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PREFACE

In 1979 J. Bourgain and F. Delbaen constructed a Banach space which
resolved several long standing conjectures in Banach space theory’[2].
We shall demonstrate that this space has the following properties:

1) It is a separable Lm space.

2) It has the Schur property.

3) It has the Radon-Nikodym property.

We will show at the end of Chapter IV how the existence of such a space
resolves the conjectures mentioned above.

The example of Bourgain and Delbaen is thus very surprising. It is
the purpose of this paper to provide an exposition of the construction
of this space and the verification of its properties. We attempt to do
this in a manner which makes the example accessible to a graduate student
in mathematics. We assume that the reader has had a first course in
Functional Analvsis. We offer [5] in analysis and [4] in topology as
references for preregquisites. The exposition is selfcontained except
for one theorem which states that the second dual of an injective space
is injective [10]. The proof of this theorem makes extensive use of
the ideas from the theory of vector lattices. A proof would thus lead
us far astray from the central issue of this example. One theorem we
use which might be regarded as marginal to the theory established in a
first course in Functional Analysis is the Vitali-Hahn-Saks theorem.

For a proof of this see page 158 of [5]. Definitions and the prerequi-

site theory of all of the properties mentioned above are provided

iii



together with a detailed construction of the space and verification of
its properties.

Later in 1979 Bourgain and Delbaen constructed another example of
a separable Lm space with R.N.P. which in contrast to the first example
contains no isomoxrph of Zl. The construction of this space is essen-
tially the same as the first space and we therefore include this example.
We also show that this example has no subspace isomorphic to Zl. It is
a consequence of this fact that this space is, gquite surprisingly, some-
what reflexive. We cite appropriate references to establish this fact.

The construction of bo£h spaces is done simultaneously. It is
important to notice that the construction is accomplished by using
isomorphic rather than isometric copies of 22. We believe this to be
the first example of a Lm construction using this method [2].

The author wishes to express his appreciation to his advisor,
Professor Jasper Johnson for his invaluable help and limitless patience
in the preparation of this paper.

An expression of gratitude is also due to the members of my
committee and the faculty of the mathematics department of Oklahoma
State University as each has played a partAin making this possible.

A special note of thanks is due to Ms. Janet Sallee who typed this

manuscript.
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CHAPTER I
INTRODUCTION

Throughout this paper we make use of some standard notations and
terminology with which we hope the reader is familiar. For the sake of
completeness and reference we list these. The collection of all
{bounded linear) cperators from a Banach space X to a Banach space Y is
denoted by B(X,Y), and we write B(X) instead of B(X,X). The word oper-
ator will always refer to a bounded 1iﬁear operator. We reserve the
symbol IX for the identity operator on the space X. An operator
PeB (X) is called a projection if P (Px) = Px for all xeX. A subspace E

of a Banach space X is said to be complemented ‘in X if there exists a

projection PeB(X) such that P(X) = E. If TeB(X,Y) and there is a number
m>0 such that mlfxl]sl[Txll for all xeX then T is called an isomorphism.
In this case T_l e B(T(X),X). Two Banach spaces X and Y are called
isomorphic if there is an isomorphism TeB(X,Y) such that T(X) = Y. If

X and Y are isomorphic then the number d(X,Y) defined by 4(X,Y) =

-1
||

ing{||T]]- ]| T is an isomorphism of X onto Y} is called the

Banach-Mazur distance coefficient of the spaces X and Y. An isomorphism
TeB(X,Y) is called an isometry if !lTxll = I]xll for all xeX, and X ana
Y are said to be isometric if there is an isometry TeB(X,Y¥Y) such that
T(X) =Y.

The dual of a Banach space X is denoted by X* and for (x*)* we

write X**. We reserve the letter J to denote the canonical isometry of



X into X**, ie. (Jx) (x*) = x*(x) for all xeX and all x*eX*. If

TeB(X,Y) then the adjoint of T denoted by T* is the element of B(Y*,6X*)
definedvby (T*y*Xx) = y*(Tx) for all xeX and all y*e¥*. If A is a sub-
set of a Banach space X then the annihilator of A is denoted by Alband

L
L 4 .
. is defined by A = {x*eX*Ix*(x) = 0 for all xeA}. For (A ) we write

1l

A .
When we consider the weak and weak* topologies on a Banach space

X we will distinguish limits and closures with respect to these
topologies as follows: w-1lim x , w*-lim x , and 1lim x refers respec-—

: n n n n n n
tively to the weak, weak*, and norm limits of the seqguence {Xn}CX.
The weak, weak*, and norm closures of a subset AC X are denoted re-

. . -w -w¥ - . .
spectively by A, & , and A. The unit ball of a Banach space X is de-
noted by B, and is defined by B, = {xex| ||x||<1}. 2an operator

TeB(X,Y) is called compact (respectively weakly compact) if T(BX) is

compact (respectively, weakly compact).
If (Q,2,u) is a measure space then Lp(u), 1<p < =, denotes the
Banach space consisting of equivalence classes of measurable real valued

/p

functions f defined on 2, for which (fﬂ!f|pdu)l is finite. Fox

p = », Le(y) consists of such £ for which ‘f] is essentially bounded.

The norm in Lp(u) is defined by ||f]|]| = (IQ!f]pdu)l/P for p < », and
||f[l = essential sup]fl for p = ». If (Q,Z,u) is the usual Lebesque
measure space on  =[ 0,1] then we write LP for Lp(u). If (T,Z,u) is a
discrete measure space with p({Y}) = 1 for all Yel then we write QP(F)
for Lp(u). When T is the set of positive integers then we write £

for QP(T). We write 12 for QP(F) when T = {1,2,°-',Q}. The subspace of
2 _(T) consisting of all fef (T) such that {YeT| |£(Y)| > €} is finite for

each € > o is denoted by cO(F), and if T is the set of positive integers

then we write c, for co(F). If X is.a compact Hausdorff space then C(K)



denotes the Banach space consisting of all continuous real valued func-

tions defined on K. The norm of feC(K) is defined by l]fll = suplf(x)[.
xeK

In Chapter II we provide the reader with the theory which is needed
to discuss the counter-example déscribed in Chapter IV and its properties.
Chapter II is thus divided into sections dealing in order with 1) Bases
in Banach Spaces, 2) The Schur Property, 3) The Radon-Nikodym Property,
4) Injective Banach Spaces, 5) Weak Sequential Completeness, 6) The
2 (T) spaces, and 7) Separable Lm spaces. None of these sections is
meant to be an exhausﬁive treatment of its topic. We include only those
results which are necessary for an understanding of the space of Chapter
Iv.

In Chapter III we construct a class of separable Lw spaces which
have the Radon-Nikodym property. It is important to notice that the
"building blocks" of these spaces are isomorphic copies of 2: rather
than isometric copies. To our knowledge this is the first such construc-
tion (see [2]). The spaces in this class have an important metric
property that depends on two real parameters a and b, and thus the class
will be denoted by X(a,b).

Chapter IV is truly the.heart of the paper. Here we investigate
the subélass determined by setting the parameter a = 1, i.e., X(1,b)
spaces. It is shown in this chapter that an X(1,b) space has the Schur
property, and we establish the other surprising properties of such a
space.

In Chapter V we observe that if a<l then an X(a,b) space has no

subspace isomorphic to £ This fact together with some rather deep

1’ _
results, cited there, allow us to conclude some interesting properties

about this class also.



CHAPTER IX
PRELIMINARIES

In this chapter we will discuss the results necessary to read and
understand the proofs and construction of examples that follow. We in-
clude only that which is necessary to make the exposition self contained
and that which we feel the reader may not have been exposed to in a

first course in Functional Analysis.
Bases in Banach Spaces

Throughout this paper we will use the term basis instead of

Shauder basis as this is the only type we will consider. The reader

is cautioned not to confuse this notion with that of the algebraic
Hamel basis.

Definition O: A basis of an infinite dimensional Banach space X

- .
is a sequence {xn}n* < X such that for each xeX there exists a unique

1

(o]

o
sequence of scalars {o_} such that x = Z. o x . A basic sequence
n n=1 n=l nn

is a sequence which is a basis for its closed linear span.

We use the notation sp{xn} to denote the set of all finite linear
combinations of the vectors {xn} and the closure of this set will be
denoted by [Xn]' The span of the first k of these vectors will be
denoted [Xn]nzl' An infinte dimensional Banach space X with basis

{xn} is obviously separable and thus a nonseparable space, such as Zw,

[}
has no basis. If x = nzl 0 X we may associate to x the sequence
= nn



{an} and thus think of X as a sequence space. For such an x we will re-

fer to a. as the jth coordinate of x when no confusion can occur. If we
J

are considering more than one basic sequence we will refer to coordin-

ates with respect to certain basic sequences. The mappings Pk onto
k k
Ex ] defined by P ( T o X )= L. o X will be referred to as the
n-n=1 =1l n n n=l n n

natural projections associated with the basis {xn}.

Theorem 1: If {xn} is a basis for a Banach space X and {Pn} is the
sequence of natural projections associated with {xn} then P is a

bounded linear operator for each n and sup[an||< ©,
n

Proof: Define [{]x[]i = sup‘!Pn xll. It is easily verified that
n
_l[ -]|] is indeed a norm on X. We will show that in fact these two norms
are equivalent. Obviously lIxII = lim[lP x|[ < sup||P xl‘ =
n n n n
[ x]]]. ret T: Ih - ] |) be the identity map. If we

show that X is complete with respect to the new norm []I- Il, then the
open mapping theorem gives us that I is an isomorphism and hence the two

norms are eguivalent.

Assume that'-@h} is a Cauchy sequence with respect to

1

of scalars {a.(n)}.00 such that y = .% o, (n)x for each n (the con-
J J=1 n 3=l 3 n

Il. since {xn} is a basis for X there exists a unique sequence

l). We fix now k and notice

that Iak(m) - uk(n)[ lekli = |](ak(m) - o, (n) xk]| = I}Pk(ym—yn) -
P, v )] s e o v ) [l e, =y ) T2l ]y =y 1], But {y_]
is || Cauchy so 2[||ym—yn|l| -+ 0 and thus the sequence of scalars

e8]
{ak(n)}n:l is Cauchy. So put a, = l%m ak(n), and consider the ||- |
convergence of kil ) X - Let &€ > o be given. We know that there exists

an M such that for m,n 2 M, we have !]]ym - ynlll < £. So by the

definition of [{ I|Pk(ym~yn)il < ¢ when m,



k
n 2 M. Thus |]j§l(aj(m) - aj(n))lel < €. In the limit as n = « this

k
becomes |I.Z (a, (m) - a,) x_[| < e for all k and m > M. Choose ay
=173 3 m

where m 2 M. Then y = ,% o.(m)x, so we can select an N > M for which
m  J=1 3 ]
L
![jgk aj(m)xj|I < ¢ whenever k,%{ > N. We get then that for k,% 2 M,
12, agel | = 112 Lo x| J<l]g |
LoooLx. || = oo, —a, m)x, + I a, mx. ||<]].2 (a,-0, (m))x,
i=k ] J| | J=k ] J J =k 3 ] =k 3 7] J
L © . )
+ ||.Z a,(m)x.l! < 2¢ + g. Thus the series .X_ a.x, is Cauchy with re-
J=k J oo =1 7373
spect to [ . I and must converge to some element y = jzl ajxj (the
equality is in the sense of | . [). We have already observed, however,

k
that for sufficiently large m and all k !ljzl(aj(m) - uj)lel < € which

means that |lPk(ym~y)Il < £ for all k and sufficiently large m. Taking

the supremum we have SEPlIPk(ym—y)]| = lllym - y|l| < €. Thus the two
norms are equivalent and so there is a number K such that ]||x]|| <
K||x|] for all x € X. so supl]Pn x|| < K[{x[l. Therefore each P_ is a
n
bounded linear operator and suplanll < K. Q.E.D.
n

If {Pn} is the sequence of natural projections associated with the

basis {xn} the number supl[Pn|| is called the basis constant of the
n .
basis {x_}.
n
Some important examples of Banach spaces with bases are,
1< < ith basis her =
1) c, or Qp' <p<®, w asi {en} where e (0,0,.1.,0).
111 mn 3 th . . .
The "1" is the n term of the sequence. Hereafter this basis will be
referred to as the usual basis of the space in gquestion.

