This dissertation has been microfilmed exactly as received $\quad 66-14,244$
 ROBINSON, Jack Landy, 1940-
 THE EXTRACTION OF TITANIUM- AND NIOBIUM-THIOCYANATE COMPLEXES WITH TETRAPHENYLARSONIUM CHLORIDE.
 The University of Oklahoma, Ph.D., 1966
 Chemistry, analytical

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKIAHOMA
 graduate colliege

ter extraction of titanibu- and niobidm-thiocyanate COIPLEXES WITH TETRAPHETYTARSONIUM CHLORIDE

A DISSERTATIOR
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPEY

BI

JACK LANDY ROBTISON
Horman, Oklahoma

THE EXTRACIION OF TITANIUM- AND NIOBIUM-THIOCYANATE
COIPLEXES WITH TETRAPGETYTARSOSIUM CHLORIDE

ACKHOWLEDGEHIBETS

I wish to extend my sincerest thanks and appreciation to my professor and friend, Dr. Harold E. Affsprung, for his guidance, instruction, and encouragement throughout the course of this research, and during ny formal course work.

I an also grateful for the instruction I have received from wy professors, and the friendship of my fellow graduste students, both past and present.

Especially, I wish to acknowledge the help I have received from wife, Shirley, for her encouragement, patience, and sacrifice throughout this endeavor.

Dedication

Dedicated to the belief and hope that there will evolve a better world, and for many there will be the gift of immortality.

This work is also dedicated to my parents and teachers, all of whom have instilled in me the idea that perseverance is the catalyst for a fruitful endeavor.

TABLE OF COATBNTS

Page
LIST OF TABLES vi
LIST OF ILLESTRATIOAS viii
Chapter
I. IIIRODETGION 1
II. SIATEMITI OF TEE PROBLEA. 19
III. EXPERITEITAL PROCEDURE. 20
IV. RESULIS ARD DISCUSSION. 47
LIST OF REFFREACES 122
APPESDIX (Extraction of Titanium) 128

LIST OF TABLES

Table Page
I. Extraction Efficiency of Niobiun Versus Equilibration Time 58
II. Extraction Efficiency of Riobium Versus Thiocyanate Concentration, Chloroform.System. 59
LII. Extraction Efficiency of Miobius as Function of TPAC1 Concentration, Chloroform Systen 60
IV. Beer's Law Data for Niobium at 390 mu, Chloroform System 77
V. Effect of Various Reagents on Extraction of Niobium 65
VI. Interferences in the Extraction and Determination of Rioidum with TPAC1 69
VII. Beer's Law Data for Niobium, $\bar{y} / \overline{2}$ Chloroform-Acetone System 74
VIIb. Data for Beer's Law Plot of Niobium in 9/2 Masking and Separation Steps 75
VIIc. Beer's Law Data for Niobiam, Cnioroform System with Masking and Separation Steps 76
VIII. Analysis of NBS Standard Steel and Alloy Samples 79
IX. Data for Fariations 1 Analysis of TPA/Niobium xaíio, 今̂/2 Clioroforn-Acetone. 84X. Dete for Variational Amalyais of Tra/Niobium Ratio, 9/2 Ch1oroform-Acetone85
XI. Data for Variational Analysis of SCN/
Niobium Ratio, 9/2 Chloroform- Acetone 86
XII. Data for Variational Analysis of TPA/Miohium Ratio, ChlerciormSystem87
XIII. Data for Variational Analysis to Determine Molar Ratio of Thiocyanate, Chloroform System 88
XIV. Infrared Absorption Bands of Several Arsonium Salts 96
XV. Isothiocyanate Vibrations of Arsonium Complex Salts 97
XVI. Change in Absorbance as a Function of Time Upon Dilution of Chloroform Extracts 106
XVII. Results of Diluting and Drying Cobalt Thiocyanate Extracts 109
XVIII. Absorbance of the Niobium Complex in Chloroform at Various Activities of Water 115

LIST OF ILLUSTRATIOAS

Figure Page
1 Absorption Spectra of the Thiocyanate
Solvents 502 Absorption Spectra of the ThiocyanateComplex of Miobiun in VariousSolvents51
Extraction Efficiency of Niobim VersusEydrochloric Acid Concentration,
Chloroform System 53
4 Extraction Efficiency of Hiobium VersusExtraction Variables56Extraction Efficiency as a Function ofReagent Concentration57
6 Extraction Efficiency Versus AcetoneConcentration627 Beer's Law Curve for Niobium Extract in9/2 Chloroform-Acetone at 390 mu 72
8
Plot for Determining Stoichiometric MolarRatio of TPA to Niobium; 9/2
Chloroform-Acetone System 89
9 Plot to Determine Molar Ratio of10
11Thiocyanate to Eiodium; 9/2Chloroform-Acetone System90
Plot for Determining Molar Ratio of TPA toRiobium; Chioroform System.91
Plot for Determining Molar Ratio ofThiocyanate to Niobium; ChloroformSystem92
Figure Page
12 Infrared Spectrum of Potessinm Thiocyanate 99
13 Infrared Spectrum of Tetraphenylarsonium Thiocyanate 100
14 Infrared Spectrum of the Orange SaltContaining TPA and the ThiocyanateGomplex of Titanius101
15Spectra of a Niobium Solution as a Functionof Water Activity113
20 Absorbance of Niobium Solutions versus Activity of Water 116

THE EETRACTIOR OF NIOBIUA- AR TITANXIM-THIOCXANATE COAPLEXES WITH TETRAPHENYLARSONIOM CHLORIDE

GRAPTER I

INTRODGCTEOAT

Arylarsonium salts have been the subject of extensive investigation because of their wide applicability as analytical reagents. These salts have been found to be useful in volumetric, gravimetric, electrockemical, and spectrophotometric methods and are of interest in particular as cations of ionpairs thich may be extracted from equeous solutions into non-aqueous solvents. Bock and Beilstein ${ }^{1}$ have studied the distribution of ion-pairs of tetraphenylarsonium ion, TPA, with a number of inorganic anions between water and chioroform. Analytical procedures based on the estraction of complex
 iridium into chloroform as TPA ion-pairs have been described. Arylarsoniam eates have been showa to be excellent for the aealyota of cercaies comples metal ions, wed whon the preaipitation meaction for Enamieg the arsouium ion-paix is combined with a solvent extraction separation scheme, a high
selectivity of analysis is frequently possible. The extractability of an anionic metal complex, as an arsonium ion-pair, is a function of the nature of the arsonium cation, polarity and dielectric of the solvent, the acid strength and ionic strength of the aqueous medium, and the stability of the anionic complex. By varying these parameters it is possible to achieve separation of one metal or a group of metals from another group prior to a final measurement on the extracted species.

Other desirable properties of extraction methods of analysis which utilize arylarsonium salts is their simplicity, and the rapidity of the experimental procedure used. In many cases, metals which are difficult to separate by precipitation, by extraction procedures alone, or even ion-exchange procedures, are easily separated by precipitation and subsequent extraction of an onium salt. The application of ion-pair extraction schemes to the analysis of complex material (steels, alloys, etc.) has been quite successful in shortening the time required for a complete analysis since lengthy separation procedures are no longer required. An advantage of ion-pair extractions over chelate extraction systems is that the equilibrium reaction for the formation of the ion-pair usuaily proceeds at a much faster rate than for the formation of a chelate. Several chelate systems have been reported in which the extraction varied from severgl minutes to an hour or more in
order to extract an appreciable quantity of the metal complex ${ }^{8}$. When the desired constituent is separated from the sample, the final analysis can be achieved by many methods. It appears that absorption spectrophotometry is the simplest techmique for those coriplexes which have absorbance bands in the visible or near-ultraviolet spectral regions. With the recent discovery of atomic absorption spectroscopy, and application of gas chromatography to inorganic analysis, it appears that onium extraction methods of separation will be of even greater use in the analysis of metals.

The behavior of tetraphenylarsonium chloride, TRACl, in aqueous and non aqueous media has recently been reported upon by Fok and Sande 11^{7}. The solubility of TPAC1 and TPAC1•HC1 in chloroform is 0.703 and 0.0391 M , respectively, wereas the solubility of $\mathrm{TPACi} \cdot \overline{2} \mathrm{H}_{2} \overline{\mathrm{O}}$ in water is $\overline{0} . \overline{9} 90 \mathrm{M}$. The ionization constant of TPACI in water is $7.1 \times 10^{-2} \mathrm{M}$, and the association councitants in ciloroform for tine formation of dimers and tetramers are iob min $^{-1}$ and $3.4=10^{5} \mathrm{~K}^{-3}$, respectiveiy, at $25^{\circ} \mathrm{C}$. The partition coefficient between water and chloroform, [TPACl] org/ $f x\left[\right.$ TPAC1] a_{a}, where $\log f=0.6 u$ for sodium chloride, at infinite dilution is given as 3.2 ± 0.1. Additional empirical equations are given ehich describe the chloroform extraction
 HCl and TPACl up to 0.2 in chioroform. Polymerization of

TPAC1 mast be consifered when the coucencracion of TPACl in chloroform is greater than 1×10^{-3} M; and in hydrochloric acid solutions, additional reactions which lead to the formation of TPACl•HCl must be considered. It is reported by Fok that further work is necessary to elucidate the TPACl•HCl formation in solutions of high hydrochloric acid concentrations.

Data from vapor pressure lowering measurements with a thermoelectric osmometer made on TPACl solations in anhydrous chloroform at $25^{\circ} \mathrm{C}$ are also used to calculate diner and tetramer constants having values of $72 \mathrm{M}^{-1}$ and $4.0 \times 10^{5} \mathrm{M}^{-3}$, respectively. The difference betweon vapor pressure and extraction results is attributed to the presence of water in the chloroform in the extraction studies.

The TPA salts of several anions have been studied with respect to their solutility and thental decomposition characteristics ${ }^{9}$. Coie and pilaum aiso measured the molar

 value of $3400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 264 mus which is reported by Fok. In addition to the above studies, Forster and Goodgame recently prepared the TPA isothiocyanato-complexes of $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$, after whick the electronic and infrared opectra were investigated ${ }^{10}$.

The development of analytical methods for the analysis
of ndebige fas hindered for man jears dae to the similarity of the chemistry of niobium and tantalum. The similar behavior of these elements $a s$ well as their natural occurrence as mixtures in ores led to mach confusion with respect to their discovery, and in their characterization. The development of separation schemes for these "twin" elements was also hampered by the complexity of the ores in which they occurred. In $19 \bar{z} 5$ Schoeiler ${ }^{11}$ introduced tannin, tannic acid, as a valuable tool in earth-acid analysis. Tannin acts as a colloidal precipitant and permits the separation of niobium and tantalum from titanium in dilute sulfuric acid. More recent advances have resulted in the use of cupferron as a precipitant for the precipitation of niobium, tantalum, titanium, vanadium, iron (III), uranius (VI), tungsten, molybdenum, and a few other
 with an énion-exchange resia separation, niodium and tantaium can be separited from ali oingr eiomonis as weil ac from one gnocher ${ }^{12}$. The above method is ewcellont for the separation of niobium, and its only disadvantage is that it is time consuming. The ion-exchange methods were very significant in contributing to recent developments and simplifications in earth-acid analysis. Fundamental studies of the ion-eachange behavior of alobiua and tantalum havabeer of midor importance fin elucidating the sutcle differences in the behavior and solution chemistry of niobitu
anc Łantainu.
The titrimetric determination of niobium, in principle, can be accomplished by reduction of $\mathrm{F}(\mathrm{F})$ to H (III) in a Jones Redactor followed by indirect titration procedures usiag iron (II) and potessium permangenate. 13 The interferences in this methot are severe, and of course require a prior separation of the niobiun.

Solvent extraction methods for the separation and subsequent spectrophotometric detarmination of the niobium are increasing in popalarity. These methods are rapid, require only a minimu numer of preliminury separations from associated elements, and are capable of differentiating between the two earth acids. One of the more promising solvent extraction methods for niobium is the 8 -quinolinol (oxine) method, ${ }^{14}$ which involves the chioroform extraction of the niobium oxinate chelate from an amonical citrate solution. Since the chelate is colored,
 phače. Tae method has some disacivanċages in tinet meny iements form colored oxinates, and consequently a prior separation of niobium must frequently be made before extraction with oxine. Rydraninona ${ }^{15}$ has been introdeced as a chromopharic reagent for the spectophotomeric estimation of miobium; howayer, the reagemt cennot be tuen as an eatracting agant. Consequentiy the miobian must be separated by other means prior
to foxatig the chelate. Even though the chelate ia anatable, temperature sensitive, and is subject to the usual
interferences, the reagent has been of use in determinations of niobium.

Other chelating reagents used for the analysis of niobium are pyrogallo1 ${ }^{16}$, sulfosalicylic acid ${ }^{17}$, disodium, 2-dihydroxybenzene-3, 5-disulfonate (tiron) ${ }^{18}$, and ascorbic acid ${ }^{19}$. These raagents have been found to be iimited in applicability and uafortunately are plagued by interferences.

Other chelating reagents recently introduced for the determination of niobium are xylenol orange 20,21 , 4-(2-pyridylazo)resorcino1 ${ }^{22-25}$ and 1-(2-pyridylazo)rescorcinol ${ }^{26}$. In the case of xylenol orange, titanium, tantalum, and aluminum are masked with ascorbic acid. It is reportod by Elincon that $50 \mu g$ of giobinm can be determined in the presemie of 5 푸
 ecceptable reagencs for niobium. Aimerin 27 has recentiy reviewed the fhotometric determination of niobium with azodyestuffs and conclades that this class of reagents have considerable promise as specific reagents for niobium.

Chromogenic reagents wich form complex Ions with niohium are the farozide and thiccyanate iona. The peromite methog, ifise ail other colorimetric mothods for niobium, is
beset with the problem of interferences; however, it is pessible to analyze for niobiun in the presence of titanium by devaloping the color of the complex in a mixture of concentrated sulfuric and phosphoric acid.

The reaction between niobiun and thiocyanate fon, which was first described in 1896^{28}, was developed into a quentitative colorimetric procedure ${ }^{29}$ for niobium in 1946, and is probably the most widely used method for the determination of niobium. In one thiocyanate procedure, the yellow color of the niobim chiocyanate complex is developed in a homogeneous water-acetone madium ${ }^{30}$. The homogeneous method has many interferences from metals which are difficult to reduce or mask urder the conditions necessary for the determination, and consequently requires a time consuming prior separation of the niobium. An interference with the derermingtion of niohium hos alse been reported to occur from the pelfmeataetion of thivcyauic acta. Moreover the concentration of the reacents mixit be chopely pontrolied since the color imtemsity of the miobine comelex is sengitive io gny changes in reagent concentration.

Another thiocyanate method for niobium involves the solvent extraction of the niobium thiocyanate complex into organic solvents such as ether ${ }^{29,31}$ or ethyl acetate ${ }^{32}$. This method has the disadvantage that the nicbium sample mizat be repeatediy evaporated down to the occurrence of sulfuric acid
fume prior te analysis fin order to couvert the oioblun into a "reactive" ion, which is nonhydrolyzed species. The method is also subject to interference by hydrolysis of the niobium and tantalum which results in an incomplete extraction of the niobium. Again, the procedure mast be modified by using preliminary separation steps in order to analyze for niobium in the presence of more than small quantities of tungsten, rhenium, platinum, vanadium, and molybdenum. The concentration of reagents mast also be controlled since the complex is sensitive to any changes, and the usual interference from polymerization of thiocyanic acid is noted. Recently, thorough study of the variables for development of the color of the complex and its subsequent extraction wes reported ${ }^{33}$.

Many modifications of the basic thiocyanate methods for niobium have appeared in the literature in recent years. Hame and co-workers ${ }^{34,35}$ pointed out that tartaric acid could be used to dissolve fused niobium samples that were insoluble or metastable in hydrochloric acid. Vanossi $36,37,38$ reported that the axtraction of the thiocyanace compiex of niobium with ethyl acetate, BtOAc, helps avoid the problem of hydroxyl complex fonmation that previous workers had noted. Tungsten, tartalum, and miobian bere extracted gith EitOAc; miobium and tantalua mere
 and HeClarity ${ }^{39}$ analyzed for niobiue io pure tantalum or $\mathrm{Fa}_{2} \mathrm{O}_{5}$
by extraction of the thiocyanate complex of niobium using ethyl ether. It was necessary to construct calibration curves corresponding to several ratios of tantalum to niobium. Moreover, molybdenum interfer ed seriously. Milner and Smales ${ }^{40}$ separated niobium from ores by means of a cinchonine precipitation prior to using the aqueous acetone procedure. Marzys ${ }^{41}$ used both the ether extraction and aqueous acetone method to analyze for niobium in ores. The careful control of experimental conditions was emphasized.

Crouthomel and co-workers ${ }^{42}$ investigated the color development step of titanium, vanadium, and niobium in aqueons acetone. Hioblum was separated from interferences by extraction of a niobium fluoride complex with methyl ethyl ketone prior to developing the thiocyanate complex. The effects of hydrolysis and hydration in hindering the reaction of thiocyanate with niobium were found to be real, and were dependent on the nature and concentration of the acid in which the aiobium sample was dissolved. Furthermore, the yellow complex which is formed in the aqueous acetone medium was shown to be anionic in nature. Crouthome 1 concluded that $\mathrm{Kb}(\mathrm{V})$ complexes
 and that "nonreactive forms" were probably niobates and polymeric forms of niobium, which require a very long time to reach on equilibrimm with thiccojaiate.

Bacon and Milner ${ }^{43}$ have made a thorough study of the conditions for formation of niobium thiocyanate complexes and of the decomposition of thiocyanate ion in acidic aqueous acatone జะdia.

Ziegler ${ }^{44}$ has shown that niobium and tantalum may be separated by precipitation or extraction of thiocyanate complexes with polyethylene glycol esters, or polypropylene glycol esters; also, amines ${ }^{45}$ such as tributyl amine permit the separation of niobium and tantalum. A single stage extraction gives 95\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$, and the purity may be increased through multistage extraction.

Grimaldi ${ }^{46}$ extracted niobium thiocyanate into EtOAc after separating the niobium from tungsten, vanadium, molybdenum, and rhenium with a sodium hydroxide fusion and leaching sten: A detailed study uge glso mode on the interference of various cations and anions.

