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CHAPTER I 
 
 

INTRODUCTION 

 

1.1 Transdermal Drug Delivery (TDD) 

Transdermal drug delivery (TDD) is gaining prominence over other forms of drug 

delivery due to its potential advantages, including minimal trauma induction, 

noninvasiveness, increased patient compliance and potential for continuous, controlled 

delivery (1, 2).  Consequently, in recent years, numerous transdermal products have been 

introduced into the market.  Current US market for transdermal patches is over $3 billion 

(3) and annual sales worldwide are estimated to be $31.5 billion by 2015 (4).  Although 

there is a potential market for TDD, it has been limited to only few drugs.  Table 1 gives 

the list of FDA approved drugs administered transdermally with their commercial names 

and purpose.  Figure 1 shows the percent of global sales of each drug administered 

through transdermal patches.   

 

Table 1: Commercially available drugs in the form of transdermal patches 

Drug Trade Names Purpose 

Nitroglycerin NITRO-BID, NITROL chest pain 
Scopolamine ISOPTO HYOSCINE motion sickness 
Nicotine NICORETTE, NICOTROL smoking cessation 
Clonidine CATAPRES high blood pressure 
Fentanyl SUBLIMAZE pain relief 
Estradiol ALORA, CLIMARA, FEMPATCH Postmenstrual syndrome 
Testosterone TESTODERM TTS Hypogonadism in males 
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Figure 1: Global sales of different drugs through transdermal patches (5) 

 

TDD has been successful for the delivery of drugs like nicotine, estradiol, 

testosterone, and fentanyl (6, 7), which have low molecular weights and high permeating 

characteristics such as octanol / water partition coefficients between 0 to 3, low melting 

points and the presence of few or no polar sites.  Many drugs (insulin, melatonin etc.) 

possess less ideal physio-chemical properties in terms of effectively penetrating through 

the stratum corneum (SC), the outer most layer of the skin (8).  Therefore, chemical 

penetration enhancers, CPEs (9, 10), or physical techniques like iontophoresis (11), 

sonophoresis (12, 13), or electroporation (14) are used to increase the drug absorption 

through skin.   

 

1.2 Chemical Penetration Enhancers (CPEs) 

One approach to breach the skin’s barrier to drugs is by using chemicals called 

chemical penetration enhancers (CPEs) (also called sorption promoters or accelerants).  
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These chemicals reversibly reduce the barrier resistance of SC, thereby enhancing the 

diffusion of poorly penetrating drugs through skin.  Although the exact mechanisms by 

which CPEs function are not completely understood, Barry and Williams (15) introduced 

the lipid protein partitioning (LPP) theory, which suggests a chemical can enhance 

penetration by one or more of the following mechanisms: (a) disruption of SC lipids, (b) 

interaction with intracellular proteins, or (c) increased partitioning of the drug into the SC 

(16).  Although numerous CPEs for TDD have been identified and reported in the 

literature (17), the toxic effects of these CPEs  limit their use in transdermal formualtions.  

The degree of effectiveness of CPEs is usually accompanied by an increase in their toxic 

effects because, potential CPEs are known to irritate and disrupt the organized structure 

of the skin (18).  Therefore, a careful balance is required between the potency and the 

toxic effects of CPEs for TDD.   

 

1.3 Scope of the study 

The potency of a CPE in enhancing the permeation of a drug is determined by 

measuring the rate at which the drug is permeated through skin in the presence of the 

CPE.  Typically, these experiments are performed in Franz diffusion cells (FDCs), (9, 19) 

and the amount of drug permeated is quantified by using analytical techniques, which 

include High Performance Liquid Chromatography (HPLC) (8, 20) or Liquid 

Scintillation Counting (LSC) (2, 21).  Such measurements are resource and labor 

intensive, cost prohibitive and have limited throughput.  In addition, these permeation 

experiments provide an indirect assessment of the effect of the CPE on the barrier 

properties of SC, which includes CPE-drug interactions.  Further, there is no rational 
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design criteria for selecting candidate CPEs for study and the trial-and-error 

experimentation can be time consuming.  Thus, a need exists for a robust, quick alternate 

technique that can effectively pre-screen the CPEs for their potency and lead to a better 

understanding of the effect of the CPE alone on the skin.   

Previously, electrical resistance of the skin was used to assess the integrity of skin 

prior to experiments for in vitro dermal testing (22, 23) and evaluating the corrosive 

effects of cosmetics on the skin (24).  This suggests that the electrical properties of skin, 

especially the resistive (or conductive) properties, might be useful in determining the 

effect of potential CPEs on the barrier properties of the skin.  Recently, electrical 

conductance of skin was used as a technique to identify potential CPEs from binary 

mixtures of two chemicals at different concentrations (25).  However, these experiments 

were carried out at room temperature unlike the traditional permeation experiments, 

which are performed at physiological body temperature.  Further, detailed comparison of 

this technique with the traditional FDC measurements has not been done.  

 

1.4 Specific aims of the study 

Specific aim 1: Design a more efficient system to pre-screen CPEs for their potency by 

using less rigorous techniques.   

The pre-screening technique can effectively reduce rigorous sample handling and 

analysis, which in turn reduces the time required to perform the permeation experiments 

for skin absorption studies.  In this study, resistive properties of skin were used to 

determine the changes in its barrier properties in the presence of various chemicals.  A 

high throughput multi-well resistance chamber was designed and constructed, similar to a 
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technique reported recently (26, 27).  The multi-well resistance chambers were equipped 

to operate at conditions identical to permeation experiments.  First, experiments were 

performed using CPEs reported in the literature (28), after which measurements were 

performed on forty two new potential CPEs, which were identified by a virtual design 

algorithm developed by the OSU Thermodynamics Group (29-31).  Our results show a 

significant agreement between the resistance technique and the standard permeation 

experiments; thus, we confirm the efficacy of the resistance technique for screening 

potential CPEs. 

 

Specific aim 2: Test the toxic effects of potential CPEs.   

Many CPEs, which are potential enhancers, are either toxic or potential irritants to 

the skin cells due to their ability to irritate and cause inflammation during the interaction 

with the viable epidermis (25, 27).  Therefore, histological studies were performed to 

observe the morphological changes in the layers of the skin exposed to potent CPEs. 

 

1.5 Thesis Organization 

 This thesis consists of six chapters.  Chapters one and two introduce the topic and 

provide a summary of literature review / background for this work.  Detailed description 

of evolution of the experimentation chamber used in this study is given in Chapter 3.  

Chapter 4 deals with evaluation of the CPEs and their toxic effects on skin.  Discussion 

of results and specific conclusion reached along with the future outlook are given in 

chapters five and six.  This is a collaborative project with OSU Thermodynamics 
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Research group, consequently, similar documentation can be found else where, in the 

manuscripts (32, 33) or the theses’ of members of the group (34, 35). 
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CHAPTER II 
 
 

BACKGROUND 

 

2.1. Routes of drug administration 

Drug delivery is the administration of a pharmaceutical compound into a human / 

animal body to achieve therapeutic effect for a particular ailment or disorder.  Drugs can 

be administered into the body through three main routes: 

1. Enteral (drugs administered through gastrointestinal tract) 

a. Oral (taken by mouth) 

b. Sub-lingual (placed under the tongue) 

2. Parenteral (drugs injected into the blood stream) (Figure 2) 

a. Intravenous (injected into a vein) 

b. Intramuscular (injected into a muscle) 

c. Subcutaneous (injected beneath the skin) 

3. Others (drugs administered through mucosal membranes, skin or others) 

a. Ocular (instilled in the eye) 

b. Nasal (absorbed through nasal membranes) 

c. Transdermal (delivered through skin by a patch for a systemic effect) 

The common routes for administering drugs are either orally or parenterally; oral 

is the most preferred as it is convenient, safe and least expensive.  However, it has several 
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limitations, which include low bioavailability of many drugs and hepatic first pass 

metabolism (19).  In oral drug delivery, the drug travels to the liver through the intestinal 

wall before it is transported to its target site via the bloodstream.  The intestinal wall and 

liver may chemically alter (metabolize) many drugs, decreasing the amount of drug 

reaching the bloodstream.  Some orally administered drugs irritate the digestive tract.  

Most other non-steroidal anti-inflammatory drugs can harm the lining of the stomach and 

small intestine and can cause or aggravate pre-existing ulcers (36).  Many drugs lose their 

therapeutic efficiency due to the harsh acidic environment and digestive enzymes in the 

stomach, or they are either absorbed poorly or erratically.   

Administration of drugs through injections is the next most common route which 

includes the intravenous, intramuscular and subcutaneous routes (Figure. 2).  For the 

subcutaneous route, a needle is inserted into fatty tissue just beneath the skin.  The 

injected drug moves into small blood vessels (capillaries) and reaches the bloodstream 

through the lymphatic vessels.  The subcutaneous route is used for administering many 

protein drugs because such drugs would be digested in the digestive tract if they were 

taken orally.  The intramuscular route is preferred to the subcutaneous route when larger 

volumes of a drug need to be injected.  For the intravenous route, a needle is inserted 

directly into a vein.  A solution containing the drug may be given in a single dose or by 

continuous infusion.  Despite the high bioavailability of the drug and ability to deliver a 

precise dose quickly and in a controlled manner, needle-based drug administration has 

several disadvantages.  It has greater risks of adverse effects since high concentrations of 

the drug can be attained very rapidly (37).  Needle phobia is one of the main offsets, 

which can make the drug injection traumatic.  Administration through intravenous 
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injections requires experienced or properly trained personnel, because it is difficult to 

insert a needle or catheter into a vein.  Under chronic diseased conditions, frequent visits 

to a physician are necessary, which can be costly. 

Figure 2: Various routes of drug administration through injections 

 

In order to overcome the above mentioned problems from conventional routes of 

drug delivery, researchers have started exploring alternate routes like eyes (38), mucosal 

membranes (39), vagina (40, 41) and skin (42, 43) to deliver therapeutics into the body.  

