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be used in this report, it is not intended as an endorsement of any machine, contractor, 
process, or product. 
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EXECUTIVE SUMMARY 

The study aims to analyze data related to the performance of the A+B innovative contracting 

design that could help the Oklahoma Department of Transportation (ODOT) evaluate the costs 

and benefits of the design, leading to an assessment of current practices. A+B bidding is an 

innovative contracting design that allows contractors to propose an “A” bid for cost and a “B” 

bid for time. Since both cost and time matter in determining the winner, A+B bidding has the 

potential to reduce construction time while keeping the cost competitive. According to theory, 

as construction speeds up, cost goes up as well. So the net impact is unclear. In addition, the 

current practice of ODOT concerning the assignment of A+B bidding is primarily based on the 

size of projects and duration. Our goal is to identify any project related characteristics that 

could be added to the list to optimize the use of this innovative contract design as well as 

information on A+B practices across the states.     

This study has three objectives. The first objective is to provide detailed statistics on how A+B 

bidding is being utilized in ODOT lettings. We provide a summary of the characteristics of A+B 

bidding projects, the competition in these projects, and how they compare to the rest of the 

projects offered regularly at lettings. The second objective is to quantity the effect of A+B 

bidding on the low bids ODOT received, which represents the direct cost to the State. This is 

achieved with advanced techniques from the literature of program evaluation. This enables us 

to separate the observed difference in low bid caused by differences between projects 

themselves rather than the difference in bidding method, and provides an accurate estimate on 

the impact due to the adaptation of the special provision of A+B bidding. The last objective of 

the study is to dig one step deeper from the project level, and to analyze how individual 

construction items within an A+B bidding project respond to the pressure of time in terms of 

changes in itemized bids. Then we focus on items that demonstrate favorable responses, in 

other words their itemized bids are increased the least in A+B bidding compared to standard 

bidding, to look for projects which use such items to a considerable extent as desirable 

candidates for ODOT’s expansion of implementation of the A+B design in the future.   
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1.0 INTRODUCTION 

A key challenge for Departments of Transportation around the country is to keep the 

cost of construction low while ensuring that projects will be completed in a timely manner. 

Those goals can often be conflicting. The purpose of this research project is to investigate the 

empirical relationship between project cost and project duration to offer recommendations to 

the Department of Transportation on the optimal use of time incentives in the procurement 

process.  

We utilize program evaluation techniques to assess the performance of 

“incentive/disincentive” (I/D) and A+B lettings in comparison to the standard contracting low 

bid practice. Using our statistical knowledge and information on alternative contracting 

methods adopted by ODOT and other state Departments of Transportation, we conduct 

economic evaluation of contracting practices.  

     The purpose of this research project is to identify and quantify the empirical 

relationship between procurement cost and project duration and to offer recommendations to 

the Department of Transportation on best practices relevant for time-related contracting 

provisions. Our economic analysis utilizes program evaluation techniques to thoroughly assess 

the performances of “incentive/disincentive” milestones (I/D) and “cost plus time bidding” 

(A+B) procurement mechanisms in relation to each other and the standard low bid format. We 

examine and compare bidding outcomes in terms of construction acceleration and final cost. 

With the research team’s statistical expertise and knowledge of alternative contracting 

methods, we first isolate projects that have been sped up under I/D and A+B incentive 

structures, and measure how much bidding levels and final procurement costs have been 

increased under these incentive structures, before comparing such increments to the welfare 

gains of the public. Next, we establish an algorithm to quantify the relationship between a 

project’s characteristics, such as location, task, size and item composition and its acceleration 

premium (price increase due to time constraints) by looking at how contractors revise bids of 

various construction materials within the project to expedite completion. The end goal was to 

prepare guidelines for distinguishing between costly projects and those that are economically 

practical to speed up, and help ODOT to improve efficiency in highway construction.  
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2.0 BACKGROUND 

The Federal Acquisition Regulation guidelines, which dictate the available contracting 

options in any procurement activity using federal funds, demonstrate a clear preference for 

simple, price-based auction procedures-such as the lettings used by ODOT. However, 

theoretical analysis from a very influential research group (Bajari, McMillan and Tadelis (2009)) 

asserts that procurement officials should be allowed more flexibility in awarding contracts 

based on the characteristics of projects and bidders. Our work is related closely to the emerging 

interest in schedule-based contracting methods used in procurement auctions. It takes the 

literature a step further by proposing to engage in rigorous, data-driven quantitative 

investigation, by looking for the first time at itemized bids and using the wealth of information 

existing at this level to draw conclusions. At the end, we propose specific guidelines for State 

Transportation Agencies that could help improve efficiency in highway construction. 

2.1 BACKGROUND OF TIME-RELATED CONTRACTING PROVISIONS 

Construction of highway and bridge projects weighs in multiple considerations that 

relate to cost, schedule, quality and technology considerations. As a result of the increasing 

traffic volumes on the national highway systems, many transportation agencies are pressured 

to place a higher and higher premium (weight) on construction time, and begin to widely 

implement time-related construction provisions in procurement auctions. Time incentive 

structures can generally be divided into two categories: 

Incentive/Disincentive Milestones (I/D) based on completion-date 

This contracting method is probably the most established and widely used of all 

provisions. Under the I/D structure, the time frame for critical pieces of work (milestones) or 

full completion is determined by the DOTs and presented to contractors with the plan. 

Contractors are to be awarded bonuses for each day they fulfill the contract satisfactorily 

before the completion date stated in the plan, or to be charged a fee if completion is overdue. 

Cost Plus Time Bidding (A+B) 
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This alternative has been steadily gaining popularity after it was recommended by the 

Federal Highway Administration. Here contractors propose their own construction times. 

Determination of the winner follows the low price rule, where each bid is the sum of the item 

cost (A component) and the (user-cost weighted) time cost (B component). The design is a 

variation of scoring auctions in the auction literature. 

In practice, there is a multitude of alternatives for time-sensitive contracting 

mechanism. But many of them can be viewed as a slight variant of one of the above structures 

or a composite of both. Furthermore, since the two methods come with a considerable pool of 

observations from ODOT practices, we will draw on them for empirical analysis. 

As part of our project analysis, we surveyed all Transportation Agencies on their rules 

of implementation of A+B and incentive/disincentive designs. A complete survey of A+B and 

I/D letting practice is presented in Table 1.  

As Table 1 reveals, twenty three out of the forty four states responding to our request for 

information have A+B mechanism in places. The table also details a variety of incentive 

disincentive practices and penalty and reward caps that are implemented at the state level.  

The Federal Highway Administration (FHWA) recommends a maximum amount of 

incentive payments as 5% of the total project cost. Many states employ the suggested cap in 

practice, but some states have set their own caps based on number of days, duration of project, 

type of work, or their budgets.  It is also common for the incentive to be capped at either a 

maximum amount or a maximum number of days, or both, while disincentives are not normally 

capped. However, in Alabama, Nevada, New Jersey, Rhode Island, and Texas incentives are not 

capped at all.  

The level of I/D rates are so varied that it is difficult to provide a general rule of setting 

I/D rates in each state. The factors affecting the adjustments are project conditions, market 

influences, and the level of acceleration. I/D rates vary by state and most states employ user 

cost as the basis. It is far less common to use liquidation damages as the basis (only in 

Mississippi and Nevada). The incentive provision is not always used. For example, the state of 

Nevada uses a disincentive provision only. Nearly one third of the states set I/D rates equal to 
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the user cost. The table also shows that only eight states have a rate of disincentive strictly less 

than the user cost. 

2.2 LITERATURE REVIEW 

An important effort from the economics community to analyze time incentive designs 

was made by Lewis and Bajari (2011), who studied A+B contracts offered by the California 

Department of Transportation (Caltrans) between 2003 and 2008. A highly urbanized state with 

a large population, California is believed to bear significant welfare losses due to the disruption 

of regular traffic flow in work zones. Lewis and Bajari collected 79 A+B contracts alongside 603 

projects that were auctioned off using the conventional low bid auction format. When 

comparing construction time, the researchers observed much quicker completion fromthe A+B 

type, taking on average 60% of the engineer’s time estimate. Meanwhile, when the monetary 

outlay is considered, there is a 10% increment in bids submitted under the A+B design over the 

standard low bid procurement practice for similar work type and scope. Using statistics on 

California’s daily traffic and construction-related traffic delays, the authors calculate that for an 

average construction job, the savings from road-user cost reductions ($6.4 million) substantially 

outweighed the increase in procurement costs (1.5 million). Based on the favorable results, 

they recommended that the usage of A+B bidding be expanded to all projects rather than the 

current practice of a selected few. 

Another study is carried out by Gupta and Snir (2009), based on data collected from 

Minnesota Department of Transportation (MnDOT). Due to the limited number of projects 

under alternative auction designs, the authors concentrated on a relatively small sample of A+B 

projects to examine their cost realization at the completion of the projects rather than the 

expected payments from competitive bidding. In a game theoretic model, they derived an 

optimal bidding strategy to show that, contractors always have the incentive to propose an 

unrealistically low number in days, win the project, and then finish late with a penalty.  

There is also a rich literature on time-related incentives in the field of engineering, most 

of which take a qualitative perspective. I/D milestones has been a contracting tool for DOT’s for 

more than 20 years, but its usage is still quite limited, usually only selected when urgent 

completion in areas of high-traffic volume is needed. Through case studies, Gao (2010) 
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provided an explanation for the small scope of incentive projects, placing emphasis on how 

critical it is to specify accurately the incentive and disincentive amounts for the contract. Failure 

to set incentives/disincentives correctly may result in amounts too low to provide contractors 

enough financial motivation to accelerate construction, or so high that they could exceed the 

public user cost and result in a waste of tax payers’ money. He compared three common 

approaches from the literature to draw the policy recommendation that the rate of incentive 

should depend positively project duration. 

Taking a descriptive approach, Arditi and Khisty (2005) studied the usage of I/D 

contracts in the Illinois Department of Transportation (IDOT) in the early 1990’s, and concluded 

that acceleration of construction time is most likely accompanied by higher cost of 

procurement. 

