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CHAPTER 1

INTRODUCTION TO CAVITY OPTOMECHANICS

Light, as is well-known, carries energy as well as momentum exerting radiation pres-

sure to particles. Perhaps the most striking example is comet dust tails pointing away

from the sun. Kepler postulated in 1619 that this phenomenon is due to radiation

pressure of the sun light. That light can push matter is quite contrary to everyday

experience. Nevertheless, radiation pressure plays an important role as it acts on the

interplanetary dust. Under certain conditions, solar radiation pressure can greatly

increase and even exceed solar gravity, thereby ejecting dust into interstellar space.

Attempts to theoretically explain radiation pressure can be dated back to immediately

after Kepler’s postulate. Newton used his corpuscular theory, however, only to find

that the repulsion between the sun and comet tails was merely due to the buoyancy

forces exerted by the ambient ether. Euler in 1744 adopted Huygens’s longitudinal

wave theory of light and treated the repulsion as due to a series of mechanical im-

pacts. Ultimately, the correct theory of radiation pressure was theoretically developed

by Maxwell in 1876 as a result of his electro-magnetic theory of light and also inde-

pendently derived by Bartoli in 1876 as a consequence of the second law of thermal

dynamics. Based on Planck’s proposal that blackbody radiates electro-magnetic field

in discrete frequencies, Einstein developed the quantum description of radiation pres-

sure in 1909, which earned him the Nobel prize in 1921, identifying light as discrete

packets with specific energy and momentum.

The experimental verification, however, only yielded few conclusive results consid-

ering that the radiation pressure force is orders of magnitudes weaker than the collision
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force with massive air molecules. The invention of lasers finally altered this situation,

and Arthur Ashkin in 1970 [1] demonstrated that focused laser beams can trap and

control dielectric particles making radiation pressure a useful laboratory tool. Laser

cooling based on radiation pressure was subsequently realized experimentally in the

1980s allowing cooling of ions to their motional quantum ground state. Braginsky [2]

investigated the role of radiation pressure and its ability of cooling macroscopic sys-

tems in the context of interferometers. His research advanced the study of radiation

pressure to the quantum level which imposes a limit on how quantum fluctuations of

radiation pressure hinder the accuracy of mechanical control. Cavity optomechanics

has been explored theoretically in several aspects since then. In 2005, the advent

of nanofabrication technology combined with advanced optical microcavities enabled

the dispersive optomechanical coupling during which energy is conserved. Since then,

the field of cavity optomechanics, at the intersection of nanophysics and quantum

optics, has gained tremendous popularity [3–5].

A cavity optomechancial system (OMS) encompasses micro- or nanofabricated

structures realizing high quality mechanical oscillators coupled to single mode optical

or microwave cavities via radiation pressure or most recently also via optical gradient

forces [6–12]. This mechanism offers disparate possibilities of both theoretical and

experimental studies due to the versatile design of optical (microwave [13–15]) cavities

and a large variety of mechanical elements including vibrating end-mirrors [16, 17],

whispering gallery modes [18–21], cold atoms [22–24], etc. [25–29]. In general, this

field is driven by promising aspects, such as ultrasensitive measurements, tests of

quantum mechanics in macroscopic systems, classical signal or quantum information

processing, and all-light optomechanical circuits. It has been shown theoretically [30,

31] that these micro- or nanomechanical systems can in fact be laser cooled to their

quantum mechanical ground state via radiation pressure optomechanical coupling,

and corresponding experiments [32–34] have also been demonstrated to cool down
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the mean mechanical occupation number of a few quanta.

In this chapter, I introduce the theoretical model of OMS starting from the theory

of optical cavities and the Hamiltonian of the optomechanical interaction. Then I

derive the Heisenberg equation of motion and continue with the standard procedure of

linearization. I further describe the enhancement of optomechanical coupling by using

driving lasers with different frequencies. The stability condition which is essential to

all OMS studies will also be discussed in detail.

1.1 Hamiltonian for an optomechanical system

The standard model of OMS consists of an optical Fabry-Pérot cavity with one of

its end-mirror mounted on a spring, as illustrated in Fig. 1.1. The left boundary of

, ca ω

, mq ω

Input

Output

Figure 1.1: Schematic of optomechanical system.

the cavity is a partial transmissive mirror with a power reflectivity R ≈ 1, serving as

the interface of the intra-cavity field and the input/output fields. A total reflective

mirror determines the right boundary of the cavity. The cavity has its resonance

frequencies such that the cavity can employ the power of constructive interference

in order to create a standing wave within the confines of the cavity. For an empty

cavity, the resonance frequencies are ωc = nπc
L

where n is an integer. The frequency

difference between two consecutive resonances is called the free spectral range νfsr =

πc
L
. Its reciprocal represents the round trip time of an intra-cavity photon 2π

νfsr
=

L
2c
. Finesse [35] is another important parameter of the cavity describing how many

round trips a photon bounces inside the cavity before leaking out through the partial
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transmissive mirror. If we ignore other internal losses, it is solely determined by

the power reflectivity and has the form F = π
√
R

1−R
. Finesse also indicates how much

narrower the transmission peak is compared to the free spectral range. Hence, the

photon lifetime can be obtained by multiplying the photon round-trip time with

round-trip numbers τc = L
2c
F . In the study of OMS, we are more interested in the

cavity photon decay rate 2κe which takes the form 2κe =
2π
τc

= πc
LF . The input laser

field is sent into the cavity through the partial transmissive mirror. Let’s assume the

input laser has a frequency ωl and power Pl. The photon number incident on the

cavity input per unit time is Pl/(~ωl) and this value is to be multiplied with the cavity

photon decay rate 2κe to get the photon number that leaks into the cavity. Hence

the input laser amplitude inside the cavity is El =
√

2κePl/(~ωl). Once the input

laser is applied, the cavity quickly builds up an intra-cavity field. The cavity photons

when being reflected from the mirrors exert a radiation pressure onto the mirrors.

Since the right side mirror is mounted to a spring, the radiation pressure induces a

mechanical motion. We describe the state of the end-mirror with the displacement

q and momentum p. On the other hand, the displacement q also modulates the

cavity resonance frequency ωc(q) by changing the cavity length L+ q. We denote the

cavity field using the annihilation operator a, hence the field energy can be written as

~ωc(q)a
†a. The cavity field operator obeys the commutation relation [a, a†] = 1. The

mechanical motion of the end-mirror can be well described using a harmonic oscillator

with oscillation frequency ωm. The system Hamiltonian can be thus written as

H = Hc +Hm +Hdr

= ~ωc(q)a
†a+

1

2
mω2

mq
2 +

p2

2m
+ i~El(a†e−iωlt − aeiωlt), (1.1)

where m refers to the mass of the oscillating end-mirror. The Hamiltonian has three

parts: the first term (Hc) is the cavity field energy; the two terms in the middle

(Hm) are for the mechanical harmonic oscillator and the last term (Hdr) describes the
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coupling between the cavity field a and the input laser field Ele−iωlt.

Since the optical resonance frequency is a function of cavity length, it can be

expanded with respect to the mirror displacement q:

ωc(q) = ωc(1−
q

L
+ · · · ), (1.2)

with L the empty cavity length and ωc the optical resonance frequency for q = 0.

For convenience, we describe the mechanical oscillator using the dimensionless and

normalized displacement operator Q = q/(
√
2qzpf) and momentum operator P =

p(
√
2qzpf/~) with qzpf =

√

~/(2mωm) being the size of the mechanical zero-point

fluctuations, i.e. width of the mechanical displacement in the ground state. They

obey the commutation relation [Q,P ] = [q, p]/~ = i. Thus we can write the standard

optomechanical Hamiltonian as

H = ~ωca
†a− ~

√
2ga†aQ+

1

2
~ωm(Q

2 + P 2) + i~El(a†e−iωlt − aeiωlt). (1.3)

Here we have identified g ≡ ωc
qzpf
L

as the optomechanical single-photon coupling

strength 1. The optomechanical coupling term is written as

Hint = −~
√
2ga†aQ. (1.4)

This can be interpreted as a radiation pressure force Frad = ~ωca
†a/L. Its full rigorous

derivation uses the Maxwell stress tensor [36]. The simplest form can be explained

using the momentum transfer due to the photon reflection by the end-mirror of the

cavity. A single cavity photon with frequency ωc carries momentum h/λ = ~ωc/L.

Consequently, the radiation pressure force is equal to the single photon momentum

transfer multiplied by the cavity photon number, i.e. Frad = (~ωc/L)a
†a. In essence,

there are higher-order coupling terms, e.g. quadratic optomechanical coupling in a

1Note that the factor
√
2 in the interaction term appears as a result of the transformation q =

√
2Q ∗ qzpf. In some papers, this factor

√
2 is not shown which indicates that they use a different

convention of the optomechanical coupling rate g.
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membrane in-the-middle setup [37–39]. However, they are much weaker than the

first-order coupling term in most typical optomechanical systems.

It is convenient to work in a rotating frame, in which the Hamiltonian becomes

H = ~(ωc − ωl)a
†a− ~

√
2ga†aQ +

1

2
~ωm(Q

2 + P 2) + i~El(a† − a). (1.5)

In many cases, we also second quantize the mechanical oscillator by writing Q =

(b + b†)/
√
2 and P = (b − b†)/(

√
2i). This is particularly convenient when we treat

the mechanical oscillation as phonons and we analyze the photon-phonon interaction.

With this description, the standard optomechanical Hamiltonian takes the form

H = ~ωca
†a− ~ga†a(b+ b†) + ~ωmb

†b+ i~El(a†e−iωlt − aeiωlt). (1.6)

This is frequently used as the starting point in OMS calculations and studies of it

yield various interesting phenomena. If an OMS is driven by a red-detuned laser, the

optical state is swapped with the mechanical state aided by the red detuned driving

laser. Optomechanical cooling is realized when the cavity mode is a vacuum field

with an effectively zero temperature and hence the mechanical mode is cooled down

by exchanging energy with it. The coupling of optical and mechanical mode leads

to a well-known phenomenon “normal-mode splitting” at high driving powers. A

hybridization of the mechanical motion with the cavity field occurs and leads to a

splitting of the mechanical and cavity output spectra. If a probe laser is applied at

the cavity frequency together with the driving laser, they combine to create coherent

phonons. This process is resonantly enhanced when the beating frequency of the

lasers is identical to the mechanical frequency. This coherent process stimulates

a plethora of phenomena and a prominent example is Electromagnetically Induced

Transparency/Absorption (EIT/EIA) in OMS (cf. Secs. 2 and 3). If the driving

laser is blue-detuned, it parametrically generates an entangled photon-phonon pair

(cf. Sec. 5). It may serve as a promising building block for hybrid quantum networks

and for quantum state engineering. This type of parametric process plays a central

6



role in generating nonclassical optical and mechanical states with negative Wigner

density. When the driving laser is on-resonance, it does not enhance the process of

photon creation or annihilation. The optical state experiences a shift proportional

to the displacement. This translates into a phase shift of the reflected/transmitted

light beam, which can be used to read out the mechanical motion in a Quantum

non-demolition (QND) manner. It indicates that the Squeezed light can be generated

with a single on-resonance driving laser in a standard OMS (cf. Sec. 6).

The increasing attention focused to optomechanics and the development of nanofab-

rication technology has been driving a plethora of experiments and pushing state of

the art in this field. Here I list a few examples of the optomechanical coupling

strengths in various setups. The single photon coupling strength is g ∼ 2π × 7.7Hz

in an OMS with a micromirror [40], and is an order of magnitude larger in an OMS

with a membrane [37] g ∼ 2π × 50Hz due to the light weight of the membrane.

A remarkable achievement is demonstrated in the whispering gallery mode of a sil-

ica microsphere [19, 41] that g can reach ∼ 2π × 0.2MHz. Recently, g as high as

∼ 2π × 11.5MHz has been realized in a sliced photonic crystal nanobeam [42].

1.2 Dynamics of an optomechanical system

The Hamiltonian (1.6) describes the interaction between the optical cavity mode a

and the mechanical mode b subject to the coherent driving laser El. Even with state

of the art optomechanical technology, the cavity photon dissipation happens at a

rate much larger than the coupling rate g. Therefore, one must take into account

the optical and mechanical dissipation when studying the system evolution. This

can be achieved either by focusing on the time evolution of the operators using the

Heisenberg equations of motion, or analyzing the time evolution of the states using

the master equation. These two approaches are equivalent to each other and can be

adopted by choice.
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Next we write down the nonlinear quantum Langevin equations by applying the

Heisenberg equation of motion Ȧ = i
~
[H,A] + ∂A

∂t
for an operator A and adding the

dissipation and noise terms, and we find


























Q̇ = ωmP,

Ṗ = −ωmQ+
√
2ga†a− γmP + ξ,

ȧ = −i[ωc − ωl −
√
2gQ]a− κa + El +

√
2κeain +

√
2κiaint,

(1.7)

Here, in conjunction with the external noise source
√
2κeain due to the input-output

coupling, we also include an internal noise term
√
2κiaint due to factors like non-perfect

mirrors or scattered light from the residue air molecules in the cavity. We write the

cavity field decay rate as κ = κe+κi, where κe and κi denote the external and internal

decay rates. The intra-cavity field leaks through the partial reflective mirror of the

Fabry-Pérot cavity at rate κe and the output field can be collected by a detector. On

the contrary, the internal decay dissipates the cavity field into inaccessible channels

at rate κi. To quantify the efficiency, a parameter η = κe/(κe + κi) is defined to

describe the output coupling ratio. One has to bear in mind that κ is the cavity field

(amplitude) decay rate, while the cavity energy (photon) decay rate would be 2κ.2

We use γm to represent the mechanical phonon decay rate. The operators ain and

aint represents the input and internal quantum vacuum noises, respectively, and the

operator ξ refers to the mechanical noise due to Brownian motion. They obey the

following two-time correlation relations

〈ain(t)a†in(t′)〉 = δ(t− t′), 〈a†in(t)ain(t′)〉 = 0,

〈aint(t)a†int(t′)〉 = δ(t− t′), 〈a†int(t)aint(t′)〉 = 0,

〈ξ(t)ξ(t′)〉 = 1

2π

γm
ωm

∫

ωe−iω(t−t′)[1 + coth(
~ω

2KBT
)]dω,

(1.8)

where KB is the Boltzmann constant. However, one has to bear in mind that

the Brownian noise is a Gaussian stochastic force which describes a non-Markovian
2In many papers including Refs. [5, 43], the cavity energy (photon) decay rate is denoted as κ

and hence the cavity field (amplitude) decay rate shall be κ/2.
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stochastic process. It reduces to a Markovian description in two different limits [44]:

(i) a finite bath temperature KBT/~ωm ≫ 1, which is satisfied for typical OMS ex-

perimental parameters even at cryogenic temperatures; (ii) a high mechanical quality

factor ωm/γm → ∞, which is realized in most OMS to demonstrate the quantum

effects. In these limits, the time correlation function for ξ(t) reduces to a Dirac delta

function form

〈ξ(t)ξ(t′)〉 = γm(2n̄th + 1)δ(t− t′), (1.9)

where n̄th = [exp(~ωm/KBT )−1)]−1 is the mean thermal phonon number at temper-

ature T .

We solve the set of nonlinear equations (1.7) by expanding the operators P , Q and

a to first order, so that P ≡ P0 + P1, Q ≡ Q0 + Q1 and a ≡ a0 + a1. We essentially

separate the steady state of the system (denoted by c-numbers with subscript 0)

from the fluctuations (denoted by operators with subscript 1). For the classical mean

values we ignore the nonzero commutators using the mean field approximation and

also ignore the quantum fluctuations. Then we obtain

P0 = 0, Q0 =

√
2g

ωm
|a0|2, and a0 =

El
κ + i∆

, (1.10)

where

∆ = ωc − ωl −
√
2gQ0 (1.11)

denotes the detuning of the driving laser frequency to the effective cavity resonance

frequency under radiation pressure. We can interpret |a0|2 as the mean cavity photon

number n̄, i.e. |a0|2 = n̄. The steady state solution of the mechanical oscillator can

be interpreted as the balance of the radiation pressure force Frad = ~ωc|a0|2/L =

~g|a0|2/qzpf and the mechanical restoring force Fres = −mω2
mq = −mω2

mqzpf
√
2Q0.

If we solve the equation Frad + Fres = 0, we can immediately get Q0 =
√
2~g|a0|2

mω2
mq2zpf

=
√
2g|a0|2/ωm. In absence of the driving laser El → 0, the steady state solution a0 → 0

and Q0 → 0. When we apply a weak driving field, the mean cavity field amplitude a0
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increases, and consequently the increasing radiation pressure enhances the mechan-

ical displacement Q0. A larger mirror displacement Q0 reduces the effective cavity

resonance frequency ωc −
√
2gQ0 which further results in a change of the effective

driving laser detuning ∆. If the driving laser is red detuned (ωc < ωl), ∆ deceases

which causes an increase of the intracavity field amplitude |a0|2 and hence an increase

of the radiation pressure force Frad . If Frad increases faster than Fres at a large driving

amplitude, we may observe an optomechanical bistability phenomenon [45–47].

After the expansion, the equations of motion for the first order fluctuations take

the form


























Q̇1 = ωmP1,

Ṗ1 = −ωmQ1 +
√
2g(a∗0a1 + a0a

†)− γmP1 + ξ,

ȧ1 = −i∆a1 − κa1 + i
√
2ga0Q1 +

√
2κeain +

√
2κiaint,

(1.12)

In terms of photon and phonon annihilation operators a and b, the nonlinear quantum

Langevin equations take the form










ȧ1 = −i∆a1 − κa1 + ia0g(b1 + b†1) +
√
2κeain +

√
2κiaint,

ḃ1 = −iωmb1 − (γm/2)b1 + ig(a0a
†
1 + a∗0a1) + fin,

(1.13)

where the operator fin is related to ξ and it has the two-time correlation

〈fin(t)f †
in(t

′)〉 = γm(n̄th + 1)δ(t− t′),

〈f †
in(t)fin(t

′)〉 = γmn̄thδ(t− t′).

(1.14)

Since a0 is always multiplied to g, we can define an driving laser enhanced optome-

chanical coupling rate G = a0g for the sake of a convenient notation. Cooperativity

C = 2|G|2
κγm

is another commonly used parameter to describe the optomechanical cou-

pling strength compared with the dissipation rates.

1.3 Input-output relation

We can see from Eqs. (1.7) that the input fields include the driving field El and

quantum fluctuation ain. The output fields should also conclude two components:
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the classical output field Eout and quantum fluctuation aout. These quantities are

related by the input-output relation [48]

ain +
El√
2κe

+ aout +
Eout√
2κe

=
√
2κea, (1.15)

where a denotes the intra-cavity field which has multiple components in different

frequencies. Very often we also apply a coherent but weak probe beam to the OMS,

then one more term Ep/
√
2κe should be appended on the left hand side of Eq. (1.15).

As an example, we examine the cavity output field in response to a single input

laser El. We assume the laser frequency is on resonance with the cavity frequency,

i.e. ∆ = 0. The quantum fluctuations can be ignored in the classical steady-state

limit. Hence we obtain the output field by combining Eqs. (1.15) and (1.10)

Eout = 2κe
El
κ

− El = (2η − 1)El, (1.16)

where η = κe/κ denotes the output coupling ratio. When η = 1/2, the so-called

critical coupling regime is achieved so that the resulting output field goes to zero on

resonance. This also refers to be the impedance matching condition in which the

internal resonator loss (κi) and input-output coupling rate (κe) are equal. This limit

is advantageous especially in the classical regime in the sense that the input laser

couples into the cavity at the maximum rate and any output field directly reflects

the field generated from optomechanical interaction. On contrary, any internal loss

is supposed to be avoided in the quantum regime because the internal photon decay

results in inaccessible channels and quantum correlation is partially lost. This places

a serious limit on the optomechanical applications. We will show in later sections

that the internal loss degrades the quantum squeezing magnitude.

1.4 Stability criteria

Before we continue to calculate the first order fluctuations a1 and b1, we must ensure

the stability of the steady state solution (1.10). A small perturbation around a stable
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steady state always damps while it grows in an unstable steady state. We note that

Eqs. (1.13) can be written in the matrix form

Φ̇(t) = MΦ(t) + D(t), (1.17)

where Φ = (a1, a
†
1, b1, b

†
1)

T is the vector of the state operators and D = (
√
2κain,

√
2κa†in, fin, f

†
in)

T

is the vector of optical and mechanical noise inputs. The coefficient matrix M governs

the evolution of the state vector and it reads

M = −



















κ+ i∆ 0 −iG −iG

0 κ− i∆ iG iG

−iG∗ −iG γm/2 + iωm 0

iG∗ iG 0 γm/2− iωm



















. (1.18)

The necessary and sufficient condition of stability requires that each eigenvalue of

matrix M has only negative real part. This can be examined by applying the Routh-

Hurwitz criterion to the polynomial of its eigenvalues

Det(M − λ1) = λ4 + h1λ
3 + h2λ

2 + h3λ+ h4. (1.19)

After expanding the determinant Det(M− λ1) for (1.17), we find that

h1 = 2κ+ γm,

h2 = κ2 +∆2 + (γm/2)
2 + ω2

m + 2κγm,

h3 = 2κ[(γm/2)
2 + ω2

m] + γm(κ
2 +∆2),

h4 = (κ2 +∆2)[(γm/2)
2 + ω2

m]− 2∆ωm|G|2.

(1.20)

Routh-Hurwitz criterion reads that all of the eigenvalues have a negative real part if

and only if

• all the coefficients hi > 0;

• and the determinants of all of the Hurwitz matrices |Hi| are positive, where the
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the Hurwitz matrices are defined as

H1 = |h1|, H2 =







h1 1

h3 h2






, H3 =













h1 1 0

h3 h2 h1

0 h4 h3













. (1.21)

These criteria applied to our system results in the stability condition given as

2∆ωm|G|2 < (κ2 +∆2)[(
γm
2
)2 + ω2

m], (1.22)

2∆ωm|G|2 > −2κγm

(

2κ[(γm
2
)2 + ω2

m] + γm(κ
2 +∆2)

2κ+ γm
+

[(γm
2
)2 + ω2

m − κ2 −∆2]2

(2κ+ γm)2

)

.

(1.23)

We can see that for given driving laser detuning, only one of the criteria sets a limit

to the driving amplitude, i.e. if the driving laser is red detuned (∆ < 0) then (1.22)

is the only condition; if the driving laser is blue detuned (∆ > 0) then (1.23) is

the only condition. In a typical OMS, the mechanical damping is usually negligibly

small compared to other rates, γm → 0, and hence condition (1.23) indicates that the

OMS can easily settle into instability [49–51] under a blue detuned driving laser at

relatively low power levels.

1.5 Outline of this dissertation

This dissertation aims at exploring the coherent interference effects in single- and

double-cavity OMS as well as its possibility of generating significant amount of

squeezed light. In the current chapter, I have explained the the basis of the the-

oretical model of a single-cavity OMS by deriving the Hamiltonian and Heisenberg

equations of motion. The standard linearization procedure yields the equations for

optical and mechanical fluctuations. Furthermore, I have shown the derivation of the

stability condition based on the Routh-Hurwitz criterion.

Chapter 2 incorporates material from my publication [43] and submission [52]. I

begin with introducing the EIT effect as well as its transient behavior in OMS by
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using the coherent photon-phonon interaction processes. Based on this mechanism, I

propose the use of a cavity OMS to achieve the storage and retrieval of optical pulses.

Then, I adopt Ramsey’s method of separated oscillatory fields to study coherences of

the mechanical system in an optomechanical resonator. I develop a theory to describe

the transient optomechanical behavior underlying the Ramsey fringes. By collaborat-

ing with experimental groups, we also perform the experimental demonstration using

a silica microresonator.

Chapter 3 incorporates material from my publications [53, 54] and submission [52].

I predict in the double-cavity OMS the existence of the electromagnetically induced

absorption (EIA), in which an absorption peak arises within the EIT window. I

provide analytical results for the width and the height of the EIA peak. I then explain

how this EIA effect can be generalized to different systems that can be described

using three-coupled-oscillator model and how it was successfully demonstrated in

metamaterials by collaborating with experimental groups. In the last section, I show

how double-cavity OMS enables us to achieve the transduction process to several

frequencies including, in principle, the possibility of transduction from optical to

microwave frequencies.

Chapter 4 incorporates material from my publication [55]. I demonstrate the

existence of Fano resonances in cavity optomechanics by identifying the interfering

contributions to the fields generated at anti-Stokes and Stokes frequencies. I show the

flexibility of the Fano resonance in OMS in contrast to atomic systems, as the width

of the resonance is controlled by the coupling field. I further show how the double

cavities coupled by a single optomechanical mirror can lead to the splitting of the

Fano resonance and how the second cavity can be used to tune the Fano resonances.

Such resonances can be studied by both pump probe experiments as well as via the

spectrum of the quantum fluctuations of the output fields.

Chapter 5 incorporates material from my publication [56]. I propose a scheme for
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generating squeezed light by using a double-cavity optomechanical system driven by

a blue detuned laser in one cavity and by a red detuned laser in the other. I show

that squeezing of the output fields, of the order of 10dB, can be achieved even for

an effective mechanical mode occupation number of about 4 which for the chosen

parameters corresponds to 10mK. I further describe such photon pair generation

through an effective interaction which generally is used for generating squeezing using

parametric downconversion and four-wave mixing.

Chapter 6 incorporates material from my publication [57]. I study a novel op-

tomechanical interaction, namely, dissipative optomechanical coupling in which the

mechanical displacement modulates the cavity decay rate, instead of resonance fre-

quency. This is based on a recent demonstration of cooling of a macroscopic silicon

nitride membrane placed in an interferometer. I theoretically show that such a sys-

tem in a cavity can yield good squeezing, which is comparable to that produced by

dispersive coupling. I also report the squeezing resulting from the combined effects

of dispersive and dissipative couplings; thus the device can be operated in one regime

or the other.