The use of nitron, (4,5-dihydro-1, 4mdiphenylo
3,5-phenylimino-1, 2, 4-triazole), in dioxane as an extracting agent for niobium thiocyanate complexes has been investigated by Babenko. 47 Yoshimura has recently studied the extraction of niobium with several amines in chloroform..48 Mari 49 made a detailed study of the extraction of niobium, titanium, and tantalum Ghiccyonate complexea with eatera, ethyi ether, âcōnōs, chloroform, carbon tetrachloride, and benzene. Using radiotracer
techniques he found that 1.0% niobium is extracted from a 1 m sulfuric acid-2 thiocyangte medinm with chloroform.

Talipov ${ }^{50}$ extracted a niobium thiocyanate complex with 1,4-bis(3,4-dihydroxyphenylazo) benzene in ch1oroform. Tungsten, vanadium, thorium, and manganese do not interfere, nor does a three-fold excess of titanium or a five-fold excess of tantalum.

Other investigations and modifications of the thiocyanate procedures for niobium have been reported by Pilipeako, ${ }^{51}$ McCown, ${ }^{52}$ Ward, ${ }^{53}$ White, ${ }^{54}$ and Shrima1. ${ }^{55}$
C. M. Wi and S. C. Liang reported the extraction of niobium from hydrochloric acid or sulfuric acid into chloroform using N-benzoyl-N-phenylhydrozylamine, BPISA. ${ }^{56}$ Molybdenum, tungsten, vanadium, and zirconium axe not serious interferences; however, titanium is. Using the method of continuous variations and the method of Bent and French, Wi found the composition of the extracted species to be: $\mathrm{Nb} / \mathrm{BPBA} / \mathrm{SCA}=1 / 2 / 1$, which indicates a monothiocyanate comples of nioblum.

A novel separation for siobium has been suggested by Marchenke. 57 Elobium, thiocyenste, and methylene blue form sin equeous insoluble triple somples sinich is quantitatively separated by fletation froe an squenss selution by toluewe.

After separation and washing of the precipitate, it is dissoived ane niobium is cetermimea by the ether extraction
metiod. Hissining agents are added to eliminate the interferemces of titanian aid molyblenum. Toskide ${ }^{58}$ has analyzed for niobium in tantalum and $\mathrm{Tr}_{2} \mathrm{O}_{5}$ by masking niobinm with fluoride, extraction of tantalum with methyl isobutyl ketone, demasking nioblum uith boric acid, and extracting the thineyonate somplex of niobium with ethyl acetate.

Another extensive investigation of the niobium thiocyanate extraction system has been made by Minczewski ${ }^{\text {59-62 }}$. The addition of carbon tetrachloride, benzene, chloroform, and 1,1,1-trichloroethane to ether extracts of the complex caused dissociation of the thiocyanate complex. It was further noted that the addition of carbon tetrechloride to the extract changed the absorbance and shifted the wayslength of maximum absorbance, $\lambda_{\text {max. }}$, to longer wavelengths whereas acetone caused $\bigwedge_{\text {max. }}$ to shift to shorter wavelengths. Miscewski also studied the extraction of niobium with tributyl phosphate in chloroform and recomends elimination of the molybdeman and titanium interferences by using hydrogen peroxide to mask niobium while $M o(V I)$ is extracted with ether. Titanium and niobium are extracted as thiocyanate complews with tributyl phosphate and titainian is sutusquently removed from the exiract by backwashing with 1.8 M hydrochloric acid.

The composition of the thiocyanate complexes of niobium has mot been investigated as thormghly as the separation
and analysis of this eiement; however, the nature of niobium fons in aqueous media, and its bride, oxalate, and oxo complexes have been the subject of several investigations in recent years.

Hermer ${ }^{63}$ studied the distribution of Iadioactive thb-95 between aqueous hydrochloric acid and methyl isobutyl ketone as a function of hydrogen, cbloride, and thiocyanate ion concentrations at an ionic strength of 7 , and assigned to the species extracted, the formula ${ }^{(1)}$ (SCN $)_{6}^{-}$associated with oxonium ions of the type $\left(\mathrm{R}_{2} \mathrm{OE}\right)^{+}$where R is an alkyl group. The species $\mathrm{HbCl} 1_{6}^{-}$was also reported to occuz. Troitskif ${ }^{64}$ studied the mechanism of the extraction in butyl alcohol, and concleded that the extracted species is $\operatorname{Hirbo}\left(\mathrm{SCX}_{4} 4^{\circ}\right.$ Also reported is a compound with the formula $\mathbb{H}\left[\mathrm{KbO}\left[\mathrm{O}_{(}\left(\mathrm{C}_{2} \mathrm{I}_{5}\right)_{2}\right\}(\mathrm{SCN})_{4}\right]$ which occurs fa diethyl etiner: however, no evidence is presented to affina its presence. Eviefence is presested for both a colorless
 cunplea occura at vexy low thiocyumate concentrations and can be extracted immediately after mixing niobium and thiocyamate solutions.

Golvb amd Sych ${ }^{65}$ made a thorough investigation of the thiocyanate compleres in eethanol, butanol, and dimethylformanide (Dif) usixg conductance techniques, speetrophotometry and preparation of the miobium salics by forcing their precipitation
through evaporation of the soivant. Spectrophotometric results, analyzed by plotting $\log \left[\frac{A}{A_{\max }{ }^{-K}}\right]$ versua $\log [E S C A]$, indicated complexes having thiocyanete/niobium ratios of $1 / 1$, 2/1, and $3 / 1$ in mathanol; $1 / 1,2 / 1$, and $4 / 1$ in butanol; and $1 / 1$ and $7 / 1$ in prat. Pracipitated niobiun salis were isolated with a racio of $4 / 1$ and $7 / 1$ in the methanol and DAF systems, respectively; the reported compositions were $\mathbb{K}[\text { mb(OMe) })_{2}$ (CAS) 4$] \cdot \mathrm{HeOH}$ and $\mathrm{K}_{2}[\mathrm{Frb}(\mathrm{CNS}) 7$ • 3BAF. The same authors report that "Alimarin and Podval'naya studied the mechanism of formation of the yellow complex in acid media, deternined the composition of addition products of the thiocyanato-complex of niobium with alkaloids (Quinine, cinchonine, etc.), and concluded that the complex
$\mathrm{H}\left[\mathrm{HbO}(\mathrm{SCH})_{4}\right]$ was present in solution." After reviewing the work of Alimarin and Podval'naya, and Troitskii, Golub and Sych conciuce that "ail available information on the thiccyanatocomplexes of niobium is pureiy qualitative." Ni has recently repóntau thé extitaction of a monotiniocyanato compiex of niodiun
 page 12).

The most recent publication on the niobium thiocyanate compleges, by pilipenke and Sevrenskif, presents evidence for a complea of miobim vith acetylacetone and thiocyanate in winich the 日fobiem/acetylacetone/thiocyanate ratio is $2 / 1 / 1$, iudicating a dinuclear complex invoiving niobium atoms bonded
 oxygen bridge is bsed on an infrared band at $800-850 \mathrm{~cm}^{-1}$ that is attributed to a Nb-0 stretahing absorption ${ }^{66}$.

In the case of thiocyanate complexes, the mode of bonding of the thiocyanate ion to the central atom or metal ion may occur through a metal-sulfur bond ($\mathrm{m}_{\mathrm{m}} \mathrm{SCN}^{-}$) or through a metal nitrogen boud (M-NCS ${ }^{-}$), which is an isothiocyanate complex. Mitche11 and Williams ${ }^{67}$, made study of the infrared spectra of a numer of inorganic thiocyanates and isothiocyanates. and concluded that the isothiocyanstes have a C-N stretching vibration between $2105 \mathrm{~cm}^{-1}$ and $2060 \mathrm{~cm}^{-1}$ while the corresponding thiocyanate frequency occurs at $2145 \mathrm{~cm}^{1}$. Hence infrared spectra are ∇ flueble in distinguishing between the two structures.

Other investigations concerning the mode of bonding in the thiocjanate complexes of w were made by Funi and bonlmad ${ }^{68}$, in minin they concinded that aī were isothiocyanates. Colchup
 c^{-1} (2s weak), $750 \mathrm{~cm}^{-1}$ (symetric stretch, reak), and $470 \mathrm{~cm}^{-1}$ (bending frequeacy, weak). Pecile ${ }^{70}$ reported that the mixCS configuration is characterized by a bend at $860-780 \mathrm{~cm}^{-1}$ and MSCN at $720-690 \mathrm{cma}^{-1}$.
 question frequemtly arises conceratig the presence of oxo or
hydroxy ligands in the complex. For those cases in which the isolation and purification of the conpler is difficult or impossible, infrared spectra are frequentiy valuable in establishing the presence of oxc ligands.

The $M=0$ stretching vibration in usnedium chelates of acetylacetone are reported to occur at $995 \mathrm{~cm}^{-1^{71}}$, whereas more comprehensive studies 11st a range of $1050-950 \mathrm{~cm}^{-1}$ for the $V=0$ vibration. The stretching vibrations of other metal oxygen double bonds such as $\mathrm{J}=0$ and $\mathrm{H}=0=071,73$, and $\mathrm{Ru}=0^{71,74}$ appear in a sidiar Erequency range. Keller ${ }^{75}$ recently investigated the cesium and potassiman salts of the $\mathrm{SbOF}_{5}{ }^{--}$ion $\left(\mathrm{R}_{2} \mathrm{NbOF}_{5} \cdot \mathrm{~K}_{2} 0\right)$ as solids and solutions by means of Ramas and I.R. methods. Absorption bands at 932 and $935 \mathrm{~cm}^{-1}$ (I.R. and Raman, respectively) were assigned to a metal-oxygen stretching vibration. Sabatini and Bertini 76 reported 縣-0 bands at $930 \mathrm{~cm}^{-1}$ (y.s.), $328 \mathrm{~cm}^{-1}$ (v.s.), 927 $\mathrm{cm}^{-1}(\mathrm{~s}$.$) , and 977 \mathrm{~cm}^{-1}\left(\mathrm{y} . \mathrm{s}_{\mathrm{o}}\right)$ for the salts $\mathrm{Rb}_{2}\left[\mathrm{NbOCl}_{5}\right]$, $\mathrm{Cs}_{2}\left[\mathrm{HbOCl}_{5}\right], \mathrm{R}_{2}\left[\mathrm{EbOBr}_{5}\right]$, and $\mathrm{Cs}_{2}\left[\mathrm{HBO}_{5}\right]$, respectively. Analogous tungsten saits showed tungstem-oxygen bands at 957-968 cm^{-1}. The above author does not distinguish between a
 the orocatioms of the transition cols, la which he gives the जifou freq̧ancy for variecy of compounds, ail failing vithin the range 923-942 ca ${ }^{-1}$. The $T i=0$ bend for two different Ti
saits is given ac 1078, and lûãu-iújo can and Ti-0 stretching Fibration is listed at 836 and $840 \mathrm{~cm}^{-1}$.

Considerabi.e work has been done in developing and modifying methods for the analysis of aiob:lum in complex material. Pet ia spite of the large voluma of work, a rapid and sensitive universal method for the analysis of niobium has not been reported. It appears that the bast method to date for the analysis of niobium involves an anion-exciange separation in hydrochloric-hydrofluoric acid media, folloited by colorimetric estimation of giobium as the thiocyanate complis.

The composition of the thiocyanate comples of niobian has been studied, and several complexes have been reported. In spite of several indications in the literature that the compler in non-aqueous media might actually involve equilibria between one or more complexes, no quantitative investigations of the equilibria have benen reported. This stway reports on a new
 coñōition amd necme of niobium thiocyanate complexes in aqueous and nor-aqueous media.

CHAPTER II

STATEMENT OF TRE PROBLEM

```
The investigation reported upon had three principle goals. The primay aim was to study the extraction of the arsonium salts of titanium- and niobimm-thiocyanate complexes, and evaluate their extraction behavior with respect to analytical applications.
The second objective was to perfect an analytical procedure for niobiun, utilizing the chloroform extraction of the niobium-thiocyanate complex ion as an ion-pair with the tetraphenylarsoniwn ion.
The fime objective was to elucidate the stofchiometry of tine extraction process, determine the composition of the
```


CHAPTER III

EXPERINIEATAL PROCEDJRE

1. Apparatus and Materials

Beekmen Model DU, DB, DK-1, and IR-8 spectrophotometers were used for absorption spectra measurements. The DU was operated at mechanical slit width of $0.06 \mathrm{~mm} ; 1 \mathrm{~cm}$ ground glass stoppered silica cells were used for all measurements in the visible and ultraviolet regioss.

A buret funnel and 2.5 cm filter paper wre used for filtering the non-aqueous extracts. Ground glass graduates, and separatory fanmels, 75 and 300 ml, equipped with Teflon stopcocks were used for extractiona.

Tetraphenylarsonium Chloride, obtained from \mathbb{K} and \mathbb{K} Laboratories, J̃amica, New York, znd F. Smith, Columbus, Ohio, was recructalized frow ethenol-ether solutioms if discolored or if it gave a colored solution. 0.05 solutions were prepared.

Potacaima ficoride solutious, 4n, were prepared frow Hallinkroat Amalytical Reagent potassiua fluoride dihydrate, filtered, and stored in a poiyethyleme botile.

Hercoptomcetic acid, 802 in wime (anelyticgl greds),
was obtained from Kastmen Organic Chemicals, Rochester, New York.

A $9 / 2$, by volume, chloroform-acetone solution was prepared by mixing 810 ml of comercial chloroform with 180 ml of acetore.

Miobiun pentoxide, purportedly 99.8% pure, was obtalmed fron \mathbb{K} and \mathbb{K} Laboratories, Jamaica, Hew Iork.

A11 other solutions were prepared from salts of analytical reagent quality.
2. Analysis of Miobiam Pentoxide

Duplicate samples of the miobium oxide were analyzed gravimetrically after separating the niobium from other elements by means of an ion-exchoinge procedure ${ }^{78}$. The miobium was precipitated with cupfurwon and then ignited to niobium pentoxide. The nichium pextemide was found to be 99.04% pure, ulth ax monyois precision of 0.19\% yeletive devizeism.
3. Preparation of a Stock Selption of wiobium
0.095 g of niobium oxide were dissolved by fusing the sample with 3 g of potassium hydrogen saifate in a 100 mi pyrex beaker until the melt was clear. The melt was cooled, chen redissolved in 12 HC1 and the minimem quavtity of water necessary to kesp the potasstum salfate salts fac solution. The
solution wes dilatea to a final volure of 250 mi with 12 in incl. Standard niobiun solutions were prepsred by diluting aliquots of the stock solation with HC1.
4. Extraction of Niobium into Various Solvents

A two ml aliquot of 2.27×10^{-4} E solution of Nb in 12 M HCl was added to a 60 ml separatory fumel equipped with a Teflon stopcock. Four ml of cold water, 6 ml of cold 6 m EC1, and 2 ml of cold 3 MRSCA solution were added to the separatory funme1. Upon addition of KSCN a yellow color appeared and upon addition of 1 la of 0.02 M TPACl, a yellow precipitate formed, as well as a wite precipitate of TPASCN. The aqueous phase was then extracted with 15 ml of chloroform solution by shaking vigorously for 2 ainutes. The two phases separatedquickly and well, the organic layer having the bright yellow color of the niobian compler.

The extraction procedure was repeated with a $9 / 2$ chloroform-acetone pixture. Agaia the yellow complex was easily extracted into the organic solvent.

The extraction process was repeated a third time with
 The athanol had been previously removed from the chloroform by shakiag with twe portions of $1: 4 \mathrm{E}_{2} \mathrm{SO}_{4}$ and 4 portions of distilled ugter. Ethanol-free chloroform appegred to extreet
the yeliow complex quite well.

5. Absorption Spectra of Niobiam in Farious Solvents

Miobium extracts of various solvents were prepared as described in Seciion 4-Experimentai awi rinen the absorbance was obtaine from 500 to 320 mu using the DB spectrophotometer. The spectra which were recorded as percent transmittance versus wavelength aza shown in Pigures 1 and 2 , page 50 . The spectra were obtained with chloroform as the reference.

6. Variation of Extraction Efficiency Mith Acid
 Concentration in the Agueous Layer,

Chloroform Systam.

Two $\mathbf{m l}$ of $4.36 \times 10^{-4} \mathrm{M}$ 解 12.0 M HCl were added to a 60 mi separatory funnel. An alimeot of cold water, $x m$, and (15-x) mi of coid nCi of varying comcentration were added.
 ESin a yeilom coier appesed in tec angeors soletion. One EI of 0.025 M TYAGC and 25 ml of chlorofarm were added and the extraction was performed by shaking for 1-8 minutes. The
 abocibaxee of the egtract pes measurce at 390 mu vs.
 that the absorbance decreased by l-4 \bar{Z} over a period of $15-25$
minutes then reariaed constant. The absorbance, plotied as a function of the EC1 concentration, is shown in Figure 3, page 53. The data show that within the range $3-6 \mathrm{M} \mathrm{HCl}$ the extraction has the greatest efficiency.

7. Variation of Extrection Efficiency With

Equilibration Time.

Abstract

Two ml of $4.36 \times 10^{-4} \mathrm{M} \mathrm{Hb}$ in 12 M MClwere added to a separatory funcl along with 6.0 ml of $6 \mathrm{MHCl}, 3 \mathrm{ml}$ of 1.5 M KSCN, 9 ml cold water, 1 ml of 0.025 M TPACl and 25 ml of chloroform. The organic and aqueous phases were equilibrated for a given period of time by shaking vigorously. The absorbance of a filtered extract was masured at 390 mu. A graph of absorbance versus equilibration time is shown in Figure 4, page 54, iilusiraiing tinat an equilibration time of 4 mautes or longer is desirable.

8. Vaxiation of Extraction Efficiency Hith Potassium

Thiocyanate Concentration, Gsioroform System

 the orgenic phoge filtered and che sbocrbance mesuured at 390 mu.

A grapl of absorbance versus molar concentration of KSCA was constructed and is shown in Figure 4, page 56. The experfinemt was repeatea usiag two ml of $2.27: 10^{-4}$
 water ade ($6-8$) al of $0.3 \mathrm{H}, 0.12 \mathrm{H}$, or 0.03 in KSG , and 15 mi of chloroform. The equilibration time was 3 minutes. The results are skown in Table II, page 59.

The experiment was repeated a third time using the same quantity of reagents as in the previous experiment. These results are also shown in Table II, page 50.

