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Algorithms for image/video quality assessment (QA) aim to predict the qualities of
images in a manner that agrees with subjective quality ratings. Over the last sev-
eral decades, the major impetus in QA research has focused on improving predictive
performance; very few studies have focused on analyzing and improving the runtime
performance of QA algorithms. Modern algorithms of image/video quality assessment
commonly employed two stages: (1) a local frequency-based decomposition, and (2)
block-based statistical comparisons between the frequency coefficients of the reference
and distorted images. These two stages constitute the bulk of the computation and
runtime required for QA. This research thesis presents a performance analysis of and
techniques for accelerating these stages. We also specifically analyze and accelerate
one representative QA algorithm, Most Apparent Distortion (MAD), which was de-
veloped by Eric Larson and Damon Chandler in 2010 [1]. We identify the bottlenecks
from the above-mentioned stages, and we present methods of acceleration using gen-
eralized integral image, inline expansion, a GPGPU implementation, and other code
modifications. We show how a combination of these approaches can yield a speedup
of 47x.

The content of the report is divided into five different chapters. In Chapter 1, we
present a general overview of QA algorithms, current work on improving the compu-
tational performance and execution time of QA algorithms, and an introduction to
our work. In Chapter 2, we describe MAD algorithm, the first performance analysis,
and the systems used to test the performance. In Chapter 3, we present general-
ized integral image and inline expansion techniques. In this chapter, we also provide
the results of each technique in terms of speeding up running time. Chapter 4 pro-
vides GPGPU and some other code optimization techniques with the timing results.
Finally, the conclusion are proposed in the Chapter 5 to summarize the report.

v



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Background on image/video quality assessment algorithms . . . . . . 2

1.2 The need for acceleration of QA . . . . . . . . . . . . . . . . . . . . . 6

1.3 Current work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 What we do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 ALGORITHM AND ANALYSIS 10

2.1 Most Apparent Distortion (MAD) algorithm . . . . . . . . . . . . . . 10

2.2 Testing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Original MAD performance . . . . . . . . . . . . . . . . . . . . . . . 12

3 GENERALIZED INTEGRAL IMAGES AND INLINE EXPANSION 17

3.1 Integral image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Original integral image . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Generalized integral images . . . . . . . . . . . . . . . . . . . 19

3.2 Procedure inlining and strength reduction . . . . . . . . . . . . . . . 22

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 GPGPU AND OTHER CODE OPTIMIZATIONS 27

4.1 GPGPU and code optimizations . . . . . . . . . . . . . . . . . . . . . 27

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 32

vi



REFERENCES 34

vii



LIST OF TABLES

Table Page

2.1 Three systems with different configurations, such as memory (4 GB, 5

GB, or 8 GB), operating systems (Windows 7 or Windows server 2003),

architectures (32-bit vs. 64-bit), and simulator versions (Matlab 2009a

vs. Matlab 2011a). System 1 was used for the main performance

analysis; Systems 2 and 3 were used for the additional timing results. 12

3.1 Timing results of various modifications. The first and second columns

for each system show run-time in seconds and speedup, respectively.

II = Integral Image; IE = Inline Expansion of pow. . . . . . . . . . . 25

4.1 NVIDIA GeForce GTX 560 Ti specifications . . . . . . . . . . . . . . 28

4.2 Timing results of GPGPU and other code modifications (System 1

only). CO = Code Optimization; IE-DT = Inline Expansion of pow in

MAD’s detection-based stage. When all of the acceleration techniques

are employed, MAD’s run-time is accelerated by 47x. . . . . . . . . . 29

viii



LIST OF FIGURES

Figure Page

1.1 Diagram of the MS-SSIM algorithm. LPF1 is a low-pass filter of size

2 × 2. ↓ 2 is a downsampling by a factor of two. LPF2 is a low-pass

filter of size 11 × 11. The reference and distorted images serve as the

first scale. The other four scales are obtained by applying LPF1 and

↓ 2 repeatedly. For each scale, the similarity between two images is

measured by applying LPF2 to prevent artifacts. Finally, the MS-

SSIM index is formed via a combination of the luminance, contrast,

and structure comparisons from different scales. . . . . . . . . . . . . 3

1.2 The block diagram of VIF algorithm. First, two input images are

filtered via a six-orientation and four-level Steerable Pyramid. The

parameters of reference and distorted channels are calculated from the

filtered images. Finally, the information of reference and distorted

images are calculated and collapsed into a VIF index. . . . . . . . . . 4

ix



1.3 The diagram of MAD algorithm. For detection-based stage, reference

and distorted images are first filtered using a contrast sensitivity func-

tion. The distortion map is then computed from filtered images and

collapsed via a MSE measure to obtain a detection-based index. For

the appearance-based stage, both images first are filtered using Log-

Gabor with five scales and four orientations. The statistical difference

map is computed from the 20 filtered subbands and then collapsed

into a appearance-based index. Finally, the MAD index is given by

taking a weighted geometric mean of the appearance-based index and

detection-based index. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Block diagram of the MAD algorithm. . . . . . . . . . . . . . . . . . 11

2.2 System 1, the desktop employed in the experiment. . . . . . . . . . . 13

2.3 System 2, the laptop employed in the experiment. . . . . . . . . . . . 14

2.4 System 3, the server employed in the experiment. . . . . . . . . . . . 15

2.5 (a) Profiling analysis showing average execution time in each stage for

System 1; the average total execution time per image is 55.85 seconds.