Chapter 7, I present the conclusions and the outlook for the field of optomechanics.
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CHAPTER 2

OPTICAL MEMORY AND OPTOMECHANICAL RAMSEY

INTERFEROMETRY

In the previous chapter, I presented the theoretical model of a single-cavity optome-

chanical system. The equations of motion for the OMS concentrate on the quantum

dynamics of the coupled optical and mechanical state subject to quantum vacuum

input noise and mechanical Brownian noise. This description is useful and important

when analyzing quantum effects e.g. quantum ground state cooling, entangled pho-

ton pair preparation, quantum nondemolition detection, and etc in OMS. In 2010,

Agarwal and Huang [58] for the first time studied the coherence effect in a cavity

optomechanical system by introducing a weak probe laser in conjunction with an

input field with a strong driving laser. Within such an optomechanical configura-

tion, they were able to show a phenomenon analogous to the Electromagnetically

Induced Transparency (EIT) in an atomic system based on the coherent photon-

phonon coupling aided by the driving laser. Their proposal was almost immediately

verified in various experimental setups [59–61] with excellent agreements. This study

opened a whole new avenue of studying optomechanical effects based on coherence ef-

fects. Since then, several other theoretical proposals [53, 55, 62–65] and experimental

demonstrations [66–68] have been reported.

In this chapter, I begin with a brief introduction of EIT and explain the tran-

sient behavior in a standard OMS. Then I make use of this mechanism and propose

the applications to optical memories and transduction of electromagnetic fields. I

will show that coherent interaction between the optical and mechanical modes al-
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lows storage of light as mechanical excitations by applying a pair of “write” driving

pulse and a probe pulse. This excitation can be retrieved as optical pulses after some

storage time by applying a “read” driving pulse. In the latter part of this chapter,

I will present my study of the Optomechanical Ramsey Interferometer which stud-

ies coherence of the mechanical system using two separated oscillatory fields. The

high-resolution Ramsey fringes can be observed in the emission optical field, when

two pulses separated in time are applied. For this study, I develop a theory and

solve for the analytical expressions of the optomechanical states. By collaborating

with experimental groups, we also perform the experimental demonstration of the

optomechanical Ramsey interferometer using a silica microresonator.

2.1 Transient Electromagnetically Induced Transparency in OMS

The Electromagnetically Induced Transparency (EIT), in which the driving laser in-

duces a narrow spectral transparency window for a probe laser, is a prominent example

of utilizing quantum interference in different excitation pathways aided by coherent

interaction of laser radiation. This peculiar mechanism applies to both classical co-

herent light and quantum state of light, which ensures a large number of applications

ranging from optical storage to slowing down or advancing the speed of light. Its

relevance to nonlinear optics and quantum information processing (QIP) has thrust

EIT in OMS to the forefront of theoretical and experimental study during the past

five years.

We first briefly review the EIT in optomechanics; a full derivation can be found

in the theoretical study by Huang and Agarwal [58]. The optomechanical interaction

among different frequency components is illustrated in Fig. 2.1a. A strong driving

laser oscillating at frequency ωl couples the cavity optical mode ωc and the mechanical

phonon mode ωm. A phonon is removed upon the addition of a driving photon to

the intra-cavity field which decays out of the cavity very fast. A second very weak
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Figure 2.1: Electromagnetically Induced Transparency in OMS: (a) the energy level

diagram, and (b) the intra-cavity field intensity with (red) and without (blue) the

driving laser.

laser oscillating at ωp at the vicinity of cavity resonance frequency ωc probes the

cavity optomechanical system. Due to the strong optomechanical coupling induced

by the driving laser, it effectively interacts with a hybrid optomechanical resonance.

This hybridization opens up a tunable transmission window for the probe laser at the

center of the optical resonance. Therefore, this effect is also named “optomechanically

induced transparency”.

Next, we provide a short derivation of EIT using the standard theoretical model

of OMS. In an OMS, which couples an optical mode a and a mechanical mode b, the

time evolution of the system operators is governed by the coupled equations

ȧ = −i(ωp − ωl)a+ iG∗b− κa + Ep,

ḃ = −iωmb+ iGa− (γm/2)b. (2.1)

Note that we are interested in the optomechanical response to a coherent probe laser

beam and we ignore quantum fluctuations, hence the operators a and b in this chapter

actually refer to their mean values, i.e. a ≡ 〈a〉 and b ≡ 〈b〉. We solve Eqs. (2.1)

by taking the Fourier transform A(t) = 1
2π

∫

A(ω)e−iωtdω. We find that under the

red-detuned driving condition ωl + ωm = ωc the intra-cavity field Ec normalized to
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Figure 2.2: Left: the driving photon at frequency (ωl) combining with a cavity photon

(ωc = ωp) generates a phonon (ωm); Right: the driving photon combining with a

phonon generates a cavity photon.

the probe amplitude Ep is

Ec = 2κ〈a〉 =
2iκEp

(ωp − ωc + iκ)−
|G|2

ωp − ωc + iγm/2

. (2.2)

This is the standard form of EIT transmission under a driving field. When the

probe field is on resonance, the intra-cavity field is strongly dependent on the driving

laser intensity. With large G, the intra-cavity field amplitude is suppressed. As

shown in Fig. 2.1(b), we observe that the narrow contribution with an EIT width

ΓEIT = |G|2
κ

+ γm
2

is inverted relative to the broad Lorentzian profile.

Physically, the transparency window in EIT arises from the interference of two

paths constructing the optical field in the cavity. Under the strong pump at ωl, the

probe field at ωp beats with the driving field and excites the mechanical oscillation at

frequency ωm. This process is resonantly enhanced if ωp − ωl = ωm. In the quantum

language, a probe photon and a driving photon combine to generate a phonon, as

illustrated in Fig. 2.2. Once the phonon mode is built up, it combines with the driving

photon to create a probe photon, as illustrated in Fig. 2.2. Therefore, the intra-cavity

field, on one hand, comes from the input probe field; and on the other hand, comes

from the photon-phonon-photon conversion process. These two processes interfere

destructively to suppress the intra-cavity field, which leads to the EIT window due

to optomechanical interaction.
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Figure 2.3: (a) Sketch of the OMS. (b)The frequency relations of different modes in

OMS: the left mode is the driving laser in ωl, the middle short one is the probe laser in

ωp, the right solid one is the cavity mode in ωc and the dashed one is the anti-Stokes

generation of the driving laser in ωl + ωm. x is the detuning between probe and the

cavity modes, and y is between the probe and the anti-Stokes modes.

In order to fully understand EIT in OMS, let us study the transient EIT behavior.

We start from the Heisenberg equations of motion of a time-dependent driving and

probe fields in the frame rotating at the driving laser frequency

ȧ = −i(ωc − ωl)a+ iga(b+ b†)− κa+ El(t) + Ep(t)e−i(ωp−ωl)t

ḃ = −iωmb+ iga†a− (γm/2)b, (2.3)

assuming the change of laser beam amplitude is slow compared with any other decay

or interaction. We consider the initial state of the cavity to be empty and a(0) =

b(0) = 0. At time t = 0, we start to apply a constant strong driving laser and a

weak probe laser into the cavity. As the laser beams are applied, the mean value of

the intra-cavity field increases and approaches a constant which is determined by the

decaying rate and the input. This process happens at a time scale of 1/κ. At the

same time when the cavity is fed with an optical field, it interacts with the mechanical

mode. More specifically, the driving laser produces two side bands ωl±ωm due to the

scattering effect of the oscillating mirror. If the cavity resonance frequency overlaps

with either one of the side bands, the frequency mixing process is enhanced. We

expand the states to the first order using a = a0+a1e
−i(ωp−ωl)t and b = b0+b1e

−i(ωp−ωl)t,

where the zeroth order a0 and b0 denote their steady-state mean values. Since the
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mean values approach the steady state rapidly, we ignore the process for the lasers

to feed up the cavity and calculate the mean values by setting their time derivatives

to zero and adding the damping terms,

0 = ȧ0 = −i(ωc − ωl)a0 + iga0(b0 + b∗0)− κa0 + El(t)

0 = ḃ0 = −iωmb0 + ig|a0|2. (2.4)

Thus we can get the solution

a0(t) =
El(t)

κ+ i∆
and b0(t) =

g

ωm
|a0(t)|2, (2.5)

where ∆ = ωc−ωl−2|a0|2g2/ωm denoting the effective detuning of the cavity frequency

and the driving field. The first orders obey the differential equations

ȧ1 = −i(∆− ωp + ωL)a1 − iG(t)(b1 + b†1e
2i(ωp−ωL)t)− κa1 + Ep

ḃ1 = −i(ωm − ωp + ωL)b1 − i(G∗(t)a1 +G(t)a†1e
2i(ωp−ωL)t)− (γm/2)b1. (2.6)

In the resolved sideband regime, ∆ ≫ κ, the exponential e2i(ωp−ωL)t becomes fast

oscillating and we can ignore the counter rotating terms b†1 and a†1. We define two

small frequency parameters: x = ωp − ωl − ∆ as the detuning between the probe

field and the cavity mode and y = ωp − ωl − ωm as the detuning between the probe

field and the anti-Stokes side band of the driving laser scattered by the mechanical

mode. In order to achieve a large coupling rate, they are both chosen close to 0. We

illustrate the frequency relations in Fig. 2.3(b). Then Eq. (2.6) can be written as

ȧ1 = ixa1 + iG(t)b1 − κa1 + Ep(t)

ḃ1 = iyb1 + iG∗(t)a1 − (γm/2)b1, (2.7)

where G(t) = α(t)g is the time-dependent driving-enhanced coupling rate. The out-

put optical field at frequency ωp and any time t can be derived from the input-output

relation Eout(t) + Ep(t) = 2κa(t). Then the output field would be

Eout(t) = 2κ[a0(t)e
i(ωp−ωl)t + a1(t) + a†1(t)e

2i(ωp−ωl)t]− Ep(t)− El(t)ei(ωp−ωl)t. (2.8)
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The expression contains the optical fields in the driving frequency and its two side-

bands. In our study, we are especially interested in the component in the probe laser

frequency given by Epout(t) = 2κa1(t)− Ep(t).

The steady-state solutions to Eqs.(2.7) are well studied in the context of EIT

in OMS. We are now interested in its transient behavior and study its dynamical

evolution. During the process when the lasers are applied, the system is governed by

differential equations (2.7), which can be written in the matrix form

Ψ̇(t) = MΨ(t) + D(t), (2.9)

where Ψ(t) = (a1 b1)
T , D(t) = (Ep(t) 0)T , and

M = −







κ− ix −iG(t)

−iG∗(t) γm/2− iy






. (2.10)

The matrix differential Eq.(2.9) which describes the evolution of the system between

times t1 and t2 can be solved as

Ψ(t2) = eM(t2−t1)Ψ(t1) +

∫ t2

t1

eM(t2−t′)D(t′)dt′. (2.11)

We assume initially the amplitudes of both the optical and mechanical modes to be

zero, i.e. Ψ(0) = 0. The driving and probe lasers are applied at constant amplitudes

respectively starting at t = 0. Then the integral can be carried out by using the

knowledge that D(t) is a constant for 0 < t < τ . Let Ψs ≡ Ψ(τ) be the fields after

the application of the input beams for a time τ ; then it can be calculated as

Ψs(τ) = M
−1(eMτ − 1)D, (2.12)

where D = (Ep 0)T . To explicitly calculate the optical and mechanical fields given

in Eq.(2.12), we expand eMτ = S diag(eλ+τ eλ−τ )S−1 where S is determined by

M = SΛS−1, Λ = diag(λ+ λ−) and λ± are the eigenvalues of M. The full expression
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of Ψs can be calculated after some lengthy algebra

Ψs(τ) =







(M−1)11[(e
Mτ )11 − 1] + (M−1)12(e

Mτ )21

(M−1)21(e
Mτ )11 + (M−1)22[(e

Mτ )21 − 1]






Ep

=







(γm/2−iy)(λ−−λ+)+(|G|2−(κ+λ+−ix)(γm/2−iy))eλ−τ

[|G|2+(κ−ix)(γm/2−iy)](λ−−λ+)

iG∗[λ−+λ+(eλ−τ−1)]
[|G|2+(κ−ix)(γm/2−iy)](λ−−λ+)






Ep, (2.13)

where (..)ij denotes the element in the ith row and jth column of a matrix.

Next we simplify the expression by making approximations within the typical

OMS parameters. The eigenvalues are

λ+ ≈ ix− κ+ |G|2/κ,

λ− ≈ iy − γm/2− |G|2/κ = iy − ΓEIT. (2.14)

Then

M
−1 =

1

|G|2 + (κ− ix)(γm/2− iy)







−γm/2 + iy −iG

−iG∗ −κ + ix







≈ 1

κ(ΓEIT − iy)







−γm/2 + iy −iG

−iG∗ −κ + ix






, (2.15)

and

eMτ =
eλ+τ − eλ−τ

λ+ − λ−
M +

−λ+e
λ+τ + λ−e

λ−τ

λ+ − λ−
1

≈ eλ−τ

λ+ − λ−







κ− ix+ λ+ −iG

−iG∗ γm/2− iy + λ+






. (2.16)

In the last step, we dropped the term proportional to eλ+τ which is a very good

approximation. Also note that the real part of λ− denotes the linewidth of the EIT

window ΓEIT in the steady state. Previous study shows that the coupling between

the optical mode and mechanical mode is the strongest when ∆ = ωm (i.e. x = y);
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Figure 2.4: The mechanical field (a) and intra-cavity optical field (b) after different

interaction times τ = 1µs (blue curve), 4µs (orange curve) and 10µs (green curve).

The parameters for the OMS are κ/2π = 15MHz, |G|/2π = 0.58MHz, γm/2π =

0.02MHz and the corresponding EIT width for the steady state is ΓEIT = 1.6γm. We

also set x = y.

hence, we study the scenario x, y ∼ 0. In the limit of κ ≫ ΓEIT and κ ≫ |G|, we can

make the approximation λ+ − λ− ≈ −κ, so that (2.16) further simplifies to

eMτ ≈ −e−(ΓEIT+iy)τ

κ







|G|2/κ −iG

−iG∗ −κ + ΓEIT






. (2.17)

Thus we obtain Ψs(τ) after applying the driving and probe lasers

Ψs(τ) ≈
1

κ(ΓEIT − iy)







γm/2− iy + |G|2
κ
eλ−τ

−iG∗(eλ−τ − 1)






Ep. (2.18)

The intra-cavity optical field Ec(τ) around y ∼ 0 is

Ec(τ) = 2κa1(τ) ≈ 2

[

1 +
|G|2
κ

e−(ΓEIT−iy)τ − 1

ΓEIT − iy

]

Ep. (2.19)

The mechanical mode can be calculated as

κb1(τ) ≈ iG∗ e
−(ΓEIT−iy)τ − 1

ΓEIT − iy
Ep. (2.20)

We illustrate in Fig. 2.4 the mechanical mode and optical mode intensities after

interaction time τ . We can see Eq.(2.19) contains two terms implying that the intra-

cavity optical field has two contributions. The first term Ep denotes the direct optical
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Figure 2.5: (a) The in-cavity optical mode (solid curve): |κb2(τ)/Ep1|2 and mechanical

mode (dashed curve): |2κa2(τ)/Ep1|2 after different interaction time τ . (b) Widths

of the EIT window in the output optical field after different interaction time τ . The

dashed curve shows the asymptotic width ΓEIT for steady states. The parameters are

the same as in Fig. 2.4.

input field. The second term corresponds to the anti-Stokes scattering of the driving

field at frequency ωl by combining with a phonon with frequency ωm. Its numerator

also justifies that EIT is only prominent when eλ−τ → 0, which sets the characteristic

time of EIT in OMS, i.e. |λ−τ | > 1. Physically, when the driving laser and the probe

laser are sent to the cavity, they combine and produce mechanical phonons. Then

the phonons combine with the driving laser and generate the anti-Stokes sideband

which interferes with the input probe field leading to EIT. This process is illustrated

in Fig. 2.5(a). Under constant driving and probe fields input, the degree of EIT is

constrained by the phonon intensity, which increases with time before it saturates, as

shown in Fig. 2.4(a). Consequently, the optical mode intensity in the cavity decreases

with time and approaches zero. In this way, we can explain the characteristic time

for the establishment of EIT. Wang et al. have also experimentally confirmed the

same characteristic time.

In Fig. 2.5(b), we plot the widths of the EIT window in the intra-cavity optical

field with different interaction time τ . For very small interaction time τ , the output

field can be approximated as 2κa1(τ) ∼ 2 [1− (|G|2/κ)τsinc(yτ)] Ep, and |2κa1(τ)|2
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has a width 2π/τ . As τ increases, the EIT window gets narrower and approaches

ΓEIT. Especially when τ is longer than the characteristic time 1/ΓEIT ≈ 4.9µs, the

width of the EIT window becomes narrower than 10γm.

2.2 Optical memory

The design of a good optical memory [69–71] depends very much on the underlying

physical process as well as the system used to construct the memory. One needs

the systems or storage elements with very long coherence times. Electromagnetically

induced transparency (EIT) [58–61] has become an important physical mechanism to

construct optical memories [72–76]. For example, the optical pulses can be stored in

atomic coherences among long lived states. Many experiments have demonstrated the

working of optical memories using typically atomic vapors. Optomechanical systems

also have very long coherence times and hence one has the possibility of using such

systems as optical memories as information is stored in coherent phonons. We have

seen that one has an exact analog of EIT in OMS. Further phonons are generated

coherently — this being the analog of atomic coherence in vapors. Thus, EIT in OMS

along with the long coherence time for the generated phonons can be used for making

optical memories.

In the last section, we studied the process of converting photons into phonons

when a driving laser is applied along with a probe pulse. When the driving laser is

turned off, the cavity fields decay to zero rapidly at the rate of κ and hence there is

no optomechanical interaction while the mechanical mode evolves freely and decaying

with a low rate γm. With typical parameters of OMS, the enhanced optomechanical

interaction rate G is slower than the cavity decay rate κ but faster than the mechan-

ical decay rate γm. The long decay time of the mechanical oscillator empowers itself

to store information [52, 65]. The coherent interconversion between optical and me-

chanical excitations facilitates the storing and retrieving process. In this section, we
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Figure 2.6: Numerical simulation of “writing” and “reading” Gaussian probe pulses

using two red-detuned coupling laser pulses. (a) We plot two probe pulses with

different width 0.15µs (red dot-dashed curve) and 0.3µs (red dashed curve). The

Gaussian coupling pulses have width 0.3µs and their peak power is 1 mW. The powers

of the output pulses and the mechanical oscillation are normalized to the peak power

of the probe pulse, which is much less than the coupling pulses. In the middle and

bottom panels, the blue solid curves illustrate the result corresponding to probe pulse

with 0.15µs, and the blue dotted curves corresponding to 0.3µs. (b) Curves are defined

similar to (a), except the coupling pulses are super-Gaussian and τl = τp = 0.3µs.

numerically examine the optical memory in OMS controlled by a driving laser using

a Fourth-order Runge-Kutta method on Eqs. (2.4)-(2.6).

A driving laser is used to control the storage and retrieval process. It is red-

detuned with respect to the cavity frequency, i.e. ∆ = ωm and the probe field has a

frequency on resonance with the cavity ωp = ωc. Before we send the laser pulses, the

mean photon and phonon numbers are both zero. In the “writing” stage, we send in

the coupling laser and the probe pulse simultaneously. For the probe pulse Ep(t) and
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driving pulse El(t), we take Gaussian shapes

Ep(t) = Epe
− (t−twr)

2

2τ2p , (2.21)

El(t) = Ele
− (t−twr)

2

2τ2
l + Ele

− (t−trd)
2

2τ2
l , (2.22)

where twr and trd are the central times of the “writing” and “reading” coupling lasers.

We assume that the width τl of the coupling laser is no less than the width τp of the

probe pulse. Furthermore, we assume that τ−1
p < ΓEIT. Clearly, if the input probe

field is a pulse, then its spectral width has to be less than ΓEIT in order to have dis-

tortionless propagation of the probe pulse. Two typical sets of numerical simulations

are shown in Fig. 2.6(a) for the optical pulse storage and retrieval processes. We

use the following parameters [59] m = 20ng, g/2π = 1.55kHz, γm/2π = 41kHz,

ωm/2π = 51.8MHz, κ/2π = 1.5MHz, λ = 775nm. The stability of this set of

parameters is checked using the Routh-Hurwitz criterion. In the example of the

simulation, the width of the coupling laser is τl = 0.3µs; the widths of the probe

pulses are τp = 0.3µs (dashed curve and solid curve as corresponding result) and

τp = 0.15µs (dot-dashed curve and dashed curve as corresponding result). Assuming

they are both Fourier-limited Gaussian pulses which have time-bandwidth product

∼ 0.44, their spectral widths can be calculated as ∆ω = 0.44/τp = 2π×0.47MHz and

2π × 0.23MHz for τp = 0.15µs and 0.3µs, respectively. The peak power of the cou-

pling pulse is Pl = 1mW. It produces an EIT window with width ΓEIT = 2π×11MHz

which is much wider than the spectrum widths of the probe pulses. The optical field

in the probe pulses are converted into coherent phonons of the mechanical oscillator

as shown in the bottom panel of Fig. 2.6. This is because of the coherent process

ωp − ωl = ωm. The coherent phonon survives over a time scale of the order of γ−1
m

which is much longer than the cavity lifetime κ−1
1 . The probe pulse can be retrieved

by applying the “reading” pulse at a time later (within γ−1
m ). This application of

“reading” pulse converts the coherent phonons into light field via the upconversion
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process ωl + ωm → ωp = ω1. Fiore et al. [65] demonstrated the storage and retrieval

of light pulses.

We observe that the probe pulse with a larger temporal width τp = 0.3µs (ΓEITτp =

21) is stored better than the pulse with width τp = 0.15µs (ΓEITτp = 10). The

conversion to phonons takes place more efficiently for τp = 0.3µs. This then results in

better retrieval of the probe pulse. The retrieved peak powers are 0.74|Ep|2, 0.31|Ep|2

for τp = 0.3µs and τp = 0.15µs, respectively.

Earlier work with atomic systems by Dey et al. [76] has shown that the storage

and retrieval processes are more efficient if the Gaussian pulses are replaced by super-

Gaussian pulses.

El(t) = Ele−
1
2
( t−twr

τl
)β
+ Ele−

1
2
(
t−trd

τl
)β
. (2.23)

For β = 4, we have adiabatic switching on and off of the coupling fields. It has

a more rectangular tempo profile with sharp edges. Fig. 2.6(b) shows the result

of numerical simulation using super-Gaussian shaped “writing” and “reading” laser

pulses. Comparing Figs. 2.6(a) and (b), we find the super-Gaussian coupling pulses

produce a retrieved pulse with sharper front edge and higher peak power 0.79|Ep|2.

The almost complete recovery of the weak probe pulse is especially significant in the

context of single photon optical memories.

In an experiment by Wang [65], they used a silica microsphere and coupled the

whispering gallery modes with the mechanical radial breathing mode at frequency

ωm/2π = 108.4 MHz. They managed to achieve very high quality factors that the

mechanical quality factor is around 3000 and the cavity quality factor is around

0.5 × 105. Correspondingly, the mechanical and optical decay rates are γm/2π = 38

kHz and 40 MHz. They drive the optomechanical interaction with a pair of “writing”

and “retrieval” pulses and the effective coupling rate during the pulses are |G|/2π = 2

MHz. Thanks to the low mechanical decay rate, they stored an optical pulse for 3.5µs

before retrieving it. Comparing to the life-time of the optical cavity field of 1/κ ≈ 4
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ns, the optomechanical storage time is three orders longer!

2.3 Introduction to Ramsey interferometry

The Ramsey method of separated oscillatory fields is a highly successful method of

precision spectroscopy and has been extensively used in a wide spectral range starting

from the radio frequency to optical domain [67]. This method has yielded the and

molecular transition frequencies with very high precision especially by using phase-

coherent pulses with a duration that is short compared to the atomic decay times.

The Ramsey technique is an interference technique in which one studies the result

of the quantum-mechanical amplitudes in different domains where fields are applied.

It has so far been used in the study of the phase coherence in atomic and molecular

systems. Ramsey method has been especially successful in the detection of quantum

coherences, such as in the detection of the Schrödinger-cat states of an electromagnetic

field.

The optomechanical Ramsey Interferometry (RI) [43] contains two pairs of laser

pulses interacting in an OMS. The interaction process during each pulse pair is similar

to the optical memory explained in the last section. In a RI setup, two pairs of driving

and probe pulses with separation T are sent to the cavity. This is in contrast to a

pair of driving pulses and a single probe pulse in the optical memory. Two processes

are taking place when a pulse pair is in the cavity: I© the coupling and probe photons

combine and produce coherent phonons; and II© the coherent phonons combine with

the coupling photons and generate an anti-Stokes sideband near the cavity resonance.

The application of the first pulse pair creates both coherent phonons and cavity

photons. After the first pulse pair, the optical mode decays rapidly during the free

evolution and it becomes negligible as e−κT
∼ 0, where κ is the total decay rate of

the cavity amplitude. On the other hand, the mechanical mode shows almost no

decay as e−(γm/2)T . 1, where γm is the mechanical damping rate. This is because
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Figure 2.7: The physical process of the photons and phonons in the Ramsey setup.

The wavy arrows refer to photons and double arrows refer to phonons. (a) The

driving photon combining a probe photon generates a phonon and the driving photon

combining a photon generates a probe photon. (b) The two paths of generating a

photon at ωp and y = ωp − ωl − ωm.

