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CHAPTER I 

INTRODUCTION 

In this study we discuss in Chapters II and I II two separate prob-

lems about constructing fixed-size confidence regions for multiparameter 

estimation. We have reviewed the relevant literature separately at the 

beginning of each chapter. 

The second chapter deals with the problem of constructing a fixed-

size ellipsoidal confidence region for the difference of the mean vectors 

of two independent multinormal populations. We have assumed that the co-

variance matrices of the first and second populations are respectively 

2 2 2 2 
given by cr 1H and cr2H, where cr 1 and cr 2 are both unknown. Here, H is 

assumed to be a known positive definite matrix. The three cases namely, 

(i) cr 1 = cr2 and equal sample sizes, (ii) cr 1 # cr2 and equal sample sizes, 

and (iii) cr 1 # cr2 and unequal sample sizes have been dealt with separ­

ately. We propose both two-stage and sequential procedures for each 

problem and study various exact and asymptotic properties of these pro-

cedures through several Theorems. 

In Chapter I II, we present the problem of constructing a fixed-size 

ellipsoidal confidence region for regression parameters in a general 

linear model under Gauss-Markoff set up. Here, we propose two-stage, 

modified two-stage, sequential, and three-stage procedures to tackle this 

problem. Again, we study various exact and asymptotic properties of 

these procedures. 
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We also report numerical results in the form of tables to study the 

moderate sample behaviors of the proposed procedures for both these prob­

lems. 

The Chapter IV contains general comments and the summary of our 

findings for both sets of problems. 

In what follows, [x] will always stand for the largest integer smal­

ler than x. This notation has been primarily used in defining the two­

stage, modified two-stage, and three-stage procedures. 



CHAPTER II 

FIXED-SIZE CONFIDENCE REGIONS FOR THE DIFFERENCE 

OF THE MEANS OF TWO MULTINORMAL POPULATIONS 

2.1. Introduction and Review 

Let {~l' ~2 , ... ,~r····} and {y 1, y2 , .. ,ys, ... } be two independent se­

quences of independent and identically distributed (i.i .d.) multivariate 

2 
random variables where each X is distributed as N (~l' cr 1H) and each Y is 

- p -

distributed as Np(~2 , cr~H) with ~l' ~2 eiR?and 0 < cr 1 , cr 2 < oo We assume 

2 2 that ~l' ~2 , cr 1 and cr 2 are all unknown parameters. Here, H is assumed to 

be a known p x p positive definite matrix. Having recorded r observations 

on X1 s and s observations on y•s, we wish to construct a confidence region 

for the difference of the mean vectors, namely ~ = ~l - ~2 . Given 

de(O,oo) and ae(O,l), we propose to consider the region 

= (2.1.1) 

where X -r 
-1 r = r .L 1 X., Y 

1 = -1 -s 
-1 s = s .L 1 Y. and T 

J= -J -r,s 
= X 

-r 
- y 

-s 
We now require 

that 

P(~E R ) ~ 1 - a, 
- r, s 

(2.1.2) 

since the confidence coefficient associated with the region R is given r,s 

by P(~E R ). Now, we have 
- r, s 

3 
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= P{(T 
~r,s 

~ -1 -
- l-1) H (T - ~ r, s - l!) 

(2.1.3) 

2 
where X(p) stands for a chi-square random variable with p degrees of free-

2 
dom and F(·) is the distribution function of X(p)' We now obtain the 

positive number 11a 11 such that 

F(a) = 1 - a . (2.1.4) 

Therefore, from (2.1.2), (2.1.3), (2.1.4) and themonotonicity property of 

the distribution function F(·), it follo\AJS that rands must satisfy the 

i neq ua 1 i ty 

(2.1.5) 

which implies 

2 2 
al a2 i 
-+-<-r s - a (2.1.6) 

Let us define the usual unbiased estimatorsfor a~, a; as 

u2 {p(r-1)}-l .f1 (X. - X) .. H-l (X. -X) 
r t= ~t ~r ~, ~r 

and 



i = s 

respectively, for r ~ 2, s ~ 2. We will also consistently write [x] for 

the largest integer smaller than x. 

In Sections 2.2 -

rate cases, namely (i) 

2.4, 

2 
crl = 

we will describe solutions for various sepa-

2 d (• ") 2 ..J. 2 d d cr2 an r=s, 11 cr 1 .,.cr2 an r=s,an 

( •••) 2 ..J. 2 d ..J. 111 cr 1 r cr2 an r.,. s. In each case, we propose a two-stage procedure 

and also a sequential procedure. For each procedure we discuss several 

important exact and asymptotic (as d + 0) properties. 

5 

In Section 2.5, we report numerical results in order to study moder-

ate sample size performances of all the procedures proposed in earlier 

sections of this chapter. 

In the case of p = 1, the basic problem we consider here is known as 

the sequential analogue of the ordinary Behrens-Fisher problem. Various 

authors, e.g. Robbins et al. (1967), Mukhopadhyay (1976, 1977), and Ghosh 

and Mukhopadhyay (1980) proposed sequential procedures to estimate ~when 

p=l. Also, some two-stage procedures were considered in Chapman (1950), 

Scheff~ (1970), and Ghosh (1975a) in order to obtain fixed-width confidence 

intervals for~ when p = 1. The present work is the natural and useful 

generalization of the results obtained in Al-Mousawi (1984). In this re­

gard, one is also referred to the solutions of Chatterjee (1959, 1960) and 

Srivastava (1967, 1971) for the one-sample proplem. Our results are ex-

pected to lead to much better understanding of the sequential analogue of 

the multivariate Behrens-Fisher situations. 



2.2. The Case of Two Equal Covariance Matrices 

2 
Suppose that cr 1 = 

and Equal Sample Sizes 

2 2 2 
cr2 = cr where cr (>0) is unknown and we take 

r = s = n. Utilizing (2.1.3) in this case, we would have 

2 

6 

( R ) F(-nd ) p f.JE: = 
- n ,n 2c/ 

(2.2.1) 

and from (2. 1.6) we get 

(2.2.2) 

2 Had cr been known, the required optimal fixed sample size would then be 

given by 

c 
2 2acr 

7 (2.2.3) 

2 But, since cr is unknown, we will consider two procedures in order to 

determine the sample size N as a suitable random variable for estimating 

c. 

2.2. 1. A Two-Stage Procedure 

We start with m(~ 2) observations from each population, and then 

define 

N 
2 2 max{m,[2b S /d] + 1} , 
m 

(2.2.4) 

2 1 2 2 where S = -2 (u + V ), and b = pb 1 where b 1 is the upper lOOa% point of m m m 

the F-distribution with degrees of freedom p, 2p(m-l). 



Thus, from the samples ~l' ~2 , ... '~Nand y1, y2 , ... ,yN we compute 

IN,N and propose the corresponding region RN,N as in (2. 1. 1). Some of 

the properties of this procedure are listed in Theorem 2.2. 1. 

Theorem 2.2. 1. For the procedure in (2.2.4), for all~ E nf, and 

cr E (O,oo) we have: , r 

Proof: 

.. 
(a) P(J:! E RN-,N) ~ 1- a for all d > 0, 

(b) 

(c) 

(d) 

E (N/C) -+:. _!: as d -+ 0, 
a 

• 2 2 - 2 
Var(N){p(m-1) (2bcr /d ) } 

P(ll E R(',t N) -+1 - a as 
' 

-+1 as 

d -+ 0 . 

To prove Part (a) first notice that 

00 

P(J:! E RN N) = r P{~ E RN N' N 
·' n=m 

' 

00 

d -+ 0, 

n} 

= L P{H E R , N = n} . n=m - n, n 

and 

Now, the event {N = n} depends only on sm2 ' and the event {]1 E R } de-
- n,n 

pends only on T for every fixed n ~ m. But, we know that s 2 and T -n,n m -n,n 

are independent for every fixed n ~ m, and thus we can write 

00 

P(]:! E RN N) = I: P{g E R }P{N = n} 
' 

n=m n,n 

00 2 
L: F(~) P{N n} n=m 2/ 

2 

7 

E { F (!:!i__) } 
2cr2 

(2.2.5) 



2bs 2 Nd2 
However, we haveN~~ which implies ---2 ~ 

d 20 

bS2 
m 

-2 
0 

Thus, 

Now, let Z - X~p) and let it also be independent of s;. Then, we can 

write 

by the choice of b', since 

grees of freedom. 

z 
p 

s2 

bS2 
m 

::s -2-
0 

= 1 - a , 

; - F-distribution with p,2p(m-l) de-
0 

To prove Part (b), we consider the basic inequality, 

8 

+m, (2.2.6) 

and then we divide all throughout by C. Now, taking expectations on all 

sides leads to the required result. 

To prove Part (c), we again use the basic inequality (2.2.6); and we 

obtain 

r2b s!j"' 
2m 2 

d 

( 2 2 x2 
However, 2p m-l)Sm/0 - (2p(m-l)) and so we have 

2 + m 
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2 
= (J and 

Therefore, we can write 

2bcr2 2 -1 2b 2 2 ~ (--) { (pm-p) + 1} + 2m(-0-) + m , 
d2 d2 

(2.2.7) 

and 

2 
- m - (2.2.8) 

Combining (2.2.7) and (2.2.8), we get 

d2 2 d2 2 
1- 2mp (m- 1 ) (--) - m p (m- 1 ) (--) 

2bcr2 2bcr2 

2 2 - 2 
~ Var(N){p(m-1)(2bcr /d) } ~ 

d2 2 i 2 
+ 2mp (m-1 ) (--2) + m p (m- 1 ) (--2) , 

2bcr 2bo 

and now taking the limit as d-+0 on all sides Part (c) follows. 