(b) Breakdown of the bottleneck, the appearance-based stage. . . . . 16

3.1 Updated version of Figure 2.5; the average total run-time per image

is 3.21 secs (System 1). The log-Gabor filtering is now the bottleneck,

and target for following chapter. . . . . . . . . . . . . . . . . . . . . . 26

4.1 Updated version of Figure 3.1 using all acceleration techniques; the

average total execution time per image is 1.19 seconds, which is 47x

times faster than the original version. The log-Gabor decomposition

has reduced to 22% of the total time (previously 55%). . . . . . . . . 31

x



CHAPTER 1

INTRODUCTION

Current research on image/video quality assessment (QA) spans different areas, in-

cluding improving predictive performance, applying image quality assessment (IQA)

to video quality assessment (VQA), applying IQA and VQA into image/video ac-

quisition, transmission, compression, restoration and enhancement; very few studies

have focused on analyzing and improving the runtime performance of QA algorithms.

However, as QA moves from the research community into more mainstream applica-

tions, the bottlenecks of current algorithms are preventing widespread adoption. This

report focuses on these two goals: analyzing and improving the runtime performance

of one IQA algorithm, Most Apparent Distortion (MAD) [1], which is currently the

best predictive performance IQA algorithm. While our implementation is specific to

MAD, our methodology is straightforward to apply to a variety of QA algorithms;

the analysis and results presented here can also provide insight into how other related

algorithms might be accelerated.

In this chapter, we first introduce some background information on IQA and VQA

algorithms in terms of runtime performance. There are many different approaches,

yet, these QA algorithms share the same stages in algorithmic theory. We then

present the need for acceleration of QA and current work on this area. Finally, our

contribution to the research community will be proposed in detail in the following

chapters.
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1.1 Background on image/video quality assessment algorithms

Most IQA algorithms are so-called full-reference (FR) algorithms, which take as in-

put a reference image and a processed (usually distorted) image, and yield as output

either a scalar value denoting the overall visual quality or a spatial map denoting

the local quality of each image region ([2, 3, 4, 5, 6, 1]). More recently, researchers

have begun to develop no-reference (NR) ([7, 8, 9]) and reduced-reference (RR) al-

gorithms ([10, 11, 12]), which attempt to yield the same quality estimates either

by using only the processed/distorted image (no-reference IQA), or by using the

processed/distorted image and only partial information about the reference image

(reduced-reference IQA).

VQA algorithms can be classified into the same categories (FR, NR, or RR VQA).

A natural technique is is to apply existing IQA algorithms to each frame of the

video and to pool the per-frame results across time. A better approach is to extract

and compare visual/quality features from localized space-time regions or groups of

video frames or using spatiotemporal slices or motion information ([13, 14, 15]). See

[16, 17, 18, 19] for more recent reviews on IQA/VQA.

Despite the fact that all IQA and VQA algorithms employ different approaches,

they share two common algorithmic operations: (1) a local frequency-based decompo-

sition (filtering/filterbanks or transforming), and (2) block-based statistical compar-

isons between the frequency coefficients of the reference and distorted images/videos

(statistical computation). The block diagrams of some popular algorithms are pro-

vided in Figure 1.1-1.3 for us to have a general overview of these stages.

The Figure 1.1 shows the block diagram of the multi-scale structural similarity

algorithm (MS-SSIM) [5]. MS-SSIM extends the original SSIM algorithm [20], which

estimates the image quality based on the structure difference, by applying and com-

bining SSIM for multiple scales. Specifically, the algorithm is implemented with five
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Figure 1.1: Diagram of the MS-SSIM algorithm. LPF1 is a low-pass filter of size 2×2.
↓ 2 is a downsampling by a factor of two. LPF2 is a low-pass filter of size 11 × 11.
The reference and distorted images serve as the first scale. The other four scales
are obtained by applying LPF1 and ↓ 2 repeatedly. For each scale, the similarity
between two images is measured by applying LPF2 to prevent artifacts. Finally, the
MS-SSIM index is formed via a combination of the luminance, contrast, and structure
comparisons from different scales.

scales, in which the reference and distorted images serve as the first scale. To obtain

the other four scales, a low-pass filter, LPF1, and a downsampling by a factor of

two are applied repeatedly. For each scale, a low-pass filter, LPF2, of size 11× 11 is

applied to prevent artifacts from the discontinuous truncation of the image. This is

the filtering/transforming stage. In the statistical comparisons stage, the luminance,

contrast, and structure are computed and compared to yield a different map for each

scale. Five maps of five scales are then combined and and collapsed to obtain the

final MS-SSIM quality index.

The Figure 1.2 shows the block diagram of visual information fidelity algorithm

(VIF) [6]. Using natural scene statistic models, VIF quantifies the loss of image infor-

mation due to the distortion process by considering the relationship between image

information, the amount of information shared between a reference and a distorted

image, and visual quality. As seen from the figure 1.2, in the filtering/transforming

stage, VIF uses the Steerable Pyramid [21] to model the image information in wavelet

domain. This transforming step is employed with four scales and six orientations of

decomposition and yields 24 subbands. In the statistical computation stage, each

3
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Figure 1.2: The block diagram of VIF algorithm. First, two input images are filtered
via a six-orientation and four-level Steerable Pyramid. The parameters of reference
and distorted channels are calculated from the filtered images. Finally, the infor-
mation of reference and distorted images are calculated and collapsed into a VIF
index.

reference subband is modeled using a Gaussian scale mixtures model, as one ran-

dom field (RF) which is a product of two independent RFs: a positive scalar and a

Gaussian vector with zero-mean and a covariance matrix. The distorted subbands

are modeled using the same strategy, with an additional noise: a stationary additive

zero mean Gaussian noise RF in the same wavelet domain. From the parameters

calculated here, the reference and distorted image information are given. Finally, the

image information is summed over subbands, and the VIF index is given by the ratio

between the distorted image information and reference image information.

