
THE DEVELOPMENT OF AN AUTOMATED

DISCRETE-EVENT SIMULATION

OPTIMIZATION SYSTEM

By

ZEYNEP AYSEGUL KARACAL

Bachelor of Science
Middle East Technical University

Ankara, Turkey
1982

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May,1995

THE DEVELOPMENT OF AN AUTOMATED

DISCRETE-EVENT SIMULATION

OPTIMIZATION SYSTEM

Thesis Approved:

~ Toes.is Adviser

'/?J.~d_~

Dean of the Graduate College

11

ACKNOWLEDGMENTS

I wish to express my gratitude to the faculty and staff of the School of Industrial

Engineering and Management for making my stay at Oklahoma State University a

rewarding and enjoyable learning experience.

I would like to express my appreciation to my major advisor, Dr. Allen C.

Schuermann, for his guidance, support and assistance in the development of this study

and for his editorial guidance in preparing this manuscript. He was always willing to be

of assistance for any problem concerning this study and other difficulties encountered

during this time.

I extend my thanks to my committee members, Dr. M. Palmer Terrell, Dr.

Manjunath Karnath, Dr. David B. Pratt and Dr. William Warde for their suggestions,

assistance and cooperation. I also extend my thanks to Dr. Joe H. Mize, who initially

served on my committee, for his suggestions and assistance.

To my friend, Dr. Camille Deyong, I offer my heartfelt thanks for not only being

my friend but also for her constant support and encouragement.

I would like to acknowledge the support provided by members of my family here

and in Turkey. My parents, Guner and Orhan Izgu, left their home and stayed with me

during this study. There are not any words in any language to express my appreciation

to them. I want to thank them for their love, support, understanding and for their faith

1ll

and encouragement to achieve my goals. Without their support, this work would not

have been finished.

My love and deepest appreciation is extended to my husband, Dr. Cem Karacal,

for his constant support, encouragement and understanding. Last, but not least, thanks

to my children, Sila Gizem and Ada lrem, for their love, patience, and affection. I wish

to dedicate this dissertation to my daughters who made everything worthwhile.

IV

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Problem Statement . 3
Organization of the Dissertation 7

II. LITERATURE SURVEY 8

Simulation Software 8
Simulation Output Analysis . 18

Types of Simulation with respect to Output Analysis 19
Statistical Analysis Techniques for the Analysis of
Simulation Output . 21

Terminating System Procedures 21
Nonterminating System Procedures 23

Simulation Optimization . 35
Optimization Techniques and their Applications 38
Multiresponse Opimization . 55

III. RESEARCH OBJECTIVES AND RESEARCH PLAN . 64

Research Objectives 64
Research Plan . 66
Limitations of the Research 72

IV. RESEARCH METHODOLOGY 74

Introduction .. 74
Optimization Library Module 76

Response Surface Methodology 85
Derivative-Free Optimization Methods 90

Nelder & Mead Simplex Method . 91
Hooke & Jeeves Pattern Search 94

Simulation Output Analysis Module 96
Elimination of Initial Bias 98
Steady State Analysis . 100

V

Chapter

Executive Controller
EC and Output Analysis Module (OAM)
EC and Optimization Library Module .
EC and Termination of Algorithms . .

Description of the System.
Modifications to the Search Algorithms .

V. EVALUATION AND TESTING OF THE RESEARCH
METHODOLOGY

Introduction
Queueing Cost Models.
Continuous Review Inventory Models
Results

VI. SUMMARY, CONTRIBUTIONS, FURTHER RESEARCH

BIBLIOGRAPHY.

APPENDIXES ..

APPENDIX A - DETAILS OF THE PHASES OF RSM

APPENDIX B - NELDER AND MEAD SIMPLEX METHOD

APPENDIX C - LAW AND CARSON'S BATCH MEANS
METHOD ...

APPENDIX D - SAMPLE MENUS

APPENDIX E - QUEUEING COST MODELS AND
SLAM NETWORK MODELS.

APPENDIX F - CONTINUOUS REVIEW
INVENTORY SYSTEMS .

APPENDIX G - SLAM NETWORK FOR THE CONTINUOUS

Page

102
105
106
111
113
115

116

116
116
119
124

132

137

151

152

157

160

163

166

175

REVIEW INVENTORY PROBLEM 180

Vl

Chapter

APPENDIX H - USER'S GUIDE

APPENDIX I - COMPUTER LISTINGS

vu

Page

183

191

LIST OF TABLES

Table Page

I. Classification of Simulation Modeling Tools 11

II. Desirable Features for Simulation Software . 14

III. Basic Features of Simulation Languages . 17

IV. Comparison of Optimization Methods 81

V. Results of the Pattern Search for the M/M/1 Queueing Cost Models. 125

VI. Results of the Simplex Method for the (M/M/1):(GD/N/oo) Queue 127

VII. Results of the RSM

VIII.. Results of the Simplex Method for the Continuous
Review Inventory Model

IX. ASOPT Modules and their Functions .

Vlll

129

130

186

LIST OF FIGURES

Figure Page

1. Black Box View of Computer Simulation. 3

2. Classification of Simulation Software 10

3. Classification of Simulation Optimization Methods 37

4. Classification of Stochastic Optimization Methods 50

5. Input Output Relation . 56

6. Simulation-Optimization Interface 58

7. Automated Simulation Optimization System Modules 66

8. Flowchart of the Automated.Simulation Optimization System . 71

9. Logic Flow of RSM . 88

10. A Central Composite Design in Three Dimensions 90

11. Nelder and Mead Operations 93

12. Exploratory and Pattern Search of Hooke & Jeeves 95

13. Structure of the Output Analysis Module . 97

14. Logic Flow of the Rule-based System . 109

15. Logic Flow of the Developed System 114

16. A M/M/1 Queueing Model 118

17. Total Cost as a Function of Service Level 118

IX

Figure

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Response Surface for (M/M/1):(GD/N/oo) with p < 1

Response Surface for (M/M/1): (GD/N/oo) with p > 1

Surface Plot of the Continuous Review Inventory Model.

Screen Display for Input Data Entry

Screen Display for Input Verification

Time in System for M/M/1 Queue .

Time in System Cumulative Average Plots for M/M/1 Queue

Total Cost Function for M/M/1 Queue

Behavior of Continuous Review Inventory System.

Cumulative Average Profit Plots for Inventory System

Structure of the Automated Simulation Optimization Program

X

Page

120

121

123

164

165

168

169

170

177

179

185

CHAPTER I

INTRODUCTION

Simulation is a problem solving procedure for defining and analyzing a model of

a system. Simulation is the use of a computer model to mimic the behavior of a

complicated system to gain insight about the system performance. Simulation has often

been used as a means of explaining and analyzing the behavior of an existing large

complex system or predicting the performance of a new system. One should keep in

mind that a simulation model does not explicitly describe the relations, but mimics how it

operates under given conditions. Therefore simulation does not provide optimal

solutions to problems.

As a system becomes more complex and the number of important factors

increase, it is not always practical or possible to express relationships through a set of

mathematical equations, and the decision maker is forced to use other analytical tools to

solve the problem. In cases where mathematical modelling is infeasible, simulation

becomes an alternate way to solve difficult problems. Although simulation is not an

optimization procedure, a simulation model is often used to measure the performance of

a system which is to be optimized. The purpose of simulation optimization is to optimize

the objective function and identify the settings of the design parameters which will result

in this optimum level. The objective function in a simulation model is expressed in

1

2

terms of outputs from the simulation model. Therefore a simulation model can be

viewed as a stochastic objective function in which inputs are converted into a value for

the objective function by executing the simulation model. For large systems, even

identifying an optimum for a single output variable can become a real challenge. There

is a need to deveiop a consistent and structured approach to eliminate this deficiency of a

simulation-based approach. This study addresses this issue by using output analysis

techniques and simulation optimization procedures.

The major steps in discrete-event simulation process (see Pritsker(l986)) are:

1. Problem Formulation

2. Model Building

3. Data Acquisition

4. Model Translation

5. Verification

6. Validation

7. Strategic and Tactical Planning

8. Experimentation

9. Analysis of Output

10. Implementation and Documentation

Based on the assumption that the first eight steps of the process are completed

successfully, this study addresses only the output analysis step.

Due to the stochastic nature of the input and output parameters, it is important to

analyze the results using appropriate output analysis techniques. Otherwise, without any

statistical analysis, the results cannot be used with any degree of reliability. Output

analysis techniques can be divided into two major categories, techniques for terminating

systems and techniques for non-terminating systems. These techniques, with respect to

the type of the simulation, are discussed in Chapter IL Output analysis techniques for

steady state simulations are considered in this study.

Problem Statement

As the size and complexity of the real world systems increase, simulation

becomes a popular decision making tool. Computer simulation may be viewed as a

"black box" in which various input parameters produce various responses. Figure 1

shows the black box view of a computer simulation.

Decision
variables

Uncontrollable Factors
Z., Z1., ... , Zn

Simulation
Model

Model
response

Figure 1. Black Box View of Computer Simulation

3

4

The general optimization problem can be formulated as follow:

Min (Max) f(x1, x2, ••• , xJ

In some cases, the objective of the simulation is to obtain the best solution for the given

system. In that sense, that problem is similar to an optimization problem to be solved by

mathematical techniques. Briefly stated, a simulation optimization problem is an

optimization problem where the objective function, constraints or both are responses that

can only be evaluated by computer simulation. These functions are often stochastic in

nature as well.

The major differences between a simulation optimization problem and an

ordinary optimization problem are as follow:

1. The functional form of the response is not known.

Tl = g (x1, ••••• , xJ

There is no objective function explicitly stated. The objective function is

expressed in terms of output data generated by the simulation. Although the

response is a function of the input variables, the mathematical relation which

forms this function is not known. ·

2. The system responses contain random error (e) due to the unpredictable

effects of the uncontrollable factors.

y = g (x1, ••••• , xJ + e

Thus, the simulation model can be viewed as a stochastic objective function. The

responses generated by the simulation model are estimates of the expected values of the

true responses. Therefore, the classical notion of an optimum is inapplicable due to the

presence of random error.

The common approach to find a good solution, which is close to the desired

optimum, is to run the simulation model with some inputs, which are believed to lead to

a good solution, analyze the results, compare the alternative solutions and then select

the "best" possible solution. This process usually degenerates into a trial and error

process involving an inordinate amount of human effort and computer time.

5

Although the literature is full of various optimization techniques and their

isolated applications in simulation, there are very few approaches that combine

simulation with search procedures and incorporate the statistical aspects. Bengu and

Haddock (1986) combined a simulation generator for an inventory system and an

optimization routine consisting a set of direct search procedures. Bengu (1987) also used

simulation-optimization approach by combining direct search procedures and statistical

tools. Bengu developed a program containing derivative-free search algorithms is

appended to a deterministic simulation model to optimize multi variable, single objective

functions. This study will address simulation optimization problem. This need is

beyond the mere collection of procedures to form a software package. The

· characteristics of the problem and user's needs must be taken into consideration by

creating an intelligent environment which will satisfy the user's goal automatically and

take the burden of computations and frequent decision making away from the user.

Combining simulation with search procedures reduces this effort considerably

and makes simulation an efficient decision making tool. The search for the best

response of the simulation experiment involves two interrelated problems:

1. Obtaining the desired statistical precision and accuracy of the simulation

results via output analysis.

2. Investigation of the best response for the system (simulation optimization).

The first problem requires the elimination of the initial bias and the estimation of the

variability of correlated time series data. The second problem requires the comparison

of alternatives and an investigation of the best response by using search procedures.

Although the computation time for the search algorithms is negligible when

compared to the time necessary to evaluate the objective function, the overall response

time remains critical in real world situations. Therefore, an effort must be made to

reduce response time which may require reducing the number of simulation runs, an

initial screening of a factor, or the interaction of the analyst.

6

Combining a simulation model with an optimization algorithm can be a problem

due to the interface requirements between them. The optimization algorithm must serve

as an executive to the simulation program and determine the initial conditions for each

run, the number of runs and length of each run. Since the simulation model must be

invoked by the optimization program, it is difficult to use existing optimization packages.

For example, the use of FORTRAN based software may prevent the use of other than

FORTRAN based simulation languages. The language compatibility between simulation

models ~nd optimization can be expanded by the emergence of new simulation languages

that allow interfaces with several different programming languages. Also, the use of

commercially available software packages may create interface problems between the

modules of the proposed automated simulation optimization system.

Briefly stated, the problem statement for this research can be summarized as:

To develop an automated integrated discrete event simulation
system which can be used as a framework for modelling,
optimizing and analyzing, via simulation, multivariable single response
unconstrained problems.

Organization of the Dissertation

This research is described in detail in the following five chapters. Chapter II

reviews current simulation software, simulation output analysis techniques and

7

simulation optimization techniques. Output analysis techniques with respect to the type

of the simulation are discussed in this chapter. Optimization techniques are classified ·

according to the type of the search method they employ, and are covered in terms of

technical discussion, applications, advantages and disadvantages in Chapter IL

Chapter III presents the research goal, objectives and scope of the research. Chapter IV

discusses the research methodology used in this research effort and gives a detailed

description of each method used in this study. Chapter V contains the demonstration

and analysis of the system developed and the interpretation of the results obtained.

Finally, the research effort is summarized, the contributions of the research are listed and

the recommendations for further research are presented in Chapter VI.

CHAPTER II

LITERATURE SURVEY

Simulation Software

In recent years, there has been a tremendous increase in the number of

simulation software packages available on a wide variety of computers. Developments

in computer technology, reduced computing costs, rapid changes in the manufacturing

technology, availability of graphical animation, and increased interest in simulation has

led to the development of many simulation software packages. When the number of

software packages was small and the features offered were alike, the selection of the right

software was not difficult. But with the increasing number of software available and the

vast variety of features offered, the decision-making process may become a long and

tedious one.

The selection of the right software is a two-step process. The first step is to

develop an understanding of the software. One should know how the software are

classified and determine the necessary features. The second step is the selection of the

software through a systematic search. Haider and Banks (1986) classified simulation

software into three levels: system, application, and structural. Classification of the

software at the system level is based on the type of the system. There are two basic

8

types of systems: discrete-event and continuous. In discrete-event systems, the state

variables change only at discrete points in time. Most of the manufacturing systems are

modeled by discrete event simulations. In continuous simulation, variables change

continuously over time. Continuous simulation models consist of sets of differential,

difference equations .. They may also contain stochastic components. This study will

focus on discrete event simulations.

9

At the application level, simulation software can be classified as special purpose

and general purpose. Special purpose simulation software or simulators are designed to

model specific environments. General purpose products or simulation languages can be

used for virtually any system.

At the structural level, classification is based on the modelling orientations. Since

simulators are mostly data-driven, this classification is for simulation languages. The .

first modelling orientation is event scheduling in which a system is modeled by defining

the changes that occur at event times. The second orientation is activity scanning in

which the modeler needs to identify the conditions to start and end each activity. The

last orientation is process orientation which provides a description of the flow of entities

through a process. The process is defined either by user written routines or a network

representation of blocks/nodes. Figure 2 shows the classification of the simulation

software at these three levels.

Table I (adapted from Banks(1991)) shows four classes of simulation modelling

tools. The first class consists of spreadsheets (e.g. LOTUS). They model random

events using an @RAND.or similar command. They are limited to small systems and

Continuous

Simulators

Event
Scheduling

Network
Based

Simulation
Software

System

Level

. Application
Level

Process
Orientation

Structure
Level

User
Written

Simulation
Languages

Activi~
Scanning

Figure 2. Classification of Simulation Software

10

Consideration Spreadsheets Rapid Modelling Simulators Simulation
Tools Languages

Development Minimal Minimal Moderate Moderate to
Time Substantial

Model Poor for Vague I Moderate Must Comply Excellent/
Control and Dynamic with Software Virtually Any
System Systems Constraints Systems
Complexity

Output User Developed Statistically Report Oriented User Defined
and Defined Adequate, Report Varies by Reports

Oriented Package

Accuracy/ Generally Good for Rough Varies with Excellent
Fidelity Inaccurate for Cut Planning level of

Dynamic Assumptions
Systems

Training Minimal Moderate Moderate Moderate to

Substantial

Environment Static Systems Low Complexity Mediwn High
Best Suited Deterministic Probabilistic Complexity/ Complexity/
to Operations Operations/ Probabilistic Probabilistic

Multiple Operations/ Operations/
Alternatives Data Available/ Data Available/

Specific General
Applications Applications

Table I. Classification of Simulation Modelling Tools (adapted from
Banks (1991))

11

the outputs are usually in the form of graphs. Seila and Banks (1990) showed the

application of spreadsheets for simulation modelling. The second category contains

rapid modelling tools like MPX (formerly MANUPLAN) (see Banks (1991)). These

tools can give an idea about system performance without going into great detail.

12

The third category is the simulators which are data driven simulations. They

usually require no programming. However the robust ones either allow programming

within the simulation or use an interface with another language or compiled code.

Simulators remove the need for language syntax and they have a good user interface.

The ability of a simulator to model a system varies from software to software. The

analyst has to make some assumptions and evaluate the model· within the capabilities of

the simulator. Banks et al. (1991) examined four manufacturing simulators currently

available (SIMFACTORY II.5, XCELL+, WITNESS. and PROMODELPC) and tried to

solve two sample manufacturing problems using these four simulators. They also listed

the desirable features of the simulators.

The last category contains simulation languages. Up to the 1960's, simulation

was performed by using programming languages such as FORTRAN. This started to

change about 1961 when GPSS was introduced by Geoffrey Gordon. Early versions of

SIMSCRIPT by Markowitz, Hausner and Karr, and GASP by Kiviat and Cooker were

introduced in 1963 and 1964 respectively (see Banks & Carson (1984)). About 1970, the

second generation of these languages was introduced. GPSS/H was introduced in 1977

and Pritsker and Pegden combined GASP and Q-GERT to form SLAM. SIMAN was

introduced in 1983. At that time, the number of simulation languages increased

dramatically. Current simulation languages allow very detailed programming of almost

any realistic problem. They offer customized output along with their standardized

output.

13

Since spreadsheets and rapid modelling tools are not suitable for detailed

simulation analysis and simulators are limited to medium complexity problems and good

for specific applications, only simulation languages will be considered in this study.

The desirable features of simulation software can be classified into five groups.

They are: input, processing, output, environment, and cost features. Table II summarizes

these features.

Input features: One of the most important features is modelling flexibility.

Since no two systems are the same, the language should have the capability of modelling

different systems. Portability is another feature to be considered. The programs written

for one computer should be able to be run on other types of computers. The syntax

should also be easy to understand and consistent. Another input feature is interactive

debugging which allows the user to control the accuracy and speed of the modelling

process. Input data analysis capability, which defines the distribution of input

parameters, and input flexibility are also desirable features for any simulation language.

Processing features: Model size and execution speed are especially important if

the models are run on PCs. Execution speed is also crucial for the analysis of large and

complex systems which may require numerous runs. Most of the modern

manufacturing systems have material handling systems which may include Automated

Guided Vehicles (AGVs), transporters (e.g. forklift trucks), Automated

Storage/Retrieval Systems (AS/RS), cranes and robots. These systems are often difficult

to model. Therefore, the availability of material handling modules may reduce the

14

FEATURES

* Interface to other software * Portability
* Input data analysis capacity * Syntax

INPUT * Input flexibility * Modelling conciseness
* Interactive debugger
* Modelling flexibility

* Execution speed
* Model size
* Reset
* Random Variate Generator
* Attributes

PROCESSING * Independent Replications
* Global Variables

* Customized reports
* Standardized reports
* Graphics

OUTPUT * File creation
* Tracing
* Data base management
* Confidence intervals

* Ease of use * Ease of learning
* Documentation * On-line help

, * Animation
- ease of development - portability
- quality of picture - smooth movements

ENVIRONMENT - CAD interface
- * Customer support

- training
- technical support
- updates

Table IL Desirable Features for Simulation Software

15

modelling time. Since the systems to be modeled may have random features

(uncontrollable inputs), it is important that the software have good statistical capabilities.

A simulation package should contain a wide variety of random variate generators

including basic distributions such as uniform, exponential, gamma, etc. The software

should also have the ability of making independent replications and to specify the

warm-up period .

Output features: It is desirable for a simulation package to have customized

reports along with time saving standardized reports. Graphical displays (bar charts, pie

charts, histograms) are also desirable. Data base management is another helpful

features which organizes the outputs from various runs for future references.

Environment features: The software should be easy to learn and use. The

detailed documentation of the language should accompany the software. Animation has

. become a desirable feature for the simulation packages. It is a useful tool for program

debugging, testing new strategies, and communication between manufacturing personnel

and managers. Animation features should include easy development, CAD interface, a

quality picture and smooth movement of the icons on the screen. Customer support is

another important issue. Some users may require on-going support through training and

technical support.

Cost Features: Cost of the software can range from several hundred dollars to

several thousand dollars. One should also consider hardware requirements for the specific

software as an additional cost.

Although programming languages such as FORTRAN, or C can be used

for simulation, they do not directly provide any facilities to make the user's job easy.

16

The user has to program all of the details of the simulation such as event scheduling,

time advance algorithms, statistics collection, and random number and variate

generation. For small models, these programming languages can be used as a learning

tool, but for large systems, to use these languages can be quite complex and cumbersome.

On the other hand, high level simulation programming languages such as SLAM,

SIMAN, SIMSCRIPT, etc., are specially designed for model building (see Law &

Kelton (1991)). They provide the user with a choice of orientation (process or event)

and built-in facilities (statistics collection, random variate generators, animation,

graphics and report generators). Therefore this study will only focus on high level

simulation languages. Table III displays basic information on some of the popular

simulation languages.

GPSS/PC, SIMAN, SIMSCRIPT 11.5, SLAM II and SLAMSYSTEM were

chosen to demonstrate and compare basic features. All of these simulation languages are

general purpose and they can combine both discrete and continuous simulations, can

start the simulation at empty state and can save the model state at the end of each run for

later restarts. They all have animation capabilities. SLAM II has this capability through

TESS for the mainframes, SIMAN has animation through CINEMA and SIMSCRIPT

has animation through SIMANIMATION for its PC version.

As it can be observed from Table III, there is very little difference between the

languages listed in the table. For this study, SLAMSYSTEM was chosen as the

simulation language. FORTRAN was chosen as the programming language for the search

the procedures and the output analysis module.

17

LANGUAGE

FEATURES
GPSS/PC SIMAN SIMSCRIPT SLAM II SLAM-

II.5 SYSTEM

Event I Process p E,P E,P E,P E,P
Scheduling

Interactive Debugger Yes Yes Yes Yes Yes

Available on Which PC PC, Mini, PC, Mini, PC,Mini, PC
Computer Types Main ws<1>

'
Main, WS Main,WS

Programming
FORT, C FORT FORT

Language Accessible

Animation Yes Yes Yes Yes Yes
Cinema TESS

Material Handling No Yes No Yes No

Standard reports Yes Yes Yes Yes Yes

Customized reports Yes Yes Yes Yes Yes

Graphics Yes Yes Yes Yes Yes

<1l WS: Work Station

Table III. Basic Features of Simulation Languages

18

Simulation Output Analysis

Simulations are used to understand the behavior of the system under study.

Frequently, the system's behavior is summarized by the values of one or more measures,

such as mean waiting time or mean service time. Unfortunately in many studies, a large

amount of money and time is spent on the development of the model and programs, but

little effort is made to analyze the simulation output data. A common practice is to make

inferences about the system from a single simulation run of arbitrary length without

appropriate statistical analysis. This practice may occur because simulation is often

viewed simply as an exercise in computer programming. In fact, it is a computer based

statistical sampling experiment. Therefore appropriate statistical techniques must be

used.

Another reason for the lack of output analysis is that the simulation outputs are

nonstationary and autocorrelated: Therefore classical statistical analysis based on

independently identically distributed (iid) observations are not directly applicable.

As a result of the inadequacy of classical statistics, extensive research has been

done to develop appropriate procedures for the output analysis. In the following

sections, the types of simulation with regard to the analysis of the output and the

techniques used to analyze both types of simulation will be covered.

T)l)eS of Simulation with respect to Ouu,ut Analysis

Simulations can be classified into two categories: terminating and

nonterminating.

Terminatine Simulations:

19

A terminating simulation is one that runs for some duration of time TE where E is

a specified event which stops the simulation. Event E is specified before the simulation

begins and depends on the nature of the simulation and the purpose of the analysis. The

measure of performance for terminating the simulation explicitly depends on the initial

state of the system. Therefore initial conditions must be carefully chosen (The

following examples are adopted from Law and Kelton(1982a), and Banks and

Carson(1984)).

Example 1:

A bank opens at 9:00 am with no customers present (initial conditions at

time=O) and closes at 5:00 pm (physically terminating at TE= 480

minutes). In this case one might want to study the interaction between

customers and tellers over the entire day.

Example 2:

A company sells· a single product and wants to determine how much to

order to minimize the average monthly cost of operating the inventory

system for the next 10 years (TE= 10 years).

20

Some systems, such as Example 1, start each day in the same state, operate for a

specified period and then terminate. On the other hand, some systems can operate

indefinitely. Yet someone may still be interested in the system's behavior between

certain periods or up to the tifile when the "X"th item is produced.

The choice of the initial states is very important. If the intent was to study the

bank in Example 1 from 11 :00 am to 2:00 pm, it would not be correct to start up the

system with no customers. Either real system data should be used for this period or the

simulation should run from 9:00 am without collecting any statistics prior to 11 :00 am.

A terminating simulation is appropriate if the system shuts down regularly or the

system has a natural duration time or the short term responses of a new system under

some conditions are needed to be studied.

Nonterminatin& Simulations:

A steady state or nonterminating simulation is a simulation for which the desired

measures of performance are defined as limits as the run time of the simulation goes to

infinity. When the system reaches steady state, the initial conditions no longer affect

the system's behavior. In another way, the behavior of observations does not depend on

when they are collected. As an example, in a manufacturing system, the behavior of the

system will be the same after some period of time regardless of the amount of the initial

inventory.

Although the type of the simulation appropriate for the system might be obvious

for some systems, in some cases either type of simulation might be appropriate. In that

case, the analyst must choose a type depending on what is to be learned about the system.

21

Statistical Analysis Techniques for the Analysis of Simulation Ouqmt

The output data from a simulation model presents random variability due to the

use of random nll:mbers to produce the input data. If the performance of the system is

measured by a parameter 0, the result of a set of simulation experiments will be an

~ ~ ~

estimate 0 of 0. The variance of 0 is used to measure the accuracy of 0. The usual

approach to determine the accuracy of the estimator is to construct a Confidence Interval

(CI) for the true measure. The methods used to estimate the variance depend on the type

of the system that is being simulated. The next section classifies the statistical analysis

procedures into two classes for terminating and nonterminating simulations.

Terminatin& System Procedures

As mentioned before, the length of the simulation is defined by the system

conditions and the estimated parameters explicitly depend on the system. Therefore, the

output must be generated by independently replicating simulation runs using the same

. initial conditions. The independence of runs is accomplished by using different random

numbers for each replication. The observations will be independent and identically

distributed (iid) and classical procedures for independent data can be used. In that case,

the estimator of the parameter Xj from the jth replication can be considered an iid

22

random variable (rv) with finite population mean and variance. The estimate of mean

µ = E(X) from n replications will be

n

- .~xi
X = .!::L_

n

and the sample variance s2 (unbiased estimator of 0'2) will be

1:(X·-X)2
. 1 J s2= ;;...r-___ _

n-1

(1)

(2)

Under the assumption that the JS 's are normal random variables, the 100(I-ex)%

confidence interval for the true value ofµ is given by

- s
X±tn-l a/2 1M

' 4' n
(3)

It must be noted that the CI will be approximate because the JS will rarely be normally

distributed. However the violation of normality can be ignored for large n based on the

Central Limit Theorem. Therefore, the violation of normality will not affect the results

of equation 3.

This procedure is called a fixed sample size procedure (n ~ 2) (see Law and

Kelton (1991,1982a)). One disadvantage of this procedure is that the user has no control

over the CI half length. But in many simulation studies, procedures were developed to

construct a CI with a small absolute precision (actual CI half length) or a small relative

precision (ratio of the CI halflength to the magnitude of the estimator). Law and Kelton

23

(1982a) present a sequential process which adds new replications one at a time until a CI

with a specified precision is constructed. If the precision of the CI is not crucial, one

may choose to use a fixed-sample-size procedure. Also one must consider the cost of

each replication. Since the observations Xi are themselves averages, the assumption of

normality is reasonable based on the Central Limit Theorem. As the number of

replications increases, the standard error gets smaller. Although a precise CI is desirable,

it may not be affordable. Law and Kelton (1991) recommend at least 3 replications to

assess the variability of Xi.

Nonterminatini: System Procedures

Nonterminating simulations produce output data that are independent of the initial

state of the system. The simulator must stop the simulation after "n" observations or a

specified length of time TE is reached. The sample size n or TE is a design choice which

has nothing to do with the nature of the problem. The simulation length should be

chosen with several considerations in mind:

1. The bias in the point estimators due to the initial conditions.

2. The desired accuracy of the point estimators.

3. Budget constraints.

When analyzing a steady state simulation, the analyst must deal with two major

problems: initialization bias and autocorrelation.

24

Initialization bias which is caused by using unrealistic initial conditions can lead

to wrong inferences about the system, especially when several independent runs are used

to construct the CI. Startup policies, for setting initial conditions or truncation

procedures for specifying the truncation point at which data can be considered for

estimations, can be used to minimize initialization bias.

Pritsker (1986) suggests three basic rules for setting the initial state of the system.

1. Start the system empty and idle. Although it_ is easy to implement this

rule, it may not be a good representation of the system. This is hardly the

case for manufacturing and information systems.

2. Start the system at steady state mode. Probably it is the best way to start

up the system, but it may be very difficult to determine the steady state

mode for large systems.

3. Start the system at the steady state mean. For this rule, either a pilot study

or an analytical analysis of the system must be run.

Kelton (1989) and Wilson and Pritsker (1978a) list procedures to minimize the

initial state of the system so that the initial bias will be minimized.

There are several methods to eliminate initial bias. One method is to collect data

on the system and use the data to specify initial conditions. This approach, if the system

exists, may require a lot of data collection. Otherwise it is impossible to implement. In

spite of this difficulty, it is always better to use available data on the system rnther than

making unrealistic assumptions about the system such as starting the system empty or

idle.

25

Another start up procedure is to divide each simulation run into two phases: the

initial transient phase and the data collection phase. The problem in this approach is to

determine the truncation point. Unfortunately there are no proven techniques to

determine how much data to delete to minimize initialization bias. The common

approach is to make a pilot run and select a time based on that run. One can try to

minimize the initial bias by selecting the appropriate initial conditions, running the

simulation long enough to make the initial bias insignificant and/or dividing the

simulation into an initialization phase and a data collection phase.

Each approach presents problems in terms of implementation. There is no widely

accepted procedure to reduce initialization bias. Pritsker (1986) lists a limited summary

of some truncation rules. The survey by Wilson & Pritsker (1978a) contains many

techniques for controlling initialization bias. Law & Kelton (1982a) have developed a

procedure based on independent replications, deletion of data and time series regression

techniques. Schruben (1982) presents a test for detecting initialization bias using a

hypothesis testing framework.

Steady state simulations produce data which are independent of the initial state of

the system. Performance measures are defined in terms of the steady state behavior of

the system. A great amount of effort has been done to develop point and interval

estimators for steady state. simulations. If X1,Xi, ... ,~ are the waiting times in a system

then the steady state mean waiting time is

n
LXi

V = lim i=l
n~oo n

26

It is assumed that v is independent of the state of the system at time 0. There are two

general approaches in the literature to construct the estimators for steady state simulation.

1. Fixed-Sample-Size Procedures. · A simulation run or several independent

runs are performed and one of the available techniques is used to construct

the CI.

2. Sequential Procedures. The idea is to increase the length of the simulation

run sequentially until an acceptable CI can be constructed.

Fixed Sample Size Procedures: Law (1983) categorizes fixed sample size

procedures into four basic types.

1. Those that seek independent observations.

2. Those that seek to estimate dependence among the output variables.

3. Those that exploit a special structure of the underlying process.

4. Those based on standardized time series.

REPLICATION:

This approach is also used for terminating simulations and falls into the first

category. If the initialization bias can be reduced to a negligible level, this method can

be used to estimate point estimators and to construct confidence intervals. Otherwise the

resulting confidence intervals might be misleading. The number of replications has no

effect on the bias which is affected only by deleting more data or increasing the

simulation length. Therefore, if the initial bias exists, increasing the number of

replications may produce short coverage of the CI around the wrong poirtt.

Let ~ be the sample mean of the last m-r observations in the jth replication

where r is the warm-up period. Then ~ 's become iid and can be substituted into

equations (1), (2) and (3) for point estimates and a 100(1-a)% CI.

27

There are several potential difficulties with this method. First, to choose the

number of observations to be deleted is very critical. If too few are deleted, every

replication will contain some transient observations which will make every sample mean

~ biased. On the other hand, if too many observations are deleted, the CI will be wider

than necessary. Secondly, this method uses data inefficiently. Thirdly, each run starts

with the same initial conditions which are not representative of the steady state. Finally,

one must interrupt the simulation to collect the data and reinitialize the runs for each

replication.

The major advantage of this method is that the sample means are guaranteed to be

iid. One may use this method if he/she is sure that the system reaches steady state

quickly and run lengths can be limited.

BATCH MEANS METHOD:

This method attempts to take independent observations from the process, but only

a single simulation run of length (n) is made. Data from the stationary portion of the run

are divided into (m) batches of (k) consecutive observations each (n=mk). Let Y; be

the sample mean of k observations in the jth batch. If the batch size k is chosen large

enough, then the Y;'s will be approximately uncorrelated and normally distributed. If this

is the case, the batch means can be treated as iid random variables and the usual

statistical methods can be used to construct a CI for the mean.

28

Due to potential sources of error associated with the correlation between batch

means, procedures which seek to find an appropriate size for k are needed. Gross and

Harris (1974) suggested an approach to fix the number of batches (m) and increase the

batch size (k) until the estimated correlation between adjacent batch means is less than a

specified tolerance. Fishman (1978a) also proposed a method for fixed m by choosing

k based on the Van Neumann ratio. Fishman concluded that his method works well for

large sample sizes if the process is not too positively correlated. Law (1977) conducted

a comparison of the replication method and batch means method. He showed that the

actual coverage of a desired 90% CI is 27% by using the replication method and 72% by

using the batch means method for a M/M/1 queue with p = .9 where m=20 and k=64 .

He repeated the same experiment with 10 batches instead of 20 and showed that the

actual coverage of a 90% CI was 62% and 76.7% for the replication method and the

batch means method respectively. As a result of this empirical study, Law reported that

the violation of the normality assumption has no major impact on both methods as long

as the batch size (k) is larger than 20.

Other papers that discuss the batch means method are Conway (1963), Mechanic

& McKay (1966), Schmeiser and Kang (1981), Schmeiser (1982), Schreiber &

Andrews (1979) and Adam (1983).

The advantage of this method is that it uses data more efficiently. The data are

deleted only once . Therefore, unlike the replication method, misjudgments about the

length of the initial transient period will have little effect on the batch means. Law and

29

Kelton (1984) concluded that the batch means method is generally superior to the other

methods that have been proposed in terms of producing the most accurate Cl's.

AUTOREGRESSIVE METHOD (Parametric Modelling):

This method does not attempt to obtain independent r.v.'s from the data. It

employs estimates of the correlation structure to obtain an estimate of the variance of the

sample mean. It was developed by Fishman (1971, 1973, 1978b) and assumes the

process is covariance stationary and can be represented by a pth order auotoregressive

model (AR(p)). Law and Kelton (1984) tested this method of parametric modelling and

found that the actual coverage of the CI may be less than the desired coverage if the

sample size is too small.

Andrews & Schreiber (1982) generalize Fishman's model by assuming that the

process can be represented by a autoregressive-moving average model ARMA(p,q).

They used a technique developed by Gray, Kelley & McIntire (1978) to determine the

order of p and q. But empirical results from two queueing systems showed that the

coverage of the CI is less than the desired coverage and inconsistent with increasing

sample size. According to Pritsker (1986), "In our experience, parametric modelling of

the time series obtained from a simulation model has not produced reliable estimates of

the variance of the sample mean.''

SPECTRUM ANALYSIS:

This method also employs estimates of the correlation structure to determine an

estimate of the variance of the sample mean (Fishman (1978b), Law (1983)).

30

Given the lag h covariance, Ri., where

and

(L IRh 12 Loo) the spectral density function is defined as

g (a) = - 1- i R e-i'Ah
21t h=-oo h

00

m = L Ri. z 21tg(O)
h=-oo

I\

The estimation of var(Y) = ~

where n is the number of observations and in is the estimate of the spectral density

function at zero frequency. This technique is complicated and requires a sophisticated

statistical background on the part of the analyst. Estimating the spectral density function

requires the determination of the number of covariance weighting functions to apply to

the estimated autocovariance obtained from finite observations.

REGENERATION METHOD:

This method identifies random times at which the process probabilistically starts

over and uses these regeneration points to obtain independent random variables. When a

system regenerates itself, its future behavior is independent of the past. The pattern of

development after each regeneration point is the same. For example in a M/M/1

queueing system, regeneration points are the times when a customer arrives and finds the

system empty. Arrivals and departures of the customers will be independent of the

arrivals and departures of the past customers and will be a replica of those after empty

state because of the iid nature of service and interarrival times. For the output process

(Yi , i ~ 1), assume that there is a sequence of random times 1::;; B1 ::;; B2 ::;; .;.

called regeneration points at which the process starts over with the same probabilistic

structure. The portion of the process between two consecutive regeneration points is

called the regeneration cycle (Yi, Bi ~ i ~ Bi+I). Define

and

E(N) < oo.

Bj+1-1

Zi = Li Yi
i=BJ

j=l,2, ...

31

The random vectors Ui = (Zi, Ni)T are iid. Then the steady state average response is

given by

V = E(Z)
E(N)

This method was developed simultaneously by Fishman (1973) and by Crane and

Iglehart (1975). Law and Carson (1979) also developed an alternative regenerative

approach known as the Jacknife approach.

STANDARDIZED TIME SERIES (STS) METHOD:

This method uses the methodology of weak convergence of functions of

stochastic processes (see Billingsley(l968), Goldsman and Schruben(l982),

Schruben(l983), Schruben et al. (1983)).

The standardized time series model assumes that the process (Yi , i 2:: 1) 1s

32

strictly stationary and phi-mixing (the process is phi-mixing if Yi and Y tf:i become

independent as j becomes large).

This method divides n observations into m batches of length k (n = mk).

Yj (k) is the sam~le mean of the jth batch where Y(n) is the grand sample mean and the

point estimator of v. Ifn is large, the grand sample Y(n) will be approximately

normally distributed.

' 2
Y(n) -N{v, ~)

where

a2 = lim n(VarY(n))
n~

The statistic A, which is asymptotically independent of Y(n), is defined as

[12] m { k - · - }
A = k3 -k ~ ;[1J(k) - yi-+{;-l)(k)]

r-1 z-1 .

It can be shown that (Schruben(1983))

(Y(n)-v)/{9;
=

Y(n)- µ

~ ~

For large k;

- J an2 ([Y(n) -v] J (A1:z2> = (Y(n) - v) J ~n - t(m)

33

Therefore an approximate 100(1-cx)% CI for v is given by

Y(n) ±tm,1-~ J:n
The advantage o~this method is its computational simplicity. Schruben (1983) has

shown that this method works well in terms of coverage for large k's. But there is a need

to investigate the performance of the method for small values of k.

SEQUENTIAL PROCEDURES

Sequential procedures sequentially determine the length of the simulation run

needed to construct an acceptable CL As observed in the fixed length procedures, all of

the methods display the problem of insufficient coverage of the CL Also in addition to

the coverage problem, the simulator may want to have some control over the CI

procedures in terms of the absolute precision (J3) or relative precision (y). In case of

fixed length simulations, there is no way to know in advance the magnitudes of y and J3.

The procedures developed so far fall into two categories : either the process is

assumed to be regenerative or the process is assumed to be nonregenerative.

Fishman's (1977) and Lavenberg and Sauer's (1977) procedures fall into first

category. Fishman's procedure attempts to construct a CI for v with absolute precision J3.

The output data are grouped into blocks of n' adjacent regeneration cycles. A point

estimator h; for v from the jth block is formed. The random variable h/s are iid. The

simulation is continued until enough hj's are collected so that J3 < y for the CI produced.

