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CHAPTER I 
 
 

INTRODUCTION 

 

The security of a system is dependent upon the security of each of the 

components.  Subsystems for a distributed system include point of access, 

communication link, authorizing agent, and delivery mechanism.  These subsystems are 

shown in Figure 1.1.  In a distributed system, such as the Internet, bank ATMs, or credit 

card gas pumps, there is limited control over the point of access.  Independent of access, 

the communication link must be secured.  Therefore, the most commonly recognized 

component of a secure system is the encryption algorithm.  The most commonly 

recognized problem in a secure communication system is encryption key management.   

 

 

Figure 1.1: Subsystems of a distributed, secure system 
 

An alternative to encryption for distributed systems is to fragment the data so that 

interception of pieces is useless.  Another alternative is steganography, which is 
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hiding the message within other information [1].   Other components and issues for 

security systems are: hashing (for checking data integrity), identity authentication (for 

allowing access), electronic signatures (for preventing revocation of legitimate 

transactions), information labeling (for tracing location and times of transactions), and 

monitors (for identifying potential attacks on the system).  Each of the components 

affects the overall security of the system.  The weakest component limits the system’s 

overall strength of security.  There is a difficulty with automatic identity authentication in 

distributed systems.  The difficulty is in part due to the human interaction with the 

system.  Divulged passwords and stolen or lost credit cards present a human aspect that is 

difficult to manage.  Identity authentication systems can decrease susceptibility to a 

security breach by adding extra dimensions or elements to the authentication of one’s 

identity [2, 3].  One clear example of increasing strength by utilizing multiple elements of 

authentication is a bank ATM system.  At the ATM, two forms of authentication is 

required, a debit card and a four digit pin number.  By itself, a four digit pin number is a 

very susceptible security measure, but when used in a multimodal authentication system, 

it adds a significant level of security.  Adding additional elements of identity 

authentication to a distributed system adds to the strength of security of the system.       

In distributed environments, system developers often have little or no control over 

the point of access equipment utilized.  The same information or system can be accessed 

by multiple terminals.  For instance, one may gain access to the same privileged 

information on the internet via numerous terminals, i.e. cell phones, PDA, laptop, home, 

school and work PC’s, etc.  As distributed systems become more complex, protecting 

them also has also added layers of complexity.  One general and widely used method of 
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protecting distributed systems is by automatic identity authentication [4].  Identity 

authentication systems determine whether an individual has been properly authorized to 

access a system. There are three main elements in the methods of identity authentication; 

what you know (example: password or login), what you have (example: debit card or 

key) and what you are (biometrics) [3, 6-7].  What you know requires a user to input data 

into a system to confirm that the user provided data matches previously supplied data.  

The hardware used for authentication in a ‘what you know’ system is only required to 

gather the data, how that data is gathered is not a concern for the system.  An example is 

in a login situation, where it does not matter if the data is transferred from user to system 

via keypad or a 'speech recognition / conversion' system.  As long as the data is submitted 

correctly, the system can authorize access for that user.  When utilizing the means of 

‘what you have’ to authenticate one’s identity, the system is completely hardware 

dependent.  It is hardware dependent because the item ‘you have’ is hardware and the 

device that authenticates the item’ you have’ also is hardware.  A ‘what you have’ system 

is a key-receptacle system.  To be authenticated, the key and the receptacle must match.  

One cannot enter into their hotel room by swiping a credit card into the door key reader.  

One advantage of this system is that the system designer has control of both the key and 

the key reader.  They are designed to work together.   

Biometrics is different.  Biometrics is the actual measure of what you are or what 

you do [5].  Instead of the user inputting data for comparison or furnishing an object for 

purposes of authentication, biometric authentication is the actual measure of a feature of 

the user.   The measure of that feature is compared to an earlier measurement of the same 

feature of the user to authenticate one’s identity.  In the case of biometrics, the 
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measurement devices may have an effect on the actual measurement.  For instance, a 

simple biometric would be to measure one’s height.  Assume that the height measurement 

is recorded correctly when the person was being enrolled as an authorized user.  At a later 

date the user then attempts to gain access to the system.  If the measurement device is one 

half inch higher than when at first, the user could be falsely rejected from gaining system 

access.  In many distributed environment, the potential for measurement devices to vary 

is great.  Measurement variation can have a significant detrimental effect on an identity 

authentication system.    

This investigation is concerned with one particular biometric, the biometric of 

voice.  Speaker recognition systems use one’s voice as a metric to detect a specific 

speaker [7].  For speaker recognition systems in a distributed environment, such as the 

internet, microphones are certain to vary.  Frequency response to various microphones 

can vary widely.  Two different microphones can produce two dissimilar signals for the 

exact same recording.  In a speaker recognition system microphone dissimilarity may 

lead to, 1) a significant enough dissimilarity to cause the system to fail to recognize the 

speaker, or 2) a dissimilarity  not significant enough to affect the system’s ability to 

recognize the speaker.  The opposite is true for imposter speakers as well.  Microphone 

effects may be significant / insignificant enough to alter/not alter the imposter rejection 

capability of the speaker recognition system.  To discover whether or not the effects of 

varying microphones has a significant detrimental effect on the ability of a speaker 

recognition system perform identity authentication is the objective of this research.  To 

accomplish this objective, voice samples from a group of people, spoken into a set of 
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digital recording systems were submitted to a speaker recognition system and the error 

rates of each system were analyzed and compared.     
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CHAPTER II 
 
 

BACKGROUND 

 

Section 1 – Identity Authentication 

With an ever growing networked-world, where a large amount of sensitive data is 

digitized and security is in high demand, identity authentication has come to play a vital 

role in security.  Multimodal systems have been given more credence to increase a 

system’s security [8-10].  A recent trip to a popular amusement park in south Texas 

affords a good example of a multimodal identity authentication system.  Upon your first 

gate entrance to the park, your ticket is presented with your name on it, identity is 

verified via a driver’s license or other accepted identification document and a thumbprint 

is scanned to enroll you into the amusement park database.  Upon return trips, a 

thumbprint is scanned, and the ticket presented.  By requiring both an item that you have 

and a verification of what you are, a significant increase in security is generated.  The 

amusement park has utilized two of the three main elements of identity authentication.  

The elements of authentication are what you have, what you know and what you are [3, 

6-7].     Many internet-based authentication systems only require one of the three 

elements, what you know.  A typical web-based security application may require a 

username and password to gain access to certain information.  Though the application 

may require two separate sets of information, it is still only requiring one of the three  
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elements, what you know.  Requiring two sets of information can be insufficient as the 

author’s recent personal experience on an auction website has demonstrated.  Others can, 

by various means, learn what you know.  A more secure system is a typical bank ATM 

system.  Here one is required to present a physical debit card, what you have, and a four 

digit numerical pin, what you know.  Though a four digit pin number is a weak security 

measure, it adds significant strength to the overall authentication system when a physical 

card is required.  The card increases security as one must learn the “what you know” and 

obtain the “what you have” in order to acquire access to the account.  The addition of a 

third element would secure access to a system even further.  By adding extra elements to 

an authentication system, one adds a significant degree of complexity to potential 

intruders.  In order for a system to be considered level 3 according to NIST document 

800-63 at least 2 of the three elements must be utilized in the authentication system [2].  

One may improve password strength by increasing password lengths or by adding a 

secondary password [11].  By adding another authentication element to an authentication 

system, an even greater improvement in system strength can be realized (see Figure 2.1).  

The general increase in authentication system strength can be represented by the 

equation,  

 

kahtotal SSSS ⋅⋅= ,       (2.1) 
 

And, 
 

1<iS ,                 (2.2) 
 

Where, 
 

Sh = Susceptibility to system security breach: what you have  
Sk = Susceptibility to system security breach: what you know 
Sa = Susceptibility to system security breach: what you are 
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a)                                                 b) 

 

c) 

Figure 2.1: Illustration of susceptibility with 1-3 elements of authentication.  a) represents a one 
element system, b) represents a two element system and c) represents a three element system. 

 

Each axis in Figure 2.1 correlates to one of the three elements of identity 

authentication (KNOW, HAVE, and ARE). When only one element is utilized, the other 

two elements are 100% susceptible, because they are not utilized.  By adding additional 

elements, the overall volume, which is equivalent to the system’s susceptibility, is 

reduced. The maximum susceptibility, or maximum volume in Figure 2.1, is then        

Smax = 1.  If one of the elements is impenetrable the susceptibility of the element and 
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subsequently the system, is Si = Stotal = 0.  If one of the three systems is non-existent then 

it is equivalent to a completely susceptible breach of security, or Si=1.  A system that 

requires only a password may increase security of the system by adding additional 

character requirements.  In Figure 2.1a adding password characters is represented by a 

one dimensional reduction, specifically a reduction in the Sk dimension.  By adding a 

physical token requirement, a second element is reduced, as is illustrated in Figure 2.1b.  

Even a relatively poor secondary element generates significantly less susceptibility.  To 

equally reduce the susceptibility of the ‘password only’ system more and more characters 

are needed.  A longer password is harder to guess or crack.  “Cracking” a password can 

be done with software that repeatedly guesses at a password and keeps trying until access 

is granted.  A long password takes a long time to guess or crack, reducing susceptibility.  

However, even valid users can forget or mistype long passwords.  When a password 

exceed a person’s ability to remember it, the person takes shortcuts.  Consider that no 

amount of additional characters will increase the system security when a person writes 

their long password on a post-it note next to their terminal.   

By adding a secondary or tertiary means of authentication, even a substandard 

means, system security is increased.  For instance a banking system that requires a couple 

of items of knowledge can enhance their security by adding a required USB token that 

must be connected to your computer prior to account access.  Such devices limit intruders 

to those with physical access to the token. What can be known is information. By 

comparing submitted information to expected and/or stored information, identity 

authentication can be accomplished. What one has is a physical device. Identity 

authentication is accomplished in a ‘what you have’ system by comparing a user 
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possession, a physical device, to another physical device.  Often a ‘what you have’ 

system is a key-receptacle type system.  And “what one is” are their physical 

characteristics.  An intrinsic property of one’s physical characteristics is the difficulty in 

transferring those characteristics to another.  Information may be divulged, or a physical 

device may transfer hands, but as a rule it is much more difficult to transmit one’s 

attributes and/or features to another.  Circumvention may be considered the cost to trick 

or falsify a system, as in the cost of guessing an x-character password.  The difficulty of 

circumvention of a biometric is generally greater than that of the other two authentication 

elements.  For that reason, adding the biometric element of authentication to a secure 

system generates a clear benefit.   