Herbsman and Chen (1995) conducted a survey of innovative time-reduction auction 

methods to summarize and contrast standard procedures, current applications, and pros and 

cons of each alternative. As an increasing emphasis is placed on construction time, more and 

more state transportation agencies begin to implement such designs alongside with the 

conventional method, although to limited scales. Most states have seen favorable results from 

such practices. 

Zervos (2009) documented NASA’s implementation of the Faster-Better-Cheaper (FBC) 

procurement philosophy in the early 1990s. The expectation was that FBC would lead to a more 

competitive award process. However, Zervos’ empirical results indicate that NASA’s choices of 

award mechanism and contract type were not in accordance with these expectations.  This 

study indicates the importance of evaluating the effectiveness of both pricing mechanism and 

incentives in conducting procurement policy analysis.     

Piacenza (2006) modeled inefficiency for public transportation firms in Italy as a 

function of regulatory scheme for subsidization and environmental factors (aggregating to the 

delivery speed).  Using this approach, Piacenza found that the incentive-maximizing regulatory 

structure provided by the fixed-price regime indeed results in inefficiency reduction for the 

firms that use low price contracts.   
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In the next section, we will describe the data and research methodology related to this 

work.  

3.0 DATA COLLECTION 

Data collection and consolidation in the project was done in three parts: first, we 

collected information directly from letting documents available on the ODOT website; second, 

we requested and acquired information, which was not available online directly through ODOT 

staff; and third, we had a couple of meetings with ODOT engineers to extract quantifiable 

information from text or graphical documents. 

(i) Collecting Online Letting Data 

We included all projects between 2004 and 2011 from regular monthly lettings 

administered by ODOT. Information can be distinguished by the level of aggregation of 

information, namely, we collected project award level data and item level data. Project award 

level data encompass all observed characteristics from the letting report, including letting date, 

project id, location, description of work type, urban/rural type, road type, plan holders, bidders, 

all bids submitted, and the letting outcome. 

A unique feature of our data collection is that we took a step further from project award 

level information to dip into the rich reservoir of information at the itemized level. For a project 

of average size, there are usually scores of item lines listed in the plan. Each item line includes 

the name of the construction item, the quantity used, and the price estimate by engineers. 

Therefore, the sample size at item level is easily 100 times greater than that at the project level. 

With the help of pdf conversion technique, we were able to obtain the entirety of records at 

the item level, particularly the itemized bid on every item prescribed in the plan, identity of the 

contractors submitting the bid, item number, item description, specified quantity, unit bid price 

and total bid price (which is the product of quantity and unit bid price). 

(ii) Collecting Additional Information from ODOT 

By necessary, information that is not released on the website was requested. 

Specifically, we asked ODOT engineers for information on the actual construction of projects 

after they were successfully procured in monthly lettings and the special provisions of 

incentive/disincentive and lane rental that are used in contracting in addition to the special 
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provision on A+B bidding. Construction information was based on finalized projects, which 

provides information on the net difference between low bid and the actual paid amount. 

 

 (III) Meetings with ODOT Engineers 

Besides requesting additional information, we also solicited the help of ODOT engineers 

to understand their rule of thumb in choosing A+B bidding or A-only bidder in practice. How the 

decision is made in practice regarding whether to use A+B bidding is important for our analysis 

because we are able to look for the difference in the performance of projects with A+B bidding 

after accounting for selection patterns. 

Another clarification we requested from ODOT concerned the details of how traffic/road 

closures were selected from different projects. This information is also critical to our 

comparison of A+B bidding versus A-only bidding, because the way traffic is regulated in the 

work zone can have an impact on the cost of the contractor and therefore the procurement 

cost incurred to the State. However, we learn from ODOT that such information is usually 

specified in the detailed construction plan, which is not only difficult to look for but also require 

engineering expertise to understand. Since traffic regulation is related to the traffic volume on 

the road, for instance, full closure is less likely to be allowed on busy highways than on remote 

county roads. We used the type of road where the construction took place as a proxy for the 

effect of traffic closure on cost. 

4.0 DATA DESCRIPTION 

Next, we present summary statistics for the data. Overall, the use of A+B bidding is at a 

relatively small scale. Of all 2438 projects successfully contracted between 2004 and 2011, 127 

have special provision SPN102-4, where contractors are expected to submit an A bid for cost 

and a B bid for time, compared to the great majority of 2311 projects that are procured via the 

standard low bid auction format, in which the contractor with the lowest bid is awarded the 

project. 

In Table 2, we contrast the characteristics of projects procured through standard A 

lettings and A+B lettings along different dimensions. Judging by the engineer’s cost estimate, 
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A+B projects are much larger, on average estimated to cost about $10 million. On the other 

hand, a typical project using the A-only bidding format is expected to cost $1.5 million. If we 

move on to the bids received, it is not surprising that the difference in size is also reflected in 

the bids submitted by all bidders and in the low bids, since the engineer’s estimate is a good 

indicator on the construction cost. To facilitate the comparison between these two groups, we 

constructed a measure of relative bid, as the ratio of dollar bid divided by the engineer’s 

estimate. In standard A-only projects, bids are on average 5% higher than the engineer’s 

estimate, while the premium is slightly lower for the A+B bidding group, where bids are 2% over 

the estimate. For low bids, however, the pattern is reverse, as the low bid from A-only projects 

is 6.8% below the estimate, but only 4.6% under the engineer’s benchmark for A+B bidding. In 

agreement with the bigger size of A+B bids, we also observe A+B projects to be longer in 

duration, lasting 268 days in term of calendar days. The number of item lines in the plan of an 

A+B work is also noticeably higher, nearly four times as many as in an A-only project. This 

suggest that an A+B bidding project tend to be both larger and more complicated in tasks as 

there are many more construction materials involved in the job. 

Now we turn to the characteristics of procurement competition rather than the project 

itself. Generally speaking, the larger the number of bidders, the greater the competition 

intensity, and the lower the procurement cost will be for the buyer, in this case, ODOT. 

Meanwhile, competition intensity may not be directly dependent on project size or duration, 

but rather the state of the market, e.g. how many contractors are eligible and willing to 

compete for the project. We measure competition in two ways: through the number of plan 

holders and the number of bids, where both variables are positively related to healthy 

competition in a letting. While the A+B mechanism seems to attract more plan holders, the 

number of bids actually submitted is smaller in A+B than in A-only lettings. Nevertheless, these 

numbers are much more comparable than the characteristics of the projects themselves. To 

examine more carefully  which firm participated in A+B bidding, we present contractors’ plan 

holding and bidding frequencies between 2004 and 2011 in Table 3, where the division into 

different groups is based on their participation, i.e. whether they purchased a plan and whether 

they submitted a bid, in A+B lettings. As expected, we see that firms that chose to participate in 

A+B projects constitute a subset of all contractors in ODOT monthly lettings. In particular, there 
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are 73 contractors who have submitted a bid in A+B lettings, relative to 134 contractors who 

have purchased at least a plan, and 242 contractors that did not once purchase a plan or submit 

a bid for an A+B project. Regarding the frequency of participation in ODOT letting, A+B letting 

participants are much more active than A+B non-participants, as indicated by the greater 

number of plans purchased, bids submitted, and projects awarded. This suggests that 

participants in A+B lettings tend to be frequent bidders and winners. 

For the subset of finalized projects, A-only projects eventually cost to the State an 

amount close enough to the lowest bid at the letting. The actual payment and low bid are 

almost identical for A-only bidding with a mere 0.1% differential. Contracts procured via the 

A+B format on average cost 6.2% more to the State than the low bid from the letting. On the 

contrary, the number of days a project takes until completion is considerably higher than the 

number of days specified in the plan across groups, although the performance of A+B contracts 

on “punctuality” is relatively better. Since the construction data are based on the net difference 

of the entire project, we don’t observe what might be responsible for the number of charged 

days to exceed the calendar day duration in the plan. 

In sum, a stark difference is present between A-only and A+B contracts. This is 

understandable when we take into account ODOT’s consideration in choosing between letting 

methods. From discussion with ODOT staff we learned that assignment of A+B bidding, as 

expected, is not a random process. Instead, the primary criteria of whether a project is selected 

to be procured via the A+B bidding process include its size, the type of road it is on, and the 

area where the construction site is located. A+B bidding is adopted with a higher probability 

when a project is in populous metropolitan areas or close to busy interstate freeways. This 

means that, in order to correctly evaluate the effect of A+B bidding on procurement cost, we 

should focus on A-only projects that are similar in characteristics to A+B projects. Due to this 

reason, we defer the analysis of itemized data until a more appropriate comparison group is 

selected. 

Next we summarized lane rental provision usage in A+B bidding. 39 out of 127 A+B 

projects are supplemented with a lane rental clause. The minimum fee is $1,000 per lane per 
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hour, and the max is $65,000, averaging out to be $17,115 across. The specific distribution 

among divisions is presented in Table 4a. 

In Table 4b, we examined how the final payment and number of days charged are 

affected by the usage of lane rental provisions in A+B projects. With information on whether 

lane rental penalties are present, we examine the actual payment and construction time 

charged separating projects with and without lane rental provisions. We observed a difference 

in percentage, but only significant at 15% confidence level.  

Finally, we summarized information on the use of incentive/disincentive rates in A+B 

bidding. We were provided with SPN102, the official provision of A+B bidding, for 110 out of 

127 A+B projects. Based on the incentive/disincentive rate and maximum number of days 

incentives can be paid, the average of early maximum completion bonus is $425,088, or 6.7% of 

the contract value, quite close to the 5% target of ODOT. 