To prove Part (d), we take the limit as d-+ 0 in (2.2.5) and apply 

the dominated convergence theorem to write 

= 

2 
limE{F(~)} 
d-+0 2i 

From the inequality (2.2.6), it follows that 

b s2 
m = - 2- w.p. 1 , 

0 
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and thus we have 

1 i m p (1:1 R ) 
d-+0 - E: N N 

' 

b s2 
= E{F(-T-)} 

(J 

This was earlier shown to be equal to (1 -a). This completes the proof 

of Theorem 2.2. 1. 

Remark 2.1: Part (a) tells us that the procedure (2.2.4) is 11exactly 

consistent11 in the Mukhopadhyay (1982) sense, while Part (d) shows that 

this procedure is also 11asymptotically consistent 11 • In Part (b), we have 

the limiting ratio~ which is always larger than one, that is to say that 
a 

the procedure (2.2.4) oversamples in estimating C even asymptotically. 

2.2.2. A Sequential Procedure 

We start with m(~ 2) observations from each population, and then de-

fine the following stopping rule: 

N inf{n ;;: m: n ;;: (2.2.9) 

When we stop, we have the samples ~l' ~2 , ...• ~N and y1, y2 , ... ,yN. 

We compute INN and propose the region RN N as in (2.1. 1). Some of the 
' ' 

properties of this procedure are stated in Theorems 2.2.2 and 2.2.3. 

Theorem 2.2.2: For the procedure in (2.2.9), for all~ E: lRP, and 

cr E: (O,oo) we have: 

(a) E(N) !> C + m + 2 for all d > 0 , 

(b) N/C-+1 w.p.l as d+O. 



(c) E (N/C) + as d + 0 , 

(d) P(~ s RN N) + 1 - a as d + 0, and 
' 

(e) /P(N-C) L 
--'-""="~-N(O,l) as d+O. rc 

Proof: To prove Part (a), notice from (2.2.9) that we have 

which implies 

2 
2a SN-l 

N ~ + m , i 

(N-2)(N-m) ~ 2a (N-2) s2 
d2 N-1 

Now, first assume that E(N) < oo Then, by Wald's first equation, we 

have 

2a E(N) cr 2 ~ E{(N-2) (N-m)} 
i 

~ E{N2 - (m+2)N} 

2 
~ {E(N)} - (m+2)E(N) , 

which leads to 

E(N) - (m+2) s C , 

that is 

E(N) ~ C + m+2 , 

11 
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assuming, of course, E(N) < oo. The case of "E(N) = 0011 may be tackled as 

follows: Define Nk = min(N,k), and we have 

E(Nk)::;; C+m+2 for all k = 1,2, .... 

Since Nk+N w.p. 1 as k + oo, by the Montone Convergence Theorem we conclude 

that E(N) s C + m + 2. 

To prove Part (b), we consider the basic inequality 

(2.2. 10) 

and then dividing by C and taking limits as d + 0 throughout this inequal­

ity we obtain~-+ 1 w.p. 1 as d-+ 0. 

To prove Part (c), we note from Part (a) that 

1 im sup E(N/C) s 1 , 
d-+0 

and from Part (b) and Fatou 1 s Lemma together we get 

lim infE(N/C) ~ 1. 
d-+0 

This implies E(N/C) -+ 1 as d-+ 0. 

To prove Part (d), we first note the event {N = n} and the event 

{~ E R } are independent, and thus we obtain 
n,n 

= 

Then, from Part (b) we can easily obtain 

2 
E{F(~)} 

2c/ 
(2.2.11) 



Nd 2 
--2 -+ a w. p. l , as d -+ 0 . 
2a 

Now, combining this and the dominated convergence theorem we have 

lim ( R ) 
d-+0 p 1:! E N N 

' 
= F (a) = l - a, 

by the choice of a. 

To prove Part (e), we first use Part (b) and Anscombe's (1952) re­

sults (Theorems Al. 1 and Al.2 in the Appendix) to conclude 

N ( 0, 1) as d-+ 0, 

and 

~ N ( 0,1) as d -+ o. 

Then, using the theorem of Ghosh and Mukhopadhyay (1975) (Theorem A2 in 

the Appendix), we have 

/P (N-C) 
lc 

L 
~ N(O,l) as d-+ 0. 

This completes the proof of Theorem 2.2.2. 

Before we state and prove the next stronger version of our result, 

let us discuss some basic notations borrowed from non-linear renewal 

13 

theoretic results of Woodroofe (1977) (Section A4 in the Appendix). The 

sequential procedure (2.2.9) can be equivalently stated as follows: 



N = inf{n::::: m: 

2 2p(n-l)S 
n 

2 
cr 

2p(n-l)n} 
c 

14 

= 
n-1 

inf{n:::: m: .L: 1 Z. :::; 2p(n-l)n} 
c (2.2. 12) 

1= I 

where z1, z2 , ... are i.i.d.X~ 2p) random variables. The condition (2.5) 

in Woodroofe (1977) (Condition C3 in Section A4) is easily shown to be 

satisfied. Also, one. can readily see that (2.2.12) had the same form as 

Woodroofe•s (1977) equation (1.1) (Cl in A4) with his a= 2, S = 1, 

c = ~ jl­
c ' 

2 -1 
= 2p, • = 4p, A= C, a= p, L(n) = 1 + n , and starting sample 

size (m-1). The constant v given in (2.4) of Woodroofe (1977) (C3 in A4) 

would have to be evaluated as 

n 
where W = .L: 1 n 1= 

Z d ( )+ ( o ) s · z · · d x2 ·~ t i , an x = max , x . 1 n ce i 1 s are 1 • 1 • • ( 2p) 

follows that W 
n 

2 
- x( 2np)" Thus, we can write 

2-np 

r(np) f oo (w-4np) wnp-l e -w/2 dw . 
4np 

Let G(.,.) be the incomplete gamma function defined by 

oo a '''-1 - t 
= fb* t e dt, 

Then it follows that 

(2.2. 13) 

+ -l n -2np 
E{(Wn-4np) } = {f(np)} {2(2np) P e - 2np G(np, 2np)} . 
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Let us write 

n = (2p)- 1 (v-2) - 1 • (2.2.14) 

Theorem 2.2.3: For the procedure in (2.2.9), for all J.l E IRP, and 

cr £ (o,~) we have as d + 0: 

(a) 

(b) 

E(N) = C + n + o(l) -1 ..!.f m>l+p and 

= 1 2 1 2 
1-a + 2(d/cr) {n + 4p(p-a-2)} f(a) + o(d) , 

if {i) m ~ 4 for p=l, (ii) m;:: 2 for p=2,3, .... 

where the number n is defined in {2.2. 14), and f(·) is the p.d.f. of 

2 
X (p). 

Proof: Part {a) follows directly from theorem 2.4 of Woodroofe 

(1977) (Theorem A4. 1 in the Appendix) with the number n coming from 

(2.2.14). 

To prove Part (b), we recall from {2.2.11) 

2 

that we have 

= E{F(~)} 
2i 

Using Taylor•s expansion for the function F(·) at the point a, we have 

Nd2 1 Nd 2 2 
= F(a) + (-- a) F1 (a) + -(-- a) F11 (W), 

2cr2 2 2cr2 

Nd2 
where W is a suitable random variable between a and-----

zi 
Th i s i mp 1 i es 

= 
1 2 1-a + 2(d/cr) {(N-C)f(a) +~ 

2 

2 
(N~C) f• (W)}, 
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where f ( ·) 
2 

is the p.d.f of a X(p) random variable. Hence, we get 

P(l! s ~ N) = 1-a + i(d/cr2) {f(a)E(N-C) + ~ E{N'''f' (W)}}, (2.2.15) 
' 

(N- C) 2 
where N''' = ...,!.;.;..~­

C 
It is clear that W ~a in probability as d ~ o. 

Now, let h(x;p) -x/2 (p/2)-1 
= e x • Then, h(x;p) attains its maximum at 

x = p-2 for every fixed p > 2. Also, for x > 0, we can write 

f 1 (x) = - k1 h(x;p) + k2h(x;p-2), 

where k1 = {2(p/2)+l r(p/2)}-l and k2 = {(p/2)-1}{2p/2 r(p/2)}-l. We 

now consider several separate cases for p, namely p > 4, p = 1 ,2,3 and 4. 

Case 1: Let p > 4. Then, 

Notice that the two terms inside the brackets are bounded. Also, Wood-

roofe's (1977) Theorem 2.3 (Theorem A4.2 in the Appendix) implies that N* 

-1 
is uniformly integrable if m>l+p Thus, N*f'(W) is also uniformly inte-

-1 
grable if m>l+p . Now, from Part (e) of Theorem 2.2.2, it follows that 

-'· L 2 pN" --T x(l) as d ~ o. Since W ~a in probability as d ~a, pN'''f' (W) ~ 

f'(a) x~l) as d~o. .c -1 
Hence, we obtain E{N"f' (W)} = p f' (a)+ o(l) as 

d ~ 0. Thus, (2.2.15) and the identity af' (a) = t(p-a-2)f(a) immediately 

lead to Part (b). 

Case 2: Let p = 4. Then, 
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where the quantity inside the brackets is bounded positive constant. 

Therefore, N*f• (W) is again uniformly integrable if m > 1 + p- 1, and we 

obtain the same result as in Case 1. 

Case 3: Let p = 3. Then, 

-W/2 -1/2 I x e W 

IV I, say. 

Let A be the event N >±C. Write V = VI(A) + VI(Ac), where I(·) is the 

indicator function. Then, 

~~O E(V) = ~~~ E{VI(A)} + ~~0 E{VI(Ac)}, if the limits exist. 

