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CHAPTER I 

INTRODUCTION 

Over the past two decades, we have witnessed a tremendous development of 

image processing techniques. The field of image processing has grown considerably with 

the increased utilization of imagery in a myriad of applications coupled with the 

improvements in size, speed, and cost effectiveness of computers and related signal 

processing technologies. Image processing has evolved from academic interest into 

significant roles in scientific, industrial, biomedical, space, and government applications. 

Image processing is a broad subject encompassing studies of physics, physiology, 

electrical engineering, computer science, and mathematics. It involves a variety of 

technical disciplines and has numerous practical applications. This thesis is devoted to 

studying one of the challenging frontiers of image processing: Automatic Target 

Recognition (ATR). 

ATR refers to the identification of potential targets, and the recognition of actual 

targets without humans in the process. This is desirable since a system with a human in the 

loop is generally slow, unreliable, vulnerable, and may limit the performance of the overall · 

system (Walker, 1983). An important application of ATR is in helping and guiding pilots· 
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of high-performance aircraft flying close to the ground during inclement weather or at 

night. 

Basically, an A TR system performs automatic target acquisition, identification, and 

tracking by processing a sequence of images. A wide variety of A TR algorithms have 

been reported in the literature (Bhanu, 1986). A conventional ATR system incorporates 

time-consuming preprocessing, segmentation, correlation, and classification operations on 

each image in a video sequence at its original spatial resolution. This traditional fixed 

resolution ATR system spends more computational time on irrelevant image details, and 

requires a long time to identify an object. Such an approach is not feasible for a real-time 

implementation. In this thesis, an investigation of expeditious morphological pyramid 

identification and tracking algorithm which aims to improve the computational efficiency 

and solution quality of the traditional ATR system will be presented. This novel approach · 

utilizes the nonlinear morphological filters integrated with multi-resolution pyramid 

scheme, which is motivated by the human visual system (Burt, 1989). 

An image pyramid represents images in multi-resolution by a sequence of images 

created by successively filtering and subsampling the original image. Filtering is an image 

operation which can be either linear or nonlinear. With linear filtering, the pixel at 

coordinates (iJ) in the output image is a linear combination of the image intensities around 

(iJ) in the input image. For example, O(i,j) = X[I(i,j) + l(i + 1,j) + /(i-1,j)], where 0 

denotes the output image intensity and I denotes the input image intensity. In contrast, a. 

nonlinear filter implements a nonlinear function of neighboring image intensities. The 

nonlinear filters cannot be realized by linear convolution and have no frequency domain 
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characterization. Generally, the subsampling is carried out by discarding a number of rows 

and columns in the input image. 

Early approaches in computer vision used linear lowpass filters, e.g., convolutions 

with a Gaussian-shaped kernel, to generate multi-resolution pyramids (Burt, 1989). This 

approach suffers from its shifting and blurring of important image features such as edges. 

In contrast, nonlinear morphological filter can preserve edges and the outline of object 

shapes at various feature scales. In this research, nonlinear morphological filters are 

utilized to generate multi-resolution pyramids for ATR. 

The. morphological filter is based on mathematical morphology which was 

developed in 1964 at the Paris School of Mines, France, by G. Matheron and J. Serra 

(Serra, 1982). Mathematical morphology is a set-theoretic method for image analysis. It 

provides a quantitative description of the geometric structures of an image. In 

mathematical morphology, a black and white (binary) image is represented by 2 

dimensional Euclidean sets. If the background is black and the objects are white, the set 

of all white pixels forms a complete description of the binary image. The elements of the 

set are the coordinates of the white pixels in the image. Morphological operations use a 

pre-defined shape (set), called structuring element (SE), to interact with the image set. 

Therefore, each morphological operation is based on shapes. Since shape is a prime 

carrier of information in images, the importance of mathematical morphology is self­

evident By carefully selecting the SE, which is comparable to moving windows in typical 

nonlinear filters, morphological operations can simplify image data, preserve their essential 
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shape characteristics, and eliminate irrelevancies. They are therefore well suited for shape 

estimation which will lead to effective ATR. 

The conventional ATR system based on a single resolution image is 

computationally inefficient. In contrast, the proposed ATR algorithm is based on multi­

resolution --- the resolutions of the images in the pyramid vary from fine ( original image) 

to coarse through successive subsampling. Therefore, it provides a hierarchical computing 

paradigm which may be utilized to decrease the computational cost of the automatic target 

recognition and tracking tasks. The pyramid allows the initial detection of objects at low 

spatial resolution and refinement of the final verification of the results at progressively 

higher resolution, but within smaller regions of the scene. In this way, computation time 

will be reduced by organizing search from coarse to fine. Burt has shown that when used 

in search application, these pyramidal structures can have a significant computational 

advantage (Burt, 1981). Thus, the multi-resolution representation provides a powerful 

tool for A TR by locating potential objects of interest within a scene using the most 

appropriate resolution instead of the fixed resolution in the traditional A TR algorithms. 

In this research, the multi-resolution pyramid is combined with a nonlinear 

morphological filter to provide an effective tool for ATR. The morphological pyramid 

(MP) creates a multi-resolution representation through a sequence of filtered images 

obtained by morphological filtering and regularly subsampling. 

The morphological filter used in the MP will remove noise effectively and preserve 

the crucial features in an image at the same time. The edge and shape preservation 

properties of the morphological pyramids should provide improvements over detection 
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and recognition in a linear pyramid paradigm such as the Gaussian pyramid. The 

simplicity and computational efficiency provided by the MP make it appealing for real-time 

implementation. This will lead to enhancing the performance of the ATR system. 

Given below, is an overview of the automatic target recognition scheme that 

exploits the structure of the nonlinear morphological pyramids utilized in this research. 

The scheme involves the generation of the MP, location and extraction of a region of 

interest (ROI), segmentation of the image, performance of the coarse-to-fine template 

matching to detect the target and tracking. 

The first step is to develop a nonlinear pyramidal scheme that utilizes shape­

preserving morphological operations to remove noise and unwanted detail. The optimal 

morphological filter and subsampling scheme used in generating MP needs to be studied. 

Since the performance of morphological operations is highly dependent on the size and 

shape of the structuring element, the SE used in morphological operations is investigated. 

The goal in subsampling is to preserve the integrity of the target information in each 

pyramid level and eliminate irrelevant details. 

The choice of the pyramid level used for initial identification of targets must be 

analyzed. The determination of the initial level is a critical selection since the instance of a 

target missed at this level will never be recovered. In general, the selection depends on the 

original spatial resolution, the target size, the minimum distance between objects and the . 

maximum shift in position allowed to the target in the search space, etc. Here, the 

morphological filtering at coarser levels can be quantified by region homotopy (the 

connection between several parts of the objects). The homotopy is important because it 
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provides information about the structure of an image. When the image is subsampled, the 

homotopy must be preserved. The evaluation of the homotopy for the morphological 

pyramid (MP) will prevent region merging and allow target/background discrimination for 

coarse (sparsely sampled) representations. 

When a proper SE size and initial pyramid level is determined, the noise and 

unwanted detail in the constructed MP will be reduced, the uneven background will be 

smoothed, and the shape of the target will be preserved. Therefore, the MP is an effective 

engine for the ATR. 

The initial step in the A TR process is to locate the region where a candidate target 

is present. By utilizing the MP structure, the target area can be easily extracted. An· 

adaptive thresholding technique is applied to segment the potential target at the coarser 

level providing the approximate location of the candidate target. Once the result of this, 

first screening of the region of interest is obtained, the second phase of refinement has to 

be performed. The refinement is accomplished step by step at every intermediate level 

until the maximum resolution level (the original image) is reached. At each level the 

confidence of the selection is checked, and the spatial position of the target is refined by 

checking the g nearest neighbors corresponding to the position of the previous level. 

After the location of the ROI is determined, the ROI in the original image is 

extracted. Using this ROI, the edge-based template morphological pyramid is generated. 

Then, a coarse-to-fine template recognition scheme that exploits the structure of the 

morphological image pyramids is performed. In this pyramid-based target identification,: 

potential targets are initially located by searching at lowest resolution. In this case the· 
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search is formulated as the correlation of a low resolution template with a low resolution 

level of the image pyramid. Once a candidate target is found, the search procedure moves 

to higher resolution pyramid level and examines details that should occur within the target. 

The instance of the target located by this pyramidal template matching algorithm is input 

to a Kalman filter which predicts the location of the target in the next frame. 

This pyramidal tracker can continue to track the target until target scale, target 

rotation, or change of viewpoint cause the matching between template and image fall 

below a threshold. At this point, a new template can be generated using the ROI guided 

by a Kalman predictor. 

The remainder of this thesis is organized as follows. In Chapter II, an overview of 

the traditional automatic target recognition (ATR) algorithm, which includes 

preprocessing, detection, segmentation, classification, and tracking is described. Then the 

fundamental concepts of morphological image processing and the multi-resolution 

representations (pyramids) are briefly summarized. Chapter III discusses the construction 

of the optimal MP for ATR. By utilizing the morphological sampling theorem and 

homotopy preserving critical sampling theorem, the optimal morphological filter, the 

structuring element, and the initial identification pyramid level for identification are 

theoretically analyzed. The relationship between morphological sampling and the effect of 

the sampling on the homotopy is also presented. In Chapter IV, the proposed MP-based 

automatic target identification and tracking algorithms are detailed. Chapter V applies 

MP-based automatic target identification and tracking algorithms to infrared (IR) image 
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sequences. The comparative results are presented. Finally, the conclusions and 

recommendations for future research are summarized in Chapter VI. 
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CHAPTER II 

BACKGROUND 

In this chapter, an overview of existing automatic target recognition algorithms is 

presented. The limitations of these ATR techniques are indicated. To overcome the 

disadvantage of these traditional ATR algorithms, the multiresolution morphological 

pyramid based ATR technique is proposed. In order to give the background of the 

morphological pyramid, it is necessary to briefly discuss the history of the mathematicalal 

morphology, the application of the mathematicalal morphology to image processing, and 

the multiresolution representations. 

Automatic Target Recognition (ATR) 

There are a large number of ATR algorithms. Typical ATR algorithms consist of 

several steps: preprocessing, detection, segmentation, feature computation, selection and 

classification, and tracking, as shown in Fig. 2.1 (Bhanu, 1986). The major disadvantage 

associated with these methods is the amount of computation needed to process the 

imagery at the original resolution. Brief descriptions of the standard ATR components are 

given below. 
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Preprocessing 

, ' 
Detection 

1 ' 

Segmentation 

, ' 
Feature 

Computation 

,, 
Tracking 

Fig. 2.1 Basic block diagram of typical ATR system 
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Preprocess_ing: This step is executed to improve target contrast and reduce noise 

and clutter present in the image. It is usually accomplished by a local filter such as the 

median filter for noise suppression, high-pass filters for edge sharpening, and locally 

variable scaling for contrast stretching. The limitation of pre-processing is that the error 

introduced in this step will affect the later detection. In this research, there is no such 

preprocessing step. The morphological pyramid has the intrinsic capability to eliminate 

noise. 

Target Detection: This is the process of identifying those regions in the image that 

are likely to contain targets. The most common way to extract targets from the picture is 

to use thresholding technique in which localization and segmentation are inseparable. 

Burton and Benning (1981) compared four target detection algorithms: the "superslice" 

developed by University of Maryland (Milgram and Rosenfeld, 1978), the Ford double­

gated contrast filter (Politopoulos, 1980), the "Spoke Filter" developed by the Army 

Missile Command (Minor and Sklansky, 1981 ), and the "contrast box" developed by 

Texas Instruments (Burt and Benning, 1981 ). All these algorithms require different 

parameter choices and have a high computational cost. 

The "superslice" algorithm (Milgram and Rosenfeld, 1978) first generates a 

thinned edge map. Simultaneously, it applies a multi-threshold to. the original image in 

order to extract different objects, and then uses a connected components algorithm to 

locate the borders. It then compares the thinned edge map with the sequence of 

thresholded images. The segmentation threshold is selected when the best match between 

the thinned edge and the border of the target is found. 
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The double-gated filter (Politopoulos, 1980) uses two rectangular windows. An 

inner window contains the target, and an outer window contains the immediate 

background of the target window. The filter localizes potential target areas based on the 

contrast between the target and its surrounding background. 

The spoke filter (Minor and Sklansky, 1981) is an extension of the Hough circle 

detector (Pratt, 1991 ). It detects the object edges first and forms a spoke of a certain 

length and orientation perpendicular to each local edge. 

The contrast box (Burt et al., 1981), like the double-gated filter, uses a double 

window filter to locate candidate target areas. It detects objects based on the statistical 

difference between the two regions. The main difference between the double-gated filter 

and the contrast box lies in the matrices used to determine the likelihood of a target being 

localized at a certain pixel. 

All the detection algorithms mentioned above process images in the fixed 

resolution ( original image) and are time consuming. The detection method used in this 

research processes images in multiresolution. It first detects the region of interest (ROI) 

on a coarse resolution, for instance, 32 by 32 instead of 256 by 256 in traditional detection 

methods. Then, the target is detected in finer resolution, but only in the small regions 

guided by the ROI. Therefore, it is computationally effective compared to the traditional 

detection algorithms. 