2) Lp[O,l], 1 < p < o, with basis {xn(t)}, where {xn(t)} is the

Haar system defined by xl(t) = 1, and



. -k-: ~k-
1 if te [ (22-2)2 k l, (22-1)2 1]
k- k-
x (1) = | =-1if te[ (22-1)27°7, 282 1
2748
0, elsewhere
k

for k =0,1,2,...; £ =1,2,...,2
3) c[o,1], with basis {¢n(t)}, where {¢n(t)} is the Schauder sys-

tem defined by ¢l(t) =1, and ¢n(t) = IZ X l(t)dt, n>2. xn(t) is the

n-—
th .
n  Haar function from example 2).
We have previously alluded to the possibility of the existence of

more than one basis for a given space. For a proper discussion of this =

we need the following definition of equivalence of basic sequences:

Definition 2: Two basic sequences {xn} and {yn} are said to be

o]

o x converges if and only if I
n'n n=

equivalent provided nz 1

o converges.
1 nyn 9
It is a consequence of the closed graph theorem that the basic

sequence {Xn} is eguivalent to the basic sequence {yn} if and only if the

linear map T:[xn] %-[yn], determined by Tx = yn for all n, is an
n
isomorphism onto [yn].

The next definition provides us with a way of generating new basic

sequences from an existing one.

Definition 3: Let {xn} be a basic sequence in some Banach space

X. If ml < m, < ... is any sequence of positive integers and {an} is

a sequence of scalars, then the sequence {bj} of nonzero vectors

Miiy

- - X . si .
defined by bj i=mj+1 aixi is called a block basic sequence (or simply

a blocking) of the basic sequence {Xn}.
Blockings will be used extensively in the constructions and proofs
in subsequent chapters.

. The following theorem provides us with another way of obtaining a



new basic sequence fromlan existing one. 1In essence the theorem says
that if we perturb a basic segquence "slightly" the resultant sequence
is an equivalent basic sequence.

Theorem 4: Let {xn} be a normalized (i.e., len|| = 1 for each n)
basic sequence in a Banach space X with basis constant K. If {yn}‘: X

and Z!lxn - ynll < JL-then {y } is a basic sequence which is equivalent
n n

2K
to {x }.
n
k
Proof: Define T: sp{xn} %‘sp{yn} as follows: For x = nél o X
k k
put T(x) = I, oy . and observe that | x-Tx|| = !lngl o x =
k _ k k
nE1 OLnYnH - Hngl OLn(xn—yn)H = (Sgplanl)ngl]!xn - ynl|. But
Ian| = Ianlllxn][ = ]Ianxn’I = [l(Pn—Pn_l) x || < 2k ||x]|]| for each n.
Thus sup]a I < 2K|lx!| and we have llx—Txll < 2K % !]x - || !Ix[l
n ' n = n=1 n *n -

Since ngl ||xn—yn|[ < §%~ we have 2K ngl ||xn~yn|f < 1. So there is a
number M<l such that ||x-Tx|| < M||x|| for all x ¢ sp{xn}. By the
triangle inequality then we get (1—M)||x|! < IITXII < (l+M)|lX!|.
(Notice M < 1 so 1-M > o). It follows easily then that T is an
isomorphism onto sp{yn} and that T extends»to an onto isomorphism
f:[xn] > [yn] for which T (X unxn) = 7 uny . Q.E.D.

The next theorem is a result of R. C. James [8]. It says essen-
tially that any space which contains an isomorphic copy of ﬁl (i.e.
contains a subspace isomorphic to 21) has another subspace which is
"almost isometric" to Ql. The term "almost isometric" is made precise
by the statement of:

Theorem 5: If {un} is a sequence in a normed linear space which
is equivalent to the usual basis of ll, then for every € > o there

exists a blocking {b } of {u } such that anH = 1 and



n n n
(1-€) iglluilsl!iglaibillsigllai|’ for any sequence of scalars {ai}.

Proof: Let € > o0 be given. Choose § such that > (l-g). We

(1+6) 2

may assume, without loss of generality, that there exists a number o,

O < a £ 1, such that for any sequence of scalars {ai} we have

I n n
of ;2 oy w [l < T2y agu M o< 112 aqu [], (]]-]]] means
n n .
lligl aiui]]l = igllai]). Put A = {x ¢ sp{uk}l l1x]] = 1 ana P (x) =0},

where {Pn} is the sequence of natural projections associated with {un}.

Also put An = Sup|[x|ll. Notice that o < An <1, and An:)An+l for each
XEAn

n. Consequently there exists a A, 0 £ A < 1, such that An > A. Now

choose nO such that An < A(1+8). Select yl € A for which
n

A © o
n
|[ [| > —0 5 A Observe that limiIP - ll =0 and thus
Yilly 7 796 = 140 PR RSN SRR :
L e [T [N S
= v > —— ., Th
[1P5ye 11 |2 Yo s 11> % ie e e
P,y P, vy
choose j.>n  such that -31+~j;—— I 1A6 Put bl = ;l ! and
1o 1B Yl 1 [Py ¥yl
1 1
A
notice that ]!b f[=l, P b_=0, and {[b Il > . Now choose
1 n, 71 ’A 171 7 146
j1+l A
y. € A, such that vy L 2 —, and as before choose j. so
2 jl+l 21 1+§ 1+8 2
P. vy
that 322 > Then put b 27 o get b, ]]=1
a —_ — . en pu = ———— to get =
[HszyzH 1 0 2 HPj2y2H 2

Continue inductively to select a blocking

A
P b_ =0, and ||b2||l > T

n 2
O

{b } of {u } in this manner for which [Ib ]]=l, P b =0, and Ilb ll
n n » n nO n n 'l

A
> 153 for each n.



10

We now simply check that this is the desired blocking. Since

n
P b =0 for each n we get P_ (,L_. a.b,)=0 for any choice of scalars
n n - n i ii

=]
o
n n
121 %Py if1 %P
{ai}. In particular Pn 1; i7i = 0 and thus 5 € Anol so
o |11z, ab. | 1,2, o, 1]
Ioab
L. o b,
1=l 34 < A £ AM(1+68), or equivalently, II.E a.b.ll 2
n n i=1l ii
132, oyps 11| ©
1
1 . . . 1
XTIIETllizl aibi}]l. Since {bn} is a blocking of {un} we get Ty
11,2, el =2 2 lo] |5, ]];, and so |2, ab || >+
2y o5Pslly = Sowey ik 1o pllpr @09 59 Tz %45 X(1+8)
1 A » _ 1 )
Erlegl el 2 sy - whey adalesl = o5 2 iZpleyl 2 (me)
n
PNCRE
Of course by the triangle inequality liigl aibill < igl!aii llbill
n I n n
= ;Zylegls sowe nave (1-e) b oy | o< 2y eppyl] 242y foy ] as

desired. Q.E.D.
A very natural generalization of the notion of a basic sequence is

given by the following definition.

Definition 6: Let X be a Banach space and {Pn} be a sequence of

finite rank projections defined on X such that PP =P |, and
m n min (m,n)

lim P x = x for each x. Then the sequence {B } where B, = P_(X),
n n n 1 1

Bn = (Pn—Pn_l)(X) for n>1 is called a Finite dimensional Shauder decom-

position (or F.D.D.) of X.

Remark: Definition 6 is equivalent to the more common definition
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which requires:dim Bn < o for each n, and each x € X has a unique repre-

[e]
sentation of the form x = Z_ o X where x € B for each n.
n=1 n n n n

We will also have some need of the notion of what is called an

ll—sum of finite dimensional subspaces, which is a gpecial case of the

following definition.

Definition 7: Let {(Xn,][-[fn)} be a sequence of Banach spaces.

An % ~-sum of this sequence, denoted by (! X ) for 1 < p £ «, is the
I n np
space consisting of all sequences {x }, x € X for which Zi!x [Ip <
n n n n n''n

(for p = =, sgpllxnlln < @) with the ncorxrm defined by ll{xn}ll =

1 | 12272, (or p = =, |16 ]| = supl x| ] ).

14

We leave the following two facts as exercises.
(i) An Qp—sum with the usual coordinate-wise algebraic structure
is a BRanach space.

(ii) (r X )* can be identified isometricaily with (Z X*) for
n np n ng

_l -
1 < p < », where p + g 1 = 1 (for p = 1 take g = »).
We conclude here our discussion of bases in Banach spaces and refer

the interested reader to [12] for more information.

The Schur Property

Definition 8: A Banach space X is said to have the Schur property
if every weakly null sequence converges to zero in norm. That is to

say, if {x }C X and w-1im x = O then lim x =0. Such a space will be
n n n n n

referred to as a Schur space.
Since in a Schur space weak and norm sequential convergence coin-

cide it follows from the Eberlein-Smulian theorem that weak and norm
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compactness are equivalent. An important example of a Schur space is ll.
We will use the same argument which appears in [1] to prove a theorem

which contains this fact.
Theorem 9: An zl—sum, (L Bn)l, of finite dimensional spaces {Bn}
Lheorem - a ,
is a Schur space.
Proof: Let {Qn} be the sequence of projections such that Qn((Z Bnh)
Prooi o ‘
=B , and let {y }<C (¥ B )_ be a weakly null sequence. Suppose
n n n nl
l%m yn#O. Then there is a 6>0 and a subsequence {xn} of {yn} such that
' >8> . i = | .
Ifxn[[_é o for each n Since ]le|I %I‘anlii we may choose my such

that ¥ !IQ X Il < §/5. Since the sequence {x } is weakly null and each
n=ml n 1l n

Qj is a finite rank operator we have l%m ijn = O for each j. Any finite

L
sum of these operators also has finite rank and thus l%m(jzk Qj)(xn) = 0

for all choices of k and 2. In particular if we fix k2>ml there exists

%) ’ k2
an n, such that jgl Qj (xn2) < §/5. But jgl Qj (an) =
k, k,
I I'QjXDZH so jglllexnzH < 8/5. since llxn2l| = §Ilexn21! we can
also choose m2>k2 such that 'zmzlle xnzl] < §/5. Proceed inductively

to select sequences of positive integers {kj}, {nj}, and {mj] such that,

k.
(i) %HQ x || < 8/5

i=1'"""1i ",

J
(ii) iim.llgi an!| < §/5, and thus
m.-1

T F‘J
G0 ok ]| %%, || 2 380

j 3
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For part (iii) recall § < llxnj|l = EI!Qi xn.ll.

By exercise (ii) following Definition 7 (& Bn); consists of sequences
n
{xX} with x; 5 B; and sgp]|x;|[ < o, We construct such a sequence as

follows: If j is not between ki and mi for some i put x; = 0. If, how-

*
ever, k, < j < m, for some i put %x,(Q, x ) = I|Q. X |! and use the
i i ' 373 ng 3 ong

Hahn-Banach Theorem to extend x; to all of B, with [tx;||=l. Then
*

x = {x.} e (ZB)
J n n1l

We apply this functional to our sequence {xn } and observe that for

i
m,-1
hiweh *Ux. h|=].Z. =% | 2] ; 0 ) |
each i we have |x ( x ) |= sIy xj(Qj Xn.) N P xj Qj x -
1 J 1 i
kj . © * A ki *
[jgl x5 (0, xni)| - Ijg_mi %, (0, xni)l > §/5. Since lj§1 x5 (0, xni)l <
k, : k,
jglllxgll IIQj xnill < jglllgj xniII < 6/5 by (i) above and similarly
mi—l
|.3 x*. x )| <6/5 by (ii) and |. 2 _ x¥(0. x )| 2 38/5 by (iii)
j=mi 373 n, j=ki+l | ni =

*
and the definition of x . Thus the sequence {xn } cannot be weakly null
i
which contradicts our original assumption and proves the theorem.

The following definitions provide us with another class of Schur

spaces.

Definition 10: Let {Bn} be a sequence of finite dimensional Banach

spaces. If {mj} is a sequence of non-negative integers such that

m, + 1 < m,
]

541 then the Banach space with F.D. D. {Fj}, where

mj+l—l
F, =[B ]

3 n n=mj+l' is called a skipped blocking of the sequence {Bn}.
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While it is not exactly precise the following diagram should help

to at least motivate the terminology of Definition 10.

+ B +B +B + +B  _, *B +Bm it
j-1 +1 e J+1 +1 G+1 o
T A T A
F F F
j-1 3 j+l

Definition 11: A Banach space X is said to have the £-skipped-

blocking-property provided there exists an F.F.D. {Bn} of X such that

every skipped blocking of {Bn} is an Ql—sum. Such a seguence {Bn} will

be called an %q-skipped-blocking sequence for X.

