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Abstract 

Data science has gained great attentions in many fields over the last decade, in 

this thesis, I further explored the use of data science technique in oil industry and 

developed three data mining applications that could be useful for reservoir modeling and 

exploratory data analysis. A detailed illustration of data mining algorithms such as 

Support Vector Machines (SVM), Probabilistic Neural Network (PNN) and Ensemble 

Learning algorithm is incorporated in the thesis. The performance of the proposed 

workflows are tested on real field data including Barnett Shale play and Mississippi 

Limestone.  

The first two applications are for the Barnett Shale play. For the first application, 

I used Support Vector Machines for the prediction on lithotypes derives from core data, 

the prediction algorithm takes a set of well log curves as input and lithotype as output. 

The test results showed that we achieved 76% accuracy in the blind test well, which 

indicates that we can identify lithotypes in uncored wells with high accuracy. For the 

second application, I proposed a workflow that used Ensemble Learning and Probabilistic 

Neural Network to make prediction on Total Organic Content (TOC) using a different set 

of well log curves. The blind test results showed that the predicted TOC zones share a 

great similarity with the core-based TOC measurement in the lab. 

The last application is for the Mississippi Lime in north-central Anadarko shelf of 

Oklahoma. I introduced a new porosity modeling workflow which combines Sequential 

Gaussian Simulation and Support Vector Machines. The results showed that my proposed 

workflow allows better use of exploratory data and make a more accurate estimation of 

the porosity in the reservoir model. 
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Chapter 1 Introduction 

Over the last decades, along with the advancements in computing power and 

database technology, people are gradually starting to realize that the world we live in is 

immersed with vast amounts of data, and surprisingly, many answers that we were 

struggling to find actually lie within the data itself. Since then, people began to research 

on how to develop a system that could make computer analyze and extract the useful 

knowledge automatically from big datasets. And later on, the process of discovering 

patterns and correlations in large datasets is termed with “Data mining”.  Data mining 

itself intersects with multiple subjects such as artificial intelligence, machine learning, 

database managements and applied mathematics.  

 The application of data mining techniques has been tremendously successful 

nowadays in many fields such as business, finance, health care and education etc. For 

example, many retail companies use data mining techniques to conduct consumer 

analysis then use the results to do some smart marketing and eventually help them 

increase their profits. In finance, most credit card companies use data mining techniques 

to find the pattern between people’s features (age, income, etc…) and their credit 

behavior based on credit history data, and then use the pattern to decide the approval of a 

new credit card applicant.  

 Compared with many other fields, data mining application in oil industry is more 

of an emergent field of study. Over these years, although there has been an increasing 

number of data mining applications being made in oil industry, the use of data mining 

techniques in oil industry is yet to be fully explored.  Among all data mining applications 

in oil industry, they are most usually used in analyzing exploratory data, which is to 
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analyze the intrinsic connection between different types of exploratory data.  The 

exploratory data includes seismic data, well log data and core data (Figure 1). Each type 

of exploratory data has its own advantages and disadvantages. For example, core data is 

a high-resolution and direct measurement, but the amount of core data in a field is scarce 

and the cost of acquiring core data is high. Well log data is dense in vertical or horizontal 

direction along the well bore compared to core data, however, well log is merely an 

indirect measurement of petrophysical property of wellbore rock, furthermore, well log 

measurement is subjected to different form of noises in the wellbore and sometimes it is 

easily affected by malfunction of logging tool sensors. Seismic data is the most abundant 

among all data source since it covers the entire reservoir volumes, however, due to the 

nature of seismic data, the data can be very obscure and irregular, which requires much 

preprocessing and manual interpretation. The degree of resolution and information 

reliability for seismic data is the lowest among all three types of data.  

Reservoir model is mainly built by integrating these exploratory data together. 

The integration process includes interpretation of exploratory data and interpolation of 

sparse observations. Data mining technique can play an important role in both tasks 

above. First, during interpretation process, it can help us find the pattern between 

observed attributes and desired target with high accuracy and efficiency, which could 

considerably save labor and time required.  Next, during the interpolation process, instead 

of relying on linear assumption, it allows us to discover non-linear relation between 

variables, which opens a new world of possibility and opportunity for us. Therefore, data 

mining technique has the potential to better utilize the available data and increase the data 



3 

usage efficiency and eventually provide people with more insights and more accurate 

information about the target formation.  

 

Figure 1. Illustration of Seismic, Well Log and Core Data Coverage. 

In this thesis, I mainly focus on the application of two data mining algorithms, 

Support Vector Machines (SVM) and Probabilistic Neural Networks (PNN). SVM and 

PNN are both supervised learning algorithms, which can discover the internal pattern 

between attributes and given targets, then make prediction on target value based on a new 

set of attributes observed. And over the last decades, SVM and PNN have been 

increasingly implemented in exploratory data analysis.  

Gregory in 1996 first applied PNN to pick seismic events in pre-stack migrated 

gathers with the attempt to automate the seismic event-picking process (Gregory et al 

1996), the features they used are derived from the seismic pixels and labels are from 

expert’s pick.  Despite several limitations such as unrepresentative label existed in the 

study, they offered a promising direction for the later applications of PNN in that area. 

David Minken and John Castagna used PNN to predict the behavior of PE well 

log curve based on seismic attributes, the algorithm managed to predict the basic behavior 

of PE log in the test well and provided us with great insights in connecting well logs and 
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seismic attributes (Minken and Castagna 2003). However, due to the resolution difference 

between seismic and well logs, the PNN did not sufficiently predict the PE value in a 

quantitative way. 

Later, Malleswar further explored the use of PNN in the characterization of 

coalbed methane (Malleswar et al. 2010). They used seismic attributes to predict the 

acoustic impedance (AI) log. The training AI log derives from the P-wave and density 

well logs.  They managed to predict the very general behavior of the AI log.  

In 2006 , Zhao used support vector machine regression to predict water saturation 

based on seismic attributes (Bo Zhao et al. 2006), although their water saturation data 

might not be accurate enough since it was derived from density and resistivity logs, this 

work offered a great intuition to the later study.  

Another support vector machines application is made by Nazari  in 2011, in the 

study, support vector machines regression is used to predict core permeability based on 

core porosity and well log data at the same depth (Nazari et al. 2011). The study 

demonstrated that support vector machine can be a promising approach even in sparse 

datasets.  

For TOC evaluation, in 1990 Passey proposed a Δ LogR workflow for evaluating 

organic richness based on porosity and resistivity logs (Passey et al. 1990). The evaluation 

is achieved by an overlay of sonic transit time curve and resistivity curve, and it achieved 

great consistency with the organic carbon measurements from core data.  In his work he 

also demonstrated other evaluation methods that use gamma ray curve, density curve. 

However, although the Δ LogR method has gained much success in multiple fields, a 

successful organic richness evaluation is highly dependent on the rescaling process, 
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which requires a well-trained expert. Furthermore, since the workflow is evaluating TOC 

only based on resistivity and sonic curves, it omits the information provided in other well 

log curves such as gamma ray curve and density curve. 

Later in 2014, Zhao used a proximal support vector machines classifier and 

managed to predict lithofacies (shale/limestone) based on multiple seismic attributes in 

Barnett shale and it provided a great insights to later research (Tao Zhao et al. 2014), it 

also inspired the study in this thesis.  
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Chapter 2 Lithotypes and Total Organic Content Prediction in Barnett 

Shale  

In this chapter, I applied data mining techniques to correlate between core data 

and well log data in Barnett shale, specifically, I use SVM to correlate between lithotypes 

and well logs, then use PNN to correlate between total organic content and well logs.  

 

2.1 Objectives and Data Description 

 The Objective for this chapter is to use data mining methods to correlate between 

well log data and core data (lithotypes and TOC) in cored wells, then make corresponding 

prediction for uncored wells. Compared with traditional workflow, data mining approach 

has the potential to save significant amount of time and labor and increase the prediction 

accuracy, the results could provide critical information for later geomodeling and 

decision making.  

 The dataset I use comes from Barnett Shale play in Newark East field (Figure 2). 

The Barnett Shale play in Newark East field is one of the largest natural gas producing 

fields in the US. The annual natural gas production of this field is around 318 billion 

cubic feet.). They are located in Wise and Denton Counties. The maximum thickness of 

Barnett shale is more than 1200ft in this area. Since shale is the source rock, accurately 

predicting mineralogy and targeting high TOC zones in uncored wells is the key to 

completion process and is crucial to a successful field development.  
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Figure 2. Barnett Shale in Newark East Field Overview (from TECQ). 

 In Barnett Shale datasets, I have 3 cored wells with both well log data and core 

data available. The Core data includes mineralogy, porosity and TOC content at core 

interval. The well log data includes Rs, Rd, SP, GR, DPHI, NPHI, SPHI, PE and RHOB 

curves. Among available log curves: Rs is shallow resistivity log, Rd is deep resistivity 

log, SP is spontaneous potential log, GR is gamma ray log, DPHI is density porosity log, 

NPHI neutron porosity log, SPHI is sonic porosity log, PE is photoelectric absorption 

well log and RHOB is bulk density log. 

 

2.1.1 Lithotype and TOC Group Description from Core Data 

Given the core data in Barnett Shale, for the convenience of analysis and data 

mining algorithm, the first step has always been breaking the core data into multiple 

distinct “classes”. In the framework of geology and petrophysics, based on different 

criteria, the “class” can be referred to as “Lithofacies/Lithotypes/Petrofacies/Petrotypes”. 

Sometimes when the criteria overlaps, the terminology can be interchangeable by people. 