 

Section 2 - Biometrics 

Biometrics is a measure of what a person is or what a person does (produces).  

The nature of biometrics makes it generally the least vulnerable to intentional 

falsification of the three authentication elements.  One may lose a credit card, or divulge 

a pin number, but it is significantly more difficult to give away what you are.  Attributes 

can be mimicked.  It is not impossible to lift a fingerprint, or replace your DNA sample 

with that of others.  As a general assumption it would require a significant increase in 

effort to ‘fake’ what one is, as compared to the other two authentication elements. 

There are two general types of biometric systems, static and dynamic.  A static or 

physiological system measures purely what you are, such as a retina scan or a fingerprint.  

A dynamic, or behavioral, biometric measures your actions, such as facial expressions, 

signatures, behavioral patterns or voice generation [5, 7].  Because of the requirement of 
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an action in dynamic biometrics, intrapersonal changes in an individual or changes in an 

environment play a role.  A signature of an individual is never exactly the same and over 

time may evolve in its primary, measurable attributes.  How to deal with the problem of 

intrapersonal variability is an issue and topic of research in dynamic biometrics, 

including speaker authentication [12-13].  Intrapersonal variability is not a significant 

issue in the relatively stable ‘static’ biometrics such as retina patterns or fingerprints, 

which for most people remain substantially constant throughout the majority of life.  A 

user or set of users’ acceptability of a method may limit certain static biometrics.  For 

instance, in internet applications that require data to be digitized and sent over the net, a 

fingerprint or DNA data may not be a comfortable fit with some users.  A third parameter 

may be access to technology.  DNA analysis or fingerprint reading technology may not 

be wide spread.  In an internet application a dynamic sample, such as a handwriting 

sample or voice sample, can be considered more acceptable to the user [14].  One 

advantage of voice as the biometric as opposed to signatures of thumbprints is the 

availability of the technology.  In many applications, the sole mode of system access 

and/or identity authentication for remote users is speech and it is often not considered 

intrusive [15].  One example would be a telephone banking system.  Speaker recognition 

is generally an acceptable, low cost, widely available technology.   

There is another broad division in biometrics: authentication (verification) versus 

identification [15-19].  Identification asks “who is he?” where authentication asks, “Is he 

who he says he is?”  The task of authentication is a much simpler matter as compared to 

identification.  It is a closed-set versus an open-set problem.  Generally any system used 

for identification could be utilized in an authentication application.  The same cannot be 
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said for authentication systems in identification applications.  Authentication is utilized 

for secure access in distributed systems. 

 

Section 3 – Basics of Speaker Recognition 

The specific biometric of interest in this thesis, is voice as measured by a speaker 

recognition systems.  Speaker recognition systems can be partitioned into one of two 

groups, text-dependent and text-independent [15, 19-20].  A text-dependent system is one 

in which the phrase or phrases that one speaks during enrollment are the same phrase or 

phrases as used when requesting authentication for system access.  These systems have 

an advantage in accuracy due to common word usage, pronunciation, prosody (rhythm 

and emphasis) and phone usage singularities in ones speech [7, 21].  Simple pattern 

matching algorithms are used with some text-dependent systems to verify the proper 

person is saying the proper phrase.  The basis of what is being measured in text-

independent systems fundamentally differs from text-dependent systems.  Text-

dependent systems attempt recognition by identifying how a user says a specific phrase.  

Text-independent systems use fundamental voice data buried in voice signals to do 

speaker recognition.  Because text-independent systems analyze basic voice information 

and not how a particular user says a particular phrase, the user is not required to speak 

any certain word or phrase. 

There are several voice attributes that can be analyzed to verify identity.  These 

attributes can be divided into two basic groups, low level and high level information.  

The low-level information, uses small time segments of the voice signals and analyzes 

the basic structure of one’s voice, i.e. signal spectrum, tone, frequency, etc [22].  Recent 
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research has also shown the viability of high level information used in conjunction with 

the more classic low level systems [22-27].  Some examples of high level information in 

speech include accent, pronunciation, often used words or phrases. High-level data is 

beginning to have a significant role in speaker recognition systems.   

Figure 2.2 illustrates the classification of a low-level, text-independent speaker 

recognition system within the framework of identity authentication systems.  Each box 

represents a possible classification at each step.  The solid lines represent the decision 

path used to decide upon a low-level, text-independent, speaker authentication system.  

The bracketed items represent favorable attributes sought after in a biometric system 

 

 

Figure 2.2: Classification of a short-term, text-independent, speaker authentication system 
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in a distributed environment. The first decision to be made is which combination of the 

three elements of identity authentication will be used in the system.  If the combination of 

authentication elements includes biometrics, then one must decide which type of system 

to use, dynamic or static.  The decision of which biometric to use is likely to be 

influenced by the partial list of parameters found in the brackets in Figure 2.2.  A more 

complete list is found in Table 2.1.  The characteristics used to evaluate and compare 

different biometrics include: cost, time, universality, distinctiveness, permanence, 

collectability, acceptability, circumvention, accuracy, repeatability, storage requirements, 

and availability of technology [14].   

 

 

 

 

 

 

 

 

 

 

 

 

The cost parameter includes the money, time, equipment and expertise for the 

implementation of the system and the collection of the measurements. The time 

Table 2.1: Evaluation of Characteristics for Biometrics 
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Cost     ++ ++ ++   

Time    ++ ++ ++   

Universality ++ ++  ++ ++ ++   
Distinctiveness ++ ++    -   
Permanence ++ ++    -   
Collectability  ++   ++ ++   

Acceptability  - + ++ ++ M  M 

Circumvention ++        

Accuracy ++        

Repeatability ++        

Storage 
Requirements 

  ++ ++  ++  ++ 

Availability of 
Technology 

 + M + ++ ++ - M 

++ = Great (or cost is low, time is short; hard to circumvent) ; + = Good; 
M = Medium; - = Bad; =- Terrible (cost is high);    

Blanks = no information 
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characteristic is specific to the measurement collection and analysis time.  That is, the 

time from when an identity authentication request is made until the access is granted or 

denied.    Universality is a measure of the portion of the sample population that are able 

to meet the requirements of the systems.  For example, everyone has DNA, but not 

everyone has hair.  So a DNA test is universally applicable, while hair color is not 

applicable to people without hair.  Distinctiveness is a measure of how unique or 

different the measurements for an individual will be from other individuals.  Finger prints 

are very distinct whereas weight is not.  Permanence is a measure of intrapersonal 

variations, the change in the biometric with the passage of time.  Collectability is the 

characteristic indicating how much effort is required to obtain samples for the biometric.  

Acceptability is a subjective measure of how willing a person is to submit to the 

biometric measurement.  Most of us would not submit to a blood test just to enter a gas 

station.  On the other hand, we readily submit to height measurements for carnival rides 

at the state fair.  Circumvention is the ease or cost to trick or falsify the measurement.  

Measuring weight is easy to falsify by carrying lead in one’s pockets.  A falsified eye 

scan is a bit more difficult.  The accuracy of a biometric is the probability that an 

individual will be properly authenticated.  Specifically, it includes the probability of 

properly authenticating the identity or access for authorized individuals and properly 

rejecting the identity or access for unauthorized individuals.  Repeatability is the variance 

of the biometric measurement over repeated trials.  The data storage requirement is 

evaluated both for the individual measurement as well as the total database of each 

individual measurement.  The availability of the technology is a make or break decision 

as well as a quantitative measure.  A biometric is not an option for immediate deployment 
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if it requires a technology that does not currently exists.  However, even if the technology 

exists, the ready availability of the technology is a factor.   For example, many computers 

and recording devices have the ability to capture a voice or a picture, but not many 

people have ready access to DNA or fingerprint collection devices.  The selection of a 

biometric based upon these characteristics clearly involves many tradeoffs.  How one 

weighs each of these decision factors, is a function of the application.  For many 

applications, as indicated in Table 2.1, speaker recognition is the best candidate.               

As stated previously, speaker recognition systems can also be divided by their 

specific objective: identification or authentication.  In speaker identification the system 

identifies who a person is out of some set which may include all human beings.  The 

system asks ‘who is he/she?’  In speaker authentication (or verification) a person’s 

identity is checked against a claimed identity.  In authentication, a system asks “Is he 

who he says he is?”  Speaker recognition systems, as well as all identity authentication 

systems, have two basic phases, enrollment and testing [20, 28].  In the enrollment phase, 

users train a system by providing an initial voice sample.  The ‘training’ or enrollment 

sample is compared to the later samples submitted for authentication.  The purpose of the 

enrollment phase of an identity authentication system is to generate a standard for the 

individual, which he/she will be measured against in the testing phase.  In the speaker 

recognition system, a standard is generated by modeling a person’s voice.  That model 

will later be used to check that an individual’s voice is the voice of an authorized 

individual.  Models of a system provide an efficient method for comparison.  During the 

authentication or testing phase, a basic speaker recognition system collects the analog 

voice signal, converts it to an analog electrical signal and then digitizes the signal.  From 
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the digital signal, some feature(s) of the voice signal is (are) extracted and measured.  

When the enrollment utterance is provided, a statistical model is generated.  The model is 

later compared to features from the ‘test’ samples.  After the two are compared a decision 

must be made if the person requesting authentication matched or not.  The main steps of 

the described system are outlined in Figure 2.3.  Additional processing enhancement 

steps can often be found in speaker recognition systems, such as filtering and score 

normalization.       

  

 

Figure 2.3: Overview of main components in a speaker recognition system 
 

Voice is produced by air being pushed up from the lungs through the glottal folds 

(vocal folds) and then through the vocal tract and eventually out of the speakers mouth.  

The vocal folds produce a base sound that is manipulated into specific phonetic events by 

the vocal tract [29, 30].  Lip radiation, mouth geometry and other biological functions 

also play minor roles in voice production.  For simplicity, these will be lumped together 

with the vocal tract in the following discussion.  In voiced speech, vocal folds contract 
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and relax creating a source of sound [30- 33].   The vocal fold sound is modified by the 

vocal tract to create specific noises such as vowels, consonants, etc.  Mathematically 

speech can be modeled as a source-filter system [30, 31].  The air from the lungs being 

pushed through the vocal folds would be the source.  The vocal tract would act as a filter.  

