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Preface 

The main goal of this research was to investigate the mechanisms of reverse 

electron transfer in two organisms capable of syntrophy, S. wolfei and S. aciditrophicus.  

In 2007, the process of reverse electron transfer was poorly understood.  In this work, I 

help expand our understanding of possible mechanisms of reverse electron transfer in 

organisms capable of syntrophy.  Here, I use proteomic and enzymological approaches 

and couple these with mRNA expression analyses done in collaboration with 

investigators here, at the University of Oklahoma, and elsewhere; the University of 

California – Berkley and the University of California – Los Angeles. 

Chapter 2 is an investigation into the membrane complexes formed by S. wolfei 

during growth on butyrate.  Here, I used blue-native polyacrylamide gel electrophoresis 

(BN-PAGE) to separate membrane protein complexes.  I prepared tryptic digests and 

peptide identification was carried out by our collaborators at the University of 

California – Los Angeles, Dr. Robert Gunsalus, Dr. Rachel Loo and Dr. Loo’s doctoral 

student, Hong Nguyen.  Additionally, I tested for hydrogen dependent reduction of 

tetrazolium red in membrane fractions separated by blue-native PAGE.  Tryptic 

digestion and peptide mass fingerprint analysis for this complex was performed by the 

University of Oklahoma Health Sciences Center Proteomics Core Facility. 

Expression analysis conducted with S. wolfei grown in pure culture or in 

methanogenic coculture with Methanospirillum hungatei were done in collaboration 

with Dr. Jessica Sieber and expression analysis conducted on S. wolfei cells grown with 

Dehalococcoides were done in collaboration with Xinwei Mao, a doctoral student at the 

University of California – Berkley under the direction of Dr. Lisa Alvarez-Cohen.  The 
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importance of this contribution should not be understated since, in our methanogenic 

cocultures, hydrogen or formate can be used as the interspecies electron carrier while 

Dehalococcoides is not known to use formate as an electron source  

Also in Chapter 2 are some of my contributions to the S. wolfei whole cell 

proteome.  Whole cell proteomics analysis was performed by our collaborator at Oak 

Ridge National Laboratory, Dr. Gregory Hurst.  This project was done in collaboration 

with Dr. Sieber.  As part of the collaboration, much of this work has been detailed 

elsewhere (Sieber 2011).  My primary contribution to this project was downstream data 

analysis.  Between 2010 and present, I normalized, analyzed and manually curated a 

database of over 17,000 data points and identified the presence/absence of several key 

enzymes including membrane bound hydrogenases, formate dehydrogenases, butyryl-

CoA dehydrogenases, heterodisulfide reductases and several enzymes associated with 

beta-oxidation.  The findings presented here represent a portion of my contributions, but 

are those which are of direct importance to my findings regarding membrane complexes 

in S. wolfei. 

Chapter 3 is a study into the membrane complexes formed by S. aciditrophicus 

during syntrophic growth.  S. aciditrophicus is able to utilize benzoate or cyclohexane 

carboxylate when grown in coculture with the hydrogen/formate scavenging 

methanogen, M. hungatei.  I performed blue-native PAGE and prepared tryptic digests 

of identified membrane complexes.  My colleagues at the University of California – Los 

Angeles, Dr. Loo and Hong Nguyen, analyzed the proteins present in these complexes 

using peptide mass fingerprint analysis.  Further, I tested intact membrane suspensions 

for the ability to catalyze an Rnf-like activity as well as hydrogenase, formate 



xiv 

dehydrogenase and NADH:quinone oxidoreductase activity.  I partially purified 

fractions testing positive for Rnf-like activity and performed blue-native PAGE and 

SDS-PAGE analysis.  Tryptic digestion and peptide identification for these experiments 

was performed by the University of Oklahoma Health Sciences Center Proteomics Core 

Facility. 

Chapter 4 is an analysis of the genome sequence of Methanospirillum hungatei 

strain JF1.  M. hungatei is a hydrogenotrophic methanogen which is capable of 

methanogenesis with electrons derived from hydrogen or formate.  Genome sequencing 

was conducted by the Joint Genome Institute at Pacific Northwest National laboratory 

and whole-cell proteomic analysis was conducted by Dr. Gregory Hurst at Oak Ridge 

National Laboratory.  Pure cultures for whole-cell proteomic analysis were grown by 

the group of Dr. Robert Gunsalus at the University of California – Los Angeles and 

cocultures for whole-cell proteomic analysis were grown by my University of 

Oklahoma Colleagues, Dr. Jessica Sieber and Huynh Le.  My contributions included 

genome annotation, downstream data analysis and metabolic reconstruction.  This 

includes normalizing, analyzing and manually curating a database of over 12,000 data 

points for proteomics analysis. 
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Abstract 

 The oxidation of either the fatty acid butyrate or the aromatic acid benzoate is 

essential for the efficient degradation of complex organic material to methane because 

they are central intermediates.  The oxidation of butyrate to acetate and hydrogen is 

energy requiring under physiological conditions.  Likewise, the oxidation of benzoate to 

acetate, carbon dioxide and hydrogen is energy requiring under physiological 

conditions.  However, when hydrogen or formate are maintained at very low levels by a 

partner organism, through metabolic cooperation known as syntrophy, the oxidation of 

both butyrate and benzoate becomes energetically favorable.  An essential feature of 

both the syntrophic oxidation of butyrate and benzoate is the need to produce hydrogen 

(E’ = -260 mV at 1 Pa hydrogen) or formate (E’ = -290 mV at 1 µM formate) from 

butyryl-CoA (butyrate oxidation by S. wolfei) or from glutaryl-CoA (benzoate oxidation 

by S. aciditrophicus).  Ion gradients, and consequently membrane bound protein 

complexes, are known to be important for butyrate oxidation by S. wolfei and benzoate 

oxidation by bacteria related to S. aciditrophicus – Syntrophus gentianae and 

Syntrophus buswellii.  The main goal of this research was to investigate the mechanisms 

of reverse electron transfer in S. wolfei and S. aciditrophicus.  I used proteomic and 

enzymological approaches and coupled these approaches with mRNA expression 

analyses.   

Here, I showed that an FeS oxidoreductase, the gene of which is linked on the 

chromosome to genes coding for electron transferring flavoprotein subunits, and 

components of a cytochrome b –linked hydrogenase (hydIIABC gene product) are 

codetected in a complex unique to syntrophic growth on butyrate.  Expression analyses 
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of the genes coding for the electron transferring flavoprotein subunits, FeS 

oxidoreductase and hydIIABC gene product argue for the importance of these systems 

for syntrophic growth on butyrate.   

In S. aciditrophicus, I showed that peptides derived from an Rnf-like complex 

were detected in membrane complexes from S. aciditrophicus cells.  I used the low 

potential acceptors, benzyl viologen (E0’ = -360 mV) and methyl viologen (E0’ = -460 

mV) to test for the ability of S. aciditrophicus cells to catalyze an Rnf-like activity - 

reduction of the viologen dyes with NADH (E0’ = -320 mV).  I showed that membrane 

fractions of S. wolfei catalyze the reduction of both benzyl and methyl viologen with 

electrons derived from NADH and that specific activity for this direction is higher than 

for the more thermodynamically favorable oxidation of benzyl or methyl viologen with 

concomitant reduction of NAD+.  Moreover, I showed that the Rnf-like activity is 

highest in cells grown syntrophically.  I used size exclusion chromatography to partially 

purify the Rnf-like activity and I showed that peptides derived from an Rnf-like 

complex are present in these fractions. 

Finally, I investigated the genome of Methanospirillum hungatei strain JF1 and 

used whole cell shotgun proteomics to interrogate the response of M. hungatei to 

growth in syntrophic partnership with S. wolfei.  M. hungatei is a hydrogenotrophic 

methanogen which is capable of utilizing formate or hydrogen for methane production.  

M. hungatei is a partner organism for several syntrophic systems and members of the 

genus Methanospirillum have been found in many environments where syntrophy is 

important.  Proteomic analysis showed that M. hungatei uses both hydrogenases and 

formate dehydrogenases and increases the relative abundance of the core methanogenic 
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machinery during syntrophic growth relative to pure culture growth on hydrogen and 

formate.  The relative abundance of peptides associated with energy production and 

cofactor synthesis increased while those involved in translation decreased in 

syntrophically grown cells compared to axenically-grown cells. The above data are 

consistent with a strategy to maximize energy production efficiency and curtail 

biosynthesis during syntrophic growth. 
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Methane has been recognized as an important fuel source for over 200 years.  

Current research and development support from countries including Japan, the United 

States, Sweden and Germany to develop the next generation of vehicles and power 

plants fueled by biologically produced methane serves to underscore the important role 

of biological methane production (Ahman 2010; Deublein and Steinhauser 2008).  

Biologically, methane production is a complex process that requires cooperation 

between at least three trophic guilds.  In short, complex organic molecules are 

fermented to acetate, hydrogen, formate and a variety of organic acids (lactate, 

propionate, and butyrate) and ethanol.  Acetogenic bacteria convert these compounds to 

the methanogenic substrates hydrogen, formate and acetate.   

Efficient degradation of fatty acid, aromatic acid and alcohol intermediates 

requires removal of hydrogen and formate by methanogens in a process known as 

interspecies electron transfer (Sieber et al. 2013).  The relationship between the 

secondary fermenters and the methanogens is known as syntrophy and is characterized 

by the ability of the consortium to degrade a substrate that neither organism alone can 

degrade.  An essential feature of this system is that oxidation of the principle substrate 

(e.g. butyrate or benzoate) by the fermenting syntrophic bacterium is not 

thermodynamically favorable (Table 1), but only becomes energetically favorable when 

hydrogen- and/or formate-using methanogens or sulfate-reducers are present to keep 

concentrations of hydrogen and formate very low (Table 1). 
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Table 1:  Thermodynamics of butyrate, benzoate and propionate oxidation.  ∆G0’ = 
Gibb’s free energy change at one atmosphere with one molar concentration of products 
and reactants at pH 7.  The change in free energy of butyrate, benzoate or propionate 
presents a thermodynamic barrier under physiological conditions.  With the introduction 
of an electron scavenging organism, in this example a hydrogenotrophic methanogen, 
degradation becomes results in a release of free energy.  References:  1 (Jackson and 
McInerney 2002), 2 (Scholten and Conrad 2000) and 3 (de Bok et al. 2004). 
 

Syntrophic degradation without electron transfer ΔGo’ (kJ/reaction) 

butyrate + 2 H
2
O → 2 acetate + H

+
 + 2 H

2
 +48.3

1
 

benzoate + 7 H
2
O → 3 acetate + HCO

3

-
 + 3 H

+
 + 3 H

2
 +70.6

1
 

propionate + 2 H
2
O → acetate + CO

2
 + 3 H

2 

 

+68.4
2
 

Syntrophic degradation with electron transfer  

2 butyrate
-
 + HCO

3

-
 + H

2
O → 4 acetate

-
 + H

+
 + CH

4
 -39.4

1
 

4 benzoate
-
 + 19 H

2
O → 12 acetate

-
 + HCO

3

-
 + 9 H

+
 + 3 CH

4
 -124.4

1
 

propionate + H
2
O → 1.75 CH

4
 + 1.25 HCO

3

-
 + H

+
 -56.4

3
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Syntrophic butyrate oxidation by Syntrophomonas wolfei is a well-known 

example (McInerney et al. 1979; Muller et al. 2009; Schmidt et al. 2013; Sieber et al. 

2010; Wallrabenstein and Schink 1994; Wofford et al. 1986) as it was the first stable 

fatty acid oxidizing co-culture isolated.  In methanogenic cultures containing S. wolfei, 

two moles of butyrate are oxidized to four mols of acetate and one mole of methane.  

This reaction has a free energy release of 39.4 kJ (∆G0’ = -39.4 kJ/mol) per reaction at 

physiological conditions (1 atm with 1 M concentration of products and reactants at pH 

7).  In the absence of interspecies electron transfer, the oxidation of 1 mol butyrate to 2 

mols acetate and hydrogen requires an input of 48.3 kJ per (∆G0’ = + 48 kJ per reaction) 

(Table 1).  A central challenge for S. wolfei during butyrate oxidation is the production 

of hydrogen with electrons derived from butyryl-CoA (McInerney et al. 2008).  

Butyryl-CoA has a midpoint redox potential under physiological conditions of about -

10 mV (Sato et al. 1999) and the midpoint potential of electrons needs to be shifted to a 

midpoint potential of about -260 mV for production of hydrogen (at 1 Pa hydrogen) or -

290 mV for the reduction of carbon dioxide to formate (at 1 µM formate). 

Benzoate oxidation by Syntrophus aciditrophicus occurs under similar 

thermodynamic constraints.  The oxidation of benzoate by S. aciditrophicus in 

partnership with a methanogen results in the production of twelve moles acetate and 

three moles of methane.  This reaction releases 124.4 kJ per reaction.  Without a 

methanogenic partner, the oxidation of one mole benzoate to three moles acetate and 

hydrogen would require the input of 70.6 kJ per reaction (Table 1) (Jackson and 

McInerney 2002).  S. aciditrophicus faces a challenge similar to that of S. wolfei – 
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notably electrons derived from glutaryl-CoA (E0’= -10 mV) (Sato et al. 1999) must be 

used for the production of hydrogen or formate (Sieber et al. 2013). 

The production of hydrogen or formate with electrons derived from acyl-CoA 

intermediates is a central question for our understanding of syntrophic metabolism. In 

both butyrate oxidation (Schink 1997; Wallrabenstein and Schink 1994) and benzoate 

oxidation (Schink 1997; Schöcke and Schink 1997), reverse electron transfer is needed 

to overcome a change in midpoint redox potential of approximately 250 mV (for 

hydrogen production) or 280 mV (for formate production).  The importance of 

chemiosmotic energy has been demonstrated for butyrate oxidation in S. wolfei  

(Wallrabenstein and Schink 1994) and benzoate oxidation by members of the genus 

Syntrophus (Schöcke and Schink 1997; Wallrabenstein and Schink 1994).  Additionally, 

electron confurcation, a process where the energy yielding oxidation of a low potential 

donor provides energy for the oxidation of a high potential donor, is thought to play a 

role (McInerney et al. 2008).  A central issue, however, with an electron confurcating 

strategy is that these strategies require reduced ferredoxin as a low potential donor and 

it is not clear from where this would be derived (Buckel and Thauer 2013). 

The release of the genomes of S. aciditrophicus (McInerney et al. 2007) and S. 

wolfei (Sieber et al. 2010) led to candidate mechanisms for reverse electron transfer.  

Both S. aciditrophicus and S. wolfei were found to code for confurcating hydrogenases 

though, again, the physiological source of reduced ferredoxin is not yet established 

(McInerney et al. 2007; Sieber et al. 2010).  S. aciditrophicus was found to contain 

genes coding for an Rnf-like complex which couples the oxidation of ferredoxin to the 

formation of a sodium ion gradient and could, in principle, operate in reverse to supply 
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reduced ferredoxin for electron confurcation (McInerney et al. 2007).  Genes encoding 

an Rnf-like complex, however, were not detected in the genome of S. wolfei (Sieber et 

al. 2010).   

Both S. aciditrophicus and S. wolfei were found to contain a gene coding for an 

FeS oxidoreductase adjacent to genes coding for electron transferring flavoprotein 

subunits (Sieber et al. 2012).  Additionally, genes coding for a Fix complex, which 

catalyzes ferredoxin dependent reduction of menaquinone with electrons derived from 

acyl-CoA intermediates, were found on the S. wolfei chromosome (Sieber et al. 2010).  

It was proposed, then, that oxidation of acyl-CoA intermediates to enoyl-CoA products 

could be driven by a reverse quinone loop (Sieber et al. 2010). 

M. hungatei is a well-established partner organism for syntrophic associations 

and members of the genus Methanospirillum are widely found in ecosystems where 

syntrophic associations are important.  Under methanogenic conditions, 

hydrogenotrophic methanogens such as M. hungatei rely on syntrophic partners to 

produce hydrogen or formate for methanogenesis (Thauer et al. 2008).  M. hungatei 

belongs to the Methanomicrobiales order.  Members of the Methanomicrobiales order 

lack cytochromes (Thauer et al. 2008) and an ability to grow on low hydrogen partial 

pressures is well established (Walker et al. 2012).  Sixty-two genes were found to be 

unique to the Methanomicrobiales, suggesting they form a class of methanogens 

separate from the “Class I” methanogens and separate from the Class III methanogens, 

Methanosarcinales (Anderson et al. 2009). 

The main goal of this research was to investigate the mechanisms of reverse 

electron transfer in two organisms capable of syntrophy, S. wolfei and S. aciditrophicus.  
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As discussed, the importance of ion gradients has been demonstrated for both butyrate 

oxidation in S. wolfei and for benzoate oxidation in two members of the genus 

Syntrophus (Schink 1997; Schöcke and Schink 1997; Wallrabenstein and Schink 1994).  

In these studies, hydrogen production from butyryl-CoA (for S. wolfei) or benzoyl-CoA 

(Syntrophus gentianae or Syntrophus buswellii) by inverted membrane vesicles was 

inhibited by carbonylcyanide chlorophenylhydrazone, a protonophore, as well as the 

ATP synthase inhibitor dicyclohexylcarbodiimide.  Therefore, I hypothesized that 

membrane protein complexes are involved in reverse electron transfer in both S. wolfei 

and S. aciditrophicus.  More specifically, for S. aciditrophicus, I hypothesized that an 

Rnf-like complex catalyzes reverse electron transfer and is an important source of 

reduced ferredoxin which can ultimately be used for glutaryl-CoA oxidation by 

confurcating acyl-CoA dehydrogenases, or for hydrogen/formate production by a 

ferredoxin dependent hydrogenase or formate dehydrogenase. 

I identified a number of membrane complexes formed in S. wolfei during growth 

in pure culture on crotonate, in coculture with M. hungatei on crotonate and in coculture 

with M. hungatei on butyrate.  One membrane complex was unique to syntrophic 

growth on butyrate, and components of an ETF-linked FeS oxidoreductase and a 

cytochrome b linked hydrogenase (hydIIABC gene product) were detected.  I also 

observed the ability of this complex to reduce tetrazolium red, a tetrazolium salt which 

forms a red precipitate in its reduced form.  Expression analyses for the genes coding 

the ETF subunits (Swol_0696-7), the FeS oxidoreductase (Swol_0698) and the 

hydIIABC (Swol_1925-27) gene product revealed the importance of these proteins for 

syntrophic growth on butyrate with both M. hungatei and Dehalococcoides sp., an 
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organism which is not known to use formate (Maymó-Gatell et al. 1997).  Taken 

together, these data suggest that electrons derived from the oxidation of butyryl-CoA 

are delivered to the membrane bound cytochrome b -linked hydrogenase (hydIIABC 

gene product) via the FeS oxidoreductase.  I propose two possible pathways for the 

production of hydrogen with electrons derived from butyryl-CoA oxidation.  In the first, 

the FeS oxidoreductase physically associates with the hydIIABC gene product.  In the 

second proposed mechanism, electrons are delivered via the menaquinone pool, with 

the FeS oxidoreductase serving as an electron transferring flavoprotein:menaquinone 

oxidoreductase. 

The genome of S. aciditrophicus contains genes predicted to encode an Rnf-like 

complex.  This complex is thought to be essential for reverse electron transfer during 

benzoate oxidation.  A total of thirty-two membrane complexes were identified from 

membrane fractions of S. aciditrophicus and three of these were unique to cells from 

both benzoate and cyclohexane carboxylate grown cultures.  I did detect peptides 

derived from Rnf-like subunits, though these were not specific to syntrophically grown 

cells. To test for the ability of S. aciditrophicus membrane vesicles to catalyze an Rnf-

like activity, I assayed for the reduction of the low potential acceptors benzyl viologen 

(E0’ = -360 mV) or methyl viologen (E0’ = -460 mV) with electrons derived from 

NADH.  Membrane fractions were able to reduce benzyl viologen and methyl viologen 

with electrons derived from NADH.  Notably, fractions obtained from cells grown 

syntrophically had higher specific activities.  Curiously, my assays demonstrated that 

this ability was retained in the presence of the detergent, dodecyl maltoside, though 

only at about 40% of what was observed in fractions without detergent.  I partially 
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purified fractions demonstrating this Rnf-like activity using size exclusion 

chromatography and Rnf-like subunits were detected in these fractions using peptide 

mass fingerprint analysis.  Taken together, these data argue that S. aciditrophicus uses 

an Rnf-like complex to catalyze reverse electron transport and that, relative to 

syntrophic physiology, this activity is probably an important source of reduced 

ferredoxin for acyl-CoA oxidation by acyl-CoA dehydrogenase, and/or for production 

of hydrogen or formate by ferredoxin-linked hydrogenase or formate dehydrogenase. 

As expected, the full suite of enzymes necessary for hydrogenotrophic 

methanogenesis was detected in the genome of M. hungatei.  Gene clusters predicted to 

code for five different formate dehydrogenase enzymes, three membrane-bound 

hydrogenases and a soluble hydrogenase predicted to be factor 420 reducing were 

detected.  A catalytic subunit for a factor 420 non-reducing hydrogenase was not 

detected.  I did find complete biosynthetic pathways for all amino acids except 

histidine.  My analyses of data from the whole-cell proteome of M. hungatei 

demonstrated that M. hungatei expressed both hydrogenases and formate 

dehydrogenases and also showed an increase in the core methanogenic machinery 

during growth in crotonate-oxidizing and syntrophic butyrate-oxidizing cocultures.  I 

also noted that the relative abundance of energy production and cofactor synthesis 

associated peptides increased while those involved in translation decreased in cells 

grown in coculture relative to those grown axenically on hydrogen and carbon dioxide.  

Overall, these data are consistent with a strategy to maximize energy production 

efficiency and curtail biosynthesis under hydrogen limitation. 
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Chapter 2:  Membrane complexes formed by Syntrophomonas wolfei 

during axenic and syntrophic growth 
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Abstract 

Reverse electron transport is necessary for coupling the syntrophic oxidation of 

butyrate (E0’ = -10 mV ) to the production of hydrogen (E’ = -260 mV at 1 Pa H2 and 

pH 7) and/or formate (E’ = -290 mV at 1 µM formate and pH 7) during syntrophic 

metabolism of butyrate. The enzyme systems involved in this phenomenon are not 

known. Here, I investigated the composition of the membrane proteome of replicate 

Syntrophomonas wolfei cultures grown either fermentatively on crotonate or in  

syntrophic coculture on crotonate and butyrate with the methanogen, Methanospirillum 

hungatei JF1.  S. wolfei membrane complexes were electrophoretically separated using 

blue-native polyacrylamide gel electrophoresis (BN-PAGE). Observable bands were 

excised, digested with trypsin, and peptides were sequenced using liquid 

chromatography tandem mass spectrometry (LC-MS/MS).  Peptides were identified 

using the MASCOT server.  I observed a total of 12 bands, four of which were unique 

to syntrophic growth on butyrate. One band (Bt6), with an apparent molecular weight of 

~160 kDa, was found only in membranes of butyrate-grown S. wolfei cells.  Peptide 

mass fingerprint analysis revealed that this band was composed of peptides encoded by 

gene clusters annotated as an FeS oxidoreductase, electron transfer flavoprotein (etfAB), 

and a cytochrome-b linked hydrogenase (hydIIABC gene product). Separated membrane 

complexes were tested for their ability to reduce tetrazolium red with hydrogen as 

electron donor.  A complex corresponding to Bt6 tested positive for this activity, and 

peptide mass fingerprint analysis showed that peptides encoded by hydIIABC were 

present in this complex. Whole cell, shotgun proteomic analysis showed that peptides 

coded for by hydIIAB were about six-fold more abundant when S. wolfei grew in 
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coculture on butyrate or on crotonate relative to S. wolfei grown in pure culture on 

crotonate. I was unable to detect peptides derived from cytochrome b from whole cell 

shotgun proteomic analysis.  No difference was observed in the relative abundance of 

peptides derived from the Etf subunits or peptides derived from the FeS oxidoreductase 

among the three growth conditions.  Transcriptomic analyses by quantitative RT-PCR 

revealed that the expression of hydIIABC and the gene encoding the FeS oxidoreductase 

(Swol_0698) were upregulated during syntrophic growth on butyrate with M. hungatei 

or Dehalococcoides sp. The presence of a sodium dependent ATP synthase subunit in 

band Bt6 may suggest that a chemiosmotic gradient drives the production of hydrogen 

with electrons derived from butyryl-CoA.  Based on the cooccurrence of the FeS 

oxidoreductase with ETFα/β, I propose that the Swol_0698 gene product is the 

membrane input module for electrons derived from oxidation of acyl-CoA intermediates 

in S. wolfei. The upregulation of Swol_0698 and hydIIABC when S. wolfei was grown 

in coculture on butyrate argues strongly for the importance of these genes in syntrophic 

butyrate metabolism. The FeS oxidoreductase (Swol_0698 gene product), etfAB gene 

products, and hydIIABC gene products may form one membrane complex that uses 

chemiosmotic energy to shift the redox level of electrons derived from butyryl-CoA 

oxidation to the redox level of hydrogen. Alternatively, the etfAB gene products and 

FeS oxidoreductase may form one complex while hydIIABC gene products may form a 

separate complex with electron transfer between the complexes mediated by 

menaquinone. 
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Introduction 

Fatty acid oxidation by syntrophic bacteria is essential for biological methane 

production (McInerney et al. 1979; McInerney et al. 1981).  Butyrate degradation by 

Syntrophomonas wolfei, a member of the Syntrophobacterales order of the 

Deltaproteobacteria, serves as the model system for investigating and understanding this 

important topic (McInerney et al. 1981; Muller et al. 2009; Muller et al. 2010; Schmidt 

et al. 2013; Sieber et al. 2010; Wallrabenstein and Schink 1994) because it was the first 

stable fatty acid oxidizing coculture isolated.  Butyrate oxidation is endergonic under 

standard conditions according to the following equation: 

 

 (eq. 1)   butyrate    + 2 H2O  2 acetate  + H+ + 2 H2 ∆G0’ = +48.3 kJ/mol     

 

However, butyrate oxidation becomes exergonic when the fatty acid oxidizer is 

partnered with a hydrogen- and/or formate-scavenging organism such as 

Methanospirillum hungatei (McInerney et al. 2009; McInerney et al. 2008; Stams and 

Plugge 2009).  This process, known as syntrophy, is a thermodynamically based 

interaction whereby metabolic end products of fatty-acid fermentation such as 

hydrogen, formate and acetate are maintained at extremely low levels (e.g. less than 1 

Pa hydrogen at pH 7 or less than 1 µM formate at pH 7) by hydrogen/formate-

consuming organisms.  This relationship allows for the thermodynamically favorable 

oxidation of butyrate by S. wolfei (McInerney et al. 2009; McInerney et al. 2008; Stams 

and Plugge 2009). 
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 S. wolfei oxidizes butyrate to acetate, hydrogen and/or formate in syntrophic 

association with a hydrogen and/or formate using microorganism, such as M. hungatei 

(McInerney et al. 1981). Electrons derived from the activated form of butyrate, butyryl-

CoA, are at a high redox potential (Eo’ = -10 mV) (Sato et al. 1999) relative to the low 

redox potential of the electron accepting processes, proton reduction to hydrogen or 

carbon dioxide reduction to formate (McInerney et al. 2008). The latter two processes 

have redox potentials of E’ = -260 mV and E = -290 mV at pH 7, respectively, when the 

concentrations of hydrogen and formate are low, 1 Pa and 1 µM, respectively (Sieber et 

al. 2012).  The change in redox potential for hydrogen or formate production from the 

oxidation of butyryl-CoA is unfavorable (∆E of -250 or -280 mV, respectively). This 

redox reaction can only occur if energy input occurs by a process called reverse electron 

transfer (Sieber et al. 2012). The major questions concerning syntrophic fatty acid 

metabolism are what mechanisms are used for reverse electron transfer and what protein 

complexes are involved in this important reaction. 

One possible explanation is electron bifurcation (Buckel and Thauer 2013), 

where the energy released by an energetically favorable reaction is used to drive an 

unfavorable redox reaction.  One of the first examples of electron bifurcation in 

anaerobic metabolism was the butyryl-CoA dehydrogenase complex found in 

Clostridium kluyveri (Li et al. 2008). C. kluyveri ferments ethanol and acetate to 

butyrate and small amounts of hydrogen. A soluble enzyme complex in C. kluyveri 

couples the energetically favorable reduction of crotonyl-CoA to butyryl-CoA by 

NADH with the unfavorable reduction of ferredoxin (Fd) by NADH according to the 

following equation:  
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 (eq. 2)    Crotonyl-CoA + Fdox + 2 NADH  Butyryl-CoA + Fdred + 2NAD+   

 

Purification of the enzyme complex showed that it was FAD-dependent (Li et 

al. 2008). All three subunits of the complex contain FAD binding sites (Li et al. 2008). 

Once FADH2 is formed, electron flow is split with one electron used for the exergonic 

reduction of crotonyl-CoA (E0’= - 10 mV), which drives the endergonic reduction of 

ferredoxin (E0’ = - 410 mV) by the other electron. The reversal of this reaction could 

accomplish reverse electron transport during syntrophic butyrate metabolism. Here, the 

electron flow from two different donors, butyryl-CoA and reduced ferredoxin, would 

combine, or confurcate, to reduce one electron acceptor, NAD+. S. wolfei has a gene 

cluster containing electron transfer flavoprotein genes, etfAB, and a gene for an acyl-

CoA dehydrogenase (bcd) (Swol_0266-268) (Sieber et al. 2010). It is possible that the 

three gene products form a soluble reverse electron transport complex analogous to that 

in Clostridium kluyveri (Herrmann et al. 2008; Li et al. 2008). Electron bifurcation has 

also been shown to drive hydrogen production from NADH by coupling this endergonic 

reaction with the exergonic reaction of hydrogen production from reduced ferredoxin 

(Schut and Adams 2009). The fully sequenced and annotated genome of S. wolfei 

contains genes predicted to code for confurcating hydrogenases and formate 

dehydrogenases (Sieber et al. 2010), which may play a role in the energetically 

unfavorable reaction of making hydrogen or formate from NADH.  

 Another possibility is to use a chemiosmotic gradient to drive reverse electron 

transfer. Inverted membrane vesicles of S. wolfei were shown to produce small amounts 
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of hydrogen in vitro in the presence of butyrate (Wallrabenstein and Schink 1994) and 

hydrogen production was shown to be inhibited with the addition of the protonophore 

carbonylcyanide m-chlorophenyl-hydrazone (Wallrabenstein and Schink 1994).  The 

addition of the ATPase inhibitor N,N’ dicyclohexylcarbodiimide resulted in near 

complete inhibition of hydrogen production with electrons derived from butyrate by 

inverted S. wolfei vesicles (Wallrabenstein and Schink 1994). This led the authors to 

conclude that a chemiosmotic gradient is maintained through ATP hydrolysis and that 

chemiosmotic energy allows for butyryl-CoA oxidation coupled to hydrogen production 

(Wallrabenstein and Schink 1994).  Chemiosmotic energy has also been implicated in 

the syntrophic oxidation of benzoate by Syntrophus gentianae (Schöcke and Schink 

1997) and Syntrophus buswellii (Wallrabenstein and Schink 1994) and during 

syntrophic glycolate oxidation (Friedrich and Schink 1993).  