In this study, for the sake of convenience, the term “Lithotype” will being used.  
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In Barnett Shale formation, Singh (2008) identified 10 different lithofacies based 

on sedimentary structure, gain size, texture, mineralogy, chemical features and some 

other biogenic features.  These lithofacies are: Siliceous non-calcareous mudstones, 

Siliceous calcareous mudstone with low calcite, Siliceous calcareous mudstone with high 

calcite, Silty-Shaly deposites, Phosphatic deposits, Limy mudstone, Dolomitic mudstone, 

Calcareous laminae, Concretions and Fossilferous deposits.  Later, Kale (2009) described 

the average calcite content, TOC and porosity for each lithofacies as is shown Figure 3. 

 

Figure 3. Average Porosity, TOC and Calcite for each lithofacies (Kale, 2009). 
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 In Kale’s study, he pointed out that core samples from different lithofacies had 

very similar petrophysical properties. Furthermore, some lithofacies contribute very little 

thickness to the entire stratigraphic column. Therefore, he lumped the 10 lithofacies into 

3 broader petrofacies based on calcite content, porosity and total organic content as is 

shown in Figure 4.  

 

Figure 4. Porosity, TOC and Calcite Content of Three Petrofacies (Kale, 2009). 

In my study, different methodology and criteria are used to derive the lithotype. I 

applied k-means clustering algorithm to group all core data into 3 different lithotypes 

based on the Quartz, Clay, Carbonate Content, Porosity and TOC. Same as previous 

work, each lithotype has its own representative mineralogy and petrophysical properties 

(Figure 5 and Figure 6). Next, I used k-means clustering algorithm to group all core data 

into a binary TOC group based on only TOC (Figure 7). As a result, each core data 

interval is associated with two “classes”. The first one is Lithotype, which would be the 

target for SVM prediction. The second “class” is TOC group, it is the target for later PNN 

prediction.  
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Figure 5.  Mineralogy Description for Each Lithotype. 

 

 

Figure 6. Porosity/TOC Content for Each Lithotype. 

 By comparing the results in Figure 4, Figure 5 and Figure 6, we can conclude that 

although the approaches are entirely different, the results from k-means clustering is 
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extremely consistent with the results from Kale in 2009, which further confirms the 

results of my clustering scheme. The description for each lithotype is shown below. 

Lithotype 1 includes quartz- and clay-rich mudstones (moderately calcareous and 

non-calcareous) and phosphatic deposits. They exhibit high porosity (>6.1%) and the 

highest TOC (>4.6%) of the three lithotypes. The quartz content is also the highest of the 

three lithotypes, which makes it easy to fracture. Therefore, Lithotype 1 represents the 

best reservoir rock in the formation.  

Lithotype 2 includes clay-rich, calcareous mudstones. They exhibit medium 

porosity (3.9%-6.1%) and TOC (1.9%-4.6%) of the three lithotypes. It is considered to 

be a reservoir rock with moderate productivity in the field. 

Lithotype 3 includes silty and shaly lime mudstones and concretions. The porosity 

and TOC of this lithotype are the least among all three lithotypes. It represents 

petrophysically the worst reservoir rock in the formation and is therefore not expected to 

contribute much to the total production. 

  

Figure 7. Average Value for Each Total Organic Content Group. 
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 From Figure 7, we can see that there are two TOC groups, which indicates that 

for TOC group prediction, it is going to be a binary decision-making process. The first 

TOC group represents the source rock with higher average TOC percentage (TOC ~ 

4.53%). The second TOC group represents a rock type with lower average TOC 

percentage (TOC ~ 1.78%). 

 

2.1.2 Well Log Data Preprocessing 

 For well log data preprocessing, first I need to extract the log data that has same 

depth as core sample, then de-spike, smooth and normalization process is applied. During 

de-spike process, I deleted the well log response that is less than 5 percentile or more than 

95 percentile.  Next, for smoothing process, a local average smoothing process is being 

applied, with the maximum average span length equals 5ft.  During the normalization 

process, I simply rescaled most well log curves to be within 0 and 1 with an exception of 

resistivity curve, where I used a natural logarithm function.  

At last, for each prediction task, I need to choose the relevant well log curves as 

prediction attributes, because data mining approach could not observe something from 

nothing, and choosing what attributes to use requires knowledge of the subject itself. For 

lithotypes, since the target comes from grouping mineralogy, porosity and TOC together, 

I am using SP, GR, DPHI, NPHI, SPHI, PE and RHOB curves as attributes. As for TOC 

prediction, we know that traditionally, the TOC could be determined from the sonic 

porosity-resistivity overlay technique, if sonic porosity is missing, neutron porosity or 

bulk density log could also be used (Meyer 1984), also the uranium content of many 

source rock that contains kerogen is sometimes a function of TOC, which could affect the 
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gamma ray logs (Euzen at el 2015). If an irrelevant feature is selected then the irrelevant 

feature would provide nothing but noise in the prediction task. In this case, PHIS, PHIN, 

RHOB, Rs and GR curves are used. 

 For our lithotype prediction and TOC prediction tasks, the true correlation 

between lithotype/TOC and well log curves might be too complex to find, therefore, we 

are never sure that the selected well log curves could capture all information needed to 

make a perfect prediction. What we can do is just to provide as much relevant information 

as possible without confusing our prediction algorithm. On the other hand, as the number 

of relevant well log curves being used decreases, the total information about our predicted 

target would also decrease, which could harm the prediction accuracy.  

 

2.1.3 Data Flow Scheme 

In this study, I have in total of 312 data points, each point contains a corresponding 

logging and core data. It is important to correctly assign the work flow of data in machine 

learning in order to avoid any misuse of data mining algorithms. The data flow scheme 

for lithotype prediction and TOC prediction is shown in Figure 8, there are in total of 7 

steps.  
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Figure 8. Data Flow Scheme in Lithotype and TOC Prediction. 

In step 1, randomly chose 60% to 75% of total data as training example, and the 

other data as testing examples. 

In step 2, only use the training data to build the model. Training Error will be 

generated from this step, then cross validation will evaluate the performance of each 

model. 

In step 3, pick the model with the least training error as the best model. 

In step 4, testing label (Lithotype or TOC group) and testing parameter (well log data) 

will be separated. 

In step 5, only input the test well log data to the algorithm. 

In step 6, the SVM/PNN classifier will generate the results from data in step 5. 

In step 7, compare the predicted label with the real label, and calculate its 

prediction accuracy. The error from this step is called Testing Error, or Generalization 

Error.  
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2.1.4 K-means Clustering Algorithm 

K-means clustering is a simple but very powerful grouping method which 

regroups the data points every iteration based on the distance from the point to the center 

of a cluster. The procedure of algorithm simply involved with the following 2 steps: 

     1. Initialize number of clusters with centers µ1, µ2….µk randomly. 

     2. Repeat until convergence: { 

             a. For each data point, assign points to the nearest center of each group 

             b. For every group, calculate the new centroids.} 

The diagram of k-means clustering is shown in Figure 9. In Figure 9, first we have 

several random points (shown in step 1), and arbitrarily select centers of each group (step 

2), next we assign each points to the closets group (step 3), then we re-calculate the new 

center for each group (step 4).  Finally we repeat step 3 and 4 until the center converges, 

and we can see from the step 6 that after sufficient iterations, k-means clustering could 

nicely group unlabeled points.  

 

Figure 9. Illustration of Clustering Using the K-Means Algorithm (In step 1, the 

points are unclassified. We randomly assign cluster centroids in step 2. The data 
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are assigned to each cluster based on their distance from the centroid in step 3.  

Then centroids are recomputed in step 4.  After repeating step 3 and step 4, the 

algorithm finally proceeds to convergence as shown in step 5 and step 6). 

 

2.1.5 Cross Validation 

Cross validation (CV) is a powerful validation algorithm. Strictly speaking, it is 

not necessarily any part of data mining algorithm, nevertheless, cross validation could 

enhance the performance by reducing the likelihood of over-fitting and increase the 

accuracy for generalization. However, one drawback of CV is that it could waste a certain 

fraction of the training data. The amount of the waste depends on the approach of CV we 

chose.  

 The main advantage of CV is that it gives us a great test accuracy estimates during 

the training process so that we are able to choose the best performing model among all 

models. In this study, due to limited number of data points, 10-fold cross validation is 

being applied. 

 The steps of 10-fold cross validation is as followed: 

1. Separate the training set into 10 subsets and call these subsets S1 to S10. 

2. Evaluate each model Mj (generated by SVM or PNN) as followed: 

a. For each i=1 to 10, train the model on the all the training set except Si, and get    

one hypothetical answer.  

b. Test the answer on Si to get test error.  

c. The total estimated blind test error is calculated as the average of test error from 

i=1 to 10 
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 3. Change another model, Mj+1, and repeat the step 2 until all models are tested.  

 4. Pick the best model, and train the best model again on the entire training set to get the 

final model. 

 

2.2 Lithotype Prediction Using Support Vector Machines  

2.2.1 Backgrounds of Support Vector Machines  

Support Vector Machines (SVM) are a powerful data mining method for 

classification and regression. The original concept of SVM was first proposed by Vapnik 

in 1963. His motivation back then was to better classify a set of binary data (Figure 10). 