Due to the ease of application and large area of interface, drug delivery through the skin 

(TDD) can be very attractive when compared to other routes.  In TDD, therapeutics are 

delivered through a patch on the skin.  Drug, which is present in the patch, is absorbed 

into the blood stream through the skin.  Many drugs are available as transdermal patches 

in the market, as mentioned in Section 1.1.  
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2.2. Structure of skin 

Profound knowledge regarding the structure of skin and the impact of this 

structure on the delivery of drugs is important for the success of TDD.  Skin, the largest 

organ of the integumentary system of the human body performs various functions like: 

1. Keeping the body and organs intact. 

2. Protecting the internal organs from pathogens, chemicals, and other external 

threats. 

3. Acting as a water resistant barrier and minimizing trans-epidermal water loss 

(TEWL). 

4. Regulating the temperature of the body by secretion and controlling energy losses 

by radiation, convection, and conduction. 

5. Acting as a storage center for water and lipids, and helping synthesize vitamin D. 

Skin consists of several different and distinct layers, each with its own specialized 

function.  It is composed of three main layers (Figure 3 a): epidermis, which protects the 

body organs from infections and prevents the evaporation of water from the body; the 

dermis, which consists of connective tissues and cushions the body from stress and strain; 

and hypodermis, which consists of subcutaneous adipose tissues and acts as a thermal 

barrier.  Figure 3 b shows the histological cross section of porcine skin with various 

layers.   

 

2.2.1. Epidermis 

Epidermis is the outermost layer of the skin, which consists of stratified squamous 

epithelium with an underlying basal lamina (37).  It can be sub-divided into five distinct 
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layers (Figure 4), which give barrier resistance to the skin.  The five layers of the 

epidermis from top to bottom are stratum corneum, stratum lucidum (only in palms of 

hands and bottoms of feet), stratum granulosum, stratum spinosum and stratum basale.   

Figure 3 a): Structure of human skin 

Figure 3 b): Histological cross section of porcine abdominal skin 
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The lower four layers of the epidermis (except stratum corneum) are also called 

viable epidermis, which has a thickness of 50-100 µm and has a density similar to water.  

Epidermis is made up of keratinocytes (mainly melanocytes) and Langerhans cells and is 

devoid of any blood vessels.  The cells in the bottom layer of the epidermis regenerate 

through mitosis and migrate to the top layers.  As they move away from the dermis, the 

cells die due to lack of oxygen and get filled with keratin.  They reach the outer most 

layer, SC and get sloughed off.  The entire process is called keratinization, which takes 

place within weeks.  The SC consists of nearly 25-30 layers of dead cells which makes 

the skin a natural barrier to external agents or chemicals. 

 

Figure 4: Various layers of the epidermis (44) 

 

 



 13 

2.2.2. Dermis 

Dermis is a 2-3 mm thick layer present below the epidermis and it provides 

flexible support structure to the skin.  It contains hair follicles, sweat glands, sebaceous 

glands, apocrine glands, lymphatic vessels and blood vessels.  Collagen and elastin are 

synthesized in this layer.  Dermis is tightly connected to the epidermis by a basement 

membrane and regulates temperature, pain and pressure in the body.  The sense of touch 

and heat to the skin are provided by the nerve endings that are present in this layer.  

 

2.2.3. Hypodermis 

 Hypodermis is the deepest layer of the skin, also called the subcutaneous tissue.  

It consists of adipose tissue (fat cells), connective tissues, macrophages and fibroblasts.   

 

2.2.4 Stratum corneum 

The upper strata of the epidermis is called Stratum Corneum (SC), which consists 

of corneocytes (dead cells) embedded in a lipid-rich matrix.  Sheuplin et al. (45, 46) have 

reported that diffusion across SC is 3-5 times lower than dermis for most substances.  

Therefore, SC is considered to be the main barrier to the success of TDD.  The 

corneocytes are comprised of cross linked keratin fibers, which are about 0.2 – 0.4 µm 

thick and about 40 µm wide (3).  The corneocytes are held together by desmosomes 

(Figure 4), which gives structural stability to the SC.  The SC lipids are composed 

primarily of ceramides, cholesterol and fatty acids assembled into multi-lamellar bi-

layers.  This unusual extracellular matrix of lipid bi-layers serves as the primary barrier 

of the SC.  The layer of lipids immediately adjacent to each corneocyte is bound 
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covalently to the corneocyte and is important in maintaining barrier function of the skin 

(3).  The SC serves as a barrier to the outside world and prevents evaporation of water 

from underlying tissues.  The most simplistic and considered structure for SC is the 

“brick and mortar” model proposed by Michaels et al. (47).  In this model, SC is 

picturized as a dual compartment system of lipid bi-layers with embedded corneocyte 

cells as shown in Figure 5.  The stratum corneum is continuously desquamated, with a 

renewal period of two to four weeks.  It is actively repaired by cellular secretion of 

lamellar bodies, following the disruption of its barrier properties or other environmental 

insults.  

Figure 5: Structure of the stratum corneum 

 

Diffusion of molecules across the SC is mainly passive and occurs through three 

different routes: intercellular, transcellular (Figure 5) and transappendageal.  Transport 

across the SC is considered to be mainly by the intercellular route because of the physical 

structure of the intercellular lipids, which play a key role in maintaining the barrier 

properties of the skin.  Transcellular pathway is less considered, due to the repeated 
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partitioning involved between the lipid bi-layers and impermeable corneocyte cells with 

keratin when diffusion occurs.  Diffusion through skin appendages like hair follicles, 

sebaceous glands or eccrine glands is another route through which transport may occur.   

 

2.3 Different TDD techniques 

The barrier properties of the SC can be breached for TDD in several ways (3), by 

using physical techniques like iontophoresis (48-51), electroporation (1, 11, 14, 52, 53), 

sonophoresis (12, 54), thermal poration, or by using chemicals known as chemical 

penetration enhancers (CPE) (10, 19, 26, 28, 55-59), which can increase the permeability 

of the SC for drugs.   

In iontophoresis, a small electric current is applied to the skin, which provides the 

driving force to enable penetration of charged drug molecules into the skin.  

Electroporation is the application of short pulses of high voltage current to the skin 

producing hydrophilic pores in the intercellular bi-layers due to the momentary 

realignment of lipids in the SC.  These pores allow the passage of macromolecules or 

drugs through skin.  Sonophoresis (phonophoresis) uses low frequency ultrasound energy 

to fluidize the lipid bi-layer in order to enhance the skin penetration of active substances.  

These physical techniques require devices that can produce ultra sound waves or generate 

required voltage, which may limit their practical usage and economic feasibility to 

enhance the flux of a component through skin.   
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2.4 Chemical penetration enhancers 

The use of CPEs over the physical techniques has certain advantages, including 

design flexibility of the patch and ease of patch application over a large area (>10 cm2) 

(3).  An ideal penetration enhancer should reversibly reduce the barrier resistance of the 

SC without damaging the skin cells.  According to Finnin et al. (59): ideal penetration 

enhancers should possess the following properties: 

• Pharmacologically inert 

• Nontoxic, nonirritating, and non-allergenic 

• Rapid onset of action; predictable and suitable duration of action for the drug 

used 

• Reversible effect of the CPE on the barrier property of SC 

• Chemically and physically compatible with the delivery system 

• Readily incorporated into the delivery system  

• Inexpensive and cosmetically acceptable 

Because the skin provides such a formidable barrier to the delivery of most drugs, 

a broad range of different chemical additives have been tested to enhance transdermal 

penetration during the last two decades.  Much of the cited literature is found in patents 

(17) as well as pharmaceutical science literature (60).  Even though many chemical 

entities have been identified, only a few were introduced in the market due to several 

limitations, which include their economic feasibility and the toxic effects on skin, which 

make them undesirable for developing transdermal patches.   

CPEs can be divided into various groups depending on their functional groups.  

Enhancers like alcohols, alkyl sulfoxides, and polyols help in increasing the solubility 
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and improving the partition coefficient of the drug (61).  Solvents like dimethlysulphate 

and ethanol increase the permeability of SC by extracting the lipids.  Oleic acid, azone, 

and isopropyl myristate enhance the diffusion of a permeant by disrupting the structure of 

lipid bi-layers.  Transcellular diffusion is favored by ionic surfactants, decylmethyl 

sulfoxide and urea, which interact with the keratin in the corneocytes and disrupts its 

protein structure (61).   

 

2.5 Skin selection 

Human in vivo studies are preferred when performing skin absorption studies in 

the presence of various enhancers, but they are limited by ethical considerations and 

availability of volunteers (62).  The use of human skin to perform in vitro studies is 

constrained by the various factors like sex, age, medical condition of the donors, and 

mostly the availability of cadaver skin (62, 63).  In order to overcome these problems 

animal skin from various species like rat (19, 22, 64, 65), snake (6, 66, 67), pig (22, 25, 

55, 62, 68, 69), guinea pig (9, 22), rabbit (22, 64), and mouse (22, 64, 70, 71) were 

investigated.  Skin from pig and rhesus monkey were reported to have permeability 

properties closer to human skin (63).  Porcine skin can be used as a surrogate to human 

skin because it is a well-accepted and readily available model for the human barrier and 

is often used to assess topical and transdermal pharmaceutical formulations either in vivo 

or in vitro (68).  There are significant similarities of certain properties between porcine 

and human skin (e.g., epidermal thickness, physiological and morphological 

characteristics and lipid composition), and the permeabilities of the membranes to various 

compounds are similar (62).  Sekkat et al. (68) have reported that the thickness of SC and 
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the biophysical parameters like diffusivity and permeability coefficient of water across 

porcine skin in vitro and human skin in vivo are comparable (data shown in Table 2).  

This result validates the use of porcine skin in place of human skin for conducting in vitro 

studies.   

 

Table 2: Comparison of biophysical parameters of porcine skin in vitro and human 

skin in vivo (68).   