9. Variation of Extraction Efficiency With

Tetraphenylarsonium Chloride Concentration

Chlorofore Systew.
Two mi of $2.27 \times 10^{-4} \mathrm{M}$ 期 $12 \mathrm{MHCl}, 6 \mathrm{ml}$ of 6 M HCl and two mi of 3 亶 RSCR were added to a separatory funnel, after

 with 15 al of chloroform by shaking vigorously for 3 minates. The absorbance of the filtered extrect was measured at $390^{\circ} \mathbf{m u}$. A graph of abserbance vergus millimies TPACl ras constructea, and is shewa ir Figare 4, page 56.
10. Exhaustive Extraction of Miobium Solurions

Chloroform System

Several experiments were performed in which the aqueous phase was entracted repeatadly with TrACl and chloroform. These experiments incicated that a minimum of four extractions mere required to remove the niobium when one ml of 0.025 M TPAC1 and 7 to 10 ml of chloroform were used. The use of 2 ml of 0.025 M TPACl and 7 to 10 ml of chloroform required three extractions for complete removal of the Hb , estimated by measuring the absorbance of each extract and continuing the repetitive extractions until the absorbance of an extract was equal to the blank absorbance.
11. Calibration Curves for Riobium, 390 mu 2. Chioroform Systam

Aliquots of $x \mathrm{ml}$ of standard H solution in 12 AHCl
 prior to adding 5 ml of cold water and 7 ml of cold 6.5 M HC1. After mixing, 2 ml of 1.5 M KSCN and $1 \frac{1}{2} \mathrm{ml}$ of 0.025 M TPACl
 chioroform for 2 to 3 minutes. The organic phase was filtered into a 25 ml volumetric fiagk and two additional extractions were
made with $1 \frac{1}{2} \mathrm{mI}$ of TPACI and 9 ml of chloroform. After allowing the combiaed extracts to stand for $\frac{1}{2}$ to 1 hour the absorbance was measured at 390 mu versus chloroform in the reference cell of the $D \overline{\text { E }}$, vich was operated at a slit width of 0.06 mm . The calibration curve of absorbance versus concentration of in was calculated assuming complete extraction of the aiobium. The data are given in Table IV, page 77.

b. 9/2 Chloroformodcetone system

An aliquot, x, of a stamard mb solution in 12 m HC1 and (3-x) maf 12 M HC1 were added to a separatory funnel in addition to 4 ml of cold 6 M [C1 and 2 in of 0.05 M TPACl. After mixing the contents 2 ml of 3 H RSC were added. A 15 mlalquot of $9 / 2$ chloroform-acetone solution was pipetted in and the mixtare was extracted by shaking vigorously for two minutes. The organic phase was filtared into a volumetric flask and the absorbance of a portien of the extract was Eeasured at 350 versus chioroform. The aqueous piase was extracted again with 2 ml of TFACl ad 15 ml of $9 / 2$ chloroform-acetone solncion. The net ebsexbence of the seened extract \quad as 0.005 , which indicated thet essemtiaily ail the
 The data shown in Table VIIb, page 75, weze ased to calcalate the absorptivity of 能 in $9 / 2$ chloroform-acetone solution.
12. Preliminary Investigetiog of Interferences

A. Holybeanm

One-half ll of $10^{-2} \mathrm{MO}$ (VI) was added to the stamdard reagent minture and the Mo (VI) was extracted according to the procedure outlined in Section 10, except that $1 / 4$ wl of 10% SaCl_{2} was added to reduce the Mo. The spectrum of the extract indicated an absorbance badi at 450 watereas the absorbance at 390 , \mathbf{A}_{390}, was 0.096 .

The above experiment was repeated using $\frac{3}{2}$ ml of SaCl_{2} and $\frac{l_{2}}{2} \mathrm{ml}$ of 80% mercaptoacetic acid, MAA. The orange color that appeared upon mixing the reagents, characterigtic of molybdenum thiocyanate complexes, faded after a few minutes. A_{390}, was 0.010.

B. Iron

Five al of 5×10^{-3} in Fe (III) were treated with $3 i z o$
 was 0.003 .

6. Tungstea

Five ml of $10^{-4} \mathrm{M}$ (VI) in 12 MCl were treated with $1 / 4$ ml of $10 \% \mathrm{SaCl}_{2}$ and extracted as previvasly ortlimed.

for reducing fo and Fe to eliminate their interference if W was present since some of the W would be reduced to an interfering oxidation state.
 to a separatory funnel containing 6 ml of cold 6 M HC1, 2 ml water, and 3 ml of 1.5 ml of 0.05 H TPAC1. The mixture was extracted with 15 ml of CHCl_{3} for two minutes. A H_{390} was 0.080 . A_{390} for a blank was 0.011. Hence both W (V) and W (VI) interfered by absorbing in the same region as Nb .

13. Simaltaneous Extraction of Mobium and Tungsten

With Stripping of Exiract to Separate

Niobium and Tungsten
Two ml of $1.14 \times 10^{-4} \mathrm{M} \mathrm{Nb}, 2 \mathrm{ml}$ of $12 \mathrm{MHCl}, \frac{1}{2} \mathrm{ml}$ of $10 \% \mathrm{SaCl}_{2}, 1 \mathrm{ml}$ of $6 \mathrm{MHCl}, 3.5 \mathrm{ml}$ of water and 3 ml of 1.5 If RSCN were added to a separatory funnel. The aqueous phase was extracted three times with 1 ml of 0.025 MTPACl and 9 ml of ch1oroforw. The absorbance of the thind entract was 0.013 whereas the absorbance of the combined eatracts was 0.232. A fourth extract had an absorbance of 0.005 .

The combined emtracts of the first three eatractions
 consisting of $\frac{3}{2}$ ml of 0.1 HEF in 5 田l of 6 H HCl. The absorbance of the orgenic phase after each stripping extraction
was $0.078,0.042,0.012,0.006$, asd 0.006 . After stripping the organic phase three times, all was removed.

The aqueous finoride solations were combinad and treated with 2 ml of $0.2 \mathrm{MH}_{3} \mathrm{BO}_{3}$ and 3 ml of 1.5 M घSCN. Three extractions with 1 ml of TPACl and 9 ml chloroform, when combined gave an absorbance of $\mathbf{0 . 1 9 5}$. The expected absorbance was 0.284, as inferred from the calibration curve prepared as described in Section 11.
14. Comarison of Various Elements for Demasking

Liobium Floride Complezes

 MEF, 1 ml of 0.1 n solution of appropriate element, 3 ml of $1.5 \mathrm{M} \mathrm{KSCM}, 7 \mathrm{ml}$ of 6 MHCl and 1 ml of $\mathrm{H}_{2} 0$ were all added to a separatory funal. The aqueous solution was extracted with 1 ml of 0.025 M TPACl and 15 ml of chloroform by shakigg fer 3 minutes.

The reswles are shown in Tailie 7 , page 65.
15. Analytical Procedure For Separation of Molybdenum aed Tangsien From Miobiam, GRioroform System.

Part I

2 ml of $10 \% \mathrm{SnCl}_{2}$ to beaker, and heat on hot plate for 2 to 3 minutes. Cool and rinse the solution into a separatory funnel using 6 ml of cold 6 MHCl . Add 2 ml of 1 M RF and 2 $\mathbf{m l}$ of 3 M KSCH. Extract the aqueous phase with 1 of 0.05 M TPACl and 9 ml of chloroform by shaking for 2 minutes. Repeet the extraction once or twice in order to remove all the W (V).

Part II

Saturate the aqueous phase with $\mathrm{H}_{3} \mathrm{BO}_{3}$, add 2 m of 3 M KSCN and 2 in of 6 M HC1. Perfore three extractions on the aqueons solution using l_{2}^{2} al of 0.025 M TPAC1 and 9 m chloroform per extraction.
16. Eytraction Efficiency of Iobian in 9/2 Chloroform

Acetome Solations as Function of Reagent Concentrgtion
in the Anneous Phase.
a. Fariation of 国 Comcencracion

A one ml aliquot of $1.43 \times 10^{-4} \mathrm{M}$. m solution in 12 in $\overline{\mathrm{I}} \mathrm{Cl}$ was a@ced to a separatory fungel in addition to (10-x) ml of cold 6 H HCl, x ml of cold water, and 2 ml of 3 M ESCI. After the adition of 1 m of 0.05 HPAC1, the aqueous mifture

one minute. A smail portion of the extract was filtered into a cell for masurament of the ahsorbance at 390 ma . The reaults are sheve 1m Figare 5, page 57.
b. Variation of KSCW and tpacl Concentration

The procedures used are identical to those outlined in Section 24, page 39. The results are shown in Figure 5, page $57 a s$ well as in Tables IX-XI, pages 84 and 85.
17. Extraction Efficiency of Yiobiun as a Punction of Concentration of Acetone in Chloroform.

Two ml of 1.14×10^{-4} N in $12 \times \mathrm{HCl}$ and 6 m of 6 M HCl were added to a 25 ml graduate aloag with 4 ml of cold water, 2 m of 3 m KSCI and 1 m 1 of 0.05 h TPAC1. The mixtura was extracted with 15 ml of chloroform-acetone solution for 3 minates. The absorbance of the filtered extract was seasured versus cinioroform at 3900 on the $\overline{0} . \bar{U}$. and the specirum fes qitained on the nel. A graph of absorbamee versus ratio of, chloroform-acetone, (vol:vol), was constructed, and is shown in Figure 6, page 62.
 quantity of fpaci. These resalts are also shomin Figure 6 , page 62.
13. Effect of Diverse Eiemarts in the Exrraction of Wiobiur with $9 / 2$ Chloroform-Acetone Solutions.

A one al aliquet of the diverse element (in the higheat
 were added to a separatory funnel. The remainder of the procedure is identical to that described for the analytical procedure in Section 20, page 34 ; however, SnCl_{2} was not added in these studies, as is directed in the analytical procedure for those cases in which Fe (III) is coextracted with the Mb .

The results are sumarized in Table VI, page 69.
19. Calibration Curve for (iobium, 9/2 Chloroform, Acetone Systern.

A series of standard solutions were prepared by dilution of aliquots of the stock solution with concentrated HC1. Aliquots analyzed by the Aapalytical Procedure, Section 20. The separation and maskiag steps were incladed, but the adedicign of SaCl_{2} after the second extraction of 值 was ouitted. The absorbance was neasured at 390 wu versus chlorofore fin the reference cell. The ebsorbance was plotted versas comentration of $\overline{\text { El }}$ in the extract, and the
 page 74).
20. Amaitticai Frocecirce for Bricaction of iniobium with 9/2 - Acetone Solution.

Abstract

Samplas are dissolved by heating in concentrated HC1, to which one wl portions of concentrated HO_{3} are added occasionally to assure complete solution and oxidation. When dissolution is complete, the solution is boiled for 10 to 20 minutes to remove most of the nitrogen oxides. It is not necessary to remove completalf the Ha $_{3}$. After boiling, the solution is transferred and diluted to volume with concentrated RC1. The solution should be tested for the presence of oxides of mitrogen by making an extraction on a portion of the sample with chloroform. If the extract has a yellow-hrown color, the aliquot of sample should be repeatedy extracted until the chloroform leyer is colorless.

A suitable aliquiot of the sample, usually 2 思, is placed in a 60 il separatory fungel for analysis. Dilute with 3 ml of cold water, add 1 ml of cole 3 HRSCg followed by 1 mi of 80% mercepteacetic acid; swiri and iet stamd for ito 3 minutes, or watil the red color of the ferric thiocyanate 0.05 E IPACl. Etract gith 9-10 ml of chloroform-acetore by phase with 4-5 ml of solvent in order to remove remaining

 Swirl frequently and let sit for $2-3$ ainutes so that the $\mathrm{H}_{3} \mathrm{OA}_{3}$ gay have time to dissolve. Add 1 ml of 0.05 M TPACl and swirl
 for 2 minetes. Filter the extract into a 25 volumetric flask. Repeat the extraction by adding both TPAC1 and chloroform-acetone solution. Two extractions are sufficient to renove all of the $\mathbf{M b}$. If necessary, add 1-2 drops of 10% SaCl_{2} to the volumetric flask in order to reduce any iron (III) that is present.

21. Analysis of Bureau of Standaris, Standard Shaples.

A. IBS Stee $1 \neq 123 b$

1. Dissolution of Sample. The samole, 0.1283 gms. was weighed inte a 100 mi beaker, treated with approximately 20 © 1 of 12 n RC1, and heated on a hot plate.

Concentretea Kin $_{3}$ was audea periouicaliy in $1 / 4 \mathrm{ml}$ increments in order to silifine the carbon and ocher elements. After dissolution, the soluthon pes boiled for 20 Efmates to reegue east of the exides of mitrogen.
 flask and eilated to the mark with 12 m mCl .
2. Anelysis of Sasple. A portion of the sample was tested for the presence of nitrogen oxides by shaking with 10 ml of chloreform. The chlorofezm layer was colorless, indicating the absence of oxiles of aitrogen in the sample.

A two al aliquot of the samile was then pipetted into a separatory funcel and analyzed according to the analytical procedure described in Section 20. The absorbance of the chloroform extract was used to calculate the percentage of thesent. The results are shown in Table VIII, page 79.

B. IBS Steel \#10le

1. Dissolution of Sample. The sample, 5.5858 gms , was

 The results are shown in Table WIII, page 79.
C. EES Steel $\sin 5$

- dissolved as eescribed above. After the sapale wan
dintol to volwee, a chloroform extraction made on an
slifyegt，finicated the Freseace of fitrogen oriexes． Hence， 25 ml alequot of the sample wes fromed doun to a volum of approximately 10 ml ，and then transferred into a 25 vilumatric flask and diluted to the merk．
z．Analysis．Two ml aliquots of the funed sample rere snalyzed as described in Section 20，and the reaults are shown in Table VIIT，page 79.

D．ESS Hest－Resisting Alloy $\# 167$

1．Dissolution of Saple．The sample， 0.0457 gms ，was heated in maker containing 50 ml of 12 M HCl for one hour， after wich $\frac{1}{2}$ ml of concentrated HDO_{3} was added every 20 to 30 minutes until the sample was dissolved．The sample was diluted to 75 and then fumed down to a volume of
 4䖝もたモき。

t프 Sectige 20．

The spuple， 0.0908 gms，wes dissolved in 200 ml of

22. Exeliainary Evaisation of Tecsaphenyistiboniug

Selfate for Extrection of Miobive.

A (b) solution was extracted accerding to the precedere in Section 4 except that 2 ml of 0.01 (m traphenylstibogiten sulfate were addad to precipitate the complex. The spectrum of the extract showed that the absorption maximem at 400 m rather than 390 as for TPAC1. The absorbance was 0.112, considerably less than obtained when TPAC1 uns used for the extraction procedure under identical conditions.

23. Prelifimary Evaluation of Ascorbic Acil and Sodiun Thiosulfate as Reductasts

The usefulmess of ascorbic acid and $\mathrm{Ha}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ as reductants for Mo (VI), Fe (III), and W (VI) was evaluated by first deternining if the reductant ws strong enough to reduce W (VI) to W (V).

A blank pas prepared by eatracting a solution contaiaing

 chlorofore-gcetone solution. The gheorbonce at 390 mun wa 0.017.

pas extracted by the foregoing procedere. The absorbance was 0.085,

24．Composition of the Extracted Species，Variational Hethod to Betermine TPA／困 and $\mathrm{Hb} / \mathrm{SCN}$ Ratios

A．9／2 Chloroform－Acetone Syste＝

In order to determine the TPA／R ratio，two ml of 1.14 x 10^{-4} if in in concentrated HCl were transferred to a 25 mi ground glass stoppered graduated cylinder which contained 4 ml of cold 6 M HC1．An aliquot（ X ml ）varying in volume from 0.5 to 5.0 ml of $0.05 \mathrm{~K}, 0.0025 \mathrm{M}$ ，or 0.00025 M TPAC1 was added．Two $\mathbf{m l}$ of 3.0 M KSCN and（ $7-\mathrm{x}$ ）ml of cold，distilled water were added，and the mixture was swirled to mix．Fifteen mlof chloroform－acetone solution were pipetted in，the mixture was shaken for two minutes， the layers were allowed to settle，and the absorbance of the extract was masured at 390 m ．The absorbance，A_{0} ，vitaine upon compiecte extraction of $\overline{\mathrm{N} D}$ was $\mathbf{0} .646$ ．All absorbance measurements were corrected for the absorbance of the blank．

 M Mb ，for which the value of A_{o} was 1.295 ．The data are shown in Table IX，page 84.

The detorvination of the som／星 ratio was carried out as follons：Five al of $2.27=10^{-5}$ 具 成 in concentrated HCl were

(x was $0.5,3,4$ for the 3 m solution and $0.5,0.7,1,1.5$, 2, and 3 for the 0.3 M solution). Fifteen ml of chioroformacetone solution were used to extract the complex. A was 0.328 (Tah1e XI, Fange 86).

The experiment was repeated using two ml of 1.14×10^{-4}
 0.3 or 0.06 K KSCN . In this experiment \hat{A}_{0} wes 0.647.

The TPA/ifb ratio is deduced from the experimental data by plotting $\log \left(A / A_{0}-A\right)$ versus $\log (t o t a l$ millimoles TPAC1). See Chapter IV, page 81. The slope of the graph is determined as n, the stoichiometric molar ratio of TPA to Fb in the extracted species. The data in Table IX, page 84, was plotted to yield Figure 8, page 89.

The $S C N / W b$ ratio is obtained by plotting $\log \left(A / A_{n}-A\right)$
versus $\log \nabla_{\text {ngen }}$. The slope of the graph is rounded off to the nearest integer to give the molar ratio of thiocyanate to niobium. The data in Table X was ploted to give Figure 9, page 90 .

B. Chloroform System

In order to determine the TRA/斯 ratio of the cemplex
 $10^{-4} \mathrm{M}$ 位 in concentrated HCl were added to a graduate containing

2 ml of 3 K KSCR were added. An sliquoc (x mi) varying in voiuma from 0.5 to 5.0 ml of 0.05 M .0 .0025 M , or 0.00025 M TPACl was added in addition to (5-a) mi of witer. Fifiteen mi of chioroform wara pipetted in and the mieture wes chaken for three minutes. The absorbance of a portion of the filterad extract was measured at 390 mu versus chloroform. Ao for this expariment was calculated to be 0.936 , i.e., the concentrstion of in the chlorofore is $3.03 \times 10^{-5} \mathrm{M}$ assuming complete extruction, and ϵ is $30900 \mathrm{M}^{-1}$ cm^{-1} (from Section 11). The data are tabulated in Table XII, page 87.