The Figure 1.3 shows the block diagram of Most Apparent Distortion (MAD)

algorithm [1]. MAD uses two strategies to estimate image quality. First, a detection-

based strategy is used for nearthreshold distortions. In this case, the HVS at-

tempts to look past the image and look for the distortions. Second, an appearance-

based strategy is used for clearly visible distortions, and thus the HVS attempts to

look past the distortion and look for the images subject matter. As seen from the

Figure 1.3, MAD also consists of two stages, filtering/transforming and statistical

computation. The detection-based strategy employs a contrast sensitivity function

(CSF) (filtering/transforming) before computing visible distortion map (statistical

computation). The appearance-based strategy employs a Log-Gabor filtering (filter-
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Figure 1.3: The diagram of MAD algorithm. For detection-based stage, reference and
distorted images are first filtered using a contrast sensitivity function. The distortion
map is then computed from filtered images and collapsed via a MSE measure to
obtain a detection-based index. For the appearance-based stage, both images first
are filtered using Log-Gabor with five scales and four orientations. The statistical
difference map is computed from the 20 filtered subbands and then collapsed into
a appearance-based index. Finally, the MAD index is given by taking a weighted
geometric mean of the appearance-based index and detection-based index.

ing/transforming), and then applies a statistical difference map computing for each

pair of reference and distorted subbands (statistical computation). MAD then col-

lapses all the maps and combines two indices from two strategies into a single MAD

quality index via a weighted geometric mean.

Current research on QA focuses on improving predictive performance; there are

very few studies have focused on analyzing and improving the runtime performance

of QA algorithms. Our report focuses on the goal of analyzing and improving the

runtime performance of IQA algorithm. We chose Most Apparent Distortion (MAD)

[1], which is currently the best predictive performance IQA algorithm. While our

implementation is specific to MAD, our methodology is straightforward to apply to

a variety of QA algorithms; the analysis and results presented here can also provide

insight into how other related algorithms might be accelerated.
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1.2 The need for acceleration of QA

IQA algorithms have been employed for a wide variety of applications ranging from

image compression (e.g., [22, 23, 24]), to denoising (e.g., [25]), to gauging intelligibility

in sign language video [26]. Modern IQA algorithms such as VIF [27], MS-SSIM [28],

and MAD [29] are quite effective at QA, and they have been adapted for those appli-

cations. However, they require a relatively large run-time—on the order of seconds for

even modest-sized images (e.g., less than 1MPixels). Nowadays, even a smartphone

can capture/process a very large image (e.g., 4-20 MPixels), and thus, the run-time

is very important because users do not want to wait too long to process an image.

These IQA algorithms are also adapted to process frames of video (e.g., MOVIE

[30], ST-MAD [15]). For a 25 frame per second video of size 768× 432, which is 10-

second long, MOVIE needs approximately five hours to compute the quality index.

For the same video, ST-MAD also needs approximately eight hours. It must be

frustrating for the developers to test these VQA algorithms, just because of waiting

time. Therefore, the run-time issues become of greater importance.

1.3 Current work

IQA algorithms have been used extensively in image compression and computer vi-

sion, and thus, a considerable amount of research has focused on accelerating two-

dimensional image transforms which provide local frequency-based decompositions.

For example, the Discrete Cosine Transform (DCT) has been accelerated at the al-

gorithm level by using variations of the same techniques used in the Fast Fourier

Transform (FFT) (e.g., [31]) and by exploiting various algebraic and structural prop-

erties of the transform, e.g., via recursion [32], lifting [33], matrix factorization [34],

cyclic convolution [35], and many other techniques (see [36] for a review). Numerous

techniques for hardware-based acceleration of the DCT have also been proposed using

6



GPGPU-based and FPGA-based implementations (e.g., [37, 38, 39, 40]). Algorithm-

and hardware-based acceleration has also been researched for the Discrete Wavelet

Transform (DWT) (e.g., [41, 42, 43]) and Gabor transform (e.g., [44, 45, 46, 47]).

Techniques for accelerating the computation of local statistics in images has also

been researched, though to a much lesser extent than the transforms. One technique,

called integral image, which was originally developed in the context of computer

graphics [48], has emerged as a popular approach for computing block-based sums of

any two-dimensional matrix of values (e.g., a matrix of pixels or coefficients). The

integral image, also known as the summed area table, requires first computing a table

which has the same dimensions as the input matrix, and in which each value in the

table represents the sum of all matrix values above and to the left of the current

position. Thereafter, the sum of values within any block of the matrix can be rapidly

computed via addition/subtraction of three values in the table. This technique has

been employed widely, for example, fast feature-based block matching [49], rapid

object detection [50], and local adaptive thresholding [51] .

In [52], Chen and Bovik presented the Fast SSIM and Fast MS-SSIM algorithms,

which are accelerated versions of SSIM and MS-SSIM, respectively. Three modifica-

tions were used for Fast SSIM: (1) The luminance component of each block was com-

puted by using an integral image. (2) The contrast and structure components of each

block were computed based on 2× 2 Roberts gradient operators. (3) The Gaussian-

weighting window used in the contrast and structure components was replaced with

an integer approximation. For Fast MS-SSIM, a further algorithm-level modification

of skipping the contrast and structure computations at the finest scale was proposed.

By using these modifications, Fast SSIM and Fast MS-SSIM were shown to be, respec-

tively, 2.7x and 10x faster than their original counterparts on 768x432 frames from

videos of the LIVE Video Quality database [53]. Although algorithm-level modifi-

cations were used, the authors demonstrated that these modifications had negligible

7



impact on predictive performance; testing on the LIVE Image Quality and Video

Quality databases revealed effectively no impact on Spearman rank-order correlation

coefficient, Pearson correlation coefficient, and root-mean-square error. By further

implementing the calculations of the contrast and structure components via Intel

SSE2 (SIMD) instructions, speedups of approximately 5x for Fast SSIM and 14x for

Fast MS-SSIM were reported. In addition, speedups of approximately 17x for Fast

SSIM and 50x for Fast MS-SSIM were reported by further employing parallelization

via a multithreaded implementation.