5.0 EMPIRICAL ANALYSIS 

As the assignment of A+B bidding is non-random, the difference in the procurement 

cost shown in Table 2 is at least to some extent caused by dissimilarity between projects. If 

projects of the standard design are unlikely to be procured via an A+B mechanisms, bidding 

differences across A+B and standard A-only projects can be attributed to the intrinsic 

dissimilarity in project themselves as much as to the difference in the letting mechanisms. To 

put it in numbers, the fact that on average the low bid for A-only projects is $1.39 million, while 

the low bid for A+B projects is $8.99 million, should be viewed as the result of size differentials 

across projects as much as, if not more than, the use of the A+B mechanism. The identification 

of potential outcomes hinges on a control group which approximates the randomization in 

assignment so as to produce meaningful estimators of the treatment effect. In other words, to 

be able to compare the success of one mechanism over the other we need a comparable set 

of projects whose main difference is the contracting mechanism employed. Therefore, we 

employ the statistical method of matching to select a subsample of all 2311 A-only projects 

which are eligible candidates for A+B bidding to form a comparison group that could resemble 

projects procured via the A+B mechanism more closely. 
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Discussion with ODOT reveals several factors under consideration in determining when 

a project is preocured though A+B bidding. Among them are project size, duration, and 

proximity to populous metropolitan areas or busy interstate freeways. For example, for the 

number of days to completion, the rule-of-thumb cutoff value is 150 for A+B bidding to be 

eligible. The results in Table 2 confirm that rules are followed fairly well in practice. On the 

other hand, we were informed that the type of work, which is of importance in driving a 

contractor’s bid, is not a priority factor in ODOT selection of A+B bidding projects. The numbers 

presented in Table 5, suggest that the proportion of bridge and grade, drain, surface (resurface) 

projects tend to be considerably higher in A+B than A-only projects. This observation motivates 

our adoption of the set of criteria that includes size, duration, location, highway type, and work 

type to conduct matching without replacement.  

Figure 1: Histograms of propensity scores for matched and unmatched data  
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Using the 2311 A-only bidding projects that are available throughout the eight-year 

window, we arrive at the subgroup of 252 projects offered via standard low price letting 

process out of the full sample. Judging from the histograms of propensity scores presented in 

Figure 1, the preliminary matching has improved considerably the overlap of characteristics 

between A+B and A-only projects. Descriptive statistics in tables 6, 7, and 8 also confirm 

reinforce this belief. First we compare projects across characteristics used for matching; notice 

that a better balance is achieved in almost all matched characteristics. Next, we provide a 

comparison of projects across characteristics that were NOT used for matching. Although some 

variables are not considered when selecting A only projects to match with A+B ones, it is 

informative to see how the unmatched characteristics compare across groups. Notice that, 

relevant information that was not used to match these contracts e.g., bids received, low bid, 

number of bids and the number of plan holders, is also more comparable between the selected 

group of A and A+B projects. We believe that this indicates that our "matching" (selection) 

method was successful. 

With the selective group of standard lettings, we proceed to estimate the effect of A+B 

design on bidding using the method of nearest neighbor matching. We are able to achieve an 

exact match for district of location, work nature and type of road 96% of the time. We also 

incorporate regression techniques with the matching method to allow adjustment to any 

remaining differences in contract value or duration between matched A+B and A-only projects. 

Estimated coefficients are shown in Table 9 as follows. In the first specification, exactly one 

match is used to achieve the highest precision, while the two closest neighbors are employed in 

the alternative setting as a robustness check. With the logarithmic bids as the variable of 

interest, the estimated effect of speed incentive provisions on winning bids is 0.013 and 0.019, 

respectively. To put the numbers in context, for a project worth $10 million, application of 

A+B bidding causes the winning bid to increase by 1.34% to 1.90%, or between $134,000 

($10million*1.34%) and $190,000 ($10million*1.90%). Nevertheless, the estimate is not 

statistically different from zero in either case, implying that we do not have statistically 

significant evidence that the A+B design raises the contracting cost to the State. Combined 

with the “time bid" received as part B of the mechanism, where winning contractors bid to 

use 81.5% of time specified in the plan of the project, the innovative A+B design amounts to 
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speeding  projects by 49.5 days without raising the procurement cost to the State significantly. 

The favorable evidence is different from the findings in Lewis and Bajari (2011). They find that 

A+B bidding reduces construction duration by 40% in California, where the value set by Caltrans 

is considerably larger than ODOT's parameter choice that leads to a more moderate 

acceleration of 18.5% in our data. Under the assumption of a convex cost function, it is not 

surprising to experience a spike in the effort required, and thus cost incurred, to cut down 

construction time by 20% from 80% than from unity. Followings that logic, ODOT's practice 

should be more applicable to mid-sized cities with average population density. 

5.1  REDUCED FORM ESTIMATION 

Now that we have evaluated the general performance of A+B bidding, in terms of its impact on 

the low bids received by ODOT and its effect on the construction time. In order to take a deeper 

look and give recommendations on how the current practice can provide useful information on 

more informed assignment of A+B bidding in the future, we turn to data at the itemized level. 

Due to the great sample size of itemized data, we focus on the item composition of A+B bidding 

projects and the selected subgroup of A-only projects as explained in the previous section. 

Let us first review the basic statistics on construction items used in these projects. Based 

on itemized observations from A+B projects, 127 projects were procured using the A+B method 

between 2004 and 2011. On average, a project is worth $9.91 million in engineer’s estimated 

values, $9.64 million in winning bids received, and prescribes 129 items. 1886 unique items are 

used. Each item is used an average of 8.65 times with the most frequently used item, 509(A) 

1326 “CLASS AA CONCRETE”, appearing 164 times (used more than once by a project on 

average.) Of itemized observations from the subgroup of A only projects that were matched to 

A+B characteristics 202 standard A only projects are selected. On average, a project is worth 

$4.25 million in engineer’s estimated values, $4.29 million in winning bids received, and 

prescribes 86 items. 1634 unique items are used. Each item is used an average of 10.86 times 

with the most frequently used item, 509(A) 1326 “CLASS AA CONCRETE”, appearing 198 times. 

We provide the list of 30 most frequently used items and their frequencies in Table 10, where 

items are rank in descending order of frequency. 

However, besides frequency, the quantity and unit price of an item helps to convey a 

more complete picture of how much an item is actually involved in the construction project. 
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Therefore, we also look at the “intensity” of the item’s use by evaluating the value of the item 

in proportion to the total value of the project. On average, each item makes up 0.72% of the 

total project value for A+B, and 1.15% for selective A only. But there is much variation in the 

weight of items used in a project. We provide the list of 30 most heavily used items as well as 

the percentages of their usage in a project in Table 11.                

If we compare Tables 10 and 11, it is revealed that there is limited overlap between 

items that are used frequently and items that are involved at a considerable weight. To explore 

items that are important in terms of both usage and intensity in ODOT lettings, we present the 

summary of items that are used by at least 20 observations within A+B bidding and the refined 

subgroup of A-only bidding, and comprise at least 3% of the total project value for these 

projects. First, we present the summary statistics on item usage measured by frequency and 

percentage of total contract value for A+B projects, placed in a descending order in terms of 

percentage of total contract value. Right below Table 12 on A+B bidding, we report in Table 13 

the items selected using the same criteria based on the subgroup of A-only bidding project. 

As our objective is to look for different patterns in itemized bids between A+B bidding 

and A-only bidding, we examine itemized bids from the same construction material that is used 

regularly in both A+B bidding and the subgroup of A-only bidding that are similar to A+B in 

project size, duration, type and location, aiming to quantify the effect on bidding which has 

resulted from different letting mechanisms used. 

As a result, we are able to identify thirteen construction items that are used by at least 

25% of A+B and 25% of A-only projects, where the proportions of usage should take up 3% or 

more of total contract value so that these items are not negligible. We categorized the items 

into 4 groups to facilitate the presentation of density curves based on the proximity of their 

item number classifications. When producing the overall distribution of itemized bids, cut-off 

values around 99% are selected to remove outliers in relative bids which are more than 300% 

the engineer’s estimate. We examined the omitted extreme values carefully before 

determining whether to include them in subsequent analysis. 

The summary statistics of the first group is presented in Table 14, and the density curves 

of the distributions are presented in Figure 2, where the relative bids on excavation, borrow 
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and base are presented. These are bids divided by engineer’s estimates. Our analysis of 

itemized bids is based on a measure we call relative bid, percentage bid, or simply rbid. It is 

constructed as the bid divided by engineer’s estimate, to facilitate comparison of items what 

are used in small quantities by a project versus items that are used in large quantities by a 

project. 

 

Figure 2: Density plots  of relative bids for excavation, borrow and base  

 

 

Table 15 and Figure 3 present statistics and distributions of relative bids on asphalt concrete S3, 

asphalt concrete S4 (PG 76-28 OK) and asphalt concrete S4 (PG 64-22 OK). These are bids/engineer’s 

estimates. Similarly, for the remaining two groups, we present the basic statistics of itemized bids and 

their probability distributions. 

A first impression after contrasting the statistics of the thirteen items is that, for the 

same item used in A+B bidding and A-only bidding, their itemized bids are not similar between 

the two groups, and sometimes, can be fairly different. Such differences, although nuanced in 
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magnitude, are important because the projects under comparison are already quite similar 

given  that  they  are  selected  via  the  matching  method  performed  in the last section. A first 

 

Figure 3: Density plots  of relative bids for for asphalt concrete S3, asphalt concrete S4 (PG 

76-28 OK) and asphalt concrete S4 (PG 64-22 OK) 

 

Figure 4: Density plots of relative bids for structural steel, class AA concrete, reinforcing 

steel  
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Figure 5: Density plots of relative bids for removal of bridge items, removal of bridge 

structure, and mobilization  

 

impression after contrasting the statistics of the thirteen items is that, for the same item used 

in A+B bidding and A-only bidding, their itemized bids are not similar between the two groups, 

0
.2

.4
.6

.8

kd
en

si
ty

 rb
id

0 .5 1 1.5 2 2.5
x

A+B A-only

Structural Steel

0
.5

1
1.

5
2

kd
en

si
ty

 rb
id

0 .5 1 1.5 2 2.5
x

A+B A-only

Class AA Concrete

0
.5

1
1.

5
2

2.
5

kd
en

si
ty

 rb
id

0 .5 1 1.5 2 2.5
x

A+B A-only

Reinforing Steel

0
.2

.4
.6

.8

kd
en

si
ty

 rb
id

0 1 2 3 4
x

A+B A-only

Removal Bridge Items

0
.2

.4
.6

.8

kd
en

si
ty

 rb
id

0 1 2 3 4
x

A+B A-only

Removal Bridge Structure

0
.2

.4
.6

.8

kd
en

si
ty

 rb
id

0 1 2 3 4
x

A+B A-only

Mobilization

0
.5

1
1.