Now, 

x w- 1 12 I(A)}. 

Nd 2 1 Ni Since W is between a and - 2 and A is the event N > 2 C, we have - 2 > 
2o 2o 

1 1 
2 a on the set A. Thus W > 2 a on the set A, and we obtain 



\Vr(A) I 

-1 
Hence, \Vr(A)j is uniformly integrable if m > l + p Also, I(A)-+ l 

in probability as d + 0. Thus, we have 

E {VI (A)} = p -l f 1 (a) + o ( l) as d -+ 0. 

On the other hand, we know that N ~ t Con the set Ac and thus, 

s {2512 f(3/2)}-l {I c N* dP +I N*w- 112 dP} 
A Ac 

Nd 2 Nd 2 l Again, we have W between a and -----,and-----s-a on the set Ac. Thus, 
2cr2 2/ 2 

Nd2 l/2 Nd2 -l/2 
we have W > -----2 which implies W- < (-2) Therefore, 

2cr 2cr 

Nd2 -l/2 
X (-2 ) dP} 

~2a 

s {2512 r(3/2)}-l {C I c dP + a-l/2 
A 

X c I (C/N) 112 dP} 
Ac 

x {CP(N ~ t c) + a- 112 c312 P(N s t C)} . 

18 
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From Lemma 2.3 of Woodroofe (1977) (Lemma A4 in the Appendix), we have 

for 0 < Y < 1, 

as d + 0 where E(Z~) < oo with suitable r ~ 2. Thus, one can readily see 

that form> 1 + t• ~0 E{VI(Ac)} = 0. This leads to Part (b) for p = 3, 

since now we can write 

E(V) = p-lf 1 (a) + o(l) as d + o. 

Case 4: Let p = 2. Then, 

Since, N;'< is uniformly integrable form> 1 + p -l it follows. that 

IN"''f• (W) I is uniformly integrable. This leads to Part (b) for p = 2, as 

in Case 1 . 

Case 5: Let p = 1. Then, 

1 Again, let A denote the event N > 2 C. Then 

where the quantities inside the brackets in the right hand side are posi-

tive constants. Hence, IVI(A) I is uniformly integrable if m > 2, which 

-1 
in turn implies that E{VI(A)} = p f(a) + o(l) as d + 0. Again with 
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~ 3/2 1 -1 K" = {2 r (2)} , we can write 

S K* {/ c N*e-W/2 W-l/2 dP + f c N* e-W/2 w- 3/ 2 d'} 
A A 

S K* {/ c N* W-l/2 dP + f c N* w- 3/ 2 dp}. 
A A 

Also, W-l/2 Ni -1/2 c 
:;;; (-) on the set A , and so we obtain 

2i 

E { I VI (A c) I } ·'· c ( 1 
N 2 Nd2 -l/2 ·'· N 2 

:;;; K" f c - -) (-) dP + K" f c ( 1 - -) 
A c 2a2 Ac c 

Ni -3/2 
X (-) dP 

2a2 

:;;; K~'a- 112 C f c (C/N) 112 dP + k*a- 312 C f c (C/N) 312 dP 
A A 

1 
P (N < 2 C) . 

3/2 1 5/2 1 In order to make both C P(N:;;; 2 C) and C P(N:;;; 2 C) converge to 

zero as d ~ 0, the same basic techniques used at the end of Case 3 would 

1 d h ff . . d. . h 5 ( 1) h t . now ea us to t e su tctent con ttton t at 2- m- < 0, t a ts we 

need m >f. Earlier, we found the condition m > 2. Thus, form~ 4, we 

have ~l~ E{VI(Ac)} = 0. Hence, for p = 1 we have 

-~ -1 
E{N"f• (W)} = p f 1 (a)+ o(l) as d ~o if m ~ 4. 

This completes the proof of Theorem 2.2.3. 
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Remark 2.2: Part (a) of this theorem shows that the sequential pro-

cedure (2.2.9) is indeed 11asymptotically second order efficient 11 in the 

Ghosh-Mukhopadhyay (1981) sense, since we have !~~ E(N-C) = n. 

2.3 The Case of Two Covariance Matrices Being 

Unequal But Sample Sizes are Equal 

2 2 2 
Let 0 = 0 1 + 0 2 and r = s = n. Utilizing (2.1.3) in this case, we 

would have 

P(~ E R ) 
n,n 

= 
2 

F(~) 
2 

0 

2 
a0 and from (2. 1.6) we would obtain n ~ --2-
d 

If 0 1 and 0 2 were 

2 
have been C = ~ · 

d2 
required optimal fixed sample size would 

(2.3.1) 

known, the 

But 0 1 and 

0 2 are unknown, and so we will now consider two procedures for determining 

the sample size Nasa suitable random variable, and this N will estimate 

the unknown C. 

We define 

Z2 -1 n - T- )~H-l(X. ) ( ) 
n {p(n-l)} i~l (~i - Yi -n,n -1 - Yi - !n,n ' 2 · 3· 2 

for n ~ 2. 

2.3. l A Two-Stage Procedure 

We start with m(~ 2) observations from each population, and define 

the following stopping rule 

N 
2 2 max{m,[bZ /d ] + 1}, 
m 

(2.3.3) 
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where b = pb 1 and b 1 is the upper lOOa% point of the F-distribution with 

degrees of freedom p,p(m-1). Thus, from the samples 01, 02 , ... ,0N and 

y1, y2 , ... ,yN we compute, INN and propose the region RN N as in (2. 1. 1). 
' ' 

Some of the properties of this procedure are listed in Theorem 2.3. 1. 

Theorem 2.3. 1: For the procedure (2.3.3), for all ~ s RP, and 

cr 1 , cr 2s(O,oo) we have: 

(a) p (~ s RN N) 2: 1-a for a 11 d > 0, 
' 

(b) E (N/C) b d -+ 0, -+-as 
a-

{ P (m-1) 
2 2 

(c) Var(N) (-d-) } -+1 as d -+ 0' and 2 bcr2 

(d) P(~ s RN N) -+ 1-a as d-+ 0. 
' 

We omit its proof for brevity as it follows along the lines of proof 

given for Theorem 2.2. l. 

2.3.2 A Sequential Procedure 

We start with m(~2) observations from each population, and then de-

fine the following stopping rule: 

N = inf{n ~ m: n :<: (2.3.4) 

When we stop, we have the samples ~l' ~2 , ... ,~N and y1, y2 , ... ,yN. 

We compute INN and propose the region~ N as defined in (2. l. 1). Some 
' ' 

of the properties of this procedure are listed in Theorems 2.3.2 and 

2.3.3. 



Theorem 2.3.2; For the procedure (2.3.4), for all~ s ~.and 

(a) E(N) :::; C + m + 2 for a 11 d > 0' 

(b) N/C -+ 1 w. p. 1 as d -+ 0, 

(c) E(N/C) -+1 as d -+ a, 

(d) P(~ s RN N) -+ 1-a as d -+ 0, and 
' 

(e) v'2p (N-C) L N(O, 1) d -+ 0. 
lc ----+ as 

We omit its proof for brevity. We can easily construct a proof 

along the lines of proof of Theorem 2.2.2. 

Theorem 2.3.3: For the procedure (2.3.4), for all~ E: IR~ and 

cr 1, cr 2 s(O,oo), we have as d-+ 0: 

Here f(·) 

(a) E (N) 
-1 

C + n + o(l), if m > 1 + 2p 

(b) = 2 1 1-a + (d/cr) {n + 2P(p-a-2)}f(a) 

is as 

2 
+ o(d ) , if (i) m ;:: 7 for p = 1, (i i) m ~ 3 for 

p = 2 or 3 and (iii) m ~ 2 for p ~ 4. 

1 in Theorem 2.2.3, and n = -(v-2)-1 where v is given by 
p 

v = £ +1 - ~ {nr(nP/2)}- 1{2(np)np/2 e-np - npG(n2p, np)}, 
2 n=l 

G(.,.) being defined in (2.2.13). 

23 
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We omit its proof for brevity, as it can be given along the lines of 

proof of Theorem 2.2.3. 

2.4 The Case of Two Covariance Matrices Being 

Unequal and Unequal Sample Sizes 

In this case again, the confidence coefficient associated with the 

region R is the same as in r,s (2.1.3). Our objective is to minimize 

2 2 

(r+s) such 
crl cr2 i 

that-+- :s;-
r s a 

Using Lagrange's multiplier A, we have 

the equation 

2 2 
crl cr2 i 

( r+s) + A(- + - - -) 
r s a 

We find that (2.4. 1) is minimized for 

r = 

* s = s 

(2. 4. 1) 

(2.4.2) 

(2.4.3) 

Had cr 1, cr2 been known, the optimal fixed sample sizes would have been 

r* and s* from the ~·s and y•s respectively, and the total optimal fixed 

sample size would then turn out to be 

We note that 

* s 
= 

(2.4.4) 

(2.4.5) 



But, since a 1, a2 are actually unknown, we will consider two pro­

cedures for determining (R,S) as random variables in order to estimate 

(r*,s*). 

2.4. 1 A Two-Stage Procedure 

25 

We start with m(~2) observations from each population, and then de-

fine the following stopping rule: Let N = R + S with 

R = 
2 2 max{m,[hU /d ]+1}, 
m 

where h is a suitable constant such that 

1-a. . 

The reader may note that 11h11 depends only on m, p and a.. 

(2.4.6) 

(2.4.7) 

(2.4.8) 

Thus, when we stop, we would have the samples ~l' ~2 , ... ,~R and 

Y1• Y2 , ... ,y5 • We compute IR,S and then propose the corresponding region 

RR,S as in (2. 1.1). Some of the properties of this procedure are listed 

in Theorem 2.4. 1. 