Intuitively he generated two planes that can make the margin between two classes as wide 

as possible.  Then the decision boundary (called hyperplane) lies at the middle of two 

separating planes. Some vectors in the dataset will “support” the separating plane, 

therefore those vectors are called support vector.  At that time SVM was a hard-margin 

linear classifier, which means it is not suited for non-linearly-separable case.  The 

advantages for SVM back then is that it simplifies the classification problem by only 

considering the support vectors instead of the whole dataset. However, it cannot handle 

any non-linear classification problem and the computing power back then was not able to 

test its performance. 
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Figure 10. Support Vector Machine Hard Margin Classifier (the data is separated 

by the hyperplane created by support vectors). 

However, in 1992, the application of Kernel method in SVM (Kernel trick) 

enables the linear classifier to accomplish non-linear transformation by going into a high 

dimensional feature space (Vapnik et al. 1992) In Figure 11, when SVM encounters a 

nonlinearly-separable case, it could map the input space into a higher-dimensional feature 

space until it become linearly separable, after separating the data using a hyper-plane, it 

would map back to the input space.  
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Figure 11. Non-linear Transform of Support Vector Machines. 

The current standard Support Vector Machine (soft margin SVM), which allows 

for mislabeled instances, is developed in the middle of 90s (Cortes and Vapnik 1995). 

The soft margin SVM further boosts the performance of classification and reduced the 

likelihood of over-fitting. In 1995, it outperformed neural network and achieved a great 

success in handwritten character recognition using a slightly non-linear polynomial 

kernel function. As soon as it was shown to work in handwriting recognition, machine 

learning practitioner began to further explore its use in text recognition, image 

recognition, and medical science.  It is now considered as one of the most popular and 

successful supervised learning methods in machine learning algorithms.   

 

2.2.2 Modeling Scheme 

The total work scheme for SVM prediction is shown in Figure 12. Following the 

process described in 2.1.2, I use k-means clustering algorithm to group core data into 3 

different lithotypes. Then I will input the preprocessed well log data and lithotype index 

into Multiclass SVM classifier to learn the pattern. After training, SVM classifier will 
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take only well log in uncored wells as the input and make prediction on lithotype based 

on pattern found during the training process. Finally I will compare the predicted 

lithotype with real lithotype from core data and calculate the prediction accuracy then use 

it for evaluating the results.  

 

Figure 12. Modeling Scheme of Support Vector Machines Lithotype Prediction. 

 

2.2.3 Multiclass SVM Classifier Components 

 This section will take a closer look at what is inside the “red box” in Figure 12.  
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Figure 13. Detailed Workflow of Multi-class SVM. 

As is shown in Figure 13, the general description of how multi-class SVM works 

is as followed: (1) Right after I input well logging data and lithotype, a linear margin 

optimization problem will be constructed. (2)Then apply the “Kernel trick” in the SVM 

to map the logging data into a higher dimensional feature space. (3) Next the algorithm 

will hand our optimization problem to quadratic programming (QP) solver, under 

sufficient iterations, QP can give us the number of support vector and each weight 

accordingly.  (4) Then the weight will be handed over to cross-validation to determine 

the best parameter that should be used in margin-optimization and non-linear Kernel 

transformation.  (5) After finding the best parameter, I will train the algorithm with the 

best-selected parameter again and make the multi-class prediction.  The mathematical 

detail for each step will be provided later in next section. 

 

2.2.4 Margin Optimization 

Margin Optimization is a binary soft-margin linear SVM classifier. In soft-margin 

SVM, we define: 



22 

𝑤𝑇𝑥𝑛 + 𝑏 ≥ 1 − ξ𝑛                                                     (1) 

If Xn belongs to the positive group (yn=1). 

𝑤𝑇𝑥𝑛 + 𝑏 ≤ −1 + ξ𝑛                                                    (2) 

If Xn belongs to the negative group (yn=-1). 

Where: 

w : the weight vector for x array  

xn : input parameter(in our case, logging data at one depth)  

b:  constant number 

ξn : the positive tolerance for soft-margin classification 

The larger the left hand side in equation (1), SVM would be more confident to 

assign xn to the positive class. And vice versa in the equation (2).  

And the optimization problem for SVM is  

Minimize:        
1

2
 𝑤𝑇w + C ∑ ξ𝑛

𝑁
𝑛=1                                                                                  (3) 

Subject to:      𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏) ≥ 1 − ξ𝑛    for ∀ n ∈ N                                    (4) 

In equation (3) and (4), C is the cost parameter in the objective function, it reflects the 

trade-off between maximizing the margin and making left hand side in equation (4) larger 

than right hand side. N is the total number of data. 

Then in order to solve the minimization problem with constraints, we need to 

apply Lagrange multiplier to formulate the optimization without constraints to make 

equation easier to solve. The resulting equation becomes Minimizing the Lagrangian (L) 

with respect to w, b and ξ, and maximize with respect with positive αn and βn as shown in 

equation (5) 

L=
1

2
w𝑇w + C ∑ 𝜉𝑛 − ∑ 𝛼𝑛[𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏) − 1 + 𝜉𝑛] − ∑ 𝛽𝑛

𝑁
𝑛=1

𝑁
𝑛=1

𝑁
𝑛=1 𝜉𝑛            (5) 
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Then we calculate the derivative with w, b, ξn and set it to 0, we get: 

∂L

∂w
= w − ∑ 𝛼𝑛𝑦𝑛𝑥𝑛 = 0𝑁

𝑛=1                                              (6) 

∂L

∂b
= − ∑ 𝛼𝑛𝑦𝑛 = 0𝑁

𝑛=1                                                       (7) 

∂L

∂𝜉
𝑛

= C − α𝑛 − β𝑛 = 0                                                       (8) 

After we plug equation (6) (7) (8) back to equation (5), the Lagrangian becomes:  

Maximize:    

∑ 𝛼𝑛 −
1

2
𝑁
𝑛=1 ∑ ∑ 𝑦𝑛𝑦𝑗𝛼𝑛𝛼𝑗𝑥𝑛𝑥𝑗

𝑁
𝑗=1

𝑁
𝑛=1                                     (9) 

Under constraints: 

0 ≤ α𝑛 ≤ C  For  ∀ n ∈ N                                                          (10) 

∑ 𝛼𝑛𝑦𝑛 = 0𝑁
𝑛=1                                                                 (11) 

So equation (9) is the linear soft-margin optimization problem that we are going to send 

to the next step and equation (10) and (11) are constrains that will follow with it.  

 

2.2.5 Non-linear Kernel Transform 

In equation (9), at the rightmost we have to compute xn
Txj, which means the only 

information that algorithm needs is the dot product of attributes, then imagine if we are 

going to a higher dimensional feature space, then we would need the dot product in the 

higher dimension to do the optimization, thus if we want to map the attributes into a 

higher dimensional space the equation (9) will become: 

Maximize:  

∑ 𝛼𝑛 −
1

2
𝑁
𝑛=1 ∑ ∑ 𝑦𝑛𝑦𝑗𝛼𝑛𝛼𝑗Ф(𝑥𝑛)Ф(𝑥𝑗)𝑁

𝑗=1
𝑁
𝑛=1                              (12) 

Where Ф(x) represents the transformation of x in a higher dimensional space.  
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We define:    K(x𝑛, x𝑗) =  Ф(x𝑛)Ф(x𝑗)                                      (13) 

Equation (9) becomes: 

Maximize: 

∑ 𝛼𝑛 −
1

2
𝑁
𝑛=1 ∑ ∑ 𝑦𝑛𝑦𝑗𝛼𝑛𝛼𝑗𝐾(𝑥𝑛, 𝑥𝑗)𝑁

𝑗=1
𝑁
𝑛=1                                (14) 

In equation (14), the rightmost term “K” stands for kernel trick, it is a function of 

xn and xj and the value of the function equals the dot product of higher dimensional feature 

space. Therefore, it has the name “Kernel trick”.  Applying kernel trick allows the SVM 

to project to higher dimensional space without paying the price for huge amount of 

computation in higher dimensional feature space. Two popular Kernel function will be 

provided and introduced.  

K(x𝑛, x𝑗) = (ax𝑛
𝑇x𝑗 + b)

𝑄
                                                      (15) 

K(x𝑛, x𝑗) = exp (−γ‖𝑥𝑛 − 𝑥𝑗‖
2

)                                            (16) 

Equation (15) is polynomial kernel function, its dimension depends on the value 

of Q and the dimension of x. The dimension of polynomial kernel function is limited.  

Equation (16) is called radial basis function (RBF), this is the Kernel we used in 

lithotype prediction. If we expand the exponential part using Taylor Series, we would 

find out the dimension of RBF is actually infinite.  

After the Kernel trick, regroup of equation (14) is needed in order to send it to 

next step, so the equation (14) becomes: 

Minimize: 

1

2
∑ ∑ 𝑦𝑛𝑦𝑗𝛼𝑛𝛼𝑗𝐾(𝑥𝑛, 𝑥𝑗) − ∑ 𝛼𝑛

𝑁
𝑛=1

𝑁
𝑗=1

𝑁
𝑛=1                              (15) 

Under constraints: 

0 ≤ α𝑛 ≤ C for  ∀ n ∈ N                                                                 (16) 
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∑ 𝛼𝑛𝑦𝑛 = 0𝑁
𝑛=1                                                                        (17) 

 Looking at equation (15) to equation (17), we could notice that our problem is a 

typical constrained quadratic programming optimization problem. Such optimization is 

impossible to solve analytically, therefore in order to move forward, we need to apply 

numerical quadratic programming techniques to solve the problem. 