The data needed for deternining the $\mathrm{SCN} / \mathrm{Nb}$ ratio werc obtained by the procedure described above, except that a constant smount of TPACI was aded (1 ml of 0.02M) for each extraction. Aliquots (x ml) of $0.3 \mathrm{M}, 0.12 \mathrm{M}, 0.03 \mathrm{M} \mathrm{RSCN}$ and ($6-\mathrm{x}$) m 1 of water were added. An was 0.936 , wid the data are in Table xIMT.

The TPA/ Mb and $\mathrm{SCN} / \mathrm{Mb}$ ratios mere later obeained by treating the data ss described previcasly, after which the appropriate graphs were constructed, Figure X and $X I$, respectively.
25. Infraneu Spectia of Solid Aisoonium Metal Salis

Chloroform extracts of the arsomiua salts of mb (狍),
 described in Section I. The extwnet gue ffyterad and the colvent
was evaporated under a stream of air in order to crystalize the arsonium salt. The crystals were sasked with water or butanol, and then dried for at least 24 hours in a vacuum desiccator
 approximately 0.5 mg of the salt with 100 mg of dry KBr and pressing in a pellet press. The infrared spectra were obtained with a Beckman IR-8 Infrared Spectrophotometer. The spectra of Nb and Ti are shown in Figures 14 and 15 . In order to assign the I.R. bands, spectra were obtained of TPAC1, TPASCN, and RSCA. Pertinent I.R. bands are listed in Table XIV. 26. Dilation of Chloroform Extrscts of the Niobium

Thiocyanate Complez

A chloroform extract of nlowium was prepared by adding 2 ml of $2.27 \times 10^{-4} \mathrm{M} \mathrm{Nb}$ in $12 \mathrm{MmCl}, 4 \mathrm{ml}$ cold water, 6 ml cold $6 \mathrm{MHCl}, 2 \mathrm{ml} 0.3 \mathrm{M} \mathrm{KSCN}$ and 1 ml of 0.05 M TPACl to a separatory funnel. Fifteen ml of comercial chloroform were added and the mixture was extracted for 3 minutes. A 4 ml aliquot of the extract was diluted to 5 wil with chloroforiw, and the absorbamce, 390 mu, was recorded as a function of time. The date show in Table KTI were treated assuming that the dissociation of the aiobium complea oweyed first order kinetics,

27. Freliminary Investigations on Role of Dissolved Water in Chloroform Extracts of Niobium

A Wb extract was prepared by adding 1 ml of 1.14×10^{-4}
 HCl, 1 ml 3 M KSCA, and 1 ml of 0.05 M TPACl to a separatory funnel, and extracting three times with 9 ml of chloroform. Aliquots of TPACl were added prior to each extraction.

A portion of the extract was dried by equilibrating with $\mathrm{Mg}_{\mathrm{g}}\left(\mathrm{ClO}_{4}\right)_{2}$ for twelve hours. After measuring the absorbance of the partially dried extract, water was added to the extract by equilibrating with a solution of CaCl_{2} of a water activity, $A_{\text {a }}$, of 0.680 for a period of approximately twelve hours. The results are sumarized in Chapter 4, page 112.
28. Equilibration of Miobium Extracts 佂 Chlorofore With Solutions of Constant Water Activity

A 5 ml ellauet of $4.26=10^{-\frac{4}{4}} \mathrm{H}$ solution in 12 \# HCI pas added to a 300 ml separatory funnel in addition to 30 ml of 12 M HC1 and 61 ml of cold water. After mixing, 9 ml of
 was extracted for 3 minutes with 110 mil of chloroform, after which the organic phase was filcered into a volumetric fiagk.
volueqtrie flasks. The volumetric flasks were placed in a water bath mich was thermostated at $251_{1}{ }^{\circ} \mathrm{C}$, and were equilibrated for 72 hours. After equilibration the selutions were removad, and the absorbance of each solution versus chloroform on the Beckman D. ©. spectrophotometer (slit width $=0.06=$). Spectra were obtained on the Beckman DR-1. The data and spectra are shown in Table XIX, and Figure 19, respectively.

The experiment was repeated three times with different concentrations of Mb . The following quantities of reagents were used for the second repetition: 5 ml of $4.265 \times 10^{-4} \mathrm{M}$ Wb in12 M KC1, 6.7 ml of cold $6 \mathrm{MECL}, 10.3 \mathrm{ml}$ cold water, and 3 ml of 1.5 K KSCR. The aqueous mixture was extracted four times using 1 ml of 0.05 M TPAC1 and 25 ml of CHCl_{3} for each extraction. Portions of the combined estract yere equilibrated, as described previously, for 96 hours.

A third 县 solution in CeCl_{3} was prepared by extracting a soiution consisting of 10 ml of $2.27 \times 10^{-4} \mathrm{M} \mathrm{Nb}$ in 12 m HC1, 55 ml cold 6 M HC1, 26 ml cold water, 4 ml cold 3 H mSC
 $m 1$ of CaCl_{3} for 4 minutes. The aqueous phase was later analyzed by the procedure iescribed in Section 11 to determine the
 solution eere equilibrated for 70-72 hours.

A fourth so solution in $\mathrm{CH}_{3} \mathrm{Cl}_{3}$ was prepared by extracting a solution consisting of 12 ml of $2.27 \times 10^{-4} \mathrm{M} \mathrm{Nb}$ in 12 MHCl , 51 ml cold 6 H KCl, 28 ml water, 4 ml 3 HESCN , and 5 ml of
 the Nb , and the equilibration time was 72 hours. The data for the four experiments are shoun in Tables XVIII, and the results are eiscussed in the following section.

29. Extraction and Rehavior of Cobalt-Thiocyanate Complexes;

Model for Comparison vith Miobium

A. Preparation of a Chloroforn Solution of the CobaltThiocyanate Complex.

A two mlaliquot of a Co solution, $0.260 \mathrm{mg} \mathrm{Co} / \mathrm{ml}$ as $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was added to a separatory funnel in addition to 5 ml of cold water, 5 ml of 1.5 M RSCA , and 1 ml of 0.05 m TPACl. The blue mixture was extracten with $12 \frac{1}{2} \mathrm{ml}$ of chloroform by shaking for three minates. After removal of the orgonic phage, the equeous phage zea cotracted again -ith $12 \frac{1}{2}$ ml of chloroform after adding 1 ml of PPACl, and the two © \quad tracts maze conbined. The spectrom of the Co solution was obtained over the region $720-260$ man.
B. Dinution of Coholt Solmtion with Chloreform.

Four mi and 1.0 ml ailquots of the original extract were dilecee to $5 . \hat{0} \mathrm{mi}$ with chioxoform. Spectra were obtained
ss mell as magurements at 625 ma on the D.U.
C. Bemoval of Water From Cobalt Extracts.

A 5 ml portion of the original extract and a 5 mi portion
 volumatric flasks, to which equilibrator caps containing CaSO_{4} (Drierite) were affized. The extracts, as well as two control samples, were placed in a draver in order to ramove them from the sunlight, and were allowed to equilibrate for 78 hours. Spectra of the dried extracts and controls were obtained as well as single wave-length measurements at 625,320 , and 317 ma. The results are shown in Table XVII.

RESULTS ARD DISCESSIOR

1. Fíeiliqinary work

The possible extraction of niobium as a thiocyanate complex ion-pair of TPACl was first realized during a previous investigation of the extraction of tangsten with TPAC1. ${ }^{79}$ The fact that niobium interferred strongly with the spectrophotometric determination of tungsten, in that the niobium was co-extracted with tungsten, suggested that the extraction of niobium aight be worthy of investigation. Initial studies with solutions containing only niobium revealed that TPACl could indeed be used to precipitate a thiocyanate complex of niobium and that the aqueous insoluble ion-peir could be extracted into chloroform; horyever, the extracted species did not obey Eeer's Law.

The work described here was undertaken fith the purpese of studying the extraction of the TPAC1 ion-pair with chloroform in order to develop a anantitative analytical procedure for miobin, to establiah the composition of the extracted complex, and to study the extraction equilibria.

The initial extracts of the oiobinm thiocyanate comples

increased as a function of time, and the absorbance from 360 to 330 min also increased.

In order to discover the source of the problew, blank solutions were prepared as previously described. It was forand that the potassium thiocyanate decomposed quite readily at the high acid concentrations used, and some of the decouposition product was evidently extracted into the chloroform. The decomposition products interfered with the absorbance of niobium since the thiocyanate products absorb in the same spectral region as niobinw, i.e. from 390 m into the ultraviolet. The specific source of trouble was pin-pointed to be the mixing step in which potassium thiocyanate solution was mixed with 6 to 10 M hydrocbloric acid. Sufficient heat was generated apon mixing to initiate the decomposition reaction. In order to eliminate the decomposition of ESCR, the solutions were chilled to 3 to $5^{\circ} \mathrm{C}$ prior to mixing, and furthermore, the addition of potassium thiocyanate to acid more concentrated than 5 to 6 was avoided.

2. Pisible Spectra of Niobium in Organic Solvents

Spectra of the niobium thiocyenate complexes in commercial chionofora, ecinanoi-free chiorofora, ani giz chlaroform acetone mintures are shown in Figures 1 and 2, pages 50-5! (The tera, comercial chloroform, is used to designate comercially
eveilable reagent grade chloroforim which contains 5% ethanol added as a preservative). It is observed that the absorbance band in the chloreformoacetone niftrare or ethanal-free chloroform is sharper and more symentricel than in commerial chloroform, especislly in the region 260-330 mu. The absorption band in any of the above named solvents is wide enough that the wavelength of maximum aboxbance is easily reproduced and Bear's lav is fallowed quite well even at high concentrations of niobinm. At the ultraviolet edge of the visible bands, the absorbance starta rising rapidly and continues to rise into the TPA paaks wich occur at 270,266 , and 260 mu. However, in 9/2 chloroform-acetone mixtures the sharp increase in absorbance is also attributed to acetone, which absorbs at 330-320 m.

When the spectra are compered mare closely it is obvious that the absorbance at 390 ma in ethenol-free chloroform (or $9 / 2$ chloroform-acetone) is grestar than in comsercial chloroform, bui is lens at $340-360$ than in the latter solvent. The iower absorbance in the region 340-360 mu is attributed to a lower concentration (or negifible asoant) of a aecond niobium complex in athanol-free chloioforim (ori $9 / 2$ chioroform-acetons). Additionai evidence for the existence of the second niobium compiex in cnmearcisi chioroform is presented and discuased in Sections 29 and 30.

[^0]ABSORPTION SPECTRA OF THE THIOCYANATE COMPIEX OF HIOBIUM IN VARIOUS SOLVENTS

PIGURE 2

3. Extraction Vazialos

Since preliminary investigations had shown that aiobiam extracts failed to obey Beer's law, thorough investigation of the extraction variables wss made in order to establish the optimum conditions for the extraction of niobium froe equeons solutions into chloroform and chloroform-acetone mixtures.

The extraction variables were studied by determining the influence of the variaus reagents on the efficiency of axtraction of niobinm. The effects of hydrachloric acid, potassium thiocyanate, TPACl, and quilibration time were studied individually by varying the concentration of the reagents, one at a time, and noting the absorbence of the extract.

In Figure 3, page 53, and Carve \mathbf{B} of Pigure 5, it is apparent that the concentration of hydrochloric acid in the aq̧ueous phase is not critical; beswerr, it was kept within the range 3-5 if in the analytical procedrure as the hyarolysis of tantalum and rungsten is 1ikely to occur ai low acid concentrations; whereas at concentiotions above 5 in partial decompoition of potassicm thiocyenate is lizely.. At lower acia concentrations the fraction of miobiog extracted decreases, probably bocange of hydrolyeis of tha of niobic acie. At the higher acid concentrations (above 5 l) the puxcantege niobicm extractea again decreases. This benevior

EXTRACTION EFFICIENCY OF NIOBIUM VERSUS HYDROCHLORIC ACTD CONCETYRATION
 CHLOROFORM SYSTEM

FIGURE 3
of niobium can be expiained by considering the distribution curve of niobium on the anion exchange resin, fowex-2, as function of hydrochloric ectd concentration. ${ }^{80}$ The distribution coefficient, X_{d}, defined as the ratio of concentrations of miobitar on the resin and in solution, is a mimmm in 2 to 6 in hyirochloric acid, and increases sharply at both extremes of the stated concentration range. This behavior toward the resin suggests that neutral, cationic, or less stable anionic species are present in 2 to 6 hydrochloric acid at greater concentrations than at the extremas of the acid range. It has been suggested ${ }^{81}$ that niobium exists in hydrachloric acid in the form of one or more of the following ions: mboci$\mathrm{MbOCl} \overline{5}, \mathrm{Bb}(0 \mathrm{OH})_{2} \mathrm{Cl}_{4}^{-}$, and $\mathrm{Kb}(\mathrm{OH})_{2} \mathrm{Cl}_{\overline{5}}^{\overline{5}}$ The conplex ion, $\mathrm{Nb}(\mathrm{OH})_{2} \mathrm{Cl}_{4}^{-}$has been independently established and its anionic nature proven. ${ }^{82}$ Additional evidence for more than one chloride complex of niobiun was obtained from the elution curve of ươbium, Tine cinree separaie peaiks wicin vere observed by
 was passed onto Dowex-2, followed by elution with 7 M hydrochloric acid, suggests that when equilibriap is reached several species
 case of tantalua ame niobium, the spacies are adsorbed on the resin as chloro complezes at high aciaities, but at low acidities
they are retained as hydrolyzed species.
In correlating the extraction behavior of niobium which is reported in this work with its anion exchange behavior, it is guggested thet the cationie, gestral, andior lower chloco complexes present in 2 to 6 M hydrochloric acid are more readily substituted by thiocyanate and subeequently extracted as the arsonium ion-pair; alternately, the increase in chloride concentration, 6 in or greater, may be quite effective in increasing the distribution ratios of TPAC1 and TPASCN over that of the niobium complex.

It is iateresting to note that very little niobium is extracted from 10-12 M hydrochloric acid. This behavior of niobium may be of value in devising a new scheme for the separation of niobium from tungsten, molybdenum, and iron. Molybdenum and fron could be extracted as the chloride complezes, and tungsten is raduced and extracted as the thiocyanate complex or chloride complex, during which giobium is masked ss a chloride (or fluoride) complex; afterwards the niobium is demesked and is extracted as the thiocyanate comples species.

The extraction efriciency of aiobiom as function of TPACl concentration is indicated in Curve A, Figures 4 and 5. It is apparent that for a miniman memer of extractions 0.15 to
 and 0.025 to 0.05 millimoles are required with $9 / 2$ chloroform-

Extraction Efficienct of niobion versüs extraction variables

EXTRACTION EFFICIENCY AS A FUNCTION OF REAGENT CONCENTRATION

The concentration scale of each curve is indicated below
A: (Millimoles TPAC added) $\times 100$
D: Molar concentration of̂ EGL

FIGURE 5

TABLE I

Time, min.	Absorbance, 90 mu	Acidity, M
0.5	$0.610,0.580$	2.83
1.0	0.630	3.84
2.0	$0.660,0.721$	2.83
4.0	$0.706,0.722,0.693$	$2.83,2.83$,
		3.84
8.0	0.689	2.83

table II

EXTRAGTION EFFTCIENCY OF NIOBIBM VERSUS THIOCYABATE
COA CEATRATION, CHLOROFORM STSTEM

KSCN, M	A_{390}	[SSCN, M	A_{390}	ESCA, M	${ }^{\text {A }} 390$
0.000	0.010	0.010	0.090	0.008	0.047
0.036	0.260	0.016	0.228	0.012	0.129
0.072	0.432	0.020	0.303	0.020	0.261
0.143	0.480	0.024	0.395	0.024	0.341
0.214	0.492	0.030	0.518	0.0312	0.446
0.285	0.485	0.040	0.550	0.040	0.535
0.357	0.491	0.040	0.508	0.060	0.629
0.428	0.509	0.040	0.535	0.080	0.702
0.428	0.440	0.060	0.627	0.100	0.709
				0.120	0.714
4 酳 time		3 mia. equiilioracion time			3 min. equiíidration time
$\begin{aligned} & 5.7 \times 10^{-4} \text { mole } \\ & \text { Nb taken } \end{aligned}$		$\begin{gathered} 4.54 \times 10^{-4} \text { mole } \\ \text { Nib taken } \end{gathered}$			$\begin{aligned} & 4.54 \times 10^{-4} \text { mole } \\ & \text { Nb taken } \end{aligned}$

EXTRACTION BFFICIENCY OF EB AS FANCTION OF TPACl

COICEEATRATION, CHEROFORM SYSTEM

Millimoles TPAC1	Absorbance, 390 mu
0.2000	0.963
0.1500	0.928
0.1000	0.879
0.0500	$0.757,0.790$
0.0250	0.676
0.0200	$0.631,0.627$
0.0125	0.580
0.0075	0.475
0.0050	0.390
0.0635	0.333
0.0025	0.252
0.00125	0.149
0.0000	0.001

acetone solutions. It is interesting to note that the chloroform system requires considerably more TPAC1 for maximua efficiency of the extraction of niobium.

The role of potassium thiocyanate in influencing the extraction of niobium is indicated in Curve C of Figures 4 and 5. The optimum concentration of thiocyanate is 0.2 M or greater; however, if the concentration is much greater than 0.6 M there is a problem from the decomposition of thiocyanate, especially in the ctiloroform system. In the analytical procedure, which was based on the use of chloroform-acetone mixtures, the thiocyanate concentration was 0.6 M .

The influence of hydrochloric acid on the extraction of niobium was the first variable to be investigated in the chloroform system. As can be seen (Figure 3) there was considerable scattering of the data points. The source of this problem was discovered to be due to an insufficient equilibration time. The results of extraction efficiency as a function of equilibration time (Curye R, $\operatorname{Figure~4)~Indicate~that~the~aqueouis~}$ and nonaqueous phases should be shaken for at least 4 minutes. Other studias on the chloroformacetone system showed that a 1 to 2 minute equilibration time was satisfactory.