γm ≪ κ. Thus, before the second pulse pair is applied, the mechanical mode barely

decays but gathers a phase ωmT . Now we examine the two paths which lead to the

interference in the optical field produced at ωp. The phonon created in the zone “τ1”

survives and interacts with the driving laser to produce a photon at ωp via process

II© in the zone “τ2”. This is marked as path (i) in Fig. 2.9. Photons at ωp can also be

generated entirely in the zone “τ2”, as discussed earlier [path (ii) of Fig. 2.7]. These

two paths are displayed in Fig. 2.7(b) and their coherent character leads to Ramsey

fringes in the optical output field, which can be detected directly through heterodyne

interference with a local oscillator. Note that the pattern does not arise from the

direct interference of the two input probe pulses, since the free evolution time is

much longer than the optical decay time, T ≫ 1/κ. The mechanical oscillation is

the only medium that can carry coherence during both pulses. Therefore, the fringes

arise from the mechanical coherence effects although we observe such coherences in

the optical fields.
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2.4 Theoretical model of Ramsey Interferometry

For the implementation of Ramsey Interferometry in OMS, we enable the optome-

chanical coupling in two time-separated regions, during which a pair of laser pulses

including both driving pulse and probe pulse are sent into the cavity. The probe laser

with frequency ωp is near the cavity resonance ωc and the driving laser with frequency

ωl is near the red sideband of the cavity resonance ωc − ωm. The pulse sequence is

shown in Fig. 2.7(b), where we denote the widths of the pulses by τ1 and τ2 and

the separation by T . The time-dependent amplitudes of the driving and probe, El(t)

and Ep(t), are both nonzero only during the pulses: El(t) = El and Ep(t) = Ep for

t ∈ [0, τ1] ∪ [T + τ1, T + τ1 + τ2], and El(t) = Ep(t) = 0 otherwise. As discussed in the

previous section, each pulse pair generates coherent phonons, and those generated by

different pulse pairs interfere leading to Ramsey fringes. In this section, we assume

the critical coupling condition, i.e. κe = κi = κ/2.

The optical output field can be solved by integrating Eq. (2.9). The states of the

optical and mechanical mode after application of a single pulse have already been

calculated in Eqs. (2.11)-(2.19). Between these two pulses, the intra-cavity optical

fields reduce to zero rapidly and hence the effective coupling rate G = 0. The system

is governed by the matrix differential equation

Ψ̇(t) = NΨ(t), N = −







κ− ix 0

0 γm/2− iy






. (2.24)

By combining it with solution (2.11), we are able to obtain the fields after the appli-

cation of both pulses, ΨR ≡ Ψ(T + τ1 + τ2), as

ΨR = eMτ2eNTΨs1(τ1) +

∫ T+τ1+τ2

T+τ1

eM(T+τ1+τ2−t′)
D2(t

′)dt′

= eMτ2eNTΨs1(τ1) + Ψs2(τ2), (2.25)

where D2 = (Ep2 0)T and

Ψsi(τi) = M
−1(eMτi − 1)Di, for i = 1, 2, (2.26)
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which has been calculated in Eq. (2.18). We see that the expression of fields after

two pulses, ΨR, contains two terms, each of which has a form of Ψsi with one of

them modulated by a phase difference associated with the free evolution time T be-

tween two pulses. Next we examine the mechanical and optical fields as given in

Eq.(2.25) using Ramsey’s scheme by applying two separated pulses to OMS. The

component eNT = diag(e−(κ−ix)T e−(γm
2

−iy)T ) can be easily obtained. Ramsey’s pro-

posal demands the free evolution time T ≫ τ , as long as it is still smaller than

the relaxation time (γm/2)T . 1. The matrix exponential can be further simplified

eNT ≈ diag(0 e−(γm
2

−iy)T ). Then the fields after the application of the pulse can be

given as

ΨR =







(eMτ )12e
−(γm

2
−iy)T (Ψs1)2 + (Ψs2)1

(eMτ )22e
−(γm

2
−iy)T (Ψs1)2 + (Ψs2)2







=





















(κ− ix+ λ+)(λ+ + iy − γm/2)((λ− − λ+) + λ+e
λ−τ1)

[|G|2 + (κ− ix+)(γm/2− iy)](λ− − λ+)2
eλ−τ2−(γm

2
−iy)TEp1

+
(γm/2− iy)(λ− − λ+) + (|G|2 − (κ− ix+ λ+)(γm/2− iy))eλ−τ2

[|G|2 + (κ− ix)(γm/2− iy)](λ− − λ+)
Ep2

iG∗[λ− − λ+(1− eλ−τ2)][(λ− − λ+)Ep2 + (λ+ − iy − γm/2)e
λ−τ1−(γm

2
−iy)TEp1]

[|G|2 + (κ− ix+)(γm/2− iy)](λ− − λ+)2





















,

(2.27)

where (..)ij follows the notation in Sec. 2.1 representing the element in the ith row

and jth column of a matrix. Recall Eq. (2.17), from which we simplify ΨR by using

the results (2.19) and (2.20)

ΨR =









|G|2
κ2

e−(ΓEIT−iy)τ1−1
ΓEIT−iy

e−(ΓEIT−iy)τ2−(γm/2−iy)T Ep1 +
[

1
κ
+ |G|2

κ2
e−(ΓEIT−iy)τ2−1

ΓEIT−iy

]

Ep2

iG∗

κ

[

e−(ΓEIT−iy)τ1−1
ΓEIT−iy

e−(ΓEIT−iy)τ2−(γm/2−iy)TEp1 + e−(ΓEIT−iy)τ2−1
ΓEIT−iy

Ep2
]









(2.28)

We can define a phase parameter φ and a damping parameter µ

φ = −y(τ2 + T ), µ = (
γm
2
T + Γτ2). (2.29)

33



In the critical coupling regime κe = κ/2, the final intra-cavity amplitude is

Ec(T + τ1 + τ2) = 2κea1(T + τ1 + τ2)

≈
[

1 +
|G|2
κ

e−(ΓEIT−iy)τ2 − 1

ΓEIT − iy

]

Ep2 +
|G|2
κ

e−(ΓEIT−iy)τ2 − 1

ΓEIT − iy
e−iφ−µEp1, (2.30)

and the final mechanical field is

κeb1(T + τ1 + τ2) ≈
iG∗

2

[

e−(ΓEIT−iy)τ2 − 1

ΓEIT − iy
e−iφ−µEp1 +

e−(ΓEIT−iy)τ2 − 1

ΓEIT − iy
Ep2

]

. (2.31)

Figure 2.8: The mechanical field [panels (a) and (c)] and output optical field [panels

(b) and (d)] after the application of a single pulse (dashed curves) and of two separated

pulses (solid curves). The parameters for the OMS are κ/2π = 20MHz, |G|/2π =

0.7MHz, γm/2π = 0.01MHz and the corresponding EIT width for the steady state is

ΓEIT = 3γm. We also set Ep1 = Ep2 and x = y and 2κe = κ. In panels (a) and (b) we

set the pulse lengths both τ1 = τ2 = 3µs and their separation is T = 3τ ; and in panels

(c) and (d) the pulse lengths are optimized for best visibility: τ1 = 5µs, τ2 = 1.9µs

and T = 9µs. In panel (d), the dot-dashed curve is for single pulse excitation with

τ2 = 1.9µs.
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We start by analyzing the mechanical mode given in Eq.(2.31). It denotes the

mechanical excitation at the end of the second pulse τ2. From the expression with a

two-term structure, we see that it has two contributions: the excitation due to the first

pulse (denoted as the first term) and the excitation due to the second pulse (denoted

as the second term). The fraction in each term describes the mechanical excitation

generated by the transient EIT during each pulse, whose detail has been explained in

detail in the previous section. The optomechanical interactions result in two similar

excitations; however, there is a phase factor e−iφ multiplied to the first term. As φ

changes, the two terms in Eq.(2.30) interfere either constructively or destructively

leading to Ramsey fringes. The phase φ = −y(T + τ2), i.e. the product of the

frequency detuning and the evolution time, determines the fringe period 2π/(T + τ2).

However, a longer τ2 can result in a decay of the signal, which can be seen from

the parameter µ = ΓEITτ2 +
γm
2
T . We especially remark that the damping due to

exp(−ΓEITτ2) is not negligible, because it is related to the generation rate of the

mechanical excitation, i.e. e−(iy+ΓEIT)τ2 − 1, during the second pulse. Considering

ΓEIT > γm, one should reasonably choose τ2 < 1/ΓEIT. The numerator of each term

e−(ΓEIT−iy)τi − 1 ∼ 0 for a short τi, and it increases along with τi. This justifies that

the phonon excitation is only prominent when τ1 is large, which sets the characteristic

time of phonon excitation in OMS, i.e. ΓEITτ1 > 1. The electromagnetically induced

transparency occurs when ΓEITτ1 ≫ 1. In the optomechanical RI, a large τ1 enhances

the Ramsey fringes contrast, although the fringes can still be seen at a shorter τ1.

For a good contrast, the decay term µ in Eqs. (2.30) and (2.31) should be small

and hence ΓEITτ2 < 1. This is to keep the amplitude of the phonon, excited by the

first pulse, significant during the interaction with the second pulse. Therefore, the

conditions for the Ramsey fringes are τ1ΓEIT & 1, τ2ΓEIT < 1, and Tγm ≪ 1. The

optical field expressed in Eq.(2.30) exhibits the same interference fringes as in the

mechanical mode. This is important as the measurement of the output optical field
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becomes a direct probe of the Ramsey fringes in the mechanical system. In order to

clearly show the Ramsey fringes in the mechanical oscillation, we have plotted the

numerical result of Eq.(2.27) in Fig. 2.8(a). In the plot, the duration of each pulse

is τ = 3µs and their separation T = 3τ . The dashed curve, which is the result using

a single pulse excitation, exhibits a Lorentzian shape with half width ∼ 30γm. The

solid curve, which is using Ramsey’s two separated pulses excitation, clearly shows

the fast oscillating fringes over the broad Lorentzian envelope. The period of the

fringes is 8γm ≈ 2π/(T + τ2) and it agrees with our calculation.

The visibility of the Ramsey fringe for the mechanical mode is determined by

difference between the two terms in Eq.(2.30). For an on-resonance probe pulse

(y = 0) and identical driving pulse power, it can be written as

V =
Ecmax − Ecmin

Ecmax + Ecmin

=
2(1− e−ΓEITτ1)e−(γm

2
T+ΓEITτ2)Ep1 × (1− e−ΓEITτ2)Ep2]

[(1− e−ΓEITτ1)e−(γm
2

T+ΓEITτ2)Ep1]2 + [(1− e−ΓEITτ2)Ep2]2
(2.32)

In the case of our parameters, 1/ΓEIT ≈ 5µs and ΓEIT = 3γm, hence 2/γm = 6/ΓEIT ≈

30µs. For τ1 = τ2 = 3µs and T = 9µs, the visibility V = 0.70 which agrees with the

curves in Fig. 2.8(a). In order to optimize the fringe visibility, we need to select pulse

lengths such that (1− e−ΓEITτ1)e−µEp1 = (1− e−ΓEITτ2)Ep2. For these parameters, the

visibility approaches 100% when τ1 = 5µs, τ2 ≈ 1.9µs and T = 9µs. We illustrate the

mechanical mode and optical mode in Fig. 2.8(c) and (d) with this set of parameters

and we find the visibility indeed reaches almost unity.

In order to appreciate the versatility of the Ramsey fringes in OMS, we show in

Fig. 2.9 additional results of simulations under a range of parameters. As shown in

Fig. 2.9(a), the interference fringes decrease with longer τ2, which means no coherent

phonons for interference. This is due to the decay term µ in Eq.(2.5). As noted in

the previous two paragraphs we need ΓEITτ2 to be small. In Fig. 2.9(b) we can see

that, when τ2 is short, the spectrum shows interference; but with long enough τ2,
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Figure 2.9: (a) Simulation of the normalized emission power as a function of τ2 with

fixed τ1 = 4µs, T = 4µs, κ/2π = 30MHz, |G|/2π = 0.58MHz, and γm/2π = 20kHz.

(b) The spectra with τ2 = 1µs (blue curve) and τ2 = 15µs (red curve), as dashed line

shown in (a). (c) The Ramsey fringe with different delay time T . Other parameters

are the same as (a) except τ2 = 0.1µs. (d) The Ramsey fringes with T = 10µs and

different γm/2π = 10, 20, 30, 40kHz for black, red, blue and green curves, respectively.

Other parameters are the same as in (c).

the fringes in the spectrum cannot be seen and the spectrum reduces to a steady-

state result. With other parameters fixed, the increase in time T leads to a decease

in the Ramsey fringe period. However, after long enough time, the Ramsey fringes

disappear because of the damping of phonons, as shown in Fig. 2.9(c). Therefore,

we should choose the γm as small as possible during the experiment for observing

Ramsey fringes. This is demonstrated more clearly in Fig. 2.9(d), which shows the

visibility of the Ramsey fringes with different γm.
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2.5 Experimental implementation

In the experiment done in collaboration with Prof. Hailin Wang and Dr. Dong, we

couple an optical WGM of a silica microsphere [κ/2π ∼ 15MHz 1 and η = 1/2 (critical

coupling regime)] to the (1, 2) radial-breathing mechanical mode (ωm/2π ∼ 94MHz,

γm/2π ∼ 20kHz and the quality factor ∼ 1.3 × 107) of the microsphere. The WGM
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Figure 2.10: (a) Schematic of the experimental setup for the Ramsey Interferometry,

with solid lines representing the optical paths and dashed lines representing the electri-

cal connections. (b) Sketch of the Ramsey pulse sequence applied to OMS. (c) Trans-

mission resonance for the WGM at∼ 780nm with κ/2π = 15±0.65MHz. (d) Displace-

ment power spectrum of the (1, 2) radial breathing mode with γm/2π = 20 ± 2kHz,

obtained from the same sample. No error bars are shown as these are negligible. The

solid red lines show the Lorentzian fittings.

was excited through the evanescent field of a tapered optical fiber. A combination

of an acoustic-optic modulator (AOM) and electro-optic modulators (EOMs) was

used to generate optical pulses with the desired duration, timing, and frequencies.

1Note the definition of κ is different by a factor of 2 in paper [67].
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The driving and the locking pulses came from a single-frequency tunable diode laser

(Toptica DLPRO 780) with λ ∼ 780 nm and with its frequency locked to the red

sideband of a given WGM resonance using the Pound-Drever-Hall technique. The
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Figure 2.11: Heterodyne detected probe intensity as a function of the detuning

between the probe and driving lasers. The blue dots in (a) and (b) are obtained with

the detection gate positioned within the first pulse pair with the delay time τ1 = 4µs.

The black dots in (a-f) are obtained with the detection gate positioned within the

second pulse pair with T and τ2 indicated in the figure. The incident driving power

used is 3.4mW. The solid lines are results of theoretical calculations.

signal pulses were driven from the blue sideband generated by passing the driving

pulses through EOM0. For the experimental results reported here, both the driving

and the probe pulses were square shaped, with the same timing and with duration of

4µs. The effective coupling strengths under the pulses are |G|/2π = 0.58MHz leading

to the cooperativity C = 2.2. Heterodyne detection was used for the measurement of

the optical emission from the microsphere near the WGM resonance, with the driving

laser pulse serving as the local oscillator. A gated detection scheme was also used

with a gate duration of 1µs. The timing of the gate determines the effective duration,
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τ2, of the second pulse pair involved in the RI.

Figure 2.11 shows the heterodyne detected probe intensity as a function of the

detuning between the probe and the driving laser obtained with different durations τ2.

The separation time, T , between the first and second pulse pairs is set to 4µs in the

left-hand column and 8µs in the right-hand column. The distinct spectral oscillations

observed in these experiments demonstrate the Ramsey fringes for the OMS. The

spectral position of the central Ramsey fringe overlaps exactly with the center of the

OMIT dip and does not depend on either T or τ2. This enables us to estimate the

mechanical oscillation frequency ωm by relating them to the detuning of the probe

and driving laser ωp − ωl using y = ωp − ωl − ωm. The dips in Figs. 2.11 all reveal

that ωp − ωl ≈ 2π × 93.9MHz which agrees well with ωm = 2π × 94MHz. In (a) with

T = 4µs and τ2 = 1µs, the Ramsey fringe period is 160kHz. As T + τ2 increase from

5µs in (a) to 11µs in (f), the fringe period decreases from ∼ 160kHz to ∼ 80kHz.

As a reference, we also show in Figs. 2.11(a) and 2.11(b) the experimental results

(solid circles) obtained in the absence of the second pulse pair. Experimentally, these

were obtained with the detection gate positioned within the duration of the first pulse

pair. The spectral dip observed in this case arises from the transient optomechanically

induced transparency (OMIT).

For a direct comparison with the experiments, over a wide range of parameters

we show the results of the theoretical calculations as solid curves in Fig. 2.11. The

parameters (within error bars) used include κ/2π = 15MHz, |G|/2π = 0.58MHz,

γm/2π = 20kHz, and the corresponding characteristic time 1/ΓEIT = 4.9µs. For the

theory curves we use the equations of motion (2.3), but two pairs of pulses illustrated

in Fig. 2.10(b) are used. As shown in Fig. 2.11, the spectral position of the central

Ramsey fringe overlaps exactly with the center of the OMIT dip and does not depend

on either T or τ2. More importantly, the Ramsey fringes exhibit a period that is much

smaller than the linewidth of the OMIT dip. In (a) with T = 4µs and τ2 = 1µs, the
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Ramsey fringe period is 160kHz. As T + τ2 increase from 5µs in (a) to 11µs in (f),

the fringe period decreases from ∼ 160kHz to ∼ 80kHz. Overall, there is an excellent

agreement between the theory (curves) and experiment (dots). The visibility of the

Ramsey fringes is primarily determined by τ2. Fig. 2.11. reveals the loss of fringe

visibility with increasing τ2. We note that for comparison with the experiments, we

use directly Eqs.(2.28). It is only for understanding the physical behavior that we

used the approximate Eqs.(2.30).

2.6 Summary

To summarize the results, I have developed a theory to study the transient behavior

of EIT in OMS under control of a strong driving laser and a weak probe laser. The

physics behind the effect is explained by using the coherent photon-phonon interac-

tion processes. The dynamics of phonons shows clearly how the fields are stored and

how these could be converted back into fields with frequencies which depend on the

power and the detuning of the driving laser field. This mechanism enables us to design

OMS-based optical memories and transduction of the optical fields. In the second part

of this chapter, I demonstrated how the high-resolution Ramsey method of separated

oscillatory fields can be adopted to study coherences in a macroscopic system like a

nanomechanical oscillator. I presented the underlying theory and the experimental

demonstration using silica microresonators. The method is quite versatile and can be

adopted to different types of mechanical resonators and electromechanical resonators.

More complex applications can include the study of the dynamical interaction between

the mechanical oscillators. Future work may also include the demonstration of the

Ramsey fringes using excitations at the single photon level which would imply excita-

tion of a mechanical oscillator at the single phonon level. Needless to say, achieving

the quantum regime experimentally would require at least the coherent fields at the

single photon level as well as cooling to temperatures such that the mean phonon
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number is less than 1. The Ramsey method is also expected to be useful in producing

time-bin entanglement involving a phonon and a photon.
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CHAPTER 3

ELECTROMAGNETICALLY INDUCED ABSORPTION AND

TRANSDUCTION OF FIELDS

Optomechanical systems have been recognized as good systems for the purpose of

optical memories as mechanical systems can have very long coherence times [62,

65, 77]. The realization that such systems can serve as memory elements became

feasible by the prediction [58] of EIT and its experimental demonstration by several

groups [59–61]. Much of this work was motivated by the corresponding work in atomic

media [73–75]. In EIT, the driving laser induces a narrow spectral transparency

window for a probe laser. Its counterpart, Electromagnetically Induced Absorption

(EIA) was studied by Harris and Yamamoto [78] based on a four level atomic scheme

where one of the ground levels of the Λ scheme was connected by an optical transition

to a higher level. This allowed the possibility of two photon absorption while at the

same time suppressing one photon transition. Lezama and coworkers [79–81] found

that a simple three level Λ scheme cannot give rise to EIA. They considered optical

transitions between the hyperfine states of atoms F → F ′ > F which showed the

possibility of EIA. Clearly, if EIA was possible in OMS, then we need to consider

a more complicated configuration than, say, considered in the context of EIT: One

needs to add an additional pump and at least one additional transition. Hence we

study a double-cavity configuration which is flexible enough to open up new pathways

for the interaction with the probe field. Specifically, by adding one more cavity mode

to the OMS, we are able to study the EIA [53] which creates a sharp peak inside the

EIT transparency window.
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The double-cavity OMS, which couples two cavity modes with common mechanical

modes, represents another development in the study of optomechanics. By includ-

ing one more cavity mode, the theoretical model of OMS becomes a three-coupled-

oscillator model in the linearization approximation and new phenomena arise from

the coherent coupling among different modes. Double-cavity configurations have at-

tracted a lot of attention because of their wide applicability in state transfer [82, 83]

and transduction of photons [66]. As a remarkable feature, these two cavity modes

can be in completely different frequency regimes which may include even a microwave

cavity. The mediating mechanical mode which couples the optical mode and the elec-

trical mode functions as an active mode coupler provides the possibility to realize

wavelength conversion [68, 84, 85].

In this chapter, I first briefly describe a few different experimental realizations of

double-cavity OMS and provide the theoretical model of a general double-cavity OMS

by utilizing the tools developed in Chap. 1. I solve for the system steady-states using

Floquet analysis, instead of linearization, and transform the periodic oscillations of

the modes into a traditional linear system with real constant amplitudes. This method

yields a solution with multiple sidebands around the driving fields. Next, I provide

a detailed analysis of the EIA in a double-cavity OMS including absorption peak

width, dispersion property and its physical description. Since this model is quite

generic, I present its experimental verification in metamaterials by collaborating with

an experimental group. I show the peculiar property of the mechanical dark state

in the EIA setup and its important application of coherent state transfer. The last

section of this chapter illustrates the flexible applicability of this double-cavity OMS

in optical memories and field transduction.

44



3.1 Experimental realizations of double-cavity OMS

Double-cavity OMS can be realized in several different ways. We mention three

possible systems which have already been realized. The most direct realization is

a “membrane-in-the-middle setup” [84, 85], illustrated in Fig. 3.1. In the setup by

Optical

Optical Input

Optical Output

Microwave Input & Output
C

a
p

a
ci

to
r

Figure 3.1: Schematic double-cavity OMS with a suspending mirror in the center.

The mirror forms a Fabry-Pérot cavity with a fixed mirror on its left; and it forms

an electric capacitor with a fixed conductive plate on the right.

Polzik’s group [85], a silicon nitride membrane that has been coated with dielectric

material is placed in front of a mirror thus forming an optical Fabry-Pérot cavity.

On the other side, it interacts with an inductor-capacitor (LC) circuit that forms the

microwave resonator. As the membrane vibrates it moves and modulates the resonant

frequency of the optical cavity and also the capacitance of the microwave circuit, and

thus the electrical resonant frequency. Lehnert’s group adopted a similar setup but

they use a partially transmissive membrane and place it in the middle of a Fabry-

Pérot cavity. Inside the cavity, they also place a dielectric plate off the cavity axis

which forms a capacitor with the moving membrane. While the membrane vibrates,

it moves along with the intensity of the optical standing wave and modulates the

optical resonant frequency. Therefore, the mechanical vibration mode is coupled to

both the optical and electrical cavities realizing a double-cavity OMS.

The second type of double-cavity OMS is realized in a silica microresonator with
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two preselected optical modes interacting with a mechanical mode [19, 21, 43, 65],

illustrated in Fig. 3.2. Light is guided in whispering-gallery modes (WGM), which

Input Mode 1

Input Mode 2

Output Mode 1

OUtput Mode 2

Microresonator

Tapered Fiber

Figure 3.2: Schematic double-cavity OMS in a microresonator with two preselected

optical modes interacting with a mechanical mode.

have very high quality factors, along the rim of a circular resonator. The optical path

forms a circular shape bounded by the physical dimension of the microsphere. As

the light changes direction when it propagates, it exerts radiation pressure onto the

surface of the microsphere and this pressure force can be intense enough to deform the

microsphere. A microsphere supports a large number of different mechanical normal

modes of vibration or stretching. The resulting distortion of the microsphere structure

directly modifies the optical path length and thereby shifting the optical resonance

frequency. The small physical dimension of the microsphere and the low effective

mass allow the appearance of a large single photon coupling strength g. Within such

a setup, one can select two optical modes which couple to a common mechanical mode

to realize a double-cavity OMS.

Two coupled waveguides enbedded in an optomechanical crystal [68] is another

good playground for optomechanics. It is illustrated in Fig. 3.3. Photonic crystals

are formed by a periodic modulation of the refraction index of a substrate material

which forms the crystal lattice with its optical band(s). Defects are also introduced

to form optical bandgaps in which light cannot propagate. With specially designed

structure of defects, the bandgaps can localize light so that light does not decay into

the continuum in the structure. When one prepares a thin layer of such photonic

crystal, it can be stretched easily by the radiation pressure of the optical mode.
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Figure 3.3: Schematic double-cavity OMS in photonic crystals with two optical modes

coupled to a common mechanical mode between them.

The deformation of the lattice structure effectively modulates the optical resonance

frequency leading to high optomechanical coupling strength. Considering defects can

be fabricated flexibly with photolithography, one can prepare two optical waveguides

adjacent to each other coupling to the same mechanical mode. Thus, a double-cavity

OMS is realized.