Segmentation: Once a potential target is localized, the segmentation step extracts 

the target from the background. Bhanu ( 1986) summarizes many segmentation algorithms 

for ATR which include superslice, pyramid approaches and relaxation. The pyramid spot 
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detection approach (Schneier, 1983) for extracting compact objects from a contrasting 

background involves constructing a succession of lower resolution images ( a pyramid) and 

detecting spots in these images. Spots are detected by comparing each pixel with its 8 

nearest neighbors. To obtain segmentation, thresholds can be calculated in the low 

resolution image or the original image. A variation of the above technique is the pyramid 

linking approach (Burt et al., 1981) based on the creation of links between pixels in the 

successive levels of a pyramid. Segmentation is implemented as the process which selects 

a single legitimate parent for each node from that node's four candidate parents. The 

legitimate parent is the candidate with a value most like that of the node itself. Due to this 

nearest-parent selection rule, the segmented objects tend to be homogeneous regions, the 

objects boundaries are sharp, and noise can be smoothed out. 

The above mentioned pyramid segmentation techniques use linear filters to 

construct pyramids which cause the object to merge with the background when the 

contrast between the object and background is small. In this research, a nonlinear 

morphological pyramid is applied to the pyramid linking technique to segment the target 

from the background (Chen and Acton, 1997). This is the first approach to utilize a 

morphological pyramid linking technique in segmentation. The segmentation and resulting 

edge detection yielded by this method is particularly effective in the presence of impulse 

noise. It demonstrates superior solution quality over standard full resolution detectors and 

previous pyramidal approaches. 

Feature Computation, Selection, and Classification: After the targets are 

extracted, a set of features of them are computed for target classification. Most features 
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used by ATR researchers are either geometric, topological, or spectral. In this research, 

geometric features are extracted for identification. 

Tracking: This is the process that predicts where the target is going to be in the 

next frame after finding the target for the first time. Once we have an estimate of the next 

target position, we can look at a small sub-image for the target and avoid searching the 

whole image. 

Ayala et al. (1982) report a moving target tracking algorithm using a symbolic 

approach for image registration and motion analysis. Image registration is the process of 

locating corresponding points in two or more images of the same scene taken at different 

times and at different positions. The algorithm they used consists of several steps. The. 

first step is segmentation using a region growing technique. The matching of 

corresponding segments between two images is based on the similarity of corresponding 

feature values. The features used in their matching include segment position, size, 

intensity, area ratio, and local contrast. Objects are detected as moving if they do not have 

a motion consistent with other objects in the image. This symbolic matching permits the 

matching of real objects which may have changed appearance slightly between images. 

Holben ( 1980) uses cross-correlation of successive images over subregions to estimate the 

scene shift so that the target can be tracked. When the confidence level of a tracker based 

only on intensity, feature, contrast, or correlation is low, tracking approach combined 

intensity, contrast, feature and correlation complements each other by allowing switching 

from one approach to another and results in a high confidence level. Dorrough et al. 

(1982) presents such a multimode tracker consisting of an intensity centroid tracker, an 
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edge tracker, and a correlation tracker. These tracking algorithms suffer from frequently 

lost targets in high clutter and low signal to noise ratio conditions (Bhanu, 1986). In 

addition, they are complicated and computationally intensive. 

The Kalman filter is extensively used to compute a recursive solution to the 

problem of the least square estimation. It has been applied in numerous practical 

situations, including space navigation guidance, orbit determination, and tracking (Sage 

and Melsa, 1982). It is an optimal linear filter in the least mean squared error sense, and it 

can optimally estimate the target motion from noisy data. In this thesis, the Kalman filter 

is integrated with the MP to track the target. 

In this section, the processing steps which constitute the typical approach to the 

ATR problem have been discussed. An overview of the techniques used to solve the ATR 

problem and the limitations of these techniques have been presented. The main 

disadvantage of the conventional ATR algorithms is that their computational load is quite 

high and their performance is not good in a low signal to noise ratio circumstance. The 

major difference between the traditional approaches and the approach used in this thesis is 

that the traditional algorithms process images in fixed resolution and the proposed method 

processes image in multiresolution to speed up and enhance the solution quality. 

Every sensor is subject to noise. The conventional A TR systems use pre­

processing to remove noise. As mentioned before, there is no preprocessing step in the 

proposed ATR algorithm. The noise is reduced by the morphological filter and 

subsampling operation in generating a morphological pyramid. Linear and nonlinear filters 

are used extensively in image processing to remove noise. It has been shown by many 
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experimental studies that although linear filters possess good noise attenuation capabilities, 

they smear the edges in the original image because of the linear average operation that 

they perform (Fong et al. 1989). On the other hand, nonlinear filtering is well-known as 

an edge-preserving method. This thesis will focus on target detection, since detection is 

the most vital step of the ATR system. Mathematicalal morphology offers an effective 

tool for target detection and noise reduction since it is a nonlinear processing operation 

which is the way that the human visual system works. Currently there is considerable 

research being performed on morphological image processing. The following section 

reviews the applications of morphological operations to image processing. 

Morphological Operations 

The word morphology refers to the study of form and structure. The 

morphological approach is generally based upon the analysis of a binary image in terms of 

some predetermined geometric shape known as a structuring element (SE). The initial 

theoretical work in mathematicalal morphology was done by Hadwiger ( 1957). Matheron 

(1975) developed it further in conjunction with integral geometry and size measurement, 

Kirsch (1957) first showed its utility in image processing, and Serra ( 1982) produced the 

first systematic theoretical treatment of the subject. 

A morphological algebraic system is useful because compositions of its operators 

can be formed such that when acting on complex shapes, they are able to decompose them 

into their meaningful parts and separate them from their extraneous parts. Such a system 
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of operators and their compositions permits the underlying shapes to be identified and 

optimally reconstructed from their distorted, noisy forms. Furthermore, they permit each 

shape to be understood in terms of a decomposition, each entity of the decomposition 

being some suitably simple shape. 

A familiar example of a non-morphological algebraic system is the algebraic system 

of convolution and its frequency domain representation. Here any finite duration function! 

can be represented as a sum of sinusoids. A distortion of f can be modeled by adding to it 

sinusoids which may not have been part of its original representation. Alternatively, f can 

be modeled by convolving the image with some kernel k. Whatever the distortion, 

understanding what happens in terms of the sinusoidal (frequency domain) representation 

permits one to develop procedures to remove the distortion of the undesired 

transformation. The underlying f can be estimated, reconstructed, extracted, or recognized 

on the basis of observing its distorted form. What the algebra of convolution does for 

frequency selection, the algebra of mathematicalal morphology does for shape. 

Originally, mathematicalal morphology was developed for binary images. But from 

the very beginning there was a need for a more general theory including spaces of 

functions modeling gray-scale images. 

Historically, morphological gray-scale image processing originally treated the gray 

functions as sets of layers of binary cross sections (thresholds). Processing was based on a 

stereological approach where cross sections are transformed individually or in pairs (Serra, 

1982). Meyer (1977) developed gray-scale image contrast descriptors based on 

differences of openings of the functions by three dimensional structuring elements 
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composed of disks. Rosenfeld ( 1970) proposed a generalization of connectivity to 

functions, from which he derived a gray-scale thinning algorithm in collaboration with 

Dyer (1977). Goetcharian (1979) has also contributed several original notions such as the 

lower skeletons and relations of the fuzzy logical concepts to gray-scale morphological 

processing (Goetcharian, 1980). Serra (1982) has introduced formal notions of grayscale 

homotopy. 

Morphological operations can be employed for many purposes, including edge 

detection, segmentation, and enhancement of images (Giardina and Dougherty, 1987; 

Chen and Acton, 1996). Schonfeld and Goutsias(1991) applied morphological filters to 

the problem of pattern restoration from noisy binary images. They proved that the class of 

alternating sequential filters is a set of parametric, smoothing morphological filters that 

"best" preserves the crucial structure of input images in the least mean difference sense. 

This filter "optimally" eliminates the rough characteristics of the degradation noise while it 

"optimally" preserves the crucial geometrical and topological features of the noise-free 

pattern. 

Mathematicalal morphology has recently attracted a great deal of attention from 

the image processing world (Salembier et al, 1997, Maragos, 1997, Sidiropoulos et al, 

1997, Morales, 1995), primarily due to the fact that it concerns the shape and properties 

of objects (regions) of an image and how these may be changed to extract useful features. 

From the underlying morphological operation, an entire class of morphological filters can 

be constructed that can often be used in place of the standard linear filters. Whereas linear 
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filters sometimes distort the underlying geometric form of an image, morphological filter 

leave much of that form intact. 

In the following sections, definitions and properties of binary and gray-scale 

morphological transforms will be introduced. Examples of morphological operations with 

binary and gray-scale images will be shown throughout the sections. 

Binary Morphology 

The two most fundamental operators in mathematicalal morphology are dilation 

and erosion (Haralick and Shapiro, 1993). Almost all morphological operations can be 

defined in terms of these two basic operations. Dilation is the morphological 

transformation that combines two sets by using vector addition of set elements. Binary 

dilation was first used by Minkowski, and in the mathematicals literature it is called 

Minkowski addition. If B and K are sets in N-space (EN) with elements b and k 

respectively, b = (bi, ... , bN) and k=(k1, ... kN) being N-tuples of element coordinates, then 

the dilation of B by K is the set of all possible vector sums of pairs of elements, one 

coming from B and one coming from K. 

The dilation of B by K is denoted by B EB K and is defined by 

BEBK={ceENlc=b+kforsomebe B andke K} (2.1) 

The first set B of the dilation B EB K is associated with the image's underlying 

morphological processing, and the second set K is referred to as the structuring element, 

the shape that acts on B through the dilation operation to produce the result B EB K. 



20 

Stated more intuitively, the mathematicalal definition of dilation says that a 

foreground pixel will be written to the output set at all positions of the structuring element 

where any foreground pixel in the structuring element overlays a foreground pixel of the 

image set. The result of this operation is illustrated in Fig. 2.2. Notice how dilation fills in 

holes in the object and expands its boundaries, filling in any narrow 'creeks' that might 

exist. 

' ... ,•', .· .. . 

'• : ... ....... ·.-: 
. . ·. . .. · .. ·:· •'' 

(a) Original Image (b) Dilation of (a) 

Fig. 2.2 Binary Dilation 

Erosion is the morphological dual of dilation, that is, the dilation of a set B is 

equivalent of the erosion of the complement set B*. It is the morphological 

transformation that combines two sets by using containment as its basis set. If B and K are 

sets in Euclidean N-space, then the erosion of B by K is the set of all elements x for which 

x + k e B for k e K. 

The erosion of B by K is denote by B0K and is defined by 

B0K= {x E EN Ix+ k E Bfor every k E K} (2.2) 

Erosion can be viewed as a morphological transformation that combines two sets 

by using vector subtraction of set elements. Expressed as a difference of elements b and k, 

erosion becomes 
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B0K = (x e EN I for every k e K, there existed a be B such that x = b-k} (2.3) 

An example of this operation is shown in Fig. 2.3. The eroded image of Fig. 2.3(b) 

is produced by stepping the structuring element, or template, over the input until all of the 

foreground pixels of the template fit over foreground pixels in the underlying image. At 

each position where this is true a pixel is written to the output array corresponding to the 

reference pixel position. 

~ 

• .... • ...... '.:.i: :,, • 

"'•', .··· .·· •'"' 
: . .. . .. ·. · ..... · ... 

(a) Original Image (b) Erosion of (a) 

Fig. 2.3 Binary Erosion 

Erosion enlarges holes in the object, shrinks its boundary, eliminates 'islands' and 

removes narrow 'peninsulas' that might exist on the boundary. The dilation and erosion 

transformations bear a marked similarity in that what one does to the image foreground 

the other does to the image background. 

Besides dilation and erosion, there are two transformations, opening and closing, 

which Matheron (1975) also treated as fundamental transformations in that they can be 

constructed directly from dilation and erosion. Although dilation and erosion are dual 

operations, it is not possible to reconstruct an image set by the application of dilation after 

previously having eroded the image. The dilation operation will only be able to 
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reconstitute the essential features of the structure of the object as modified by the 

structuring element. 

by 

The opening of image B by structuring element K is denoted by Bo K and defined 

BoK=(B E>K)a3K 

The Closing of image B by structuring element K is denoted by 

B• K= (Ba3K)E>K 

(2.4) 

(2.5) 

The results of these operations are illustrated in Fig. 2.4. Opening and closing 

operations form the basis of boundary smoothing and noise elimination processes whether 

the noise is manifested as small holes within the object or as small protrusions outside the 

object. Continuing with the geographical metaphor which seems so appropriate for the 

effect of morphological operations, opening smoothes object 'coastlines', eliminates small 

'islands', and cuts narrow 'isthmuses'. Thus, it isolates objects which may be slightly 

touching one another. 

Like erosion and dilation, opening and closing are dual transformations; an 

opening of the background of an object behaves like a closing of the object. The open­

close filter is defined as an opening followed by a closing, i.e. open-close of image B by 

structuring element K is denoted by 

(2.6) 
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·· .. ··· .-· .... · .. ···. •,, . 

(a) Original Image (b) Opening of (a) (c) Closing of (a) 

Fig. 2.4 Binary Opening and Closing 

~ ••• • ·.:.:· ....... '.:.i:'' • 
..... ,•', .-· .... .. ,•• .. .'···. •,. ·.·. 