In [54], Okarma and Mazurek presented GPGPU techniques for accelerating SSIM,

MS-SSIM, and CVQM (a video quality assessment algorithm developed previously by

Okarma, which uses SSIM, MS-SSIM, and VIF to estimate quality). To accelerate

the computation of both SSIM and MS-SSIM, the authors described a CUDA-based

implementation in which separate GPU threads were used for computing SSIM or MS-

SSIM on strategically sized fragments of the image. To overcome CUDA’s memory-

bandwidth limitations, the computed quality estimates for the fragments were stored

in GPU registers and transferred only once to the system memory. Okarma and

Mazurek reported that their GPGPU-based implementations resulted in 150x and

35x speedups of SSIM and MS-SSIM, respectively.

1.4 What we do

Several papers have focused on accelerating the filtering/transforming stage (e.g.,

[31, 32, 33, 34]), some have focused on local statistics computation (e.g., [48, 49]),

some other have focused in the hardware and multithreaded implementation (e.g.,

[54, 37, 38, 39, 40]), assuming that the original algorithms are fully optimized, only

a few have done speeding up a whole IQA algorithm (such as in [52]). From a de-

veloper viewpoint, software optimization needs to be considered before any hardware

or multithreading coding. Moreover, we also need to avoid changing the algorithm’s

8



predictive performance, (not to use approximation such as an integer approximation

of the Gaussian window in [52]).

In this report, we present a performance analysis of and methods for accelerat-

ing a representative QA algorithm recently developed by Eric Larson and Damon

Chandler, MAD [1]. MAD employs a log-Gabor decomposition and a comparison of

local statistical differences between blocks of log-Gabor coefficients of the reference

and distorted images; it is thus an appropriate representative algorithm for the stages

performed in QA.

We present a technique to identify the bottlenecks in MAD, and then we present

four methods for accelerating the algorithm by attacking each of the found bot-

tlenecks: (1) Using generalized integral image for the statistical computations; (2)

using procedure expansion and strength reduction; (3) using a general-purpose-GPU

(GPGPU) implementation of the log-Gabor decomposition; and (4) precomputation

and caching of the log-Gabor filters. As we will show, a combination of these ap-

proaches can result in a nearly 47x speed increase. While our implementation is

specific to MAD, our methodology is straightforward to apply to a variety of QA

algorithms; the analysis and results presented here can also provide insight into how

other related algorithms might be accelerated.

The rest of the report is organized as follows: In Chapter 2, we describe MAD

algorithm, the first performance analysis, and the bottleneck results. We also de-

scribe the systems which are used to test the run-time performance in this chapter.

In Chapter 3, we first present the integral image technique, and then a new-developed

integral image technique, generalized integral images, for higher moments. The inline

expansion technique and the results of each technique (in terms of speeding up run-

ning time) are also provided in this chapter. Chapter 4 provides GPGPU and some

other code optimization techniques with the timing results. Finally, the conclusion is

proposed in the Chapter 5 to summarize the report.

9



CHAPTER 2

ALGORITHM AND ANALYSIS

2.1 Most Apparent Distortion (MAD) algorithm

The Most Apparent Distortion (MAD) algorithm [1], agues that human employs

multiple strategies to assess image quality. Specifically, for slightly distorted (high-

quality) images, human looks for distortions, and for heavily distorted (low-quality)

images, human leans to the task of image contents recognition. Consequently, the

MAD algorithm consists of two assessment stages: (1) a detection-based stage, which

estimates quality based on the extent to which the distortions are visible; and (2) an

appearance-based stage, which estimates quality based on the extent to which the

image is recognizable.

The block diagram of MAD is shown in Fig. 2.1 with details of the two stages.

The detection-based stage (compute detection-based difference map) uses a masking-

weighted block-based MSE computed in the lightness domain (contrast sensitivity

function, and then a least mean square). The appearance-based stage (Compute

appearance-based map) computes the average difference between the block-based log-

Gabor statistics of the original image to those of the distorted image.

The appearance-based stage, which employs a computational neural model using

a log-Gabor filterbank with both even-symmetric and odd-symmetric filters applied

using the FFT [55], is believed to the slowest stage of MAD. The even and odd

filter outputs are combined to yield magnitude-only subband values. The standard

deviation, skewness, and kurtosis computed for each 16× 16 block (with 75% overlap

between blocks) of each subband of the original image are compared to corresponding

10
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Figure 2.1: Block diagram of the MAD algorithm.

values computed for the distorted image. The differences between these statistics are

then collapsed via a 2-norm to yield a scalar output corresponding to appearance-

based differences.

2.2 Testing systems

The performance analysis was executed on a Dell Inspiron 580 desktop, and for ver-

ification on two additional systems, which are a laptop and a server. We also need

a good graphic card for testing GPU performance, only the desktop, which includes

Quadro Q9400 graphic card can do this. Details are provided in Figures 2.2-2.4.

Three systems were chosen with different configurations, such as memory (4 GB, 5

GB, or 8 GB), operating systems (Windows 7 or Windows server 2003), architectures

(32-bit vs. 64-bit), and simulator versions (Matlab 2009a vs. Matlab 2011a). A few

basic specifications are provided in Table 2.1 for these systems.

11



Table 2.1: Three systems with different configurations, such as memory (4 GB, 5
GB, or 8 GB), operating systems (Windows 7 or Windows server 2003), architectures
(32-bit vs. 64-bit), and simulator versions (Matlab 2009a vs. Matlab 2011a). System
1 was used for the main performance analysis; Systems 2 and 3 were used for the
additional timing results.