34

The procedure also checks the bias and normality of the hj's. If they are unbiased

and normal, the final CI is formed as the average of the h/s. Otherwise the block size n'

must be increased and the process must be repeated.

Fishman's process seeks to obtain iid random variables in order to use classical

statistical methods directly. This process has the disadvantage of being based on

regenerative methods which might limit the application of the method in real world

simulations. The selection of the minimum width y which is not explained in the

procedure might require a prior run. Also this method shows small coverage if f3 is not

chosen small enough.

Lavenberg and Sauer (1977) form a CI for v such that the ratio of its half length

to its midpoint does not exceed a fixed constant y > 0 . Their stopping rule is based

solely on the relative width criterion and backed up by an asymptotic theory. According

to the empirical results in Law & Kelton (1982b), Fishman's procedure performs better.

Mechanic & McKay's (1966) procedure is based on the batch means method. In

this procedure, N observations are broken into batches and an average autocorrelation

estimate is computed from each batch mean. The batch size is successively increased

until the sequence of autocorrelation estimates satisfies certain conditions and these

batch means are used to construct the CI. If the conditions are not met, the number of

observations N is increased and the steps are repeated until a suitable batch size is

obtained. This procedure does not have a built-in mechanism to force the CI to become

small.

35

Law & Carson's (1979) method is also based on batch means. It divides m

observations from a single run into 400 batches of size k (m = 400k). If the estimated

lag 1 correlation between the 400 batch means is less than a threshold value c = 0.4 , the

same m observations are divided into 40 batches and these 40 batch means are considered

to be uncorrelated and used to construct a CI for v using the batch means approach. If

the estimated lag 1 correlation is not less than c or if the actual relative precision is not

less than y, then m is increased and above steps are repeated; Law & Carson's method

appears to be the most preferable in nonregenerative applications.

The advantage of the sequential method is that if the technical assumptions of the

method apply, the precision of CI is guaranteed. On the other hand, the computer time

required for the simulation is not predictable in advance. Another difficultly with these

methods is that they must be built into the simulation. Other than these difficulties,

sequential methods are the most preferable approach to computing Cl's.

Simulation Optimization

Simulation is often considered to be an attractive alternative for analyzing com

plex systems for which the analytical solution is very difficult or impossible. Although

simulation is not an optimization procedure, a simulation model is often used to measure

system performance which is to be optimized. The intent of simulation optimization is

to optimize the objective function and identify the settings of the design parameters.

This desire usually initiates the trial and error use of simulation which is performed until

36

parameter settings are found that satisfy the desired goal. This process requires many

simulation runs. Since the objective function cannot be expressed as an explicit function

of the design parameters, the objective function is expressed in terms of outputs from the

simulation experiment. It has been shown that simulation can be integrated with

analytical models and/or optimization schemes to accelerate this trial and error process to

find the "best" parameter setting which results in the "optimum" level (see Starr (1966)).

Moore and Lee (1989) presented a method which optimizes a closed loop factory line

balancing in a semiconductor wafer fabrication facility. Farrel et al (1975) surveyed

early works in simulation optimization. Other articles in the literature searches include

Smith (1973b), Rustagi (1981), Birta (1984), Meketon (1987), Jacobson & Schruben

(1989) and Safizadeh (1990). Figure 3 shows the classification of simulation

optimization methods. These methods can be classified into four categories according to

the search method they employ: path search methods, pattern search methods, random

search methods and integral methods. As shown in Figure 3, the methods are either

developed specially for the systems or adopted from nonlinear optimization techniques

by replacing the objective function value in the algorithm with the estimate of the

function obtained from the simulation run. The first section covers .some of the

optimization techniques and their applications in simulation optimization. The last

section covers multiresponse optimization approaches and their applications.

Simulation Optimization Methods

Path Search Pattern Search Random

- Response Surface Methodology - Hooke & Jeeves* - Simulated Annealing*
- Stochastic Quasigradient - Simplex Method* - Random Search
- Stochastic Approximation - Univariate Search*
- Perturbation Analysis - Coordinate Search*
- Frequency Domains
- Optimization Homotopy*

• Methods adopted from Nonlinear Optimization Techniques

Figure 3. Classification of Simulation Optimization Methods

Integral

w
-....J

38

Optimization Techniques and their Applications

Response Surface Methodology (RSM) : RSM is a set of techniques used to design a

set of experiments that will provide adequate and reliable measurements of the response,

determine the mathematical model that best fits the data and determine the optimal

setting of the experimental factors which produce the desired objective . The relationship

between the response and the input variables is given by the response function .

T\ = 4> (x 1,x2, ... ,xn)

where T\ is the true response and 4> is the response function. In complex situations

the exact form of T\ will be unknown and is a,pproximated by a polynomial equation.

Denoting the approximate value of T\ by y, the optimization effort is focused on the

. estimate of the expected value of y. A second order polynomial equation for k variables

can be written as

k k 2 k-1 k
y= Po+ I:P·x· + I:P··x. + L L P··X·x· + e

·1 11 ·1 111 ·1··1 IJl'J i= i= i=]=I+

or

where Xo= 1

Most of the common models used to approximate the polynomial are of degree one and

two. Designs used to fit first order polynomials are called first order designs . Some

first order designs are 2k factorial designs, simplex; designs, 2k·p fractional factorials and

39

Plackett-Burman designs (see Plackett and Bunnan(1946)). In general, the initial

simulation experiment is based on a first order design to determine the path of steepest

descent (ascent). Additional simulation runs are then made until no improvement in

response is observed. Then a new first order design is run around the "optimal point".

This is called Phase I of RSM. Phase I is repeated until there is a lack of fit in the first

order design. A second order design is then chosen and a second order polynomial is fit

to the response. This is called Phase II of RSM. Calculus is used to determine the

stationary point of this polynomial. A detailed list of first and second order designs is

presented in Myers (1971) and Safizadeh (1990). Related works can be found in Smith

and Mauro (1982). They studied screening factors that would reduce the. number of

variables in the polynomial.

Daughtery & Turnquist (1981) used RSM with constraints based on the cost to

run the simulation. Heller and Staats (1973) used RSM to solve problems subject to

costs and constraints by modifying Zoutendijk's method of feasible directions. Another

use of RSM with simplex experimental designs is presented in Mihram (1970). Cooley

and Houck (1982) looked at variance reduction strategies for RSM simulation. Nozari,

Arnold and Pegden (1987) and Tew and Wilson (1987) have developed statistical

strategies that enhance the applicability of the Schruben & Margolin (1978) variance

reduction design in metamodel estimation for a simulation response. Biles (1977) and

Rees et al. (1985) studied multiple response fitting and multiple response optimization.

Montgomery and Bettencourt (1977) used the Geoffrion & Dyer interactive vector

minimal algorithm for multi-response optimization. King and Fisher (1989) developed a

prototype system (BARBS- Bottleneck Analysis Rule Based System) to identify

40

manufacturing bottlenecks. They combined RSM, simulation and expert analysis

heuristics for bottleneck identification. Safizadeh and Thornton (1984) reviewed RSM

in optimization of simulation experiments. Early reviews can be found in Farrell et al.

(1975), Farrell (1977), Brightman (1978), Montgomery (1979) and Montgomery and

Evans (1975).

The advantage of RSM is that it is easy to understand, is based on statistical

theory and is easy to implement. The major disadvantage of the method is that it

requires a large number of runs. For example, when k factors are being investigated, at

least k+ 1 points (runs) are needed to calculate the path of steepest descent before any

search is actually done. This disadvantage can be overcome by screening variables and

using important ones. Cochran and Chang (1990) used two-stage group screening .

methodology to identify important variables to be used in RSM to find the optimal

solution. Group screening is based on the aggregation principle and requires prior

knowledge about the variables. After grouping variables into several groups, each group

is treated as a single factor. Then a factorial design is used to identify important factors

and reduce the number of computer runs. After the identification of the major variables,

RSM can be applied. Cochran and Chang used this approach along with RSM for a

flight simulation. Another disadvantage of RSM is that the actual implementation might

be difficult because of the need for a higher order polynomial to fit the surface. Also it

should always be kept in mind that whenever RSM is used , a statistical model is

analyzed. Therefore, the analyzer must be careful with the assumptions in the simulation

and statistical modelling stages.

41

As quoted from Safizadeh and Thornton (1984), 11 RS designs in conjunction

with gradient based optimization techniques and search methods appear to best satisfy the

optimization objective of simulation. 11

Frequency Domain (FD) Methods: One of the recent strategies for optimization

is the frequency domain method. This method was originally introduced for screening

the factors in the simulation runs that have significant effect on the output. Ip a

frequency domain experiment, input variables are changed during a run according to the

sinusoidal or rectangular oscillations. If the simulation response is sensitive to changes

in a particular factor then the response can be predicted by oscillating that factor. The

main assumption in FD experiments is that the output response can be modeled as a

polynomial function of the input levels. Such a function is called a meta-model or

simulation response surface regression model. Simulation response surface models are

high level mathematical relationships which are helpful in understanding the complex

relationship between inputs and outputs.

Two basic tasks in simulation response surface modelling are the identification of

the functional form of the response surface model and the estimation of the coefficients

of the response surface model. Schruben and Cogliano (1987) presented an experimental

method for identifying an appropriate model for a simulation response surface.

For frequency domain experiments to be applicable in identifying a model for a

given system, the system must have :

- Parameter settings that can be changed during an experimental trial;

- A system response that can be observed at periodical intervals;

- A response that can be adequately modeled as a time-variant linear

combination of products of powers of the functions.

42

A FD experiment requires at least two runs: a control run and a signal run. In the

control run, input factors are held constant at their nominal values. A control run

identifies natural cycles in the response. In a signal run, the input factors are changed

according to the sinusoidal oscillations. The frequency assigned to a particular factor is

called its driving frequency. For example, the sinusoidal wave for a particular input

factor can be represented as

tt>i(t) = a.i cos(2moit+ 6)

where a.i is the amplitude , 6 is the phase shift, t is the time index and co1 is the driving

frequency of the ith variable . The response spectrum has a peak CO; at corresponding a; .

The contribution of each frequency to the variability of the time series is measured by a

function called the spectrum. As· linear system theory states, a sinusoidal input produces

a sinusoidal output at the same frequency. The output spectrum fg (co) can be

written in terms of the input spectrum f<ti (co) as follows

where G is the gain function which describes how the system amplifies or attenuates

oscillations at different functions and fc (co) is the spectrum for random disturbance. If

e is white noise then fc (co) is constant for all CO;.

43

In a multiple factor linear system, the response spectrum and input spectrum are

related by

k
(g(ro) = l: Gf (ro) fe1>.(ro) + fe(ro)

i:} , I

The three steps for designing FD experiments are (See Schruben and Cogliano

(1987)):

1. The selection of a set of driving frequencies for input factors;

2. The determination of amplitudes;

3. The assignment of driving frequencies to each input variable.

Schruben (1986) and Schruben and Cogliano (1987) presented the steps for

metamodel identification. Jacobson, Russ, and Schruben (1991) presented a heuristic

algorithm for the selection of driving frequencies which maximize the minimum space

between the term indicator frequencies. Mitra and Park (1991) introduced a technique

for performing FDEs which uses the simulation clock as the oscillation index and they

demonstrated this technique for a network of queues.

According to the empirical studies done, the number of runs required to identify

the important factors by the frequency domain method are much less than conventional

run-oriented simulation experiments where each setting of input values requires a

separate run. Although the frequency domain approach is not by itself an optimization

technique, it can be used to identify the factors which can be estimated by other

optimization techniques. For example, it can be used with classical RSM to indicate

when Phase IT of RSM should be started.

44

The frequency domain approach has several advantages. First, several input

factors can be studied in the same run. Second, nonlinear effects can be detected with no

additional experimentation. Third, high order terms in the response surface can also be

identified without additional runs. Along with these advantages, FD also has some

limitations too. First, the user should have knowledge about FD and spectral analysis.

Second, the implementation of changes inside the model can be a very difficult task.

Third, selection of the experimental region is critical. Although the larger the region,

the more power there will be in detecting input factor effects, it may put the simulation in

an unstable region for too much of the time.

Perturbation Analysis (PA) : A new methodology PA has been used in the

optimization of queueing networks. PA was first developed by Y.C. Ho. PA is an

analytical technique that calculates the sensitivity of performance measures of a discrete

event dynamic system (DEDS) with respect to the system parameters by analyzing its

sample path. General overviews on PA are presented in Ho (1985), Ho (1987), Suri

(1989).

Four types of PA and related works are listed below.

1. Infinitesimal PA (IPA). See Cao (1985, 1988), Heidelberger et al.

(1988), Ho and Cao (1983), Suri (1987), Suri and Zazanis (1985),

Zazanis and Suri (1986).

2. Extended Perturbation Analysis (EPA) for systems that can be

represented as a continuous time Markov chain. (see Cao (1987), Ho and

Cassandras (1983), Ho and Cao (1983), Ho et al. (1979)).

45

3. Smoothed Perturbation Analysis (SP A) . This method is an extension of

IPA based on conditional probability (see Gong (1988), Gong and Ho

(1987)).

4. Finite Perturbation Analysis (FP A). This method introduces

perturbations and propagates them while observing the nominal path and

limits the calculations by extrapolating to predict the effects of such

changes. (see Cao (1987), Ho & Cassandras (1983), Ho, Eyler and

Chien (1979), Ho, Eyler and Chien (1983).

PA tracks and records certain statistics during the simulation such as the

sensitivities of the parameters with respect to the simulation response; It uses the chain

rule from calculus to estimate the gradient using only one simulation run. For example,

using a M/M/1 queue example adopted from Jacobson & Schruben (1989), let co be the

simulation response (e.g. average waiting time), s be the measure of interest (e.g. service

time of a customer) and x be the factor of interest (e.g. service rate), then according to

the chain rule

where

aco = aco as
ax as ax

as
ax is assumed to be known and evaluated from the distribution function

F(s,x). The primary assumption of IP A is that the order of events for the original path

and the perturbed path stay the same for both x and x + Vx where Vx is an

infinitesimal perturbation. In other words, IP A assumes that the perturbation of a

parameter is small enough not to change the order of events in the simulation run.

46

The concept of PA can be used in simulation studies. It is usually easy to

implement the PA algorithm in simple simulation models. But for large and complex

simulation models, the implementation of PA becomes less straightforward. Also, the

implementation of PA is limited to a certain class of queueing networks. For example

the assumptions of PA hold true for GI/G/1 queues, single class Jackson Networks and

Tandem Network with blocking. Related studies can be found in Cao & Ho (1983), Ho

and Cassandras (1983), Ho and Eyler and Chien (1979, 1983).

Ho (1987), Kumar (1984), Suri (1983a, 1983b, 1987), Suri & Zazanis (1988)

reported the theoretical justification of PA and other related issues to PA in their papers.

Heidelberger et al. (1988) discussed the limitations and potential weakness of PA and

explained why PA can give very poor gradient estimates in certain simulation models

because of the assumption of the same order of events in the existence of a perturbed

factor.

PA provides the gradient information which could be used with optimization

procedures. The application of PA can be seen in the sensitivity analysis of discrete

event simulations (see Suri & Dille (1985)), single run optimization (Suri & Leung

(1987,1989)) and on line control/improvements of DEDS (Cassandras (1987)).

Random Search: Random search uses a random approach to choose the

parameter settings. Before it can proceed, the upper and lower limits for each parameter

must be defined. There are two basic approaches to conducting random search. The first

method involves a random sampling of points from the grid given by the factorial design.

In the other approach, the number of runs are specified a priori and the "best response" is

chosen as optimum when the number of runs is exhausted.

47

The major advantage of random search is that there is no limit on the number of

runs and its simplicity. However , this search does not cover the search region

thoroughly, there is no guarantee for a global optimum and the method does not use the

information from previous runs. Smith (1973a) presented the possibility of using

random search. Garcia-Diaz et al. (1983) used the random search method along with the

Out-of-Kilter algorithm for the analysis of a production distribution system. Fox (1984)

used the idea of random search with quasi random numbers to minimize the discrepancy

of the samples. The idea of using quasi random numbers in conjunction with random

methods is a promising future research field.

Simulated Annealing: Simulated annealing is an iterative stochastic search

method which has been designed for deterministic multivariate combinatorial problems.

It is analogous to the physical annealing process whereby material is gradually cooled so

that the minimum energy state is reached.

The simulated annealing concept was introduced by Metropolis et al. (1953) who

developed a simple algorithm to provide an efficient simulation of atoms in equilibrium

at a given temperature. Kirkpatrick et al.(1983) and Cherny (1985) applied this concept

to deterministic optimization problems. Vecchi & Kirkpatrick (1983) applied simulated

annealing to global wire routing. Cherny presented a Monte Carlo algorithm to find

approximate solutions for the travelling salesman problem.

Since its introduction, SA has been applied to solve all kinds of optimization

problems arising in computer science, engineering and image recognition. Recently,

Bulgak and Sanders(1988) have demonstrated one application of the SA algorithm with a

48

simulation to optimize buffer sizes in automatic assembly systems. Manz et al.(1989)

showed the possibility of using SA to optimize an automated manufacturing system.

Hajek (1988) established cooling schedules for optimal annealing. Wilhelm and Ward

(1987) used the SA method to solve a quadratic assignment problem. Lee and Iawata

(1991) proposed an annealing algorithm to solve a part ordering/release problem in

FMSs.

SA randomly generates moves, and checks whether the cost of the new

configuration is acceptable based on a parameter T, sometimes called "temperature". If

the cost decreases, the move is accepted. Otherwise the move is accepted with a

probability which is a function of T and the increase in the cost (e.g. 1

where ci, ci+1 are the costs).

The algorithm behavior is strongly dependent on the existing temperature. At

high temperatures, the probability of a hill-climbing move is higher. When T is zero,

no hill-climbing move is accepted. For each value ofT, a certain number of moves is

generated, accepted or discarded before T is changed. This sequence of nonincreasing

temperatures defines an annealing schedule which is determined by the set of parameters

(e.g. starting temperature, number of iterations, rate of decrease of T and stopping

criteria)

The selection of an annealing schedule plays an important role in the efficiency of

SA. If the temperature decreases too quickly, even local optimum might be missed. If

the temperature decreases too slowly, an excessive number of function evaluations may

be required. Also the number of iterations to be performed at each temperature also

49

affects the performance of the algorithm. Through demonstrations, the choice of an

initial solution does not affect the success of the algorithm (Hajek(1988)). The effect of

the characteristics of the combinatorial optimization problem, such .as the behavior of the

cost function on the behavior of the simulation algorithm, are yet to be discovered. The

question of which problems are suitable for SA has been addressed lately and is a

promising field for future research.

The primary advantage of the algorithm is its ability to deal with a large number

of problems naturally and effectively. Also it is relatively easy to implement SA

algorithms to solve new problems. On the other hand, SA has limited efficiency when

it is compared with the heuristics that are specially developed for certain problems, SA

algorithms start at high temperatures and very slowly lower the temperature which results

in long computation times. The efficient annealing algorithms stated in the literature are

mostly problem dependent because of the structure of the cost functions. When the cost

function is too irregular or flat, it becomes difficult to reach the global optimum.

Stochastic Optimization: Stochastic optimization is concerned with the general

problem of optimization under uncertainty. Glynn (1986) presented a survey of the

algorithms for stochastic optimization. Figure 4 shows a classification of stochastic

optimization methods. Finite stochastic optimization can be divided into two categories:

discrete parameter stochastic optimization and continuous parameter stochastic

optimization. Discrete parameter methods are not developed as well as the continues

case and are under investigation. On the other hand, continuous parameter methods are

more robust and can be applied to a greater variety of problems. Continuous algorithms

Stochastic
Optimization

Finite-Dimensional
Stochastic Optimization

Discrete
Parameter SO

RSM

• Based on Robbins-Monro Algorithm

Continuous
Parameter SO

Stochastic
Quasi-Gradient
Methods

Infinite-Dimensional
Stochastic O timization

Kiefer
Wolfowitz
Algorithm*

Figure 4. Classification of Stochastic Optimization Methods

50

can be divided into three classes: response surface methodology, stochastic

quasi-gradient algorithms and the Kiefer-Wolfowitz (K-W) algorithm based on the

Robbins-Monro (R-M) algorithm. Since response surface methodology was covered

previously, the rest of the continuous parameter algorithms will be discussed.

51

The stochastic quasi-gradient (SQG) method is a stochastic approximation

method for solving general constrained optimization problems with nondifferentiable,

nonconvex functions. The SQG method was developed by Ermoliev and Shor (1968).

SQG methods use finite-difference Monte Carlo estimates for gradients which will be

used in gradient-based deterministic optimization algorithms. A survey of these

methods and their applications can be found in the paper by Ermoliev(1983). SQG

methods can be applied to many fields including optimization of stochastic systems,

identification and reliability of a system , inventory control and manufacturing systems.

Liu and Sanders (1988) presented an application of the SQG method to the performance

optimization of asynchronous flexible assembly systems (AFAS).

Kiefer and Wolfowitz (1952) proposed a stochastic approximation algorithm

(K-W) based on the Robbins-Monro (R-M) algorithm using finite difference

approximations to the gradient. The Robbins-Monro algorithm is not an optimization

procedure, but is a root finding algorithm. It can be used to find the root of the gradient

of the objective function in optimization applications. The details of the algorithm can

be found in Robbins and Monro (1951). The difficulty of this approach is to estimate an

unbiased gradient when the objective function values are found from simulation.

Azadivar and Talavage (1980) developed an algorithm to optimize a stochastic system by

52

using the principles of the stochastic approximation method. Ruppert et al. (1984)

applied SA to a Monte Carlo simulation of a fish harvesting model.

Single Run Optimization (SRO) : Single run optimization is a kind of stochastic

optimization method which optimizes the simulation model in a single run by saving

computational effort and computer time. This is achieved by estimating the gradient of

the objective functio:n, then updating the parameters based on the estimated gradient

while the simulation is running. Single run optimization was originally suggested by

Meketon (1987). Suri and Zazanis (1988) have done a preliminary study of single run

optimization. As mentioned before, Perturbation Analysis can be used to estimate the

gradient of the objective function. Since this estimate is available during the simulation
. I

run, it is possible to change the parameter values during the run and get an estimate of

the optimum at the end of the simulation run. This is the basic idea behind the single

. run optimization. Suri and Leung (1989) developed two single run optimization

methods: the Perturbation-Analysis- Robbins-Monro-Single-Run (PARMS) algorithm

and the Kiefer-Wolfowitz-Single-Run (K.WSR) algorithm. The basic difference

between these algorithms is the way that the gradient of the objective function is

estimated. PARMS uses PA for the estimates of the gradient, while KWSR uses a

finite-difference procedure.

Since both algorithms change the parameter values continuously during the

simulation, the process never reaches steady state and remains in a transient state.

Therefore, neither the theoretical results of PA nor the stochastic approximation

procedures (R-M and K-W) hold. PARMS and KWSR were implemented to optimize

an M/M/1 queue with respect to the mean service time . According to the test results,

PARMS showed better performance in terms of run length and average percentage

errors.

53

Suri and Leung (1987) applied a single run optimization algorithm to optimize

cycle time of a ciosed loop flexible assembly system by implementing the single run

optimization algorithm and estimation of the gradient via perturbation analysis in the

SIMAN language. Leung and Suri also investigated the finite time behavior of the RM

algorithm and the single run optimization algorithm. They showed that the single run

optimization algorithm converges faster than the RM algorithm.

Although the single run optimization algorithm gives exciting and promising

results, stopping criteria, iteration length and convergence of the algorithm need further

investigation. SRO algorithms based on PA require some additional computations to be

done during a simulation.

Pattern Search Methods: These methods do not require gradient estimates.

In general, they set a pattern and then move in the direction of the pattern to obtain a

new point which leads to a better solution. The most common techniques are Hooke and

Jeeves method, coordinate search, Nelder and Mead Simplex method and rotating

coordinates. The differences between the techniques are the local explorations and the

method of computing step sizes. The details of the algorithms can be found in Bazaara

and Shetty (1979). These methods replace the objective function value with an estimate

obtained from simulation. Since these algorithms are designed for deterministic cases,

the optimum solution is not guaranteed in the presence of random error.

54

A coordinate search changes one parameter at a time in the simulation runs. The

rest of the parameters are kept the same while the chosen parameter is increased until no

improvement in the objective function is observed. The algorithm terminates when no

change is observed during a pass or the number of runs is exhausted.

The Hooke and Jeeves method employs two types of moves: exploratory and

pattern moves. The exploratory move serves to establish a direction of improvement

and the pattern move projects the solution vector to a new point in the solution space to

restart the exploratory move. If the objective function continues to improve , the length

of the pattern move (step size) is increased. Otherwise, the search retracts and the

length of the pattern move is decreased. Pegden and Gately (1980) applied this method

to a decision-optimization module for SLAM. Bengu and Haddock (1986) also applied

this method to problems in SIMAN.

Another well-known technique is the Nelder and Mead Simplex Method. In this

method, simulation runs are performed at the vertices of the initial simplex. The point

resulting from the worst objective function value is replaced by a new point found via

reflection through the centroid of the simplex. Depending on the value of the objective

function, the simplex is either expanded, contracted or remains the same .

lntem} Methods: Evtushenko (1971) introduced the integral optimization

approach with an algorithm for Lipschitz continuous functions. His algorithm is based

on space covering and is specifically designed for global optimization. So far this

algorithm has not been successfully implemented due to the difficulty of obtaining a

Lipschitz constant in a stochastic environment. Zheng (1986) developed an integral

optimization approach without using the Lipschitz constant. The algorithm requires

considerable work at each iteration and converges slowly.

Multiresponse Optimization

55

Computer simulation can be considered as a black-box which combines values of

n decision variables to produce values for a set of m response variables T\j • The relation

between the input variables and the system response can be defined by the response

function f;.

T\j = f;Cx1,Xi,···,xJ j=l,2, ... ,m

The responses are also affected by some uncontrollable factors. This is depicted in

Figure 5 (adapted from Biles and Swain (1982)).

The purpose of the computer simulation is to evaluate the various policies and

parameter values for operating a system and to find the optimum values for the decision

variables. Determining the values of the decision values x/s, which may include an

infinite number of possible values, requires the employment of classical optimization.

But one must consider two important characteristics of simulation models:

1. The response functions are not usually known,

j=l,2, ... ,m

56

Decision Variables .----------

~ Simulation

~~~-, ... ~~M~o-de_I_s~~~~~~~-• ~ 
Uncontrollable · Responses 

Z1, ••• ,z 11 

Factors 

Figure 5. Input Output Relation 



where 

2. Observations of the system response at given points may contain random 

errors due to the effects of uncontrollable factors. The responses produced 

by the simulation runs will be 

C j=l, .... ,m 

57 

In recent years, the optimization of simulation models which combines multiple 

inputs and multiple responses has received increased attention. For example, consider 

an n-item inventory system and the simulation ~odel for this system. Input variables are 

the reorder points and reorder quantities for each of these items and the responses are the 

average annual cost, average inventory level and average number of shortages. 

Determining the reorder points and reorder quantities which minimizes all three 

responses becomes a multi response simulation optimization problem. The interface 

between the optimization procedure and the simulation model is shown below (Figure 6-

adapted from Biles and Swain(1983)). 

The important characteristics which might affect the selection of multi criteria 

optimization techniques stated in Stuckman et al. (1991) are: 

1. The number of decision variables; 

2, The number of response surfaces; 

3. The nature of the response variables; 

4. Run time; 

5. The ability of the decision maker to make preferences between various 

criteria. 



' 

Search 
Points 

Optimization 
Method 

Simulation 
Model 

Input 

Observed 
Response 

Output 

Figure 6. Simulation-Optimization Interface 

58 



59 

Two approaches can be used to formulate a multivariable multiresponse 

simulation approach model. 

1. Constrained Optimization : In this approach, one of the system responses is 

selected to be maximized or minimized while the other remaining responses serve as 

constraints within their prespecified bounds. Under this approach, the problem can be 

stated as 

Max(Min) 
s.t. 

1. < x. <u. 
1 · I 1 

i=l, ... ,n 

j=2, ... ,m 

The bounds of the decision variables are usually known prior to the simulation funs. On 

the other hand, response functions are not known prior to the simulation and responses 

(~) must be estimated from the simulation runs. With this formulation, some of the 

responses that serve as constraints might be violated while the decision variables are 

kept within their boundaries. Another problem is that the random error might lead to 

wrong decisions relative to the constraints and relative to the objective function. For 

example, the analyst may believe that a given response is feasible when it is not. This 

problem can be prevented by employing appropriate variance reduction techniques. 

2. Multiple Objective Optimization : In this approach, either responses are 

weighted to form a single objective function or treated like goals and used in goal 

programmmg. 



One approach is to form a single objective function by assigning normalized 

weights wi to each response· before beginning the simulation. In general, the objective 

function combining n responses would be as follows: 

m 
Max (min) W = Lt wj ~(x1, ••• ,"1,) 

i=l 

m 
Lt wj = 1 
i=l 

60 

If s of the responses are to be maximized and (m-s) responses are to be minimized, the 

signs of the (m-s) responses should be reversed in the objective function. This approach 

is valid only when the responses are commensurable. If they are incommensurable, 

combining different types of goals into one is not possible and this approach cannot be 

used. 

The second approach is based on the Geoffrion-Dyer interactive vector maximal 

algorithm and requires the user to adjust the sign and magnitude of the perturbations 

which specify the search direction. Then user is asked to choose one of the outputs which 

are presented in pairs. This approach provides the user with an entire view of the 

response surface. Details of this algorithm and its applications can be found in 

Montgomery and Bettencourt (1977). 

A third approach is the goal programming approach. The goals are represented in 

terms of responses. Form system responses, the goals will be 

j=l, ... ,m 

Each goal must have an associated righthand side value which describes the 

minimum or maximum attainment level. Also each goal must be assigned a priority level 

Pf PI usually represents the highest priority while Pm represents the lowest priority. 



These weights are also called preemptive weights. Goals of higher priority levels are 

satisfied first, then the lower priority levels can be considered and lower priority goals 

cannot alter the goal attainment of the higher priority goals. 

61 

Goal programming does not attempt to optimize the given set of goals. It tries to 

achieve the most'satisfactory level of goal attainment for all goals. Therefore the 

· solution will not be an optimal solution, it will be a satisficing solution. 

There has been many techniques applied in combining simulation and 

optimization. Although most of them are for single response problems, they are 

modified for multiple response problems. The techniques and methodologies used for 

multiresponse optimization can be classified according to the timing of the preferences, 

type of the preference information required, type of the decision variables ( continuous, 

integer, mixed) and type of the objective function ( linear, nonlinear, etc.). In all of the 

methods, the decision maker has to state his/her preferences by assigning weights, 

assigning priorities etc. 

Graphical methods may be used to analyze the response surfaces. The surfaces 

are generated by simulation runs and are then plotted. The user then selects a point which 

- he/she believes is the best choice. Montgomery and Bettencourt(1977) list the early 

works that used this approach. This approach may seem easy and attractive at the 

beginning, but as the number of variables and surfaces increase, it loses its appeal. 

Another class of methods employs the techniques of constrained optimization. 

Lagrange multipliers are widely used for optimizing the primary response while the other 

responses are treated like constraints. Carrol ( 1961) developed a procedure which 

incorporates the constraint response into the primary response by means of a penalty 



62 

function. Heller and Staats (1973) used Zoutendijk's method of feasible directions to 

optimize the system. These techniques previously described use single criterion 

approaches. One disadvantage of these techniques is that the analyst must choose one 

response as the primary one. It is also difficult to perform a sensitivity analysis for the 

secondary constrAints especially when there are small variations in the constraints . 

Direct search methods which do not require the use of derivatives can also be 

applied. Typical methods are random search, Hooke and Jeeves pattern search, simplex 

search and Box's complex search. 

Clayton, Weber, and Taylor (1982) used pattern search and gradient search for 

the optimization of multiresponse simulation models within the framework of goal 

programming with preemptive weights. This approach ignores the stochastic nature of 

the simulation, and is therefore good for simulation problems which are not stochastic 

in nature. 

Biles (1977) used lgnizio's goal programming technique and described how first 

and second order designs make these techniques applicable to multiresponse simulation. 

Box's complex search generates a set of starting points which satisfies the 

_ boundaries of the decision variables. A simulation run is performed at each of those 

points. Infeasible points which violate the response constraints are replaced with new 

ones and the worst response is chosen: The centroid ofthe remaining responses is 

found. A new point is found in the direction of worst point-centroid. Another 

simulation run is performed to check that this point satisfies all of the constraints. The 

procedure is repeated by adjusting the step size until the "best" solution is obtained or a 

predetermined number of simulation runs is reached. 



63 

Another approach is to use Response Surface Methodology (RSM). The 

methodology consists of taking starting observations according to the chosen 

experimental design. First-order designs (e.g. 2kfactorial or fractional designs) are used 

for first-order polynomials. A first-order model is fitted by least squares. Then the 

direction of improvement (steepest ascent or descent) is found and that path is followed 

until no further improvement is achieved. Another experimental design is applied and a 

new path is found. This process continues until the model shows lack of fit in the 

response. Additional points are then added to the search region to fit a second-order 

model. The selection of points is done with the help of second order·designs. After the 

second-order surface is fit, a mathematical analysis is performed to determine the 

characteristics of the points (minimum, maximum or saddle points). According to the 

results, the analyst decides whether to continue or not. 

RSM has been used in simulation optimization problems involving one response. 

Their use can be extended to multiresponse models. This could be achieved by applying 

goal programming concepts to the current procedure and each response·can be associated 

with a priority. The response surface methodology would then be used to satisfy a single 

most important goal. After the highest priority goal is satisfied, an attempt is made to 

satisfy the second ranked goal without violating the high priority goals. The "optimal" 

solution is the satisficing solution which meets the goals in prioritized sequence. Rees, 

Clayton and Taylor (1985) used this approach to find the satisficing solutions to multiple 

response simulation models within a lexicographic goal programming model. 



CHAPTER III 

RESEARCH OBJECTIVES AND RESEARCH PLAN 

Research Objectives 

The main purpose of this research will be the development of an automated 

discrete-event simulation optimization system which not only would attempt to find an 

"optimum" solution, but also would attempt to determine the optimum "optimizing" 

technique(s) to be used in any situation. Specific research objectives are defined as 

follows: 

Objective 1: 

Build an optimization library module which will hold the different search 

algorithms. The module will be a collection of different search algorithms which may be 

suitable for different types of optimization problems. The module will provide 

automatic optimization of decisions with respect to an arbitrary user defined objective 

function that will be expressed in terms of the simulation output via a selected search 

procedure. 

Objective 2: 

Define the output analysis module which is necessary to analyze the simulation 

64 



65 

results. This module will estimate the mean and variance of observations to provide 

statistical precision and accuracy to the experimenter and also control the simulation run 

length. 

Objective 3: 

Define the Executive Controller module. This module will provide the interactive 

communication between the user and the system and will deliver the necessary 

information between the simulation module and the other modules. It will also contain 

two structured logic- based submodules for the selection of the best optimization 

algorithm and detection of the degrading performance of the selected optimization 

algorithm. 

Objective 4: 

Develop the computer programs necessary to create an integrated environment for 

the proposed system .. This will involve the coding of the search procedures,.output 

analysis algorithms, rule based systems and other necessary interface requirements in 

FORTRAN. 

Objective 5: 

Demonstrate and validate the system developed. This will require the design of 

simulation experiments with analytical solutions and the investigation of the efficiency of 

the search procedures compared to the analytical solutions. 



66 

Research Plan 

As mentioned previously, the purpose of this study is to develop an automated 

discrete event simulation optimization system which consists of an optimization library, 

an output analysis module, a simulation model, an optimizer, an executive controller and 

an output module. Figure 7 shows the relationship between the modules. 

Library of 
Optimization --------. 
Methods 

Optimizer 

Intermediate Reports 

Final Reports 
utput 

User 

EXECUTIVE 
CONTROLLER 

Output 
Analysis 
Method 

SLAM 

Simulation Languag 

Figure 7. Automated Simulation Optimization System Modules 



67 

The only module provided by the user is the simulation module. The user has to 

have a complete simulation model and has to define the initial input values for the 

decision variables and the objective function in terms of performance criteria. SLAM 

was chosen as the simulation language for this study. 

The resealch procedure will be discussed in terms of the phases required to 

achieve the research objectives and the specific tasks to be performed in each phase will 

be briefly explained . 

Phase 1: Optimization library module. 

Task 1 : Search the literature for currently available optimization procedures and 

evaluate the advantages and disadvantages of the proposed search methods. 

Task 2 : Define the requirements for the selection of the methods that will be 

included in the optimization library. 

Task 3 : Define the necessary interface requirements for the Executive 

Controller (EC). 

One of the most important modules of the simulation optimization syst~ is the 

library module which is a collection of different optimization methods. Each available 

optimization method must be evaluated according to a set of criteria to form the library. 

The selection process is based on effectiveness measures such as convergence, 

dependence on the starting conditions, initial variables reduction, capability of 

measuring nearness to optimum, execution time, and area of application. Also the search 

method should be constructed independently of any specific computer simulation and 

should be general enough to provide flexibility and wide applicability. Therefore the 



68 

methods developed for very specific problems should not be considered in this study. 

However, the way the executive controller is set up, it should allow the user to add his 

own program to the library module and invoke the program through the executive 

controller. In addition the user would not need to know the theory and mathematics 

' underlying the techniques. Any technique which requires extensive knowledge of the 

theory and user interaction other than simple inputs would also be excluded. The main 

purpose of the library is to handle a wide variety of simulation models. The search 

procedures in the library can be used for single objective functions with real 

multivariables. The optimization module contains algorithms which allow both 

stochastic evaluation of the objective simulation models and direct evaluation of the 

independent variables from the simulation. 

The search procedures which will be used in this study assume unimodality of 

the objective function. Since the algorithms are not designed to locate the global 

optimum of a non-unimodal function, the "optimum" was assumed to be the best of the 

local optima. The optimization problem was assumed to be unconstrained. 

This module is controlled by the executive controller. EC invokes the 

optimization algorithm which is selected by the rule based system included in EC. 

Phase 2: Output Analysis Module. 

Task 1 : Search the literature for existing procedures and compare the efficiency 

and applicability of the procedures. 

Task 2 : Explain the interface requirements with the simulation module and 

executive controller. 



69 

This module will analyze the output results and provide estimates of the system 

performance. The output analysis technique will be chosen from existing procedures to 

solve the initialization bias and the correlated time series problems. Since this study 

deals with nonterminating systems, the focus will be on the techniques for steady state 

simulations. In the analysis of steady state simulations, sequential methods are more 

preferable as mentioned in the literature survey. Among those, the batch means method 

is most preferred because of its simplicity and acceptance. Since this method requires 

the results to be free from initialization bias, a family of tests by Schruben for detecting 

initial bias will be used in the study. According to the test results, adjustments in the 

run length and warm-up period will be done either automatically or interactively through 

the executive controller. 

Phase 3: Executive Controller 

Task 1 : Define the user interface requirements. 

Task 2 : Define the output analysis interface requirements. 

Task 3 : Define the simulation optimization interface requirements. 

Task 4 : Develop a structured logic for the selection of the optimization 

algorithm for a given system. 

This module is the brain of the whole system. The Executive Controller (EC) 

contains rules for controlling all of the activity within the system. It provides 

communication among modules. It contains two rule based submodules for the selection 

of the optimization algorithm and detection of poor performance of the algorithm. It also 

provides interactive communication with the user. The user can define the objective 

function and can select the optimization method from the library or let the EC select the 



70 

appropriate method by using the structured logic developed for this purpose. The EC 

first asks the user to input the objective function, then asks questions about the variables 

and the system to determine which method is suitable for the system. After a method is 

chosen by the rule based system of the EC, the EC runs the simulation program. The 

results are analyzed by the output analysis module. If the precision is acceptable, the 

controller invokes the selected optimization algorithm (Optimizer) to update the 

parameter values. ~ew values are passed to the simulation module by the controller. 

This process. continues until the user's goal is satisfied or until the user-specified 

maximum number of runs is reached. The final results, along with standard SLAM 

output, are reported by the output module. The controller also has the capability of 

detecting the cases where the algorithm performs poorly. In this case the user is 

informed and given the option of choosing another algorithm or terminating the process. · 

The user may get intermediate reports about the simulation, optimization or output 

. analysis from the output module via the executive controller. 

The response time of the system (finding the "optimum") is expected to be long 

considering the number of modules involved and the size of the system. It is unrealistic 

to expect the user to babysit the system all the time it is running. Therefore the EC 

module has to have a mechanism which lets the user interact at regular intervals and 

make decisions. The module will have time limits for user responses. If there is no 

response from the user within a given time limit, the controller automatically continues 

and uses default values if they are necessary. Figure 8 explains the logic flow of the 

proposed automated simulation optimization system. 



Initiate system 

Determine the objective 
function from the user 

' 
Consult user to gather 
information about the 
problem 

Execute SLAM 

Analyze output 

Rule based system 

Yes 

Invoke optimizer 

No 

No 

Good 

No 

Quit 

Figure 8. Flowchart of the Automated Simulation Optimization System 

71 



Phase 4: Software Implementation 

Task 1 : Implement the optimization procedures of Phase 1 in FORTRAN. 

Task 2: Implement the output analysis procedures of Phase 2 in FORTRAN. 

Task 3: Implement the interface module in such a way that the system will be 

transparent to the 'user and be available on PCs. 

Phase 5: Verification and Validation of the System 

Task 1 : Define the measure of effectiveness for the search procedures 

72 

· Task 2 : Design a factorial experiment which will explore different aspects of the 

model to test the proposed system under various conditions ( e.g. system load, type of 

system ). This will give a better opportunity to observe performance of the system 

rather than using one·simple model which may or may not work for the developed 

system. The systems to be used in the experimental design may have an analytical 

solution or may be solved using some approximation techniques. 

Limitations of the Research 

As can be seen from the literature survey, there are many optimization 

algorithms which require different types of objective function, variables and constraints. 

Therefore there is a need to limit the type of the algorithms and problems to be used in 

this research. 

The search procedures which will be used in this study require a unimodal 

objective function. If the characteristics of the objective function are unknown, there 



73 

will be no guarantee for the global optimum. The objective functions are also limited to 

unconstrained optimization. Single response, multivariable, real valued optimization 

problems will be covered in this study. Systems which .may require the evaluation of 

integer variables are not considered in this study. 

Since the 'kimulation program is provided by the user, search methods which 

require alterations in the coding of the simulation program will not be included in the 

library module ( e.g. Perturbation Analysis). The methods that demand extensive user 

knowledge of the underlying theory will also be excluded. 



CHAPTER ~V 

RESEARCH METHODOLOGY 

' 

Introduction 

The purpose of this study is to develop an automated discrete-event simulation 

optimization system. The system integrates simulation, optimization and output analysis 

techniques. The development of the system takes a user centered approach by 

addressing the needs of the user. This approach requires a design such that a user, a 

model and a simulation system can interact. 

The automated simulation optimization system provides an environment within 

which the simulation model may be run, analyzed and optimized. The system must be 

designed to be as general as possible and must perform two major functions. · 

- Implement all application independent tools for the execution, analysis and 

optimization of the models ( e.g. modules - output analysis, optimizer). 

- Provide a specification for the interconnections and interactions between 

modules, model and the user (Executive Controller (EC)). 

As can be seen from Figure 7, the system provides several modules for the 

control of execution , optimization and interaction which are invoked independently of 

the model provided by the user. The provision of libraries and modules for all execution 

74 



75 

and analysis procedures reduces the effort of the user. The user does not need to 

consider any of the issues involved in the implementation of controls, statistical analysis 

or user interaction. 

While designing the system, the following factors must be considered. 

- Generality 

- Completeness 

Suitability 

- Flexibility 

The generality of the system is defined in terms of the type of simulation system 

it is capable of analyzing. For example; it might be advantageous to allow models for · 

both discrete and continuous systems or it may be practical to constrain the system to 

model just one class of systems. This research is limited to the latter case ( discrete 

event, nonterminating simulations). Completeness and suitability are dependent on the 

objectives for the use of the system. The modules are designed with an open architecture 

which allows for the expansion and addition of more tools ( e.g., new tools or tools for 

graphic visualization). Flexibility can be measured by the variety of models which can 

be analyzed and optimized successfully. The other desirable features of the system are 

ease of use, ease of communication, integrated environment, broad applications and 

reusable components. 

These considerations led to the production of modular and reusable codes and 

created a framework within which models are executed, analyzed and optimized by 

catering to the user's conception of how he/she should work with such a system and 



; the coding effort at all levels. Each module, its function and its submodules 

1ined in the following pages. 

Optimization Library Module 

76 

Recently there has been an increasing trend towards the aqdition of analysis tools 

to the existing simulation languages. As the field of simulation has matured, the level of 

sophistication and performance expected in these languages has increased. Simulation 

users are demanding sophisticated graphical, mathematical and statistical tools to analyze 

and sometimes to optimize the complex systems. 

This need suggests that a general library of simulation analysis tools which are 

independent of any simulation language should be created. This also coincides with one 

of thr research objectives which is to build an optimization library for an automated 

simulation optimization system. The optimization library should contain various 

optimization algorithms to optimize many types of simulation problems. As was 

mentioned in the literature surveyj there are many optimization methods available. Some 

of them are derived from nonlinear techniques and some of them are specifically 

designed for a certain type of problem. To include all the algorithms in the library 

module is infeasible and beyond the scope of this research. Therefore a selection process 

was developed to build the library module to optimize as many problems as possible. 

The first criterion in the selection process should reflect the assumptions and 

limitations of the research. This study is limited to single response, unconstrained, 



77 

multi variable, real valued optimization problems. The main objective of the research is 

to create an environment which will help users at all levels to analyze th~ system and 

make decisions. To preserve the generality and flexibility of the system, algorithms that 

require alterations in the coding of the simulation program or extensive user knowledge 

of the underlying theory are excluded. This leaves methods that can be coded 

independently from the simulation model and do not require major user input other than 

initializing the variables, setting the parameters, etc. The mechanics of the algorithms 

will be transparent to the possible extent. 

A general simulation optimization problem is given by 

Max(Min) f(x1, ••• , xJ 

If f(X) is a one dimensional vector, the problem reduces to the single 

optimization problem. If the elements of X are continuous variables, available stochastic 

search methods are more suitable. If they are discrete, integer programming techniques 

can be used. 

'This research is limited to search procedures with continuous variables and a 

single objective function. Methods for these problems can be classified as gradient 

based search methods, stochastic approximation methods, response surface methodology, 

heuristic methods and methods adopted from nonlinear programming ;echniques . 

. One may want to know which optimization methods can be applied to his/her 

model under what circumstances. Unfortunately, this question is difficult to answer in a 

satisfactory way and there is no right answer available direcdy . Each model has 

different properties and each problem poses different goals. 



78 

Unfortunately, there is no well established testing strategy for comparing 

optimization techniques for simulation optimization. Some tests are designed to validate 

a particular algorithm as an effective method. The most common practice is to have a set 

of comparative runs with a small number of alternative codes on a small set of test 

problems. 

Some tests are performed on optimization codes for a very specific model form. 

Since the findings of such tests may have little value for other model classes, they should 

not be considered for evaluation of the techniques. 

Ideally, one would like to have test functions which will represent the entire 

population of simulation model response functions. Unfortunately, there is no 

characterization of this population and a complete evaluation of existing optimization 

techniques. A partial solution to this difficulty is to search the literature for comparisons 

and look for comments made by authors on the performance of different algorithms. 

Different algorithms are designed for solving different classes of optimization 

problems. Within each of these classes, different algorithms make specific assumptions 

about the problem structure. It is important to try to measure different algorithms using 

the same yardstick. Therefore comparison among algorithms should be based on a set of 

factors or effectiveness measures. 

The proposed set of effectiveness measures contains the following factors 

( adopted from Bazaara and Shetty (1979) and Farrel et. al (1975)). 

1. Generality - Generality of an algorithm refers to the variety of problems that 

the algorithm can handle. The restrictiveness of the assumptions required by the 

algorithm is also important. For example, a method developed specifically for the 



79 

optimization of the layout of an integrated circuit will violate the generality and will not 

· be considered in this study. 

2. Availability - Is the technique presently available? Is there a computer 

program or an algorithm which can be programmed? 

3. Reliab'nity - Reliability means that the procedure can solve most of the 

problems in the class for which it is designed with reasonable accuracy. Reliability is 

highly related to the number of variables. Therefore, one must consider the size of the 

problem when comparing algorithms based on reliability. 

4. Initial conditions - Is the algorithm sensitive to the parameters and data? Is 

the technique dependent on initial conditions (starting vector, acceleration factor, step 

size, etc.). One would prefer that the algorithm not be very sensitive to the selected 

values of parameters. 

5. Initial variable reduction - Does the technique eliminate unimportant 

variables or levels of input variables? 

6. Computational effort - This measure is usually assessed by computer time, 

number of iterations or number of functional evaluations. One should keep in mind that 

computer time depends not only on the efficiency of the algorithm but also on the type of 

the computer used. 

7. Convergence - The convergence of the algorithm is a highly desirable 

property. If convergence is certain for only some problems, what are they? 

Numerous optimization techniques are mentioned in the literature survey and 

comments are made about their applications and performances. Representative 



techniques for each class of optimization and the seven factors mentioned above are 

displayed in the matrix in Table IV with some brief comments. 

80 

Perturbation Analysis (PA) when applied properly, estimates all components of 

the gradients of the objective function from a single simulation experiment. Although 

this characteristic sounds very attractive, PA is severely limited by the class of queueing 

systems to which it can be validly applied. Although there have been recent efforts to 

eliminate these deficiencies, there is no clear cut characterization of other systems to 

which PA can be applied. PA assumes that perturbations are too small to change system 

performance. ff the sequence of events that govern the system's behavior changes, the 

results obtained by PA may not be reliable. Considering the complex nature of most 

simulation models, this condition may not be satisfied most of the time. PA may also 

require considerable analytical work on the part of the algorithm developer. It may 

require some "customization" for each problem by expecting the modeler to have a 

thorough knowledge of the model and PA. In most cases, the modeler has to build the 

model from scratch and add additional code that is needed by PA. For these reasons and 

the sake of generality and flexibility, PA will not be included in the library of 

optimization methods. 

Another unique class of optimization methods mentioned in the literature survey 

was Frequency Domain (FD) methods. FD methods depend heavily on Fourier 

transformation and require intensive knowledge of the underlying theory on the part of 

the developer. Although it is a promising research area, FD methods have some 

implementation difficulties. One practical difficulty in implementing FD for a large 

number of input factors is the assignment of driving frequencies to input factors so as to 



METHODS Convergence 

i 

Heuristic Unsure 
Search 

Random Unsure 
Search 

Hooke and No 
Jeeves 

Nelder & 
Mead Simplex No 

Initial Initial Variable Compututational Availability 
Conditions Reduction Effort 

No No Depends on Yes 
simulation model 
& analyst 

Function of Yes- depends on 
No No number of existence of 

variables & simulation 
simulation model 

Number of 
Yes No evaluations Yes 

less than most 
methods 

Number of 
Yes-No No evaluations yes 

less than most 
methods 

TABLE IV. Comparison of Optimization Methods 

Comments 

-
A function of analsyt 
experience; 
Requires no knowledge 

Very simple; 
Might be costly; 
Requires no knowledge 

Algorithm may stop 
prematurely; 
Requires no knowledge 

Better than most derivative 
free algorithms 

00 -



METHODS Convergence 

Certain for 
RSM unimodal 

surfaces 

Theoretically 
Simulated Yes 
Annealing 

Perturbation For some 
Analysis cases 

Frequency 
Domain No 
(FD) 

Stochastic 
Quasi-Gradient Yes 
(SQG) 

Initial Initial Variable Compututational Availability 
Conditions Reduction Effort 

Highly variable; 
Important In some cases Depends on number Yes 

of variables 

Strongly depends on 
No No number of variables Yes 

& annealing 
schedule 

Depends on number Yes-limited for 
No No of variables and certain class of 

simulation model queues 

Depends on Yes- used with 
Yes Yes simulation model other methods 

Depends on number 
Yes No of variables and Yes 

model 

Table IV Continued. Comparison of Optimization Methods 

Comments 

Difficwt for high order 
polynomials; 
Statistical analysis required 

Case dependent; 
Prior knowledge 
about system required 

Requires internal coding 
' 

and knowledge 

Requires intensive 
knowledge about the 
underlying theory 

Converges very slowly 

00 
N 



83 

avoid confounding effects of interest. Also within each run, FD methods require careful 

indexing of simulation generated observations together with sinusoidal variation of 

selected input variables. Such variation is usually difficult to arrange properly. 

Moreover, some of the basic theory supporting FD methods is incomplete. Considering 

the difficulties associated with the theoretical and practical aspects of FD methods, they 

will not included in this research. 

Another method mentioned before was Simulated Annealing (SA) which is a 

style or strategy for solving combinatorial optimization problems. SA is a case 

dependent algorithm. The developer has to know the system very well and select the 