Theorem 2.4.1: For the procedure (2.4.6) and (2.4.7), for all 

(a) P(1Je:RRS)~1-a. fora11d>O 
' 

(b) 
.J. ha 1 

E ( R/ r" ) -+ ( + a ) , 
a a 1 2 



E(S/s''') 
hcr2 

and -+ a(cr 1 + cr2 ) ' 

2 2 

E (N/n 7') -+ 
h(cr 1 + () 2) 

d-+ 0; 
2 as 

a(cr 1 + () 2) 

Var (R) {P (~- 1 ) 
2 2 

(c) (i._) } -+ 1 ' and 2 
ha 1 

Var (S) {p (m; 1) 
2 2 

(-d-) } -+1 as d -+ 0; and 2 
ha2 

Proof: To prove Part (a), we first note the event {R=r, S=s} and 

the event {E s R } are independent, and thus we obtain r,s 

hU2 hi 
However, we have R ~ ~and S ~ --f which imply that 

d d 

that is 

Thus, we obtain 

r 2 2]-1 [ 2 2]-1 al cr2 2 al a2 
-+- d ;:::h-+­

R s u2 i 
m m 

26 
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1-a, 

by the choice of h. 

We omit proofs of Parts (b), (c) and (d) for brevity as they follow 

along the lines of proofs given for Parts (b), (c) and (d) of Theorem 2.2. 1. 

2.4.2 A Sequential Procedure 

we start with m(~2) observation from each population. Then, if at 

any stage we have taken r(~m) observations on ~ 1 s and s(~m) observations 

on Y's, we take the next observation, if needed, 

u 
(a) X's if r r on -::; v s s 

u 
(b) Y's if r r on -> 

s v s 

The motivation seems to be clear when one looks at (2.4.5). We now 

propose four more or less equivalent stopping rules, easily motivated 

from (2.1.6) and (2.4.2) - (2.4.4). 

R~: The stopping time N = N(d) is the smallest positive integers 

n(~2m) such that if R=r observations on X's and S=s observa-

tions on Y's have been taken with n = r+s such that, 

(2.4.9) 

R;: The same, with (2.4.9) replaced by 

(2.4. 10) 
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R;: The same, with (2.4.9) replaced by 

aU a V 
r ;:; r (U + V ) and s 7 r s 

;:; s (U + V ) 7 r s 
(2.4.11) 

R~: The same, with (2.4.9) replaced by 

(2.4.12) 

These rules are of the same form as those of the rules defined in 

Mukhopadhyay (1976). Using any particular one of these rules, we finally 

obtain Robservationson ~'sandS observations on Y's, namely 

~l' ~2 •... ,~R and y1, y2 , ... ,y5 • We compute IR,S and propose the corre­

sponding region RR S as in (2. 1. 1). Some of the properties of these rules 
' 

are listed in Theorems 2.4.2 and 2.4.3. 

Theorem 2.4.2: For the procedure defined by R4, for all ~ E ~. 

cr 1, cr 2 E(O,oo) and d >0, we have: 

(a) E (R) 

(b) E(S)::; s~·~ + m + cr 2D, and 

(c) E(N) ::; n* + 4m , 

where D 2(am/d 2) 112 . 

Proof: From the definition of the procedure in R~ we obtain 

(R-1) 2 ::; 4 (N-1) U~-l , 
d 
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on the set R > m. But, since (R-m) 2 ~ (R-1) 2 and d~ (N-1) ~ : 2 N 

we obtain the following inequality 

2 a 2 
(R-m) ~ ~ N UR-l 

which implies that 

(R-2) (R-m) 2 a 2 
N ~ :2 (R-2) UR-1 

d 

From Wald 1 s 1st equation (Govindarajulu (1981), page 43) we have 

E{(R-2)u!_ 1} ~ cr~E(R) and using convexity argument and Jensen•s inequality 

we also have 

Therefore, we have 

2 
E (R-2 ){ E (R-m)} 

E(N) 

2 
~ E{ (R-2) (R-m) } 

N 

2 
2 a crl 

{E (R-m)} ~ - 2- E (N) 
d 

In the same way we can obtain 

2 
2 a cr2 

{ E (S-m)} ~ - 2- E (N) 
d 

(2.4.13) 

(2. 4. 14) 

Notice, that N-2m = (R-m) + (S-m). Therefore, from (2.4.13) and (2.4. 14) 

we obtain 

But, {E(N)}2 - 4m E(N) ~ {E(N-2m)}2 . Hence, we have 
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* E(N) ::; n + 4m . 

Of course, we assumed thus far that E(N) < ~. In case E(N) = ~, we can 

use a truncation technique similar to the one we used in the proof of Part 

(a) in Theorem 2.2.2. This proves Part (c). To prove Part (a), we have 

from ( 2 . 4 . 1 3) : 

E (R-m) 

P ( ) h 1/2 ( ) ( * 4 ) 1 /2 d 1 k From art c we ave E N ::; n + m , an we a so now that 

(n* + 4m) 1/ 2 ::; n*112 + 2m112 . Therefore, we have 

E (R-m) 
1/2 

::; (~) 
i 

From (2.4.2) and (2.4.4) we obtain 

( *1/2 2 1/2) cr 1 n + m • 

(-a ) *1/2 i crl n = * r 

From this and (2.4.15) we have 

1/2 
where D = 2 (a~) 

d 

E (R) 

(2.4.15) 

This proves Part (a). In the same way we can prove Part (b). 

This completes the proof of Theorem 2.4.2. 

Theorem 2.4.3: For the proceduresdefined by R~- R4, for all ~ E lR~ 

and cr 1, cr2 E(O,~) we have as d + 0: 



(a) N/n>'' -+ 1 w.p.l, 

(b) 

(c) P(~ s R ) -+ 1-a R,S 
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Proof: Let Ni denote the total sample size required by the ruleR~'· 

Notice that 

(2.4. 16) 

Now, from R~' we obtain the inequal.ity 

N1 > ~ (U + V ) 2 
- 2 R S 

d 

since UR-+ 0 1 and v5 -+ 0 2 w.p. 1 as d-+ 0, we obtain 

1 imi nf Nl/n,~ 1 1 d-+0 ~ w.p. · (2.4.17) 

From R~, again we obtain 

Wh i ch i mp 1 i es 

R+S ~ : 2 <t + 1) u~-l + : 2 (~ + 1) u~_ 1 + 4m . (2.4.18) 

From the Lemma of Robbin et al. (1967) (Lemma A3 in the Appendix) we ob-

tain as d-+ 0: 

(2.4. 19) 
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2 2 2 2 But, we know that UR-l + cr 1 and v5_ 1 + cr 2 w.p. las d + 0. Therefore, from 

these facts together with (2.4. 18), and (2.4.19) we obtain 

l imsup N4/ni' :::; 1 . (2.4.20) 
d+O 

Now, from (2.4.16), (2.4.17), and (2.4.20) Part (a) follows. 

To prove Part (b), we first have from Part (a) and Fatou 1 s lemma 

liminf E(N~/n*) ~ 1 , 
d+O I 

=1,2,3,4. 

Then, from Part (c) of Theorem 2.4.2 we obtain 

This implies Part (b). 

To prove Part (c), notice that the events {R=r, S=s}, and {~ s R } r,s 

are independent for all fixed r ~ m and s ~ m. From this we have 

= 

Now, we have the basic inequality 

wh i ch imp 1 i es 



33 

-;'\, 

Dividing this inequality by r , and then taki~g the limit throughout as 

d-+ 0, and also using (2.4.19) we obtai:n 

R --+ 
r~·~ 

w. p. 1 as d -+ 0 • 

Now, 

2 2 -1 2 (J (J 

d (-1 + _l) 
a R S 

= 

Therefore, we conclude 

£. r~r + cr;l-1 -+ 1 a R S w.p. 1 as d -+ 0 , 

which imp 1 i es 

Hence, using the dominated convergence theorem, we obtain 

~~ P(~ e RR,S) = F(a) = 1 - a, 

by the choice of 11a 11 • 

This completes the proof of Theorem 2.4.3. 

2.5 Moderate Sample Size Performance 

In this section, we present numerical results obtained through simu-

latio~s using PROC MATRIX from the SAS package. The subsections 2.5. 1, 
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2.5.2 and 2.5.3 respectively present results of our simulation studies 

for the case of equal covariance matrices and equal sample size as dis-

cussed in Section 2.2, the case of unequal covariance matrices and equal 

sample sizes as discussed in Section 2.3, and the case of unequal covari-

ance matrices and unequal sample sizes as discussed in Section 2.4. 

In Equation (2.4.8), we introduced a constant 11h11 , which depends on 

the starting sample size m, the dimension parameter p, and the confidence 

coefficient (1-a). From (2.4.8) we may recall that 

Let us define 

q (x) = e 
-x/(1-x) 

for O<x<l where Y = p(m-1)/2. 

We know that ( l)u2; 2 - x2 ( 1) 2/ 2 2 p m-· m a 1 ( p ( m- 1 ) ) ' p m- V m a 2 - X ( p ( m- 1 ) ) ' 

and then making some simple transformations we can easily show that 

-1 
F{!!_ (1-x + 1-y) } q(x)q(y)dx dy. 

y X y 

(2.5.1) 

We use FORTRAN Language on an IBM 30810 computer system with \.JATFIV com-

piler, and utilize the subroutine called DMLIN from IMSL (1982) in order 

to numerically evaluate the integral in (2.5.1). Using this subroutine 

we calculate the values of h for p = 2,3,4,5, m = 2(1)10, and a= 0. 10, 

0.05 and 0.01. But, due to some peculiarities of the integrand, this 

subroutine fails to evaluate the integral (2.5. 1) for p = 5, and m ~ 15. 

