 0x126b, 0x0412, 0x1f58, 0x12ee, 0x30cf, 0x2182,

 0x0965, 0x2ae7, 0x3387, 0x3310, 0x2b64, 0x2801, 0x20b3, 0x383d},

 {0x33e2, 0x32f1, 0x0a21, 0x13e0, 0x3ed3, 0x126c, 0x0516, 0x39b5,

 0x1c71, 0x38bf, 0x3905, 0x330c, 0x2d94, 0x3139, 0x2995, 0x327b},

 {0x01be, 0x2db9, 0x05c8, 0x0f39, 0x3792, 0x2a8f, 0x25bd, 0x1ee2,

 0x3d62, 0x329a, 0x26dc, 0x0533, 0x0cc4, 0x18a5, 0x3a9a, 0x3c93},

 {0x0a27, 0x2058, 0x3437, 0x207c, 0x0556, 0x31d0, 0x154b, 0x33d1,

 0x0160, 0x1e46, 0x100e, 0x2e0b, 0x29a1, 0x1e7c, 0x3a8c, 0x15cd},

 {0x3d23, 0x0cc7, 0x3fa6, 0x0d99, 0x23d8, 0x04c4, 0x2512, 0x0069,

 0x2059, 0x05d1, 0x2942, 0x36ea, 0x3fcf, 0x24f9, 0x24e1, 0x1cf9},

 {0x17a3, 0x281c, 0x380b, 0x15fc, 0x38f0, 0x0acb, 0x16a2, 0x3bc5,

 0x2a81, 0x2430, 0x3f35, 0x275f, 0x1f79, 0x26ae, 0x3c63, 0x142d},

 {0x2f28, 0x25d3, 0x1f96, 0x3595, 0x0781, 0x2c41, 0x2301, 0x179f,

 0x11b8, 0x21fc, 0x0c4b, 0x3994, 0x39ac, 0x2cfd, 0x1f5a, 0x1eeb},

 {0x3db5, 0x0f43, 0x1701, 0x393f, 0x3266, 0x08e1, 0x0c26, 0x3a02,

 0x07a1, 0x38af, 0x0cce, 0x2db2, 0x15a5, 0x0944, 0x35a5, 0x3049},

 {0x1368, 0x2928, 0x3123, 0x115f, 0x1782, 0x29eb, 0x0b57, 0x39e9,

 0x14a6, 0x049c, 0x2bfe, 0x3fca, 0x24b6, 0x0302, 0x2312, 0x2bb9},

413

 {0x1bca, 0x252b, 0x3558, 0x2989, 0x288d, 0x3dd5, 0x02b7, 0x3037,

 0x3da4, 0x161d, 0x2c24, 0x0159, 0x2889, 0x3e17, 0x02a1, 0x051d},

 {0x34c9, 0x1c9e, 0x1012, 0x1b04, 0x16ac, 0x2d2e, 0x31ea, 0x0085,

 0x3f40, 0x2337, 0x0f62, 0x1200, 0x192b, 0x1765, 0x1528, 0x299b},

 {0x3cee, 0x27ff, 0x0b2d, 0x3ebd, 0x35dc, 0x3af3, 0x11c2, 0x030c,

 0x155b, 0x0f6d, 0x23fd, 0x380e, 0x2486, 0x0052, 0x137b, 0x1196},

 {0x3631, 0x3bbf, 0x2b7d, 0x07d5, 0x0a0b, 0x2d3b, 0x0fcd, 0x37c4,

 0x396f, 0x1f2a, 0x16b3, 0x111c, 0x3ab4, 0x3c5c, 0x0751, 0x1e80},

 {0x04b6, 0x1dab, 0x3fbb, 0x020e, 0x341b, 0x1c93, 0x399b, 0x1e13,

 0x2c08, 0x3d40, 0x07ee, 0x0708, 0x286c, 0x2c43, 0x06bf, 0x14ad},

 {0x1b0e, 0x2993, 0x00a7, 0x093c, 0x03dc, 0x18e5, 0x2f52, 0x3d45,

 0x1248, 0x1e23, 0x22b1, 0x3b27, 0x2929, 0x2454, 0x2ca5, 0x078c},

 {0x32b8, 0x1dc9, 0x06c1, 0x06e2, 0x3b08, 0x008f, 0x392c, 0x2ef7,

 0x026c, 0x09cb, 0x1d4d, 0x07f5, 0x3ced, 0x3027, 0x15ec, 0x0c0d}

 },

 { {0x1558, 0x1cf2, 0x126e, 0x28c3, 0x3b56, 0x3bf1, 0x22f2, 0x1e84,

 0x0998, 0x35ac, 0x3c5b, 0x0612, 0x3aa9, 0x222e, 0x19a6, 0x0733},

 {0x3ba0, 0x0723, 0x0496, 0x1917, 0x221f, 0x2caa, 0x2d2a, 0x293c,

 0x24a0, 0x1e89, 0x2b77, 0x1b97, 0x2094, 0x2317, 0x3909, 0x1c92},

 {0x073d, 0x2ed1, 0x1694, 0x237f, 0x25d2, 0x38ec, 0x2c12, 0x29fe,

 0x0fcc, 0x03a4, 0x14d0, 0x1207, 0x3d22, 0x3987, 0x0079, 0x0686},

 {0x1b9c, 0x2b3c, 0x214e, 0x2169, 0x2dd5, 0x2ac4, 0x2abb, 0x1e41,

 0x123f, 0x3d82, 0x390b, 0x004d, 0x1dc8, 0x1fea, 0x1bc5, 0x1ffd},

 {0x37c8, 0x2ced, 0x2414, 0x19dd, 0x16d7, 0x219b, 0x1c8f, 0x0cf3,