3.2 Model of double-cavity OMS

Now we analyze the double-cavity OMS and provide its Hamiltonian. For the purpose

of modelling its physics quantities, we show the schematic in Fig. 3.4. For each

1 1,l lω E
2 2,l lω E

,p pω E

2outE
1outE

Figure 3.4: Schematic double-cavity OMS.
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cavity, we denote its field by ai, frequency by ωci and decay rate by κi, i = 1, 2. The

field annihilation and creation operators satisfy the commutation relation [ai, a
†
j] =

δij . In this section, we ignore the internal decay and set η = 1. A probe laser

with frequency ωp, is sent into cavity 1. The two cavities are coupled only via the

oscillations of the mechanical mirror with the oscillations produced by the applied

strong laser fields Eli’s. Further the two cavities can be in different frequency regimes.

We use the normalized coordinates Q =
√

mωm/~q and P =
√

1/(m~ωm)p for the

mechanical oscillator with commutation relations [Q,P ] = [q, p]/~ = i. We also define

the coupling coefficients gi, driving laser amplitude Eli for each cavity i = 1, 2. The

probe laser is applied only to cavity 1. Then the Hamiltonian for this system is given

by

H = H1 +H2 +Hm +Hdiss,

H1 = ~(ωc1 − ωl1)a
†
1a1 − ~

√
2g1a

†
1a1Q + i~El1(a†1 − a1) + i~(Epa†1e−iδt − E∗

pa1e
iδt)

H2 = ~(ωc2 − ωl2)a
†
2a2 + ~

√
2g2a

†
2a2Q+ i~El2(a†2 − a2)

Hm =
1

2
~ωm(P

2 +Q2), (3.1)

where δ = ωp − ωl1 is the detuning between the probe field and the driving field

in cavity 1. All the dissipative interactions are denoted by Hdiss. These include the

leakage of photons from both cavities and the damping of the mirror oscillation. Note

that the optomechanical coupling terms g1 and g2 are different by their signs because

a certain mechanical displacement Q increases the resonance frequency of one cavity

while decreases that of the other one. The Hamiltonian (3.1) has been written by

working in a picture in which the very fast frequencies ωli’s are removed. This results

in detuning terms like (ωci − ωli)a
†
iai. The equations of motion for Q, P , ai and a†i
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are found to be

Q̇ = ωmP,

Ṗ =
√
2(g1a

†
1a1 − g2a

†
2a2)− ωmQ− γmP,

ȧ1 = −i(ωc1 − ωl1 −
√
2g1Q)a1 − κ1a1 + El1 + Epe−iδt,

ȧ2 = −i(ωc2 − ωl2 +
√
2g2Q)a2 − κ2a2 + El2.

(3.2)

We notice that the coupled equations contain nonlinear terms including g1a
†
1a1,

g1Qa1 and similar terms involving a2. However, Eqs. (3.2) involve periodically os-

cillating terms hence in the long time limit, any of the fields and the mechanical

coordinates will have a solution of the form A =
∑+∞

n=−∞ e−inδtAn. The An’s can be

obtained by Floquet analysis. In the long-time limit, Ȧ = 0 and the time differentia-

tions can be expanded as

Ȧ = −iδe−iδtA+ + iδeiδtA−, A = Q,P, a1, a2. (3.3)

We expand the nonlinear terms to the first order such that

a†1a1 = (a∗10 + a1−e
−iδt + a1+e

iδt)(a10 + a1−e
iδt + a1+e

−iδt)

∼= |a10|2 + (a∗10a1+ + a10a1−)e
−iδt + (a10a1+ + a∗10a1−)e

iδt, (3.4)

and similarly we get

a†2a2
∼= |a20|2 + (a∗20a2+ + a20a2−)e

−iδt + (a20a2+ + a∗20a2−)e
iδt. (3.5)

In the last step, I dropped the higher order terms. We assume that the probe is much

weaker than the coupling field; then the An’s can be obtained perturbatively. The

equations of motion up to first order perturbation in |Ep/Eli| in the long time limit
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can be given as

− iδe−iδtQ+ + iδeiδtQ− = ωmP0 + ωme
−iδtP+ + ωme

iδtP−,

− iδe−iδtP+ + iδeiδtP− =
√
2g1(|a10|2 + (a∗10a1+ + a10a1−)e

−iδt + (a10a1+ + a∗10a1−)e
iδt)

−
√
2g2(|a20|2 + (a∗20a2+ + a20a2−)e

−iδt + (a20a2+ + a∗20a2−)e
iδt)

− ωm(Q0 +Q−e
iδt +Q+e

−iδt)− γm(P0 + P−e
iδt + P+e

−iδt).

(3.6)

If we compare the terms oscillating as e±iδt, we can obtain the steady-state solution

of the mechanical states

P0 = 0, Q0 =

√
2

ωm
(g1|a10|2 − g2|a20|2), (3.7)

and

ωmP+ = −iδQ+, ωmP− = iδQ−. (3.8)

The vanishing value of P0 means the mechanical mirror stays at a certain displacement

Q0, which is typically small. The steady state value of Q0 is determined by the

mechanical restoring force and the difference of radiation pressures from both cavities.

We continue to write down the equations for the optical modes

− iδe−iδta1+ + iδeiδta1− = −κ1(a10 + a1−e
iδt + a1+e

−iδt) + El1 + Epe−iδt

− i[ωc1 − ωl1 −
√
2g1(Q0 +Q−e

iδt +Q+e
−iδt)](a10 + a1−e

iδt + a1+e
−iδt),

− iδe−iδta2+ + iδeiδta2− = −κ2(a20 + a2−e
iδt + a2+e

−iδt) + El2

− i[ωc2 − ωl2 +
√
2g2(Q0 +Q−e

iδt +Q+e
−iδt)](a20 + a2−e

iδt + a2+e
−iδt).

(3.9)

By comparing the terms oscillating at different frequencies and combining Eqs. (3.6),

we obtain the mean value steady state of the cavity field

a10 =
El1

κ1 + i∆1

, a20 =
El2

κ2 + i∆2

, (3.10)
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and the first order results in |Ep/Eli|

Q+ = − 1

d(δ)

√
2g1a

∗
10Ep

(κ1 + i∆1 − iδ)
,

d(δ) =
∑

i=1,2

2∆ig
2
i |ai0|2

(κi − iδ)2 +∆2
i

− ω2
m − δ2 − iδγm

ωm

,

a1+ =
i
√
2g1a10

(κ1 + i∆1 − iδ)
Q+ +

Ep
(κ1 + i∆1 − iδ)

,

a1− =
−i

√
2g1a

∗
10

(κ1 − i∆1 − iδ)
Q∗

+,

a2+ =
−i

√
2g2a20

(κ2 + i∆2 − iδ)
Q+,

a2− =
i
√
2g2a

∗
20

(κ2 − i∆2 − iδ)
Q∗

+,

(3.11)

where ∆1 = ω1 − ωc1 −
√
2g1Q0 and ∆2 = ω2 − ωc2 +

√
2g2Q0 are the detunings of

the coupling lasers to the effective cavity frequencies. The driving laser enhanced

coupling coefficient is defined as Gi = ai0gi for each cavity. The fields ai±’s are the

anti-Stokes and Stokes fields in the i’th cavity. The output fields from the two cavities

are given by

E1out = 2κ1(a10e
−iωl1t + a1+e

−i(ωl1+δ)t + a1−e
−i(ωl1−δ)t)− Epe−iωpt − El1e−iωl1t,

E2out = 2κ2(a20e
−iωl2t + a2+e

−i(ωl2+δ)t + a2−e
−i(ωl2−δ)t)− El2e−iωl2t.

(3.12)

The form of the output fields shows that it has multiple components oscillating at

different frequencies. The terms outside the brackets are the input fields including

the probe field Ep and the driving fields Eli. The terms inside the brackets denote the

fields generated by the optomechanical interactions and they include the field mean

values at frequency ωli, the anti-Stokes sideband at frequency ωli − δ and the Stokes

sideband at frequency ωli + δ. Their coefficients ai0 and ai± refer to the amplitudes

of these frequency components. Recalling the frequency relation ωp = ωl1 + δ, we

find that the anti-Stokes sideband of the driving field overlaps the probe field in

its frequencies. Coherent effects in OMS can be enhanced and observed when the

amplitude a10 is prominent. We also find that, although no probe field is injected to
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cavity 2, multiple components arise in it.

3.3 Electromagnetically Induced Absorption in OMS

We now focus on analyzing the intracavity field by using Eqs.(3.12). If both of

the driving fields are red-detuned by the mechanical resonance frequency, i.e. ∆1 =

∆2 = ωm, the field ai+ would be oscillating at the probe frequency ωp. After the

approximation ∆ + δ ≈ 2∆, the intra-cavity optical field amplitude Ec at frequency

ωp can be calculated as

Ec = 2κ1a1+

∼=
2iκ1Ep

(δ − ωm + iκ1)−
|G1|2

(δ − ωm + iγm/2)−
|G2|2

(δ − ωm + iκ2)

=
2Ep

(1− i δ−ωm

κ1
) +

C1

(1− i δ−ωm

γm/2
) +

C2

(1− i δ−ωm

κ2
)

. (3.13)

Note that δ = ωp − ωl1 is detuning from the probe laser frequency to the driving

laser frequency and it is close to ωm. C1,2 = 2|G1,2|2/(κ1,2γm) is the cooperativity

parameter for each cavity i. The structure of Eq. (3.13) is very interesting. It shows

how the resonant character of the output field changes from that of an empty cavity

(C1 = C2 = 0) to that of a single cavity (C2 = 0, C1 6= 0) and further to that of

double cavities (C1, C2 6= 0). Its denominator is linear in ωp for an empty cavity,

quadratic in ωp for a single cavity, and cubic in ωp for double cavities. These changes

determine the physical behavior of the OMS. We first note that for C = 0, we have

the standard EIT behavior (black dotted curves and the insets). Below the strong
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Figure 3.5: The real (a) and imaginary (b) part of the intra-caity field amplitude

Ec. The black dotted, blue dashed and red solid curves are corresponding to the

cooperativity ratios C2/C1 = 0, 0.5, 1, respectively, and C1 = 40. The response shows

EIT when only one coupling field is present, and the emergence of EIA at the line

center when both coupling fields are present. The insets show the EIT in a large

frequency span with C2 = 0, i.e. with no coupling field applied to the second cavity.

coupling regime (|G1| < κ1 in the limit γm → 0), the two roots of the denominator in

Eq. (3.13 are purely imaginary. The interference then leads to the EIT window with

a width ΓEIT = (1 + C1)γm/2. The usual normal-mode splitting [86] occurs when

the two roots have nonzero real parts, i.e. |G1| > κ1. Clearly, if we want to produce

an absorption peak within the EIT window, then we need to choose C2 such that

the third root of the denominator in Eq. (3.13) lies within the EIT window. For the

results shown in Fig. 3.5, we choose C2 = C1/2 (blue dashed curves) and C2 = C1

(red solid curves). In Fig. 3.6, we show how the roots of the denominator in Eq. (3.13)

change for |G1| < κ1 and if the driving field in cavity 2 is increased. For C2 = 0, the

width of the EIT window is 20.5γm. Curve c gives the overall width within which the

transparency window appears. Curve a gives the width of the EIA peak within the

EIT window.

We now examine quantitatively the width of the absorption peak. When G2 = 0,

|G1| < κ1, the two roots of the denominators in (3.13) are κ1 and ΓEIT, and ΓEIT ≪ κ1.
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In the presence of the additional coupling field a20 6= 0, the root ΓEIT splits into two

parts

ΓEIT →Γ± =
1

2
ΓEIT ± 1

2

√

Γ2
EIT − 4|G2|2,

Γ− = ΓEIA ≈ κ2 +
|G2|2
2ΓEIT

, if
|G2|2
4Γ2

EIT

≪ 1. (3.14)

The existence of an additional splitting in roots Γ±, especially when κ2 ≪ ΓEIT,

leads to the absorption peak within the transparency window. The half width of the

absorption peak is given by κ2 + |G2|2/(2ΓEIT). It should be borne in mind that the

microwave cavity is especially useful as κ2 ≪ γm,ΓEIT. Root Γ− has the behavior

given by curve a in Fig. 3.6.
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Figure 3.6: The real (a) and imaginary (b) part of the field amplitude 2κ1a. The

blue curves show the Lorentzian response to the probe of an empty cavity; the red

curves show EIT of a single driven OMS; and the black curves show the EIA peak

when both the optical and electric cavities are driven by red-detuned fields.

Figure 3.5 also illustrates the absorption and dispersion character of the OMS

under the condition κ1 ≫ γm ≫ κ2. In Fig. 3.5(a), we see that the Lorentzian profile

(blue curves) for an non-driven empty cavity turns into an EIT profile (red curve)

when a single driving field is applied in the optical cavity. When we turn on also the

electro driving field, an extremely sharp absorption window (black curve) emerges in

the center of the EIT profile. According to the Kramers-Kronig relations, an anomaly
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in the absorption spectrum is always accompanied by an anomaly in the dispersion. In

the case of EIT/EIA, the signal field experiences a large normal/anomaly dispersion,

which implies reduction/enhancing of the group velocity. In Fig. 3.5(b), the red

curve, corresponding to the case when a single optical driving field is applied, shows

a large anomaly dispersion in the central frequency indicating the existence of slow

light effect. When both the optical and electro driving fields are applied, the black

curve shows an extremely sharp normal dispersion. This implies an enhancement of

the dispersion by a large factor and one can realize superluminal effects.

The EIA within the transparency window is quite generic and is applicable to a

variety of systems. We are able to show the existence of EIA using three coupled

oscillators. Note that the coupled oscillator models can very often mimic a variety

of physical phenomena. In fact two coupled oscillators [87–89] have been used to

understand EIT as well as EIA. It turns out that the EIA of the type discussed in

this chapter has to be understood in terms of three coupled oscillators — in our case

two of these (u and v) would represent cavity modes and the third one (w) would

represent the mechanical oscillator. The three effective oscillators can be described

by equations (written in rotating wave approximation) as



























u̇ = −i∆1u− iG1w − κ1u+ Epe−iδt,

v̇ = −i∆2v − iG2w − κ2v,

ẇ = −iωmw − iG1u− iG2v − (γm/2)w.

(3.15)

These three coupled equations can exhibit a variety of phenomena depending on the

couplings G1, G2 and the relaxation parameters κ1, κ2 and γm. For the existence

of the EIA, it is simple to have κ1 ≫ γm ≫ κ2. Note that a whole class of hybrid

systems coupling optical and microwave systems can be described by Eqs. (3.15) and

their quantum version in terms of Langevin equations [cf. Eqs. (1.13)].
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3.4 Experimental implementation in Metamaterials

Collaborating with Prof. Weili Zhang, we experimentally realized EIA in three-layered

metamaterials. The schematic diagram of a three-layered metamaterial unit cell is

shown in Fig. 3.7(a), (b), and (c). The three resonators, namely, an I-shaped struc-

ture on the top layer, a four-SRR (Split-ring resonator) at the middle layer and a cut

wire structure on the bottom layer. The resonator on each layer has a single reso-

nance peak all with different widths. When they are fabricated together so that they

couple coherently, we successfully observe the EIA peak in the transmission spectra

as illustrated in Fig. 3.7d.

d

Figure 3.7: (a) Schematic diagram of the three-layered EIA metasurface unit cell.

(b) Microscopic image of the EIA sample. It was fabricated on a silicon substrate

and the dielectric spacer is made from polyimide. (c) Schematic of the individual

resonators. (d) The experiment spectra of the amplitude transmission, reflection and

absorbance.

The EIA in metamaterials gives a way for a strong absorption resonance in the

transmission spectrum to occur without compromising high transmission amplitude
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except at the EIA window. This three-resonator design delivers a strong EIA up to

78% which is much stronger than that in existing two resonator metamaterial systems.

Besides, along with the EIA resonance, the original transparent window splits into a

double-peak EIT-like behavior, which could be useful in developing slow-light devices

with dual band transparency. From simulations, we also found that the response of

the EIA system reveals strong interlayer distance dependence. As in other coupled-

resonator systems, the transmission and reflection spectra are very sensitive to the

position of the SRRs in the polyimide layer which determines its coupling strength to

the top and the bottom structures. A very small variation in the vertical or horizontal

position of the SRRs leads to an apparent modification in the spectral response.

3.5 Coherent state transfer

Whenever there is an absorption window, one would naturally ask “where do the

energies go?”. The answer is that the energy transfers from cavity 1 to cavity 2

via the mediating mechanical oscillating resonator. Let us take an example of an

experimentally realized double-cavity OMS, whose cavity 1 is an optical cavity with

a large decay rate and cavity 2 is an electric cavity with a very low decay rate. In

Fig. 3.8, the dashed curves show the case that the double-cavity OMS is solely driven

by the optical drive, in which case we find the probe field to be perfectly reflected to

the optical output due to the EIT and the mechanical mode to be excited. When we

turn on both the optical and electrical driving fields, we find the optical probe field

to be totally absorbed in the EIA window and the energy to be transferred to the

electrical cavity. More interestingly, the mechanical mode is in a “dark state” [19],

i.e. it is not excited. Overall, the optical probe field is transferred to the electric field

via the mechanical mode without exciting the mechanical mode!

In a publication [84] by Lehnert’s group, they demonstrate a converter that pro-

vides a bidirectional, coherent and efficient conversion of classical signals between
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Figure 3.8: (a) The normalized output from the first cavity (optical) and from

the second cavity (electrical); and (b) the amplitude of the mechanical displacement

normalized to |Ep|2. The system behaves (almost) as a perfect reflection with a

bright mechanical mode when C2 = 0 (dashed curves); and it behaves as a perfect

transmission with a nearly dark mechanical mode when C1 = C2 (solid curves).

microwave (of 7 GHz) and optical light (of 282 THz) assisted by a mechanical mode

(of the order of 1 MHz). The conversion efficiencies are ∼ 10% at an environment

temperature of 4 K. This unique design which couples an optical cavity with an

electric cavity could even be useful to convert microwave and optical photons, a

wavelength conversion problem that has attracted more and more interest [14, 68, 82,

83, 90]. Recently, Superconducting Josephson junction-based qubits and supercon-

ducting resonant cavities have emerged as the ideal realization of quantum two-level

systems interacting with a single mode of the electromagnetic spectrum. It provides

a highly flexible platform for creating on-demand complex quantum states of a light

field. Combining with the EIA-based wavelength conversion technique, one can ef-

ficiently convert the microwave quantum state to optical wavelengths, hence they

could be transmitted over kilometer distances with negligible loss. They could then

be stored for long times in, for instance, atomic ensembles or even an OMS.
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3.6 Transduction of fields in a double-cavity OMS

Converting low-frequency electrical signals into much higher-frequency optical signals

has greatly boosted the development of modern communication networks. It lever-

ages the strengths of both the microelectrical circuits and optical fibre transmission.

Current technologies of the conversion are mainly based on modulating the output

of a laser diode controlled by electrical input signals. However, this method is sub-

ject to non-unitary, non-coherent transformation properties and large environmental

bath noise. In light of the demands, I present the transduction of electromagnetic

fields in a double-cavity OMS. The double-cavity OMS brings larger flexibility to the

optical pulse storage protocol and applications. One can optimize these two indepen-

dent cavities for their own functions with different parameters, like cavity decay rate,

resonance frequency and coupling rate.

In this section, we focus on the system shown in Fig. 3.4, in which a mechanical

resonator is coupled to two cavities. We display in Figs. 3.9 and 3.10 a series of

output fields when the second cavity is red detuned, on resonance and blue detuned.

We take κ2 = κ1 though additional flexibility in the operation of the memory device

is possible by making them different. The fields at the output of the second cavity

E2out have Stokes and anti-Stokes components, whose central frequencies are given by

ωc2 ± ωm. Their amplitudes a2+ and a2− are related, respectively, by Eq. (3.12).

When the second cavity is red detuned, the anti-Stokes pulse is on resonance with

the second cavity whereas the Stokes pulse is far off resonance. This is the reason

of very little Stokes output. The anti-Stokes output can be comparable to the input

probe pulse Ep depending on the power used to pump the second cavity. With higher

applied power, the conversion of phonons to the anti-Stokes field is more efficient.

If the second cavity is on resonance, then, as expected, the generated Stokes and

anti-Stokes are of comparable magnitude. These curves clearly show that using the

second cavity on resonance produces better coherent outputs than the case when
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Figure 3.9: Numerical simulation of the optical memory using double-cavity OMS

when the “reading” cavity frequency ωc2 is on resonant, red detuned and blue detuned

with the reading laser frequency ωR. The peak power is PL = 1mW for the writing

coupling laser and PR = 0.4mW for the reading coupling laser.

the second cavity is red detuned. Note that the incident probe has a frequency

ωp = ωl1 + ωm ≈ ωc1 whereas the outputs from the second cavity have frequencies

ωl2±ωm. We have here phonon induced transduction of photon fields from a frequency

ωl1 to frequency ωl2 ± ωm. We also produce two outputs.

For the case of the blue detuning of the second cavity ωc2 ≈ ωl2+ωm, the generated

anti-Stokes field is far off resonance whereas the Stokes field is on resonance. Therefore

a very significant amount of the Stokes field is generated. Furthermore, the blue

detuned laser leads to the generation of coherent phonons as shown by Fig. 3.9. The

nonlinear mixing process involving the field at ωl2 and phonons at ωm produces the

Stokes field at ωc2. The increase of the phonon excitation can be understood from a

quantum mechanical description of the process—the radiation matter interaction for
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Figure 3.10: Numerical simulation of the optical memory using double-cavity OMS.

Curves are defined similar to Fig. 3.9 except the peak power is PR = 1mW for the

reading laser.

the second cavity is

(aRe
−iωRt + a2e

−iω2t)†(aRe
−iωRt + a2e

−iω2t)(Q+e
−iωmt +Q†

+e
iωmt)

= (Q†
+a

†
2aR +H.c.) + non resonant terms. (3.16)

This clearly shows how a photon of frequency ωR gets converted into a phonon and

a photon of frequency ωl2. In Fig. 3.10, we show the output fields from the second

cavity when the field driving the second cavity is large. The idea here is to see how

well a very weak pulse applied at the frequency ωp from the left would be recovered.

Fig. 3.10 shows that the recovery is good. This should be especially relevant for

the transduction of single photons. These results show how the coherently generated

phonons in the first cavity can be used for the transduction of the optical fields. If

the second cavity were a microwave cavity driven by microwave field, then one has

the possibility of converting incident optical fields into microwave fields.
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3.7 Summary

To summarize the results, we have demonstrated the possibility of EIA within the

transparency window of the optomechanical systems. For the OEMS we studied, the

EIA results in the transduction of optical fields to microwave fields. Note however

that the transduction of fields at single photon levels would require a full quantum

treatment as in [63]. The EIA within the transparency window is quite generic and is

applicable to a variety of systems, and can effectively be described by three coupled

oscillators. These systems would include other types of optomechanical systems such

as those containing two mechanical elements [91, 92], two qubits [93], or very different

classes of systems such as plasmonic structures [94, 95] and metamaterials [54].
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CHAPTER 4

FANO RESONANCE IN OMS

Fano line profiles, originally discovered in the context of photoionization, have been

found to occur in a large class of systems such as resonators, metamaterials, and

plasmonics. Optomechanics which couples an optical oscillator to a mechanical one is

not the only way to observe such resonances by identifying the interfering contribu-

tions to the fields generated at anti-Stokes and Stokes frequencies. However, unlike

the atomic systems, OMS provides great flexibility as the width of the resonance is

controlled by the coupling field. In this chapter, I first briefly introduce the origin

and concept of Fano resonances. Then I present my study of Fano resonances in both

single-cavity OMS and double-cavity OMS. In the end, I find the quantum signature

of Fano resonance, i.e. quantum vacuum fluctuation of the cavity output field showing

Fano resonance.

4.1 Physical model of Fano resonance

In the classic work [96], Fano considered the photoionization process when a weakly

bound state |a〉 lies in the continuum |E〉. The weakly bound state has a finite life

time due to its coupling with the continuum. Thus, in the simplest case, there are

two transition amplitudes leading to photoionization: one involves a direct transition

to the continuum and the other involves transition via the autoionizing state to the

continuum. These two transition amplitudes interfere leading to the famous Fano
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Figure 4.1: (a) Fano interference between the transitions |b〉 → |E〉 and |b〉 → |a〉 →

|E〉. (b) Shape of Fano resonance.

formula for the probability p for the photoionization

p(E) =
(ǫ+ qf )

2

ǫ2 + 1
, ǫ =

2(E − Ea)

Γf
, (4.1)

where qf is called the Fano asymmetry parameter and Γf is the width of the state |a〉.

The Fano minimum occurs at ǫ = −qf . The parameter qf depends on the relative

strengths of the independent transitions to the states |a〉 and |E〉. If qf is large,

interference disappears.

In order to observe Fano resonance in OMS, we concentrate on the same double-

cavity optomechanical system shown in Fig. 4.2 as we studied in the previous section.