 I, therefore, hypothesized that S. wolfei contains a membrane complex that uses 

chemiosmotic energy to couple the production of hydrogen with electrons derived from 

butyryl-CoA.  To test this hypothesis, I used native gel electrophoresis to separate 

proteins from the membrane fractions of S. wolfei cells grown axenically on crotonate, 

in methanogenic coculture on crotonate and in syntrophic butyrate-oxidizing coculture 

on butyrate.  I identified a membrane-bound complex of approximately 162 kDa (Bt 6) 

which appeared unique to the syntrophic growth condition (butyrate).  Peptide mass 

fingerprint analysis revealed the presence of an FeS oxidoreductase (Swol_0698 gene 

product), electron transferring flavoprotein subunits (Swol_0696-7 or etfAB gene 

products) and subunits from a cytochrome b –linked hydrogenase (Swol_1925-7 or 

hydIIABC gene products).  I tested native complexes for the ability to reduce 
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tetrazolium red with hydrogen as an electron donor and a complex analogous to Bt6 

tested positive for this activity.  Peptide mass fingerprint analysis revealed the presence 

of peptides derived from all three of the hydIIABC gene products.  Proteomic and 

transcriptomic analyses in butyrate-oxidizing cocultures of S. wolfei and either 

Methanospirillum hungatei or Dehalococcoides sp. confirmed the importance of these 

proteins during hydrogen-transfer-dependent butyrate oxidation by S. wolfei. 

 

Materials and Methods 

 

Cell culture, growth and harvesting 

Syntrophomonas wolfei subsp. wolfei strain Göttingen (ATCC# BAA-1933) in 

pure-culture and in coculture with Methanospirillum hungatei strain JF1 (ATCC# 

27890) were obtained from our culture collection.  For whole-cell proteomic analyses, 

S. wolfei was grown in pure culture in defined basal medium with an 80% N2:20% CO2 

gas phase as described previously (Beaty et al. 1987) with 20 mM crotonate as 

substrate.  S. wolfei and M. hungatei cocultures were grown in the above defined basal 

medium with either crotonate (20 mM) or butyrate (20 mM) as carbon sources. 

Cocultures were grown in 2-L sealed glass bottles with one liter of medium (Beaty et al. 

1987).  For all other experiments described herein, the organisms were grown in a basal 

medium described elsewhere (Tanner 2002) amended with 20 mM crotonate or 10 mM 

butyrate as carbon source. The basal medium (Tanner 2002) was composed of the 

following salts in final concentration: sodium chloride (0.8 mg/L), ammonium chloride 

(1 mg/L), potassium chloride (1 mg/L), potassium phosphate (0.1 mg/L) magnesium 
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sulfate heptahydrate (0.2 mg/L), calcium chloride dihydrate (0.04 mg/L).  The basal 

medium was composed of the following vitamins in final concentration:  pyridoxine 

hydrochloride (0.1 mg/L), thiamine hydrochloride (0.05 mg/L), riboflavin (0.05 mg/L), 

calcium pantothenate (0.05 mg/L), thioctic acid (0.05 mg/L), para-aminobenzoic acid 

(0.05 mg/L), nicotinic acid (0.05 mg/L), vitamin B12 (0.05 mg/L), 

mercaptoethanesulfonic acid (0.05 mg/L), biotin (0.02 mg/L), and folic acid (0.02 

mg/L).  The basal medium was composed of the following metals in final concentration:  

nitrilotriacetic acid (0.01 mg/L), manganese (II) sulfate monohydrate (0.005 mg/L), 

ammonium iron (II) sulfate hexahydrate (0.004 mg/L), cobalt (II) chloride hexahydrate 

(0.001 mg/L), zinc sulfate heptahydrate (0.001 mg/L), copper (II) chloride dihydrate 

(1•10-5 mg/L), nickel (II) chloride (1•10-5 mg/L ), sodium molybdate dihydrate (1•10-5 

mg/L ), sodium selenite (1•10-5 mg/L ) and sodium tungstate (1•10-5 mg/L ).  

One liter of sterile medium in a 2-L Schott bottle was inoculated with 200 ml of 

S. wolfei pure culture or coculture grown in the same medium. All cultures were 

transferred a minimum of three times as one-liter cultures prior to harvesting the cells 

for proteomic analysis.  All cultures were incubated at 37oC and growth was monitored 

via measuring the OD600 with time.  Substrate utilization was monitored via high-

pressure liquid chromatography (Sieber et al. 2010).  The cultures were harvested when 

50 to 70% of the substrate was used.  Cells were harvested anaerobically in 1-L 

centrifuge vessels via centrifugation at 7,000 • g for 20 min at 4oC. The cells were 

washed twice by centrifugation and resuspension of the pellet with anoxic 50 mM 

potassium phosphate buffer (pH of 7.2) as described above.  Cell pellets were stored 

frozen in liquid nitrogen. 
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In all cases except that of whole cell proteomics, cells of S. wolfei grown in 

coculture were separated from M. hungatei by Percoll gradient centrifugation.  Frozen 

cell pellets were thawed and suspended in a 5:4 ratio of standard isotonic Percoll to 50 

mM potassium phosphate buffer (pH of 7.2), which was anaerobically prepared.  Cell 

suspensions were transferred into sealed anaerobic disposable centrifuge tubes and 

centrifuged at 20,000 • g, for 40 min at 40C (Beaty et al. 1987; Sieber et al. 2013).  

Contamination of S. wolfei cells with M. hungatei cells was determined microscopically 

and fractions containing less than one M. hungatei cell per 100 S. wolfei cells were 

pooled.  Pooled fractions were diluted 500-fold in 50 mM potassium phosphate buffer 

(pH 7.2) and centrifuged at 7,000 • g for 20 minutes to dilute out remaining Percoll.  

After separation, cells were used immediately. 

 

Sample preparation for whole-cell proteomic analysis 

 Two cell pellets were obtained from replicate cultures of S. wolfei grown with 

20 mM crotonate grown as described (see cell culture, growth and harvesting).  Two 

cell pellets were obtained from replicate cocultures of S. wolfei plus M. hungatei strain 

JF1 grown with 20 mM crotonate as described (see cell culture, growth and harvesting).  

Finally, two cell pellets were obtained from replicate cocultures of S. wolfei plus M. 

hungatei strain JF1 grown with 20 mM crotonate as described (see cell culture, growth 

and harvesting).  Cell pellets were not enriched by Percoll density gradient 

centrifugation.  Cell pellets were shipped frozen on dry ice. 

Each cell pellet was prepared separately for shotgun proteomics analysis by 

following a protocol optimized for the measurement of small bacterial samples 
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(Thompson et al. 2008).  Cell pellets were lysed and proteins denatured by incubating 

each cell pellet overnight at 37oC in 250 to 400 ml of 6 M guanidine and 10 mM 

dithiothreitol (the larger volumes used for larger cell pellets).  The lysates were cooled 

to ambient temperature, and diluted with 50 mM tris(hydroxymethyl)aminomethane 

(Tris) buffer with 10mM calcium chloride to decrease the guanidine concentration to ~ 

1 M.  Ten milligrams of trypsin (sequencing grade, Promega, Madison WI) were added 

to each lysate, followed by incubation at 37oC for five hours.  An additional 10 mg 

trypsin was added, followed by a further overnight incubation at 37oC.  Any remaining 

disulfide bonds were reduced by adding additional dithiothreitol to a final concentration 

of 10 mM and incubating for one hour at 37oC.  Desalting was performed using reverse-

phase solid-phase extraction cartridges (Sep-Pak Lite C18, Waters, Milford MA), with 

final elution using 0.1% formic acid in acetonitrile.  Solvent transfer to aqueous 0.1% 

formic acid was performed by vacuum centrifugation, with final volume adjusted to 150 

ml.  Particulates and remaining cellular debris were removed by centrifugation through 

0.45mm pore filters (Ultrafree-MC, Millipore, Billerica MA).  The samples were then 

frozen at -80oC until used. 

 

Whole cell proteomic analysis 

Tryptic peptide mixtures were analyzed by two-dimensional liquid 

chromatography/tandem mass spectrometry (2D LC-MS-MS), using the MudPIT 

approach (Washburn et al. 2001; Wolters et al. 2001) implemented as previously 

described by our colleagues at Oak Ridge National Laboratory.  Two LC-MS/MS 

analyses were performed on the tryptic digest from each cell pellet, which would result 
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in two technical replicates for each of two biological replicates per growth condition.  

Aliquots (50 ml) were loaded via a pressure cell (New Objective, Woburn MA) onto a 

“back” column fabricated from 150 mm internal diameter fused silica tubing 

(Polymicro Technologies, Phoenix AZ) packed with a ~4 cm-long bed of reverse-phase 

chromatographic phase (Jupiter C18, 3 mm particle size, Phenomenex, Torrance CA) 

upstream of a ~4 cm bed of strong cation exchange material (5 mm particle size SCX, 

Phenomenex).   

After sample loading, the back column was attached via a filter union (Upchurch 

Scientific, Oak Harbor WA) to a “front” analytical column fabricated from a 100 mm 

internal diameter PicoTip Emitter (New Objective), packed with a ~14 cm bed of 

reverse-phase material (Jupiter C18, 3 mm particle size, Phenomenex).  Two-

dimensional liquid chromatography was performed via twelve step-gradients of 

increasing salt (ammonium acetate) concentration, with the eluted peptides from each 

strong cation exchange step subsequently resolved via a separate reverse-phase gradient 

(Ultimate HPLC, LCPackings/Dionex, Sunnyvale, CA).  The liquid chromatography 

eluent was interfaced via a nanospray source (Proxeon, Odense, Denmark) with a 

linear-geometry quadrupole ion trap mass spectrometer (LTQ, ThermoFinnigan, San 

Jose, CA).  Data acquisition was performed in data-dependent mode under the control 

of XCalibur software.  Up to 5 tandem mass spectra were acquired from the most 

abundant parent ions in full-scan mass spectra; dynamic exclusion was enabled with a 

repeat count of one and duration of 60 seconds. 

 

Whole cell proteomics data analysis 
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Whole-cell proteomics data analysis was performed by our colleagues at Oak 

Ridge National Laboratory.  Peptide identifications were obtained from tandem mass 

spectra using Sequest software (version 27) (Eng et al. 1994), and protein 

identifications were compiled from peptide identifications using DTASelect (version 

1.9) (Tabb et al. 2002).  A multiple-species protein FASTA file was constructed from 

individual FASTA files for S. wolfei subsp. wolfei Göttingen, M. hungatei JF1, and 

Syntrophus aciditrophicus SB, all downloaded from the Department of Energy Joint 

Genome Institute website.  The sequence-reversed analog of each protein sequence was 

appended to the FASTA file to allow estimation of the false discovery rate of peptide 

identification (Elias et al. 2007; Moore et al. 2002).  Sequences of 36 common 

contaminant proteins were also appended to the FASTA file.  Peptide identifications 

were retained for XCorr ≥1.8 (z=1), ≥2.5 (z=2), or ≥3.5 (z=3), with DeltaCN ≥0.08.  

Protein identifications required identification of two peptides.  The false discovery rate 

for peptides was generally ≤1%.  Estimates of protein abundance were calculated using 

normalized spectral abundance factors (Zybailov et al. 2006).   

 

Blue-native polyacrylamide gel electrophoresis  

 Blue-native polyacrylamide gel electrophoresis was usually conducted 

aerobically.  Gels destined for testing in-gel activity staining were run anaerobically 

(see below).  Percoll enriched S. wolfei pellets (see cell culture, growth and harvesting) 

were obtained from pure cultures or separated from M. hungatei cells by Percoll 

separation and were resuspended in 4 ml of lysis buffer described elsewhere (Swamy et 

al. 2006), which contained 20 mM 2,2-Bis(hydroxymethyl)-2,2',2"-nitrilotriethanol 
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(Bis-tris), ε-aminocaproic acid (500 mM), NaCl (20 mM), ethylenediaminetetraacetic 

acid (EDTA)(10 mM) and glycerol (10% v/v). The pH of the lysis buffer was adjusted 

to within 0.2 pH units of pH 7.2 with one normal hydrochloric acid and then adjusted to 

pH 7.2 with 0.1 N hydrochloric acid.  The cells were lysed by passage through a French 

pressure cell at an internal pressure of 138,000 kPA.  After one pass, unbroken cells and 

cell debris were removed by centrifugation at 8,000 • g for two min at ambient 

temperature in sealed cryovial tubes.  The resulting supernatant was decanted into 

disposable polyallomer centrifuge tubes and the soluble and insoluble fractions were 

separated by ultracentrifugation at 132,000 • g, 60 min, 40C.  The supernatant was 

decanted and the insoluble pellet was washed by resuspending in 50 mM potassium 

phosphate (pH 7.2) and ultracentrifuged as above.  The supernatant was decanted and 

the remaining pellet was resuspended in approximately 250 µl of anaerobically prepared 

lysis buffer containing 0.5% n-dodecyl-β-maltoside (DDM) to obtain the solubilized 

membrane fraction.  Protein quantification was done using the Pierce BCA assay.  

Except for membrane fractions destined for activity staining (see below), small (25 µl) 

aliquots of the solubilized membrane fraction were stored frozen at -20oC in sealed 

microcentrifuge tubes after protein quantification. 

BN-PAGE analysis was conducted using the methods of Schägger and von 

Jagow (1991) and Swamy et al. (2006) with the following modifications.  Gel mixtures 

contained 50 mM Bis-tris, 67 mM ε-aminocaproic acid (pH 7.2) and a final 

concentration of 4% or 16% acrylamide (37.5:1 acrylamide:bis-acrylamide).  The 

sixteen percent acrylamide gel solution additionally contained 20% glycerol (v/v).  Each 

gel solution was polymerized with the addition of 10% ammonium persulfate (APS) and 
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tetramethylethylenediamine (TEMED) in a 10:1 ratio (e.g. 54 µl APS to 5.4 µl 

TEMED) as described previously (Swamy et al. 2006).  Immediately after the addition 

of APS and TEMED, a gradient gel was prepared using a mechanical gradient mixer 

(BioRad) and the gel was allowed to completely polymerize after pouring (~2 hours).  

Occasionally, unused gels were stored overnight at 4oC wrapped in wet paper towels. 

 The cathode buffer (Swamy et al. 2006) was prepared as a 10X stock solution 

containing 15 mM Bis-tris, 50 mM tricine, and 0.02% Coomassie blue G250 (w/v).  The 

anode buffer (Swamy et al. 2006) was prepared as a 10X stock solution containing 50 

mM Bis-tris.  Both buffers were adjusted to within 0.2 pH units of pH 7.0 with one 

normal hydrochloric acid and then adjusted to pH 7.0 with 0.1 N hydrochloric acid.  

Prepared buffers were stored at 4oC.  Buffers were diluted 1:10 with deionized nanopure 

water prior to use. The solubilized membrane fraction (ranging from 2 to 35 µg protein) 

was thawed and mixed with equal parts (v:v) of BN-PAGE sample buffer.  BN-PAGE 

sample buffer was prepared by diluting 1 ml of cathode buffer, described above, with 7 

ml of deionized nanopure water and 2 ml of electrophoresis grade glycerol (≥ 99%).  

Gels were run at a constant 130 V for several hours until the dye front migrated to 

within a few millimeters of the gel bottom.  Gels were fixed and destained in a solution 

containing 50% methanol (v/v) and 7% acetic acid (v/v), washed twice in nanopure 

water and then stained with either Imperial stain (ThermoFisher), SilverStain (Pierce) or 

SyproRuby (Thermofisher) according to manufacturer’s instructions.  

 

Tryptic digest of BN-PAGE membrane complexes 



25 

Predominant protein bands and protein bands that were unique to a given growth 

condition were selected for proteomic analysis. Protein bands of interest were first 

manually excised, washed and digested with trypsin. Gel slices were washed first in a 

solution of 50 mM sodium bicarbonate and 50% acetonitrile and then in 100% 

acetonitrile.  This step was performed three times.  Disulfide bonds were reduced by 

incubation of the gel slice in 10 mM dithiothreitol at 60°C for 1 hr. Free sulfhydryl 

bonds were blocked by incubating the gel slice in 50 mM iodoacetamide at 45°C for 45 

min in the dark, followed by washing three times in alternating solutions of 100 mM 

sodium bicarbonate and 100% acetonitrile. The slices were dried and then individually 

incubated in a 20 ng/μl solution of porcine trypsin (Promega, Madison, WI, USA) for 

45 min at 4°C, followed by incubation at 37°C for 4 to 6 hr in the same solution. 

Afterwards, the solution with the digested protein was transferred into a fresh collection 

tube. The gel slice was then incubated for 10 min in a solution of 50% acetonitrile:1% 

trifluoroacetic acid. The solution was removed and combined with the previously 

collected digested protein solutions from that gel. Gel pieces were washed three times 

with 50% acetonitrile:1% trifluoroacetic acid. The solution containing the digested gel 

peptides was then spun to dryness using a rotary evaporator at 300C. 

  Peptide sequencing was accomplished by colleagues at University of California, 

Los Angeles, with a nano-liquid chromatography tandem mass spectrometer (nano LC-

MS/MS) (QSTAR Pulsar XL, Applied Biosystems, Foster City, CA, USA) equipped 

with nanoelectrospray interface (Protana, Odense, Denmark) and LC Packings 

(Sunnyvale, CA, USA) nano-LC system. The nano-LC was equipped with a homemade 

precolumn (150 × 5 mm) and analytical column (75 × 150 mm) packed with Jupiter 
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Proteo C12 resin (particle size 4 mm, Phenomenex, Torrance, CA, USA). The dried 

digested peptides were resuspended in 1% formic acid solution. Six microliters of the 

sample solution was loaded to the precolumn for each LC-MS/MS run. The precolumn 

was washed with the loading solvent (0.1% formic acid) for 4 min before the sample 

was injected onto the LC column. The eluents used for the LC were 0.1% formic acid 

(solvent A) and 95% acetonitrile containing 0.1% formic acid. The flow rate was 200 

nl/min, and the following gradient was used: 3% B to 35% B in 72 min, 35% B to 80% 

B in 18 min, followed by 80% B for 9 min. The column was then equilibrated with 3% 

B for 15 min prior to the next run. Electrospray ionization was performed using a 30 

mm (internal diameter) nanobore stainless steel online emitter (Proxeon, Odense, 

Denmark) and a voltage set at 1900 V. Peptide sequences were searched against the 

NCBI genomes for S. wolfei, S. aciditrophicus and M. hungatei using MASCOT 

software versions 2.1.0 and 2.1.04 (Matrix Science, London, UK). Peptides were 

required to have a rank = 1 and a score >18. 

 

In-gel activity staining. 

 Gels used for staining with tetrazolium red as the redox indicator were run using 

essentially the same BN-PAGE technique described above with the following 

modifications.  All buffers except for the lysis buffer were prepared and boiled under 

80% N2: 80% CO2 for five minutes to remove oxygen.  Because the lysis buffer 

contained presumably heat labile components (e.g. ɛ-aminocaproate and EDTA), it was 

prepared in the anaerobic chamber using anoxic water which had been prepared by 

boiling under 80% N2:20% CO2 for five minutes.  All manipulations were performed in 
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the anaerobic chamber, and all centrifuge steps occurred in sealed anaerobic centrifuge 

tubes. 

 To enhance resolution, activity staining was done using 4-16% precast 

NativePage gels obtained from Life Technologies.  Gels were run in the anaerobic 

chamber using anaerobic anode and cathode buffer.  To minimize oxygen interference 

with the activity assay, precast gels were run with just anode and cathode buffer for ten 

minutes before the protein suspension was loaded. 

 After electrophoresis, gels were cut into lanes and the lanes were carefully 

transferred into anaerobic glass tubes.  The tubes were stoppered with butyl-rubber 

stoppers.  The headspace of these tubes was changed to 80% N2:20% CO2 prior to the 

addition of reaction buffer.  Ten milliliters of reaction buffer (1 mM triphenyl 

tetrazolium chloride in 50 mM potassium phosphate pH 7.2) were added to the sealed 

tubes containing gel slices.  Activity staining began with the addition of formate to 

1mM from a 100 mM stock solution prepared in 50 mM potassium phosphate (pH 7.2) 

or the addition of hydrogen to 138 kPa.  Activity was monitored by the formation of a 

reddish-purple precipitate.  A band testing positive for hydrogenase was manually 

excised and sent for peptide mass fingerprint analysis by the University of Oklahoma 

Health Sciences Center Proteomics Core Facility, Oklahoma City, OK. 

 

RNA extraction and quantitative reverse transcriptase polymerase chain reaction (qRT-

PCR). 

 Cell cultures destined for qRT-PCR analysis were harvested after 50% substrate 

loss which corresponded to the mid-log phase of growth.  Triplicate cultures were 
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cooled in a dry ice-ethanol bath and taken into the anaerobic chamber.  Cultures were 

dispensed into RNase ZAP treated centrifuge bottles (1 L) and centrifuged at 8,000 • g 

for 15 min.  The cell pellet was resuspended in 1.5 ml of RNAlater and stored at -70oC.  

Total RNA was obtained using an RNeasy mini kit.  DNA was removed using an off-

column DNA digestion and total RNA was concentrated using the RNeasy kit.  RNA 

quality was determined by gel electrophoresis.  Locus tag specific primers (Table 2) 

were designed using primer-BLAST and checked against the genome sequences of M. 

hungatei and Dehalococcoides.  RNA was verified to be free of DNA contamination by 

PCR without reverse transcriptase.  Desalted primers were made by Life Technologies.  

qRT-PCR was performed on biological triplicates with technical duplicates. 
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Table 2:  Primers for quantitative RT-PCR analysis of hydIIABC, etfAB, 
Swol_0698, fdhA-1, fdhA-2 and fdhA-4 in S. wolfei.  Primers were designed using 
primer-BLAST and checked against genome sequences for M. hungatei and 
Dehalococcoides sp.  1 Sieber et al. 2013 
 

 

Gene Locus Tag Primer sequence (5’  3’) 

gyrB1 Swol_0006 TGAAGGACAGACCAAAACCA 

AATATAGCCTGGTAGGTGCG 

hydIIA1 Swol_1925 TATGCGGAGGACAACTACCC 

CTGAGGATTTCATAGGCGGT 

hydIIB Swol_1926 GAAAGTGAAGGCATCACCAG 

GCTTCATGCACATAATGGGG 

hydIIC Swol_1927 CCAACGCCTCTCTAGTTCAT 

AGAAATACTGCAGGCACAGA 

etfA Swol_0697 TGTTGCCAACTTCACATACG 

TATGGTGCGGACAAGGTTTA 

etfB Swol_0696 AATAGTGGTTGTTGCTGCTG 

ACTTCGGTTACCTGAGTTCC 

FeS 

oxidoreductase 

Swol_0698 ACCCTGGTAAGCCAGAACCT 

TGGTCGTAGACCCCGTTGTG 

fdhA11 Swol_0786 CATAGAAGCCAACCGGGAAA 

CCCTTCTCTCGGTGTTGGTA 

fdhA21 Swol_0800 CAGCATCAGCAGCAAAAGAG 

CTTCCCACTTGTCACTACCA 

fdhA41 Swol_1825 CCAAGAACAACCCAGCAAAT 

GGGGTTTTAATGCCACTTCC 
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Results 

Results from whole cell proteomic studies 

Using whole cell shotgun proteomics, a total of 1,405 unique peptides were 

identified by peptide mass fingerprint analysis across all three culture conditions; S. 

wolfei in pure culture on crotonate, S. wolfei in coculture with M. hungatei on crotonate 

and S. wolfei in coculture with M. hungatei on butyrate.  Alignment of peptide 

sequences with predicted amino acid sequences of S. wolfei genes was possible for 

1,095 peptide sequences representing approximately 80% of the detected peptides.  As 

detailed elsewhere (Sieber et al. 2010), 2,574 protein coding open reading frames 

(ORFs) have been identified in the genome of S. wolfei. Thus, the peptides detected by 

whole cell shot gun proteomic analysis accounts for approximately 45% of protein 

coding genes in the S. wolfei genome. Two-hundred and fifty peptide sequences aligned 

to predicted amino acid sequences for ORFs in the genome of M. hungatei and 57 

peptide sequences matched predicted amino acid sequences for ORFs found in the 

genome of the syntrophic bacterium Syntrophus aciditrophicus strain SB.  The full 

dataset is available elsewhere (Sieber 2011). M. hungatei proteins are likely from 

remnant cells that were not removed by Percoll separation. S. aciditrophicus proteins 

may be contaminants on glassware as this organism is also grown in Dr. McInerney’s 

laboratory. Peptides from M. hungatei and S. aciditrophicus were removed from the 

dataset prior to calculation of normalized spectral abundance of the S. wolfei peptides.  

A recent report suggested that interspecies formate transfer plays a more 

prominent role than interspecies hydrogen transfer when S. wolfei grows syntrophically 

on butyrate based on the presence of formate dehydrogenases in the cytoplasmic 



31 

proteome and formate dehydrogenase activity but not hydrogenase activity in 

membranes (Schmidt et al. 2013).  We used whole cell shotgun proteomic analysis to 

determine the relative abundance of hydrogenases and formate dehydrogenases in the S. 

wolfei proteome grown axenically and syntrophically.  

Multiple genes encoding hydrogenase and formate dehydrogenase enzymes 

were identified in the genome of S. wolfei (Sieber et al. 2010).  Three hydrogenase-

encoding regions were reported in the S. wolfei genome and all three hydrogenases are 

predicted to be [FeFe]-type hydrogenases (Sieber et al. 2010).  Peptides were detected 

which correspond to subunits of each of these.  Interestingly, subunits of the 

hydrogenase encoded by Swol_1925-26 (hydIIAB gene products) were detected at 

levels six-fold higher in abundance when S. wolfei was grown in coculture on butyrate 

or on crotonate relative to S. wolfei grown in pure culture on crotonate (Figure 1).   

  



32 

 
 
Figure 1:  Detection of the predicted membrane-bound [FeFe]-hydrogenase 
(Swol_1925-26 gene products) in cultures of S. wolfei grown under different 
conditions. Tryptic digests of the whole-cell proteome were prepared from cells 
harvested after 50% substrate utilization.  Peptides were sequenced via peptide mass 
fingerprinting via LC-MS/MS and peptides were identified using MASCOT.  Values 
represent Normalized Spectral Abundance Factor (NSAF) • 100 to represent percent of 
peptide in the proteome.  Peptides from both subunits of the cytochrome b-linked 
hydrogenase provided more signal intensity during growth in crotonate-oxidizing 
coculture or during syntrophic growth on butyrate.  Error bars represent standard 
deviation of replicate cultures. 
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Swol_1925-26 are predicted to encode an externally oriented cytochrome b -linked 

membrane hydrogenase (Sieber et al. 2010). The cytochrome b subunit encoded by 

Swol_1927 (hydIIC gene product) is predicted to be an integral membrane protein. A 

total of five formate dehydrogenase-encoding regions were identified in the genome of 

S. wolfei (Sieber et al. 2010) though no obvious changes in normalized abundance 

values were detected for any of the formate dehydrogenases between different growth 

conditions (not shown).  Based on these data, we conclude that interspecies hydrogen 

transfer is essential for syntrophic oxidation of butyrate. 

 

Predicted membrane proteins from complexes identified in S. wolfei membrane 

enrichments. 

 Whole cell shot gun proteomic analysis showed that syntrophically grown cells 

of S. wolfei are enzymatically conditioned for hydrogen rather than formate production. 

I hypothesized that an integral membrane complex uses chemiosmotic energy to drive 

reverse electron transfer to produce hydrogen from high potential electrons derived 

from butyryl-CoA oxidation. To identify membrane-bound protein complexes 

potentially involved in reverse electron transfer, membrane proteins from S. wolfei cells 

grown in pure culture on crotonate and in coculture on crotonate (conditions that do not 

require reverse electron transfer) were compared to membrane proteins from S. wolfei 

cells grown syntrophically on butyrate (a condition that requires reverse electron 

transfer). Membrane proteins were solubilized with the detergent, n-dodecyl-β-d-

maltoside (DDM), and electrophoretically separated using BN-PAGE.   
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 I consistently observed twelve membrane complexes (Figure 2) across multiple 

biological and technical replicates.  Several faint bands were occasionally observable 

and were largely dependent on the amount of protein loaded.  Tryptic digests were 

prepared from bands observed from two experiments and sequenced by peptide mass 

fingerprint analysis (Figure 2).  The main difference between these experiments was 

whether S. wolfei cells had been purified by Percoll separation prior to BN-PAGE.  

Except where indicated, all data refer to the experiment where cells were not first 

separated by Percoll density gradient ultracentrifugation. 