The source (vocal fold) and filter (vocal tract) would be convoluted together to generate 

the final voice signal.  The speech signal as a convolution of the two signals is illustrated 

in Figure 2.4.  The sound from the vocal folds is one of several features of a voice that 

 

 

Figure 2.4: Speech model as a source-filter convolution 
 

humans use to identify an individual just by hearing one's speech.  Other means, such as 

the high level features spoken of, are used for ‘identification by ear’ as well.  One method 

of performing automatic, text-independent, speaker recognition is to take advantage of 

the identifying properties of the vocal fold signal.  How can the vocal fold sound be 

analyzed independent of the vocal tract?  One answer is, by deconvolution.  

Deconvolution can be used because speech is a convolution of the vocal folds and vocal 

tract.  One method of deconvolution is by cepstral analysis.  The cepstrum fundamentally 

is the spectrum of the log of a spectrum, or alternatively, the cepstrum [34].  A cepstrum 

is a technique used for deconvolution of a signal.  The cepstrum is the inverse Fourier 
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transform of the log-magnitude Fourier transform of the signal (see Equation (2.3)) [35].   

The product property of logarithmic functions allows the spectrum of the voice spectrum 

to be mathematically separated into the log magnitudes of the vocal fold and vocal tract 

signals.  Because of the relative difference in quefrencies (frequencies in the cepstrum 

domain) of the vocal folds and vocal tracts, separating these signals can be accomplished 

with a simple lifter [36].  A lifter is a filter in the cepstral domain [34].  One common 

method to apply the lifter is by passing the log power spectrum of the signal through a 

filterbank [20].  Common speaker recognition systems space filters in the filter bank on a 

mel-spaced frequency scale, which closely resembles the auditory scale of the human ear.   

( )( )xdedtexC njtj ℑℑ=⋅⋅= −

− −

⋅−∫ ∫ loglog
2
1 1

π

π

ω
π

π

ω ω
π      (2.3) 

 

The mel-spaced scale emphasizes the lower frequencies while attenuating some of the 

upper frequencies [16].  Passing a speech sample through the mel-scale filterbank allows 

for the general isolation of the excitation signal of the vocal folds.  The pseudo-code in 

Figure 2.5 illustrates the process for deconvolution of the two voice signals via cepstral 

analysis.  

 

 

 

 

 

 

 

Figure 2.5: Pseudo-code demonstrating the cepstrum deconvolution process 

Vocal_Tract*Vocal_Fold = Vf*Vt = Voice Signal    :Start with Voice Sample 

log|F(Vf*Vt) |             :Take Log of FourierTransform(FT)  

log| F(Vf).F(Vt) |           :FT of each signal portion 

log|F(Vf) | + log|F(Vt) |          :Additive properties of logrithm 

Filterbank(log|F(Vf) | + log|F(Vt) |)         :filterbank isolates vocal fold signal  

Mel-Cepstrum = F  -1
 [MelFilter (log|F(Vf) | + log|F(Vt) |)] :Mel-Cepstrum of Voice 

Mel-Cepstrum ≈ F  -1
 [MelFilter (log|F(Vf) |]  : Approximates Mel-Cepst. of vocal folds 
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In the implemented algorithm, the Inverse Discrete Fourier Transform (IDFT) of 

the filtered log-spectrum is taken [20, 37-39].  The IDFT gives N number of cepstral 

coefficients on the Mel-scale, called Mel-Frequency Cepstral Coefficients (MFCC) [35].  

The MFCC’s of the entire utterance broken up into 20ms segments of speech are 

obtained.  In the enrollment phase, the MFCC’s are the features that are obtained that will 

later act as a measure of one’s voice, and thus one’s identity.       

     

 

Figure 2.6: Visual step-by-step of the short-term cepstrum of a voice signal 
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The purpose of the enrollment phase of an identity authentication system is to 

generate a standard for the individual, which he/she will be measured against in the 

testing phase.  In the speaker recognition system, standard generation is done by 

modeling a person’s voice.  That model will later be used to measure the identity of an 

individual’s voice.  What are being modeled in the speaker recognition system are the 

MFCC vectors ( )ixr .  The feature vectors are modeled using a tool called a Gaussian 

Mixture Model (GMM) [40].  A GMM is the combination of D-Variate Gaussians added 

piece-wise.  The component probability densities are given by Equation (2.4).  The GMM 

itself is a sum of the weighted densities, show in Equation (2.5) [40, 41]. 
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N-number of MFCC’s are taken every 20 milliseconds.  For just a few seconds of 

sample speech, the amount of data for just one vector can occupy several thousand words 

of memory.  A specific system will have a number (N) of feature vectors, containing 

LX/.002s length data and modeled by D number of Gaussians, where LX is the length of 

the voice signal.  Other methods of metric creation were utilized prior to the application 

of GMM’s to speaker recognition.  Earlier methods include Hidden Markov Models 
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(HMM) and vector quantization (VQ) [15, 42].  Both HMM and VQ have proven to be 

more computational intensive with no, or only modest error rate improvements [21]. 

The selection of the number of Gaussians (D) has an effect on performance [40].  

A uni- or bi-variate Gaussian mixture is not likely to describe a feature’s distribution very 

well.  On the other end of the spectrum, as the number of Gaussians increase, the amount 

of information about the signal that each adds will decrease.  In fact, too detailed a model 

which contains information about background noise, or environmental acoustics can be 

detrimental to error rates [40].  Figure 2.7 shows the resulting GMM of the same speech 

signal feature distribution for various values of D.  As the number of Gaussians is 

increased, the model matches ever more closely to the actual feature distribution.  Figure 

2.7a uses a single variate Gaussian, giving a very loose approximation.  In Figure 2.7b 

the 3-variate GMM models the voice feature distribution’s basic contour well.  The 3-

variate GMM represents a significant increase in accuracy over the 1-variate system.          

Figure 2.7c, a 10-variate GMM also models this feature contour well.  Additionally the 

10-variate system picks up some singularities that could potentially distinguish an 

authenticated user from an imposter.  Figure 2.7d adds even more detail.  Figure 2.7d 

shows the voice feature as modeled by a 64-variate GMM.  The 64-variate model picks 

up some of the same singularities as the 10-variate system.  It also models minor 

idiosyncrasies in the feature distribution, which are most likely singular to the particular 

environment where the sample was taken or to the particular phrase that was spoken.   

 

 

 

 



 23

           
                       a)                                                                                  b) 

 

           
c)                                                                     d) 

Figure 2.7: a) 1-variate GMM, b) two-variate GMM, c) 10-variate GMM, d) 64-
variate GMM 

 

Figure 2.8 illustrates differences in voice feature distributions. Each of the four 

graphs represents the 2nd MFCC vector of sample utterances.  Figures 2.8a, 2.8b and 2.8c 

are three different voice samples from the same speaker.  Figure 2.8d is from a different 

speaker.  Figures 2.8a and 2.8b came from the same microphone.  The distributions in 

Figure 2.8a – 2.8c are similar in shape, but contain significant differences in detail.  

Because of the differences in detail, there is a limit to the efficacy of adding Gaussians to 

a GMM model.  Research has shown that minimal error rate improvement is realized by 

adding more than about 32 component Gaussians to a GMM [40].  In fact, adding too 

many component Gaussians can have a detrimental effect on error rates [40].   
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      a)                                                         b) 

 
c)     d) 

Figure 2.8: 2nd cepstral coefficients GMM.  a)-c) are the same speaker saying different phrases.  d) is 
a different speaker on system #2 saying same phrase as c).   

 
 

With the enrollment model in the system, a voice sample being tested for 

authentication can then be compared and scored against the model of the enrollment 

speech signal.  The task of authentication is to determine if the speaker is who he/she 

claims to be.  Basically, the task is a hypothesis test.  The hypothesis is ‘the speech 

sample Y0 is from the modeled speaker YM’ [43]. The hypothesis test can produce one of 

4 results [3, 14, 44].  A true accept (TA) occurs when the system correctly authenticates 

an authorized individual.  A true reject (TR) occurs when the system correctly rejects an 

unauthorized individual.  Error types I & II can also occur from the hypothesis.  A Type I 

error occurs when the authorized individual is falsely rejected (FR).  A Type II error 

occurs when an unauthorized individual is falsely accepted (FA).  The four possible 

results are listed in Table 2.2 [14]. 
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There is a tradeoff in the FR and FA rates.  NIST provides a detection cost model 

for measurement of speaker detection performance.  It is given by Equation (2.6) [45]:   

 

( ) ( ) ( ) ( )( )
MMMM YYYFAFAYYYFRFRDet PPCPPCC −××+××= ≠= 1

00 ||   (2.6) 

 

 In Bayesian decision theory, an optimal decision is found at the minimum of Equation 

(2.6) [46].    FRC  and FAC  are the costs of a FR and FA respectively.  ( )MYYFRP =0|  and 

( )MYYFAP ≠0|  are, respectively, the probability of a FR given the real user and FA given an 

imposter.  The a priori probability of the specified speaker YM is ( )MYP .  Minimizing the 

cost model equation can generate the Bayesian optimal decision rule [46]:  

 

( )
( ) ⎩

⎨
⎧
<
≥

,
,

|
|

0

0

θ
θ

M

M

YYP
YYP         (2.7) 

 

 
 

Table 2.2: Four possible results of identity authentication 

 

 

Accept 
 

Reject 
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The numerator is simply λ0, where λ0 is the likelihood that Y0 is from YM.  The 

denominator is λ1, where λ1 is the likelihood that Y0 is not from the modeled speaker YM.  

Thus the overall likelihood, λ, equals λ0/λ1 [20].  In this thesis, the log of the likelihood 

ratio (LR) is used because it is less computationally intensive.  The likelihood of Lx 

observations compared to a single component of the mixture model is given by (2.8).    
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Taking the log of the likelihood gives: 
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The model used to determine λ0 is simply the Gaussian mixture model developed in the 

enrollment phase.  The model used to determine λ1 is not as clear.  The difficulty is in 

modeling who a person is not.  The difficulty in an open set application leaves an 

unbounded set of possible speakers, which can be difficult to model.  The approach that 

has been used in much literature is the universal background model (UBM).  The UBM is 

a voice feature model generated from a collection of other speakers [47].   