5

kd
en

si
ty

 rb
id

0 1 2 3 4
x

A+B A-only

Mobilization



 

18 
 

and sometimes, can be fairly different. Such differences, although nuanced in magnitude, are 

important because the projects under comparison are already quite similar given that they are 

selected via the matching method performed in the last section. For example, with SPN102 

incorporated, bids tend to be higher for Unclassified Borrow, Aggregate Base and several types 

of Superpave, but this relation is sometimes reversed for Removal of Bridge Items and Removal 

of Bridge Structure. The graphs are not providing a complete picture though. They don’t control 

for other factors that may contribute to differences in relative bids such as the estimated 

duration of a project, the number of items that can be used as a proxy for complexity or the 

number of bidders that can indicate the level of competitiveness at the project level. To 

account for the factors that may contribute to the differences in bids, we carry out a simple 

linear regression of the relative bid of a project as a function of project level characteristics and 

the results are reported in Table 18.                                        

  

Even with the rich information obtained at itemized level, the number of observations 

for individual items can still be limited. From discussions with ODOT, we learned that, while it is 

possible to group similar items in order to increase the number of observations, this must be 

done on a case-by-case basis. So in order to achieve the balance between increasing the 

number of observations and retaining the idiosyncratic nature of different items, we proceed to 

analyze first without grouping items together, and then carry out a parallel analysis with items 

grouped based on the first digits in the item number. To give some idea of how the 

consolidation of similar items may increase the number of observations, we present in Figure 6 

the histograms of item frequencies with and without consolidation. The one on the left is based 

on individual items, while the one to the right is constructed after items are grouped as 

suggested above. There is an evident improvement in terms of the increased item appearance 

after grouping. 

Figure 6: Item and group level frequencies   
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As explained above, to avoid combining items that are not homogenous in nature, we 

concentrate on the group of frequently used items, which arrives at a sample of around 10,000 

in itemized observations. Our objective is to investigate and identify how bids on the same 

items but from A+B bidding and A-only bidding can be related to the trade-off between time 

and money, and then take the identified patterns to a broader scale. In the regression analysis, 

our primary interest is in bidding differentials, across A-only and A+B bidding projects, the 

general trade-off as well as the intensified trade-off as the project duration becomes longer. 

Therefore, in additional to the introduction of dummy variables (binary variables of 0 and 1) 

identifying items and an indicator for items when they are from A+B projects, we also include 

several measures of project durations, and the cross products between item dummies and 

durations. This is the term that can capture how bids are adjusted as time is a factor in A+B 

bidding because faster completion increases a contractor’s probability of being awarded the 

contract. 

To maintain the robustness of our findings, we concentrate on the thirteen individual items 

identified earlier as both frequent and heavily involved. Selective coefficients on variables of 

interest from regression analysis are presented in Table 18. As a demonstration, we focus on 

two particular items, 619(B) 2500 REMOVAL OF BRIDGE ITEMS and 619(D)1397 REMOVAL OF 

EXISTING BRIDGE STRUCTURE. Both items exhibit interesting patterns in the bids received 

between A+B bidding and A-only bidding. Regression coefficients are provided in the first line of 

table 17, while standard errors of the estimates are in parentheses. Asterisks indicate statistical 

significance at 1% (***), 5% (**) and 10% (*) confidence levels. In all specifications, we control 

for characteristics on project and vendor, e.g. project size, duration, vendor’s distance, backlog, 

and the level of competition. 
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The highlighted coefficients before the A+B letting indicator indicate that, relative to bids 

from A-only projects, bids on these two items are much higher compared to their engineering 

estimates. This can be viewed as speed premiums when contractors are under pressure to 

achieve faster completion in A+B bidding. At the same time, we observation an interesting 

pattern in the next two rows. The product of A+B indicator with duration picks up the negative 

sign. This means that, the longer the duration, as measured by engineer’s estimate, the B 

days bid, and the total days taken, the lower the bid, when all other factors are constant. 

Such effects are statistically significant in all cases except for one. To put it in a different way, 

longer duration (thus less pressure in time) seems to reduce bids on the two items from A+B 

lettings, which is consistent with the trade-off between time and money. Again to ensure 

robustness, we excluded outliers which could significantly affect the findings upon consulting 

with ODOT engineers. Out of the 13 frequently used items we analyzed, five namely “202(C) 

0184 UNCLASSIFIED BORROW”, “411(S4) 5950 SUPERPAVE, TYPE S4(PG 76-28 OK)”, “506(A) 

1322 STRUCTURAL STEEL”, “509(A) 1326 CLASS AA CONCRETE”, “511(B) 6010 EPOXY COATED 

REINFORCING STEEL”, displayed similar patterns of bidding differences between A+B bidding 

and A-only bidding, albeit less significantly or less consistently than the two primary cased 

discussed above. 

After we discussed our preliminary findings with ODOT engineers, we learned that such 

impressions are not considered to be well-known based on their experience of working with 

contractors on the field. This lead us to believe that, through the micro level analysis on 

detailed item level records that are often passed by other studies, we may have identified 

patterns of individual items in the trade-off between time and cost that can be used to allocate 

A+B bidding in future practice. 

5.2 Structural estimation  

Next, we move on to utilize more advanced econometric techniques to quantify how the 

“time premium” escalates with time, quantity, and various other factors in the plan of a project 

and provide predications as to when it is most economical to use time incentives. This is to 

carefully  measure the bidding differentials due to time pressure in A+B lettings. 
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To this end, we propose two structural methods from the literature. In the first approach, 

we set up an explicit model of the acceleration cost for individual items as a function of project 

characteristics and the time bidders offer to save relative to the engineer’s estimate. Then we 

compare the acceleration cost across all items to distinguish between “costly” items and 

“economical” items. The second approach studies vendors’ bidding behaviors in a more flexible 

setup, where profit margins on various items are calculated to explore the differentials 

associated with the time incentive in A+B lettings. 

Our discussion so far mainly concerns the cost side of A+B bidding: we looked at how bids 

on a collection of frequent items which make up the project cost are adjusted when faster 

construction is awarded. To evaluate the A+B letting in achieving efficient trade-offs between 

cost and time, it is important to examine both cost and time. Now we turn to the other front, 

namely time, to see how much time vendors propose to save in the A+B lettings. We measure 

the savings as the difference between engineer’s estimated duration and the “B days” 

proposed by bidders. The number of days saved by vendors on average under A+B bidding is 49 

days, approximately 18% of the engineer's estimate.  The majority of vendors propose to save 

between 10%-20% of the estimated duration. This moderate number suggests that construction 

firms respond to incentives/disincentives actively but reasonably and we don’t see a lot 

dramatically reduced B bid submitted in biddings. We present the entire distribution of time 

saved in the Figure 7. Nevertheless, such savings are letting outcomes and may be realized to 

different extent in the actual contract. To evaluate whether the lettings savings translated into 

real savings for ODOT, a detailed breakdown of total number of days charged in construction 

into specific categories of working days, weather days, etc, is required. But given the burden it 

entails on ODOT staff to provide such information, it is beyond the scope of the current study. 

Figure 7:  Time savings distribution  
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Moving forward, we quantify the different responses in itemized bids more 

systematically using structural estimation methods. The first step of our structural analysis is to 

estimate how a firm’s cost changes as a function of time, in other words, the cost of 

acceleration. The idea is as follows: Traditionally, since only proposed bids are observed in A-

only lettings, we can infer a firm’s cost from its bid, but are unable to trace out the change in 

cost when construction duration is subject to change. However, under the A+B letting design, 

firms choose “A” the bid dollar cost and “B” the time at once, with the cost critically dependent 

on the time selected. On the one hand, faced with various incentive/disincentive rates set by 

ODOT in different projects, firms should be more motivated to speed up when the rate is large. 

This is because a smaller duration, weighed by the large incentive rate, benefits firms more by 

increasing their chances of winning the contract. From the sample of all A+B lettings, we are 

provided with a group of rate/time combinations to map out how contractors choose different 

schedules in B, in response to the different incentive/disincentive rates. On the other hand, in a 

given A+B letting, if there is more than one participating firm, they may propose different 

numbers in B bid, again generating multiple observations to recover the relationship between 

changes in cost and construction time after you control for idiosyncratic firm characteristics. 

Thanks to a special feature of our data, a third source for the identification of cost as a function 

of time is available. In 20 out of 127 A+B lettings, a C bid is recorded in addition to the B bid, for 
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which a separate incentive/disincentive rate is set by ODOT and firms may select their own 

duration. This has made available additional variations regarding how different contractors 

react to incentive/disincentives and help us in the identification of cost change as a function of 

the construction time proposed. 

First we carry out our estimation with project rather than itemized bids because the B 

part of A+B bidding is observed at the project level. Estimation results from the model are 

reported in Table 19. The dependent variable is the logarithm of the number of days a project is 

accelerated, measured by the difference between engineer’s time estimate and the B bid 

proposed by firms. Of the independent variables, we include a binary indicator of lane closure 

penalty, which is equal to 1 if a special provision on lane rental is found for the project and 

equal to 0 otherwise. 

Intuitively, the sign of the coefficient in front of the rate of incentives/disincentives 

should be negative as now dollar cost and time are both used in the calculation of low bid to 

determine the winner. The magnitude, however, of the coefficient (0.227<1) shows that firms’ 

acceleration is inelastic in the incentive/disincentive rate, i.e. the number of days accelerated is 

relatively irresponsive to change in time incentives, because the cost of acceleration is fast 

increasing (convex) in time. To put it in numbers, consider the following example: Suppose the 

incentive/disincentive rate for a project is set at $10,000/day, and a firm proposes in B bid to 

finish 25 days ahead of the engineer’s time. If the rate is increased by $1,000 to $11,000/day, 

firms should be willing to put more efforts into acceleration. Based on a coefficient of 0.227, 

the firm will adjust B bid by reducing construction time by an extra 6 days (about 2.3%). If the 

incentive rate is increased by another $1,000 to $12,000/day, following the same logic, the firm 

should try even harder to accelerate. However, due to the convex cost function, it can only 

reduce construction time by an additional 5 days (or about 2.1%). This agrees with the general 

impression that it may only take firms some smart planning or logistics to achieve a small 

reduction in time, but much more serious efforts are required when larger reductions are the 

target. Admittedly, the coefficient is only statistically significant with a confidence level of 80% 

(p value = 0.162). This could be attributed to the fact that in more than 60% of observations, 

firms propose exactly the same time in B as the engineer’s time, making the number of days 

accelerated to zero and reducing the level of variance in the observations that could help 
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identify significant coefficients. These observations are used in the analysis. However, many 

zeros at the one end of the saving days distribution adversely affects the significance of the 

relationship between days accelerated and time incentives. Most other coefficients are 

consistent with findings from previous research. Longer projects, projects that have an explicit 

lane rental provision and contractors with establishments of $50 million or above are all 

positively affecting acceleration rate. A notable exception is the instate contractor dummy, 

since the negative sign in front of it suggests fewer days will be accelerated when the firm is 

based in Oklahoma. It is counterintuitive as normally local firms enjoy the advantage of 

familiarity with the terrain, existing networks and short traveling distances over national firms. 