Remark: The reader might wish to.consult [7] and check that the
example provided there by R. C. James could be said to have the 22—
ﬂdmm&bkmhﬂgpnmmty‘

Theorem 12: A Banach space X which has the Zl—skipped—blocking—
property is a Schur space.

Proof: We will show that every weakly null sequence in X has a
subsequence that goes to zero in norxrm. The procedure will be to show
that every weakly null sequence has a subséquence which is "very close"
to a skipped sequence, i.e. a sequence contained in a skipped blocking.

Let {Bn} be an f&;-skipped-blocking-sequence for X, and let {Pn}

. Let {x }& X
1 n

. . n
be the sequence of natural projections, Pn:X +-[Bj]j_
be any weakly null sequence and {en} a sequence of positive numbers
which decrease to zero.

Notice first that since X = [Bn], then given any x € X and any
€ > o there exists k and ye Pk(X) such that llx-yl[ < e. In particular

there exists kl and some v, € P, (X) for which |[xl—yl|l < e Put

kl 1
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. Now since

and yl € Fl

n,=1 and F; =P, (X), to get |lxn —Ylll <&y

. 1 1

w—l%m xn=O and each of the projections Pk is of finite rank we have

1%m Pk xn=O for each k. Thus we can choose n2 large enough to insure
< . s ' CU P
that ||Pk 1 %, I e,/3. Now choose a sequence {Zn} U j(X) such
1 2 J
that l%m Zn = Xn2 then certainly l%m Pk1+l Zn = Pkl+l xnz, SO we may

- < .
choose N such that ]lPk +1 ZN Pk +1 xnzll 82/3 It follows then that

1 1

ILPkl+l ZNII < 2e,/3. Since Z_ € g Pj(X) there exists k, > k,+1 such
ZN = Pk ZN. Now put Y, = ZN - Pk 41 ZN = (Pk - Pk +l)(ZN), and let
2 1 2 1
F, = (Pk - Pk +l)(X). Then we have I[xn - y2|| = Hxn - Pk ZN +
2 1 2 2
Pk1+l lel < llxn2 - sz ZN]| + llPkl+l lel < e,/3 %+ 26e,/3 = e, So

that ]Ixn - y2|| < g

and v, € F.,. Proceed in this manner for an in-
2

2 2

ductive definition of sequences {xn 1, {yi}, and {Fi} where len -
i i

Since lim £, = o we have lim[lx - y.ll = 0. So if x*ec X we
i i i n, i

nave 'y, | = 1, 0 01 s L Ly, 1 e 1t 0o

But {yn}C:[Fn] which is a skipped blocking of {Bn} and hence [Fn] is an

Ql-sum so by Theorem 9, [Fn] is a Schur space and l%m yn=O. But

limllx —y.||=O so we must also have lim x_=0. Q.E.D.
i n, “i iy

We will construct a Schur space in a later chapter by building

in this 2l—skipped—blocking—property.
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We conclude this section by considering a class of spaces which are
not Schur spaces. The theorem that follows provides us with an example--
the C(K) spaces. It is easy to see that the Schur property is preserved
by an isomorphism, and is inherited by closed subspaces and therefore
the following theorem says that a Schur space cannot contain any sub-
space which is isomorphic.to a C(K) space.

Theorem 13: If K is an infinite compact Hausdorff space then C(K)
is not a Schur space.

Proof: We will use the fact that {fn} is weakly convergent in
C(K) if apd only if {fn} is bounded and point-wise convergent. This
follows from the Lebesgue convergence theorem and the Reisz representa-
tion theorém.. In fact we will construct a sequence'{fn} such that

||£ ||=1 for each n and w-lim £ = O(i.e., lim f x=0O for every x € K).
n n n n n
Choose a point p which is a limit point of K and a point xleK such

that xl#p. Since K is normal we may choose Fl and Cl closed subsets of

K such that peint Cl' xleint Fl and ClnFl=¢. Since p is a limit point

int C., must be infinite, so we may choose x_€ int C

1 5 1 such that xz#p.

Using normality again we select closed subsets F2 and C2 of Cl such that

pe int C2, xze int F2 and C2F3F2 = . Having chosen xn, Cn, and Fn such

CNF =@, (CUF )C , pe int C , xe int F , F and C both closed;
n n n n n- n n n n

1

we select x e C

1 nf xn+l#p, and closed subsets Fn

and C of C such
n n

+1 +1

that x € int F , pe int C
n+

n =, . .
N+l n+1 + and F c g. By induction then

1 +1 n+l

we have a sequence {Fn} of closed (and hence compact) subsets of K which

are pair-wise disjoint and a sequence of points {xn} such that x € int
n

Fn for each n. Now we use Urysohn's lemma to construct a sequence of

functions {fn}CfC(K) such that fn(K)C‘[O,l], fn(xn)=l' and support
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For any x € K such that x ¢ U Fn we have fn(x)=0 for all n, and if
n

XE Fj for some j then fk(x)=0 for all k>j. Thus w—l%m fn=O. But, of

course, [Ifn[|=l for each n. Q.E.D.
The Radon-Nikodym Property

To discuss the Radon-Nikodym property (hereafter called R.N.P.) one
needs some familiarity with the concepts of vector valued measures and
vector valued integration. These notions are completely analogous to

their scalar valued counterparts. A vector valued measure is a function

F defined on a o-algebra I of subsets of some set 2 taking values in a
Banach space X, for which F(g En) = % F(En) whenever {En} is a sequence
of pair-wise disjoint members of L. The variation of a vector valued

measure F on EeZ, denoted by |F|(E) is defined by |F|(E) = sup AEHI]F(A)II

where the supremum is taken over all finite partitions Il of E. F is said

to be of bounded variation if IFI(Q) is finite. IF| is a measure. The

proof of this fact, which is the same as the scalar valued case, is left
to the reader. A vector valued measure ¥ of bounded variation is said to

be absolutely continuous with respect to a scalar valued measure uy if

]Fl is absolutely continuous with respect to u. In this case we will
write F << J.
If (Q,2,u) is a finite measure space and i is a scalar valued

measure then a function ¢:{»X (X a Banach space) is called a simple

. . . n
function if there exist vectors {x_}i 1¢?X and sets {Ei}? lflz such that
e e l = o=

n
¢ = igl X, XE . (XE denotes the characteristic function of the set E,.)

- . Y. 1

1 1

A function f£:0»X is said to be u~measurable if f is a point-wise limit
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of simple functions, u-a.e., in the norm topology of X. Given such an
f and a sequence of simple functions {¢n} which converge to f, u-a.e.,

we say f is Bochner integrable (or simply integrable) if l%m fgllf(w)-

¢n(w)l[du(m)=0. It is an exercise to show that in this case l%m SE ¢ndu

i Rel. i = 1i d > d i
exists for each Eel. We define fE £ du l%m fE ¢n y where IE¢n y is

I~

x. X_ is the cononical repre-
171 Ei p

defined in the usual way (i.e. if ¢ = 5

it

sentation of the simple function ¢ then IE ¢ du = xiu(E{\Ei). It

i=1

follows thaf for a pu-measurable X valued function £, f ig integrable if
and only if fQIIf(m)[[du(w) is finite. We denote the set of all equi-~
valence classes of integrable functions by Ll(u,X). Under the norm
]lf[ll = fﬂllﬁ(w)|[du(w) and usual algebraic operations Ll(u,X) is a
Banach space.

Definition 14: A Banach space X is said to have R.N.P. if for each

finite measure space (Q,2Z,u) and every vector valued measure F:I>X, of
bounded variation which is u-continuous there exists an feLl(u,X) such
that F(E) = fE f du for all EeX.

The reader should notice that in case X is the scalar field (or
finite dimensional)the definition is simply a statement of the classical
Radon-Nikodym Theorem. This leads us to think of R.N.P. spaces as those
Banach spaces for which the Radon-Nikodym Theorem is valid. ‘If a Banach
space X has R-N-P and F, f are as in Definition 14 we will call f the
Radon-Nikodym derivative of F.

In subsequent chapters we will construct some spaces which have
R.N.P. We conclude the discussion here with an’example of a very
familiar space which does not have R.N.P.

Example 15: The Banach space c, does not have R.N.P.
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We will define a c, valued measure which has no Radon-Nikodym de-
rivative. We use the measure space (Q,X,u) where Q = [O,l], ¥ is the
o-algebra of Lebesgue measurable subsets of [O,l], and u is Lebesgue

(o]
measure. Define F: I > e, by F(E) = {fEsin(znnt)du}nzl. According to

. . R n ,
the Riemann-Lebesgue Lemma lim fE sin(2 mwt)du=0, so F is co valued. Also
o ;

for each E we have IIF(E)II = sgplesin(2nwt)du[5u(E). Therefore F is
u—-continuous, countably additive and of bounded variation.

Suppose F does have a Radon-Nikodym derivative f£. Then f ¢ Ll(u,co)
and F(E) = fE f du for every Eef. We will demonstrate that this f
cannot be g valued for almost all t ¢ [O,l]. Let x; be the functional

t ) o
that selects the n h coordinate, i.e. x;({xj}j—l) =X . Then for any

* * *

EeX F(E))= f a = N =

el we get Xn( (E)) xn(fE ) fE xnf du IE fn duy where
© . n
. .. So J_f du = f_ sin(2 mt)du for each EeZ and thus
j=1 E n E »
f () = sin(2nﬂt),u—a.e. on[0,1]. Now put E = {t[]sin(znwt){ > 7£}
n n. 2

and observe that u(En) = 1/2 for each n. Let E be the element of I

for which XE = l%m.XE . A standard notation for this set is E = l%m E
. n
n

and it is easy to verify that lém En =N .U Ej. We have u(l%m En) =

— duy = lim X du > 1i X = 1i
i) Xlﬁm B_ U i) im B b2 Lim i) B_ du lim u(En)

it

1/2. But if

IA

t e l%m En then f(t) ¢ o Hence u{te[O,l]]f(t) e co} 1/2, and thus

f is not cO valued u-almost everywhere.
For detailed treatment of the R.N.P. we refer the interested reader

to [ 3].

Injective Banach Spaces

Definition 16: A Banach space X is a Py space if for each TeB(Y,X)
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and each Banach space Z2Y there exists a TeB(Z,X) such that T v = T and

[15]] < A

IT[I. An injective Banach space 1s a Banach space which is a

Pk space for some A.

We shall see eventually that this definition of "injective" for
the category of Banach spaces and bounded linear operators is consistent
with definition of injectiveness taken in general category theory. In
fact, we shall see (in Theorem 19 below) that injectiveness is a purely
category theoretic property.

Lemma 16: Qw(P)'is a P_ space.

1
Proof: Let Y and Z be Banach spaces such that Z>Y and T e B(Y,

zm(r)). Define EY € Zw(T)* by Ey(f) = f(Y). Then EYT is a functional

*
on Y which extends, by the Hahn Banach theorem, to a functional TY € Z

with [fTYII = IlEyT]!. Now define %:Z+2m(F) by (Tz) (Y) = TYz. Then for
each yeY we have (%y)(Y) = Tyy = EY(Ty) = (Ty) (Y) for each Yel'. So
T| T, Also ||Tz]] = $E§II(T2)YH = $gIPJIITY2H < HZH%?HTYH =
]]z![supl]EYTll < lz]] ||r]| since ||E, || = 1 for each Yel. Thus

yeTl ¥

HElL < |Tl]. .E.D.

Lemma 18: A Banach space X is a P, space if and only if there is an

A

isometry T:X>Y where Y is a Pl space and a projection P of Y onto T(X)
such that ||p|| < A.

Proof: Suppose first that X is a P, space. Put Y = zm(BX*) and

A

(Tx)x* = x*(x) for all x*eBX* and all xeX. Then certainly T is an

. . ~1 .
isometry of X into Y. Also T ":T(X) - X and X is assumed to be PA S0
Pl N
. . -1 . -1 -1

there is an extension T :Zw(BX*) + X with [lT [I < Al[T l[ = A. The

I

-1 . . . . .
operator T T then is the desired projection. To see this we observe
~ LA
~1

o~
that | o ] < [zl 1127 ] < |lTl]-2=A, and for yeT(x) T T C(y) =
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v ly) = y.