(a) Original Image (b) Open-close of (a) (c) Close-open of (a) 

Fig. 2.5 Binary Open-close and Close-open 
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The reverse is true for the close-open operation, i.e. close-.open of image B by 

structuring element K is denoted by 

(2.7) 

Transformations that apply products of opening and closing are less severe and 

introduce less distortion than an individual closing or opening (Morales and Ko, 1996). 

Examples of open-close and close-open are shown in Fig. 2.5. 

Sternberg (1986) introduced a new class of morphological filters called the 

alternating sequential filter (ASF), which is defined as an iterative application of openings 

and closings with different size structuring elements. The ASF is denoted by 

ASF(B) = BKnBKn-t··· Bi (2.8) 

where n is an integer, Kn, Kn-1, •.. K1 are structuring elements with different sizes, and Kn:;;J 

Kn-1::J ... ::J K1. Schonfeld et al (1991) proved that ASF is the best in preserving crucial 

structures of binary images in the least mean difference sense. 

The open-close filter is used in this research to generate the morphological 

pyramid for ATR. Applying open-close filters with identical structuring elements to the 

different size (resolution) of the image to generate a pyramid is equivalent to applying 

ASF to the image (Sternberg, 1986). A morphological pyramid can be denoted by 

MP(B) = B;B;-1 ••• B~ =ASF(B). (2.9) 

where K is the SE, Bn.~-• •... B1 are the original images with different resolution (size) 

through subsampling, and Bn ::J ~-1::J ••• ::J B1• 
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Gray Scale Morphology 

The binary morphological operations of dilation, erosion, opening, and closing are 

all naturally extended to gray scale imagery by the use of a min or max operation. 

A function,f(x), dilated by a structuring element, K, is defined by 

(f EB K)(x) = max{f(x - y)} 
yeK 

(2.10) 

where xeD in Z2, Z is a set of integers, and K is a subset of Z2• That is, the dilation is a 

moving local maximum operator. Similarly, the erosion, which is the moving local 

minimum operator, is defined by 

(f0K)(x) = min(f(x + y)} 
· yeK 

(2.11) 

The expressions for grayscale dilation and erosion bear a marked similarity to the 

convolution frequently encountered in image processing, with sums and differences 

replacing multiplication and minimum and maximum replacing summation. 

For grayscale images, the erosion and dilation operations have the dual effect of 

eliminating positive-going impulse noise and negative-going impulse noise, respectively. 

However, each operation also biases the signal either upward or downward as shown in 

Fig.2.6. The dilated image (Fig. 2.6(b)) has highlighted, expanded bright regions, while the 

eroded image (Fig. 2.6(c)) has been biased negatively, producing a dark image, with 

expended dark regions. 
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(a) Original Image 

(b) Dilation of ( a) (c) Erosion of (a) 

Fig. 2.6 Grayscale dilation and erosion 



Mathematicalally, the opening and closing are defined respectively as 

f o K = (f0 K) ffi K 

f • K = (f ffi K) 8K 
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(2.12) 

(2.13) 

Apply an opening operation to an image will smooth the image, reject positive­

going impulses, and preserve edge information as shown in Fig. 2.7(a). When applied to 

an image, the close operation will again smooth noise without removing edges, but will 

eradicate negative-going impulses as shown in Fig. 2.7(b). Fig. 2.7(a) and Fig. 2.7(b) also 

indicate that grayscale openings and closings by smooth structuring elements round off 

sharp grayscale distinctions. 

The open-close and close-open filters are formed by the concatenation of open and 

close operations. The open-close filter is an opening followed by a closing while close­

open is the reverse. Both of these operations have the ability to smooth noise, especially 

impulse noise, of both the positive-going and negative-going type, with little bias. So, I 

propose to use an open-close filter to construct the MP for ATR. The results of the open­

close and close-open operations are shown in Fig. 2.8(a) and Fig. 2.8(b). 

Properties of Morphological Filters 

Morphological filters, including dilation, erosion, opening, and closing, are both 

increasing and translation invariant. The increasing property means that containment 

relationships are maintained through the morphological operation. For example, AcB 
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(a) Opening of Fig. 2.6(a) (b) Closing of Fig. 2.6( a) 

Fig. 2.7 Grayscale opening and closing 

(a) Open-close of Fig. 2.6(a) (b) Close-open of Fig. 2.6(a) 

Fig. 2.8 Grayscale Open-close and close-open 
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implies A(.f)KcB(.f)K. If the translation of image A by x is denoted by (A)x, then the 

translation invariance property means that (A)x ffiB=(AffiB)x, 

Besides being increasing and translation invariant, opening and closing are 

idempotent. By idempotency, we mean that the result of an opening or closing is 

unchanged when we reapply the opening or closing, i.e. (A 0 K)°K=A°K. This corresponds 

to the notion of bandpass filtering in the linear filtering theory. An ideal bandpass filter is 

idempotent. Once we have removed all those frequencies in a signal outside of a given 

band, no further spectral changes are introduced by sending the signal through a second 

bandpass filter identical to the first. 

These morphological filters are the scale generating mechanisms used in 

morphological pyramids. Now, the image pyramid will be discussed. 

Multiresolution Pyramids 

Multiresolution representations are important tools in computer vision for image 

filtering and analysis at multiple scales. The pyramid has been developed in the computer 

vision field as a general framework for implementing highly efficient algorithms, including 

algorithms for motion analysis and object recognition. The pyramid schemes have been 

traditionally utilized for region-based image segmentation (Burt and Rosenfeld, 1981), 

multiresolution edge detection (Acton, 1995; Chen and Acton, 1997), motion detection 

(Burt, 1989), signal reconstruction (Adelson et al., 1987), and image coding (Burt and 

Adelson, 1983). They are also applied extensively in image compression and progressive 
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transmission (Burt, 1989; Burt and Adelson, 1983, Florencio and Schafer, 1994; Toet, 

1989; Sun and Maragos, 1989; Cantoni and Levialdi, 1994 ), and promise excellent 

performance and flexibility (Burt, 1989; Cantoni and Levialdi, 1994). 

Pyramidal architectures generate the same image at different resolutions and 

scales. The goal is to ensure the use of the most appropriate resolution for the operation, 

the task, and the image at hand. Furthermore, a hierarchical structure allows us to 

undertake the solution of problems at low spatial resolution and to proceed to successive 

refinements until the final verification of the results is reached at the highest resolution 

available. In this way acceleration factors greater than the number of processing elements 

(PEs) can be obtained even in the low-level vision tasks, because data reduction is an 

exponential function of the number of levels that have been constructed (Cantoni and 

Levialdi, 1994). 

In a pyramid data structure, images are represented by a sequence of copies of the 

original data in which both sample density and resolution are decreased in regular steps, 

from the base (containing the original image) toward the apex (Fig. 2.9). The degree of 

reduction between successive image copies can vary over a wide range. In the most 

common solution, the number of pixels is reduced by at factor of 4 with each ascending 

level. 

The pyramid construction from the original image can be accomplished in many 

ways. The simplest way consists of direct subsampling. Each level is obtained by keeping 

every other row and column from the previous level. Other, more sophisticated solutions 

are usually pursued in order to preserve or enhance some image properties. 



Apex 

Pyramid Level #3 L:71 Filtering, 
t"' Subsampling 

Pyramid Level #2 (77 Filtering, + Subsampling 

Pyramid Level #1 ~ 
~ Filtering, 

T Subsampling 

Pyramid Level #0 

Scale Increases, 
Resolution Decreases 

Original Image 

Base 

Fig. 2.9 The Structure of a Multiresolution Pyramid 
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The most common approach to pyramid construction is to apply linear filters with 

progressively increasing spatial extent to generate a sequence of images with progressively 

decreasing resolution. The low-pass filter not only creates a more coarse scale 

representation but also limits aliasing (distortion) from the subsampling operation. In the 

following section, two linear pyramid representations, Gaussian and Laplacian, pyramids 

will be analyzed. 

Gaussian and Laplacian Pyramids 

The Gaussian pyramid (GP) (Burt, 1988), which contains subsampled images that 

have been iteratively smoothed using a linear Gaussian-weighted filter, is by far the most 

prevalent pyramid in the literature. A GP can be constructed by convolving the image with 

a spatially localized generating function and then subsampling by a factor of 2 in each 

linear dimension. Linear generating functions that have been used for the GP include the 

Gaussian-weighted filter (Burt and Adelson, 1983) and the uniformly-weighted (average) 

filter (Wells, 1986). 

The Gaussian pyramid represents images in multiresolution by a sequence of low­

pass filtered images { Go, G1, G2, ••• , Gn}. Go is the original image, which is convolved with 

a low pass filter w then subsampled by discarding every other row and column to form Gr. 

Gr is then filtered and subsampled to form G2, and so on. In general, for l > 0, 

(2.14) 
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Here the notation [.].J..2 indicates that the image contained within the brackets is 

subsampled by a factor of 2 in each spatial dimension. The filter w is called the generating 

kernel. In practice this is chosen to be spacially limited and separable. Separable means the 

convolution can be decomposed into two successive one-dimentional convolutions: one 

operating on the image row by row, and the other operating on the image column by 

column. In this way, the computational cost of the filter convolution is kept to a minimum. 

Fig. 2.10 depicts a 256x256 IR image of an airplane that is used as the initial image 

for GP. In Fig. 2.11, levels 1-3 of the GP are shown with the image size expanded to the 

size of the original image. The shortcomings that limit the effectiveness of linear pyramidal 

approaches to recognition and tracking are illustrated in this example. By level 2 of GP 

(64x64), the image of the aircraft has been severely blurred (Fig. 2.ll(b)). At level 3 

(32x32), the internal IR information for the target has been lost (Fig. 2. ll(c)). 

Furthermore, the boundaries of the aircraft have been effaced. 

The Laplacian pyramid is commonly used as the basis for multiresolution analysis 

in image coding (Adelson, et al. 1987). Roughly speaking, levels of the Laplacian pyramid 

are formed as difference images between successive levels of the Gaussian pyramid. If G1 

is the Ith level of a Gaussian pyramid, then the corresponding Laplacian level Lz is given by 

(2.15) 

The Laplacian pyramid has a number of properties that make it appropriate for 

image coding. First of all, it is a complete image representation: the original image can be 

recovered exactly from its Laplacian pyramid representation through a simple inverse 

transformation. Moreover, it is a compact representation, and one that tends to enhance 
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Fig. 2.10 Original 256x256 IR image 

(a) GP Level 1 (128x128) (b) GP Level 2 (64x64) (c) GP Level 3 (32x32) 

Fig. 2.11 Three Levels of a Gaussian Pyramid 
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important features of an image, such as edges. Features are further separated over levels 

of the pyramid according to their scale. These properties also make the Laplacian pyramid 

well suited for image compression and computer graphics (Adelson, et al. 1987). 

However, the poor edge localization of the Laplacian pyramid limits its application to 

ATR. 

Linear pyramidal techniques have also been utilized for object recognition and 

tracking (Burt, 1989; Cantoni and Levialdi, 1994). With linear pyramids, the coarse-to­

fine tracking strategy was first explored. For a successful coarse-to-fine guided search, 

image features of potential targets must be first identified on a coarse pyramid level by 

target region boundaries (edges) and the incorporated intensity information. Using the GP, 

edges can be located on each level by evaluating the local image gradient or by locating 

zero-crossings in the Laplacian of the Gaussian (LoG) pyramid images. Unfortunately, the 

linear filtering leads to an increased disparity between image edges and the actual physical 

boundaries between pyramid levels for a coarse-to-fine search. The effects of region 

bleeding/merging will also degrade recognition performance and reliability. With the linear 

generating function, the target edges are oversmoothed, not enhanced. 

More recently, nonlinear pyramidal techniques for image segmentation and edge 

detection have appeared. With a nonlinear method, the linear generating function is 

replaced by nonlinear operation. Such a substitution may render the pyramid unsuitable for 

such tasks as image subband coding or signal reconstruction, but may prove useful for 

feature extraction and segmentation in terms of feature preservation in the coarse pyramid 

levels. Acton ( 1994) used a diffusion-based generating function to preserve edge 
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localization and internal radiometric properties of the image regions. Sun and Maragos 

(1989) applied morphological pyramids to image compression and progressive 

transmission. Toet (1989) used MP for image decomposition. The resulting image 

description provided a useful basis for multiresolution shape analysis. Moreover, the MP 

image decomposition scheme is well suited for VLSI implementation. Also, Florencio and 

Schafer (1994) used a shape-preserving morphological filter to generate coarse image 

· representations in a pyramid for image coding. 

One might ask the question "There are other efficacious nonlinear filters, such as 

the well-known median filter. Why choose a morphological filter to construct the 

pyramid?" The morphological filter can preserve the critical features of the image, and is 

more computationally efficient than other nonlinear filters. In the following, the 

relationship between median filter and morphological filter is discussed in order to answer 

this question. 

Morphological Filters Compared to Median Filters 

It is shown in (Maragos and Schafer, 1987) that median filtering of any signal by 

convex windows is bounded below by openings and above by closings. In addition, the 

open-close and close-open filters suppress impulse noise similar to the median, can 

discriminate between positive and negative noise impulses, and are computationally less 

complex than the median. 



37 

The relationship between median filter and morphological open-close is stated in 

the following theorem. 

Theorem (Maragos, 1987) The open-close and close-open filters with a window B of any 

finite extent function f are roots of the median by a window W. Here the sizes of window 

B and Ware IB l=n + 1 and IW I= 2n+ 1, and n are positive integers. 