For each cavity, we denote its field by ai, frequency ωci and decay rate κi, i = 1, 2. The

1 1,l lω E
2 2,l lω E

,p pω E

2outE
1outE

Figure 4.2: Schematic double-cavity OMS.

field annihilation and creation operators satisfy the commutation relation [ai, a
†
j] =

δij . In this section, we ignore the internal decay and set η = 1. The probe laser
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with frequency ωp, is sent into cavity 1. The two cavities are coupled only via the

oscillations of the mechanical mirror which are produced by the applied strong laser

fields Eli’s. Further the two cavities can be in different frequency regimes. We use the

normalized coordinates Q =
√

mωm/~q and P =
√

1/(m~ωm)p for the mechanical

oscillator with commutation relations [Q,P ] = [q, p]/~ = i. We define the coupling

coefficients gi, driving laser amplitude Eli for each cavity i = 1, 2. The probe laser is

applied only to cavity 1. Then the Hamiltonian for this system is given by

H = H1 +H2 +Hm +Hdiss,

H1 = ~(ωc1 − ωl1)a
†
1a1 − ~

√
2g1a

†
1a1Q + i~El1(a†1 − a1) + i~(Epa†1e−iδt − E∗

pa1e
iδt)

H2 = ~(ωc2 − ωl2)a
†
2a2 + ~

√
2g2a

†
2a2Q+ i~El2(a†2 − a2)

Hm =
1

2
~ωm(P

2 +Q2), (4.2)

where δ = ωp − ωl1 is the detuning between the probe field and the driving field

in cavity 1. All the dissipative interactions are denoted by Hdiss. These include the

leakage of photons from both cavities and the damping of the mirror oscillation. Note

that the optomechanical coupling terms g1 and g2 are different by their signs because

a certain mechanical displacement Q increases the resonance frequency of one cavity

while decreases that of the other one. The Hamiltonian (3.1) has been written by

working in a picture so the very fast frequencies ωli’s are removed. This results in

detuning terms like (ωci − ωli)a
†
iai. The equations of motion for Q, P , ai and a†i are

found to be

Q̇ = ωmP,

Ṗ =
√
2(g1a

†
1a1 − g2a

†
2a2)− ωmQ− γmP,

ȧ1 = −i(ωc1 − ωl1 −
√
2g1Q)a1 − κ1a1 + El1 + Epe−iδt,

ȧ2 = −i(ωc2 − ωl2 +
√
2g2Q)a2 − κ2a2 + El2.

(4.3)
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The output fields from the two cavities are given by

E1out = 2κ1(a10e
−iωl1t + a1+e

−i(ωl1+δ)t + a1−e
−i(ωl1−δ)t)− Epe−iωpt − El1e−iωl1t,

E2out = 2κ2(a20e
−iωl2t + a2+e

−i(ωl2+δ)t + a2−e
−i(ωl2−δ)t)− El2e−iωl2t.

(4.4)

The output fields in the form of Eq. (4.4) contain components at three different

frequencies: the driving frequency ωl1; the anti-Stokes frequency, which is also the

probe frequency, ωl1 + δ = ωp; and the Stokes frequency ωl1 − δ. Among these three

components, we are most interested in the generated anti-Stokes and Stokes sidebands

and we display them as the normalized quantities defined by Eias = 2κiai+/Ep and

Eis = 2κiai−/Ep. The actual normalized output field at the anti-Stokes frequency

from the cavity 1 is given by (E1as − 1), cf. Eq. (4.4). The anti-Stokes field would

be resonantly enhanced in the vicinity of the cavity frequency ω1, when both the

coupling fields are tuned by an amount close to the mechanical frequency below

their corresponding cavity frequency, i.e. ∆1 ∼ ωm. The driving laser enhanced

coupling efficient is defined as Gi = ai0gi for each cavity. We work in the regime with

cooperativity Ci = 2|Gi|2/κiγm > 1 in which the OMS is strongly coupled, then the

anti-Stokes and Stokes fields in cavity 1 are given by

E1as =
2κ1

[κ1 − i(δ −∆1)] +
|G1|2

[γm
2
− i(δ − ωm)] +

|G2|2

[κ2 − i(δ −∆2)]

, (4.5)

E1s =
− iκ1/ωm

1 +
[κ1 + i(δ −∆1)]

|G1|2
{

[γm
2
+ i(δ − ωm)] +

|G2|2

[κ2 + i(δ −∆2)]

}

. (4.6)
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Similarly, the anti-Stokes and Stokes fields in cavity 2 are found to be

E2as =
− 2κ2

G∗
1

[κ1 − i(δ −∆1)]

G2

[κ2 − i(δ −∆2)]

|G1|2

[κ1 − i(δ −∆1)]
+

|G2|2

[κ2 − i(δ −∆2)]
+ [γm

2
− i(δ − ωm)]

, (4.7)

E2s =
κ2

G∗
2

ωm
·

G1

[κ1 − i(δ −∆1)]

|G1|2

[κ1 + i(δ −∆1)]
+

|G2|2

[κ2 + i(δ −∆2)]
+ [γm

2
+ i(δ − ωm)]

. (4.8)

4.2 Fano resonance in single-cavity OMS

We examine now Fano resonances in the output fields. We have four different fields

Eias, Eis, and i = 1, 2. We first decouple cavity 2 by setting G2 = 0. For this system,

the anti-Stokes field is

E1as =
2κ1[

γm
2
− i(ωp − ωl1 − ωm)]

[κ1 − i(ωp − ωc1)][
γm
2
− i(ωp − ωl1 − ωm)] + |G1|2

. (4.9)

Typically the mechanical damping is much smaller than the cavity damping, γm ≪ κ1,

and we work in the resolved sideband limit, ωm ≫ κ1. We expect two resonances: (i)

when the probe is around the cavity frequency ωp ≈ ωc1, and (ii) when it is around

the anti-Stokes sideband of the driving laser ωp ≈ ωl1 + ωm. In order to keep these

two resonances distinct, we define a nonzero frequency offset Ω1 = ∆1 − ωm 6= 0, i.e.

ωc1 6= ωl1 + ωm. For clarity, we show the relations between different frequencies in

Fig. 4.3. The resonance at ωp = ωl1 +ωm would have a width in the order of ΓEIT(≪

κ1). The frequency offset factor Ω1 plays an important role in the production of the

Fano line shapes. Physically it means that the anti-Stokes process is not resonant

with the cavity frequency. We examine the structure of Eas1 near the resonance

ωp = ωl1 + ωm = ωc1 − Ω1 for a fixed value of Ω1, and we define y = ωp − ωc1 + Ω1.
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Figure 4.3: Schematic illustration of frequencies used in obtaining Fano lineshapes.

Fano asymmetry parameter qf is defined in terms of detuning qf = −Ω1/κ1. The

effective damping is defined by Γf1 = |G1|2/[κ1(1 + q2f )].

In the vicinity of this resonance, y ∼ 0 and Eq. (4.9) can be approximated to

E1as ≈
2κ1(γm/2− iy)

(κ1 + iΩ1)(γm/2− iy) + |G1|2

≈ 2κ1

κ1 + iΩ1

· y

y + i|G1|2
κ1+iΩ1

, (4.10)

and hence it can be simplified to such a form similar to (4.1)

Re[E1as] =
2

1 + q2f
· (ȳ + qf )

2

ȳ2 + 1
, (4.11)

where ȳ = y/Γf − qf , Γf
∼= κ1|G1|2

Ω2
1+κ2

1
, and qf = −Ω1/κ1. The profile (4.11) has exactly

the same form as the classic profile of Fano resonance with maximum at ȳ = 1/qf

and zero at ȳ = −qf . The asymmetry parameter qf is related to the frequency offset

Ω1. Keep in mind that this is derived in the vicinity of y ∼ 0, i.e. ωp ≃ ωc1 − Ω1.

In order to see explicitly the nature of the output fields, we use the following set

of experimentally realizable parameters ωm = 2π × 10MHz, γm = 2π × 0.01MHz,

κ1 = 2π × 1MHz, and G1 = 2π × 0.3MHz. We display the full profile of the output

fields in Fig. 4.4(a) as a function of (ωp − ωc1)/κ1 for a single cavity OMS. It shows

the narrow Fano profile as well as the relatively broad resonance near ωp ∼ ωc1. For

detuning ∆1 = ωm (dotted curve), we obtain the standard EIT profiles [58–60]. As

we increase the detuning, the Fano resonance shifts away from the cavity resonance
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Figure 4.4: The anti-Stokes field Eas (a) and the Stokes field Es (b) as a function of

frequency of the probe laser input ωp for the OMS. The black dotted, blue dashed and

red solid curves are corresponding to Ω1 = 0, Ω1 = 0.5κ1 and Ω1 = κ1, respectively.

frequency and becomes asymmetric. Each of these Fano lineshapes has a zero point

exactly at the frequency ȳ = −qf or equivalently ωp−ωc1 = −Ω1. Our approximation

formula (4.11) and the numerical curves obtained directly from (4.5) agree well.

Safavi-Naeini et al. [60] have observed such profiles for a broad range of qf values.

What we have demonstrated in this section is how Fano line shapes can arise in OMS

under the condition γm ≪ κ1. When γm starts increasing, the character of the line

shape starts changing in a manner similar to changes in the Fano line profiles when

the radiative effects are included.

It is also noteworthy to study the Stokes sideband generated by the coupling laser

and the mechanical oscillator, although it is suppressed because it is an off-resonantly

process. In Fig. 4.4(b), we plot the Stokes sideband. The line shape is asymmetric

though a good signature of interference is missing. This is because Fano resonance

requires two coherent routes for building up the cavity field, which can interfere with

each other, whereas the only route producing Stokes sideband is via the combination

of coupling field and the mechanical phonons.
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4.3 Double Fano resonances in an optomechanical system

Recently double cavity configurations have attracted a lot of attention because of their

wide applicability in photon switching [68], state transfer [82, 83] and transduction of

photons [66]. We discuss yet another possibility, making use of double cavities to tune

the Fano resonances. In this section, we will show how we can change and control the

Fano resonance by adding a second cavity in the OMS. When the coupling fields exist

in both cavities, the denominator of Eq. (4.5) becomes cubic and hence the number of

roots increases from two to three. This is because we have three coupled systems: two

cavity modes and one mechanical mode. At the same time, the numerator in (4.5)

becomes a quadratic function of y suggesting the possibility of two different minima

in the output fields. Therefore, a single Fano resonance goes over to a double Fano

resonance.

Next we examine the quantitative features of the double Fano resonance in OMSs.

The parameter space is large and therefore we begin by fixing the detuning in cavity

1 as ∆1 = ωm + κ1 so that its Fano asymmetry parameter qf = −1, and we let

the detuning of cavity 2 arbitrary such that ∆2 = ωm + Ω2. In the vicinity of

y = ωp−ωc1+κ1 ∼ 0, the roots of the numerator in Eq. (4.5) determine the existence

of the Fano minima. We first discuss the case when |G2|2 ≫ Ω2
2. Then to first order

in dampings, the roots are

y± ≃ ±G2 +
Ω2

2
− i

κ2 + γm/2

2
, (4.12)

leading to the splitting of the Fano resonances into two. The power of the coupling

field in cavity 2 determines their frequency splitting. In Fig. 4.5(a), we explicitly

show the splitting of the Fano resonance in the double-cavity OMS using the same

parameters for cavity 1 and κ2 = 0.05κ1, Ω2 = 0.1κ1 for cavity 2 with different

coupling strengths. In Fig. 4.5(a), the thin curve shows a single Fano resonance when

the coupling field in cavity 2 is absent. As we increase the coupling field in cavity
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Figure 4.5: The anti-Stokes fields Eas in cavity 1 (a) and in cavity 2 (b) as a function

of frequency of the probe laser input in a double-cavity OMS. The thin black, blue

dashed and red solid curves are corresponding to different coupling strengths of cavity

2 that |G2|/κ1 = 0, 0.15 and 0.3, respectively. We set Ω2 = 0.1κ1 and κ2 = 0.05κ1.

2, the Fano resonance splits and the splitting increases linearly as we increase the

coupling power. Apart from the splitting, their resonance frequency center is shifted

by an amount Ω2/2. The frequency splittings of the two Fano resonances are 0.3κ1

and 0.6κ1, which respectively equals to 2|G2|. The frequency splitting is independent

of the detuning of cavity 2, as long as it is close to ωm. Therefore, one can always

obtain the coupling strength, as well as the coupling power, by measuring the double

Fano resonances. In the figure, the minimum values of the double Fano resonances

do not go to zero due to the finite values of κ2 and γm. In an OMS with lower κ2,

we should be able to obtain a lower minimum and a higher maximum in the double

Fano resonances. This is reminiscent of the result in the context of photoionization

in which the value of the minimum depends on the radiative effects.

In Fig. 4.5(b), we plot the anti-Stokes field in cavity 2 in response to the probe

laser input in cavity 1. We see asymmetric peaks generated around the frequency of

the Fano resonances in E1as and their widths are similar to the corresponding Fano

resonances. Both the peaks heights and peaks splitting increase with the increasing

of the coupling power. Physically, this can be interpreted as the probe energy in
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cavity 1 is transferred to cavity 2 via the mechanical resonator. The anti-Stokes field

in cavity 2 shows anti-symmetric split Fano resonances.

The characteristics of the double Fano resonances are different in the weak cou-

pling limit. When |G2|2 ≪ Ω2
2, the roots of the numerator in Eq. (4.5) determining

the Fano minima are

y+ ≃ −|G2|2
Ω2

− iκ2
|G2|2
Ω2

2

− i
γm
2
(1− |G2|2

Ω2
2

)

y− ≃ Ω2 − iκ2(1−
|G2|2
Ω2

2

)− i
γm
2

|G2|2
Ω2

2

.

(4.13)

The root y+ indicates a frequency shift of the Fano resonance with an amount

−|G2|2/Ω2, and the root y− implies the emergence of a new Fano resonance around

y ∼ Ω2 besides the original Fano resonance around y ∼ 0. In Fig. 4.6, we illus-

trate both the anti-Stokes and Stokes field in cavity 1 using the following parameters

κ2 = 0.5γm = 0.005κ1, Ω2 = −5γm = −0.05κ1, and G2 = 0.02κ1, (compared with

G2 = 0 for the single cavity case as dashed curves) and parameters for cavity 1 are

identical to Fig. 4.5. Using these parameters, the zero point frequency shift of the

Figure 4.6: The anti-Stokes field (a) and Stokes field (b) in cavity 1 as a function of

frequency of the probe laser input in a double-cavity OMS. The solid curves: double-

cavity OMS with G2 = 0.02κ1 shows the emergence of a the second Fano resonance,

compared to the dashed curve: single cavity OMS. The inset in (a) shows the full

profile in a large scale. We set Ω2 = −0.05κ1 and κ2 = 0.5γm = 0.005κ1.

original Fano resonance is calculated to be∼ 0.008κ1 and the width increase to be neg-
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ligible. In Fig. 6.7(a), the new Fano resonance emerges around ωp−ωc1+Ω1 ≃ −0.06κ1

which matches our calculation.

In Fig. 4.6(b), we also plot the Stokes field in cavity 1. It is interesting that

a narrow dip is created inside the original single-peak lineshape when cavity 2 is

coupled to the OMS. The widths of the broad lineshape and the narrow dip are

close to the widths of the original and newly-emerged Fano resonances of the anti-

Stokes field in cavity 1, respectively. The dip is caused by cavity 2 adding an extra

damping mechanism to the mechanical resonator and destructively interfering with

the mechanical damping, so that it prevents the mechanical mode from aiding the

generation of the Stokes field in cavity 1.

4.4 Fano resonances in quantum fluctuations of fields

In the previous sections, we studied the OMS when the optical cavity is fed by both

a detuned coupling field and a weak probe field, and found its output exhibits Fano

resonance. Now we will study the quantum fluctuation of the cavity field without

any input probe field, as illustrated in Fig. 4.7. The quantum fluctuation of the

1ina
2ina

2outa
1outa

ξ

1lE
2lE

Figure 4.7: Schematic double-cavity OMS. Here Eci’s are coherent fields and aiin’s are

the quantum vacuum fields. ξ is the Brownian noise.

cavity fields arises (i) directly from the fluctuation of the vacuum input and (ii) from

the process of photon creation via an oscillating mirror subjected to thermal noise.
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Those two mechanisms can interfere destructively creating a zero amplitude in the

fluctuations of the cavity field.

In a double-cavity OMS, the quantum Langevin equations governing the operators

Q, P , ai and a†i are given by

Q̇ = ωmP,

Ṗ =
√
2(g1a

†
1a1 −

√
2g2a

†
2a2)− ωmQ− γmP + ξ,

ȧ1 = −i(ω1 − ωc1 −
√
2g1Q)a1 − κ1a1 + Ec1 +

√
2κ1a1in,

ȧ2 = −i(ω2 − ωc2 +
√
2g2Q)a2 − κ2a2 + Ec2 +

√
2κ2a2in.

(4.14)

where aiin and a†iin are the input noise from cavity i and ξ stems form the thermal

noise of the mechanical resonator at finite temperature. Their correlation functions

in frequency domain are given in Eq. (1.8) and they can be written in the frequency

domain as

〈aiin(ω)a†iin(ω′)〉 = 2πδ(ω − ω′)〈ξ(ω)ξ(ω′)〉 = 2π
γm
ωm

ω

[

1 + coth

(

~ω

2kBT

)]

δ(ω + ω′),

(4.15)

where kB is the Boltzmann constant and T is the temperature of the environment of

the mirror.

Equations. (4.14) are difficult to solve because they are nonlinear. However, con-

sidering that the quantum fluctuation values around their steady states are relatively

small, we can adopt the standard linearization method by separating the fluctuations

from their mean values,

Q = Q0 + δQ, P = P0 + δP, ai = ai0 + δai, (4.16)

for i = 1, 2. When expanding the products of two operators A and B, we can make

the approximation δ(AB) ≈ A0δB + B0δA so that quantum Langevin equations are
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modified as

δQ̇ = ωmδP,

δṖ =
√
2g1(a

∗
10δa1 + a10δa

†
1)− g2(a

∗
20δa2 + a20δa

†
2)− ωmδQ− γmδP + ξ,

δȧ1 = −(κ1 + i∆1)δa1 + i
√
2g1a10δQ +

√
2κ1a1in,

δȧ2 = −(κ2 + i∆2)δa1 − i
√
2g2a20δQ+

√
2κ2a2in,

(4.17)

The coupling fields are absorbed in the steady state mean values, so they do not

show explicitly in Eq. (4.17). ai0’s and ∆i are defined identically to Sec. 4.1. In

order to get the spectra of the fluctuations in the quantities δQ, δP , δai and δa†i , we

Fourier transform them into the frequency domain using f(t) = 1
2π

∫ +∞
−∞ f(ω)e−iωtdω.

By solving them, we obtain the fields in cavity 1 containing the signature of the

quantum fluctuations

The fields in cavity 1 containing the signature of the quantum fluctuations can be

calculated as

√
2κ1δa1(ω) = E1(ω)a1in(ω) + F1(ω)a

†
1in(−ω)

+ E2(ω)a2in(ω) + F2(ω)a
†
2in(−ω) + V (ω)ξ(ω), (4.18)

and fluctuations δa2(ω) in cavity 2 can be calculated similarly using the symmetry

property of the double-cavity configuration. Note that the term E1(ω) physically

means that a noise photon at ω + ωc1 produces a photon at frequency ω + ωc1 where

as the term F1(ω) corresponds to the four wave mixing process where a photon of

frequency ωc1 − ω produces a photon of frequency ωc1 + ω. Similar interpretations

apply to E2(ω) and F2(ω). Thus E1(ω) and F1(−ω) would have direct relation to the

anti-Stokes and Stokes fields discussed in the earlier sections. The mechanical noise

can be suppressed by cooling down the environment temperature, though it is the

dominant contribution to the fluctuations at high temperatures, and hence we omit
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the ξ(ω) term. Here Ei(ω)’s, and Fi(ω)’s are the functions given by

E1(ω) =
2κ1

D(ω)

−2i|G1|2
(κ1 + i∆1 − iω)2

+
2κ1

κ1 + i∆1 − iω
,

F1(ω) =
2κ1

D(ω)

2i|G1|2
(κ1 − iω)2 +∆2

1

,

E2(ω) =

√
2κ12κ2

D(ω)

2iG∗
1G2

(κ1 + i∆1 − iω)(κ2 + i∆2 − iω)
,

F2(ω) =

√
2κ12κ2

D(ω)

2iG1G
∗
2

(κ1 − i∆1 + iω)(κ2 − i∆2 − iω)
,

D(ω) =
∑

i=1,2

2∆i|Gi|2
(κi − iω)2 +∆2

i

− ω2
m − ω2 − iωγm

ωm
.

(4.19)

The quadratures of the field in cavity 1, which can be measured using homo-

dyne detection, have the spectra defined as 〈X1(Ω)X1(ω)〉 = 2πS1Xδ(ω + Ω) and

〈Y1(Ω)Y1(ω)〉 = 2πS1Y δ(ω+Ω) with X1 = (δa†1+ δa1)/
√
2 and Y1 = i(δa†1− δa1)/

√
2.

Now we calculate the fluctuation spectrum in the X quadrature as

2κ1S1X(ω) =
1

2
|E∗

1(−ω) + F1(ω)|2 +
1

2
|E∗

2(−ω) + F2(ω)|2

=
1

2

∣

∣

∣

∣

2κ1

κ1 + i∆1 + iω

∣

∣

∣

∣

2 ∣
∣

∣

∣

1− 1

D(ω)

4∆1G
2
1

(κ1 + iω)2 +∆2
1

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

√
2κ12κ2

κ2 + i∆2 + iω

∣

∣

∣

∣

2 ∣
∣

∣

∣

1

D(ω)

4∆1G1G2

(κ1 + iω)2 +∆2
1

∣

∣

∣

∣

2

. (4.20)

We first study single-cavity OMS when G2 = 0. The cavity field fluctuation in X

quadrature is given as

2κ1S1X(ω) ≈
κ2
1

2ω2
m

(ω − ωm)
2

(ω − ωm − Ω1G2
1

Ω2
1+κ2

1
)2 + (

κ1G2
1

Ω2
1+κ2

1
)2
. (4.21)

We do not show the expressions of fluctuations S1Y (ω) or S1a(ω) since they do not

exhibit a Fano minimum. Equation (4.21) indicates a Fano lineshape, which has a

minimum at ω = ωm and a maximum at ω = ωm +
Ω1G2

1

Ω2
1+κ2

1
with width Γf =

κ1G2
1

Ω2
1+κ2

1
and

asymmetry parameter qf = −Ω1/κ1. To see the Fano resonance, it is important to

have κ1 ≫ γm and G2
i ≫ κiγm. The spectra S1Xout(ω) and S1Yout(ω) of the output

field are different from the cavity fields by an amount of a1in using the input-output

relation a1out =
√
2κ1δa1 − a1in.
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We illustrate the spectra of the quadrature S1X(ω), S1Y(ω), S1Xout(ω), and S1Yout(ω)

for both single-cavity OMS (solid curves) and double-cavity OMS (dashed curves) in

Fig. 4.8 using parameters as in Fig. 4.5. From the solid curves in the figure, we see
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Figure 4.8: The spectra of the quadratures for the cavity fields and output fields for

both single-cavity OMS (solid curves) and double-cavity OMS (dashed curves). The

parameters used are the same to Fig. 4.5.

that the S1X(ω) quadrature exhibits a clear Fano resonance. The Fano resonance has

a zero point at frequency ω−ωm = 0 and has width Γf = 0.1κ1, both of which match

our calculation. The spectrum of the quadratures S1Xout(ω) and S1Yout(ω) of the

output field also have typically asymmetric line shapes which are signatures of inter-

ferences. These spectra have similarities to the spectra for the Stokes field (Fig. 4.5b).

Note that a formula like Eq. (4.21) shows that the quadrature spectra are determined

by the interference of the Stokes and anti-Stokes terms. The reason is that in the

region of interest in the spectrum S1X(ω), the term E∗
1(−ω) is approximately flat.

When the second cavity is coupled to the system, we expect a splitting of the Fano

lineshape in the spectrum of fluctuations following the classical analysis of Sec. 4.3.

The splittings of the resonances separated by 0.6κ1 = 2G2 appear in the dashed
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curves in Fig. 4.8. The splittings are due to the enhance coupling strength by the

increasing photon number in the cavities, which induced normal mode splitting of the

cavity states.

4.5 Summary

To summarize the results, we have shown how the asymmetric Fano line shapes

can arise in optomechanics. We identify interfering pathways leading to the Fano

resonances. In contrast to atomic systems, the coupling field can be used to tune

Fano resonances using both the frequency and the power of coupling field. In fact,

as displayed in Fig. 1.1b the coupling field opens up another coherent path way. We

give explicit expressions for the width and the asymmetry parameter. The Fano

resonances can be studied both via pump probe experiments and via the study of

the quantum fluctuations in the output fields. The Fano minima are much more

pronounced in the results of pump probe experiments.
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CHAPTER 5

GENERATION OF TWO-MODE SQUEEZED LIGHT

In the previous chapters, we have seen how coherent interaction between cavity pho-

tons and mechanical phonons plays an important role in various phenomena in cavity

optomechanical systems. Using the coupled-oscillator models we are able to design

several optomechanics applications [52, 53, 55, 58] based on the coherence of differ-

ent fields. Those proposals have all been experimentally demonstrated directly [43,

54, 84, 91] or indirectly thanks to the evolutionary development of optomechanics

techniques and the versatility of our proposal.

The field of cavity optomechanics has evolved very rapidly over the past years and

is on the verge of becoming the field of cavity quantum-optomechanics [39, 97–100].

In this chapter, we go beyond the semiclassical description and adopt the quantum

theory of driven optomechanics by taking account of the quantum fluctuations of

vacuum noise and Brownian noise. As we mentioned in the previous chapter, OMS

can be treated as an effective Kerr medium, i.e. providing nonlinear interaction of

photon, subject to dissipation which is non-negligible and even tunable. It is natural

to consider the role of OMS in generating or engineering quantum states of light or

oscillators. One of the simplest non-trivial quantum states is a squeezed state [101–

103]—for a harmonic oscillator, the displacement or momentum uncertainty is below

the ground state uncertainty, i.e. the so called Heisenberg bound; and for the light

field, the fluctuation of its amplitude or phase or a quadrature is below the vacuum

field fluctuation. Squeezed field of light is widely used in the context of quantum optics

enabling one to perform interferometric measurements with precisions beyond the
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standard quantum limit. Recently, the use of squeezed states has also been recognized

as an essential resource for quantum information processing (QIP) [104, 105] in the

continuous variable (CV) regime [106] to realize quantum communication [107, 108],

unconditional quantum teleportation [109] and one-way quantum computing [110,

111].