Now suppose we have the P_. space Y, the isometry T:X =+ ¥ and the

1
projection P:Y»T(X) with ||P|| £ A. Let E and F be Banach spaces, ECF

and AeB(E,X). Notice that T A € B(E,Y) and since Y is Pl there exists

TA € B(F,Y) which extends TA with ||TA||=||Ta]|. Put A=rl p TA. Then
~ -1 ~ -1 ~ -1

Hatl = [1r = 2 2al| < [z 7] (el HTall < [{= 7] []ef] [ima]] <

Allall, since ||T]] = |lT_1|I =1 and ||P|| £ . For ecE we have

Ae = (T 1 P Eﬁ)e=T—lP(TAe) = T—lT(Ae)=Ae. Thus A is an extension of A.
0.E.D.

With these lemmas in hand we can now establish some useful charac—:
terizations of injective spaces.

Theorem 19: Fach of the following statements concerning a Banach
space X implies all of the others.

1. For each TeB(F,X) and all EDF there exists a TeB(E,X) such
that T T

2. For every Banach space ED> X there exists a projection P of E
onto X.
3. Por every Banach space EDX and all TeB(X,F) there exists a

TeB(E,F) such that T|_=T.

X
1'. Same as 1 except T can be chosen so that ||T|| < A]|T|| (i.e.,
X is PA)'
2'. Same as 2 except P can be chosen so that ]IP}I < A
3'. Same as 3 except T can be chosen so that |!il] < X{IT]I.

Proof: We will show that: 1 + 2 > 3 > 2 > 1, 1' <> 2', 2' <> 3',
and 2 <> 1'., We start with 1 - 2: Let E2X and let I be the identity
operator on X. Then by i, I extends to i eB(E,X). Put P = I.

2> 3: Let EDX and T € B(X,F). We have a projection P of E onto

X by 2, so put T = TP.
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3+ 2: Let ED2X. Then the identity operator I on X extends by 3 to
I ¢ B(E,X), soput P = I.

2> 1: Let ED2F and T ¢ B(F,X). Let i be the natural injection of
X into Rm(BX*). Then iT ¢ B(F,Zm(BX*)) and Qw(BX*) is P1 by Lemma 16 so
there exists gE ¢ B(E, lw(BX*)) which extends iT. Also by 2 there is a
projection P of Qw(BX*) onto X. Put T = P ir.

1' = 2': Using the P defined in 1 - 2 we have P = I and thus
el = [1T]] < allz]] = 2 by 17.

2' > 1': Using the operators in 2 > 1 and Lemma 17 we may assume

that ||T2|| = [liv]|. ana by 2' [[p[] < & so [[2]] = [[pdED[] < 2f]

I

ir|] < Allz]].
2' + 3': From 2 -+ 3 above we have T = TP, and by 2' llP}‘ <A,

so ||T]] < Al[z]].

3' > 2': since P = I we have by 3' that ||p|| = [|T|| < A]]z]]=x.
It remains to prove that 2 <> 1'. Obviéusly 1' » 2' > 2. So we
show that 2 + 1': Let EXF and Te B(F,X). Since XS (B ), by 2 there
is a projection P of £ (B ,) onto X. Put A = llp||. since %, (Bex) is
P, there is a T :E ~ & (B ,) such that TlIF = T and []TlI[ = ||r|].
Put T = P T,. Then lTl] < e]] ||Tl]] = Al|T]| ana T|, = T. Q.E.D.

Weak Completeness

A sequence‘{xn} in some Banach spaée X is said to be weakly-Cauchy
if for each x*ex” the sequence:{x*(xn)} is a Cauchy sequence. If this
is the case'{x*(xn)} converges and thus we are led to the natural ques-
tion: What is the function f defined by f(x¥) = lgm x*(xn)? It is
easy to Verify that feX** which leads to the question: For which Banach
spaces X is this f an element of J(X), where J is the canonical imbedding

of X into X**? such a space is called weakly sequentially complete.
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Reflexive spaces obviously have this proéerty. We will construct some
non-reflexive examples in following chapters. The verification of

these facts will depend on a familiarity with some other well known
spaces which are weakly sequentially complete. Therefore this section
is devoted to enumerating these examples, and thus we need the following
formal definition.

Definition 20: A Banach space X is said to be weakly segquentially

complete (w.s.c. for short) if each weak Cauchy sequence'{xn}C:X con-
verges weakly to come xeX.

Remark: Another class of spaces which is easily seen to be w.s.c.
is the class of Schur spaces. To prove this we use the following char-

acterization of Cauchy (respectively weak Cauchy) sequences:'{xn} is

Cauchy (respectively weak Cauchy) if and only if lim(xn -x }=0 (re-
S B
spectively w—lim(xn —X )=0) for every subsequence'{xn } of {xn}. The
J 3 s .
o 3-1 ]

verification is left as an exercise. So if'{xn} is a weak Cauchy se-
quence in a Schur space X then w—lj,_m(xn —xn )=0 for every subsequence
J j 3-1
{xn } of {xn}. But since X is a Schur space this means 1i'm(xn X )=0
J J 3 -1

for every subsequence'{xn } of {xn}, or equivalently {xn} is Cauchy and
3

must converge to some xeX.

Theorem 21: Ll(Q,Z,u) is weakly sequentially complete.

Proof: We may assume without loss of generality that the measure
space (Q,Z,u) is o-finite. To see this let {fn}C:Ll(Q,Z,u). Since each
fn is integrable p {w € Q| [fn(w)[z %} is finite for each n and k. Thus
the set E =‘{m€Q]fn (w)>0, for some n} is o-finite and £ (w)=0 for all n
and w € Q\E. So if Z(E) = {A ¢ Z|ACE} then {f }er (E,2(®),n) and

this space is isometric to the subspace of Ll(Q,Z,u) consisting of all
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functions which vanish outside E.
We therefore assume that (Q,I,u) is o-finite. ©Let {f } be a weak
n

Cauchy sequence in Ll(u). Since LI = L_ the sequence {/ Xg fn dul} is

Cauchy and hence must converge for each EcZ. We now appeal to the
Vitali-Hahn-Saks theorem (c.f. p.158 of [5]) to conclude that lim fE fn dyu
n

defines a p-continuous measure on £, and we write v (E) = l%m fE fn du.

Since we are assuming that (Q,Z,u) is o-finite we may apply the Radon-
Nikodym theorem to obtain an f ¢ Ll(u) such that v(E) = fEf dp for each
Eef. This f turns out to be the weak limit of the sequence {fn}. We

check this by first letting ¢ be a simple function with canonical repre-

k k k
. - ¥ X . du = T > VI(E,)
sentation ¢ 327 % %g Then [ ¢fn W= Loy fE. fn du i£1 o, VIE;
k Ix i
= igl oy fEi faduy =S igl o XEi f dy = [¢fdpy. Since the simple func-

tions are dense in L_(u) and {fn} is bounded in Ll(u) we have
lim f gfndp =-[ gf dp for each geL (u). Thus w-l%m fn = f. Q.E.D.
n oo

*
Corollary 22: If K is a compact Hausdorff space then C(K) 1is

weakly sequentially complete.

gzégﬁ: Let {un} be a weak Cauchy sequence in C(K)*. It is a con-
sequence of the uniform boundedness principle that'{un} is bounded and
thus u = E 2_n[un[ defines a measure on XK, and un << u for each n. Let
B be the o-algebra of Borel sets in K and define T: Ll(K,B,u) -+ C(K)*

by (Tf) (E) = fE f du. Then T is an isometry and T(dun/du) = un
(dun/du is the Radon-Nikodym derivative of un with respect to u). Thus
{un}c:T(Ll(K,B,u)) which is w.s.c. by Theorem 16 and the fact that weak

completeness is preserved by an isometry. Q.E.D.

This corollary has an important corollary of its own.
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Corollary 23: If a Banach space X is injective then X* is w.s.c.

In particular if X*f is injective then X*** (and hence X*) is w.s.c.
Proof: Since X is injective it is complemented in a C(K) space.
(Choose K = BX* with its weak* tbpology.) Thus there is a projection
P:C(K) -~ X. It is easy to check that P*:x*+C(K)* is an isomorphism.
Therefore P*(X*) and hence X* must be w.s.c. since weak sequential com-
pleteness is inherited by closed subspaces. Q.E.D.
These corollaries will be used to verify the weak sequential com-

pleteness of the examéles that follow.
The Class Qw(P)

If T is a discrete topological space we may think of Rm(P) as a
C(K) space by making the appropriate choice of K. To see this we start
by identifying the set T with its image h(l') in zm(r)*, under the map

h:T -~ Qm(T)* defined by h(t) = Et where Et is the evaluation functional

’ ———y %
Et(f) = f(t). Obviously h(I')TB + and thus h(I') is weak*compact.

2 (D)

—— * *
We denote h(TI') w by BT because h(l) w is in fact the classical Stone-

Cech compactification of I'. From the definition of BI', any f ¢ lw(F)
extends uniquely to a continuous function £ on BT with ll%llw = ]]fllw.
Conversely if geC(8T), g]r € lm(F). So this set is the appropriate
choice for K and these remarks provide a sketch of the proof of:

Theorem 24: If T is a discrete topological space then there is a
compact Hausdorff space K such that Qm(T) is isometric to C(K).

For I' discrete, the topological space BT is extremally disconnected,

i.e., the closure of each open subset of BI' is open. For the sake of
reference we state this fact as a theorem.
Theorem 25: If I' is a discrete topological space then BI' (defined

above) is extremally disconnected.
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Proof: Let U<Pl be an open set. Put S = UNT. Then XS € zm(r)
extends uniquely to some feC{BT'). By definition. T is dense in BI' and U
is assumed to be open so S is dense in U. It follows then that f((t) =1
for each teU. We also have that Bf\ﬁ is open s0 (SF\G)f\F is dense in
BI\U. But f(t) = O for all te (BT\UINT since f is an extension of XS.
Consequently, f£(t) =0 fof all teBF\ﬁ. Therefore £ = Xﬁ and thus U must
be open since f is continuous. Q.E.D.

Another important property of Km(P) is that weak and weak’ sequen-
tial convergence coincide in Qw(T)*.

Definition 26: A Banach space X 1s called a Grothendieck space if

for each sequence {x;}C:X* such that w*—l%m x; = 0 then.w—l%m x; = 0.
The proof that ﬁm(T) is a Grothendieck space will require some work.
We start with the following notational conventions which will be used
in the ;emainder of this section., For ¢ e zm(r)* and ECT we will write
¢ (E) instead of ¢(XE). We also put {¢1(E) = sup{|¢(f)lzfezm(P),
|1£]] =1, support f&E}, or for each ECT put ¢o (F) = ¢(£x,) then
|¢](E) = II¢EII. A1l of the properties of these functionals used in the
following aré easily derived from these definitions. As an example let
A,BCT, ANB = g. Then [¢|(aUB) = |¢]|(B) + |¢](B).
Lemma 27: Let {fn}crzl(r) be such that l%m fn(s)=0 for every sel.
Then for every € >Q there exists a Sequence'{ok} of disjoint finite sub-

sets of I', and a subsequence {f_ } of {f } such that X |[f_ (s)]|
n SEC nk

k
> e |] -e.
“x
Proof: Let € > O be given and put nl=l. Since fn is countably
1
supported there is a finite set o, such that 2 _|f (s)| > ||f [l -e.
1 ssol n, ny

0. is finite so we may choose n, large enough to insure that
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)X . i = Y I|f ) =
<y lfk(s)[ < € whenever k > n,. Since l]fn | SETI N (s) |
1 - 2 2
£ ()] + I £ ()] <e+ I |£ (s)]| we have
seo, ' n, sel“\ol n, ssl‘\ol n,
[|fn ]‘ - e < sé?\o |fn (s)l and so we may chose a finite set OZC:F\ol
2 1 2
such that I [f (s)| » {Ifn [ - e.
2 2 2
= 1 Z
As before we may choose n3 large enough to insure that seclngtfk(S)}
< e whenever k 2 n_. Then there is a finite set o3<:F\olU02 such that
I |f (s)l > llf [[ - €. Proceed inductively in this manner to select
SE0, N, ng

the sequence {0} and the sequence {f } for which % _[|f (s)] >
k oy SEOy

fle || - e. g.E.D.

M

The next lemma is sometimes called Rosenthal's lemma (c.f. [3]).
It was originally proved by H. P. Rosenthal but the shorter proof here
is due to Kupka.