 

Skin Source H
1
 (µm) D

2
(cm

2
 × s

-1
) Kp

3
 (cm × h

-1
) 

Porcine (in vitro) 11.8 ± 4.0 3.2 ± 1.5 5.8 ± 1.1 

Human (in vivo) 10.9 ± 3.5 3.0 ± 1.5 6.1 ± 1.4 

1H (thickness of SC), 2D (diffusivity of water across SC), 3Kp(permeability coefficient of 
water across SC) 
 

2.6 Franz diffusion cell (FDC) 

 In vitro skin absorption studies are generally carried out in vertical or side by side 

FDCs, which were popularized by Dr. Thomas Franz (72). Since its introduction, the 

FDC has been used in various skin absorption studies, including topical and TDD 

formulations, as well as cosmetics, skin care products, and pesticides.  According to Food 

and Drug Administration (FDA) regulations, it is an ideal tool for quality control for 

cosmetic preparations.  It has a receptor and a donor chamber, which are filled with 

buffer medium and the solute of interest, respectively.  The schematic diagram of a 

vertical FDC is shown in Figure 6.  It consists of a water jacket through which 

temperature-controlled water is re-circulated in order to perform the experiments at a 

desired temperature.  The skin / membrane is sandwiched between the two chambers and 

clamped in place tightly (clamp not shown).  The donor chamber is filled with a known 



 19 

volume of solute and the permeation of solute through the skin is monitored by periodic 

sampling of the solution from the receptor chamber.  The samples are analyzed by either 

HPLC or LSC.  However, these analytical techniques are very labor intensive and cost 

prohibitive.   

 

Figure 6: Franz diffusion cell 

 

It has been reported that the measurement of electric resistance of skin provides 

an indirect assessment of skin’s permeability properties in the presence of respective 

solutes or solvents (27).   

 

2.7 Electric resistance of skin 

Skin can be modeled as an electrical resistor and a capacitor in parallel, and much 

of the skin's resistance is found to be in the SC (Figure 7) (73).  Previously, electrical 

resistance of the skin was used to assess the integrity of skin prior to experiments for in 
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vitro dermal testing (12, 22, 23, 74, 75), to access the irritation potential of chemicals in a 

test known as Skin Integrity Function Test (SIFT) (76) and to evaluate the corrosive 

effects of cosmetics on the skin (24).  This suggests that the electrical properties of skin, 

especially the resistive (or conductive) properties, can be used to determine the effect of 

potential CPEs on the barrier properties of the skin.  The skin resistance is usually 

measured using a LCR databridge, which generates electric current at different 

frequencies.   

Figure 7: Electrical equivalent of skin 

 

2.7.1 LCR meters 

An LCR meter is an electronic device which is capable of measuring inductance 

(L), capacitance (C), resistance (R), impedance (Z) and phase angle (θ) of various 

electronic circuits.  Due to its ease of operation and ability to measure the barrier 

resistance of skin rapidly, it has found its way into in vitro dermal testing.  The electric 

resistance of skin is an indicator of the condition of the SC, the principal barrier to 

diffusion of chemical substances (23).  The barrier resistance of SC is greatly reduced by 

tape-stripping, exposure to chemicals, or by damaging it (68), which can be quantified by 

measuring the electric resistance of the skin.   
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The Instek high precision LCR 821 (Figure 8), which was used in this study, has a 

test frequency range of 12 Hz to 200 k Hz, with continuously variable frequencies.  It is 

most useful in applications that need both high stability and high accuracy.  It can 

measure the inductance (L), capacitance (C), resistance (R), absolute value of the 

impedance (Z), dissipation factor (D), quality factor (Q), and phase angle of impedance 

(θ) of a device under test with a measurement accuracy of 0.05%.  It has a 240 Χ 128 dot 

matrix back light LCD screen with adjustable contrast in order to display the test results 

simultaneously on the screen.  It can be operated in R/Q, C/D, C/R, L/Q, Z/θ, L/R test 

modes in either series or parallel equivalent circuits except in Z/θ mode.  The variable 

test signal voltage ranges from 5 mV to 1.275 V, with each step voltage of 5 mV.  The 

internal / external DC bias selection simulates the real operation condition of a device 

under test.   

Figure 8: Instek LCR 821 high precision databridge 

 

2.7.2 Factors affecting the electrical properties of skin 

The optimal electrical conditions for in vitro measurements of the SC properties 

which reflect permeability have been well established (77).  These conditions are 

alternating current (AC) of low frequency (0.1 - 1 k Hz) and low voltage (0.1 – 1 V) (77).  
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Use of AC overcomes the problems of polarization of the skin and electrodes.  It also 

avoids damage to tissues which can occur when using DC with high current density (78).  

At higher AC frequencies, current goes through the capacitive channels readily, which 

are not dependent on free ionic movement, and resultant false resistance for the 

membrane is measured.  Thus, permeability is better represented by the resistive current, 

which dominates at lower frequencies.  Passage of any electric current at a voltage 

greater than 1 - 2 V across skin results in irreversible damage to the barrier properties of 

the SC (78).  Electrical resistance of the skin is also dependent on its hydration state, 

ionic strength of the bathing medium, and current density (50, 79). The resistance of the 

skin varied from 250 – 25 kΩ between the ionic strength of the medium (NaCl) between 

10 to 1000 mM (79).  In the present study, the resistance readings were obtained at a low 

voltage (0.2 V) and low frequency AC (0.1 k Hz) current and by maintaining the 

concentration of the medium (buffer solution) constant throughout.   

 

2.7.3 Effect of skin exposure area on electrical resistance of skin 

Electrical resistance of skin decreases with increase in the cell exposure area.  

This reduction in resistance can be due to the increase in pathways of current carrying 

ions through the skin.  Figure 9 shows the effect of skin exposure area on its electrical 

resistance for epidermal membranes of human and rat and full thickness rat skin reported 

in the literature (74, 80).  The skin resistance was measured using a LCR databridge with 

the settings of 1 k Hz and 0.3 V in parallel equivalent circuit mode.  The bathing medium 

was 0.9 % saline solution.  The electrical resistance of human skin reported by various 

authors at different conditions is given in Table 3 (74).  The huge variation in the 
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resistance of the skin in Table 3 suggests that in vitro skin studies should be performed by 

maintaining constant experimentation conditions, which include skin location from the 

specimen and exposure area, concentration of bathing medium, electrical conditions 

(frequency and voltage) to measure the resistance.   

 

Figure 9: Effect of in vitro cell exposure area on skin resistance  

 

 Davies et al. have reported the electrical resistance of epidermal and whole skin 

membranes of various species with a LCR databridge at a frequency of 100 k Hz and 

using physiological saline as the bathing medium (Table 4).  The skin exposure area used 

was 2.54 cm2. 
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Table 3: Human skin resistance at different conditions (74) 

 

Skin Location 
Exposure 

area (cm
2
) 

AC/DC 

parameters 

Bathing 

medium 

ER 

(kΩ) 

HEM Thigh 0.64 
AC, 300mV 

rms. 1000Hz 
0.9% NaCl 12-62 

HEM Back 0.90 
AC, 3mV rms. 

1000/10000Hz 
3.5 mM NaCl 10/5 

HEM Unknown 0.70 
DC, 250mV 

rms. 
100 mM PBS 17 

HEM 
Abdominal/

breast 
2.27 AC, 12.5Hz 0.9% NaCl 1-20 

HEM unknown 0.70 
DC, 

125/1000mV 
100mM PBS 2-45/4-20 

HST Thigh 0.64 
AC, +1V, 

0.2Hz, +1µA 

133 mM 

NaCl 
260 

HST Abdominal 0.79 
AC, 100Hz, 

+10µA 
150 mM PBS 20-60 

HST Torso/thigh 0.70 DC, 10µA 
PBS, 156 

mM Na+ 
43-192 

HFT Abdominal 3.5 
AC, 1V rms, 

1.5Hz 
200mM NaCl 360 

HFT Abdominal 1.77 
AC, 1V, 

100300Hz 
0.9%saline 88-882 

HFT 
Abdominal/

breast 
0.79 AC 

154 mM 

MgSO4 
10.9-26.8 

HS forearm 4.0 
AC, 1V rms, 

1/1000 
0.9% NaCl 148-293/8 

HEM, human epidermal membrane; HST, human split-thickness skin; HFT, human full-
thickness skin; HS, human skin; AC, alternating current; DC, direct current; V, Volts; 
ER, electric resistance of skin; PBS, phosphate buffer saline.  
 

Since using higher frequency current (100 k Hz) results in lower skin resistance, 

this gives a very narrow range for skin resistance to identify potential CPEs from a large 

set of chemicals.  As shown in Table 4, porcine skin resistance was just 3 kΩ at a 

frequency of 100 k Hz.  In our experiments, initial skin resistance was around 150 – 200 

kΩ (at a frequency of 0.1 k Hz) and after exposure to a potential CPE, it dropped by 80-
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fold to 1 - 2 kΩ, which gives a large range to identify CPEs.  If the initial resistance was 

just 3 kΩ and it drops to 1 kΩ after exposure to a potential CPE, it could be difficult to 

distinguish between a potent and a non-potent CPE, due to error associated in biological 

experiments.  Therefore, lower frequency currents should be used to measure the skin 

resistance.   

 

Table 4: Electrical resistance of epidermal and whole skin membranes of various 

species measured at a frequency of 100 k Hz (22) 
 

Species Skin type Electrical resistance (kΩ) 

Human Epidermis 10.0 ± 1.0 

 Whole 10.0 ± 0.7 

Rat Epidermis 2.5 ± 0.2 

 Whole 3.0 ± 0.5 

Pig Epidermis 3.0 ± 0.3 

 Whole 4.0 ± 0.3 

Mouse Whole 5.0 ± 0.6 

Rabbit Whole 0.8 ± 0.1 

Guinea pig Whole 5.0 ± 0.7 
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CHAPTER III 
 
 

MULTI-WELL RESISTANCE CHAMBER 

 

3.1 Introduction 

High throughput screening devices for identifying potential CPEs for TDD were 

reported in the literature recently (26, 27).  However, the utility of these devices in place 

of the standard Franz diffusion cells (FDCs) was not justified.  If the newly designed 

resistance chambers were to replace the FDCs, they should respond in a manner similar 

to the FDCs.  In this study, a novel resistance chamber was built in-house in order to 

increase the throughput of the experiments.  The reliability of the resistance chamber was 

confirmed by validating it against the FDC using CPEs reported in the literature (28).  