 A large 1,060 kDa complex (bands CPC1, CCC1 and Bt1) was detected under 

all three growth conditions (Figure 2).  This band was primarily composed of proteins 

of unknown function encoded by genes Swol_0143 and Swol_0141 (Table 3).  Both are  
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Table 3:  Peptides detected from non-denaturing blue-native PAGE separation of 
solubilized S. wolfei membranes.  Observed bands were excised, digested with trypsin 
and peptides sequenced by peptide mass fingerprint analysis.  Unique peptides 
correspond to the number of unique peptides detected by peptide mass fingerprint 
analysis from the respective band.  Peptides were identified by a MASCOT search using 
the NCBInr database.  Scores represent the score returned by MASCOT.  TMH = 
predicted transmembrane helices, MWapp apparent molecular weight for the indicated 
band, MWp = molecular weight of the predicted amino acid sequence for the respective 
locus tag, pI = isoelectric point of the predicted amino acid sequence for the respective 
locus tag. 
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Band # 
(MWapp) 

Locus Tag Annotation Score Unique 
Peptides 

TMH MWp pI 

CPC1 

(1060 

kDa) 

Swol_0143 hypothetical protein Swol_0143 4385 150 Yes 142 4.3 

Swol_0141 hypothetical protein Swol_0141 2181 83 Yes 76 5.3 

Swol_1348 3-deoxy-D-arabinoheptulosonate-7-phosphate 

synthase 

1003 37 No 37 6.7 

Swol_2051 acetyl-CoA acetyltransferase / 3-ketoacyl-CoA 

thiolase 

767 32 No 41 5.9 

Swol_1934 acetyl-CoA acetyltransferase 397 23 No 42 6.3 

Swol_2386 F0F1-type ATP synthase subunit b-like protein 263 11 Yes 19 5.1 

Swol_0809 3-deoxy-D-arabinoheptulosonate-7-phosphate 

synthase 

254 16 No 30 7.4 

Swol_2167 SPFH domain, Band 7 family protein 142 5 No 32 8.4 

Swol_2382 Sodium-transporting two-sector ATPase 137 3 Yes 52 4.6 

Swol_2384 Sodium-transporting two-sector ATPase 132 5 Yes 55 4.9 

Swol_1863 SPFH domain, Band 7 family protein 126 6 No 34 4.9 

Swol_2335 translation elongation factor 1A (EF-1A/EF-

Tu) 

118 3 No 44 5.0 

Swol_0815 phenylacetate-CoA ligase 110 3 No 50 5.2 

Swol_0644 tryptophan synthase, beta chain 95 2 Yes 51 5.7 
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Swol_1855 conserved hypothetical protein 69 2 No 58 4.6 

Swol_2387 ATP synthase F0, C subunit 68 4 No 7 6.6 

Swol_2321 LSU ribosomal protein L5P 58 5 No 20 9.9 

Swol_0410 (R)-2-hydroxyglutaryl-CoA dehydratase beta-

subunit, putative 

44 2 No 43 4.8 

Swol_0411 CoA enzyme activase 44 3 No 28 5.7 

Swol_0325 conserved hypothetical protein  41 5 No 36 5.3 

Swol_2030 3-hydroxyacyl-CoA dehydrogenase 41 2 No 30 7.3 

Swol_1577 chaperone DnaJ 38 2 No 42 8.3 

Swol_0278 putative esterase/lipase 29 8 No 29 7.3 

Swol_1195 indolepyruvate oxidoreductase subunit beta 2 26 2 No 22 9.3 

CPC2 

(585 

kDa) 

Swol_0143 hypothetical protein Swol_0143  887 29 Yes 142 4.3 

Swol_2384 Sodium-transporting two-sector ATPase  145 4 No 55 4.9 

Swol_1424 protein translocase subunit secF  115 3 Yes 32 9.2 

Swol_1425 protein-export membrane protein SecD  106 3 Yes 43 9.0 

Swol_0222 hypothetical protein Swol_0222  26 3 No 47 4.5 

Swol_2089 conserved hypothetical protein  86 2 Yes 38 8.7 
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CPC3 

(310 

kDa) 

Swol_0133 hypothetical protein Swol_0133  13978 406 No 78 4.7 

Swol_2384 Sodium-transporting two-sector ATPase  580 22 No 55 4.9 

Swol_1871 glycosyl hydrolase-like protein  88 11 Yes 52 5.4 

Swol_0698 putative iron-sulfur-binding reductase  54 9 Yes 81 5.5 

Swol_1142 DNA helicase/exodeoxyribonuclease V, 

subunit B  

30 8 No 131 5.7 

Swol_2382 Sodium-transporting two-sector ATPase  74 6 No 51 4.6 

Swol_0405 ABC-type sugar transport system periplasmic 

component-like protein  

60 4 Yes 48 5.5 

Swol_0457 hypothetical protein Swol_0457  41 4 No 13 4.2 

Swol_0331 extracellular solute-binding protein, family 7  100 2 Yes 41 8.6 

Swol_2432 conserved hypothetical protein  71 2 Yes 30 5.5 

Swol_0490 chaperone protein DnaK  25 2 No 68 4.7 

CCC1 

(1060 

kDa) 

Swol_0143 hypothetical protein Swol_0143  5082 182 Yes 142 4.3 

Swol_0141 hypothetical protein Swol_0141  2664 91 Yes 76 5.3 

Swol_2386 F0F1-type ATP synthase subunit b-like protein  590 23 Yes 19 5.1 

Swol_1185 lemA protein  240 10 Yes 20 9.6 

Swol_2387 ATP synthase F0, C subunit  169 8 Yes 7 6.6 

Swol_0278 putative esterase/lipase  30 8 No 28 7.3 
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Swol_2321 LSU ribosomal protein L5P  67 7 No 20 9.9 

Swol_0325 conserved hypothetical protein  31 7 No 36 5.3 

Swol_2563 YyaC  39 5 No 22 8.0 

Swol_2382 Sodium-transporting two-sector ATPase  115 3 No 51 4.6 

Swol_1161 protein of unknown function UPF0182  36 3 Yes 106 5.9 

Swol_1417 condensin subunit ScpB  22 3 No 19 4.9 

Swol_0133 hypothetical protein Swol_0133  88 2 No 78 4.7 

Swol_1855 conserved hypothetical protein  85 2 No 58 4.6 

Swol_0562 hypothetical protein Swol_0562  76 2 Yes 19 9.4 

Swol_2384 Sodium-transporting two-sector ATPase  62 2 No 55 4.9 

CCC2 

(585 

kDa) 

Swol_0143 hypothetical protein Swol_0143  2781 99 Yes 142 4.3 

Swol_1425 protein-export membrane protein SecD  290 11 Yes 43 9.0 

Swol_2384 Sodium-transporting two-sector ATPase  279 10 No 55 4.9 

Swol_0133 hypothetical protein Swol_0133  285 9 No 78 4.7 

Swol_1855 conserved hypothetical protein  333 8 No 58 4.6 

Swol_2432 conserved hypothetical protein  244 7 Yes 30 5.5 

Swol_1424 protein translocase subunit secF  197 6 Yes 32 9.2 

Swol_1925 Ferredoxin hydrogenase  197 5 No 42 4.9 

Swol_0278 putative esterase/lipase  28 5 No 28 7.3 
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Swol_0413 conserved hypothetical lipoprotein  185 4 No 43 5.2 

Swol_0698 putative iron-sulfur-binding reductase  144 3 Yes 81 5.5 

Swol_2089 conserved hypothetical protein  112 3 Yes 38 8.7 

Swol_2387 ATP synthase F0, C subunit  91 3 Yes 7 6.6 

Swol_1911 conserved hypothetical protein  53 3 Yes 21 5.8 

Swol_2563 YyaC 26 3 No 22 8.0 

Swol_2556 branched chain amino acid ABC transporter 

(substrate-binding protein)  

122 2 Yes 42 5.6 

Swol_0331 extracellular solute-binding protein, family 7  96 2 Yes 41 8.6 

Swol_1871 glycosyl hydrolase-like protein  26 2 Yes 52 5.4 

CCC3 

(310 

kDa) 

Swol_0133 hypothetical protein Swol_0133  10757 332 No 78 4.7 

Swol_0698 putative iron-sulfur-binding reductase  285 18 Yes 81 5.5 

Swol_1871 glycosyl hydrolase-like protein  78 11 Yes 52 5.4 

Swol_1730 exonuclease  26 11 No 142 5.4 

Swol_2384 Sodium-transporting two-sector ATPase  240 9 No 55 4.9 

Swol_0331 extracellular solute-binding protein, family 7  120 5 Yes 41 8.6 

Swol_0457 hypothetical protein Swol_0457  32 3 No 13 4.2 

Swol_2556 branched chain amino acid ABC transporter 

(substrate-binding protein)  

118 2 Yes 42 5.6 
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Swol_0490 chaperone protein DnaK  27 2 No 68 4.7 

Swol_2472 peptidase M23B  22 2 Yes 50 8.4 

Bt1 

(1060 

kDa) 

Swol_0143 hypothetical protein Swol_0143  4745 163 Yes 142 4.3 

Swol_0141 hypothetical protein Swol_0141  1810 64 Yes 76 5.3 

Swol_2386 F0F1-type ATP synthase subunit b-like protein  227 9 Yes 19 5.1 

Swol_0278 putative esterase/lipase 30 9 No 28 7.3 

Swol_2321 LSU ribosomal protein L5P  75 5 No 20 9.9 

Swol_0325 conserved hypothetical protein  32 5 No 36 5.3 

Swol_0133 hypothetical protein Swol_0133  158 3 No 78 4.7 

Swol_1855 conserved hypothetical protein  78 2 No 58 4.6 

Bt2 

(870 

kDa) 

Swol_2384 Sodium-transporting two-sector ATPase  237 8 No 55 4.9 

Swol_2386 F0F1-type ATP synthase subunit b-like protein  56 2 Yes 19 5.1 

Bt3 

(640 

kDa) 

Swol_2386 F0F1-type ATP synthase subunit b-like protein  316 13 Yes 19 5.1 

Swol_0927 putative methyl-accepting chemotaxis sensory 

transducer  

126 2 Yes 62 4.5 

Swol_2384 Sodium-transporting two-sector ATPase  74 2 No 55 4.9 
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Bt4 

(460 

kDa) 

Swol_0133 hypothetical protein Swol_0133  1050 45 No 78 4.7 

Swol_0091 Formate/nitrite family of transporters  623 11 Yes 31 8.4 

Swol_2384 Sodium-transporting two-sector ATPase  360 11 No 55 4.9 

Swol_1855 conserved hypothetical protein  188 8 No 58 4.6 

Swol_2382 Sodium-transporting two-sector ATPase  191 4 No 51 4.6 

Swol_1911 conserved hypothetical protein  79 4 Yes 21 5.8 

Bt5 

(310 

kDa) 

Swol_0133 hypothetical protein Swol_0133  14699 413 No 78 4.7 

Swol_1064 Inorganic diphosphatase  336 17 Yes 88 5.4 

Swol_1730 exonuclease  24 13 No 142 5.4 

Swol_1855 conserved hypothetical protein  303 12 No 58 4.6 

Swol_0698 putative iron-sulfur-binding reductase  49 10 Yes 81 5.5 

Swol_1871 glycosyl hydrolase-like protein  85 9 Yes 52 5.4 

Swol_1424 protein translocase subunit secF  278 8 Yes 32 9.2 

Swol_1925 Ferredoxin hydrogenase  284 7 No 42 4.9 

Swol_2384 Sodium-transporting two-sector ATPase  194 6 No 55 4.9 

Swol_1425 protein-export membrane protein SecD  182 5 Yes 43 9.0 

Swol_2089 conserved hypothetical protein  144 4 Yes 38 8.7 

Swol_2556 branched chain amino acid ABC transporter 

(substrate-binding protein)  

169 3 Yes 42 5.6 
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Swol_1934 acetyl-CoA acetyltransferase  59 3 No 41 6.3 

Swol_0331 extracellular solute-binding protein, family 7  92 2 Yes 41 8.6 

Swol_0457 hypothetical protein Swol_0457  31 2 No 13 4.2 

Bt6 

(165 

kDa) 

Swol_1925 Ferredoxin hydrogenase  1208 41 No 42 4.9 

Swol_1926 hypothetical protein Swol_1926  379 10 Yes 15 5.9 

Swol_0133 hypothetical protein Swol_0133  311 6 No 78 4.7 

Swol_2384 Sodium-transporting two-sector ATPase  197 5 No 55 4.9 

Swol_0696 electron transfer flavoprotein, beta subunit  151 2 No 26 4.8 

Swol_0698 putative iron-sulfur-binding reductase  106 2 Yes 81 5.5 
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predicted to contain transmembrane helices.  Three conserved S-layer homology 

domains were detected in the predicted peptide sequence for Swol_0141 gene product 

(not shown). No conserved domains were detected in the predicted peptide sequence of 

Swol_0143 gene product (not shown).  Several other peptides were detected in which 

the peptide sequence is predicted to contain at least one transmembrane helix.  These 

were peptides from ATP synthase beta- (all conditions) and gamma-subunits (crotonate 

pure culture and coculture) (Table 3).  An approximately 310 kDa complex (CPC3, 

CCC3 and Bt5) was also detected under all three growth conditions (Figure 2).   
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Figure 2:  BN-PAGE separation of membrane enrichments derived from S. wolfei.  
Cells were harvested late log-phase, lysed via French pressure and membrane 
enrichments were prepared by ultracentrifugation.  Membranes were solubilized with 
0.5% dodecyl maltoside and separated on a 4-16% gradient polyacrylamide gel using 
BN-PAGE and stained using Sypro Ruby Red.  A total of 12 complexes were detected.  
Bands were excised, digested with trypsin, sequenced using peptide mass fingerprint 
analysis and identified with MASCOT (see Table 3).  Apparent molecular weights for 
each band are given in Table 3. 
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The dominant transmembrane helix-containing peptide detected from this band in 

membranes from cultures grown in pure culture was a glycosyl transferase protein while 

the dominant transmembrane helix-containing peptides detected from this band in 

membranes from cultures grown in coculture on crotonate and in coculture on butyrate 

were those derived from an FeS oxidoreductase (Swol_0698 gene product) (Table 3).   

An approximately 585 kDa complex (CPC2, CCC2) was detected in membrane 

fractions derived from crotonate-grown, pure culture and coculture S. wolfei cells, but 

not from membranes of cells grown syntrophically on butyrate (Figure 2).  The 

dominant peptides detected in these complexes were proteins of an unknown function 

corresponding to Swol_0143 and Swol_0141 gene products (Table 3). 

Interestingly, four of the detected complexes (Bt2, Bt3, Bt4 and Bt6) appear 

unique to the syntrophic growth condition – growth in coculture on butyrate (Figure 2).  

Peptides derived from a gene coding for ATP synthase beta-subunit (Swol_2386 gene 

product) were detected in conjunction with a chemotaxis sensory protein (Swol_0927 

gene product) in a band of approximately 640 kDa (Bt3) (Table 3).  A smaller 460 kDa 

complex (Bt4) was composed of peptides derived from a formate/nitrite transport 

protein (Swol_0091 gene product) and a protein of unknown function, Swol_1911 gene 

product (Table 3).  Peptides derived from hydIIB (Swol_1926) gene product and an 

electron transfer flavoprotein (Etf)-linked FeS oxidoreductase (Swol_0698 gene 

product) were detected in an approximately 165 kDa protein complex (Bt6)  (Table 3). 

The FeS oxidoreductase was detected in several of the above bands (CPC3, CCC2, 

CCC3, Bt 5 and Bt 6).  These results were confirmed with sequence analysis (not 

shown) of S. wolfei-M.hungatei cells grown in the same manner, but separately from, 
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those described above (see cell cultures, harvesting and separation) without Percoll 

separation. 

 Of note, peptides corresponding to the hydIIA (Swol_1925) gene product were 

detected in the 165 kDa band, which was unique to syntrophic growth on butyrate 

(Table 3). Likewise, the beta-subunit of Etf (Swol_0696 gene product) was detected in 

the 165 kDa complex (Bt6). Swol_0696 is part of a gene cluster containing the genes 

for the alpha subunit of Etf (Swol_0697) and for an FeS oxidoreductase (Swol_0698) 

(Table 3).  Peptides derived from the hydIIC (Swol_1927) gene product, cytochrome b, 

were detected from an analogous band (not shown) from cells grown in the same 

manner, but separately from, those described above without Percoll separation.  

Therefore, I conclude that a unique complex forms between the hydIIABC gene 

products and the Etf-linked FeS oxidoreductase and is present in syntrophically grown 

cells. 

 

Membrane fractions of S. wolfei contain hydrogenase and formate dehydrogenase 

activity. 

 The results from BN-PAGE suggested that S. wolfei makes a novel membrane 

complex when grown syntrophically on butyrate. Functional annotation of the 

polypeptides detected in the complex indicates that the complex serves as the membrane 

input component to receive electrons derived in the ß-oxidation of acyl-CoA 

intermediates and produce hydrogen. However, Schmidt et al (2013) found the 

Swol_0698 gene product, the FeS oxidoreductase, associated with formate 

dehydrogenase subunits and not subunits of hydrogenase enzymes.  To determine 
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whether membranes of S. wolfei grown on butyrate contained hydrogenase or formate 

dehydrogenase activity, the solubilized membrane fractions of S. wolfei grown on 

butyrate were electrophoretically separated using BN-PAGE and lanes were incubated 

in the presence of tetrazolium red as the indicator with either hydrogen or formate as the 

electron donor.  The formation of a red precipitate indicated that tetrazolium red was 

reduced by either hydrogen or formate as electron donor. 

 Precipitation was observed in one distinct membrane complex under a hydrogen 

atmosphere after overnight incubation showing that tetrazolium red was reduced in the 

presence of hydrogen (Figure 3).  The region of hydrogenase activity in membranes  
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Figure 3:  Hydrogenase and formate dehydrogenase zymograms.  Membrane 
enrichments were solubilized in 0.5% dodecyl maltoside and electrophoretically 
separated in an anaerobic chamber.  Gel slices were placed into sealed anaerobic 
cuvettes under N2:CO2 atmosphere or, where indicated, H2 atmosphere.  Reaction buffer 
containing 1 mM of the redox indicator tetrazolium red was added to the sealed cuvettes 
and the reaction buffer was amended to 1 mM formate for formate dehydrogenase 
activity.  Hydrogenase activity was started with the addition of H2 to 138 Pa.  Activity 
was observed through formation of red precipitate.  Arrow indicates band excised and 
analyzed by peptide mass fingerprint analysis.  Results in Table 4 
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from butyrate coculture-grown cells coincides with the expected position of band Bt6, 

which contained the FeS oxidoreductase and hydrogenase subunits.  The band was 

excised and peptides were identified by peptide mass fingerprint analysis.  This analysis 

showed the presence of peptides encoded by all three genes of the hydIIABC gene 

cluster (Table 4). 
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Table 4:  Peptides detected from membrane complex testing positive for 
hydrogenase activity in membrane fractions of S. wolfei grown on butyrate.  Cells 
were grown and harvested as described and the reduction of tetrazolium red (1 mM) 
with hydrogen or formate as electron donor was monitored by the formation of a red 
precipitate.  The band indicated in Figure 3 was excised and sent for peptide mass 
fingerprint analysis as described. 
 

Locus Tag Annotation Unique Peptides Score 

Swol_1925 HydII (alpha) 11 1043 

Swol_1926 HydII (beta) 6 586 

Swol_2432 Unknown function 1 171 

Swol_2382 ATP synthase (beta) 1 79 

Swol_1927 Cytochrome b 1 61 
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Transcription of the genes encoding EtfAB, FeS oxidoreductase and the cytochrome b-

linked hydrogenase  

 I detected a unique membrane complex in membranes of S. wolfei grown 

syntrophically on butyrate.  This complex is predicted to contain several redox active 

proteins, which could provide a conduit for the production of hydrogen with electrons 

derived from oxidation of butyryl-CoA (see above).  I hypothesized that these proteins 

are essential for syntrophic growth on butyrate.  Together with Dr. Jessica Sieber, I used 

quantitative PCR to test the relative expression levels of hydIIABC (Swol_1925, 

Swol_1926 and Swol_1927), which encodes the cytochrome b-linked hydrogenase, 

etfAB (Swol_0696 and Swol_0697), which encodes electron transfer flavoprotein AB, 

and Swol_0698, which encodes the FeS oxidoreductase. 

Levels of transcripts for hydIIABC were clearly elevated in S. wolfei cells grown 

syntrophically on butyrate compared to cells grown in pure culture on crotonate and in 

coculture on crotonate (Figure 4).  The levels of expression of hydIIABC were at least 
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Figure 4:  Relative expression of hydIIABC (Swol_1925-27), etfAB (Swol_0696-97) 
and Swol_0698 (FeS oxidoreductase) in S. wolfei grown with M. hungatei.  Cells 
were grown as described and total RNA was extracted.  Values represent the mean of 
three replicates with technical duplicates for each.  Relative expression of hydIIABC 
subunits was at least 15-fold higher from cells grown in syntrophic butyrate-oxidizing 
cultures (blue) relative to growth in coculture on crotonate (red) and in pure culture on 
crotonate (green).  Error bars represent standard deviation of replicate cultures. 
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two orders of magnitude higher from cells grown syntrophically on butyrate than their 

expression in crotonate-grown coculture cells, which shows that these genes are 

differentially expressed when S. wolfei grows syntrophically on butyrate.  etfAb 

expression was similar under all three growth conditions (Figure 4). Levels of transcript 

for the FeS oxidoreductase were much higher (6- and 12-fold higher, respectively) 

during coculture growth on crotonate or butyrate compared to pure culture growth on 

crotonate (Figure 4), showing differential expression of the gene for FeS oxidoreductase 

when S. wolfei grows syntrophically. The marked differential expression of hydIIABC 

and Swol_0698 provides strong evidence for the importance of these genes in 

syntrophic metabolism of butyrate. 

 Genomic analysis of S. wolfei and M. hungatei shows that both organisms have 

hydrogenases and formate dehydrogenases, which indicates that either hydrogen or 

formate transfer could be used for interspecies electron exchange.  In principle, the 

complex detected by BN-PAGE should be specific to hydrogen-dependent growth 

based on the predicted functions of the components of the complex.  Butyrate oxidation 

by S. wolfei can be syntrophically coupled to tetrachloroethene reduction by 

Dehalococcoides sp., and Dehalococcoides sp. are not known to use formate as an 

electron donor (Maymó-Gatell et al. 1997).  Therefore, in collaboration with Xinwei 

Mao and Dr. Lisa Alvarez-Cohen at the University of California, Berkeley, I tested the 

relative expression levels of hydIIABC (Swol_1925-27), etfAB (Swol_0696 and 

Swol_0697) and Swol_0698 in cocultures of S. wolfei and Dehalococcoides sp. that 

syntrophically oxidize butyrate coupled to tetrachloroethene reduction.  We also tested 
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the relative expression levels of fdhA-1 (Swol_0786), fdhA-2 (Swol_0800) and fdhA-4 

(Swol_1825). 

The expression of hydIIA and hydIIB were 15- to 20-fold higher in cells grown 

syntrophically on butyrate with Dehalococcoides relative to cells grown in coculture on 

crotonate or S. wolfei grown in pure culture on crotonate (Figure 5).  The expression of  

hydIIC was approximately the same in crotonate-grown and butyrate-grown coculture 

cells and this level was at least three-fold higher in these two growth conditions 

compared to its expression in crotonate-grown pure culture cells.  The expression of 

etfA and etfB were at least six-fold higher in cells grown syntrophically on butyrate 

relative to cells grown in coculture on crotonate or S. wolfei grown in pure culture on 

crotonate (Figure 5).  Expression of Swol_0698 was approximately two-fold higher in 

cells grown syntrophically on butyrate relative to cells obtained from crotonate-grown 

pure culture and coculture (Figure 5).  The relative expression of fdhA subunits relative 

to gyr was generally in the range of 0.6-1.2 units, though very low levels (less than 0.05 

units) of fdh-3 were detected from S. wolfei cells grown in coculture with 

Dehalococcoides on crotonate (Figure 5). 
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Figure 5:  Relative expression of hydIIABC (Swol_1925-27), etfAB (Swol_0696-97) 
and Swol_0698 (FeS oxidoreductase) in S. wolfei grown with Dehalococcoides sp.  
Cells were grown as described and total RNA was extracted.  Values represent the mean 
of three replicates with technical duplicates for each.  Relative expression of hydIIABC 
subunits was at least 15-fold higher from cells grown in syntrophic butyrate-oxidizing 
cultures (blue) relative to growth in coculture on crotonate (red) and in pure culture on 
crotonate (green).  Also tested were the relative expression of fdhA1, fdhA2 and fdhA4 
(Swol_786, Swol_800 and Swol_1825, respectively). 
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Discussion 

 McInerney et al. (2007) hypothesized that, in S. aciditrophicus, an FeS 

oxidoreductase is the membrane input module for electrons derived from oxidation of 

acyl-CoA intermediates. Genomic evidence to support this hypothesis included the 

location of genes for electron transfer flavoprotein and an acyl-CoA dehydrogenase 

adjacent to genes predicted to code for alpha- and beta-subunits of electron transferring 

flavoproteins.  The genome of S. wolfei contains a gene, Swol_0698, which is predicted 

to code for an analogous FeS oxidoreductase (Sieber 2010). Peptides of the Swol_0698 

gene product were detected in band Bt6, which was unique to butyrate-grown S. wolfei 

cells. Band Bt6 also contained peptides of EtfAB (Swol_0696-97 gene products), which 

is the electron carrier associated with acyl-CoA dehydrogenases (Li et al. 2008). In 

addition, Müller et al. (2009) found peptides of the Swol_0698 gene product associated 

with butyryl-CoA dehydrogenases purified from S. wolfei. The above proteomic and 

biochemical results implicate the Swol_0698 gene product as the membrane input 

module for electrons derived from the oxidation of acyl-CoA intermediates in S. wolfei. 

Its homolog, Syn_02638, most likely has the same function in S. aciditrophicus. 

The next question is what protein complexes are involved in hydrogen or 

formate production. In principle, S. wolfei can use either formate or hydrogen as an 

interspecies electron carrier as genomic analyses detected multiple formate 

dehydrogenase and hydrogenase genes and both activities have been detected in S. 

wolfei whole cells and cell extracts regardless of whether S. wolfei was grown 

axenically or syntrophically (Sieber et al. 2013). The recent study of Schmidt and 

colleagues (Schmidt et al. 2013) detected a dominant band in BN-PAGE in butyrate-
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grown S. wolfei cells comprised of subunits of a membrane bound formate 

dehydrogenase. Activity staining confirmed that this complex had formate 

dehydrogenase activity. An NADH:acceptor oxidoreductase activity was partially 

purified from cell-free extracts of S. wolfei (Muller et al. 2009). Proteomic analysis of 

the NADH:acceptor oxidoreductase detected subunits of a NADH-linked formate 

dehydrogenase (Swol_0783, Swol_0785, and Swol_0786 gene products) and a NADH-

linked hydrogenase (Swol_1017, Swol_1018, and Swol_1019) (Muller et al. 2009).  

Having hydrogenase and formate dehydrogenase subunits together with those for 

NADH oxidation would allow S. wolfei to produce either hydrogen or formate from 

NADH. 

Sieber et al. (2010, 2012) suggested that the (Swol_1017, Swol_1018, and 

Swol_1019 gene products encode an electron bifurcating hydrogenase analogous to the 

enzyme recently described in Thermotoga maritima (Schut and Adams, 2009). The 

electron bifurcating hydrogenase functions by coupling the exergonic oxidation of 

reduced ferredoxin with the endergonic oxidation of NADH to produce hydrogen. 

Electrons derived from one NADH and one reduced ferredoxin are used to reduce four 

protons to two molecules of hydrogen according to (eq. 3) (Schut and Adams 2009): 

  

 (eq. 3) NADH +  Fdred + 3  H+   2 H2 + NAD+ + 2 Fdox    

 

Genes homologous to the electron-bifurcating hydrogenase have been identified 

in the genomes of other organisms capable of syntrophy such as Pelotomaculum 

thermopropionicum  and S. aciditrophicus (Sieber et al. 2012; Sieber et al. 2010).  
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These comparative genomic analyses led Sieber and colleagues (2010) to argue that this 

bifurcation mechanism (Schut and Adams 2009) represents a universal mechanism for 

production of molecular hydrogen and formate from NADH by organisms capable of 

syntrophy. 

 However, convincing evidence for the involvement of chemiosmotic energy for 

hydrogen production from butyryl-CoA oxidation was obtained with inverted 

membrane vesicle preparations of S. wolfei (Wallrabenstein and Schink 1994).  The 

need for a chemiosmotic gradient to make hydrogen from electrons derived from 

butyryl-CoA oxidation argues that an ion-translocating membrane complex (or 

complexes), rather than electron-bifurcating complexes, are involved in reverse electron 

transfer in S. wolfei. Hydrogenase inhibitors, such as cyanide or carbon monoxide, but 

not the formate dehydrogenase inhibitor, hypophosphate, inhibited syntrophic butyrate 

metabolism, but not crotonate metabolism, by S. wolfei (Seiber 2013).  This finding 

additionally implicates the need for interspecies hydrogen transfer during syntrophic 

butyrate metabolism. 

Here, I identified a membrane protein complex (Bt6; Figure 2) in S. wolfei cells 

grown syntrophically on butyrate that was not observed in membranes of S. wolfei cells 

grown axenically or in coculture on crotonate.  I identified peptides associated with an 

FeS oxidoreductase (Swol_0698 gene product), Etf alpha- and beta-subunits 

(Swol_0696-97 gene products) and those associated with a cytochrome b-linked [FeFe]-

hydrogenase (hydIIABC or  Swol_1925-27 gene products).  The subunit composition of 

the Bt6 complex suggests that it serves as the membrane input module for electrons 

derived from butyryl-CoA oxidation, which are then used to produce hydrogen. 
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Moreover, I was able to link reduction of tetrazolium red with hydrogen as electron 

donor to a membrane complex which contained peptides encoded by hydIIABC.  

Additionally, the differential expression of hydIIABC and Swol_0698 when S. wolfei 

was grown syntrophically on butyrate with M. hungatei or Dehalococcoides sp. argues 

strongly for the importance of the FeS oxidoreductase and hydIIABC in syntrophic 

butyrate metabolism. However, a role for formate in syntrophic butyrate metabolism 

cannot be excluded (Dong and Stams 1995; Schmidt et al. 2013; Stams and Dong 

1995). 

 Based on the evidence presented, I propose two models for reverse electron 

transfer during hydrogen-linked, syntrophic butyrate oxidation by S. wolfei (Figure 6).  

In the first model, (Figure 6A) the FeS oxidoreductase and hydIIABC gene products 

form a complex where electrons from butyryl-CoA are transferred to the integral 

membrane protein, FeS oxidoreductase (Swol_0698 gene product) by etfAB 

(Swol_0696-97) gene products.  Physical association between the FeS oxidoreductase, a 

presumed integral membrane protein, and cytochrome b (hydIIC or Swol_1927 gene 

product) would allow for direct transfer of electrons to the [FeFe]-hydrogenase 

(hydIIAB or Swol_1925-26 gene products).  I propose an alternative model (Figure 6B) 

in which electrons are again funneled to the membrane from butyryl-CoA oxidation to 

the FeS oxidoreductase via etfAB gene products.  In this model, however, the FeS 

oxidoreductase couples Etf oxidation to the reduction of menaquinone to menaquinol. 

Menaquinol would then be oxidized by cytochrome b (Swol_1927 gene product) in the 

membrane and cytochrome b would transfer the electrons to the hydIIAB gene products 

to form hydrogen. The hydIIAB gene products are predicted to be externally oriented.   
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Figure 6:  Two models for reverse electron transfer during syntrophic butyrate 
oxidation by S. wolfei. In both cases, electrons from butyryl-CoA dehydrogenase are 
transferred to the FeS oxidoreductase (Swol_0698) by electron transferring 
flavoproteins alpha and beta (Etfαβ). A. FeS oxidoreductase and hydrogenase form one 
complex. Electrons travel from FeS oxidoreductase through the physically adjacent 
cytochrome b to a membrane-anchored, outward-facing [FeFe]-hydrogenase.  B. FeS 
oxidoreductase and cytochrome b-linked [FeFe]-hydrogenase form separate complexes. 
Electrons from FeS oxidoreductase are used to reduce menaquinone with protons 
consumed outside the cell.  The cytochrome b-linked [FeFe]-hydrogenase oxidized 
menaquninol with protons released on the inside of the cell. This mechanism provides 
greater metabolic versatility for the cell as the menaquinone pool could interact with a 
hydrogenase (depicted here) or formate dehydrogenase depending on the metabolic 
needs of the cell.  ETF-α = electron transferring flavoprotein – alpha subunit 
(Swol_0697), ETF-β = electron transferring flavoprotein – beta subunit (Swol_0696), 
FeS oxidoreductase (Swol_0698), Cyt-B = cytochrome-b (Swol_1927), Hyd-α = HydII 
alpha subunit (Swol_1925), Hyd-β = HydII beta subunit (Swol_1926).  
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 In both models, proton consumption by hydrogenase would occur outside the 

cell thus allowing the use of a proton gradient to drive reverse electron transfer. The 

presence of a subunit of a sodium-transporting, two-sector ATPase (Swol_2384 gene 

product) suggests that the Bt6 complex described in the first model (Figure 6A) may be 

an ion pump. The inward movement of sodium or another ion could supply energy to 

drive reverse electron transfer. With the second model (Figure 6B), if menaquinone 

binds to the FeS oxidoreductase at the outside face of the membrane and menaquinol 

binds to cytochrome b at the inside face of the membrane, a reverse quinone-loop, net 

translocation of two protons from the outside to the inside of the membrane would 

occur which would supply additional chemiosmotic energy for reverse electron transfer. 

In either case, both models predict the use of the proton gradient for reverse electron 

transfer. 

 Our finding here that the Swol_0698 gene product, and peptides coded for by 

etfAB and hydIIABC were codetected in an approximately 162 kDa band (Bt6) could be 

explained by comigration of separate complexes rather than a single physical complex.  

The presence of two complexes linked by the menaquinone pool (model 2; Figure 6B) 

is attractive given the finding by Schmidt et al. (2013) that formate was the dominant 

interspecies electron carrier in cells of S. wolfei grown syntrophically on butyrate.  The 

energetics of formate production are much the same as for hydrogen production – 

though in principle the partner organism (in our system M. hungatei) would get a small 

increase in its share of free energy in a system based on interspecies formate transfer.  