A considerable portion of the early investignefous was carried out using chloroform as the extraction solvent. It was

not untii the investigation of diverse ions wgs under way that the advantage of a chloroformancetone mixture was discovered. Preliminary investigations with stannous chloride as a reductant in a $\mathrm{H}_{3} \mathrm{BO}_{3}-\mathrm{KF}$ - thiocyanate-hydrochloric acid medium containing niobiur revealed that niobium was poorly extracted from the medium, but upon the addition of small quantities of acetone, the fraction removed per extraction was increased significantly. The results of extraction efficiency as a function of chloroform-acetone ratio, shown in Figure 6, page 62, indicate that a $9 / 2$ mixture is the optimum ratio, provided the niobium/TPAC1 ratio is approximately 0.005 or less. Curve B, which is for a ratio of 0.093 indicates that the optimum conditions for extraction of niobium are complex functions of all the parameters. At low ratios of chloroform to acetone $9: 4,9: 5$, etc., the aqueous and nonaqueous phases separate very slowly after equilibration. The advantages of going from a relatively inert solvent, chloroform, to a reaction solvent in the case of niobium are: the molar absorptivity of the complex ion is increased by approximately 17%, the quantity of TPAC1 required for optimum extraction is reduced by a factor of four, the equilibration time is decreased from four minutes to one to two minutes, and the distribution ratio of niobium is increased frow 70% to greater than 90\%; and as a consequence, the number of

Brtractions req̧aited for complete exiraction of the niobium is reduced from 3 or 4 to two.

Preliminary investigations of diverse ions were conducted as outlined in Section 12 , page 28 , of the experimental section. Iron(III), molybdenum($V, V I)$, and tangsten($V, V I$) interfered strongly, forming thiocyanate complexes chat were extracted with the niobium complex. At this point several hypothetical schemes were outlined for eliminating the interferences of molybdenam, iron, and tungsten. The separation scheme that looked wost promising involved the reduction of iron(III) to iron(II), molybdenum(VI) to molybdenum(V), and tungsten(VI) to tungsten(V), after which niobium was masked as a fluoride complex, and molybdenum(V) and tungsten(V) were separated from the niobiun by extracting the former ions as their thiocyanate complexes. It appeared that the most ímporianit parí of tinis scheme was the mesting ane cemasing of the niobium.
 demeging stap are show in Table \bar{F}, and they indicate that three ml of 0.1 potassium fluoride will prevent the extraction of niobium, whereas three ml of 1.0 自 potassium fluoride completely prevent the extraction of 2.28×10^{-4} mole of niobium. of the three demaskimg agents studied, almaiman(III), berylium(II), and boric acid, it appears thac sacuracion of the aqueons afobian containing solution with boric aciu is most effective in destroying

table y

EFFECT OF VARIOUS REAGENTS OE EXTRACTION OF NIOBIUM

Ahsprbence	priplamation
0.340	Control
0.397	Control
0.365	Control
0.368	Salting-out Agent; 3 ml of $1 \mathrm{M} \mathrm{H} \mathrm{H}_{4} \mathrm{Cl}$
0.363	Salting-art Agent; 3 ml of 1 M HH
0.367	Salting-out Agent; 3 ml of $0.1 \mathrm{H} \mathrm{H}_{3} \mathrm{HO}_{3}$
0.127	Masking Agent; 1 ml of 0.1 H 臨
0.025	Masking Agent; 3 ml of 0.1 M KF
0.004	Masking Agent; 3 ml of 1.0 M KF
0.111	Efficiency of AlCl_{3} in Demasking Nb
0.150	Efficiency of BeCl_{2} in Demasking mb
0.233	Efficiency of $\mathrm{E}_{3} \mathrm{BO}_{3}$ in Demasking Nb
0.255	
0.197	Demasking with $\mathrm{F}_{3} \mathrm{BO}_{3}$; took 3.0 mmole RF

the niobim fluoride complex. The reactions for formation of the tetrafluoroborate ion from boric acid and fluoride have been described by Coursier at al. ${ }^{85}$ in their paper which reports the extraction of tetrafluoroborate with TPACl.

Another separation scheme investigated (Section 15-Expt.) involved the reduction of iron(III), molybdenum(VI), and tungsten(VI) with hot stannous chloride, followed by the simultaneons extraction of niobium and tungsten as the thiocyanate complexes. Niobinn was subsequently stripped from the chlorofort extract by backwashing with an aqueous hydrochloric acid-amonium fluoride solation. The niobium fluoride complex was then destroyed using boric acid, after which the niobium was extracted as the thiocyanate complex. When this scheme was actnally applied to a niobium mixture, a chloroform insoluble green-yellow precipitate was found to be present in the tungsten-free solutiow of niobian which also was saturated with boric acid. The absorbance of the extract was much lower than expected for the amouni of niogium taken. Further investigations revealed that pure niobium solutions, when heated with stannous chloride and gubsequenfly treated nith potassium fluoride, boifc acid, TpACl, and potassinm thiocyanate would aimays produce a green-yellow precipicate tinat insoiudie in cnioroform. however, then the heating step oaly was omitted the greca-yellow precipitate was soluble in chloroform. It was finiliy discovered that mixtures
of stannous chloride and stannic chloride in the presence of potassium fluoride form precipitates with TPAC1 that are insoluble in chioroform, and in some manner the stannous and stannic ions
 insoluble in chloroform.

At this point of the investigations it was discovered thet the ingoluble arsonium salts mentioned above were soluble in chloroform-acetone mixtures, and the decision was made to investigate the use of such a mixture as the extracting soivent. The results of using a chloroformacetone mixture have been compared with chloroform earlier in the discussion, and it is apparent that the mixture is clearly superior as an extracting solvent in the case of niobium. It is suggested that the mirture is a better solvent primarily becauge of its higher dielectric and polarity, winch in turn more readily dissolves the arsonime salt of niobirm; however, more complex factors which cannot be ruled out are: (1) a different complex species may be formed in the presence of acetone which contains acetonate ligands, presumably in the outer sphere adeacts, and (2) acetone paritions into tine aqueous phase to exert salting-out effect.

Interferences

After establightig oprimia values for the eatractiou
variables, a de亡ailed invesíigation of incerferences was made using the procedure in Section 20-Experimental. The results are summarized in Table VI.

The fintexference studies qevesied thot manj of the flememta that comonly occur with niobium in steels and alloys do not interfere in the slightest with the new method. Furthermore, it ig significant thet tantalum can be present in a 118-fold excess without interfering. The analytical procedure is adequate to prevent the interference of nolybdenum, tungsten, and iron when they are present in ratios of $45 / 1,4 / 1$, and $107 / 1$, respectively, compared to niobium on gram/gram basis. When larger quantities of tungsten ara present it will be necessary to use a strong reductant to completely reduce the tungsten(VI) to tungsten(y) prior to its remowel in the separation step.

When titanimu is present, a grecioitate of a thiocyanate complex forms with the TPA ion. Prolonged shaking will cause the precipitate to decompose due to preferential extraction of TPASCA, tetraphenylarsonium thiocyamate, from the aqueous phase. Ozidizing egents such as oxides of nitrogen interfere with the decermination of niobium dy causing the oxidation of thiocyanate ion. In such cases the absorbance of the extract increases as a fuaction of time, especially in the spectral region of $350-360$ min, theh is chargcterigtie of the chtocyanate decomposition products. For this reason it is mandatory to remove

TABLE FIT

NIOBIOM WITE SPAC1

(Nb taken: 21.3 ug; Absorbance $=0.336 \pm 0.002$)
(Percentage error in absorbance is $\pm 0.596 \%$)

Diverse Element	$\begin{aligned} & \text { Quantity } \\ & (u g) \end{aligned}$	Ratio of Divierse element to Nb	Absorbance (± 0.002)	Percent Error
Co	479	22.4	0.336	0.000
Mn	400	18.8	0.333	-0.892
Cr	400	18.8	0.336	0.000
Ni	482	22.6	0.334	-0.596
Cu	1000	47.0	0.335	-0.296
Ti	79.3	3.7	0.336	0.000
Ti	396	18.8	0.414	+23.2
v	204	9.6	0.334	-0. 596
Sn	1000	46.9	0.179	-53.0
Ta	2520	118	0.341	+13.47
-	939	45.8	0.336	0.000
W	18.4	0.9	0.337	+0.298
W	92	4.3	0.337	+0.298
Fe	2280	107	0.336	0.000

all nitrogen oaides from the solutions prior to making an anelysis. It is not necessary to remove nitric acid, as no interference from small quantities has been observed.

The natare of this netw mothot for miobiag is such that the method can be modified easily for the analysis of niobium in special material, since the use of alternate feducing agents and wasking agents for eliminating the interference of diverse ions will pernit may modifications. For example, the determination of niobium as traces in tangsten can be made usiag a zinc amalgam to raduce the tungsten prior to its extraction from the masked niobium. Also, miobium can be determined in molybdenum alloys by making successive extractions on the aqueous solution containing the maked niobium until the molybdenum concentration is reduced below the level of interference. It is further guggested that the determination of niobium ia large quantities of titanium should be feasible by extracting the niobium and traces of the titanium, which has a much smallex distribution ratio, the traces of titasium being later removed from the organic extract by backwashing with fresh 3-4 M hydrochloric acid.

Calibration Curves

A. 9/2 Chloroform-Acetone Solation, with
Hasking and Separstion Steps.
 concentration was prepared (Results in Figure 7, Table VII) using the analytical procedure of Section 20-Experimental.

The concentration of niobiai in the organic extract was calculated assuming complete extraction of the niobium from the aqueous phase. Beer's law was followed over the entire concentration range investigated, 0.17 to 3.2 aiobium/liter. The specific absorptivity of $388 \pm 2(\mathrm{~g} \mathrm{Mb} / 1)^{-1} \mathrm{~cm}^{-1}$ was determined by a least squares fit of 35 data points on the calibration curve. (The specific absorptivity of 388 corresponds to a molar absorptivity of $36000 \pm 200 \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$). The intercept of the line at gero niohtum concentration occurred at au gbsorbgnce of 0.005 . The absorbance of the blank is caunea ty the excess TPASCN present in the extrect.

B. 9/2 Chloroform-Acetone Solution Without Hasking and Separation Steps

The calibation curve was constracted during preliminary
 was plotted and a moler absorptivity of $41600 \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$ was

BEER'S LAW CURVE FOR NIOBIUM EXTRACT IN 9:2 CHLOROFORM-ACETONE AT 390 mu

FIGURE 7
obtained.

C. Comercial Chloroform, without Masking and Separation Steps

a line of slope $30,900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, with an intarcept of 0.004 . The procedure used is outlined in Section 11-Experimental.

D. Comercial Chloroform, with Masking and Separation Steps

The data in Table VIIc were plotted and the slope of the line was determined to be $28100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. The experimental procedure is given in Section 15-Experimental.

The concentration of niobiam in the organic phase in all four procedures was calculated assuming that all the niobiun was extracted into the solvent after making the number of extrections indicated for each procedure. In aach of the above cases the completeness of extraction of niobium was checked by making an adiditional extraction of the aqueous phase after the required number had been made, and the absorbance of the extra extract was compared with that expected for a blank solution. In ail cases the extraction of alobing mas complete prior to the extra extraction. Rence, the difference between the molar absorptivities in the various solvents canut be due to incouplete

TADLE VII

BEER'S LAW DATA FOR Nb, $9 / 2$ CHLOROFORM-ACETONE SYSTEM

WITH MASKING AND SEPARATION STEPS

(Concentration, $\mathrm{B} \mathrm{Mb} / \mathrm{ml}) \times 10^{7}$	Absorbance, 390 mu
00.000	$0.013,0.011,0.008,0.006$
1.691	$0.076,0.075$
3.381	$0.139,0.137,0.135$
4.226	0.175
5.917	0.232
8.452	$0.337,0.337,0.337,0.337,0.336$
	$0.335,0.335$
10.57	$0.412,0.405,0.395$
12.68	$0.514,0.505,0.489$
15.85	$0.630,0.618,0.608,0.600$
16.91	$0.675,0.675$
21.14	$0.818,0.818$
25.35	1.000
31.69	$1.250,1.240$

TABLE VII b

dATA FOR BEER'S IAN PLOT OF NTOXIEM IN $9 / 2$ CGLOROFORHacenone solution withour masking and

SEPAPATIOS STERS

(Molar Conc., Mb) $\times 10^{+5}$	$\mathrm{~A}, 390 \mathrm{mu}$
0.000	$0.010,0.011$
0.774	$0.332,0.330$
1.547	$0.665,0.661$
2.320	$0.971,0.975$

Volume of organic phase after extraction was 14.7 ml .

tabler yil c

BEER'S LAM DATA FOR MIOBIEM ; CHLOROFORM
SESTEM HITE MASKING AND SEPARATION STEPS

$\left[\begin{array}{c}\text { Molar Conc, of } \\ \text { Niobium }\end{array}\right] \times 10^{5}$	Absorbance, 390 mu
0	$0.010,0.011$
0.2274	0.075
0.4548	$0.138,0.136$
0.6367	0.195
0.9096	$0.265,0.275,0.279,0.273$
1.137	$0.3 E 8$
1.364	$0.392,0.393$
1.705	0.488

DARA FOR BEER'S LAW CORFE, CHLOROFORM SYSTEM, 390 mn

(Molar Conc., $\mathrm{Nb} \times 10^{5}$	Absorbance
0.00	$0.004,0.006,0.012$
0.910	$0.283,0.284,0.284$
1.37	$0.428,0.424,0.424$
1.82	$0.572,0.568$
2.27	$0.706,0.704,0.702,0.709$

A least squares analysis made on the pore points gave a slope of $30,900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ with an intercept value of 0.004 .

Abstract

extraction of the niobium, but on the contrary the differances can be attributed to changes in the relative concentrations of the extracted species. Any variation of the conditions will shift the position of equilibrium between the niobium complexes in solution, and consequently the ratio of the concentrations of the two complezes will be different.

In designing the experimental procedure used to obtain the data for a given calibration carve, a constant quantity of all reagents (except niobium) was added, and the same number of extractions was made for each analysis of the standard solution.

Careful control of the experimental conditions showed that Beer's law was obeyed in each solvent, and the precision as indicated by the standard deviation of the absorptivity was quite good.

Alloy Anglysis

The new analytical method for niobium was tested for accuracy, precision, and interferences by application to the analysis of several steels and alloys. The results of the amalyeis of five steels and nesi-resistimg ailoys, ail of wich Were obtained from the National Eurean of Standards. NBS, are shoun in Fabie TITI. The analytical precedure described in

ANALYSIS OF NBS STANDARD STEEL AND ALLDY SAMPLES

Section 20-Experimental was used to analyze the five samples. The alloys contained some or all of the metals, cobalt, copper, titanium, nickel, chromium, molybdenum, tungsten, tantalum, vanadium, manganese, and iron, in addition to niobium, The results of the analyses are listed in Table VIII as weil as the eiemental composition of the alloys. A comparison of the results reported by NBS, and those found with the new method show that the method is as accurate as any of the procedures reported upon by the Bareau of Standards, and the precision as found from the standard deviation of the samples is quite good. The major time factor in alloy analysis is sample dissolution. In all the above cases the samples were dissolved by heating in concentrated hydrochloric acid, to which one ml portions of concantrated ritric acid were added occesionally to assure complete solution and oxidation. In order to prevent the interference of nitrogen oxides, as mentioned previously, it is desirable to ikeep tine adaition oí nitric aciá to a minimum. Furthermore, a nigh ratio of mitric acid to hytrockioric acid is quite likely to cause precipitation of tungstic, tantalic, and niobic acids, especially if their concentration is high. Therefore, as much of the gteel go peosthe is diseolvea in het concentrated hyanockiondc acia. 酸en cissolation of the sample is complete, the solation is Boiled for $10-20$ mimutes to rempe most of the aitrogen oxides. It

Abstract

is not necessary to remove the nitric acid completely. After boiling, the hot solution is cooled for just a few minutes, then is transferred to a volumetric flask and partially diluted to volume with concentrated hydrochloric acid. After cooling,the solution is diluted to the mark, after which the solution should be tested for the presence of oxides of nitrogen by making an extraction on a portion of the sample with chloroform. If the extract has a yellowbrown color, the aliquot of the sample should be repeatedly extracted until the chloroform layer is colorless.

Composition of the Extracted Miobium Salt

A. Variational Analysis

The investigations described in Sections 8, 9, and 16Experimental not only furnish data which can be interpreted to estahilsh the optimpom conditiono for extrection of niohtur, but when the deta are treated as described below, the composition of the extracted complex with reapeat to thiocyanate and TPA can be deduced. The data for the chloroform and $9 / 2$ chloroform-acetone systems are shown in Tables IX to XIII.

The composition of the complex species in the various solvents was deduced by means of a method previously described by Murphy and Affsprung. 86 The defining equations which relate the

are based on the reaction:
$r \mathrm{SCN}^{-}+\mathrm{nPPA}+\mathrm{NbX}_{z}^{-n}=\left\{(\mathrm{TPA})_{\mathrm{n}}\left[\mathrm{MbX}_{\mathrm{z}-\mathrm{r}}(\mathrm{SCN})_{r}\right]\right\}$ aq. $+r \mathrm{X}^{-}$

where X is the hydroxy or chloride ligand which can be neglected in the equilibrium since their concentration will be relatively large and constant, and the subscript, 0 , indicates the organic layer and, aq., the aqueous phase. The equilibrium expression corresponding to the above reaction is:

$$
\mathbb{R}_{0}=\frac{(\mathrm{Nb})_{0}}{(\mathrm{SCA})_{\mathrm{aq} .}^{\mathrm{T}} \quad(\mathrm{TPA})_{\mathrm{aq} .}^{\mathrm{n}} \quad\left(\mathrm{MbX}_{\mathrm{z}}^{-\mathrm{n}}\right) \text { aq. }}
$$

where $(\mathrm{Nb})_{0}=\left\{(\mathrm{TPA})_{n}\left[\mathrm{NbX}_{z-r} \quad(\mathrm{SCX})_{r}\right]\right\}_{0}$

Consideration of the distribution ratios and ionization constants of TPAC1, TPASCN, and RSCN make it poseible to writa F_{0} in terms of the formal thiocyanate and TPA concentrations and the bbsorbance, after which the following expression is obtained:
$\log \left(\frac{A}{A_{0}-A}\right)=\log K_{5}+r \log \left[(S C Q)_{t}-r A / a\right]+n \log \left[(T H A)_{t}-n A / a\right]$
A_{0} is the expected absorbence for complete extraction of the niobium taken: and "a"is $41600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for the $9 / \underline{2}$ ch1eroform-acetone system, and $30900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for the chioroform system. If the

concentration, and is held constant for a series of extractions in which the TPA concentration, $(I P A)_{t}$, is varied, then $\log \left[\frac{A}{A_{0}-A}\right]=\log R_{6}+n \log \left[(T P A)_{t}-n A / a\right]$

 of slope n.