 

2.2.6 Quadratic Programming 

The QP problem of equation (15) to equation (17) in matrix vector form is as followed: 

Minimize: 

1

2
𝛼𝑇 (

𝑦1𝑦1𝐾(𝑥1, 𝑥1) ⋯ 𝑦1𝑦𝑁𝐾(𝑥1, 𝑥𝑁)
⋮ ⋱ ⋮

𝑦𝑁𝑦1𝐾(𝑥𝑁 , 𝑥1) ⋯ 𝑦𝑁𝑦𝑁𝐾(𝑥𝑛, 𝑥𝑛)
) 𝛼 + (−1𝑇)𝛼                              (18) 

Under constraints: 

y𝑇𝛼 = 0                                                                  (19) 

0 ≤ 𝛼 ≤ 𝐶                                                                (20) 

There are several popular algorithms for QP, since the optimization problem in 

SVM is convex optimization, the interior-point-convex method (Boyd 2004) will be 

applied. But for larger dataset, SMO algorithm (Platt 1998) and improved SMO algorithm 

(Keerthi et al. 2001) could handle this pretty well. For the scope of this study, QP 

optimization is not included. 

After optimization, the optimal α vector will be solved by QP, and we would notice a lot 

of elements in α is zero, it means the corresponding training data does not contribute in 

the decision boundary. For those elements which α is non-zero, we would name the 
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corresponding training data “support vector”, which will later be passed through multi-

class SVM prediction.  

 

2.2.7 Multi-class SVM Prediction 

The most popular approach for multi-class SVM prediction is to transform the 

multi-class problem into several binary SVM classifiers. Some prevalent methods are: 

one-versus-all method using winner-takes-all strategy (WTA_SVM); one-versus-one 

method using max-wins voting (MWV_SVM). There are some experimental results 

showing that WTA_SVM, MWV_SVM are competitive with each other and there is no 

clear superiority of one over another. (Duan and Keerthi 2005) 

In lithotype estimation, WTA_SVM method is used, from k-means clustering 

results we have 3 groups of cores. Then we will train 3 sets of binary SVM classifier. w 

and b from each SVM classifier will be calculated as followed: 

From equation (6), we have 

w = ∑ 𝛼𝑛𝑦𝑛𝑥𝑛
𝑁
𝑛=1                                                                  (21) 

For any support vector on the margin, based on equation (4) we have: 

𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏) = 1                                                                                                  (22) 

Combine equation (21) and (22) and apply kernel nonlinear transformation we have: 

𝑦𝑛(∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 Ф(x𝑛)Ф(x𝑗) + 𝑏) = 1                                      (23) 

Therefore: 

𝑏 = −
1

𝑦𝑛
− ∑ 𝛼𝑛𝑦𝑛

𝑁
𝑛=1 Ф(x𝑛)Ф(x𝑗)                                        (24) 
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For each binary classifier, given a testing point xj I will calculate the “assignment 

confidence index” (ACI) for the group using equation (25), equation (26) and equation 

(27).  

𝐴𝐶𝐼1 = ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 Ф(x𝑛)Ф(x𝑗) + 𝑏1                                     (25) 

𝐴𝐶𝐼2 = ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 Ф(x𝑛)Ф(x𝑗) + 𝑏2                                     (26) 

𝐴𝐶𝐼3 = ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 Ф(x𝑛)Ф(x𝑗) + 𝑏3                                     (27) 

Then the predicted lithotype index is the group that gives us the biggest ACI value.  

The mathematical expression is: 

𝑙𝑖𝑡ℎ𝑜𝑡𝑦𝑝𝑒 𝑖𝑛𝑑𝑒𝑥 = arg max
𝑖

(𝐴𝐶1, 𝐴𝐶2, ⋯ 𝐴𝐶𝑖)                            (28) 

 

2.2.8 Test Results of SVM Lithotype Prediction 

 For test results, in order to get a comprehensive overview of testing results, I will 

use 3 different testing fractions of total data: 25%, 33% and 40%. And for each fraction, 

run 10 times of step 1-7 illustrated in Figure 11 with each time randomly choose certain 

fraction of total data as training data and the other as testing data. The results are shown 

in table 1.  
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Table 1. Experimental Results for SVM Lithotype Prediction. 

The results showed that the optimal testing fraction is 33% in the three different 

fractions. And I achieved an average of 76.2% accuracy with 2.3% standard deviation.  

  Since the total number of data is constant, if we increase the testing fraction, the 

amount of training data will decrease, as a result, the SVM will not be able to build a 

stable model from decreased number of training example.  
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On the other hand, if testing fraction decreases, SVM might be able to build a 

better model using more training data, but the testing part becomes unstable. Imagine an 

extreme case: if we use all the data except one as training data, then test the model on that 

single point, the testing error would result either 100% or 0%, which is obviously not the 

real case.  

 

2.2.9 Blind Test Results and Interpretation 

In reality we might have three cored wells and over a hundred uncored wells. We 

could not randomly select data from all wells and make prediction. So I apply another 

blind well test to evaluate the performance of multi-class SVM classifier. The data from 

well 1 and well 2 will be used to train the SVM, then SVM classifier will predict the 

lithotypes of blind test well at each depth interval based on only well log data of well 3. 

The blind well test results are shown in Figure 14.  
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Figure 14. SVM Blind Test Results for Prediction of Lithotypes Along Wellbore 

(lithotype distribution acquired from core is shown in left, lithotype distribution 

prediction based on well log data is shown in right). 

By building a model with data from two wells and then making a prediction on 

the third well, under a well performed well log normalization process, 76% accuracy was 

achieved. In Figure 14, color column illustrates the lithotype distribution of formation 

rock in well 3. Red represents type 1, yellow represents 2, and green represents 3. The 

left color column next to the logging data in well 3 comes from the core data using k-

means clustering, and the right color column is the predicted lithotype distribution from 

the support vector machine only based on well log data.  

The SVM lithotype prediction based on well log show a similar vertical 

distribution to the lithotype index obtained from the core, which indicates it is possible to 

identify the distribution of lithotype in a blind well with great accuracy using multi-class 

SVM classifier. When we apply this SVM model to make lithotype prediction on uncored 
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wells, it could offer us great insights about the mineralogy and petrophysical property of 

rock along the wellbore, which would be considerably helpful in deciding completion 

zone and in later lithofacies geomodeling.  

 

2.3 Total Organic Content Prediction Using Ensemble Learnings of Probabilistic 

Neural Networks 

Probabilistic Neural Networks (PNN) is a multi-layered feed forward network 

(Specht 1990), it is one of the derivations in Artificial Neural Network (ANN) family and 

it predominantly handles classification jobs.  PNN is a very effective and easy-to-

implement classifier, the application of PNN in geophysics has been widely studied in 

the past 10 years, especially on processing seismic data.  

In the following study, a new method combining ensemble learning and PNN for 

application is proposed and I would illustrate the study both in algorithm domain and in 

application perspective. 
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2.3.1 Total Modeling Scheme

 

Figure 15. Total Modeling Scheme of TOC Prediction. 

The total modeling process for ensemble learning of Probabilistic Neural Network 

is shown below in Figure 15, detailed structure of PNN will be presented later in the 

following part.  We could notice that compared with the structure of the entire model, 

PNN only takes up one small step and yet this small unit is the essence of the entire 

application.  The outer structure basically illustrates the scheme for ensemble learning, 

where several of hypothesis would be generated sequentially and each hypothesis is an 

expert on certain samples of the feature domain. After generalizing n hypothesis, we 

would merge the solution for all hypothesis with different weights and forms a final 

output.  

 

2.3.2 Ensemble Learning  

Ensemble Learning is a supervised learning method, the nature of the algorithm 

is pretty self-explanatory, which is to combine many learning algorithms together to build 

a stronger algorithm, given a set of all hypothesis, ensemble learning would learn a final 
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hypothesis from the hypothesis set.  In this particular study, the adaptive boosting 

algorithm (Zhou 2012) is used, it incorporates a way of incrementally finding a final 

hypothesis by training each new model with emphasis on the misclassified training 

samples. Although in learning theory the adaptive boosting could be sensitive to outliers 

and noises, in practice, this method works surprisingly well at any kinds of non-extreme 

datasets.  The scheme of this algorithm is illustrated in Figure 16 below. 

 

Figure 16. Illustration of Adaptive Boosting Workflow. 

As is shown in Figure 16, for ensemble learning there are in total of 6 steps. We 

are going to illustrate the details for each part. 

Step1：Weight initialization 

There are two ways of doing the weight initialization, for highly balanced dataset 

(where the number of training data from all classes are almost equal), we could simply 

use: 

𝑤1 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
                                                              (29) 
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  Where:  

  w1 is the weight column vector for all training examples. 

  Ntrain is number of training data  

However, for imbalanced dataset with PNN, the weight initialization above would 

tend to give more credit to the predominant class, in that case, our experimental results 

showed that applying a local initialization inside each class could effectively avoid this 

imbalanced class issue, I use  

For all i in each class:          𝑤[𝑐𝑙𝑎𝑠𝑠 == 𝑖] =
1

𝑁𝑡𝑟𝑎𝑖𝑛𝑖                             (30) 

Where: 

w is the weight column vector for training data within class i 

  Ntrain
i is number of training data within class i 

Step 2: Misclassified index 

After picking the best hypothesis, the predicted class during training by cross 

validation and real training class will be compared and the training error is expressed as:  

For all i in Ntrain:       𝐸[𝑖] = 1  𝑖𝑓 ℎ(𝑥)[𝑖] = 𝑦[𝑖]                                   (31) 

                                                𝐸[𝑖] = −1  𝑖𝑓 ℎ(𝑥)[𝑖] ≠ 𝑦[𝑖]                                  (32) 

 Where:  

  E is misclassified index column vector containing either 1 or -1  

  h(x) is a vector that is predicted by the hypothesis h 

  y is the vector that stores training label for all training data. 