The ability to use both hydrogen or formate as an interspecies electron carrier has been 

well documented (Dong and Stams 1995; Friedrich and Schink 1993; Jackson et al. 
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1999; Li et al. 2011; Luo et al. 2002; McInerney et al. 1979; McInerney et al. 1981; 

McInerney et al. 1981; McInerney et al. 2007; McInerney et al. 2009; McInerney et al. 

2008; Muller et al. 2010; Schink 1997; Schmidt et al. 2013; Schöcke and Schink 1997; 

Sieber et al. 2013; Stams and Dong 1995; Stams and Plugge 2009; Struchtemeyer et al. 

2011; Walker et al. 2012; Wallrabenstein and Schink 1994; Worm et al. 2011) though 

there is no known mechanism for switching between hydrogen or formate consumption.   

A system based around a reverse quinone-loop is an enticing way to explain this 

metabolic versatility of syntrophic organisms with respect to the preferred electron 

carrier.  Menaquinone, and its reduced form, menaquinol, are soluble in the lipophilic 

portion of the membrane bilayer and, as such, are freely diffusible in three-dimensional 

space around the membrane.  Depending on the metabolic conditions faced by the cell, 

menaquinol could interact with a membrane-bound formate dehydrogenase or 

membrane-bound hydrogenase.  This would allow flexibility for the organism to 

modulate interspecies electron carriers depending on the needs of the consortium.  In 

conditions where there is low cell-density, or a low density of methanogens relative to 

S. wolfei, intercellular distances would be greater between S. wolfei and cells of M. 

hungatei and formate transfer would be preferred over hydrogen transfer (Dong and 

Stams 1995).  In conditions where there is high cell-density, for example in late log 

phase, a hydrogen-based economy would be preferred by S. wolfei because there is a 

slight energetic advantage and intercellular distances between cells of S. wolfei and cells 

of M. hungatei are lower.  If this phenomenon is density dependent, it therefore is 

conceivable that there is an inflection point where a hydrogen based economy becomes 

more beneficial to the overall community and vice versa.  Moreover, hydrogen was 
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shown to be essential for syntrophic cooperation (Sieber et al. 2013) and high-cell-

density more closely mimics the natural environment of these associations.  

I did notice one particular finding, with respect to whole cell shotgun 

proteomics, which warrants further consideration.  Clustered regularly interspaced short 

palindromic repeats (CRISPR) are gene loci which confer adaptive immunity to 

microbial organisms.  Here, I observed a CRISPR associated helicase only under 

butyrate-degrading conditions.  Moreover, a relatively high number of CRISPR regions 

(6) were detected on the S. wolfei chromosome (Sieber et al. 2010).  In principle, the 

primary role of the CRISPR system is for immunity against viral nucleic acid attack.  

However, I am not aware of studies which indicate CRISPR specificity only against 

viral DNA, and recently extensive parallel gene transfer in archaea has been observed in 

CRISPR regions (Brodt et al. 2011).  In principle, a tight physical association between 

S. wolfei and M. hungatei would allow for a more efficient fatty acid oxidizing system 

and it is known DNA is an important component of biofilms (Gloag et al. 2013).  

Moreover, extracellular DNA has been shown to facilitate the organizational structure 

of biofilms (Gloag et al. 2013).  It seems reasonable, therefore, to suggest that the high 

number of CRISPR regions and the detection of the CRISPR helicase only during 

growth on butyrate signals physical associations between S. wolfei and M. hungatei, a 

topic which has not received attention. 
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Perspectives 

 Syntrophic associations, such as that of S. wolfei and M. hungatei, are essential 

for the global anaerobic carbon cycle.  Reverse electron transfer, alone, is not 

synonymous with syntrophy – however it is essential for syntrophic fatty-acid oxidation 

since electrons derived from acyl-CoA intermediates must be shifted to a potential at 

which hydrogen or formate production can occur.  The release of the sequenced and 

annotated genomes from several organisms capable of syntrophy (McInerney et al. 

2007; Plugge et al. 2012; Sieber et al. 2010) have advanced our understanding of 

reverse electron transfer in these organisms.  Here, codetection of an FeS 

oxidoreductase (Swol_0698 gene product) with Etf subunits, suggests these may 

complex together to form the electron input module and deliver electrons derived from 

butyryl-CoA oxidation to the membrane.  I propose two mechanisms for the reduction 

of protons to hydrogen based on our findings here.  The Etf subunits may complex with 

the Swol_0698 and hydIIABC gene products, forming a single physically-associated 

complex which catalyzes the reduction of protons to hydrogen as described earlier 

(Figure 6A).  Alternatively, preliminary evidence from our lab suggests menaquinone is 

reduced by hydrogen in membrane enrichments of S. wolfei (Kung et al, unpublished).  

In this mechanism, partitioning of proton consumption and release would allow 

chemiosmotic energy to be coupled to the shift in the redox potential of electrons 

derived from butyryl-CoA (Figure 6B). 
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Chapter 3:  Membrane protein complexes of the syntrophic fatty and 

aromatic acid-oxidizing bacterium Syntrophus aciditrophicus 
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Abstract 

The activated form of benzoate, benzoyl-CoA, is a central intermediate in the 

anaerobic decomposition of many aromatic ring-containing compounds.  Under 

physiological conditions, the oxidation of benzoate to acetate, carbon dioxide and 

hydrogen is an energy requiring process.  When hydrogen partial pressures or formate 

concentrations are kept extremely low by hydrogen or formate consuming partner 

organisms, benzoate oxidation becomes favorable.  This relationship is known as 

syntrophy.  The production of hydrogen (E’ = -260 mV at 1 Pa) or formate (E’ = -290 

mV at 1 µM) with electrons derived from the high potential donor, glutaryl-CoA (E0’ = 

-10 mV), is an essential feature of syntrophic benzoate oxidation by Syntrophus 

aciditrophicus and requires energy to overcome a ∆E of 250-280 mV.  This process is 

known as reverse electron transfer and the process is not well understood.  The presence 

of genes coding for electron confurcating acyl-CoA dehydrogenase provide a candidate 

strategy, but it is unclear from where the reduced ferredoxin is derived.  The genome of 

S. aciditrophicus was found to contain a gene cluster coding for an Rnf-like complex.  

Rnf is known to couple the reduction of NADH with electrons derived from ferredoxin 

to the formation of a sodium ion gradient in Acetobacter woodii.  Here, I hypothesized 

that reverse electron transfer is accomplished by an Rnf-like complex in S. 

aciditrophicus.  I used blue-native gel electrophoresis to separate membrane protein 

complexes and peptide mass fingerprint analysis to determine the proteins present in 

each membrane complex.  To test for the ability of S. aciditrophicus membrane 

fractions to catalyze the predicted Rnf-like activity, I looked for the ability of S. 

aciditrophicus to reduce the low potential viologen dyes benzyl viologen (E0’ = -360 
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mV) or methyl viologen (E0’ = -460 mV) with electrons derived from NADH (E0’= -

320 mV).  I also partially purified the Rnf-like activity from solubilized membrane 

fractions of S. aciditrophicus using size exclusion chromatography.  A total of 32 

membrane complexes were identified from membrane fractions of S. aciditrophicus 

grown in pure culture on either crotonate or crotonate + benzoate, or in methanogenic 

coculture grown on either crotonate, benzoate or cyclohexane carboxylate.  Peptide 

mass fingerprint analysis revealed the presence of peptides derived from an Rnf-like 

complex in membrane complexes.  This is predicted to be an important source of 

reduced ferredoxin for electron confurcating acyl-CoA dehydrogenases.  Additionally, 

peptides derived from a sodium-dependent ATP synthase and peptides from a sodium-

translocating glutaconyl-CoA decarboxylase were detected.  Both are predicted to be 

linked to the formation of a sodium ion gradient and argue for the importance of sodium 

in S. aciditrophicus bioenergetics.  Peptides derived from the Syn_02638 gene product, 

which encodes a putative FeS oxidoreductase, were detected and were codetected with 

peptides derived from glutaconyl-CoA decarboxylase and/or peptides derived from 

acyl-CoA dehydrogenases.  In this study, I also observed higher activity for an Rnf-like 

activity in S. aciditrophicus cells grown syntrophically, and peptides derived from Rnf 

subunits were detected in partially purified membrane fractions catalyzing an Rnf-like 

activity.  Taken together, these data argue for the importance of an Rnf-like complex as 

a source for reduced ferredoxin for confurcating acyl-CoA dehydrogenases or for the 

production of hydrogen/formate by ferredoxin dependent hydrogenase/formate 

dehydrogenase enzymes.  
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Introduction 

 In the absence of other terminal electron accepting processes, complex organic 

matter is degraded to carbon dioxide and methane (Achtnich et al. 1995).  A variety of 

fatty and aromatic acid and alcohol intermediates are produced as end products of 

fermentative bacteria that must be converted to methanogenic substrates (Crable et al. 

2011; McInerney et al. 2009; McInerney et al. 2008).  Degradation of fatty and 

aromatic acids is essential for efficient methane production from complex waste streams 

(McInerney et al. 2009; McInerney et al. 2008).  Many aromatic ring-containing 

substrates are metabolized to benzoyl-CoA prior to ring cleavage.  Therefore, the 

activated form of benzoate, benzoyl-CoA, is a central intermediate in the anaerobic 

decomposition of many aromatic ring-containing compounds (Evans and Fuchs 1988).   

 Syntrophus aciditrophicus, a member of the Deltaproteobacteria class of 

microorganisms is known to degrade benzoate  in syntrophic cocultures (Jackson et al. 

1999; McInerney et al. 2007) and has been shown to couple reduction of benzoate to 

cyclohexane carboxylate with the degradation of crotonate (Mouttaki et al. 2008).  

Initial studies with S. aciditrophicus grown on benzoate in pure culture with no electron 

donor (e.g. crotonate), suggested the organism fermented only 3.9% of benzoate 

supplied in pure culture (Jackson et al. 1999).  A later study found that S. aciditrophicus 

was able to ferment benzoate supplied at a starting concentration of 1.6 mM to acetate 

(1.5 moles per mole benzoate) and cyclohexane carboxylate (0.5 moles per mole 

benzoate) (Elshahed and McInerney 2001).   

Hydrogen accumulation to approximately 100 Pa was noted in both studies 

(Elshahed and McInerney 2001; Jackson and McInerney 2002).  This, coupled with the 
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observation that the final concentration of benzoate in benzoate fermenting pure 

cultures was six-fold higher than in benzoate-oxidizing syntrophic cocultures, that 

hydrogen inhibited the fermentation of benzoate at 10.2 kPa and that S. aciditrophicus 

was unable to completely metabolize benzoate to acetate, carbon dioxide and hydrogen 

in pure culture (Elshahed and McInerney 2001) reflect the importance of hydrogen 

consumption during benzoate degradation.  Furthermore, the conversion of cyclohexane 

carboxylate to acetate, carbon dioxide, hydrogen and formate occurs only when a 

hydrogen and/or formate-using microorganism is present (Elshahed et al. 2001).   

 The initial step in syntrophic benzoate oxidation, activation to benzoyl-CoA, is 

catalyzed by an AMP-forming benzoate CoA ligase (James et al unpublished).  The 

aromatic ring is then reduced by an ATP-independent class II benzoyl-CoA reductase to 

cyclohexa-1,5-diene-1-carboxyl-CoA (Kung et al. 2009; Loffler et al. 2011).  

Cylohexa-1,5-diene-1-carboxyl-CoA serves as a branch point between the two known 

pathways for benzoate degradation.  In Rhodopseudomonas palustris, cyclohexa-1,5-

diene-1-carboxyl-CoA is reduced to cyclohex-1-ene-1-carboxyl-CoA, which is 

degraded to pimelyl-CoA by a series of reactions resembling fatty-acid beta oxidation 

(Egland et al. 1997; Pelletier and Harwood 2000).  In Thauera aromatica, cyclohexa-

1,5-diene-1-carboxyl-CoA is not further reduced like in R. palustris, but instead is 

degraded to 3-hydroxypimelyl-CoA by a series of reactions resembling fatty-acid beta 

oxidation (Laempe et al. 1998; Laempe et al. 1999).  3-hydroxypimelyl-CoA is then 

beta-oxidized to acetyl-CoA (Laempe et al. 1998; Laempe et al. 1999). 

The genome of S. aciditrophicus contains genes coding for the enzymes 

necessary for benzoate degradation via the pathway analogous to T. aromatica 
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(McInerney et al. 2007) and recent studies suggest benzoate fermentation proceeds via 

this pathway in S. aciditrophicus (Kung et al. 2009; Loffler et al. 2011; Peters et al. 

2007).  Moreover, the syntrophic degradation of cyclohexane carboxylate to acetate, 

carbon dioxide, hydrogen and/or formate likely involves the activation of cyclohexane 

carboxylate to its CoA derivative followed by two consecutive oxidation-reduction 

reactions converting cyclohexane-1-carboxyl-CoA to cyclohexa-1,5-diene-1-carboxyl-

CoA (Kung et al. 2013). The latter compound is believed to be degraded by the same 

enzymes that metabolize this compound during benzoate metabolism (Kung et al. 

unpublished data).   

A challenge for S. aciditrophicus, then, is the production of hydrogen or formate 

with electrons derived from glutaryl-CoA, whose midpoint redox potential is about E’ = 

-10 mV compared to a redox potential of about E’ = -260 mV for the H+/H2 couple at 

one Pascal hydrogen (Elshahed et al. 2001; Kuntze et al. 2008; Peters et al. 2007).  The 

second enigma is how reduced ferredoxin is made.  None of the redox reactions 

involved in crotonate, benzoate or cyclohexane-1-carboxylate metabolism are known to 

produce reduced ferredoxin.  Rather, if the acyl-CoA dehydrogenases involved in 

glutaryl-CoA, cyclohex-1-ene-1-carboxyl-CoA and cyclohexane-1-carboxyl-CoA 

oxidation formed during benzoate (for glutaryl-CoA) or cyclohexane-1-carboxylate (all 

three compounds) metabolism involved electron bifurcation, then reduced ferredoxin 

would be required for each reaction. 

The genome of S. aciditrophicus contains genes predicted to code for an Rnf-

like complex analogous to that involved in nitrogen fixation by Rhodobacter sp. 

(McInerney et al. 2007).  This complex is detected in the genome of the 
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phylogenetically related syntrophic propionate-oxidizing bacterium Syntrophobacter 

fumaroxidans strain MPOB (Plugge et al. 2012). In fermentative anaerobes, Rnf 

couples the oxidation of ferredoxin to the reduction of NAD+ to NADH yielding energy 

in the form of a sodium gradient (Biegel et al. 2011; Muller et al. 2008).  It is thought, 

however, that in syntrophic bacteria, Rnf-like complexes function to use the sodium 

gradient to drive the unfavorable oxidation of NADH coupled to the reduction of 

ferredoxin (McInerney et al. 2007).  The low potential of ferredoxin would allow 

thermodynamically favorable reduction of protons to hydrogen and/or 

thermodynamically favorable reduction of carbon dioxide to formate.  Also, the reduced 

ferredoxin could be used to drive electron bifurcation or biosynthetic processes such as 

the synthesis of pyruvate from acetyl-CoA and CO2. 

In this study, we identify membrane protein complexes in S. aciditrophicus 

grown axenically on crotonate and in methanogenic coculture on crotonate and 

benzoate involved in reverse electron transfer and energy conservation.  I further 

demonstrate that S. aciditrophicus has an Rnf-like activity that could produce reduced 

ferredoxin needed for electron bifurcation and biosynthesis. 

 

Materials and Methods 

Cell Culture, growth and harvesting 

Syntrophus aciditrophicus strain SB (ATCC# 700169) in pure-culture and in 

coculture with Methanospirillum hungatei strain JF1 (ATCC# 27890) were obtained 

from our culture collection.  Cultures were grown in a defined basal medium with an 

80% N2:20% CO2 gas phase with crotonate (20 mM), benzoate (12 mM), crotonate (20 
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mM) + benzoate (12 mM), or cyclohexane carboxylate (10 mM) as substrate.  The basal 

medium is described elsewhere (Tanner 2002) and was composed of the following salts 

in final concentration:  sodium chloride (0.8 mg/L), ammonium chloride (1 mg/L), 

potassium chloride (1 mg/L), potassium phosphate (0.1 mg/L) magnesium sulfate 

heptahydrate (0.2 mg/L), calcium chloride dihydrate (0.04 mg/L).  The basal medium 

was composed of the following vitamins in final concentration:  pyridoxine 

hydrochloride (0.1 mg/L), thiamine hydrochloride (0.05 mg/L), riboflavin (0.05 mg/L), 

calcium pantothenate (0.05 mg/L), thioctic acid (0.05 mg/L), para-aminobenzoic acid 

(0.05 mg/L), nicotinic acid (0.05 mg/L), vitamin B12 (0.05 mg/L), 

mercaptoethanesulfonic acid (0.05 mg/L), biotin (0.02 mg/L), and folic acid (0.02 

mg/L).  The basal medium was composed of the following metals in final concentration:  

nitrilotriacetic acid (0.01 mg/L), manganese (II) sulfate monohydrate (0.005 mg/L), 

ammonium iron (II) sulfate hexahydrate (0.004 mg/L), cobalt (II) chloride hexahydrate 

(0.001 mg/L), zinc sulfate heptahydrate (0.001 mg/L), copper (II) chloride dihydrate 

(1•10-5 mg/L), nickel (II) chloride (1•10-5 mg/L ), sodium molybdate dihydrate (1•10-5 

mg/L ), sodium selenite (1•10-5 mg/L ) and sodium tungstate (1•10-5 mg/L ). 

One liter of sterile medium in a sealed anaerobic 2-L bottle was inoculated with 

200 ml of S. aciditrophicus in pure culture or coculture grown in the same medium.  All 

cultures except for those grown syntrophically on cyclohexane carboxylate were 

transferred a minimum of three times as one-liter cultures prior to harvesting.  Cultures 

grown on cyclohexane carboxylate were established with a 200 ml inoculum from 

benzoate grown coculture and this was transferred at least once before harvesting.  

Cultures were incubated at 370C and growth was monitored via measuring the OD600 
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with time.  Substrate utilization was monitored via high-pressure liquid chromatography 

(Sieber et al. 2010).  The cultures were harvested when 50 to 70% of the substrate was 

used.  Cells were harvested anaerobically in 1-L centrifuge vessels via centrifugation at 

7,000 • g for 20 min at 4oC. The cells were washed twice by centrifugation and 

resuspension of the pellet with anoxic 50 mM potassium phosphate buffer (pH of 7.2) 

as described above.  Cell pellets were stored frozen in liquid nitrogen. 

Cells of S. aciditrophicus grown in coculture were separated from M. hungatei 

by Percoll gradient centrifugation.  Frozen cell pellets were thawed and suspended in a 

6:3 ratio of standard isotonic Percoll to 50 mM potassium phosphate buffer (pH of 7.2) 

which was prepared anaerobically.  Cell suspensions were transferred into sealed 

anaerobic disposable centrifuge tubes and centrifuged at 20,000 • g, for 40 min at 40C 

(Beaty et al. 1987; Sieber et al. 2013).  Contamination of S. aciditrophicus cells with M. 

hungatei cells was determined microscopically and fractions containing less than one 

M. hungatei cell per 100 S. aciditrophicus cells were pooled.  Pooled fractions were 

diluted 500-fold in 50 mM potassium phosphate buffer (pH 7.2) and centrifuged at 

7,000 • g for 20 minutes to dilute out remaining Percoll.  After separation, cells were 

used immediately. 

 

Cell lysis, cell free extracts and membrane purification 

Cells were lysed using French pressure and membrane fractions were obtained 

by ultracentrifugation.  Cell pellets of purified S. aciditrophicus were resuspended in 

either 4 ml of lysis buffer for blue-native polyacrylamide gel electrophoresis (described 

below) or 4 ml of potassium phosphate (pH 7.2).  Cells were lysed by passage through a 
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French pressure cell at an internal pressure of 138,000 kPA.  After one pass, unbroken 

cells and cell debris were removed by centrifugation at 8,000 • g for two min at ambient 

temperature in sealed cryovial tubes.  The resulting supernatant was decanted into 

disposable polyallomer centrifuge tubes and the soluble and insoluble fractions were 

separated by ultracentrifugation at 132,000 • g, 60 min, 40C.  The supernatant was 

decanted and the insoluble pellet was washed by resuspending in 50 mM potassium 

phosphate (pH 7.2) and ultracentrifuged as above.   

The supernatant was decanted and the remaining pellet (membrane fraction) was 

resuspended in approximately 250 µl of anaerobically prepared lysis buffer containing 

0.5%  n-dodecyl-β-maltoside (DDM) to obtain the solubilized membrane fraction or in 

250 µl of potassium phosphate (pH 7.2) to obtain a suspension of membrane vesicles.  

Protein quantification was done using the Pierce BCA assay.  Solubilized membrane 

fractions were stored in small (25 µl) aliquots at -200C in sealed microcentrifuge tubes.  

Suspensions of membrane vesicles were stored in sealed tubes on ice until used for 

enzyme activity assays (see below).  All manipulations were done in an anaerobic 

chamber and all buffers except lysis buffer, were boiled and degassed with 80% N2:20% 

CO2.  Lysis buffer was heated to 500C and degassed with 80% N2:20% CO2.  

Centrifugation and ultracentrifugation steps were performed in sealed anaerobic tubes. 

 

Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) 

 Blue native polyacrylamide gel electrophoresis (BN-PAGE) was usually 

conducted aerobically.  S. aciditrophicus cells were obtained from pure cultures or 

separated from M. hungatei cells by Percoll separation (see cell culture, growth and 
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harvesting). The purified S. aciditrophicus cells were resuspended in 4 ml of lysis 

buffer described elsewhere (Swamy et al. 2006)., which contained 20 mM 2,2-

Bis(hydroxymethyl)-2,2',2"-nitrilotriethanol (Bis-tris), ε-aminocaproic acid (500 mM), 

NaCl (20 mM), ethylenediaminetetraacetic acid (EDTA)(10 mM) and glycerol (10% 

v/v). The pH of the lysis buffer was adjusted to within 0.2 pH units of pH 7.2 with 1 N 

hydrochloric acid.  The pH was further adjusted to pH 7.2 with 0.1 N hydrochloric acid. 

BN-PAGE was conducted using the methods of Schägger and von Jagow 

(Schagger and von Jagow 1991) and Swamy et al. (Swamy et al. 2006) with the 

following modifications.  Precast 4-16% polyacrylamide Bis-tris gels (Life 

Technologies™) were used.  The cathode buffer (Swamy et al. 2006) was prepared as a 

10X stock solution containing 15 mM Bis-tris, 50 mM tricine, and 0.02% Coomassie 

blue G250 (w/v).  The anode buffer (Swamy et al. 2006) was prepared as a 10X stock 

solution containing 50 mM Bis-tris.  Both buffers were adjusted to within 0.2 pH units 

of pH 7.0 with 1 N hydrochloric acid and then adjusted to pH 7.0 with 0.1 N 

hydrochloric acid.  Buffers were stored at 4oC.  Prior to use, buffers were diluted 1:10 

with deionized H2O. The solubilized membrane fraction (ranging from 2 to 35 µg 

protein) was thawed and mixed with equal parts (v:v) of BN-PAGE sample buffer.  BN-

PAGE sample buffer was prepared by diluting one milliliter of cathode buffer, 

described above, with seven milliliters of deionized nanopure water and two milliliters 

of electrophoresis grade glycerol (≥ 99%).  Gels were run at a constant 130 V for 

several hours until the dye front migrated to the bottom of the gel.  Gels were fexed and 

destained in a solution containing 50% methanol (v/v) and 7% acetic acid (v/v), washed 

with nanopure water, and then stained with either Imperial stain (ThermoFisher), 
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SilverStain (Pierce) or SyproRuby (Thermofisher) according to manufacturer’s 

instructions. 

Tryptic digests and peptide mass fingerprinting 

 Predominant protein bands and protein bands that were unique to a given growth 

condition were selected for proteomic analysis. Protein bands of interest were first 

manually excised, washed and digested with trypsin. Gel slices were washed first in a 

solution of 50 mM sodium bicarbonate and 50% acetonitrile (v/v) in nanopure water 

and then in 100% acetonitrile.  This step was performed three times.  Disulfide bonds 

were reduced by incubation of the gel slice in 10 mM dithiothreitol (DTT) at 60°C for 1 

hr. Free sulfhydryl bonds were blocked by incubating the gel slice in 50 mM 

iodoacetamide at 45°C for 45 min in the dark, followed by washing three times in 

alternating solutions of 100 mM sodium bicarbonate in nanopure water and 100% 

acetonitrile. The slices were dried and then individually incubated in a 20 ng/μl solution 

of porcine trypsin (Promega, Madison, WI, USA) for 45 min at 4°C, followed by 

incubation at 37°C for 4 to 6 hr in the same solution. Afterwards, the solution with the 

digested protein was transferred into a fresh collection tube. The gel slice was then 

incubated for 10 min in a solution of 50% acetonitrile:1% trifluoroacetic acid. The 

solution was removed and combined with the previously collected digested protein 

solutions from that gel. The gel was washed with a solution of 50% acetonitrile:1% 

trifluoroacetic acid a total of three times. The solution containing the digested gel 

peptides was then spun to dryness using a rotary evaporator at 300C. 

  Peptide sequencing was accomplished by colleagues at Univ. of California, Los 

Angeles, with a nano-liquid chromatography tandem mass spectrometer (nano LC-
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MS/MS) (QSTAR Pulsar XL, Applied Biosystems, Foster City, CA, USA) equipped 

with nanoelectrospray interface (Protana, Odense, Denmark) and LC Packings 

(Sunnyvale, CA, USA) nano-LC system. The nano-LC was equipped with a homemade 

precolumn (150 × 5 mm) and analytical column (75 × 150 mm) packed with Jupiter 

Proteo C12 resin (particle size 4 mm, Phenomenex, Torrance, CA, USA). The dried 

digested peptides were resuspended in 1% formic acid solution. Six microliters of the 

sample solution was loaded to the precolumn for each LC-MS/MS run. The precolumn 

was washed with the loading solvent (0.1% formic acid) for 4 min before the sample 

was injected onto the liquid chromatography column. The eluents used for liquid 

chromatography were 0.1% formic acid (solvent A) and 95% acetonitrile containing 

0.1% formic acid. The flow rate was 200 nl/min, and the gradient used was: 3% B to 

35% B in 72 min, 35% B to 80% B in 18 min, followed by 80% B for 9 min. The 

column was then equilibrated with 3% B for 15 min prior to the next run. Electrospray 

ionization was performed using a 30 mm (internal diameter) nanobore stainless steel 

online emitter (Proxeon, Odense, Denmark) and a voltage set at 1900 V. Peptide 

sequences were searched against the NCBI genomes for S. wolfei, S. aciditrophicus and 

M. hungatei using MASCOT software versions 2.1.0 and 2.1.04 (Matrix Science, 

London, UK). Peptides were required to have a rank = 1 and a score >18. 

Enzyme Assays 

 Rnf-like and NADH:quinone oxidoreductase (Nqo)-like activities, hydrogenase 

and formate dehydrogenase were assayed using suspensions of membrane vesicles (see 

cell lysis, cell free extracts and membrane purification) of S. aciditrophicus grown as 

described (see cell culture, harvesting and separation).  Except where indicated, the 
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vesicles were not incubated in the presence of dodecyl maltoside.  To test for the ability 

of membrane suspensions to catalyze Rnf-like reverse electron transfer, I followed 

NADH (E0’ = -320 mV) dependent reduction of benzyl viologen (E0’ = -360 mV) or 

methyl viologen (E0’ = -460 mV).  I tested for the ability of the membrane fraction to 

catalyzed the more thermodynamically favorable oxidation of benzyl viologen with 

NAD+ as well as for NADH dependent reduction of 2,6-dichlorophenolindophenol to 

test for Nqo-like activities. 

Assays were performed in either sealed anaerobic cuvettes in volumes of 700-

1,200 µl or in volumes of 280-320 µl in a 96-well plate in the anaerobic chamber.  

Reaction buffers contained indicator dyes at final concentrations of either 1 mM benzyl 

or methyl viologen or 200 µM 2,6-dichlorophenolindophenol.  Benzyl or methyl 

viologen was pre-reduced with sodium dithionite to an OD600 (described below) of 

either 0.2 or 1.2 absorbance units to monitor reduction or oxidation of the indicator, 

respectively.  Except in cases where hydrogen served as the electron donor, reactions 

were started with the addition of NADH, NAD+ or formate to 1 mM from a 100 mM 

stock solution.  In assays where hydrogen served as the electron donor, cuvettes were 

first pressurized to 138 kPa with hydrogen and the assays were started with the addition 

of suspensions of membrane vesicles.  A minimum of five assays were conducted for 

each activity and the amount of protein was varied (from 2-40 µg protein per reaction).  

Where indicated, suspensions of membrane vesicles were solubilized with the detergent 

dodecyl maltoside to 0.5%. 

The reduction of benzyl viologen, methyl viologen or 1,6-dichlorophenol 

indophenol was monitored spectrophotometrically at an optical density of 600 nm 
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(OD600) with either a Shimadzu spectrophotometer or a 96-well plate reader.  Graphs of 

OD600 versus time were plotted, and activity measurements were taken from the linear 

portion of the graph for each assay.  Total indicator oxidized or reduced was calculated 

using the following molar extinction coefficients (ɛ) of the indicators as follows:  ɛ = 

7,800 mM • cm-1 for benzyl viologen, ɛ = 8,250 mM • cm-1 for methyl viologen and ɛ = 

21,000 mM • cm-1
 for 2,6-dichlorophenolindophenol.  Specific activities were calculated 

from these values in the form of µmol • min-1 • mg-1 with the amount of protein 

determined as detailed before (see cell lysis, cell free extracts and membrane 

purification). 

 

Size exclusion protein enrichment and SDS-PAGE 

 A total of 500-1,500 µg of protein from S. aciditrophicus membrane vesicles 

from cells grown in pure culture on crotonate suspended in 250 µl potassium phosphate 

(pH 7.2) were solubilized with the addition of dodecylmaltoside to 0.5% and separated 

chromatographically  

on a GE Superdex 200 gel filtration/size exclusion column in an anaerobic chamber.  

Potassium phosphate (50 mM) (pH 7.2) with the addition of dodecyl maltoside to 0.1% 

served as the elution buffer.   Hydrogenase activity was tested as before (see enzyme 

assays) for each fraction using 200 µl of 1 mM benzyl viologen in 50 mM potassium 

phosphate (pH 7.2) as the reaction buffer and ambient hydrogen as the electron source.  

Each reaction was started with the addition of 10 µl aliquots from the corresponding 

fraction.  Rnf-like activity was analyzed in essentially the same manner, though the 

reaction was started with the addition of 10 µl of 100 mM NADH in 50 mM potassium 
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phosphate (pH 7.2).  Assays were conducted in the anaerobic chamber in 7 ml 

fractionation tubes. 

 Small, 35 µl, aliquots of fractions testing positive for the Rnf-like activity were 

electrophoretically separated on a 4-16% acrylamide gradient gel via BN-PAGE as 

previously described (see blue-native polyacrylamide gel electrophoresis), or pooled 

and concentrated in an Amicon filtration system under nitrogen atmosphere with a 

3,000 kDa molecular weight cutoff filter.  Aliquots of pooled, concentrated fractions 

and unconcentrated fractions were resuspended in Laemmli sample buffer (Bio-Rad).  

For sodium dodecyl sulfate polyacrylamide gel electrophoresis, samples were heated for 

thirty seconds in five- to ten-second intervals and electrophoretically separated on a 

polyacrylamide gel containing 12% polyacrylamide, 375 mM 

tris(hydroxymethyl)aminomethane (Tris), 0.1% sodium dodecyl sulfate with the 

addition of 100 µl 10% ammonium persulfate as catalyst per 10 ml gel buffer.  