This effect is not statistically significant. 

Our structural analysis confirms that construction cost is not only increasing but also 

convex in time (i.e., increasing at an increasing rate). Based on economic theory, the coefficient 

before the incentive/disincentive rate directly corresponds to the parameter which governs the 

concavity of firms’ acceleration cost. Therefore, we are able to predict the shape of 

construction cost (convex) based on the estimate of 0.227.  Next, we apply a semi-parametric 

model using project bids to examine how the higher cost of construction due to acceleration 

are passed onto the monetary bid in “A” received by the government. It differs from usual 

parametric models in the sense that all variables are normalized by taking division over the 

engineer’s estimate. According to theory, the bid of an A+B letting consists of three parts: a 

base cost for completing the work, an acceleration cost due to faster completion proposed in B 

relative to the engineer’s time, and a profit margin for operating business. Following such 

considerations, a flexible reduced form function is set up to quantify how much the preference 

given to faster firms causes the bids submitted, and in turn procurement cost, to go up. 

For project level estimations, we employ the relative project bid, in A normalized by 

engineer’s estimate as our main dependent variable. For factors that are used to explain 

observed variations, we include characteristics on projects (e.g. size, duration, etc) and 

characteristics on contractors (e.g. instate firm or out-of-state firm, distance to work site). In 

addition, we use the product of days accelerated, constructed the same as before, and the 

weight of incentives/disincentives, since both are closely correlated with the amount of efforts 

necessary to achieve faster completion. The innovative feature is the use of a specific term that 
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accounts for unobserved heterogeneity in the cost of a firm trying to accelerate a project. We 

report the regression coefficients in table 20. 

The negative coefficient of the establishment dummy means that large firms increase 

bids to a smaller extent in order to achieve acceleration. In contrast, in-state firms inflate bids 

to a bigger extent. The sign is a little counterintuitive, but it agrees with the finding earlier that 

in-state firms are relatively less inclined to accelerate. Nevertheless, we don’t have 

characteristics of these firms, e.g. employment size, financial conditions, length of experience, 

to explain exactly why firms based in Oklahoma behave this way. The positive sign in front of 

the product of days accelerated and incentive/disincentive rate over engineer’s estimate – the 

potential percentage of direct social benefit/cost of acceleration/delay agrees with 

expectations. When this percentage is higher, bids will be increased more, either due to greater 

efforts needed or higher leverage/profit enjoyed. Specifically, if it goes up by 10%, we expect 

the dollar bid as a proportion of the engineer’s estimate to rise by 4.5%. This estimate provides 

a feel of how preferences given to faster rather than cheaper contractors may inflate the 

procurement cost. This coefficient is not statistically significant with 90% confidence, also due 

to the multiple zeros observed for the number of days saved when different 

incentives/disincentives rates are set in different A+B bidding.   

Next we explore the unique advantage offered by the rich information available in 

itemized data to examine the change of bids from A+B bidding at a more micro level. So we 

apply our structural methods to itemized data. In transitioning from project level to item level 

analysis, two challenges are presented. First, project level variables that transfer to item level 

analysis will be the same for all items from the same project, resulting in the same number 

appearing in many different entries and thus causing potential difficulties in identification due 

to lack of variations. Second, as the specific effect of a firm in a letting is produced from project 

level observations, by definition it should be the same for all items in a project. Nevertheless, to 

capture unobserved heterogeneity, the effect should be specific to the item, therefore creating 

an inconsistency. Both challenges have to be resolved before proceeding with itemized level 

analysis. In last month’s report, we introduced more advanced statistical methods including 

structural estimation to project level data, and provided quantitative analysis on how faster 

construction by contractors may pass higher procurement cost onto the government agency. 
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While the view of whether it is worth the additional cost to accelerate construction may 

differ among people and could well vary from case to case, our policy recommendation 

concentrates on the question of whether the trade-offs are more affordable for some 

projects than for the others, and to identify the common feature shared by projects that are 

more economical to accelerate, providing guidance for future assignment of A+B letting. 

Therefore, in order to borrow the technique from project level to item level 

implementation, we conduct an adapted version of the project level model. First, we use the 

relative item bid as the response variable of interest, the bid price of the item divided by the 

estimated price by engineers. Independent variables include firm characteristics (operating 

capacity, in or out-of-state status, and distance to work site), and the value of saved days in a 

project as a percentage of the total project cost, i.e. days accelerated in B bids multiplied by the 

incentive/disincentive rate then divided by project’s engineer’s estimate. For simplicity, we 

ignored the term of firms’ unobserved heterogeneity at this moment. We implemented the 

regression model to eleven selected construction items, which have been identified previously 

as “frequently used and important items” based on their wide usage and non-marginal weight 

in use. Three items from the group of eleven demonstrate the most prominent patterns in 

terms of their response to time incentives. Their regression coefficients are presented in Table 

21. 

We are mostly interested in the coefficient of the variable value of saved days as a 

percentage of total project cost. This term should pick up whatever effect faster construction 

has on the cost of procurement. A positive sign suggests that the item is costly to accelerate 

and a negative sign suggest otherwise. We present the three items which demonstrate the 

most notable response in bids to time incentives. The coefficients from the eight remaining 

items are much smaller in size and statistically insignificant, therefore omitted. Out of the three 

items presented above, for items 202(C)0184 (Unclassified Borrow) and 619(B)2500 (Removal 

of Bridge Items) the coefficient is negative in the fourth row, while for 619(D)1397 (Removal of 

Existing Bridge Structure) it has a positive value. The unexpected negative sign could be the 

result of multiple factors, such as imperfect adaptation of project level regression to the item 

level. But the observation has practical policy implications: when some construction items 

witness considerably higher bids submitted due to accelerated schedules, other items tend to 
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experience such bid increases to a lesser extent, if at all. If we can identify projects that use the 

latter group of items in considerable proportion, and the features they have in common, it is 

possible to achieve faster completion in these project without paying a high cost in the future. 

Following such rationale, we proceed to look for patterns in projects that use these 

selective items with non-negligible percentages. Firstly, we study the group of A+B projects to 

locate those that utilize the individual items identified above, i.e. 202(C)0184, 619(B)2500, and 

619(D)1397, with the percentage of at least 1.5% of the engineer’s project estimate. We focus 

on patterns in the description of work types. For items 202(C)0184 and 619(D)1397, around 30 

A+B projects are found to prescribe the items with non-negligible proportions. Nevertheless, 

those projects cover a broad variety of types, ranging from Bridge & Approaches, Grade & Drain 

& Surface, to Joint Seal and Resurface. On the other hand, projects that use item 619(B)2500 

non-negligibly are much more homogenous in nature, where thirteen out of sixteen are bridge 

rehabilitation or repair work. Taking into account the negative coefficient in front of the 

variable of interest, we may infer that projects primarily of bridge repair are suitable for A+B 

letting method. 

Next, we take the above analysis to the large pool of standard A-only projects, and evaluate the 

number of potential projects which may be subjects of A+B letting. Here we focus on item 

619(B)2500. From over 2300 standard A-only projects, we find 102 of them use 619(B)2500 

with a weight of 1.5% or higher. Again, the projects are highly homogenous in the types of work 

involved. Specifically, 83%, or 85 out of 102, are bridge repair/rehabilitation. This suggests that 

bridge repair work in general constitute good candidates when it comes to the assignment of 

A+B letting method. 

The policy recommendations given above can be carried out in practice conveniently 

since project types are referenced directly. But they should also be taken with caution. The 

current step for selecting suitable items for A+B consideration is fairly straightforward, with 

some important strategic considerations left out. Therefore, we might revise the procedure in 

the future to account for these factors. For example, when lower bids are observed in some 

items, we need to make sure that their costs are not transferred to other items from the same 

project, resulting in no project level difference of procurement cost. However, the rationale for 
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making policy suggestions follows through. That is, we take item-wise patterns identified from 

A+B projects to standard A-only projects, look for projects that use those items in considerable 

proportion, and offer recommendations regarding when A+B letting should be adopted to 

realize gains in financially sensible ways. 

In continuation to the structural estimation we refined the model to allow the trade-off 

between time and cost (bids) to depend on not only the nature of items, but also the weight of 

these items in the entire project. Such flexibility is achieved by adding to the regression the 

additional term of an item’s percent out of the total engineer’s estimate, and its cross-product 

with the number of saved days from the B-part bid from an A+B letting. 

First, we implement the analysis to selective items individually. A group of eleven 

“frequently used and important items” are selected, based on both broad usage and non-

marginal weight in use. With the more flexible setting, we are pleased to see that findings are 

largely consistent with previous results, underlying the robustness of the revealed pattern. To 

facilitate comparison with results from last time, we present in Table 22 the regression 

coefficients from both specifications of the selected three from the group of eleven items which 

are observed to demonstrate noteworthy patterns in their response to time incentives. 

From the consistent findings similar conclusions emerge: items 202(C)0184 

(Unclassified Borrow) and 619(B)2500 (Removal of Bridge Items) display especially favorable 

reactions to time incentives is present, and hence projects that prescribe such items heavily 

are desirable candidates for A+B letting consideration. 

To cement the evidence that item bids respond to the time incentive asymmetrically, we 

carry out a model where all itemized observations from A+B lettings are pooled together. We 

employ cross products of item indicator and “saved days” to allow flexibility at the item level. 