Step 3: Weight for current hypothesis 

We could further calculate the training accuracy of the using equation (33) 

  𝑅 =
∑ 1{ℎ(𝑥)[𝑖]==𝑦[𝑖]}𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

𝑁𝑡𝑟𝑎𝑖𝑛
                                                      (33) 
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  𝛼𝑡 =
1

2
𝑙𝑛

𝑅

1−𝑅
                                                                        (34) 

 Where:  

  R is the accuracy rate of the current hypothesis  

αt is the weight scalar for the current hypothesis at time t 

Step 4: Weight update for next hypothesis 

Next, the weight would be updated for the next classifier so that it could 

emphasize those misclassified training data.  

       𝑤𝑡+1 = 𝑤𝑡𝑒−𝛼𝑡𝐸                                                        (35)  

Where: 

  wt+1 is the weight vector of all training data for the next hypothesis 

  wt is the weight vector of all training data for the current hypothesis 

Step 5: Weight normalization 

In order to avoid over-fitting, there needs to be a budget of total weight of training 

examples, most of the time, for simplicity, we determine the sum of all weights for the 

next hypothesis must be 1. 

            𝑤𝑡+1 =
𝑤𝑡+1

∑ 𝑤[𝑖]𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1

                                                       (36) 

Step 6: Merging Hypothesis 

The final hypothesis could be a linear or non-linear combinations of all 

hypothesis, in this study, a weighted linear combination of hypothesis sets is applied. 

𝐻𝑓𝑖𝑛𝑎𝑙 = ∑ 𝛼𝑡𝑛
𝑡=1 𝐻𝑡                                                      (37) 
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2.3.3 Probabilistic Neural Networks 

Generally, there is a misconception existed among engineers and researchers that 

they usually tend to refer Artificial Neural Network as merely the Multi-Layer Perceptron 

network (MLP), without knowing the PNN, one could easily presume that PNN and MLP 

are almost the same.   However, the only similarity that PNN and MLP share together is 

the structure design, which is inspired by biological connection of neurons.  In fact, the 

PNN and MLP (or generally referred as neural network) are two totally different 

algorithms, the comparison between two algorithms will be presented later. PNN could 

provide a way to interpret the network structure in a form of probability distribution 

function. The scheme of PNN is shown in Figure 17 below: 

 

Figure 17. Modeling Scheme of Probabilistic Neural Network. 
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In a standard PNN, there are 4 layers: input layer, pattern layer, summation layer and 

output layer. 

1. Input layer: 

In the input layer, each test data is represented by one neuron, each input is the n-

dimensional feature vector where n is the number of attributes. The vector will be later 

sent to all nodes in pattern layer. 

            𝑥⃗ = (x1, ⋯ , xn)                                                       (38) 

2. Pattern layer: 

In the pattern layer, each neuron is one training data, which is also n-dimensional 

vector.                             

             𝜇⃗ = (μ1, ⋯ , μn)                                                      (39) 

Then usually we apply Radial Basis Function (RBF) to approximate the 

probability distribution function Ν(𝜇𝑗
𝑘, Σ𝑗

𝑘)  for training data j on class k: 

                 𝑃𝑗
𝑘(𝑥⃗) =

1

(2𝜋)
𝑛
2|Σ|−

1
2

exp [−
1

2
(𝑥⃗ − 𝜇𝑗

𝑘⃗⃗ ⃗⃗ ⃗)
𝑇

(Σ𝑗
𝑘)

−1
(𝑥⃗ − 𝜇𝑗

𝑘⃗⃗ ⃗⃗ ⃗)]                   (40) 

3. Summation layer: 

The summation layer calculates the approximation of class probability function by 

combining all the probability distribution in Equation (40) together.  Suppose we have a 

total of m training examples, then the probability of x belongs to class j is: 

       𝑃𝑘(𝑥⃗) = ∑ 𝑤𝑗
𝑘 𝑃𝑗

𝑘(𝑥⃗)𝑚
𝑗=1                                                   (41) 

The w is the weight vector in the Ensemble learning process. One of the main 

reasons why adaptive boosting is applied with PNN is because unlike many other 

supervised learning methods, for example, support vector machines (SVM), it is quite 
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mathematically convenient to achieve emphasizing certain training examples by adjusting 

the weight vector in PNN.   

In practice, sometimes when the number of training data is small, the dataset could 

be very sparse, then it is very likely that the probability of one test sample for any class 

could be extremely small (maybe ranges from10-50 to 10-10), in order to approximate the 

real prediction probability, some experimental adjustments need to be made.  One 

possible way of solving this issue is by logarithm scaling the probability and then 

normalize the results for all classes using equation (42). 

         𝑃𝑘(𝑥⃗) = 𝑙𝑜𝑔10(𝑃𝑘)                                                       (42) 

4. Output layer: 

After calculating the probability of the test data belonging to class k, suppose we have 

total of c classes the output could be derived in several ways. The simplest way is to find 

the class with the greatest probability. 

                         𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥[𝑃𝑘(𝑥⃗)]   𝑓𝑜𝑟 𝑘 = 1 ⋯ 𝑐                               (43) 

The answer could also be represented by certain probability distribution from class 1 to 

c. 

 

2.3.4 Comparison of Probabilistic Neural Networks with Neural Networks 

    Advantages:  

1. The training process of PNN is much faster than MLP’s back propagation. 

2. PNN has an inherently parallel structure that allows parallel computing more 

easily. 

3. PNN is less sensitive to outliers and noises than MLP. 
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4. PNN could generate the prediction probability for each class, which honors 

uncertainty in the classification task. 

5. It could also be modified to do regression as well, by making the final output the 

expected value of different probable class. 

Disadvantages: 

1. The resulting model is not as general as MLP. In traditional MLP generalization 

would only need the structure of the network and associating weights, but in PPN, 

since it is an instanced based algorithm, training data is needed all the time for 

generalization unless a contour probability surface with high resolution is stored. 

2. PNN requires large memory for both training and testing process since it needs to 

store either training data or probability surface. 

3. Compared with other types of networks, PNN requires a more representative training 

dataset. 

 

2.3.5 Test Results 

During the experiment, I use 70% percent of the total data as training, the other 

30% of data is used for testing, and 10-fold cross validation is applied.  

In this experiment, I am trying to find out the best number of boosting hypothesis, 

I change the number of boosting PNN from 1 to 6 and run each scenario 10 times 

independently, with each time the Training and Testing data randomly selected, I got the 

following results in Table 2. 
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Table 2. Experimental Results of TOC Prediction Using PNN. 

The statistical results is shown in the Figure 18 below, average accuracy and 

standard deviation are normalized and then we could easily pick the number of boosting 

models with highest accuracy and lowest standard deviation, which is 5.  

# of boosting 1 2 3 4 5 6

Experiment 1 80.22% 76.92% 83.52% 78.02% 78.02% 80.22%

Experiment 2 80.22% 72.53% 81.32% 81.32% 82.42% 79.12%

Experiment 3 68.13% 81.32% 74.73% 84.62% 81.32% 75.82%

Experiment 4 74.73% 80.22% 74.73% 80.22% 82.42% 71.43%

Experiment 5 80.22% 75.82% 73.63% 71.43% 83.52% 75.82%

Experiment 6 76.92% 84.62% 73.63% 81.32% 80.22% 79.12%

Experiment 7 80.22% 76.92% 82.42% 76.92% 82.42% 82.42%

Experiment 8 82.42% 85.71% 72.53% 74.73% 79.12% 76.92%

Experiment 9 80.22% 76.92% 82.42% 80.22% 83.52% 73.63%

Experiment 10 80.22% 84.62% 83.52% 81.32% 86.81% 82.42%

average 78.35% 79.56% 78.24% 79.01% 81.98% 77.69%

stdev 3.96% 4.20% 4.47% 3.63% 2.37% 3.44%
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Figure 18. PNN Experiment For Choosing Best Number of Boosting Models ( 5 

boosting models yield the highest accuracy and lowest standard deviation). 

 

2.3.6 Blind Test Results and Interpretation 

After determining the optimal number of boosting hypothesis, a blind well 

experiment is conducted using the optimal boosting hypothesis, and this time it achieved 

an accuracy of 82.4% for TOC classification. The comparison between TOC data from 

core measurements and TOC prediction based on well logs is shown in Figure 19. 
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Figure 19. Blind Test Results for TOC Classification (In the left, the blue dashed 

line is the TOC type distribution from core measurements and the green dotted 

line represents the TOC prediction based on well log. In the Right, it shows the 

colored illustration of TOC distribution results acquired from two methods). 

In Figure 19, the left side is comparison between two generated TOC Group 

curves, each color of dashed line represents results from different data source. On the 

right hand side is the comparison in blind test well in terms of TOC facies, where different 

color represents different TOC value of rock.   

We can see from the blind test results that the predicted TOC zones based on well 

log using PNN shows a great similarity with core TOC measurement in lab, which 

indicates that it is possible to automate the process of TOC interpretation based on well 

log data with a good accuracy. Although there are small discrepancies exited between 
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predicted results and lab results, if we focus on the potential completion zone, which is 

represented by continuous red blocks of both results in right hand side of Figure 19 

(marked by pointer), we could notice that potential completion zones from well log is 

almost the same as in core data. Suppose if we could accurately determine the high TOC 

zones for all uncored wells, it would offer great significance for completion decision and 

for the creation of reservoir model.  