 0x0597, 0x18a0, 0x14e7, 0x0ad4, 0x2b02, 0x0bc7, 0x3b68, 0x3041},

 {0x044e, 0x17ca, 0x18e0, 0x0128, 0x2a1c, 0x3baf, 0x1c8d, 0x2b9c,

414

 0x2cb4, 0x337b, 0x0e0f, 0x3d06, 0x1d54, 0x068f, 0x3a3c, 0x2056},

 {0x0ab7, 0x2970, 0x1dc3, 0x16c6, 0x1133, 0x04e3, 0x3194, 0x2449,

 0x3a7f, 0x0435, 0x047d, 0x303a, 0x31f7, 0x35b0, 0x23b5, 0x0a72},

 {0x0628, 0x3e7e, 0x3f46, 0x0789, 0x1a8e, 0x338a, 0x1d90, 0x24d1,

 0x1e03, 0x1c44, 0x3b95, 0x3486, 0x1f2e, 0x2538, 0x379a, 0x078a},

 {0x2250, 0x28dd, 0x0f68, 0x03f5, 0x2484, 0x285b, 0x27f2, 0x3525,

 0x1ffc, 0x2aa2, 0x182f, 0x23b2, 0x0c3f, 0x1873, 0x16ca, 0x35da},

 {0x143e, 0x0c95, 0x0b61, 0x3b29, 0x2a7c, 0x3fa9, 0x191d, 0x3946,

 0x32f5, 0x19f5, 0x21e2, 0x1678, 0x1db5, 0x16df, 0x323c, 0x03ed},

 {0x03cf, 0x06a9, 0x1662, 0x0b23, 0x285f, 0x04ab, 0x3f87, 0x0f31,

 0x1fb4, 0x0f6b, 0x379e, 0x2b51, 0x3944, 0x06b3, 0x3b47, 0x3e66},

 {0x3df9, 0x38ed, 0x0cf6, 0x29ba, 0x0736, 0x0027, 0x1a7a, 0x3bda,

 0x06fa, 0x35ed, 0x1877, 0x0c7e, 0x3f13, 0x32d3, 0x0fa9, 0x2b03},

 {0x2e86, 0x1e33, 0x273d, 0x2aca, 0x20a0, 0x3d14, 0x0589, 0x2ec5,

 0x3132, 0x3dfa, 0x28e3, 0x1f30, 0x2339, 0x3660, 0x2c1c, 0x2ba1},

 {0x0c64, 0x3f34, 0x2f8c, 0x1191, 0x1d8e, 0x390d, 0x0a0a, 0x36df,

 0x24bd, 0x05c3, 0x270d, 0x35eb, 0x353a, 0x2b0a, 0x2c07, 0x387d},

 {0x0739, 0x0298, 0x10ee, 0x2067, 0x0477, 0x145f, 0x047f, 0x35ce,

 0x34c0, 0x2316, 0x0880, 0x09d1, 0x0872, 0x0fd7, 0x0daa, 0x3d95},

 {0x2ee3, 0x1762, 0x1d5a, 0x17a9, 0x2073, 0x3dc6, 0x2a80, 0x1521,

 0x2c82, 0x2497, 0x2abe, 0x1871, 0x35e4, 0x3399, 0x07de, 0x2230}

 },

 { {0x1349, 0x36ee, 0x28e6, 0x05af, 0x0a00, 0x1f2b, 0x13a4, 0x1fff,

 0x02ec, 0x3d2e, 0x2191, 0x2aee, 0x16b1, 0x00cc, 0x13b2, 0x1893},

 {0x3590, 0x2868, 0x1240, 0x3465, 0x1f89, 0x3c0a, 0x3dbf, 0x0dd5,

 0x2156, 0x09dc, 0x3a05, 0x045f, 0x2db8, 0x0806, 0x19b0, 0x3d6d},

415

 {0x086c, 0x363d, 0x18bb, 0x1296, 0x2bba, 0x2c55, 0x192d, 0x1b5e,

 0x301b, 0x0c08, 0x1375, 0x322d, 0x1712, 0x00b7, 0x3574, 0x1c9d},

 {0x3d9b, 0x3883, 0x1912, 0x1469, 0x1dc6, 0x3b0c, 0x1aaa, 0x3022,

 0x0200, 0x0c8f, 0x360e, 0x2939, 0x30d2, 0x2c92, 0x1c63, 0x3ef1},

 {0x3e23, 0x24e5, 0x3bd9, 0x287f, 0x256a, 0x0816, 0x1315, 0x0b21,

 0x1337, 0x39b0, 0x1f65, 0x3d5b, 0x13d2, 0x27ee, 0x111a, 0x2509},

 {0x1a43, 0x2cba, 0x3283, 0x0118, 0x0c0c, 0x3424, 0x2e37, 0x38d1,

 0x3dad, 0x0bcb, 0x0f02, 0x341f, 0x31f9, 0x090f, 0x14ea, 0x0fa5},

 {0x0820, 0x3fc4, 0x2406, 0x1404, 0x2c61, 0x2be4, 0x339b, 0x0629,

 0x3ffa, 0x2cb9, 0x1d12, 0x08a0, 0x2947, 0x36eb, 0x35c8, 0x1653},

 {0x0297, 0x2ccc, 0x1e00, 0x1e98, 0x3917, 0x0991, 0x09f2, 0x3ad8,

 0x33ed, 0x24db, 0x3fbd, 0x3986, 0x1136, 0x32ca, 0x1604, 0x06d6},

 {0x3e80, 0x31da, 0x00ea, 0x0c3a, 0x3e4c, 0x0bc3, 0x29a2, 0x0b55,

 0x3618, 0x0368, 0x193d, 0x264b, 0x024d, 0x0c00, 0x09ca, 0x0adb},