appropriate annealing schedule, initial temperature and temperature decay rates. These 

requirements prevent the SA algorithm from being reusable for different type of systems 

and makes it unsuitable for the optimization library. Also, as the number of variables 

increases, the efficiency of the algorithm is unknown. 

Another group of methods mentioned in the literature survey was the stochastic 

approximation method. The stochastic quasi-gradient method based on Monte Carlo 
1 

finite-differences tends to converge very slowly (r4 ). Two other stochastic 

approximation methods are basically of the same form: Robbins-Monro (R-M) and 

Kiefer-Wolfowitz (K-W), except that K-W uses finite-difference. Monte Carlo 
1 

algorithms converge very slowly. The best possible convergence rate is of the order t-2 

This implies that one must multiply the run length by a factor of 100 to obtain an 

additional significant figure of accuracy. Glynn (1986) suggests that any algorithm 

which attempts to consistently estimate the gradient via Monte Carlo finite-differences 
1 I 

will converge at a rate slower than rz . The R-M.algorithm converges at a rate of t-2 



84 

I 

while K-: W converges at a rate of r-r. Two methods developed based on R-M are 

Common Random Numbers (CRN) and Likelihood-Ratio (LR) methods. It appears that 

the CRN gradient estimator developed in the discrete-event context is the Perturbation 

Analysis estimator. Therefore the discussion for PA is also valid for CRN. LR methods 

depend heavily ort measure-theoretic probability. They have only been adapted to the 

regenerative method of simulation analysis and they are limited to the estimation of 

parameter sensitivi~es for Markov chains and Poisson arrival processes. It is unclear 

how this technique can be generally implemented in large scale simulation experiments. 

L'Ecuyer (1991) explains the main techniques for estimating derivatives by 

simulation and surveys the most recent developments. He focuses on PA, Likelihood 

Ratios, finite differences and many of their variants. He also suggests that FD should be 

used when other methods would not apply or when they are judged too complicated to 

implement. He also mentions slow convergence of the FD method and the numerical 

problems associated with it. 

In comparison to the new techniques for gradient estimation, the mathematical 

and statistical foundations of Response Surface Methodology (RSM) are not only more 

transparent, but also more developed. RSM can be applied to any discrete simulation, 

since it does not require manipulation or restructuring of the simulation code. Thus, 

from both a practical and theoretical standpoint, RSM possesses the advantages for 

gradient estimation and is a valuable addition to the optimization library. 

The results of empirical investigations made by Smith (1973a) and Brooks 

(1959) indicate that a search algorithm based on RSM offers the greatest overall 

potential. As quoted from Safizadeh (1990) "Generally speaking, based on the.existing 



85 

literature, response surface designs in conjunction with gradient based optimization 

techniques and search methods appear to best satisfy the optimization objective of the 

simulation". 

Although the potential use of RSM has been discussed many times in the 

literature, the number of documented applications is limited. Smith (1973a) and 

Safizadeh (1990) comment that this situation may be due to the availability of simple, but 

brute force procedures and the unavailability of a cohesive, integrated presentation of 

RSM. A simulation practitioner would need to know about the mathematical and 

statistical bases of RSM techniques which could be found in statistical rather than 

simulation literature. 

Therefore, an automated RSM program which requires a minimum amount of 

user input will be a valuable tool for the simulation optimization process. The concept 

and the steps of RSM will be explained in the following pages. The details of the 

method and the necessary calculations are presented in Appendix A. 

Response Surface Methodology (RSM) 

The goals of RSM are i) finding a suitable approximating function for the 

purpose of predicting future response and ii) determining what values of the independent 

variables are optimum. 

The mathematical relationship between the response T\ and the input is the 

response function <I> and can be written as 



86 

Since the exact form of cf> is unknown, a simulation model is being used to 

provide the response measurement from a specific combination of input variables. The 

response surface is approximated by a low"'.'order polynomial (usually first or second 

order) called the graduating polynomial. The steps of the RSM procedure can be 
.. 

generally described as follows: 

1. An appropriate experimental design is chosen to fit a first order polynomial 

which can be of the form 
n 

Y = Po+ l:P;x; 
i=l 

2. Simulation runs are made at the corresponding points. 

3. Least squares regression is used to fit the points to the graduating polynomial. 

4. The path of steepest ascent ( descent) for the objective function is estimated. 

S. A series of simulation runs are conducted along the path until there is no 

improvement in the observed region. 

6. Steps 1,2 and 3 are repeated using the new region which is indicated by the 

steepest ascent( descent) path until the model stops providing a sufficiently good fit. The 

second order design phase is then entered. 

7. The existing factorial design is augmented by additional points to form a 

second order design which permits estimation of quadratic effects, i.e., curvature of the 

response surface. 

8. A second order polynomial is fit to the sub-region. 

9. This polynomial is then analyzed by using calculus to determine the stationary 

point. 



87 

10. If needed, a canonical analysis and/or ridge analysis can be used to determine 

the nature of the stationary point. The flowchart in Figure 9 summarizes the RSM 

procedure. 

The RSM program developed for this study will use fractional factorial for the 

first order design phase. A fractional factorial is a fraction of a complete factorial 

experiment. It can be particularly useful when the amount of experimentation required 

by the complete factorial is more than the experimenter can afford. Therefore fractional 

factorial fits well to our situation. The 2k-p fractional factorial also has the added 

advantage of being able, by the addition of specific points, to evolve directly to a 

second-order design. 

Considering the possibility oflimited computer time and long simulation runs, 

RSM must use the smallest possible 2k-p fractional factorial of resolution III. The 

. resolution of a 2k-p fractional factorial design· is the length ofthe shortest word in the 

defining relation. The first-order designs to estimate coefficients in a first degree 

equation should therefore be of resolution of at least III (Box and Draper (1987)). This 

will ensure that no main effect is aliased with any other main effect. The only exception 

to this situation is when k=3. If the number of simulation runs or allocated computer 

time permits, full 23 factorial design will be used. 

The central composite design will be used in the second-order design phase. 

Composite designs are first-order factorial designs augmented by additional points to 

allow the estimation of the coefficients of a second order surface. The central composite 



Choose first-order 
design 

Run simulation at 
selected points 

Fit first.;order 
polynomial 

No Construct central 
">--------------------------- composite design 

Yes 

Determine path of 

steepest descent (ascent) 

Run simulation 

along the path 

Yes 

Construct a new design 
about the center point 
which has the best 
response 

Run simulation 

Find the predicted 
response by least 
squares 

Find the stationary point 

i i 

! Analyze the point I 
I I . ·-·--·-··-· .. ·-·---------·-·---·----· 

Figure 9. Logic Flow of RSM 

88 



89 

design is formed by adding 2k axial points to the existing fractional factorial at its center 

point. This building block approach saves a number of usually costly simulation runs. 

The points in the design are in the form of 

( 0, 0, ... , 0) 
(-a, 0, ... , 0) 
( a, 0, ... , 0) 
( 0,-a, ... , 0) 
( O,a,0, ... ,0) 

( 0,0, ... ,--a) 
( 0,0, ... , a). 

Figure 10 shows a central composite design in three dimensions (k=3). The value of a 

can be chosen to make the regression coefficients orthogonal to one another, to minimize 

bias or to provide a rotatable design. A design is said to be rotatable when the variance 

of the estimated response is a function only of the distance from the center of the design 

and not of the direction. Thus the rotatable design is one for which the quality of an 

estimated response is identical for all points equidistant from the center point. This is 

useful when the experimenter does not know in advance where the center of the system 

k 

will be or what will be the orientation of the system. The value a= (2) 4 

will be used in the RSM program to make the design rotatable. Further details for the 

least square method used for fitting designs and analysis of a fitted surface are given in 

Appendix A. 



90 

I I / 
- -!--.[ - -

! . " ___ --· 
' 

Figure 10. A Central Composite Design in Three Dimensions 

Derivative-free Qptimization Methods 

The final group of methods to be considered for the optimization library is 

derivative-free unconstrained optimization methods. These methods are hill climbing 

methods, which determine the path toward an optimum by evaluating the objective 

function at several points rather than directly calculating derivatives. They are 

characterized by their simplicity, effectiveness and applicability to a wide variety of 

problems. One cannot single out one specific method to solve all the possible problems. 

"Unfortunately, there does not seem to be any one "best" method that can be 



91 

recommended, as a particular method might work very well on one problem and show up 

poorly on another" (Gottfried and Weisman (1973)). 

From the comparison matrix , the Nelder & Mead Simplex method along with 

the Hooke & Jeeves methods show advantages. Although they assume deterministic 

function evaluations, both methods are robust and they need only few number of 

evaluations to determine the next setting of factors. They can be used in conjunction 

with other algorithm~ to produce better results. Thus, the optimization library will 

contain both pattern and path search methods. 

Nelder & Mead Simplex Method: 

The Nelder and Mead Simplex method for function optimization is a direct 

method that requires no derivatives of the function. Nelder and Mead's method is based 

on an earlier simplex sequential search strategy developed by Speiidley, Hext and 

Himsworth (1962). In this method, an objective function inn variables is evaluated at 

the n+ 1 vertices of a general simplex. In two dimensions, the simplex would be a 

triangle, in three a tetrahedron. The simplex moves toward the optimum by moving 

away (reflecting) from the vertex with the worst value through the centroid of the 

remaining points. In two dimensions, this can be visualized as flipping over a triangle to 

move it down a hill. The method adapts itself to the local landscape using reflected, 

expanded and contracted points to locate the optimum. 



92 

Simplex reflections are expanded in the same direction if the reflected value is the 

best point; a poor value results in contraction. If the function value at the contracted 

point shows no improvement, the size of the simplex is reduced (shrinkage). 

Figure 11 illustrates the steps of the Nelder & Mead Simplex for a function of 

two variables. PH, P2H, and PL denote the points where best, second best and worst 

function values occur, respectively. 

Construction of the initial simplex and calculations for the locations of reflection, 

expansion and construction points are given in Appendix B. The details of the algorithm 

can be found in Nelder and Mead (1965). 

The Nelder and Mead simplex method is widely used for simulation optimization, 

where the function it optimizes is subject to random noise (Barton (1992)). The 

algorithm is robust to small inaccuracies or stochastic perturbations in function values. 

This is because the method uses only the ranks of the function values to determine the 

next move not the function values themselves. Perturbations that do not change the rank 

of the values_will have no effect on the algorithm's search trajectory. 

In contrast to other optimization procedures, the simplex procedure approaches 

the optimum by moving away from the worst values of the objective function rather than 

by trying to move in a line toward the optimum. 

The generality of the method has been illustrated by Olsson and Nelson (1975) in 

solving such problems as the direct maximization of the logarithms of a likelihood 

function, the solution of simultaneous equations, the maximization of a quadratic 

function which is subject to a quadratic constraint, the fitting of a line by minimizing the 

sum of squares of perpendicular distances from the points to the line, nonlinear least 



PH~PL 

C 
. 
' 

'·-:J 
P2H PR 

Reflection 

PH~PL C 

P2 ~~R 

Contraction when 
PR is better than 
PH 

PH~PL 
... 

C 
P2H ·, .......... , ...... ,. PR 

Contraction when 
PH is better than 
PL 

PH~PL 

. PR ...... 
P2H -....., 

• ·-...... :lo PE 

Expansion 

Shrink after failed 
construction when 
PR is better than P: 

Figure 11. Nelder and Mead Operations 

93 



94 

squares and the fitting of approximations to tabular data. Barton and Ives (1992) has also 

listed the various applications and comments on the large number of citations during the 

last 25 years. Birta(l977) has compared the simplex method with other optimization 

methods. He also showed the success of the method by applying different examples. 

\ 

According to the test results performed by Barton (1987), the Nelder and Mead method is 

the best overall performer among the nonlinear optimization methods tested. 

Hooke & Jeeves Pattern Search: 

The Hooke and Jeeves method is one of the most widely used optimization 

techniques. The method of Hooke and Jeeves (HJ) performs two types of search, 

exploratory search and pattern search. HJ is based on the idea that if a search strategy 

was successful in the past, then one should continue to move in that direction. The 

procedure alternates a series of exploratory and pattern moves. Figure 12 shows the 

types of search performed by the Hooke & Jeeves method. 

The method starts by selecting an initial exploratory point and incremental values 

for each direction. It checks for an improved response at each incremented setting. The 

resulting improved setting becomes a new intermediate base point. The method then 

moves directly from the initial base point in the direction toward and through the new 

setting. This procedure continues until improvements changes cannot be made with the 

given incremental changes (step sizes). When this occurs, the step sizes are reduced and 

the procedure is repeated from the beginning. The presumed optimum is obtained when 



95 

y 

' 

X 

Figure 12. Exploratory and Pattern Search of Hooke and Jeeves 

no search point yields an improved objective function value. The details of the algorithm 

can be found in Bazaara & Shetty (1977). 

The Hooke and Jeeves method has been .suggested for curve fitting and solving 

systems of equations. It is particularly well suited to functions exhibiting a straight, 

sharp ridge valley (Gottfried and Weismann (1973)). Although the procedure begins 

cautiously with short excursions from the base point, the step size grows with each 

success. Jacobson and Schruben (1989) have listed its applications. Pegden and Gately 

(1980) used the HJ method for automated optimization. Barton (1987) compared HJ 

with other techniques and showed its efficiency. 



96 

Simulation Output Analysis Module 

While analyzing the output data, it is imperative to classify the simulation system 

into either a terminating or steady state type. The statistical tests for both types may 

' differ and dictates the necessity for separate classification. Figure 13 shows the several 

submodules that are used to perform different types of analysis. Although Figure 13 

contains submodules for both types, this research is limited to the steady state 

simulations. The submodules for terminating simulations are indicated as possible future 

additions to the module. Some of the submodules can be shared by both steady state and 

terminating systems (e.g., elimination of initial bias). The submodules may also be 

considered as a knowledge base combined with the executive controller. All of the 

submodules are expandable and they may contain more than one method. They are not 

dependent on each other and can be evoked independently. In case the user wants to 

remove initial bias from the system, he/she can be connected to the submodule BIAS or 

ifhe opts to use other methods, as long as he/she provides the necessary interfaces, he 

will be able to do so. The user also has the option of performing output analysis without 

optimizing the system. This structure enables even the most naive user to perform 

statistical analysis on the simulation system. 

For a terminating simulation, the output analysis is fairly simple and 

straightforward, since the classical methods of statistical analysis can be directly applied. 

However this is not the case for a steady state simulation. It was seen that steady-state 

simulation output are more difficult to analyze, because the simulation practioner must 

address the problem of initial bias and the choice of the mn length. 



' 

STEADY STATE 

Elimination -of initial 
bias 

BIAS 

Run length 

BATCH 

Confidence Intervals 

Simulating 
a single system 

i 
; 

l i 
l TERMINATING ! 
i I 
' ' "----··--·- ;--··--·-----.J 

I 
....------L·---·-j 
l Elimination of . i 

. i initial bias i 
i BIAS i 
! : 

. I 

I 
I 
j 

. ·---·----1-----·--···1 I Confidence Intervals! 

1-·----·-· i···--·-·-·-i 
! 

i.---··---·-·-··-···---·-·~---·-··---··-··-----·----1 I 

! .·--·--·-·-·---·----·-···-··-, 
j Variance Reduction ! 
i ........ Techni9.!1es ··-··-- ! 

Existing Submodules 
Possible Future Additions 

Figure 13. Structure of the Output Analysis Module 

97 



98 

Elimination of Initial Bias 

In order to evaluate a system's steady state characteristics, it is important to detect 

the existence of spy initialization bias in the simulation output. The initialization bias 

problem and methods to eliminate initialization bias were discussed in Chapter II. 

Although some useful methods have been developed, "unfortunately there is no widely 

accepted, objective and proven technique to determine how many data to delete to reduce 

initialization bias to a negligible level" (Banlcs & Carson (1984)). Of these methods, the 

so-called optimal test developed by Schruben et al. (1983) appears to be the most 

powerful and robust in widely different situations (see Banlcs & Carson (1984), Banks, 

Goldsman and Carson (1990),-Ma & Kochar (1993)). In a comparison study oftests for 

detecting initialization bias in simulation output (Ma & Kochar(1993)), the optimal test 

outperformed the other test when there was a significant bias. Based on these results, 

Schruben's optimal test was chosen to detect the initialization bias in this study. 

The optimal test uses a hypothesis testing framework to detect the initialization 

bias. The null hypothesis is that the output mean does not change through the simulation 

run. The alternative hypothesis specifies a general transient mean function. In general, 

the null and alternative hypotheses take one of the following forms: 

1. Ho : No positive initialization bias exists in the observation sequence. 

H1 : Positive initialization bias exists in the observation sequence. 

2. H0 : No negative initialization bias exists in the observation sequence. 

H1 : Negative initialization bias exists in the observation sequence. 



99 

3.Ifo: No initialization bias exists in the observation sequence. 

H1 : Initialization bias exists in the observation sequence. 

In the absence of any prior knowledge about the initialization bias, the third option 

should be used. 

' The procedure for the optimal test is as follows (see Schruben et al.(1983) for 

details): 

1. Compute the sample variance ( cf) and d ( degrees of freedom) for the last half 

of the observation sequence, using the batch means method or autoregressive 

method. 

2. Compute the following test statistic. 

A (. 45 ) t n-l ( k) - -T= -- :£ 1-- k(Yn-Yk) 
n3a2 k=l n 

where Y k is the sample mean function defined as 

k.=1,2, .... ,n 

3. Let a be the selected significance level of the test and lci-a.12> be the critical 

point from the student t distribution. The conclusion of a two-sided test for the 

initialization bias can be drawn as follows: 

If ITI > t(d, l -a/2), reject the null hypothesis ofno bias. 



100 

Steady State Analysis 

To analyze the steady-state behavior of the system, Law and Carson's sequential 

method based on the method of batch means is chosen. In sequential methods, the length 

' of a simulation is increased until an acceptable confidence interval can be constructed. 

The advantage of the sequential methods is that if the technical assumptions of the method 

apply, the precision of the confidence interval is guaranteed. However, the length of the 

simulation is unpredictable. In spite of the difficulties associated with the sequential 

methods, they are a preferable approach to computing confidence intervals (Sella (1992)). 

Law and Kelton (1991) also recommend the use of sequential methods for the 

construction of the confidence intervals with a desired precision. Since, there has not been 

any approach which is proven to be more efficient as of this writing, Law and Carson's 

(1979)procedure was chosen for this research. 

The procedure is based on the batch means method. The batch means method 

divides one long simulation run into a number of contiguous batches and then appeals to 

the central limit theorem to assume that the resulting sample means from each batch are 

approximately iid random variables. The method partitions the observations into a large 

number of small batches. Then it uses a '1ackknifed estimate of the serial correlation" 

between successive batches and relative precision as a stopping rule. The jackknifed 

estimator was proven to be less biased for the estimation of lag i correlation (Miller 

(1974)) and is given by 

pj = 2p + (pl +p2)/2 



101 

where pi is the jackknife estimator, p is the lag 1 estimator based on n batches, p1 and 

p2 are the usual lag 1 estimators based on the first n/2 and the last n/2 batches. Law and 

Carson's (1979) procedure divides m observations into 400 batches of size k. If the 

jackknife estimator between the resulting 400 batches is less than a threshold value, then 

the same m observations are divided into 40 batches of size 1 Ok and the corresponding 40 

batches are considered to be uncorrelated. Those batch means are used to construct a 

confidence interval if the ratio of the half length to the midpoint of the confidence 

interval is less than a specified relative width. If the estimated lag 1 autocorrelation is 

not less than the threshold value or if the actual relative width is not less than the 

specified one, additional observations are collected and above steps are repeated ( see 

Appendix C and Law & Carson (1979) and Law & Kelton(1982a) for the details and 

steps of the algorithm). 

Selection of Performance Measure: Since this study involved nonterminating 

simulation, it was necessary to decide a common measure of performance for the steady 

state checks so that we will know when to stop. Each model might involve a different 

measure which makes steady state analysis very difficult. For example, possible 

performance measures for a M/M/1 queue are the average waiting time in the system 

(Ws) or the average number in the system (Ls). On the other hand for a different 

system, to choose a performance measure may not be so straightforward ( e.g. an ( s,S) 

inventory system). However, every model will have an objective function and that 

function will depend on atleast one stochastic measure. To preserve the generality of 

the system developed, to make steady state analysis simpler and to bring a practical 



102 

solution to the problem described above, the objective function will be used as the 

performance measure (e.g. C= f(Ws ,Ls)). Since the main interest was to find the 

combination of decision variables which gave the best simulation response (objective), 

the individual behavior of the decision variables was not considered during the simula

tion run. One possible drawback of this approach is that the confidence intervals for 

some of the performance measures might be tighter than necessary. However this study 

is about the optimization of the simulation response and if the response is stabilized, so 

will be its components. One advantage of this approach is that since the user will 

provide the objective function it will be easier to understand and relate to the model. 

Comparison of Two Systems : Law and Kelton's paired-t confidence interval 

method based on common random numbers was used to compare two systems (Law and 

Kelton (1991)). The same random numbers are used to simulate both systems. To ensure 

that synchronization occurs, different random number streams are dedicated to each 

activity and arrival. To perform the paired-t test at the end of each run, the performance 

measure was compared with the result of the previous run. If the systems are different, a 

counter for the redundant data search was kept and increased~ but the search procedures 

continued independent of the outcome of the paired-t test. 

Executive Controller 

The last module of the system developed is the Executive Controller (EC). EC's 

task is to control all of the activity within the system. It provides a specification of the 



103 

interface between the simulation model and the system within which they run. It controls 

the model execution, optimization and interaction. This is the most crucial module of 

the whole system. Therefore its design is very important. To design this module, 

several questions must be considered. They are: 

- What classes of system will be optimized? 

- How can the model and data be efficiently connected to the system? 

- How might the user interact with the model and the system? 

- How can an optimization algorithm b.e chosen for a particular model? 

- What should be the role of the simulation model and the language in this 

module? 

- How can statistical analysis be connected to the model and the system? 

As this short and incomplete list suggests, the design· of the EC is not trivial. In 

designing the EC, one is forced to explore and define all relationships between the 

simulation model, users and system modules. As a result of these and limitations of the 

research, the EC may not implement all.of these relationships in a way which is ideal for 

every application. But within the research scope, the EC was designed to perform as · 

efficiently as possible. 

The EC focuses on the interaction between all level of users, the simulation 

model and the optimization-analysis environment. Its design does not require the 

specification of a simulation language. 

The EC supports the model and the user and forms a framework in which the 

simulation model can be executed, optimized and analyzed. It contains modular 

procedures design~d to support analysis and optimization procedures. These procedures 



104 

include data specification and manipulation, input-output, intervention and interaction, 

model execution and optimization, pre- and post-execution activities, control of the 

analysis and a rule based system for the selection of an optimization algorithm. 

The EC works with three major environments, model execution, output analysis 

' and optimization. The user can work with the data associated with the model and the rest 

of the system through the menu system which is run by the EC. The menu system 

provides an organizational scheme, which can be understood by the user and the system~ 

and a medium for effective communication between the user and the system and among 

the modules. The menu syst~ r~oves parameter initialization from the model, 

provides a conscise and natural organization of the system understandable by the user 

and allows interaction with the system. 

All the menus contain basically two parts: a default menu system and an 

additional menu system which is specific to the model and is created during the 

execution of the system. Using the menu system and giving options to the user provides 

.. a means of organizing, manipulating and storing data which is simple, consistent, 

efficient and comprehensible to the user. All the data can be input through the keyboard. 

Data sets may be created by various sources and stored on external storage devices. 

Data are transferred between modules through the files which were created during 

run-time. 

Each module reads its data from an input file and writes the results to an output 

file which may become an input file for another module. Sample menus and screen 

printouts for the chosen cases are presented in Appendix D. 



105 

During system execution, the user can elect to interact with the running system at 

certain points. The user may want to see the intermediate results. At these points, the 

user has the option and control to terminate the system or change the system parameters 

if necessary. Current results can also be displayed on the screen or written to a file if the 

' user chooses to do so. Due to the programming language limitations, the user does not 

have continuous access to the menu system and cannot interact with the system whenever 

he wants. This dis3:dvantage can be compensated for by displaying the current status of 

the system, informing the user at regular intervals and giving the user a chance to 

intervene. 

EC and Oumut Analysis Module (OAM): · 

Control of the execution of a simulation model is an essential part of the EC. The 

importance and necessity of rigorous and efficient methods in the analysis of simulation 

systems were mentioned in both Chapter II and in this chapter. As a result, an output 

analysis module was added to the system. 

The simplest type of run control is manual, in which the user chooses a manual 

control option rather than an automatic control option. In that case, the user specifies 

criteria for the completion of the run. This criteria might be the number of simulation 

runs or the total allowed CPU time. In the case where the EC takes over, the user 

provided default values and was asked to specify the necessary parameters. After the 

verification of parameters, the simulation model is executed and the EC calls the OAM to 



106 

perform statistical analysis on the simulation output. First the BIAS· submodule is 

invoked to check the existence of initial bias. If bias exists, the user is warned and 

advised to either increase the run duration, increase the warm-up period or both. If the 

user does not respond or does not know what to do, a very large number of observations 

' are obtained and the warm-up period is increased batch by batch by, calling the BIAS 

submodule until the bias is negligible. If the output fails to pass the test, the program 

stops and displays a message which informs the user that under the given conditions the 

system will not reach steady state and the program must be terminated. 

If the output passes the test, the OAM displays a message and calls the BATCH 

submodule. BATCH checks the observations to decide whether the desired precision of 

the confidence interval is achieved or not. BATCH increases the number of observations 

batch by batch until either desired precision of the confidence interval is reached or the 

simulation run length is reached. If the confidence interval is acceptable, the simulation 

response with the desired precision is written to the file for the next iteration of the 

optimizer. If the confidence interval is not acceptable, the user was warned by displaying 

messages. If the user does not increase simulation run length, the system terminates. 

EC and Optimization Library Module 

The EC also controls the selection of the appropriate optimization methods. A 

rule based system was developed to assist the user in selecting an optimization method. 



After the collection of the methods for the optimization library, a structured logic 

consisting of a set of rules was used to decide which method should be used. 

107 

Various properties of simulation will have an impact upon the choice of the 

algorithm. Those properties are dimensionality, simulation run length and 

deterministicity. Since there is no or little information available about the form of the 

simulation response surface, dimensionality and simulation run length are the main 

concerns for this research. 

The computer time required to optimize the system, (R), can be defined as 

R=A(n) +nL 

where A(n) is the computer time use by the optimization algorithm for n iterations and L 

is the execution time of a single simulation run. If L is small for a given system, R, can 

be minimized by minimizing A(n). This implies that it might be more effective to make 

more iterations than converge in fewer iterations. Alternately, if L is large, one would 

use substantial computational resources to minimize the number of iterations required by 

optimization procedures. These issues affect the selection of the specific method during 

run time. The dimensionality of the problems is limited to at most 10 variables in this 

study. The time required to perform one iteration of an optimization algorithm was 

assumed to be significantly less than the time required to run the simulation model. 

Since the number of variables directly affects the number of iterations, the decisions will 

be based on the number of variables (dimensions) and the simulation run length. 

The rule-based system consists of a structured logic and if-then cases. If-then 

cases were based on the conclusions drawn from the literature, related examples and 



108 

especially, comments made by several authors. Figure 14 summarizes the selection 

process. 

The selection process was performed in a series of questions and answers. The 

rule based system then evaluates the answers and selects the method. At the beginning, 

' the user has two options; 

1- user selects the method; 

2- EC automatically selects the method. 

If the second option is selected, the user is asked whether he/she has a priori information 

about the system behavior. If the user does not have any a priori information, the EC 

takes control from the user ( at this point, the user had already entered the initial data) 

and executes the simulation model for a pilot run. Based on the simulation time of that 

pilot run, the EC implements the following logic: 

- If there is only one decision variable, Hooke and Jeeve's pattern search is 

selected unless the user has added a single variable optimization algorithm ( e.g. 