When the TYACl concentration is held constant and the thiocyanate concentration is varied, then
$\log \left(\frac{A}{A_{0}-A}\right)=\log X_{7}+r \log \left[(K S C A)_{t}-r A / a\right]$
Since $r A / a \ll(S M N)_{t}, \log \left(\frac{A}{A_{0}-A}\right)=\log K_{8}+r \log V_{\mathrm{KSCN}}$

The data were plotted according to aquations (4) and (2), and are shown in Figure 8, 10, and 9, 11, respectively. In the $9 / 2$ chloroform-acetone system, the data from the experimerts for higher concentrations of niobium were adjusted in the log concentration values by adding -0.250 and -0.925 respectively to each value for the TPA/niobium and thiocyanate/niobium ratios in order to reduce all the values to a single plot.

Iii Figure 9, the points experimental and the ine is drawn through the points with a slope of two, which indicates a thiocyenete/niobius ratio of two. The TPA graph, Figere 8, is more comolicated to interpret since a postive depletion eccure

TABLE TX

DATA FOR VARIATIONAL ANAIYSIS OF TPA/Fb RATIO

9/2 CHLLOROFORM-ACETONE

A	$A_{\text {Biank }}$	$\frac{A}{A_{0}-A}$	$\log \left[\frac{A}{A_{0}-A}\right]$	$\begin{aligned} & \text { millimoles } \\ & \text { TPAC1 } \end{aligned}$	$\log \binom{$ mmole }{ tPAC1 }	$\begin{gathered} \log \text { (mmole) } \\ +(-0.25) \end{gathered}$
1.320	0.025	--	--	0.2000	--	--
1.292	0.019	57.9	1.76	0.1000	-1.00	-1.25
1.292	0.015	71.0	1.85	0.1000	-1.00	-1.25
1.277	0.017	36.0	1.56	0.0500	-1.30	-1.55
1.277	0.015	38.2	1.58	0.0500	-1.30	-1.55
1.249	0.015	20.2	1.31	0.0250	-1.60	-1.85
1.231	0.015	15.4	1.19	0.0200	-1.70	-1.95
1.166	0.015	7.99	0.90	0.0100	-2.00	-2.25
1.078	0.014	4.61	0.66	0.0050	-2.30	-2.55
1.013	0.014	3.38	0.53	0.0040	-2.40	-2.65
0.947	0.014	2.58	0.41	0.0030	-2.52	-2.77
0.860	0.014	1:88	0.27	0.0020	-2.70	-2.95
0.700	0.014	1.13	0.05	0.0010	-3.00	-3.25
0.662	0.014	1.00	0.00	0.0008	-3.10	-3.35
0.600	0.014	0.62	-0.09	0.0006	-3.22	-3.47
0.552	0.014	0.71	-0.15	0.0002	-3.70	-3.95
0.497	0.014	0.59	-0.23	0.0002	-3.70	-3.95
0.440	0.014	--	--	0.00	--	--

The symbol, (0), represents above set of data in Figure 8.的 taken: 2 ml of $2.27 \times 10^{-4} \mathrm{H} \mathrm{No}$; Collected 14.7 ml of eatract.

TABLE x

DATA FOR VARIATIONAL ANAIISSIS OF TRA/ AD RATIO
9/2 CHLOROFORM-ACETONE

A	${ }_{\text {Blank }}$	$\frac{A}{A_{0}-A}$	$\log \frac{A}{A_{0}-A}$		108	m moles TPAC1
0.656	0.011	--	--	-		--
0.650	0.011	91.3	1.96	0.1000		-1.00
0.646	0.011	57.6	1.76	0.1000		-1.00
0.642	0.011	39.3	1.59	0.1000		-1.00
0.644	0.008	63.6	1.80	0.0500		-1.30
0.634	0.006	34.8	1.54	0.0250		-1.60
0.623	0.005	22.0	1.34	0.0125		-1.90
0.591	0.005	9.78	0.990	0.0075		-2.13
0.595	0.005	10.5	1.02	0.0075		-2.13
0.494	0.005	3.11	0.49	0.0025		-2.60
0.499	0.005	3.24	0.51	0.0025		-2.60
0.416	0.004	1.76	0.25	0.00125		-2.90
0.419	0.004	$1.0 \hat{0}$	0.26	0.00125		-2.90
0.361	0.004	1.24	0.09	0.00075		-3.13
0.329	0.004	1.01	0.00	0.00025		-3.60
0.392	0.004	0.855	-0.068	0.00015		-3.82
0.200	0.604	0.745		U.00005		-4.30

 above data. ETb caken: 2 mi of $1.14 \times 10^{-\dot{4}} \mathrm{M} \mathrm{Nb}$.
table xI
data for varlational analisis or sci/rb ratio
9/2 CHLOROFORA-ACETONE

A	$\begin{aligned} & \mathrm{A}_{\mathrm{corr}}= \\ & \mathrm{A}-.008 \end{aligned}$	$\frac{A}{A_{0}-\mathrm{E}}$		$\begin{aligned} & \text { m. of } \\ & 0.3 \mathrm{in} \mathrm{KSGE} \end{aligned}$	$\log ^{\text {RSCN }}$	$\begin{aligned} & \text { log } \overline{\text { VSGM }} \\ & +(-0.925) \end{aligned}$
0.655	0.647	----	-....	---*	----	----
0.618	0.610	16.45	1.22	5	----	-0.23
0.618	0.610	15.52	1.19	5	0.699	-0.23
0.592	0.584	3.25	0.97	4	0.602	-0.32
0.545	0.537	4.89	0.69	3	0.477	-0.45
0.459	0.451	2.30	0.36	2	0.301	-0.62
0.285	0.277	0.75	-0.13	1.2	0.079	-0.85
0.225	0.217	0.51	-0.30	1	0.000	-0.93

3.0 M XSCN

0.336	0.328	---	---	4	---	---
0.331	0.323	64.6	1.81	3	0.48	---
0.331	0.323	64.6	1.81	2	0.30	-
0.334	0.336	161.0	2.21	2	0.30	---
0.326	0.318	31.8	1.50	1	0.00	---
0.304	0.236	3.25	0.766	0.3	-0.30	---
0.274	0.266	4.29	0.633	0.3	-0.52	
0.221	0.193	1.54	0.188	0.2	-0.70	
0.175	0.167	1.04	0.017	0.15	-0.82	---
0.180	0.172	1.07	0.029	0.15	-0.82	---
0.103	0.095	0.408	-0.389	0.10	-1.00	---
0.059	0.051	0.184	-0.735	0.07	-1.16	---
0.033	0.025	0.083	-1.080	0.05	-1.30	

Wh taken: 5 ml of 2.27×10^{-4} : Least squares s 1ope $=1.98$

TABLE XII

data for variational anailisis of tpa/nb ratio CHLOROFORM SYSTEF

A	Acors	$\log \left[\frac{A}{A_{0}-A}\right]$	millimoles TPACI	$\log \left[\begin{array}{l}\text { m mole } \\ \text { TPAC1 }\end{array}\right.$
0.963	0.955	--	--	--
--	0.936	--	--	--
0.928	0.920	1.76	0.150	2.18
0.879	0.871	1.13	0.100	2.00
0.790	0.782	0.71	0.050	1.70
0.769	0.761	0.64	0.050	1.70
0.576	0.669	0.40	0.0205	1.40
0.636	0.628	0.32	0.020	1.30
0.631	0.623	0.30	0.020	1.30
0.580	0.572	0.20	0.0125	i. io
0.541	0.533	0.12	0.0100	1.00
0.475	0.467	-0.002	0.0075	0.88
0.390	0.382	-0.161	0.0050	0.70
0.336	0.328	-0.268	0.0035	0.54
0.252	0.244	-0.453	0.0025	0.40
0.149	0.141	-0.752	0.00125	0.10
0.008	--	-	0.00125	
0.014	--	-^	0.150	

TABLE XIT

DATA FOR VARTATIOMAL AFALYSIS TO BETBEMIRTE FOLAR RATIO OF THIOCIA習ATE TO NIOBILR , GELOROFORM SYSTEM

A	(A-0.006)	$A_{0}-A$	$\frac{A}{A_{0}-A}$	$\log \left[\frac{A}{A_{0}-A}\right]$	Vol. KSCN (0.12ii)	$\log _{\mathrm{KSCR}}^{\nabla}$
--	0.936	0	--	--	--	
0.714	0.708	0.228	3.10	0.49	15.0	1.18
0.709	0.703	0.233	3.01	0.48	12.5	1.10
0.702	0.696	0.140	2.90	0.46	10.0	1.00
0.629	0.623	0.313	1.99	0.30	7.5	0.88
0.536	0.530	0.406	1.30	0.11	5.0	0.70
0.446	0.440	0.496	0.885	-0.05	4.0	0.60
0.341	0.335	0.601	0.556	-0.25	3.0	0.48
0.261	0.255	0.681	0.374	-0.43	2.5	0.40
0.202	0.196	0.740	0.265	-0.58	2.0	0.30
0.129	0.123	0.813	0.151	-0.82	1.5	0.19
0.047	0.041	0.895	0.046	-1.34	1.0	0.00
0.006	--	--	--	--	2.0	--
0.004	--	--	--	--	12.5	--
0.627	0.621	0.315	1.97	0.29	7.5	0.88
0.550	0.544	0.392	1.39	0.14	5.0	0.70
0.535	0.529	0.407	1.30	0.11	5.0	0.70
0.518	0.512	0.424	1.21	0.08	4.0	0.60
0.395	0.389	0.547	0.71	-0.15	3.0	0.48
0.303	0.297	0.639	0.470	-0. 33	2.5	0.40
0.228	0.222	0.714	0.310	-0.51	2.0	0.30
0.090	0.084	0.852	0.099	-1.00	1.25	0.10

TPAGl cgicen : 1 mi of 0.02 m

Slope $=2.00$

BLOM FOR DETERMINING STOICHIOMETRIC MOLAR
RATIO OF TPA TO NIOBIUM
9/2 CHLOROFORM-ACEIONE

Figure 8

PLOT TO DETERMINE MOLAR RATIO OF THIOCYANATE
TO NIOBTUM, $9 / 2$ CHLOROFORM-ACETONE

PLOT FOR DETERMINING MOLAR RATTO OF TPA TO NIOBIOM
 CHLOROFORM SYSTEM

FIGURE 10

PLOT FOR DETERMINING MOLAR RATIO OF

THIOCYANATE TO NIOBIUM
CEHOROFORM

FIGURE 11
at very low TPA concentrations. Weglecting the lower portion of the curve, a lime of slope unity is drawn through the data points. The agreement between the experimental points and the line of slope unity indicate a TPA/niobiam ratio of one. The results then indicate that the formula for the estracted species is $\left\{\left(\right.\right.$ OhÂs $\left.^{+}\left[\mathrm{Hib}(S C A)_{2} X\right]^{-}\right\}$, where X anay be chloride, oxo, or hydroxy ligands, and niobium is present as niobium(V). The positive deviation of the TPA graph at very low TPA concentrations is caused by coextraction of niobium as the free thiocyanatoniobic acid along with the arsonium ion-pair. The presence of the free thiocyanatoniobic acid has been verified by performing an extraction on a niobium solution in the absence of TPAC1. The absorbance of the extract was 0.440 at 390 mu, and the shape of the spectrum was identical to that of the TPAC1 extract. At higher TPACl concentrations the extraction of the thiocyanatoniobic acid is negligibla since the partition coefficient of the TPA complex is mach greater, as inferred from the solubilities of the two species in water and the organic solvent. Corrections for simultaneous extraction of the free acid were not applied simce quantitative values for the partition coefficients of the two compleat ane not available. Since the extraction of free thiocyanatoniobic acid does not occur when comercial chloroform is used as the entraction solvent, the

TPA/aioifum and thiocyanate/niobium ratios were determined in chloroforim.

The TPA/aiobium graph, Figure 10, has a slope of 0.95 , indicating a stoichiometry of 1 to 1 for TPA and niobium. The 1ine in the thiocyanate/aioblum graph, Figure 11, has a slope of two. The negative deviation of high thiocyanate concentrations is explained as follows: In general, the variational method of determining stoichiometry in complexes is applicable in those regions of a curve of absorbance as a function of reagent concentration, $A=f(c)$, where the absorbance changes rapidly as the concentration of reagent is varied. The highest three points of Figure 11 are on or very near the platean of the $A=f(c)$ curve, and consequently would be expected to deviate from the straight line drawn in Figure 11. To further illustrate the point that the piateau of the curve of $A=f(c)$ is not applicable, one can consider those points for which there is no change in
 case the siope of the variational plot would be zero.

In constructing the TPA/aiobiuan graphs, Figure 8 and 10 , a preliminary graph of $\log \left(A / A_{0}-A\right)$ versus \log (millimoles TPAC1) is usually made to determime a value for the integex n, and then $\log \left(A / A_{0}-A\right)$ is plotted versus $\log \left[(T R A)_{t}-\mathrm{A} A / a\right]$. The latter value for the concentration of free TPA, i.e., TPA not bound in the metal ion-pair usualiy gives a better fit of the

Abstract

data points. In Figure 8 the $8 y m b o l, \square$, shows that the values of the free TPA differ from the total TPA values only at very 10w TPA concentrations (0.003 millimoles of TPACI). At higher concentrations of TPACl the \log values of free or total TPA concentration are superimposed, thus making corrections unnecessary for several of the data points.

Infrared Spectra

The infrared spectra of TPASCA, TPAC1, KSCN, the arsonium thiocyanate salts of niobium(V), tungsten(V), titanium($I V$), cobalt(II), and chromium(III) were obtained in KBr discs on the Beckman IR-8 infrared spectrophotometer. The spectra are shotn in Figures 12-15, and the important absorption bands are tabulated in Table XIV. Epon comparing the salts, it is apparent that the band at $2056+2 \mathrm{~cm}^{-1}$ is due to the CझN stretching frequency. The transition matal salts are all probsbly contaminated with TPASCN, nence tine cin band of TPASCN is present in the niobium, tungsten, and chromiam spectre as a distinct pesk. The miobium salt differs from all the others in that it shows three distinct bands in the $2000-2100 \mathrm{~cm}^{-1}$ region, whereas the others show only two bands. The $2090 \mathrm{~cm}^{-1}$ bend of nicbium is mssigned an an iscthiccyamate stretching frequency, H finCS, since both cinromium and cobalt salts have bauda near $2090 \mathrm{~cm}^{-1}$ with are knona to be isochiocyanate bands. The niobium band at $2016 \mathrm{~cm}^{-1}$ as well as the titanium band

TABLE ZIT

INFRARED ABSORPTION BANDS OF SEVERAL ARSONIUM SALTS

Salt	$(1,2)_{\text {wave }}$ number cmil^{-1}	Assignment
TPASCN	2056さ2（V．S．）	$\mathrm{C} \equiv \mathrm{N}$ Stretching frequency $C \equiv N$ Stretching frequency； $2020 \mathrm{~cm}^{-1}(\mathrm{a})$
Nb Thiocyanate	2090 ± 2（m）	$\mathrm{Nb} \Leftarrow \mathrm{NCS} \mathrm{Vibration*}$
	2057£2（V．S．）	$\mathrm{C} \equiv \mathrm{N}$ Stretching frequency
	2016 ± 4（V．S．b．）	
	$\begin{aligned} & 920 \text { 离 } \\ & 888 \text { (信) } \end{aligned}$	$\mathrm{Nb}=0$ Vibration
	800 （V．W．）	M \leqslant NCS
Ti Thiocyanate Salt	2040 ± 2（S）	$\mathrm{C} \cong \mathrm{N}$ Stretching frequency
	1990＋2（V．V．S．）	
	885 （m）	Ti $=0$ Vibration
W Thiocyanate Salt	2098＋3（S）	W \leftarrow NCS Vibration＊
	$\begin{aligned} & 2050 \pm(\text { V. V.S. }) \\ & 952(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & C \equiv N \text { Stretching frequency } \\ & W=0 \text { Vibration } \end{aligned}$
Co Thiocyanate Salt	2077 5	Co \leftarrow NCS Vibration＊
Cr Salt（Pink）	2087＋2（Y．S．）	$\mathrm{Cr} \leftarrow$ NCS Vibration＊
	2054＋2（S）	$\mathrm{C} \equiv \mathrm{N}$ stretch in TPASCN
Cr Salt（Violet）	2080－2090（U．S．）	Cr \leftarrow NCS Vibration＊
$\left.[\text {［iou（ } \mathrm{HCS})_{5}\right]^{\prime}=$	945	Mo＝0 Vibration（a） Mo＝0 range for several
$\mathrm{MOOC1} 1^{\circ}$	997	compounds is $850-1000 \mathrm{~cm}^{-1}$

1．The indicated uncertaincies are attributed to reading error which is dependent on the sharpness of the peak．

2．Bank intensities are denoted as：v．＝yery；s．strong； घ．＝aedium；a．weak；b．＝broad．

 to the metai atom．

TABLB

Blement	 Vibration, cm^{-1}	Examples
Ti	2040	$(\mathrm{TPA})_{2}\left[\mathrm{TrO}(\mathrm{NCS})_{4}\right]$
Mo(V)	2066, 2037-2049	$\left(\mathrm{NHE}_{4}\right)_{2} \mathrm{Mo}(\mathrm{NCS})_{6} ;(\mathrm{PYH})_{3} \mathrm{Mo}(\mathrm{NCS})_{6}{ }^{\text {²}}$
Co (II)	$2077 \pm 5,2058=2079$	$(\mathrm{TPA})_{2} \mathrm{CO}(\mathrm{NCS})_{4} ; \mathrm{K}_{2}\left[\mathrm{CO}(\mathrm{NCS})_{4}\right]$
Cr(III)	2087 ± 2	$\begin{aligned} & \mathrm{TPA}\left[\mathrm{CR}(\mathrm{SCN})_{4}\right] ; \mathrm{n}\left[\mathrm{Cr}\left(\mathrm{HH}_{3}\right)_{2}(\mathrm{NCS})_{4}\right] \\ & {\left[\operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left(\mathrm{NO}_{3}\right)_{2},} \end{aligned}$
Nb (V)	2090 ± 2 tr	$\begin{aligned} & \mathrm{s}-\left[\mathrm{Cx}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} \\ & \operatorname{TPA}\left[\mathrm{NbO}(\mathrm{NCS})_{2} \mathrm{X}\right] \end{aligned}$
W(V)	2098 ± 3; 2058	$\mathrm{XHA}\left[\mathrm{~W}(\mathrm{HCS})_{2} X\right] ;(\mathrm{Py})_{2} \mathrm{~W}(\mathrm{OH})_{3}(\mathrm{XCS})_{3}$
Co(III)	2114, 2122	$\begin{aligned} & \text { tyans }-\left[\mathrm{Co}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right] \mathrm{CI}^{\circ} \mathrm{H}_{2} \mathrm{O} \\ & {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left(\mathrm{NO}_{3}\right)_{2}} \end{aligned}$

(a) P.C.E. Mitchell and RoJow.Willtans, J. Chem. Soc.