The resistance chamber was designed and developed in multiple stages to optimize its 

performance.  The evolution of the multi-well resistance chamber from Configuration 1 

to Configuration 5 is explained in this chapter.  The possibility of using polymeric 

chitosan membranes in place of porcine skin was also investigated with the goal of 

reducing the variability usually associated while performing in vitro studies with animal / 

human skin samples.   

 

3.2 Skin preparation 

Porcine whole skin from the abdominal region of female Yorkshire pigs was  
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purchased locally (Ralph’s Packing Co., Perkins, OK, USA) prior to steam cleaning.  

Skin was washed under cold running water and the hair was clipped using an electric 

clipper (Wahl, Series 8900, USA).  The exogenous tissues and subcutaneous fatty layers 

were removed carefully using scissors.  The skin was then used immediately or wrapped 

in aluminum foil and stored at - 20 °C for future use.  Frozen skin was thawed at room 

temperature for about two hours before use.  Skin membrane integrity was checked 

before starting the experiment by measuring resistance at a frequency and voltage of 0.1 

k Hz and 0.2 V, respectively, using a LCR Databridge (Instek, CA, USA) operated in 

parallel mode.  Samples with an initial resistivity of 20 kΩ cm2 or above with Phosphate 

Buffer Saline (PBS, pH – 7.4, phosphate and sodium chloride concentrations of 0.001 M 

and 0.137 M, respectively) were used in the experiments (12, 56, 81).  Any skin samples 

with a lower resistivity than the above values were discarded.  Quality of the prepared 

tissue was also assessed by performing histology on randomly chosen samples. 

 

3.3 Statistical analysis  

 All experiments were performed at least three times.  The coefficient of variation, 

CV, was calculated by the ratio of the standard deviation to the mean of multiple 

experiments in order to validate our resistance technique, with reported literature data 

(76) using sodium dodecyl sulphate.  Single factor one-way analysis of variance 

(ANOVA) with a 95 % confidence interval was used to determine the significant 

difference between the RFs of the candidate CPEs tested.  A difference was considered 

statistically significant when the associated P value for RF was less than 0.05 between 

the CPE and the control.   
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3.4 Different configurations of multi-well resistance chamber 

3.4.1 Configuration 1 

Figure 10 shows the Configuration 1, the initial configuration, of the resistance 

chamber.  It consists of two half-inch thick Teflon plates.  A hole with a diameter of 1’’ 

was drilled into each Teflon plate.  Porcine skin or polymeric chitosan membrane was 

placed between the plates, and the plates were clamped together tightly.  Resistance 

readings were taken using 0.25’’ stainless steel metal dowel pins (MSC Direct, USA) and 

the LCR databridge.  The effect of AC frequency on the resistance of porcine skin and 

porous chitosan membrane was investigated.   

Figure 10: Configuration 1 of the resistance chamber 

 

Resistance of the porcine skin and chitosan membrane decreased exponentially as 

the frequency of the AC current was increased (Figure 11) and the resistance of the 

chitosan membrane was significantly lower than porcine skin at the same frequency.  

This suggests that the polymeric chitosan membrane used in this study was highly 

conductive, compared to the porcine skin, which is undesirable.  In order to increase the 

resistive properties of chitosan membrane, porous 0.5 % chitosan membranes were 

replaced with 4 % non porous membranes.   
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Figure 11: Effect of AC frequency on the resistance of porcine skin and 0.5 % 

porous chitosan membrane.  The error bars correspond to standard deviations for 

three experiments. 

 

However, even the resistance of the non-porous chitosan membranes was not 

comparable to the resistance of the porcine skin.  Therefore, the idea of using chitosan 

membranes in place of skin was dropped.  However, chitosan membranes were used to 

optimize the design of the resistance chamber, as the properties of the membranes can be 

controlled, unlike skin samples.   

Another factor observed was that the resistance of porcine skin increased with 

time (Figure 12).  This was attributed to dehydration of the skin as it was exposed to air 

for considerable time.  In order to prevent the skin and membrane from dehydrating, 

experiments were performed by immersing the complete setup (Configuration 1) into 

PBS solution.  This resulted in lower resistance readings for both the skin and the 
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chitosan membrane, which is due to PBS short circuiting the system.  To avoid the 

problems of dehydration and shorting, Configuration 1 was modified.   

Figure 12: Change in resistance of porcine skin with time using 

Configuration 1 of the resistance chamber.  Error bars correspond to standard 

deviations for three experiments. 

 

3.4.2 Configuration 2 

The single well experimental set-up was modified into a four well setup and fixed 

to a Teflon Petri dish.  Figure 13 shows the schematic of Configuration 2 of the multi-

well resistance chamber.  It consists of two half-inch thick Teflon plates fixed to a Teflon 

Petri dish.  Four holes with a diameter of 5/16’’ were drilled into each Teflon plates.  The 

holes in the top plate serve as donor chambers, and the holes in the bottom plate serve as 

receiver chambers, as in FDCs.  Porcine skin was placed between the receiver and donor 

plates with the SC facing the donor wells, and the two plates were clamped together 

tightly.  The petri dish was filled with PBS such that the receiver chambers were 
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completely filled with PBS, which was assured by checking the skin resistance; presence 

of air pockets between the skin and the receiver chambers showed very high resistance 

values since air has low conductivity.  Resistance readings were taken using four pairs of 

stainless steel electrodes fixed to the petri dish and the electrode holder, as shown in 

Figure 13.  The electrode setup of Configuration 2 is shown in Figure 14.   

Figure 13: Configuration 2 of resistance chamber 

 

Figure 14: Electrode setup of Configuration 2 

 

Figure 15 shows the resistance of porcine skin measured at different times using 

Configuration 2 of the resistance chamber.  As the skin was exposed to PBS throughout 

the experiment in Configuration 2, the resistance of the skin reduced with time.  This can 
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be due to the dilated pores in the skin membrane caused by prolonged exposure to PBS, 

which increases the conducting pathways through the skin.  The problem of dehydration 

was fixed, but the error from the experiments was significant (~30%), which shows a low 

reproducibility for the measurements.   

Figure 15: Change in resistance of porcine skin with time using 

Configuration 2 of multi-well resistance chamber.  Error bars correspond to 

standard deviations for three experiments. 

 

3.4.3 Configuration 3 

In order to improve the reproducibility from the experiments, the four well setup 

was changed to five well (Figure 16) and fixed to a Petri dish.  Now there is a common 

electrode instead of individual electrode for each well in the bottom, which was fixed to 

the petri dish and the resistance readings were taken by sequentially changing the top 

electrode. 
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Figure 16: Electrode Setup of Configuration 3 

 

The variation of the resistance measurements of a polymeric non-porous chitosan 

membrane among the four wells of the resistance chamber was studied at frequencies of 

0.1, 10 and 100 k Hz (Figure 17).  The difference in the resistance of chitosan membrane 

was ~17 % among the four wells of the resistance chamber at all the frequencies tested.  

The reproducibility of the data from the resistance chamber was checked by comparing 

resistance readings of four different chitosan membranes (Figure 18), and the error was 

found to be ~20%.  This error in the above experiments can be due to the stress applied 

by the electrodes on the membrane.   

Figure 17: Change in resistance of 4 % non porous chitosan with time at different 

frequencies.  Error bars represent the standard deviations for three experiments. 
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Figure 18: Comparison of resistance of 4 % non porous chitosan membrane from 

different experiments.  Error bars correspond to standard deviations for three 

experiments. 

 

Eontex fabrics, which have constant conductive properties, were used to optimize 

the resistance chamber for high reproducibility (to reduce the error between multiple 

experiments).  The stress applied by the electrodes on the membrane plays a vital role in 

measuring the resistance of membranes, as shown in the Figure 19.  The error was ~20 % 

in the experiment when the Teflon plates were not properly fixed.  By controlling the 

stress factor on the conductive fabric, the error of resistance measurements between the 

experiments was reduced from 20 % to 5-6 % as shown in the Figure 19.   

The change in resistance of porcine skin with time using Configuration 3 is shown 

in Figure 20. 
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Figure 19: Comparison of the change in the resistance profiles of Eontex Fabrics 

from four wells of the resistance chamber.  Error bars correspond to standard 

deviations for three experiments. 

Figure 20: Resistance profile of porcine skin with Configuration 3.  Error 

bars correspond to standard deviations for three experiments 
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Still there is no good reproducibility from the experiments, error in the resistance 

measurement with the porcine skin was still significant (~ 30%) (Figure 20).  This can be 

due to variable skin thickness and the conductive properties of the skin, which cannot be 

controlled from experiment to experiment. Therefore, the resistance measurements 

obtained from each well were normalized to its initial value as shown in equation 1 to 

reduce the uncertainty associated with biological experiments.   

0

t

R
RF = 

R     (1)

 

Even after using normalized resistance values the error between experiments was 

significantly higher (Figure 21), which can be due to fact that the electrodes were tightly 

fixed to the skin in the donor wells.  Fixing the electrodes tightly to the skin can result in 

a decrease in the surface area where the PBS / chemical formulation interacts with the 

skin, leaving no space for the PBS / chemical to act at the site of the electrode.  In order 

to fix this problem the electrode set up of Configuration 3 was again modified.   
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Figure 21: Normalized resistance of porcine skin with Configuration 3.  

Error bars correspond to standard deviations for three experiments. 

 

3.4.4 Configuration 4 

The only difference between Configuration 3 and 4 is that the electrodes are held 

at a constant distance both in the PBS in the common well at the bottom and in the 

chemical in the donor wells (Figure 22) rather than fixing them tightly.  A full schematic 

of the resistance chamber with the modified electrode set up is shown in Figure 23.   

Figure 22: Electrode Setup of Configuration 4 
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Figure 23:  Schematic of the resistance chamber 

 

Figure 24 shows the normalized resistance values of porcine skin with 

Configuration 4 of resistance chamber.  The error from multiple experiments had 

significantly reduced from 30 % to 15 % using the resistance chamber with Configuration 

4.   
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Figure 24: Normalized resistance of porcine skin with Configuration 4.  Error bars 

correspond to standard deviations for three experiments. 