A root of a filter is any signal such that "I' (f) = f so that the result of the filtering is 

unchanged and stable. The above theorem can be formulated as 

f • Bo B = med[ med[ ... med[!, W] ... ]] {2.16) 
m 

f o B• B = med[med[ ... med[f, W] ... ]] (2.17) 
m 

where m is the smallest number that the result of the iteration of the median filter is stable. 

The above equations indicate that the open-close and close-open filters yield a median root 

in one pass while median filter needs iterate several times to yield a median root. 

Therefore, the morphological open-close and close-open filters are more efficient in 

eliminating impulse noise than the median filter. 

To understand this theorem intuitively, examples are given. Fig. 2.12(a) shows the 

256x256 Cameraman image corrupted by salt-and-pepper noise with variance = 5. In 

Fig.2.12(b), (a) is opened by a 2x2 square convex window B. It shows that opening can 

suppresses the positive noise ("salt" noise). In Fig.2.12(c), the open-close suppresses the 

negative noise ("pepper" noise) remained in Fig. 2. l 2(b ). Fig.2.12( d) is the median 

filtering result of Fig.2.12(a) by a 3x3 convex square window W. Comparing Fig.2.12(c) 

and Fig.2.12(d) indicates that a median filtering of an image by a 3x3 window behaves 
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(a)Salt-and-pepper noise (cr=5) (c) open-close (2x2) 

(b )open (2x2) (d) Median filter (3x3) 

Fig. 2.12 Comparison of Morphological Filters to Median Filters 
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similarly to the open-close by a 2x2 window B, but the latter is computationally less 

expensive than the median. 

This section has discussed two linear multiresolution pyramids: the Gaussian 

Pyramid and the Laplacian Pyramid. Their limitations for ATR are indicated. The 

relationship between two nonlinear filters, the median filter and the morphological filter, is 

also discussed, and demonstrates the advantage of using nonlinear morphological filters to 

construct pyramids. The applications of the nonlinear pyramids are also briefly presented. 

At this time, the MP has been applied to image coding, segmentation, image 

representation, and image restoration. However, no report has been found that solves the 

ATR problem with a morphological pyramid. This thesis addresses the utilization of the 

morphological pyramid structure to automatically identify targets. 
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CHAPTER ID 

MORPHOLOGICAL PYRAMIDS FOR ATR 

Chapter Overview 

So far, existing ATR techniques and the background of the morphological pyramid 

have been introduced. Although the morphological pyramid has been applied to image 

compression, image representation, and image restoration, there has been no application to 

automatic target recognition. In this chapter, the generation of optimal morphological 

pyramids for ATR will be discussed. 

The morphological image pyramid is a collection of images derived from a given 

image with decreasing sizes and resolutions as the Gaussian pyramid. Images at each level 

are derived from previous level by filtering and subsampling. For morphological pyramids, 

filtering is typically accomplished by a morphological opening, closing, or open-close, 

which can be treated as a low-pass filter. The subsampling is usually carried out by 

discarding every other row and column from the previous level. 

Mathematically, given an image I and a structuring element K, a morphological 

pyramid can be defined as a collection of images, MP= {h, L= 0, 1, ... , N}, where his the 

subsampled image at level L from the previous filtered image, and N is the largest integer 
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for which h is non-empty. The procedure for computing this pyramid can be summarized 

as follows: 

(1) Initialization: 10 = I 

(2) h = [(l<i-1> 0 Khs 

(3) repeat (2) until L = logs (n) 

Here O denotes the morphological operation and n is the image size. [hs indicates the 

image contained within brackets is subsampled by a factor of S in each spatial dimension. 

From the previous equations, it is clear that the appropriate morphological filter, 

the size of SE in the morphological filter, and the sampling rate need to be chosen to 

construct an MP which preserves the critical information between pyramidal levels. In the 

following sections, these three choices are discussed. 

Selection of the Structuring Element 

Since the performance of morphological operations is highly dependent on the size 

and shape of the structuring element, the SE used to construct MP needs to be 

investigated. If the size of the SE is too large, the morphological filter will remove some 

important features of targets whose size is smaller than the SE. Thus, the probability of 

target detection will decrease. On the other hand, if the size of the SE is too small, the 

noise in the background whose size is larger than the SE can not be effectively reduced. 

One characteristic of mathematical morphology is that it requires an exact 

specification of the structuring element. Many applications of mathematical morphology 
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use only a single structuring element. In some cases, this may not produce the best result. 

For example, a structuring element with a disk shape or a square shape is used in most 

morphological filtering algorithms which results in the elimination of some geometrical 

details in the image along with the noise. One way to avoid the blurring effect is to use a 

smaller structuring element. However, using smaller structuring elements will not remove 

noise effectively. Sternberg (1986) introduced the iterative algorithm using multiple 

structuring elements. In his morphological filter, openings and closings are applied 

iteratively using multiple structuring elements which are spheres of different diameters. It 

has been shown that the use of a complex morphological filter with multiple structuring 

elements can remove noise and preserve geometrical features more effectively than a 

simple morphological filter. By applying same size structuring element in the different 

levels in a pyramid, we actually apply the different size SE to the original image. 

Fig. 3.2 shows that for a binary image corrupted with impulse noise, the use of a 

complex binary morphological filter with only two structuring elements can remove noise 

effectively and preserve more geometrical features than a simple one SE morphological 

filter. Since the two structuring elements shown in Fig. 3.1 match the directions of the 

camera control line, this control line is preserved in Fig. 3.2(c) and (d). These results also 

demonstrate that with the same SE, applying open-close is better than simply applying 

open. 

[
1 1 1] 
0 0 0 

0 0 0 
[
o o 1] 
0 1 0 

1 0 0 

Fig.3.1 The two 3x3 SE's used in the filter of Fig. 3.2 



(a) Noisy Cameraman (b) Opening of (a) using 
one 3x3 square SE 

(c) Opening of (a) using 
the two SE's in Fig. 3.9 

(d) Open-close of (a) using the SE in Fig. 3.1 

Fig.3.2 Illustration of selection of the SE 
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The choice of SE involves the selection of two features: shape and size. The 

shape of the SE is discussed in the following. The size of the SE is described in a later 

section. 

The optimal shape of the SE should match the directions of the target features so 

that the shape of the target is maximally preserved as shown in Fig. 3.1-3.2. Since the 

optimal shape of the SE depends on the shape of the object of interest in the scene, the 

shape of the object needs to be analyzed and defined. Before the mathematical definition 

of the target is given, two definitions--- convex set and piecewise convex set, need to be 

given. 

Convex Set and Target Shapes 

A convex set is a collection of points having the property that for any two points in 

the set, a line segment joining them is also completely within the set. Fig. 3.3(a) shows a 

convex set. Fig. 3.3(b) shows a non-convex set. 

(a) (b) 

Fig. 3.3 Convex Set 

A piecewise convex set is a union of convex sets that share elements only at 

boundaries. For example, the set in Fig. 3.4 is piecewise convex set. In Fig. 3.4 both A 1 
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and A2 are convex sets, and they are connected and share the boundary e. 

Mathematically, the piecewise convex set A can be defined as 

(3.1) 
e 

(3.2) 

where LJ denotes a disjoint union with shared boundary e. 

Fig. 3.4 Piecewise Convexity 

Now the shape of the target can be expressed by the following equation: 

A=LJA; :e;:;t:0,andlSiSn (3.3) 

where A; is a convex set, and n is a bounded integer. The target can then be described as 

a piecewise convex set with joint boundaries. 

Selection of the SE Shape 

To preserve the features of the target, structuring elements should be chosen such 

that SE's match the direction of the target features. The procedure of selecting the SE 

shape is as follows: 

(l)Let E~ = A; . (3.4) 
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(2) E; = E~ E>B (3.5) 

(3.6) 

(3) N = min(j): EJ = 0 (3.7) 

(3.8) · 

where N is an integer, B is a symmetric structuring element (please note that this 

structuring element is different from the structuring element K which is used to construct 

MP), EJ is the ith part of a target under jth iteration of erosions and E~ ;;:2E; ;;:2 ... EN. Si is 

the minimum shape of the ith part of a target Ai and is the ith SE shape. The example 

shown in Fig. 3.5 demonstrates this procedure. In this example, S; = E~_2 = E; = E~ E>B · 

which is Fig. 3.5(c). This is the optimal shape of SE because it preserves the shapes of the 

object of interest. . 

Then, the multiple structuring element is a disjoint union of S; 

(3.9) 

The selection of the optimal SE shapes has been discussed above. Now, the 

optimal SE size needs to be chosen. The optimal size of the SE should be selected such: 

that the connection between parts of the object of interest is preserved. To choose the 

optimal SE size in construction the MP, the homotopy preserving critical sampling, 

theorem (HPCST) is utilized. Before introducing the HPCST, we need to give a definition 

of homotopy. 
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• 
• • • • • 

• • • • • • • • • • 
• • • • • • 

(a) • • • 
• • 

(b) (c) 

• 

(d) (e) 

Fig. 3.5 Generation of the minimum shapes of a target Ai . 

(a)SE B; (b) Ei =A;; (c) E: = E~ 0B; (d) E~ = E;eB; (e) E~ = 0. 

Since N = min(j): EJ = 0 , N=3 in this case. 
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Sampling and Homotopy 

A morphological pyramid is a hierarchy of images where copies of the original 

image are morphologically filtered and sampled in regular steps. The sampling process in 

generating the MP is different from the conventional sampling process. The conventional 

sampling process is a mapping from continuous signals to digital signals_. On the other 

hand, the sampling process used to construct the MP is performed in the discrete time 

domain, and can be accomplished by discarding a number of rows and columns in the 

image. Therefore, it is refereed as subsampling. The goal in subsampling is to preserve 

the integrity of the target information, and eliminate the insignificant details in each 

pyramid level. 

The integrity of objects can be quantified by homotopy. Two sets are homotopic if 

a one-to-one correspondence exists between objects in two image representations. For 

example, Fig. 3.6(a) and (b) are homotopic sets. Fig. 3.6(a) and (c) are not homotopic 

sets. The evaluation of the homotopy for the MP will prevent region merging and allow 

target/background discrimination for coarse representations . 

• • 
(a) 

II 

(b) 

Fig. 3.6 Homotopy 

(c) 
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It is not straightforward to choose a subsampling scheme that guarantees the 

preservation of the homotopy. The traditional sampling theorem often serves as the basis 

for analysis of the aliasing. Aliasing occurs when the frequency components of the 

sampled signal are distorted by overlapping of the original spectra. This sampling theorem 

can be used for designing the down-sampling lowpass filter for anti-aliasing in linear 

systems. To generate an image pyramid, the traditional sampling theorem does not seem 

to be appropriate where contour and equivalent information, not the frequency content, 

are of primary concern. Furthermore, the morphological filter is a nonlinear filter whose 

frequency response can not be analyzed. Therefore, a sampling theorem based on 

morphology needs to be utilized. 

It is well known in linear signal processing that prevention of aliasing can be 

accomplished by low-pass filtering the signal according to Shannon's sampling theorem. 

To construct a morphological image pyramid, the traditional sampling theorem is not 

pertinent, since the morphological filter is a nonlinear filter. The frequency response of 

this nonlinear filter cannot be analyzed. In this case, the morphological sampling theorem 

(MST) is utilized to design the anti-aliasing filter (Haralick et al, 1989). 

The MST describes how to remove small objects, object protrusions, object 

intrusions, and holes before sampling to prevent a sampled result that is unrepresentative 

of the original one. In linear signal processing, the presence of frequencies higher than the. 

Nyquist frequency causes the distortion in the sampled signal. Likewise in morphology, 

the presence of small details must be filtered to prevent distortion. 
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The subject of morphological sampling has been addressed by several authors 

(Florencio and Schafer, 1994; Heijmans, 1991; Haralick et al, 1989). Heijmans and Toet 

(1991), using a specific definition for sampling ("probing element sampling"), presented a 

very general sampling strategy, which includes results on general sampling grids as well as 

on regular grids. With a more traditional sampling definition, Haralick et al. (1989) 

provided many relations between the sampled signal and the original signal under several 

conditions. 

The purpose of subsampling is to reduce the amount of data used to represent the 

original signal. The sampling process should be such that as much useful information as 

possible is retained from the original signal. A desirable property of the sampling process 

is that it should be invertible, i.e. it should be possible to reconstruct an original image 

from its sampled version. Of course, this cannot be done in general since we have lost 

information by discarding a number of rows and columns in the subsampling process. 

However, it is possible to give conditions in order to make the sampling process invertible. 

The morphological sampling theorem (Haralick et al, 1989) describes how a digital image 

must be filtered in order to preserve relevant information. It indicates to what precision a 

morphologically filtered image can be reconstructed after sampling. It specifies the 

relationship between the original image and its morphologically filtered and sampled one. 

It permits us to construct an optimal morphological pyramid for ATR. An optimal 

morphological pyramid should satisfy the following conditions: (1 )It should maximally 

remove noise and unwanted details, (2)1t should preserve the shapes of the objects of 

interest, and (3)It should preserve homotopy between two adjacent pyramid levels for the 
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object of interest. In the following, the morphological sampling theorem will be briefly 

discussed. 