So, we tried to find a.simpler integral which is equivalent to (2.4.8). 
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We can show that 

1 1 h 
P(- +- < -) 

Fl F2 - P ' 

where (F 1, F2) has a bivariate F-distribution of Kimball (1951) with de­

grees of freedom (p,p(m-l))and (p,p(m-1)). From the joint density of 

(F 1 , F2) and a simple tran~formation thereafter we can write 

1 1 h P(- +-;,; -) 
F 1 F2 p 

= c(p,m,h) 

where 

c(p,m,h) = 

1 - -) 
2 

hp/2 r{p(m- l)}{p(m-1)}-p/2 
2 

2 
- r(p/2) {r{p(m-l)}} z 

dx dy, (2. 5. 2) 

We used the old subroutine DMLIN and the integral in (2.5.2) to calculate 

the values of h for p=2,3,4,5, m = 15(5)40(10)80, 100, and a = 0. 10, 0.05, 

0.01. 

The values of h for p = 2,3,4,5, a= 0. 10, 0.05, 0.01, and m = 2(1) 

10(5)40(10)80,100 and when m + oo are reported in Table V. The values of h 

when p=l can be obtained from Ghosh 1 s (1975b) table. 

Let us now explain the way we carry out the simulations. In any 

particular table we used a particular ••rule•• to determine the sample sizes 

Nor (R,S) depending on what case we are considering. In all the cases we 

take H=I, the identity matrix. If p=2, we take~;= (1 2) and~~= (0 O), 

and if p=3 we take~;= (1 2 3) and ~2 = (0 0 0). Then, if p=2 we have 
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1( = (J1 1J1 2) = (1 2), and if p=3 we have 1( = (1 2 3). In the case of cr 1=c2 

we take cr 1=cr2=1, and in the case of cr 1#cr2 , we take cr 1=1 and cr2=2. A par-

ticular 11 rule 11 is replicated k times, the i th rep 1 i cate giving rise to ob-

served values of N and IN N (or (R,S) and IR s) as, say, n (j) and 
' ' 

In(j) ,n(j) (or (r(j)' s (j)) and Ir(j) ,s(j)) respectively depending on 

what case we are considering. Then, we estimate E(N) and ]1. (or (E(R), 
I 

-1 k 0 A -1 k - - -1 
E(S)) and ]1.) by n = k .2:: 1 n(J) and ]1. = k .2:: 1 T. (") (") (orr= k 

I J= I _t= In J ,n _I 

k -1 k A -1 k -
J·-~l r(j), s = k .2:: 1 s(j) and ]1. = k .2:: 1 T. (") (")) respectively de-

J= I J= I r .J ,S J 

pending on what case we are considering. We also compute the corresponding 

standard errors 

SD (~) {(k2-k)-l k (()-2~ j~ 1 n j -n) } 

SD(~.) = {(k2-k)-l J·--~l (r 1 in(j),n(j) 

or 

k 

and 

= 1 ,2' ... ,p' 

SD(r+;) { (k2-k) -1 - - 2 ~ 
= • I: 1 ( r (j) + s (j) - r-s) }2 and 

j= 

SD(~.) {(k2-k)-l 
k 

(rir(j),s(j) 
A 2 ~ 

= • I: 1 - ]li) } ' = 1 ,2' ... 'p 
I J= 

depending on what case we are in. We consider j=l, ... ,k. While using a 

particular rule, we also estimate the coverage probability of the region 

RN N (orRR 5), say, by c.p. where 
' ' 

c.p. = relative frequency of .i 1 (f.(") (")- i) 2 ::; d2 , 
1= 1n J ,n J 

or 
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c.p. = 
p - . 2 

relative frequency of .2: 1 (T. (') (') - I) 
1= I r J ,s J 

from all the replicates for j = 1 ,2, ... ,k depending on the case. Here we 

are considering 95% confidence regions only, that is, we keep a= 0.05 

fixed and d is computed for given Corn~·~ which depends on what situation 

we are considering. For all the cases and rules, we took k = 500. 

2.5. l Moderate Sample Size Performances for the 

Problem of Section 2.2 

For the two-stage and the sequential procedures defined by (2.2.4) 

and (2.2.9), we present results when p=2 and 3, m=5 and 10, and C = 10, 

40, 70, 100. The Table I summarizes our findings for the two-stage pro-

cedure. The Table II summarizes our findings for the sequential procedure. 

Remark 2.3: From Table I, we notice that n is always larger than C, 

however, almost always the estimated coverage (c.p.) exceeds the target 

which is 0.95. The result gets better in the sense of less oversampling 

as m increases and this is generally expected. From Table I I we notice 

that both n and c.p. are close to C and 0.95 respectively for the sequen-

tial procedure. 

2.5.2 Moderate Sample Size Performances for the 

Problem of Section 2.3 

Here we use the 11 rule 11 as being the two-stage procedure and these-

quential procedure defined by (2.3.3) and (2.3.4) respectively. For both 

these procedures, we give results for p=2 and 3, m=5 and 10, and C = 10, 

40, 70, 100. The Table I I I summarizes our findings for the two-stage 
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TABLE I 

EQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES: 
TWO-STAGE PROCEDURE (2.2.4) 

so(~) 
A >0 A 

p m c d n 111 112 113 c.p. 

2 5 10 1. 095 13.02 0.20 1 .013 2.020 0.954 
40 0.547 48.74 0. 73 1. 014 2.009 0.948 
70 0.414 86.27 1. 33 0.996 1. 996 0.958 

100 0.346 125.05 2.01 1 .004 1. 995 0.932 

2 10 10 1. 095 12.99 0.09 0.931 1 .832 0.956 
40 0.547 44.46 0.44 0.998 2.008 0.950 
70 0.414 76.20 0.79 0.998 1. 995 0.944 

100 0.346 109.48 1. 10 1. 003 2.009 0.946 

3 5 10 1. 250 12.56 0. 16 1 . 033 1. 993 2.992 0.954 
40 0.625 47.47 0.61 0.985 2.010 2.983 0.952 
70 0.472 79.82" 1.02 1. 008 2.002 3.005 0.954 

100 0.395 117.16 1.45 0.996 2.006 3.010 0.956 

3 10 10 1. 250 11.51 0.07 l. 005 2.038 2.997 0.970 
40 0.625 43.73 0.37 0.991 2.016 3.002 0.938 
70 0. 472 74.66 0.62 l. 006 2.002 2.996 0.944 

100 0.395 105.77 0.89 0.998 2.000 2.995 0.932 
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TABLE II 

EQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES: 
SEQUENTIAL PROCEDURE (2.2.9) 

p m c d n so(;) !::1 !::2 !::3 c.p. 

2 5 10 1. 095 10.22 0. 11 1 .008 2.000 0.930 
40 0.547 40.20 0.20 1 .000 2.012 0.956 
70 0.414 69.82 0.26 1. 000 2.007 0.932 

100 0.346 99.63 0.31 1 .000 2.003 0.952 

2 10 10 1. 095 10.99 0.06 0.997 1. 989 0.950 
40 0.547 39.93 0.20 1 .002 1. 994 0.940 
70 0.414 70.29 0.26 1. 000 2.008 0.944 

100 0.346 100.09 0.32 0.999 1. 996 0.946 

3 5 10 1. 250 10. 17 0.09 1 . 012 1. 985 2.998 0.930 
40 0.625 40. 56. 0. 16 1. 017 1. 987 3.008 0.932 
70 0.473 70.59 0.22 0.999 1. 997 2.992 0.954 

100 0. 395 100.42 0.24 1. 006 1. 994 3.004 0.962 

3 10 10 1. 250 10.90 0.05 0.968 1. 965 3.026 0.958 
40 0.625 40.07 0. 17 1.006 2.009 3.002 0. 960 
70 0.473 70.27 0.21 0.996 1 . 991 2.994 0.948 

100 0.395 100.57 0.25 1. 003 2.001 2.993 0.962 
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TABLE I I I 

UNEQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES: 
TWO-STAGE PROCEDURE (2.3.3) 

d SD (~) 
h h h 

p m c n l-11 l-Iz l-13 c.p. 

2 5 10 1. 731 14.69 0.29 0.999 2.026 0.964 
40 0.865 58.61 1. 23 0.974 1. 992 0.950 
70 0.654 102.94 2.22 0.995 1. 996 0.936 

100 0.547 146.53 3.09 1. 003 1. 988 0.954 

2 10 10 1. 731 12.82 0. 15 0.971 2.042 0.958 
40 0.865 47.50 0.68 0.979 2.005 0.942 
70 0.654 82.00 1.26 0.995 2.001 0.954 

100 0.547 120. 10 1.64 <11.003 1.992 0.958 

3 5 10 1.977 13.83 0.24 0.982 1. 971 2.981 0.954 
40 0.988 53.95 0.92 1:.004 1.974 2.982 0.946 
70 0.747 94.97 1.72 0.984 1. 992 2.992 0.962 

100 0.625 134 .L17 2.28 1.007 2.006 2.996 0.954 

3 10 10 1.977 12.23 0.12 0. 969 2.037 3.019 0.966 
40 0.988 46.31 0.52 1.030 1. 982 2.993 0.946 
70 0.747 79.95 0.93 0.999 2.005 3.003 0.956 

100 0.625 111.91 1. 35 0.986 1. 993 3.006 0.942 
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TABLE IV 

UNEQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES: 
SEQUENTIAL PROCEDURE (2.3.4) 

d SD(~) 
A A A 

p m c n jJ1 ll2 jJ3 c.p. 