 

Franz diffusion cells, which are generally used as standard systems to conduct in 

vitro studies, were used to validate the resistance technique.  Using 1.77 cm2 area vertical 

FDCs (Perme Gear Inc., Bethlehem, PA, USA), donor and receiver chambers were filled 

with 0.9 % NaCl solution and skin resistance was measured using two 4 mm Ag/AgCl 

electrodes (Invivo Metrics, Healdsberg, CA, USA), one each in the donor and receiver 

chamber (through the sampling port).  Next, NaCl solution was emptied from the donor 

chamber and the cell was filled with 500 µL of 15 % (by wt) sodium dodecyl sulphate 

(SDS) in water, as reported in the literature (76).  After 20 h incubation with SDS at room 

temperature, the donor chamber was replaced with fresh 0.9 % NaCl, and the skin 

resistance was measured.   

The Resistance Reduction Factor, RF, (also referred to in the literature (76) as the 
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damage ratio) was calculated. It is defined as the ratio of the initial resistance value at 

time 0 to the resistance value of the sample obtained at time t, or:  

0

t

R
RF = 

R
 

The initial resistance reading, R0, was taken after incubating the skin with the chemical 

for at least 10 - 15 minutes to reduce the variability in the measurements acquired.   

The results showed that the RF was 10 (CV = 0.15) after 20 h. This was 

comparable to the reported literature value of 11.3 (76).  Moreover, the CV was 

significantly lower than the reported value of 1.  The reduction in variation was achieved 

by  

i) Using skin samples which had similar initial resistance value in all the 

experiments,  

ii) Using porcine abdominal skin instead of the dorsal skin as it has less variation 

in thickness and hair density, and  

iii) Importantly, not washing the skin with detergent and allowing it to dry prior to 

final resistance reading as reported by Heylings et al. (76); SDS solution was wiped off 

using tissue paper.  Washing with soap may result in accumulation of surfactants, which 

may give false resistance values by interacting with the NaCl solution.  Allowing the skin 

to dry before taking the resistance readings may damage its integrity. 

The initial resistance of the skin with the saline solution was always greater than 

50 kΩ, which is an indicator of good intact barrier of the SC in the SDS experiments.  

The resistance of the skin sample had dropped 10-fold after the treatment with SDS while 

it had dropped by only 1.6-fold when distilled water is used in place of SDS.  This 

indicates that the chemical had caused some damage to the skin.  The chemical might 
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have reduced the barrier resistance of SC by increasing the partitioning into the skin or by 

fluidizing the crystalline structure of SC and causing dissolution of SC lipids.  

The reliability of the multi-well resistance chamber had significantly improved 

from Configuration 1 to Configuration 4, as mentioned earlier.  Now, we have a better 

system, which is capable of making relatively fast, repeatable, accurate measurements of 

the skin resistance for screening potential CPEs.   

In order to validate the use of the multi-well resistance chamber in place of FDCs, 

the results from the resistance chamber using porcine skin in vitro were compared to 

results from the FDC experiments (described below) using: 

i) Nicotine as the drug, at a concentration of 100 mg / mL in PBS.  Nicotine was 

selected because it is a low molecular weight, highly permeating chemical (82). The 

experiments with nicotine were performed at room temperature in the both multi-well 

resistance chamber and the FDCs. 

ii) Decanol, nonanol, oleic acid and lauric acid as the CPEs, each at a 

concentration of 5 % (wt / v) in 1:1 PBS and ethanol solution.  All four chemicals were 

reported in the literature (8, 28) as good penetration enhancers.   

Vertical FDCs with an exposure area of 0.64 cm2 were used for validating the 

multi-well resistance chamber measurements.  Receiver chambers of the diffusion cells 

and the resistance chambers were filled with PBS.  Donor chambers were filled with 5 % 

(wt / v) of decanol, nonanol, oleic acid or lauric acid in 1:1 PBS and ethanol solution.  

Experiments were conducted by maintaining the receiver chamber of the diffusion cells at 

37 ± 1 oC by a re-circulating water jacket around it.  Skin resistance was measured from 

the resistance chamber and the FDCs at different time intervals and the RF was 
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determined as mentioned earlier. 

In all the above experiments, a donor chamber filled with 1:1 PBS and ethanol 

solution alone served as a control.  RF values were calculated at different time intervals 

(0, 3, 6, 12 and 24 h). 

A linear increase in the RF with time was observed in the multi-well resistance 

chamber in the presence of nicotine (Figure 25).  However, there was no significant 

change in RF of the control.  RF values from FDCs showed identical behavior.  This 

suggested that there is no influence of the adjacent wells on skin resistance; thus, the 

possibility exists for using the multi-well resistance chamber to perform multiple 

experiments simultaneously.   

 Next, the effect of the CPE was assessed using decanol by performing 

experiments in the multi-well chamber and FDC.   
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Figure 25: Validating the resistance chamber with Franz cell in the presence of 

nicotine.  The error bars correspond to standard deviation. (n=3).  FC – Franz 

diffusion cell, RC – multi-well resistance chamber. 

 

 Interestingly, no significant change (Figure 26, RF in the resistance chamber and 

FDC in the presence of decanol at 21 °C) was observed in RFs between decanol and 

control even after 48 h.  Since these experiments were performed at room temperature 

(21°C) unlike the permeation experiments, we questioned whether the temperature of the 

receiver chamber could affect the permeability or the RFs value of the skin.   
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Figure 26: Effect of temperature on RF in the presence of decanol in comparison to 

Franz diffusion cell.  The error bars correspond to standard deviation. (n=3).  FC – 

Franz diffusion cell, RC – multi-well resistance chamber. 

 

3.4.5 Configuration 5 

The effect of temperature on the RF of skin in the presence of CPEs was 

investigated using Configuration 5 of the multi-well resistance chamber.  In 

Configuration 5, the temperature of the receiver chamber of multi-well resistance was 

increased to 37 °C (physiological body temperature), similar to permeation experiments.  

This was achieved by maintaining the receiver chambers at 37 ± 1 0C using 1/8’’ copper 

tubing below the receiver plate through which controlled-temperature water was re-

circulated using a peristaltic pump and a constant-temperature water bath (Figure 27).  

The donor chambers were maintained at the room temperature in order to simulate the 

conditions of in vivo skin permeation experiments. 
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Figure 27: Schematic of the resistance chamber with constant temperature water 

bath 

 

 The RF in the presence of decanol at 37 °C was significantly higher than the 

control value.  In order to check for the consistency of the results from the resistance 

chamber at 37 
°C, the results were compared with Franz diffusion cell measurements.  

The RFs obtained in multi-well chambers in the presence of decanol and control at 37 °C 

was comparable to that obtained using FDC (Figure 26).  Further, no increase in RF was 

observed when experiments were performed by maintaining the receiver chamber at 21°C 

in FDCs.  This suggests that the temperature of the receiver chamber significantly 

influences RF values.  At lower temperatures, (less than 37 ºC) skin resistance might be 

higher due to increased rigidity of the lipid bi-layers.  At higher temperatures, the 

individual lipid molecules may have more vibrational energy, which makes the lipid bi-

layers more fluidic and may offer less resistance.  All subsequent experiments were 

performed by maintaining the receiver chamber at 37 °C.  Experiments were performed 

using nonanol, oleic acid and lauric acid to validate the results from the resistance 

chamber to the standard FDC.  As shown in Figure 28 a, b and c, the results from the 

resistance chamber were consistent with the FDCs for all the three CPEs.  This final set 

up of the multi-well resistance chamber was used to identify potential CPEs using the 
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skin resistance.  The physio-chemical properties of the CPEs in the validation 

experiments along with the RF values are given in Table 5.   

Figure 28 a): Validating the resistance chamber to Franz diffusion cell in the 

presence of nonanol.  The error bars correspond to standard deviation. (n=3).  FC – 

Franz diffusion cell, RC – multi-well resistance chamber. 

 

Table 5: Physio-chemical properties of CPEs in the validation set with the RF values  

 

CPE MW Log(KOW) RF 

1-Decanol 158.3 4.1 ± 0.3 30.7 ± 6.7 
1-Nonanol 144.3 3.6 ± 0.3 40.8 ± 3.8 
Lauric acid 200.3 4.7 ± 0.4 50.3 ± 7.5 
Oleic acid 282.5 6.9 ± 0.6 17.2 ± 2.6 
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Figure 28 b): Validating the resistance chamber to Franz diffusion cell in the 

presence of lauric acid.  The error bars correspond to standard deviation. (n=3).  FC 

– Franz diffusion cell, RC – multi-well resistance chamber. 

Figure 28 c): Validating the resistance chamber to Franz diffusion cell in the 

presence of oleic acid.  The error bars correspond to standard deviation. (n=3).  FC 

– Franz diffusion cell, RC – multi-well resistance chamber. 
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CHAPTER IV 
 
 

EVALUATION OF CHEMICAL PENETRATION ENHANCERS 

 

4.1 Virtual Design of CPEs  

In order to expedite the process of identifying potential CPEs, researchers have 

resorted to computer aided techniques, such as computer-aided molecular design 

(CAMD) (83), for a rational design to select candidate CPEs for experimentation.  

Potential CPEs were virtually generated using computer aided molecular design 

techniques (34) in which molecular generation of the CPEs was done using robust genetic 

algorithms and physio-chemical properties such as skin penetration coefficient, octanol-

water partition coefficient, melting point (29), and skin sensitization using quantitative 

structure property relationships.  Forty two potential CPEs were virtually generated by 

OSU Thermodynamics Group, which were divided into three groups according to their 

hierarchy and source.  These groups include: 

Preliminary set: This set consists of CPEs which were generated using genetic 

algorithms by Godavarthy (84-86).  Seven potential CPEs were virtually generated using 

reliable models, which were developed and validated for properties including (a) octanol-

water partition coefficient, (b) melting point, (c) aqueous solubility, (d) skin permeation 

and (e) skin irritation of the molecules.   

Generations 1 - 5: CPEs in these groups were virtually generated by Golla (34), 
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by mutating the existing CPEs reported in various databases.  Molecules from each of 

five genetic generations were scored according to their efficacy, which was based on 

values of selected physio-chemical properties of the molecules, and those with the best 

score were evaluated experimentally in this study.   