Results are presented in the Table 23.  

Again, item 619(B)2500 (Removal of Bridge Items) exhibits the most favorable bidding 

pattern when the pressure of acceleration is higher. The rest of the items (omitted here) all 

have coefficients less than 1 in size and highly statistically insignificantly. The negative sign of 

the cross product between saved days with item indicators can be interpreted as the following: 
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as the number of proposed saving days in “B” goes up, bids submitted for these items are 

expected to decrease relative to engineer’s estimate. This is not to say that bids actually are 

lower when more saved days are proposed. Instead, this is evidence suggesting that their bids 

(and the underlying cost) rise less steeply than other items when time is a constraint. 

Naturally, acceleration on such items may be achieved at a relatively lower cost to the state 

department. 

Bidding patterns detected for individual items are helpful. But as individual items at best 

constitute a small proportion of the engineer’s estimate for the entire project, the favorable 

effect of the time/cost trade-off is limited. So next, we perform the above analysis to item 

groups, where the grouping is based on items that are similar in nature. We followed guidelines 

learned from discussion with ODOT, and constructed ten groups of items. The groups envelop 

all individual items that we focused on before, but also cover similar yet less frequently used 

items from the same general type, e.g. “Common Excavation” and “Unclassified Excavation” are 

both included in item group “202(A)”. We also followed ODOT suggestion and combined 

“411(B)” and “411(C)” to form the general group of “Asphalt Concrete/Super Pave” items. 

Estimation results are fairly consistent with regressions based on individual items. Coefficients 

of groups with the most prominent patterns are presented in Table 24. 

The two groups, 202(C) “Borrow Related Tasks” and 619(B) “Removal of Various Items”, 

continue to display favorable bidding behaviors under time incentive. The negative coefficient 

suggests that, compared to other groups, acceleration in these items can be achieved with 

smaller increments in bid. We do observe that the magnitude for 619(B) is considerably 

reduced from the individual item specification, which can be explained by the variety of items 

in the group, such as “Removal of Pavement”, “Removal of Bridge Items”, and “Removal of 

Guardrail”. Both groups take up non-negligible weight of the engineer’s estimate of the entire 

project, 2.9% and 3.3% respectively. So for an average-sized project with engineer’s estimate, 

assignment of A+B letting based on composition of these items can lead to beneficial savings 

for the state department. 

6.0 RECOMMENDATIONS 
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Based on the analysis performed, we provide the following recommendations that could help 

optimize ODOT’s practice of A+B bidding: 

1.  The current assignment that takes into account project size, duration, and location has 

led to satisfactory performance of A+B bidding projects. In particular, we have found 

that the construction time is moderately reduced while the low bid received by ODOT is 

not significantly increased. This means less construction related delay which is directly 

beneficial to the public but no more pressure on budgets. 

2. We have found evidence that the construction cost increases at an increasing rate 

through time, and this provides favorable evaluation to the incentives/disincentives 

rates set currently by ODOT in A+B bidding. The rate is large enough to motivate 

contractors, but not too large to lead to costly decisions.  We are able to observe 

reasonably faster completion without too much hike on low bids. 

3. Our analysis at the itemized bid level reveals that quite a bit of variation exists within a 

project among different construction items. Some demonstrate more favorable patterns 

than others regarding the trade-off between time and money. This means that, the 

examination of item composition of projects assigned to A+B bidding could lead to 

savings when projects involving items with favorable patterns are given priority 

consideration. 

4. But we also realize studying the detailed composition of items in the project can be 

time-consuming. Therefore, we have identified the types of projects that are more likely 

to heavily involve favorable items and therefore generate favorable outcomes under 

A+B. Of those, repair work and rehabilitation of bridge is the most responsive category, 

where faster completion can be achieved most economically for the state.  

 

7.0 CONCLUSIONS 

The following conclusions can be drawn from the preceding analyses: 

1. ODOT has been fairly successful in its application of the relatively new contracting 

method of A+B bidding. 
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2. The incentives/disincentives rates set by ODOT engineers, although based on experience 

and not on statistical analysis of prior data have performed well to stimulate faster 

completion without driving the cost up significantly. 

3. The decision making to assign projects under the A+B bidding rule could be 

supplemented by some factors that are not currently under consideration. One is the 

nature of work, and the other is item composition. 

4. There are potential benefits for ODOT to expand the application of A+B bidding given its 

favorable performance so far. The current practice is rather limited at a rate of 127 out 

of 2488 total projects in our observation window from 2004 to 2011. An expansion of 

the use of this design to a larger number of projects can significantly raise the benefits 

to the public without increasing the direct cost of procurement.  
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APPENDIX 

TABLES 

TABLE 1: A+B Letting Mechanism and I/D for Various State Highway Agencies 

State A+B I/D rates Cap1 

Alabama No I/D = user cost No cap 

Alaska No I/D = user cost 5% of the total project cost 

Arizona Yes I ≤ D = user cost 
state estimate

state estimated duration
∗ 20% 

Arkansas Yes I/D = user cost 
Number of days (variable based on user 
cost, duration of project, type of work) 

California Yes I ≥ D > user cost 5% of the total project cost 

Colorado Yes I/D = user cost 30 days, 150,000-200,000 

Connecticut No I ≤ D or I ≥ D but D ≤ user cost No cap 

Delaware Yes 
I/D < user cost 

(sometimes I and D not equal) 
Varies (set dollar amount) 

Florida No I/D = user cost 3-5% of the total project cost 

Georgia Yes 
  

Hawaii No I ≤ D = user cost Varies 

Idaho Yes I/D = user cost Varies 

Illinois No 
  

Indiana Yes I ≤ D < user cost 
Varies (based on budget and the total 

project costs) 

Iowa Yes 
I/D = user cost adjusted down 

to avoid heavy penalization 
Varies  

(usually not capped) 

Kansas No 
I ≤ D = user cost, 

Incentive is very rare 
5-10% of the total project cost 

Kentucky Yes I/D = user cost Varies 

Louisiana Yes 
I ≤ D = user cost, 

Incentive is very rare 

min {5% engineer's estimate, amount it 
takes to reduce estimated contract time 

by 10%} 

Maine No I/D = user cost 
10% of the total project cost  

or  250,000-300,000 

Maryland Yes 
  

Massachusetts No I/D = user cost Varies (based on user cost) 

Michigan Yes I ≤ D = user cost 
5% of the total project cost, 
Disincentive is not capped. 

Minnesota Yes 
  

    

                                                           
1 As there are no caps for the disincentive, all caps mentioned apply only to incentives. 
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Mississippi Yes I > D = liquidated damages 
5-10% of the total project cost, 

Number of days (varies) 

Missouri Yes 
I/D = user cost and/or 

contract administration costs 
Number of days (varies) 

Montana No I ≤ D < user cost varies (based on experience/goal) 

Nebraska Yes I/D ≤ user cost (infrequent) 5-10% of the total project cost 

Nevada No 
No incentive, 

D = liquidated damages 
No cap 

New 
Hampshire 

No I/D < user cost (infrequent) Varies 

New Jersey No 
I/D = user cost + engineers’ 

cost estimates (I/D very 
infrequent) 

No cap 

New Mexico No 
I/D ≤ user cost or  I/D > user 

cost (infrequent) 
3-10% of the total project cost 

New York Yes 
  

North Carolina Yes 
I/D < user cost  

(usually 1/7 or lower) 
Varies (based on contract time/confidence 

in contractor/judgment/experience) 

North Dakota Yes 
I/D ≥ user cost + engineers’ 
cost estimates (infrequent) 

30 days 

Ohio No I ≤ D ≤ user cost 
5% of the total project cost, 
Disincentive is not capped. 

Oklahoma Yes I/D = user cost Number of days (varies) 

Oregon No I/D < user cost Varies 

Pennsylvania Yes I/D ≤ user cost 5% of the total project cost 

Rhode Island No I/D ≤ user cost No cap 

South Carolina Yes I/D < user cost Number of days (usually 20-45) 

South Dakota No 
I/D ≤ user cost  

(only sometimes less) 
5% of the total project cost (usually 2%) 

Number of days (usually 30) 

Tennessee No 
I ≤ D = user cost  

(I paid monthly, D per day) 
5% of the total project cost 

Texas Yes I/D = user cost No cap 

Utah Yes I/D = 10% of user cost Varies (based on judgment/experience) 

Vermont No I/D = user cost 5% of the total project cost 

Virginia Yes 
I/D ≤ user cost or I/D > user 

cost 
Number of days (varies) 

Washington No 
I/D ≤ user cost or I/D > user 

cost 
Number of days (varies) 

West Virginia No I/D < user cost 5% of the total project cost 

Wisconsin Yes I/D ≤ user cost 5% of the total project cost 

Wyoming No I/D = user cost 
Number of days (varies),  

Disincentive is not capped. 
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TABLE 2: Descriptive statistics (full sample) 

Project Characteristics 

Standard A+B 

Mean Std. Dev. Mean Std. 
Dev. 

Engineer’s Cost Estimate in Million 1.504 2.889 9.914 13.607 

Bids Received in Million 1.495 2.600 10.307 12.907 

Relative Bid (Bid/Estimate) 1.053 0.309 1.021 0.205 

Winning Bid in Million 1.395 2.660 8.994 11.707 

Relative Winning Bid in Million 0.932 0.191 0.954 0.155 

Winning Bid from Finalized Projects in Million 1.156 1.973 5.971 8.728 

Actual Amount Paid from Finalized Projects in 
Million 

1.167 2.015 6.239 9.186 

Payment Amount Differential in percentage 0.1% 11.6% 6.2% 12.3% 

Calendar Day Duration 119.5 89.8 268.2 169.5 

Calendar Day Duration of Finalized Projects 112.7 83.6 277.9 145.8 

Actual Days Charged of Finalized Projects 259.4 244.7 378.9 256.3 

Duration Differential in percentage 147.2% 197.3% 80.2% 108.8% 

Number of Plan Holders per project 6.704 3.106 8.283 3.083 

Number of Bidders per project 3.869 1.903 3.133 1.427 

Project Complexity (number of pay items) 38.4 39.3 129.3 88.9 

 

8941 bids received from 2311 standard projects, 2161 of which are finalized. 