Polymerization was started with the addition of 8 µl tetramethylenediamine per 10 ml 

gel buffer and the gel was cast using our casting apparatus (Hoeffer) with 1 mm spacers.  

The gel was run at 130 V with a running buffer containing 50 mM Tris, 250 mM 

glycine and 0.1% sodium dodecyl sulfate until the dye front was within 3-5 mm of the 

bottom of the gel.  The gel was fixed, washed and stained as discussed previously (see 

blue-native polyacrylamide gel electrophoresis). 

 

In‐gel trypsin digestion of chromatographically separated proteins with reduction and 

alkylation 
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Protein bands were excised from the gel and sent to the University of Oklahoma 

Health Sciences Center for digestion by trypsin.  Excised bands were cut into pieces and 

fully destained with 25 mM ammonium bicarbonate in 50% acetonitrile in ultrapure 

water (v/v).  Destaining solution was removed and gel pieces were reduced by adding 

55 mM Tris[2‐carboxyethyl]phosphine (Thermo Fisher 89671E), 25 mM ammonium 

bicarbonate in ultra‐pure water and incubating at 60°C for 10 minutes. Reducing buffer 

was removed and gel pieces were alkylated by adding 100 mM iodoacetamide (Thermo 

Fisher 89671F), 25 mM ammonium bicarbonate in ultra‐pure water and incubating at 

room temperature, in the dark, for 1 hour. After removing alkylation buffer, the gel 

pieces were washed twice with 25 mM ammonium bicarbonate in 50% acetonitrile in 

ultra-pure water (v/v) then dehydrated with 100% acetonitrile. After acetonitrile was 

removed and gel pieces allowed to dry, 100 ng of trypsin was added in 10 µl of 25 mM 

ammonium bicarbonate in ultra‐pure water. The gel pieces were allowed to swell and an 

additional 25 µl of 25 mM ammonium bicarbonate in ultra‐pure water was added to 

cover. Gel pieces were incubated at 30°C overnight (16 hours). The digest solution was 

removed to a new tube and 25 µl of 100% acetonitrile was added to the gel pieces. Once 

gel pieces were dehydrated, the acetonitrile was removed and added to the tube 

containing the digest solution. The digest solution containing peptides was then 

completely dried using a speed‐vac. 

 

Peptide mass fingerprint analysis of partially purified fractions 

 Sequence analysis for bands obtained by SDS-PAGE (described above) was 

performed by the University of Oklahoma Health Sciences Center Proteomics Core 
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Facility.  Samples were analyzed using a Dionex Ultimate 3000 nanoscale HPLC 

system connected to Applied Biosystems QSTAR Elite mass spectrometer.  Peptides 

were separated on a C18 column consisting of 3-micron particles packed in a column of 

75 microns internal diameter by 150 mm length.  Collected data were submitted to a 

MASCOT search using the University of Oklahoma Health Sciences Center Proteomics 

Core Facility’s in house NCBInr database to identify peptides present in the original 

sample.  Full details regarding the peptide mass fingerprint analysis conducted on 

partially purified protein fractions are available from the University of Oklahoma 

Health Sciences Center Proteomics Core Facility, 975 NE 10th Street, BRC1106, 

Oklahoma City, OK   73104.  

 

Results 

 

Protein complexes identified from S. aciditrophicus membrane enrichments 

 During the syntrophic oxidation of benzoate and cyclohexane carboxylate by S. 

aciditrophicus, electrons derived from acyl-CoA intermediates of benzoate and 

cyclohexane carboxylate oxidation are at a relatively high midpoint redox potential 

relative to hydrogen or formate.  Kung and colleagues (2013) speculated that the 

thermodynamically favorable reduction of NAD+ by reduced ferredoxin provides 

energy for the reduction of NAD+ with electrons derived from these intermediates in a 

process known as electron confurcation.  However, the source of reduced ferredoxin 

remains unclear.  The genome of S. aciditrophicus was found to contain genes encoding 
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a membrane bound Rnf-like complex which could function to use ion gradients to drive 

the reduction of ferredoxin with electrons derived from NADH. 

To identify membrane bound protein complexes, solubilized membrane 

fragments S. aciditrophicus were electrophoretically separated using single dimension 

blue-native polyacrylamide gel electrophoresis (BN-PAGE).  A total of 32 membrane 

complexes (Figure 7) were detected from the five growth conditions.  I was able to  
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Figure 7:  Separation of membrane protein complexes by blue-native 
polyacrylamide gel electrophoresis (BN-PAGE).  Membrane fractions were 
electrophoretically separated using non-denaturing BN-PAGE.  A total of 32 complexes 
were detected.  Six complexes were detected during growth in pure culture on 
crotonate, eight complexes were detected during growth in pure culture on crotonate + 
benzoate, seven complexes were detected during growth in coculture on crotonate, 
seven complexes were detected during growth in coculture on benzoate and five 
complexes were detected during growth in coculture on cyclohexane carboxylate.  
Corresponding apparent molecular weight (MWapp) for each band is given in Table 5. 
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Table 5: Peptides detected from non-denaturing blue-native PAGE separation of 
solubilized S. aciditrophicus membranes.  Observed bands were excised, digested 
with trypsin and peptides sequenced by peptide mass fingerprint analysis.  Unique 
peptides correspond to the number of unique peptides detected by peptide mass 
fingerprint analysis from the respective band.  Peptides were identified by a MASCOT 
search using the NCBInr database.  Scores represent the score returned by MASCOT.  
TMH = predicted transmembrane helices, MWapp apparent molecular weight for the 
indicated band, MWp = molecular weight of the predicted amino acid sequence for the 
respective locus tag, pI = isoelectric point of the predicted amino acid sequence for the 
respective locus tag. 
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Band # 
(MWapp) 

Locus Tag Annotation Unique 
Peptides 

Score TMH Signal 
Peptide 

MWp pI 

CroPC1 

(731 kDa) 

Syn_00547 ATP synthase delta chain 6 181 No No 20 8.7 

Syn_03116 unknown function 4 153 Yes Yes 48 4.4 

Syn_00544 ATP synthase beta chain 3 89 No No 51 4.5 

Syn_00198 outer membrane porin protein 2 63 Yes Yes 47 5.2 

Syn_00549 ATP synthase B chain 2 60 Yes No 19 8.9 

Syn_00545 ATP synthase gamma chain 2 58 No No 33 6.6 

CroPC2 

(569 kDa) 

Syn_03116 unknown function 4 203 Yes Yes 48 4.4 

Syn_00546 ATP synthase alpha chain 7 128 No No 55 5.2 

Syn_00198 outer membrane porin protein 2 94 Yes Yes 47 5.2 

Syn_01156 ATP-dependent protease La 5 75 No No 93 4.9 

Syn_00063 DNA-directed RNA polymerase beta' 

chain 

3 68 No No 154 8.2 

Syn_00846 transmembrane symporter 2 60 Yes Yes 53 9.8 

Syn_02772 proton translocating pyrophosphatase 2 55 Yes No 72 5.3 

Syn_01662 Rnf, subunit C 2 42 Yes Yes 34 8.8 

Syn_02770 proton translocating pyrophosphatase 3 34 Yes Yes 87 5.0 
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CroPC3 

(481 kDa) 

Syn_03116 unknown function 5 190 Yes Yes 48 4.4 

Syn_00897 Inosine-5'-monophosphate 

dehydrogenase 

6 159 No No 53 7.6 

Syn_03223 chaperonin GroEL , truncated 4 101 No No 58 4.7 

Syn_01662 Rnf, subunit C 3 87 Yes Yes 34 8.8 

Syn_02772 proton translocating pyrophosphatase 2 67 Yes No 72 5.3 

Syn_02770 proton translocating pyrophosphatase 3 40 Yes Yes 87 5.0 

CroPC4 

(337 kDa) 

Syn_02772 proton translocating pyrophosphatase 3 116 Yes No 72 5.3 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

4 105 No No 59 5.6 

Syn_02770 proton translocating pyrophosphatase 2 104 Yes Yes 87 5.0 

Syn_03116 unknown function 4 90 Yes Yes 48 4.4 

Syn_00546 ATP synthase alpha chain 2 37 No No 55 5.2 

CroPC5 

(262 kDa) 

Syn_01654 BamA 6 284 No No 43 6.7 

CroPC6 

(152 kDa) 

Syn_00480 Glutaconyl-CoA decarboxylase 6 243 No No 42 4.9 

Syn_02772 proton translocating pyrophosphatase 4 159 Yes No 72 5.3 

Syn_02638 FeS oxidoreductase 5 137 Yes No 79 5.4 
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Syn_01303 Membrane protein, unknown function 2 94 Yes No 15 4.8 

Syn_02770 proton translocating pyrophosphatase 2 74 Yes Yes 87 5.0 

Syn_01653 putative enoyl-CoA hydratase 3 63 No No 28 5.4 

Syn_02157 argininosuccinate synthase 2 43 No No 45 5.1 

Syn_03002 Membrane protein, unknown function 2 23 Yes Yes 22 9.7 

CroBz1 

(732 kDa) 

Syn_00546 ATP synthase alpha chain 21 424 No No 55 5.2 

Syn_00547 ATP synthase delta chain 7 183 No No 20 8.7 

Syn_03116 unknown function 4 126 Yes Yes 48 4.4 

Syn_00549 ATP synthase B chain, sodium ion 

specific 

3 111 Yes No 19 8.9 

Syn_00544 ATP synthase beta chain 6 110 No No 51 4.5 

Syn_00198 outer membrane porin protein 3 62 Yes Yes 47 5.2 

Syn_00545 ATP synthase gamma chain 2 50 No No 33 6.6 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

2 41 No No 59 5.6 

Syn_02772 proton translocating pyrophosphatase 2 24 Yes No 72 5.3 

CroBz2 

(580 kDa) 

Syn_00546 ATP synthase alpha chain 15 229 No No 55 5.2 

Syn_03116 unknown function 4 221 Yes Yes 48 4.4 
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Syn_00198 outer membrane porin protein 8 219 Yes Yes 47 5.2 

Syn_00544 ATP synthase beta chain 4 96 No No 51 4.5 

Syn_00547 ATP synthase delta chain 4 86 No No 20 8.7 

Syn_02772 proton translocating pyrophosphatase 3 70 Yes No 72 5.3 

Syn_02770 proton translocating pyrophosphatase 3 57 Yes Yes 87 5.0 

Syn_01156 ATP-dependent protease La 3 40 No No 93 4.9 

Syn_02074 acriflavin resistance plasma membrane 

protein 

3 33 Yes Yes 117 7.7 

CroBz3 

(451 kDa) 

Syn_03116 unknown function 6 232 Yes Yes 48 4.4 

Syn_02770 proton translocating pyrophosphatase 5 201 Yes Yes 87 5.0 

Syn_02772 proton translocating pyrophosphatase 4 180 Yes No 72 5.3 

Syn_01659 Rnf, subunit E 4 171 Yes Yes 35 9.0 

Syn_00198 outer membrane porin protein 5 150 Yes Yes 47 5.2 

Syn_01662 Rnf, subunit C 4 94 Yes Yes 34 8.8 

Syn_01664 Rnf, NADH-binding subunit 5 87 No No 47 6.8 

Syn_03223 chaperonin GroEL , truncated 4 74 No No 58 4.7 

Syn_00549 ATP synthase B chain 2 63 Yes No 19 8.9 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

3 50 No No 59 5.6 

Syn_00231 glycogen phosphorylase 2 30 No No 97 6.9 
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CroBz4 

(337 kDa) 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

10 315 No No 59 5.6 

Syn_03116 unknown function 4 220 Yes Yes 48 4.4 

Syn_02770 proton translocating pyrophosphatase 7 197 Yes Yes 87 5.0 

Syn_02772 proton translocating pyrophosphatase 4 162 Yes No 72 5.3 

Syn_00481 glutaconyl-CoA decarboxylase 7 154 No No 65 7.0 

Syn_01431 glutaconyl-CoA decarboxylase beta 

subunit 

5 93 Yes Yes 48 8.9 

Syn_02382 glutamate dehydrogenase 2 60 No No 50 6.0 

Syn_01659 Rnf, subunit E 2 59 Yes Yes 35 9.0 

Syn_00549 ATP synthase B chain 2 48 Yes No 19 8.9 

Syn_00545 ATP synthase gamma chain 2 36 No No 33 6.6 

Syn_01524 protein translocase subunit 3 27 Yes Yes 59 6.7 

CroBz5 

(267 kDa) 

Syn_01654 BamA 12 410 No No 43 6.7 

Syn_02770 proton translocating pyrophosphatase 6 186 Yes Yes 87 5.0 

Syn_02772 proton translocating pyrophosphatase 5 179 Yes No 72 5.3 

Syn_01431 glutaconyl-CoA decarboxylase beta 

subunit 

3 90 Yes Yes 48 8.9 

Syn_01303 hypothetical membrane protein 2 87 Yes No 15 4.8 
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Syn_00549 ATP synthase B chain 2 49 Yes No 19 8.9 

Syn_01310 3-hydroxyacyl-CoA dehydrogenase 2 33 No Yes 31 6.6 

CroBz6 

(221 kDa) 

Syn_02772 proton translocating pyrophosphatase 4 154 Yes No 72 5.3 

Syn_00546 ATP synthase alpha chain 5 127 No No 55 5.2 

Syn_01303 hypothetical membrane protein 2 118 Yes No 15 4.8 

Syn_02586 acyl-CoA dehydrogenase 2 89 No No 42 5.6 

Syn_02638 FeS oxidoreductase 2 75 Yes No 79 5.4 

Syn_02770 proton translocating pyrophosphatase 3 73 Yes Yes 87 5.0 

CroBz7 

(152 kDa) 

Syn_00480 Glutaconyl-CoA decarboxylase 5  No No 42 4.9 

Syn_02638 FeS oxidoreductase 6  Yes No 79 5.4 

CroCC1 

(903 kDa) 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

3 71 No No 59 5.6 

Syn_02180 membrane protease subunit, 

stomatin/prohibitin -like protein 

2 68 Yes Yes 28 5.2 

Syn_00603 formate dehydrogenase major subunit 5 67 No No 93 7.7 

Syn_03116 unknown function 4 53 Yes Yes 48 4.4 

Syn_02180 membrane protease subunit, 

stomatin/prohibitin -like protein 

2 50 Yes Yes 28 5.2 
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CroCC2 

(330 kDa) 

Syn_02770 proton translocating pyrophosphatase 3 59 Yes Yes 87 5.0 

Syn_00628 Rnf subunit 2 57 Yes Yes 30 6.7 

Syn_01664 Rnf, NADH-binding subunit 4 48 No No 47 6.8 

Syn_00545 ATP synthase gamma chain 2 39 No No 33 6.6 

Syn_01659 Rnf, subunit E 2  Yes Yes 35 9.0 

Syn_01662 Rnf, subunit C 4  Yes Yes 34 8.8 

Syn_02772 proton translocating pyrophosphatase 4  Yes No 72 5.3 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

4  No No 59 5.6 

Syn_03116 unknown function 4  Yes Yes 48 4.4 

CroCC3 

309 

Syn_03116 unknown function 4 174 Yes Yes 48 4.4 

Syn_03116 unknown function 4 174 Yes Yes 48 4.4 

Syn_02772 proton translocating pyrophosphatase 4 124 Yes No 72 5.3 

Syn_02770 proton translocating pyrophosphatase 6 90 Yes Yes 87 5.0 

Syn_02770 proton translocating pyrophosphatase 7 89 Yes Yes 87 5.0 

Syn_02772 proton translocating pyrophosphatase 6 84 Yes No 72 5.3 

Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

5 74 No No 59 5.6 

Syn_00545 ATP synthase gamma chain 3 53 No No 33 6.6 
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Syn_02896 4-hydroxybenzoate--CoA ligase / 

benzoate--CoA ligase 

4 50 No No 59 5.6 

CroCC4 

165 

Syn_02770 proton translocating pyrophosphatase 8 204 Yes Yes 87 5.0 

Syn_02638 FeS oxidoreductase 5 188 Yes No 79 5.4 

Syn_02772 proton translocating pyrophosphatase 7 172 Yes No 72 5.3 

Syn_02770 proton translocating pyrophosphatase 6 128 Yes Yes 87 5.0 

Syn_02638 FeS oxidoreductase 6 116 Yes No 79 5.4 

Syn_02772 proton translocating pyrophosphatase 4 92 Yes No 72 5.3 

CroCC7 

(60 kDa) 

Syn_00546 ATP synthase alpha chain 11 181 No No 55 5.2 

Syn_00547 ATP synthase delta chain 6 74 No No 20 8.7 

Syn_01909 chaperonin GroEL 2 57 No No 58 5.1 

Syn_03223 chaperonin GroEL , truncated 2 56 No No 58 4.7 

Syn_01028 bacterial regulatory protein, LuxR 

family 

2 52 No No 36 5.9 

Syn_00544 ATP synthase beta chain 4 48 No No 51 4.5 

Syn_02772 proton translocating pyrophosphatase 3 38 Yes No 72 5.3 

Syn_03255 SSU ribosomal protein S7P 2 33 No No 18 10.9 
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Bz4 

(351 kDa) 

Syn_03116 unknown function 2 84 Yes Yes 48 4.4 

Bz5 

(240 kDa) 

Syn_03116 unknown function 4 168 Yes Yes 48 4.4 

Syn_01654 BamA 2 46 No No 43 6.7 

Bz6 

(216 kDa) 

Syn_03116 unknown function 3 170 Yes Yes 48 4.4 

Bz7 

(92 kDa) 

Syn_02638 FeS oxidoreductase 4 115 Yes No 79 5.4 

CHC2 

(351 kDa) 

Syn_03116 unknown function 2 72 Yes Yes 48 4.4 

CHC3 

(251 kDa) 

Syn_03116 unknown function 4 144 Yes Yes 48 4.4 

Syn_01654 BamA 3 58 No No 43 6.7 

CHC4 

(216 kDa) 

Syn_03116 unknown function 4 156 Yes Yes 48 4.4 
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CHC5 

(95 kDa) 

Syn_02638 FeS oxidoreductase 3 100 Yes No 79 5.4 
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positively identify S. aciditrophicus -derived peptides from 26 of these bands using 

peptide mass fingerprint analysis.  Three of these complexes (Bz1/CHC1, Bz6/CHC4, 

and Bz7/CHC5) appeared unique to growth under syntrophic conditions – benzoate- 

and cyclohexane carboxylate-oxidizing conditions – and are, therefore, presumed to be 

formed specifically during syntrophic growth. 

Peptides corresponding to the Rnf-like complex were detected in two high 

molecular weight bands during growth in pure culture on crotonate (CroPC2 and 

CroPC3) and in one band from cells grown axenically on crotonate with benzoate as 

electron acceptor (CroBz3) (Figure 7, Table 5).  A similar molecular weight band was 

observed from cells grown in coculture on benzoate though we were unable to 

positively identify any peptides derived from S. aciditrophicus. 

S. aciditrophicus was found to contain two gene clusters predicted to code for a 

sodium-dependent ATP synthase (Syn_00543-00549 and _02101-02105) (McInerney et 

al. 2007).  Here, only peptides corresponding to the ATP synthase Syn_00543-00549 

were detected.  In total, peptides derived from these genes were found in a total of seven 

bands (CroPC1-2, 4 and CroBz1-6) with molecular weights of > 220 kDa.  All of these 

were detected from cells grown axenically on crotonate or on crotonate with benzoate 

as electron acceptor (Figure 7, Table 5).  Additionally, peptides derived from a proton 

translocating pyrophosphatase were highly abundant and detected in a total of ten bands 

from cells grown in pure culture on crotonate and in pure cultures grown on crotonate + 

benzoate (CroPC2-4,6 and CroBz1-6) (Figure 7, Table 5). 

In addition to an Rnf-like complex, the genome of S. aciditrophicus was found 

to contain genes encoding glutaconyl-CoA decarboxylase (Syn_00479-81).  These 
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genes were not linked on the chromosome to those predicted to code for the sodium 

transporting membrane subunit, Syn_00115 or Syn_01431.    Here, we detected 

subunits derived from the gene products of Syn_00480 (CroPC6) and Syn_00481 

(CroBz3, CroBz4 and CroBz5) (Table 5) and codetected peptides derived from the gene 

product of a candidate membrane component encoding gene, Syn_01434 (Table 5) with 

peptides derived from the Syn_00481 gene product (CroBz4).  This suggests that the 

gene product coded for by Syn_01431 recruits the glutaconyl-CoA decarboxylase 

subunits to the enzyme.  McInerney and colleagues (2007) as well as others (Wischgoll 

et al. 2009) suggest glutaryl-CoA is oxidized to glutaconyl-CoA in S. aciditrophicus, 

rather than decarboxylated to crotonyl-CoA, and our findings here are consistent with 

this hypothesis. 

Copurification of an FeS oxidoreductase with NADH:acceptor oxidoreductase 

activity in the syntrophic butyrate-oxidizing bacterium Syntrophomonas wolfei (Muller 

et al. 2009; Schmidt et al. 2013) led to speculation that this FeS oxidoreductase may be 

a module for electron input into the membrane during the oxidation of acyl-CoA 

intermediates.  Here, peptides corresponding to the analogous FeS oxidoreductase 

(Syn_02638) were detected in lower molecular weight bands from cells grown in pure 

culture on crotonate (CroPC6), cells grown in pure culture on crotonate + benzoate 

(CroBz6), cells grown in coculture on benzoate (Bz7) and cells grown in coculture on 

cyclohexane carboxylate (CHC5).  Interestingly, only peptides derived from the 

Syn_02638 gene product were detected in CHC5 (Figure 7, Table 5).  The gene locus 

coding for this protein is located adjacent to genes coding for alpha- and beta- subunits 

of electron transferring flavoprotein subunits (Syn_02636 and 37 gene products, 
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respectively).  I did not detect peptides derived from either electron transferring 

flavoprotein subunit in membrane complexes separated by BN-PAGE. 

Peptides from M. hungatei, but not S. aciditrophicus, were detected from an 

approximately 950 kDa band (Bz1) derived from cells grown syntrophically on 

benzoate and we were unable to positively identify any peptides from the analogous 

band (CHC1) derived from cells grown in syntrophic coculture on cyclohexane 

carboxylate (Figure 7).  Peptides derived from Syn_01654 were detected in an  ~240 

kDa band (Bz5) during growth on benzoate (Figure 7, Table 5).  Syn_01654 has 

recently been shown to code 6-hydroxycyclohex-1-ene-1-carboxyl-CoA hydrolase 

(Kuntze et al. 2008) and is necessary for benzoate degradation in a pathway analogous 

to that of Thauera aromatica (Breese et al. 1998).  A slightly larger band (~260 kDa) 

was observed from the axenic growth conditions on crotonate or crotonate + benzoate 

(CroPC5 and CroBz5) and peptides corresponding to Syn_01664 gene product were 

likewise detected (Figure 7, Table 5).   

 

Presence of NADH-dependent reduction of benzyl viologen 

 Several subunits derived from genes predicted to encode an Rnf-like complex 

were detected in membrane fractions from S. aciditrophicus grown in pure culture on 

crotonate (Table 5).  The presence of Rnf-like subunits suggested that S. aciditrophicus 

uses this enzyme to produce reduced ferredoxin.  I therefore tested if S. aciditrophicus 

membranes catalyze the predicted Rnf-like activity, the reduction of a low potential 

electron acceptor using NADH as the electron donor.  For these experiments, benzyl 
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viologen (E0’ = -360 mV) (Michaelis and Hill 1933) and methyl viologen (E0’ = -450 

mV) (Michaelis and Hill 1933) served as low potential electron acceptors. 

  Both hydrogenase and formate dehydrogenase activities are oxygen-labile in S. 

aciditrophicus and the detection of both activities shows that active fractions were 

obtained (Table 6).  S. aciditrophicus membrane fractions, which were not  
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Table 6:  Specific activities of hydrogenase, formate dehydrogenase and Rnf- and 
Nqo-like activity in S. aciditrophicus membrane fractions.  Cells were grown in pure 
culture on crotonate or in pure culture on crotonate + benzoate.  For assays where 
hydrogen was not the electron donor, membrane fractions (2-40 µg protein) were 
diluted into a reaction buffer containing 1 mM of either benzyl viologen, methyl 
viologen or 200 µM 2,6-dichlorophenolindophenol and the activity was started with the 
addition of NAD+, NADH or formate to 1 mM.  Where hydrogen was the electron 
donor, the sealed anaerobic cuvette containing the reaction buffer was pressurized to 
138 kPa H2 and the reaction was started with the addition of the membrane fraction.  
The increase in absorbance (oxidized methyl and benzyl viologen) or decrease in 
absorbance (reduced methyl and benzyl viologen and 2,6-dichlorophenolindophenol) 
was measured spectrophotometrically at 600 nm.  Where indicated, membrane fractions 
were solubilized in buffer containing 0.5% dodecyl maltoside (DDM). 
 

 Specific activity (µmol • min-1 • mg-1) 

 Crotonate Crotonate + benzoate 

Hydrogen + oxidized benzyl viologen 0.4 ± 0.1 0.06 ± < 0.1 

Formate + oxidized benzyl viologen 0.5 ± 0.1 0.2 ± < 0.1 

NADH + oxidized benzyl viologen • 3.3 ± 0.7 7.9 ± 1.0 

NADH + oxidized methyl viologen • 0.1 ± < 0.1 Not performed 

NADH + oxidized benzyl viologen • 
 (solubilized with DDM) 

Not performed 1.9 ± < 0.1 

NAD+ + reduced benzyl viologen 1.2 ± 0.6 2.1 ± 0.1 

NAD+ + methyl viologen 5.9 ± 1.4 Not performed 

NADH + 2,6-dichlorophenolindophenol •• 1.33 ± <0.1 1.66 ± 0.11 

 

• Reaction represents an Rnf-like activity 
•• Reaction represents an Nqo-like activity 
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treated with detergent, from cells grown in pure culture on either crotonate or crotonate 

and benzoate reduced benzyl viologen with NADH as electron donor (Table 6).  

Surprisingly, the specific activity for NADH-dependent reduction of benzyl viologen 

was higher than the specific activity of the thermodynamically favorable direction, 

NAD+-dependent oxidation of benzyl viologen pre-reduced with trace amounts of 

sodium dithionite (Table 6).  As predicted, the rate of NAD+ -dependent oxidation of 

the lower potential acceptor methyl viologen was higher than NADH-dependent 

reduction of methyl viologen, though our ability to detect an NADH –dependent 

activity with methyl viologen further confirms the ability of membrane fractions to 

catalyze reverse electron transfer.  The addition of the detergent, dodecylmaltoside, 

decreased Rnf-like specific activity by approximately 60%  (Table 6), consistent with 

the need for an intact membrane to maintain ion gradients to drive reverse electron 

transfer.  

Components of Rnf are phylogenetically related to components of sodium-

pumping, NADH-ubiquinone oxidoreductases (Nqo) and proton-pumping, NADH-

ubiquinone oxidoreductases (NADH dehydrogenase, Ndh-1; complex 1). I tested 

whether S. aciditrophicus membranes contained Ndh or Nqo activity with the use of 

2,6-dichlorophenolindophenol (DCPIP) (E0’ = +220 mV). Membrane fractions of S. 

aciditrophicus were able to reduce DCPIP with electrons derived from NADH; 

however, the specific activity for this assay in membrane fractions from cells grown in 

pure culture on crotonate and in pure culture on crotonate + benzoate was only 30% of 

the specific activity detected for the Rnf-like activity. 
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 The need for reverse electron transfer is most apparent when S. aciditrophicus 

grows syntrophically where electrons derived from the oxidation of acyl-CoA 

intermediates (E0’ = -10 mV) (Sato et al. 1999) and NADH (E0’ = -320 mV) are used to 

produce hydrogen (E’ = -260 mV at 1 Pa H2) or formate (E’ = -290 mV at 1 µM 

formate) (McInerney et al. 2007). Membrane fractions from S. aciditrophicus cells 

grown axenically on crotonate and syntrophically on either benzoate or cyclohexane 

carboxylate were tested for the predicted Rnf-like activity. Here, assays were performed 

in the anaerobic chamber using a 96-well plate reader to reduce the likelihood of air 

inactivation.  Because of this, background benzyl viologen reduction was observed in 

unamended controls that lacked an electron donor due to presence of hydrogen in the 

chamber atmosphere (less than 5%) (Table 7).  The background activity represents  
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Table 7:  Specific activities of hydrogenase, formate dehydrogenase and Rnf-like 
activity in S. aciditrophicus membrane fractions.  Cells were grown in pure culture 
on crotonate, coculture on benzoate or in coculture on cyclohexane carboxylate.  
Membrane fractions (2-40 µg protein) were diluted into a reaction buffer containing 1 
mM benzyl viologen and started with the addition of NADH or formate to 1 mM.  
Assays were conducted in an anaerobic chamber with a background hydrogen 
concentration of less than 5%.  The increase in absorbance was measured 
spectrophotometrically at 600 nm.  Values for assays with formate or NADH as electron 
donor are the difference of total activity and the activity obtained with background 
hydrogen as electron donor. 
 
 

 Specific activity (µmol • min-1 • mg-1) 

 Crotonate 
pure culture 

Benzoate 
coculture 

Cyclohexane 
carboxylate 
coculture 

Background hydrogen +  
oxidized benzyl viologen 

0.4 ± 0.1 0.4 ± 0.1 2.2 ± 0.6 

Formate  + oxidized benzyl viologen 15.2 ± 3.7 8.5 ± 2.7 5.2 ± 2.7 

NADH + oxidized benzyl viologen • 9.0 ± 1.9 16.1 ± 3.3 13.5 ± 5.6 

 
• Activity represents an Rnf-like activity
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hydrogenase activity in the membrane. Hydrogenase activity in membranes of S. 

aciditrophicus grown axenically on crotonate measured in the chamber with the 96-well 

plate reader (Table 7) was within the same range as measured using sealed cuvettes 

(Table 6), showing that the different assay conditions did not affect the activity of this 

important enzyme. Formate dehydrogenase activity (formate-dependent, benzyl 

viologen reduction activity) was much higher than hydrogenase activity for all growth 

conditions tested (Table 7). Very high specific activities for the predicted Rnf-like 

activity were detected in membranes from syntrophically grown S. aciditrophicus, 

16.47 ± 3.31 µmol•min-1•mg-1 for benzoate-grown cells and 15.65 ± 5.57 µmol•min-

1•mg-1 for cyclohexane carboxylate-grown cells, respectively (Table 7).  These specific 

activities were approximately 1.8-fold and 1.7-fold higher, respectively, than the 

specific activity of cells grown axenically on crotonate (9.34 ± 1.93 µmol•min-1•mg-1) 

(Table 7). The elevated levels of NADH-dependent, benzyl viologen reduction activity 

during syntrophic growth is consistent with the need for reverse electron transfer during 

syntrophic metabolism. 