CPU and RAM OS and Matlab

System 1 Intel Core 2 Quad Q9400 2.66 GHz Win. 7, 64-bit
(Desktop) 8 GB 1333-MHz DDR3 Matlab 2011a

System 2 Intel Core 2 Duo T6400 2 GHz Win. 7, 32-bit
(Laptop) 4 GB 1333-MHz DDR3 Matlab 2009a

System 3 Two Intel Xeon 5050 3 GHz Win. Server 2003
(Server) 5 GB 667-MHz DDR2 Matlab 2009a

2.3 Original MAD performance

The original version of MAD was implemented in Matlab, with C++ MEX files used

for computation of the block-based statistics. To identify bottlenecks, we performed

a timing analysis using the profiler in Matlab. The MEX files were compiled using

Microsoft Visual C++ 2008 using Matlab’s default optimization flags /O2 /Oy-.

We ran MAD on 180, 512×512-pixel images from the CSIQ database [56]. Figure

2.5 shows the average results from this analysis for System 1 (similar distributions of

time were observed on all three systems); the average total execution time per image

is 55.85 seconds.

Figure 2.5 shows hotspots (bottlenecks) of several blocks of MAD. The more time-

consuming blocks, the hotter color they are. As seen in Figure 2.5(a), over 98% of

this time is spent in the appearance-based stage. This stage consists of three sub-

stages: a log-Gabor decomposition, computation of block-based statistics of the log-

Gabor subbands to generate statistical difference maps, and combining/collapsing

the maps into a final scalar output. As shown in Figure 2.5(b), computation of the

statistical difference maps alone consumes over 93% of MAD’s total execution time.

Thus, performance improvement should focus on this part of the algorithm, statistical
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Figure 2.2: System 1, the desktop employed in the experiment.

difference maps computation.

The following chapters will provide in details some techniques to speed up the

MAD algorithm, such as generalized integral images, inline expansion, GPU and code
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Figure 2.3: System 2, the laptop employed in the experiment.

optimizations. The contribution of each of the technique to the speed-up process is

also provided on these chapters.
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Figure 2.4: System 3, the server employed in the experiment.
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Figure 2.5: (a) Profiling analysis showing average execution time in each stage for
System 1; the average total execution time per image is 55.85 seconds. (b) Breakdown
of the bottleneck, the appearance-based stage.

16



CHAPTER 3

GENERALIZED INTEGRAL IMAGES AND INLINE EXPANSION

This chapter provides two methods to speed up statistical difference maps computa-

tion stage: Generalized Integral images and inline expansion. The generalized integral

images technique attempts to reduce the computational complexity (e.g. reduce the

number of addition, subtraction, multiplication, division and other operations), and

the inline expansion is employed to save the overhead related to the procedure call,

and for strength reduction.

3.1 Integral image

To accelerate the computation of the statistical difference maps, we employ and build

upon a technique called integral image originally developed in the context of computer

graphics [48]. The integral image, which is also known as the summed area table, is

an algorithm for quickly computing the sum of values within any block of an image.

The integral image was designed to compute a block’s sum, whereas MAD requires

standard deviation, skewness, and kurtosis. In this section, we first review the integral

image technique, and then we present our new integral images, which developed for

quickly computing local standard deviation, skewness and kurtosis.

3.1.1 Original integral image

Let I denote an image (or subband) for which one needs to compute block-based

sums. The integral image M has the same dimensions as I, but with each pixel value
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at position (x, y) given by:

M(x, y) =

y
∑

y′=1

x
∑

x′=1

I(x′, y′). (3.1)

Another word, the value at any point (x, y) in the integral image M (or summed

area table) is just the sum of all the pixels in I in the area from (1,1) to (x, y).

The integral image M can be computed efficiently in a single pass over the image

I, using the fact that the value in M at (x, y) can be computed from its previous

values, at (x-1,y-1), (x,y-1), and (x-1,y), and a value in I at (x,y) as follow:

M(x, y) = I(x, y) +M(x− 1, y) +M(x, y − 1)−M(x− 1, y − 1) (3.2)

Given M as defined above, the sum s of all pixel values located in the rectangle

(x1,y1), (x2,y2) is given by

s =

y2
∑

y′=y1

x2
∑

x′=x1

I(x′, y′)

=

y2
∑

y′=1

x2
∑

x′=1

I(x′, y′) +

y1
∑

y′=1

x1
∑

x′=1

I(x′, y′)−

y1
∑

y′=1

x2
∑

x′=1

I(x′, y′)−

y2
∑

y′=1

x1
∑

x′=1

I(x′, y′)

= M(x2, y2) +M(x1, y1)−M(x1, y2)−M(x2, y1)

The formula of the sum s gives us a faster way to calculate the sum of any block by

calculating four operations (additions and subtractions), by pre-calculating integral

image M one time.

A further reduction in computation can be achieved by capitalizing on the fact

that MAD does not need to compute the statistics of every block. MAD calculates

the statistical maps using blocks of size 16 × 16 pixels, with 12 pixels of overlap

between neighboring blocks. Accordingly, we do not need the entire integral image,

just subsets of it required to support the computation of the statistics within these
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particular blocks. In this case, the integral image M has dimensions 1/4 of the size

of I, and is given as follows:

M(x, y) =
∑

y′≤4y

∑

x′≤4x

I(x′, y′). (3.3)

3.1.2 Generalized integral images

The MAD algorithm requires standard deviation, skewness and kurtosis of of all blocks

of size 16×16 pixels, with 12 pixels of overlap between neighboring blocks. Therefore,

we need an upgrade of integral image technique, generalized integral images, for those

statistical computations. Specifically, let b denote a N1×N2 block of I. The standard

deviation, skewness, and kurtosis of b are given by

σb =

√

1

N1N2

∑

i

(

bi − b̄
)2

, (3.4)

ςb =
1

N1N2σ
3

b

∑

i

(

bi − b̄
)3

, (3.5)

κb =
1

N1N2σ
4

b

∑

i

(

bi − b̄
)4

, (3.6)

where bi and b̄ denote the ith pixel and mean of b.