The process of tuning the detection threshold (θ) is one of the more difficult tasks 

in designing a speaker recognition system.  In part, the difficulty is due to the tradeoff 

between false accept and false reject rates and the need of the particular application.  A 

system requiring high security may weight the cost of a false accept much greater than 

the cost of a false reject.  Higher false reject rates with lower false accept rates may be an 

inconvenience to user’s who are more often falsely rejected, but allows fewer 
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unauthorized individuals from gaining access to the system [14].  The high security 

system described works great for a nuclear arms facility but may be less effective for a 

system that allows fast food workers access to the freezer, which requires regular and 

speedy entrances.  To assist in threshold setting, a detection error tradeoff (DET) curve 

can be developed [48].  A DET curve plots the FR and FA error rates as a function of the 

threshold level.  In this thesis, as λ approaches zero, the more likely the voice sample Y0 

is from speaker model YM.  Therefore, when the threshold is a large negative number, 

many FA can be expected.  As the threshold tightness is increased (θ→0), less and less 

false accepts are expected and more false rejects would be expected.  At θ = 0, all users, 

including authorized ones would be rejected making the FR rate = 1.  In Figure 2.9, when 

θ is -4, the FR rate is 100% while the FA rate is 0%.   Increasing θ to -16 yields a FR rate 

    
  

 

Figure 2.9: An example Detection Error Tradeoff (DET) curve 
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of 13.3% and a FA rate of 5%.  The threshold was loosened, allowing a few people to be 

falsely accepted.  The same threshold loosening reduces the amount of Type I errors 

(FR).  With an even looser threshold of -23, the FA rate is up to 85% and the FR is at 0%.   

In review, the task of speaker recognition can be split into two phases, enrollment 

and testing.  The basic setup of a speaker recognition system includes speech signal 

collection, feature extraction, feature modeling, signal comparison and decision making.  

Other common tasks in speaker recognition systems include pre-emphasis to mimic the 

outer ear, pre-signal filtering to mitigate background noise, cepstral domain filtering for 

removal of static channel effects (such as cepstral mean subtraction and RASTA 

filtering), and score normalization for mitigation of intra-speaker variations, handset 

enrollment/testing mismatches and other environmental variations [49-54].     

 

 

Section 4 – Historical Review of Speaker Recognition 

The modern system described in Section 3 is an accumulation of advancements 

made over the last 50 years.  Today’s automatic speaker recognition systems verify user 

access rights, identifying personnel in a group, and they even have some use in forensic 

applications.  Early research in speaker recognition was in the realm of human abilities.  

War time research in the 1940’s allowed for significant advances, producing a tool to 

allow visual inspection of voice.  Advances in signal processing techniques and the rise 

of the computer permitted true automated systems to be developed.  The first automated 

system was created in the 1970’s.  From that point forward, the main thrust of research 

has been in independent speaker recognition.  Today’s speaker recognition research 
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focuses on lowering error rates, capabilities in identification and creating systems robust 

in the presence of environmental variations.       

The problem of recognizing an individual by their voice is an age old issue.  The 

book of Genesis records Isaac’s dilemma in speaker identification when Jacob acts as an 

imposter to Esau.  Isaac’s confusion was with contradictory results from two different 

biometrics.  “The voice is Jacob’s voice, but the hands are the hands of Esau.”   Jacob 

trusted tactility over auditory “and he discerned him not” [55].  The problem of 

recognizing an individual by their voice arose throughout history and even appears in a 

recorded judicial case as early as 1660 [56].  It was much later before academic research 

would begin a scholarly investigation of this topic.        

In March of 1932, Charles and Anne Lindbergh’s baby boy was abducted and 

subsequently killed.  The investigation led to a clandestine payoff in a cemetery where a 

Lindbergh operative met with an anonymous male claiming to be the kidnapper.  Charles 

Lindbergh sat in a nearby car.  Lindbergh overheard the anonymous man say “Hey 

Doctor, Over here, over here”.  The event was the second time Charles Lindberg had 

heard the man’s voice without seeing his face.  Two and a half years later at the trial of 

the accused kidnapper, Bruno Hauptmann, Lindberg claimed to be able to identify 

Hauptmann’s voice as the same voice heard in the cemetery [56].   

The Lindberg claim spurred Frances McGehee to initiate the first academic 

research of reliability of earwitnesses.  Her research led to the publication of two 

significant articles on the topic [57, 58].  Since McGehee, research into speaker 

recognition has been continuous in forensics and psychology.  The later development of 

the automatic speaker recognition system can also trace its roots to the work of McGehee. 
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In 1962 the first article on an automated (semi-automated) method for speaker 

recognition was published in Nature by a Bell Laboratories Physicist, Lawrence G. 

Kersta.  The paper was entitled “Voiceprint Identification” [59].  Two years previous, 

Bell Laboratories had been approached by law enforcement agencies about the possibility 

of identifying callers who had made several verbal bomb threats over telephone lines 

[60].  The task was given to Kersta.  After the two years of research he claimed he had a 

method to identify individuals with very high success rates. His method utilized earlier 

work on speaker recognition performed by three other Bell Laboratories’ scientists, 

Potter, Kopp and Green who were working on voice identification for military 

applications during World War II.  They had developed a visual representation of speech 

called a spectrogram.  A spectrogram records the frequency and intensity of a speech 

signal with respect to time.  Kersta’s claims of identifying speech via spectrograms 

sparked several research projects over the next year.  In fact, his article sparked an entire 

field of research.  There were several dissenting views in the next few years and it 

seemed no other researcher was able to duplicate the high claims Kersta had made [60].  

To help settle the matter, a substantial research project was undertaken by Oscar 

Tosi, a professor at Michigan State University who had doubts about Kersta’s so called 

“voiceprint”.  In conjunction with the Michigan State Police and sponsored by the 

Federal Department of Justice, Tosi’s research yielded promising results. Tosi’s results 

tended to support Kersta and lent validity to the field.  Tosi’s results were refuted by Bolt 

a year later as he illustrated holes in the Tosi experimental methodology [60].  Tosi’s 

experiment lacked scientific basis in practical applications.  The FBI, being interested in 

the forensic application of speaker identification, requested another study be performed 
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by the National Academy of Sciences.  The results from the study showed that the 

technical uncertainties in forensic applications were substantial enough to claim the use 

of voiceprints were unreliable in real applications.  However, voiceprints are still useful 

in certain circumstances.  In fact the FBI has utilized a form of Kersta’s spectrographic 

analysis as late as 2002 [60].   

The Kersta method is an aural-visual method.  From a voice sample a 

spectrograph is produced.  The spectrogram is then inspected visually for pattern 

matching and scored by the interpreter.  Success rates with the Kersta, spectrogram 

method, given an expert interpreter and proper environmental circumstances, can be very 

high.  Despite success, the Kersta method requires human interaction, limiting its use in 

automated security applications.  Also, “the good performance reported in Kersta’s paper 

has not been observed in subsequent evaluations simulating real-life conditions” [7].   

Though the Kersta method is still utilized in some forensic applications, such as 

with the FBI, it has not materialized into a practical autonomous speaker recognition 

system.  The reasons are many, human interpretation being a major factor.  Other 

techniques have since been employed allowing for low computing costs with high 

success rates.           

It was in the 1960’s when several developments made autonomous automatic 

speech recognition possible.  These developments covered a broad range of disciplines 

and for the most part were independent of speaker recognition research.  For instance, 

Gunnar Fant produced the first physiological model of human speech production in 1960 

[29].  This and similar research that followed, became the basis for understanding how to 

analyze speech for both speaker recognition as well as automatic speech recognition.  It 
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led to the understanding of voice as a linear source-filter model, which allowed for a 

better understanding of identifiable characteristics in an individual’s voice.      

As computers became more accessible to more scientists, problems of 

implementation of continuous-domain mathematical solutions in a discrete machine arose 

more and more often.  The issue was critical to digital signal processing.  In 1965 Cooley 

and Tukey published their method of digital implementation for the Fourier transform.  It 

is now known as the Cooley-Tukey Fast Fourier Transform (FFT) [61].  The FFT gave 

scientists an efficient method of frequency analysis in computer based systems.  It was a 

major advance and it coincided with other investigations at the time.  Two years earlier in 

1963 Bogert, Healy and Tukey had published a study on echo detection in seismic signals 

titled “The Quefrency Analysis of the Time Series for Echoes: Cepstrum, Pseudo-Auto-

Covariance, Cross-Cepstrum, and Saphe Cracking” [34].    The oddly titled paper 

described a method of echo detection by taking the “spectrum” of a log-magnitude 

spectrum.  During the same period, Oppenheim’s research into homomorphic signal 

separation, such as decovolution, led to him defining the complex cepstrum, which is the 

Fourier transform of the log spectrum, i.e. a spectrum of the spectrum [62].  The 

cepstrum is described in section 3 of this chapter.  The complex cepstrum has become a 

standard method used in speaker recognition systems.    

 In another completely unrelated study in the late 1960’s Leonard E. Baum and 

others developed a stochastic model for Markov processes.  The process attempts to 

determine hidden parameters of a statistical model from observable features in the model 

and is called the Hidden Markov Model (HMM) [63].  The HMM statistical model would 

find broader application in the parallel studies of speech recognition.  The HMM also has 
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a smaller role in speaker recognition.      

The fortuitous developments of the 1960’s have become the basis for modern 

speaker recognition systems.  It was also during this period that parallel investigations 

into automatic speaker recognition system began.  For instance, Pruzansky, a Bell 

Laboratories Engineer, investigated early systems for automatic speaker recognition 

utilizing spectral pattern matching techniques [64, 65].  The spectral pattern matching 

systems had a measure of success.  However, the first completely autonomous speaker 

recognition system was a multimodal system which utilized voice and signature analysis.  

It was developed by a team led by George Doddington at Texas Instruments in 1977 [21, 

64].  The Doddington system used digital filter banks to do spectral analysis.  It was a 

text-dependent system that prompts the user for the correct verification phrase.  The 

output vector of a 14-channel filter bank is used in a ‘Euclidian distance’ based algorithm 

to make a verification decision [7].  Over many years, the Doddington system had a false 

rejection rate of less than 1% and a false acceptance rate of less than 1% [7].   

The early recognition features used as measures included spectral resonance, filter 

banks vectors and linear predictive coefficients.  As shown above, these features had a 

good level of success.  The early successful systems were all text-dependent.  Since that 

time research has been able to improve on the early text-dependent successes.  

Investigations into text-independent methods since those early days have continued.  