 

Partial purification of the NADH-dependent benzyl viologen reduction activity 

 The presence of a peptides corresponding to an Rnf-like complex and my 

observation that I could follow an activity in which electrons moved from a higher 

potential donor to a lower potential acceptor (NADH to benzyl viologen) led me to 

partially purify the enzyme(s) catalyzing this reaction.  NADH-dependent benzyl 

viologen reducing activity was solubilized from S. aciditrophicus membrane fractions 

grown axenically on crotonate and separated using size-exclusion chromatography.  A 
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total of forty fractions of one milliliter each were collected and assayed for NADH-

dependent reduction of benzyl viologen.  Three fractions reduced benzyl viologen with 

NADH as electron donor (Figure 8).  Specific activity for the pooled fractions was low, 

0.1 ± <0.1 µmoles • min-1 • mg-1. 
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Figure 8:  Partial purification of the predicted Rnf-like activity from S. 
aciditrophicus membrane fractions from cells grown in pure culture on crotonate.  
Membrane fractions obtained via ultracentrifugation were solubilized in reaction buffer 
containing the detergent dodecyl maltoside.  Activity was retained in fractions between 
11 ml and 13 ml retention volume.  Inset:  NADH-dependent activity (above) versus 
background activity (below) at 30 min incubation.  Background activity represents 
reduction of benzyl viologen with hydrogen (less than 5%) as electron donor. 
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The subunit composition of Rnf is not yet known, though preliminary data suggests that 

in Acetobacter woodii, the purified Rnf complex has an apparent molecular weight of 

186 kDa (Biegel et al. 2011).  Here, the fractions testing positive for NADH-dependent 

reduction of benzyl viologen eluted between 11 ml and 13 ml, which corresponds to an 

apparent molecular weight between 480 and 720 kDa.  This corresponds to a molecular 

weight 2.5-3.8 –fold higher than that observed in A. woodii (Biegel et al. 2011).  I 

observed two distinct bands from fractions separated by BN-PAGE with apparent 

molecular weights of ~120 kDa and ~160 kDa and a total of four bands were detected 

from fractions separated by SDS-PAGE (Figure 9). 
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Figure 9:  SDS-PAGE separation of fractions testing positive for predicted Rnf-
like activity.  Solubilized membranes of S. aciditrophicus were separated via size 
exclusion gel filtration and tested for NADH-dependent reduction of benzyl viologen.  
Fractions testing positive for the activity were concentrated and separated on a 10% 
polyacrylamide gel by SDS-PAGE.  Four bands were excised and sequenced using 
peptide mass fingerprint analysis by LC-MS/MS.  Corresponding apparent molecular 
weight (MWapp) is given in Table 8. 
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Table 8:  Peptides detected from denaturing SDS-PAGE separation of S. 
aciditrophicus membrane fractions partially purified for Rnf-like activity.  
Observed bands were excised, digested with trypsin and peptides sequenced by peptide 
mass fingerprint analysis.  Unique peptides correspond to the number of unique 
peptides detected by peptide mass fingerprint analysis from the respective band.  
Peptides were identified by a MASCOT search using the NCBInr database.  Scores 
represent the score returned by MASCOT.  TMH = predicted transmembrane helices, 
MWapp = apparent molecular weight for the indicated band, MWp = molecular weight of 
the predicted amino acid sequence for the respective locus tag, pI = isoelectric point of 
the predicted amino acid sequence for the respective locus tag. 
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Band # 
(MWapp) 

Locus Tag Annotation Unique 
Peptides 

Score TMH Signal 
Peptide 

MWp pI 

SDS-1 

(71 kDa) 

Syn_02896 4-hydroxybenzoate CoA ligase 17 1351 No No 59 5.6 

Syn_00481 Glutaconyl-CoA decarboxylase A subunit 1 247 No No 65 7.0 

Syn_02770 Membrane bound pyrophosphatase 2 228 Yes Yes 87 5.0 

Syn_02772 Membrane bound pyrophosphatase 1 164 Yes No 72 5.3 

Syn_00123 D-3-phosphoglycerate dehydrogenase 1 98 No No 57 5.4 

SDS-2 

(63 kDa) 

Syn_00544 ATP synthase subunit beta 24 832 No No 51 4.5 

Syn_00546 ATP synthase subunit alpha 21 747 No No 55 5.2 

Syn_00198 Porin 4 159 Yes Yes 47 5.2 

Syn_02896 4-hydroxybenzoate CoA ligase 1 65 No No 59 5.6 

SDS-3 

(61 kDa) 

Syn_03116 Hypothetical protein 43 2608 Yes Yes 48 4.4 

Syn_00198 Porin 14 781 Yes Yes 47 5.2 

Syn_00546 ATP synthase subunit alpha 3 101 No No 55 5.2 

Syn_00544 ATP synthase subunit beta 4 101 No No 51 4.5 

Syn_02772 Membrane bound pyrophosphatase 1 88 Yes No 72 5.3 

Syn_01664 Rnf, NADH-binding subunit 1 85 No No 47 6.8 
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SDS-4 

(53 kDa) 

Syn_00544 ATP synthase F0F1 subunit beta 10 841 No No 51 4.5 

Syn_00198 Porin 6 614 Yes Yes 47 5.2 

Syn_00545 ATP synthase subunit gamma 6 563 No No 33 6.6 

Syn_00546 ATP synthase F0F1 subunit alpha 2 501 No No 55 5.2 

Syn_02637 Electron transfer flavoprotein alpha 

subunit 

5 433 No No 34 5.0 

Syn_1662 Rnf, subunit C 1 326 Yes No 34 8.8 

Syn_01491 Flp pilus assembly protein 6 306 Yes No 32 10.2 

Syn_03116 Hypothetical protein 2 204 Yes Yes 48 4.4 

Syn_01402 Hypothetical protein 2 184 Yes No 39 9.0 

Syn_01431 Glutaconyl-CoA decarboxylase subunit 

beta 

1 154 Yes No 48 8.9 

Syn_02140 Oxalate/formate antiporter 1 141 Yes No 43 10.0 

Syn_00044 ComL family lipoprotein 2 141 Yes No 28 9.5 

Syn_00202 Hypothetical protein 2 136 No Yes 25 6.1 

Syn_01655 6-hydroxycyclohex-1-ene-1-carboxyl-

CoA dehydrogenase 

2 109 No No 40 7.6 

Syn_00628 Rnf subunit 1 98 Yes No 30 6.7 

Syn_03640 Hypothetical protein 3 93 Yes Yes 8 6.6 

Syn_01774 Pili assembly protein 1 84 Yes No 27 10.1 
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Syn_3141 Peptidylprolyl isomerase 1 70 Yes No 40 10.3 

Syn_01267 Hypothetical protein 1 64 Yes No 29 9.1 
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I used peptide mass fingerprint analysis by LC-MS/MS to identify proteins present in 

bands obtained by SDS-PAGE.  Peptides corresponding to five unique proteins were 

detected from a large band with a molecular weight of 71 kDa (SDS1).  Seventeen 

peptides derived from a hydroxybenzoate-/benzoate-CoA ligase (Syn_02896) were 

detected (Table 8).  This is an approximately 59 kDa protein which is predicted to be 

involved in benzoate degradation and is not predicted to contain transmembrane helices.  

Interestingly, this peptide was co-detected with peptides for a membrane-bound proton-

translocating pyrophosphatase (Syn_02770, 72) (Table 8).   

 The most abundant peptides from a smaller 63 kDa band corresponded to alpha- 

and beta-subunits of a sodium dependent ATP synthase (Table 8).  Forty-three total 

peptides derived from a hypothetical membrane protein (Syn_03116) were detected in a 

61 kDa band along with peptides derived from a gene encoding a porin (Syn_00198), 

ATP synthase subunits and a membrane-bound proton-translocating pyrophosphatase – 

both of which were co-detected from higher molecular weight bands (SDS-1 and SDS-

2) and the peptides may represent degradation products which comigrated with the 

hypothetical cell surface protein Syn_03116.  A weak signal (Score = 85) was also 

detected in this band for peptides derived from an Rnf-like electron transport complex 

subunit (Syn_1664) (Table 8). 

 The lowest molecular weight band, at approximately 53 kDa, was the most 

diverse with peptides derived from 19 different genes represented (Table 8).  The top 

six peptide matches (based on MASCOT score) included two different ATP synthase 

subunits, peptides derived from a gene encoding a porin and peptides derived from an 

electron transfer flavoprotein alpha-subunit and an Rnf-like complex, subunit C 
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(Syn_01662) (Table 8).  Six peptides were detected for the gamma-subunit of ATP 

synthase (Syn_00545) in this band but were not previously detected in higher molecular 

weight bands (Table 8).  Five unique peptides derived from a gene encoding the alpha-

subunit of an electron transfer flavoprotein were detected (Syn_02673) along with one 

unique peptide derived from an Rnf-like complex subunit C (Syn_01662). 

 

Discussion 

 The sequenced, annotated genome of S. aciditrophicus revealed possible 

strategies for the production of reduced ferredoxin required for syntrophic metabolism 

and biosynthesis (McInerney et al. 2007).  A seven-gene cluster with similarity to genes 

coding for Rnf from Rhodobacter capsulatus was found.  The gene sequence encoding 

RnfG differed from all other sequenced RnfG –like subunits except for those found in 

other organisms capable of syntrophic growth (McInerney et al. 2007).  This suggested 

an Rnf-like complex could couple proton- or sodium ion-motive force to the reduction 

of ferredoxin with electrons derived from NADH as the physiological electron donor 

and further suggested that the RnfG-like subunit could be used as a functional probe for 

syntrophic metabolism (McInerney et al. 2007).  Rnf-like components were identified 

in the genome of the closely related syntrophic propionate-oxidizing bacterium, 

Syntrophobacter fumaroxidans (Plugge et al. 2012), but not in the genome of the 

syntrophic butyrate-oxidizing bacterium, Syntrophomonas wolfei – a Gram-negative 

Clostridiales (Sieber et al. 2010).  Transcripts of rnfC were detected from S. 

fumaroxidans under a variety of growth conditions (Worm et al. 2011) implicating its 

importance in the physiology of S. fumaroxidans. 
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 To identify the proteins responsible for reverse electron transferring activities, 

solubilized membrane enrichments from axenically grown cells were separated by size 

exclusion chromatography.  After solubilization and fractionation, several fractions 

retained NADH-dependent benzyl viologen activity.  Strikingly, these fractions also 

tested positive for hydrogenase activity as benzyl viologen was reduced in the absence 

of NADH (under ~5% hydrogen atmosphere), albeit at a much slower rate.  Peptides 

associated with Rnf-like components were detected in bands from S. aciditrophicus 

grown axenically on crotonate and from S. aciditrophicus grown axenically on 

crotonate and benzoate. 

 Membrane fractions of S. aciditrophicus were able to reduce benzyl viologen 

with NADH, showing that Rnf activity is present in S. aciditrophicus membranes (Table 

6).  Furthermore, the rate for NADH-dependent reduction of benzyl viologen was 

higher than the rate for NAD+ -dependent oxidation of reduced benzyl viologen.  These 

findings, coupled with the ability of membrane fractions to reduce the lower potential 

indicator, methyl viologen, suggest that membrane fractions of S. aciditrophicus 

possess a membrane enzyme or complex with the predicted function of an Rnf complex 

(McInerney et al. 2007).  This NADH-dependent benzyl viologen reduction was 

observed in membrane enrichments of cells grown under all conditions tested.  The 

observation made here, that NADH-dependent benzyl viologen reduction has a higher 

specific activity in membrane enrichments obtained from cells grown in syntrophic 

conditions relative to those grown axenically on crotonate, implicates this/these 

enzymes in syntrophic growth.  Approximately 60% of activity was lost after incubation 

in the presence of the detergent, dodecyl maltoside, which is consistent with the 
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possibility that this activity is chemiosmotically linked.  An Rnf-like complex is likely 

the only mechanism that S. aciditrophicus has to produce reduced ferredoxin because 

gene loci predicted to code for a Fix system were not detected (Sieber et al. 2012). 

 Genes encoding electron transferring flavoprotein alpha- and beta-subunits (Etf-

α and Etf-β, respectively) were found coupled on the S. aciditrophicus chromosome 

with an FeS oxidoreductase.  This arrangement has been observed in Pelotomaculum 

thermopropionicum and in S. wolfei (Sieber et al. 2010).  This arrangement suggested 

that the electron transferring flavoproteins are involved in electron flow during the 

oxidation of acyl-CoA intermediates and could potentially involve a reverse Q-loop.  

Additionally, the work of Schink and colleagues showed that, under their growth 

conditions, S. wolfei possibly formed an ETFα/β/FeS complex which presumably 

shuttles electrons derived from butyrate to the membrane – ultimately leading to the 

reduction of carbon dioxide to formate (Muller et al. 2009).  No analogous complex has 

been experimentally demonstrated in S. aciditrophicus.  Here, peptides derived from the 

Syn_02638 gene product were found in bands under all conditions, though no peptides 

derived from the Etf-α or Etf-β were detected from BN-PAGE.  Peptides for ETF-α 

were detected in an approximately 53 kDa band by SDS-PAGE (SDS-4) from fractions 

partially purified for Rnf-like activity (Figure 9, Table 8). 

The genome of S. aciditrophicus also revealed the importance of sodium ion 

gradients to meet the bioenergetic requirements of the cell.  Two predicted 

methylmalonyl-CoA/oxaloacetate decarboxylases (Syn_00115 and Syn_01431) were 

detected in the genome of S. aciditrophicus (McInerney et al. 2007).  McInerney and 

colleagues (2007) raised the possibility that these could interact with glutaconyl-CoA 
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decarboxylases (Syn_00479-81) and couple the decarboxylation of glutaconyl-CoA to 

the formation of a sodium ion gradient.  This is consistent with the suggestion that S. 

aciditrophicus oxidizes glutaryl-CoA to glutaconyl-CoA without concomitant 

decarboxylation to crotonyl-CoA (Wischgoll et al. 2009).  Here, we detected peptides 

derived from Syn_01431 as well as peptides derived from the glutaconyl-CoA 

decarboxylase subunits encoded by Syn_00480-81. Additionally, two gene clusters 

which presumably code for sodium-dependent ATP synthases were detected 

(Syn_00543-49 and Syn_02101-05) in the genome of S. aciditrophicus (McInerney et 

al. 2007).  I detected a large number of peptides derived from the genes coding for the 

ATP synthase, Syn_00543-49, but did not detect any peptides derived from Syn_02101-

05 gene products.  Taken together, the presence of a sodium-transporting glutaconyl-

CoA decarboxylase and a presumably sodium-dependent ATP synthase further support 

the important role sodium ions play in meeting the overall bioenergetic demands of the 

cell.  

The detection here of peptides associated with glutaconyl-CoA decarboxylase 

provides further evidence to support the degradation of benzoate by a pathway 

analogous to that of T. aromatica.  Interestingly, though, cultures of S. aciditrophicus 

grown in coculture with Methanospirillum hungatei were previously shown to convert 

cyclohex-1-ene carboxylate to methane.  In R. palustris, cyclohex-1-ene carboxylate is 

produced via two consecutive two-electron reductions of benzoyl-CoA.  These data 

argued for a possible pathway for benzoate oxidation via a pathway analogous to R. 

palustris (Elshahed et al. 2001).   
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In addition to our above findings, a large number of unique peptides for a 

hypothetical membrane protein, Syn_03116 were detected from many bands.  This 

protein has no assigned function, but results of a BLAST search revealed two putative 

domains which are externally oriented.  These domains include a domain of 158 

peptides with high similarity (41%) to the Leishmania S-adenosylhomocysteine 

hydrolyase and another, smaller domain (35 peptides) with high similarity to a 

dehydrogenase/reductase domain identified in Brucella melitensis.  The predicted 

peptide sequence was submitted to the I-TASSER homology modeling server (Roy et 

al. 2010; Zhang 2007; 2008; 2009).  The structure of Syn_03116 appeared similar to the 

structure of carboxylate ion porin proteins from, for example, Pseudomonas species.  

However, Syn_03116 is predicted to have an NAD+ binding domain and is predicted to 

have high structural homology with the aldehyde oxidoreductase of Desulfovibrio 

gigas.  Purification and analysis of this protein will further clarify its function.  

However, based on these findings we suggest this is likely a small molecule transport 

porin. 
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Chapter 4:  The genome and proteome of Methanospirillum hungatei 

strain JF1:  new insights into syntrophic metabolism and biological 

methane production 
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Abstract 

Methanospirillum hungatei strain JF1 is a hydrogenotrophic methanogen belonging to 

the order Methanomicrobiales, whose members are commonly encountered in 

syntrophic associations with fermenting microorganisms. M. hungatei has a 3.5 MB 

circular genome with 3,239 protein-coding genes, 61% of which had an assigned 

function. M. hungatei has genes for five formate dehydrogenases, three membrane-

bound hydrogenases, and one F420-reducing hydrogenase, but lacks genes for a F420-

nonreducing hydrogenase catalytic subunit. Complete biosynthetic pathways were 

detected for all amino acids except histidine, and a his-tRNA was not detected. 

Proteomic analyses showed that M. hungatei expressed both hydrogenases and formate 

dehydrogenases and increased the relative abundance of core methanogenic machinery 

during syntrophic growth compared to pure culture growth on hydrogen and formate.  

The relative abundance of peptides associated with energy production and cofactor 

synthesis increased while those involved in translation decreased in syntrophically 

grown cells compared to axenically-grown cells. The above data are consistent with a 

strategy to maximize energy production efficiency and curtail biosynthesis during 

syntrophic growth. 
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Introduction 

 Methane is an important fuel and a potent greenhouse gas. Atmospheric methane 

concentration has increased since preindustrial times by a factor of 2.5 (Dlugokencky et 

al. 2011) despite large annual variability (Pison et al. 2013).  Methane production from 

carbon dioxide occurs in anaerobic ecosystems where lower potential electron acceptors 

such as sulfate, nitrate, iron, etc. are absent (Achtnich et al. 1995).  Biologically 

produced methane accounts for approximately 825 Tg of carbon released to the 

environment each year (Thauer et al. 2008).  Methanogenesis occurs in diverse 

environments such as wetlands, rice paddies, sewage digesters and the intestinal tracts 

of mammals.  The biological formation of methane is catalyzed by a physiologically 

specialized group of microorganisms, though the process of degrading complex organic 

material to methane relies on a multifaceted hierarchy of organisms living in close 

association with methanogens (Thauer et al. 2008).  In anaerobic food networks, 

complex organic matter is degraded into simple monomeric compounds and further 

fermented to carbon dioxide, formate, acetate and hydrogen by primary fermenting 

bacteria (McInerney et al. 2009).  A certain portion of the carbon fluxing through 

anaerobic food webs, however, is degraded to a variety of reduced organic acids and 

alcohols.  These compounds are then utilized by the secondary fermenting 

microorganisms – generally known as the syntrophic metabolizers – with consequent 

production of acetate, carbon dioxide, formate and hydrogen.  The production of 

acetate, carbon dioxide, formate and hydrogen by primary and secondary fermenting 

organisms represents the principle source of methanogenic substrates in anaerobic 

ecosystems (Crable et al. 2011). 
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 In the absence of other electron accepting processes, consumption of formate or 

hydrogen by hydrogenotrophic methanogens is essential for the oxidation of fatty acids, 

aromatic acids and alcohols by organisms capable of syntrophy (McInerney et al. 2009).  

In most ecosystems, methanogens must eke out a living at very low hydrogen partial 

pressures (~10 pascal) or formate concentrations (<10 µM).  As a result, the amount of 

energy available for growth for the methanogen is very low. In syntrophic lactate-

degrading communities, total free energy change of -82.8 kJ/mol was observed (Walker 

et al. 2012).  However, the free energy is not shared equally between the secondary 

fermenter and the methanogen and the amount of energy available to the methanogen is 

much less than that given above (Walker et al. 2012).  Thus, methanogens live at or 

near the thermodynamic threshold for life (Walker et al. 2012). 

 The question, then, is what genetic and enzymatic systems allow methanogens 

to grow and metabolize in syntrophic associations where the free energy changes are 

close to the thermodynamic threshold for life? The physiological response of 

Methanococcus maripaludis in syntrophic coculture with the lactate oxidizer 

Desulfovibrio vulgaris has received considerable attention (Costa et al. 2010; Costa et 

al. 2013; Hendrickson and Leigh 2008; Hendrickson et al. 2008; Lupa et al. 2008; 

Walker et al. 2012).  Transcriptional analysis of M. maripaludis showed an increase in 

transcript abundance for genes encoding core methanogenic machinery in response to 

syntrophic growth with a parallel decrease in transcript abundance for genes encoding 

biosynthetic machinery (Walker et al. 2012).  In addition, there was an increase in 

transcript abundance for genes encoding enzymes that use H2 directly rather than 

reduced deazoflavin (cofactor F420) and this finding was supported by genetic evidence 
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showing that a F420-dependent dehydrogenase mutant of M. maripaludis had improved 

syntrophic growth. When Methanothermobacter thermoautotrophicus was grown with 

fatty acid-oxidizing syntrophic metabolizers (Enoki et al. 2011; Luo et al. 2002), 

differential expression of isozymes of methyl-coenzyme M reductase (Mcr) occurred, 

and McrI was preferentially expressed during syntrophic growth. Also, a down 

regulation of biosynthetic enzyme systems consistent with the response of M. 

maripaludis in coculture (Walker et al. 2012) was noted. Additionally, Walker et al 

(2012) provided evidence for interspecies alanine transfer (Walker et al. 2012). 

 Methanospirillum hungatei strain JF1, like M. maripaludis, belongs to the 

physiologically described class of hydrogenotrophic methanogens that do not produce 

cytochromes (Thauer et al. 2008).  Like M. maripaludis, M. hungatei readily partners 

with a number of secondary-fermenting organisms and catalyzes the terminal electron-

accepting processes in many syntrophic associations including butyrate-oxidizing 

cocultures with Syntrophomonas wolfei (McInerney et al. 1981), benzoate-oxidizing 

cocultures with Syntrophus aciditrophicus (Elshahed et al. 2001) and propionate-

oxidizing cocultures with Syntrophobacter fumaroxidans (Plugge et al. 2012).  The 

butyrate-degrading syntrophic coculture of S. wolfei growing with M. hungatei has 

served as a model system to study syntrophic interactions for many years (McInerney et 

al. 1979; Muller et al. 2009; Schmidt et al. 2013; Sieber et al. 2010; Wallrabenstein and 

Schink 1994; Wofford et al. 1986) as it was the first stable fatty acid-oxidizing 

coculture isolated.  In this system, butyrate oxidation is tightly coupled to 

methanogenesis and the free energy changes are very low (McInerney et al. 1981; 

McInerney et al. 2008).  Thus, the association of S. wolfei with M. hungatei is an 
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excellent model to interrogate the physiological responses of M. hungatei to syntrophic 

growth. Here, I report the sequence and annotation of the M. hungatei JF1 genome.  In 

addition, I use semi-quantitative label-free comparative proteomics to elucidate the 

physiological response of M. hungatei JF1 to growth in hydrogen replete pure culture 

and in syntrophic association with S. wolfei degrading either crotonate or butyrate.  

 

Materials and Methods 

Cell culture, growth and harvesting 

Methanospirillum hungatei strain JF1 (ATCC# 27890) in pure-culture and in 

coculture with Syntrophomonas wolfei ssp. wolfei strain Göttingen (ATCC# BAA-1933) 

were obtained from our culture collection.  M. hungatei was grown in pure culture in 

defined basal medium (Tanner 2002) with an 80% H2:20% CO2 gas phase as described 

previously (Beaty et al. 1987). S. wolfei and M. hungatei cocultures were grown in the 

above defined basal medium with either crotonate (20 mM) or butyrate (20 mM) as 

carbon sources. Cocultures were grown in 500-ml sealed glass bottles with 250-ml of 

medium (Beaty et al. 1987). The bottles were inoculated with 50 ml of S. wolfei-M. 

hungatei coculture grown in the same medium. Cocultures were transferred three times 

before proteomic analysis.  All cultures were incubated at 37oC and growth was 

monitored via OD600 readings at pre-defined time points.  Substrate utilization was 

monitored via high-pressure liquid chromatography ((Beaty et al. 1987; Sieber et al. 

2013).  Cocultures were harvested at 50-70% substrate utilization.  Cells were harvested 

via centrifugation at 4oC and washed twice with 50 mM potassium phosphate buffer 

(pH 7.2).  Cells of M. hungatei were separated from S. wolfei in sealed anaerobic tubes 
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at 20,000 • g in a 5:4 ratio of standard isotonic Percoll to 50 mM potassium phosphate 

(pH 7.2) (Beaty et al. 1987). 

Genome sequencing 

Pure cultures of M. hungatei were grown as described above and high molecular 

weight genomic DNA was isolated from cell pellets using the CTAB method described 

by JGI at http://www.jgi.doe.gov.  Genomic DNA was sequenced at the Joint Genome 

Institute (JGI) using a combination of 3 kb, 8 kb and 40 kb Sanger shotgun DNA 

libraries.  All general aspects of library construction and sequencing performed at the 

JGI can be found at http://www.jgi.doe.gov.  The Phred/Phrap/Consed software package 

(http://www.phrap.com) was used to assemble all three libraries and to assess quality 

(Ewing and Green 1998; Ewing et al. 1998; Gordon et al. 1998).  Possible 

misassemblies were corrected, and gaps between contigs were closed by editing in 

Consed, custom primer walks or PCR amplification (Roche Applied Science, 

Indianapolis, IN).  The error rate of the completed genome sequence of M. hungatei is 

less than 1 in 50,000.  Pair-wise graphical alignments of whole genome assemblies (e.g. 

synteny plots) were generated using the MUMmer system  (Delcher et al. 1999; Delcher 

et al. 1999).  The sequence of M. hungatei can be accessed using the GenBank 

Accession No. NC_007796. 

 

Proteomic Sample Preparation 

Duplicate cell pellets of the M. hungatei pure culture grown as above were 

prepared separately for shotgun proteomics analysis, generally following a protocol 

optimized for measurements on small bacterial samples (Thompson et al. 2008).  Cell 



 

130 

pellets were lysed and proteins denatured by incubating each cell pellet overnight at 

37oC in 100 µL of 6 M guanidine and 10 mM dithiothreitol (DTT).  Lysates were 

cooled to ambient temperature, and diluted with 50 mM 

tris(hydroxymethyl)aminomethane, 10 mM calcium chloride to decrease the guanidine 

concentration to ~ 1M.  Ten micrograms of trypsin (sequencing grade, Promega, 

Madison WI) were added to each lysate, followed by a 5-hour incubation at 37oC.  An 

additional 10 µg of trypsin was added, followed by a further overnight incubation at 

37oC.  Remaining disulfide bonds were reduced by adding additional DTT to a final 

concentration of 10 mM and incubation for 1 hour at 37oC.  Desalting was performed 

using reverse-phase solid-phase extraction cartridges (Sep-Pak Lite C18, Waters, 

Milford MA), with final elution using 0.1% formic acid in acetonitrile.  Solvent transfer 

to aqueous 0.1% formic acid was performed by vacuum centrifugation, with final 

volume adjusted to 150 µL.  Particulates and remaining cellular debris were removed by 

centrifugation through 0.45 µm pore filters (Ultrafree-MC, Millipore, Billerica MA).  

Samples were frozen at -80oC until further use. 

Duplicate cell pellets of Percoll-separated M. hungatei from cocultures with S. 

wolfei, as described above, were prepared for proteomics analysis using an SDS-based 

lysis protocol (Giannone et al. 2011).  Pellets were suspended in 150 µL lysis buffer 

(4% SDS in 100 mM Tris-HCL, pH 8.0) and boiled for 5 min.  Suspensions were 

sonicated (10 sec on/off cycles at 10% power for a total of 2 min; Branson ultrasonic 

disruptor) in a water bath.  Samples were boiled for an additional 5 minutes, and 

centrifuged (10 minutes, 21000g) to provide a clear supernatant.  Supernatants were 

adjusted to 20% trichloroacetic acid, vortexed, and placed at -80oC for ~1.5 hr to 
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precipitate protein.  Samples were thawed on ice and centrifuged (15 min, 21,000 • g, 

4oC).  Pellets were washed twice with 500 µL cold acetone, centrifuging (5 min, 21,000 

• g) after each wash.  Residual acetone was removed in a centrifugal vacuum 

concentrator (SpeedVac).  Pellets were suspended in 100 µL of 8M urea, 100 mM Tris-

HCl for 20 min, followed by sonication (5 sec on, 10 sec off, at 10% power for a total of 

2 min) in an ice water bath.  Proteins were denatured by addition of DTT to 10 mM and 

incubation at ambient temperature for 45 min, and cysteines were carbamidomethylated 

by incubation with iodoacetamide at 20 mM in the dark for 45 min.  Proteins were 

digested by adding 1 µg trypsin in 1 volume of a solution containing 100 mM Tris-HCl 

and 10 mM calcium chloride (pH 8.0) to 1 volume of sample and incubating at ambient 

temperature overnight.  The same amount of trypsin was added again for an additional 

4-hour digestion.  Twenty microliters of a solution containing 4M NaCl and 2% formic 

acid in water were added to each digest, followed by filtration through a 10 kDa 

molecular weight cutoff filter. 

 

 

LC-MS-MS Analysis 

Tryptic peptide mixtures were analyzed by two-dimensional liquid 

chromatography/tandem mass spectrometry (2D LC-MS/MS), using the MudPIT 

approach (Washburn et al. 2001; Wolters et al. 2001) implemented as previously 

described in further detail (Hervey et al. 2007).  Two LC-MS/MS analyses were 

performed on the tryptic digest from each cell pellet (2 biological replicates • 2 

technical replicates).  Aliquots (50 µL for M. hungatei pure culture; 100 µl for 
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cocultures) were loaded via a pressure cell (New Objective, Woburn MA) onto a “back” 

column fabricated from 150 µm (internal diameter) fused silica tubing (Polymicro 

Technologies, Phoenix AZ) packed with a ~4 cm long bed of reverse-phase 

chromatographic phase (Jupiter C18, 3µm particle size, Phenomenex, Torrance CA) 

upstream of a ~4 cm bed of strong cation exchange material (5µm particle size SCX, 

Phenomenex).  Back columns for coculture samples were additionally desalted by 

flowing 95% H2O, 5% acetonitrile, 0.1% formic acid (solvent A) at ~0.5 µL/min for 2 

minutes followed by a linear gradient lasting 22 min to 30% H2O, 70% acetonitrile, 

0.1% formic acid, followed by re-equilibration in solvent A.   

After sample loading, the back column was attached via a filter union (Upchurch 

Scientific, Oak Harbor WA) to a “front” analytical column fabricated from a 100 µm 

(internal diameter) PicoTip Emitter (New Objective), packed with a ~14 cm bed of 

reverse-phase material (Jupiter C18, 3 µm particle size, Phenomenex).  Two-

dimensional LC was performed via twelve step gradients of increasing salt (ammonium 

acetate) concentration, with the eluted peptides from each strong cation exchange step 

subsequently resolved via a separate reverse-phase gradient (Ultimate HPLC, 

LCPackings/Dionex, Sunnyvale CA).  The LC eluent was interfaced via a nanospray 

source (Proxeon, Odense, Denmark) with a linear-geometry quadrupole ion trap mass 

spectrometer (LTQ for M. hungatei pure cultures, LTQ-XL for cocultures; 

ThermoFinnigan, San Jose CA).  Data acquisition was performed in data-dependent 

mode under the control of XCalibur software.  Up to 5 tandem mass spectra were 

acquired from the most abundant parent ions in full-scan mass spectra; dynamic 



 

133 

exclusion was enabled with a repeat count of 1, repeat duration of 60 seconds, and 

exclusion duration of 180 seconds. 