We developed generalized integral images, the extension of the integral image,

to accelerate the computation of Equations (3.4)-(3.6). This modification requires

computing integral images for the image and powers of the image up to power 4.

Specifically, let M1, M2, M3, and M4 denote the integral image computed for I, I2,

I3, and I4, respectively. Let s1, s2, s3, and s4 denote sums of the values (over the

same coordinates as block b) in I, I2, I3, and I4, respectively. The integral images

M1, M2, M3, and M4 are given by:

Mi(x, y) =
∑

y′≤4y

∑

x′≤4x

I i(x′, y′). (3.7)

19



To compute the standard deviation, we manipulate Equation 3.4 as follows:

σb =

√

1

N1N2

∑

i

(

bi − b̄
)2

,

=

√

1

N1N2

∑

i

(

b2

i − 2bib̄+ b̄2
)

,

=

√

√

√

√

1

N1N2

(

∑

i

b2

i − 2
∑

i

bib̄+N1N2b̄2

)

,

=

√

√

√

√

1

N1N2

(

s2 − 2s1
s1

N1N2

+N1N2

(

s1

N1N2

)2
)

,

=

√

1

N1N2

(

s2 −
s2
1

N1N2

)

. (3.8)

Originally, to compute σb as in Equation 3.4, it requires approximately N1 × N2

additions for the mean b̄, N1 ×N2 subtractions of bi and b̄, N1 ×N2 times for square

operation, N1 ×N2 times to compute the sum squared, two divisions and one square

root. However, with the integral images M1 and M2 (to compute the sums s1 and

s2 efficiently with four additions and subtractions), the σb in Equation 3.8 can be

computed with one square operation, one subtractions, four divisions, and one square

root. We reduced the number of operations required, and thus reduce computational

complexity.

Similar manipulation of Equations 3.5 for local skewness ςb is given by:
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ςb =
1

N1N2σ
3

b

∑

i

(

bi − b̄
)3

,

=
1

N1N2σ
3

b

∑

i

(

b3

i − 3b2

i b̄+ 3bib̄
2 − b̄3

)

,

=
1

N1N2σ
3

b

(

∑

i

b3

i − 3
∑

i

b2

i b̄+ 3
∑

i

bib̄
2 −

∑

i

b̄3

)

,

=
1

N1N2σ
3

b

(

∑

i

b3

i − 3b̄
∑

i

b2

i + 3b̄2
∑

i

bi −N1N2b̄
3

)

,

=
1

N1N2σ
3

b

(

s3 − 3b̄s2 + 3b̄2s1 −N1N2b̄
3
)

,

=
1

N1N2σ
3

b

(

s3 − 3(
s1

N1N2

)s2 + 3(
s1

N1N2

)2s1 −N1N2(
s1

N1N2

)3
)

,

=
1

N1N2σ
3

b

(

s3 − 3
s1s2

N1N2

+ 2
s3
1

(N1N2)
2

)

. (3.9)

Again, if we compare Equations 3.5 and 3.9 in terms of number of operations.

We can see that Equation 3.5 requires multiple times N1 ×N2 operations. However,

Equation 3.9 requires only a few operations to obtain ςb values.

Similar manipulation of Equations 3.6 for local kurtosis κb is given by:
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κb =
1

N1N2σ
4

b

∑

i

(

bi − b̄
)4

, ,

=
1

N1N2σ
4

b

∑

i

(

b4

i − 4b3

i b̄+ 6b2

i b̄
2 − 4bib̄

3 + b̄4
)

,

=
1

N1N2σ
4

b

(

∑

i

b4

i − 4
∑

i

b3

i b̄+ 6
∑

i

b2

i b̄
2 − 4

∑

i

bib̄
3 +

∑

i

b̄4

)

,

=
1

N1N2σ
4

b

(

∑

i

b4

i − 4b̄
∑

i

b3

i + 6b̄2
∑

i

b2

i − 4b̄3
∑

i

bi +N1N2b̄
4

)

,

=
1

N1N2σ
4

b

(

s4 − 4b̄s3 + 6b̄2s2 − 4b̄3s1 +N1N2b̄
4
)

,

=
1

N1N2σ
4

b

(

s4 − 4(
s1

N1N2

)s3 + 6(
s1

N1N2

)2s2 − 4(
s1

N1N2

)3s1 +N1N2(
s1

N1N2

)4
)

,

=
1

N1N2σ
4

b

(

s4 − 4
s1s3

N1N2

+ 6
s2s

2

1

(N1N2)
2
− 3

s4
1

(N1N2)
3

)

. (3.10)

One more time, if we compare Equations 3.6 and 3.10 in terms of number of

operations. We can see that Equation 3.6 requires multiple times N1×N2 operations.

However, Equation 3.10 requires only a small number of operations to obtain κb

values.

The generalized integral images technique can be extended to higher moments.

The key point of extending is expanding
∑

i

(

bi − b̄
)m

to use with m integral images,

M1,M2, ...Mm for any m. What we have presented is for m = 1, 2, 3, 4, but it can be

extended to any m > 4.

The results of applying the new integral images technique will be presented in

Section 3.3, in order to compare to Procedure Inlining and Strength Reduction tech-

nique.

3.2 Procedure inlining and strength reduction

In the original implementation of MAD, Equations 3.4, 3.5, and 3.6 are implemented

using the pow function from the Standard C++ Library. Another avenue for accel-
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erating the computation of the statistics is to replace the function call with a direct

multiplication.