Morphological Sampling Theorem 

There are four basic sets in the morphological sampling theorem: the original set F, 

the sampling set S, the structuring element K, and the reconstruction structuring element · 

C. Before presenting the morphological sampling theorem, the definitions of sampling and 

reconstruction must be given . 

• • • • 

• • • • • • • • • 
'tt • .. • 

• • • • • • • • • 

• • • • 

(a) S (b)F (c)FriS 

Fig. 3.7 Illustration of sampling process 

The sampling operator cr(.) is defined as: 

xecr(F) ~xeFnS. (3.10) 

Thus, by (3.10) sampling a set is equivalent to taking the intersection of the 

original set F with the sampling set S. Fig. 3.7 illustrates the sampling process. The 
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sample set S is chosen as the set of even numbers in both row and column. The original 

set Fis shown in Fig. 3.7(b). Fig. 3.7(c) is the sampling result. Here t..,. denotes the 

origin. 

This example shows that if the sample points of S are too finely spaced, little will 

be accomplished by the reduction in resolution. For instance, the sampling set is selected 

as the set of every pixel by row and by column. The result of sampling set FnS is the 

same as the original set F. On the other hand, if S is too coarse, objects may be missed by 

the sampling. For example, the sampling set is chosen as the set of every fifth pixel by 

row and by column. In this case the result set FnS is empty. 

There are two kinds of reconstructions of the sampled images: a maximal 

reconstruction accomplished by dilation and a minimal reconstruction accomplished by 

closing. The reconstruction operator p(.) is defined as: 

p(G) = GEB C or p(G) = G• C (3.11) 

In morphological sampling theorem, the sampling set S and the reconstruction SE 

C must satisfy following conditions: 

and 

SEBS=S 

S=S, 

ens= {o}, 

C=C, 

a e Cb~ ca ncb ns :t:0 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where u denotes reflection with respect to the origin, and Ca is the translation of C by a. 

Conditions (3.12) and (3.13) mean that Sis an infinite set, and it is symmetric. Conditions 
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(3.14) and (3.15) imply that C is symmetric and is small enough so that its intersection 

with S is { 0}. Condition (3 .16) states that the sampling space must be small enough such 

that the radius of C contains two sample intervals but not three. Fig. 3.8(b) illustrates a 

structuring element C satisfying the conditions (3.14-3.15) . 

• • • • • • • 
• .. • • • • • 

~ • • • 
• • • • 

• • • • 
(b)C 

(a)Sampling every other pixel by row and column. A symmetric element C. For 

The sampling set S is represented by all points the sampling set S of Fig. (a) 

which are shown as • . ens= {o} 

Fig. 3.8 Reconstruction SE Conditions 

Before the four propositions of the morphological sampling theorem is presented, 

the definition of aliasing needs to be given. Aliasing means that the reconstructed set is a 

distorted version of the original set. It can be expressed as: 

p(cr(F)),:;, F. (3.17) 

The morphological sampling theorem consists of four propositions. The first 

proposition in this theorem shows that if we sample the reconstructed set, we obtain the 

same result as if we sample the original set. This is very important, since it shows that 
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after the first reconstruction, the signal belongs to a class of "perfectly reconstructible 

sets" associated with the sampling and reconstruction transformations. 

Proposition 1 (Haralick et al, 1989) 

cr(F) =cr(p(cr(F))) (3.18) 

This proposition is a key point in designing an appropriate anti-aliasing filter. 

Since this class of signals can be perfectly reconstructed, it is obvious that these signals 

should be preserved by the filtering. 

The next proposition shows that the reconstructed set is close to the original set-­

it differs from the original by at most a dilation or erosion. 

Proposition 2 (Haralick et al, 1989) 

FE>C c p(cr(F)) c FEB c (3.19) 

Looking from the other side, the next proposition shows that signals that were 

appropriately filtered can be estimated by the sampled signal. 

Proposition 3 (Haralick et al, 1989) 

If F = F• C= Fo C then p(cr(F))E>C c F c p(cr(F)) E0 C (3.20) 

Notice the contrast between Propositions 2 and 3. While the first uses the original 

signal to put bounds on the sampled signal, the latter uses the sampled signal to put 

bounds on the original signal. 

Proposition 4 [Haralick et al, 1989] 

If Cc K,then 

[(FoK•K)nS]• Cc FoK •Kc [(FoK• K)nS]E0 C. (3.21) 

d[Fo K • K,({FoK • K}nS) • C]::;; r(C). (3.22) 
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d[({F o K • K}nS) EB C,F o K • K,] :5: r(C). (3.23) 

where r( C) denotes the radius of C, d[E,F] denotes the distance between E and F. 

This theorem can be seen as the morphological sampling theorem equivalent of the 

Shannon Theorem. According to the Shannon Theorem, frequencies higher than the 

Nyquist rate cannot be reconstructed. Similarly, the morphological sampling theorem 

indicates that the position accuracy smaller than the radius of the reconstruction 

structuring element cannot be reconstructed. While the Shannon Theorem establishes a 

class of signals ( closed under linear combinations) that can be sampled and perfectly 

reconstructed, the morphological sampling theorem establishes a class of signals that can 

be sampled and perfectly reconstructed. The morphological pyramids satisfy this theorem 

are the optimal ones for target identification. 

In the following, the morphological sampling theorem is applied to choose the 

optimal morphological filter for the MP. 

Choice of the Optimal Morphological Filter for the MP 

The optimal morphological filter is a morphological filter which removes the noise 

and unwanted details but maximally preserves the object shapes and critical features. To 

generate the optimal MP for ATR, the desired property is that the sampling process can be 

inverted. In other words, the information in the sampled image is maximally preserved 

compared to the unsampled image. Proposition 3 in MST states that the sampled image is 

close to the original image if F = F • C = F o C. Normally this condition can not be met 
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for an unprocessed image. Recall that the open and close operations are idempotent. If 

an image is opened by C once, reapplying the opening operation would not change the 

result. In this case, the opened image is equal to original one: F = F ° C. Similarly, if an 

image is closed by C once, reapplying the closing operation would not change the result, 

i.e. F = F • C. Therefore, an image opened by C and closed by C (open-closed by C) 

meets the condition F = F • C = F o C. This image is the image which belongs to the 

class of perfectly reconstructible images. 

Proposition 4 in MST gives the relationship of the open-close filter in the sampled 

domain and unsampled domain. It also states that the difference between the 

reconstructed and open-close image is not greater than the radius of reconstruct SE C. 

Since C is a subset of SE K, this difference is not greater than the radius of SE K. 

Therefore, the difference between the reconstructed and open-close image is determined 

by SE K. Now, applying this proposition to our problem, when the MP satisfies the 

condition of F = F • K = F o K , it also meets the condition F = F • C = F o C in 

proposition 3. This theorem supports the choice of the open-close filter for construction 

of the optimal MP for ATR. 

The open-close filter is chosen as the anti-aliasing filter in this work. Small objects 

and object protrusions can be eliminated by a suitable opening, and small object intrusions 

and holes can be eliminated by a suitable closing (Burton and Benning, 1981 ). The open­

close operation is the concatenation of the two filters. By carefully selecting structuring 

element sizes and shapes, openings and closings can be made which selectively remove 

image features according to their sizes and orientations. Furthermore, by applying 
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openings and closings iteratively, it· makes no difference whether we are treating the 

foreground or the background of an image because openings and closings are dual 

transforms. Finally, iterative openings and closings of grayscale images filter out image 

noise without adding grayscale bias (Sternberg, 1986). 

The open-close pyramid can be constructed by 

(3.24) 

(3.25) 

(3.26) 

The structuring elements Ki used with different levels in the pyramid can be either identical 

or different. 

Homotopy Preserving Critical Sampling Theorem and SE Size 

The optimal morphological filter and the shape of the structuring element of the 

morphological filter used to construct MP have been determined in the previous sections. 

In this section, the size of the SE which preserves the homotopy needs to be decided. The 

Homotopy Preserving Critical Sampling Theorem (HPCST) is utilized to determine the SE 

size (Florencio et al, 1994). The following is the HPCST: 

Theorem Let XeP{R2}, let X.C be its complement, and let (cr(X),D) and (cr(X.C),D) be their 

respective planar graph representations induced by a rectangular lattice S with spacing a 
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and 6-way connectivity (Fig. 3.9). K(r) is the SE with radius r. cr(.) is the sampling 

operator, p(.) the reconstruction operator, and K is the structuring element. Then the 

following hold: 

1. If X = X • K(r) = X o K(r) for some r = a../2, then the planar graph representations 

preserve the homotopy of X and XC. 

2. The condition in 1) above is not enough to guarantee the homotopy preservation if 

r < a../2. 

I/ 
/. ,., I/ .,. .,. 

Fig. 3.9 6-way connectivity (The center point is 6-way connected to its neighbors) 

HPCST states that if the sampling rate is S, the diameter of the structuring element 

must be greater than or equal to S multiply by ../2 to preserve homotopy between the two 

successive levels. In this work, we use S equal to 2, therefore, the diameter of the SE will 

be 3. The SE used to construct MP can be as follows: 

[1 1 1] 
K= 1 1 1 . 

1 1 1 

The equations (3.23-3.24) are used to construct the MP. The first three levels of 

the MP are shown with the image size expanded to the size of the original image in Fig. 
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3.10, using Fig. 2.10 as the initial image. The morphological operation is open-close. The 

pyramidal images are generated with identical SE's. 

It can be observed that the integrity of the target (airborne) and the connection 

between several parts (land, clouds, and target) of the image in MP have been preserved 

after repeated filtering and subsampling compared with GP (Fig. 2.11 ). 

(a) MP Level 1 (128x128) (b) MP Level 2 (64x64) (c) MP Level 3 (32x32) 

Fig. 3.10 Three Levels of a Morphological Pyramid 

It is not enough to just preserve the homotopy between the two successive 

pyramid levels. The homotopy between the original image and the level for the initial 

searching---root level, needs to be preserved. This issue is discussed in the following 

section. 
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Selection of the Root Level 

In our coarse-to-fine search algorithm, we must determine the root level Lr in MP 

which is between level O to level N for initial search. The root level is the level at which 

the targets have not vanished and the target's homotopy is maintained. The determination 

of the root level is a critical selection since the instance of a target missed at this level will 

never be recovered. In general, the selection obviously depends on the original spatial 

resolution and the maximum shift in position allowed to the target in the search space. 

Here, the morphological filtering at coarser levels can be quantified by region homotopy. 

The evaluation of the homotopy for the morphological pyramid (MP) will prevent region 

merging and allow target/background discrimination for coarse (sparsely sampled) 

representations. 

If the root level is chosen to be too high, such as level 7 for a 256x256 image, the 

information of a target would disappear because there is only one pixel in the level 7 with 

the sampling rate S equal to 2. On the other side, if the root level is too low, such as level 

0, the advantage of the pyramid structure for identification would not be utilized. In the 

following, we will give the analysis of root level choice. 

The root level depends on the size of the target object and the minimum distance 

between two objects. Recall that an object is a union of convex sets with shared 

boundaries. Let a be the minor axis of the largest convex set of the object. In level L, the 

length of the minor axis will become: 



Where S denotes the sampling rate. The object will disappear when 

Therefore, the level in which the object before it disappears can be described as 

reaches 

La= log10 a -1. 
log10 S 

Similarly, if the minimum distance between two objects is d , when the level 

L _ log10 d -l 
d- • 

log10 S 

The two objects would just before merge. Thus the root level is determined by 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

For example, if the minor axis a of the largest convex set of the object of interest equals 

16, the sampling rate is selected to be 2 and the minimum distance d between the two 

objects is 8. According to Eq. (3.29-3.31), Ld = 2 and La =3. Therefore the root level Lr 

will be level 2 in the pyramid. In this example, level 2 preserves the homotopy between 

original image and the initial searching level. Using SE size 3, sampling rate 2, and root 

level 2, not only is the homotopy between successive pyramid levels preserved, but also 

the homotopy between the original image and the level for initial searching is preserved. 

In summary, a morphological pyramid has been defined that meets the criteria of 

optimality. 



CHAPTER IV 

OBJECT IDENTIFICATION AND TRACKING BASED ON MORPHOLOGICAL 
IMAGE PYRAMIDS 

Chapter Overview 
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The theoretical analysis of the generation of the optimal MP for target 

identification and tracking has been discussed in chapter III. In current chapter, the 

utilization of the nonlinear morphological pyramid structures for automatic target 

identification and tracking is presented. 

Pyramidal image representations and algorithms are particularly important in the 

application of computer vision to object recognition. To achieve real-time processing a 

vision system must quickly locate potential objects of interest within a scene, then 

efficiently extract critical features that permit object recognition. Systems with fixed 

resolution spend more computational time on irrelevant image details, and require minutes 

or hours to identify an object that can be located in a second with the pyramidal structure 

(Burton and Benning, 1981 ). 

The block diagram of this MP-based ATR algorithm is shown in Figure 4.1. The 

first step is to construct morphological image pyramids which will be described in the 
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Fig. 4.1 A TR Flowchart 
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following section. The next step is to segment the image by utilizing the MP structure and 

node link technique. Step 3 is to locate and extract the region of interest (ROI) where a 

candidate target is present. Step 4 is to construct the template morphological pyramids 

using the ROI as the original image and the same technique used to generate image 

pyramids. Step 5 is to perform a coarse-to-fine search using the template matching 

technique between the image pyramids and template pyramids. Finally, the integrating the 

MP and Kalman predictor is addressed to further improve the performance of the system. 