398 bids received from 127 A+ B projects, 92 of which are finalized. 
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TABLE 3:  Comparison of plan holding and bidding frequencies of firms based on their 

participation in A+B bidding 

 

Number of 

contractors 

in this 

group 

Average 

number of 

plans bought 

by contractors 

in this group 

Average number 

of bids 

submitted by 

contractors in 

this group 

Average 

number of 

projects won by 

contractors in 

this group 

Contractors that never purchased 

plans for A+B projects 
242 24.4 6.97 2.05 

Contractors that have purchased 

plans for A+B projects 
134 119.8 61.4 11.9 

Contractors that have bid on A+B 

projects 
73 165.7 88.2 22.4 

 

TABLE 4a:  Lane rental provision usage in A+B bidding 

Division Frequency Percentage 

3 7 17.95 

4 9 23.08 

8 23 58.97 

Total 39 100 

 

TABLE 4b:  Final payment and number of days differentials due to the usage of lane rental 

provisions in A+B projects 

 Number of projects 
Final payment differential 

(%) 

Days charged differential 

(%) 

  Mean Std. Dev. Mean Std. Dev. 

With lane rental 28 7.6 14.7 61.2 91.9 

Without lane rental 64 5.5 11.1 88.9 115.2 

 

Table 5: Work type and location of A+B bidding and A-only projects 

  A+B A-only 

Work type 

Bridge 
73.2% 

(44.4%) 
53.3% 

(49.9%) 

Grade 
48.1% 

(50.1%) 
14.5% 

(35.2%) 

Drain 
48.1% 

(50.1%) 
14.3% 

(35.0%) 

Resurface 
12.6% 

(33.3%) 
22.4% 

(41.7%) 

Surface 
49.6% 

(50.2%) 
14.7% 

(35.4%) 
Traffic 11.8% 15.0% 
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(32.4%) (35.7%) 

Location 
Div 3 28.4% 15.5% 
Div 4 23.6% 17.3% 
Div 8 33.1% 16.0% 

Highway type 
 

Interstate 33.9% 14.8% 
US highway 22.8% 29.8% 
SH highway 37.8% 31.5% 
City street 5.5% 8.7% 

 

Table 6: Comparison of characteristics used for matching between A+B bidding and matched 

A-only 

  A+B Subgroup of matched A- only 

# observations 127 202 

Engineer’s estimate 
$9.91M 
(13.6M) 

$4.25M 
(3.83M) 

Calendar days 
268 

(169) 
230 

(108) 

Work type 

Bridge 
73.2% 

(44.4%) 
70.1% 

(45.9%) 

Grade 
48.1% 

(50.1%) 
47.1% 

(50.3%) 

Drain 
48.1% 

(50.1%) 
46.6% 

(50.0%) 

Resurface 
12.6% 

(33.3%) 
8.8% 

(28.4%) 

Surface 
49.6% 

(50.2%) 
46.6% 

(50.0%) 

Traffic 
11.8% 

(32.4%) 
9.3% 

(29.1%) 

Location 
Div 3 28.4% 33.3% 
Div 4 23.6% 20.6% 
Div 8 33.1% 33.3% 

Highway 
type 

 

Interstate 33.9% 8.3% 
US highway 22.8% 27.5% 
SH highway 37.8% 35.8% 
City street 5.5% 17.2% 
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Table 7: Comparison of characteristics not explicitly used for matching between A+B bidding 

and matched A-only 

  A+B Subgroup of matched A- only 

# observations 127 202 

Bids received 
$10.31M 
(12.09M) 

$4.24M 
(3.67M) 

Relative bid received 
1.02 

(0.20) 
1.02 

(0.18) 

Winning bids received 
$8.99M 

(11.70M) 
$3.98M 
(3.52M) 

Relative winning bids 
0.95 

(0.16) 
0.95 

(0.14) 

Number of plan holders 
8.28 

(3.08) 
8.61 

(3.54) 

Number of bidders 
3.14 

(1.41) 
4.05 

(1.96) 

 

Table 8: Comparison of characteristics of finalized projects between A+B bidding and 

matched A-only 

  A+B Subgroup of matched A- only 

# observations 92 152 

Winning bids from 

finalized projects 

$5.96M 
(8.73M) 

$3.41M 
(3.41M) 

Actual amount paid  

From finalized projects 

$6.24M 
(9.19M) 

$3.48M 
(3.53M) 

Payment amount differential 
in percentage 

6.17 
(12.31) 

1.59 
(11.21) 

Calendar day duration of 
Finalized Projects 

227 
(145) 

220 
(112) 

Actual days charged of 
finalized Projects 

419 
(267) 

508 
(290) 

Duration differential in 
percentage 

80.25 
(109.83) 

148.31 
(172.72) 
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Table 9: Estimation of the effect of A+B bidding on low bids received 

 Average rreatment effect for A+B bidding on low bid 

Exactly One Match 
0.013 

(0.025) 

Two Nearest Matches 
0.019 

(0.023) 

 

TABLE 10:  30 most frequently used items and their frequencies 

 A+B  Selective A only  

Rank Item Code Frequency Item Code Frequency 
1 509(A) 1326 164 509(A) 1326 198 
2 515(A) 6013 154 230(A) 2806 194 
3 504(A) 1304 147 506(A) 1322 190 
4 511(B) 6010 145 202(A) 0183 172 
5 230(A) 2806 138 509(B) 1328 165 
6 202(A) 0183 132 509(D) 0325 158 
7 855(A) 8812 130 233(A) 2817 157 
8 619(B) 4728 117 642 0098 152 
9 506(A) 1322 116 223 2801 152 

10 233(A) 2817 109 511(A) 1332 150 
11 241 2832 109 501(B) 1307 146 
12 619(A) 0920 106 855(A) 8812 145 
13 509(D) 0325 106 619(A) 0920 145 
14 880(C) 8842 106 201 0102 144 
15 880(B) 8824 105 880(J) 8905 141 
16 880(E) 8860 104 619(B) 4728 141 
17 223 2801 104 408 5774 135 
18 501(B) 1307 103 205 4229 134 
19 408 5774 103 511(B) 6010 131 
20 880(B) 8818 102 504(A) 1304 130 
21 509(B) 1328 102 227 0100 129 
22 880(B) 8821 102 515(A) 6013 128 
23 523(B) 6560 99 619(C) 0924 126 
24 523(A) 6550 99 850(A) 8110 125 
25 205 4229 94 619(D) 1397 125 
26 642 0098 94 411(S4) 5960 120 
27 804(B) 2916 94 220 2800 120 
28 619(D) 1397 94 514(A) 6010 118 
29 880(F) 8878 94 514(B) 6292 118 
30 411(S3) 5945 93 601(A-1)1353 118 
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TABLE 11:  30 most heavily used items and their percentage in a project and their 

percentages 

 A+B  Selective A only  

Rank Item Code Weight Item Code Weight 
1 414(B1) 5800 0.59 505(E) 6250 0.51 
2 414(A1) 6855 0.44 411 4280 0.44 
3 414(A1) 6853 0.44 414(A1) 6853 0.32 
4 411 4280 0.43 436 0100 0.28 
5 414(A1)M5755 0.33 648(B) 0200 0.26 
6 411(S5)M5970 0.30 414(I) M5270 0.26 
7 436 0100 0.28 508 6359 0.26 
8 414(A1) 5755 0.21 411(D) 5970 0.26 
9 414(B1) 5760 0.16 414(A1) 5756 0.23 

10 615(H) 0110 0.16 414(A1)M5754 0.23 
11 508 6359 0.15 414(A1) 6854 0.22 
12 414(I) 5270 0.14 411(S6) 5980 0.20 
13 414(D) 4368 0.12 414(P) 6000 0.17 
14 505(C) 6075 0.11 414(A) M0261 0.16 
15 505(D) 6065 0.11 411(C) 5950 0.16 
16 414(P) 6000 0.11 414(I) 5270 0.16 
17 414(A1) 6858 0.10 411(C) 5955 0.15 
18 414(A1)M5757 0.10 414(A1) 5754 0.14 
19 411(S4)M5955 0.08 419 4152 0.14 
20 414(A1)M5754 0.08 411(S2)M5930 0.14 
21 414(B) 0302 0.08 545 4815 0.14 
22 411(S3)M5945 0.08 414(B1) 5758 0.13 
23 510(A) 6341 0.08 411(S3)M5945 0.13 
24 510(B) 6333 0.08 202(E) 0110 0.13 
25 510(A) 6350 0.08 202(E) 0132 0.13 
26 411(C) 5955 0.08 414(A) 0261 0.13 
27 411 4285 0.08 510(A) M6333 0.13 
28 202(C) 0182 0.08 411(B) 5945 0.12 
29 411(S3) 5945 0.07 643 5100 0.12 
30 505(G) 1000 0.07 317(F) M4270 0.12 
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Table 12: Important items from A+B projects: items used often and with non-negligible 

percentage 

  A+B   

Rank Item Code Item Description Frequency Percentage 
1 414(P) 6000 (SP)P.C. CONCRETE FOR PAVEMENT 28 11.0% 
2 411(S3) 5945 (SP)ASPHALT CONCRETE TYPE S3(PG 64-22 OK) 93 7.3% 
3 414(G) 5275 P.C. CONCRETE FOR PAVEMENT 21 6.5% 
4 411(B) 5945 SUPERPAVE, TYPE S3(PG 64-22 OK) 21 6.3% 
5 509(A) 1326 CLASS AA CONCRETE 164 5.0% 
6 414(A1) 5725 (SP)DOWEL JOINTED PCCONCRET PAVEMENT (PLT.) 28 4.8% 
7 503(A) 1313 PRESTRESSED CONCRETE BEAMS (TYPE IV) 27 4.7% 
8 411(S4) 5950 (SP)ASPHALT CONCRETE TYPE S4(PG 76-28 OK) 47 4.5% 
9 303 0192 AGGREGATE BASE 57 4.1% 