Today, text-independent research constitutes the brunt of the speaker recognition 

research.  Text-independent research differs from the text-dependent research as 

scientists look for underlying indentifying attributes, as opposed to spectral pattern 

matching or phonetic event measurements.  Text-independent research is more frequently 
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applied to speaker identification, as opposed to the simpler task of verification.   

The application of Bogert and company’s brainchild, the cepstrum, to speaker 

recognition gave a marked improvement in recognition systems.  Cepstrum based 

features have now become standard in recognition systems [21].  Modern recognition 

systems use the homomorphic deconvolution capabilities of the cepstrum to separate the 

vocal fold attributes from the vocal tract attributes in the linear source-filter model of 

human speech production.  As of today, the cepstrum and cepstrum coefficients play an 

integral role in speaker recognition.    

 As important to an accurate recognition system as voice feature selection / 

extraction is, the pattern matching and decision making algorithm is equally important.  

The Hidden Markov Model, developed in the late 1960’s, was employed widely in 

speech and speaker recognition systems during the 1980’s.  Also, a method of vector 

quantization (VQ), compressing a speaker feature vectors down to a small set, also had 

some success in modeling voice features.  However, later research showed that with 

enough enrollment data the HMM and the VQ was about as effective as the less 

computationally demanding Gaussian Mixture Model (GMM) [21, 40].  Though the 

HMM has wide application in speech recognition, it is found less often in low-level 

speaker recognition systems.   

The field of speaker recognition study has also made significant improvement 

from the simple Euclidian distance method found in the TI system.  The system that has 

evolved throughout the early years of recognition research includes a few basic tasks.  

These tasks are, feature extraction, feature modeling and classification or decision 

making.  The feature matching algorithm which computes the likelihood that one user’s 
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voice sample matches the modeled enrollment samples.  The classification methods have 

also made significant improvement from the simple Euclidian distance method.  A fairly 

straightforward, simple decision algorithm may be a likelihood test of the Gaussian 

Mixture Model of cepstrum features.  Though there are many enhancements to the simple 

authentication system as described, several other methods are being investigated.  The 

basic system presented represents a wide range of modern speaker recognition systems. 

Several advances have been realized in the system detailed above.  For instance, 

squaring the log-magnitude spectrum prior to taking the cepstrum can magnify the voice 

signal while mitigating the effect of background noise.  One major area of interest has 

been score-normalization [20].  Any given speaker has a measure of variability between 

his own samples.  Intrapersonal variations are due to many factors including, emotional 

state, throat illnesses, phonetic content and background noise. One objective of score-

normalization is to mitigate the intra-speaker variability effect.  Another objective is to 

mitigate channel and other environmental effects.  Throughout the 1990’s and 2000’s a 

significant amount of speaker recognition system research has been focused on score-

normalization [20].      

Score normalization research has largely been based on the work of Li and Porter 

which presented a method of using imposter score normalization [53].  Their research led 

to the UBM or “world-model” approach a few years later where a model, often derived 

from a cohort of imposters is used in the statistical model of the speaker’s enrollment 

model.  The log-likelihood between the speaker and world models error rates are 

measured against a threshold in order to make an authentication decision.  The way these 

models are derived have advanced throughout the last few years and have led to advanced 
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world-models and score normalizations.   

Research continues in various fields today.  One topic in speaker recognition 

research is the continued research into feature selection.  Notably, Reynolds, Campbell 

and others have undertaken the collaborative investigation into the usage of high level 

information [22-23, 26-27].  Use of multimodal biometric and multimodal user 

authentication , obtaining confidence levels in a specific systems recognition accuracy 

and identification applications are all current topics in literature [8, 10, 25, 37, 43].      

 

 

Section 5 – Outstanding Issues in Speaker Authentication Systems 

One specific area of research continues to be environmental variability, such as 

background noise, intrapersonal variations and handset variability.  Environmental 

concerns become a major factor in applications where unknown conditions exist, such as 

in distributed systems.  With the advent of the internet and security applications over the 

internet, such as internet banking, security needs in unknown conditions have become 

more and more relevant.  Therefore, research into environmental concerns has gained an 

increased focus in speaker recognition [66].  There have several compensation techniques 

presented that have had success in filtering environmental noise.  Background noise has 

been dealt with primarily through filtering [20].  Current research seeks to improve these 

methods [67, 68].  

Handset mismatches refers to differences in the voice capture system used in the 

enrollment phase verses the system used in testing for authentication phase.  When a user 

is enrolled with one system and attempts recognition with another, it gives significant 



 37

error rates.  Early on Doddington discovered that such mismatches could produce errors 

in the range of 50% [7]. Differing transducers can affect a voice spectrum by changing 

spectral characteristics such as band-limiting and shaping [15, 69].  Much has been done 

to attempt to mitigate the enrollment / testing mismatch obstacle.  Cepstral mean 

subtraction, RASTA filtering, and use of delta coefficients have all been used in attempts 

to mitigate handset mismatch effect.  Each of the listed methods have had a degree of 

success.  However, they need to be greatly improved.  It has been proposed on several 

occasions that more research into the effect of microphone variation is needed [15, 20, 

66].  Some research has been conducted to understand the mismatched condition [70-73].  

Some attempts at solutions have also been made [70, 71].  One shortcoming of these 

studies has been their focus on telephone systems.  Today, the need for a variety of 

networked systems is required.  This thesis approaches the problem of a mismatched 

condition from a distributed environment standpoint.  Also, little or no research has been 

performed to understand general performance of microphones compared to one another 

in similar environments.  Another objective of this thesis is to investigate the effect of 

microphone selection on speaker recognition performance.   
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CHAPTER III 
 
 

MEASURING EFFECTS ON SPEAKER RECOGNITION 

 

Section 1 – Objective of the Experiment  

The objective of the experiment is to determine the effect of equipment variations 

on error rates in speaker recognition systems.  The first effect that is analyzed is the 

degradation or improvement of FA / FR rates when enrollment microphones and testing 

microphones are mismatched.  The mismatch effect has been assumed in the past [70].  

This study attempts to quantify that the enrollment / training mismatch has a specific 

effect on speaker recognition FA and FR rates.  The second effect that is analyzed is the 

change in FA and FR rates from one system to the next in similar environments.  The 

analysis of the second effect includes direct comparisons between each system’s 

performance under matched and mismatched conditions in varying background noise 

levels.  The comparison would indicate, in a given environment, that 1) some 

microphones perform better than most others, 2) some microphones perform worse than 

most others, 3) all microphones perform about equal or, 4) microphone performance is 

distributed with some performing better than most, others performing worse than most 

and some in-between.  The characteristics of the performance distribution would indicate, 

in each environment, the sensitivity of a system’s performance to the variation in 

recording equipment.  Further, these distributions in each environment will be compared  



 39

to determine if a particular microphone(s) is (are) generally better suited for the task of 

speaker recognition. 

 

Section 2 – Experimental Setup  

Ten system setups were investigated, including seven different microphones.  

Each microphone is a common, real world, device.  The selected systems represent a 

small sampling of typical home and office equipment that is currently available on the 

market.  The focus of the study is security in distributed systems such as the internet.  

Therefore, microphone selection was based on was on common equipment likely to be 

used in distributed systems.  The selection includes several PC interfacing microphones 

as well as handheld devices.  The full list is found in Table 3.1.    

 

Table 3.1: List of microphones used in the experiment 
System# Short Description Setup Manuf. Model# 

1 Desktop Microphone 1" from Speaker     
2 "Quick Cam" Webcam  1" from Speaker Logitech 960-000247 
3 "Quick Cam" Webcam  12" from Speaker Logitech 960-000247 
4 Hands free Microphone 1" from Ear GE   
5 Hands free Microphone On Ear as Designed GE   
6 Logitech Gaming headset On Head as Designed Logitech   
7 Digital Voice Recorder 1" from mouth Olympus WS-100 

8 Sys#4 / Sys#7 
sys#4 Plugged into 

sys#7 GE/Olympus WS-100 

9 Digital Voice Recorder 
Same model, different 

unit as System #7 Olympus WS-100 
10 MP3 Player 1" from Speaker     

 

Five speakers were selected, 3 male, 2 female.  Each spoke three phrases (See Appendix 

E) into each of the ten systems.  The process was repeated in three various background 

noise levels.  A fourth phrase was spoken into all ten systems by all five users on a 

different date.  The systems are the items under investigation, not the speakers.  The 
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number of users is not statistically significant for investigation into speaker discrepancies 

but is designed to give a variety for the testing of the equipment.  Likewise the phrase 

usage is not for understanding phrase discrepancies, but rather to give a variety for the 

testing of the equipment.  Utilizing various individuals and phrases throughout the 

experiment mitigates how various users or specific phrases affect the results.     

 

Table 3.2: List of controlled variables in the experiment 
Parameters Quantity Description 

Systems 10 systems (7 Microphones) See Appendix 
Speakers 5 users 3 male, s female 

Background Noise 
Levels 3 

Zone1 (<45dB), Zone2 (55-65dB), 
Zone3 (80-95dB) 

Phrases 4 
Phrase1 (~3sec), Phrase2 (~3sec), 
Phrase3 (9sec), Phrase4 (~30sec) 

Decision Algorithm 2   

 

The phrase used for enrollment, was Phrase 3 in each case.  The data from the enrollment 

phrase was put into the recognition system developed for MATLAB.  The components of 

the implemented speaker recognition system, as illustrated in Figure 3.1 include feature 

extraction via mel-cepstrum MFCCs, feature modeling with a GMM that utilizes an 

expectation maximization algorithm [41], a likelihood comparison, and then a decision 

algorithm.  There are two decision algorithms used in the experiment.  The first is a 

‘Nearest-To’, or shortest distance algorithm.  The person with the log-likelihood closest 

to zero is accepted and everyone else rejected.  The second algorithm is the threshold 

decision algorithm. The threshold algorithm sets an initial threshold θ.  Which side of the 

θ the log-likelihood score falls determines whether one is accepted or rejected.  If λ < θ 

then Y0 is hypothesized to come from YM and the speaker is accepted.  Else, if λ > θ then 

the speaker is rejected.  In the algorithm the threshold θ is varied over an appropriate 
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range.  As θ is varied FA and FR rates are recorded. The outcomes of the two algorithms 

are described in Chapter IV.  To determine how error rates are affected, each system is 

evaluated with the enrollment and testing systems matching and mismatching.  An 

individual system is enrolled and then tested against each of the ten systems.  Resulting 

error rates are evaluated for both matched and mismatched enrollment/testing conditions. 