Lemma 28: Let {¢n} be a uniformly bounded sequence in Zw(F)*, and

{En} a sequence of disjoint subsets of I'. Then for every & > O there

is a subsequence {E_ } of {E } such that |¢ (U B ) <e.
n, n n,' i#j n,

J ] i
Proof: Assume without loss of generality that sgp|¢n[(F) < 1.
Partition the positive integers N, into infinitely many disjoint infinite

subsets {M } with UM = N.
b PP

If for some p there is no k ¢ MP for which l¢k|(j§k En.) > € we
jeM
. p

obtain the desired subsequence by orderingMp ={n. < n, < es+} and then

U .
we have l¢nj|(i#j Eni) < ¢ for all j.
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On the other hand if for each p there is a kp € Mp with

U [o0] (o] [ea] -
|¢kp|(j#k ) 2 €, then for each p ]d)k U, E ) + [¢kp| (nUl En\ngl Ekn) <1

| (
=1 k =
P E q
jeM
J b
U E ¢ U il (O E\ U E ) 2 d thus £
But .o, Eje Uy B\ U Eoso [o [(U) EN U B ) 2 e and thus for
P n P n
jeM
b
[ee] o
each we have U. E + < U, E <1 - e.
ach p I¢kp|(q=1 Ekq) e 21 or |¢k l(qzl kq) 1-c¢

We now apply the same argument to the subsequences {¢k } and‘{Ek }
b P

as we did to'{¢n} and {En}. If the process does not stop we obtain a

new subsequence {E } of {E } for which ]¢ |(,% E ) <1 - 2e. It is
n, n n, Jj=1 n. _
3 J 3
. t
apparent then-that this iterative process must terminate before the H;Q

application where n is the smallest positive integer for which
1 -neg <0. Q.E.D.
Theorem 29: If {¢n}532m(F)* is such that w*—l%m ¢n=o, then
i z ' =0.
lﬁm seI‘ld)n{S})l °
Proof: If l%m cgri¢nf-{s})[#o then there is an € > O and a subse-

quence (still called {¢ }) for which S§F|¢n({s})[ > €, for all n. By
. n

Lemma 27 we can select a sequence of disjoint finite sets {Ok} and a

: i - T ' ' '
subsequence (still called ¢n) such that seokl¢k({5})l > Sérl¢k({s})]

- ¢/3 for all k. We now apply Lemma 28 to obtain a subsequence'{ck } of
3

-bk} such that I¢k.|(i¥j Ok_) <e/3.
, j i
We define x ¢ Qm(F) by

sgn ¢k ({sh, if s ¢ oy for some j

x(g) = J J

0 , if s ¢ Uo
j k.
J
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and observe that ]¢n (x)l > lsgo x(s)¢nk({s})l—l¢n (X].U s Y| =

k'n.
k n k j# nj

secn
k

k, which contradicts w*—l%m ¢n=0. Q.E.D.

zo e t{s}>l—l¢>n] (Hon )1 > sér“’nk“s})' - e/3 - /3 > ¢/3 for all
Tk < J

Corollary 30: Let T'e B(Zw(T),X),X a Banach space, and xS=T(68)

(where GS(S')=O if s#s' and és(s)=l). If/{Zn} is any weak*null sequence

in X* th 1i DR B/ =0.
0 en g SEFI n xs|

*
Proof: Since the adjoint operator T 1is weak*continuocus we know
that/{T*Zn} is also weak*null. Thus by Theorem 29 the proof will be

. . th . .
complete if we can verify that the s  coordinate of J*T* z_ is Zn(xs),

where J is the canonical imbedding of cO(T) into Rm(T). To see this we
. * % * ok .*
i . Jd Z (8 = Zz (J =2 T = Z .
just apply J°T z to Gs T n( S) T n( (55) N (68) n(xs)
0.E.D.

With this corollary in hand we are finally ready to prove:

Theorem 31: If I' is discrete then Qm(F) is a Grothendieck space.

Proof: Let {Zi} be a weak*null sequence in zw(r)*. By Theorem 19
we may replace the sequence {Zi} with the corresponding seqguence of

measures {ui} on BI'. (See the remarks preceding Theorem 24.) Put

n = zz_i]

p,|. Then u, << u for each i so there exists a sequence {fi}
i

< =
Ll(u) such that ui(E) fEfidu.

. Suppose the sequence {Zi} is not weakly compact. If we can show

that there is a subsequence {ui } and a sequence of disjoint open-closed
J
sets {Vn} in BT for which Wy (V.) > € > O for some € > O, then we pro-
J
duce a contradiction as follows.
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Observe that for each {a } € £ we can define a function f on T by
n o0

a if xe V
n n
f(x) = . Since f is bounded we have that f extends uni-

0 if xeT\U V
n n
quely to a continuous function f on BT. Since each Vn is open, F(\Vn

is dense in V and thus %(x) = a for all XeV . Also Téint(I\U V. ) is
n n n n n

dense in int(I'\U V ) and so f(x)=0 for all xe int(I\U V ) = I'\U V . Thus
n n n n n n

we may define an operétor T:SZ,Oo -+ C(BT') by setting T{an} = f, where f is

defined as above. Notice that T(en) = XV . {(Where e = (0,0,...,0,1,0,...
n
. . th
the 1 occurring in the n position.) We are therefore set up to apply

Corollary 30 and conclude that l%m Z(un Vj)=O. Which contradicts
J
u. (V.,) 2 & for each j.
1 J
We thus assume that {zi} is not relatively weakly compact. There-

fore {fi} is not relatively weakly compact, so there is an € > 0, a

sequence {Ej} such that u(Ej) + 0 and a subsequence fi such that

3

lf fi du| > 8 € for each j. If that is the case then there is a sub-

i 3

+
sequence (still called fi ) on which either fE fi du 2 4e for each j or
J J3

fE f; du > 4e for each j and we assume the former.

j3

Since BT is extremally disconnected (see Theorem 25), we may choose

open-closed sets Uj:)E_ such that lui I(UJ\E,) < 2e, and thus My (Uj) 2
] 3 ) .
2e, for each j. Since Uj is open and closed we have XU e C(BI') and thus
3
lim p, (U ) = O for each k. Put V, = U . Choose N_ large enough to
3 i, 'k 1 1 2
J

i v < g en j = . 1€ v =
insure that ui.( l) € when j 2 N2 and put V2 UN\Ul Then Ui ( 2)

3 ) 2 N2
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; j | > <e. N U
My (UN\\Ul) > e since u, (UN ) 2 2e and ¥, (Ul) € ow U, U N
N2 2 N2 2 N2 2

is an open-closed set so lim ui_(U] U UN ) = O0-so there is an N3 > N
3 1

J 2 2

> ] > . S t V. = U U U
such that ui.(Ul U UN2) < & whenever j > N3 o pu 3 N;\( 1 U NZ)
J

and we get u, (V3) > € as before. This process inductively determines
i
N
3
the sequence of pair-wise disjoint open-closed sets {Vj} and the subse-

guence {pi } for which Hig (Vj) > £ as prescribed. Q.E.D.

N, 3
J

An important property éf Grothendieck spaces is given by the follow-
ing lemma.

Temma 32: If X is Grothendieck and Y is separable then each T & B(X,Y)
is weakly compact.

Proof: If T & B(X,Y) then T*¢ B(Y*,X*). Since Y is separable BY*

is weak*sequentially compact. But as an adjoint operator we know T* ig
weak* continuous and thus T*(BY*) is weak® sequentially compact.
However, X is assumed to be Grothendieck so weak*sequential compactness
is equivalent to weak sequential compactness in x*. Thus T*(BY*) is
weakly seguentially compact and so ™ is weakly compact by the Eberlein-
¥mulian theorem. Therefore T is weakly compact. Q.E.D.

Actually the property of Lemma 32 is only one of several which are
equivalent to the Grothendieck pfoperty as we have defined it. ﬁe refer
the reader to page 179 of [3] for others. Lemma 27 provides us with an
easy proof of:

Theorem 33: If X is a Banach space such that ** is injective,

then X does not embed in any separable dual space.
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Proof: Suppose T:X - Y* is an isomorphism of X into some separa-

* . .. kK. gk * ok k
ble dual space Y . Consider the second adjoint T :X > Y . By

choosing I' appropriately we may embed x** in Qm(F). Since x** is in-

jective we have a-projection P:4 () ~ x**. Any dual space is‘comple—

*

mented in its second adjoint by the projection Q:Y** + J(¥¥) defined

* k%

by O(y ) (y) = y***(Jy), where J is the canonical isometry of v* into

Y***. We conclude that QT**P e B(L_(I), ¥*) so by Lemma 32 QTP is
weakly compact. It is an easy exercise to check that this implies that
¥ is weakly compact‘and herice T is weakly compact. This is of course
impossible since T is assumed to be an isomorphism. Q.E.D.

The following diagram should make the above proof easier to

follow.

X __.._T%. Y*
1o
* k)
*
g (1) —— x* T ¢t

We conclude here our discussion of the class L (') and remark that
the next section deals with a class of spaces in which every space has
an injective second adjoint and thus by Theorem 33 none of these spaces

can be embedded in a separable dual space.

Separable Lm Spaces

Definition 34: A Banach space X is a separable LOo space if there

is a number A and a sequence of finite dimensional spaces {En} such that,

d
E CE for each n, d(E ,2% n) < A (where d = dim E ) for each n and
n n+l n o« n n

X=UE.
n n
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The class of LOO spaces (not necessarily separable) was introduced
by J. Lindenstrauss and A. Pelczynski in [ll]. The reader might be
familiar with the more common definition which says that ¥ is LOO if there
is a number A such that for each finite dimensional subspace B of X
there is a finite dimensional subspace E of X such that B<E and
d(E,%i) < A(n=dim E). In case X is separable these two definitions
coincide. We will only consider separable Loo spaces in this paper. We
therefore choose Definition 34 as it is better suited to the construc-
tion of such a space.

A property of Lm spaces which will be used extensively in the
examples that follow is that x** is injective whenever X is a Loo space.
We will prove .this for the separable case. For the proof of the general
case see section 7 ofl:ll].

Lemma 35: If X is a separable Lm space and Z is any Banach space
containing X then there exists TEB(Z,X**) such that Tx=x for each
xeX and ||T]] < A°.  (Where ) is the constant mentioned in Definition

34.)

a d
Since d(E , 2 n) < A for each n and an is a
n [eo]

Proof: Let X = UE
—— n n

Pl space for each n by Lemma 17, it follows easily that each En is a PA

space. By Theorem 19 we have a projection Pn of X onto En with

IIP I‘ < A for each n. Thus we may write X = g Pn(X). Since each
n

P € B(X), z-°X, and P_(X) is PA we have from Theorem 19 that there
n n
~ ~ 2 .
exists P_eB(Z,X) with {anll < AI]PnII = A~ for each n. Consider the
n

2 , ~ . 2 .
functions d)n:BZ > A (BX**) defined by ¢n(z) = PnZ. Since A (BX**) is

weak*compact the Tychonoff theorem implieé that there is a subnet

2
{¢ } which converges pointwise to a function cj):BZ - A (BX**). Now
n
Y
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[z ]]

. 2 2 :
z ¢ B,. Since T(BZ)C:A (BX**) we have ]IT[I < A and for x € H an,

define T ¢ B(Z,X**) by Tz = ¢(z) if z ¢ BZ and Tz = ]lz! ¢ ( )y if

xeP (X) for some n . Thus P, x = x for all k > n and so P, x=x for
nO o k o k

=) = x| 1im 2 () =

%11 ST

a4 .
lim P x=x. Since U P (X) is dense in X we conclude Tx = x for all
Y ny n n

all k > n,- Consequently Tx = [lel ¢ (

x € X. T then is the desired operator. Q.E.D.

We are now able to prove that the second dual of a separable L00
space is injective. In the proof of this theorem we will use the
following facts:

1. If E is a closed subspace of a Banach space X then E¥ is iso-

. * 4
metric to (X' /E ), and

" ) 1

2. (X/E)" is isometric to E .

L i

In this situation we will write E* = (X*/E ) and (X/E)* = E .

i3

These two facts immediately imply that X** = X . We may also simplify

the argument some by first observing that if Q is a projection on a

: o ) -1 i
Banach space X then Q* is a projection on X* with range [Q (0)] ,
which we leave as an exercise. The fact that L (T}** is injective was
mentioned in the preface and we will also use this deep result.
Theorem 36: If X is a separable Loo space then X** is injective.
Proof: Let Q be the projection on X*** yhich restricts every ele~
-1 i
ment of X*** to X. It follows then that © ~(0) = X and thus Q% is a
) ) 14
projection on X**** with range X .