Library search set: The molecules in the DIPPR (Design Institute for Physical 

Property Data) database were scored according to their viability (34) comparable to 

Generations 1 – 5, and the virtual screening results were validated by performing 

experiments on seventeen potential CPEs.   

Miscellaneous set: This set consists of chemicals, which were not generated or 

scored virtually, but were selected based on their physio-chemical properties. 

The CPEs tested in this study are given in Table 6.  Resistance experiments were 

performed to evaluate the potency of these CPEs.  All the potential CPEs were tested at a 

concentration of 5 % (wt / v) in 1:1 PBS and ethanol solution with the receiver chambers 

maintained at 37 ± 1 °C.   

Initially, seven CPEs of the preliminary set were chosen for experimentation.  The 

results given in Figure 29 indicate that P1 and P2 increased the RFs with compared to the 

control sample.  The other four CPEs showed no significant effect on RFs with respect to 

the control (P > 0.05).  Although RF value had increased in the presence of P3, it was 

statistically similar to control (P > 0.05).  Potential CPEs P1 and P2 were relatively more 

potent than P3 in increasing the RF value.  The difference between the RF values of P1 

and P2 with respect to the control was statistically significant (P < 0.05).  Skin samples 

exposed to CPEs P1 and P2 also show a continuous increase in the RFs without reaching 

saturation, even after 24 h.   
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Table 6: CPEs used in this study 

Group CPE Group CPE 

Preliminary Set P1 Generation 4 OSU16 
 P2  OSU17 

 P3 Generation 5 OSU18 

 P4 Library Search  OSU19 
 P5 Set OSU21 
 P6  OSU22 
 P7  OSU23 

Generation 1 OSU1  OSU24 
 OSU2  OSU25 
 OSU3  OSU26 
 OSU4  OSU27 
 OSU5  OSU28 
 OSU6  OSU29 
 OSU7  OSU30 
 OSU9  OSU31 

Generation 2 OSU10  OSU32 
 OSU11  OSU33 
 OSU12  OSU34 

Generation 3 OSU13 Miscellaneous OSU35 

 OSU14  OSU36 
 OSU15  OSU37 

Figure 29: RFs of the CPEs from preliminary set.  The error bars correspond 

to standard deviation. (n=3). 
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The current experiments also indicate that the testing time can be reduced from 24 

h to 6 h without a significant change in the outcome.  Using a reduced experimentation 

time (6 h), chemicals P1 and P2 showed significant increase in RFs (RFs of P1 and P2 

were three times greater than the control value even at 6 h) with respect to the control.  

This permits more experiments to be performed in a given time period, thus leading to a 

higher throughput.  Therefore, the experimentation time was reduced to six hours for all 

the subsequent experiments.   

Next, the CPEs from the Generation 1 were tested for their potency.  Figure 30 

shows the results from the experiments.  From the eight CPEs tested four (OSU2, OSU3, 

OSU6 and OSU7) showed some potential, of which two (OSU1 and OSU2) were very 

promising in increasing the RF as compared with the control.  Moreover, the RF values 

from CPEs OSU1 and OSU2 were more statistically significant (P < 0.05) than the CPEs 

OSU6 and OSU7 relative to control.   

OSU10 and OSU12 have shown more significant potential (P < 0.05, for the three 

CPEs relative to control) than OSU11 (P > 0.05, with respect to control) in Generation 2 

(Figure 31).  The RFs of the CPEs OSU10 and OSU12 were ~55 in 6 h, which was 

approximately 15 times better than the control.  This shows that both CPEs have reduced 

the barrier resistance of the SC nearly 15 times more than the control; thus, they can play 

a potential role in increasing the penetration of a drug through skin.   

A significant jump in the RF value was observed between 3 h and 4 h with the 

skin sample exposed to OSU10 (Figure 31).  This phenomenon may be attributed to the 

dissolution of SC lipid by the CPE resulting in greater drug permeation through skin.  In 

this case, OSU10 might have slowly dissolved the SC lipids in the first three hours, and  
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Figure 30: RFs of the CPEs from Generation 1.  The error bars correspond to 

standard deviation. (n=3).  

Figure 31: RFs of the CPEs from Generation 2.  The error bars correspond to 

standard deviation. (n=3). 
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after finding significant pathways through the tortuous lipid layers, it might have 

enhanced the movement of current ions through skin.  Hence, a significant drop in skin 

resistance was observed between 3 h and 4 h with OSU10, which resulted in a raise in the 

RF value.  After this marked increase, the RF value remained nearly constant for the 

remainder of the test period, which shows that the effect of the CPE had reached 

saturation.   

 Among all the CPEs in Generations 2 - 5, only OSU15 showed a significant 

increase in the RF with relative to control (P < 0.05).  In fact, OSU15 yielded the highest 

RF value (~ 80), as shown in Figure 32.  OSU14 also showed a slight increase in the RF 

with respect to the control.   

Figure 32: RFs of the CPEs from Generations 3, 4 and 5.  The error bars 

correspond to standard deviation. (n=3). 
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The RF values for CPEs from the Library search group and the Miscellaneous set 

are shown in Figures 33 a and 33 b.  The results indicate that ten CPEs (OSU25, OSU26, 

OSU28, OSU29, OSU30, OSU33, OSU34, OSU35, OSU36 and OSU37) had effectively 

increased the RF values relative to the control sample.  The RFs of the ten CPEs were 

statistically significant (P < 0.05) with respect to the control.  The other eight CPEs 

showed no significant effect or little effect in reducing the barrier resistance of the skin 

with respect to the control (P > 0.05).  There was a significant raise in the RF of the skin 

sample exposed to OSU34 after 3 h.  This phenomenon can be explained by the SC lipid 

dissolution mechanism, described earlier dealing with OSU10 of Generation 1.  However, 

in this case, there was a continuous increase in the RF value throughout the test period.  

The continuous increase in the RF of skin with OSU34 after 3 h supports the hypothesis 

that a CPE can enhance drug permeation in many ways, as explained by Barry and 

Williams (15).  OSU34 should be promoting the movement of current through skin by 

two mechanisms, which include dissolving the SC lipids and softening the impermeable 

layers of SC.   

There was a rapid increase in the RF in the presence of OSU30 for three hours, 

which can be due to the dissolution of SC lipids (Figure 33 b).  A rapid reduction in RF 

was observed after three hours. This can be due to the hindered free movement of the 

current ions through skin due to the CPE.   

Table 7 shows the RFs of all the CPEs investigated in this study with their physio-

chemical properties.   
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Figure 33 a): RFs of the CPEs from Library search set.  The error bars correspond 

to standard deviation. (n=3). 

Figure 33 b): RFs of the CPEs from Library search set and miscellaneous set.  

The error bars correspond to standard deviation. (n=3). 
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Table 7: Physio-chemical properties of CPEs with the RFs values  

Group CPE MW logKOW RF 

Preliminary Set P1 253.4 5.2 ± 0.5 28.7 ± 1.5 
 P2 154.3 2.7 ± 0.2 21.1 ± 2.4 
 P3 116.1 -1.6 ± 0.4 8.4 ± 6.0 
 P4 99.1 -0.2 ± 0.4 6.7 ± 2.3 
 P5 101.1 -0.6 ± 0.4 5.7 ± 1.7 
 P6 219.4 2.6 ± 0.4 5.9 ± 1.7 
 P7 220.2 -0.6 ± 0.4 3.0 ± 0.5 
Generation 1 OSU1 120.2 1.7 ± 0.2 1.4 ± 0.1 
 OSU2 128.2 3.0 ± 0.3 28.3 ± 7.6 
 OSU3 128.2 2.22 16.7 ± 2.4 
 OSU4 72.2 2.8 ± 0.3 2.1 ± 0.2 
 OSU5 100.2 2.0 ± 0.4 2.1 ± 0.3 
 OSU6 130.2 2.2 ± 0.2 6.7 ± 0.7 
 OSU7 70.1 2.5 ± 0.2 7.0 ± 2.6 
 OSU9 144.2 2.3 ± 0.6 3.0 ± 0.9 
Generation 2 OSU10 168.3 3.5 ± 0.6 53.0 ± 5.7 
 OSU11 116.2 1.1 ± 0.3 5.0 ± 2.3 
 OSU12 87.2 1.1 ± 0.5 60.0 ± 8.0 
Generation 3 OSU14 100.2 1.6 ± 0.2 14.4 ± 2.3 
 OSU13 116.2 1.6 ± 0.2 2.4 ± 1.0 
 OSU15 129.2 2.9 ± 0.4 75.8 ± 8.1 
Generation 4 OSU16 114.2 1.66 3.8 ± 2.0 
 OSU17 112.2 1.5 ± 0.2 4.2 ± 1.5 
Generation 5 OSU18 114.2 2.1 ± 0.3 5.0 ± 0.7 
Library Search  OSU24 123.0 2.1 ± 0.1 1.7 ± 0.4 

Set OSU23 113.0 2.0 ± 0.2 3.3 ± 0.8 
 OSU25 111.0 2.0 ± 0.2 12.2 ± 2.4 
 OSU26 121.2 2.0 ± 0.3 10.5 ± 1.0 
 OSU19 68.1 2.1 ± 0.3 3.5 ± 0.3 
 OSU21 122.1 1.5 ± 0.3 4.8 ± 0.2  
 OSU22 188.2 1.5 ± 0.4 1.1 ± 0.1 
 OSU27 138.1 1.8 ± 0.4 5.8 ± 0.4 
 OSU28 126.6 3.1 ± 0.2 53.2 ± 7.2 
 OSU29 92.1 2.5 ± 0.1 15.8 ± 3.1 
 OSU30 94.2 1.3 ± 0.8 53.4 ± 9.0 
 OSU31 128.3 4.9 ± 0.4 4.2 ± 0.3 
 OSU32 70.1 2.6 ± 0.3 3.9 ± 0.1 
 OSU33 144.2 2.8 ± 0.2 46.1 ± 8.1 
 OSU34 172.3 3.8 ± 0.3 88.6 ± 11.0 
Miscellaneous Set OSU35 364.5 6.5 ± 2.6 19.4 ± 0.1 
 OSU36 150.2 3.2 ± 0.2 85.6 ± 11.7 
 OSU37 152.2 2.6 ± 0.4 39.0 ± 8.0 
Control -- -- -- 2.2 ± 0.4 
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4.2 Correlating the RFs with permeability coefficients 

Although potential CPEs can be identified by using the resistance technique, 

drugs with a range of lipophilic characteristics and molecular weights have to be 

considered for validating the technique.  Therefore, the RF values of few CPEs were 

correlated with the permeability coefficients of two drugs, melatonin and insulin in the 

presence of the respective CPE reported in the literature.  Melatonin and insulin were 

used for this study because they belong to two different classes of drugs, one being 

hydrophobic and the other hydrophilic with a significant difference between their 

molecular weights.   