The following sections will discuss the details of these steps. 

Construction of the MP 

Recall that the fundamental operators in morphology are dilation, erosion, opening 

and closing [Chapter II]. A grayscale function,.f(x), dilated by a structuring element, K, is 

defined by 

(f E0 K)(x) = max{f(x - y)}. 
yeK 

(4.1) 

where xe D in Z2, Z is a set of integers, and K is a subset of Z2• Similarly, the erosion is 

defined by 

(f0 K)(x) = min(f(x + y)}. 
yeK 

(4.2) 

The opening and closing are defined respectively as 

f oK= (f E>K)<:I,K, (4.3) 

and f •K= (f<:I,K)E>K. (4.4) 
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In construction of the MP for edge detection, morphological open-close, which is 

an opening followed by a closing, is used for filtering images. The advantage of using 

morphological open-close is that it is increasing, translation invariant, and idempotent. 

Idempotency guarantees that the result of an open-close is unchanged after re-application, 

corresponding to bandpass filters in linear signal processing. Moreover, open-close can 

maximally preserve the shape of targets and eliminate noises. 

Given an image I and a structuring element K, a morphological pyramid can be 

defined as a collection of images, MP= {h, L = 0, 1, ... , R}, where his the subsampled 

image at level L computed from the previous filtered image at level L-1, and R is the root 

level. The procedure for constructing a pyramid with an open-close filter can be 

summarized as follows: 

(1) Initialization: lo= I 

(2) h = [(l(L-l)oK • K].L.s 

(3) repeat (2) until L=R. 

Here the notation [.],1.s indicates the image contained within brackets is subsampled by a 

factor of Sin each spatial dimension (along both rows and columns). 

The MP-Based Segmentation 

The technique used for identification of targets is the coarse-to-fine template 

matching which is discussed in later sections of this chapter. Template matching is an 

operation that can be used to find out how well a template sub-image matches a window 
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of a given image. The coarse-to-fine template matching can be performed on the original 

gray scale images or on binary images. The latter one, though, is much faster. Therefore, 

binary template matching is utilized in our coarse-to-fine search in order to speed up the 

searching process. One of the classic techniques to transform a gray scale image to a 

binary image is segmentation. 

Segmentation is the process of isolating each object from the rest of the scene. 

There are two categories of segmentation: (l)edge detection and (2)region growing. The 

edge detection approach focuses on finding discontinuities in intensity variations or pattern 

variations. The edges form closed boundaries which define regions. Region growing 

based schemes focus on finding contiguous pixels which have similar intensities or 

patterns. In this way groupings of homogeneous parts of the image are formed. 

Thresholding is a particularly useful region-approach segmentation technique for 

scenes containing solid objects on an even background. But, in many cases, the 

background gray level is not constant, and the contrast of objects varies within the image. 

In such a case, the thresholding technique works poorly. 

The classic gradient-based edge detectors are sensitive to noise and produce more 

false edges than morphological edge detectors (Ramesh and Haralick, 1992). Recently, 

the multiresolution approaches have attracted attention because of their computational 

efficiency and their robustness in the presence of noise. The popular linear Gaussian 

pyramid is not well-suited for edge detection due to the smoothing effect of Gaussian 

convolution. A nonlinear pyramid, the anisotropic diffusion pyramid (ADP), edge 

detector was presented in (Acton, 1996) which showed decreased edge localization error, 
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compared to the linear Gaussian-based pyramid edge detector. Edge detection utilizing 

morphological pyramids is attractive because they can be efficiently implemented, in 

contrast to the ADP, and the MP offers the same low edge localization error as the ADP. 

The images in this system are segmented by using a pyramid node linking 

technique (Burt, 1981) on the MP. A child-parent relationship is defined between nodes 

(pixels) in adjacent levels. For each node in level l there are 4x4 candidate children nodes 

at level l-1 and 4 candidate parent nodes at level l+ l. Links between adjacent levels in the 

pyramid are formed based on similarities. Each node is linked to a single one of these 

candidate parents. After linking, the pixel values are re-computed as follows: 

li(i,j) = 11+1(int(i) + a,int(j) + b). 
. 2 2 

(4.5) 

(a,b) = arg infl/1+1 (int(i) + m,int(j) + n)- 11 (i,j)I 
(m,f!) 2 2 

(4.6) 

where (m,n)e {(0,0),(0,1),(l,O),(l,l)}. This process repeats until the pixel values of level 

0 remain unchanged. 

The algorithm utilizes a multiresolution pyramidal structure created by successive 

morphological operations and subsampling of the original image. The boundaries detected 

at a low resolution level of the morphological pyramid (MP) are used to guide the 

detection of discontinuities at higher resolution levels. Through linking, segments are 

formed in level O from the coarse-to-fine segmentation originating at level R. From the 

segmented image, a binary image is obtained by thresholding, and an edge map is 

generated by locating the boundaries between the segmented regions. 
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Fig. 4.2(a) shows an original 256x256 image of a desk surface with a pair of 

scissors and two pens corrupted by additive Laplacian-distributed impulse noise with 

variance 27 .8. The morphological operation used to construct MP is close, the structuring 

element used here is a 3x3 square window, and the sampling rate is S=2. 

The performance of the MP-based edge detector is compared with another 

multiresolution edge detector---the anisotropic diffusion pyramid (ADP) based edge 

detector reported in (Acton, 1996). The ADP gives the edge map shown in Fig. 4.2(b) 

using Fig. 4.2(a) as the original image. The edge map created by utilizing MP structure is 

shown in Fig. 4.2(c) using the same original image. Both methods yield excellent edge 

localization, and create continuous, thin edge contours that reflect the structurally 

significant objects in the scene. Note that the MP created connected regions for both the 

scissors and the pens while the ADP generated gaps in these objects. 

The computational complexities of the MP and the ADP are in stark contrast. For 

one level of the MP, the number of comparisons (adds) for the closing is 2M2r, where M 

is the size of structuring element (=3 typically), and P x Pis the image size. For one level 

of the ADP, there are 8kl'2 floating point (f.p.) adds, sk/'2 f.p. multiplications and 4kl'2 f.p. 

exponential operations involved, where k is the number of diffusion iterations. Here a 

typical of k = 10 (Acton, 1994). Clearly, the construction of the ADP is more expensive 

than creation of the MP. 

Fig. 4.3 compares the MP-based edge detector with the traditional gradient-based 

method. Fig. 4.3(b) is the edge map given by gradient edge detector using Fig. 4.3(a) as 

the original image. Fig. 4.3(c) is the edge map detected by the MP-based method. It 
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shows the MP-based method yields superior edge localization, and creates clean and 

continuous edge contours while gradient method generates noise and broken edges. 

The segmentation and resulting edge detection yielded by the MP is particularly 

effective in the presence of noise. The experimental results demonstrate superior solution 

quality over standard full resolution detectors and over previous pyramidal approaches. 

Because of the low computational cost of the MP edge detector, it is suitable for video 

tracking, image and video compression, and real-time target recognition. 
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(a)Original image (b)Edges from the ADP ( c) Edges from the MP 

Fig. 4.2 Edges from the ADP and the MP 

--------------

(a)Original image (b )Edges from Gradient ( c) Edges from the MP 

Fig. 4.3 Edges from Gradient and the MP 
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Initial Detection of the Target 

In this section, the location of the region of interest (ROI) is presented. The ROI 

is the region where a candidate target is present. By utilizing the MP structure, the target 

area can be extracted easily. The adaptive thresholding technique is applied to segment the 

potential target at a coarser level which will provide the rough location of the candidate 

target. Once the result of this first screening of the ROI is obtained, the second phase of 

refinement has to be performed. The refinement is accomplished step by step at each 

intermediate level until the maximum resolution level (the original image) is reached. At 

each level the confidence of the selection is checked, and the spatial position of the target 

is refined by checking the g nearest neighbors corresponding to the position of the 

previous level. 

After the objects are segmented, the connected component labeling is used to 

label all the objects in the scene. The size of all the objects are calculated in this program. 

Assuming the background is the largest object in the scene and the interesting object is the 

second largest object in · the scene, the identification of the interesting object is 

straightforward: the object whose size is the second largest one will be the target. 
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Coarse-to-fine Template Matching and Target Detection 

In the following, the object identification algorithm based on morphological 

pyramid structure which utilized adaptive template matching scheme (Pratt, 1991) is 

described. 

Template matching is one of the most fundamental means of object detection in a 

scene. The template is a replica of an object of interest within the scene. In the template 

matching process, the template is sequentially scanned over the scene and the common 

region between the template and the scene is compared for similarity. 

A template match is rarely ever exact because of image noise. The template 

matching can be conducted by measuring the difference between the template and the 

image at all points of the image. The usual difference measure is the mean-square error 

defined by 

D(m,n) = L I,U(j,k)- T(j- m,k- n)J2 (4.7) 
j k 

Where l(j,k) denotes the image field to be searched and T(j,k) is the template. Expansion 

of ( 4. 7) yields 

(4.8) 

Where 

D1(m,n) = I,I,[I(j,k)]2 (4.9) 
j k 

D2 (m,n) = I,I,I(j,k)T(j-m,k-n) (4.10) 
j k 
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D3(m,n)= L~)T(j-m,k-n)]2 (4.11) 
j k 

The term D3(m,n) represents a summation of the template energy and is a constant value 

independent of the coordinate (m,n). The term D1(m,n) represents the image energy over 

the window area and generally varies slowly over the image field. The term Di(m,n) is the 

cross correlation between the image field and the template. This term should become 

large to yield a small difference at the coordinate of a template match. However, the cross 

correlation is not always an adequate measure of the template match because the image 

energy term D 1(m,n) is position variant. For example, the cross correlation can become 

large, even under a condition of template mismatch, if the image amplitude over the 

window area is high at a particular coordinate (m,n). This difficulty can be avoided by the 

normalized cross correlation 

LL/(j,k)T(j-m,k-n) 
C( ) D2(m,n) - 1-· _k--==-=-----

m,n = Dl(m,n) = LL[I(j,k)]2 
(4.12) 

j k 

The normalized cross correlation has a maximum value of unity that occurs if and only if 

the image function under the template exactly matches the template. 

One of the major limitations of template matching is that it is very costly in 

computation. For a window of size M x M and an image size N x N, the computational 

complexity is O(N2M2). Although fast correlation techniques such as fast Fourier 

transforms decrease the correlation computation, these techniques still require 

computations at each of (N-M+1)2 locations. In our MP based coarse-to-fine template 

matching approach, a logarithmic efficiency can be achieved compared to the traditional 
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methods. Another way to speed up the searching process is to use binary template 

matching instead of the gray scale one. 

Two MPs are created in our coarse-to-fine searching scheme, one for the template 

and the other for the search scene. Potential targets are initially located by searching at 

lowest resolution at considerably lower cost. In this case the search is formulated as the 

correlation of a low resolution template with a low resolution level of the image pyramid. 

The cross correlation at level L is formulated as: 

LL IL (j, k )Ti (j - m, k - n) 
. k 

C (m n) = - 1----=~=-------
L ' L,L,Ui (j,k)] 2 

(4.13) 

j k 

where h(j,k) denqtes the image field at level L of the MP and Ti(j,k) is the template at 

level L of the template pyramid. 

The searcliing process starts at the root level R. Assuming there is only one target 

in the scene, the position which has the maximum CR is the target location. Once the 

target is found in the coarsest level R, the search procedure moves to the next higher 

resolution pyramid level and examine details that should occur within the target. Only the 

selected locations are searched at the next higher level. Therefore, the number of search 

positions is reduced to qlog(N-M+ 1)2 where q is a constant. 

Computation time is reduced in this procedure by organizing the search from 

coarse-to-fine. Burt has shown that when used in search applications, these multi-scale 

structures can have a significant computational advantage (Burt, 1989). In fact, a speedup 

of 22<n-t> is possible even if the search for a target is performed everywhere in each level, 
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where n is the number of scales (levels) in the pyramid structure. For example, if 3 scales 

are used for searching the target, the speed up is 16. 

Integrating the MP and Kalman Predictor 

There are several reasons to integrate a Kalman filter with the MP detector. The 

main goal is to provide further computational efficiency and increase the detection rate. 

Considering the following situations: the change of size, rotation, and occlusion of the 

target. The normalized cross correlation would fall low and matching is not possible in 

those cases. To enhance our multiresolution search system, integration of the MP and 

Kalman predictor is necessary. 

The system integrating of the MP tracker and Kalman filter can be constructed 

easily. The system is initialized by a multiresolution search which locates the object of 

interest and passes its initial location to the Kalman predictor. The MP tracker continue to 

track the target. At the same time, each instance of the target located by this MP tracker 

is fed. to a Kalman filter which predicts the· 1ocation of target in the next frame. Once the 

matching between template and image falls below a certain threshold, because of target 

scale, target rotation, or change of viewpoint, a new template can be generated using the 

ROI guided by Kalman predictor. 