Now choose T such that Zm(F)I>X**. By Lemma 35 there is a bounded

operator T:f (I) + X** such that T| = I_. Then T**:f (I)** » x™**
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It follows that T**
' I

** = IX**' Then Q*T** is a projection Q*T**:

. D e . 1L *
Qw(T)** + X . Using the isometric identifications x** = X*** and

il *% *k
X** = X we get a projection P:Qw(F)** -+ X" . This means X = 18
- ** . . . . . 0 .
complemented in Qw(P) which is injective. It is an easy exercise using

Theorem 19 to see that any complemented subspace of an injective space

* %
is injective and thus X is injective.



CHAPTER III
THE CLASS X(a,b)

In this chapter we will construct a class of separable Lm spaces
which have R.N.P. The spaces are determined by two parameters a and b
and thus a space in this class will be referred to as an X(a,b) space.
The construction is done in such a manner that any X(a,b) space is a
subspace of Rw.

Let A > 1. Choose numbers a and b such that:

l) O0<b<acxl,

2) a + 2bx < A, and

3), a+b>1.

The shaded area below indicates the possible choices of a and b

(Figure 1).

Figure 1. The Choices of a and b

36
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We will construct a sequence of positive integers {dn} inductively.
For each such positive integer dn, Bn will be the subspace of L defined

by B = {{x.}. _:x, =0 if j >da}, and 7 will denote the natural pro-
n J =1 3 n n

jection 'nn:,Qoo > Bn. We now begin an inductive description of the sequence

{a } along with injective maps T :B > B that will be defined for
n m,n . m n

4

every pair of positive integers m<n so that they satisfy:

(i) = T 0= IB (the identity map on Bm) for m<n and
m

(ii) T T = T for Xk < m < n.
m,n k,m k,n

If x = {xj} € Bn then the only non-zero coordinates of X occur in

the first 4 ositions. The maps T
n P P n,k

will leave these coordinates fixed
I .

and "add on" dk—dn new ones in the positions dn+l'dn+2""'dk' For any

X € Qm,ﬂnx simply replaces all of the coordinates of x in the positions

so-. with zeros. Defining the spaces Bn and the maps Tn " in
I

917 %42
this manner makes (i) and (ii) obvious.

We start by putting d1=l, d =2, and T the natural inclusion map.

2 1,2
2 .
Suppose {dj}j_l and T for m < n £ £ have been defined and satisfy (i)
= m,n
and (ii). We will define d£+1 and T2,2+1' First define the set of

5-tuples T = {Y = (1,3,k,e,e'): g,e'=+1;1<k<2;1<i< d, i and 1 £ j sdz}.

*

For each Y = (i,j,k,e,e")e Pz define fY € Bl

by fy(x) = ae(wkx)i +

' (x- . N = + i
be' (x Tk,Z ﬂkx)j ow put d2+l dz the number of elements in Fz.

The r;ader might wish to check that d£+l = d2(4 iéz di + 1). We order

-h t YeT - i : :
the se {fY £ Z} as f d2+2' ,fd and define TR,£+1 BBy

+ 14
dl 1 I

by T2'2+1(x) = (xl,xz,...,xd £y +l(x),...,fd (%) ,0,0,...). For

£ % ' 2+1

k < % put T =

T . . . Cay .
X, 041 5, 0+1 Tk,l Properties (i) and (ii) are now valid by
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the very definition of the spaces Bn and the maps Tm n
r

Lemma 37: The maps T
—_— : m,n

and spaces Bn in the construction above
17

satisfy:
dn
(1) 4B ,& ) =1,
n o

(2) For each x ¢ Bn and all m<n, ||T 1 x[l 2 a Ilﬂm x[l +

n,nt+

b||x - Toon "m x||; in fact IITn = max { 1], allﬂmxll +

,n+lel
bl -z, mox|[},

|| < A for m < n.

(3) HTm,n

Proof: (1) is obvious. To see (2) notice that if Y = (m,i,j,e,e')
then l£,Ga | = Jae(m, %) + be'(x - T ﬂmx)jl <a ltmx. | +blx-
Ton ﬂmx)jl <allm x| +bl|x - Tm’nﬂmxll. But IlTn,n+lX|| = max
{lel,]le,...,]xdn[,lfdn+l(x) ,...,|fdn+l(x)]}, thus |1Tn,n+lx|l's max

(1], allﬂmxll + bl[x—Tm,nﬂmx]|}. By the way the norm on % is defined
we may choose €, €', i, and j so that llﬂmxll = g (ﬂmx)i and ilx -

T T x|| = g' (x-T T x) .. For these particular choices ofeg, €', i, and
m,n m m,n m J

j we get that ¥ = (i,j,m,e,e') € I and thus ]]Tn x|| > ]fY(x)I =

,n+l

al|m x||+b]|x - T 7 x||. since T just "adds coordinates onto x"
m m,n m n,n+1
as described above we also have |’T xll > llx]|. Therefore
n,n+1l

|lTn,n+l x|| =2 max {1=]], a[]ﬂmx[| + b[lx—Tm,nﬂmxll}, which verifies

equation (2).

We get (3) inductively. I[ =1 < A. So let & > 2 be given

[y
and suppose that for m<{ we have Ile 2[] < A. It follows from the
7

construction that if m < 2+1 then T T Thus

m, 0+l - To, 041 Tm,



39

12y gan 2H=NTy Ty oxl | = max O el [l m m x|+ pllTy px -
Tk,z ﬂk Tm,QxI!} by Equation (2) above. Our inductive hypothesis gives

us HTm Qx[] < X!Ix[l and therefore we need only investigate the quantity

(*)allﬂk Tm,£x|‘+b||Tm’gx - Tk,zﬂkTm,QXl[ for k < L. We consider two

cases. First if k £ m notice that w Tm X = m.x so that in this case

k' m,2 k

(*) becomes a||ﬂkxI!+b||Tm X

BE T Tk,ﬁﬂkxli < a[{x}l+b(lle,£x]l +

lz, moxl 1) < allxl] + b xl] + AllxlD = @e2sn) [f=]] < 2] ]=] .

r

Secondly if k > m then ﬂkTm,Zx = ﬂkall Tm,kx = IBk Tm,kx = Tm,kx and
thus Tk,l ﬂk Tm,ﬁx = Tk,ﬁ Tm’kx = Tm,lx' all of which follows from the

construction of these maps. We use this to rewrite (*) as aIITm kxfl
) !

+ blle,Zx -1 x|| = al]Tm x|| s ||t . x|| < A||x|| inductively. This

m, L 'k m,k

verifies (3) and thus completes the prcof of Lemma 37.

Now fix n. For every k>n we have an injection Tn kﬁBn+Bk. The
’

operators Tn simply "add on new coordinates" to each element in Bn as

'k

defined above. Thus if we choose any j and consider {(Tn,kx)j}:=n+l

this sequence is constant for dk > j and bounded by Allx|[, SO w*lim
koo

T X exists as an element of £ . We define an operator T :B *{ by
l’l,k oo n n o

T x = w*=1im T x and put E =T (B ). We get the following:
n k> n,k n n n

Theorem 38: The operators and spaces defined above satisfy the
following properties.

= o T >
(1) Tn Tk n,k for all k>n,

(2) E L:En for all n,

(3) llTnII < XA for all n,
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d
(4) a@®_,2.") <\ for all n,

(5) For x e E , x| = max {[|ﬂ x]l,al[ﬂ x;l+b]]x—T T x[[}.
Proof: (1) Tan,kX = —%ig Tk 3 Tn,kx = w¥*- %ig Tn,jx = Tnx.
(2) En - Tn(Bn) - Tn+l Tn,n+l(Bn)C:Tn+l(Bn+1) - En+l' (3) Since

l{ !I < A for all k and T X = w*-1im T x for all x, we get
koo I,

d d
fIT || < A (4) a@E ,% n) = d(E ,B ) since B is isometric to 2 n and
n n' e n n n oo

i |
T = I t BE IB <
obviously m T g SO we ge al( n n) < I{Wnl

n

[l <1a=x. (5)
n

Fix ern. Now observe that if k>n we have

(1) 7.x =TT T X, because for ern there exists a yEB such that

k n,k n
T = . Th = T = T = = = .
ny x u; 1TkX TTk ny ﬂk k Tn,ky Tn,ky Tn,k ﬂnTnY Tn,kﬂn
Also notice that
(ii) x = w'=1im T T x for xcE
7 k n,k n n
3 - - = T = W*~71
For if x Tny then Tn,kﬂnx Tn,kﬁn ny Tn,ky' then lim
= *_77 T = = .
Tn,k wnx w lim n,k 0% Tny X
cas . S - .
(iii) If k 2 n we have ﬂk+lx Tk,k+lﬂkx
=3 ] i - > = =
For k=n just apply (i) above If k>n then m ., X kaﬂ_ﬁﬁ
T T T = T ™
k,k+1 n,k 'n k,k+l K

Now apply Lemma 37 part (2) to (iii) to get

(iv) = $?§1{|Iﬂkx||, a[[ﬂmx][+b|lﬂkx - Tm,kﬂmx]l}.

7, x|

T X = 7 %X, and thus

But if <m k th E b i T
ut if n s en Xt n so by (i) m,k K

T x|| = a!lﬂmx|[ + b-0 < I|ﬂmxll < llwkx[! and

al!wmx||+b|]ﬂkx RN

therefore it suffices to take the maximum- in (iv) over m's such that

m <n, i.e.
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(v) ]Ink+lx!| = :iz {llﬂkxll,al]wmx||+b]lﬂkx - Tm,knmx|]}.

We now proceed inductively to show that in fact

(vi) llﬂk+lxl] = ﬁii {‘[wnxll,a||ﬂmxll+bl|nkx - Tm,kﬂmxll}, for

all k > n.
If ¥k = n we get (vi) directly from (v), so suppose that for some

= max {lfﬂnxll,allﬂmX]|+b!]wzx - Tm,zﬂmxll}'
m<n

% > n we have !IWZ+1XII

From (v) we know that

[{n2+2xl| = Eii {!l“2+1xilsa[I“mxll+b|l“2+lx - Tm,£+lﬂmxll} =
max {max {l[ﬂnxll,a||ﬂmxl[+bi[ﬂ2x - Tm’zﬂmxll},allwmx]l+ ‘
m<n m<n

‘ bl[ﬂ2+lx - Tm,2+lﬂm¥!]} inductively. Thus l]ﬂ£+2XIl =

x| n x| |l el 146 nx = 1 moxl |l el 4o I

m<n

T T x|]|}.
m

.2 g+1® T Tm, et

But for each m<n, aIlﬂleI+b[!ﬂ2X —‘Tm wmxlifgllﬂmx|[+

s &
bllmgqx = Ty pqmxl s since Ty, a1 (Te® = T p™®) = Ty g ™® ~
T2,2+1Tm,2ﬂmg = T X T Tm’2+lx. But by the very definition of T2,2+l'

we know that for each zeB2 [’z{l j_il , so that ]IWQX - Tm’gﬁmgll

Tz,2+1z|l

5_;]n£+lx - Tm’2+lx[|. Thus a,]ﬂm3[|+bllw2x‘- Tm,gwmx]l f_allﬂmx|[+

b||n T me[l. Therefore ||, .x|| =

g% T Tm, el +2

max tin x| allm xl[+b] ]

41X Tm’2+lwmx][} which verifies (vi).

Since w#*-lim m X = X we may conclude that ;im]|ﬂnxll z_l|x[[.
n n '

But {flwnxtl} is increasing and }!nnx[] < ||x|| for each n. Therefore we

get lim][ﬂnxl] = 'Ix]l. A similar argument shows that
n :
lim[lﬂnx - Tm’nwmx’[ = llx = Tmﬂmx[f. So if we let
k + « in line (vi) above we get ||x|| = max {][wnxll,alfﬂmxil+

m<n
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b|lx - Tm m x[l} for every xe En' which concludes the proof of Theorem
m

38.

o
Now put x(a,b) = U E . Notice that since m T = I_ we have that
n=1n nn Bn

T ﬂn is a projection of Qm onto E . For notational convenience we put
n n .

T = P . The reader should take note here that PP = P, . . We get
n n m (m!\m)

the following corollary which is an explicit statement of the afore-
mentioned norm property on X(a,b) and is of great importance in the rather
surprising properties of the space.