Fibonnacci Search) to the optimization library. Considering the contents of the 

optimization library, Hooke and Jeeve's pattern search can also be used for single 

variable problems. The following two methods are used for problems with two or more 

variables. 

- Problems with less than 6 variables. Pattern search and the simplex method 

are known to perform poorly if the number of variables is large ( 6 or more). The 

simplex method is preferred to pattern search especially for simulation responses, since it 

requires only the rankings of the objective functions, not their values. If the computer 

resources ( e.g. cpu time or number of runs allowed) are abundant or unrestricted, the 



No 

No 

Yes 

Response Surface 
Methodology (RSM) 

RETURN 

Yes 

Yes 
Hooke & Jeeve's 
Pattern search 

No Nelder & Mead 

No Hooke & Jeeve's 
Pattern Search 

Yes 

RETURN 

Simplex 

Figure 14. Logic Flow of the Rule-Based System 

109 



110 

Response Surface Methodology (RSM) is selected. If there are only a few runs available 

( 2*n) then pattern search is selected because of its robustness and its large step sizes at 

the beginning of the search. The purpose of this selection is to provide an insight about 

where the next starting point should be. In this case, although the user does not have an 

' "optimum" solution, he/she would at least have a sense of direction concerning where it · 

could be. 

- Problems with 6 or more variables. RSM is selected as the optimization 

method. The user should be aware that a large number of runs will probably be 

necessary in order to construct the design points. 

Once an algorithm is selected and successfully terminated, the EC checks the 

remaining computer time. If the remaining time is sufficient and the user wants the extra 

assurance and information, the EC calls the RSM from the point of the identified 

optimum. This practice reduces number of function evaluations and also gives the user 

an opportunity to explore the response surface. 

The selection process described above assumes no prior information and 

feedback. If the user has previous experiences with the model and its behavior, the EC 

asks the following questions about the response surface. 

- Case 1: possible ridges. In this case, pattern search is used due to its 

robustness and ability to climb ridges and perform well. The EC also has the ability to 

switch between methods. As an example , RSM turns on a switch to inform the EC of 

the existence of a ridge. When RSM fits the second order model and makes the 

simulation run corresponding to the stationary point found, if this point is out of the 

fractional factorial region, RSM raises a flag indicating the exi.stence of a ridge and 



returns control to the EC. In this case, there is need for a constrained algorithm. The 

EC might have switched from the RSM to the constrained version of pattern search, 

which might have used a deterministic objective function instead of using simulation. 

The coefficients of the objective function are determined by the second phase of the 

RSM and the initial starting point is the stationary point of the RSM. Due to the 

difficulty in finding a simulation model which would represent this feature and cause 

RSM to turn on the ridge switch and lack of constrained optimization methods, this 

feature could not be documented. 

111 

- Case 2: fairly flat surfaces. The literature points out that the RSM performs 

poorly in case of flat surfaces. This is due to trying to fit a quadratic equation to a flat 

surface. Therefore the EC advices the user not to use RSM. 

Case 3: irregular surfaces. The Nelder and Mead simplex performs reasonably 

well in case of irregular surfaces. Although this research assumes a unimodal response 

surface, not all unimodal surfaces have perfect "bowl'' like surfaces. In reality, the 

simulation response surface may have an odd shaped valley and still be unimodal. 

Because of its ability to reflect, expand or contract,·the simplex method tries to adjust 

itself according to the changing surface. 

EC and Termination of Algorithms 

The selected algorithm terminates under the following conditions: 



112 

1- Successful termination: The algorithm converged and found the 

minimum/maximum point within given limits. 

2- Forced termination: The maximum number of iterations was exceeded and 

the algorithm was stopped prematurely. 

' 3- Programmed termination: The algorithm progressed unacceptably slow, 

forcing the algorithm to stop early. 

In case of successful termination, the EC displays the results. If there is no 

further request from the user, the system terminates. In case of forced termination, the 

EC displays the results and warns the user. The user either stops or restarts the 

algorithm from the best point found so far. In the last case, the progress made by the 

algorithm in the recent past is unacceptably slow, and the algorithm is stopped to be 

reinitialized or to be switched to another method. 

The search algorithms, pattern and simplex search, each have a memory attribute. 

· The action taken on the ith iteration depends on the information retained from previous 

iterations. Sometimes this retained information deteriorates in usefulness causing the 

algorithm to converge slowly or collapse. The recent past is taken to be the most recent 

2n iterations ( where n is the dimension). A programmed termination will take a place if 

j(x) - .flX) 0 5 
l.t(x> I < . 

where ~ is the current value of the decision variables, and x is the value of the decision 

variables at the beginning of the most recent 2n iterations in question (Birta (1977)). If 

the program detects slow convergence in the algorithm, it turns a switch on. The EC 



warns the user and the user has the option of continuing, stopping the algorithm or 

switching to another algorithm. 

Description of the System 

113 

Figure 7 showed the automated simulation optimization system modules and 

Figure 15 shows the logic flow of the system. The user inputs the data through the 

keyboard and the EC passes the decision variables to the simulation model, makes the 

first simulation run and selects the search algorithm. Simulation response is analyzed by 

the output analysis module, and passed to the optimization module to be used by the 

search algorithm. The search algorithm passes a new set of value of the decision 

variables to the simulation module. This process continues until one of the termination 

criteria is satisfied. All of the modules were implemented in standard ANSI FORTRAN 

except the simulation model which is written in SLAM. The programs were developed 

and executed on a 486-33 Mhz personnel computer. Although a mainframe would be 

more suitable for the program execution because of the lengthy and time consuming 

output analysis and optimization procedures, a PC was chosen for the increased 

portability and accessibility. Appendix H presents a user's guide of the system and 

Appendix I presents the computer program listings. 



Search 

Algorithm Simulation 
Response 

Main 

Input 

Executive 

Controller 
Output 

Decision variables 

Simulation 

Output 
Analysis 

Figure 15. Logic Flow of the Developed System 

114 



115 

Modifications to the Search Algorithms 

Both pattern search and the Nelder and Mead simplex search revisit the previously 

evaluated points. Since simulation program uses the same random number seed for 

' every run, the objective function value will be same for the revisited points. This causes 

redundant function evaluations and increases the program response time. Therefore, 

both algorithms were modified to reduce the number of simulation evaluations. 

Previously evaluated points and their corresponding function values were stored in a file. 

Every time when the simulation was called, the list of those points was searched. In 

case of a match, the corresponding response was used instead of calling the simulation. 

If there was no match, the simulation model was called and the list was updated. The 

overhead associated with the search and computations was significantly less than the 

length of the simulation run. For each algorithm, a counter was kept for the number of 

function calls saved. 



CHAPTER·v 

EVALUATION AND TESTING OF RESEARCH METHODOLOGY 

Introduction 

This chapter presents the evaluation of the proposed methodology described in 

Chapter IV. The evaluation was done by implementing the proposed system and testing 

the system with selected problems. To test the system developed, a set of illustrative 

examples were chosen. This selection process was designed in a such way that various 

aspects of the system and a variety of the problems which might be encountered in real 

life were covered. To achieve this goal, queueing and inventory systems were chosen. 

Queueing Cost Models 

, 

The first class chosen was a simple queueing system which had one server and 

arrivals and departures are Poisson with rates A and µ. Figure 16 shows a simple MJM/1 

queueing system where N is the capacity of the system. A queueing cost model was 

used to test the system. The objective of such a model is to find the level of service rate 

which balances the conflicting costs of offering a prescribed level of service ( c1) and the 

116 



117 

cost resulting from the delay in service ( c2). Figure 17 shows these two costs as a 

function of the service level. 

The first case of this class was a typical M/M/1 queue with a fixed arrival rate A, 

an infinite system capacity and a controllable service rateµ. The objective was to 
\ 

determine the optimum µ based on the cost model consisting of the two conflicting costs 

explained above. In this case, the cost function is given by 

where 

. TC(µ): expected cost of waiting and service per unit time givenµ 

c1 : cost per unit increase in µ per unit time 

c2 : cost of waiting per unit waiting time per customer 

Ls : expected number of customers in system 

Ws : expected waiting time in system ( in queue+ in service) 

Although this problem was solved by using the simulation system, it also has an 

analytical solution and the optimumµ is given by (Taha (1987)) 

The second problem to be considered of this type was determination of the 

maximum number of customers that would be allowed in the system. With this 

restriction, the optimization problem became two dimensional. The cost function is 

given by 



118 

i --·····--······-·----····-··----·-··········---·-·-iN" 

__ "'_,a.-....,~-: 0 ••• 0 0 I se;.ver I !-I ----,·· 
1 Queue 1 
' ! L__ ____________________________ _J 

Figure 16 . A M/M/1 Queueing Model 
· (N is the system capacity) 

Cost 

Cost of operating 

Total Cost 
~:' 

ost of waiting 

Optimum 
Level of Service Level of Service 

Figure 17. Total Cost as a Function of Service Level 



119 

where 

c3 : cost per unit time per additional accommodation unit 

c4 : cost per lo~t customer -

APN : number of lost customers per unit time 

Unfortunately, this problem does not have a closed form solution. Therefore, the 

optimum solution will be investigated by simulation and will be compared with the 

results obtained from a trial-and-error numerical solution. Figures 18 and 19 show the 

response plot of the M/M/1 queue with finite capacity. The graph of the cost function 

and Slam network statements are presented in Appendix E. 

Continuous Review Inventory Models 

The second set of examples included an inventory system which is frequently 

encountered in practice and simulation has often proven the only method of analysis. 

Inventory theory deals with the determination of the best inventory policy. Equations 

and models have been developed for setting parameters for specific situations. 

However, these equations are usually bas~ on restrictive assumptions in order make 

analysis tractable. Also, a mathematical model of the inventory system may not include 

complex stochastic characteristics such as probabilistic demand quantity and/or lead 

times. However a simulation model can avoid such simplifying assumptions and 

include stochastic characteristics. In reality, demand is usually a random variable and so 



Total Cost 

µ 

Figure 18. Response Surface for (M/M/1):(GD/N/oo) with p < 1 

l$N$30 

120 



121 

Total Cost 

Figure 19. Response Surface for (M!M/1):(GD/N/oo) with p > 1 



is the lead time. To include these dynamic realities, a continuous review inventory 

system in which the inventory was reviewed continuously and an order was replaced 

every time the inventory level reached a specified reorder point was chosen for this 

study. 

122 

The objective was to find the optimal reorder quantity and reorder level which 

maximized total profit by balancing the storage cost, reordering cost and shortage cost 

when demand quantity and lead times were random. The objective function can be 

expressed as 

Total Profit= Total Revenue - Total Cost 

Although it is not explicit in the objective function, the cost figures ( e.g. shortage cost, 

holding cost, etc.) are functions of the reorder quantity and reorder point. Thus the 

decision variables for the inventory system are reorder point and the reorder quantity. 

The complete definition and the graph of the cost function for the inventory 

system are given in Appendix F. Appendix G presents the Slam network and control 

statements. Since the objective was to find the long run average value for the measure 

of performance, the systeni was considered as a nonterminating system and it was 

analyzed and-optimized with the techniques chosen for this study. Figure 20 shows the 

surface plot of the example problem presented in Appendix F. 



123 

Avg. Profit 

!.-485 ·105 

25 :s; (RP, RQ) :s; 475 

Figure 20. Surface Plot of the Continuous Review Inventory Model 



124 

Results 

Table V presents the .results of the pattern search for the first case. The M/M/1 

queueing cost model is optimized by Hooke and Jeeve's pattern search. Since the shape 

of the function was assumed unknown, the algorithm was started at different points. 

Also the same starting point with different algorithm coefficients was used to observe the 

effect of algorithm coefficients. This cost model has an analytical solution with a 

minimum objective function value of3.8003 with an optimum service rate of 43.37 

(A=30/hr). In every case, the algorithm converged successfully by finding the optimum 

service rate at 43. Algorithm coefficients, number of function calls, number of function 

calls saved due to the modifications in the search algorithms, number of redundant data 

searches ( due to the output analysis routine) and total response time which is the time 

elapsed between the start of the algorithm and the termination of the algorithm are also 

displayed in the table. 

Each simulation response was analyzed by the output analysis module for the 

initial bias and steady state checks. Since each iteration of the algorithm requires a 

different service rate, the truncation point was different for each run. But, in general, 

the truncation point was between O and 360 observations for the different points. To 

reduce the computational overhead and the response time, the model was initially 

warmed up before any analysis was performed. The truncation point for the warm up 

period was determined by plotting average batches and cumulative average batches 



OBJECTIVE FUNCTION 
VALUE 

SERVICE RATE 

COEFFICIENTS 
S,A,B,T 

NUMBER OF FUNCTION 
EVALUATIONS 

NUMBER OF FUNCTION 
CALLS SAVED 

NUMBER OF REDUNDANT 
DATA SEARCHES 

TOT AL RESPONSE TIME 
(minutes) 

Legend 
S :initial step size 
A :extension coefficient 
B :reduction coefficient 
T :tennination criterion 

STARTING POINTS 

60 60 60 

3.782 3.798 3.7981 

43 43.3125 43.3125 

1,1,0.5,0.001 1,1,0.5,1 E-05 2,2,0.?, 1 E-05 

33 47 45 

5 11 18 

4 6 4 

117 154 152 

Objective Function Coefficients: 
C1 = 0.067 
~ = 0.40 

35 42 

3.782 3.798 

43 43.3125 

1,1,.5,0.001 1, 1,0.5,0.001 

23 30 

8 12 

4 5 

179 87 

TABLE V. Results of the Pattern Search for the WM/1 Queueing Cost Example 

..... 
Is.> 
Vi 



126 

(Bank & Carson (1984)) by deleting batches one at a time. This initial truncation did 

not affect the behavior of the algorithm. It only reduced the response time because the 

system reached the steady state sooner. For the given points and coefficients, it took two 

to three hours for the pattern search to complete the optimization process. 

The second queueing example was optimized by the Nelder and Mead simplex 

method. The second case was an M/M/1 queue with finite capacity and the objective 

was to find optimum. levels for the service rate and the system capacity to minimize the 

cost function. Since the system did not have a closed form solution, exhaustive search 

was done and the optimum values were found at µ=46.375 and N=8 with an objective 

function value of 4.83. The result of the Nelder and Mead simplex search for the 

second case is presented in Table VI. As can be seen from the table, the chosen method 

successfully converged and found the optimum values. The difficulty encountered with 

this case was that the time required for the system to reach the steady state was very long. 

Since the steady state performance measures were known ( e.g. Ls , Ws ), the results from 

the simulation model could be compared. Due to the nature of the system, a very long 

simulation run length was required to achieve steady state values. After experimenting 

with the system, algorithm coefficients for the BATCH submodule were fixed so that the 

system would run long enough and steady state values would be obtained. This 

precaution made the simulation time even longer. Also, since the BIAS and BATCH 

submodules both required continuous access to the files to read and write observations, 

the intensive 1/0 operations also increased the simulation run time significantly. A 

single simulation run took between 2-3 hours and the whole process, depending on the 

number of function evaluations, took between 3 and 4 days. Therefore, due to the 



OBJECTIVE FUNCTION 
VALUE($) 

SERVICE RATE, 
SYSTEM CAP A CITY 

COEFFICIENTS 
S,A,B,C,T 

NUMBER OF FUNCTION 
EVALUATIONS 

NUMBER OF FUNCTION 
CALLS SAVED 

NUMBER OF REDUNDANT 
DATA SEARCHES 

Legend 
S :side of simplex 
A :reflection coefficient 
B :contradiction coefficient 
C :expansion coefficient 
T :tennination criterion 

(44,6) 

4.831 

(46.27,7.8) 

2,1,0.5,2 
0.001 

28 

22 

5 

_/ 

STARTING POINTS 

(50,16) (35, 12) 

4.831 4.831 

(46.3,7.8) (46.47,7.8) 

2,1,0.5,2 2,1,0.5, 2 
0.0001 0.0001 

65 48 

59 38 

3 4 

Objective Function Coefficients: 
C1= 0.067 
c2= 0.40 
C3 = 0.10 
c4 = 0.80 

(60,10) 

4.832 

(46.6,7.8) 

2,1,.5,2 
0.0001 

67 

51 

7 

TABLE VI. Results of the Simplex Method for the (M!M/1):(GD/N/oo) Queue 

-N 
'1 



128 

long simulation rans, a limited number of rans were done. Only 5 starting points were 

tested. For all the cases , the same algorithm coefficients were used. 

Table VII shows the result of the RSM algorithm for this case. Although the 

initial intention was to demonstrate RSM for each of the different cases, due to the 

enormous simulation response time, RSM was used only once. For that ran, the number 

of replications was set to one. There were two reasons for this. One obvious reason was 

the time considerations. The average response time for multiple replications would be at 

least 10 to 15 days. The other reason was that steady state measures were used in the 

method. Each simulation ran was tested for steady state conditions. Even if there were 

more than one replication, their results would be very similar and the error term would be 

very small. Although two results might be statistically different, it was judged that the 

difference between two rans would be insignificant and acceptable from a practical point 

of view. Table VII summarizes the RSM algoritm which was started at (44,6). 

The last case, a continuous review inventory model, was optimized by the Nelder 

and Mead simplex algorithm. The results are shown at Table VIII. Since this model did 

not have a analytical solution, an exhaustive search was made to establish the optimal 

solution. Function values for the response surface were obtained by executing the 

simulation for long period of time. Each alternative system was started with an empty 

inventory to introduce an initial bias to the system. Although Figure 20 shows a single 

maximum, the response surface is possibly multimodal. Due to the unknown 

characteristics of the function, different starting points were tried. Generally the average 

total profit value was increased due to the removal of initial bias. The program detected 



129 

Service System 
Run Rate Capacity Response Comment 

1 44 6 5.020 

2 43 5 5.356 

3 45 5 5.240 

4 43 7 4.931 Fractional Factorial Completed 

5 45 7 4.872 Explore the path 

6 44.47768 8.2215 4.846 • 

7 44.734 9.4137 4.873 

8 44.99 10.606 4.941 Seek new path 

9 43.477 7.721 4.877 

10 43,477 8.721 4.866 

11 45.477 7.721 4.838. Fractional factorial completed 

12 45.477 8.721 4.847 Explore the path 

13 62.083 7.839 5.367 

14 78.534 7.481 6.312 Second order design phase 

15 44.477 7.514 4.857 

16 44.477 8.928 4.858 

17 43.063 8.221 4.878 

18 45.892 8.221 4.835. 

• - optimum so far 

Table VII. Results of the RSM 



OBJECTIVE FUNCTION 
VALUE($) 

OPTIMUM REORDER PT. 
REORDER QUANTITY 

COEFFICIENTS 
S,A,B,C,T 

NUMBER OF FUNCTION 
EVALUATIONS 

NUMBER OF FUNCTION 
CALLS SAVED 

NUMBER OF REDUNDANT 
DATA SEARCHES 

TOT AL RESPONSE TIME 
(minutes) 

Legend 
S :side of simplex 

A :reflection coefficient 
B :contradiction coefficient 
C :expansion coefficient 

T :termination criterion 

(150,150) 

149,567.0 

(186,167) 

75,1,0.5,2 
0.001 

58 

1 

9 

698 

STARTING POINTS 

(100,100) (100,100) 

149,300.00 150,767.00 

(182,174) (186,123) 

50,1,0.5,2 75,1,0.5, 2 
0.0001 0.00001 

31 42 

30 38 

1 4 

428 412 

Objective Function Coefficients: 
PPU= 10000 
CPU=SOOO 
CPO=lOO 
HC = 100 

CLS = 200 

(200,250) (250,400) 

147,980.00 147,090.00 

(158,261) (153,320) 

50,1,.5,2 50,1,0.5,2 
0.001 0.001 

35 42 

32 44 

0 2 

358 364 

TABLE VIII. Results of the Simplex Method for the Continuous Review Inventory Model -v.> 
0 



131 

the "optimum" point at Reorder Point (RP) =186 and Reorder Quantity (RQ) =123 with 

an average profit of $150,067. 

Thus, the last objective of the research was accomplished by demonstrating the 

developed system for different classes of problems. 



CHAPTER VI 

SUMMARY, CONTRIBUTIONS and RECOMMENDATIONS 

Introduction 

This chapter includes a summary of the research, contributions of the research 

and recommendations for future research in the area of simulation optimization systems. 

Summary 

The goal of this research was to develop an automated discrete event simulation 

optimization system. The research can be summarized in terms of the research 

objectives that were accomplished. The first research objective was to build an 

optimization library. For this purpose, an extensive literature search was made. A 

selection process based on the limitations of the research and a proposed set of 

performance measures was developed. The details of the selection process are 

presented in Chapter III. Since there was no single optimization method which 

performed well on all given functions, more than one optimization method were selected. 

The optimization library contains deivative free methods (Nelder and Mead simplex 

method and Hooke and Jeeve's patter.n search method) and a gradient estimation based 

132 



method (Response Surface Methodogy (RSM)). The details of these methods were 

presented in Chapter V. 

133 

The second objective was to build an output analysis module. The output 

analysis module contains two methods. After searching the available literature (see 

Chapter III), Schruben's optimal test was chosen to detect the initialization bias in the 

simulation output. Law and Carson's sequential method based on batch means was used 

to analyze the steady.state behavior of the system. The results were tested for initial bias 

and if any bias existed, observations were truncated, batch by batch, until there was no 

bias left or no observations left. If the removal of bias was successful, the remaining 

output was analyzed with the batch means method. When the desired precision of 

confidence interval was obtained, the performance measure was computed and sent to the 

optimization module as a next set of input data to the optimization method. 

The third objective was to develop the Executive Controller (EC) module to 

control the activities of the system. The EC controlled model execution, output analysis 

and optimization. A rule based system was developed to determine which optimization 

routine was appropriate for a given problem. The EC also detected any changes in the 

system and the performance of the algorithms. The communication between the user 

and the system and modules was achieved with inputs through the keyboard and direct 

access files. All inputs and outputs were written to the files and read from the same files 

when it was necessary to do so. 

The fourth objective was achieved by developing the necessary computer 

programs to create the system described in this study. For this objective, a modular 

computer program was developed to find the optimum solution to multivariable problems 



134 

simulated on a computer. All of the implementations were done in FORTRAN except 

the simulation program which was implemented in SLAM. Program listings are given 

in Appendix I. A user guide was also provided for the user and presented in the 

Appendix H. The user guide describes how to use the system, input-output 

requirements, limitations of the programs and necessary user modifications in- case of any 

change in the current structure of the program. 

The developed system was demonstrated and conclusions were drawn about the 

system efficiency. The testing and evaluation of the system was accomplished by 

selecting two different queueing systems and a continuous inventory problem. Each 

problem was optimized by the method which was selected by the rule based system of 

the EC. 

Contributions 

By reviewing the accomplishments of this research, it can be concluded that the 

objectives of this study have been achieved. The achievement of the research objectives 

provides the following contributions: 

- Development of an integrated system of optimization techniques with 

simulation and statistics. 

- Development of an environment within which simulation model could be run, 

analyzed, and optimized. 



135 

- Providing insight into current simulation optimization techniques by evaluating 

and classifying the techniques. 

- Providing insight into the most current simulation output analysis techniques. 

- Coupling a "Rule-based system" with the simulation optimization system to 

select the appropriate technique for a given problem. 

- Making automatic decisions within the system, and helping the user the 

understand the system. 

Recommendations for Further Research 

As a result of the research conducted in this study, recommendations for future 

research can be made. Some examples of future research are: 

( 1) This research was limited to single response, unconstrained optimization 

problems. The system could be expanded to include multiple response optimization. 

Existing approaches for multiresponse optimization were briefly discussed in Chapter IL 

Since only unconstrained problems are considered in this study, techniques which 

consider constraints or penalty functions which modify the objective function could also 

be included in this research. 

(2) A simulation generator for certain type of problems ( e.g., queueing or 

inventory) could be combined with the system to assist in the development of simulation 

models for that type of problem. 



136 

(3) Combining graphical output with the optimization programs to plot the 

response surface might help the user to understand the parameter relationships. This 

visual aid would also help the user to pick a better starting point, which might speed up 

the optimization process and cut the response time. 

(4) Cased-based reasoning (CBR) could be coupled with the optimization 

system. CBR involves the process of making decisions based on specific examples of 

what has occurred in the past, rather than a set of rules. Previous cases are stored for use 

in solving future problems. By making previous solutions available to the user, some 

short cuts could be made and past mistakes could also be avoided. This area of artificial 

intelligence has received limited attention compared to expert systems. Additional 

research is needed to focus on what are the appropriate techniques used to capture 

previous models, how well this approach works and what characteristics distinguish those 

models that receive frequent reuse. 

(5) No effort has been made to reduce the number of factors for a given system. 

Factor screening methods could be employed to reduce the number of factors. Once the 

unimportant factors are determined, their values could be fixed for the rest of the 

simulation runs. This would reduce the dimensionality of the optimization problem and 

number of simulation runs required. This kind of factor screening would require pilot 

runs and would occur prior to the optimization process. It would be a responsibility of 

the executive controller for the system developed for this research. 



BIBLIOGRAPHY 

Adam, N.R., "Achieving a Confidence Interval for Parameters Estimated by Simulation," 
Management Science, Vol. 29, pp. 856-866, 1983. 

Alexopoulos, C., "Advanced Simulation Output Analysis for a Single System," 
Proceedings of the 1993 Winter Simulation Conference, pp. 89-96, 1993. 

Andrews, R.W. and T.J. Schreiber, "Two ARMA Based Confidence Interval Procedures 
for the Analysis of Simulation Output," Working Paper, Graduate School of 
Business Adm., University of Michigan, 1982. 

Azadivar, F., "A Tutorial on Simulation Optimization," Proceedings of the 1992 Winter 
Simulation Conference, pp.198-204, 1992. 

Azadivar, F. and J. Talavage, "Optimization of Stochastic Simulation Models," 
Mathematics and Comrmters in Simulation, Vol. 22, pp. 231-241, 1980. 

Banks,J., "Selecting Simulation Software," Proceedings of the 1991 Winter Simulation 
Conference, pp. 15-20, 1991. 

Banks, J., E. Aviles, J.R. McLaughlin, and R.C. Yuan, ''The Simulator: New Member 
of the Simulation Family," Interfaces, Vol. 21, No. 2, pp. 76-86, 1991. 

Banks, J. and J.S. Carson, Discrete-Event System Simulation, Prentice Hall, New Jersey, 
1984. 

Banks, J., D. Goldsman and J. S. Carson;II., Handbook of Statistical Methods for 
Engineers and Scientists, Chapter 12, pp. 1-36, 1990. 

Barton, R.R. and J. S. Ives, Jr., "Modifications of the Nelder-Mead Simplex Method 
for Stochastic Simulation Response Optimization," Proceedings of the 1992 
Winter Simulation Conference , pp. 945-953, 1992. 

Barton, R.R., "Testing Strategeies for Simulation Optimization," Technical Report, 
Cornell University, 1987. 

Bazaara, M.S. and C.M. Shetty, Nonlinear Programming Theory and Algorithms, John 
Wiley and Sons, New York, 1979. 

137 



Bengu, G., "A Simulation Optimization System with Direct Search Procedures," 
Doctoral dissertation, Clemson University, Clemson, SC, 1987. 

138 

Bengu, G. and J. Haddock, "A Generative Simulation Optimization System," Computers 
and Industrial Engineering ,Vol. 10, No. 4, pp. 301-313, 1986. 

Biles, W. E. "Strategies for Optimization of Multiple- Response Simulation Models," 
Proceedings of the 1977 Winter Simulation Conference, pp. 135-142, 1977. 

Biles, E.W. and J. J. Swain, "Optimization of Multiple- Response Simulation Models," 
Modeling and Simulation, Vol. 8, No. 2, pp. 991-995, 1982. 

Billingsley, P., Convergence of Probability Measures, John Wiley, New York, 1968. 

Birta, L. G., "A Parameter Module for CSSL-based Simulation Software," Simulation, 
Vol. 28, pp. 113-123, 1977 .. 

Birta, L.G., "Optimization in Simulation Studies," Simulation and Model-Based 
Methodologies: An Integrative View, Edited by T. l Oren, Springer-Verlag, 
Berlin, 1984. 

Box, G.E. and N.R. Draper, Emprical Model-Building and Response Surfaces, John 
Wiley & Sons, New York, 1987. 

Brightman, H.J., "Optimization Through Experimentation: Applying Response Surface 
Methods," Decision Sciences, Vol. 9, pp. 481-495, 1978. 

Brooks, S. H., "A Comparison of Maximum Seeking Methods," Operations 
Research, Vol 7, No. 4, pp. 430-457, 1959. 

Bulgak, A.A. and J.L. Sanders, "Integrating a Modified Simulated Annealing 
Algorithm with the Simulation of a Manufacturing System to Optimize Buffer 
Sizes in Automatic Assembly Systems," Proceedings of the 1988 Winter 
Simulation Conference, pp. 684-690, 1988. 

Burdick, D.S. and T.H. Taylor, "Design of Computer Simulation Experiments for 
Industrial Systems," Comm. of the ACM, Vol. 9, pp; 329-338, 1968. 

Cao, X.R., "Convergence of Parameter Sensitivity Estimates in Stochastic Experiment," 
IEEE Transactions on Automatic Control, Vol. 30, No. 8, pp. 834-845, 1985. 

Cao, X.R., "First Order Perturbation Analysis of a Simple Multiclass Finite Source 
Queue," Performance Evaluation, Vol. 7, pp. 31-41, 1987. 

Cao, X.R., "On a Sample Performance Function of Jackson Queueing Networks," 
Operations Research, Vol. 36, pp. 128-136, 1988. 



Cao, X.R. and Y.C. Ho, "Perturbation Analysis of Sojourn Time in Queueing 
Networks," Proceedings ·Of 22nd IEEE Conference on Decision and Control, 
pp. 1025-1029, 1983. 

Cao, X.R. and Y.C. Ho, "Sensitivity Analysis and Optimization of Throughput in 

139 

a Production Line with Blocking," IEEE Journal of Automatic Control, Vol. 32, 
No. 11, pp.959-967, 1987. 

Carrol, C. W., "The Created Response Surface Technique for Optimizing Nonlinear, 
Restrained Systems," Operations Research, Vol. 9, pp. 169-184, 1961. 

Cassandras, C.G., "On-line Optimization of a Flow Control Strategy," IEEE Journal of 
Automatic Control, Vol. 32, No. 11, pp. 1014-1017, 1987. 

Charnes, J. M., "Statistical Analysis of Output Progress," Proceedings of 1993 Winter 
Simulation Conference, pp. 41-48, 1993 .. 

Cherny, V. "Thermodynamical Approach to Traveling SalesmanProblem: An Efficient 
Simulation Algorithm," Journal of Optimization Theory Applications., Vol.45, 
pp. 41-45, 1985. 

Clayton, E. R., W. E. Weber and B. W. Taylor,"A Goal Programming Approach to the 
Optimization of Multiresponse Simulation Models," IIE Transactions, Vol. 14, 
No. 4, pp. 282-287, 1982. 

Cochran, J.K. and J. Chang, "Optimization of Multivariate Simulation Models Using a 
Group Screening Method," Computers and Industrial Engineering, Vol. 18, No. 1, 
pp. 95-103, 1990. 

Conway, R.W., "Some Tactical Problems in Digital Simulation," Management Science, 
Vol. 10, pp. 47-61, 1963. 

Cooley, B.J. and E.C. Houck, "A Variance-reduction Strategy for RSM Simulation 
Studies," Decision Sciences, Vol. 13, pp. 303-321, 1982. 

Crane, M.A. and D.L. Iglehart, "Simulating Stable Stochastic Systems, III: Regenerative 
Processes and Discrete event Simulations," Operations Research, Vol 23, 
pp. 33-45, 1975. 

Daugherty, A.F. and M.A. Turnquist, "Budget Constrained Optimization of Simulation 
Models via Estimation of their Response Surfaces," Operations Research, 
Vol. 29, pp.485-500, 1981. 