 

4.2.1 Correlating the RFs with permeability coefficients of melatonin 

Melatonin is a weakly hydrophobic drug molecule with octanol / water partition 

coefficient, log(KOW) of 1.2 and molecular weight of 232.28 Da (87).  The KP values of 

melatonin through porcine skin in vitro were obtained from the literature (10, 33, 88).  

The permeability factor, defined as the ratio of the permeability coefficient obtained from 

the potential enhancer to that of the control, was calculated as follows: 

(Control)P

CPE)P(

K

K
Factorty Permeabili =

 

Then the permeability factors of the CPEs considered were compared to the RFs 

obtained from the resistance chamber.  The normalized RFs and permeability factors of 

melatonin in the presence of the respective CPE were given in Table 8.  RF values 

obtained from the resistance chamber after 24 h were plotted against the permeability 

factors for the selected CPEs.  A regression line was drawn through all the points.  The 
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results obtained (Figure 34) show a good correlation (R2 = 0.95) between the permeability 

factors and the RFs of the CPEs.   

 

Table 8: Normalized RFs of CPEs and KP values of melatonin in the presence of the 

respective CPE 

 

CPE RFCPE/RFControl KPCPE/KPControl Reference
1
 

Control 1.00 1.00 33 
Decanol 18.83 20.13 88 
Nonanol 14.00 10.06 88 

Oleic acid 13.16 9.37 88 
Lauric acid 14.03 9.57 88 

P1 5.83 4.59 33 
P2 4.38 3.23 33 
P3 1.91 1.14 33 
P4 1.33 1.46 33 
P5 1.19 1.34 33 
P7 0.61 1.08 33 

D17 29.30 31.18 10 
1Reference from which KP(CPE)/KP(Control) was calculated 

Figure 34: Comparison of RFs and permeation coefficients for melatonin.  
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4.2.2 Correlating the RFs with permeability coefficients of insulin 

 Insulin is a strongly hydrophilic drug molecule with octanol / water partition 

coefficient, log (KOW) of –1.76 and molecular weight of 5808 Da.  The KP values of 

insulin through porcine skin in vitro were obtained from Yerramsetty (32, 35) of the OSU 

Thermodynamics Research Group.  Then the permeability factors of insulin in the 

presence of the CPEs considered were compared to the RFs obtained from the resistance 

chamber.   

Although, there is no exact linear relation between the RF and Kp values of each 

enhancer from the resistance technique and the permeation experiments respectively (R2 

=0.075, Figure 35), all the CPEs which had a RF value greater than three times the 

control value had enhanced the permeation of insulin through skin.   

Figure 35: Comparison of RFs and permeation coefficients for insulin.  The 

error bars correspond to standard deviations for three experiments 
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The horizontal and vertical lines in the Figure 35 are the threshold values for 

permeability factor and resistance reduction factor respectively.  The threshold value for 

resistance reduction factor wrt control was set at 3, which suggests that the CPEs which 

cross this threshold value were able to reduce the barrier resistance of skin three times 

better than the control.  A value of 2 was set for the threshold value of permeability 

factor, which suggests that the CPEs which cross this threshold value were twice as better 

as the control, in enhancing the permeation of the drug through skin.  All the CPEs, 

which have a RFCPE / RFControl higher than the threshold value, had a permeability factor 

of at least twice the control.  

 

4.3 Histological studies 

The use of potent CPEs is generally limited by their toxicity.  Therefore, 

histological assessments were performed using potent CPEs from preliminary set and the 

Generations 1 – 5, to test the toxic effects of the CPEs on skin.  

Porcine skin samples were exposed to 5 % (wt / V) of the CPE on the SC side and 

with PBS on the dermis side for 48 h.  The dermis was maintained at 37 °C and the SC at 

room temperature (21 °C) as in resistance experiments.  The skin samples were fixed in 

1.5 % buffered formalin at room temperature, dehydrated in graded ethanol and then 

embedded in paraffin. The embedded samples were cut into 6 µm sections using 

microtome. These sections were then stained with Hemotoxylin and Eosin and digital 

photomicrographs were taken at representative regions using a Nicon E800 microscope.  

Morphological changes in the skin (especially in the epidermal layers) after 

treating the skin samples with the CPEs were observed visually and graded into four 
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classes from A - D, similar to a procedure reported recently (87) on rat epidermal 

keratinocyte organotypic cultures:  Class A – non toxic (when the morphology of the 

sample looks essentially identical to the control).  Class B – slightly toxic (when the 

morphology looks very similar to the control sample with minor differences).  Class C – 

toxic (when there is partial epidermal degradation with nuclei bleeding into the dermal 

layers).  Class D – severely toxic (when there is severe epidermal degradation with cell 

death).  Table 9 shows the CPEs graded according to their effect on the morphology of 

the skin.  Figures 36, 37 and 38 show the histological skin sections exposed to CPEs.  

The grades of the CPEs can be seen on the right hand botton of each skin sample.   

 

Table 9: Histological evaluation of the CPEs 

CPE Grade CPE Grade 

Decanol B P4 B 

Nonanol B P5 C 

Oleic acid A OSU2 A 

Lauric acid B OSU3 B 

P1 A OSU10 B 

P2 D OSU12 C 

P3 A OSU14 A 

 

Nonanol had slightly disrupted the epidermal papilla, which can be clearly seen 

from Figure. 36.  The nuclei of the cells from the epidermis are slightly bleeding in to the 

dermis, inferring that nonanol might be slightly harmful to the skin at the concentration 

used.  The morphology of the skin samples exposed to oleic acid looks almost like the 

control sample indicating that it is a non-toxic enhancer.  No damage is done to the skin 
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cells by this CPE.  There were some disruptions in the epidermal layer in the skin section 

exposed to lauric acid, indicating that it might be slightly harmful to the skin as shown in 

Figure 36.   

Figure 37 shows the histological skin sections of the porcine skin exposed to 

CPEs from the preliminary set.  CPEs P1, P3 and P4 did not alter the structure of the 

epidermal layers, indicating their non-toxicity.  But partial epidermal degradation was 

found with the nuclei bleeding in to the dermis from skin sample exposed to P5, which 

indicates its moderate toxicity on skin cells.  There was severe epidermal degradation 

with complete cell death with skin exposed to P2, which makes it a very toxic enhancer.   

 CPEs OSU2 and OSU14 were nontoxic as there were no significant changes in 

the morphology of the skin samples (Figure 39).  OSU10 was moderately toxic with 

nuclei from the epidermis slightly bleeding in to the dermis.  Dispersed and degraded 

epidermal layers were found in the skin samples exposed to OSU12, which makes it a 

toxic enhancer.   
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Figure 36: Histological cross section of porcine skin exposed to CPEs in 

validation set  
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Figure 37: Histological cross section of porcine skin exposed to CPEs in 

preliminary set 
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Figure 38: Histological cross section of porcine skin exposed to CPEs in Generations 

1 – 5. 
 

 



 66 

CHAPTER V 
 
 

DISCUSSION 

 

In this study, the utility of the electrical resistance of skin in a novel multi-well 

resistance chamber was investigated to identify potential CPEs and to increase the rate at 

which data can be obtained.  First, the highly permeating, well investigated nicotine (82) 

was used to compare the RF values from the multi-well resistance chamber and a FDC.  

There was a good agreement between the two.  The results also demonstrated that there is 

no influence of the adjacent wells on the resistance measurements.  Also, a higher 

difference could be observed in the RFs of control and nicotine at 37 ºC than at room 

temperature.   

To investigate the effect of temperature on RF values, experiments were 

performed on decanol while maintaining the receiver chambers at 37 ºC and 21 ºC.  As 

shown in Figure 27, a significant difference in the RF values was observed for 37 ºC and 

21 ºC.  Although others have reported the utility of resistance technique in screening the 

CPEs (26, 27), they did not compare with the traditional FDC experiments and they did 

not maintain the receiver chamber at 37 ºC, similar to the permeation experiments.   

Our findings support similar observations in the literature (89) that temperature 

plays a significant role in assessing the barrier characteristics of skin in the presence of 

CPEs.  Therefore, experiments designed to identify potential CPEs should be performed 
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at temperature conditions consistent with those of permeation experiments. The electrode 

set-up reported in the literature (26) to measure the electrical properties may introduce 

significant variability since the common electrode was inserted into the dermis of the 

skin.  The length of insertion, as well as the path length of electrical conductivity, could 

vary from well to well.  Thus, this type of electrode set-up could have significant 

influence on the resistance measurements.  The potential problem was avoided in our 

study by inserting the common electrode in an electrolyte bath, ensuring that length of 

current travel is equal in all the wells. 

Using the multi-well resistance chamber, nineteen potential CPEs were identified 

from the forty two tested.  The results from the pre-screening technique were confirmed 

by comparing them with the permeation data of the drugs, melatonin and insulin.  There 

was a good correlation between the RFs of the CPEs and the permeability coefficients of 

melatonin in the presence of the respective CPEs.  However, more data distributed 

uniformly over the correlation range would be required to confirm this finding with the 

melatonin. 