In our pyramidal-based target identification, potential targets are initially located 

by searching at lowest resolution. In this case the search is formulated as the correlation 

of a low resolution template, or matched filter, with a low resolution level of the image 



76 

pyramid. Once a candidate target is found, the search procedure moves to the next higher 

resolution pyramid level and examines details that should occur within the target. The 

instance of the target of frame n located by this pyramidal matched filter is fed to a 

Kalman filter which predicts the location of the target in the frame n+ I. This pyramidal 

tracker continues to track the target of frame n+ I. The instance of the target in frame 

n+ 1 located by MP tracker are compared with Kalman predictor results. If the difference 

between those two locations is larger than a threshold, the result of MP tracker needs to 

be re-examined. In this case, the Kalman predictor acts as a quality check, and makes the 

detection more accurate. 

In our application, the target or the camera may be partially occluded by dirt and 

vegetation. In such situations, the MP tracker is not able to find a matching no matter 

how you adjust the orientation and the scale of the template. The target is lost by the MP 

tracker. But, if the MP tracker and Kalman filter are allowed to interact, the position of 

the target can be located by Kalman predictor. 

Kalman Filter (Kalman,1969; Sage and Melsa, 1982) 

The Kalman filter is the optimal linear filter in the least mean square error sense for 

estimation of a future state based on the past and current states. It can be utilized to 

predict the target location based on its previous location. The Kalman filter is the 

combination of a predictor and a filter. The predictor estimates the location of the target 

at time t given t-1 observations and the filter improves this estimation by accounting for 
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measurement uncertainty and random drift. The Kalman filter is divided into two 

independent and identical systems for image tracking -- one corresponds to the horizontal 

i and another corresponds to the vertical j direction. Since these systems are identical, the 

following discussion will only present the Kalman filter for the i direction. 

Given a sufficiently rapid acquisition rate, a constant velocity model named the a-~ 

model of the Kalman filter can be used, and the changes in velocity can be modeled as a 

random drift. Then, the prediction of the next position of the target is given by 

it+llt = ~It + OT vf +lit (4.14) 

A A 

where itlt is the filtered estimate of the observed location it at time t and it+llt is the 

prediction for time t+ 1 at time t, vf +lit is the predicted velocity, and OT is the time 

difference in seconds between two observations (typically, 1/30 second). The filtered 

A 

estimate itlt provides a filtered representation of the observed location, accounting for 

measurement uncertainty, and is given by 

A A O A 

itlt = itlt-1 + Clt Cit - itlt-1 ), (4.15) 

where if is the observed location, 41t-1 is the predicted location at time t - 1, and at is a 

filter gain. Note that the observation if contains measurement noise: if = it + nt, so a 

A 

filtered version itlt is utilized in track prediction. The gain a1 determines the balance 

between the previous track history and the new observation. If at is large (near 1), then 

the observations are very reliable, and the track history is ignored. In the case of strong 

measurement noise, at is set to a small value (near 0). 
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The target velocity v! is modeled by 

i i i 
Vt+l = Vt + Ut (4.16) 

where u[ is a velocity drift process (acceleration). Then, the prediction for the velocity 

component at time t is 

"i "i A ( • 0 :- ) 
Vt+llt = Vtlt-1 + Pt 1t - 1tlt-1 (4.17) 

where ~t is also a filter gain. ~t controls the effect of the new observation on the 

predicted velocity. If ~t is near 0, the observations are unreliable and the actual velocity 

is fairly constant. 

Computing the Kalman Gains 

Assuming stationary, the Kalman filter gains ( at and ~t ) can be computed before 

the tracker is implemented. Since these gains converge quickly to constants, only a few 

computations are necessary. Both gains depend upon the variances of the noise processes 

and the state vector error covariance matrix. 

Le h V. b d fi d V. I\ l 1 . . h t t e state vector L'£ e e me as L"t = l ~ J , a co umn vector contammg t e 

actual position and velocity of the target. The state vector of the predictor is then 

" 1it1t-l l " 
expressed as Xtit-1 = l"i J, and the state vector for the filter Xtlt is constructed 

Vtit-1 

similarly as X,11 = [~;1 ]. The error in the predicted state vector is Xt - ~lt-l • and the 
v,1, . 
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A 

error for the filter state vector is ~ - ~It. Since these errors are stochastic vectors, they 

have covariance matrices. The predicted state vector covariance matrix is 

r 1 ,.. X ,.. )Tl 
Pi:1t-1 = EL ,:xi -Xt1t-1 Xt -Xt1t-1 J· (4.18) 

and the filtered state vector error covariance matrix is 

r f ,.. X ,.. )Tl 
Pi1t = EL,~ - ~It ~ - ~It J (4.19) 

In order to provide the minimum mean squared error prediction, the Clt and Pt are 

chosen to minimize Pi It . 

Assuming normality for both noise processes, with measurement noise variance er~ 

and velocity drift noise variance er~ , the Kalman solution that minimizes Pt It is 

11 
- Pt1t-1 

Clt - 11 2 
Ptlt-1 +er n 

(4.20) 

and 

21 
A - ft!t-Jfil' 
1-'t - 11 2' 

Piit-1 +ern 
(4.21) 

For the constant velocity cx-P model, Ptlt-l in (4.24) and (4.25) can be computed 

recursively as follows: 

/i 11 12 't 
11 11 12 22 ft1t-1 + Pt1t-1) 

Pi+ut = Pi1t-1 +2Pt1t-1 +Pi1t-1- 11 2 , 
Piit-1 +ern 

(4.22) 

( 
11 12 J 12 _ 12 22 12 P111-1 +P111-1 

Pi+llt -Pi1t-l + Pi1t-1-Pt1t-l 11 2 , 
Ptlt-1 +er n 

(4.23) 

21 12 
Pi+llt = Pi+llt' (4.24) 
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(4.25) 

Initializing the Kalman Filter 

To implement the Kalman filter, the initial conditions for Ptlt-1 (= Fi.10) are needed. 

For a description of the tracker initial conditions, two additional parameters: al, the 

variance in the initial position and cr;i , the variance of the initial velocity are defined. 

Assuming that the initial position is a unifonnly distributed random variable over the N 

(N=256 in our case) possible positions, the computation of a? is straightforward. The 

calculation of cr;i can be derived in the same way using a priori knowledge of the target's 

minimum and maximum velocities, assuming that the initial velocity is also uniformly 

distributed. 

The filtered state vector error covariance at time O is given by 

PllO can be computed using 

T 
P1.10 = AoP010A> + Q) 

where Ao is the state transition matrix, and 

r1 6Tl 
Ao =lo 1 J 

(4.26) 

(4.27) 

(4.28) 



Qo is the covariance of the system noise, and is given by 

A 

0 l 
2J· cru 
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(4.29) 

To initiate the tracker, ioio is set to the first acquired position. The first velocity 

estimate is indeterminate and can be set to any constant in the range of possible velocities. 

Implementing the Kalman Filter 

The Kalman filter is implemented using the five following steps: 

(1) Compute the initial P110 using (4.27). 

(2) Use ( 4.20) and ( 4.21) to obtain and store the gains ( at and ~t) for each t . 

(3) Acquire the target position within the entire image using the MP. 

A 

(4) Use (4.15) to compute the filtered position itlt, then (4.17) to obtain the predicted 

velocity vf+llt· Finally, (4.14) is utilized to acquire the predicted position ~+lit. (Repeat 

for the correspondingj terms). 

(5) Acquire target within a track gate centered at predicted position using the MP. (If the 

target is lost at frame t, the track is "coasted" and if is set to 41t-l ·) Return to step (4). 

In this section, the MP-based identification and tracking system is integrated with a 

Kalman predictor. The Kalman filter has two functions in this system. One function is to 

check the detection quality. The other function is to provide the ROI for the new template 

when the occlusion happens. 
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CHAPTERV 

COMPARATIVE RESULTS 

This chapter illustrates applications of the morphological pyramid to ATR. 

Traditional ATR systems incorporate time-consuming pre-processing, detection, 

segmentation, and classification at a fixed spatial resolution on the original image. These 

processing algorithms are not feasible for a real-time implementation. This chapter 

presents the simulation results from using the MP-based identification and tracking 

technique to quickly and accurately locate a target, such as a fighter jet. 

For each sequence tested, the proposed morphological pyramid-based 

identification and tracking method is applied, and the traditional fixed resolution method 

and Gaussian Pyramid method are also applied to the same image sequences for 

comparative purposes. In addition to testing the identification and tracking algorithms on 

an uncorrupted image sequence, the methods are also tested on noisy sequences with 

various signal-to-noise ratios to test the robustness of the proposed algorithm. Image 

noise from acquisition and transmission and clutter such as dust, smoke, and man-made 

clutter are inevitable. Therefore, it is necessary to test the algorithm under the conditions 

of noise. 
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In the following, the parameters for generation of the morphological pyramid used 

in ATR are given first. Then, the comparison results between the Gaussian pyramids 

based identification and tracking scheme and the MP-based method are presented. The 

computational time among the fixed resolution method, the GP technique, and the MP 

approach are also compared. Next, the parameters for Kalman predictor are given, 

followed by a comparison between the predicted results and ground truth data. Finally, 

some conclusions about the results are made. 

Generation of Morphological Pyramids for ATR 

Selection of Parameters for Morphological Pyramids 

In chapter III, the theoretical analysis provides that the optimal morphological 

filter used in constructing the morphological pyramid is the open-close filter. Therefore, 

the morphological open-close operators are used to generate the MP for identification in 

conjunction with a one to two sampling scheme (S=2). 

The size of the SEs is selected according to the homotopy preserving critical 

sampling theorem (HPCST): The diameter r of SE must be greater than or equal to the 

sampling rate S multiplied by .../2. to preserve the homotopy between two successive 

levels. Therefore r = S.../2. = 3. For the example target provided in this chapter, the shape 

of the structuring element is determined by (3.3-3.9) which gives the SE as follows: 
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e 

[
1 1 1] 

S1= 0 0 0 

0 0 0 

[
o o 1] 

S2= 0 1 0 

1 0 0 

In this case, structuring element S1 preserves the shape of the fuselage, and S2 preserves 

the shape of the tail (see Fig. 5.2). 

Fig. 5.1 shows the pyramid constructed for the first frame of the sequence using 

the open-close filter, the defined SE, and the sampling rate S=2. Fig. 5.l(a) is the actual 

morphological image pyramid. Fig. 5.l(b) shows the same morphological pyramid with 

the image size expanded to the size of original image to provide a detail view. 

An Example Sequence 

Fig. 5.2 shows one representative example of a sequence of 25 infrared images of a 

fighter jet in flight. The original infrared images have a resolution of 256x256 pixels with 

256 intensity levels in each pixel. 

To display robustness of the MP, the simulations are performed on the same set of 

images but corrupted by Gaussian distributed noise. Figure 5.3(a) shows the 

morphological pyramid constructed for the first frame of the noisy sequence. The signal 

to noise ratio (SNR) of the test images is approximately 7dB. For comparison, the 

Gaussian pyramid for the same original image is shown in Fig. 5.3(b) using a 3x3 square 
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Fig. 5 .1 ( a) The MP for frame # 1 of the original sequence 
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Fig. 5.l(b) The MP for frame #1 of the original sequence with the image size expanded to 

the original image size (256x256) 
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jet03 

jet04 jet08 

Fig. 5. 2 The example of an original sequence 
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jet12 jet16 

Fig. 5. 2 The example of an original sequence 
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jetl 7 

jet20 jet24 

Fig. 5. 2 The example of an original sequence 
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jet25 

Fig. 5. 2 The example of an original sequence 
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Original Image MP Level 1 ( 128x 128) 

MP Level 2 (64x64) MP Level 3 (32x32) 

Fig. 5.3(a) The MP for frame #1 of the corrupted sequence with the image size expanded 

to the original image 
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Original Corrupted Image GP level 1 ( 128x 128) 

GP Level 2 (64x64) GP Level 3 (32x32) 

Fig. 5.3(b) The GP for frame #1 of the corrupted sequence 
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window. It can be observed that the airplane is severely blurred and the internal 

information is lost in the third level of GP. On the other hand, the MP provides a more 

robust performance in terms of elimination of image noise and insignificant detail as well 

as preserving the integrity of the target. Comparing Fig. 5.l(b) (MP without noise) and 

Fig. 5.3(b) (MP with noise), it also demonstrates the robustness of the MP since the 

shapes of the target in those two figures in the third level are the same. Therefore, the MP 

can eliminate the noise and preserve the shape of the target compared with the GP. 

To give a quantitative measure of the experiments performance, the mean square 

error (MSE) of GP and MP is calculated. The MSE criterion is defined by the following 

equation: 

} M M 

MSE= LLll(m,n)-f(m,n)12 

MxM m=ln=I 

(3.17) 

where 

MxM is the size of the image. 

l(m,n) is the original image. 

r (m,n) is the filtered image before sampling. 

Table 5.1 shows the MSE at each level of the pyramid. It is shown in this table that 

nonlinear filters outperform Gaussian linear filter. 
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TABLE5.l 

MSE at different levels of the pyramids for the GP (Fig. 5.3(b)) and the MP (Fig. 5.3(a)) 

operation 

GP 

MP( Open-close) 

MSE level 1 

3601.53 

3287.67 

MSE level 2 

3958.81 

3667.57 

Coarse-to-fine Search Results 

MSE level 3 

4860.11 

4135.62 

To implement a multi-resolution search, the root level (the coarsest pyramid level) 

for a given target must be identified. In the entire sequence shown in Fig. 5.2, the object 

of interest is an airplane whose minor axis of the largest part of the target is 16 pixels in 

width, and there are no other targets in the scene. Using (3.29-3.31) defines the root level 

of the sequence as the third resolution level in the pyramid. 