 {0x3393, 0x12ae, 0x2ed9, 0x25ca, 0x3d74, 0x0b77, 0x1025, 0x3c8e,

 0x3ca8, 0x172a, 0x129f, 0x0996, 0x27ea, 0x1b07, 0x13e3, 0x150c},

 {0x03ec, 0x3724, 0x18b3, 0x115a, 0x14c8, 0x192e, 0x1a8f, 0x13ac,

 0x27a5, 0x1718, 0x2ba0, 0x3bdd, 0x2c44, 0x2a6a, 0x3f1c, 0x287c},

 {0x3475, 0x33a8, 0x3a1c, 0x15c1, 0x2d56, 0x0d03, 0x02ba, 0x2f33,

 0x13a8, 0x36ad, 0x38c2, 0x384a, 0x2d6e, 0x265d, 0x3195, 0x1759},

 {0x14d2, 0x033f, 0x00c7, 0x0608, 0x2c9e, 0x2597, 0x005a, 0x1565,

 0x11ab, 0x04ca, 0x22ce, 0x3478, 0x2aa4, 0x3897, 0x0dab, 0x14b2},

 {0x08cb, 0x30e8, 0x0bf3, 0x3e1b, 0x3e35, 0x282f, 0x2516, 0x24a4,

 0x3e98, 0x1ffb, 0x24ab, 0x0954, 0x3a08, 0x17c7, 0x3fdf, 0x3cfa},

 {0x2287, 0x0f93, 0x38cd, 0x1e19, 0x2306, 0x2ebf, 0x110d, 0x1e8d,

 0x28c4, 0x0f7a, 0x2b05, 0x325f, 0x05b5, 0x21dc, 0x188c, 0x387e},

416

 {0x23b6, 0x2ec3, 0x01ae, 0x11e4, 0x2f37, 0x3c98, 0x355f, 0x0275,

 0x34ce, 0x1488, 0x3237, 0x306d, 0x343e, 0x3b09, 0x2214, 0x320d}

 }

 };

VITA

Richard Lloyd Churchill

Candidate for the Degree of

Master of Science

Thesis: RICHARD LLOYD CHURCHILL

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in December, 2011.

Completed the requirements for the Bachelor of Science in Chemistry and
Philosophy at Oklahoma State University, Stillwater, Oklahoma in 1980.

Experience:

Systems Engineer, Telex Corp., Tulsa, OK 1985-1988

Systems Engineer / Systems Architect, Compaq Computer Corp., Houston, TX
 1988-2001

Programmer / Software Architect / Consultant, Houston, TX 2001-2004

Programmer / Software Architect / Consultant, Stillwater, OK 2004-2011

ADVISER’S APPROVAL: Dr. H. K. Dai

Name: Richard Lloyd Churchill Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MODIFIED MCLAREN-MARSAGLIA PSEUDO-RANDOM NUMBER

GENERATOR AND STOCHASTIC KEY AGREEMENT

Pages in Study: 416 Candidate for the Degree of Master of Science

Major Field: Computer Science

Findings and Conclusions: A discussion of problems in cryptographic applications, with

a brief survey of pseudo-random number generators (PRNG) used as synchronous
stream ciphers, leads to a discussion of the McClaren-Marsaglia shuffling PRNG,
and some means of altering its structure to both provide a more secure PRNG and
to provide effective means by which to inject aperiodicity into a modified form of
McClaren-Marsaglia. A discussion of two closely related protocols using this
modified form of McClaren-Marsaglia as means by which correspondents may
agree upon a set of random bits in a manner suitable for use in cryptographic
applications is then presented, with implementation in the C programming
language of the second protocol. Analysis of the protocols concludes that a
reasonable expectation of confidentiality and cryptographic strength in the agreed
bit-sequence is obtained.