 

 

Figure 3.1: Outline of speaker recognition system used in experiment 
 

The background noise levels were controlled within the specified decibel ranges.  

In Zone1, as measured at the microphone at the beginning of each session, the 

background noise level was less than 45dB.  Zone 2 static noise was added and decibel 

level was controlled between 55-65dB.  Zone 3 had an increase in static noise.  Zone 3 

also had an addition of dynamically changing, non-voice noise.  The Zone 3 background 
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noise was controlled in a range of 80-95dB.  The frequency range of the background 

noise was not controlled.      

    

  Section 3 – Description of Recording Environment 

The physical environment was an isolated area with precautions made to mitigate 

outside noise.  In Zone1 (<45dB), precaution was taken to mitigate sound by isolating the 

PC and turning off all other devices in the room (such as the air conditioner).  Zone2 (55-

65dB) the noise was increased by turning on fans, the air conditioner, having the PC near 

the recording area and having low magnitude level static from a radio at a given distance 

from the recording area.  Zone3 (80-95dB) was the same as Zone2 with an increase in the 

radio static and the addition of a given portion of the first movement of Beethoven’s fifth 

symphony.  Background noise levels were taken at the beginning of each user’s session 

(a session includes one speaker uttering a set of three phrases into 10 systems on the first 

day and one phrase into 10 systems on the second day).  The background noise level was 

recorded with RadioShack’s “7-range Analog Display Sound Level Meter”.  

Measurements were taken within a few inches of the user’s mouth.  The database 

generated in this research is specific to common distributed systems.  Devices and 

background levels were selected for a distributed system.  The database varies from 

available commercial voice sample databases.   

 

  Section 4 – General Discussion of Results 

A total of 500 voice samples were collected.  Average file size was 840kB.  All 

voice samples were saved as .wav files in a PCM Stereo format at a 44.1KHz sample rate 

and a 16 bit AD conversion.   Voice samples taken with both handheld voice recorders 
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(items 7&8) as well as the MP3 player (item 9) save their data files in an MP3 format.  In 

order to stay consistent and to analyze these files in the MATLAB speaker recognition 

system, the MP3 files were converted to WAV files with formatting consistent with the 

rest of the experiment.  Research into the effects of speech compression algorithms on 

speaker recognition has been conducted [74].  Results from the research indicated that 

these algorithms had little to no effect on the error rates of the system.  Phrases 1-3 were 

recorded 113 days prior to Phrase 4.  Phrase 4 was not uttered in Zones 2 or 3.  Voice 

samples were analyzed via a speaker recognition program developed for MATLAB.  The 

decision algorithms were coded in VBA.  A flow chart for the MATLAB portion is found 

in the appendices.      

Table 3.3 gives a time domain representation of each speaker’s voice as they say 

Phrase 3 in each zone as they spoke into System 1.  Table 3.4 shows the frequency 

domain of the same samples.  Table 3.5 is Table 3.6 except the y-axes are adjusted to 

illustrate the spectrum shape.  Zone 3 noise is readily seen.  Zone 2 noise is not as 

apparent unless viewed with the adjusted y-axes.  The voice sample from Speaker 1 in 

Zone 2 was low magnitude at all frequencies.  Noise was low as well.  The low noise 

level could be due to user variability such as the direction of the microphone in relation to 

the speaker and noise sources.  It could also be due to equipment malfunctions such as a 

loose microphone connection.  The entire recording session with Speaker 1 in Zone 2 on 

System 1 had attenuated amplitudes.  This appears to be an anomaly as it was not noted 

in other sessions.   
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           Table 3.3: Time domain of voice signals – System 1 Phrase 1 
 

    

 

 

 

 

 

 

 

 

 



 45

Table 3.4: Frequency domain of voice signals – System 1 Phrase 1 
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Table 3.5: Scale shifted frequency domain of voice signal – System 1 Phrase 1 
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CHAPTER IV 
 
 

RESULTS AND ANALYSIS 

 
Section 1 – Description of Analysis Techniques  

The four possible results for identity authentication are a true accept (TA), a true 

reject (TR), a false accept (FA) and a false reject (FR).  The FA and FR rates will be used 

for analysis.  The FR rate is defined as the number of individuals falsely rejected divided 

by the total number of people who should be accepted.  Likewise, the FA rate is defined 

as the number of individuals falsely accepted divided by the total number of people who 

should be rejected.  By plotting these two rates as a function of the threshold, a DET 

curve is developed.  The point at which the FR rate and the FA rate cross is called the 

equal error rate (EER) [20].  The EER holds information about a system’s susceptibility 

to a security breach as well as information about a system’s usability.  Though the equal 

error rate is not associated to any specific threshold setting, it can be used as a 

comparative measure of performance between systems.  The EER is an arbitrary point 

which is used to indicate a system’s ability to authenticate authorized individuals and 

decline imposters.  The EER is not necessarily the minimum error point.  It has 

traditionally been used as a relative measure between systems. The EER would be a good 

relative measure between systems if the FA slope and FR slopes of each system was 

identical.  For identical slopes, a linear shift in θ would not indicate a change in the  



 48

system’s performance. A high threshold value would be just as valid as a low threshold 

value as long as the EER was sufficiently low.  However, in real systems an EER at a 

higher threshold can be an indication of a poorly performing system.  A system that can 

properly classify voice signals, in respect to the speaker, with a high level of success will 

naturally have a λ close to zero for a TA and a significantly more negative λ for a TR.  

With a large disparity in the average λ for the cases of TA and TR, error rates can be 

mitigated.  It is proposed that a dead-band could be injected into the decision algorithm.  

The decision algorithm output for the dead-band would supplement the ‘accept’ and 

‘reject’ possibilities by a third ‘undetermined’ value.  What is done in a system when an 

undetermined is found would be subject to system design.  The system could prompt the 

user to re-enter a voice sample or in multimodal systems, a separate identity 

authentication method could be used to further verify authorization.     
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When analyzing speaker recognition systems, traditionally, the DET curves are 

used as design tools and the EER is a loose method of comparing performance.   The 

DET curves give more information than the point at which the two error rates cross.  For 

instance, the slope of the curve in the region of concern is a measure of the system’s 

robustness to changes in the threshold (θ).  To illustrate this point, examine Figure 4.1.  

Systems 1 and 2 in the graph have the same EER.  However, these are two distinct 

systems that do not behave similarly.  System 1 has few false rejects except at the most 

 

Accept 
 

undetermined 
 

Reject 
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stringent thresholds.  The EER is 5% at θ = -5.  By loosening the threshold to -7, the FA 

rate increases up to 35% while the FR rate is down to 1%.  A slight change in thresholds 

generates a significant change in error rates for both error types.   

 

 

        Figure 4.1: A DET curve of 2 systems with equivalent EER 
 

For System 2, a slight change is not as detrimental to either rate.  The EER is 

again at 5%.  The threshold θ is -16.  A threshold change of -2 in this case leads to a FA 

rate of 13% and a FR rate near 0%.  This example demonstrates the robustness to changes 

in θ.  Further studies are needed to evaluate if the slope of the DET curve could be an 

indicator of system robustness to environmental changes as well, such as background 

noise, channel effects and equipment variations.  In this study, performance is measured 

with the standard EER and the accompanying threshold level.  The EER as well as the 
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EER threshold level will be used in comparing systems in the analysis of the experiment 

utilizing the threshold decision algorithm.     

The ‘Nearest-To’ Algorithm designates the speaker in a test set with the λ nearest 

to zero as the ‘Accepted’ user.  All other speakers in the test set are rejected.  For the 

‘Nearest-To’ Algorithm, a test set is defined as testing each speaker in the group once (all 

in the same zone with the same microphone saying the same phrase).  Each test set 

produces likelihood ratios λi for each speaker in the set.  From each test set, the λ that is 

closest to 0 will be accepted while all others will be rejected.  The ‘Nearest-To’ decision 

process utilizes a specific case of the DET curve.  When the correct speaker is accepted, 

all others are rejected.  Thus, in the ‘Nearest-To’ algorithm, with the correct speaker 

accepted, FA = FR = 0%.  If an imposter is accepted and all others are rejected, those 

being rejected will include the correct speaker.  Therefore a false accept equals a false 

reject, FA = FR = 100%.  For example, if the speaker model, YM, came from Speaker 1 

while Speaker 5 speech sample Y5 had the greatest likelihood of coming from YM, then 

Speaker 5 is accepted and all other speakers, including Speaker 1, is rejected.  Thus the 

FA rate equals the FR rate in every case.  For simplicity, the error rate used is where 

error rate = FA = FR.   

     

Section 2 – Results from ‘Nearest-To’ Decision Algorithm  

Table 4.1 gives the overall average results of the ‘Nearest-To’ decision algorithm 

experiments grouped by systems.  It is a brief summary of Appendix A.  One result made 

clear in Table 4.1 is the wide disparity in error rates of matched systems versus miss-

matched systems.        
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Table 4.1: Breakdown by System of 'Nearest-To' results 
  AVE Matched Mismatched 
System #1 54% 13% 58% 
System #2 66% 11% 72% 
System #3 66% 27% 71% 
System #4 62% 18% 67% 
System #5 68% 20% 73% 
System #6 61% 11% 66% 
System #7 48% 16% 51% 
System #8 50% 2% 55% 
System #9 51% 4% 56% 
System #10 74% 18% 80% 

AVE 60% 14% 65% 
 

The Chart in Figure 4.2 shows how much of a role the miss-matched systems have in 

system performance.   

 

Figure 4.2: 'Nearest-To' match / mismatch comparison chart 
 

Variation in error rates per speakers increased with the background noise level (see Table 

4.2).    Error rate variation as dependent on phrase was negligible.  The average of the 

standard deviation of error rates per phrase per zone was 0.024.     Table 4.3 gives an 
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overall summary of the results of the ‘Nearest-To’ algorithm experiment.   

 

Table 4.2: Standard deviation of scores per speaker per Zone 
 σ 

Zone 1 .042 

Zone 2 .093 

Zone 3 .173 

 

 

Table 4.3: Summary of 'Nearest-To' algorithm results 
 

   Zone1 Zone2 Zone3  

Total Ave 53% 62% 65% 60% 

Ave Matched 1% 28% 13% 14% 

Ave Mismatched 59% 66% 71% 65% 

 

 

  In a low-noise environment, the matched system error rate was one percent.  In 

the same environment the mismatched error rate was 58% higher.  In both Systems noise 

had an effect.  From Zone 1 to Zone 3 a total error rate increase of 12% was observed.  