2 5 10 1 . 731 9.52 0. 14 0.998 1. 983 0.922 
40 0. 865 40.24 0.30 0.992 1. 990 0.936 
70 0.654 69.35 0.39 0.999 1. 983 0.956 

100 0.547 99.20 0.45 1. 003 2.009 0. 960 

2 10 10 1 . 731 11 . 1 5 0.07 0.984 1. 984 0.960 
40 0.865 38.97 0.29 1. 011 2.002 0.938 
70 0.654 69.35 0.38 0.994 1 . 991 0.956 

100 0.547 99.61 0.44 1 . 018 2. 011 0.950 

3 5 10 1. 977 9.83 0. 12 1 . 021 1. 976 2.957 0.932 
40 0.988 40.08 0.24 1. 008 2.005 3.002 0.934 
70 0.747 69.70 0.30 1 . 011 1. 989 3.006 0.956 

100 0.625 100.64 0.35 1. 003 2.004 2.993 0.944 

3 10 10 1. 977 11.02 0.06 0.955 2.023 3.044 0.956 
40 0.988 40.07 0.25 1. 006 2.002 3.005 0.944 
70 0.747 69.75 0.29 0.993 1. 992 2.981 0.964 

100 0.625 99.82 0.36 0.979 2.006 2.992 0.936 
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procedure. The Table IV summarizes our finding for the sequential pro-

cedure. 

Remark 2.4; From Table I I I, we notice, as we expect that n is always 

larger than C. The amount of oversampling reduces when we go from p=2 to 

p=3. The results also get better in this sense as m increases. The esti-

mated coverage probability (c.p.) almost always exceeds the target which 

is 0.95 for the two-stage procedure. From Table IV, we notice that both n 

and c.p. are very close to C and 0.95 respectively for the sequential pro-

cedure, and naturally, the sequential procedure also performs better when 

m increases. 

2.5.3 Moderate Sample Size Performances for the 

Problem of Section 2.4 

We use the 11 rule 11 as being the two-stage procedure defined by (2.4.6) 

and (2.4.7). We give results for p=2 and 3, m=5 and 10, and n'': = 20, 80, 

140, 200 where n* = r* + s* For each R~ (considered in subsection 
I 

2.4.2) defining the sequential procedure, we give moderate-sample results 

for p=2 and 3, m=5 and 10, and n'< = r'': + s'< = 20, 80, 140, 200. The Table 

VI reports the results for the two-stage procedure, and Tables VI I, VII I, 

IX and X report the results for the sequential procedures defined by R~, 

R~, R; and R~, respectively. 

Remark 2.5: "';" From Table VI, we notice that s always overestimates s 

by a large margin but r is a fairly good estimator for r'<. This is due to 

the fact that 0~ is four times larger than 0~. The estimated coverage 

probability (c.p.) always seems to exceed the target which is 0.95. We 

notice also that the amount of oversampling is reduced when we go from p=2 

to p=3. As m increases the two-stage procedure (2.4.6) - (2.4.7) performs 

better. 



m 

TABLE V 

THE h-VALUES NEEDED FOR THE HJO-STAGE PROCEDURE 
DEFINED BY (2.4.6) AND (2.4.7) 