 

2.4 Chapter Conclusion 

 In this chapter, I presented two data mining applications to correlate between core 

and well log in Barnett Shale dataset, first I applied Support Vector Machines to classify 

lithotypes of rock along the wellbore based on well log data, then I used Ensemble 

Learnings of Probabilistic Neural Network to predict the total organic content from well 

log data. Overall speaking, I proved that it is entirely feasible to apply data mining 

techniques to automate the well log–core correlation process and achieve in a great 

accuracy. One great advantage for data mining over manual interpretation is that data 

mining allows us to explore the intrinsic correlation between datasets that human brain 

could not find, moreover, data mining could automate the correlation process, which 

could save tremendously amount of time and labor required in the correlation process. 

The future impact of data mining techniques in this field is limitless.  
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Chapter 3 Data Mining Approach for Seismic-Constrained SGS 

Porosity Modeling 

In this chapter, I introduced a new workflow for porosity geo-modeling that 

combined SVM and Sequential Gaussian Simulation. The new approach enables us to 

discover non-linear relation between seismic attributes and porosity and therefore 

enhance the porosity modeling process in Mississippi Limestone.  

 

3.1 Chapter Introduction 

Traditionally in Geo-modeling process, due to limitations on exploration 

techniques, the amount of data is very scarce; thus, it is fairly easy to build a model that 

can honor all the acquired data. However, as time goes by, the advancement of 

exploratory technology has gradually allowed us to have access to a massive or even an 

overwhelming amount of data. As a result, it would be quite challenging for traditional 

way to build a model that could make the full use of the huge amount of data. In order to 

best utilize most amount of data and build a more accurate model, data mining has gained 

a great attention over these years.  Many data mining applications in seismic processing 

(Keith et al. 2013; Joseph et al. 2002) have proven that with the help of modern 

computer’s exponentially increasing computing powers, data mining is becoming a 

crucial step in modern geo-modeling.  

One of the most widely used approaches for building a seismic-constrained 

porosity model is achieved through a combination of SGS and co-kriging. In this process, 

porosity log observation is the first variable and seismic impedance is usually the second 

variable. This approach is built on the assumption that the spatial correlation between the 
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modeling property and seismic impedance is linearly correlated, so that when first 

variable is scarce, the second variable would be used as a substitute variable. However, 

seismic impedance is affected by many other factors such as mineralogy, degree of 

consolidation, pore fluid, pressure and temperature.  In most cases, relying on a linear 

assumption would omit many intrinsic correlations between two variables, sometimes the 

linear assumption is not even valid.   

In this chapter, I aim to apply data mining technique to discover not only linear 

relations, but also non-linear patterns between seismic impedance and porisity. Then by 

making use of those patterns, we could build a more constrained model. The layout of the 

chapter begins with an elaborate discussion about the workflow and methodology. Then 

for experiment results, I would first use a synthetic datasets to demonstrate how our 

workflow can be effective in horizontal scale. Next I use real dataset to demonstrate the 

results in vertical scale. Finally I am going use a simple experiment to explain why data 

mining techniques have advantages over traditional geostatistics in the data assimilation 

process.  

 

3.2 Chapter Objectives and Dataset Description 

The main theme of reservoir modeling is to build a model that could honor as 

much valuable data as possible. In porosity modeling, one of the most widely used geo-

statistical approach to honor both well log data and seismic data is achieved by Sequential 

Gaussian Simulation (SGS) and co-kriging. This approach has been proved useful in most 

geological settings; it is built on the assumption that the spatial correlation between first 

variable and second variable is linearly correlated. However, in reality, the linear behavior 
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does not hold true for all reservoirs, and relying on a linear assumption might omit many 

intrinsic correlations between two variables, which may affect the accuracy of resulting 

model. In this chapter, I present a new workflow that applies data mining techniques to 

mitigate this issue. Instead of relying on linear assumption, the new approach enables us 

to discover non-linear pattern between porosity and seismic attributes.  

 Data in this chapter comes from the Mississippian reservoir in north-central 

Anadarko shelf in Oklahoma, USA (Figure 20). The Mississippian carbonates in the area 

were deposited at the basinal edge of the Anadarko shelf margin during four showing20-

upward sequences. Following the end of the Mississippian, the region was subjected to 

uplift and sub-aerial exposure, resulting in a widespread erosion and a production 

heterogeneity (Lindzey 2015). The thickness for Mississippian ranges  from 350 ft to the 

south to as little as 100 ft to the north where the rocks have been subjected to greater 

erosion during the pre-Pennsylvanian unconformity (Gutschick and Sandberg 1983; 

Roger 2001). Data for this study include a full suite of open-hole logs from 31 vertical 

wells 70 mi2 of seismic inversion data. The seismic data includes P-impedance, S-

impedance, impedance ratio, λρ and μρ. In the attributes above,  λρ and  μρ are elastic 

parameter of rocks,  λ and μ are lame’s first parameter and lame’s second parameter. 

 In this work, I make one significant assumption. I assume that the water saturation 

levels and fracture/crack density remains the same throughout the area of study. This 

assumption is being made because the seismic attributes such as S-impedance, P-

impedance, λρ  and μρ  are impacted by water saturation and crack/fracture density 

variations (Omoboya et al. 2012). 
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Figure 20. Regional Geology of Study Area (Johnson and Luza 2008). 

 

3.3 Methodology 

The total work flow for applying data mining techniques to build seismic-

constrained porosity model is shown in Figure 21 below. In general, there are in total six 

major steps in the process: 
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Figure 21. Total Workflow of Constructing Constrained SGS Model. 

1. Use of co-kriging to estimate the porosity and variance at all location. (Doyen and 

Boer 1996; Xu and Tran 1992) 

2. Application of Support Vector Machines (SVM) to find the pattern between 

seismic attributes and porosity, then predict porosity based on seismic attributes 

in the model. 

3. Evaluation of the SVM model uncertainty.  

4. Merging results from step1 and step 2. 

5. From the merged map and merged variance map, create soft data in the datasets. 

6. Run multiple SGS (Isaaks and Srivastava 1989) realization conditioned to both 

hard data and soft data to get the final constrained SGS model.  

Among these steps, since both co-kriging and SGS are well-established approach in 

geomodeling, the basic workflow for them is not going to be incorporated in this chapter. 

Instead, we are going to heavily focus on step 2 to step 5.  
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3.3.1 Support Vector Machines Porosity Prediction Based on Seismic Attributes  

Given the well log data and seismic attributes, there is one problem that needs to 

be solved in order to move forward: well log data and seismic data are in different 

resolution in both vertical scale and horizontal scale. Therefore, in order to address this 

issue, I further upscale the porosity log vertically to be the same as seismic vertical 

resolution using average method. Next, I apply tri-linear interpolation on seismic 

attributes to interpolate the seismic attributes at each wellbore location. 

As a result, for any given porosity log observation coordinates, I am able to find 

its corresponding seismic attributes.  These data would be used later for the data mining 

task. The seismic attributes that I use are: P-impedance, S-impedance, impedance ratio, 

λρ, μρ.  λρ and  μρ are elastic parameter of rocks,  λ and μ are lame’s first parameter and 

lame’s second parameter. In fact,  λρ, μρ could be represented by p-impedance and s-

impedance.  Including those two elastic parameters is convenient for the algorithm to 

explore non-linearity. The data mining target is porosity. 

Intuitively, since the target (porosity) is a continuous value, it seems quite obvious 

to us that the best way to correlate seismic attributes and porosity is by regression. 

However, I tried and it did not work well. The main reason why regression failed is that 

the data is extremely noisy, using regression would most likely lead to over-fitting. To be 

more specific, the porosity data comes from upscaling nearly 15 feet of density porosity 

log, put aside noises from log measurements, the porosity value after averaging 15 feet 

of log could only provide us with a low-resolution porosity indicator.  Moreover, the 

seismic attributes I use is even noisier than porosity; those attributes come from many 

times of seismic processing, no matter automatically or manually, many of the attributes 



50 

are derived under physical assumptions which might not perfectly hold. In regression, the 

mostly used objective function is to minimize the squared error of prediction and true 

target, the noise in the dataset could easily overwhelm the regression algorithm and cause 

over-fitting issues. 

Compared with regression, classification is more robust to noisy datasets. In 

classification task, the target is divided into several labels and it would predict the label 

instead of the real value. In this way, an outlier and regular data is being treated the same 

as long as they are in the same label, which could effectively avoids over-reaction to 

noises. Having known that, we apply k-means method to make our continuous porosity 

log into 5 discrete labels, during the process, we are transforming regression problem into 

a classification task. Support Vector Machines (SVM) would be a good classification 

algorithm to deal with this task, and it is one of the most efficient classification 

algorithms. The mathematical details of the algorithm is illustrated in chapter 2.2. 

 

3.3.2 Evaluate the Uncertainty in SVM Models  

After SVM makes its prediction on porosity, cross validation is being used to 

evaluate the uncertainty in SVM model. The steps for cross validation in our case is 

described as followed: 

Repeat the following two steps until all wells are being chosen as validation wells: 

1) Separate the blind test wells from available datasets, and train the SVM algorithm 

on data from remaining wells.  

2) Use the model from step 1 to predict porosity in blind test well, and compare the 

results, calculate the rooted mean squared error. 
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Following the steps above, we are generating both SVM model and test result at 

chosen wellbore location for each cross validation. When all wellbore location have been 

chosen, cross validation is finished, then we are going to have a collection of SVM models 

and test results at each wellbore location. Next, among the collection of SVM models, we 

are going to make porosity prediction based on all models. At last, the final SVM 

prediction is the majority prediction of all SVM models. 