Applying the coarse-to-fine search technique to this sequence and using the third 

level of the pyramid as the root level, the object identification is performed using a binary­

based coarse-to-fine template matching routine. The computation time of both the fixed 

resolution and the multi-resolution case are summarized in Table 5.2. For the fixed 

resolution case, the algorithm required approximately 846 seconds per frame on a Sun 

Spare 20 computer. The multi-resolution structure needs approximately 5 seconds per 

frame. The results show a system performance improvement of 169 times the traditional 

fixed resolution method. Fig. 5.4 compares the computational requirements of the fixed 

resolution and the multi-resolution approaches. 



Table 5.2 

Computation Time for the Fixed Resolution, the GP and the MP 

Pyramid Type 

Time(Second) 

Normalized Time 

900 

800 

700 
600 i 

111 500 ar 
E 400 
i= 300 

200 

None 

846 

170 

Computational Time 

10~1..m••L-

GP 

5 

1.0 

•GP 

•MP 
CFixed 
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MP 

5 

1.0 

Fig. 5.4 Computational time of the fixed resolution and the multi-resolution approaches 

Besides providing computational efficiency, morphological pyramid structure also 

increases system robustness. Using the binary coarse-to-fine template matching routine, 

the pixel localization errors for the original sequence and for the corrupted sequence with 

Gaussian distributed noise (SNR=9.7dB) are computed for both the fixed resolution and 

multi-resolution structures. The localization error is defined as the Euclidean distance 

between the detected position and the ground truth. These results are shown in Table 5.3 

and Table 5.4, respectively. 
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Table 5.3 

Detection Localization Error for an Original Sequence 

Pyramid Type None GP MP 

Image 1 2.0 0 2.0 

lmage2 1,0 1.0 1.0 

lmage3 1.0 1.0 1.0 

lmage4 2.2 1.0 1.0 

Image 5 0 1.0 0.0 

Image 6 0 5.0 0.0 

lmage7 0.5 8.0 0.5 

Image 8 2.2 3.2 3.1 

Image 9 1.1 0.5 0.5 

Image 10 1.1 1.1 1.1 

Image 11 1.1 1.5 1.5 

Image 12 2.5 2.5 2.5 

Image 13 1.0 3.2 3.1 

Image 14 2.5 2.5 2.5 

Image 15 2.5 72.5 1.8 

Image 16 3.3 74.6 3.3 

Image 17 4.7 77.4 4.7 

Image 18 4.7 91 5.6 

Image 19 4.7 100.2 4.7 

Image 20 3.9 103.0 4.7 

Image 21 3.9 10.1 3.9 

lmage22 3.2 6.5 4.6 

Image 23 6.1 6.1 6.1 

Image 24 4.6 54.6 4.0 

Image 25 5.3 52.3 5.3 

Average 2.6 27.2 2.7 
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Table 5.4 

Detection Localization Error for the Noisy sequence (SNR=9.7d8) 

Pyramid Type None GP MP 

Image 1 2.0 2.0 2.0 

lmage2 1.0 6.1 2.1 

Image 3 1.0 1.0 1.0 

lmage4 2.2 1.0 1.0 

Images 0 1.0 0 

Image 6 0 4.1 0 

Image 7 0.5 7.0 0.5 

Image 8 2.2 3.2 3.2 

Image 9 1.1 1.1 0.5 

Image 10 1.1 1.1 1.1 

Image 11 1.5 1.5 1.1 

Image 12 2.5 2.5 4.3 

Image 13 1.4 3.2 3.2 

Image 14 2.5 2.5 2.5 

Image 15 3.4 46.6 2.5 

Image 16 3.4 83.3 3.4 

Image 17 4.7 71.4 4.7 

Image 18 4.7 89.0 5.6 

Image 19 4.7 1.03.5 4.7 

lmage20 3.9 69.8 4.7 

Image 21 3.9 109.6 3.9 

Image 22 3.2 3.2 4.6 

Image 23 6.1 6.1 6.1 

lmage24 5.3 56.3 5.3 

lmage25 5.3 11.0 5.3 

Average 2.7 27.5 2.9 
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Table 5.3 shows that the pixel localization error of the fixed resolution approach 

and the MP algorithm are similar, but the multi-resolution coarse-to-fine search time is 

considerably less than that of the fixed resolution method as shown in Table 5.2. To 

achieve the similar accuracy, the MP has a significant advantage in computational 

efficiency over the traditional fixed resolution approach. Comparing two multi-resolution 

approaches, MP gives localization error of 2. 7 pixels and the GP localization error is 27 .2 

pixels. In some frames, the target is lost by the GP. For example, frame 14, 15, 19 and 

20. In contrast, the MP located all the targets with much higher accuracy. 

As can be seen from Table 5.4, the pixel localization error of the MP technique 

increases slightly in the presence of noise, compared with the uncorrupted sequences, but 

the algorithm is still capable of estimating the target location. The GP method is unable to 

locate the object during 8 frames of tlie sequence. The ability to find an object in a high 

clutter background allows the MP based identification system to provide a smaller pixel 

localization error with mean error of 2.9 pixels compared to 27.5 pixels of the GP system. 

Note that the MP-based approach achieves similar accuracy compared with the traditional 

fixed resolution approach, but with significantly less computational time than the fixed 

resolution method. 

Fig. 5.5 plots the ground truth target positions, the positions detected by the MP 

with the original sequence and the corrupted sequence with SNR 9.7d.B, respectively. It 

demonstrates that the positions detected by the MP, with or without noise, are fairly close 

to the ground truth. Therefore, it supports the fact that the MP approach is resilient to 

severe image corruption and clutter. 
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Fig. 5.6 compares the performance of the MP and the GP for the corrupted 

sequence with SNR 9.7dB. As can be seen from the graph, the MP results are close to the 

ground truth. In contrast, some of GP-generated points are scattered randomly because of 

target loss. 
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Selection of Parameters for Kalman Predictor 

Chapter IV discussed integrating the MP detector with a Kalman predictor to 

enhance the MP-based search system. Although implementation of the Kalman filter is 

straightforward, the selection of the parameters for the Kalman filter can influence the 

accuracy of the tracking results. 

Assuming that the velocity of the target is constant with a random drift, the a-P 

model can be used. The first step is to calculate the initial predicted state vector 

covariance matrix P110 using equation (4.27). The parameters used for calculating P110 are 

as follow: 

variance of the initial i position a~ = 30.0 

variance of the initial j position O' ~ = 1.0 

variance of the velocity drift in i direction a ~ = 0.1 
I 

variance of the velocity drift in j direction a ~. = 0.5 
J 

variance of the noise in. i direction O' ~. = 1 
J 

variance of the noise in j direction a ~jj = 1 

variance of the velocity drift noise in i direction a 2 = 0.85 
"1 

variance of the velocity drift noise in j direction a 2 = 0.05 
"1 

Then, ( 4.20) and ( 4.21) are used to obtain and store the gains ( at and Pt) for each t . 

Next, the target position obtained by the MP detector is given to the Kalman filter. The 
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filtered position ~It is then computed using (4.15), and the predicted velocity vf +tit is 

A 

obtained by using (4.17). Finally, (4.14) is utilized to acquire the predicted position it+llt. 

( this is repeated for the corresponding j terms). 

Predicted Results vs. the Ground Truth 

Table 5.5 shows the results of the Kalman predicted localization errors of the 

original sequence and the corrupted sequence. The localization error is defined as the 

Euclidean distance between the ground truth and the predicted position. The results, both 

for the original and the corrupted case, are obtained by the Kalman filter with the 

parameters presented in the last section. The observation data is provided by the MP-

based identification method for both cases. It can be seen that the localization errors for 

both conditions are fairly low, only 3 pixels. 

The comparison of the predicted target positions for the original sequence and the 

corrupted sequence (SNR=9.7db) with the ground truth is shown in Fig. 5.7. It can be 

seen that the predictor is effective under both conditions. 
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Table 5.5 

Prediction Localization Error 

original Noisy(SNR=9. ldB) 

Image 1 2.0 2.0 

Image 2 1.0 1.0 

Image 3 1.0 1.4 

lmage4 1.0 1.4 

Image 5 0 1.0 

Image 6 1.0 1.0 

Image 7 1.1 1.1 

Image 8 0 1.0 

Image 9 0.5 0.5 

Image 10 0.5 0.5 

Image 11 1.1 1.1 

Image 12 2.0 3.4 

Image 13 3.1 4.1 

Image 14 3.0 4.0 

Image 15 5.2 5.2 

Image 16 5.2 6.5 

Image 17 5.2 5.6 

Image 18 5.6 5.6 

Image 19 6.1 5.6 

Image 20 4.6 3.9 

Image 21 4.6 3.9 

Image 22 4.0 3.2 

Image 23 5.3 5.3 

Image 24 6.0 6.8 

Image 25 5.4 6.3 

Average 3.0 3.3 
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Summary 

The comparative results presented in this Chapter clearly demonstrate that the 

nonlinear morphological pyramid-based identification and tracking scheme outperforms 

the traditional fixed resolution approach and the linear Gaussian pyramid methods. The 

MP- based approach provides more accurate position information on the target even under 

severe noise and high clutter, as compared to the linear Gaussian pyramid, and is more 

computationally efficient compared to the fixed resolution approach. Comparing the 

ground truth with the Kalman-predicted results demonstrates the power of the predictive 

filter. With the right model and optimal parameters, the Kalman filter gives reliable 

predicted target positions under low signal-to-noise ratio conditions. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

In this chapter, the work presented in this research is summarized, the major 

contributions of this research are highlighted and several aspects for future work are 

suggested. 

Summary and Conclusions 

In this research, an automatic target recognition technique that utilizes the 

morphological pyramid is presented. With the pyramidal structure, potential targets are 

first identified from coarse resolution image representations, then identification and 

tracking of the target are performed in a small region of interest within higher resolution 

representations. The morphological pyramid allows the rapid identification of target shape 

and is resilient to severe image corruption and clutter. This new automatic target 

identification algorithm based on morphological pyramids allows efficient execution and 

performance enhancement. The nonlinear morphological pyramid preserves crucial 

features such as edge, target shapes and internal target intensity information. These 

features are utilized to reliably locate targets. The results obtained by the MP approach to 
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object identification clearly demonstrate the advantages of utilizing morphological 

pyramids as compared to those attained via a single resolution image or linear pyramids 

such as Gaussian pyramids. The results from this identification approach provide more 

accurate position of the objects in the scene. It should be observed that the MP based 

identification algorithm requires relatively simple computation and may be implemented on 

a parallel architecture. 

Contributions 

The following are major contributions of this research. A new automatic target 

recognition technique based on nonlinear morphological pyramids has been developed. 

Compared with linear Gaussian pyramid-based identification and tracking techniques, this 

MP based identification and tracking method has lower edge localization error without 

adding any more computational complexity. The MP-based identification and tracking 

technique developed in this research is able to locate an object two orders of magnitude 

faster than conventional fixed-resolution techniques while maintaining the similar 

localization errors. 

This MP-based identification and tracking technique utilized edge-based coarse-to­

fine search strategy to further reduce the computational cost. The traditional gradient­

based edge detectors are sensitive to noise, and produce false edges which leads to false 

identification. Therefore, a new edge detector which is based on the morphological 

pyramid structure has been developed in this research (Chpater IV). The segmentation and 

resulting edge detection yielded by this method is particularly effective in the presence of 
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impulse noise and demonstrates superior solution quality over standard fixed resolution 

detectors and previous pyramidal approaches. This edge detector has numerous 

applications in feature-based image analysis. 

The issue regarding the optimality of the structuring elements for generating the 

MP in identification and tracking has been thoroughly studied. The multiple SE has been 

proposed to generate the morphological pyramid for identification and tracking. The 

mathematical expression of the shape of the multiple SE has been first given in this 

research (Chapter III). The SE size has been defined which satisfies the morphological 

sampling condition. 

The root level for initial identification has been analyzed (Chapter III). The 

optimal selection of the root level can reduce the computational cost of identification task 

as well as increas~ the accuracy of the target localization. 

In the situation when the target or the camera is partially occluded by dirt or 

vegetation, a predictive filter is used. To enhance the identification and tracking quality 

further, the Kalman filter has been integrated with the MP-based identification and 

tracking technique. 

Future Work 

This research addresses many issues related to identification and tracking targets in 

high clutter and low signal to noise ratio conditions based on the morphological pyramid. 

There are several issues that need further investigation and refinement. 



110 

The MP-based identification and tracking system is able to find the target under 

high clutter and varying environment, but there are still open questions regarding the 

tracking and identification of multiple targets. The selection of the threshold for coarse­

to-fine template matching needs to be further analyzed based on larger image sequences 

with different target types and background. 

Although the algorithms developed in this research can be applied to process 

images from a variety of sensors such as forward looking infrared (FLIR), synthetic 

aperture radar (SAR) and video, the applications are focused on IR images. Effective use 

of multisensor information for target identification and tracking will result in more reliable 

ATR systems. For example, SAR sensors provide better penetration of smoke, dust and 

bad weather. Using SAR images for target identification when target is occluded by dust 

will provide better performance than using only IR images. 

The knowledge-based recognition technique and approaches based on physical 

principles, detection theory, statistical techniques and neural networks could be 

investigated, since no single approach is likely to be the solution to all ATR problems. 
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