p 

~~~~~~~~~~~~~~i~~~~~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~~~~~~ 
a l a 

--------------------------~----------------------------

- __ o_:_l Q _____ o_:_Q2 ____ Q ~ .9_1 __ ~---Q.:.l9 _____ Q !Q 5 ____ Q.! Qj ___ _ 
' I 

2 42.8106 85.5927 412.5142 i 33.9436 54.8146 155.5587 

3 17.8003 26.9637 61.8595: 19.5283 26.8801 49.5526 

4 13.9247 19.7438 37.7372 16.6165 21.9875 36.5761 

5 12.4330 17.1556 30.4958 15.3990 20.0346 31.9482 

6 11.6520 15.8475 27.1373 14.7345 18.9935 29.6134 

7 11.1736 15.0629 25.2226. 14.3170 18.3484 28.2135 

8 10.8511 14.5413 23.9911 14.0307 17.9102 27.2824 

9 10.6192 14.1700 23.1347. 13.8222 17.5933 26.6192 

10 10.4445 13.8924 22.5053. 13.6637 17.3536 26.1230 

15 9.9716 13.1500 20.8670 13.2276 16.6992 24.7896 

20 9.7605 12.8229 20.1659 13.0287 16 4047 24.2024 

25 9.6410 12.6389 19.7770 12.9165 16.2374 23.8716 

30 9.5641 12.5211 19.5298 12.8435 16.1297 23.6618 

35 9.5105 12.4391 19.3588: 12.7923 16.0542 23.5140 

:40 9.4711 12.3788 19.2335. 12.7545 15.9986 23.4052 

i 50 9.4167 12.2960 19.0621. 12.7024 15.9219 23.2557 

: 60 9.3812 12.2418 18.9504: 12.6680 15.8716 23.1579 

. 70 9.3560 12.2036 18.8718! 12.6439 15.8361 23.0889 
i 

80 9.3374 12.1753 18.8136 12.6259 15.8096 23.0376 

00 9. 3114 12. 1359 18.7329 12.6008 15.7729 22.9665 

co 9.2103 11.9829 18.4207! 12.5028 15.6295 22.6898 
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TABLE V (Continued) 

:::::::::::::~::::::::::::f:::::::::::::~:::::::::::: 
~ ~ Q: io~ ~ ~~ ~~ Q: QS~ ~ ~~ p~.~Q l~ ~ ~ ~ ~~~ l; ~~ ~ ~ ~Q:;;~ ~ ~ ~ ~~ :~ ~ ~ ~ 

32.8601 48.0374 106.52541 33.7425 46.5578 89.8196 

21.9035 28.6976 47.63891 24.4461 31.0450 48.3801 

19.3934 24.7027 38.2284 22.1523 27.5172 40.6595 

18.2991 23.0206 34.5786 21:1265 25.9827 37.5113 

17.6889 22.0990 32.65821 20.5467 25.1276 35.8121 

7 17.3004 21.5183 31.4770 20.1744 24.5832 34.7505' 

8 17.0314 21.1193 30.6779 19.9153 24.2064 34.0249 

9 16.8343 20.8283 30.1017 19.7245 23.9303 33.4976: 

10 16.6837 20.6068 29.6784 19.5783 23.7192 33.0971 

15 16.2659 19.9962 28.4825 19.1705 23.1334 31.9975' 

20 16.0744 19.7181 27.9509 18.9825 22.8647 31.4989' 

25 15.9645 19.5591 27.6490 18.8742 22.7105 31.2142: 

30 15.8932 19.4561 27.4543 18.8039 22.6105 31.0302 

35 15.8432 19.3841 27.3184 18.7546 22.5403 30.9014 

40 15.8062 19.3308 27.2181 18.7180 22.4884 30.8062 

50 15.7552 19.2573 27.0801 18.6675 22.4167 30.6750 

60 15.7216 19.2090 26.9895 18.6342 22.3696 30.5888 
i 
I 

10 15.6978 19.1748 26.92ss I 18.6106 22.3362 30.5279 

180 15.6801 19.1494 26.8779! 18.5931 22.3113 30.4825 

tl oo I 15.6555 19.1140 26.8117118.5687 22.2767 30.4194 

co L 15.5589 18.9755 26.5534 I 18.4727 22.1410 30.1726 
--- --------------------------4---------------------------

: 
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p m 

2 5 

2 10 

3 5 

3 10 

_J 

TABLE VI 

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: TWO-STAGE PROCEDURE (2.4.6) AND (2.4.7) 

-·- ·#':;. - - sD(r + ~) 
A A A 

r" 5 d r 5 ].11 ].12 ].13 c.p. 

6.7 13.3 1 .642 7.33 25.61 0.56 0.950 1. 989 0.980 
26.7 53.3 0.821 26.55 102.99 2.29 1 .006 2.021 . 0.956 
46.7 93.3 0.621 44. 17 183.02 4.07 0.993 2.009 . 0.956 
66.7 133.3 0.519 63.35 255.58 5.70 1. 007 1. 997 0.964 

6.7 13.3 1 .642 10.01 21 . 1 0 0.28 0.974 2.016 . 0.986 
26.7 53.3 0.821 21 . 21 83.28 1.25 0.988 2.000 0.954 
46.7 93.3 0.621 36.67 147.82 2.35 1 .005 2.017 . 0.962 
66.7 133.3 0.519 52.43 199.53 3.07 0.992 2. 0·1: 1 . 0.942 

6.7 13.3 1. 875 6.47 23. 15 0.41 1. 016 1. 980 3.032 0.972 
26.7 53.3 0.938 23.43 93.74 1. 74 0.992 1. 988 3.023 0.940 
46.7 93.3 0.709 39.66 159.30 2.98 1. 002 2.018 2.978 0.960 
66.7 133.3 0.593 57.42 227.81 4.40 0.992 2.012 3.001 0.930 

6.7 13.3 1. 875 10.00 20.39 0.23 1.012 . 1. 992 3.013 0.992 
26.7 53.3 0.938 20.28 79. 11 0.91 0.981 1. 999 2.996 0.962 
46.7 93.3 0.709 34.49 139. 73 1.66 0.995 2.010 2.999 0.964 
6~.7 133.3 0.593 49.79 201. 16 2.31 l.007 1. 993 3.008 0.952 

-l:"" 
VI 



p m 

2 5 

2 10 

3 5 

3 10 

TABLE VII 

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R~ (2.4.9) 

;'\ * - - sD(r + 5) A " A 

r s d r s j11 j12 j13 

6.7 13.3 1.642 6.52 12.00 0.22 1. 031 1.942 . 
26.7 53.3 0.821 26.33 52.47 0.41 1.008 1. 994 
46.7 93.3 0.621 46.28 93.01 0.53 0.998 2.019 . 
66.7 133.3 0.519 66.49 132.95 0.63 1.016 1.993 . 

6.7 13.3 1.642 10.02 11 . 68 0. 12 0.934 1 .945 . 
26.7 53.3 0.821 26.19 52.23 0.42 0.996 2.004 . 
46.7 93.3 0.621 49.19 91.96 0.52 1 . 011 1. 997 . 
66.7 1]3.3 0.519 66.54 132.61 0.64 1. 01] 2.018 . 

6.7 13.3 1. 875 6.70 12.54 0. 18 1.013 1.977 2.971 
26.7 53.3 0.938 26.75 52.91 0.32 0.979 1.984 2.989 
46.7 93.3 0.709 46.71 93.26 0.42 0.991 1. 995 2.990 
66.7 133.3 0.593 66.57 132.47 0.50 0.996 2.008 3.009 

6.7 13.3 1. 875 10.01 11.43 0.10 1. 019 1. 975 3.007 
26.7 53.3 0.938 26.78 53. 18 0.30 0.988 2.010 3.016 
46.7 93.3 0.709 46.40 92.59 0.44 1.01] 2.021 2.988 
66.7 133.3 0.593 66.55 132.92 0.50 0.987 2.009 3.011 

c.p. 

0.930 
0.922 
0.942 
0.952 

0.948 
0.938 
0.942 
0.950 

0.908 
0.962 
0.952 
0.944 

0.922 
0.958 
0.960 
0.918 

~ 
0' 



p m 

2 5 

2 10 

3 5 

3 10 

TABLE VIII 

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R; (2.4.10) 

* * - - sD(r + 5) " " 
A 

r s d r s '111 '112 '113 

6.7 13.3 1.642 6.52 12. 13 0.21 1. 031 1.942 . 
26.7 53.3 0.821 26.33 52.48 0.41 1 .008 1. 994 . 
46.7 93.3 0.621 46.28 93.01 0.53 0.998 2.019 . 
66.7 133.3 0.519 66.49 132.96 0.63 1. 016 1. 993 

6.7 13.3 1.642 10.02 12.33 0. 12 0.945 1. 935 . 
26.7 53.3 0.821 26.19 52.25 0.42 0.996 2.003 . 
46.7 93.3 0.621 46.19 91.97 0.52 1.011 1.997 . 
66.7 133.3 0.519 66.54 132.61 0.64 1.017 2.018 . 

6.7 13.3 1. 875 6.70 12.63 0. 18 1.009 1 .969 2.973 
26.7 53.3 0.938 26.75 52.92 0.32 0.979 1.984 2.989 
46.7 93.3 0.709 46.71 93.26 0.42 0.991 1. 995 2.990 
66.7 133.3 0.593 66.57 132.47 0.50 0.996 2.008 3.009 

6.7 13.3 1. 875 10.01 12. 15 0. 10 1.013 1. 974 3.003 
26.7 53.3 0.938 26.78 53.20 0.30 0.987 2.011 3.015 
46.7 93.3 0.709 46.40 92.59 0.44 1. 017 2.021 2.988 
66.7 133.3 0.593 66.55 132.92 0.50 0.987 2.009 3. 011 

c.p. 

0.932 
0.922 
0.942 
0.952 

0.956 
0.938 
0.942 
0.950 

0.914 
0.962 
0.952 
0.944 

0.924 
0.958 
0.960 
0.918 

~ 

""-' 



p m 

2 5 

2 10 

3 5 

3 10 

TABLE IX 

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R; (2.4. 11) 

-:~ ;':. - -
SD(~ + ~) 

A " " r 5 d r 5 ]11 ]12 ]13 

6.7 13.3 1 .642 6. 71 12.66 0.21 1. 032 1. 955 . 
26.7 53.3 0.821 26.55 52.89 0.41 1. 008 1 . 991 . 
46.7 93.3 0.621 46.50 93.47 0.53 0.997 2.018 
66.7 133.3 0.519 66.72 133.32 0.63 1 . 015 1. 993 

6.7 13.3 1. 642 10.03 13.59 0. 13 0.954 1. 944 
26.7 53.3 0.821 26.38 52.68 0.41 0.995 2.004 . 
46.7 93.3 0.621 46.37 92.42 0.52 1 . 0 11 1. 997 . 
66.7 133.3 0.519 66.72 133.04 0.64 1 . 017 2.018 

6.7 13.3 \~.875 6.86 13. 15 0. 17 1 . 021 1. 986 2.969 
26.7 53.3 0.938 26.93 53.29 0.32 0.981 1. 986 2.987 
46.7 93.3 2.709 46.87 93.62 0.41 0.990 1. 994 2.990 
66.7 133.3 0.593 66.77 132.83 0.50 0.997 2.008 3.009 

6.7 13.3 1. 875 10.01 13.57 0. 11 1 . 018 1. 972 2.998 
26.7 53.3 0.938 26.96 53.57 0.30 0.985 2.014 3.016 
46.7 93.3 0.709 46.59 92.99 0.44 1 . 016 2.022 2.989 
66.7 133.3 0.593 66.72 133.31 0.50 0.988 2.009 3.010 

c.p. 

0.936 
0.924 
0.946 
0.958 

0.966 
0.938 
0.940 
0.950 

0.926 
0.962 
0.948 
0.950 

0.942 
0.954 
0.964 
0.914 

-1:­
(X) 



p m 

2 5 

2 10 

3 5 

3 10 

TABLE X 

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R4 (2.4. 12) 

-;'-:. .,., - -
SD(~ + s) A A A 

r s d r s J.l1 J.l2 J.l3 

6.7 13. 3 1 .642 6.83 1 3 . 11 0.21 1. 036 1. 959 . 
26.7 53.3 0.821 26.87 53.23 0.41 1. 006 1. 990 
46.7 93.3 0.621 46.67 93.82 0.53 0.997 2.018 . 
66.7 133.3 0.519 66.88 133.64 0.63 1 . 015 1. 992 

6.7 13.3 1 .642 10.03 15. 15 0. 13 0.954 1. 933 
26.7 53.3 0.821 26.51 53.01 0.41 0.996 2.004 . 
46.7 93.3 0.621 46.54 92.75 0.52 1 . 0 11 1. 998 
66.7 133.3 0.519 66.84 133.37 0.64 1. 017 2.018 

6.7 13.3 1. 875 6.98 13.57 0. 17 1 . 0 11 1. 984 2.968 
26.7 53.3 0.938 27.07 53.63 0.32 0.980 1. 985 2.988 
46.7 93.3 0.709 46.99 93.96 0.43 0.990 1. 994 2.990 
66.7 133.3 0. 593 66.89 133. 12 0.50 0.997 2.008 3.009 

6.7 13.3 1. 875 10.01 15. l 0 0. 11 1. 035 1. 973 2.994 
26.7 53.3 0.938 27.09 53.92 0.30 0.985 2. 011 3.018 
46.7 93.3 0.709 46.74 93.33 0.44 1 . 015 2.020 2.988 
66.7 133.3 0.593 66.90 133.64 0.50 0.989 2.009 3. 011 

c.p. 

0.938 
0.922 
0.946 
0.956 

0.974 
0.938 
0.940 
0.948 

0.938 
0.956 
0.948 
0.958 

0.964 
0.954 
0.962 
0.910 

..j::-
1..0 
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Remark 2.6; If we let n. to be the total sample size estimated from 
I 

using the ruleR:', we can immediately readout from Tables VII, VIII, I.X 
I 

and X that n1 < ~ 2 < n3 < ~ 4 , and this is quite expected. The estimated 

coverage probability (c.p.) is not so close to thetarget 0.95 for these 

sequential procedures for some of the entries. 



CHAPTER Ill 

FIXED-SIZE CONFIDENCE REGIONS FOR THE REGRESSION 

PARAMETERS IN THE GENERAL LINEAR MODEL 

WITH NORMALITY 

3.1 Introduction and Review 

We start by formulating the problem. Suppose we have the general 

linear model given by 

Y = X B + E -n n- -n (3.1.1) 

where Y is an observed nxl random vector, X is a known nxp matrix of -n n 
rank p, B_ is a pxl vector of unknown regression parameters, and E is nxl -n 

random vector of errors distributed as N (0, cr 2 1 ) , with cr E(O,~) being 
n - n 

unknown. \ale ass urne that p ~ 2. 

Given two numbers d£(0,~) and a£(0,1), we propose to consider the 

following ellipsoidal confidence region for@· We define 

R = {WE :m.P: n-l (S - W)' (X' Xn) (_Sn- Y!) S i} 
n -n - n (3.1.2) 