The noise effect was insignificant when compared to the mismatched system error rates. 

 

Section 3 – Results from Threshold Decision Algorithm 

This section gives the threshold decision algorithm results.  Each System in each 

zone has 2 DET curves (see Appendix C for all DET curves).  One curve is for matched 
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Systems and the other for mismatched Systems.  Figure 4.3 shows a baseline 

measurement of the speaker recognition system enrolled on System 5.  Figure 4.3 

includes voice samples from all three background noise levels, all speakers, and from all 

microphones.  The graph is an example of what a system’s results would be in a system 

without controls or constraints on the testing phase.   

 

 

           Figure 4.3: DET curves for System #5 with no constraints in the testing phase 
 
 

In order to review system error rates of the ten systems in a comprehensive 

manner the DET curves are summarized by discussing the equal error rate (EER).  The 

graph in Figure 4.4 is a summary of all of the EER for each System in matched 

conditions.  Each point represents the EER of 5 speakers uttering 4 phrases in a single 

zone and on a single system.  They are grouped by system.  Each system has three points.  

The points represent the error rates in the three background noise-level zones.  In all but 
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one case, the point furthest to the left (most negative) is the Zone 3 EER.  The exception 

is System 1 where the Zone 2 point (center point) is further to the left.  Furthest to the 

right is Zone 1 in each case except System 6.  System 6 has the Zone 2 furthest to the 

right.  The Zone 2 EER in 7 of 10 systems is the highest of the three system values.  

Further discussion of the EER behavior is found in Section 4 of this chapter. 

 

 

Figure 4.4: EER for all Systems in all zones under matched conditions 
  

Of note in Figure 4.4, the EER generally increases as the threshold point of the 

EER becomes more negative.  Recall that if each system had the exact same curve that a 

shift along the x-axis would be insignificant and that the EER alone would be sufficient 

to rate a system’s capability.  However, in real systems, when a threshold is relatively 

large, the EER is likely to increase.  The EER increase is illustrated more clearly in 
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Figure 4.5, which shows the general EER threshold decrease with EER increase by 

displaying a linear trend line for data sets in each zone.  In a system that produces a λ 

close to zero for a TA and a λ much more negative for a TR (a system that can  

 

 

Figure 4.5: EER and linear trends for Zones 1-3 
 

distinguish well between an imposter and an authorized individual) the point at which the 

FA and FR meet will be low.  Ideally, as the threshold is loosened (becomes more 

negative) the FR rate will be zero before the FA rate curve can begin to increase, leaving 

an EER of zero.  The same scenario, where λ is close to zero for TAs and much more 

negative for TRs, indicates that a FA will not occur until θ is much more negative.  

Likewise, false rejects will not occur until the likelihood is near zero.  The increase of FR 

as the likelihood approaches zero is because of the system’s ability to detect an 
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authorized individual at a λ close to zero.  Therefore, as θ increases along the x-axis, the 

EER increases along with it.  In Figure 4.4, the best performing system are in the lower 

right corner (close to zero on both the x- and y-axis) and the worst performing system are 

in the upper left portion of the graph.  Most systems’ equal error rates ranged between 

30-45%.  However, the range of System 1 was well below most systems at 7-28% and 

System 10 was well above most systems at 50-55%.      

For systems with a mismatched condition, EER were greater.  The distribution of 

EER from the mismatched systems was for the most part tighter with the exception of 

System 10 (See Figure 4.6).  System 10’s threshold level for Zone 1 was -75, for Zone 2 

was -77 and Zone 3 was -325, with EERs of 0.511, 0.495, and 0.540 respectively.  All  

 

 

Figure 4.6: EER for all Systems in all zones under mismatched conditions 
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other threshold levels were between 0.395 and 0.504.  Performance change due to noise 

was greatest when the background noise level was increased from Zone 1 to Zone 2.  

From Zone 2 to Zone 3, performance variations were less with some performance 

improving.   

 

Section 4 – Discussion 

The results of the ‘Nearest-To’ decision algorithm further validates the notion that 

the condition of mismatched enrollment and testing microphones has a major effect on 

speaker recognition system performance [70-72].  Noise had an effect on the error rates.  

When the noise level increased from <45dB in Zone 1 to 55-65dB in Zone 2, the EER 

generally increased and the threshold level generally became more negative.  This EER / 

threshold relationship was true for both the matched and mismatched systems when 

moving from Zone 1 to Zone 2.  The relationship held true as well for the mismatched 

systems moving from Zone 2 to Zone 3.  However, a different phenomenon was observed 

in the matched systems when increasing the noise from Zone 2 to Zone 3.  In these cases, 

θ continued to increase, however, the EER decreased in 80% of the cases (see Figure 4.4 

and Table 4.4).  Recall that it was stated that the EER would generally increase as the  

    

Table 4.4: Percent of Systems with EER & θ Looseness Increases with Increased Noise 

MISMATCHED CONDITION MATCHED CONDITION  

THRESHOLD θ EER THRESHOLD θ EER 

Zone1 to Zone2 
60% ↑ 70% ↑ 90% ↑ 90% ↑ 

Zone2 to Zone3 
90% ↑ 80% ↑ 90% ↑ 20% ↑ 
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threshold increased.  The increase did not occur when going from Zone 2 to Zone 3 with 

matched conditions.  One explanation for this is that the FA / FR ratio changes.  As the 

noise increases to a loud level, the FR rate will naturally increase (the curve will move 

left) as it is harder to isolate and extract clean voice features.  However, the increase in 

noise also makes it hard for an imposter to match the voice sample YM.  The imposter’s 

inability to be falsely accepted moves the FA curve left.  The change in ratio explains an 

increased θ even with a decreased EER.  It is not that the system improved, just that the 

ratio of errors was altered.  The lower EER with higher thresholds illustrate the idea that 

θ is required to describe system performance.  It is important to note that the EER is not a 

design point but a point of simple comparisons on the DET curves.     

Even in the presence of noise, the mismatched condition was the variable in this 

study that had the most prominent effect on system performance.  This effect is further 

illustrated in the threshold decision experiment. The probability distributions are plotted 

in Figure 4.7.  The dotted lines represent the mismatched zone.  Note that in each case the 

mean EER of the mismatched condition is significantly higher than the matched 

condition.  Also of note is the variances of the matched cases are significantly larger than 

that of the mismatched cases.  The difference in variance denotes a shift in system 

performance of a few systems.  The EER in mismatched conditions never approach the 

low rates seen in the matched condition.  However, on the high error rate end of both 

conditions, the EERs are relatively close in value.           
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Figure 4.7: Zones 1-3 for matched and mismatched conditions - Probability 
distribution of Systems’ EER 

 

 

By overlaying the graph in Figure 4.4 with the graph in Figure 4.6, as is done in 

Figure 4.8, the shift in EER and threshold can be seen.   The mismatched condition equal 

error points had a tighter distribution than the matched condition.  The average threshold 

level shifts up 28.1% and the EER has a 22.5% increase when a system goes from 

matched to mismatched conditions.  It is clear that the mismatched condition has a 

significant effect on system performance. 
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Figure 4.8: Overlay of matched and mismatched EERs 
 
 
 

 
The second objective was to compare each system against each other to determine 

if some recording systems perform better than others in speaker recognition systems.  The 

comparison between systems is illustrated in Figure 4.4 and 4.6.  The graph in Figure 4.9 

shows the EER of each zone stacked on top of one another.  The stacked plots allow one 

to look at each system in each zone and compare.  The stacked plots represent the sum of 

EERs in the three zones and illustrates overall relative performance.  When under 

mismatched conditions, systems had a summed EER of 1.25 to 1.55.  This range 

broadened to 0.5-1.54 for matched conditions.  Several systems performed notably better 

in matched condition, especially when in Zone 1.  System 1 in Zone 1 had an EER of 7%. 

Even in its worst performing zone (Zone 2) System 1 had an EER of 28%.  System 1 

performed better that other systems given matched conditions.  It is also of note that 
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Systems 7 and 9, which were the same model microphone, performed similarly in most 

cases.  By reviewing Figures 4.4, 4.6 and 4.10, it can be seen that System 10 was by far 

the worst performing system in all cases.  System 10 was one of the four systems that 

  

 

Figure 4.9: EER Summary  
     

required a file format change.  However, the format change did not appear to play a major 

role as Systems 7, 8 and 9 also had format changes and were among the top performers.  

In matched conditions it is clear that some systems are significantly better suited for 

speaker recognition than others.  In the mismatched condition, it is not as clear how much 

performance depends on the recording system.  System 10 still performed significantly 

worse (see Figure 4.6), however the rest of the systems had a significantly smaller 

deviation from the norm.  In matched conditions, the microphone plays a significant role 

in speaker performance.  Choosing the proper microphone for the authentication system 

is important.  Or in the case of uncontrolled microphone usage, such as in many 

distributed systems, it would be important to consider the recording system and design 

accordingly.  One such method for design may include utilizing a proper score 

normalization technique.  A method of evaluating microphone error rates, such as the 

method used in this thesis, would be useful in making system design decisions.             
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CHAPTER V 
 
 

CONCLUSIONS 

 

Section 1 – Summary 

In distributed systems automatic identity authentication is a difficult aspect to 

control.  Often identity authentication systems can decrease susceptibility to a security 

breach by adding extra elements to the authentication of one’s identity.  There are three 

main divisions in the methods of identity authentication; what you know (example: 

password or login), what you have (example: debit card or key) and what you are 

(biometrics).  Biometrics is a measure of what you are or what you do.  Speaker 

recognition, the biometric of voice, utilizes one’s voice as a metric to detect a specific 

speaker.   

Over the past five decades great strides toward wide-spread commercial speaker 

recognition systems have been made.  Early research in speaker recognition was in the 

realm of human abilities.  Later war time research allowed for significant advances, 

producing a tool to allow visual inspection of voice.  Advances in signal processing 

techniques and the rise of the computer permitted true automated recognition systems to 

be developed.  Early systems such as Doddington’s text-dependent system found 

measures of success spurring on the research for automatic text-independent systems.  