We therefore replaced the calls to pow with an inline expansion involving a di-

rect multiplication (e.g., pow(x,3) was replaced with x*x*x). This modification

not only saves the overhead related to the procedure call, but also offers strength

reduction.

The pow functions in C++ and Matlab are expensive function. To compare the

use of pow and direct multiplication, let look at the Matlab code:

tic;

a=rand(1024);

b=a.∧2;

toc;

Elapsed time is 0.035528 seconds.

and

tic;

a=rand(1024);

b=a.*a;

toc;

>> Elapsed time is 0.035528 seconds.

This case, there is not much different between pow of two and direct multiplica-

tion. However, if it is power of three:

tic;

a=rand(1024);

b=a.∧3;

toc;

Elapsed time is 0.105884 seconds.

and
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tic;

a=rand(1024);

b=a.*a.*a;

toc;

>> Elapsed time is 0.042218 seconds.

The power function in Matlab shows a poor performance. The same pattern can be

seen for power of four, via:

tic;

a=rand(1024);

b=a.∧4;

toc;

Elapsed time is 0.111544 seconds.

and

tic;

a=rand(1024);

b=a.*a.*a.*a;

toc;

>> Elapsed time is 0.042512 seconds.

3.3 Results

The timing results of these modifications are shown in Table 3.1 for all three systems,

and the average speedup. The first column show the modification types (integral

image and inline expansion individually, and a combination of the two). The first and

second columns for each system show run-time in seconds and speedup, respectively.

Via Table 3.1, we can see that both approaches clearly provide a significant ac-

celeration. However, it is important to note that the integral image (II) and inline

expansion (IE) offer different forms of acceleration. The II aims to minimize the
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number of power (and other) computations, whereas the IE aims to make each power

computation faster. Thus, even though the results shown in Table 3.1 indicate that

the IE offers more acceleration, the II can offer more acceleration when the block size

or number of blocks increases.1 It is therefore prudent to use both approaches. Indeed,

as shown in Table 3.1, when both modifications are employed, MAD is accelerated

by nearly 11x on average (17x for System 1).

Figure 3.1 shows an updated version of Figure 2.5, indicating the distribution

of time required by each portion of MAD when using II+IE. These latter results

indicate that the bottleneck is no longer in the computation of the statistics, but is

rather in the computation of the log-Gabor decomposition. In the following section,

we describe a GPGPU-based acceleration of the log-Gabor decomposition. Several

code optimizations and results of all the techniques are also provided in Section 4.2.

1For example, when using 16×16 blocks with 14 pixels (rather than 12 pixels) of overlap between
neighboring blocks, the time required for the II approach increases by approximately 10%, while the
time required for the IE approach increases by approximately 190%.

Table 3.1: Timing results of various modifications. The first and second columns for
each system show run-time in seconds and speedup, respectively. II = Integral Image;
IE = Inline Expansion of pow.

Modification System 1 System 2 System 3 Average
None 55.8 1.0x 56.42 1.0x 62.23 1.0x 58.15 1.0x

II 6.77 8.2x 8.84 6.4x 10.98 5.7x 8.86 6.6x
IE 3.77 14.8x 7.90 7.1x 9.45 6.6x 7.04 8.3x

II + IE 3.21 17.4x 5.46 10.3x 7.38 8.4x 5.35 10.9x
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Figure 3.1: Updated version of Figure 2.5; the average total run-time per image is
3.21 secs (System 1). The log-Gabor filtering is now the bottleneck, and target for
following chapter.
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CHAPTER 4

GPGPU AND OTHER CODE OPTIMIZATIONS

4.1 GPGPU and code optimizations

MAD’s log-Gabor decomposition is performed for both the original image and the

distorted image using twenty log-Gabor filters which span five scales and four orien-

tations; the filtering results in 40 total subbands (20 subbands each for the original

and distorted image). This process is well suited to a parallel implementation because

each subband can be computed separately from all other subbands.

In MAD, the log-Gabor decomposition is implemented entirely in Matlab. To

parallelize this decomposition, we employed Matlab’s GPGPU (CUDA) facilities [57].

The GPGPU implementation requires specific hardware, which is a supported graphic

card for CUDA-enabled NVIDIA GPUs (with compute capability at least 1.3). Such

graphic card requires power supply and hardware compatibility. Therefore, only

System 1, which is a desktop was tested.

The graphic card used in the system 1 was an NVIDIA GeForce GTX 560 Ti with

1 GB of RAM with Version 8.17.12.8026 of NVIDIA’s driver. This card has compute

capability of 2.1, which is greater than the minimum requirement of 1.3. Table 4.1

provides basic information of this graphic card. More detail information can be found

in [58].

Matlab GPGPU is similar to we have already known about Matlab on CPU. We

will need to bring variables from RAM (of CPU) to GPU first, and then apply Matlab

GPU functions on GPU variables. We can bring values from GPU memory back to

CPU memory when we finish GPU calculating. The following Matlab code demon-
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Table 4.1: NVIDIA GeForce GTX 560 Ti specifications

Graphics card version GTX 560 Ti

CUDA Cores 384
Graphics Clock (MHz) 822
Processor Clock (MHz) 1645

Texture Fill Rate (billion/sec) 52.5
Memory Clock (MHz) 4008 Gbps

Standard Memory Config 1024
Memory Interface GDDR5

Memory Interface Width 256-bit
Memory Bandwidth (GB/sec) 128

Compute Capability 2.1

strates how to bring an array back and forth between CPU and GPU in Matlab:

>> CPUarr = rand(1024);

>> GPUarr = gpuArray(CPUarr)

GPUarr =

parallel.gpu.GPUArray:

---------------------

Size: [1024 1024]

ClassUnderlying: ’double’

Complexity: ’real’

CPUarr1 = gather(GPUarr); % bring back to CPU

In Matlab, if a GPU-supported function receives GPU variables (GPU arrays or

values) as the inputs, Matlab will switch to GPU function, and it will performs opera-

tion on GPU, and return values on GPU memory. For example: xx=fft(CPUarr);

will perform on CPU, and return values on RAM and yy=fft(GPUarr); will per-

form on GPU and return values on GPU memory. The list of built-in functions, which

are GPU-supported was limited at the time this study was performed. The newest

list of GPU-supported functions can be found online at [59].
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Table 4.2: Timing results of GPGPU and other code modifications (System 1 only).
CO = Code Optimization; IE-DT = Inline Expansion of pow in MAD’s detection-
based stage. When all of the acceleration techniques are employed, MAD’s run-time
is accelerated by 47x.