Corollary 39: For each xeX(a,b) we have IIXI‘ z al|ﬂn x|} +

bl|x - P x||, for all n.
n

Proof: If xe E, and n<k we get Hx]] = al]ﬂnxl[ + b||x - an[]

directly from Equation (5) of Theorem 37. If n>k then xe En since in
this case E, ©E . Therefore P x = x and a![ﬂ x[l + bl|x - P x|| =
k n n n n
al[ﬂnxl] < ||x||. This verifies the inequality for xe UE . A simple
limit argument then concludes the proof for xe U En = X(a,b).
. n

Every X(a,b) space is by the construction a separable Loo space.
The inequality of Corollary 39 is the key element used in establishing
some rather remarkable properties of these spaces. The first of these
properties is stated in the following:

Theorem 42: An X(a,b) space has the Radon-Nikodym property.
(The following argument is due to J. J. Uhl).

Proof: Let (Q,Z,u) be a finite measure space and let F be a ﬁ
continuous X(a,b) valued measure of bounded variation. We will show that
F has a Radon-Nikodym derivative.

By Corollary 39 above we get that ||F(E)]| 2 allﬂnF(E)[l + b| |F(E®)
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- PnF(E)I|, for every E € X and all n. Thus if II is any partition of Q we

have Ezs;n! IFE)|] 2 a EEHI [ﬂnF(E) || + b EEH[ |F(r) - P F(E) [|. Now let

€>0 be given. Choose ¢, €2>O such that €1+E

1 2< g€, and partitions Hl and

I, such that a]'ﬁnFI + b|F-p F| <a EEHIHHHF E|| + e, + b EgnzllF(E) -

PnF(E)|[ + 52. Then if II is a refinement of both Hl and J. we get

2
a]wnFl + b{F—PnF] <a Egnll]nnF(E)ll + b EEHZIIF(E) - PnF(E)H te te,
<a  Ipfllnr@ || +b 2 llFE) - @[] +e < 2 llF@|] +e <

]F] + €. -Hence [Fl > alﬂnFl + b|F - PnF[ for all n. Choose a partition
I such that e + EEHHF(E)H > |r| 2 a|n F| + p|F - PnFI > a EEHH'JTHF(E)H

+ b|F - PnF[. Then b[F—PnF! <e + E)éHHF(E)H -a | !'nnF(E)H. But

[Im r@ || > [[F®)|] so that b 1}1}5 [F-p F| < e+(1—a)E§HHF(E)H < e+

(1-a) |F|. since e was arbitrary we have l%mlF—Pan < Cigé)[Fl. Because

1-a <1l. Choose r E(l:gd,l). Then

atb > 1 and a g1, we have O g 5 5

(*) 1im |F-P 7| <r|F|.
n n

We will now proceed inductively to show that there exists a sub-

sequence {Pn F}j_l of the sequence {PnF} such that IPn F-F| » 0. By
3 ] j

(*) we may choose n, such that [F—Pn F] s r|F|. But F—Pn F is an X(a,b)

1 1 1

valued, u continuous measure of bounded variation so we may use (*) to

choose n_ > n_ such that |[F-P_ F - P (F-P_ F)| < r|F-P_ F|. Since
2 1 n n n n
1 2 1 1
P P F=P F =P F we get that |[F-P F| <r|Fr -p 2
< - F < .
n, ny nynng n, | n, | | n | <°|F|
Now apply (*) to F—Pn F and choose n, such that |F-P_F| s,rBIFI. Con~-
2 "3

tinue inductively to select a sequence'{n.}?_

=1 of positive integers such
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that ]F—Pn F| < rj[Fl. Since 0 < r <1, we have lim F-P_ F| <
B ] ]
lim rj|F|=O. Thus the measures Pn F converge to F in total variation.
J

The range of each of the measures P F lies in a finite dimensional
n.
J
space and thus each has a Radon-Nikodyn derivative fj. Since F—Pn F|-0
, 3

the sequence/{fj} is Cauchy in Ll(u,X(a,b)) and therefore must converge

to some f ¢ Ll(u,X(a,b)). This function f is the Radon-Nikodym deriva-

tive of F. Because F(E) = 1lim P F(E) = 1im J_ £, du = J_ lim £. du =
Ry i E 3 E 7y 73

fE f du, for all EcX. This completes the proof.



CHAPTER IV
THE CLASS X(1,b)

In this chapter we will investigate the X(a,b) spaces with a=1,
i.e. an X(1,b) space. Such a space has some very strange pfoperties.
The first of these was noted in the previous chapter.

1) An X(1,b) space is a separable Lw space with R.N.P.

With the help of the following lemma we will show that,

2) An X(1,b) space has the Schur property.

Lemma 41: For every e>0 and every k there exists an n such that

e .

N x|| 2 (1-e) ||x]] for all xeE, .

Proof: As we have observed in the proof of Theorem 37 llﬂn x][ K

[|x]| for every xe U Ej. Since B, is compact, this convergence is
J

k
uniform on BE . 'Thus given €>0, we may choose n such that
k
——ji°—|| - |n () IL <e for all xe E_, or equivalently
ST TE x
(-e) [l=|] <]lm =[]

Theorem 42: An X(1,b) space has the 2l—skipped—blocking—property.

Proof: First notice that if'{nj} is any subsequence of the posi-

tive integers then UP_ (2 ) = UE = X(1,b), mm]ﬁ !Is A, and
j n., o ® j n, 3 n.
J J J
P P = P . i = =
n. Tn. n An. These facts guarantee that if we put Gl Pn (Rw)
i Jj i 3 1
E +and G, = (P -P J{(2 ) for j > 2 then the sequence {G.}f is a
n, J nj nj*l e 3 J=1
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finite dimensional decomposition for X(1,b). Choose a sequence {Ej}
[ee)
> > el 2 > € > ... >0, e, >0, d II. (1-e.)>0.
such that 1 2 e, 2 ze ze .2 5 and LI, (1-¢.)
Then by Lemma 41 we may choose 1 = nl < ... < nj.<nj+l <.
such that for each j and xe En we have [[wn x[l > (l-ej)[|x|l. Use
3 j+1

[ee]
this seguence {nj} to define an F.D.D. {Gj}j=l as above.

. X '
Now let y € [Gi]i_i and ze [Gi]i—j , and use Corollary 38 to esti-

+1
mate the norm of y+z as follows:

(*) l]y+z!l 2 ||ﬂ (y+z)[l+b|[(y+z) - P (y+z)||. But ze(P. -
n n, n,

P )(2 ) soz=P xXx~-P xfor somexe & . Thusm z=1 P x -
n. o n. © n

j "k j j i "k

ﬂn Pn X = 0 by the definition of these operators. Similarly Pn z

o3 j

0,

and since ye En we get Pn y=y. These facts make the inequality (*) re-
J 3
duce to ||y+z|]| 2 Ilwn y|| + bl|zl]. since ye E we get I[ﬂn vl =
J J J
(1=e ) Iyl and so ) [lyszl] 2 G-e; DIIvl] + p]l2]].

Form a skipped blocking of the sequence {Gi} by choosing a sequence

- tive integers {m } with m_ = +1 <
of non-negative integers {mn} wit mO o, mn 1 mn+l and put
m
n-1 . .
F = [G.]. . We claim then that the sequence {F } determines
n i 1=mn_l+l n

and L. decomposition. For if {x }¢[F 1° . with x, € F, for all j we can
1 n n-n=1 Jj 3

estimate the norm of xl+x2+...+xk with the inequality (**) above as

follows: lel+...+xk|[ > (l—emk_l)llxl+...+xk_l|| + bl]xkl{ >
(1-¢ ) (1-€ ) x4+ [l + (1-e )b | [1+p] = || 2
1 m ' -2 m -1 x

b(l-¢ Y (1-¢ )‘le+...+xk_2!|+b(l—€ )(l—emk_z)llxk_lll +

Me-1 Tx-2 k-1
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b(l-e )(1--8mk )[]xkll. Continuing this process inductively by
-1 -2

~ k
stripping off one summand at a time yields ||x1+...+xk|| > b iL[l(l—emi)

N | .
(I[xl!] + []lei + ... +(]xk[|). In the limit this becomes lln§1 anl

(e}
> -
> b ngl(l £

m 1

) nglllxnll' Thus the sequencé'{Fn] is in fact and % de
n .

composition. This completes the proof and statement 2) above follows
from Theorem 12.

Since an X(1,b) space has the Schur property we get:

3) An X(1,b) contains no subspace isomorphic to any C(K) space
from Theoiem 13.

Also as a consequence of 2) we have

4) An Xil,b) space is weakly sequentially complete from the remark
following Definition 20. |

Since an X(1,b) is a L00 space, X**(1,b) is injective by Theorem 36.
This fact gives us the following two properties:

5) The dual of an X(1,b) space is weakly sequentially complete
from Corollary 23.

6) An X(1,b) space does not embed in any separable dual space from
Theorem 33.

In 1940 Dunford and Pettis proved that every separable dual space
has R.N.P. The theory developed subsequent to the Dunford-Pettis theorem
tended to support the converse of the theorem. This conjecture is
generally attributed to J. Uhl (see [15]). Statement 6) above proves
that the converse is false.

In [10] J. Lindenstrauss has shown that a Banach space X is a LOo

space if and only if it has the compact extension property, which means that

every compact operator T:Y = X extends to a compact operator 5:2 > X for



48

any space Z containing Y, with ||%|| < XI]TII (the constant X being uni-

form in ¥, Z, and T). The weak compact extension property has the same

definition with the operators T and T being weakly compact instead of
compact. Since an X(1l,b) space is a Loo space the theorem of Linden-
strauss tells us that it has the compact extension property. Statement
2) above together with this fact guarantees that an X(1,b) space has the
weak compact extension property. In [lO] Lindenstrauss conjectured that
any space with the weak compact extension property must be finite
dimensional. An X(1,b) space thus resolves this conjecture also.

The local structure of a Loo space 1s (up to isomorphism) that of
a finite dimensional C(K) space. It was thus natural to conjecture
(c.f.[lZ]) that any Loo space should coﬁtain an isomorph of co. State-
ment 3) above shows this conjecture to be false. /

A much older question concerning Banach spaces was: If X and X*
are both weakly sequentially complete then must X be reflexive? State-
ments 4) and 5) above say that an X(1,b) space satisfies the hypothesis
of the question but since it is a Lm space it can't be reflexive.

In the next chapter we shall see that a slight adjustment of the

parameter "a" produces another interesting class of spaces.



CHAPTER V

THE CLASS X(a,b) ,ax<l

Here we will discuss X{a,b) spaces with the parameter "a" strictly
less than 1. We have from our previous work that such a space is a sep-
arable Lm space with R.N.P. but in contrast to the last example (i.e.
an X(1,b) space) the restriction on "a" produces the following
property.

Theorem 43: An X(a,b) space with a<l has no subspace which is
isomoxphic to 21.