Ermoliev, Y. and N.Z. Shor, "Method of Random Search for Two-Stage Problems of 
Stochastic Programming and its Generalization," Kibernetica, Vol. I, pp. 19-26, 
1968. 



Ermoliev, Y., "Stochastic Quasigradient Methods and their Application to System 
Optimization," Stochastics, Vol. 9, pp. 1-36, 1983. 

Evtushenko, Y.P, "Numerical Methods for Finding Global Extrema of a Non-uniform 
Mesh," USSR Computing Machines and Mathematical Physics, Vol. 11, 
pp. 1390-1403, 1971. 

Farrel, W., C. McCall and E. Russell, "Optimization Techniques for Computerized 
Simulation Models," Report to Office of Naval Research, NTIS AD-AOl l 
844/8Gl, 1975. 

Farrel, W., "Literature Review and Bibliography of Simulation Optimization," 
Proceedings of the 1977 Winter Simulation Conference, pp.117-124, 1977. 

Fegan, J.M., G.M. Lane and P.J. Nolan, "Introduction to Simulation Using Intelligent 
Simulation Interface (ISi)," Proceedings of the 1991 Winter Simulation 
Conference, pp. 143-147, 1991. 

Fishman, G.S., "Estimating Sample Size in Computer Simulation,".Management · 
Science, Vol. 18, pp.21-38, 1971. 

Fishman, G.S., Concepts and Methods in Discrete Event Digital Simulation, Wiley, 
New York, 1973. 

Fishman, G.S., "Achieving Specific Accuracy in Simulation Output Analysis," 
Communications of ACM, Vol. 27, pp. 3-10-315, 1977. 

140 

Fishman, G.S., "Grouping Observations in Digital Simulation," Management Science, 
Vol. 24, pp. 510-521, 1978a. 

Fishman, G.S., Principles of Discrete Event Simulation, Wiley, New York, 1978b .. 

Fox, B.L., "Implementation and Relative Efficiency of Quasirandom Sequence 
Generators," Working Paper, Montreal Canada, 1984. , 

Fu, M.C. and Y.C. Ho, "Using Perturbation Analysis for Gradient Estimation, 
Averaging and Updating in a Stochastic Approximation Algorithm," 
Proceedings of the 1988 Winter Simulation Conference, pp. 509-517, · 
1988. 

Garcia-Diaz, A., G.L. Hogg, D.T. Phillips and E.J. Worrell, "Combined.Simulation and 
Network Anaysis for the Production System," Simulation, Vol. 40, pp. 59-66, 
1983. 

Glynn, P.W., "Optimization of Stochastic Systems," Proceedings of the· 1986 Winter 
Simulation Conference, pp. 356-365, 1986. 



Goldsman, D., "Simulation Output Analysis," Proceedings of the 1992 Winter 
Simulation Conference, pp. 97-103, 1992. 

141 

Goldsman, D. and B.L. Nelson, "Methods for Selecting the Best System," Proceedings 
of the 1991 Winter Simulation Conference, pp. 177-186, 1991. 

Goldsman, D. and L.W. Schruben, "Asymptotic Properties of Some Confidence Interval 
Estimators," Technical Report, School of Operations Research and Industrial 
Engineering, Cornell University, 1982. 

Gong, W.B. and Y.C. Ho, "Smoothed (Conditional) Perturbation Analysis of Discrete 
Event Dynamic Systems," IEEE Transactions on Automatic Control, Vol. 32, 
No. 10, pp. 858-866, 1987. 

Gottfried, B.S. and J. Weisman, Introduction to Optimization Theory, 
Prentice-Hall Inc., Englewood Cliffs, NJ, 1973. 

Gray, H.L., G.D. Kelly, and D. McIntire, "A New Approach to ARMA Modeling," 
Communications in Statistics, B7, pp. 1-17, 1978. 

Gross, D. and C.M. Harris, Fundamentals of Queuing Theory, Wiley, New York, 1974. 

Haddock, J. and J. Mittenhal, "Simulation Optimization using Simulated Annealing," 
Computers & Industrial Engineering, Vol. 22, No. 4, pp. 387-395, 1992. 

Haider, S. W. and J. Banks, "Simulation Software Products For Analyzing 
Manufacturing Systems," Industrial Engineering, Vol. 18. , No. 6, pp. 98-103, 
1986. 

Hajek, B., "Cooling Schedules for Optimal Annealing," Mathematics of Operations 
Research, Vol. 13, No. 2, pp. 311-329, 1988. 

Healy, K., "Retrospective Simulation Response Optimization", Proceedings of the 
1991 Winter Simulation Conference, pp. 901-906, 1991 

Heidelberger, P., X.R. Cao, M. Zazanis, and R. Suri, "Convergence Properties of 
Infinitesimal Perturbation Analysis Estimates," Management Science, Vol. 34, 
No. 11, pp. 1281-1302, 1988. 

Heller, N;B. and G.E. Staats, "Response Surface Optimization when Experimental 
Factors are Subject to Costs and Constraints," Technometrics, Vol. 15, 
pp. 113-123, 1973. 



142 

Hill, W.J. and W.G. Hunter, "A Review of Response Surface Methodology: a literature 
Survey," Technometrics, Vol. 8, No. 6, pp. 571-590, 1966. 

Ho,Y.C., "On the Perturbation Analysis of Discrete-Event Dynamic Systems,"Journal of 
Optimization Theory and Applications, Vol. 46, No. 4, pp. 535-545, 1985. 

Ho, Y.C., "Performance Evaluation and Perturbation Analysis of Discrete Event 
Dynamic Systems," IEEE Transactions on Automatic Control, Vol. 32, 
No. 7, pp. 563-572, 1987. 

Ho, Y.C. and X.R. Cao, "Perturbation Analysis and Optimization of Queueing· 
Networks," Journal of Optimization Theory and Applications, Vol. 40, 
No. 4, pp. 559-582, 1983. 

Ho, Y.C. and X.R..Cao, "Performance Sensitivity to routing Changes in Queueing 
Networks and Flexible Manufacturing Systems Using Perturbations Analysis," 
IEEE Journal of Robotics and Automation, Vol RA-1, No. 4, pp. 165-172, 1985. 

Ho, Y.C., X.R. Cao, and C. Cassandras, "Infinitesimal and Finite Perturbation Analysis 
for Queueing Networks," Automatica, Vol. 19, pp. 439-445, 1983. 

Ho, Y.C. and C. Cassandras, "A New Approach to the Analysis of Discrete event 
Dynamic Systems," Automatica, Vol. 19, pp.149-167, 1983. 

Ho, Y.C., M.A. Eyler, and T.T. Chien, "A Gradient Technique For General Buffer 
Storage Design in a Serial Production Line," International Journal of Production 
Research, Vol. 17, No. 6, pp. 557-580, 1979. 

Ho, Y.C., M.A. Eyler, and T.T. Chien, "A New Approach to Determine Parameter 
Sensitivities of Transfer Lines," Management Science, Vol. 29, No. 6, 
pp. 700-714, 1983. 

Ho, Y.C., S. Li, and P. Vakili, "On the Efficient Generation of Discrete Event Sample 
Paths Under Different Parameter Values," IEEE Transactions on Automatic 
Control, Vol. 33, No. 5, pp. 427-438, 1988. 

Huq, Z., "A Process Oriented Manufacturing System Simulation to Measure the 
Effect of Shop Control Factors", Simulation, Vol. 62, NO. 4, pp. 218-228, 1994. 

Jacobson, S.H., A.H. Russ, and LW. Schruben, "Driving Frequency Selection for 
Frequency Domain Simulation Experiments," Operations Research, 
Vol. 39, No.6, pp. 917-924, 1991. 

Jacobson, S.H. and L.W. Schruben, "Techniques For Simulation Response 
Optimization," Operation Research Letters, Vol. 8, pp. 1-9, 1989. 



Kelton, W.D., "Statistical Analysis Methods Enhance Usefulness, Reliability Of 
Simulation Models," Industrial Engineering, Vol. 18, No. 9, pp. 74-84, 1989. 

Khuri, A. and J. A. Cornell, Response Surfaces, Designs and Analyses, Marcel 
Dekker, Inc., NewYork 1987. 

Kiefer, J. and J. Wolfowitz, "Stochastic Estimation of the Maximum of a Regression 
Function," Annals of Mathematical Statistics, Vol. 23, pp. 462-466, 1952. 

143 

King, C. U. and E.L. Fisher, "BARBS: integrating simulation, optimization and 
knowledge-based techniques to identify and eliminate production bottlenecks," 
International Journal of Computer Integrated Manufacturing, Vol. 2, No. 6, 
pp. 317-328, 1989. 

Kirkpatrick, S., C.D; Gelatt, and M.P. Vecchi, "Optimization by Simulated Annealing," 
Science, Vol. 220, No. 4598, pp. 671-680, 1983. 

Kleijnen, J.P.C., Statistical Techniques in Simulation, Part I, Marcel Dekker, 
New York, 1974. 

Kleijnen, J.P.C., Statistical Techniques in Simulation, Part II, Marcel Dekker, 
New York, 1975. 

Kumar, P.R., "On Simulating to Estimate Derivatives of Performance Measures in 
Discrete Event Systems," Proceedings of the 23rd Conference on Decision and 
Control, pp. 534, 1984. 

Kuester, J.L. and J.H. Mize, Optimization techniques with FORTRAN, Mc Graw-Hill 
Inc., NewYork, 1973. 

L'Ecuyer, P., "An Overview of Derivative Estimation, "Proceedings of the 1991 Winter· 
Simulation Conference, pp.207-217, 1991. 

. Lavenberg, S.S. and C.H. Sauer, "Sequential Stopping Rules for the Regenerative 
Method of Simulation," IBM Journal of Res. Develop., Vol. 21, 
pp. 545-558, 1977. 

Law, A.M., "Confidence Intervals in Discrete Event Simulation: A Comparison of 
Replication and Batch Means," Naval Research Logistics Quarterly, 
Vol. 24, pp. 667-678, 1977. 

Law, A.M., "Statistical Analysis of Simulation Output Data," Operations Research, 
Vol.31, No.6, pp.983-1029, 1983. 

Law, A.M., "Simulation Software for Manufacturing Applications," Industrial 
Engineering, Vol. 22, No. 7,-pp. 18, 1990. 



Law, A.M. and J.S. Carson, "A Sequential Procedure for Determining the Length of a 
Steady State Simulation," Operations Research, Vol. 27, pp. 1011-1025, 1979. 

144 

Law, A.M. and S. W. Haider, "Selecting Simulation Software for Manufacturing 
Applications: Practical Guidelines & Software Survey," Industrial Engineering, 
Vol. 21, No. 5, pp. 33-46, 1989. 

Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis, McGraw-Hill 
Publishing Co., New York, 1982a. 

Law, A.M. and W.D. Kelton, "Confidence Intervals for Steady-State Simulations, II: 
A Survey of Sequential Procedures," Management Science, Vol. 28, No. 5, 
pp. 550-562, 1982b. 

Law, A.M. and W.D. Kelton, "Confidencelntervals for Steady-State Simulations, I: . 
A Survey of Fixed Sample Size Pfocedures," Operations Research, Vol 32, 
No. 6, pp. 1221-1239, 1984. 

Law, A.M. and W.D. Kelton, Simulation .Modeling and Analysis, 2nd ed., 
McGraw-Hill Publishing Co., New York, 1991. 

Law, A.M. and M.G. Mccomas, "Secrets of Successful Simulation Studies," Industrial 
Engineering, Vol. 22, No. 5, pp. 47-53, 1990. 

Lee, Y. and K. Iwata, "Part Ordering Through Simulation Optimization in An FMS," 
International Journal of Production Research, Vol. 29, No. 3, pp. 1309.,1322, 
1991. 

Liu, C.M. and J.L. Sanders, "Stochastic Design Optimization of Asynchronous Flexible 
Assembly Systems," Annals of Operations Research, VoL 15, pp. 131-154, 1988. 

Ma, X. and A. K. Kochhar, "A Comparison Study of Two Tests for Detecting 
Initialization Bias in Simulation Output," Simulation, Vol. 61, No; 2, pp. 94-101, 
1993. 

MacNair, E. A., "Toward a Higher Level, Output Analysis Interface", Proceedings 
of the 1991 Winter Simulation Conference, pp. 822-831, 1991. 

Manz, E.M., J. Haddock and J. Mittenthal, "Optimization of an Automated 
Manufacturing System Simulation Model Using Simulated Annealing," 
Proceedings of the 1989 Winter Simulation Conference, pp. 390-394, 1989. 

McBride, R. D. and D. E. O'leary, "The use of mathematical programming with 
artificial intelligenceand expert systems," European Journal of Operational 
Research, Vol. 70, pp. 1-15, 1993. 



145 

Mechanic, H. and W. McKay, "Confidence Intervals for Averages of Dependent Data in 
Simulations II," Technical Report No. ASDD 17-202, IBM Corporation, 
Yorktown Heights, New York, 1966. 

Meidt, G. J. and K. W. Bauer,Jr., "PCRSM: A Decision Support System for 
Simulation Metamodel Construction", Simulation, Vol. 59, No. 3, 
pp183-191, 1992. 

Meketon, M.S., "Optimization in Simulation: A Survey of Recent Results," 
Proceedings of the 1987 Winter Simulation Conference, pp. 58-67, 1987. 

Metropolis, N., N. Rosenbluth, A. Rosenbluth, A. Teller, and E. Teller, "Equation 
of State Calculations by Fast Computing Machines," Journal of Chemical 
Physics, Vol. 21, pp. 1087-1092, 1953. 

Mihram, G.A., "An Efficient Procedure for Locating the Optimal Simulation Response," 
Proceedings of the 4th Conference on the Application of Simulation, 
pp. 154-161, 1970. 

Miller, R. G., "The Jackknife - A Review," Biometrika, Vol. 61, pp. 1-15, 1974. 

Mitra M. and S. K. Park, "Solution to the Indexing Problem of Frequency Domain 
Simulation Experiments, "Proceedings of the 1991 Winter Simulation 
Conference, pp. 907-920, 1991. 

Montgomery, D.C., "Methods for Factor Screening in Computer Simulation 
Experiments," Technical Report, Georgia Institute of Technology, 1979. 

Montgomery, D. C. and V. M. Bettencourt, "Multiple Response Surface Methods in 
Computer Simulation," Simulation ,Vol. 29, No. 4, pp. 113-121, 1977. 

Montgomery, D.C. and D.M. Evans, Jr., "Second Order Response Surface Designs in 
Computer Simulation," Simulation, Vol. 25, pp. 169-178, 1975. 

Moore, R. D. and B. J. Lee, "Simulation for Closed Loop Factory Optimization," 
Proceedings of the 1989 Winter Simulation Conference, pp. 237-242, 1989. 

Myers, R.H., Response Surface Methodology, Allyn-Bacon, Boston, 1971. 

Nandkeolyar, U. and D.P. Christy, "Using Computer Simulation to Optimize Flexible 
Manufacturing System Design," Proceedings of the 1989 Winter Simulation 
Conference, pp. 396-405, 1989. 



Nelder, J. A. and R. Mead, "A Simplex Method for Function Minimization," 
The Computer Journal, Vol. 7, pp. 308-313, 1965. 

Nozari, A., S.F. Arnold, and C.D. Pegden, "Statistical Analysis for Use with the 
Schruben and Margolin Correlation Induction Strategy," Operations Research, 
Vol. 35, pp. 127-139, 1987. 

Olsson, D. M., "A Sequential Simplex Program For Solving Minimization Problems," 
Journal of Quality Technology, Vol. 6, No. 1, pp. 53-57, 1974. 

Olsson, D.M. and L.S. Nelson, "The Nelder-Mead Simplex Procedure for Function 
Minimization," Technometrics, Vol. 17, No. 1, pp. 45-51, 1975. 

Pegden, C.D. and M.P. Gately, "A Decision-Optimization Module for SLAM," 
Simulation, Vol. 34, pp. 18-25, 1980. 

146 

Pflug, G.C., "Optimizing Simulated System," Simuletter, Vol. 15, No. 4, pp. 6-9, 1984. 

Plackett, R. L. and J. P. Burman, "The Design of Multifactor Experiments," Biometrika, 
Vol. 33, pp. 305-325, 1946. 

Pritsker, A.A.B., Introduction to Simulation and SLAM II, System Publishing Co., 
Indiana, 1986. 

Pritsker, A.AB., C. E. Sigal, and R. D. J. Hammesfahr, SLAM II Network Models for 
Decision Support, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1989. 

Ramachandran, V., D.L. Kimbler, and G. Naadimuthu, "Expert Post-Processor for 
Simualtion Output Analysis", Computers and Industrial Engineering, Vol. 15, 
No. 1-4, pp. 98-103, 1988. 

Rees, L. P., E. C. Clayton, and B. W. Taylor, "Solving Multiple Response Simulation 
Models Using Modified Response Surface Methodology Within A Lexicographic 
Goal Programming Framework," IIE Transactions, Vol. 17, No. l,pp. 47-57, 
1985. 

Robbins, H. and S. Monro, "A Stochastic Approximation Method," Annals of 
Mathematical Statistics, Vol. 22, pp. 400-407, 1951. 

Rooks, M., "A Unified Framework for Visual Interactive Simulation," Proceedings 
of the 1991 Winter Simulation Conference, pp. 1146-1155, 1991. 

Rooks, M.~ "A User-Centered Paradigm for Interactive Simulation," Simulation, 
Vol. 60, No. 3, pp. 168-177, 1993. 



147 

Ruppert, D., R.L. Reish, R.B. Deriso and R.J. Carroll, "Optimization Using Stochastic 
Approximation and Monte Carlo Simulation (with application to harvesting 
atlantic menhaden)," Biometrics, Vol.40, pp.535-545, 1984. 

Rustagi, J.S., "Optimization in Simulation," Technical Report, Department of Statistics, 
Ohio State University, 1981. 

Safizadeh, M. H., "Optimization in Simulation: Current Issues and Future Outlook," 
Naval Research Logistics, Vol. 37, pp. 807-825, 1990. 

Safizadeh, M.H. and B.M. Thornton, "Optimization in Simulation Experiments Using 
Response Surface Methodology," Computers and Industrial Engineering, Vol. 8, 
No. 1, pp. 11-27, 1984. 

Sargent, R., "Research Issues in Metamodeling", Proceedings of the 199 l Winter 
Simulation Conference, pp. 888-893, 1991. 

Sargent, R., K. Kang and D. Goldsman, "An Investigation of Finite-Sample Behavior of 
Confidence Interval Estimators", Operations Research, Vol. 40, No. 5, 
pp. 898-913, 1992. 

Schittkowski, K., Nonlinear Programming Codes, Springer-Verlag, Berlin, 
Heidelberg, New York 1980. 

Schmeiser, B.W., "Batch Size Effects in the Analysis of Simulation Output," 
Operations Research, Vol. 30, pp. 556-568, 1982. 

Schmeiser, B.W. and K. Kang, "Properties of Batch Means from Stationary 
ARMA(l,l) Time Series," Technical Report 81-3, School oflndustrial 
Engineering, Purdue University, 1981. 

Schreiber, T.J. and R.W. Andrews, "Interactive Analysis of Simulation Output by the 
Method of Batch Means," Proceedings of the 1979 Winter Simulation 
Conference, pp. 512-524, 1979. 

Schruben, L. W., "Control of Initialization Bias in Multivariate Simulation Response," 
Communications of ACM, Vol. 24, pp.246-252, 1981. 

Schruben, L.W., "Detecting Initialization Bias in Simulation Output," Operations 
Research, Vol.30, pp 569-590, 1982. 

Schruben, L.W., "Confidence Interval Estimation Using Standardized Time Series," 
Operations Research, Vol. 31, pp. 1090-1118, 1983. 

Schruben, L.W., "Simulation Optimization Using Frequency Domain Methods," 
Proceedings of the 1986 Winter Simulation Conference, pp. 366-369, 1986. 



148 

Schruben, L.W. and V.J. Cogliano, "An Experimental Procedure for Simulation 
Response Surface Model Identification," Communications of the ACM, Vol. 30, 
No. 8, pp.716-730, 1987. 

Schruben, L.W. and B.H. Margolin, "Pseudorandom Number Assignment in Statistically 
Designed Simulation and Distribution Sampling Experiments," Journal of the 
American Statistical Association, Vol. 73, pp. 503-520, 1978. 

Schruben, L.W., H. Sing, and L. Tierney, "Optimal Tests for Initialization Bias in 
Simulation Output," Operations Research, Vol. 31, No. 6, pp. 1167-1178, 1983. 

Seila, A.F., "Output Analysis for Simulation,'~.Proceedings of the 1990 Winter 
Simulation Conference, pp. 49-54, 1990. 

Seila, A.F., "Advanced Output Analysis,"Proceedings of the 1992 Winter Simulation 
Conference, pp. 190-197, 1992. 

Seila, A.F. and J. Banks., "Spreadsheet Risk Analysis Using Simulation," Simulation, 
Vol. 55, pp. 163-170, 1990. 

Smith, D.E., "Requirements of an Optimizer For Computer Simulation/' Naval Research 
Logistics Quarterly, Vol. 20, pp. 161-179, 1973a. 

Smith, D.E., "An Empirical Investigation of Optimum Seeking in the Computer 
Simulation Situation," Operation Research, Vol. 21, pp. 475-497, 1973b. 

Smith, D.E., "Automatic Optimum -seeking Program for Digital Simulation," 
Simulation, Vol. 27, pp.27-32, 1976. 

Smith, D.E. and C.A. Mauro, "Factor Screening in Computer Simulation," Simulation, 
. Vol. 38, pp. 49-54, 1982. 

Spendley, W., G. R. Hext, and F.R. Himsworth, "Sequential Application of Simplex 
Designs in Optimisation and Evolutionary Operation," Technometrics, Vol. 4, 
pp. 441-461, 1962. 

Standridge, C.R. and J. Tsai, "A Method for Computing Discrete Event Simulation 
Performance Measures from Traces", Simulation, Vol. 56, No. 6, pp. 384-391, 
1992. 

Starr, N., "The Performance of a Sequential Procedure for the Fixed-Width Interval 
Estimation of the Mean," Annals of Mathematical Statistics ,Vol. 37, pp. 36-50, 
1966. 



149 

-
Stuckman, B., G. Evans and M. Molloghasemi, "Comparison of Global Search Methods 

for Design Optimization Using Simulation," Proceedings of the 1991 Winter 
Simulation Conference, pp. 937-944, 1991. 

Suri, R., "Implementation of Sensitivity Calculations on a Monte Carlo Experiment," 
Journal of Optimization Theory and Applications, Vol. 40., No. 4, pp. 625-630, 
1983a. 

Suri, R., "Infinitesimal Perturbation Analysis of Discrete Event Dynamic Systems: 
A General Theory," Proceedings of the 22nd Conference on Decision and 
Control, pp. 1030-1038, 1983b. 

Suri, R., "Infinitesimal Perturbation Analysis for General Discrete Event Systems," 
Journal of ACM, Vol. 34, No. 3, pp. 686-717, 1987. 

Suri, R., "Perturbation Analysis: The State of the Art and Research Issues Explained via 
the GI/GIil Queue," Proceedings of the IEEE, Vol. 77, No. 1, pp. 114-137, 1989. 

Suri, R. and J. W. Dille, "A Technique for On-line Sensitivity Analysis of Flexible 
Manufacturing Systems," Annals of Operations Research, Vol. 3, pp. 381-391, 
1985. 

Suri, R. and Y.T. Leung, "Single Run Optimization of a SIMAN Model for Closed 
Loop Flexible Assembly Systems," Proceedings of the 1987 Winter Simulation 
Conference, pp. 738-748, 1987. 

Suri, R. and Y.T .. Leung, "Single Run Optimization of Discrete Event Simulations -
An Empirical Study Using the M/M/1 Queue." IEEE Transactions, Vol. 21, 
No. 1, pp. 35-48, 1989. 

Suri, R. and M. Zazanis, "Perturbation Analysis Gives Strongly Consistent Sensitivity 
Estimates for the M/G/1 Queue," Management Science, Vol. 34, No. 1, pp. 39-64, 
1988. 

Taha, H. A., Simulation Modeling and Simnet, Prentice Hall Inc., Englewood Cliffs, 
New Jersey, 1988. 

Taha, H. A., Operations Research, MacMillan Publishing Co., 4th ed., New York, 
1987. 

Tew, J.D. and J.R. Wilson, "Metamodel Estimation Using Integrated Correlation 
Methods," Proceedings of the 1987 Winter Simulation Conference, pp. 
409-413, 1987. 

Vecchi, M.P. and S. Kirkpatrick, "Global Wiring by Simulated Annealing," 
IEEE Trans. Computer-Aided Design, Vol. 2, No. 4, pp.215-222, 19·83. 



Wilde, D.J. and C. S. Beightler, Foundations of Optimization, Prentice Hall, 
New Jersey 1967. 

Wilhelm, M.R. and T.L. Ward, "Solving Quadratic Assignment Problems by 
Simulated Annealing," IIE Transactions, Vol. 19, No. 1, pp. 107-119, 1987. 

Wilson, J.R., "Future Directions in Response Surface Methodology," Proceedings 
of the 1987 Winter Simulation Conference, pp. 378-381, 1987. 

Wilson, J.R. and A.A.B. Pritsker, "A Survey of Research on the Simulation Startup 
Problem," Simulation, Vol. 31, pp. 55-58, 1978a. 

Wilson, J.R. and A.A.B. Pritsker, "A Procedure for Evaluating Startup Policies 
in Simulation Experiments," Simulation, Vol. 31, pp. 79-89, 1978b. 

150 

Zazanis, M.A. and R. Suri, "Perturbation Analysis of GI/G/1 Queue," Queueing Systems:. 
Theory and Applications , submitted, 1986. 

Zeleny, M., Multiple Criteria Decision Making ,McGraw-Hill, New York, 1982. 

Zheng, Q., "Theory and Methods for Global Optimization - An Integral Approach," 
presented at Optimization Days Meeting, Montreal, Canada, 1986. 

Zoutendijk, G., Methods of Feasible Directions, Elsevier Science Publishers, 
Amsterdam, 1960. 



APPENDIXES 

151 



APPENDIX A 

DETAILS OF THE PHASES OF RSM 

152 



DETAILS OF THE PHASES OF RSM 

First-order Design Phase and Least Squares Estimates 

The true response surface may be written as (Myers (1971)) 

k k k 
y = J3o + LJ3ixi + LL J3ux;Xj + ... 

I I I 

An estimate of the response at (xw··• xJ is given by 

A k 
y=bo + Lbixi · 

I 

Denote N = 2k-p points in the 2k-p fractional factorial by x1 , ... , xN where 

153 

. and p is the largest integer such that the number of design points (2k- P) is greater than k, 

the number of factors (except when k=3). 

If yj denotes the average observed response of the m iterations of a simulation 

run corresponding to point x1 then the estimate bi of J3i may be obtained from the least 

squares equation 

y= xfJ+ E. 

Given the matrix x, a function of preselected x levels, and the vector y of 

responses, the least squares method uses as an estimate of JJ , that vector which results in 

a minimum value for the sum of squares of the errors. 



n 
L= l:e~ 

. 1 l 
l= 

L can be written 
A A 

L = (y- xJ3)1(y- xl3) 

Upon expanding the right-hand side of the above equation 

L = y'y -2J3'x'y + 13'x'xl3 

di = -2x1y + 2(x1x)6 
a13 

Setting the partial derivative to zero and solving for 13, we have the following least 

squares estimator 
A 

b = 13 = (x1x)-1x1y 

where 

1 
I 

bo Yo XO 

b1 1 
I 

YI XI 
b= y= x= 

bk Yk I 
1 XN 

Because of the pattern of+ 1 's in the matrix x the bi's are given by 

N 
D· 
0 1. 

ho= N+l 

N 
LJljXji 
1 b·=--

1 N 

154 



155 

Before the steepest ascent path is followed, the adequacy of the fit must be checked. 

How well the first-order equation fits the actual response surface is measured by the lack 

of fit test. F test is used for the lack of fit. For testing the lack of fit, the appropriate test 

statistics is 

F* = MSLF 
MSPE 

where MSLF is the lack of fit mean square and MSPE the pure error mean square. 

Second-order Design Phase: 

A second order approximation can be written as 

A £ , k k 
y = bo + 2)Jixi + L L/Jijxixj 

1 1 1 

This equation can be written in matrix notation as 

y = bo + x1b + x1Bx 

where 

b1 Xt 

b2 
b= x= 

bk Xk 

2h11 b12 b1k 

b21 2h22 b2k 
B= 



The stationary point for the response function is found by solving 

a9 
- = b + 2Bx = 0 ax 

from which it follows that the stationary point xs is given by 

The predicted response at this point is 

Ys = bo + Xsb/2 

Analysis of the stationary point: 

156 

The predicted response at any point can be expressed in canonical form (Myers 

(1971)) as 

where Ys is the estimated response at the stationary point xs, 'A,/s are the eigenvalues of 

matrix B and coi 's are the linear combination of the x's. This reduction of the response 

surface to canonical form is called canonical analysis. The nature of the stationary point 

and the response surface can be determined by observing the sign and magnitude of the 

i) If all of the 'A,/s are positive, xs defines the point of predicted minimum 

response. 

ii) If all of the 'A,/s are negative, the stationary point represents a point of 

maximum response. 

iii) If the A/s differ in sign, the stationary point is a saddle point. 



APPENDIX B 

NELDER AND MEAD SIMPLEX METHOD 

157 



NELDER AND MEAD SIMPLEX METHOD 

1. Construction of the initial simplex: a starting simplex is constructed 

consisting of an initial point x1 and the following additional points (Kuester & Mize 

(1973)): 

where l;j is determined from the following table. 

J ~l.j 1;2j l;N-lj l;Nj 

2 p q q q 

3 q p q q 

N q q p q 

N+l q q q p 

N : numberof variables a : side length of simplex 

p =-a-(JN+ 1 + N-1) 
N.fi 

q = _a_(JN+ 1 -1) 
N.fi 

2. Location of a reflected point: 

xij(reflected) = xi,c + cx(xi,c - xij(worst)) 

. I [N+l ] x · (centr01d) = - ~ x · · - x · ·(worst) 
l,C N f,,J lJ lJ 

J=l 

i = 1,2, ... , N 

158 



159 

3. Location of a contracted point: 

x · ·(contracted) = x · - A(x · - x · ·(reflected)) ZJ l,C I-' Z,C ZJ i = 1,2, ... , N 

4. Location of an expansion point: 

Xij (expansion)= xi;c + 'Y(x;,;(reflected) - x;,c) i = 1,2, ... , N 



APPENDIX C 

LAW AND CARSON'S BATCH MEANS METHOD 

160 



LAW and CARSON'S SEQUENTIAL BATCH :MEANS :METHOD: 

The usual estimator of p1(1) is given by 

n-1 
I: [Yj(k)- Y(n, k)UYj+1 (k) - Y(n, k)] 
·-1 

p(n,k) = J- n 

l::CYj(k)-Y(n,k)]2 
j=l 

161 

Let Yj(k) (j=l,2, ... ,n) be the sample (batch)mean of the k observations in thejth batch 

and let 
n 
l::Yj(k) 

Y(n,k) = j=l n 

be the grand sample mean. 

However, p1(1) can be estimated by the jackknife estimator ptn,l) 

·( k) = 2 ( k) _ p 1 (n/2, k) + p2(n/2, k) P1 n, p n, 2 

where p1 and p2 are, respectively, the usual lag 1 estimators based on the first n/2 and 

the last n/2 batches. The steps of the algorithm are given below: 

Step 1: Fix n=40, f:::10, Illo=600 , m1=800, the stopping value u=0.4, and the 

relative precision 'Y >O; let i=l, collect m1 observations. 

Step 2a: Divide mi observations into fn batches of size k = mi /fn. Compute 

pj(fn,k) from Yj(k) (j=l,2, ... ,fn). If pj(fn,k) > u, go to step 3. 

If pj(fn,k) < 0, go to step 2c. Otherwise go to step 2b. 



162 

Step 2b: Divide~ into fn/2 batches of size 2k. Compute Pifnl2,2k) from Yj(2k) 

G=l,2, ... ,fu/2). If pj(fn/2,2k) < pj(fn,k) go to step2c. Otherwise, go to 

step 3. 

Step 2c: Divide ~ into n batches of size flc. Compute Y(n,flc) and 

G=l,2 ... ,n) 

If 'f,/ Y(n,flc) < y, use Y(n,flc) +'f, as an approximate 100(1-a.) percent 

confidence interval for mean v and stop. Otherwise, go to step 3. 

Step 3: Replace i by i+ 1, set~= ~ 2 , collect the additional required 

observations r and go to step 2a. 



APPENDIX D 

SAMPLE MENUS 

163 



******************************************************* 
* AUTOMATED SIMIJLATION OPTIMIZATION SYSTEM * 
******************************************************* 

> **ENTER NUMBER OF VARIABLES 
>2 
> **ENTER TYPE OF OPTIMIZATION 

1- MINIMIZATION 
0-MAXIMIZATION 

>O 

******************************************************** 
* AVAILABLE METHODS * 
******************************************************** 
* 1- RESPONSE SURFACE METHODOLOGY 
* 2- NELDER AND MEAD SIMPLEX METHOD 
* 3- HOOKE AND JEEVES PATTERN SEARCH 

* 
* 
* 

******************************************************** 
> **ENTER 1- AUTOMATIC OPTIMIZATION 

2- USER SELECTED METHOD 
>2 
> **ENTER SELECTED METHOD NUMBER 
>2 
> **ENTER INPUT VARIABLE (1) 250 
> **ENTER INPUT V ARAIABLE (2) 400 

Figure 21. Screen Display for Input Data Entry 

164 



I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ INPUT SUMMARY + 
I I I I I I I I I I I I I I I I I I I I I I 1·1 I I I I I I I I I I I I I I I I I I 11 I I I I I I 

I OBJECTIVE FUNCTION WILL BE MINIMIZED 
2 NUMBER OF VARIABLE IS 2 
3 INPUTVARIABLE(l) =250.00 
4 INPUT V ARIABLE(2) = 400.00 
5 USER SELECTED NELDER & MEAD SIMPLEX 

>** PLEASE CHECK THE INPUT** 
>**ENTER NUMBER OF CORRECTIONS AND LINE NUMBERS 

Figure 22. Screen Display for Input Verification 

165 



APPENDIX E 

QUEUEING COST MODELS 
AND 

SLAM NETWORK MODELS 

166 



167 

Introduction 

This appendix presents the system performance of the (M/M/1):(GD/oo/oo) 

queueing model which was chosen as the first test problem. Figures 23 and 24 show the 

plots of time in the system and cumulative average of time in the system. Figure 25 

shows the total cost as a function of the service level. The minimum total cost is $3.803 

with the service level of 43.383. 

The Slam network models and statements for both the (M/M/1):(GD/oo/oo) and 

the (M/M/1):(GD/N/oo) queueing models are given in this appendix. 



9 

8 

7 

~ 
~ 6 
~ 
r:/) 

~5 
r:/) 

~4 

~ 
~3 -~ 

2 

M/M/1 QUEUE TIME IN SYSTEM 

0 11,111,•1111,, ,~ir1n1r,r 1"1·11111p 1 ·, y·1 i,11rr1n1r 'U:Vlr·11 n,u, ,,,u·1ru1n,,•r 
0 2 3 4 

Thousands 

OBSERVATION 

5 

Figure 23. Time in System for MIM/1 Queue 

6 7 8 

-°' 00 



1.4 

1.2 

~ 1 U-l 
E-
r.l.) 
>-c 0.8 
r.l.) 

z ~ 0.6 
U-l 
:;;E 
~ 0.4 
E-

0.2 

0 
0 

TIME IN SYSTEM CUMULATIVE AVERAGE PLOTS 
FOR M/M/1 QUEUE MODEL 

1 2 3 4 5 6 7 8 
Thousands 

OBSERVATION 

Figure 24. Time in System Cumulative Average Plots for M/M/1 Queue -0\ 
\0 



14 

12 

10 

.... 
t/.l 
0 8 
u 

6 f- \ 

TOTAL COST FUNCTION 
M/M/1 QUEUE 

' 4 I- ~ ...... 

2 
31 41 51 61 71 81 

Level of Service 

figure 25. Total Cost Function for M/M/1 Queue --.l 
0 



171 

EXPON(2,4) 

1----=E::.:X::..;PO::.:Nc.:...;(..:;X::.:X:..!.(.:::.l.t....) !..:.' S~)c..=1:...m.-i TINS 

@ 0 

XX(14) = XX(14)+1 
INT(l) TIME IN SYS INF~~ STAT 1--~~~~~~~~-1 1 

XX(ll) = TNOW-ATRIB(l) 

TINS 

SLAM NETWORK FOR M/M/1 QUEUE 



172 

·*********************************************************************** 
' ·* ' ·* ' 
·* 

SLAMSYSTEM NETWORK MODEL FOR M/M/1 QUEUEING EXAMPLE 
* 
* 
* ' ·*********************************************************************** 

' 
XX(l) : input variable for mean service time 

CREATE,EXPON(2),, 1,, 1; 
ACTIVITY; 

KUY QUEUE(l),,,; 
ACTIVITY(l)/1,EXPON(XX(l)),,TINS; 

Calculate Time in system and number of observations 

TINS ASSIGN,XX(l4)=XX( 14)+ I ,XX( 11 )=TNOW-A TRI.B( 1 ), 1; 
ACTIVITY; 

MMI COLCT,INT(l),TIME IN SYS; 
ACTIVITY,,,ST AT; 

STAT EVENT,l; 
ACTIVITY; 

ENDP TERMINATE; 
END; 



173 

EXPON(2,5) 

1 7 ) . GE . XX ( 2) 

TRUN 

XX(17) = XX(17)-1 
EXPON(XX(l), 

XX(14) = XX(14)+1 

XX(ll) = TNOW-ATRIB(l) 

~NT ( 1 l I TIME IN SYS' INF )1---·--.... -<[m) 
1 §iJ g 

SLAM NETWORK FOR M/M/1 QUEUE WITH FINITE CAPACITY 



174 

·*********************************************************************** 
' ;* SLAMSYSTEM NETWORK MODEL FOR (M/M/1):(GD/N/co) EXAMPLE * 
·*********************************************************************** 
' 

CREATE,EXPON(2,5),,l,,l; 
ACTIVITY; 

CHK GOON,l; 
ACTIVITY,,XX(l 7).LT.XX(2); 
ACTIVITY,,XX(l 7).GE.XX(2),TRUN; 
ASSIGN,XX(l 7)=XX(l 7)+ 1; 
ACTIVITY,,,KUY; 

KUY QUEUE(l),,,; 
ACTIVITY(l)/1,EXPON(XX(l),2); 
ASSIGN,XX(l 7)=XX(l 7)-l,XX(14)=XX(l4)+ l,XX(l l)=TNOW-ATRIB(l),l; 
ACTIVITY,,,MMl; 

MMI COLCT(l),INT(l),TIME IN SYS; 
ACTIVITY; 

STAT EVENT,l; 
ACTIVITY,,,ENDP; 

ENDP TERMINATE; 

TRUN GOON,l; 
ACTIVITY,,TNOW.GT.20000; 
ACTIVITY,,TNOW.LE.20000,ZAAB; 

LST ASSIGN,XX(l6)=XX(l6)+1; 
ACTIVITY; 

ENDL TERMINATE; 
ZAAB TERMINATE; 

END; 



APPENDIX F 

CONTINUOUS REVIEW INVENTORY SYSTEMS 

175 



176 

CONTINUOUS REVIEW INVENTORY SYSTEMS 

A single-item continuous review inventory system was chosen as an illustrative 

example. The inventory position was reviewed at each demand occurrence. Whenever 

the inventory position dropped to or below a specified reorder point, a fixed amount of 

inventory (reorder quantity) was ordered. The demand quantity and the lead time to 

receive an ordered quantity were random. Any unsatisfied demand was considered lost. 

Figure 26 shows the behavior of the general continuous review inventory system. The 

objective was to maximize the net profit and to find optimal levels for the reorder 

quantity and the reorder point. The costs included a holding cost, a stock-out cost and 

the cost of management procedures such as inventory review and ordering costs. By 

combining costs and revenues, the objective function, profit, for an inventory policy for 

T time units can be defined as (Pritsker, Sigal and Hammesfahr (1989)) 

P = PPU*TS - CPU*TO - HC* ASV*T - CPO*TO - CLS*TLS · 

where 

TS : total sales in period T (units) 

PPU : price per unit ($/unit) 

CPU : cost per unit ($/unit) 

TO : total ordered inventory in period T (units) 

CPO : cost per order ($/order) 

TO : total orders in period T 



Inventory 

'·---·~····· *-····*-········-·--··""·""·-----··* ... ., i ·-* .. ·-···---··---··-·········-·'"···-·-*·-.... ·-·---~ ........ ---.. ··* ........... -......... -........ . , 0 R O R 0 

:1 r-l ... 
4 

3 

2 

Lost sales 

Legend: 
t arrival of Demand 
0 - order 5 units 
R - receive 5 units 

r---·--........ 
lnvttory Position 

lnven~ry-on-hand 

Reorder Point. 

Time 
Lost sales 

Figure 26. Behavior of Continuous Review Inventory System ..... 
....:a 
....:a 



HC : holding cost of inventory ($/unit time) 

ASV : average inventory on hand in period T (units) 

CSL : cost per lost sale ($/unit) 

TLS : total lost sales in period T ( unit) 

T : time interval 

TS*PPU :total revenue 

TO*CPU : total inventory cost 

H* ASV*T : total holding cost 

CLS*TLS : total cost of lost demand 

CPO*TO : total cost of ordering 

The following performance variables was used to calculate profit. 

- level of inventory on hand 

- number of sales 

- number of orders 

- number of lost sales 

178 

Although it is implicit, these performance variables were functions of the reorder point 

and reorder quantity. The initial inventory on hand was considered constant and could be 

set at any value between zeto and infinity. Figure 27 shows the time plot of the 

cumulative average profit for the continuous review system in which no backorders were 

allowed. 



.-.. 
~ ..__,, 
E--~ 
0 ~ 
~ § 
t:l-t en 
U.:l g 

~ ~ 

! 

150 

CONTINUOUS REVIEW INVENTORY SYSTEM 
CUMULATIVE AVERAGE TIME 

~ ,.- _. vnmOMRaa LWJMaoa...,. 
~--

dl!Jlll'lfl•~~IIIIIH!.mfflt_._W_M _______ ,l!IIIIIIP<lflll'IIWl.,_"Nllllll'lll"IIIMII""" ..... ..,...,::::::::::::::: 

100 ~ ,ti~. 111 

r -
50 ~ 

0 

-50 ,._ 

-100 .... 

-150 _J _l _l I I I I I I I 

0 100 200 300 400 500 600 700 800 900 1000 
OBSERVATION 

Figure 27. Cumulative Average Profit Plots for Inventory System 

1100 

--..J 
\0 



APPENDIX G 

SLAM NETWORK FOR THE CONTINUOUS 
REVIEW INVENTORY PROBLEM 

180 



1 

1----1~ ASNl 

ASN4 

0,XX(l). .XX(2) 

~ 
II = EX PON ( 2 0 . , 1) 

XX(lO) = II 
~/----=-0~,X=X~(~4~)~.~GE=.:..:.X~X~(~l~O~)_.~ASN2 

ASNl 
0,XX( .LT.XX(lO) 

ASN3 

XX(l) = XX(l)-XX(lO) 

XX(4) = XX(4)-XX(l0) IN 

XX(ll) = XX(ll)+XX(lO) 

Fl------1~ 

) 
I ASN2 I 

XX(ll) = XX(ll)+XX(4) 

XX(l) = XX(l)-XX(4) I NF 1--------~ 
I 

: / 

I ASN3 I 

181 



XX(9) = XX(9)+1 
xx (8) ,1 

II = UNFRM < 3 . , g • , 2 l rnF1111---=:::....:....:::~'--.-..11111CoL1 