Modification Run-time in secs. Speedup vs. Orig. Speedup vs. II+IE
II + IE (repeated from Table 3.1) 3.21 17.4x 1.0x

II + IE + GPGPU 2.04 27.3x 1.6x
II + IE + GPGPU + CO 1.75 31.9x 1.8x

II + IE + GPGPU + CO + IE-DT 1.19 47.0x 2.7x

The log-Gabor function employed in MAD is not an GPU function. However it

includes mainly GPU-supported built-in functions, for example, sin, cos, atan2,

fft2, ifft2, fftshift, log and other mathematical operations. Therefore, we

just need to change the inputs to be GPU arrays, where needed.

Further optimization in log-Gabor function can be archived by precomputing the

filters and caching them in memory. This technique aims to reduce computational

complexity, while GPU aims to employ a faster computation unit. Therefore, we

will have an addition performance speedup to see what is the real power of GPGPU

applying on log-Gabor stage.

4.2 Results

Table 4.2 shows the results of the GPGPU implementation (second row) along with

two additional code modifications. The third row shows the results when the log-

Gabor code is further optimized by precomputing the filters and caching them in

RAM (CO = code optimization). The last row shows the results of applying inline

expansion of the pow function to all parts of MAD (including the preprocessing

and detection-based stages) (IE-DT = Inline Expansion in MAD’s detection-based

stage). When all of these acceleration techniques are employed, MAD’s run-time is

accelerated by 47x.

Showing in the first row of Table 4.2 is the result of previous chapter, using integral
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images and inline expansion techniques. This results a speedup vs. original version

of 17x faster. The algorithm at this point requires only 3.21 seconds for one image,

which is efficient enough to be applied on video (30 frames per second) in a reasonable

time.

In the second row of Table 4.2, the GPGPU implementation (applied on top of

II+IE techniques) provides a lower-than-expected result, which is 1.6x speedup over

II+IE alone. This version of MAD reaches 2.04 seconds per image. The GPGPU im-

plementation required copying the images to the GPU, and then copying the resulting

log-Gabor subbands from GPU back to the CPU for the statistical computations. We

suspect that the overhead involved with these memory transfers reduced the overall

performance gain. This finding is consistent with our previous study on CUDA [60],

which revealed that the memory bandwidth between the system and the GPU can

create a bottleneck that reduces the potential gains.

The third row of Table 4.2 provides the results of II, IE, GPGPU, and CO tech-

niques. This version consumes 1.75 seconds for each image, and it yields 31.9x times

speedup vs. original version, and 1.8x times speedup comparing to the II+IE version.

The last row of Table 4.2 shows us that when all of these acceleration techniques

are employed, MAD’s run-time is accelerated by 47x (compare to original MAD) or

2.7x (compare to II+IE version). The running time requires for one image on average

is only 1.19 seconds.

Figure 4.1 shows an updated version of Figure 3.1, indicating the new distribution

of times. Notice that the log-Gabor decomposition has been reduced from its previous

value of approximately 55% to the new value of 22%. The appearance-based and

detection-based stages of MAD now consume a more balanced share of the execution

time.
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Figure 4.1: Updated version of Figure 3.1 using all acceleration techniques; the av-
erage total execution time per image is 1.19 seconds, which is 47x times faster than
the original version. The log-Gabor decomposition has reduced to 22% of the total
time (previously 55%).
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CHAPTER 5

Conclusion

This work presented techniques for accelerating the two most computationally expen-

sive stages employed in many QA algorithms: local frequency-based decomposition

and local statistical comparisons between the frequency coefficients of the reference

and distorted images. We specifically analyzed and accelerated one representative

QA algorithm, MAD [29]. The results of our performance analysis showed that the

bottlenecks stem from these two stages and we presented four methods of accelera-

tion, generalized integral images, inline expansion, GPGPU and code optimizations.

Specifically, our new integral image technique can be efficiently applied back to com-

puter graphics, where the original integral image had been employed. Although this

study focused on one specific algorithm, our methodology and acceleration techniques

are applicable to a variety of QA algorithms.

Several papers of other researchers have benefited from the speed-up MAD version

from this work. With a 47x times faster runtime, the new MAD version could be

applied and studied on a larger image database or on videos with a reasonable running

time. For example, Singh et. al. [61] presented F-MAD, a feature-based extension

of the MAD algorithm for still images, or Vu et. al. [62, 63] developed new video

quality assessment algorithm based on MAD.

This work can be extended several ways by using performance counters and other

profiling techniques. Such an analysis will yield further insights into the hardware

resource usage of the different stages. Another avenue for acceleration that we are

currently investigating is to change the algorithm in an effort to reduce its computa-
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tional complexity (e.g., reducing the number of the filters used in the decomposition,

or simplifying the statistical computations used to compare the coefficients). The

latter approaches are likely to change the output of the algorithm; however, it is still

possible to achieve a reasonable tradeoff between predictive performance and overall

run-time.
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