1912 (1960)
(b) J. Fujita, K. Nakamoto and Mobayashi, J. Am. Chem.

Scc. 78, 3295 (1956) 。

```
PỵH = Pyridinium ion en ethylenediamome
    Py = py%idine
```

at $1990 \mathrm{~cm}^{-1}$ very strong, and their origin remains a mystery. The tals, uiobium, titanium, and tungsten, also exhibited bande is the regiom $950-800 \mathrm{~cm}^{-1}$, which are likely to be metal-oxygen bands. The bands are assigned as indicated in Table $8 T \%$. सence the infrared spectra indicate that the niobium salt has mited ligands consisting of isothiocyanato and oxe groups, where the oxo group is double bonded (according to Selbin, ref. 77). Thus the formula of the arsonium salt can be written as:

$$
\left(\otimes_{4} \mathrm{AB}\right)^{+}\left[\mathrm{BB}=0_{2}(\mathrm{NCS})_{2} \mathrm{X}\right]^{-} .
$$

The ionic character of the \quad b-XCS bonds can be established on a relative basis by comparing th isothiocyanate stretching frequencies of the various salts shown in Table XIV. Fujitaget. a1. have conpared the spectra of $C O(I I I)$ and $C r(I I I)$ thiocyanate saits with HSGS and deduced that e trend toward higher frequencies
 in ínic cibuiracice of the dond, ana iso an increase in ease of substicution of ifgands into the complex. The data in Teble gy, which 18 arranged is the order of inctemsing frequency, indicate a correlation betwen higher freguency and a smaller number of thiocyanate ligands in the molerule, Ehtin in turn implias leas coyalent charactar in the metal-ligana bonds. Thas for the four
 order of decressing covalent chazacter as weil as number of
:CNFRARED SPECTRUM OF POTASSIUM THIOCYANATE

FIGURE 12

TNFFARED SPECTRUM OF TETRAPHENYIARSONIUM THIOCYANATE

Pigure 23

INF'RARED SPFCTRUM OF THE ORANGE SAL,T CONTAINING TPA AND THE THIOCYANATE COMPLEX OF TITANIUM
FIGURE 14

infrafed spectrum of the yejion saly containing tpa and the thiocyanate complex of niobium

Dilution of Hb Solutions

Additional information about the niobium equilibria was obtained by means of the dilution experiments described in Section 27-Emperimental. Figure 16, which shows the visible spectra of the EDD extract before and after dilution, presents additional evidence for two complexes in the chloroform solution. It is clear that upon dilution, the concentration of one complex decreases (deduced from the decrease in absorbance at 390 max the concentration of lower complex increases, as inferred from the increase in absorbance at 320 mu. Furthermore, the absorbance at 390 mu before dilution, 0.928 , when multiplied by the dilution factor, 0.80 , indicates an expected absorbance of
 deceying te a constant vaiue) is consiđerabie iess than expected,
 fine equilimria. Fex the case of a 4 to 10 filution, the discrepancy between the expected and observed absorbances, 0.371 versus 0.098 , is even greater.

Gpon dilution of a niobiom extract the absoxbance at 390 manckly decresses, and then deczeases at a wich slowe rate for a perion of 5 to 20 minites, deperdiag on the conditions of extroction. The rate of decremse ln abeorbance can ba ubed to
A. Spectrum of Niobium Complex Prior to Dilution
B. Spectrum of Niobium Complex after Dilution (4 ml dil. to 5 ml)
C. Spectrum of Niobium Complex after Dilution (4 ml dil. to 10 ml)

EFFECT OF DILUTION UPON THE SPECTRUM OF THE THIOCYANATE

FIRST ORDER RATE LAW PLOT FOR DISSOCIATION OF THE NIOBIUM COMPLEX UPON DILUTION, 390 mu

FIGURE 17

TABLE XVI

 EPON DILUTION OF CEIGOROFORA EXTRAGIS

time	A_{390}	${ }^{\text {A-A }}$	time	A_{390}	$\mathrm{A}_{-A_{\infty}}$
(Prior to dilution)	0.928	--	0.00	0.190	0.092
0.00	0.717	0.167	0.25	0.164	0.066
1.0	0.663	0.113	0.75	0.134	0.036
1.5	0.644	0.094	1.00	0.123	0.025
2.0	0.631	0.081	1.50	0.111	0.013
2.5	0.616	0.066	2.00	0.105	0.007
3.0	0.604	0.054	3.00	0.100	0.002
4.0	0.585	0.035	4.00	0.098	0.000
5.0	0.572	0.022	8.00	0.098	0.000
6.0	0.567	0.017			
7.0	0.561	0.011			
8.0	0.556	0.006			
9.0	0.553	0.003			
10.0	0.550	0.000			
11.0	0.550	0.000			
14.0	0.550	0.000			

Oïtain information aüout the kinetics of the dissociation reaction of the higher niobium complex.

The data in Table XVI, we treated by assuming that the dissociation reaction was first order. For such a situation the rate $1 \mathrm{la} \frac{-\mathrm{dc}}{\mathrm{dt}}=\mathrm{kc}$, can be integrated to give $1 \mathrm{n} \frac{\mathrm{C}_{0}}{\mathrm{C}}=$ $k t=\ln \frac{2}{a-x}=\ln \frac{A_{0}-A_{\infty}}{A-A_{\infty}}$, where all terms have their nsual definition. In particular A_{0} is the absorbance at time zero, or in this case the absorbance immediately after dilution. The term A_{∞} is the absorbance after an infinite reaction time, or absorbance when the reaction has gone to completion. Plots of log ($A-A_{\infty}$) versus time should be linear if the reaction under investigation is first order. The experimental data were plotyed as indicated above, and the linear graphs, Figure 17, indicate that the decomposition of the thiocyanate complex of niobium, which absorbs at 390 mu , is first order with rate constants of 0.380 and 1.28 min. ${ }^{-1}$ The half-1ives, tiz, of the reactions are 1.80 and 1.30 minutes, respectively. The different th values obtainea upon dilution of a given niobium solution indicate tinat the extent of dissociation depends upon the extent of dilution, which would be in agreement with the previous evidence for an
 complex absorbing at 390 mu can be interpreted to be due to reduction of the concentration of free water in the solution, 26 zil 26 a
reduction of the concentrations of the other reagents.
The axperiment was repeated several times with niobium solutions obtained under differemt extraction conditions, and these results differed considerably from the original results. Pirst order rate constants of $0.352,0.589,0.582$, and 1.01 min $^{-1}$ were obtained. The half-iife varien from 0.541 min to 1.84 min. In all the experiments the scatter in the data was small. Furthermore, no satisfactory conclusions could be drawn concerning the influence of different extraction conditions upon the dissociation of the complex when diluted. More intensive investigations on this aspect of the problem should be worthwhile in elucidating the nature of arsonium complex ion-pairs in nonaqueous media.

In order to compare the behavior of the arsonium ionpair of niobium with another metal, a cobalt extract in chloroform was prepared, Section 29 Experimental, and then was treated as indicated. Table XVII shows that cobalt extracts can be diluted, and the gbsorbance of the diluted extract agrees quite well with the expected absorbance. Furchermore there is only a slight change in the absorbance of a cobalt extract upon drying. Hence the ideal ox model, cotalt, when compared vich miodium indicates that the behavior of niobium upon dilution and drying is unexpected and that the niobium system must be more complicated than the cobelt

TABLE XVII

RESULTS OF DILUTIHG AND DRYIMG CODALT TMIOCYANATE EXTRAGTS

A 625 แu	A 320 mu	A 317 mu	Explanation
0.656	-	-	Original Co Solution
0.530	-	-	Diluted Extract; (4 ml to 5) expected absorbance $=0.526$
0.133	-	-	Diluted Extract (1 ml to 5) expected absorbance $=0.132$
0.134	0.852	0.865	Control after 78 hours
0.139	0.881	0.900	Dried ertract (1 to 5 dilutio

system. The evidence presented can be interpreted only as an equilibria between two niobium complexes, one of which has the chemical formula $\left(\mathrm{O}_{4} \mathrm{As}\right)^{+}\left[\mathrm{NbO}_{2}(\mathrm{NCS})_{2}\left(\mathrm{H}_{2} 0\right)_{1}\right]^{-}$.

Role of Water in Chloroform Solutions of the
TPA Salt of Niobium

Chloroform solutions of the TPA salt of niobium were prepared by distribution of the complex salt between an aqueous and nonaqueous phase, and consequently small quantities of water were extracted into the nonaqueous phase in addition to the niobium salt, hydrochloric acid, thiocyanic acid, TPASCN, and perhaps TPAC1. The water which was extracted into the nonaqueous medium may be present as water of hydration in the various ionpairs, and/or may be involved to some extent in the complex of niobium with thiocyangte, sither in the inner sphere as a ligasd, or in the outer sphere as an adduct.

In the experiments described in Section 27 and 28 Experimental, chloroform solutions of the niobium salt were equilibrated with desiccants and aqueous solutions of known water activities, a_{w}. The chloroform and constant humidity solutions were enclosed in an air-tight system and were permitted to reach equilibrium by tzansfer of water through a commonly shared vapor phaze. The equilitivatiōa process was facilicated dy use of

EQUIIIBRATOR CAP
 (full scale)

FIGURE 18
equilibrator capa, 87 piguze 18. The cap is a $3-4$ mi ciosed dotiom, open-top cylinder with a side arm attached to a $10-30$ inner taper joint. After the appropriate a_{E} solution is placed in the container, the top is stoppered with a rubber serum stopper, and the filled cap is attached to a volumetric flask or spectrophotometer cell.

The results of a preliminary experiment in which a niobium extract was dried and subsequently equilibrated with an a_{w} solution indicated that water was important in stabilizing the niobium complex which absorbed at 390 mu . The removal of water from the system caused the absorbance at 390 mu to decrease by 17% from the original value, whereas the addition of water to the dried extract caused the absorbance to increase to slightly more than the original value. The half-life of the drying process was approximately nine hours. A coatrol sample held for the same period as the dried sample showed aegligible change in absorbance. After 90 hours a small amount of decomposition occurs in the soilution. For this resson equilibrations were limited to approrimately 8 half-lives, about 72 hours. The fact that the complex of niobium could be reformed by equilibrating with water showed that the reaction involving the removal and addition of water to the miobium complea mas reversiole, Furthermore, spectra

taken at different stages of the drying period showed a decrease in absorbance at 390 mu , an increase in the region $360-330 \mathrm{mu}$, and an isosbestic point at 364 mu. Hence, it is possible to conclude from the spectral information that two niobium complexes are involved in an equilibrium that is dependent on the activity of water in the medium.

In order to deduce the stoichiometry of water in the niobium complexes, niobium solutions in chloroform were prepared at four different formal concentrations of niobium, f_{Nb}, and the absorbance of each solution was obtained as a function of water activity. The spectra of one of the niobium solutions, shown in Figure 19, contains an isosbestic point at 364 mu. The data for the experiment are shown in Table XVIII.

In order to establish relationship between the two niodium complexes and water, an equilibrium is formulated:

$$
\begin{equation*}
\mathrm{NbX}+\mathrm{nH}_{2} \mathrm{O}=\mathrm{NbX}\left(\mathrm{H}_{2} 0\right)_{n} \tag{1}
\end{equation*}
$$

where an anindrous niobium species, mbx , reacta with water to form a hydrated complex, $\operatorname{NbX}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$, both of which absorb at 390 mu, and X represents the other ligands present in the complex species. The formation congtamt,

absorbance of niobiun solutions at various water activities

All absorbances were corrected for the reagent blank.
absorbance of niobiom solutions versus activity of
WITER

Filmed as received

without page(s) \qquad 117

UNIVERSITY MICROFILMS, INC.

All of the error was forced into \mathbb{A}_{c}, and the calculated root mean square deyiation is Acs RMSD, des subsequently used as a criterion for the choice of as well as the best value of K. The methods uged to obtain the beat values of k, \mathcal{E}_{0}, and E_{n} are described 88 elsewnere.

When the exponent n was assigned a value of one, the best fitted values obtained for K, ϵ_{0}, and E_{1}, were $14.1 \mathrm{M}^{-1}, 8200$ $M^{-1} \mathrm{~cm}^{-1}$, and $42800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, respectively, for the minimum aHSD, 0.024. A choice of two for the exponent n resulted in K, ϵ_{0}, and E_{1}, values of $1.4 \times 10^{3} \mathrm{M}^{-2}, 8650 \mathrm{~K}^{-1} \mathrm{~cm}^{-1}$, and $27000 \mathrm{~K}^{-1} \mathrm{~cm}^{-1}$, respectively, for a minimum RWSD of 0.031 . The above formetion constants, R, were converted from activity to molar units using a Henry's law constant for water in chloroform which was based on an assumed nonomer-irimer equilibrium for the solute, water. ${ }^{89}$ The experimencal $A=f\left(a_{w}\right)$ data were further compared with the
 Guperimpoing tia caicuiated curye on apiot of the experimemtel dete. Figure 20 , which is a plot for $n=1$, indicated a reasonably good fit for Equation 4. A similar plot for $n=2$ showed considerable devtation ix the en renge below 0.400 . Hore dact poinct in the $3_{\text {w }}$ regiom belog 0.400 nould be desirable as this region is important

 chemical species, it ves conciuded thet in the niobium-water syetem,
the two most probabie complexes are an anhydrous niobium complex, $\mathrm{TPA}^{+}\left[\mathrm{NbO}_{2}(\mathrm{SCN})_{2}\right]^{-}$and a monomer monohydrate, $\mathrm{TPA}^{+}\left[\mathrm{NbO}_{2}(\mathrm{SCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$. Qualitative analyses, which were made on solid samples of the niobium salt, indicated the absence of chloride ion in the salt. Hence, a stoichiometry of two was assigned to the oxygen group in the complex anion in order to make the ionopair electrochemically neutral. The infrared spectra, previously discussed, have indicated the presence of at least one oxygen group in the salt. Moreover, several transition wetal salts have been reported in which the stoichiometry of oxygen is two in the complex anion (90,91). Several experiments might be proposed for extending the present study of niobium thiocyanate complexes in nonaqueous solutions. As previously i.dicated, the formal concentration of niobium was calculated from the absorbance of control aliquots and the molar absorptivity of niobium in chloroform. As there is the possibility of systematic exrors in the formal concentration, additional computations would be desirable in wich the parameter 8_{0} is expressed as the quotient of the lower limiting absorbance and the formal concentration of niobium. This would permit the formal concentration to be used as a parameter in addition to K and 6_{1}, and the RMSD could be calculated with respect to each formal concentration of niobium. An alterate experiment would be to determine the formal concentration of niohium hy exhoustioe entiaction of standard aqueous solutions.

Abstract

It would aiso be interesting to study the effect of acetone, ether, and other bases on the niobium thjocyanate complexes. Such studies would be of value in comparing the bases in terms of their relative strengths and would be of help in further elucidating the nonaqueous chemistry of the niobium thiocyanate complexes,

Sumain

1. R. Bock and B. M. Beilstein; Zeit. fur Anal. Chemie 192, 44 (1962).
2. I. P. Alimarin and S. V. Makerova; Zhur. Anal. Chem. 17, 1072 (1062)
3. J. W. Murphy and H. E. Affsprung; Anal. Chem. 33. 1658 (1961).
4. R. J. Magee and M. A. Khattak; Microchem. Journal 8, 285 (1951).
5. H. E. Affaprung, N. A. Barnes; and M. A. Potratz; Anal. Chem. 23, 1680 (1951).
6. J. W. Murphy and H. E. Affsprung; Anal. Chim. Acta, 30, 501 (1964).
7. J. Shiu-Kang; Chloroform Extraction of Tetraphenylarsonium Chloride and Tetrapherylarsonium Chloroiridate, Ph.D. Dissertation, University of Minnesota, (1963).
8. G. H. Morrison and H. Freiser; Solvent Extraction in Analytical Chemistry; New York, John Wiley (1957).
9. J. J. Cole and R. T. Pflaum; Iowa Academy of Science 71, 145 (1964).
10. D. Forster and D. M. L. Goodgame: Inorg. Chem. 4, 823 (1965).
11. W. R. Schoeller and A. R. Powe 1; Aralyst 50, 485 (1925).

12a. S. Kaliman, H. Oberthin, and R. Liu; Anal. Chem. 34, 609 (1962).

12b. I. M. Kolthoff, P. J. Elving, and E. B. Sandell; Treatise on Analytical Chemistry, Part II, Vol. 6, Hew York, Interscience (1964).
 405 (1949). Also, see Ref. 12b.
14. J. L. Kasmer, A. Garcia-Porrata, and E. L. Grove; Anal. Chem. 27, 492 (1955).
15. C. if. Johnson: Iron Age 157, 66 (1946).
16. E. C. Hunt and R. A. Wells; Anslyst 79, 345 (1954.
17. A. R. Das Gupta and S. K. Dhar; J. Sci. Ind. Research 12-E, 396 (1953).
18. H. Flaschke and E. Lassner: Mikrochim, Acta: 7-8, 7? (1956).
19. G. E. Janaver and J. Korkisch; Amal. Chim. Acta. 24, 270 (1961).
20. S. V. Elinson and L. I. Pobedina; Zh. Analit. Khim. 18, 734 (1963). Anal. Abst. 11, 3066.
21. A. R. Babko and M. I. Shtokalo; Zh. Analit. Khin. 17, 1068 (1962). C.A. 59, 19d; 59, 8113b.
22. S. V. Elinson and L. I. Pobedina; Zh. Analit. Khin. 18, 189 (1963).
23. S. V. Elinson, L. I. Pobedima and A. T. Rezova; Zarodsk. Lab. 31, 1434 (1965). C. A. 64, 7358 f.
24. R. Belcher; Talanta 10, 1013 (1963).
25. Kuo-Tai Yu; K'o Hsueh T'ung Pao 9, 810 (1964). (in Chinese). C.A. 62, 11143 b .
26. L. I. Pobedina and A. T. Rezovs; Zh. Anelit. Khim. 20676 (1965). Kubsian.