 

Proteomics Data Analysis 

Peptide identifications were obtained from tandem mass spectra using Sequest 

software (version 27) (Eng et al. 1994), and protein identifications were compiled from 

peptide identifications using DTASelect (version 1.9) (Tabb et al. 2002).  A multiple-

species protein FASTA file was constructed from individual FASTA files for 

Syntrophomonas wolfei wolfei Göttingen (NC_008346), Methanospirillum hungatei JF1 

(NC_007796), and Syntrophus aciditrophicus SB (NC_007759), all downloaded from 

the DOE Joint Genome Institute website.  The sequence-reversed analog of each protein 

sequence was appended to the FASTA file to allow estimation of the false discovery 

rate of peptide identification (Elias et al. 2007; Moore et al. 2002).  Sequences of 36 

common contaminant proteins were also appended to the FASTA file.  Peptide 

identifications were retained for XCorr ≥1.8 (z=1), ≥2.5 (z=2), or ≥3.5 (z=3), with 

DeltaCN ≥0.08.  Cysteine carbamidomethylation was specified as a static modification 

for cells grown as cocultures.  Protein identifications required identification of two 

peptides.  The false discovery rate for peptides was generally ≤1%. 

Spectrum count values were adjusted to prevent duplicate contributions from 

tryptic peptides associated with more than one protein (Zhang et al. 2010).  Estimates of 

protein abundance were calculated using normalized spectral abundance factors (NSAF) 

(Zybailov et al. 2006).  To correct for the presence of protein from non-target 

organisms, such as S. wolfei and S. aciditrophicus, the NSAF values were corrected 
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such that the sum of NSAF values for peptides detected from the target organism 

equaled a value of 1. 

 

NMDS 

Nonmetric multidimensional scaling (NMDS) was performed with R (V. 2.15.0, 

R Development Core Team (2012)) in the Vegan package (Ver. 2.0-6 (Oksanen et al. 

2007)). Before calculation of the dissimilarity matrix, proteins represented in less than 

two of the replicates were considered spurious and were replaced by zero. NMDS was 

calculated using the metaMDS() function with autotransformation flagged and Bray-

Curtis dissimilarities. Because of the large disparity in protein abundances, protein 

abundance was square root transformed then a Wisconsin standardization was 

performed, which consists of dividing protein abundance by the maxima then 

standardizing for each replicate.  

 

Results 

General Overview: 

 Methanospirillum hungatei strain JF1 is a Gram-negative staining methanogen 

from the order Methanomicrobiales with a G+C content of 45.15%.  A total of 3,239 

putative protein-coding genes greater than 200 nucleotides in length were detected in 

the 3.5 Mb circular chromosome (Table 9).  Approximately 86% of nucleotides are 
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Table 9:  General features of M. hungatei strain JF1 genome 
 
Category Amount 

DNA Total 3,544,738 bp 

Coding DNA 306,474,743 bp 

(86.46%) 

G+C Content 1,600,415 bp (45.15%) 

DNA Scaffolds 1 

Genes total number 3,307 

Genes protein coding 3,239 (97.94%) 

RNA genes 68 

rRNA genes  

5S rRNA 6 

16S rRNA 4 

23S rRNA 4 

tRNA 51 

Genes with function prediction 2,108 (61.02%) 

Genes without function prediction 1,221 (36.92%) 
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in putative protein-coding regions.  A total of 68 RNA genes were detected including 

six 5S rRNA, four 16S rRNA, four 23S rRNA and 51 tRNA genes.  Forty-three of the 

51 tRNA genes have an identified function, which cover all amino acids except His.  A 

total of 8 pseudo-tRNA genes without an identified function were detected.  It is 

probable that one of these pseudo-tRNA genes encodes a tRNA for incorporation of 

pyrrolysine. 

 Of particular interest is the lack of a gene encoding His-tRNA.  The histidine 

biosynthesis pathway from pyruvate is present with the exception that a gene for 

histidinol phosphate phosphatase (HisN) was not detected (see biosynthesis).  Greater 

than 2% of detected codons are predicted to code for histidine (Table 10) and histidine  
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Table 10:  Amino acid incorporation in M. hungatei strain JF1.  Percent totals 
represent percent of codons theoretically coding for the indicated amino acid relative to 
the total number of amino acids coded across the genome. 
 

Amino Acid Total predicted Percentage of total AA 

Leucine 95375 9.19% 

Isoleucine 88700 8.54% 

Glycine 75848 7.31% 

Alanine 72066 6.94% 

Glutamate 70344 6.78% 

Serine 69641 6.71% 

Valine 67712 6.52% 

Threonine 59922 5.77% 

Aspartate 59872 5.77% 

Arginine 54023 5.20% 

Lysine 52557 5.06% 

Proline 48440 4.67% 

Phenylalanine 41577 4.00% 

Asparagine 37627 3.62% 

Tyrosine 35842 3.45% 

Glutamine 33158 3.19% 

Methionine 27287 2.63% 

Histidine 22954 2.21% 

Cysteine 14307 1.38% 

Tryptophan 11004 1.06% 
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was previously determined to be present at 0.66 % by mol (Patel et al. 1986) in the M. 

hungatei sheath.  These data suggest that M. hungatei has a novel mechanism for His 

incorporation and this necessary role is likely fulfilled by one of the eight pseudo-

tRNAs detected.  Additionally, M. hungatei must possess a novel mechanism, as yet not 

described, for fulfilling the role of histidinol phosphate phosphatase. 

 Peptides derived from a total of 1,417 unique proteins were detected in the 

proteome of M. hungatei.  Genes encoding the detected peptides were distributed evenly 

around the chromosome regardless of the growth condition (Figure 10).  I did not  
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Figure 10:  Circular chromosome of M. hungatei JF1 with detected peptides 
shown.  A total of 1,417 unique peptides were detected (see text) across the three 
growth conditions.  843 peptides were detected in JF1 cells from butyrate-oxidizing 
coculture (blue), 204 were detected in JF1 cells from crotonate-oxidizing coculture (red) 
and 318 were detected in JF1 cells grown in pure culture on H2:CO2 (green). 
  

butyrate crotonate H2 / CO2 
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detect a region of the chromosome where proteins specifically related to syntrophy were 

expressed. A total of 884 peptides were detected in at least three of the four replicates 

for a given growth condition.  All further analyses are with this class of detected 

peptides.  

Nonmetric multidimensional scaling (NMDS) ordination showed that the M. 

hungatei protein abundance pattern was highly reproducible between the two biological 

replicates when M. hungatei was grown in pure culture and in coculture with S. wolfei 

on butyrate (Figure 11). The protein abundance pattern differed between the two  

  



 

141 

 
 
Figure 11:  NMDS ordination plot of detected peptides detected in M. hungatei JF1 
under three growth conditions. Clustering of duplicate samples was extremely tight 
and nearly overlaps in ordination space.  
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biological replicates when M. hungatei was grown in coculture with S. wolfei on 

crotonate, although each abundance pattern differed from that obtained with the two 

other growth conditions (Figure 11). 

One hundred thirty-two of the detected proteins were shared across all three 

growth conditions.  I detected a total of 316 proteins from cells grown in pure culture on 

H2/CO2 and 40 of these were unique to this growth condition (Figure 12).  One peptide  
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Figure 12:  Distribution of proteins detected from M. hungatei.  Cells were grown in 
butyrate-oxidizing coculture (blue), crotonate oxidizing coculture (red) and from pure 
culture growth on H2:CO2 (green).  A total of 132 peptides were detected in all three 
conditions while 71 were unique to coculture conditions.  497 peptides were detected 
only during growth on butyrate – though many more peptides were detected in general 
from this condition than others. 
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detected from cells grown in pure culture was also detected in M. hungatei cells 

obtained from the crotonate coculture; 143 peptides detected from cells grown in pure 

culture were likewise detected in M. hungatei cells obtained from the butyrate 

coculture.  A total of 204 peptides were detected in M. hungatei cells obtained from the 

crotonate coculture and none of these were unique to this growth condition (Figure 12).  

Seventy-one of the peptides detected in cells obtained from crotonate cocultures were 

also detected in cells obtained from the butyrate coculture (Figure 12).  A total of 843 

peptides were detected in M. hungatei cells obtained from the butyrate coculture with 

497 of these peptides being unique to this condition (Figure 12). 

 The detected peptides were binned according to cluster of orthologous groups 

(COGs) and the relative abundance of peptides in each COG category (based on total 

NSAF signal) for each growth condition was determined (Figure 13 and Table 11).  A  
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Figure 13:  COG distribution of peptides detected from M. hungatei whole cell 
proteome.  Less signal (and consequently fewer peptides) were associated with 
translation (blue) during coculture growth relative to pure culture growth.  Relative to 
pure culture, signal intensity increased for peptides associated with coenzyme transport 
and energy production (tan and orange respectively).  Interestingly, 20% of peptide 
signal or more detected during growth in coculture was from unannotated peptides 
while only 12% of signal was from unannotated peptides during pure culture growth. 
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Table 11:  Distribution of proteins detected from M. hungatei by functional 
category.  Percent values represent the percent of signal attributable to individual COG 
category for peptides with a COG category assignment.  Columns do not add to 100% 
because some proteins may have more than on COG assignment and some proteins may 
have no COG assignment.  
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Cog Category H2 / CO2 Crotonate Butyrate 

Amino Acid Transport & Metabolism 4.80% 4.06% 4.49% 

Carbohydrate Transport & Metabolism 1.67% 0.92% 2.19% 

Cell Cycle Control, Division 0.45% 0.10% 0.32% 

Cell Motility 0.89% 0.63% 1.54% 

Cell Wall, Envelope & Membrane Biogenesis 0.60% 0.18% 0.59% 

Chromatin Structure & Dynamics 0.83% 0.73% 0.72% 

Coenzyme Transport & Metabolism 9.17% 20.92% 15.62% 

Defense Mechanisms 0.23% 0.00% 0.39% 

Energy Production 12.17% 28.35% 25.51% 

Function Unknown 4.87% 5.05% 4.15% 

General Function Preduction 6.76% 2.68% 5.40% 

Inorganic Ion Transport & Metabolism 2.21% 1.10% 1.42% 

Intracellular Trafficking, Secretion & Vesicular Transport 0.12% 0.06% 0.18% 

Lipid Transport & Metabolism 0.28% 0.08% 0.34% 
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Nucleotide Transport & Metabolism 2.19% 0.50% 1.28% 

Post-translational modification & Protein Turnover 7.33% 3.24% 3.74% 

Replication, Recombination & Repair 0.83% 0.20% 0.66% 

Secondary Metabolite Biosynthesis 0.05% 0.06% 0.11% 

Signal Transduction 1.62% 0.72% 1.69% 

Transcription 2.04% 0.29% 1.52% 

Translation 23.32% 4.74% 6.70% 
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marked difference between the three growth conditions was observed for several COG 

categories.  For example, M. hungatei peptides associated with coenzyme transport 

increased from approximately 9% of the total proteome in pure-culture-grown cells to 

21% and 16% in M. hungatei cells from crotonate-oxidizing and butyrate-oxidizing 

coculture conditions, respectively (Figure 13 and Table 11).  Similarly, energy 

production associated peptides increased from 12% in the total proteome in pure-

culture-grown cells to approximately 28% and 26% of the total proteome in M. hungatei 

cells from crotonate- and butyrate-oxidizing conditions, respectively (Figure 13 and 

Table 11). The increase in the percentage of peptides associated with energy production 

and cofactor synthesis in the proteome of cells grown in partnership with S. wolfei may 

be a consequence of the down-regulation of proteins involved in translation as the 

percentage of peptides in the total proteome associated with translation decreased in M. 

hungatei cells obtained from cocultures relative to that from pure-culture (Figure 13 and 

Table 11).  This observation is not unexpected given the slow growth rates for S. wolfei 

and M. hungatei cocultures (Robinson and Tiedje 1984).  

 

Methane metabolism 

 Methanogenesis is the only known metabolic pathway by which the 

methanarchaea generate energy for use in biosynthesis (Thauer et al. 2008).  In 

methanogens lacking cytochromes, reduction of the CoM-S-S-CoB heterodisulfide has 

been shown to be linked with ferredoxin reduction via an electron bifurcating enzyme 

complex.  This enzyme complex is composed of a formyl methanofuran dehydrogenase, 
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heterodisulfide reductase and either a F420 non-reducing hydrogenase or formate 

dehydrogenase (Costa et al. 2010).  This is the currently accepted model for the 

production of reduced ferredoxin in methanarchaea which lack cytochromes.  

Interestingly, the genetic evidence from M. hungatei does not support this model as no 

genes coding a F420 non-reducing hydrogenase were detected in the genome (Anderson 

et al. 2009). 

The M. hungatei genome encodes the full suite of proteins necessary to carry out 

hydrogenotrophic methanogenesis and peptides for these enzymes were detected under 

all growth conditions (Figure 14 and  Table 12). Several gene clusters were detected  
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Figure 14:  Pathway for hydrogenotrophic methanogenesis and genes detected in 
M. hungatei JF1 genome.  M. hungatei JF1 lacks cytochromes and, unlike other non-
cytochrome-containing methanogens, lacks a catalytic F420-nonreducing hydrogenase 
subunit.  Peptides detected in pure culture (green), crotonate grown coculture (red) and 
butyrate grown coculture (blue) are indicated.  Detection indicates peptides were 
detected in at least three of four replicates from that particular condition. 
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Table 12:  Core methanogenesis proteins detected from M. hungatei.  Percent values 
represent percent of total normalized spectral abundance factors (NSAF) values prior to 
eliminating peptides detected in less than three replicates.    
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   Corrected NSAF values (expressed in %) 
   H2/CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637897454 Mhun_1835 formylmethanofuran dehydrogenase, subunit F 0.45% 0.16% 0.88% 0.19% 0.65% 0.08% 

637897455 Mhun_1836 CoB--CoM heterodisulfide reductase subunit C 1.93% 1.17% 0.56% 0.42% 0.51% 0.03% 

637897456 Mhun_1837 CoB--CoM heterodisulfide reductase subunit B 0.19% 0.05% 0.68% 0.19% 0.62% 0.05% 

637897457 Mhun_1838 CoB--CoM heterodisulfide reductase subunit A 0.66% 0.18% 1.08% 0.11% 0.90% 0.14% 

637897458 Mhun_1839 F420-non-reducing hydrogenase subunit D 0.21% 0.16% 0.15% 0.14% 0.40% 0.08% 

637897590 Mhun_1981 formylmethanofuran dehydrogenase, subunit C 0.23% 0.04% 0.42% 0.10% 0.53% 0.05% 

637897591 Mhun_1982 formylmethanofuran dehydrogenase, subunit A 0.26% 0.05% 0.30% 0.10% 0.34% 0.06% 

637897592 Mhun_1983 formylmethanofuran dehydrogenase, subunit B 0.12% 0.05% 0.22% 0.08% 0.36% 0.04% 

637897593 Mhun_1984 formylmethanofuran dehydrogenase, subunit D 0.19% 0.08% 0.29% 0.20% 0.39% 0.12% 

637897712 Mhun_2106 formylmethanofuran dehydrogenase, subunit G ND -- 0.02% 0.03% 0.04% 0.03% 

637897713 Mhun_2107 formylmethanofuran dehydrogenase, subunit D ND -- ND -- 0.06% 0.02% 

637897714 Mhun_2108 formylmethanofuran dehydrogenase, subunit B 0.03% 0.03% 0.08% 0.02% 0.07% 0.01% 

637897715 Mhun_2109 formylmethanofuran dehydrogenase, subunit A 0.02% 0.02% 0.02% 0.03% 0.06% 0.01% 

637897749 Mhun_2144 methyl-coenzyme M reductase, beta subunit 0.55% 0.16% 6.49% 2.56% 3.10% 0.17% 

637897750 Mhun_2145 Methyl-coenzyme M reductase, protein D 0.08% 0.09% ND -- 0.16% 0.04% 

637897751 Mhun_2146 Methyl-coenzyme M reductase operon protein C ND -- 0.02% 0.03% 0.03% 0.02% 
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637897752 Mhun_2147 methyl-coenzyme M reductase, gamma subunit 3.24% 1.37% 5.99% 0.75% 2.55% 0.24% 

637897753 Mhun_2148 methyl-coenzyme M reductase, alpha subunit 1.43% 0.20% 3.11% 0.63% 1.67% 0.19% 

637897772 Mhun_2168 tetrahydromethanopterin S-methyltransferase, subunit E 0.01% 0.02% 0.13% 0.12% 0.11% 0.04% 

637897773 Mhun_2169 tetrahydromethanopterin S-methyltransferase, subunit D 0.10% 0.08% 0.11% 0.15% 0.04% 0.03% 

637897774 Mhun_2170 tetrahydromethanopterin S-methyltransferase, subunit C ND -- 0.16% 0.18% 0.20% 0.02% 

637897775 Mhun_2171 tetrahydromethanopterin S-methyltransferase, subunit B ND -- ND -- 0.55% 0.23% 

637897776 Mhun_2172 tetrahydromethanopterin S-methyltransferase, subunit A ND -- 1.13% 0.43% 0.86% 0.48% 

637897777 Mhun_2173 tetrahydromethanopterin S-methyltransferase, subunit F ND -- ND -- 0.26% 0.05% 

637897779 Mhun_2175 tetrahydromethanopterin S-methyltransferase, subunit H 0.34% 0.11% 2.13% 0.22% 1.67% 0.19% 
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which encode putative subunits of formyl-methanofuran (MFR) dehydrogenase (Fmd).  

Fmd  is a six-subunit molybdopterin-containing complex, which catalyzes the 

endergonic reduction of CO2 to formyl-MFR (Thauer et al. 2008).  Genes coding for 

several duplicate Fmd subunits were detected between locus tag Mhun_1981 and 

Mhun_1994 including two fmdA genes (Mhun_1982, 1989), three fmdB genes 

(Mhun_1983, 1988, 1994), two fmdC genes (Mhun_1981, 1990), three fmdD genes 

(Mhun_1984, 1987, 1993), and one fmdE gene (Mhun_1985).  No Fmd-F or Fmd-G 

subunits were detected within this region.  Another apparent fmd operon, containing 

fmdGDBAC genes, was also detected (Mhun_2106-2109, 2112).  Several fmd genes 

were detected elsewhere on the chromosome, including fmdE (Mhun_250, 1329, 2004, 

2082), fmdG (Mhun_1834, 1972, and fmdF (Mhun_1835). 

The next step in the pathway is catalyzed by formyl-

MFR:tetrahydromethanopterin (H4MPT) formyl transferase (Ftr) encoded by 

Mhun_1808.  The M. hungatei genome has three genes encoding methenyl-H4MPT 

cyclohydrolase (Mhun_2384, 0444, 0022), one gene encoding methylene-H4MPT 

dehydrogenase (Mhun_2255), and one gene encoding methylene-H4MPT reductase 

(Mhun_2257). One operon encoding genes for H4MPT S-methyltransferase (Mtr) was 

detected, which contains two genes for mtrA (Mhun_2172, 2174) and one gene each for 

the remaining mtr genes, mtrBCDEFH (Mhun_2171, 2170, 2169, 2168, 2173, 2175 

respectively). The M. hungatei genome contains genes for methyl-CoM reductase (Mcr) 

type I (mcrBDCGA encoded by Mhun_2144-2148, respectively) isozyme. A second 

Mcr isozyme, McrII, has been identified, and in methanogens that contain both Mcr 

isozymes, type McrI is the one detected when the methanogen grows syntrophically 
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(Enoki et al. 2011). The presence of only the type I Mcr in M. hungatei is consistent 

with its function as a syntrophic specialist.  

Proteomic analysis detected peptides corresponding to various subunits of methane 

production enzymes under all three growth conditions (Table 12). Fmd peptides 

(FmdCABD), encoded by Mhun_1981-1984, respectively, were abundant and detected 

under all growth conditions (Table 12).  FmdG (Mhun_2106 gene product) was 

detected only in cells obtained from crotonate- and butyrate-grown cocultures (Table 

13). Ftr (Mhun_1808 gene product), MtrH (Mhun_2175 gene product), McrB 

(Mhun_2144 gene product) and the methylene-H4MPT dehydrogenase (Mhun_2255 

gene product) had 4-fold or greater increases in relative abundance (higher NSAF 

signal) in cells from butyrate-grown cocultures compared to pure culture-grown cells 

(Table 14). In addition, MtrB and MtrF were only detected in cells obtained from 

butyrate-grown cocultures (Table 13). Other investigators have observed increases in 

various enzymes in the methane production pathway during syntrophic growth (Walker 

et al. 2012). This phenomenon is consistent with the need to maximize energy 

production under thermodynamically limited energy conditions involved in syntrophic 

growth.  
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Table 13:  Core methanogenesis proteins detected from M. hungatei only during 
growth butyrate-oxidizing coculture.  Percent values represent percent of total 
normalized spectral abundance factors (NSAF) values prior to eliminating peptides 
detected in less than three replicates.    
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   Corrected NSAF values (expressed in %) 
   H2 / CO2 Crotonate Butyrate 
Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637897713 Mhun_2107 formylmethanofuran dehydrogenase, subunit D  ND -- ND -- 0.06% 0.02% 

637897775 Mhun_2171 tetrahydromethanopterin S-methyltransferase, subunit B  ND -- ND -- 0.55% 0.23% 

637897777 Mhun_2173 tetrahydromethanopterin S-methyltransferase, subunit F  ND -- ND -- 0.26% 0.05% 
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Table 14:  Peptides detected from M. hungatei showing a greater than a Log2 
change of 2 increase in relative abundance in cultures from butyrate-oxidizing 
conditions.  Values calculated using percent values of NSAF attributable to M. 
hungatei prior to eliminating peptides detected in less than three replicates. 
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Gene ID Locus Gene Product Name Log2 Bt/Cro Log2 Bt/Pure Log2 Cro/Pure 

637898161 Mhun_2549 thermosome subunit 0.00 3.02 3.02 

637897433 Mhun_1814 formate dehydrogenase, beta subunit 0.21 2.92 2.72 

637896064 Mhun_0423 PKD 1.00 2.90 1.91 

637897861 Mhun_2255 methylenetetrahydromethanopterin dehydrogenase -1.00 2.52 3.52 

637897749 Mhun_2144 methyl-coenzyme M reductase, beta subunit -1.07 2.41 3.48 

637897427 Mhun_1808 formylmethanofuran-tetrahydromethanopterin 

formyltransferase 

0.05 2.27 2.22 

637895806 Mhun_0154 heat shock protein Hsp20 -0.54 2.24 2.78 

637897779 Mhun_2175 tetrahydromethanopterin S-methyltransferase, subunit H -0.35 2.21 2.56 

637896235 Mhun_0597 PKD 0.33 2.04 1.71 

637896587 Mhun_0951 methyl-accepting chemotaxis sensory transducer 0.67 2.02 1.35 
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Hydrogenase and formate dehydrogenase 

 Genes for four hydrogenases were detected in the M. hungatei chromosome 

(Figure 14), including three membrane-bound hydrogenases, ech (energy-conserving 

hydrogenase), eha (energy-conserving hydrogenase A) and mbh (membrane-bound 

hydrogenase), and a cytosolic, F420-reducing hydrogenase (frc). M. hungatei lacks a 

F420-nonreducing hydrogenase (vhu or vhc), making it unlikely that electron bifurcation 

between CoM-S-S-CoB heterodisulfide and H2 drives  synthesis of reduced ferredoxin 

from H2 (Anderson et al. 2009; Costa et al. 2010; Thauer et al. 2008; Worm et al. 

2011). Anderson et al (Anderson et al. 2009) proposed that Methanomicrobiales may 

use the energy of ion gradients to drive the unfavorable reduction of ferredoxin by H2 

because the genes for eha are adjacent to those for formylmethanofuran dehydrogenase 

(fmd) (Anderson et al. 2009). Alternatively, Ech, which serves this function in 

Methanosarcina barkeri (Meuer et al. 2002), or Mbh could serve this role in M. 

hungatei.   
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Table 15:  Hydrogenase proteins detected from M. hungatei.  Percent values 
represent percent of total normalized spectral abundance factors (NSAF) values prior to 
eliminating peptides detected in less than three replicates.   
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   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637897365 Mhun_1744 ech hydrogenase subunit D   ND -- 0.06% 0.07% 0.11% 0.06% 

637897366 Mhun_1745 ech hydrogenase subunit E   0.24% 0.14% 0.04% 0.05% 0.16% 0.05% 

637897367 Mhun_1746 ech hydrogenase subunit F   0.02% 0.05% 0.04% 0.07% 0.23% 0.09% 

637897710 Mhun_2104 membrane-bound hydrogenase subunit ehaN   0.17% 0.18% ND -- 0.07% 0.03% 

637897711 Mhun_2105 membrane-bound hydrogenase subunit ehaO   0.09% 0.05% 0.02% 0.03% 0.04% 0.02% 

637898199 Mhun_2588 Membrane bound hydrogenase subunit mbhJ   0.02% 0.04% 0.02% 0.05% 0.05% 0.02% 

637898200 Mhun_2589 Membrane bound hydrogenase subunit mbhK   0.25% 0.03% 0.01% 0.03% 0.05% 0.01% 

637897938 Mhun_2329 coenzyme F420-reducing hydrogenase, beta subunit 0.16% 0.08% 0.61% 0.56% 0.44% 0.10% 

637897939 Mhun_2330 coenzyme F420-reducing hydrogenase, gamma subunit ND -- 3.40% 1.21% 2.78% 0.42% 

637897941 Mhun_2332 coenzyme F420-reducing hydrogenase, alpha subunit 0.28% 0.10% 0.97% 0.29% 0.88% 0.09% 
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Peptides were detected from subunits of all three membrane bound 

hydrogenases (Ech, Eha and Mbh) under all three growth conditions. (Figure 14; Table 

15). EchD and EchF (Mhun_1744 and 1746 gene products) were detected in cells 

obtained from crotonate- and butyrate-grown cocultures (Table 15).  MbhK was more 

abundant in pure culture growth relative to growth in coculture (Table 15) though this 

difference was not significant (p=0.23). ech and mbh transcripts were previously 

detected during growth on either hydrogen or formate, or when M. hungatei was grown 

in propionate-oxidizing coculture with Syntrophobacter fumaroxidans; however, no 

statistically significant differences in the expression of any of the membrane-bound 

hydrogenase genes was detected among the different growth conditions (Worm et al. 

2011).  

Peptides corresponding to various subunits of Frc were detected under all three 

growth conditions (Figure 14; Table 15). The relative abundance of FrcA was 3-fold 

higher (p=0.0002) in cells obtained from butyrate-oxidizing cocultures and was 3.3-fold 

higher (p=0.0117) in cells obtained from crotonate-oxidizing cocultures relative to that 

detected in cells grown in pure culture (Table 14).  Additionally, FrcB was 4.7-fold 

more abundant in cells obtained from crotonate-oxidizing cocultures relative to cells 

grown in pure culture on H2 / CO2, although this difference was not statistically 

significant. FrcB was 2.6-fold more abundant in cells obtained from butyrate-oxidizing 

cocultures relative to pure culture-grown cells, which was statistically significant 

(p=0.0055) (Table 14).  Transcripts of frc have been reported as having 3-fold to 430-

fold higher abundance than those of mbh or ech (Worm et al. 2011).  An increase in 

abundance of FrcA and FrcB was observed when Methanococcus maripaludis was 
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grown in coculture with Desulfovibrio vulgaris (Walker et al. 2012). Our data suggests 

that Frc plays an important role during hydrogen-limited, syntrophic growth.  

Five genes predicted to encode formate dehydrogenases (Fdh) were detected in 

the M. hungatei genome (Figure 14). All M. hungatei Fdh enzymes are predicted to be 

F420-reducing (Worm et al. 2011). Peptides for four of the five Fdhs were detected in 

the proteome (Figure 14; Table 16).  Subunits of Fdh-1, Fdh-3 and Fdh-5 were detected 

under all growth conditions while those of Fdh-2 were not detected under any growth 

condition. FdhA-1 peptides had similar abundances under all growth conditions but, the 

relative abundance of FdhB-1 peptides (Mhun_1814 gene product) increased 6.5-fold in 

cells obtained form crotonate-oxidizing cocultures relative to pure culture-grown cells 

(p=0.009) and increased 7.5-fold in cells obtained from butyrate-oxidizing cocultures 

relative to pure culture-grown cells (p=0.0003). The relative abundance of FdhA-5 

(Mhun_3238 gene product) increased over 2-fold in cells obtained from crotonate- and 

butyrate-oxidizing cocultures compared to pure culture-grown cells (p=0.0009 and 

p=0.0001, respectively) (Table 14).  Transcripts of all five fdh genes were detected in 

M. hungatei cells grown in pure culture on either hydrogen or formate, and in cells 

grown in coculture with S. fumaroxidans on propionate (Worm et al. 2011).  
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Table 16:  Formate dehydrogenase proteins detected from M. hungatei.  Percent 
values represent percent of total normalized spectral abundance factors (NSAF) values 
prior to eliminating peptides detected in less than three replicates.   
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   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637897432 Mhun_1813 formate dehydrogenase, alpha subunit  0.52% 0.10% 0.84% 0.19% 0.63% 0.05% 

637897433 Mhun_1814 formate dehydrogenase, beta subunit 0.14% 0.04% 0.99% 0.28% 1.13% 0.14% 

637897628 Mhun_2020 formate dehydrogenase, beta subunit ND -- 0.01% 0.01% 0.01% 0.00% 

637897629 Mhun_2021 formate dehydrogenase, alpha subunit 0.02% 0.02% 0.00% 0.01% 0.01% 0.01% 

637897630 Mhun_2022 formate dehydrogenase, beta subunit ND -- 0.00% 0.00% 0.01% 0.00% 

637898852 Mhun_3237 formate dehydrogenase, beta subunit  ND -- 0.01% 0.02% 0.03% 0.02% 

637898853 Mhun_3238 formate dehydrogenase, alpha subunit 0.04% 0.02% 0.01% 0.01% 0.04% 0.01% 
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Bioenergetics 

 Unlike cytochrome-containing methanogens, which create both H+ and Na+ 

gradients during methanogenesis (Thauer et al. 2008), cytochrome-lacking 

methanogens like M. hungatei are only known to generate Na+ gradients.  In 

methanogens that lack cytochromes, there is only one step in the methanogenic pathway 

which is linked to Na+ efflux – the reaction of H4MPT S-methyltransferase (Mtr), which 

couples the transfer of the methyl group from methyl-H4MPT to reduced coenzyme M 

(CoM) to the efflux of two Na+ ions (Saum et al. 2009; Schlegel et al. 2012). Four Na+ 

ions are, in general, required for ATP synthesis (Saum et al. 2009; Schlegel et al. 2012) 

and, therefore, 0.5 mol ATP per mol of methane can potentially be made assuming that 

the sodium gradient is not needed for other purposes such as creating reduced 

ferredoxin needed to reduce CO2 to formyl-MFR.  Peptides were detected across all 

growth conditions for methyltransferase subunits and peptides for three subunits were 

substantially more abundant in cells obtained from butyrate-grown cocultures (Table 

12). 