In this chapter, we use a double-cavity optomechanical system and develop a

quantum optical analog of the method of producing two mode squeezing which is

based on the usage of an entangled pair of photons. We effectively mimic the be-

haviour of a downconverter for producing squeezing in an optomechanical system. In

a downconverter [36, 48, 112], the coupling Hamiltonian, which leads to two mode

squeezing, is given by ξa1a2 + ξ∗a†1a
†
2, where the ai’s are the annihilation operators

for two light fields. The entangled photon pairs ai’s are spontaneously produced from

the pump. An appropriate linear combination of ai’s produces quadrature squeez-

ing. Any system, whose effective interaction can be reduced to this form, becomes

a good candidate for two mode squeezing. Thus the goal is to find systems where

different interactions can be reduced to the form ξa1a2 + ξ∗a†1a
†
2. The third order

nonlinearities in optical fibers can also give rise to such an interaction leading to

squeezing. We now describe how such an effective Hamiltonian can be realized in

cavity optomechanics. A cavity driven by a blue detuned pump can spontaneously

produce a photon and a phonon. Under the usual approximations—undepleted pump

and rotating wave approximation—this process would be described by the effective

Hamiltonian ξa1b + ξ∗a†1b
† where a1 stands for the cavity photon and b stands for

the phonon. Though this Hamiltonian has the form of a downconverter, it cannot

be used to produce squeezing since the phonon frequency is many orders less than

the optical frequency.1 Then one would like to replace the phonon mode by another

1For observation of two mode squeezing, one needs to superpose externally two modes and this

can be done only if the modes are close in frequency. Within the blue cavity the two modes phonon
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optical mode. This will be achieved by using another parametric process where a

red detuned pump photon combines with a coherent phonon and produces a cavity

photon via an up-conversion process. In the undepleted pump and rotating wave

approximations, this is described by ζa†2b + ζ∗a2b
†. Effectively, a cavity driven by

a red detuned pump swaps the cavity photon and phonon. In what follows, we use

both these mechanisms to produce a pair of photons in a double-cavity optomechan-

ical system. Thus we produce a photon pair by using phonons. It should be kept

in mind that although we produce a photon pair, the mediating mechanism is an

active mechanism which puts a limit on the amount of achievable squeezing. This is

in contrast to the situation with a downconverter where the crystal participates in a

passive manner in the sense that it does not contribute to quantum noise. We show

generation of very large two mode squeezing even at an effective mechanical mode

temperature like 10mK (phonon occupancy n̄th = 3.7) which can be obtained either

by precooling or by using cooling techniques such as side band cooling. The large

squeezing is a consequence of active phonon nonlinearities which become large due to

the resonant nature of the underlying processes.

5.1 Theoretical model

As mentioned, we need an optomechanical system with two optical modes inter-

acting with a common mechanical mode. Several possible experimental realizations

have been discussed in Sec. 3.1 including e.g. the “membrane-in-the-middle setup”

[Fig. 5.1(a)], silica microresonator with two preselected optical modes [Fig. 5.1(b)],

and two coupled waveguides enbedded in an optomechanical crystal. In what follows

we continue to use the notation of double-cavity systems, though the discussion would

apply to several other two mode systems. We adopt the same double-cavity OMS

and photon are resonant but it is hard to probe the properties of the linear combination of the

phonon-photon mode.
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Figure 5.1: (a) Schematic of the proposed double-cavity optomechanics where cavity

1 (2) fed by blue (red) detuned driving lasers and the vacuum inputs are coupled

to the same mechanical resonator mediated in thermal bath. Eli, ai, δaiin, δaiint and

δaiout denote the classical driving field, in-cavity optical field, input quantum vacuum

noise, internal quantum vacuum noise and output quantum fluctuation for cavity i,

respectively, and f denotes the mechanical noise. (b) An alternative realization in a

silica microresonator: Two preselected optical modes interacting with a mechanical

mode and the driving lasers frequencies are chosen as in (a).

described in Sec. 3.2. However, the driving laser is blue detuned in cavity 1 and red

detuned in cavity 2, as illustrated in Fig. 5.1. The Hamiltonian is written as

H =
∑

i=1,2

[~ωcia
†
iai + i~Eli(a†ie−iωlit − aie

iωlit)]

+
1

2
~ωm(Q

2 + P 2)− ~
√
2(g1a

†
1a1 − g2a

†
2a2)Q. (5.1)

The driving laser amplitude is related to its power Pli by Eli =
√

2κi
Pli

~ωli
and 2κi is

the decay rate of the cavity i. The second term in (5.1) represents how the external

coherent fields enter the cavity (Chaps. 7 and 9 in [48]). It is convenient to rewrite

the Hamiltonian into a new picture using transformation exp[−i
∑

(ωlia
†
iait)], then

H =
∑

i=1,2

[~(ωci − ωli)b
†
ibi + i~Eli(b†i − bi)]

+
1

2
~ωm(Q

2 + P 2)− ~
√
2(g1b

†
1b1 − g2b

†
2b2)Q, (5.2)

with bi’s defined by ai = bie
−iωlit. We consider the cavity to be subject to both

internal loss and external loss, we write the decay rate of the cavity i as κi = κei+κii,
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where κei and κii denotes the external and internal decay rate of cavity i, respectively.

Then the quantum Langevin equations governing the system become,

Q̇ = ωmP,

Ṗ =
√
2g(b†1b1 − b†2b2)− ωmQ− γmP + ξ,

ḃ1 = −i(ωc1 − ωl1 −
√
2g1Q)b1 − κ1b1 + El1 +

√
2κe1b1in +

√
2κi1b1int,

ḃ2 = −i(ωc2 − ωl2 +
√
2g2Q)b2 − κ2b2 + El2 +

√
2κe2b2in +

√
2κi2b2int,

(5.3)

where biin and biint for i = 1, 2 is the input and internal vacuum noise with correlation

fluctuations

〈biint(t)b†jint(t′)〉 = δijδ(t− t′), 〈biint(t)b†jint(t′)〉 = δijδ(t− t′). (5.4)

By taking the same Fourier transformation, the correlation fluctuations in the fre-

quency domain can be expressed as

〈b̃iint(ω)b̃†jint(−ω′)〉 = 2πδijδ(ω + ω′), 〈b̃iint(ω)b̃†jint(−ω′)〉 = 2πδijδ(ω + ω′). (5.5)

The input-output relation is related only to the external decay rate

b̃iout =
√
2κeib̃i − b̃iin. (5.6)

The noise term ξ stems from the thermal noise of the mechanical resonator at a finite

temperature T , which obeys

〈ξ(t)ξ(t′)〉 = γm
2πωm

∫

ωe−iω(t−t′)

[

1 + coth

(

~ω

2KBT

)]

dω,

where KB is the Boltzmann constant. We follow the standard procedure and solve

(5.3) perturbatively by separating the classical mean value and the fluctuation of each

operator,

Q = Qs + δQ, P = Ps + δP, bi = bis + δbi, (5.7)

for i = 1, 2. In this way, we can solve for the classical mean values of the optical fields

as bis = Eli
κi+i∆i

and Qs =
√
2(|b1s|2g1 − |b2s|2g2)/ωm where ∆i = ωci − ωli ∓

√
2giQs

83



are the mean detuning of the cavities and − is for i = 1 and + for i = 2. Then the

linearized quantum Langevin equations are given by

δQ̇ = ωmδP,

δṖ =
√
2g1(b

∗
1sδb1 + b1sδb

†
1)−

√
2g2(b

∗
2sδb2 + b2sδb

†
2)− ωmδQ− γmδP + ξ,

δḃ1 = −(κ1 + i∆1)δb1 + i
√
2g1b1sδQ +

√
2κe1b1in +

√
2κi1b1int,

δḃ2 = −(κ2 + i∆2)δb1 − i
√
2g2b2sδQ+

√
2κe2b2in +

√
2κi2b2int.

(5.8)

It is convenient to work with new optical and mechanical annihilation operators de-

fined as

b̃1 = δb1e
−iωmt, ce−iωmt = (δQ+ δP )/

√
2,

b̃2 = δb2e
iωmt, c†eiωmt = (δQ− δP )/(

√
2i),

(5.9)

and the input field fluctuations defined as b̃iin = δbiine
∓iωmt, with ∓ for i = 1, 2. These

operators obey the equations

ċ = −γm
2
(c− c†e2iωmt) + f(t) + ig1(b

∗
1sb̃1e

2iωmt + b1sb̃
†
1)− ig2(b

∗
2sb̃2 + b2sb̃

†
2e

2iωmt),

˙̃
b1 = −(κ1 + i∆1 + iωm)b1 +

√
2κe1b1in +

√
2κi1b1int + ig1b1s(ce

−2iωmt + c†),

˙̃
b2 = −(κ2 + i∆2 − iωm)b2 +

√
2κe2b2in +

√
2κi2b2int − ig2b2s(c+ c†e2iωmt).

(5.10)

The rapidly rotating terms in (5.10) correspond to nonresonant FWM processes. For

example for cavity 2 (equation for b̃2), a red pump photon ωc − ωm can produce a

photon of frequency ωc − 2ωm and another photon of frequency ωc by absorbing or

releasing a phonon ωm. The anti-Stokes generation at the cavity resonance frequency

ωc is a resonant process, whereas the Stokes generation at ωc − 2ωm is highly non-

resonant with the cavity resonance, since ωm ≫ κi in the resolved side-band regime.

Similar arguments apply to cavity 1 (equation for b̃1). We drop all the nonresonant
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processes, i.e. the rapidly rotating terms at frequencies 2ωm, and obtain

ċ = −γm
2
c+ iG1b̃

†
1 − iG∗

2b̃2 + f(t),

˙̃b†1 = −(κ1 − iδ1)b̃
†
1 − iG∗

1c +
√
2κe1b1in +

√
2κi1b1int,

˙̃b2 = −(κ2 + iδ2)b̃2 − iG2c+
√
2κe2b2in +

√
2κi2b2int,

(5.11)

where δ1 = ∆1 + ωm, δ2 = ∆2 − ωm and Gi = bisgi for i = 1, 2. Notice that Gi is a

pure imaginary number by the definition of bis under the resolved side-band regime,

∆ ≫ κi. Since the coupling laser in cavity 1(2) is blue(red) detuned by an amount

ωm, δ1 ∼ δ2 ∼ 0, i.e. −∆ ∼ ∆2 ∼ ωm. The correlation relation of f(t) was given

in (1.14). In order to solve these equations, we transform them into the frequency

domain using A(t) = 1
2π

∫ +∞
−∞ A(ω)e−iωtdω, and A†(t) = 1

2π

∫ +∞
−∞ A†(−ω)e−iωtdω, so

that A†(−ω) = [A(−ω)]†. Then the correlation relation is

〈b̃iin(ω)b̃†jin(−ω′)〉 = 2πδijδ(ω + ω′),

〈b̃iint(ω)b̃†jint(−ω′)〉 = 2πδijδ(ω + ω′),

〈f †(−ω)f(ω′)〉 = 2πγmn̄thδ(ω + ω′),

〈f(ω)f †(−ω′)〉 = 2πγm(n̄th + 1)δ(ω + ω′).

(5.12)

The input-output relation is related only to the external decay rate

b̃iout =
√
2κeib̃i − b̃iin, (5.13)

using which we can obtain the output optical fields following a similar procedure as

in the main text,

b̃1out(ω) = −b̃1in(ω) +
√
2κe1

[√
2κe1Es1(ω)b̃1in(ω) +

√
2κe2Fs1(ω)b̃

†
2in(−ω)

+
√
2κi1Es1(ω)b̃1int(ω) +

√
2κi2Fs1(ω)b̃

†
2int(−ω) + Vs1(ω)f

†(−ω)
]

, (5.14)

b̃2out(ω) = −b̃2in(ω) +
√
2κe2

[√
2κe2Es2(ω)b̃2in(ω) +

√
2κe1Fs2(ω)b̃

†
1in(−ω)

+
√
2κi2Es2(ω)b̃2int(ω) +

√
2κi1Fs2(ω)b̃

†
1int(−ω) + Vs2(ω)f(ω)

]

, (5.15)
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where

Es1(ω) =
1

D∗(−ω)

|G1|2
(κ1 + ix1 + iω)2

+
1

κ1 + ix1 + iω
,

Fs1(ω) = − G∗
1G

∗
2

D∗(−ω)(κ1 + ix1 + iω)(κ2 + ix2 − iω)
,

Es2(ω) = − 1

D(ω)

|G2|2
(κ2 + ix2 − iω)2

+
1

κ2 + ix2 − iω
,

Fs2(ω) =
G1G2

D(ω)(κ1 − ix1 + iω)(κ2 + ix2 − iω)
,

Vs1(ω) = − iG1

D∗(−ω)(κ1 + ix1 + iω)
,

Vs2(ω) = − iG2

D(ω)(κ2 + ix2 − iω)
,

D(ω) = − |G1|2
κ1 − ix1 + iω

+
|G2|2

κ2 + ix2 − iω
+ (

γm
2

− iω).

(5.16)

We now give the meaning of the coefficients E, F and V in (5.14)-(5.15). These

coefficients are obtained to all orders in the strengths of the blue and red pumps. The

E’s and F ’s to second order in G can be given simple physical interpretations. Let us

first consider an incoming vacuum photon from cavity 1. It should be borne in mind

that the frequency ω from the cavities corresponds to ωc+ω according to the relation

δaiout = b̃ioute
−iωct. This produces a vacuum photon of frequency ωc + ω in cavity 1

and a photon of frequency ωc − ω in cavity 2. The reason for the production of a

photon of frequency ωc − ω can be understood as follows: A blue detuned photon of

frequency ωc+ωm produces a phonon of frequency ωm−ω and a photon of frequency

ωc + ω. The phonon of frequency ωm − ω interacts with the red detuned pump of

frequency ωc − ωm. This is shown in the diagram in Fig 5.2. The term F2(−ω)

in (5.14) represents the combined effect of these two processes. We can similarly

understand F1(−ω) in (5.14) by considering an incoming vacuum photon from cavity

2. Note that these are the diagrams contributing to the lowest order in G1G2 in

the expression for F2(−ω). The term proportional to |G1|2 in E1(ω) arises from the

diagram Fig. 5.2(a). The Vi terms in (5.14) and (5.15) correspond to the quantum

noise which is added by either the thermal phonons or vacuum phonons. Note that in
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Figure 5.2: The photon-phonon interaction processes in cavity 1 (a) and in cavity 2

(b) and (c) . The curly arrows represent photons and double-line arrows represent

phonons. In contrast to the processes in (a) and (b), the process in (c) involves

incoherent phonons.

lowest order in Gi’s, we can interpret the last term in (5.15) by saying that a thermal

phonon of frequency ωm + ω combines with a red photon of frequency ωc − ωm to

produce a photon of frequency ωc+ω as shown in the Fig. 5.2(c). Similarly in (5.15) a

thermal phonon or a vacuum phonon of frequency ωm −ω and a photon of frequency

ωc + ω combine to create a blue photon ωc + ωm. This is the reverse of the process

shown in Fig. 5.2(a). The net result is the production of the entangled pair of photons

with frequencies ωc + ω and ωc − ω. These two outputs will be combined in the next

section to generate two mode squeezing.

5.2 Squeezing spectra

For studying the squeezing spectra, we combine the output fields δa1out and δa2out to

construct the field d as shown in Fig. 5.3. To make it more general, we add a phase

difference θ between the output fields, then d(t) can be written as

d(t) =
1√
2
[δa1out(t) + eiθδa2out(t)] =

1√
2
[b̃1out(t) + eiθ b̃2out(t)]e

−iωct. (5.17)

In the frame rotating with the cavity frequency ωc,

d̃(t) = d(t)eiωct =
1√
2
[b̃1out(t) + eiθ b̃2out(t)], (5.18)
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Îa    (t)1out

Îa    (t)2out d(t)

Figure 5.3: The combination of the output fields δaiout’s from two cavities using a

50/50 beam splitter.

which obeys the commutation relation [d̃(t), d̃†(t′)] = δ(t − t′). We define as usual

the quadrature variable Xφ(t) = [d̃(t)e−iφ + d̃†(t)eiφ]/
√
2, and hence in the frequency

domain

Xφ(ω) =
1√
2
[d̃(ω)e−iφ + d̃†(−ω)eiφ]

=
1

2

[(

b̃1out(ω) + eiθb̃2out(ω)
)

e−iφ +
(

b̃†1out(−ω) + eiθ b̃†2out(−ω)
)

eiφ
]

=
1

2

[

Ese(ω)b̃1in(ω) + E∗
se(−ω)b̃†1in(−ω) + Esi(ω)b̃1int(ω) + E∗

si(−ω)b̃†1int(−ω)

+ Fse(ω)b̃2in(ω) + F ∗
se(−ω)b̃†2in(−ω) + Fsi(ω)b̃2int(ω) + F ∗

si(−ω)b̃†2int(−ω)

+ Vs(ω)f(ω) + V ∗
s (−ω)f †(−ω)

]

, (5.19)

where

Ese(ω) = [2κe1Es1(ω)− 1]e−iφ +
√
2κe1

√
2κe2F

∗
s2(−ω)eiφ−iθ,

Esi(ω) =
√
2κe1

√
2κi1Es1(ω)e

−iφ +
√
2κe2

√
2κi2F

∗
s2(−ω)eiφ−iθ,

Fse(ω) = [2κe2Es2(ω)− 1]eiθ−iφ +
√
2κe1

√
2κe2F

∗
s1(−ω)eiφ,

Fsi(ω) =
√
2κe2

√
2κi1Es2(ω)e

iθ−iφ +
√
2κe1

√
2κi2F

∗
s1(−ω)eiφ,

Vs(ω) =
√
2κe1Vs1(ω)e

−iφ +
√
2κe2V

∗
s2(−ω)eiφ−iθ. (5.20)
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The squeezing spectrum defined as 〈Xφ(ω)Xφ(ω
′)〉 = 2πSφ(ω)δ(ω + ω′) can then be

obtained using the correlation relations (5.12)

Sφ(ω) =
1

4

[

|Ese(ω)|2 + |Fse(ω)|2 + |Esi(ω)|2 + |Fsi(ω)|2

+ |V (ω)|2γm(n̄th + 1) + |V (−ω)|2γmn̄th

]

. (5.21)

We note that if d̃(t) were a vacuum field, then

Sφ(ω) = 1/2. (5.22)

Hence we define the normalized squeezed parameter as 2Sφ(ω). The magnitude of

squeezing in dB units is then −10 log10(2Sφ). For identical cavities 1 and 2, we set

κe1 = κe2 = κe, κi1 = κi2 = κi and we define the output coupling ratio η = κe/κ =

κe/(κe + κi). The amplitude quadrature (φ = 0) of the output field is

S0(ω) =
1

4

[

|[2κeEs1(ω)− 1]− 2κeF
∗
s2(−ω)|2 + |[2κeEs2(ω)− 1]− 2κeF

∗
s1(−ω)|2

+ 2κe2κi|
[

Es1(ω)− F ∗
s2(−ω)

]

|2 + 2κe2κi|Es2(ω)− F ∗
s1(−ω)|2

+ 2κe|Vs1(ω)− V ∗
s2(−ω)|2γm(n̄th + 1) + 2κe|Vs1(−ω)− V ∗

s2(ω)|2γmn̄th

]

=
1

4

[

|[2κηEs1(ω)− 1]− 2κηF ∗
s2(−ω)|2 + |[2κηEs2(ω)− 1]− 2κηF ∗

s1(−ω)|2

+ 4κ2η(1− η)|
[

Es1(ω)− F ∗
s2(−ω)

]

|2 + 4κ2η(1− η)|Es2(ω)− F ∗
s1(−ω)|2

+ 2κη|Vs1(ω)− V ∗
s2(−ω)|2γm(n̄th + 1) + 2κη|Vs1(−ω)− V ∗

s2(ω)|2γmn̄th

]

= κ2η2
[

|Es1(ω)− F ∗
s2(−ω)− 1

2κη
|2 + |Es2(ω)− F ∗

s1(−ω)− 1

2κη
|2

+ (
1

η
− 1)|

[

Es1(ω)− F ∗
s2(−ω)

]

|2 + (
1

η
− 1)|Es2(ω)− F ∗

s1(−ω)|2
]

+
1

2
κη

[

|Vs1(ω)− V ∗
s2(−ω)|2γm(n̄th + 1) + |Vs1(−ω)− V ∗

s2(ω)|2γmn̄th

]

=
{1

2
+ κη

[

κ|Es1(ω)− F ∗
s2(−ω)|2 + κ|Es2(ω)− F ∗

s1(−ω)|2
]

− Re[Es1(ω)− F ∗
s2(−ω)]− Re[Es2(ω)− F ∗

s1(−ω)]
]}

+
1

2
κη

[

|Vs1(ω)− V ∗
s2(−ω)|2γm(n̄th + 1) + |Vs1(−ω)− V ∗

s2(ω)|2γmn̄th

]

.

(5.23)
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5.3 Squeezing in the output fields from double-cavity optomechanics

We have studied the physics of the squeezing process in optomechanics in analogy to

the down conversion process, and we expect (5.21) to yield squeezing. We illustrate

Figure 5.4: (a) The density plot of the squeezing spectra of the output field b(ω) with

−∆1 = ∆2 = ωm at zero temperature. The middle region between the thick contours

is squeezed. (b) The squeezing spectrum (φ = 0) scaled with γm. (c) The squeezing

spectrum (φ = 0) scaled with κ = 1000γm. The parameter set used in the plots are

ωm = 2π× 50MHz, κ = 2π× 1MHz, γm = 2π× 1kHz, G2 = i2π× 0.1MHz (C2 = 20),

G1 = −G2/
√
2 (C1 = 10), δ1 = δ2 = 0 and θ = π.

the features of our two mode squeezing in the output field d(t) in Fig. 5.4(a) with

θ = π and for cooperativities C2 = 2C1 = 20. We first ignore the effects of internal

loss by setting η = 1. In the plot, we set κ1 = κ2 = κ. The complete set of parameters

is given in the caption. To create this map, we used (5.21) at zero temperature. In the

diagram, we observe the largest magnitude of squeezing in the amplitude quadrature

S0 (see Fig. 5.4(b)). The magnitude of squeezing at ω = 0 is about 12dB. As one

rotates towards the phase quadrature Sπ/2, the squeezing magnitude decreases and

it eventually turns into antisqueezing. In Fig. 5.4(c), we show the spectrum in a

larger scale, and we find that the squeezing only occurs in the frequency region with

ω/γm small. There is an antisqueezing noise floor with a full-width close to κ. When

ω further increases to be comparable to κ, the optomechanical interaction becomes
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negligible and the spectrum turns into vacuum noise, S0(ω) = 0dB.

In Fig. 6.6, we show in detail the dependence of the squeezing on the coopera-

tivity parameters C1 and C2. Before we discuss Fig. 6.6, we analyse the situation

analytically. We find that under the approximation γm, κi ≪ ωm, the peak value is

given by

S0(0) =
1 + (

√
C1 −

√
C2)

4

2(1− C1 + C2)2
+

(
√
C1 −

√
C2)

2(2n̄th + 1)

(1− C1 + C2)2

=

[

1
C2

+ (1−
√

C1

C2
)2
]2

2(1− C1

C2
+ 1

C2
)2

+
(1−

√

C1

C2
)2

(1− C1

C2
+ 1

C2
)2

· 2n̄th

C2
. (5.24)

The first term in (5.24) describes the noise squeezing of the input vacuum field and

the second term arises from the noise due to the thermal bath phonons. A short

derivation shows that S0(0) approaches to its minimum value

Smin(0) =
n̄th + 1

2(C2 + n̄th + 1)
, (5.25)

when C1

C2
→ [(1 + n̄th+1

C2
) −

√

1
C2

+ ( n̄th+1
C2

)2]2 for given C2. For Ci ≫ 1, they can be

approximated as Smin = n̄th+1
2C2+2n̄th

when C1

C2
→ [1− 1√

C2
]2, i.e.

√
C2 −

√
C1 → 1. Thus

the squeezing reaches its maximum magnitude at this limit and it decreases to 0 as

one further increases C1/C2 → 1. In the limit C1 = C2, κ1 = κ2 and δ1 = δ2 = 0; we

see from Eq. 5.11 that the cavity modess couple effectively only to one quadrature

of the mechanical mode. It thus hinders the active participation of the mechanical

mode in the squeezing process as the mediating mechanism, and hence there is no

squeezing as seen from Eq.(5.24). This is in agreement with a recent result [113] that

the system acts more like a phase insensitive amplifier.

Alternatively, if we fix the ratio C1/C2, the squeezing magnitude S0(0) can be

increased by increasing C2. The squeezing magnitude S0(0) is a monotonic increasing

function of C2 and it approaches an asymptotic value S0(0) → 1
2

(

1−
√

C1/C2

1+
√

C1/C2

)2

at

zero temperature. This behaviour is shown in detail in Fig. 5.5(c). This result holds

if 1−
√

C1/C2 ≫ 1/
√
C2, otherwise it goes to 1/2 if C1 = C2.
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We illustrate the dependence of the squeezing magnitude on the cooperativity

parameter or on the pump power in Fig. 5.5. Fig. 5.5(a) shows the squeezing spectrum

Figure 5.5: (a) The squeezing spectra (φ = 0) with C1/C2 = 0.3(red dashed), =

0.5(blue full) and = 0.7(green dotted) at T = 0. (b) The squeezing magnitude at

ω = 0 versus C1/C2 by fixing C2 = 20 at different temperatures. (c) The squeezing

magnitude at ω = 0 versus C2 for different ratios of C1/C2 at n̄th = 0. The three

dots on top of the curves in (b) and (c) correspond to different curves in (a). Other

parameters are the same as in Fig. 5.4.

under different ratios of C1/C2 and we see that squeezing spectrum gains magnitude

but loses width when C1/C2 increases from 0.3(dashed) to 0.5(full) and 0.7(dotted).