26. U. E. Fenningion; ․ Am. Ghom. Soc. 18, 52 (1896).
29. I. P. Alimarin and R. L. Podvalnaja; Zh. Analit. Khim. 1, 30 (1946).
30. ․ Freund and M. E. Lavitt; Anal. Chem. 23, 1813 (1951).
31. A. B. H. Lauw Zecha, S. S. Lord, and D. N. Hume; Anal. Chem. 24, 1169 (1952).
32. E. S. Grimalit; Agal. Chew. 32, 119 (1960).
33. K. V. Troitskii; Zh. Analit. Khim. 12, 349 (1957).
34. A. B. H. Lauw-Zecha, S. S. Lord, and D. N. Hume; Anal. Chem. 24, 1169 (1952).
35. D. H. Hume and in. N. Bukhsh; Angl. Chem. 27, 116 (1955).

37. R. Vanossi; Ibid., 42, 59 (1954).
38. R. Vanossi; Ibid., 40, 176 (1952).
39. J. Hastings and T. A. McClarity: Anal. Chem. 26, 683 (1954).
40. G. W. C. Milner and A. A. Smales; Analyst 79, 315 (1954).
41. A. E. O. Marzys; Ibid. , 79, 327 (1954).
42. C. E. Crouthame 1, B. E. Efelte, and C. E. Johnson; Anal. Chem. 27, 507 (1955).
43. A. Bacon and G. W. C. Milizei; Again 1. Chim. Acta. 15, 129 (1956).
44. Max Ziegler; Ger. Pat. 1060, 370 (July 2, 1959). C.A. 55 7775.
45. M. Ziegler, 0. Glemser, and A. von Breckmann; 2. Ana1. Chem. 172, 105 (1960). C.A. $54,10665 \mathrm{~h}$.

46a. F. S. Grimaldi; And1. Chem. 32, 119 (1960).
46b. R. Rosotte and E. Jaudon; Ghim. Angl. (Paris) LI, 229 (1959).
47. A. S. Babenko and V.N. Tolwachev; Ukr. Khim. Zh. 27, 732 (1961). C.A. 55, 15111c.
48. Jun Yoshimura and Kaoru Vero; Mer. Fac. Sci. Kyushe Univ., Ser. C. Chem. 4, 63 (1961).

49a. E. A. Hari; Anal. Chim. Acta. 29, 303 (1963).
490. Ibid., p. 312.
50. S. T. Talipov, R. K. Dzhiyanbaera, K. A. Asamov, and G. P. Gorlkovoya: Vzbeksk Mhim. Zh. 7, 18 (1963).
51. A. T. Pilipenko and 0. M. Eremenko; Ukr. Uhim. Zh. 29, 532 (1963) (Russ).
52. J. J. McCowan and D. E. Kudera; Ane1. Chem. 35, 1545 (1963).
53. F. H. Ward and A. P. Marranzino; Science 119, 655 (1964).
54. G. White and P. H. Scholes; Metallurgia 70, 197 (1964). C.A. 62, 4611e.
55. S. K. Shrimal and M. S. Varde; Anal. Chim. Acte. 33, 683 (1965). C.A. 64, 5745a.
56. Che-Ming Mi and Shu-Chuan Liang; Hua Hsueh, Hsueh Pao 30, 540 (1964). C.A. 62, 11142 h .
57. P. V. Marchenko and T. Ya. Tokovenko; Ukr. Khim. Zh. 29, 744 (1963) C.A. 59, 14557a.
58. M. Yoshida and N. Kitamura; Runseki Kagaku 14, 323 (1965). C.A. $63,4937 \mathrm{e}$.
59. Jerzy Minczewski and C. Rozycki; Chem. Anal. (Warsaw) ㅇ, 977 (1963). C.A. 60, 11371 b.
60. J. Minczewski and C. Rozycki; Ibid., 9, 601 (1964). C.A. 62, 4611 g .
61. J. Minczewski and C. Rozycki; Ibid., 10, 463 (1965) (Pol.).
62. J. Minczewski and C. Rozycki; Ibid., p. 701.
63. H. B. Werner; Ansles. fac. quim. y farm., Univ. Chile 11, 130 (1959). C.A. $54,24076 \mathrm{e}$.
64. K. V. Troitski1; J. Anal. Chem U.S.S.R. 12, 363 (1957). C.A. 52, 2657h, 12659 f.
65. A. H. Golub and A. M. Sych; Russ. J. Inorg. Chem. 9, 593 (1964). (Ru8s., 1085). C.A. 61, 2694.

6́. A. T. Pilipento and L. I. Savranskii; Russ. I. Incrg. Chem. 10, 243 (1965). (Russ: 437). C.A. 62 114039.
67. P. G. Y. Mitchell aind R. J. P. Williams Jourmal of the Chemical Society 163, 1912 (1960).
68. H. Funk and H. Bohland; Zeit. fur anorg, und allger. Chemie. 318, 169 (1962).
69. N. B. Colthup, L. H. Daly, and S. E. Wiberley; Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1964), pg. 208.
70. A. Turco and C. Pecile; Nature 191, 66 (1961).
71. R. Nakomoto; Infrored Spectia vi Inorganic and Coordination Compounds, John Wiley and Sons, Inc., New York (1963), p221.
72. Ibid., p. 112. (also 70, 69 on p. 112).
73. C. G. Barraclough, J. Lewis, and R. S. Nyholm; J. Chem. Soc. 1959, 3552.
74. F. S. Martin, J. M. Fletcher, P. G. M. Brown, and B. M. Gatehouse; J. Chem. Soc. 1959, 76.
75. 0. L. Keller, Jr.; Inorg. Chem. 2, 783 (1963).
76. A. Sabatina and I. Bertina; Inorg. Chem. 5, 204 (1966).

78. See Referezce 122, pp. 376-300.
 Extraction of a Tungsten Thiocyanate Complex, Ph.D. Disescercion, university of oklahoma.
80. B. H. Huffman, G. M. Iddings, and R. C. Lilly; J. Am. Chem. Soc. 73, 4474 (1951). (Also, see Reference 12b, pp. 243).
81. H. Schaffer; Angew. Chem 71, 153 (1959).
82. J. H. Ranzelmeyer, J. Ryan, and E. Freund; J. Am. Chea. Soc. 긍, 3020 (1056).
83. E. H. Muffman and G. Fif. Idings; J. Am. Chem. Soc. 74, 4714 (1952).
84. H. A. Kraus and F. Helson; ASTM Spec. Tech. Publ. Ho. 195 (1958).
85. J. Coursier, J. Hure, and R. Platzer; Anal. Chim. Acta. 13, 379 (1955).
86. H. E. Affaprung and J. W. Murphy; Anal. Chim. Acta. 32, 381 (1965).
87. S. D. Christian, H. E. Affsprung, J. R. Johnson, and J. D. Worley; J. Chem. Ed. , 40, 419 (1963).
88. S. D. Christian, J. Chem. Ed. 42,605 (1965).
89. J. R. Johnson, University of Oklahoma, private communication.
90. F. A. Cotton and R. M. Wing, Inorg. Chem., 4, 867 (1965).
91. Joel Selbin, J. Chem. Ed., 41, 87 (1964).

HTTH FTRTRAPHEAYLARSOMIMA CHIORIDE

Intioduction

The reaction of titanium($I V$) in aqueous hydrochloric acid solution with potassium thiocyanate and TPACl gives xise to an aqueors insoluble salt with a bright orange color.

The thiocyanate complexes of titanium have been previously utilized for its separation and determination. Young and White $[$ Anal. Chea. 31,393 (1959)] have reported the extraction of $T i(I V)$ as a thiocyanate complex from sulfuric or hydrochlozic acia solutious hy means of a cyclohexane solation of tri-n-octylphosphine oxide, TOPO. There is no interference from other quadrivalent metal ioms or from anions such as fluoride, phosphate, or oxalate. Beer's law is obeyed up to 1.7 $\mu \mathrm{TI} / \mathrm{ml}$, and at 432 mu , the molaz absoxptivity is $41,000 \mathrm{in}^{-1}$ cm^{-1}. Crouthomei, et al. [C. K. Grouthomel, B. E. Hjelte, and C. B. Johnsom; Anal. Chem. 27, 508 (1955)] have investigated the titanium thiecyenate complemes in aqueous acteone meaia amd have found that the development of the complex requires an exacting gioćeurue as tine iniocyanace compiezes of titaplum are relatively weak and unstable.

The wolar absorptipity of the titanium complex is 78000 in $^{-1}$ c^{-1} at 417 mu, the wavelangth of maximum absorbance. Also it was reported that the sbsorbance is markedly temperature sensitive, and varies with temperature in a reversible manner. No recomendations were made concerning the analytical usefulness of the titanium thiocyanate compler in aqueous acetoue.

Delafosse [D. Delafosse, Compt. rend., 236, 2313 (1953), 240, 1991 (1955)] has studied the extraction of the complex $T i(S C N)_{4}$ with methyl isobutyl ketone and isoamyl aldohol. The molar absorptivity is $7000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 278 mu , in the alcohol. A monothiocyanate complex of titanium has been verified by Tribalat [S. Tribalat, et. al. J. Electroanal. Chem., 1, 443 (1959)] in a polarographic study of the $\mathrm{TI}(\mathrm{IV}) / \mathrm{Ti}(\mathrm{III})$ couple. The thiocyanate complexes of titanium are reported to be more
 ticanium ions [解ai. Ghim. Acta, 19, 74 (1958)].

Sumary of Experimental Investigations

A. Chloroform System

Freliminary investigations revegled that a solntion of
 sxange pracipitate upou additiou of iphai to the goiucion. The precipitate was aualitatively analyzed and was found to contain Ti,

SCN, and TPA foms. The prectiplate was virtually insoluble in chloroform, and upon vigorous agitation of the solid and chloroform phases the precipitate disappeared due to decomposition and preferential extraction of TPASCN into the chloroform.

More thorough investigations to find an optimum set of conditions for the extraction of the arsonfum salt of titaniun futu chionviotia mete canifed uut ou a test tuba acale. The reagent concentrations (HCI, KSCA, TPAC1) were varied over a wide range, one at a time. The HCl concentration was varied from 0.2 to 6 M , RSCR from 0.4 to 5 M , and TPAC1 up to 0.006 M . Further experiments conducted in which chloride ion was excluded from the system. A titaniam solution in sulfuric acid was prepared as well as a solution of TPABSO_{4}. It was eventually concluded that the complex of titanium could not be changed or modifind se thet the tpin selt wowld te solutle iú chioroform. Other selvents for exiractiag titanium were investigated
 in the solyent. The solubility of Finhci, pasch, and the arsoniun thiocyanate salts of titanium and niobium were deternined by placing $\frac{1}{2}$ to 1 mg of the salt in a small test cube containing 1 to 2 ml of solvent. The mixture was agitated by shaking Vigorously at rendom interyals. Some of the sistures were allowed to eq̧ulibrate for 12 houra. The results are sumgizeg in Tabie I.

TABLE I
Qualitative Solubility of TPA Salts in Various Solvents

r.s. $=$ readily soluble

Abstract

Gyclohexanone was chosen as the second solvent for extracting titanium since the arsonium salt was very soluble in this solvent, and furthermore did not appear to decompese upon standing. The spectrum of the thiocyanate complex of titanium in cyclohexanone showed maximum absorbance at 430 mu which is close to the value of 418 mu reported for titanium in acetone. An unfortunate characteristic of cyclohexanone was that relatively large quantities of thiocyanic acid were extracted. High concentrations of thiocyanic acid, especially in cyclohexanone, decompose and polymerize to give rise to products which absorb in the visible and near ultraviolet regions. These products interfered with the absorbance of titanime in that the observed absorbance was not stable, but increased as a function of time. An investigation of reagent blanks, prepared by extracting an aqueous soiution ccataining all components except titanium, revealed that it would be necessary to make absorbance masurements at a predeterminad time after the antraction was cumpleted if cyclohexanome was to be used as the extracting solvent. gackEashing the blank extracts with reducing zgents and masing mgents such as gtanneus chloride or ammoize bifluoride did not eliainete observation mas made concerning the beck-washine of the blamks uith

amonium bifiuoride. When the extracts were back-washed with an aqueous solution containing fluoride, the ketone phase would take on a dark piak coloration which was definitely not due to the formation of a ferric thiocyanate complex ion as no ferric ion was present. Further investigations revealed that the pink color could also be procuced by mixing fiuoride with dilute aqueous solutions of sulfuric acid and potassium thiocyanate; the piak colored species could then be extracted with cyclohexanone. It is possible that the pink complex was a thiocyanate polymer, possibly containing fluoride ions. The problem of interference from reagent blanks and decomposition of thiocyanic acid in cyclohezanone eliminated any further consideration of this solvent for the extraction of titaniam.

C. Tetrachloroethame System

The third soivent to be investigated was $1,1,2,2-$ teîiachionoecinane, TEE. Teírachioretnane was chosen over 1,2 aichioroethane siace its ismsity, 1.6 g/mi, is greater than that of dichloro-ethane whose density is $1.26 \mathrm{~g} / \mathrm{ml}$, which results in a much better phase separation. The initial investigations of the TGE zystem fare made pron reagent blang. It was found that blanks 明ich mere stable for $\frac{1}{2}$ hour could be obtained from the

 a 5% ethanol-TCB solution as the extracting solvent. The athanol was added to stabilize the solvent. A preliminary Beer's law curve was obtained by extracting standard titanium solutions with TPACl and TcE. The Beer's lem curve had a positive deviation and a 1 imiting molar absorptivity of $17,800 \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$. The effect of the reagents upon the extraction efficiency of titanium were investigated by a procedure similiar to that described previously for niobium. The HC1, RSCN, and TPACl concentrations were investigated over the ranges 0.25 to $7.5 \mathrm{H}, 0.2$ to 0.75 M , and 0.002 to 0.02 M , respectively. The extraction of titanium was most efficient for HCl concentrations of 3.5 to 4.5 M , KSCA concentrations of 0.5 to 0.75 M , and 0.35 millimoles of TPAC1 (of 5 ml of 0.07 M TPAC1). The above regult were obtained from tha extanction of u.f $\bar{x} 10^{-8}$ moles of titamiam

 unfavorable and several extractions (4-5) were required to remove all the titanim from the aqueous phase. One set of investigations revealed that the titanium precipitate could be readily cosgelated by shaking the aqueous
 acidition of tcr mes gruite effective in dissolviag and eatractimg
the Frecifitate as it passed through the aqueous phase, powver, If the TGB and agueous phases were then mixed by Vigorous agitation some of the titanium complex dissociated and was back extracted into the aqueous phase. A fading of the yellow color, characteristic of titanium in TCE, was cleaz1y evident upon agitation. The possible extraction of titanium by drop wise addition of TCE was further investigated and a Beer's law plot was constructed. However, the precision was poor, indicating poor reproducibility for the extraction of titanium. This type of extraction was not considered to be worthy of further investigation.

A study of the number of successive extractions required for the complete extraction of titanium shed some light upon the problem of extracting titanium with TCE. It was learned that the eatraction was highly dequadent uyou the quancicy of ipaci used for each extraction. Frevious investigations of the cobalt, goin, gni tungoten oyotomo hoi reveniad that a 50 to 100 fola
 of these elements; however, titanium was found to require a 500 to 1000 fold excess of TPAC1. An interesting observation made on the extraction of titanium is that then the concentration of TPA is incressed considarsbly there 18 a shift in the maveleagth of eñimum absorbance fron che 395-40́m mu region to 428430 ma . This ohift is presumably awa to the formation of a
different titenium compiex. When more than 0,35 millimoles of TPAC1 are used in the extraction procedure the maximum wavelength remains constant. In the procedure described below for the extraction of titanium, the TPACl was dissolved in the 5% ethanolTCE solution in order to avoid addition of TPAC1 to the aqueous phase prior to each extraction, which would dilute the aqueous phase and bring about changes in the reagent concentrations.

Procedure for the Exeraction of Titanium Thiocyanate Complexes

With TCE

A one $m 1$ aliquot of standard $10^{-5} \mathrm{M}$ titanium solution in 12 M hydrochloric acid was added to a 10 ml ground glass stoppered graduate cylinder. After adding 1 ml of 6 M HCl and 1 ml water, the graduate and its contents were chilled in an ice bath, after which one ml of 1.5 M KSCN were added. The aqueous solution was extracted with two ml of 0.1 M TPACI in 5% ethanol-TCE solution by shaking vigorously for $1 \frac{1}{2}$ minutes. The organic phase was then removed with a pipette and filtered into a 5 ml volumetric flask. The aqueous phase was extracted turice more with 2 and $1 \frac{1}{2}$ ml portions of the organic solvent. The combined extracts uere mixed and the absorbance was measured at 428 mu versus TCE bith a D. U. spectrophotomer. The titanium complex obeyed Beer's law, and the molar absorptiydty was $64,100 \mathrm{~m}^{-1}$ anion ${ }^{-1}$.

Frelimínấy investigations of diverse elements revealed that iron(III), niobium(V), vanadium(V), tungsten(V), and molybdenum (V) were readily extractedby TCE under the conditions employed for the extraction of titanium. The use of stannous chloride as a reductant for iron and molybdenum was prohibited since it was experimentally established that preferential extraction of stannous chloride complexes greatly reduced the extraction of titanium, and thereby interfered with the extraction of titanium.

In view of the poor extractibility of titanium with TPAC1 and TCE, the numerous interferences, and the high reagent blanks, it is concluded that the extraction of titanium as an ion-pair with TPA is not an analyticaliy feasible. procedure. However, it should be worthwhile to investigate other organic cations such as triphenylsulfonium, methyl triphenylarsonium ion, and related phosphonium ioss as extracting ions for the thiocyanate complexes of titanium. Another possibility would be to study mixed solvents such as acetone-TCE solutions. Alteraate cations or modified solvents may increase the distribution ratio of titanium to a more favorable value.

Titanium thoicyanste complexes in aqueous acetone are quite temperature sensitive, and the change in wavelength of maximum absorbance with the concentration of the extracting ion; TPA, indicates that the composition of the thiocyenace complexes
 niobium thiocyanate complexes and an investigation of this effect could lead to important and interesting findings.

[^0]: SWintitos smoriavi NI infacin io