ASN4 

0 < 4 l I SAFETY sroc5 rn?1111-----___...,._.,AsN6 J 

I COLll ~ 

XX ( 4 l = XX ( 4) +XX ( 3 l INFll------11111>1~ 

ASN6 

182 



APPENDIX H 

USER'S GUIDE 

183 



184 

USER'S GUIDE 

This appendix is designed to provide the user with useful information about the 

developed system. The automated simulation optimization system (ASOPT) is 

composed of a main program and 32 subroutines. Figure 28 shows the structure of the 

system. Brief descriptions of each module and submodule are given on the following 

pages. These descriptions provide information about the purpose of the module and 

. other modules which call and are called by it. . The developed system permits a 

maximum of 10 controllable factors to be considered in a search for a maximum or a 

minimum simulation respons~. Usage of the simulation optimization system should 

require only a minimal amount of effort on the part of the user. Two relatively easy 

tasks must be accomplished: 

1. The system must be interfaced with the simulation to which it is to be applied. 

2. The necessary input must be provided. 

In order to achieve the desired results, a successful interface of the simulation 

program with-the system is a must. The interface can be characterized by four basic 

areas: 

- inter-program communication, 

- simulation input considerations, 

- factor range definitions, 

- requirements for computer resources. 



' HOOKE 

-· OBJECT 

_I -SLAM-EVENT 

I 
BIAS 
I 

BATCH 

AS OPT 

r 
EXECUTIVE CONTROLLER 

I 
SIMPLEX 

I OBJECT 

. I SLAM - EVENT 

I 
BIAS 

I 
BATCH 

t 
RSM 

INIT 

. INPUT 

-PATH 

SECOND 

LOBJECT 

I 
-· SLAM - EVENT 

BIAS 

I 
BATCH 

Figure 28. Structure of the Automated Simulation Optimization Program -00 
V, 



186 

Table IX. ASOPT Modules and Their Functions 

PROGRAM PURPOSE CALLS CALLED BY 

BATCH Determine the steady state EVENT-Slam 

BIAS Detect the initial bias in the EVENT-Slam 
output data 

BMATRX Form the Bmatix and returns LOCATE SECOND 
its largest eigenvalues EI GEN 

CENTER 

DONE Print messages, results INPUT 
and ends the search FIRST 

PATH 

EI GEN Find eigen values of a matrix CENTER BMATRX 

FACTOR Construct fractional factorial FIRST 
design 

FIRST Fit first-order surface FACTOR RSM 
REST AR 
SIMUL 
WRITER 
DONE. 

HOOKE. Find the minimum of a OBJECT MAIN 
multivariable uncon-
strained nonlinear 
objective function 

INIT Initailize the data storage RSM 

INPUT Read the input data SIMUL RSM 
REST AR 
DONE 
WRITER 

OBJECT Call the simulation SIMUL 



187 

Table IX. ASOPT modules and their functions ( continued) 

PROGRAM PURPOSE CALLS CALLED BY 

ORDER Put the elements of matrix PATH 
in descending order 

PATH Perform experiments along the SIMUL RSM 
path of steepest ascent ORDER 

DONE 

QUADR Obtain the coefficients of a ---- SECOND 
second order model 

REST AR Restart the program INPUT 
FIRST 
PATH 
SECOND 

RSM Conduct the search INIT MAIN 
INPUT 
FIRST 
PATH 
SECOND 

SECOND Fit a second order design SIMUL RSM 
QUADR 
BMATRX 

SIMPLEX Find the minimum of a 
objective function using 

the Nelder and Mead Simplex OBJECT MAIN 
algorithm 

SIMUL Obtain the simulation SIM INPUT 
response FIRST 

PATH 
SECOND 
CS TOP 

WRITER Print the values of factors FIRST 
to the user chosen media INPUT 



188 

Inter-Program Communication: In order to use the simulation optimization 

program in conjunction with the simulation program, the simulation program must be 

called from main program. Regardless of the type of the routine which might call the 

simulation, the simulation program must be called from the subroutine "OBJECT". It is 

the user's responsibility to make any necessary modifications , if a different simulation 

language is desired to be used instead of SLAM. Communication between the routines 

and the OBJECT routine is achieved by I/0 operations. 

Simulation Input Considerations: All inputs are passed via data files. Input to 

SLAM is a data file "SIN.DAT" which is written by an optimization routine and read by 

SLAM. The first 10 XX(I) SLAM variables are reserved for input purposes. Therefore, 

the user must arrange or change other input elements within the simulation so that the 

controllable factor values assigned by the simulation optimization system are not altered. 

The user must be certain that the simulation program does not destroy the values of the 

controllable factors. 

The response obtained from each simulation run is written to the file 

"SOUT.DAT" which is read by the optimization routines. All the files used in the 

system are direct access, formatted files. 

Factor Range Definition: All of the programs assume that each controllable 

factor is continuous and real valued. A minor problem might be encountered if a factor 

should have an integer value. Some of the routines have been modified to handle integer 

results if it is supplied with the necessary information. In that case, the user must made 

the necessary arrangements to round up or round down to the nearest integer and 

experiment with these input values. 



189 

Requirements for the Computer Resources: All of the programs were 

implemented and executed on a 486-33 Mhz IBM compatible personnel computer. The 

programs were written in Microsoft FORTRAN version 5.1 and simulation programs 

were written in SLAM and run on SLAMSYSTEM version 2.0. 

Input-Output Requirements and Options: The user must input all data through the 

keyboard. Once all of the input are entered, the data is verified by printing all of the 

entries on the screen. After verification or modification by the user, the input data are 

written into the file "SIN.DAT" to be read by the simulation program. 

Communication between the simulation program and the optimization modules is 

achieved by writing to and reading from the data file "SOUT.DAT". Finally, the results 

of the optimization modules are written into the file "OPT.DAT". Those three files are 

the minimum requirements of the successful execution of the automated simulation 

optimization system. The user must take necessary precautions when using those files 

which are direct access, formatted files. Other than those files, system messages were 

printed on the screen whenever they were necessary. Due to I/0 restrictions of the 

FORTRAN language and long simulation response times, user interaction was minimized 

by limiting the number of "read from screen" statements. 

Input to the system is done in two steps; - numeric input( e.g., number of 

variables, initial variables, etc.) and answers to the questions asked by the executive 

controller (needed only if ASOPT is used). 

The output contains information about the optimum response, starting point, 

optimal points, number of function evaluations, total response time and average response 



time. The user must modified the necessary routines, if he/she wants to customize 

standard system output, or needs extra information about the system. 

190 



APPENDIX I 

COMPUTER LISTINGS 

191 



C**************************************************************** 
C** ** 
C** 
C** 
C** 

AUTOMATED DISCRETE EVENT 
SIMULATION OPTIMIZATION SYSTEM 

** 
** 
** 

C**************************************************************** 
COMMON /PRG/X(IO),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 
CHARACTER CHR *9,MET(3)*30 

192 

DATA MET/'RESPONSE SURFACE METHOD','NELDER & MEAD SIMPLEX', 
&'HOOKE & JEEVES'/ 

OPEN( 40,FILE='SIN.DAT',ACCESS='DIRECT',FORM='FORMATTED', 
&RECL=20) 
CHR='MINIMIZED' 
WRITE( 6, 10) 

10 FORMAT(Tl0,51('*'),/T10,'*',T60,'*'/Tl0,'*',Tl5, 
&40HAUTOMATED SIMULATION OPTIMIZATION SYSTEM,T60,'*'/T10, 
&'*',T60,'*'/Tl 0,51('*')) 
PRINT*,'** ENTER 1 FOR OPTIMIZATION' 
PRINT*,'** 2 FOR STATISTICAL ANALYSIS' 
READ*,IANS 
IF(IANS.EQ.2) GO TO 500 
PRINT*,'** ENTER NUMBER OF VARIABLES' 
READ*,NVAR 
PRINT*,'** ENTER TYPE OF THE OPTIMIZATION' 
PRINT*,' I-MINIMIZATION' 
PRINT*,' 0-MAXIMIZATION' 
READ*,MIN 
PRINT*,'** ENTER NUMBER OF SIMULATION RUNS ALLOWED' 
PRINT*,' 0 - CPU TIME GIVEN' 
READ*,N 
IF(N.EQ.O) THEN 

PRINT* ,'ENTER CPU TIME' 
READ*,CPU 

END IF 
WRITE( 6, 11) 

11 FORMAT(///,TI0,51('*')/,TI0,'*',5X,'AV AILABLE METHODS',T60, 
&'*',/TI0,51('*')) 
WRITE(6,12) 

12 FORMAT(TIO,'*', 2X,'1 -RESPONSE SURFACE METHODOLOGY',T60,'*', 
&/T10,'*',2X,'2 - NELDER AND MEAD SIMPLEX METHOD',T60,'*', 
&/T10,'*',2X,'3 -HOOKE AND JEEVES PATTERN SEARCH',T60,'*', 
&/Tl0,51('*')) 
PRINT*,'** ENTER I-AUTOMATIC OPTIMIZATION' 
PRINT*,' 2- USER SELECTED METHOD' 
READ*,MUSER 
IF(MUSER.EQ.2) THEN 



PRINT*,'** ENTER SELECTED METHOD NUMBER' 
READ*,METNUM 

END IF 
99 DO 15 I=l,NV AR 

WRITE(6,16) '** ENTER INPUT VARIABLE(',!,')' 
16 FORMAT(T2,A,Il,A,\) 

READ*, X(I) 
15 CONTINUE 
100 WRITE(*, 17) 
17 FORMAT(///,Tl0,51('+1,fflO,'+',lOX,'INPUT SUMMARY',T60, 

&'+',ffl0,51('+1) 
IF(MIN.EQ.O) CHR='MAXIMIZED' 
WRITE(*,18) CHR 

18 FORMAT(T2,'l',T20,'0BJECTIVE FUNCTION WILL BE ',A) 
WRITE(6,19)NVAR 

19 FORMAT(T2,'2',T20,'NUMBER OF V AIABLES IS ',12) 
DO 20 I=l,NV AR 

WRITE(6,21) 2+1,'INPUT VARIABLE(',!,')= ',X(I) 
21 FORMAT(T2,Il,T20,A,Il,A,F8.4) 
20 CONTINUE 

IF(MUSER.EQ.2) THEN 
WRITE(6,22)3+NV AR,'USER SELECTED ',MET(METNUM) 

ELSE 
WRITE(6,22)3+NV AR,'EC SELECTED ',MET(METNUM) 

22 FORMAT(T2,Il,T20,A,A) 
END IF 
WRITE(6,23) 

23 FORMAT(/ff 10,'** PLEASE CHECK THE INPUT **',ff 10,'** ENTER 
& NUMBER OF CORRECTIONS AND LINE NUMBERS') 
READ*,NERROR,LNUM 
IF(NERROR.GT.O) THEN 

IF(LNUM.EQ.1) THEN 
PRINT* ,'ENTER OBJ. FUNCTION TYPE' 
READ*,MIN 

ELSEIF(LNUM.EQ.2) THEN 
PRINT*,'ENTER NUMBER OF VARIABLES' 
READ*,NVAR 
GOT099 

ELSEIF(LNUM.EQ.(3+NV AR)) THEN 
PRINT*,'ENTER THE METHOD CHOOSEN' 
READ*,METNUM 

ELSE 
PRINT* ,'ENTER V ARIABLE',LNUM-2 
READ* ,X(LNUM-2) 

END IF 
GOTO 100 

193 



END IF 
IF(MUSEREQ. l) THEN 

CALL GEITIM(IHOUR,IMIN,ISEC,IHSEC) 
PS=IHOUR *3600+1MIN*60+ISEC+REAL(IHSEC)/100. 
CALLRUNSIM 
CALL GETTIM(IHOUR,IMIN,ISEC,IHSEC) 
PE=IHOUR *360o+IMIN*6o+ISEC+REAL(IHSEC)/100. 
DIF=PE-PS 
NP=CPU/DIF 
PRINT*,'** PILOT RUN TAKES',DIF,'SECONDS' 

194 

PRINT*,'** WITH THE GIVEN TIME YOU CAN MAKE A VERAGE',NP,' R 
%UNS' 

PRINT*,'** DO YOU WANT TO CHANGE TIME LIMIT' 
PRINT*,'** 1-YES 0-NO' 
READ*,ITIME 
IF (ITIME.EQ.1) THEN 

PRINT*,'MAXIMUM ALLOWED COMPUTER TIME' 
READ*,CPU 

END IF 
CALL RULE(NV AR,N,CPU,METNUM) 

END IF 
GO TO {ll l,222,333)METNUM 

111 CALLRSM 
IF(IRID.EQ.1) THEN 

IF(NREM.GT.2*NV AR.ORCPU.GT.2*NV AR*DIF) THEN 
PRINT*,'** SOLUTION IS OUT OF EXPERIEMTAL REGION' 
PRINT*,** NEED TO SWITCH ANOTHER CONSTRAINED METHOD' 

* CALL HOOKE 
ELSE 

PRINT*,'** NOT ENOUGH COMPUTER TIME LEFT' 
END IF 

END IF 
GOTO 666 

222 CALL SIMPLEX 
GOT0666 

333 CALL HOOKE 
666 GOTO{l l 0,220,330)ITERM 
110 PRINT*,'** SUCESSFUL TERMINATION' 

IF(CPU.GT.2*NVAR*DIF) THEN 
PRINT* ,'**WOULD YOU LIKE TO EXPLORE SURF ACE' 
READ*,IANS 
IF(IANS.EQ.1) THEN 

DO 115 I=l,NV AR 
115 READ(54,*)X(I) 

CALL RSM 
END IF 



END IF 
GOT0999 

220 PRINT*,'** FORCED TERMINATION DUE TO UNSUFFICIENT 
* RESOURCES' 
PRINT*,'** WOULD YOU LIKE TO CONTINUE? I-YES 0-NO' 
READ*,IANS 
IF (IANS.EQ.1) THEN 

195 

PRINT*,'WOULD YOU LIKE TO REST ART THE ALGORITHM I-YES 0-NO' 
READ*,IANS 
IF(IANS.EQ.1) THEN 

PRINT*,'** RESTART FROM THE BEST POINT FOUND SOFAR I-YES' 
READ*,IANS 
IF(IANS.EQ.1) THEN 

UBEST=l 
ELSE 

PRINT*,'**** ENTER INPUT VARIABLES' 
DO 138 I=l,NVAR 

READ*,X(I) 
138 CONTINUE 

END IF 
GO TO (88,89,90)METNUM 

88 CALL RSM 
GOT0999 

89 CALL SIMPLEX 
GOT0999 

90 CALL HOOKE 
GOT0999 

ELSE 
UBEST=l 
GOT0(95,96,97) METNUM 

95 CALL SIMPLEX 
GOT0999 

96 CALL HOOKE 
GOTO 999 

97 IF(NVAR.EQ.1) THEN 
CALL HOOKE 

ELSE 
CALL SIMPLEX 

END IF 
END IF 

END IF 
GOTO 999 

330 PRINT* ,'**THE ALGORITH CONVERGES UN ACCEPTABLY SLOW' 
PRINT*,'** WOULD YOU LIKE TO CONTINUE? I-YES 0-NO' 
READ*,IANS 
IF(IANS.EQ.1.AND. CPU.GT.2*N*DIF) THEN 



PRINT*,'**** ENTER INPUT VARIABLES' 
DO 140 I=l,NV AR 

READ*,X(I) 
140 CONTINUE 

GOT0(151, 152, 153)METNUM 
151 CALL SIMPLEX 

GOT0999 
152 CALL HOOKE 

GOT0999 
153 IF(NVAR;GT.1) CALL SIMPLEX 

END IF 
GOT0999 

500 PRINT*,'** ENTER NUMBER OF VARIABLES' 
READ*,NVAR 
PRINT*,'** ENTER VARIABLES' 
READ* ,(X(n,I=l,NV AR) 
WRITE( 40,100,REC=l) REAL(NV AR) 
DO 550 I=l,NV AR 

WRITE(40,100,REC=I+l) X(I) 
550 CONTINUE 

CALLRUNSIM 
PRINT* ,'DO YOU WANT TO CONTINUE? 1-YES' 
READ*,IANS 
IF(IANS.EQ.1) GO TO 500 

999 STOP 
END 

SUBROUTINE RULE(NV AR,N,CPU,METNUM) 
MAXTIM=604800 
PRINT*,'** DO YOU HA VE INFORMATION ABOUT THE RESPONSE 
& SURFACE? YES-1, N0-0' 
READ*,INFO 
IF(INFO.EQ.1) GOTO 500 

100 IF(NV AR.EQ.1) THEN 
METNUM=3 
RETURN 

END IF 
IF(NV AR.LT.6) THEN 

IF(CPU.GE.MAXTIM) THEN 
METNUM=l 
RETURN 

ELSE 
METNUM=2 
RETURN 

END IF 
ELSE 

196 



IF(CPU.GE.MAXTIM) THEN 
METNUM=l 
RETURN 

ELSE 
METNUM=3 

END IF 
END IF 
RETURN 

500 PRINT* ,'**POSSIBLE RIDGES ON TE:IB RESPONSE SURF ACE' 
PRINT*,' 1-YES 0-NO' 
READ*,IRID 
IF(IRID.EQ.l) THEN 

METNUM=3 
RETURN 

END IF 
PRINT*,'** IRREGULAR RESPONSE SURFACE 1-YES, 0-NO' 
READ*,ISUR 
IF(ISUR.EQ.1) THEN 

METNUM=2 
RETURN 

END IF 
PRINT*,'** FLAT RESPONSE SURFACE? 1-YES, 0-NO' 
READ* ,IFLAT 
IF(IFLAT.EQ.1) THEN 

IF(NV AR.GT. I) THEN 
METNUM=2 

ELSE 
METNUM=3 

END IF 
RETURN 

END IF 
GOTO 100 
RETURN 
END 

SUBROUTINE RUNSIM 
OPEN(41,FILE='S0UT.DAT',ACCESS='DIRECT',FORM='FORMATTED', 

&RECL=20) 
I=SPA WNLP(O,LOC('INPUT'C),LOC('INPUT'C),INT(O)) 
J=SPA WNLP(O,LOC('INVLOST.EXE'C),LOC('INVLOST .EXE'C),INT(O)) 
K =SP A WNLP(O,LOC('OUTPUT'C),LOC('OUTPUT'C),INT(O)) 
READ(41,50,rec=l)SUM 
PRINT*, 'SUM=',SUM 
READ( 41,50,REC=4)PRERR 
IF(PRERR.EQ.1) THEN 

PRINT*,'!!! SYSTEM DID NO REACH STEADY STATE!!!' 

197 



PRINT*,' DO YOU WANT TO INCREASE RUN LENGTH' 
READ*,IANS 
IF(IANS.EQ.1) THEN 

ELSE 

END IF 
END IF 
RETURN 
END 

CALL CHANGE 

STOP 

SUBROUTINE CHANGE 
$INCLUDE: 'INTSLM.FI' 

INTEGER*2SPAWNLP 
CHARACTER *30 A(20),TEMP,FNAME 
PRINT*,'ENTER NAME OF THE CONTROL FILE' 
READ(* ,'(A)')FNAME 
OPEN(S2,FILE=FNAME,STATUS='UNKNOWN') 
PRINT*,'ENTER THE CONTROL STATEMENT TO BE CHANGED' 
PRINT*,'****** CHECK THE CONTROL STATEMENT ******' 
PRINT*,'****** SLAM CAN NOT DETECT ANY ERRORS ! ! ******' 
READ(*,'(A)')TEMP 
L=LEN_TRIM(TEMP) 
K=INDEX(TEMP(:L),',') 
DOS J=l,K-1 

IF (ICHAR(TEMP(J:J)).GT.96) THEN 
II=ICHAR(TEMP(J:J))-32 
TEMP(J:J)=CHAR(II) 

END IF 
S CONTINUE 

I=l 
10 READ(2,'(A)',end=l00) A(I) 

PRINT *,A(i) 
N=INDEX(A(I),',') 
IF(N.EQ.O) GO TO 9 
IF(N-1.LT.K-l) THEN 

C 

M=N-1 
ELSEIF(N-1.GT.K-1) THEN 

M=K-1 
ELSE 

M=N-1 
END IF 

C *** CHECK THE STRING 
C 

IF (A(I)(l:M).EQ.TEMP(l:M))THEN 

198 



C 
C *** REPLACE THE CONTROL STATEMENT 
C 

A(I)=TEMP 
END IF 

9 I= I+l 
GOTO 10 

100 PRINT* ,'END OF FILE REACHED' 
REWIND2 
DO 20 J=l,I-1 

WRITE(52,'(A)') A(J) 
20 CONTINUE 

REWIND 52 
CLOSE (52,STATUS='KEEP') 
I=SPA WNLP(O,LOC('INPUT'C),LOC('INPUT'C),INT(O)) 
J=SPA WNLP(O,LOC('BASECASE'C), 
& LOC('BASECASE'C),INT(O)) 
K=SPA WNLP(O,LOC('OUTPUT'C),LOC('OUTPUT'C),INT(O)) 
END 

199 



200 

C********************************************************************** 
C** TIIlS SUBROUTINE PERFORMS HOOKE AND JEEVE'S PATTERN ** 
C** SEARCH (MODIFIED FROM KUESTER AND MIZE (1973)) ** 
C********************************************************************** 

SUBROUTINE HOOKE 
INTERFACE TO FUNCTION SPAWNLP[C,VARYING] (MODE) 
INTEGER*2 MODE 
END 
COMMON /PRG/RK.(10),UBEST,IRID,NST,CPU,MIN,ITERM,NREM 
INTEGER*2SPAWNLP 
DIMENSION EPS(lO), Q(lO), QQ(lO), W(10),BETA(2) 
OPEN(40,FILE='SIN.DAT',ACCESS='DIRECT',FORM='FORMATTED', 
&RECL=20) .. 
OPEN(41,FILE='SOUT.DAT',ACCESS='DIRECT',FORM='FORMATTED', 

&RECL=20) 
OPEN(43,FILE='OPT.DAT',STATUS='UNKNOWN') 
PRINT*, 'ENTER 1 FOR INTERMEDIATE RESULTS, OTHERWISE ENTER O' 
READ *,IP . 
PRINT *, 'ENTER NUM. OF MAX. ITER AND NUM. OF REDUCTION IN 
* STEP SIZE' 
READ*,MAXIT,NCUT 
PRINT*, 'ENTER THE VECTOR OF INITIAL STEP SIZE FOR EACH INPUT' 
PRINT*,' RECOMMENDED 1/10 OF AP ARAMETER' 
READ*, (EPS(J), J=l,NST) 
PRINT *,'ENTER ALPHA, AND EPSILON (RECOMMENDED ALPHA=l' 
READ *, ALPHA, EPSY 
PRINT* ,'ENTER BETA FOR EVERY VARIABLE (I FOR INTEGERS)' 
READ* ,(BETA(I),I=l,NST) 
QD=O.O 

100 FORMAT(F20.5) 
CALL GETTIM(IHOUR,MIN,ISEC,IHSEC) 
ST=3600*IHOUR+60*MIN+ISEC+REAL(IHSEC)/l 00. 
CALLHOOKE(RK.,EPS,NST,MAXIT,NCUT,EPSY,ALPHA,BETA,QD,Q,QQ, 
* W,IP,IPTR,UBEST) 
CALL GETTIM(IHOUR,MIN,ISEC,IHSEC) 
PEND=3600*IHOUR+60*MIN+ISEC+REAL(IHSEC)/100. 
DIF=PEND-ST 
WRITE( 43, *)'TOT AL RESPONSE TIME=',DIF 
AVGPT=DIF/REAL(IPTR-1) 
WRITE( 43, *)'A VG. PROGRAM TIME=',AVGPT 
CPU=CPU-DIF 
NREM=N-IPTR 
END 



SUBROUTINE HOOKE(RK.,EPS,NST,MAXIT,NCUT,EPSY,ALPHA,BET A, 
* QD,Q,QQ,W ,IP,IPTR,UBEST) 
DIMENSION RK.(NST),EPS(NST),Q(NST),QQ(NST), W(NST),BETA(NST), 
& s(l00,3) 
DATA S,SSA VE/300*0,0/ 
KFLAG=O 

2 WRITE( 40, 100,REC=l )REAL(NST) 
DO 10 I=l,NST 
Q(I)=RK.(I) 
W(I)=O.O 
WRITE(40,100, REC=I+l)abs(RK.(I)) 

10 CONTINUE 
100 FORMAT(F20.5) 

KAT=O.O 
KK.1=0 
IPTR=l 
ITER=O 

70 KCOUNT=O 
ITER=ITER+ 1 
WBEST= W(NST) 
CALL SEARCH(RK.,IPTR,SUM,SFLG,S) 
IF(SFLG.EQ.1) THEN 

SSA VE=SSA VE+ 1 
GOT071 

END IF 
CALL OBJECT(SUM) 
S(IPTR, 1 )=RK.( 1) 
S(IPTR,2)=RK(2) 
S(IPTR,3)=SUM 
IPTR=IPTR+ 1 

71 WRITE( 43, *)SUM,RK.(1 ),rk(2),kkl,SFLG 
KK.1 = KK.1 + 1 
BO=SUM 
IF(MOD(ITER,4).EQ.l)PRE=SUM 
IF(MOD(ITER,4).EQ.O) THEN 

PROG=(PRE-BO)/ABS(PRE) 
IF(PROG.LT.0.5) THEN 

ITERM=3 
GOT097 

END IF 
END IF 
IF( KK.1.EQ.1) QD =SUM 
IF(KK.1.EQ.1) GO TO 201 
IF (BO.GT.QD)THEN 

KFLAG= 1 
ELSE 

201 



QD=BO 
END IF 

C**** SEARCH ST ARTS ***** 
C 
201 DO 55 I=l, NST 

QQ(I) = RK.(I) 
TSRK. = RK.(I) 
RK.(I) = RK.(I) + EPS(I) 
WRITE( 40, 100,REC=I+ 1 )abs(RK(I)) 
WRITE(43,*) RK(I) 
PRINT* ,RK.(l ),RK.(2) 
CALL SEARCH(RK,IPTR,SUM,SFLG,S) 
IF(SFLG.EQ.1) THEN 

SSA VE=SSA VE+ 1 
GOT054 

END IF 
CALL OBJECT( SUM) 
S(IPTR, 1 )=RK.( 1) 
S(IPTR,2)=RK.(2) 
S(IPTR,3)=SUM 
IPTR=IPTR+ 1 

54 WRITE(43,*) SUM,RK.(l),RK.(2),KK.l,SFLG 
KK.1 =KK.1 + 1 
W(I)=SUM 
IF ( W(I).LT. QD) GO TO 58 
RK(I) = RK.(I) - 2.0 * EPS(I) 
WRITE(40,100,REC=I+l)abs(rk(i)) 
WRITE(43,*) RK(I) 
PRINT* ,RK.(1 ),RK.(2) 
CALL SEARCH(RK,IPTR,SUM,SFLG,S) 
IF(SFLG.EQ.1) THEN 

SSA VE=SSA VE+ 1 
GOT053 

END IF 
CALL OBJECT (SUM) 
S(IPTR, 1 )=RK.( 1) 
S(IPTR,2)=RK.(2) 
S(IPTR,3)=SUM 
IPTR=IPTR+l 

53 WRITE(43,*) SUM,RK(l),RK.(2),KK.1,SFLG 
KK.1 =KK.1 + 1 
W(I)=SUM 
IF ( W(I).LT. QD) GO TO 58 
RK(I) = TSRK. 
WRITE( 40, 100,REC=I+ 1 )abs(rk(i)) 

202 



WRITE( 43, *) RK(I) 
KCOUNT = KCOUNT + 1 
IF (I.EQ.1) THEN 

W(I)=BO 
ELSE 

W(I) = W(l-1) 
END IF 
GOT055 

58 QD=W(I) 
QQ(I) = RK(I) 

55 CONTINUE 
WRITE{ 43, *)(RK.(I),I=l ,NST) 
IF (IP) 60,65,60 

60 PRINT*, KK.1 
PRINT*, ( RK.{I), I=l, NST) 
PRINT*,'** DO YOU WANT TO CONTINUE? 0-NO' 
READ*,IANS 
IF(IANS.EQ.O) THEN 

STOP 
ELSE 

PRINT*,'**DO YOU WANT TO CHANGE PARAMETERS? 1-YES' 
READ*,IANS 
IF{IANS.EQ.1) THEN 

PRINT*,'START ALL OVER? 1-YES' 
READ*,IA 
IF{IA.EQ.1) THEN 

PRINT*,'ENTER PARAMETERS' 
READ* ,{RK{I),I=l,NST) 
GOT02 

ELSE 
PRINT*,'ENTER 1 STEP SIZE, 2 ALPHA, 3 BETA' 

GO TO (301,302,303) 
301 PRINT*,'ENTER STEP SIZE' 

READ* ,{EPS{I),I=l,NST) 
GOT065 

302 PRINT*,'ALPHA' 
READ* ,ALPHA 
GOT065 

303 PRINT*,'BETA FOR EACH PARAMETER' 
READ* ,{BETA{I),I=l ,NST) 

END IF 
END IF 

END IF 
C 
C TEST FOR THE TERMINATION 
C 

203 



65 IF (KK.1.GT.MAXIT) GO TO 94 
IF ( KAT. GE. NCUT) GO TO 94 
IF ( ABS(W(NST)-WBEST) .LE. EPSY) GO TO 95 

C 
C **** IF ALL AXIS FAIL, REDUCE THE STEP SIZE*** 
C 

IF (KCOUNT.GE .NST) GO TO 28 
DO 26 I= l,NST 

RK(I) = RK(I) +ALPHA* (RK(I)- Q(I)) 
IF(RK(2).LE.O) RK(2)=1 
WRITE( 40, 100,REC=I+ 1 )abs(RK(I)) 

26 CONTINUE 
WRITE( 43, *)(RK(I),I=l,NST) 
DO 25 I = 1, NST 

25 Q(I) = QQ(I) 
GOTO 70 

28 KAT=KAT+l 
IF (KFLAG. EQ. 1) GO TO 202 
GOT0204 

202 KFLAG=O 
DO 203 I=l,NST 

RK(I) = Q(I) 
WRITE( 40, 100,REC=I+ 1 )abs(RK(I)) 

203 CONTINUE 
WRITE( 43, *)(RK(I),I=l,NST) 

204 DO 80 I=l,NST 
EPS(I) = EPS(I) * BET A(i) 

80 CONTINUE 
GOT070 

C 
C**** PRINT RESULTS ** 
C 
94 ITERM=2 

GOT097 
95 ITERM=l 

GOT097 
97 WRITE (43,11) (EPS(I), i=l, NST) 
11 FORMAT(lX,20HTHE FINAL BPS ARE: ,4F20.8/) 

WRITE(43, 12) (RK(I),I=l,NST) 
12 FORMAT (lX, 20HTHE FINAL RK ARE , 4F20.8/) 

WRITE(43,13) QD 
13 FORMAT ( lX, 25HTHE MINIMUM REPONSE IS :,F20.8/) 

WRITE(43,14)KK.1 
14 FORMAT(lX, 32HNUMBER OF FUNCTION EVALUATIONS =,14) 

DO 15 I=l, NST 

204 



PRINT *, I,RK(I) 
15 CONTINUE 

WRITE(43,16) INT(SSA VE) 
16 FORMAT(lX,'NUMBER OF SEARCHES SAVED =',I3) 

RETURN 
END 

C 
C*** OBJECTIVE FUNCTION 
C 

SUBROUTINE OBJECT (SUM) 
C 
C** CALLSLAMPROGRAM 
C 

C 

I=SP A WNLP(O,LOC('INPUT'C),LOC('INPUT'C),INT(O)) 
J=SPA WNLP(O,LOC('INVLOST.EXE'C),LOC('INVLOST.EXE'C),INT(O)) 
K =SP A WNLP(O,LOC('OUTPUT'C),LOC('OUTPUT'C),INT(O)) 

C ** WRITE RESULT OF SIMULATION TO A OUTPUT FILE 
C 

READ( 41,50,REC=4)ICHK 
IF(ICHK..EQ.1) GO TO 60 
READ( 41,50,rec=l)SUM 
PRINT * 'SUM=' SUM ' . ' . 
IF(MIN.EQ.O) SUM=-SUM 

50 FORMAT(F20.5) 
RETURN 

60 PRINT*,'**SYSTEM DID NOT REACH STEADY STATE' 
PRINT* ,'NEEDS LONGER RUNS' 
STOP 

RETURN 
END 

205 



206 

C********************************************************************** 
C* THIS SUBROUTINE SEARCHES PREVIOUS DATA POINTS TO * 
C* PREVENT REDUNDANT OBJECTIVE FUNCTION EVALUATIONS * 
C********************************************************************** 

SUBROUTINE SEARCH(RK,IPTR,SUM,SFLG,S) 
REAL S(l00,3) ,RK.(2) 
SFLG=O 
DO 10 I=l,IPTR-1 

IF(RK.(l ).EQ.S(I, 1 ).AND.RK.(2).EQ.S(I,2)) THEN 
SFLG=l 
SUM=S(I,3) 
RETURN 

END IF 
10 CONTINUE 

RETURN 
END 



207 

C********************************************************************** 
C* TIDS SUBROUTINE PERFORMS NELDER AND MEAD SIMPLEX SEARCH * 
C* (MODIFIED FROM KUESTER & MIZE (1973)) * 
C********************************************************************** 

SUBROUTINE SIMPLEX 
INTERFACE TO FUNCTION SPA WNLP[C,V ARYING] (MODE) 
INTEGER*2 MODE 
END 
INTEGER*2 SPA WNLP 
COMMON /PRG/XX(lO),UBEST,IRID,N,CPU,MIN,ITERM,NREM 
COMMON/Nl/NUMBER,NSA VE,TOTRES 
DIMENSION X(3,2), XCEN{3,2), XREF(3,2), XCON(3,2),XEX{3,2),Z(3) 
INTEGER AP 
OPEN(40,FILE='SIN.DAT',ACCESS='DIRECT',FORM='FORMATTED', 

&RECL=20) 
OPEN(41,FILE='SOUT.DAT',ACCESS='DIRECT',FORM='FORMATTED', 

&RECL=20) 
OPEN( 43,FILE='OPT.DAT',STATUS='UNKNOWN') 
NUMBER=O 
NSAVE=O 
TOTRES=O 
WRITE(40,l l l,REC=l)REAL(N) 

111 FORMAT(F20.5) 
PRINT *,'ENTER MAXIMUM NUMBER OF ITERATIONS' 
READ*,MAXIT 
PRINT *, 'ENTER 1 FOR INTERMEDIATE O FOR FINAL RESULTS' 
READ*, IP 
PRINT*, 'ENTER REFLECTION, CONTRACTION AND EXPANSION 

COEFFIENTS' 
PRINT*,'(--RECOMMENDED 1,.5,2)' 
READ *, ALFA, BETA, GAM 
PRINT*, 'ENTER CONVERGENCE PARAMETER' 
READ *,ACC 
PRINT * ,'ENTER THE SIDE LENGTH OF SIMPLEX' 
READ*,A 
DO 112 J=l,N 

IF(UBEST.EQ.1) THEN 
X( l ,J)= X(NP l ,J) 

ELSE 
X(l ,J)=XX(J) 

END IF 
112 CONTINUE 

C 
C *** SET INITIAL SIMPLEX *** 
C 

Q = (A/(N* SQRT(2.0))) * ((N+l)**.5 -1) 



P ={A/(N*SQRT(2.0))) * ((N+l)**.5 + N-1) 
M=N+l 
DO 210 I=2,M 

AP= 1 
DO 211 J=l,N 

AP=AP+l 
IF (AP .EQ. I) THEN 

X(I,J) = X( l ,J) + P 
ELSE 

X(I,J) = X( l ,J) + Q 
END IF 

211 CONTINUE 
210 CONTINUE 

NPl=N+l 
ITR=O 
NFC=O 

250 DO 220 I = l,NPl 
PRINT* ,I,X(I, 1 ),X(I,2) 
CALL OBJECT(I,X,Z,N,NPl) 
PRINT* ,Z(I) 

220 CONTINUE 
NFC=NFC+NPl 
ITR=ITR+l 
IF (ITR.GT.MAXIT) GO TO 295 
IF (IP)258,262,258 

258 WRITE(*,221) ITR 
221- FORMAT (/,2X, 17IDTERATION NUMBER ,I3) 

DO 222 J =l,NPl 
222 WRITE(43,206)(J,I,X(J,I), I=l,N) 
206 FORMAT(/,2(2X,2HX(,I2,1H,,I2,4H) =, E12.5)) 

WRITE (43,207) (I,Z(I), I=l,NPl) 
207 FORMAT(/,2X,2HF(,12 ,4H) = ,El6.8) 

C 

PRINT* ,'DO YOU WANT TO CONTINUE 1-YES' 
READ*,IANS 
IF(IANS.EQ.1) GO TO 262 
ITERM=3 
STOP 
RETURN 

208 

C *** FIND MAXIMUM AND MINIMUM VALUES FOR OBJECTIVE FUNCTIONS 
C 
262 ZHI = AMAX1(Z(l),Z(2),Z(3)) 

ZLO = AMINl(Z(l),Z(2),Z(3)) 
C 
C *** FIND THE WORST POINT 
C 



DO 265 I=l,NPl 
IF (ZHI.EQ.Z(I)) GO TO 270 

265 CONTINUE 
270 K=I 
C 
C *** CALCULATE CENTROID 
C 

EN=N. 
DO 271 J=l,N 

SUM=O.O 
DO 272 I=l,NPl 

IF (K.EQ.I) GO TO 272 
SUM= SUM+ X(I,J) 

272 CONTINUE 
XCEN(K,J) = SUM I EN 

271 CONTINUE 
I=K 
CALL OBJECT (I,XCEN,Z,N,NPl) 
NFC=NFC+l 
ZCEN=Z(I) 
SUM=0.0 
DO 273 I =l,NPl 

IF (K.EQ.I) GO TO 273 
SUM= SUM+(Z(I)"'.ZCEN)*(Z(I)-ZCEN)/EN 

273 CONTINUE 
EJ = SQRT(SUM) 
IF (EJ.LT.ACC)THEN 

ITERM=l 
GOT0298 

END IF 
DO 274J=l,N 

XREF(K,J) = XCEN(K,J) + ALFA*(XCEN(K,J)-X(K,J)) 
274 CONTINUE 

I=K 
CALL OBJECT(I,XREF,Z,N,NPl) 
NFC=NFC+l 
ZREF=Z(I) 
DO 275 I=l,NPl 

IF (ZLO.EQ.Z(I)) GO TO 276 
275 CONTINUE 
276 L=I 

IF (ZREF .LE.Z(L)) GO TO 240 
DO 277 I=l,NPl 

IF (ZREF.LT;Z(I)) GO TO 278 
277 CONTINUE . 

GOT0280 

209 



278 DO 279 J=l,N 
279 X(K,J) = XREF(K,J) 

GOT0250 
280 DO 281 J=l,N 
·281 XCON(K,J) = XCEN(K,J) + BETA*(X(K,J)-XCEN(K,J)) 

I=K 
CALL OBJECT (I,XCON,Z,N,NPl) 
NFC=NFC+l 
ZCON=Z(I) 
IF (ZCON.LT.Z(K)) GO TO 285 
DO 284 J=l,N 

DO 284 I=l,NPl 
X(I,J) = (X(I,J)+ X(L,J))/2. 

284 CONTINUE 
GOT0250 

285 DO 287 J=l,N 
X(K,J) = XCON(K,J) 

287 CONTINUE 
GOT0250 

240 DO 245 J=l,N 
XEX(K,J) = XCEN(K,J)+GAM*(XREF(K,J)-XCEN(K,J)) 

245 CONTINUE 
I=K 
CALL OBJECT(l,XEX,Z,N,NPl) 
NFC=NFC+l 
ZEX=Z(I) 
IF (ZEX.LT.Z(L)) GO TO 255 
DO 247 J=l,N 

247 X(K,J) = XREF(K,J) 
GOT0250 

255 DO 260 J=l,N 
260 X(K,J) = XEX(K,J) 

GOT0250 
295 WRITE(43,290) MAXIT 
290 FORMAT(///,lOX,'ALGORITHM DID NOT CONVERGE IN ',15,' 

ITERATIONS') 
ITERM=2 

298 WRITE(43,291) ZLO 
291 FORMAT(//,2X,'OPTIMUM VALUE OFF= ',El6.8) 

WRITE (43,292) 
292 FORMAT(//,2X,'OPTIMUM VALVES OF VARIABLES ') 

DO 293 I=l,N 
293 WRITE(43, 294) l,X(NPl,I) 
294 FORMAT(/,2X,2HX9,12,4H) = ,E16.8) 

PRINT*,'NUMBER OF EV ALUATIONS=',ITR 
WRITE( 43, *)'PROGRAM RESPONSE TIME',TOTRES 

210 



AVGPR=TOTRES/REAL(NFC) 
WRITE( 43, *)'AVERAGE PROGRAM RESPONSE TIME=',A VGPR 
WRITE(43, *)'NUMBER OF FUNC. EV ALUATIONS=',NFC 
WRITE( 43, *)'NUMBER OF CALLS TO OBJ. FUNC.=',NUMBER 
WRITE(43,*)'NUMBEROF SAVED CALLS TO OBJ. FUNC.=',NSAVE 
END 

SUBROUTINE OBJECT(II,X,Z,N,NPl) 
COMMON/Nl/NUMBER,NSA VE,TOTRES 
DIMENSION X(NPl,N), Z(NP1),TEMP(300,3) 
FLG=O . 
IXl =ABS(X(II, 1)) 
IX2=ABS(X(II,2)) 
IF(NUMBERLT.3) GO TO 20 
DO 10 J=l,NUMBER 

IF(IX1.EQ.TEMP(J,l).AND.IX2.EQ.TEMP(J,2))THEN 
Z(II)=TEMP(J,3) 
NSA VE=NSA VE+ 1 
RETURN 

END IF 
10 CONTINUE 
20 print*,'2',' number',number 

NUMBER =NUMBER+l 
TEMP(NUMBER, 1 )=ixl 
TEMP(NUMBER,2)=ix2 

C 

WRITE( 40,50,REC=l )REAL(N) 
WRITE( 40,50,REC=2)REAL(IX1) 
WRITE( 40,50,REC=3)REAL(IX2) 
PRINT* ,'REALLY CALLING SLAM' 
CALL GETTIM(IHOUR,MIN,ISEC,IHSEC) 
PSTART=IHOUR *3600+MIN*60+ISEC+REAL(IHSEC)/100. 
I=SPA WNLP(O,LOC('INPUT'C),LOC('INPUT'C),INT(O)) 
JJ=SPA WNLP(O,LOC('INVLOST.EXE'C),LOC('INVLOST.EXE'C},INT(O)) 
K=SPA WNLP(O,LOC('OUTPUT'C),LOC('OUTPUT'C),INT(O)) 

C ** WRITE RESULT OF SIMULATION TO A OUTPUT FILE 
C . -~ 

CALL GETTIM(IHOUR,MIN,ISEC,IHSEC) 
PEND=IHOUR *360o+MIN*60+ISEC+REAL(IHSEC)/100. 
DIF=PEND-PSTART 
TOTRES=TOTRES+DIF 
READ(41,50,REC=l)SUM 
PRINT *,'INSIDE FUNCTION','I=',II 
PRINT*, 'SUM=',SUM ,' ',X(II,1),X(II,2) 

50 FORMAT(F20.5) 
Z(II)=-SUM 

211 



TEMP(NUMBER,3)=Z(II) 
RETURN 
END 

212 



213 

C********************************************************************** 
C* THIS SUBROUTINE USES RESPONSE SURFACE METHODOLOGY TO * 
C* OPTIMIZE THE SIMULATION RESPONSE (SEE MYERS (1976)) * 
C* (MODIFIED FROM DENNIS E. SMITH (1976) * 
C********************************************************************** 

C 

SUBROUTINE RSM 
COMMON /PRG/XX(lO),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 
COMMON /RSM1/X(15),Y 
COMMON /RSM2/LGSTR,LGSTK,IRSRT 
COMMON /RSM3/ ALIST(220),L 1 ( 65),NDES,L2( 6) 
COMMON /RSM4/IW1(4),IW2(4) 
COMMON /RSMCI/CLIST(450),LISTC(215) 
COMMON /RSMC2/CLST( 4),LSTC( 4) 

C*** INITIALIZE DATA 
C 

OPEN(51,FILE='RESULT.DAT',STATUS='UNKNOWN') 
CALLINIT 
CALL INPUT 
IF(IRSRT.NE.O) GOTO (100,101,102,103,103) IRSRT 

100 CALL FIRST 
101 CALL PATH 

IF(NDES.GE.2) GO TO 102 
CALLSUBSEC 
IF (NDES.LT.2) GO TO 100 

102 CALL SECOND 
103 CALL DONE(7) 

CALL RIDGE 
RETURN 
END 

C********************************************************************** 
C* THIS SUBROUTINE INITAILIZES DATA STORAGE * 
C********************************************************************** 

SUBROUTINE INIT 
COMMON /RSM1/X(15),Y 
COMMON /RSM2/LGSTR,LGSTK,IRSRT 
COMMON /RSM3/ ALIST(220),LIST(72) 
COMMON /RSMC 1/CLIST( 450),LISTC(2 l 5) 
COMMON /RSMC2/CLST( 4),LSTC( 4) 
LGSTR=4 
LGSTK=15 
DO 10 I=l,15 

10 X(I)=O.O 
DO 11 I=l,220 



11 ALIST(I)=O.O 
DO 12 I=l,72 

12 LIST(I) =0.0 
DO 13 I=l,4 

CLST(I)=O 
13 LSTC(I)=O 

DO 14 I=l,215 
LISTC(I)=O 
CLIST(I)=O 

14 CONTINUE . 
DO 15 1=216,450 

CLIST(I)=O 
15 CONTINUE. 

RETURN 
END 

214 



215 

C********************************************************************** 
C* THIS SUBROUTINE READS THE INPUT DATA * 
C********************************************************************** 

· ·· SUBROUTINE INPUT 
COMMON /PRG/XX(lO),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 

$INCLUDE:'RSMCOM.FI' 
PRINT*,'** ENTER TOT AL NUMBER OF SIMULATION RUNS' 
READ *,N 
PRINT *,'ISTHIS A RESTART? 1-YES, 0-NO' 
READ *, IRSRT 
PRINT *,'ENTER NUMBER OF REPLICATIONS (3 SUGGESTED)' 
READ*,M 
PRINT *,'ENTER TYPE OF THE OBJECTIVE FUNCTION 1-MIN, 0-MAX' 
READ *,MIN 
PRINT *,'ENTER NUMBER OF SIMULATION RUNS IN THIS PASS' 
READ *,NNOW 
PRINT * ,'** ENTER 1- TO WRITE TO THE SCREEN' 
PRINT * ,' 2- TO WRITE TO THE FILE' 
PRINT * ,' 3- BOTH' 
READ* ,INPFLG 
K=NVAR 
PRINT* ,'ENTER NUMBER OF CONSTRAINTS' 
READ*,NCST 
KT=K 
IF(IRSRT.EQ.O) GO TO 9 
NNOWS=NNOW 
CALL REST AR(l) 
NNOW=NNOWS 
NVAL=O 

9 IF(IRSRT.NE.O) RETURN 
DO 10 I=l,LGSTK 

10 INDX(I) =I 
PRINT * ,'ENTER EACH FACTOR AND ITS STEP SIZE' 
DO 11 I=l,KT 

PRINT * ,'ENTER F ACTOR',I,' STEP SIZE' 
READ * ,DELT(I) 
X(I)=XX(I) 

11 CX(I) = X(I) 

C 

CALL WRITER(INPFLG) 
FLM=M 

C*** READ CONSTRAINTS 
C 

DO 24 I=l,NCST 
PRINT* ,'ENTER CONSTRAINT COEFFICIENTS' 



READ* ,CZERO(I),(KVIDN(I,J),CCOEF(I,J),J=l ,6) 
24 CONTINUE 

26 
28 
29 

35 
34 
36 
C 

DO 36 I=l,NCST 
J2=0 
DO 26 J=l,6 

IF(KVIDN(I,J).EQ.O) GO TO 28 
J2=J2+1 

CONTINUE 
WRITE( 5 l,29)I,CZERO(I) 
FORMAT(TlO,'CONSTRAINT ',I2,5X,'A(O)=',F20.5) 

DO 34 J=l,J2 
WRITE(51,35)KVIDN(I,J),CCOEF(I,J) 

FORMAT(10X,2HA(,I2,2H)=,F15.6) 
CONTINUE 

CONTINUE 

C*** CHECK CONSTRAINT VIOLATIONS 
C 

CALL STEP2(LITE,O) 
IF(LITE.EQ.O) GO TO 38 
CALL DONE(5) 

38 DO 40 I=l,K 
40 X(I)=CX(I) 

ISHFT=O 
C 
C** OBTAIN OBJECTIVE FUNCTION VALUE FOR DESIGN CENTER 
C 

CALLSIMUL 
YCENT=Y 

IF(NVAL.LT.NNOW) THEN 
RETURN 

ELSE 
IRSRT=l 
CALL REST AR(2) 

END IF 
END 

216 



217 

C********************************************************************** 
C* THIS SUBROUTINE PERFORMS THE FIRST PHASE OF THE * 
C* RESPONSE SURFACE METHODOLOGY. IT OBTAINS SIMULATION * 
C* RESULTS CORRESPONDING TO POINTS IN THE FRACTIONAL * 
C* FACTORIAL DESIGN * 
C********************************************************************** 

SUBROUTINE FIRST 
$INCLUDE:'RSMCOM;Fl' 

C 

COMMON /RSMC2/ABFCT,GAMMIN,R, YSA VE,ISHFT,JGAM,NCST,NTIE 
IF(IRSRT.EQ.1) GO TO 14 

C** CONSTRUCT FRACTIONAL FACTORIAL DESIGN 
C 

LFRST=O 
CALL FACTOR 
DO 10 I=l,LGSTK 

10 B(I)=O 
IF((N-NRUN).LT.(LN+2)) THEN 

CALL DONE(3) 
END IF 
IF(ISHFT.EQ.O) GO TO 8 
DO 6J=l,K . 

I=INDX(J) 
6 X(I)=CX(I) 

C 

B(IE)=O 
LFRST=O 
GOTO 12 

C** SET UP THE NEXT POINT IN THE DESIGN 
C 

8 LFRST=l 
11 CALL FACTOR 
12 CALL SlMUL 

IF(NVAL.LT.NNOW) GOTO 14 
IRSRT=l 
CALL REST AR(2) 

14 IF(LFRST.GT.O) GO TO 16 
YCENT=Y 
GOT020 

C 
C** CALCUL TE B(I)'S 
C 
16 B(IE)=B(IE)+ Y 

DO 18 I=l,MAXK 
SX=LX(I) 



18 B(I)=B(I)+Y*SX 
IF(LFRST.GE.LN) GO TO 22 

20 LFRST=LFRST+ 1 
IF(LFRST.NE.ISHFT) GO TO 11 
CALL FACTOR 
NRRN=NRRN+l 
Y=YSAVE 
GOTO 14 

22 SSM=(FLM*(B(IE)+ YCENT)**2)/(FLN+ 1.0) 
PRINT*,'*** FRACTIONAL FACTORIAL COMPLETED***' 
write(Sl,55) 

55 FORMAT(TlO,' *** FRACTIONAL FACTORIAL COMPLETED***') 
RSQ=O.O 
D026I=l,K 

26 RSQ=RSQ+(FLM*B(n**2)/FLN 
SS=(FLM*FLN*(YCENT-B(IE)/FLN)**2)/(FLN+ 1.) 
AMLFl=SS 
IDF=LN-K-1 
SS=0.0 
IF(IDF.NE.O) THEN 

IZ=K+l 
DO 30 I=IZ,MAXK 

30 SS=SS+(FLM*B(n**2)/FLN 
AMS=SS/REAL(IDF) 

ELSE 
AMS=O.O 

END IF 
AMLF2=AMS 
SIGER=0.0 
IF(M.EQ. l)GO TO 34 
SIGER=SIGSAV/((FLN+ 1.)*(FLM-1.)) 

34 RSQ=RSQ/(TSS-SSM) 
IF(SIGER.EQ.0.0) GO TO 38 
PRINT*,'*** ESTIMATE OF SIGMA OBTAINED FROM ITERATIONS***' 
GOT046 

38 IF(SIGIN.GT.0.0) GO TO 42 
PRINT*,'*** DETERMINISTIC SIMULATION ASSUMED***' 
WRITE( 51,53) 

53 FORMAT(TlO,'*** DETERMINISTIC SIMULATION ASSUMED ***') 
GOT046 

42 SIGER=SIGIN**2 
PRINT*,'*** INPUT ESTIMATE OF SIGMA USED ***' 

46 PEMS = SIGER 
SIGER=sqrt(SIGER/FLM) 
SIGSAV=0.0 
PRINT*,'*** EST. STD. ERROR OF AVG. OBS. RESPONSE=', SIGER 

218 



WRITE(51,58) SIGER 
58 FORMAT(TlO,'*** EST. STD. ERROROF AVG. OBS. RESPONSE=',Fl0.4) 

SIGSEC=SIGER 
C 
C*** ST AND ART ERROR OF B(I) 
C 

C 

SIGB=(SIGER/SQRT(FLN))*2.0 
PRINT*,'&&&&& SIGMAB =',SIGB 

C*** STEEPEST ASCENT PATH 
C 

B(IE)=(B(IE)+ YCENT)/(FLN+ 1.0) 
Bfil=O. 
DO 501=1,K 

BLO=B(I)/FLN 
Bfil=Bfil+BL0**2 

50 B(I)=BLO 
SMBSQ=Bfil 
IF(MAXK.EQ.K) GO TO 54 
IZ=K+l 
DO 52 I=IZ,MAXK 

52 B(l)=B(l)/FLN 
54 CALL WRITER(4) 

WRITE(51,56) 
56 FORMAT(T15,' B(I)s ARE ') 

WRITE(51,57) B(IE),(B(I),1=1,K) 
57 FORMAT(T10,'B(O)=',Fl6.6,//(10X,F16.6)) 

WRITE(*, *)B(IE),(B(I),I=l,K} 
END 

219 



220 

C********************************************************************** 
C* THIS SUBROUTINE CONSTRUCTS FRACTIONAL FACTORIAL DESIGN * 
C********************************************************************** 

· · SUBROUTINE FACTOR 
$INCLUDE:'RSMCOM.FI' 

DIMENSION N(6) 
IF(LFRST.GT.1) GO TO 16 
IF(LFRST.EQ.l) GO TO 8 
J=l 
DO 10 I=l,LGSTR 

J=J+J 
IF(K.LT .J) GO TO 2 

10 CONTINUE 
STOP 

2 IR=I 
LN=J 
IF((K.EQ.3).AND.(N-NRUN).GT.6) GO TO 4 
GOT06 

4 IR=3 
LN=8 

6 FLN=LN 
MAXK=LN-1 
GOT032 

8 NRRN=O 
IE=O 
ISW=-1 
IRC=IR 
DO 12 I=l,LGSTR 

IB=IE+l 
IE=IE+IRC 
IF(MAXK.LT .IE) IE=MAXK 
DO 11. J=IB,IE 

11 LX(J)=ISW 
IF(IE.EQ.MAXK) GO TO 14 
ISW=-ISW 

12 IRC=IRC*(IR-1)/(I+l) 
14 IE=MAXK+l 

GOT028 
16 DO 18 I=l,IR 

LX(I)=-LX(I) 
IF(LX(I).EQ.1) GO TO 20 

18 CONTINUE 
STOP 

20 IF(MAXK.EQ.IR) GO TO 28 
NXT=IR+l 



1=2 
ISW=l 
J=O 
JC=O 

22 J=J+l 
24 JC=JC+l 

N(J)=JC 

C 

IF(LX(JC).LT.O) ISW=-ISW 
IF(I.GT .J) GO TO 22 
LX(NXT)=ISW 

C*** SET UP THE NEXT ROW IN THE DEISGN 
C 

IF(NXT.EQ.MAXK) GO TO 28 
NXT=NXT+l 

26 JC=N(J) 

C 

IF(LX(JC).LT .0) ISW=-ISW 
IF(JC.LT.(IR-I+J)) GO TO 24 
J=J-1 
IF(J.GT.O) GO TO 26 
I=I+l 
JC=O 
GOT022 

C*** OBTAIN THE UNCODED VALUES 
C 
28 DO 30 I=l,K 

J=INDX(I) 
X(J)=CX(J)-DELT(J) 
IF(L:X(I).LT.O) GO TO 30 
X(J)=CX(J)+DELT{J) 

30 CONTINUE 
32 CONTINUE 

RETURN 
END 

221 



222 

C********************************************************************** 
C* TlilS SUBROUTINE DETERMINES THE PATH OF STEEPEST ASCENT * 
C********************************************************************** 

SUBROUTINE PATH 
$INCLUDE:'RSMCOM.FI' 

IF(IRSRT.EQ.2) THEN 
GOT060 

END IF 
KSTP=O 
PRANG=O.O 
DO 9I=l,K 

9 PRANG=PRANG+ABS(B(I)) 
PREDR=2*PRANG 
W=PREDR/2. 
GYBIE=GY-B(IE) 
IF(W.LE.(3. *SIGER)) W=3.0*SIGER 
IF(W.LE.ABS(.OS*GY)) W=ABS(0.05*GY) 
IF(SMBSQ.LE.0.0) GO TO 6 
STEP=W/SMBSQ 
DM=(W+GYBIE)/SMBSQ 
IF(KSEC.GT.O) GO TO 36 
DMS=FLOAT(LN-K) 
DMS=(AMLF1+AMLF2*(DMS-l.O))/DMS 
DMS=AMAXl(DMS,PEMS) 
IF(DMS.GT.0.0) GO TO 4 
PRANG=999999. 
GOT06 

4 PRANG=PRANG * SQRT(FLN/(DMS*REAL(K))) 
6 IF(PEMS.GT.0.0) GO TO 8 

FIT=999999. 
GOTO 11 

8 FIT=AMAXl(AMLFl,AMLF2)/PEMS 
11 WRITE(Sl,12) FIT 
12 FORMAT(SX,'LACK OF FIT RATIO=',F16.6) 

PSTOP=O.O 
C 

IF(PRANG.LE.2.0) GO TO 16 
PRINT*,'*** EXPLORING THE PATH!!! ***' 
WRITE(Sl,13) 

13 FORMAT(TlO,'**** EXPLORE THE PATH ****') 
GOT036 

C 
C*** PREDICTED RANGE RATIO IS TOO SMALL - CHECK LACK OF FIT 
C 
16 IF(FIT.LE.5.0) GO TO 24 

PRINT*, '***PRED. RANGE SMALL AND LACK OF FIT LARGE ***' 



223 

WRITE(51,14) 
14 FORMAT(5X,'***PRED. RANGE SMALL AND LACK OF FIT LARGE ***') 

IF(RSQ.LT.0.90) GO TO 32 
PRINT*,'*** RSQ TOO LARGE TERMINATE THE SEARCH***' 

· WRITE(51,15) 
15 FORMAT(5X,' *** R-SQUARED IS TOO LARGE ***') 

CALL DONE(6) 
24 IF(NRUN.NE.LN+ 1) GO TO 28 

PRINT*,'***PRED. RANGE SMALL, LACK OF FIT SMALL***' 
PRINT*,'*** RANDOM ERROR IS TO LARGE ***' 
PRINT*,'*** INCREASE# OF ITERATIONS AND/OR ***' 