This can be roughly understood from the smallest root of the denominatorD(ω), given

by Eqs.(S12). The smallest root occurs at ω = −i(1−C1 +C2)
γm
2
. In Fig. 5.5(b), we

plot the squeezing magnitude at ω = 0 as a function of C1/C2 when the temperatures

are both zero and nonzero. We see that when C1 = 0, the vacuum optical inputs

only interact with cavity 2, and no squeezing process is taking place. The incoherent

phonons from the mirror in the thermal bath result in fluctuations in the optical

output field, hence S0(0) ≤ 0 when T ≥ 0. The magnitude of squeezing S0(0) increases

with increasing C1/C2 until it reaches the maximum squeezing. At T = 0 and C2 = 20,

the maximum squeezing occurs at C1/C2
∼= 0.67 and S0(0) ∼= 0.024 = 13dB. The

system loses squeezing magnitude after this point if C1/C2 keeps increasing.
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The internal losses in the optomechanical system would degrade squeezing. When

the cavities are subject to internal losses, η < 1, the terms in the curly bracket

increases from a small value to 1/2, and hence the squeezing magnitude is degraded.

However, the last term indicates that finite internal loss reduces the effect of the

mechanical noise and, in this aspect, it is beneficial for squeezing. The squeezing

magnitude at ω = 0 becomes

S0(0) =
1

2
(1− η) +

[

1 + (
√
C1 −

√
C2)

4

2(1− C1 + C2)2
+

(
√
C1 −

√
C2)

2(2n̄th + 1)

(1− C1 + C2)2

]

η. (5.26)
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Figure 5.6: The squeezing spectra with internal losses characterized by η = κe/(κe +

κi) and for C2 = 20. The curves are corresponding to η = 1(red dashed), = 0.9(blue

full) and = 0.8(green dotted), respectively. Part (a) gives the spectra as a function

of ω for C1/C2 = 0.7 at n̄th = 0. Part (b) gives the peak value S0(0) as a function

of C1/C2 at n̄th = 0. Part (c) gives the peak value S0(0) as a function of C1/C2 at a

larger n̄th = 20. Other parameters are the same as in Fig. 5.4.

Physically, optical vacuum noise couples into the cavities via both the external and

internal decaying paths (κe and κi). They all participate in the squeezing process and

contribute to the two mode squeezed vacuum state in the cavity fields. However, the

intra-cavity fields only transform into the output fields from the external decay path

κe. It means that the quantum correlation is partially lost from the internal decay
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path κi, and eventually the squeezing magnitude in the output fields is degraded.

Figure 5.6 shows the effect of the internal losses. The squeezing remains significant

even in presence of 10− 20% internal losses.

The physics in the generation of the squeezed vacuum states can be interpreted

using the FWM process via phonons, as shown in Fig. 5.7. In cavity 1, A blue

l1

w 

-w
m

w 
-wc

w 
+wcw 

=w 
+wc m

l2
w 

=w 
-wc m

Figure 5.7: Generation of squeezed states via phonons in FWM process. The curly

arrows represent photons and double-line arrow represents phonons.

detuned driving laser photon (ωl1 = ωc+ωm), when being scattered by the mechanical

oscillator, produces a phonon (ωm−ω) and a photon at a lower frequency ωc+ω. At the

same time in cavity 2, a red detuned driving laser photon (ωl2 = ωc−ωm) by absorbing

the phonon (ωm − ω) produces a photon at ωc − ω. These processes are resonantly

enhanced if both the generated photons are close to the cavity resonance frequency.

Equivalently, the physics can be described by the effective Hamiltonian for the FWM

process in Fig. 5.7: al1al2

∫

Φ(ω)a†ωc−ωa
†
ωc+ωdω+h.c. ≈ α

∫

Φ(ω)a†ωc−ωa
†
ωc+ωdω+h.c.,

when the strong driving lasers al1, al2 can be approximated classically by a number α.

Here Φ(ω) depends on the details of the optomechanical cavities. Such an interaction

has been extensively studied in quantum optics [36, 48, 112] and is known to lead

to the generation of quantum entanglement as well as squeezing. In the context of

double-cavity optomechanics, the generation of entangled pairs has been discussed

previously [44, 114–116].

Our double-cavity optomechanics proposal is fundamentally different from the

ponderomotive squeezing [117–120], which was experimentally realized by Brooks

et al. [118] in ultracold atoms, by Purdy et al. [120] in a membrane setup, and
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by Safavi-Naeini et al. [119] in a waveguide-coupled zipper optomechanical cavity.

In their experiments, a coherent input at the cavity resonance frequency is applied

and the quantum noise of coherent light is reduced by using radiation pressure to

push the mechanical resonator which, in turn, feeds back on the light’s phase. The

output squeezed light is generated at the side-band of the cavity frequency detuned

by ωm, which is approximately equal to the cavity linewidth. The degree of noise

reduction depends on the optomechanical coupling strength. They did not use the

side-band resolved condition and reported reasonable squeezing (several dB) under

experimental conditions. We work in the side-band resolved limit and by using two

different parametric processes, where the driving lasers are red and blue detuned,

produce photon pairs. Such photon pairs are then combined with a beam splitter

to produce squeezing. As a benefit of this particular driving manner, the squeezed

output fields are on resonance to the cavity frequency and hence can be made strong.

The red detuned driving field, on the other hand, inherently ensures the stability

without requiring any extra cooling laser as long as the red detuned pump interaction

is stronger than the blue detuned one.

5.4 Effect of the Brownian noise of the mirror on squeezing

It is known that squeezing is degraded by any kinds of noise effects. In optomechanics,

the Brownian noise of the mirror makes the observation of quantum effects difficult.

As we analyzed in the last section, the squeezing mechanism in our scheme relies

on the coherent phonons generated by the driving field to actively transfer quantum

coherence between two cavity fields. However, at the same time, the mirror is me-

diated in the thermal reservoir which excites incoherent phonons and hence limits

the purity of the squeezed fields. At a high temperature, the system even loses the

squeezing ability. This is illustrated in Fig. 5.5(b), where the curve for n̄th = 20 shows

antisqueezing when C1/C2 < 0.6.
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Figure 5.8: (a) The squeezing spectra (φ = 0) at T = 10mK correspondingly n̄th =

3.7; and (b) purity of the squeezed state with fixed C1/C2 = 1/2 and changing

C2 = 20(blue full), = 40(red dashed) and = 80(green dotted). Other parameters are

the same as in Fig. 5.4. The thin black curve in (b) is the purity for a single mode

thermal state.

We now investigate the effect of the V terms in (5.19) on the possible amount of

squeezing. In Fig. 5.8(a), we plot the output field amplitude quadrature at a finite

temperature T = 10mK and correspondingly n̄th = 3.7. We assume that such a tem-

perature is obtained either by using a dilution refrigerator [33, 121] or by precooling

techniques [120]. Comparing the full curves in Fig. 5.5(a) and in Fig. 5.8(a) which are

both plotted using the same parameters but with different bath temperatures, one

can clearly see the squeezing magnitude decreases from 12 to 6 when the temperature

increases from 0 to 10mK. With a larger phonon occupancy n̄th, the second term in

Eq.(5.24) dominates the spectrum S0(0). Interestingly, in our system, the decrease of

squeezing due to rising the bath temperature can be compensated by increasing the

cooperativity, in a way of enhancing the coupling constant or reducing the decaying

rates. Now we concentrate on Fig. 5.8(a). When C2 is increased from 20 (full) to 40

(dashed) and to 80 (dotted), the squeezing magnitude increases from 6dB to 8dB and

10dB, successively. The widths of the squeezed spectra are increased as well. This

agrees with (5.24) from which we find that increasing C2 essentially reduces the effect
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of n̄th. Equation (5.24) also suggests that a larger cooperativity is always preferable

in order to generate a large squeezing magnitude at nonzero temperatures, although

it never exceeds that of the zero temperature case. One has squeezing as long as the

right hand side of (5.24) is less than 0.5. For C2 = 2C1 = 20, S0(0) has the value

0.030+0.028n̄th. Fig. 5.5(b) also indicates that the increasing n̄th shifts the optimized

ratio of cooperativities C1/C2 for squeezing closer to 1.

We conclude this paper by giving a brief discussion of the state of the output

field. In particular we discuss the purity of the generated state. The generated state

is determined by several dissipative processes and the effects of thermal noise. Thus

the state would in general be mixed. We expect that coherent interactions arising

from the radiation pressure would make the state more and more pure. The purity

of the state is given by the deviation of Trρ2 from unity. For the thermal state

Trρ2 = 1/(2n̄th + 1). The state of the output field d(ω) can be obtained from the

quantum Langevin Eqs. 5.11. These equations imply that the field d(ω) will have a

Gaussian Wigner function. For Gaussian states, the purity can be calculated from

the known result for a single mode Trρ2 = 1/
√
detσ where σ is the covariance matrix

of the state

σ =







2〈X2
0 〉 〈X0Xπ/2 +X0Xπ/2〉

〈X0Xπ/2 +X0Xπ/2〉 2〈X2
π/2〉






, (5.27)

where 〈X0〉 = 〈Xπ/2〉 which are zero under vacuum inputs. Here the operatorsX ’s are

defined as in Eq.(5.19). For our system, different frequency modes of the output field

are uncorrelated as can be seen from Eqs.(5.14) and (5.15) of the incoming vacuum

fields and the mechanical Brownian noise. Hence, we can effectively use the result for

the single mode. In Fig. 5.8(b), we plot the purity of the quantum state of the output

field d(ω) for different C2’s. Note that the dissipative processes affect the purity of the

state. As the temperature increases, the state purity decreases monotonically. The

curves also show that the system with a higher cooperativity C2 = 80 (top dotted
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curve) loses purity slower than one with a lower cooperativity C2 = 20 (bottom full

curve). The state becomes more and pure as C2 increases. This is quite consistent

with the result for squeezing in the output fields.

5.5 Summary

To summarize the results, we have shown how squeezing of the order of 10dB or

more can be generated in a double-cavity optomechanical system. We presented a

detailed discussion of the conditions under which the double-cavity optomechanical

system would lead to the generation of strong squeezing as a result of the generation

of entangled photon pairs. We show that such a photon pair generation can be

described by an effective interaction which is used for generating squeezing using

parametric down conversion and four-wave mixing. However, there is one significant

difference: we generate photon pairs by using active participation of phonons. The

phonon mediated processes lead to additional noise terms which degrade squeezing.

The purity of the generated squeezed light is stronger with a large cooperativity. In

light of the recent progress in optomechanics experiments realizing large cooperativity

in Ref. [42, 122], our proposal has promising experimental feasibility.
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CHAPTER 6

GENERATING QUADRATURE SQUEEZED LIGHT WITH

DISSIPATIVE OPTOMECHANICAL COUPLING

In optomechanical systems, Ponderomotive squeezing of light [117, 119, 120] using a

on resonance driving laser has been proved one of the most promising ways to gen-

erate squeezed light in cavity optomechanics. Safavi-Naeini et al. [119] fabricated a

micromechanical cavity resonator from a silicon microchip and observed the fluctu-

ation spectrum at a level (4.5 ± 0.2)% below the shot-noise limit despite the highly

excited thermal state of the mechanical resonator (104 phonons). Purdy et al. [120]

placed a low-mass partially reflective membrane made of silicon nitride in the middle

of an optical cavity and pushed the squeezing limit to 32% (1.7dB) by cooling the

membrane to about 1mK. Additional ways of producing optical squeezing in optome-

chanical systems have also been proposed. One example is use of a double-cavity

optomechanical system to generate two-mode squeezed light [123]. Another exam-

ple [124] is generation of quadrature squeezed light using the dissipative nature of the

mechanical resonator in a single cavity driven by two differently detuned lasers. In a

closely related subject, Lehnert and co-workers reported the experimental realization

of entanglement between cavity output photon-photon pairs [125] and entanglement

between mechanical motion and microwave fields [126].

It should be noted that much of the work on cavity optomechanics uses dispersive

coupling. However, there are a few studies for dissipative coupling [127–134]—the

intrinsic cavity lifetime depends on the mechanical motion. A theoretical analysis

of dissipative coupling in cavity optomechanics was reported by Elste et al. [127].
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They pointed out that the system gives rise to a remarkable quantum noise interfer-

ence effect which leads to the Fano line shape in the back-action force noise spectra.

Experimentally, Li et al. [128] for the first time reported dissipative coupling in a cav-

ity optomechanics system that comprises a microdisk and a vibrating nanomechanical

beam waveguide. Based on such a setup, Huang and Agarwal [129] proposed a scheme

to beat the standard quantum limit (SQL) by irradiation of squeezed light into the

cavity. Hammerer and co-workers [130, 131] concentrated on dissipative coupling by

placing an optomechanical membrane inside a Michelson-Sagnac interferometer. This

scheme is advantageous in the sense that the dissipative coupling is not due to inter-

nal dissipation, but the output photons are detectable. Weiss et al. [132] presented

a comprehensive study of dissipative coupling in both the weak and strong coupling

limits, and they found the parameter regions for amplification of cooling as well as

EIT and normal-mode splitting. Wu et al. [133] experimentally reported the appli-

cation of torque sensing by using dissipative optomechanical coupling in a photonic

crystal split-beam nanocavity. In 2015, Sawadsky et al. [135] demonstrated cooling

starting from room temperature to 126mK based on the combined effect of dissipative

and dispersive coupling. This is quite a remarkable development where the couplings

can be changed adding flexibility to the operation. This significant cooling in this

experiment encourages us to examine the optical squeezing that can be produced in

dissipative optomechanical interaction.

In this chapter, I develop analytically the theory of ponderomotive squeezing in

cavity optomechanics with dissipative coupling. I will show that the squeezing mag-

nitudes with dissipative coupling are comparable to those achieved using dispersive

coupling. Our novel squeezing scheme broadens the scope of the quantum study

of nonlinear interaction in optomechanics. This proposal is based on the parameters

reported in [135], however, it is not limited to this system and is applicable to any op-

tomechanical systems that can provide combined interactions. This squeezing scheme
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works in the unresolved sideband regime, which has advantages in its easier system

fabrication requirements. Moreover, this particular parameter regime makes it feasi-

ble for obtaining squeezed light with low frequency mechanical oscillators, although

thermal phonons are still an issue. We show that the system can generate a 3dB

squeezed field by use of reasonable driving laser powers when the thermal phonon

occupancy is as large as 1.5 × 105 (the corresponding bath temperature T = 1K ).

The effect of a higher bath temperature can be offset by increasing the driving laser

power. As a by-product, my theory explains the new instability region for small pump

laser red-detunings which was discovered in the experiment [135].

6.1 Theoretical model

We consider the optomechanical system described in the experiment [135] which cou-

ples a mechanical oscillator to a Michelson-Sagnac interferometer. In such an op-

Input

Output

Beam-splitter

Detector

Signal-recycling mirror

Membrane

q

Mirror

Mirror

Figure 6.1: (a) Schematic of the Michelson-Sagnac interferometer which is coupled to

the mechanical motion of a membrane.

tomechancial topology, the input laser beam is split into two counter-propagating

directions and they both interact with a translucent and partially retroreflecting mem-

brane. Altogether four light beams, including two arms which are either reflected or

transmitted through the membrane, interference at the beam-splitter thereby form-
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ing a Michelson-Sagnac interferometer. Without the signal-recycling mirror (SRM) in

the interferometers output port, the interferometer corresponds to a compound mirror

whose effective reflectivity depends on the position of the membrane. This compound

mirror and the SRM together form an optomechanical system and the complete setup

allows for tuning from strong dispersive to strong dissipative optomechanical coupling.

When the membrane vibrates, the mechanical displacement q weakly modulates the

cavity resonance frequency ωc(q) and damping rate κ(q). We expand them to linear

order with respect to the normalized displacement Q to get ωc(Q) ∼= ωc−
√
2gωQ and

κ(Q) ∼= κ −
√
2gκQ, where the dispersive coupling constant 1 gω = (∂ωc/∂q) ∗ qzpf

and the dissipative coupling constant gκ = (∂κ/∂q) ∗ qzpf. Typically, the dispersive

coupling is larger than the dissipative coupling by a factor of gω/gκ = ωc/κ ≫ 1.

However, by placing a micro-membrane inside a Michelson-Sagnac interferometer, it

has been shown that gκ and gω can be made of the same order.

When the optomechanical system is driven by a strong laser with frequency ωl

and power Pl, the Hamiltonian can be written, in the rotating frame, as

H = ~(ωc − ωl)a
†a+

1

2
~ωm(Q

2 + P 2)− ~
√
2gωa

†aQ

+ i~
√

2κ(Q)[a†(Ẽl + ain)−H.c.], (6.1)

where Ẽl =
√

Pl

~ωl
denotes the driving laser amplitude incident on the cavity 2 and ain

represents the input vacuum noise. To proceed, we linearize the Hamiltonian following

the standard procedure by writing a = as + a1, P = Ps + P1 and Q = Qs +Q1. Here

we use the subscript s instead of 0 for the mean values in order to distinguish them

from the ones in the scenario of solely dispersive coupling. The mean values of the

1Note here the dispersive and dissipative coupling constant are defined differently from the ones

in Ref. [57] by a factor of
√
2 for sake of consistent definition throughout this dissertation.

2Note also the difference between Ẽl defined here and El defined elsewhere in this dissertation.

We keep the difference because when the cavity decay rate changes, the intra-cavity driving laser

amplitude also gets modulated even at a constant laser power.
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steady-state under both dissipative and dispersive couplings can be calculated as

as =

√
2κsẼl

κs + i∆s
, Qs =

√
2(

gω
ωm

+
∆sgκ
κsωm

)|as|2, (6.2)

and Ps = 0. Under the effect of a driving laser, the mechanical oscillator displacement

Qs modulates both the cavity resonance frequency and the decay rate. Hence we

define ∆s = (ωc−
√
2gωQs)−ωl as the driving laser detuning from the effective cavity

resonance frequency; and we define κs = κ −
√
2gκQs as the effective cavity decay

rate. Both ∆s and κs depend on the power of the driving laser. However, by tuning

the driving laser frequency ωl, one can always cause it to be on resonance with the

effective cavity frequency, i.e. ∆s = 0. Under this condition, the effective cavity

decay rate is determined by the quadratic equation κ2
s − κκs + 4Ẽ2

l gωgκ/ωm = 0. In

typical OMS, the term 4Ẽ2
l gωgκ/ωm is negligible compared to κ and hence κs

∼= κ.

For example with the parameters reported in [135], 4Ẽ2
l gωgκ/ωm < κ/103 when the

driving power is below 10mW.

Then the linearized Hamiltonian takes the form H = H0 +Hint +Hdamp and

H0 = ~∆sa
†
1a1 +

1

2
~ωm(Q

2
1 + P 2

1 ),

Hint = −~
G∗

ωa1 +Gωa
†
1√

2
Q1 − ~Gκ

a†1 − a1√
2i

Q1, (6.3)

Hdamp = −~
√
2κs(a

†
1ain − a†ina1)− ~

Gκa
†
in −G∗

κain
2
√
κs

Q1,

where Gω,κ = 2asgω,κ is the driving field enhanced dispersive (dissipative) coupling

constant between the optical quadrature X(Y ) and mechanical quadrature Q1
3. The

form of the Hamiltonian (6.6) suggests that it is more intuitive to write the cavity field

in terms of its quadratures: X = (a1 + a†1)/
√
2, Y = (a1 − a†1)/(

√
2i), and [X, Y ] = i.

In the contents of this section, we are interested in generating squeezed light in the

output field. Under the effect of dissipative coupling, the standard input-output

3Note the extra factor of 2 in the definition of Gω,κ compared to G defined elsewhere in this

dissertation. They are related such that GωXQ1 = (2asgω)
a1+a

†
1√

2

b1+b
†
1√

2
= G(a1 + a†1)(b1 + b†1).
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relation reads

ain + aout =
√
2κs(1 +

gκ√
2κs

)a ≈
√
2κsa, (6.4)

since gκ ≪ κs. This relation holds for the field quadrature Xin +Xout ≈
√
2κsX , and

similarly for Y .

When the new type of optomechanical coupling is involved, we have to modify

the stability conditions in solving the nonlinear Hamiltonian. We investigate the

dynamics of the system using the quantum Langevin equation

dΨ(t)/dt = MΨ(t) + Ψin(t), (6.5)

with

Ψ(t) =



















X(t)

Y (t)

Q1(t)

P1(t)



















, Ψin(t) =



















√
2κsXin(t)

√
2κsYin(t)

− ImGκ√
2κs

Xin(t)

ξ(t)− ReGκ√
2κs

Yin(t)



















, (6.6)

and

M =



















−κs ∆s −ReGκ − ImGω 0

−∆s −κs ReGω 0

0 0 0 ωm

ReGω ReGκ + ImGω −ωm −γm



















. (6.7)

The system is stable if all the eigenvalues of the matrix M have negative real parts.

Before we present the stability condition using the Routh-Hurwitz criterion, we would

like to make the following approximation. When the driving laser frequency is not far

off resonance (∆s ∼ 0), the steady state of the field as ∼=
√

2
κs
Ẽl(1− i∆s

κs
). Note that,

although Gω,κ is generally complex, the imaginary part is smaller than the real part

by a factor of ∆s/κs. In this paper, since we concentrate on the unresolved sideband

limit regime, κs ≫ ωm > ∆s, we can make the approximation (ReGω,κ)
2 ∼= G2

ω,κ with
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good precision. We find the condition for stability in our system

∆s(G
2
ω +G2

κ)− ωm(κ
2
s +∆2

s) < 0, (6.8)

ωm∆s

2κsγm
(G2

ω +G2
κ) + ω2

m + (
κ2
s +∆2

s − ω2
m

2κs + γm
+

γm
2
)2 − (

γm
2
)2 > 0. (6.9)

Note that when Gκ → 0, these conditions reduces to the stability condition for

the optomechanical system with purely dispersive coupling Gω. In the unresolved

sideband limit where κs ≫ ωm ≫ γm, Gω,κs
can be treated as purely real and the

conditions (6.8)-(6.9) are simplified as

− γm
2κsωm

(κ2
s +∆2

s)
2 < ∆s(G

2
ω +G2

κ) < ωm(κ
2
s +∆2

s). (6.10)

From this condition, one can see that the system is always stable when ∆s = 0. For

small negative ∆s(≡ ωc − ωl − gωQs), the first inequality in (6.10) imposes a very

tight condition on the stability. Especially with a very high mechanical quality factor

Q = ωm/γm, the condition reduces to (|2∆s|/κs)(G
2
ω +G2

κ)/κ
2
s < 1/Q. This explains

the instability region discovered in [135].

Hereafter, we first focus on the on resonance driving scenario (∆s = 0) and then

discuss the squeezing effect with detuned driving by relaxing this condition. When

∆s = 0, the coupling strength Gω,κ is real. The dynamics of the system can be

described using the quantum Langevin equations

1

ωm
Q̈1 +

γm
ωm

Q̇1 + ωmQ1 = GωX +GκY +
Gκ√
2κs

Yin + ξ, (6.11)

Ẋ = −κsX −GκQ1 +
√
2κsXin, (6.12)

Ẏ = −κsY +GωQ1 +
√
2κsYin. (6.13)

Here, ξ models the Brownian noise acting on the mechanical oscillator, and it obeys

〈ξ(t)ξ(t′)〉 = γm(2n̄th+1)δ(t− t′), where n̄th is the mean phonon occupation number.

The correlations for the vacuum field are 2κs〈Xin(t)Xin(t
′)〉 = 2κs〈Yin(t)Yin(t

′)〉 =

κsδ(t− t′). In the unresolved-sideband limit κs ≫ ωm ≫ γm, hence the vacuum noise

dominates over the Brownian mechanical noise at low n̄th.
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We illustrate the coupling relations of the quantum noises in the optomechanical

system, in Fig. 6.2. The field quadratures are subjected to the vacuum input noise

X Y

1Q
Gω Gω

Gκ− Gκ

inX inY

inYξ

2κ 2κ

2

Gκ

κ

Figure 6.2: The input quantum noises and their coupling relations among different

quadratures (X , Y ) of the cavity field and mechanical mode (Q1). The dashed arrows

show the noise input and coupling due to dissipative coupling Gκ.

Xin and Yin. More importantly, we notice that, due to the dissipative coupling Gκ,

the input vacuum noise Yin is also coupled directly to the mechanical motion Q1. At

the same time, the form of the interaction Hamiltonian shows that Q1 interacts with

the different cavity quadratures at the rates Gω and Gκ. Therefore, Yin is fed into the

system through two paths: (i) it directly couples to the cavity field; and (ii) it couples

to the mechanical motion Q1 dissipatively and then the optomechanical interaction

transfers the noise to the cavity field. These two paths interfere in a coherent manner

and lead to the Fano resonance in the cavity field spectrum.