Three A1A0 –type (archaeal-type) ATP synthases were identified on the M. 

hungatei genome (Mhun_1177-85, Mhun_1757-64, Mhun_1768-75) (Table 17; Figure 

14), which would use the sodium gradient to make ATP. Each cluster contains multiple 

genes for the c-subunit with putative Na+-binding motifs (Glun, Sern+1) (Müller and 

Grüber 2003).  Peptides encoded by Mhun_1177-85 were detected in cells from at least 

three of four replicates grown in pure culture and in coculture on crotonate (Table 17).   
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Table 17:  ATP synthase proteins detected from M. hungatei.  Percent values 
represent percent of total normalized spectral abundance factors (NSAF) values prior to 
eliminating peptides detected in less than three replicates.   
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   Corrected NSAF values (expressed in %) 
   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637896819 Mhun_1177 V-type H+-transporting ATPase subunit E   ND -- 0.02% 0.04% 0.12% 0.05% 

637896820 Mhun_1178 V-type ATPase, 116 kDa subunit   ND -- 0.04% 0.03% 0.05% 0.01% 

637896822 Mhun_1180 H+-transporting two-sector ATPase, E subunit   0.15% 0.12% 0.17% 0.14% 0.24% 0.03% 

637896823 Mhun_1181 H+-transporting two-sector ATPase, C (AC39) subunit   0.09% 0.07% 0.12% 0.05% 0.11% 0.03% 

637896824 Mhun_1182 Vacuolar H+-transporting two-sector ATPase, F subunit   ND -- 0.07% 0.09% 0.15% 0.03% 

637896825 Mhun_1183 Sodium-transporting two-sector ATPase   0.13% 0.05% 0.16% 0.06% 0.27% 0.04% 

637896826 Mhun_1184 Sodium-transporting two-sector ATPase   0.58% 0.13% 0.21% 0.05% 0.41% 0.01% 

637896827 Mhun_1185 V-type ATPase, D subunit   0.59% 0.13% 0.01% 0.02% 0.07% 0.02% 

637897377 Mhun_1757 V-type ATPase, D subunit   0.06% 0.08% ND -- 0.02% 0.01% 

637897378 Mhun_1758 Sodium-transporting two-sector ATPase   ND -- 0.01% 0.02% 0.06% 0.01% 

637897379 Mhun_1759 Sodium-transporting two-sector ATPase   0.01% 0.01% ND -- 0.02% 0.01% 

637897382 Mhun_1762 H+-transporting two-sector ATPase, E subunit   0.01% 0.02% ND -- 0.07% 0.02% 

637897384 Mhun_1764 V-type ATPase, 116 kDa subunit   ND -- ND -- 0.01% 0.00% 

637897388 Mhun_1768 V-type ATPase, D subunit   ND -- 0.01% 0.03% 0.02% 0.01% 
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637897389 Mhun_1769 Sodium-transporting two-sector ATPase   ND -- ND -- 0.02% 0.01% 

637897390 Mhun_1770 Sodium-transporting two-sector ATPase   ND -- 0.00% 0.00% 0.03% 0.01% 

637897393 Mhun_1773 H+-transporting two-sector ATPase, E subunit   ND -- ND -- 0.03% 0.01% 
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Peptides from all three ATP synthase gene clusters were detected in cells obtained from 

butyrate-grown cocultures (Figure 14 and Table 17). 

The remaining bioenergetics enigma is how reduced ferredoxin, needed for the 

reduction of CO2 to formyl-MFR, is made. In M. maripaludis it is believed that an 

electron bifurcating complex composed of heterodisulfide reductase (Hdr), formyl-

methanofuran dehydrogenase (Fmd), F420-nonreducing hydrogenase (Vhu) and formate 

dehydrogenase (Fdh) (Fmd/Hdr/Vhu/Fdh) complex is formed.  This complex couples 

the oxidation of hydrogen and formate (E0’ = -414 mV, -432 mV, respectively) to the 

exergonic reduction of the coenzyme B:coenzyme M heterodisulfide (CoM-S-S-CoB) 

(E0’ = -140 mV)(discussed later).  Energy conserved from this reaction is used to drive 

the endergonic reduction of ferredoxin (E0’ = -500 mV) (Costa et al. 2010; Hendrickson 

and Leigh 2008).  In the M. hungatei genome, two genes encoding fmdGF 

(Mhun_1834-35) are adjacent to three genes for heterodisulfide reductase (hdrABC, 

Mhun_1836-38) and a gene encoding methyl viologen-reducing hydrogenase subunit D 

(hydD) (Mhun_1839), which is the electron-transferring subunit. While genes for F420-

nonreducing hydrogenase (vhu or vhc) were not detected in the M. hungatei genome, it 

is possible that Fdh or another hydrogenase could form an electron bifurcating complex 

with FmdGF, HdrABC and HydD to drive the synthesis of formyl-MFR without the 

need to use the sodium gradient. Peptides of FmdF and HdrABC were consistently 

detected under all three growth conditions (Table 12).  
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Intermediary metabolism 

 M. hungatei is unique among the methanogens in that isolates require acetate 

supplementation (Ekiel et al. 1983) and no spontaneous mutants are known of either 

strain JF1 or GP1 which grow in an acetate-free medium (Sprott and Jarrell 1981).  

Studies with M. hungatei strain GP1 grown in the presence of 13C-acetate show that the 

carbon atom of the methane is not isotopically labeled and thus is not derived from 

acetoclastic methanogenesis.  Moreover, no evidence was obtained for condensation of 

CO2 to form acetate and instead label from 13CO2 was only detected in carboxyl groups 

of amino acids (Ekiel et al. 1983). 

 It is interesting, then, that the genome of M. hungatei encodes enzymes 

necessary for generating acetyl-CoA from CO2 (Table 18).    A gene cluster, predicted 
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Table 18:  Carbon fixation proteins detected from M. hungatei.  Percent values 
represent percent of total normalized spectral abundance factors (NSAF) values prior to 
eliminating peptides detected in less than three replicates.   
  



 

  

177 

   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637895998 Mhun_0352 acetyl-coenzyme A synthetase   0.03% 0.02% ND -- ND -- 

637896206 Mhun_0567 acetyl-coenzyme A synthetase   0.01% 0.02% ND -- 0.02% 0.00% 

637896323 Mhun_0686 acetyl-CoA decarbonylase/synthase gamma subunit ND -- ND -- 0.01% 0.01% 

637896327 Mhun_0690 acetyl-CoA decarbonylase/synthase alpha subunit 0.04% 0.02% ND -- 0.01% 0.01% 
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to encode a complete Acs/CODH complex (Mhun_0686-0690) and three acetyl-CoA 

synthetase genes (Mhun_0352, _0567, _1721), was detected in the M. hungatei genome.  

Peptides were detected for subunits of both the Acs/CODH complex as well as for the 

acetyl-CoA synthetases in cells grown in pure culture and in coculture on butyrate.  

Peptides were not detected for any subunits of Acs/CODH or for any of the acetyl-CoA 

synthetases in cells obtained from crotonate-grown cocultures (Table 18).  It is tempting 

to speculate, therefore, that the acetate requirement may be fulfilled during growth on 

crotonate through acetate production by S. wolfei. 

Oxaloacetate is a precursor for many biosynthetic reactions in the cell and, 

therefore, the conversion of pyruvate to oxaloacetate is an essential physiological 

requirement for an organism dependent on acetyl-CoA and CO2 as the main 

biosynthetic starting points (Simpson 1993).  Two mechanisms of oxaloacetate 

synthesis have been described for methanarchaea. In Methanosarcini barkeri, a hetero-

octameric pyruvate carboxylase catalyzes the ATP dependent carboxylation of pyruvate 

to form oxaloacetate (Mukhopadhyay et al. 2001).  In other methanogens, for example 

Methanococcus jannaschii (Mukhopadhyay et al. 2000) and Methanococcus 

maripaludis (Shieh and Whitman 1987), phosphoenolpyruvate is used to generate 

oxaloacetate via phosphoenolpyruvate carboxylation. 

 The genome of M. hungatei encodes a phosphoenolpyruvate carboxylase and 

both pyruvate carboxylase subunits; either enzyme could serve to synthesize 

oxaloacetate.  Peptides derived from phosphoenolpyruvate carboxylase and pyruvate 
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carboxylase enzymes were detected from cells obtained from all growth conditions 

(Table 19). 

 

Amino acid synthesis 
 
Figure 15 shows the amino acid biosynthesis pathways detected in the M. hungatei 

genome.  Complete biosynthetic pathways were detected for all amino acids except 

histidine.  As mentioned above, no gene encoding his-tRNA was detected nor was a 

gene encoding histidinolphosphate phosphatase detected (Figure 15; Table 20). 
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Table 19:  Phosphoenolpyruvate carboxylase/pyruvate carboxylase proteins 
detected from M. hungatei.  Percent values represent percent of total normalized 
spectral abundance factors (NSAF) values prior to eliminating peptides detected in less 
than three replicates.   
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   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637895825 Mhun_0174 Phosphoenolpyruvate carboxylase 0.06% 0.03% 0.01% 0.01% 0.02% 0.01% 

637898794 Mhun_3189 pyruvate carboxylase subunit B 0.13% 0.04% 0.01% 0.01% 0.01% 0.01% 

637898795 Mhun_3190 pyruvate carboxylase subunit A ND -- ND -- 0.02% 0.01% 
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Figure 15:  Amino acid biosynthesis pathway reconstruction in M. hungatei strain 
JF1.  Genes encoding the gene products necessary for all amino acid biosynthetic 
pathways were detected except for the synthesis of histidine. 
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Table 20:  Amino acid synthesis genes and gene products detected in M. hungatei.  
Percent values represent percent of total normalized spectral abundance factors (NSAF) 
values prior to eliminating peptides detected in less than three replicates. 
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   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637895669 Mhun_0023 serine hydroxymethyltransferase  0.03% 0.03% 0.02% 0.04% 0.07% 0.01% 

637895737 Mhun_0084 argininosuccinate lyase  0.02% 0.03% ND -- 0.01% 0.00% 

637895742 Mhun_0089 fumarase alpha subunit   0.09% 0.04% ND -- 0.01% 0.01% 

637895743 Mhun_0090 fumarase beta subunit  ND -- ND -- 0.04% 0.00% 

637895748 Mhun_0095 succinyl-CoA synthetase (ADP-forming) beta subunit 0.06% 0.02% 0.01% 0.02% 0.03% 0.01% 

637895749 Mhun_0096 succinyl-CoA synthetase (ADP-forming) alpha subunit ND -- 0.03% 0.03% 0.06% 0.02% 

637895791 Mhun_0139 dihydroxyacid dehydratase 0.02% 0.02% 0.07% 0.07% 0.10% 0.01% 

637896311 Mhun_0672 branched chain amino acid aminotransferase apoenzyme 0.42% 0.15% 0.02% 0.03% 0.09% 0.02% 

637896416 Mhun_0779 L-glutamine synthetase 0.11% 0.01% 0.13% 0.01% 0.19% 0.03% 

637896547 Mhun_0911 aminotransferase, class I and II ND -- 0.02% 0.02% 0.03% 0.01% 

637896556 Mhun_0920 imidazoleglycerol-phosphate dehydratase ND -- ND -- 0.02% 0.01% 

637896579 Mhun_0943 putative phosphoserine phosphatase 0.30% 0.04% 0.10% 0.12% 0.12% 0.04% 

637896670 Mhun_1032 prephenate dehydratase  0.09% 0.03% ND -- 0.01% 0.01% 
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637896740 Mhun_1101 Enolase 0.06% 0.04% 0.02% 0.02% 0.08% 0.01% 

637896756 Mhun_1117 sulfide dehydrogenase (flavoprotein) subunit SudA ND -- 0.01% 0.02% 0.02% 0.01% 

637896780 Mhun_1141 pyruvate phosphate dikinase 0.01% 0.01% 0.01% 0.01% 0.07% 0.01% 

637896883 Mhun_1241 acetolactate synthase, small subunit ND -- 0.15% 0.14% 0.24% 0.04% 

637896884 Mhun_1242 acetolactate synthase, large subunit  0.08% 0.04% 0.10% 0.04% 0.14% 0.02% 

637896887 Mhun_1245 ketol-acid reductoisomerase 1.49% 0.19% 0.97% 0.27% 0.77% 0.11% 

637897090 Mhun_1459 aminotransferase, class I and II 0.04% 0.04% 0.02% 0.02% 0.07% 0.01% 

637897123 Mhun_1492 dihydrodipicolinate synthase 0.02% 0.04% 0.13% 0.04% 0.15% 0.02% 

637897124 Mhun_1493 dihydrodipicolinate reductase 0.05% 0.08% 0.13% 0.10% 0.16% 0.04% 

637897248 Mhun_1619 L-threonine synthase  0.12% 0.03% 0.07% 0.06% 0.09% 0.01% 

637897409 Mhun_1789 phosphoribosylanthranilate isomerase ND -- ND -- 0.03% 0.02% 

637897410 Mhun_1790 tryptophan synthase, beta chain  ND -- ND -- 0.01% 0.00% 

637897417 Mhun_1797 3-isopropylmalate dehydrogenase  ND -- 0.01% 0.01% 0.03% 0.01% 

637897421 Mhun_1801 2-isopropylmalate synthase  ND -- ND -- 0.02% 0.01% 

637897657 Mhun_2050 ATP phosphoribosyltransferase (homohexameric)  ND -- ND -- 0.04% 0.02% 

637897658 Mhun_2051 phosphoribosyl-AMP cyclohydrolase  0.10% 0.08% ND -- ND -- 
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637897732 Mhun_2126 DegT/DnrJ/EryC1/StrS aminotransferase 0.03% 0.03% ND -- 0.03% 0.01% 

637897787 Mhun_2181 O-acetylhomoserine sulfhydrolase  0.04% 0.03% 0.12% 0.06% 0.13% 0.02% 

637897788 Mhun_2182 cysteine synthase  0.11% 0.08% ND -- 0.08% 0.02% 

637897807 Mhun_2201 homoserine O-acetyltransferase ND -- 0.05% 0.04% 0.11% 0.02% 

637897815 Mhun_2209 aminotransferase, class V 0.03% 0.04% 0.01% 0.02% 0.02% 0.01% 

637897817 Mhun_2211 serine O-acetyltransferase  ND -- ND -- 0.01% 0.01% 

637897819 Mhun_2213 aminotransferase, class V  ND -- ND -- 0.01% 0.01% 

637897902 Mhun_2292 homoserine dehydrogenase  ND -- ND -- 0.04% 0.02% 

637897934 Mhun_2324 phosphoglycerate mutase  0.19% 0.10% ND -- 0.05% 0.02% 

637897954 Mhun_2343 malate dehydrogenase (NADP) / malate dehydrogenase 

(NAD) 

ND -- 0.01% 0.01% 0.02% 0.01% 

637897973 Mhun_2361 3-isopropylmalate dehydratase, large subunit  ND -- 0.09% 0.05% 0.08% 0.02% 

637897974 Mhun_2362 3-isopropylmalate dehydratase, small subunit  0.13% 0.09% 0.10% 0.07% 0.14% 0.03% 

637897975 Mhun_2363 3-isopropylmalate dehydrogenase  0.03% 0.02% 0.02% 0.03% 0.04% 0.02% 

637898084 Mhun_2475 phosphoserine aminotransferase apoenzyme  / L-

aspartate aminotransferase apoenzyme  

0.32% 0.09% 0.15% 0.05% 0.17% 0.02% 
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637898127 Mhun_2514 aromatic amino acid aminotransferase apoenzyme  ND -- ND -- 0.02% 0.00% 

637898138 Mhun_2525 histidinol phosphate aminotransferase apoenzyme  0.03% 0.03% ND -- 0.02% 0.01% 

637898139 Mhun_2526 acetylornithine aminotransferase apoenzyme  0.02% 0.03% 0.03% 0.05% 0.09% 0.02% 

637898144 Mhun_2531 histidinol dehydrogenase  ND -- 0.02% 0.02% 0.03% 0.01% 

637898223 Mhun_2610 phosphoenolpyruvate synthase  0.22% 0.17% 0.09% 0.03% 0.09% 0.01% 

637898505 Mhun_2893 enolase  0.02% 0.02% ND -- 0.02% 0.01% 

637898557 Mhun_2943 LL-diaminopimelate aminotransferase apoenzyme  0.03% 0.04% ND -- 0.02% 0.00% 

637898661 Mhun_3052 thiol-driven fumarate reductase, iron-sulfur protein  ND -- ND -- 0.04% 0.01% 

637898662 Mhun_3053 thiol-driven fumarate reductase, flavoprotein subunit  ND -- ND -- 0.04% 0.01% 

637898663 Mhun_3054 aspartate kinase 0.02% 0.02% 0.00% 0.01% 0.04% 0.02% 

637898672 Mhun_3063 D-3-phosphoglycerate dehydrogenase  0.06% 0.01% ND -- 0.16% 0.01% 

637898842 Mhun_3227 N-acetyl-gamma-glutamyl-phosphate reductase ND -- ND -- 0.09% 0.02% 

637898844 Mhun_3229 N-acetylglutamate synthase  / glutamate N-

acetyltransferase  

ND -- 0.09% 0.05% 0.02% 0.01% 

637898845 Mhun_3230 N-acetylglutamate kinase ND -- 0.07% 0.03% 0.03% 0.01% 
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Alanine.  13C labeling analysis of M. hungatei GP1 (GP1) revealed an alanine 

biosynthetic pathway which was consistent with reductive carboxylation of acetyl-CoA 

to pyruvate and subsequent conversion of pyruvate to alanine (Ekiel et al. 1983).  The 

M. hungatei genome contains many gene sequences which encode aminotransferase 

enzymes (Figure 15; Table 20) and gene products necessary for the conversion of 

acetate to pyruvate, e.g. phosphoenolpyruvate carboxylase and pyruvate carboxylase 

subunits.  Genomic analysis is consistent with the model established in GP1 (Ekiel et al. 

1983) although it is difficult to predict which aminotransferase is involved based on 

sequence analysis alone (Kameya et al. 2010). 

Serine and glycine.  The biosynthetic pathway for serine and glycine in GP1 

channels through phosphoenolpyruvate and involves the formation of 3-

phosphoglycerate.  Essential for this mechanism is the conversion of 3-

phosphohydroxypyruvate to phosphoserine via a phosphoserine transaminase and 

subsequent dephosphorylation of phosphoserine by 3-phosphoserine phosphatase.  

Glycine, then, is produced from serine via the serine hydroxymethyltransferase.  The M. 

hungatei genome contains all the genes necessary for production of serine and glycine 

(Figure 15; Table 20) consistent with the mechanisms established in GP1. 

Aspartic acid, asparagine, methionine, lysine and threonine.  Biosynthesis of 

aspartate was shown in GP1 to proceed from the conversion of pyruvate to oxaloacetate 

and subsequent conversion to aspartic acid via a transamination reaction.  As previously 

discussed (see above), M. hungatei contains gene loci which are predicted to encode the 

necessary machinery for conversion of pyruvate to oxaloacetate (Figure 15; Table 20).  
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These data are consistent with the model for aspartate synthesis established in GP1 

(Ekiel et al. 1983).  13C labeled asparagine was not detected in GP1, however the M. 

hungatei genome contains a gene locus for asparagine synthetase - the enzyme 

responsible for the conversion of aspartate to asparagine with concomitant conversion 

of glutamine to glutamate (Mhun_2475). 

13C labeling showed that biosynthesis of threonine, methionine and a portion of 

lysine proceeded from aspartate in GP1 (Ekiel et al. 1983).  Aspartate is first converted 

to homoserine and from there the pathways diverge, forming threonine, methionine or 

lysine.  The M. hungatei genome contains loci to encode the machinery necessary for 

the conversion of homoserine to lysine (or methionine (  Crucial, however, for the 

conversion of homoserine to threonine is the formation of phosphoserine through the 

action of homoserine kinase.  Genes encoding homoserine kinase were not detected in 

the M. hungatei genome); however, homoserine kinase belongs to the GHMP kinase 

family (Bork et al. 1993; Daugherty et al. 2001), and a gene loci which is annotated as a 

GHMP kinase encoding gene was detected (Mhun_0932).  This peptide is predicted to 

have 43% identity over 40% of the peptides to a homoserine kinase identified in 

Methanococcus jannaschii (blast.ncbi.nlm.nih.gov). 

Glutamic acid, glutamine, arginine and proline.  13C labeling analysis in GP1 revealed 

that glutamic acid was derived from 2-oxoglutarate in the cell (Ekiel et al. 1983).  Gene 

loci predicted to encode enzymes necessary for the conversion of oxaloacetate to 2-

oxoglutarate were detected in the M. hungatei genome (Figure 15; Table 20).  Genes 

detected include those that code for glutamate synthase (Mhun_1117), which is 

essential for the conversion of 2-oxoglutratate to glutamate, and glutamine synthase 
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(Mhun_0779), which is essential for the conversion of glutamate to glutamine (Figure 

15; Table 20).  13C labeling in GP1 showed that both arginine and proline had similar 

labeling patterns to glutamate; demonstrating that these amino acids were derived from 

glutamate as precursor (Ekiel et al. 1983).  The M. hungatei genome contains genes 

predicted to encode argino-succinate synthase and argino-succinate lyase (Mhun_2201 

and Mhun_0084 respectively) and the genes necessary for conversion of glutamate to 

proline (Figure 15; Table 20). 

Leucine, valine, and isoleucine.  13C labeling studies showed that leucine and 

valine were synthesized from pyruvate via acetolactate in GP1 (Ekiel et al. 1983).  

Isoleucine was shown to be synthesized from conversion of pyruvate to 2-oxobutanoate 

via citramalate rather than 2-oxobutanoate synthesis from threonine via threonine 

dehydratase in GP1 (Ekiel et al. 1983).  Genes predicted to code for the enzymes 

necessary for synthesis of leucine, valine and isoleucine (Figure 15; Table 20 )were 

detected in the M. hungatei genome.  Of particular note is the genetic potential for 

conversion of threonine to 2-oxobutanoate via threonine dehydratase (Mhun_1939) 

providing genetic potential for two routes for the biosynthesis of isoleucine. 

Tryptophan, phenylalanine and tyrosine.  Phenylalanine and tyrosine were 

shown to be synthesized from chorismate and shikimate in GP1 while tryptophan was 

not detected (Ekiel et al. 1983).  Aromatic acid biosynthesis usually begins with the 

synthesis of 3-deoxy-7-phosphoheptulonate from phosphoenolpyruvate and D-

erythrose-4-phosphate; however, a gene encoding 3-deoxy-7-phosphoheptulonate 

synthase was not detected in the M. hungatei genome.  Genes necessary for converting 

pyruvate to shikimate and subsequently chorismate via the gluconeogenic pathway (not 
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shown) were detected as were genes necessary for subsequent biosynthesis of tyrosine, 

phenylalanine, and tryptophan of tyrosine, phenylalanine, and tryptophan (Figure 15; 

Table 20). 

Cysteine.  Isotopically labeled cysteine was not detected in 13C-labeling studies 

in GP1 (Ekiel et al. 1983).  The genome of M. hungatei, however, contains gene loci 

necessary for the conversion of serine to cysteine (Figure 15; Table 20). 

Histidine.  Very low levels of isotopically labeled histidine were detected during 

13C-labeling experiments in GP1 (Ekiel et al. 1983), suggesting that histidine was 

synthesized via the pentose phosphate pathway forming phosphoribosylpentose 

phosphate (PRPP), which is converted to histidine, presumably via the commonly used 

pathway encoded by hisGDCNBAFIE.  The genome of M. hungatei contains loci 

encoding all enzymes necessary for the conversion of PRPP to histidine except for a 

gene encoding histidinol-phosphate phosphatase (HisN) (Figure 15); a finding which is 

not unusual among archaea (Fondi et al. 2009). 

Genes unique to Methanomicrobiales 

 There are 62 signature genes of the Methanomicrobiales class of methanogens 

(Anderson et al. 2009). All 62 signature Methanomicrobiales genes were detected in the 

M. hungatei chromosome and corresponding peptides were detected for eleven of these 

genes, seven of which were unique to syntrophic growth conditions (Table 21). Of note, 

peptides derived from three of these:  an unknown protein (Mhun_0048 gene product), 

the gamma subunit of pyruvate ferredoxin oxidoreductase (Mhun_2394 gene product), 
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and a phosphoesterase enzyme (Mhun_2823 gene product) were detected only during 

growth on butyrate (Table 21). 
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Table 21:  Genes and gene products unique to Methanomicrobiales and their 
detection in M. hungatei.  Percent values represent percent of total normalized spectral 
abundance factors (NSAF) values prior to eliminating peptides detected in less than 
three replicates.   
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   Corrected NSAF values (expressed in %) 

   H2 / CO2 Crotonate Butyrate 

Gene ID Locus Gene Product Name Avg SD Avg SD Avg St. Dev 

637895670 Mhun_0024 hypothetical protein 0.17% 0.12% ND -- 0.05% 0.03% 

637895699 Mhun_0048 hypothetical protein ND -- ND -- 0.01% 0.01% 

637896568 Mhun_0932 GHMP kinase 0.05% 0.03% ND -- 0.02% 0.01% 

637896609 Mhun_0972 chaperonin Cpn60/TCP-1 0.07% 0.04% 0.12% 0.10% 0.11% 0.02% 

637896660 Mhun_1022 protein of unknown function DUF47 0.08% 0.07% 0.02% 0.04% 0.02% 0.01% 

637897116 Mhun_1485 hypothetical protein 0.04% 0.04% ND -- 0.05% 0.00% 

637897443 Mhun_1824 Carbonate dehydratase 0.20% 0.06% 0.08% 0.05% 0.14% 0.01% 

637897870 Mhun_2263 hypothetical protein 0.53% 0.26% 2.07% 0.44% 1.79% 0.02% 

637898004 Mhun_2394 pyruvate ferredoxin oxidoreductase, gamma subunit  ND -- ND -- 0.08% 0.04% 

637898005 Mhun_2395 pyruvate flavodoxin/ferredoxin oxidoreductase-like ND -- 0.01% 0.01% 0.06% 0.01% 

637898006 Mhun_2396 thiamine pyrophosphate enzyme-like TPP-binding 0.04% 0.05% 0.01% 0.03% 0.03% 0.01% 

637898166 Mhun_2554 Uncharacterised conserved protein UCP033563 0.06% 0.05% 0.03% 0.02% 0.02% 0.01% 

637898433 Mhun_2823 phosphoesterase, DHHA1 ND -- ND -- 0.02% 0.01% 

637898463 Mhun_2851 hypothetical protein 0.03% 0.03% ND -- 0.06% 0.02% 
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Discussion 

Methanarchaea play a critical role in maintaining low hydrogen and formate 

levels in anaerobic ecosystems.  Methanogenic activity creates thermodynamically 

favorable conditions for the oxidation of many organic acids and alcohols, including 

among these butyrate (McInerney et al. 2009; Sieber et al. 2012).  This interspecies 

electron transfer is essential for anaerobic communities to flourish in the absence of 

lower potential acceptors and, in principle, can occur with either hydrogen or formate as 

the interspecific electron carrier.  Theoretical calculations suggest that hydrogen 

diffusion is insufficient to explain the metabolic flux of freely suspended butyrate 

oxidizing cocultures (Dong and Stams 1995) and have led to suggestions elsewhere that 

formate represents the dominant interspecies electron carrier in suspended syntrophic 

cocultures (Stams and Plugge 2009).  

The increase in relative abundance for F420-reducing hydrogenase subunits seen 

here (Table 15) during growth in crotonate-oxidizing and butyrate-oxidizing cocultures 

is consistent with a prominent role for hydrogen in the overall energy economy of the 

organism.  These observations are consistent with the observation that transcripts 

encoding the seleno-cysteine containing F420-reducing hydrogenase (Fru) of M. 

maripaludis demonstrated a nearly ten-fold increase in syntrophic coculture relative to 

hydrogen limited cultures (Walker et al. 2012).  The greater relative abundance of Frc 

during syntrophic growth is consistent with unpublished studies which demonstrate an 

essential role for hydrogen transfer in butyrate-oxidizing cocultures of Syntrophomonas 

wolfei and M. hungatei JF1 (Sieber et al. 2013) and an earlier study demonstrating the 

production of micromolar amounts of hydrogen from inverted membrane vesicles of S. 
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wolfei (Wallrabenstein and Schink 1994).  The observed increase in peptides of Fdh 

(Mhun_1813-14 gene product) in cells grown in coculture with S. wolfei on crotonate 

and butyrate (Table 16) also implicates the importance of interspecies formate transfer. 

My observations here suggest that both formate and hydrogen are important interspecies 

electron carriers.  

Increased abundance of transcripts encoding core methanogenic peptides MtrH, 

McrA and FwdD has been seen for syntrophically grown cells of M. maripaludis 

(Sieber et al. 2012). Here, ten peptides were detected in M. hungatei at greater than 

four-fold induction from cells obtained from butyrate-oxidizing cocultures (Table 14) 

and five of these are core methanogenic peptides.  In pure culture, the high abundance 

of hydrogen presents no physiological limit to energy production by the methanogen 

and, therefore, the methanogenic machinery represents only a small fraction of the 

global protein demand in rapidly growing cells.  Proteins involved in other 

physiological necessities, such as DNA replication and repair, amino acid biosynthesis 

and other biosynthetic proteins are in high demand in rapidly growing cultures.  Pure 

culture growth is in stark contrast to the energetic reality faced by M. hungatei growing 

in crotonate or butyrate-oxidizing cocultures.  Under these conditions, the rate of 

production of hydrogen, and consequently the free energy available to the methanogen, 

is low due to the low pool sizes of methanogenic substrates (Jackson and McInerney 

2002).  It is, therefore, of paramount importance to curtail biosynthesis and maximize 

energy production. 

M. hungatei, like other methanogens that lack cytochromes, relies on sodium 

gradients to conserve energy. M. hungatei contains the genes H4MPT S-
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methyltransferase (Mtr) to create a sodium gradient and three A1A0 –type (archaeal-

type) ATP synthases to use the sodium gradient to make ATP. Subunits of all three ATP 

synthases were detected in the proteome of M. hungatei when it was grown 

syntrophically with S. wolfei on butyrate (Figure 14, Table 17). However, it is not clear 

what system M. hungatei uses to create reduced ferredoxin needed for the reduction of 

carbon dioxide to formyl-MFR.  Anderson and colleagues (2009) proposed that 

Methanomicrobiales use ion-translocating Eha to form reduced ferredoxin. However, 

use of a sodium gradient to form reduced ferredoxin would diminish the ability of M. 

hungatei to make ATP. Alternatively, M. hungatei may use an electron-bifurcating 

heterodisulfide reductase system (Anderson et al. 2009) analogous to that previously 

described for M. maripaludis (Costa et al. 2010). fmdGF (Mhun_1834-35) are adjacent 

to three genes for heterodisulfide reductase (hdrABC, Mhun_1836-38) and a gene 

encoding methyl viologen-reducing hydrogenase subunit D (hydD) (Mhun_1839). 

These genes could encode for a portion of the electron-bifurcating heterodisulfide 

reductase system. Although M. hungatei lacks genes for F420-nonreducing hydrogenase, 

it is possible that one of the formate dehydrogenases could be the source of electrons. 

Consistent with this model is the fact that peptides of FmdF and HrdABC were detected 

under all three growth conditions (Table 12).  

I see additional evidence here and elsewhere (Walker et al. 2012) that 

methanogens may rely on biosynthetic precursor molecules in the form of acetate, and 

possibly amino acids, to satisfy biosynthetic requirements.  I did detect proteins 

associated with both anabolic and catabolic amino acid pathways in all three conditions.  

What is notable, however, was that I did not detect proteins involved in carbon fixation 
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in cells grown in coculture on crotonate.  In M. maripaludis, evidence to support 

interspecies alanine transfer has been obtained to support this emerging facet of 

syntrophic relationships (Walker et al. 2012). 

Comparative genomic analysis detected 62 genes, which are unique to members 

of the Methanomicrobiales class of methanogens (Anderson et al. 2009). As 

Methanomicrobiales species are often involved in syntrophic interactions, the signature 

Methanomicrobiales genes may have specific syntrophic functions. However, I detected 

peptides for only fourteen of these genes and only three of these were unique to 

syntrophic growth conditions (Table 21). These data argue that many 

Methanomicrobiales signature genes have functions that are not specific to syntrophy.  
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