PRINT*,'*** INCREASE STEP SIZES ***' 
WRITE(51,17) 

17 FORMAT(TIO,'*** PRED. RANGE SMALL, LACK OF FIT SMALL ***'/ 
&TIO,'*** RANDOM ERROR IS TO LARGE ***'/ 
&TIO,'*** INCREASE# OF ITERATIONS AND/OR ***'/ 
&TIO,'*** INCREASE STEP SIZES ***') 
CALL DONE(2) 

28 PRINT*,'*** PRED. RANGE SMALL, LACK OF FIT SMALL***' 
PRINT*,'*** HA VE REACHED A PLATEAU ***' 
PRINT*,'*** ENTER SECOND ORDER PHASE ***' 
WRITE(51,19) 

19 FORMAT(TIO,'*** PRED. RANGE SMALL, LACK OF FIT SMALL ***'/ 
& TIO,'*** HA VE REACHED A PLATEAU ***'/ 
& TIO,'*** ENTER SECOND ORDER PHASE ***') 

32 PRINT* ,'ENTER SECOND PHASE' 
NDES=2 
CALL ORDER 
RETURN 

36 DO 138 I=l,K 
BST AR(I)=B(I) 
GG(I)=B(I) 

138 RR(I)=O 
140 CALL STEPS 

NGO=l 
142 IF(JGAM.NE.O) GO TO 146 

WRITE(51,144) 
144 FORMAT(TIO,'CONSTRAINTS LIE IN DIRECTION OF PATH') 

GOTO 150 
146 WRITE(51,148)JGAM 
148 FORMAT('GOING TOWARDS CONSTARINT NO:',I4) 
150 IF(R.GE.1.5) GO TO 152 

NSS=l 
GOTO 162 

152 R=R-1.0 
C 



C*** FOLLOW THE PATH 
C 

D0401=1,K 
40 RR(I)=RR{I)+DM*BST AR{I) 
· DM=STEP 

D045 I=l,K 
J=INDX(I) 

45 X(J)=RR(I)*DELT(J)+CX(J) 
158 CALL SIMUL 

C 
C*** ENOUGH RUNS REMAIN? 
C 

IF(NV AL.LT.NNOW) GO TO 60 
IRSRT=2 
CALL RESTAR{2) 

60 KSTP=KSTP+ 1 
IF{MRTF.EQ.1) KSTP=O 
IF(KSTP.GE.2) GO TO 80 
GO TO (142, 170)NGO 

162 DEN=R*DM 
IF(DM.NE.STEP) DEN=GAMMIN 
DO 164 I=l,K 

164 RR.(I)=RR.{I)+DEN*BSTAR{I) 
DEN=0.0 
IA=O 
DO 1661=1,K 

J=INDX(I) 
X(J)=RR.(I)*DELT(J)+CX(J) 
DENOM=X(J)-HX(J) 
DEN=0.15*DELT{J) 
GAMAA=ABS(DENOM) 
IF(GAMAA.LE.DEN) GO TO 166 
IA=l 

166 CONTINUE 
NG0=2 
IF(IA.EQ.l) GO TO 158 
CALL DONE(2) 

170 CALL STPllA(EGSUM) 
IF{EGSUM.GT.{AMAXl{0.01,(1.5*SIGB**2)))) GO TO 172 
CALL DONE (7) 

172 DO 174 J=l,K 
174 BSTAR{J)=EE(J) 

STEP=STEP*SMBSQ 
SMBSQ=O 
DO 178 I=l,K 

178 SMBSQ=SMBSQ+BST AR{I)**2 

224 



STEP=STEP/SMBSQ 
GOTO 140 

80 IF(KSEC.EQ.O) GO TO 82 
· CALL DONE(2) 

82 WRITE(51,83) 
83 FORMAT(lOX,'*** SEEK NEW PATH***') 

CALL ORDER 
RETURN 
END 
SUBROUTINE SUBSEC 

$INCLUDE:'RSMCOM.FI' 
IF((NRRN.EQ.LN+2).AND.(NRUN.GT.LN+3))NDES=2 
IF(NDES.GE.2) GO TO 52 
]16=0 

10 KEEP=-10 
MTEN=-10 
IF (KEEP .EQ.MTEN) KEEP=;:K 
PRINT*,'***# OF b(i)s > 2*SIGMAB=', KEEP 
WRITE( 5 l ,80)KEEP 

80 FORMAT(TlO,'*** NUMBER OF B(I)s > 2*SIGMAB IS=',I5) 

IF (KEEP .LE.1) GO TO 14 
DO 6 J2=2,KEEP 

J2M=J2-1 
IF(B(J2).EQ.O.O) GO TO 8 
RATIO=(B(J2M)/B(J2))**2 
IF(RATIO.GT.20000.0) GO TO 8 

· 6 CONTINUE 
J2M=KEEP 
GOTO 12 

C 8 WRITE(51,88)J2M 

12 KEEP=J2M 
14 TYSQ=O.O 

C 

225 

C*** USE BEST POINT FOR THE CENTER OF NEXT FRACTIONAL FACTORIAL 
NLEFT=N-NRUN 
IF((NLEFT.GE.LN+2).AND.(KEEP.EQ.K)) GO TO 32 
IF(NLEFT.LT.4) GO TO 48 
NGM=NLEFT-2 
IF(NGM.GE.LN) GO TO 20 
J=l 
DO 16 I=l,LGSTR 

J=J+J 
IF(NGM.LT.J) GO TO 18 



16 CONTINUE 
STOP 

18 IR=I-1 
LN=J/2 

20 MAXK=LN-1 
IF(KEEP.GT.MAXK) THEN 

C WRITE(51,89) KEEP,MAXK 
KEEP=MAXK 

END IF 
K=KEEP 
J=2 
DO 24 I2=2,LGSTR 

J=J+J 
IF(KEEP .LTJ) GO TO 26 

24 CONTINUE 
STOP 

26 LN2=J 
IF(LN2.GE.LN) GO TO 28 
LN=LN2 
IR=I2 
IF(NLEFT .LT .16) GO TO 28 
IF(K.EQ.3) IR=3 
IF (K.EQ.3) LN=8 

28 WRITE(51,90)K 
90 FORMAT(TIO,'*** K IS NOW ',13,' ***') 

FLIE=K+l 
CALL WRITER( 4) 

·c 
C*** NEW CENTER POINT AND NEW DELTA'S 
C 
32 DO 34 I=l,KT 

IBNDX(I)=O 
CX(I)=IIX(I) 

34 CONTINUE 
D040J=l,K 

I=INDX(J) 
IBNDX(l)=J 
IF(J16.GT.O) GO TO 40 
IF(B(J).NE.0.0) GO TO 36 
BLO=DELT(I) 
GOT038 

36 BLO=DELT(I)*0.5* ABS(B(l )/B(J)) 
IF(BLO.GT.DELT(I)) BLO=DELT(I) 

38 DELT(I)=BLO 
40 CONTINUE 

CALL WRITER(3) 

226 



YCENT=GY 
YSAVE=YCENT 
CALL SHIFT(Jl 6) 
IF(J16.EQ.O) GO TO 46 
IF(J16.EQ.1) GO TO 42 
CALL DONE (6) 

C 42 WRITE(Sl,43) 
CALL ORDER 
GOTO 10 

46 TSS=GYSS 
TYSQ=GY**2 
SIGSAV=SIGGY 
IRSRT=O 
GOTOS2 

48 PRINT* ,'LESS THAN 4 RUNS LEFT' 
CALL DONE(l) 

52 RETURN 
END 

227 



228 

C********************************************************************** 
C* THIS SUBROUTINE FITS A SECOND ORDER DESIGN * 
C********************************************************************** 

SUBROUTINE SECOND 
$INCLUDE:'RSMCOM.FI' 

IF(IRSRT.EQ.3) GO TO 36 
PRINJ* ,'*** SECOND ORDER DESIGN PHASE ***' 
WRITE(51,10) 

10 FORMAT(l OX,'*** SECOND ORDER DESIGN PHASE ***') 
WRITE(51,11) 

11 FORMAT(lX,40('*')) 
DO 61=1,MAXK. 

INDX(I)=JNDX(I) 
J=INDX(I) 

6 B(I)=OLDB(I) 
FLN=LN 
NREM=N-NRUN 
KSTP=O 
LFRST=l 
KSEC=(NREM-2)/2 
IF(KSEC.LT.1) KSEC=l 
IF(KSEC.GT.IR) KSEC=IR 
PRINT*,'***# OF FACTORS IN 2ND PHASE= ',KSEC 
WRITE(*,*) (JNDX(I),I=l,KSEC) 
WRITE( 51, 7)KSEC 

7 FORMAT(lX,TlO,'NUMBER OF FACRORS ARE ',15) 
WRITE(51,8)(JNDX(I),I=l,KSEC) 

8 FORMAT(TlO,'THE FACTORS ARE ',613) 
PRINT*,'*** AXIAL POINTS OF THE DESIGN ***' 
WRITE(51,9) 

9 FORMAT(lOX,'**** AXIAL POINTS OF THE DESIGN ****') 
C 
C*** FORM (X'Y) VECTOR 

KMIX=KSEC*(KSEC-1 )/2 
KSM=KSEC+KMIX 
ICNST=KSM+KSEC+ 1 
IF(KMIX.EQ.O) GO TO 16 

C 
C*** MIXED TERMS 
C 

DO 14 I=l,KMIX 
KSI=KSEC+I 
IRI=IR+I 

14 XPRMY(KSI)=FLN*B(IRI) 
16 SECTRM=(FLN+l.)*B(IE)-YCENT 

C 



C*** SECOND ORDER TERMS 
C 

DO 18 I=l,KSEC 
KSMI=KSM+I 
XPRMY(KSMI)=SECTRM 

18 XPRMY(I)=FLN*B(I) 
XPRMY(ICNST)=(FLN+ l.)*B(IE) 
FKSEC=KSEC 
STEP=0.5*SQRT(FKSEC) 
JSEC=l 
ALPSQ=SQRT(2. **KSEC) 
ALPHA=SQRT{ALPSQ) 
ALPHAB=ALPHA 

20 SWIT=-1.0 
C 
C*** NEW PART OF X'Y 
C 

D022I=l,K 
JKL=JNDX(I) 

22 X(JKL)=CX(JKL) 
24 JJ=JNDX(JSEC) 

X(JJ)=CX(JJ)+SWIT*DELT{JJ)* ALPHA 
IF{LFRST.EQ.O) GO TO 34 
DO 132 I=l,NCST 

CALL CKCST(I,VLATE,O) 
IF{VLATE.GE.(-0.0001)) GO TO 132 
DO 126 JK=l,6 

IF(KVIDN(I,JK).EQ.O) GO TO 126 
KVV=KVIDN{I,JK) 
IF(KVV.NE.JJ) GO TO 126 
GOTO 128 

126 CONTINUE 
GOTO 132 

128 ALPSTR=ABS((-VLATE+SWIT*DELT(JJ)*CCOEF(I,JK)* ALPHA)/ 
& (DELT{JJ)*CCOEF{I,JK))) 

WRITE(51,129) 
129 FORMAT(TlO,'CONSTRAINT VILOATION IN 2ND PHASE'/ 

&TlO,'CAHNGE VALUE OF ALPHA') 
IF{ALPSTR.LT.ALPHAB) ALPHAB=ALPSTR 

132 CONTINUE 
GOT038 

C 
C*** OBTAIN SIMUALTION RESPONSES FOR THE AXIAL POINTS 
C 
34 CALL SIMUL 
C 

229 



C*** ENOUGH RUNS REMAIN? 
G 

IF(NVAL.LT.NNOW) GO TO 36 
IRSRT=3 
CALL REST AR(2) 

36 XPRMY(JSEC)= XPRMY(JSEC)+Y*SWIT*ALPHA 
KSMJ=KSM+JSEC 
XPRMY(KSMJ)=XPRMY(KSMJ)+Y*SQRT(2.0**KSEC). 
XPRMY(ICNST)=XPRMY(ICNST)+Y 

38 IF(SWIT.GT.0.0) GO TO 40 
SWIT=-SWIT 
GOT024 

40 JSEC=JSEC+ 1 
IF(JSEC.LE.KSEC) GO TO 20 
IF(LFRST.EQ.O) GO TO 42 
LFRST=O 
ALPHA=ALPHAB 
ALPSQ=ALPHA **2 
JSEC=l 
GOT020 
PRINT* ,'***SECOND ORDER DESIGN PHASE COMPLETED ***' 

42. WRITE(Sl,45) 

230 

45 FORMAT(lX,TlO,'*** SECOND ORDER DESIGN PHASE COMPLETED ***') 
C 
C*** GET QUADRATIC COEFFICIENTS 

CALLQUADR 
WRITE(Sl,46) 

46 FORMAT (lOX,'ESTIMATED FIRST ORDER,MIXED,SECOND ORDER, AND', 
&/tll,' CONSTANT COEFFICIENTS ARE:') 
WRITE(51,47)(XXIXY(I),I=l,ICNST) 

47 FORMAT (3X,8(F10.5,2X)) 
C 
C*** GET B MATRIX AND ITS LARGEST EIGENVALUE 
C 

CALLBMATRX 
RETURN 
END 



231 

C********************************************************************** 
C* THIS SUBROUTINE DETERMINES THE COEFFICIENTS FOR A 
C* QUADRATIC FIT 

* 
* 

C********************************************************************** 
· SUBROUTINE QUADR 

$INCLUDE:'RSMCOM.FI' 

C 

SECB=FLN+2. * ALPSQ 
SECC=FLN+2. *(ALPSQ**2) 
SECD=FLN 
SECN=FLN+2.0*FKSEC+ 1.0 
FKMl=FKSEC-1.0 
CKD=SECC+FKMl *SECD 
CMD=SECC-SECD 
BSQR=SECB**2 
SECA=CMD*(SECN*CKD-FKSEC*BSQR) 
SECP=CMD*CKD/SECA 
SECQ=-CMD*SECB/SECA 
SECR=(SECN*(CKD-SECD)-FKMl *BSQR)/SECA 
SECS=(BSQR-SECN*SECD)/SECA 

C*** STORE COEEFICIENTS IN XXIXY ARRAY 
C 

SECSUM=O.O 
DO 10 I=l,KSEC 

KSMI=KSM+I 
10 SECSUM=SECSUM+ XPRMY(KSMI) 

C 
C*** B(O) 
C 

XXIXY(ICNST)=SECP*XPRMY(ICNST)+SECQ*SECSUM 
DO 20 I=l,KSEC 

XXIXY(I)=XPRMY(I)/SECB 
KSMI=KSM+I 

20 XXIXY(KSMI)=SECS*SECSUM+(SECR-SECS)*XPRMY(KSMI)+ 
& SECQ*XPRMY(ICNST) 
IF (KMIX.EQ.0) GO TO 40 
DO 30 I=l,KMIX 

KSMI=KSEC+I 
30 XXIXY(KSMI)=XPRMY(KSMI)/SECD MIXED TERMS 
40 RETURN 

END 



232 

C********************************************************************** 
C* THIS SUBROUTINE FORMS THE B MATIX AND FINDS ITS * 
C* LARGEST EIGENVALUE * 
C****************************************~***************************** 

· SUBROUTINE BMATRX 
$INCLUDE:'RSMCOM.FI' 
C 
C*** FORM B MATRIX 
C 

JJ=O 
DO 10 I=l,KSEC 

IOF=KSEC*(I-l)+I 
KSMI=KSM+I 
BMATG(IOF)=XXIXY(KSMI) 
IP=I+l 
IF(IP.GT.KSEC) GO TO 20 
DO 10 J=IP ,KSEC 

JJ=JJ+l 
KJJ=KSEC+ JJ 
DFFD=.5*XXIXY(KJJ) 
IOF=KSEC*(I-l)+J 
BMATG(IOF)=DFFD 
IOF=KSEC*(J-1 )+ 1 
BMATG(IOF)=DFFD 

10 CONTINUE 
20 KSECSQ=KSEC**2 
C 
C*** FORM UPPER TRIANGULAR PART OF THE B MATRIX 
C 

DO 40 I=l,KSEC 
DO 40 J=l,KSEC 

CALL LOCATE(I,J,IZ,KSEC,KSEC, 1) 
CALL LOCATE(I,J,JJ,KSEC,KSEC,O) 

40 BMAT(IZ)=BMATG(JJ) 
DO 50 I=l,KSECSQ 

50 BTHEI(I)= BMATG(I) 
C 
C*** FIND THE EIGEN VALVES 
C 

CALL EIGEN(BMAT,KSEC,1) 
C 
C*** LARGEST EIGENVALUE STORED IN BMAT(l) 
C 

THEMIN=BMAT(l) 
C 
C*** ALL EI GEN VALUES < 0 , IT IS MAXIMUM 



IF {THEMIN.LT.0.0) CALL CENTER 
RETURN 
END 

233 

C********************************************************************** 
C* THIS SUBROUTINE COMPUTES EIGENVALUES OF A MATRIX * 
C********************************************************************** 

SUBROUTINE EIGEN(A,N,MV) 
DIMENSION A(lO),R(l) 

S RANGE=l.OE-6 
IF(MV-1) 10,25,10 

10 IQ=-N 
D020J=l,N 

IQ=IQ+N 
D020I=l,N 

IJ=IQ+I 
R(IJ)=0.0 
IF(I-J) 20,15,20 

15 R(IJ)=l. 
20 CONTINUE 
25 ANORM=0.0 

DO 35 I=l,N 
D03S J=I,N 

IF(I-J) 30,35,30 
30 IA=I+(J*J-J)/2 

ANORM=ANORM+A(IA)* A(IA) 
35 CONTINUE 

IF(ANORM) 165,165,40 
40 ANORM=l.414*SQRT(ANORM) 

ANRMX=ANORM*RANGE/REAL(N) 
IND=O 
THR.=ANORM 

45 THR.=THR/REAL(N) 
SO L=l 
55 M=L+l 
60 MQ=(M*M-M)/2 

LQ=(L *L-L)/2 
LM=L+MQ 

62 IF(ABS(A(LM))-THR.)130,65,65 
65 IND=l 

LL=L+LQ 



MM=M+MQ 
X=0.5*(A(LL)-A(MM)) 

68 Y= -A{LM)/SQRT{A(LM)**2+X**2) 
IF(X) 70, 75, 75 

70 Y=-Y 
75 SINX=Y/SQRT{2. *{l.+{SQRT(l.-Y*Y)))) 

SINX2=SINX*SINX 
78 COSX=SQRT(l.-SINX2) 

COSX2=COSX*COSX 
SINCS=SINX*COSX 
ILQ=N*(L-1) 
IMQ=N*(M-1) 
DO 125 I=l,N 

IQ=(I*I-I)/2 
IF(I-L) 80,115,80 

80 IF(I-M) 85,115,90 
85 IM=I+MQ 

GOT095 
90 IM=IQ+M 
95 IF(I-L) 100,105,105 
100 IL=I+LQ 

GOTO 110 
105 IL=L+IQ 
110 X=A(IL)*COSX-A(IM)*SINX 

A(IM)=A(IL)*SINX+A(IM)*COSX 
A(IL)=X 

115 IF(MV-1) 120,125,120 
120 ILR=ILQ+I 

IMR=IMQ+I 
X=R(ILR)*COSX-R(IMR)*SINX 
R(IMR)=R(ILR)*SINX+R(IMR)*COSX 
R(ILR)=X 

125 CONTINUE 
X=2.0* A(LM)*SINCS 
Y=A(LL)*C0SX2+A(MM)*SINX2-X 
X=A(LL)*SINX2+A(MM)*COSX2+X 
A(LM)=(A(LL)-A(MM))*SINCS+A(LM)*(COSX2-SINX2) 
A(LL)=Y 
A(MM)=X: 

130 IF(M-N) 135,140,135 
135 M=M+l 

GOT060 
140 IF(L-(N-1)) 145,150,145 
145 L=L+l 

GOT055 
150 IF(JND.:t) 160,155,160 

234 



155 IND=O 
GOT050 

160 IF(THR-ANRMX) 165,165,45 
165 IQ=-N 

DO 185 I=l,N 
IQ=IQ+N 
LL=I+(l*I-I)/2 
JQ=N*(l-2) 
DO 185 J=I,N 

JQ=JQ+N 
MM=J+(J* J-J)/2 
IF(A(LL)-A(MM)) 170,185,185 

170 X=A(LL) 
A(LL)=A(MM) 
A(MM)=X 
IF(MV-1) 175,185,175 

175 DO 180 K=l,N 
ILR=IQ+K 
IMR=JQ+K 
X=R(ILR) 
R(ILR)=R(IMR) 

180 R(IMR)=X 
185 CONTINUE 

RETURN 
END 

235 

C********************************************************************* 
C* TIDS SUBROUTINE DETERMINES THE STATIONARY POINT XO * 
C********************************************************************* 

SUBROUTINE CENTER 
$INCLUDE:'RSMCOM.FI' 

CDFLG=O.O 
RADCNT=0.0 
CALL MINV(BTHEI,KSEC,DET) 
IF(DET.EQ.0.0) THEN 

CALL DONE( 4) 
END IF 
CALL MPRD(BTHEl,XXIXY,CDX,KSEC,KSEC,0,0,l) 
DO 10 l=l,KSEC 

BMAT(I)=O.O 
CDX(I)=-.5*CDX(I) 
BMAT(l)=CDX(I) 
RADCNT=RADCNT+CDX(I)**2 
CDXI=CDX(I) 
IF(CDXI.GE.(-1.).AND.CDXI.LT.1.0) GO TO 10 
CDFLG=l.O 

10 CONTINUE 



C 

RADCNT=SQRT(RADCNT) 
IF(CDFLG.EQ.1.0) GO TO 20 

C*** OBTAIN SIMULATION RESPONSE 
C 

CALLCSTOP 
20 RETURN 

END 

236 

C********************************************************************** 
C* THIS SUBROUTINE OBTAINS THE SIMULATION RESPONSE FOR THE * 
C* STATIONARY POINT AND THEN STOPS * 
C********************************************************************** 

SUBROUTINE CSTOP 
$INCLUDE:'RSMCOM.FI' 

BETAL=l. 
102 DO 10 I=l,KSEC 

JJ=JNDX(I) 
10 X(JJ)=DELT(JJ)*BET AL *CDX(I)+CX(JJ) 

IF(BET AL.NE. I) GO TO 12 
DO 18 I=l,NCST 

CALL CKCST(I,VLATE,O) 
IF(VLATE.GE.(-0.0001)) GO T018 
BETA=O 
DO 16 J=l,6 

KVV=KVIDN(I,J) 
IF(KVV.EQ.O) GO TO 16 
KVV=IBNDX(KVV) 
IF(KVV.EQ.O) GO TO 16 
BETA=BETA+ACOEF(I,J)*CDX(KVV) 

16 CONTINUE 
IF(BETA.EQ.O) GO TO 18 
BETA=-AZERO(I)/BETA 
IF(BETA.L T.BET AL) BET AL=BETA 

18 CONTINUE 
IF (BETAL.EQ.1.0) GO TO 12 
WRITE(51,13) 

13 FORMAT(TlO,'PREDICTED CENTER IS IN CONSTRAINT REGION') 
GOTO 102 

12 CALL SIMUL 
CALL DONE(2) 
RETURN 
END 



SUBROUTINE RIDGE 
$INCLUDE:'RSMCOM.FI' 

COMMON /PRG/XX(lO),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 
IF(IRSRT.LT.4) GO TO 10 
IF(IRSRT .EQ.5) GO TO 46 
GOT020 

10 PRINT*,'***** RIDGE TO BE CLIMBED ***' 
WRITE{Sl,90) 

90 FORMAT{Tl0,50('*')/flO,'*** RIDGE TO BE CLIMBED ***') 
IRID=l 
RETURN 
EIGE=THEMIN 
ADDUP=2. * ABS{THEMIN) 
IF(ADDUP .EQ.O) ADDUP=l.O 
THEMAX=ADDUP 
RADFLG=O.O 
KSECP=KSEC+ 1 
END 

237 

C********************************************************************** 
C* nns SUBROUTINE PRINTS THE RESULS * 
C********************************************************************** 

SUBROUTINE DONE(ID) 
COMMON /PRG/XX(lO),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 

$INCLUDE:'RSMCOM.FI' 
PRINT * ,'************ TERMINATE THE SEARCH **************' 
WRITE{Sl,10) 

10 FORMAT(TI0,'111111111111 TERMINATETHESEARCH 111111111111 1) 

GO TO (20,30,40,50,60,70,80) ID 
20 WRITE( 51,22) 
22 FORMAT(TlO,'+++ ALL AVAILABLE RUNS USED+++') 

PRINT*,'+++ ALL AVAILABLE RUNS USED+++' 
ITERM=l 
GOT090 

30 WRITE{Sl,33) 
33 FORMAT{TlO,'+++ NOT ALL RUNS USED ---TIIlS IS THE BEST RESPONSE 

& THE PROGRAM CAN FIND+++') 
ITERM=l 
PRINT * ,'+++NOT ALL RUNS USED ---THIS IS THE BEST RESPONSE 
& THE PROGRAM CAN FIND+++' 
GOT090 

40 WRITE(Sl,44) 
44 FORMAT(TlO,'+++ THERE ARE NOT ENOUGH RUNS TO COMPLETE 

INITIAL 
& DESIGN+++') 
PRINT *,'+++ THERE ARE NOT ENOUGH RUNS TO COMPLETE INITIAL 



& DESIGN+++' 
ITERM=2 
GOTO 100 

50 WRITE(51,55) 
55 FORMAT(TlO,'+++ERROR IN MATRIX INVERSION - 2ND PHASE+++') 

PRINT * ,'+++ERROR IN MATRIX INVERSION - 2ND PHASE+++' 
GOT090 

60 WRITE(51,66) 
66 FORMAT(TlO,'+++ CONS. VIOLATION+++') 

GOTO 100 
70 WRITE(51,77) 
77 FORMAT(TlO,'+++ INEFFICIENT TO INVEST MORE RUNS+++') 

GOT090 
80 CONTINUE 
90 IF(MIN.NE.O) GY=-GY 

WRITE(51,99)NRUN,M,GY,NTH 

238 

99 FORMAT(/fflO,'TOTAL NUMBER OF RUNS =',15,fflO,'NUMBER OF 
&SIMULATION ITERATIONS =',14,fflO,'OPTIMUM OBSERVED RESPONSE 
&=',Fl6.6,1X,'FOR ',I4,'TH RUN) 
WRITE(51,98) 

98 FORMAT( fflO,'V ALUES OF X(l), ..... X(K) ARE') 
DO 91 I=l,KT 

WRITE(51,92) l,HX(I) 
92 FORMAT(Tl5,'X(',Il,') =',Fl6.6) 
91 CONTINUE 
100 STOP 

END 

SUBROUTINE CODEX 
$INCLUDE:'RSMCOM.FI' 

COMMON /RSM4/IW1( 4),IW2( 4) 
DO 10 I=l,KSECSQ 

10 BTINV(I)=BMATG(I) 
DO 20 I=l,KSECSQ,KSECP 

20 BTINV(I)=BMATG(I)-THETA 
CALL MINV(BTINV,KSEC,DET) 
IF(DET.NE.0.0) GO TO 30 
CALL DONE( 4) 

30 CALL MPRD(BTINV,XXIXY,CDX,KSEC,KSEC,0,0, 1) 
DO 40 I=l,KSEC 

40 CDX(I)=-0.5*CDX(I) 
RETURN 
END 
SUBROUTINE ITER(IRET,IIN) 
COMMON /PRG/XX(l 0), UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 



$INCLUDE:'RSMCOM.FI' 
IF(IIN.EQ.l) GO TO 10 

.BAL=YHAT 
AL=BETTR 
CAL=BETTR2 
GOT020 

10 BAL=RAD 
AL=RADL 
CAL=RADH 

20 IF(BAL.GT.AL) GO TO 30 
THEMAX=THETA 
THEM=THEMIN 
GOT040 

30 IF(BAL.LT.CAL) GO TO 50 
THEMIN=THETA 
THEM=THEMAX 

40 THETA=0.5*(THETA+THEM) 
IRET=l 
GOT060 

50 IRET=O 
60 RETURN 

END 

239 

C********************************************************************** 
C* THIS SUBROUTINE INVERTS A MATRIX * 
C* (from IBM's scientific subroutine with minor changes * 
C********************************************************************** 

SUBROUTINE MINV(A,N,D) 
DIMENSION A(16) 
COMMON /RSM4/L( 4),M( 4) 
D=l. 
NK-N 
DO 80K=l,N 

NK=NK+N 
L(K)=K 
M(K)=K 
KK=NK+K 
BIGA=A(KK) 
D020J=K,N 

IZ=N*(J-1) 
D020I=K,N 

IJ=IZ+I 
IF(ABS(BIGA)-ABS(A(IJ))) 15,20,20 

15 BIGA=A(IJ) 
L{K)=I 
M(K)=J 



240 

20 CONTINUE 
J=L(K) 
IF((J-K))35,35,25 

25 KI=K-N 
DO 30 I=l,N 

KI=KI+N 
HOLD=-A(KI) 
Il=KI-K+J 
A(Kl)=A{Il) 

30 A(JI)=HOLD 
35 I=M(K) 

IF(I-K) 45,45,38 
38 JP=N*{l-1) 

D040J=l,N 
JK=NK+J 
Il=JP+J 
HOLD=-A{KJ) 
A(JK)=A(JI) 

40 A(JI)=HOLD 
45 IF{BIGA) 48,46,48 
46 D=O.O 

RETURN 
48 DO 55 I=l,N 

IF(I-K) 50,55,50 
50 IK=NK+I 

A(IK)=A(IK)/(-BIGA) 
55 CONTINUE 

DO 65 I=l,N 
IK=NK+I 
HOLD=A(IK) 
IJ=I-N 
DO 65 J=l,N 

IJ=IJ+N 
IF(I-K) 60,65,60 

60 IF(J-K) 62,65,62 
62 KJ=IJ-I+K 

A{IJ)=HOLD* A{KJ)+A(IJ) 
65 CONTINUE 

KJ=K-N 
DO 75 J=l,N 

KJ=KJ+N 
IF(J-K) 70,75,70 

70 A(KJ)=A(KJ)/BIGA 
75 CONTINUE 

D=D*BIGA 
A{KK)=l./BIGA 



80 CONTINUE 
K=N 

100 K=K-1 
IF(K) 150,150,105 

105 I=L(K) 
IF(I-K) 120,120,108 

108 JQ=N*(K-1) 
JR=N*(I-1) 
DO 110 J=l,N 

JK=JQ+J 
HOLD=A(JK) 
Il=JR+J 
A(JK)=-A(Il) 

110 A(Il)=HOLD 
120 J=M(K) 

IF(J-K) 100,100,125 
125 KI=K-N 

DO 130 I=l,N 
KI=KI+N 
HOLD=A(KI) 
Il=KI-K+J 
A(KI)=-A(Il) 

130 A(Il)=HOLD 
GOTO 100 

150 RETURN 
END 

SUBROUTINE ORDER 
$INCLUDE:'RSMCOM.FI' 

DO 10 I=l,MAXK 
JNDX(I)=INDX(I) 
OLDB(I)=B(I) 

10 TEMP(I)=B(I) 
IF(K.LT.2) RETURN 
DO 20 I=l,K 

PMX=ABS(B(l )) 
NPMX=l 
DO 30 J=2,K 

IF(ABS(B(J)).LT.PMX) GO TO 30 
PMX=ABS(B(J)) 
NPMX=J 

30 CONTINUE 
TEMP(I)=B(NPMX) 
B(NPMX)=O.O 
LX(I)=INDX(NPMX) 

20 CONTINUE 

241 



DO 50 I=l,K 
13(I)=Tlil\1J:>(I) 
INDX(I)=LX(I) 

50 CONTINUE 
RETURN 
END 

SUBROUTINE LOCATE(I,J,IR,N,M,MS) 
IX=I 
JX=J 
IF(MS-1) 10,20,30 

10 IRX=N*(JX-l)+IX 
GO TO 36 

20 IF(IX-JX)22,24,24 
22 IRX=IX+(JX*JX-JX)/2 

GO TO 36 
24 IRX=JX+(IX*IX-IX)/2 

GO TO 36 
30 IRX=O 

IF(IX-JX) 36,32,36 
32 IRX=IX 
36 IR=IRX 

RE'I'URN 
END 

242 

C********************************************************************** 
· .C* 'I'HIS SUBROUTINE MULTIJ:>LIES MATRIX A 13Y MATRIX B * 
C********************************************************************** 

SUBROUTINE MJ:>RD(A,13,R,N,M,MSA,MS13,L) 
DIMENSION A(l6),13(15),R(4) 
MS=MSA *10+MS13 
IF(MS-22) 30, 10,30 

10 DO 20 I=l,N 
20 R(I)=A(I)*13(1) 

RETURN 
30 IR=l 

DO 90 K=l,L 
DO 90 J=l,N 

R(IR)=O 
DO 80 I=l,M 

IF(MS) 40,60,40 
40 CALL LOCATE(J,I,IA,N,M,MSA) 

CALL LOCATE(I,K,113,M,L,MS13) 



243 

IF(IA) 50,80,50 
50 IF(IB) 70,80, 70 
60 IA=N*(I-l)+J 

IB=M*(K-l)+I 
70 . R(IR)=B(IR)+A(IA)*B(IB) 
80 CONTINUE 
90 IR=IR+l 

RETURN 
END 

SUBROUTINE RESTAR(I) 
COMMON /RSM1/X(15),Y 
COMMON /RSM2/LGSTR,LGSTK,IRSRT 
COMMON /RSM3/ALIST(220),LIST(72) 
COMMON /RSMCl/CLIST( 450),LISTC(215) 
COMMON /RSMC2/CLST( 4),LSTC( 4) 
OPEN (49,FILE='RSMIN.DAT',FORM='FORMATTED',STATUS='UNKNOWN') 
OPEN(50,FILE='RSMOUT,DAT',FORM='FORMATTED',STATUS= 

&'UNKNOWN) 
IF (I.EQ.1) THEN 

READ(49,16)ALIST,:X, Y,CLIST,CLST 
READ( 49, 18)LIST ,IRSRT,LISTC,LSTC 

.ELSE 
WRITE(50,16)ALIST,X,Y,CLIST,CLST 
WRITE( 50, 18)LIST ,IRSRT ,LISTC,LSTC 

STOP 
END IF 

16 FORMAT(5E15.8) 
18 FORMAT(16I5) 

END 

C********************************************************************** 
C* THIS SUBROUTINE RETURNS THE SIMULATION RESPONSE 
C* FROMM ITERATIONS FOR THE CURRENT FACTOR VALUES 

* 
* 

C********************************************************************** 
SUBROUTINE SIMUL 
COMMON /PRG/XX(l O),UBEST,IRID,NV AR,CPU,MIN,ITERM,NREM 

$INCLUDE:'RSMCOM.FI' 
NV AL=NV AL+ 1 
NRRN=NRRN+l 
NRUN=NRUN+l 
PRINT*,'**** RUN NUMBER :',NRUN 
WRITE(51,80) NRUN,M 

80 FORMAT(Tl0,60('*'),/TlO, 'RUN NUMBER :',14,2X,'NUMBER OF 
+ ITERATIONS: ',I3) 

C 



C*** GET SIMULATION RESPONSE FORM ITERATIONS 
C 

YS=O 
SYSQ=O 
CSYSQ=O 
DO IOI=l,M 

CALL OBJECT 
print* ,'++++from SI~ Y=',y 
PRINT*,'ITERATION',I,'Y=',Y 
WRITE(Sl,82) I,Y 

82 FORMAT(Tl5,'ITERATION=',I2,5X,'Y=',Fl6.6) 
IF(I.EQ.1) YFIRST=Y 
CSYSQ=CSYSQ+(Y-YFIRST)**2 
SYSQ=SYSQ+(Y*Y) 

10 YS=YS+Y 
Y=YS/FLM 
PRINT* ,'AVG. RESPONSEIS =',Y 
WRITE(51,84)Y 

84 FORMAT(TlO,'*** AVG. RESPONSE IS :',Fl5.6) 
TSS=TSS+SYSQ 

C 

TYSQ=TYSQ+Y*Y 
IF(M.EQ.1) THEN 

SIGHI=0.0 
GOTO 12 

END IF 

C*** CALCULATE VARIANCES 
C 

YS=YS-FLM*YFIRST 
SIGHI=CSYSQ-(Y**2)/FLM 
SIGSA V=SIGSA V+SIGHI 

12 IF(MIN.NE.O) Y=-Y 
IF(NRUN.EQ.1) GO TO 14 

C 
C*** MRTF=l IF BEST RESPONSE, MRTF=O OTHERWISE 
C 

MRTF=O 
IF(Y.LE.GY) GO TO 22 

14 MRTF=l 
GY=Y 
GYSS=SYSQ 

C 
C*** SET THE FLAG TO DETERMINE WHEN TO ENTER SECOND PHASE 
C 

IF(NRRN.GT.LN) NDES=O 
SIGGY=SIGHI 

244 



NTH=NRUN 
D0.16 I=l,KT 

16 HX(I)= X(I) 
WRITE( 51,86) 

86 FORMAT(T40,'THIS IS THE OPTIMUM RESPONSE THUS FAR' 
*ff 40,37('=') ) 

22 DO 18 I=l,KT 
WRITE( 51,88) I,X(I) 
write(* ,88) i,x(i) 

88 FORMAT(TlO,'X(',Il,') =',Fl5.6) 
18 CONTINUE 

WRITE(Sl,90) 
90 FORMAT(Tl0,60('*')) 

C 
C*** CHECK REMAINING RUNS 
C 

IF(NRUN.LT.N) GO TO 28 
CALL DONE(l) 

28 RETURN 
END 

SUBROUTINE CKCST(I,VLATE,LIT) 
$INCLUDE:'RSMCOM.FI' 

VLATE=CZERO(I) 
DO 10 J=l,6 

IF(KVIDN(I,J).EQ.O) GO TO 14 
KVV=KVIDN(I,J) 
VLATE=VLATE+CCOEF(I,J)*X(KVV) 

10 CONTINUE 
14 IF((LIT.LT.O).AND.(VLATE.LT.(-.0001))) THEN 

DO 11 J=l,6 
IF(KVIDN(I,J).EQ.O) RETURN 
KVV=KVIDN(I,J) 
DELT(KVV)=O.O 
KVV=IBNDX(KVV) 

11 B(KVV)=O.O 
END IF 
RETURN 
END 
SUBROUTINE SHIFT(Jl 6) 

$INCLUDE:'RSMCOM.FI' 
Jl6=0 
KVIL=O 

100 CALL STEP2(LITE, 1) 
IF(LITE.EQ.O) GO TO 114 
KVIL=KVIL+l 

245 



IF(KVIL.GT.l) GO TO 106 
WRITE(Sl,10) 

10 FORMAT(TlO,'CONSTRAINTS VILOATED-SHIFT THE DESIGN') 
DO 14 J=l,K 

I=INDX(J) 
14 CX(I)=2.0*HX(I)-S(I) 

CALL WRITER( 1) 
GOTO 100 

106 DO 18 J=l,K 
I=INDX(J) 

18 CX(I)=HX(I) 
WRITE(Sl,19) 

19 FORMAT(TIO,'VILOATIONS IN SHIFTED DESIGN, SHIFT BACK AND 
* INACTIVATE FACTORS') 
ISHFT=O 
CALL WRITER(l) 
CALL STEP2(LITE,-1) 
J16=1 
DO 112J=l,K 

I=INDX(J) 
IF(DELT(I).GT.O) GO TO 114 

112 CONTINUE 
Jl6=-l 

114 RETURN 
END 

SUBROUTINE STEP2(LITE,LIT) 
$INCLUDE:'RSMCOM.FI' 

DEE=O 
LITE=O 
DO 6 I=l,NCST 

KHIT(I)=O 
LFRST=O 
CALL FACTOR 
DO 612=1,LN 

LFRST=I2 
CALL FACTOR 
CALL CKCST(I,VLATE,LIT) 
IF(VLATE.GE.(-0.0001)) GO TO 6 
LITE=l 
IF(LIT.LT.O) GO TO 6 
IF(LIT.LE.O) GO TO 6 
DEN=O 
DO 12 J=l,6 

JT=KVIDN(I,J) 
IF(JT.EQ.O) GO TO 12 

246 



12 
DEN=DEN+(CCOEF(I,J)*DELT(JT))**2 

CONTINUE · 
D=-VLATE/SQRT(DEN) 
IF(D.LE.DEE) GO TO 6 
DEE=D 
ISHFT=I2 
DO 1413=1,KT 

14 S(I3)=X(I3) 
6 CONTINUE 

IF(LITE.GT.O) GO TO 11 
WRITE(51,8) 

8 FORMAT(TlO,'ALL POINTS IN FRACT. FACT. SATISFY ALL C 
&CONSTRAINTS') 

11 DO 22 I=l,KT 
22 IBNDX(I)=O 

24 
C 

DO 24 I=l,K 
J=INDX(I) 
IBNDX(J)=I 

C*** CONVERT CONSTRAINTS TO THE CODED FACTORS 
C 

DO 16 I=l,NCST 
AZERO(I)=CZERO(I) 
DO 16 J=l,6 

KVV=KVIDN(I,J) 
IF(KVV.EQ.O) GO TO 16 
AZERO(I)=AZERO(I)+CCOEF(I,J)*CX(KVV) 
ACOEF(I,J)=CCOEF(I,J)*DELT(KVV) 

16 CONTINUE 
RETURN 
END 

C 
SUBROUTINE STEPS 

$INCLUDE:'RSMCOM.FI' 
JGAM=O 
GAMMIN=999999.0 
NTIE=O 
DO 104 I=l,NCST 

DENOM=O 
GAMAA=O 
GAMZZ=O 
DO 100 JZ=l,6 

JT=KVIDN(I,JZ) 
IF(JT.EQ.O) GO TO 100 
JT=IBNDX(JT) 
IF(JT.EQ.O) GO TO 100 

247 



GAMAA=GAMAA+(ACOEF(I,JZ)*RR(JT)) 
DENOM=DENOM+(ACOEF(I,JZ)*BST AR(JT)) 

100 CONTINUE 
GAMZZ=-AZERO(I)-GAMAA 
IF(DENOM.EQ.O) THEN 

GAMZZ=-1.0 
GOTO 102 

END IF 
GAMZZ=GAMZZ/DENOM 

102 IF(GAMZZ.LE.O)GO TO 104 
IF(GAMZZ.GE.GAMMIN) GO TO 104 
GAMMIN=GAMZZ 
JGAM=I 

104 GAM(I)=GAMZZ 
DO 106 J=l,K 

RJ=RR(J) 
IF(RJ.NE.0.0) GO TO 108 

106 CONTINUE 
GOTO 110 

108 DM=STEP 
C*** CALCULATE NUMBER OF STEPS 
110 R=(GAMMIN-DM)/STEP+l.O 

IF(GAMMIN.EQ.999999.0) R=GAMMIN 
RETURN 
END 

SUBROUTINE STPl lA(EGSUM) 
$INCLUDE:'RSMCOM.FI' 

NTIE=O 
DO 100 I=l,K 

100 EE(I)=BSTAR(I) 
DO 106 I=l,NCST 

IF(GAM(I).GT.1.05*GAMMIN) GO TO 104 
IF(GAM(I).LT.0.95*GAMMIN) GO TO 104 
NTIE=NTIE+ 1 
GAMAA=O 
DENOM=O 
DO 102 J=l,6 

JT=KVIDN(I,J) 
IF(JT.EQ.O) GO TO 102 
JT=IBNDX(JT) 
IF(JT.EQ.O) GO TO 102 
GAMAA=GAMAA+ACOEF(I,J)*GG(JT) 
DENOM=DENOM+(ACOEF(I,J)**2) 

102 CONTINUE 
GAM(I)=ABS(GAMAA/SQRT(DENOM)) 

248 



GOTO 106 
104 GAM(I)=O.O 
106 CONTINUE 

DO 120 12=1,NTIE 
SMALL=999999.0 
DO 108 JJ=l,NCST 

IF(GAM(JJ).GE.SMALL) GO TO 108 
IF(GAM(JJ).EQ.O) GO TO 108 
SMALL=GAM(JJ) 
ICON=JJ 

108 CONTINUE 
GAM(ICON)=O.O 
WRITE{5l,l 10)ICON 

110 FORMAT(TlO,'CONSTRAINT',13,' HAS BEEN HIT') 
ABNUM=O 
AADEN=O 
DO 112 J=l,6 

JT=KVIDN(ICON,J) 
IF(JT.EQ.O) GO TO 114 
JT=IBNDX(JT) 
IF(JT.EQ.O) GO TO 112 
IF(EE(JT).EQ.O) GO TO 112 
ABNUM=ABNUM+ACOEF(ICON,J)*EE(JT) 
AADEN=AADEN+(ACOEF(ICON,J))**2 

112 CONTINUE 
114 IF(AADEN.GT.O) GO TO 116 

ABFCT=O 
GOTO 118 

116 ABFCT=ABNUM/AADEN 
118 CALL ST12A(ICON) 

KHIT(ICON)=I 
120 CONTINUE 

EGSUM=O 
DO 122 J=l,K 

122 EGSUM=EGSUM+EE(J)*GG(J) 
RETURN 
END 

SUBROUTINE ST12A(ICON) 
$INCLUDE:'RSMCOM.FI' 

DO 100 J=l,6 
JT=KVIDN(ICON,J) 
IF(JT.EQ.O) GO TO 102 
JT=IBNDX(JT) 
IF(JT.EQ.O) GO TO 100 
EE(JT)=EE(JT)-ABFCT* ACOEF(ICON,J) 

249 



IF(ABS(EE(IT)).LT.ABS(0.0001 *GG(JT))) EE(JT)=O 
100 CONTINUE 
102 DO 108 I=l,NCST 

IF(KHIT(I).EQ.O) GO TO 108 
EASUM=O 
DO 104 J=l,6 . 

IT=KVIDN(I,J) 
IF(IT.EQ.O) GO TO 104 
IT=IBNDX(IT) 
IF(IT .EQ.0) GO TO 104 
EASUM=EASUM+EE(IT)* ACOEF(I,J) 

104 CONTINUE 
IF(EASUM.GT.O) GO TO 108 
DO 106 J=l,6 

IT=KVIDN(I,J) 
IF(IT.EQ.O) GO TO 108 
IT=IBNDX(IT) 
IF(IT.EQ.O) GO TO 106 
IF(ACOEF(I,J).NE.O) EE(JT)=O 

106 CONTINUE 
108 CONTINUE 

RETURN 
END 

250 

C********************************************************************** 
C* TIIlS SUBROUTINE WRITES THE RESULTS TO THE SCREEN OR * 
C* TO THE FILE OR BOTH * 
C********************************************************************** 

SUBROUTINE WRITER(INPFLG) 
$INCLUDE:'RSMCOM.FI' 

OPEN (51,FILE='RESOUT.DAT',FORM='FORMATTED',STATUS= 
&'UNKNOWN') 
GOTO(l 0,20, 10,40) INPFLG 

10 WRITE(*, 11) 
11 FORMAT(lX,TlO,'STARTING VALUE OF X(I)',T40,'DELTA VALUE FOR 

& X(I)') 
DO 12 J=l,K 

I=INDX(J) 
WRITE(*, 14)1,CX(I),DELT(I) 

14 FORMAT(T4,'X(',Il,')',Tl5,Fl2.4,T45,Fl2.4) 
12 CONTINUE 

IF(INPFLG.EQ.3) GO TO 20 
RETURN 

20 WRITE(Sl,11) 
DO 15 J=l,K 



I=INDX(J) 
WRITE(51,14)I,CX(I),DELT(I) 

15 CONTINUE 
RETURN 

40 WRITE(51,41) (INDX(I),I=l,K) 
41 FORMAT(20HACTIVE FACTORS ARE /(20X,20I3)) 

RETURN 
END 

251 



252 

C********************************************************************** 
C* SLAM USER-WRITTEN SUBROUTINES * 
C********************************************************************** 

SUBROUTINE INTLC 
COMMON/SCOMl/ATRIB(lOO),DD(lOO),DDL(lOO),DTNOW,11,MFA, 
*MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(lOO),SSL(lOO), 
*TNEXT,TNOW,XX(lOO) 
COMMON/SCl/IFLAG,NDB,BFLAG,FLG,BV AR,CILL,CIUL,YDBAR 
OPEN(40,FILE='SIN.DAT',ACCESS='DIRECT',RECL=20,FORM= 
*'FORMATTED') 
READ( 40, 100,REC=l )XX(12) 

100 FORMAT(F20.8) 
N=INT(XX(12)) 
DO 10 I=l,N 

K=I+l 
READ( 40, 100,REC=K) XX(I) 

10 CONTINUE 
XX(l)=60./XX(l). 
XX(14)=0 
XX(15)=800 
XX(20)=100000 
NDB=O 
IFLAG=O 
BFLAG=l 
FLG=O 
RETURN 
END 

SUBROUTINE OTPUT 
COMMON/SCOMl/ ATRIB(l 00),DD(l 00),DDL( 100),DTNOW ,11,MF A, 

*MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NT APE,SS(l 00),SSL(lOO), 
*TNEXT,TNOW,XX(l 00) 
COMMON/SCl/IFLAG,NDB,BFLAG,FLG,BV AR,CILL,CIUL,YDBAR 
COMMON/SC2/JFLG 
COMMON/SYB/YB( 400)ISTP ,FLEN 
REALZ(400) 
OPEN( 4 l ,FILE='SOUT.DAT',ACCESS='DIRECT',RECL=20,FORM= 
*'FORMATTED') 
OPEN(45,FILE='BATCH.DAT',ACCESS='APPEND',STATUS='UNKNOWN') 
OPEN( 46,FILE='TTEST .DA T',ACCESS='DIRECT',RECL=20,FORM= 
*'FORMA TTED',MODE='READWRITE') 
E=l. 
FIND=CCAVG(l) 
FSTD=CCSTD( 1) 
TC=4.02/XX(l)+.4*30.*(CCAVG(l)/60.) 
WRITE( 41, 100,REC= 1 )TC 



WRITE( 41, 1 OO,REC=2)FIND 
WRITE( 41, 1 OO,REC=3)CCNUM( 1) 
IF(BFLAG.EQ. l .OR.IFLAG.EQ.O) THEN 

WRITE( 41, 1 OO,REC=4)E 
END IF 
IF(TNOW.GE.XX(20).AND.JFLG.EQ.1) PRINT*,'NOT ENOUGH RUN' 
IF(BFLAG.EQ.l)PRINT*,'BIAS STILL EXISTS,SIMULATION IS NOT 
* LONG ENOUGH! I 

IF(IFLAG.EQ.O)PRINT*,'DID NOT REACH STEADY STATE' 
WRITE(45,46)XX(l),BFLAG,IFLAG,TNOW,CCNUM(l),FIND,CILL, 
*CIUL,BVAR 

46 FORMAT(5X,'SERVICE RATE=',F5.2,3X,'BIAS=',F2.0,'STEADY 
* ST ATE=',I2, 'SIMULATION TIME::,;',Fl0.2/f lO,'NUMBER OF 
* OBSERVATIONS=',FlO.O,'MEAN RESPONSE=',Fl0.2/ 
*TlO,'CI LOWER=',Fl0.2,3X,'CI UPPER=',Fl0.2,'V AR=',Fl0.3) 

100 FORMAT(F20.8) 
SUM=O.O 
READ( 46, 100,REC= 1 )PISTP . 
IF(PISTP.LT.O) GO TO 200 
READ( 46, 1 OO,REC=2)PFLEN 
IST ART=MAX(PISTP,ISTP) 
IFEND=MIN(PFLEN,FLEN) 
NUMOBS=IFEND-IST ART 
DO 10 I=ISTART,IFEND 

READ( 46, 100,REC=I)PY 
READ( 42, 100,REC=I)Y 
Z=Y-PY 
SUM=SUM+Z 

. 10 CONTINUE 
ZBAR=SUMINUMOBS 
SUM=O 
DO 11 I=IST ART,IFEND 

READ( 46, 100,REC=I)PY 
READ( 42, 100,REC=I)Y 
SUM=SUM+((Y-PY)-ZBAR)**2 

11 CONTINUE 
V ARIAN=SUM/(NUMOBS*(NUMOBS-1)) 

C 
C*** CALCULATE 90% CONFIDENCE INTERVAL 
C 

DELTA=l .645*SQRT(V ARIAN) 
ZL=ZBAR-DEL TA 
ZU=ZBAR+DEL TA 
IF(ZU*ZL.LE.O) THEN 

READ( 41, 1 OO,REC=5)REDA TA 
REDATA=REDATA+l 

253 



WRITE( 41, I OO,REC=5)REDAT A 
WRITE(45,*) 'REDUNDANT DATA SEARCH=',REDATA 

END IF 
200 WRITE(46,100,REC=l)ISTP 

WRITE( 46, I OO,REC=2)FLEN 
DO 12 I=l,FLEN 

READ( 42, I 00,REC=I)Y 
WRITE( 46, I 00,REC=I)Y 

12 CONTINUE 
RETURN 
END 

254 

SUBROUTINE EVENT(I) 

COMMON/SCOMl/ATRIB(lOO),DD(lOO),DDL(lOO),DTNOW,II,MFA, 
*MSTOP,NCLNR 
*,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(lOO),SSL(lOO),TNEXT,TNOW, 
* XX(IOO) 
COMMON/SC 1/IFLAG,NDB,BFLAG,FLG,BV AR,CILL,CIUL, YD BAR 
COMMON/SC2/JFLG 
COMMON/SYB/YB( 400)ISTP ,FLEN 

INTEGER*4 K 
OPEN( 42,FILE='SDA TA.DA T',ACCESS='DIRECt',FORM='FORMATTED', 
*RECL=20) 

open( 45,FILE='BATCH.DA T',ACCESS='APPEND',STATUS='UNKNOWN') 
IFLAG=O 
TRP=lOOO 
IF(TNOW.LE. l 000) THEN 

XX(14)=0 
RETURN 

END IF 
IF(I.EQ.2) RETURN 
K=INT4(XX(l4)) 
WRITE(42,100,REC=K) XX(l 1) 

100 FORMAT(F20.4) 
IFLAG=O 
IF((XX(l4)).EQ.XX(l5)) THEN 

GOT02 
ELSE 

IF (TNOW.GE.XX(20)) THEN 
PRINT*,'THE LENGTH OF SIMULATION IS NOT ENOUGH' 
JFLG=l 

END IF 
RETURN 

END IF 



2 . IF(BFLAG.EQ.l) THEN 
CALL BIAS(XX(l5),BFLAG,NDB) 
IF(BFLAG.EQ.O) GO TO 10 
XX( 15)= XX( l 5)+800 
RETURN 

END IF 
10 iF(FLG.EQ.O) THEN 

PRINT*,'******* NO BIAS *******' 
ISTP=(INT(XX( 15)/800)-1 )*800+NDB*40+ I 
XX( 15)=NDB*40+ XX( 15) 
PRINT*,'XX15 AFTER BIAS',XX(l5) 
FLG=l 
PRINT*,'NDB=',NDB 
PRINT*,'-----DEL. POINT=',ISTP 
IF(NDB.GT.O)RETURN 
END IF 

PRINT*,'CALLING BATCH',XX:(14) 
CALL BATCH (XX:(15),istp) 
PRINT* ,'BATCH FLAG',IFLAG 
IF(IFLAG.EQ.l) THEN 

MSTOP=-1 
FLEN=XX(l5) 

ELSE 
xx( l 5)=xx( l 5)+400. 
PRINT*,'BATCH XX15=',XX(l5) 

END IF 
200 RETURN 

END 

255 



256 

C********************************************************************** 
C* THIS SUBROUTINE CHECKS SIMULATION OUTPUT FOR INIT AL 
C* BIAS AND DETERMINES THE TRUNCATION POINT 
C* BY SCHRUBEN'S METHOD 

* 
* 
* 

C********************************************************************** 
SUBROUTINE B1AS(XX7,BFLAG,NDB) 
REAL Y( 40),ts(30) 
INTEGER BSIZE,DF 
data ts/6.314,2.92,2.358,2.132,2.015, 

& 1.943, 1.895, 1.86, 1.833, 1.812, 1. 796, 1. 782, 
&l. 771, 1.761, 1. 753, 1. 746, 1. 74, 1.734, 1. 729, 
&1.725, 1.721, 1.717, 1.714, 1.711,1.708, 1.706, 
&1.703, 1.701, 1.699, 1.697/ 
DAT A BSIZE/40/ 
PRINT*,'INSIDE BIAS' 
N=INT(XX7) 
NB=N/BSIZE 
NHB=NB/2 
DF=NHB-1 
SUM=O 
DO 10 I=l,NB 

10 Y(I)=O 
DO 11 I=l,NB 

DO 12 K=(BSIZE*(I-1)+1),BSIZE*I 
c DO 12 K=l,BSIZE 

READ(42,100,REC=K) X 
READ( 42, 1 OO)X 

100 FORMAT(F20.4) 
· 12 Y(I) = Y(l)+X 

Y(I) =Y(l)/BSIZE 
11 SUM=SUM+Y(I) 

YN=SUM/NB 
PRINT*,'GRAND AVG=',YN 

C 
C*** COMPUTE SAMPLE VARIANCE BY USING HALF OF THE DAT A 
C 

SUM=O 
DO 13 I=NHB+l,NB 

13 SUM=SUM+Y(I) 
YNT=SUM/NHB 
VARIAN=O 
DO 15 I=NHB+l,NB 
VARIAN= VARIAN+sqrt((Y(I)-YNT)**2) 

15 CONTINUE 
VARIAN=VARIAN*(NHB*BSIZE)/(NHB*(NHB-1)) 
IF(V ARIAN.EQ.O) THEN 



C 

BFLAG=O 
RETURN 

END IF 
V AR=SQRT(V ARIAN) 
PRINT*,'CALCULATE VARIANCE=',VAR 
TSTAT=TS(MIN(30,DF)) 
NDB=O 

C*** COMPUTE THE TEST STATISTICS 
C 
50 NR=(NB-NDB) 

YN=O 
DO 16 I=l+NDB,NB 

16 YN=YN+Y(I) 

21 

YN=YN/(NB-NDB) 
FTERM=SQ RT( 45. )/(VAR *REAL(NR ** 1.5)) 
STERM=O 

DO 20 I=l +NDB,NB 
YK=O 
DO 21 K=l,I 

YK=YK+Y(K) 
YK=YK/1 

20 STERM= STERM+(l-I/NR)*I*(YN-YK) 
T = FTERM*STERM 
PRINT*,'TEST STATISTICS CALCULATED' ,T 

C 
C *** CHECK THE HYPOTHESIS 
C 

IF(ABS(T).LE.TST AT) THEN 
BFLAG=O 
PRINT* ,'NO INIT AL BIAS EXIST' 

ELSE 
BFLAG=l 
PRINT* ,'INITIAL BIAS STILL EXISTS' 
NDB=NDB+l 
IF(NDB.LE.NB) THEN 

GOTO 50 
ELSE 

PRINT* ,'BIAS EXISTS, SIM. LENGTH NOT ENOUGH' 
END IF 

END IF 
RETURN 
END 

25 7: 



258 

SUBROUTINE BATCH(XX4,istp) 
C********************************************************************** 
C * THIS SUBROUTINE COMPUTES CONFIDENCE INTERVALS FOR 
C * STEADY STATE SIMULATION BY USING LAW & CARSON'S 
C * SEQUENTIAL PROCEDURE 

* 
* 
* 

C********************************************************************** 

C 

COMMON/SCI/IFLAG,NDB,BFLAG,FLG,BV AR,CILL,CIUL,YDBAR 
COMMON/SYB/YB( 400),ISTP ,FLEN 
INTEGER FN . 
INTEGER *4 MI,L,II,J 
REAL TEMP(200) 
DAT A N,F ,U,T,GAMMN40, 10,0.4,2.023,0.075/ 
OPEN( 42,FILE='SDAT A.DAT',ST ATUS='UNKNOWN',ACCESS='DIRECT', 

*FORM='FORMATTED',RECL=20) 
OPEN ( 44,FILE='CONFI.DAT',ST ATUS='UNKNOWN1) 
OPEN( 45,FILE='BATCH.DAT',ST ATUS='UNKNOWN',ACCESS='APPEND') 
IFLAG=O 

C *** MI IS THE NUMBER OF O~SERVATIONS 
C 

MI=INT4(XX4)-ISTP+ 1 
C 
C *** READ DAT A AND COMPUTE YBAR'S *** 
C 
C 
C *** INITIAL BATCH SIZE *** 
C 
5 FN=F*N 

L=MI/FN 
C 
C *** FIND MEAN OF EACH BATCH 
C 

K=l 
DO 2 II=l,Ml,L 

SUM=O 
DO 3 J=II,II+L-1 

READ(42, 100,REC=G+istp-1)) Y 
100 FORMAT(F20.4) 

SUM=SUM+Y 
3 CONTINUE 

YB(K)=SUM/L 
K=K+l 

2 CONTINUE 
C 
C *** FIND OVERALL MEAN 
C 



C 

YDBAR=GRMEAN(YB, l,FN) 
PCl=PLAG(YB,YDBAR, l,FN) 
YDF=GRMEAN(YB, 1,FN/2) 
Pl l=PLAG(YB,YDF,l,FN/2) 
YDL=GRMEAN(YB,FN/2+ l ,FN) 
P 12=PLAG(YB, YD L,FN/2+ l ,FN) 
PJACK=2*PC1-(Pl l+Pl2)/2 
POLD,;,,PJACK 
BV AR=V AR(YDBAR,FN,YB) 
IF (PJACK.GE.U) THEN 

GOT0200 
ELSE 

IF(PJACK.LE.O) THEN 
GOTO 180 

ELSE 
GOTO 150 

END IF 
END IF 

C *** DOUBLE BATCH SIZE 
C 
150 NB=F*N/2 

L=MI/NB 
K=l 
TEMP( I )=(YB( 1 )+ YB(2) )/2. 
DO 151 II=3,FN,2 

K=K+l 
TEMP(K)=(YB(II)+YB(II+l))/2 

151 CONTINUE 
PCI=PLAG(TEMP,YDBAR,l,NB) 
YDF=GRMEAN(TEMP, l ,NB/2) 
Pl l=PLAG(TEMP,YDF,l,NB/2) 
YDL=GR:MEAN(TEMP ,NB/2+ l,NB) 
Pl2=PLAG(TEMP,YDL,NB/2+1,NB) 
PJACK=2*PC1-(Pl l+Pl2)/2 
BV AR=V AR(YDBAR,NB,TEMP) 
IF (PJACK.GE.POLD) GO TO 200 

180 NB=N 
L=MI/NB 
J=l 
E>O 185 II=l,N 

SUM=O 
DO 186 K=(Il-l)*F+l,F*II 

SUM=SUM+ YB(K) 
186 CONTINUE 

TEMP(J)=SUM/F 

259 



J=J+l 
185 CONTINUE 

C 
C*** COMPUTE THE ESTIMATE OF THE VARIANCE 
C 

SUM=O 
DO 190 J=l,N 

SUM =SUM+(TEMP(J)-YDBAR)**2 
190 CONTINUE 

SS=SUM/(N-1) 
BVAR=SQRT(SS/N) 
WRITE(45,*) 'VAR=',BVAR 
DELTA=T*BVAR 
IF (DEL T A/YDBAR.LE.GAMMA) GO TO 500 

C 
C *** NOT ENOUGH PRECISION - COLLECT ADDITIONAL OBSERVATIONS 
200 RETURN 

C 
C *** REACHED THE STEADY STATE*** 
C *** 90% CONFIDENCE INTERVAL IS GIVEN BY *** 
C 
500 CILL = YDBAR-DELT A 

CIUL = YDBAR +DELTA 

C 

PRINT*, 'LOWER=',CILL,' UPPER=',CIUL 
WRITE( 45, *)'LOWER=',CILL,' UPPER=',CIUL,DELTA 
WRITE(45,*)'MEAN=',YDBAR 
IFLAG=l 
RETURN 
END 

C *** THIS FUNCTION COMPUTES THE MEAN OF A SAMPLE 
C 

FUNCTION GRMEAN(Y,I,J) 
REAL Y(*) 
SUM=O 
DO 10 K=I,J 

10 SUM=SUM+Y(K) 
GRMEAN =SUM/(J-1+1) 
RETURN 
END 

260 



C 
C*** THIS FUNCTION COMPUTES Pl(L)- LAG i CORRELATION 
C 

REAL FUNCTION PLAG(YB,YDBAR,l,N) 
REAL YB(*) 
SUMl=O 
SUM2=0 
DO 10 J=I,N-1 

SUMl=SUMl+(YB(J)-YDBAR)*(YB(J+l)-YDBAR) 
SUM2=SUM2+(YB(J)-YDBAR)**2 

10 CONTINUE 
SUM2=SUM2+(YB(N)-YDBAR)**2 
PLAG=SUM 1/SUM2 
RETURN 
END 

REAL FUNCTION VAR(YDBAR,N,Y) 
REALy(*) 
SUM=O 
DO 10 I=l,N 

10 SUM=SUM+(Y(I)-YDBAR)**2 
SS=SUM/(N-1) 
V AR=SQRT(SS/N) 
RETURN 
END 

261 



Thesis: 

Zeynep Aysegul Karacal 

Candidate for the Degree of 

Doctor of Philosophy 

THE DEVELOPMENT OF AN AUTOMATED DISCRETE-EVENT 
SIMULATION OPTIMIZATION SYSTEM 

Major Field : Industrial Engineering and Management 

Biographical: 

Personal Data: Born in Istanbul, Turkey, on March 1,1960, the daughter of 
R. Orban and Guner Izgu. Married to Cem Karacal on January 24, 1984. 
Mother of two children, Sila Gizem born July 29, 1985 and Ada Irem 
born June 28, 1993. 

Education: Graduated from Ankara Fen Lisesi, Ankara, Turkey, in June 1977; 
received Bachelor of Science Degree in Industrial Engineering from 

· Middle East Technical University, Ankara, Turkey in June 1982; 
received Master of Science Degree in Computer Science from Oklahoma 
State University, Stillwater, Oklahoma in May 1988. Completed 
requirements for the Doctor of Philosophy degree at Oklahoma State 
University in May 1995. 

Experience: Teaching Assistant, Industrial Engineering Department, Middle East 
Technical University, August 1982, to April 1984; Teaching Assistant, 
School oflndustrial Engineering and Management, Oklahoma State 
University, January 1988, to December 1990; Member of Alpha Pi Mu, 
Tau Beta Pi and the Institute of Industrial Engineers. 