Although, there is no exact linear relation between the RF values and permeation 

data of insulin, the pre-screening technique was successful in identifying potential 

enhancers.  These results indicate that, using the resistance technique, potential CPE’s 

can be effectively pre-screened from a larger pool of chemicals, thus reducing the time 

required to conduct the permeability studies.  For example, CPEs which have a RF less 

than three times the control value can be avoided during the permeation experiments 

since they were not effective at the concentrations used.  Actually, a better strategy would 

be to examine the behavior of these chemicals at higher concentrations.  Also, by using 
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the resistance technique, CPEs can be tested in the absence of the drug considered, which 

can be useful in understanding the CPE interactions with the skin.   

However, using the resistance technique, we cannot predict the extent to which a 

CPE can enhance the permeation of a drug.  For example, one can expect that OSU34, 

which was identified as most potent CPE using the resistance technique, would also be 

the best CPE in terms of enhancing the permeation of a drug through skin.  However, 

OSU29, which had a lesser RF value, effectively enhanced the permeation of insulin 

through porcine skin than OSU34 (32).  This can be due to the fact that, using the 

resistance technique, we are determining the potency of the CPEs based on the movement 

of the current ions through skin, which are very small, when compared to the drug 

molecules.  And the enhancement abilities of CPEs usually depend on the properties of 

the drug such as molecular weight and lipophilic characteristics. Therefore, drugs with a 

range of lipophilic behavior and molecular weights should be carefully selected and 

experiments should be performed to better understand the utility of resistance technique 

with different classes of drugs.  Nevertheless, the pre-screening technique was able to 

successfully predict the CPEs that would enhance permeation of insulin through skin, and 

it can be used as a ‘coarse’ method for quickly identifying CPEs that would significantly 

alter the barrier properties of skin.   

Experimental variability usually associated with biological experiments was 

minimized by storing the skin at −20 ºC instead of −80 ºC and by checking the integrity 

of the skin samples prior to each experiment.  Porcine skin from the same breed and sex 

was maintained throughout the experiments.  The experiments were performed in a 

saturated environment to avoid the evaporation of the PBS from the Petri dish.   
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The use of the potent CPEs is not only limited by their toxic effects as mentioned 

in this study.  Skin sensitization, corrosion and irritation are the other factors, which can 

limit their use in TDD (90).  Skin sensitization generally occurs when skin is exposed to a 

toxic substance, which causes allergic reactions like erythema (redness), vesicles, 

papules, scaling, and pruritus (itching).  If the skin’s exposure to a toxic chemical results 

in tissue necrosis, it is termed as corrosion, which is irreversible.  Skin corrosion causes 

ulcers, bleeding, bloody scabs, and discoloration.  Skin irritation is caused when toxic 

substances affect the viable epidermis by triggering various inflammatory responses.  

Development of rashes, inflammation, swelling, scaling, and abnormal tissue growth are 

the clinical signs of skin irritation and this is a reversible process unlike skin corrosion.   

Therefore, the problems related to skin sensitization, corrosion and irritation should be 

carefully considered and addressed in order to confirm the safety of the CPEs before 

using them for TDD. 
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CHAPTER V 
 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

1. A rapid high throughput pre-screening technique was explored with success in 

order to identify potential CPEs for TDD. 

2. A novel multi-well resistance chamber was build and optimized to perform the 

experiments at conditions similar to standard permeation experiments.  

3. Using the pre-screening technique nineteen potential CPEs were identified out of 

the forty two tested. 

4. The pre-screening technique was validated by comparing the results with the 

permeation data of drugs, melatonin and insulin. 

5. Although a linear relation between the resistance and permeation data does not 

exist, all the CPEs, which had a RF value greater than three times the control 

value, were able to enhance the permeation of insulin through full thickness 

porcine skin in vitro. 

6. Out of the total potential CPEs in preliminary set and Generations 1 - 5, three of 

them were identified as toxic to the skin using histology. 
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5.2 Recommendations 

5.2.1 Future experimental design strategy 

A systematic approach is necessary when designing the strategy for conducting 

experiments in order to identify potential CPEs for TDD.  The use of crude trial-and-error 

methods results in a time consuming and economically inefficient experimental design 

strategy.  The resistance technique used in this study can improve the throughput from 

the experiments by eliminating the chemicals which are not potent, thereby reducing the 

effort to perform the more rigorous permeation experiments in the presence of different 

types of solutes.  However, resistance experiments should be performed using the 

enhancers at different concentrations in order to find the optimum concentration at which 

the enhancer is non-toxic and still potent.  For instance, the CPEs, which are potent in 

this study, may be toxic to the skin cells at the concentration used, but may be non-toxic 

at lower concentrations and still be a potent enhancer.  The experimental design for 

identifying potential CPEs at non-toxic concentrations can be optimized effectively using 

the strategy shown in Figure 39.   

 Initially, the potential CPEs can be generated virtually using computer aided 

molecular design techniques as described in the Section 4.1.  Next, the resistance 

experiments should be performed using the virtually generated CPEs at a concentration of 

5 % (wt / v).  If the resistance reduction factor, RF of the CPE is greater than three times 

the control value, toxicity studies should be performed with the CPE at the respective 

concentration.  If the CPE is non-toxic, permeation studies should be conducted with 

different solutes in the presence of the CPE.  If the CPE had enhanced the permeation of 

solute through skin, the properties of the CPE should be put into the virtual algorithm, 
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which generates the potential CPEs for the next generation.  In this process, if the CPE is 

either non-potent (RF < three times the control value) or toxic, an optimum 

concentration, COPT should be found at which the CPE is potent and non toxic using the 

resistance technique and the toxicity assessments.   

Figure 39: Future experimental design strategy 

 

5.2 Use of multiple CPEs  

Careful attention is required when using CPEs for TDD.  Many CPEs, which are 

potent enhancers, are very toxic or known for their irritating effect when in contact with 

the viable layers of the skin.  For example, surfactants are known to breach the barrier 
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properties of the skin very effectively; however they are very toxic.  In this scenario, 

combination of enhancers is one of the solutions to the issue. There are reports, which 

claim that use of combination of enhancers / vehicles is better than the individual 

enhancers (25, 27, 57, 91).  The random mixtures, which were formed from the 

combination of multiple enhancers, are likely to exhibit the additive properties of their 

individual constituents.  The potency and irritancy of these mixtures can be the average 

of its corresponding single components.  For example, if a chemical X is highly potent 

and toxic and chemical Y is less potent and non-toxic, then the combination mixture from 

these chemicals can be a moderately potent mixture with less toxicity / irritancy, which 

might effectively breach the skin’s barrier for few drugs.   

Therefore, research should be directed to investigate the effect of multiple CPEs 

to increase the performance of CPEs for TDD.   
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APPENDIX 
 
 

USING LCR METER TO MEASURE RESISTANCE 
 

1. Plug in and press the power button on the front panel to apply AC power to the 

LCR meter. 

2. Operate the LCR meter in auto.  This can be done by pressing and holding the 

start button for three seconds. 

3. The LCD screen of the LCR meter looks similar to the figure shown below. 

 

4. Set the frequency to 0.1 k Hz using the frequency button and numerical keys on 

the front panel. 

 
5. Set the voltage to 0.2 V.  This can be done by pressing the menu button (F6 key), 

which opens the menu screen shown in the Figure below.   
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6. Press the F3 (settings) key and set the voltage to 0.2 V by using the F2 key and 

numerical keys on the next screen. 

 

7. After setting the voltage, press start button and exit the menu screen. 

8. Zero the LCR meter using open and short circuit tests to eliminate the strayed 

measurements as described in the manual. 

In brief open and short circuit tests can be done by following the procedure 

mentioned below. 

Open circuit test: 

i. Press the F6 menu key to open the menu screen. 
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ii. Press the F1 (capacitance, R / L OFFSET) key to open the OFFSET menu, 

which is shown below. 

 

iii. Press F1 key to select open circuit zeroing. 

iv. If the zeroing process is successful, a message of “OK” can be seen on the 

LCD screen as shown below. 

 

v. Repeat the steps from i to iv if the process fails. 

Short circuit test: 

i. Connect the electrodes of the LCR meter to a clean small metal wire to 

short the circuit. 

ii. Press the F6 menu key to open the menu screen. 
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iii. Press the F1 (capacitance, R / L OFFSET) key to open the OFFSET menu, 

which is shown above. 

iv. Press F2 key to select short circuit zeroing. 

v. If the zeroing process is successful, a message of “OK” can be seen on the 

LCD screen. 

vi. Repeat the steps from i to iv if the process fails. 

9. After the zeroing is successful select the R / C mode by pressing the mode button. 

10. Select the parallel mode by pressing the circuit button. 

11. The LCD screen should look similar to the Figure below 

 

12. Finally, connect the LCR meter to electrodes of the resistance chamber as shown 

in the Figure below and note the resistance measurements. 
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Scope and Method of Study: The potency of a CPE in enhancing the permeation of a drug 

is usually determined by quantifying the amount of drug permeated through skin 
in the presence of the CPE.  Typically, these experiments are performed in 
Franz diffusion cells, and the amount of drug permeated is quantified by using 
rigorous analytical techniques, which are resource and labor intensive, cost 
prohibitive and have limited throughput.  Further, there is no rational design in 
the criteria for selecting candidate CPEs for study and this trial-and-error 
method can be time consuming.  Therefore, a need exists for a robust, quick 
alternate technique that can effectively pre-screen the CPEs for their potency.  
In this study, resistive properties of skin were used to determine the potency of 
the CPEs.  A high throughput multi-well resistance chamber was designed and 
constructed in order to increase the throughput from the experiments.  The 
multi-well resistance chambers were equipped to perform the experiments at 
conditions identical to permeation experiments and forty two potential CPEs 
were evaluated, which were generated by virtual design techniques.  
Histological studies were also performed to test the toxic effects of selected 
potent CPEs. 

 
Findings and Conclusions: Using the resistance technique and the multi-well resistance 

chamber, nineteen potential CPEs were identified from the forty two tested.  
Our results show a significant agreement between the resistance technique and 
the standard permeation experiments; thus, we confirm the efficacy of the 
resistance technique for screening potential CPEs.  In summary, resistance 
technique can be used to effectively pre-evaluate potential CPEs, thereby 
reducing the time required to conduct the skin absorption studies.   

 
 