We calculate the output field by combining Eqs.(6.4)-(6.13) after taking the Fourier

transform, and find

(κs − iω + χGωGκ)Xout + χG2
κYout = (κs − χGωGκ)Xin −

√
2κsχGκξ, (6.14)

(κs − iω − χGωGκ)Yout − χG2
ωXout = χG2

κXin + (κs + 2χGωGκ)Yin −
√
2κsχGωξ,

(6.15)

where χ = ωm/(ω
2
m − ω2 − iωγm) is the mechanical susceptibility. Equations (6.14)

and (6.15) describes how the input quantum noises add to the quantum fluctuation of

the output fields. Without optomechanical interactions, the output field preserves the

input field fluctuations, i.e. , 〈X2
out〉 = 〈Y 2

out〉. As one increases the optomechanical
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interaction strengths Gω and Gκ, the noises are distributed in a nonlinear manner.

The squeezed states are generated when the variance is lower than that of the coherent

state, i.e. , Sθ = 〈Z2
θ 〉 < 1/2 for a specific quadrature Zθout = Xout cos θ + Yout sin θ.

The full solution of the cavity and mechanical modes used for the numerical plots

can be calculated using Eqs. (6.5) and (6.7). The operators can be solved in the

frequency domain by taking the Fourier Transform, so that A†(−ω) = [A(−ω)]†.

Therefore,

Ψ(ω) = TΨin(ω), (6.16)

and

T = −(M + iω1)−1

=
1

D(ω)





κs−iω−χGωGκ ∆s−χG2
κ

−∆s+χG2
ω κs−iω+χGωGκ

χ[Gω(κs−iω)−∆sGκ] χ[Gκ(κs−iω)+∆sGω ]
−iω χ

ωm
(γm−iω)[Gω(κs−iω)−∆sGκ] −iω χ

ωm
(γm−iω)[Gκ(κs−iω)+∆sGω]

χ
ωm

(γm−iω)[−Gκ(κs−iω)+∆sGω ] χ[−Gκ(κs−iω)+∆sGω ]

χ[Gω(κs−iω)+∆sGκ]
χ

ωm
(γm−iω)[(κs−iω)2+∆2

s ] χ[(κs−iω)2+∆2
s]

−χ[(κs−iω)2+∆2
s+∆s(G2

ω+G2
κ)] −iω χ

ωm
[(κs−iω)2+∆2

s]



 , (6.17)

where D(ω) = (κs− iω)2+∆2
s−χ∆s(G

2
ω+G2

κ). The two-time correlation functions of

the input noise and mechanical noise are given in (1.8) and the correlation functions

in the frequency domain can be obtained by taking the Fourier transform yielding

〈Xin(ω)Xin(ω
′)〉 = 〈Yin(ω)Yin(ω

′)〉 = πδ(ω − ω′),

〈ξ(ω)ξ(ω′)〉 ∼= 2πγm(2n̄th + 1)δ(ω + ω′),

(6.18)

where n̄th = [exp( ~ωm

KBT
)− 1]−1 is the mean thermal phonon occupancy number in the

limit of large mechanical quality factor. Under the effect of dissipative coupling, the

input-output relation (6.4) for the field quadratures becomes

Xin +Xout ≈
√
2κsX, Yin + Yout ≈

√
2κsY. (6.19)
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The general quadrature of the output field at any angle θ is

Zθout(ω) = Xout(ω) cos θ + Yout(ω) sin θ

=
√
2κs

4
∑

j=1

(T1j cos θ + T2j sin θ)Ψin,j(ω)− (Xin(ω) cos θ + Yin(ω) sin θ)

=
[

(2κsT11 − 1) cos θ + 2κsT21 sin θ
]

Xin(ω)

+
[

(2κsT12 +GγT14) cos θ + (2κsT22 +GγT24 − 1) sin θ
]

Yin(ω)

+
√
2κs

[

T14 cos θ + T24 sin θ
]

ξ(ω),

= AZX(ω)Xin(ω) + AZY (ω)Yin(ω) + AZξ(ω)
1√
γm

ξ(ω), (6.20)

where the subscripts ij of T denotes the matrix element in the ith row and in jth

column. The factor 1/
√
γm is added in the ξ term considering the correlation for the

mechanical noise has a different dimension from that of the field quadrature as can

be seen in (6.18). From the above equation, we can see that the quantum fluctuation

Xθout(ω) in the output field originates from Xθin(ω), Yθin(ω) and ξ(ω) scaled by the

factors AZX , AZY , and AZξ, respectively. The output field spectra can be calculated

as

Sθout(ω) =
1

2π
〈Zθout(ω)Zθout(ω

′)〉

=
1

2
|AZX(ω)|2 +

1

2
|AZY (ω)|2 + |AZξ(ω)|2

ω

ωm
[1 + coth(

~ω

2KBT
)], (6.21)

where

AZX(ω) =
1

D(ω)

{[

(κ2
s + ω2 −∆2

s)− χ∆s(G
2
ω +G2

κ)
]

cos θ − 2κs∆s sin θ

− 2κsχGω(Gκ cos θ −Gω sin θ)
}

,

AZY (ω) =
1

D(ω)

{

(κ2
s + ω2 −∆2

s) sin θ − 2κs∆s cos θ

− χ[Gκ(κs + iω) + ∆sGω](Gκ cos θ −Gω sin θ)
}

,

AZξ(ω) =

√
2κsγmχ

D(ω)

{

− (κs − iω)(Gκ cos θ −Gω sin θ) + ∆s(Gω cos θ +Gκ sin θ)
}

.

(6.22)

108



In order to achieve squeezing of the cavity field, i.e. , to reduce the quadrature variance

Sθout(ω), one needs to minimize the scale factors for each noise source. Note that at

a low temperature T , coth[~ω/(2KBT )] → 1. Considering the ratio of the leading

terms AZξ/AZX ∼
√

γm/κsGκχ ≪ 1, the contribution from the mechanical noise

is orders of magnitudes smaller than the noise from the cavity field. Therefore, we

should concentrate on minimizing |AZX |2 and |AZY |2.

6.2 Squeezing with purely dissipative coupling

The phenomenon of ponderomotive squeezing with purely dissipative coupling can

be obtained by setting the dispersive coupling strength Gω = 0 and ∆s = 0, so that

Yout
∼= (χG2

κ/κs)Xin + Yin and Xout + (χG2
κ/κs)Yout

∼= Xin+ mechanical noise. The

vacuum input Xin is coupled, not only to Xout, but also to Yout via the mediated

mechanical mode Q1 scaled by the mechanical suspectibility χ and dissipative cou-

pling strength Gκ. When one measures the field Zθout = Xout cos θ + Yout sin θ at

θ 6= 0 ◦ or 90 ◦, Yout interferes partially with Xout since χ(ω) is generally complex.

The interference leads to squeezed quantum noises. The output squeezing spectrum

is

Sdiss
∼= 1

2
+

G2
κ

κs

(

2|χ|2Γdiss cos
2 θ − Reχ sin 2θ

)

, (6.23)

where Γdiss = G2
κ/(4κs) + γm(2n̄th + 1) is the effective mechanical damping rate. By

optimizing θ and χ(ω) we obtain the optimal squeezing magnitude

Sopt
diss =

γm(4n̄th + 3)

G2
κ/κs + 2γm(4n̄th + 3)

. (6.24)

The squeezing magnitude can be enhanced by a large effective dissipative optome-

chanical coupling strength G2
κ/(κsγm) and a low mean phonon occupancy number

n̄th. The optimal squeezed quadrature angle lies at tan θoptdiss
∼= −

√

4G2
κ/(κsγm), and

θoptdiss approaches to 90 ◦ with a large dissipative coupling strength Gκ. From the above

analysis, we can see that the Ponderomotive squeezing relies solely on the interference
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of two paths of Xin. One needs to suppress the input noises Yin and ξ by choosing a

quadrature angle θoptdisp close to 90 ◦. The output field shows anti-squeezing at ω = ωm

when θ 6= 0. To illustrate the squeezing effect, we plot the output field spectra at

different quadratures in Figs. 6.3(a) and 6.3(b) by numerically solving the quantum

Langevin equations (6.11)-(6.13). We use the parameters provided by the experiment

reported in [135], and the specific values are given in the caption of Fig. 6.3. At the

angle θoptdiss, the output spectrum (as shown in (b)) is characterized by a large squeezing

of ∼ 40dB at frequency ω ∼ ωm − 2π × 15Hz and anti-squeezing at ω = ωm.

In the other limit when dispersive coupling solely governs the optomechanical

interaction, i.e. , Gκ = 0, Eqs. (6.14) and (6.15) reduce to Xout
∼= Xin and Yout

∼=

Yin+(χG2
ω/κs)Xin+mechanical noise. This is the conventional Ponderomotive squeez-

ing scheme. It shares a similar noise transformation with the one we discussed

above. Hence we are able to observe a similar squeezing phenomenon, but the optimal

squeezed quadrature is around tan θoptdisp
∼=

√

κsγm/(2G2
ω), and θoptdisp approaches 0 with

a large dispersive coupling strength Gω. The output squeezing spectrum is

Sdisp
∼= 1

2
+

G2
ω

κs

(

2|χ|2Γdisp sin
2 θ + 2Reχ sin 2θ

)

, (6.25)

where Γdisp = G2
ω/κs+γm(2n̄th+1). By optimizing θ and χ(ω) we obtain the optimal

squeezing magnitude

Sopt
disp =

γm(n̄th + 1)

G2
ω/κs + 2γm(n̄th + 1)

. (6.26)

This result is identical to the one derived in [117] and has been experimentally demon-

strated in [119, 120]. The optimal output frequency is (ω−ωm)
2 = Γdispγm/2+γ2

m/4,

which increases with coupling strength G2
κ. We plot the output spectra of dispersive

squeezing in Figs. 6.3(c) and 6.3(d), as a comparison with the dissipative squeezing

in Figs. 6.3(a) and 6.3(b). The optimal squeezing spectrum has a quadrature an-

gle close to 0. The optimal squeezing magnitude is shown as ∼ 30dB, which agrees

with Eq. (6.26). We observe similar output squeezed spectra, although the optimal
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Figure 6.3: Comparison of squeezing spectra with purely dissipative coupling [(a) and

(b)] and purely dispersive coupling [(c) and (d)]: The regions inside the black contours

in the density plots (a) and (c) show 3dB squeezing region and the blue horizontal

lines show the optimal quadratures which are plotted in (b) and (d), respectively.

The dissipative coupling strength is Gκ = 2π × 150 kHz with driving laser power

Pl ∼ 3.5 W; the dispersive coupling strength is Gω = 2π × 75 kHz with driving laser

power Pl ∼ 40 mW. Other parameters are κs = 2π × 1.5 MHz, ωm = 2π × 136 kHz,

γm = 2π × 0.23 Hz, ∆s = 0 and n̄th = 0.

squeezing magnitude is smaller than in Figs. 6.3(a) and 6.3(b) due to lower coupling

strengths.

Physically both the dispersive coupling and the dissipative coupling generate opti-

cal squeezing in a similar manner, in the sense that they couple the input noise from

one quadrature coherently to the other quadrature. Thus the input vacuum noise

couples to the optomechanical system via two paths, as shown in Fig. 6.2. These

two paths interfere and lead to squeezing. The optimal squeezing exists at different
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quadrature angles due to the fact that Gω couples noise from X to Y and Gκ couples

noise from Y to X via the mechanical mode.

6.3 Squeezing with combined effects of dissipative and dispersive

coupling

In the previous section, we studied squeezing phenomena with purely dispersive cou-

pling or dissipative coupling. One natural question is whether the combined effect of

these two coupling regimes could enhance the squeezing. We next study the genera-

tion of squeezed states in the presence of both coupling regimes Gω and Gκ. When the

driving laser frequency is on resonance, ∆s = 0, according to Eq.(6.14), the input vac-

uum fluctuations destructively interfere when GωGκ → κs/χ. Complete destructive

interference exists only when χ is purely real, i.e. , ω ≫ ωm. The output squeezing

spectrum is

Sdisp
∼= 1

2
+(Gκ cos θ−Gω sin θ)

2

[

2|χ|2Γcomb

κs
− Reχ

κs

(

2Gω cos θ −Gκ sin θ

Gκ cos θ −Gω sin θ

)]

, (6.27)

where Γcomb = (4G2
ω +G2

κ)/(4κs) + γm(2n̄th + 1). The optimal squeezing quadrature

angle satisfies tan θopthybr ∼ Gκ/(2Gω) and the squeezing magnitude

Sopt
comb

∼= 1

2
· γm(2n̄th + 1)

(G2
ω +G2

κ/4)/κs + γm(2n̄th + 1)
. (6.28)

We see that the squeezing magnitude can be enhanced by increasing the coupling

strengthes Gω and Gκ for any given mean phonon number n̄th. The squeezed quadra-

ture rotates from quadrature X to quadrature Y as the ratio of the coupling strengths

Gκ/(2Gω) increases.

In Fig. 6.4(a), we plot the output spectra at different quadratures when the op-

tomechanical system is subject to both dispersive and dissipative couplings. We set

the coupling strengths such that Gω = 5Gκ in accordance with the experimental

parameters in [135]. The density plot resembles the main feature of Ponderomotive
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Figure 6.4: The density plots (a) and the optimal squeezing quadrature (b) of the

output field spectra with combined dispersive and dissipative couplings. The regions

inside the black contours in (a) show the 3 dB squeezing region and the blue horizontal

line shows the optimal quadrature which is plotted in (b). The coupling strengths

are Gω = 2π × 75 kHz and Gκ = 2π × 15 kHz with driving laser power Pl ∼ 40 mW.

Other parameters are identical to those used in Fig. 6.3.

squeezing with purely Gω or Gκ, except for a trivial quadrature difference. However,

there are distinctions. The frequency bandwidth of the squeezing spectra increases

at large quadrature angle and shrinks at lower quadrature angle. This is particularly

advantageous in practice, since one usually focuses on a specific quadrature and hence

one can make use of the larger bandwidth of the squeezed spectra.

In the optomechanical ponderomotive squeezing process, the mechanical element

functions as an active mediating element and it provides coherent coupling between

two field quadratures. At the same time, it is subject to the environmental Brown-

ian noise which is incoherent with the cavity field. In the reported Ponderomotive

squeezing experiments with purely dispersive optomechanical coupling, the environ-

ment temperature sets the limit of the squeezing magnitudes: Safavi-Naeini et al.

[119] reported 0.2 dB squeezing at n̄th ∼ 104 and Purdy et al. [120] pushed the

squeezing magnitude to 1.7 dB with a lower thermal phonon occupancy n̄th = 47.

We now compare the effect of the thermal phonons on squeezing with different
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Figure 6.5: The effects of the mean thermal phonon occupation n̄th on the optimal

squeezing magnitudes with different couplings. The optimal squeezing magnitudes

are very similar for finite n̄th hence the three curves overlap.

optomechanical couplings. Equations. (6.24), (6.26) and (6.28) indicate that the

output quadrature variance increases approximately proportionally to n̄th at large

coupling rates. Comparing Eqs. (6.24) and (6.26), we find that optomechanical sys-

tems with purely dissipative coupling (Gκ) or purely dispersive coupling (Gω) can

generate squeezed fields of similar squeezing magnitude if Gκ = 2Gω. In Fig. 6.5(a),

we illustrate the effects of the mean thermal phonon number on the optimal squeez-

ing magnitude under different coupling regimes. The curves show that the squeezing

magnitudes decrease with large thermal phonon occupancy n̄th. Even when the ther-

mal phonon number is as high as n̄th = 1000, the system yields about 10dB squeezing

with a combination of optomechanical couplings at Pl = 40mW. If we increase the

driving laser power to Pl = 150mW, the squeezing magnitude increases to 15dB.

Note that, this phonon number is however difficult to achieve with low mechanical

frequency ωm since n̄th is inversely proportional to ωm. For example, the system has

to be pre-cooled down to T ∼ 6.5mK in order to get n̄th = 1000. On the other hand at

high bath temperature, large squeezing magnitude requires an increase in the coupling

strength, which can be achieved by increasing the pump power. If the bath temper-
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ature increases to T = 1K, the corresponding thermal phonon number increases to

n̄th ∼ 1.5 × 105. One needs to increase the driving laser power to Pl ∼ 750mW in

order to get 3dB squeezing. For this power the system is still in the stable region.

Note however that the pump power cannot increase infinitely as too strong a pump

laser leads to instability of the system dynamics. We discussed the stability condition

in detail using the Routh-Hurwitz criterion in Sec. 6.1. For example, our linearization

method breaks down and the system settles into instability when the laser power

reaches Pl ∼ 830mW for the parameters given above and the laser frequency set as

ωl = ω0 − 3ωm. At this power, the coupling strengths are Gω = 2π × 250kHz and

Gκ = 2π × 50kHz. A lower driving laser frequency allows for a higher critical pump

power. Our analysis also reveals an instable region when the effective driving laser

detuning ∆s has a small negative value. This explains the special instability region

discovered in [135].

6.4 Squeezing with a fixed frequency driving laser

Sawadsky et al. [135] demonstrated a strong cooling effect in an OMS with both

dissipative and dispersive coupling interactions. The experimental results agree re-

markably well with the theoretical calculation. In the experiment, the authors fixed

the driving laser frequency ωl on resonance with the empty cavity resonance frequency

ωc. When the driving laser power increases, the effective cavity resonance frequency

changes due to the displacement of the mechanical membrane and this leads to an

effective detuning of the driving laser. In this section, we analyze the squeezing

phenomena in an OMS driven by a laser with fixed frequency ωl = ωc. Under this

condition, the effective detuning ∆s and effective cavity decay rate κs can be deter-

mined by solving the nonlinear equation set (6.2). We use the parameters reported

in [135]. The solution to (6.2) shows that κs ∼ κ when the driving laser power Ẽl
is below 250 mW. However, the effective driving laser detuning ∆s increases linearly
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Figure 6.6: The change of the effective detuning and mean cavity photon number as

the driving laser power increases from 0 to 200 mW. Other parameters are identical

to those used in Figs. 6.4.

from 0 to a value close to −ωm, as shown in Fig. 6.6. The cavity mean photon number

|as| is also displayed in Fig. 6.6. When the driving laser power is set as 40mW, the

effective detuning ∆s = 2π × 20kHz. The corresponding coupling strengths remain

at the values Gω = 2π × 75kHz, which are similar to the ones used in Figs. 6.3 and

6.4. We show the squeezing spectra with different coupling interactions in Fig. 6.7

at zero temperature. Their optimal squeezing magnitudes reach close to 40 dB. We

find large regions with over 3 dB squeezing in both spectra, as illustrated between

the thick black 3 dB contour lines. We observe large regions of squeezing over 10 dB

and in Fig. 6.7(b) even squeezing over 20 dB. The results are very similar to the ones

in Figs. 6.3(a) and 6.4(a), and even the effects of temperature are similar so they are

not discussed here.

6.5 Summary

To summarize the results, we have developed analytically the theory of Pondero-

motive squeezing in cavity optomechanics with dissipative coupling. We show that

the squeezing magnitudes with dissipative coupling are comparable to those achieved
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couplings with Gω = 5Gκ = 2π × 75 kHz and Pl ∼ 40 mW. Other parameters are

identical to those used in Fig. 6.3 or 6.4. The regions beween the black contours have

over 3dB squeezing.

using dispersive coupling. This novel squeezing scheme broadens the scope of the

quantum study of nonlinear interaction in optomechanics. Our proposal is based on

the parameters reported in [135], however, it is not limited to this system and is ap-

plicable to any optomechanical system that can provide combined interactions. This

squeezing scheme works in the unresolved sideband regime, which has advantages

in its easier system fabrication requirements. Moreover, this particular parameter

regime makes it feasible for obtaining squeezed light with low frequency mechanical

oscillators, although thermal phonons are still an issue. We show that the system

can generate 3 dB squeezed field by using reasonable driving laser powers when the

thermal phonon occupancy is as large as 1.5 × 105 (bath temperature T = 1 K cor-

respondingly). The effect of higher bath temperature can be offset by increasing the

driving laser power. As a by-product, our theory explains the new instability region

for small pump laser red-detunings which was discovered in the experiment [135].
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

In optomechanics, which concerns the coupling between photons and phonons via

radiation pressure — or most recently — also via optical gradient forces, the ultimate

goal is to establish a complete control of the mechanical oscillator down to the single

quantum level. The vigorous theoretical and experimental developments in cavity

optomechanics during the past decade are constantly opening up new avenues with

respect to applications and tests of the foundations of physics. In this dissertation,

I presented my studies of the coherent effects and methods for generating squeezed

state of light in cavity optomechanical systems, incorporating material from my pub-

lications [43, 53–57] and submission [52]. My research horizon is not limited to the

effects within cavity OMS and it expands to the realms of quantum phenomena in

atomic systems [67, 136] and fundamental quantum mechanics [137]. Most of my

studies were motivated by recent experiments which push the state-of-art parameters

in the optomechanical realm. On the other hand, many of my theoretical propos-

als have also been demonstrated experimentally with/by our collaborators or other

groups in this field.

The aim of this dissertation has been to explore the coherent interference effects

between optical/microwave and mechanical fields in optomechanical systems, and to

study the generation of squeezed light by utilizing an active mechanical mode. In

Chap. 1, I explained the the basis of the theoretical model of an optomechanical

system by deriving the Hamiltonian and Heisenberg equations of motion. I presented

the standard linearization procedure to solve the dynamical equations. The stability
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of the dynamical equations was studied using the Routh-Hurwitz criterion.

In Chapter 2, I briefly introduced the EIT and explained the physics behind

EIT by using the coherent photon-phonon interaction processes. I presented results

for the transient EIT, and applied to storage and retrieval of optical pulses. Next,

I adopted Ramsey’s method of separated oscillatory fields to study coherences of

the mechanical system in an optomechanical resonator. The high-resolution Ramsey

fringes are observed in the emission optical field, when two pulses separated in time are

applied. By collaborating with experimental groups, we performed the experimental

demonstration using a silica microresonator.

In Chapter 3, I showed my prediction and experimental verification of electro-

magnetically induced absorption (EIA) in double-cavity OMS. I discussed the origin

of EIA in OMS which exhibits the existence of an absorption peak within the trans-

parency window. The full analytical results provide the width and the height of the

EIA peak. I explained the effect in terms of the dynamics of three coupled oscilla-

tors (rather than two which is used to explain EIT) under different conditions on the

relaxation parameters. The EIA is generic and can be observed in a variety of other

systems. By collaborating with an experimental group, we demonstrated the EIA in

metamaterials. In the last section, I also showed how double-cavity OMS enables us

to achieve a transduction process to a number of different frequencies including, in

principle, the possibility of transduction from optical to microwave frequencies. By

tuning the frequency of the second cavity one can produce output fields at a range

of frequencies. I presented analytical results for the steady-state behavior which is

controlled by the power and the detuning of the field driving the second cavity.

In Chapter 4, I demonstrated the existence of Fano resonances in cavity op-

tomechanics by identifying the interfering contributions to the fields generated at

anti-Stokes and Stokes frequencies. Unlike the atomic systems, the optomechanical

systems provide great flexibility as the width of the resonance is controlled by the
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coupling field. I further showed how the double cavities coupled by a single optome-

chanical mirror can lead to the splitting of the Fano resonance and how the second

cavity can be used to tune the Fano resonances. The Fano resonances are quite sen-

sitive to the decay parameters associated with cavities and the mechanical mirror.

Such resonances can be studied by both pump probe experiments as well as via the

spectrum of the quantum fluctuations in the output fields.

In Chapter 5, I proposed a scheme for generating squeezed light by using a double-

cavity optomechanical system driven by a blue detuned laser in one cavity and by

a red detuned laser in the other. This double cavity system is shown to effectively

mimic an interaction that is similar to the one for a downconverter, which is known

to be a source of strong squeezing for light fields. There are however distinctions,

as the phonons, which lead to such an interaction, can contribute to quantum noise.

I showed that squeezing of the output fields, of the order of 10dB, can be achieved

even for an effective mechanical mode occupation number of about 4 which for the

chosen parameters corresponds to 10mK. These results are generic and applicable

to a wide class of electro- and optomechanical systems involving interaction of two

electromagnetic modes and one mechanical mode.

In Chapter 6, I studied a novel optomechanical interaction, namely, dissipative

optomechanical coupling in which the mechanical displacement modulates the cavity

decay rate, instead of the resonance frequency. This is based on a recent demon-

stration of cooling of a macroscopic silicon nitride membrane based on dissipative

coupling. I theoretically showed that such a system in a cavity can yield good squeez-

ing, which is comparable to that produced by dispersive coupling. I also reported the

squeezing resulting from the combined effects of dispersive and dissipative couplings;

thus the device can be operated in one regime or the other. I derived the maximal fre-

quency and quadrature angles needed to observe squeezing for given optomechanical

coupling strengths. I also discussed the effects of temperature on squeezing.
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In the last chapter, I examined the squeezing capability of dissipative OMS based

on the optomechanical setup in Michelson-Sagnac interferometers (MSI) coupled to

a vibrating membrane. I concluded that squeezing of the order of 10dB or more can

be produced in the output radiation. My next stage of study is to find a method to

increase this squeezing magnitude. It is known that quantum feedback can be useful to

control quantum devices. One possibility is to introduce the quantum feedback control

method to manage the output performance of OMS. Specifically, one can consider

placing a reflective mirror to the output port of the MSI and inject the squeezed

output back to the OMS. This feedback input interferes with the cavity field; therefore

it may further suppress the quantum fluctuation of the specific quadrature leading

to enhancement of the squeezing magnitude. The interference can be controlled by

tuning the phase of the feedback.

The squeezing of the nanomechanical mirror is much more difficult to achieve.

Theoretically, the mirror can be put in a quantum state by pumping the OMS with

squeezed light from the outside or by driving the OMS with both red and blue detuned

pumps. An experimental implementation of this technique has just appeared [138,

139]. One important possibility is to use the anharmonicity of the mirror to produce

mechanical squeezing. This would be an important direction to follow.
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