10 641 1399 MOBILIZATION LSUM B 37 4.1% 
11 411(S3) 5935 (SP)ASPHALT CONCRETE TYPE S3(PG 76-28 OK) 27 3.9% 
12 411(S3) 5940 (SP)ASPHALT CONCRETE TYPE S3(PG 70-28 OK) 22 3.9% 
13 641 1552 MOBILIZATION LSUM RDY 86 3.5% 
14 619(B) 2500 REMOVAL OF BRIDGE ITEMS 64 3.3% 

 

Table 13: Important items from subgroup A-only projects: items used often and with non-

negligible percentage 

  Subgroup A-only   

Rank Item Code Item Description Frequency Percentage 
1 411(B) 5945 SUPERPAVE, TYPE S3(PG 64-22 OK) 27 12.2% 
2 411(S3) 5945 (SP)ASPHALT CONCRETE TYPE S3(PG 64-22 OK) 115 9.0% 
3 411(S2) 5930 (SP)ASPHALT CONCRETE TYPE S2(PG 64-22 OK) 41 7.3% 
4 411(S4) 5950 (SP)ASPHALT CONCRETE TYPE S4(PG 76-28 OK) 26 6.7% 
5 503(A) 1313 PRESTRESSED CONCRETE BEAMS (TYPE IV) 71 6.4% 
6 411(S4) 5955 (SP)ASPHALT CONCRETE TYPE S4(PG 70-28 OK) 62 5.9% 
7 503(A) 1312 PRESTRESSED CONCRETE BEAMS (TYPE III) 29 5.5% 
8 411(S3) 5940 (SP)ASPHALT CONCRETE TYPE S3(PG 70-28 OK) 52 5.3% 
9 509(A) 1326 CLASS AA CONCRETE 198 5.2% 

10 411(C) 5960 SUPERPAVE, TYPE S4(PG 64-22 OK) 29 5.0% 
11 303 0192 AGGREGATE BASE 70 4.7% 
12 516(A) 6094 DRILLED SHAFTS 48$ DIAMETER 22 4.6% 
13 202(A) 0183 UNCLASSIFIED EXCAVATION 172 4.4% 
14 503(A) 1311 PRESTRESSED CONCRETE BEAMS (TYPE II) 26 4.4% 
15 202(C) 0184 UNCLASSIFIED BORROW 114 4.2% 
16 411(S4) 5960 (SP)ASPHALT CONCRETE TYPE S4(PG 64-22 OK) 120 3.8% 
17 641 1399 MOBILIZATION LSUM B 97 3.8% 
18 516(A) 6096 DRILLED SHAFTS 60$ DIAMETER 46 3.8% 
19 641 1552 MOBILIZATION LSUM RDY 96 3.3% 
20 202(D) 0184 UNCLASSIFIED BORROW 28 3.0% 
21 505(B) 6019 CLASS B BRIDGE DECK REPAIR 33 3.0% 
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Table 14: Descriptive statistics on relative bids for excavation, borrow and base 

Item Code Item Description  Mean Relative Bid # of obs. 
202(A) 
0183 

UNCLASSIFIED EXCAVATION A+B 0.990 
(0.527) 

415 

A-only 1.136 
(0.845) 

684 

202(C) 
0184 

UNCLASSIFIED BORROW A+B 1.437 
(1.484) 

270 

A-only 1.196 
(0.835) 

419 

303 0192 AGGREGATE BASE A+B 1.015 
(0.306) 

199 

A-only 1.136 
(1.116) 

268 

 

Table 15: Descriptive statistics on relative bids for asphalt concrete S3, asphalt concrete S4 

(PG 76-28 OK) and asphalt concrete S4 (PG 64-22 OK) 

Item Code Item Description  Mean Relative Bid # of obs. 
411(S3) 

5945 
SUPERPAVE, TYPE S3(PG 64-22 OK) A+B 1.047 

(0.256) 
297 

A-only 0.991 
(0.219) 

434 

411(S4) 
5950 

SUPERPAVE, TYPE S4(PG 76-28 OK) A+B 0.981 
(0.285) 

143 

A-only 0.981 
 (0.173) 

90 

411(S4) 
5960 

SUPERPAVE, TYPE S4(PG 64-22 OK) A+B 1.027 
(0.352) 

278 

A-only 0.981 
(0.287) 

450 

 

 

Table 16: Descriptive statistics on relative bids for structural steel, class AA concrete and 

epoxy coated reinforcing steel 

Item Code Item Description  Mean Relative Bid # of obs. 
506(A) 
1322 

STRUCTURAL STEEL A+B 1.124 
(0.705) 

378 

A-only 1.003 
(0.765) 

800 

509(A) 
1326 

CLASS AA CONCRETE A+B 0.981 
(0.285) 

533 

A-only 0.981 
 (0.332) 

801 

511(B) 
6010 

EPOXY COATED REINFORCING STEEL A+B 1.027 
(0.265) 

469 

A-only 0.981 
(0.230) 

495 

 

 

 



 

44 
 

Table 17: Descriptive statistics on relative bids for removal of bridge items, removal of 

existing bridge structure, mobilization  

Item 
Code Item Description  Mean Relative Bid # of obs. 

619(B) 
2500 REMOVAL OF BRIDGE ITEMS 

A+B 1.036 
(1.231) 213 

A-only 1.568 
(1.487) 130 

619(D) 
1397 

REMOVAL OF EXISTING BRIDGE 
STRUCTURE 

A+B 1.276 
(1.094) 302 

A-only 1.360 
(1.388) 482 

641 
1399 MOBILIZATION 

A+B 1.119 
(0.908) 113 

A-only 1.134 
(0.719) 400 

641 
1552 MOBILIZATION 

A+B 1.072 
(0.701) 273 

A-only 1.247 
(0.858) 368 

 

Table 18: Regression analysis at the item level 

Variables Spec1: Engineer’s 
estimate used as 
measure of Duration 

Spec 2: “B” bid used 
as measure of 
Duration 

Spec 3:Total days 
charged used as 
measure of Duration 

619(B) 2500 from A+B letting 13.260*** 6.429* 10.852** 
(3.277) (3.045) -3.485 

619(D) 1397 from A+B letting 6.644** 3.776* 4.498* 
(2.162) (1.813) (1.866) 

619(B) 2500 from A+B 
letting*Duration 

-2.264*** -1.002 -1.440* 
(0.625) (0.602) -0.618 

619(D) 1397 from A+B 
letting*Duration 

-1.232** -0.737* -0.728* 
(0.393) (0.342) (0.311) 

 

Table 19: Project level bid estimation (Dependent variable: Logarithm of the number of days 

a project is accelerated) 

 Log Days Accelerated 

Log Incentive/Disincentive Rate 0.227 
(0.162) 

Log Engineer’s Time 1.001*** 
(0.307) 

Log Engineer’s Estimate -0.280 
(0.174) 

Lane Closure Penalty (Dummy) 0.090 
(0.254) 

Firms’ Capacity over $50M (Dummy) 0.549*** 
(0.202) 

Instate Contractor (Dummy) -0.124 
(0.211) 

R
2
 0.1018 

Number of projects 459 
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Table 20: Relative bid regression (Dependent variable: relative project bid) 

 Bid/Engineer’s Estimate 

Firms’ Capacity over $50M (Dummy) -0.032* 
(0.018) 

Instate Contractor (Dummy) -0.108*** 
(0.022) 

(Days Accelerated*Incentive/Disincentive Rate) 
/Engineer’s Estimate 

0.449 
(0.360) 

Specific Term/Effect of a Firm in a Project -0.034*** 
(0.006) 

#observations 459 

 

Table 21: Itemized regression results on frequently and intensely used items 

 202(C) 0184 
UNCLASSIFIED 

BORROW 

619(B) 2500 
REMOVAL OF 
BRIDGE ITEMS 

619(D)1397 REMOVAL 
OF EXISTING BRIDGE 

STRUCTURE 

Firms’ Capacity over $50M (Dummy) -0.243* 
(0.075) 

-0.252 
(0.451) 

-0.474* 
(0.274) 

Instate Contractor (Dummy) -0.042 
(0.090) 

1.472*** 
(0.558) 

0.288 
(0.311) 

Distance to Work Site -556.9 
(1108.67) 

2442.65* 
(1406.92) 

-1850.78 
(4449.90) 

(Days Accelerated*Incentive/Disincentive 
Rate) /Engineer’s Estimate 

-5.875*** 
(1.427) 

-5.123* 
(3.176) 

4.377 
(5.402) 

#observations 279 213 302 

 

Table 22: Itemized regression results on frequently and intensely used items 

 202(C) 0184 
UNCLASSIFIED 

BORROW 

619(B) 2500 
REMOVAL OF 
BRIDGE ITEMS 

619(D)1397 REMOVAL 
OF EXISTING BRIDGE 

STRUCTURE 

 Specification 1 (from last month’s report) 
(Days Accelerated*Incentive/Disincentive 
Rate) /Engineer’s Estimate 

-5.875*** 
(1.427) 

-5.123* 
(3.176) 

4.377 
(5.402) 

 Specification 2 (with additional terms added for more 
flexibility) 

(Days Accelerated*Incentive/Disincentive 
Rate) /Engineer’s Estimate 

-6.551*** 
(1.601) 

-6.650* 
(3.701) 

0.920 
(8.918) 

#observations 279 213 302 
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Table 23: Regression results on pooled A+B itemized observations 

Variable Coefficient 

(Days Accelerated*Incentive/Disincentive Rate) 
/Engineer’s Estimate 

1.294 
(1.474) 

(Days Accelerated*Incentive/Disincentive Rate) 
/Engineer’s Estimate * item 202(C) 0184 

-2.580 
(5.292) 

(Days Accelerated*Incentive/Disincentive Rate) 
/Engineer’s Estimate * item 619(B) 2500 

-4.847* 
(2.650) 

(Days Accelerated*Incentive/Disincentive Rate) 
/Engineer’s Estimate * item 619(D)1397 

-0.950 
(5.382) 

#observations 53534 

 

Table 24: Itemized regression results on frequently and intensely used items 

 202(C)  
BORROW RELATED 

619(B) 
REMOVAL OF VARIOUS ITEMS 

(Days Accelerated*Incentive/Disincentive 
Rate) /Engineer’s Estimate 

-5.052*** 
(1.631) 

-1.392*** 
(0.620) 

#observations 230 372 
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