One of the outstanding issues in the field of speaker recognition is handling 
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environmental variations such as channel effects, background noise, intrapersonal 

variation and microphone variability.  Much progress has been made in these areas.  Yet, 

environmental variations remain as one significant dilemma to real world speaker 

recognition, especially in distributed systems.      

For speaker recognition systems in a distributed application microphones are apt 

to vary.  Frequency response to different microphone transducers can vary widely.  

Microphone variation can produce two non-matching signals for the exact same 

recording.  The objective of the research was to discover whether or not the varying of 

microphones has an effect on the ability of a speaker recognition system to perform 

identity authentication.   

The task of speaker recognition is divided into two phases, enrollment and testing.  

An enrollment voice sample was taken, features extracted, and a model generated.  

During the testing phase a voice sample was taken, features extracted, the extracted 

features were measured against the model and a decision was made, accept or reject.  The 

system used in this research used the common feature of MFCCs and common modeling 

method of GMM.  A log-likelihood ratio comparison was used in the decision process.  

There were two decision algorithms used in the experiment.  The first was a ‘Nearest-To’ 

algorithm where the person with the log-likelihood ratio closest to zero was accepted and 

everyone else rejected.  The second algorithm was a threshold algorithm.  The FA and FR 

rates were measured as the threshold θ was varied.  Which side of the θ the log-likelihood 

score fell on determined if one was accepted or rejected.  The specific objective of the 

research was to determine how error rates vary with respect to a variation in 

microphones.  Two types of microphone variation were investigated.  The first type of 
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variation study was to understand effects on system performance when the microphone 

differs from the enrollment to the testing phase.  The second type of variation study was 

to understand how a system performs in relation to other microphones when in similar 

environments and setups. 

 

Section 2 – Conclusions 

The research in this thesis demonstrated and utilized a method of evaluating 

microphones for use in speaker recognition systems via error rates.   The experimental 

results show the effect that microphone variability has on the error rates of speaker 

recognition systems.   Two types of microphone variation that alter the error rates of a 

speaker recognition system are illustrated in the results.  The first type of variation 

analyzed was when the enrollment and testing microphones were different.  This is 

referred to as a mismatched condition.  The second type of variation analyzed was how 

different microphone error rates vary without regard to environmental conditions such as 

matched and mismatched conditions.  First, mismatched systems are responsible for 

significantly higher FA & FR rates.  The mismatched-transducer effect has been seen as 

well in past studies, though the past studies have focused on telephone applications.  The 

research presented in this study concurs with previous assumptions, that the mismatch 

condition has a significant effect on speaker recognition error rates.  Noise affected error 

rates as well.  However, the noise effect was insignificant when compared to the effect of 

a mismatched condition.    

The second analysis showed that some microphones had better speaker 

recognition error rates than other microphones.  The EER for System #1 had lower error 



 65

rates with more stringent thresholds.  System #10 error rates are significantly higher than 

the majority of systems and are more than 40% higher than System #1.  The rate 

variations illustrate that speaker recognition system design must account for microphone 

variability in order to be viable in distributed environments.  

A method of evaluating microphones for use in speaker recognition systems was 

successfully demonstrated and utilized.  In the case that a false accept has a higher 

associated cost the method can be used to assist in threshold setting.  If a false reject is 

more important, the method is just as useful for threshold setting.  Further studies are 

needed to evaluate if the slope of the DET curve can be used as an indicator of system 

robustness to environmental variations.  The system utilized in the research had typical 

classifications of accept or reject.  A future study ought to be undertaken to evaluate error 

rates in systems with a third ‘undetermined’ classification.     
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APPENDIX A  
 

Error Rates for ‘Nearest-To’ Algorithm 
 

 

Appendix A provides a table of results from the ‘Nearest-To’ decision algorithm.  Rows 

of the table dictate the system used for enrollment.  In the top portion of the table the 

columns of the table indicate which system was tested and in which zone.  Each cell’s 

percentage rate is the percentage rate of 15 samples including all 5 speakers saying 

Phrases 1-3.   The bottom section of the table is a summary of the top portion.  This 

includes matched (same microphone used in enrollment and testing phases) and 

mismatched conditions (microphone used in enrollment phase is differnet than 

microphone used in testing phase) for each of the zones, total error rates and total error 

rates for each zone and both conditions.  This graph is further summarized in Table 4.2.      
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APPENDIX B  
 

False Accept and False Reject Rates 
 

 

Appendix B provides includes a sample table utilized for calculating and plotting DET 

curves and EER in the threshold algorithm.  The FR and FA rates are shown for both the 

matched (same microphone used in enrollment and testing phases) and mismatched 

condition (microphone used in enrollment phase is differnet than microphone used in 

testing phase) for all users saying Phrases 1-3 on a particular enrollment system in a 

specific zone.  The entire data set may be supplied upon request.         
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APPENDIX C  
 

Detection Error Tradeoff Curves 
 

This Appendix provides detection error tradeoff (DET) curves for each enrollment 

system.  Each DET curve represents all speakers saying Phrases 1-3 in a specific zone.  

The dashed lines represent false accept (FA) rates and the solid lines represent false reject 

(FR) rates.  The X-axis in the DET curves are the log likelihood ratio, abbreviated LR.   
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ZONE 2  
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ZONE 3 
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APPENDIX D 

Distribution of Speaker Likelihoods for True Accepts (TA) and True Rejects (TR) 

 

Appendix D plots the distribution models of the likelihood scores of Systems for 

true accepts, true rejects and a sample of matching a true accept with a true reject 

in a matched condition.   
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APPENDIX E 
 

Phrases 1-4 Used For Voice Samples 
 
 

Appendix E contains a list of the phrases used in the voice sample collection stage of the 

thesis.  Phrase 1-3 were utilized during sample collection on October 18th 2008.  Phrase 4 

was utilized during sample collection on February 8th 2009.  Phrase 4 was only spoken in 

Zone 1.  Phrases 1-3 were spoken in each zone.   

 

Phrase 1:  

 “Hello my name is (user states first and last name)”   

 Typical time duration:  ~2-3 seconds  

 

Phrase 2:  

 “Can you tell me how to get to Sesame Street?”   

 Typical time duration:  ~3 seconds  

 

Phrase 3:  

 “A Winston Churchill Quote: I like pigs.  Cats look down on us, dogs look up to us, but 

pigs, they treat us as equals.”   

 Typical time duration:  ~9 seconds  
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Phrase 4:  

“ I, Nephi, having been born of goodly parents, therefore I was taught somewhat in all 

the learning of my father; and having seen many afflictions in the course of my days, 

nevertheless, having been highly favored of the Lord in all my days; yea, having had a 

great knowledge of the goodness and the mysteries of God, therefore I make a record of 

my proceedings in my days. Yea, I make a record in the language of my father, which 

consists of the learning of the Jews and the language of the Egyptians.” 

 Typical time duration:  ~28-33 seconds 

Quote from 1 Nephi 1:1-2 in “The Book of Mormon” 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

APPENDIX E.1  
 

The Answer 
 

42 
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APPENDIX F 
 

Program Listings 
 
 

Appendix F contains the program listings for all customized programs utilized throughout 

the thesis.  The first section is the MATLAB portion of the speaker recognition.  The 

second section includes MSExcel VBA programming.  The VBA code is the two decision 

algorithms, ‘nearest to’ and threshold.   

 

 



 
 

99 
 

 

 
 



 
 

100 
 

 
 



 
 

101 
 

 
 
 



 
 

102 
 

 
 



 
 

103 
 

 
 
 
 
 
 
 
 



 
 

104 
 

 
 
 
 



 
 

105 
 

 
 
 
 



 
 

106 
 

 

 



 
 

107 
 

 
 
 
 
 



 
 

108 
 

 
 
 
 



 
 

109 
 

 
 



 
 

110 
 

 
 
 



 
 

111 
 

 

 
 
 



 
 

112 
 



 

  

VITA 
 

Clark Damon Shaver 
 

Candidate for the Degree of 
 

Master of Science  
 
 
Thesis:   EFFECTS OF EQUIPMENT VARIATIONS ON SPEAKER RECOGNITION 

ERROR RATES 
 
 
Major Field:  Electrical Engineering 
 
Biographical: 
 

Education: 
Completed the requirements for the Master of Science in electrical Engineering 
at Oklahoma State University, Stillwater, Oklahoma in December, 2009.  
Received a Bachelor of Science in Electrical Engineering, specializing in 
computer engineering in May of 2006. 
  
 
Experience:  Automation Engineer, Blue Bell Creameries, 2000 – 2006.  R&D 

Engineer for Baker Hughes-Centrilift, 2006-present 
 
Professional Memberships:  Institute of Electrical and Electronics Engineering, 

Foundation of Ancient Research and Mormon Studies, American 
Society of Church History 

 
 
 

 



 

 
ADVISER’S APPROVAL:   Dr. John M. Acken 
 
 
 

 

Name: Clark D. Shaver                                 Date of Degree: December, 2009 
 
Institution: Oklahoma State University        Location: Stillwater, Oklahoma 
 
Title of Study: EFFECTS OF EQUIPMENT VARIATIONS ON SPEAKER 

RECOGNITION ERROR RATES 
 
Pages in Study:112          Candidate for the Degree of Master of Science 

Major Field: Electrical Engineering  
 
Scope and Method of Study: The purpose of this study was to examine the effects that 

equipment variation has on speaker recognition performance.  Specifically 
microphone variation is investigated.  The study examines the error rates of a 
speaker recognition system when microphones vary between the enrollment and 
testing phases.  The study also examines the error rates of a speaker recognition 
system when microphones differ in similar environments and conditions.  The 
metric for evaluation of effect is the false identity acceptance and the false 
identity rejection error rates.       

 
Findings and Conclusions:  The results of the research demonstrate that microphone 

variation has a major effect on speaker recognition error rates.  Error rates include 
the rates of false acceptance and false rejection of identity.  The effect of a 
training / enrollment microphone mismatched was significant.  Mismatched 
conditions produce significantly greater false accept and false reject rates as 
compared to matched conditions.  In fact, the mismatched condition had a more 
significant impact on error rates than noise.  The research also demonstrates that 
speaker recognition error rates are microphone dependant.  The microphone 
dependency was seen in both the matched and mismatched condition.  However, 
the microphone dependency was more prevalent in the matched condition.   
Microphone selection has an effect on error rates in different environments and in 
matched and mismatched conditions.  The research provides a method to evaluate 
the direct effects of microphone selection on speaker recognition systems.     

 
 
 
 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