Proof: Suppose X(a,b) does contain a subspace isomorphic to 21.
Then there exists a seguence {un} in X{a,b) which is equivalent to the
usual basis of 21. Since the weak* topology of Zw is metrizable on
bounded sets we have a subsequence still called *hn} which is w* con-
vergent. Thus if we put Y, = U, - U, , we get that for each
m, l%m mo ¥y = 0. The sequence'{yn} is just a blocking of/{un}; as
such it is a basic sequence equivalent to'{un} and thus to the usual

basis of 21. Assume, without loss of generality, that the basic sequence

'{yn} is normalized with basis constant K. Since l%m T Y, = O for each

m we may pass to a subsequence, still called.{yn}, for which

1

Ilnk ynl] <-;T;;T;~>(A as on page 36). By the density of g En choose a
sequence {w_} U E, such that ||w -y || <—21 . Notice that for

n J n°n AegKe 2"
k<n, [fmow |1 = lm -y ) +m vy [[<|lw-y [lv-y |+l v/l

49
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2 1

< A = o Now put v. =w =T -1 il -1 w_and observe that
Ae8eKe2 Ae4K+2 non nmLo oo
1
L A P A R AT v Rl LN AR AL
Lo v et Ao Ao B o L g
A8K2 n=Ln A+ 8K2 42" ax2 4K2 2K2

© 1 : . . ’
-— < —
nglllyn vhll T Therefore {vn} is equivalent to {yn} by Theorem 4

and thus to the usual basis of 21. Moreover'{vn}kfg E, and ™

v =0 for
3 n

k

k<n by the construction of {vn}.
Choose € > O such that 4e <1 - a (recall that a<1) and apply Theorem

5 to the sequence {Vn} to obtain a blocking {bn} of {vn}-for which

n n
= > -
|Ibn|l 1 and Iliél aibill > (1-¢) igl!ai[' for any sequence of scalars
"{o,}. since {b } is a blocking of {v_} we have 7 b =0 for k< n. Let
i n n kn

ml< m2< ... be a sequence of integers such that bneEm .
' n

= . L r> ) >1-€.
Put x, = b, et my > m, such that I]wm,xlll 1-e. Choose k, such

= . ) ! o>
and put x2 bk Select m2 such that m2

= >
that ﬂmibk O for k > k2 ,

m m, > mi, and ][ﬂm, x2|| > 1-e. Take k_ such that m_, b = 0 for

1
5 5 3 m, k
— ' ' -
k 2 k3, put Xy bk3 and choose my > max(mk3, m2) such that llwm ,x3l|>1 €.
Thus we have X_cE ',Ilﬂ WX || > 1-¢; x eE_,,7_, x_ = O, 'l“ ¢ X I] >
1 my 1 1 2 m,  my 2 : m, 2
1 - ¢€; x3€Em;,ﬂm,x3 = 0, I]ﬂm,x3|| > 1 - g; and mi< mé< mé. Now put
3 2 3
3 3
x = x, + X, + x, and we have lx]] = Iligl xill 2z (1-e) I, 1= (1-e)-3.

Thus the norm of x is at least 3-3e. We now use Lemma 37, Theorem 37,
Corollary 39, and the construction of X(a,b) to obtain a contradictory
upper estimate on the norm of x thus establishing the theorem.

Since x € Eml we have that ]Ix!l = max ({Ilﬂm, x[l, al]wmxll +

mwmé 3
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b[[x - P xl]}, (recall P =T m and is a projection onto E ). There
m m m m m

are several cases to consider:

1) Ifm < mi we have allﬂmxll + bl]x - me{I = a!lwm(xl+x2+x3){‘ +
b|]xl+x2+x3 - Tmﬂm(xl+x2+x3)ll < a[lﬂm xlll + b[lxl - memxlll +
b[|x2+x3|l = a||ﬂm xl|| + bl!xl - melll + b[|x2+x3|| <

l!xlll + bllxz + x3|| < 1+2b.

2) If mi <m < mé then a][ﬂmxll+blfx—me]] = a{lﬂm(xl+x2+x3)!| +
b]1xl+x2+x3 - Tmﬂm(xl+x2+x3)ll = allﬂm(xl+x2)[l+
bel+x2 - Tmﬂm(xl+x2) + x3ll§_a{|ﬂm(xl+x2)lf + bl}xl+X2 - Pm(xl+x2)[{ +

b xg] | =+, | + bl x| < 2+D.

3) If m) <m < m} then allﬂmx||+b|[x - mell = a||wm(xl+x2+g3)|[
+ b]]xl+x2+x3 - Tmﬂm(xl+x2+x3)|| = al[nm(xl+x2+x3)[| + b|]xl+x2+x3 -
Geprxprr o x ) o< alfmp Gorx) [+ al s ]+ bl e - 2w x| =

iA

al[ﬂm(xl+x2)|| + aI‘WmXBlI + b[lx3 - Pm x3l[ < a||x1+x2]|+l[x3[| 2a+1.

So the quantity al[ﬂmxll + b||x - mell where m < m} is less than or
equal to max {1+2b,2+b,1+2a}l.

To get an upper estimate for ||Wm,x|| first notice that this norm

can't be obtained in the first dm coordinates because here x3 is zero.
2

These coordinates are thus bounded by I|x1+x2|! < 2 and we have observed

that the norm of x is at least 3-3e. We therefore focus on the coordin-

ates of x situated between dm + 1 and dm . These coordinates are

2 3
bounded by the coordinates of (xl+x2) plus l]x3[| = 1. We will then

find upper bounds for the coordinates of xl+x2 situated between dm,+l
2
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and dm,- By construction of Tm n recall that these coordinates are
3 r

determined by functionals fY (see page 37) acting on ﬂj(Xl+X2),

+x2))|

2 3

where Y € T',, and m! £ j £ m!-1. As such we see that |fY(Trj(xl
5 v

+

< allﬂm(ﬂj(xl+x2))l| b]lﬂj(xl+x2) - T 5 ﬂm(wj(xl+x2))[| for m < j.

’

IA

Thus |fY(ﬁj(xl+x2))] allwm(xl+x2)|| + bllﬂj(xl+x2) - Tm,jﬂm(xl+x2)||,

m<j. Now, allﬂm(xl+x2)|| + bl]ﬂj(xl+x2) - Tm’jﬂm(xl+x2)ll <

allﬂm (xl+x2)|[ + bl]wm'(xl+x2) - T ﬂm(xl+x2)§] because TS 5 (5

3 3 "3

Tm'jﬂm(xl+x2)) = Wmé(xl+x2) = Tm,mé ﬂm(xl+x2). Hence the coordinates

are bounded by max'{aHﬂm(xl+x2)l| + bilﬂm'(xl+x2) =T ﬁm(xl+x2)l|}.
ne;j 3 3

But for m's such that m > mé we have x +x_ € Em and hence ﬂm,(x

+x ) =
17 L

1

+ . .
Tm'm,3 ﬂm(x1 x2), as we observed in part (i) of Theorem 38.

Therefore, the coordinates are bounded by

max {2a, al!ﬂm(xl+x2)]l + bl]wm'(x

m<m}
2

+x,) = T T (% +x2)||}.

1 m,mé m 1

4) If m < m then allﬂﬁ(xl+x2)]l + b|lﬂmé(xl+x2) =TT

m,m
3

(xl+x2)l| < allﬂm xlll + blITrm;3 %, —'Tm,mé m xlil + b[[ﬁmélel <

<1+ b

= ]+ pln_, =,]]
1 m 2
3

5 If mj <m <my then al]ﬁm(xl+x2)|! + b!lﬂm|(x

+x ) -
3 2

1

Tm,mé wm(xl+x2)ll s_allﬂm xl]‘ + a]|ﬂm x2}[ + b[lﬂmé X, - Tm,mé

w o l<alln sl + s ll<a + 1,

Adding now ]lﬂm x3|| to each case gives us that the coordinates of

(m, (x +x2)—
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, + 1 and dm' are bounded by max{2a+l, 2+b, 2+al.

X situated between d
m
2 3
We summarize 1) - 5) and conclude that ||x|| < max{1+2b, 2+b, 2a+l,
2+b, 2+al < 2+a < 3 - 4e which contradicts llx]l > 3-3¢ and thus com-
pletes the proof.
The fact that an X(a,b) space, a<l, contains no subspace which is

isomorphic to &_ produces another remarkable property. The space is

1
somewhat reflexive, which means that every infinite dimensional subspace
contains an infinite dimensional reflexive space. Prior to this example
Lm'spaces were thought to be in a sense much like C(X) spaces thus
making this somewhat reflexive property very much unanticipated. The
proof that follows will use several results not contained in this paper
bﬁt appropriate references are provided for the interested reader.

Theorem 44: An X(a,b) space is somewhat reflexive if a<l.

Proof: From the previous Theorem we have that an X(a,b) space
is a separable Lw space with no subspace isomorphic to 21. The re-
sults ofHagler[6], and Retherford and Stegall [13] then give us that
X*(a,b) is isomorphic to 21. This means X?a,b) has a basis. The
deep results of Johnson, Rosenthal, and Zippin [9] then allow us to
conclude that an X(a,b) space has a shrinking basis {un}.

Now let Z be an infinite dimensional subspace of X(a,b). Choose
a sequence {z_l}« 2 such that [[Z I! = 1 for each n and 1lim 7_2 = O,

n n n mn

for every m. Since Z has no subspace isomorphic to ll a result of

Rosenthal [14] ensures that {zn} contains a subsequence, still called

{zn}, which is weakly Cauchy. This sequence has a subsegquence {zn }
k
such that llzn -~z || > ¢ > 0. If it did not then sequence would be
k k-1

norm Cauchy and hence converge to some z. This z would be a norm one
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vector as the limit of norm one vectors but this is impossible since

. ny “nyp_q

MmTgz=1lim7T 2z = O for each m. Now put w, = - ~ and cbserve
m n m n k IlZn - én —lll
k k

that 1|wkli =1, lﬁm Wm wk = 0 and w—lim wk 0. This sequence then has

a subsequence still calledb{wk} which is equivalent to a blocking of {un}

(see Proposition l.a.12,p.7 of [12]) and as such is shrinking. So we have

a normalized shrinking basic sequence {wk}fi z for which lim anvk =0

2
for each m. Now choose € > O such that ¥ = (a+b) (1-e)~ > 1. Using

the perturbation argument in the proof of the previous theorem we obtain

a sequence {yn} equivalent to a subsequence {Wk } of {wk} such that
n

1) {yn}cu Ey

. J
2) llyn]] = 1 for all n, and there is a sequence ml < m2 < ... such
that
. t
z = > k+
3) TrnH< s=kr1 asys 0 for all t > 1 and
k k k
z - T P > - v -
4) Ilﬂmk(8=l ay, Tz asys))ll > (1 s)l[szl ay - Tm
k
) < i : .
(S=l asys)ll for all m mo_1 and any choice of scalars {as} In 4) we

also use Lemma 41.
We will show that the sequence {yn} is boundedly complete. Since

‘{wk } is equivalent to {yn} it will thus be boundedly complete and since
n

{wk } is a subseguence of a shrinking basic sequence it is also shrinking.
n

Therefore {wk } will be shrinking and boundedly complete and so [wk ]
n n

is reflexive by Theorem 1.b.5,p.9 of [12];

Let {ak} be a sequence of scalars for which the sequence {Vn} defined
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. n
by Vv = kgl a Yy is bounded by some number M, i.e. !Ivnl[ < M for all n.
To prove that {yn} is bounded by complete we must show that {vn} con-

verges, or equivalently that {vn}is relatively compact. If {vn} is not

relatively compact there exists a number B > O such that (%) l%m |]vn -

vanl[ > B, for every m. By Theorem 38 we get the following estimate for

all p < t and m < mp—l: llvt—vat[] 2 allﬂm (vt—vat)l[+b|[ﬂmt(vt—vat) -
T m T (vt—vat)l[ = a]lwm (vt—vat)|[+b[]ﬂm Ve T o vat - Tm -
pt P P t t p t
T Ve + Tm ,m ™ vatI]. By the construction of these operators,
b p t P
m P v =T m P v,  so the inéquality becomes llv -P v ]l >
m m t m ,m m m t t m t
t pt p
al|lm_ (v.-pv)|| +b||mr v -T T v |]. Sincem T =7
m t mt mt t m.p,mt mp t mt mP mp,mt
on B we get [Ivt—vat‘I 2 a]lﬂm (vt—vat)lI + b[[ﬂm (v-T T Vt)ll-
P p .t p
Since p < t we use 3) above to replace m_ (v, -P v ) with m (v - P v )
m t mt m m p
p p
to get [lvt—vat|| > af]ﬂmp(vp—Pm vp)l| + b[]ﬂmt(vt - P vt)l‘. For

such an "m" we use (*) above to choose p so that ]lvP—vapll > B(1-¢),

2
and then by 4) we have [Iﬂm (vp—vap)II 2 B(1-€) . Having chosen this
b

p we select t such that }]vt—Pm v > B(l-e); and consequently

ol

2
[‘ﬂm (vt--Pm Vt)|| >z B(1-e) . Thus ]!vt - vat]] 2 a{lﬂm (VP—vap)[]

2
+ b!lw (v. -P v )!l > (atb) (1-e)~ > YB. Therefore (*)
m t m t ‘

holds for YR instead of Bi.e. l%m |]vn—van|l > YR for all m. Repeating

this process k times yields l%mllvn—vanll > YkB. Since Y > 1 we may
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choose k such that YkB > M(1+X). But this means Egﬂ[[vn—vanll > M(1+X)
which can't be the case since ||v. -2 v || < ||v. || + ||o || |lu |] <

n man n m n
M(1+)) for all choices of m and n. Thus the sequence‘{vn} is relatively

compact and hence {yn} is boundedly complete. Q.E.D.
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