In order to move forward, we need to make a choice about creating a SVM variance 

model for the entire volume.  If the variance value for all wells are fairly similar, it 

indicates that the pattern between seismic attributes and porosity in all places tends to be 

consistent throughout the reservoir, then for simplicity, it is reasonable for us to assume 

that the variance for the entire volume is uniformly constant, therefore it would be safe 

to assign the average variance to all places.  However, if the variance for different blind 

test wells varies significantly, then we need to rely on kriging or other geostatistic 

algorithm to estimate the SVM variance for all places. 

 

3.3.3 Merged Estimation and Variance Model from SVM and Kriging  

So far we have created two porosity models and two variance models using two 

distinct approaches. The next thing we need to deal with is how to merge these two 

models in one model. In order to better merge our model, we need to know the advantages 

and disadvantages of these two models: 

Model 1 is the co-kriging model conditioned to porosity logs, impedance and 

variograms. The advantage is:  

1. The model is in fine scale.   
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2. The model is reliable in areas near wellbore because of the use of 

variogram.   

3. Due to the nature of kriging, it ensures us the locally minimal variance.  

The disadvantage for model 1 is:  

1. It tends to smooth out geological feature.    

2. The information used in the data is limited due to its linear assumption 

between porosity and seismic attributes. The number of attributes that is 

used is also limited.   

3. In areas far away from wellbore where the porosiy is absent, it provides us 

only a conservative estimation.  

Model 2 is the SVM predicted porosity facies based on P-impedance, S-

impedance, relative impedance, λρ, μρ. The advantage is:  

1. It can make more use of data by using multiple features.  

2. It is able to find non-linear pattern between feature and target.  

3. It is free of geo-statistical assumption.   

4. It could provide us with a reliable porosity prediction for places far away 

from any well log observation, because porosity prediction totally comes 

from investigating the pattern between seismic attributes and porosity as 

long as the quality for seismic attributes are consistent, the prediction 

performance could hold.   

The disadvantages for model 2 are: 

1. The resulting model is a coarse scale model, the resolution is the same as 

seismic attributes samples.  
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2. The variance model of SVM might rely on unrealistic assumptions.   

3. The prediction results is less reliable than SGS for areas near wellbore 

since it is only making use of seismic data. 

Therefore, intuitively, we want our final merged model to combine the advantages 

of both models; for areas close to wellbore, the final model should mainly trust the model 

that is conditioned to well log observations (as is provided by model 1). On the other 

hand, for areas that are distant from any well log observations, the final model should 

mainly trust the model that is based on seismic attributes (as is provided by model 2). 

Not surprisingly, the information needed to achieve the above goal is stored in 

two variance models. Since we have the variance model for both kriging estimation and 

SVM prediction, the merged step is fairly straightforward: the merged variance for a 

given location is going to be the smaller one between two variance model, and the merged 

estimation for that location would come from the model that gives us a smaller variance 

for that location. 

Compared with Kriging alone, the merged estimate of the porosity field utilizes 

information contained in seismic and well log data. However, the merged model lacks 

geologic realism. In this thesis, I have not utilized indicator kriging to model facies 

variations and then to model porosity variations. It is likely that the use of a prior step of 

facies modeling will result in more realistic models; however, this is beyond the scope of 

the work in this thesis.  
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3.3.4 Creating Soft Data for SGS Modeling  

One thing to be noted is that the merged model itself is not a real geomodel, it is 

more of a data source that contains both direct observation on wellbore location and our 

best prediction between wellbores.  

Therefore, in order to create a qualified geological model that could make use of 

information in merged model and honor the spatial trend/variogram and histogram as well 

as account for uncertainties, I turn to SGS again. But this time, I made some adjustments 

in the SGS workflow to enable SGS to condition to some soft data as well.  

The soft data is the porosity estimation in the merged model that is between 

wellbore locations, it is associated with some uncertainty.  Here, we are assuming the soft 

data for any given location is follows a Gaussian probability distribution function with a 

mean from merged estimation model and a certain standard deviation from merged 

variance model.  

The procedure is as followed:  

1. Randomly select N locations that are reasonably away from any hard data. 

2. For each N observation:  

a) Get the corresponding mean and standard deviation from merged model and 

merged porosity model.  

b) Draw at random a value from the normal distribution defined in step a) 

c) Assign that value to the observation 

3. Add N observation data along with hard data in the SGS conditioned dataset. 

4. Run one realization of SGS conditioned to the data in step3.  

5. Repeat step 1-4 until the number of realization is enough 
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Another thing to be noted is that in order for our constraints to be effective, the 

number of soft data N should not be less than the amount of hard data, one rule of thumb 

is to make N equals the number of hard data. Next, in order avoid the bias, the number of 

realization needs to be sufficient enough. In our case study, I am arbitrarily setting the 

number of realization is 100. However, the number of soft data and number of realization 

required to ensure statistical stability in our workflow still needs to be further investigated 

in the future.  

 

3.4 Experimental Results and Analysis 

In order to illustrate how our workflow for modeling porosity could effectively 

constrain SGS model and help make a better estimation of porosity, in this section I am 

going to show the results from both horizontal and vertical perspectives. For Horizontal 

illustration, since horizontal data in reservoir is very scarce, I am going to use synthetic 

data for illustration without loss of generalization.  For vertical illustration, real dataset 

from the study area would be used. At last, I am going to use a small experiment to 

demonstrate why data mining techniques have advantages over geostatistics in the 

process of data assimilation.  

 

3.4.1 Horizontal Illustration Using Synthetic Dataset 

First I generate a 2-dimentional grid with 180 by 180 resolution, each cell has 

length of 400 ft. Then in the grid I create a certain distribution of porosity that follows a 

Gaussian variogram with minimum range,median range and maximum range to be 

equally 8000 ft. (Figure 22), at last I randomly generate 31 well locations onto our grid, 
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they are represented by black circles. We would treat this porosity distribution as the “true 

distribution” that we are trying to approximate.  

 

Figure 22. Synthetic True Porosity Distribution. 

In order to generate seismic attributes, we need a coarse scale porosity map, we 

assume the seismic attributes has a horizontal resolution of 3 by 3 grid.  The coarse scale 

porosity map is shown in Figure 23. 

 

Figure 23. Coarse Scale Porosity Distribution. 
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Next, we are going to generate seismic attributes from coarse scale porosity map using 

following procedure:  

1. From the real dataset at wellbore location, I extract seismic attributes and its 

corresponding porosity value at different depth and for different wells. Each 

set of attributes and its corresponding porosity is called “sample”.  

2. Collect all samples together, and sort it according to porosity value. 

3. For any given location, find the coarse scale porosity value, then match the 

same porosity value in real dataset, next randomly select one set of 

corresponding seismic attributes for that location 

4. Repeat step 3 until all locations has a corresponding seismic attributes set.  

Therefore, our available dataset includes: porosity observation at wellbore location, 

also seismic attributes map that corresponds to the same porosity value from real dataset, 

the seismic map covers the entire area. The cross plot where seismic attributes intersect 

with porosity observation at wellbore is shown in Figure 24 to Figure 28. 

 

Figure 24. Cross Plot of Porosity vs. P-impedance at Wellbore. 
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Figure 25. Cross Plot of Porosity vs. S-impedance at Wellbore. 

 

 

Figure 26. Cross Plot of Porosity vs. Impedance Ratio at Wellbore. 
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Figure 27. Cross Plot of Porosity vs. Lamda*rho at Wellbore. 

 

 

Figure 28. Cross Plot of Porosity vs. Mu.rho at Wellbore. 

Having look at the relation between any seismic attributes and porosity in 

observation data, it is probably not good idea to use co-kriging since the linear assumption 

does not hold at all. Therefore, for step 1, given observations at wellbore and same 

variogram inputs, I use kriging to create the porosity estimation (Figure 29) and standard 

deviation estimation (Figure 30).   
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Figure 29. Kriging Estimation Conditioned to Wellbore Observation. 

 

 

Figure 30. Kriging Standard Deviation. 

Then following the methodology in step 2 and step 3, I extract the seismic 

attributes and porosity value at observation location, I run SVM algorithm 10 times 

independently, and for each time I randomly select 70% of data for training and 30% as 

testing data, inside the training process, leave-one-out cross validation is applied.  
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Next, I make prediction on porosity based on seismic attributes in entire map for 

all models. Then combining all models together by making a vote and take the majority 

of prediction. The final SVM prediction model is shown in Figure 31. The SVM porosity 

standard deviation ranges from 0.0169 to 0.0224 with an average of 0.0189. Since it is 

not varied greatly for all test, also for the case of simplicity, we are assuming the standard 

deviation for SVM prediction throughout the reservoir is constant.  

 

Figure 31. SVM Porosity Prediction Based on Seismic Attributes. 

Next, following step 4, I merged two estimation and standard deviation map 

together, the merged map are shown in Figure 32 and the merged standard deviation map 

is in Figure 33.  
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Figure 32. Merged Porosity Estimation Map. 

 

 

Figure 33. Merged Standard Deviation Map. 

Next, following the scheme in step 5, I run the modified SGS algorithm and 

generate 100 realizations. For the purpose of comparison, we are going to present some 

realizations without seismic constraints first in Figure 34. Results for modified SGS using 

our workflow is shown in Figure 35. 
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Figure 34. Regular SGS Modeling Realization. 

 

 

Figure 35. Modified SGS Modeling Using New Workflow. 
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From the comparison between unstrained SGS model and unconstrained SGS 

model, we could see that because of making use of intrinsic pattern between seismic 

attributes and porosity, constrained SGS model is more likely to be able to predict the 

high porosity area for places where no nearby well log data is available, and the model 

using our workflow is more likely to reproduce high porosity area in the true map.  

Next, we are going to compare the e-type map of regular SGS and modified SGS 

for all realizations. As is shown in Figure 36, we could clearly see from the cross plot that 

the average model for from our workflow not only yields a smaller rooted mean squared 

error, but also show a more detailed and more accurate reproduction of porosity spatial 

distribution. These “extra information” is made possible by the data mining techniques, 

which indicates that applying data mining could effectively increase the efficiency for 

data utilization and help us build a more accurate distribution model. 

 

Figure 36. Comparison of E-type Map for Both SGS and Modified SGS. 
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3.4.2 Vertical Illustration Using Real Dataset 

This section shows results from different vertical scales of reservoir (Figure 37). 

In Figure 37, test result 1 is the evaluation of SVM algorithm predictions, it includes a 

comparison between predicted porosity based on seismic attributes data and porosity from 

well log data. Then after building the uncertainty map and the final constrained model, 

test result 2 would be used to show the comparison between modified SGS model, regular 

SGS model and how close both models are from well logs, which could illustrate the 

significance of our model.  

 

Figure 37. Illustration of Scales of Two Test Results. 

 

3.4.2.1 Results from Support Vector Machines Porosity Prediction (Test Result 1) 

Given the porosity log for all wells. I am using k-means to discretizing porosity 

log into 5 different porosity facies. And each facies is represented by an average porosity 

value Next, I match each porosity facies with corresponding seismic attributes using 

trilinear interpolation method.  Finally, I apply Support Vector Machines to handle the 

classification task.  In our experiment, a total amount of 4000 observation data is 
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available, I take data from 3 blind wells out from our observation data, then use the others 

to build our algorithm.   The blind test result for 3 wells are shown in Figure 38.  

 

Figure 38. Test Results for Support Vector Machines Prediction. 

From the test results, we could see that SVM is able to broadly predict the porosity 

behavior on vertical scale.  Since the seismic data itself is noisy and the pattern between 

seismic attributes and porosity is not universal, there are still many discrepancies between 

SVM prediction and down-hole porosity measurements. However, comparing with 

regular kriging method, these rough prediction is good enough to be the source of “extra 

information”.  

 

3.4.2.2 SGS Model Validation Results (Test Result 2) 

In order to illustrate how SVM could be useful in building a better constrained 

porosity model on a vertical scale, I applied three independent leave-one-out tests. For 

each test, I follow the procedure below:  
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1) Randomly select one well and delete its well log data from available dataset. 

2) Build a porosity model using SGS conditioned to available porosity log and p-

impedance. 

3) Following the workflow in this chapter, build another porosity model using SVM 

and modified SGS. 

4) For the selected well, calculate the root mean square error between porosity 

observations and two SGS models in step 2 and 3. 

The test results for three different wells are in Figure 39, in this test, density 

porosity log is being used as porosity observation.  

 

Figure 39. Illustration of Test Results 2. 

In Figure 39, we could notice that for different test wells, the all models has 

different performance. Although there are many major discrepancies existed between 

constrained model and real porosity log for all blind test wells, applying SVM constraints 

to SGS model could effectively tune the SGS model towards real porosity down-hole 
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measurements and decrease the error. This is because SVM constraints could enable us 

to discover the intrinsic non-linear pattern between porosity and seismic attributes and 

making use of the pattern and give more guidance for SGS modeling. 

Now we might wonder, how could SVM algorithm could more efficiently dig out 

extra in a seemingly chaotic dataset than geostatistics?  In order to explain its advantage, 

I am going to conduct a simple experiment in the next section. 

 

3.4.3 Simple Experiment on Advantages of SVM 

In order to approximate the real case, we assume the porosity is a continuous 

function of 3 factors. For the purpose of illustration, we arbitrarily create one porosity 

function without consideration of physical meanings: 

Φ = 𝑥12 + 𝑥22 + ln (𝑥3)                                                                    (44) 

In equation (44), Φ  is porosity, x1 could be overburden pressure, x2 could be 

some mineralogy measurements, x3 could be degree of consolidation. Let us assume the 

equation (44) is the true equation that we do not know.  

Fortunately, we have some attributes that contains some degree of information 

about these factors. These attributes are also a continuous function. In our case, we 

arbitrarily create three attributes without physical consideration: 

 Pimpedance = x1 + 𝑒𝑥2 − 𝑥32                                                         (45)               

Simpedance = ln(x1) − 𝑥22 + 𝑥3𝑥1                                                (46) 

Elastic Modulus = 𝑥12 + 𝑥2 − 𝑥2𝑥3                                                (47) 

Then I generate 100 sets of x1, x2 and x3 from uniform random distribution scaled 

from 0 to 1. Next, I use the equation (44) to equation (37) to generate Φ , P-impedance, 
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S-impedance, Elastic Modulus. Now, I erase equation (44) to equation (47) from our 

mind, what is available to us is only the data, and let us pretend we only know two things:  

1. We know that porosity is affected by some factor x1, x2, x3 to some degree. 

2. We know that the attributes we use also contains some degree of information 

about x1, x2 and x3 as well. 

If we cross plot every attributes vs. porosity, as shown in Figure 40, Figure 41 and 

Figure 42, we could see that our dataset is extremely noisy and even lack of any 

pattern. This situation is very much alike when we are trying to correlate between 

seismic attributes and porosity in real case.  

 

Figure 40. Cross Plot of P-impedance vs. Porosity 
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Figure 41. Cross Plot of S-impedance vs. Porosity 

 

 

Figure 42. Cross Plot of Elastic Modulus vs. Porosity 

Given these data, I randomly select 70% of data as observation, and applied a 

least squared linear regression, which has the same principle as co-kriging, then I test 

the correlation on the other 30% test dataset, the result is shown in Figure 43, the rooted 
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mean squared error between prediction and true value is 0.7924.

 

Figure 43. Linear Regression Prediction based on Attributes 

Then, given the same attributes, I use SVM algorithm to train on the same 70% 

of data and predict the other 30%, and follow the same workflow described in this paper, 

the results in shown in Figure 44, the rooted mean squared error is 0.4201.  

 

Figure 44. SVM Prediction Based on Attributes 

Therefore, SVM is capable of make better use of data and dig out “extra 

information” from the same chaotic dataset. Conventionally, if we want to improve our 
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prediction accuracy, we would study the correlation between target and some factor in 

lab, then make adjustment in the model for the new correlation. However, this process is 

extremely time-consuming and experience demanding. Instead, one fascinating fact about 

data mining techniques is that it allows us to discover the pattern between targets and 

attributes implicitly, which means we could be able to predict porosity based on seismic 

attributes and accounting for the correlation for other factors without knowing what 

exactly the pattern is or how each attribute is related with each other.  All we need to 

make sure is the attributes we use contains some degree of information about the factors 

that could determine the target. Once we input those attributes that into data mining 

algorithms, then algorithm could make the data speak for itself.   

 

3.5 Chapter Conclusion  

In this chapter, I am presenting a new data mining scheme for modeling porosity, 

compared with regular SGS modeling, combining data mining workflow with SGS model 

could make a better use of available data and provide extra information and help SGS 

build a more accurate model. These advantages are achieved by utilizing non-linear 

pattern between seismic attributes and porosity. The results of this workflow can be 

crucial to a successful field development. 
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Chapter 4 Conclusion 

In this thesis, I developed three different applications that use data mining 

techniques for reservoir modeling purposes. The data mining algorithms includes Support 

Vector Machines, K-means algorithm, Probabilistic Neural Network and the Ensemble 

Learning algorithm. I also created a new geomodeling algorithm that is capable of 

handling non-linear correlations between different datasets by combining Support Vector 

Machines and Sequential Gaussian Simulation. The following conclusions can be drawn 

from this work: 

1. Machine learning algorithms are a promising approach to integrate multiple data types 

that span different length scales for the purposes of reservoir characterization. 

2. For the Barnett shale play, I used K-Means and Support Vector Machines for the 

prediction on lithotypes derived from core-data using a set of well log curves (SP, 

GR, DPHI, NPHI, SPHI, PE and RHOB). The results showed that we are able to 

achieve 76% accuracy in blind test prediction and can therefore identify lithotypes for 

un-cored wells with a high degree of accuracy.  

3. Again for the Barnett shale play, I used the Ensemble Learning algorithm and 

Probabilistic Neural Network (PNN) to predict total organic content (TOC) based on 

a different set of well log curves (PHIS, PHIN, RHOB, Rd, GR) in cored wells. This 

application demonstrates that the TOC can be predicted accurately in un-cored wells. 

The blind test results also show that the predicted TOC zones using PNN share a great 

similarity with the core-based TOC measurement in the lab.  

4. Lastly, I developed a new porosity modeling work flow that applied data mining 

techniques for an application in the Mississippi Limestone. The result shows that 
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applying new approach allows better use of exploratory data for more accurate 

estimation of the distribution of porosity in the reservoir.    

In summary, data mining techniques have a huge potential for several applications 

in the petroleum industry. The advantages of data mining techniques are that they can 

handle vast amounts of data and are easily customizable for automated handling of 

diverse types of data. However, as with any data analysis technique, careful user 

interpretation of the results continues to be of the utmost importance. 
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