where S = (X' X )-l X' Y with p > n. Now, the confidence coefficient -n n n n -n' 

associated with this region R is given by 
n 

= P{(s - §)' -n 

= P{-1 (S-B)'(X'X)(S-B) 
2 n - n n -n -cr 

51 
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2 cr 
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2 2 
P{x(p) ::; ~} 2 

(J 

2 
= F(~) (3.1.3) 

2 
(J 

where F(·) is defined as in Chapter I I, that is 

F(t) = 
2 

P(X(p) :,; t) for t > 0 . 

Remark 3. l : In (3. 1.2), we take the weight matrix as l (X 1 X). n n n 

Since l (X 1 X) is generally assumed to converge to a positive definite n n n 

matrix A, say, as n ~ oo in order to study large sample properties in the 

theory of linear regression analysis. However, we do not make this 

assumption. 

Now, we require the confidence coefficient to be at least (1-a), so 
2 

we need the sample size n to be at least a~ = C, say, where F(a) = 1-a. 
d 

This 11 C11 is referred to as the 11optimal fixed sample size 11 required to 

2 solve the problem if a is known. H C . k . 2 . owever, IS un nown s1nce a IS 

unknown and thus we must estimate C by using a suitable positive integer 

valued random variable N, say. Once we determine N, we propose the cor-

responding confidence region RN for s. Naturally, the characteristics 

for 11goodness 11 of having the region RN for§ will depend on the 11 close-

ness 11 between N and C. 

In Section 3.2, we propose a two-stage procedure along the lines of 

Stein (1945, 1949), Chatterjee (1959, 1960), and Mukhopadhyay (1982), and 

study various properties. 
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Our Section 3.3 deals with a modified two-stage procedure to obtain 

11asymptotic efficiency 11 in the Chow and Robbins (1965) sense. This pro­

cedure is motivated by the results of Mukhopadhyay (1980, 1982). 

In Section 3.4 we present a sequential procedure where we take one 

sample at a time after we start to get to the stopping stage. Here, we 

derive second order expansions for E(N) and P(§ sRN) using the nonlinear 

renewal theory of Woodroofe (1977, 1982) as it was carried out in Al­

Mousawi (1984). 

Our Section 3.5 deals with a three-stage procedure proposed along 

the lines of Hall (1981) and Al-Mousawi (1984). The motivation behind 

this procedure can be summarized as follows. After starting the experi­

ment with m(~ p+l) samples, we estimate a fraction rC of the optimal 

fixed sample size c by, say, M. Then, depending on the size of M, we de­

cide whether to obtain all the remaining samples of size N-M where N is 

the estimate of C found in the third stage. 

Section 3.6 is devoted to numerical studies found by simulated ex­

periments for all the procedures proposed in previous sections of this 

chapter. These results help us in exemplifying the moderate sample size 

behavior of all our proposed sampling techniques. 

Gleser (1965, 1966) proposed a sequential procedure to construct a 

spherical confidence region for the regression parameters without the 

normality assumption. Albert (1966) and Srivastava (1967, 1971) proposed 

sequential procedures to construct both spherical and ellipsoidal confi­

dence regions for the regression parameters without the normality assump­

tion. Mukhopadhyay (1974) proposed a sequential point estimation pro­

cedure for the regression parameters assuming the loss function to be 

squared error plus linear cost. Recently, Finster (1983) studied 
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sequential point estimation problems for the regression parameters in a 

multivariate linear model, and thus these are natural extensions of the 

work of Mukhopadhyay (1974). In this chapter again we write [x] for the 

largest integer smaller than x. Let s2 be the usual estimate of o2 , that 
n 

is the mean squared error, namely 

= (n-p)-l (Y -X B )'(Y -X B) 
~n n~n ~n n-n ' 

for n ~ p+l and p ~ 2. 

3.2 A Two-Stage Procedure 

We start with m(~ p+l) samples, and define 

N = 2 2 max{m,[bS /d ] + 1}, 
m 

(3. 1.4) 

(3.2.1) 

where b = pb', b' being the upper lOOa% point of the F-distribution with 

degrees of freedom p, m-p. 

If N=m, we stop sampling at the starting stage. Otherwise, we sam-

ple the difference N-m at the second stage. Thus, when we stop we have 
A 

yN as our random vector for the response variable. Then, we compute §N 

and propose the corresponding region RN as in (3. 1.2). Some of the 

properties of this procedure are stated in Theorem 3.2. l. 

Theorem 3.2. 1: For the procedure in (3.2. 1), for all S s RP, and 

o s(O,oo) we have: 

(a) P(SsRN)~l-a foralld>O, 

(b) E(N/C) b 
-+- as 

a d -+ 0 ' 
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(c) 
2 2 

Va r (N) { (p-m) (!!.___) } -+ 1 as d -+ 0 , and 
, 2 bcr2 

We omit its proof for brevity, as it can be given along the lines of 

the proof of Theorem 2.2.1. 

Remark 3.2: Part (a) tells us that the procedure (3.2.1) is "exactly 

consistent" in the Mukhopadhyay (1982) sense, while Part (d) shows that 

this procedure is also "asymptotically consistent•• in the Chow and Robbins 

(1965) sense. In Part (b), we have the limiting ratio£ which is always 
a 

larger than one which means that N overestimate C, even asymptotically. 

3.3 A Modified Two-Stage Procedure 

Motivated by the results of Mukhopadhyay (1980, 1982), we first 

choose and fix a real number pE(O,oo) and let the starting sample size be 

1 
2 l+p 

m = max{p+l,[(a/d) ] + 1} 

Then, we define the stopping rule as: 

N = 2 2 max{m,[bS /d ] + 1} . 
m 

(3. 3. 1) 

The number b remains the same as in (3.2.1). Again if N=m, we stop 

sampling at the starting stage itself. Otherwise, we sample the differ-

ence N-m. We compute §N and propose the corresponding confidence region 

RN for§ as in (3. 1.2). The main point to observe here is that m-+ oo as 

d -+ 0, however, m/C -+ 0 as d -+ 0. Thus, b/a -+ 1 as d-+ 0. Some of the 

properties of this procedure are listed in Theorem 3.3.1. 



Theorem 3.3.1: For the procedure (3.3.1), for all § E :m.P, and 

0 E(O,oo) we have: 

(a) PC§ ERN) 2: 1-a for all d >0, 

(b) E (N/C) -+ 1 as d -+ 0, 

(c) 
2 2 

Var(N} {jp-m) (-d-) } -+ 1 as d-+ 0, and 
2 bo2 

(d) P(§ ERN) -+ 1-a as d -+ 0 . 

Proof: Parts (a), (c) and (d) follow along the same 1 ines as those 

discussed in the proof of Theorem 2.2. 1. To prove Part (b), we consider 

the new basic inequality 

b 52 b 52 
__ m_ "' N < __ m_ + 

2 ""' - 2 
d d 

1 
l+p 

(.i!.._) + + 1 2 p • 
d 

Dividing by C and taking expectations on both sides, we now obtain 

b 
-< 
a - E(N/C) b 

$-+ 
a 

p+l 
+ -­c 

Then, taking limits as d-+ 0, we can conclude 

E(N/C) -+ 1 as d -+ 0 . 

This completes the proof of Theorem 3.2. 1. 

Remark 3.3: The important thing to note here is that by manipulating 

the starting sample size m, we can make the two-stage procedure to be 
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11asymptotically first-order efficient 11 in the Ghosh-Mukhopadhyay (1981) 

1 i m ( ) sense, that is we can conclude d+O E N/C = 1 for the modified two-stage 

procedure (3.3. 1). 

3.4 A Sequential Procedure 

Here, we start with the sample size m(~ p+l), and define the stopping 

rule 

N = inf{n ~ m: n ~ 

2 
a S 
__ n} 

i 
(3.4.1) 

For all S E nf and a E(O,oo), N is a positive integer valued random 

variable which can be easily shown to be finite with probability one. 

Thus, when we stop, we compute §Nand propose the corresponding con­

fidence region RN as defined in (3. 1.2). Some of the properties of this 

procedure are listed in Theorem 3.4. 1 and 3.4.2. 

Theorem 3.4. 1: For the procedure (3.4. 1), for all § E IR~ and 

a E(.O,co) we have: 

(a) E(N)::;C+m+p+l forall d>O, 

(b) N/C -+ 1 as d -+ 0, 

(c) E(N/C) -+ 1 as d -+ 0, 

(d) P(§ sRN)-+ 1-a as d -+0,, and 

(e) (N-C) 
12c-

L 
-'>- N(O,l) as d -+ 0 . 

We omit its proof for brevity, as it follows along the lines of 

Theorem 2.2.2 with obvious modifications in various steps. 



Theorem 3.4.2: For the procedure (3.4.1), for all 8 s JRP, and 

o s(O,oo) we have as d ~ 0: 

(a) E (N) = C + v - 2 - p + o ( 1) ..!_! m ;:: p + 3, 

(b) P(S s R ) = 1-a + (d/o) 2 {v - 3 - jp+a)}f(a) 
- N 2 

+ o(d2), lf(i) m;:: p+3 for p=2 or p ~ 4 and 

(ii) m;:: 7 for p=3. 

Here f(·) is as in Theorem 2.2.3 and 

-1 
3 oo (n) n/2 v = - - L {r - } {2n 2 n=l 2 

-n 
e 

the function G(.,.) being defined in (2.2.13). 

We omit its proof also for brevity. The tedious derivations will 

follow along the same lines of proof of Theorem 2.2.3. 
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Remark 3.4: The Part (a) of Theorem 3.4.2 shows that the sequential 

procedure (3.4. 1) is indeed 11 asymptotically second-order efficient11 in 

the Ghosh-Mukhopadhyay (1981) sense, since we have ~~~ E(N-C) = 

v-2-p. The modified two-stage procedure (3.3.1) can be shown to have the 

property limE(N-C) 
d~O 

= 00 instead. 

3.5 A Three-Stage Procedure 

Motivated by the results of Hall (1981), we now propose the following 

three-stage procedure in order to estimate C and thereby estimating § in 

the end. 
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We start with a sample of size m(~ p+l) and fix a real number 

r do, 1) and let, 

M 
2 2 

max{m,[ra S /d ] + 1}. 
m 

(3. 5. 1) 

We take fresh samples, if needed, to form an Mxl vector YM at this stage. 

Then, we compute §M and later obtain S~. We now define 

N = 2 2 
max{M, [a SM/d ] + 1} , (3.5.2) 

and take new samples, if needed, to form yN. Once we determine N, we com­

pute §Nand propose the corresponding region R.N as in (3. 1.2). 

Using representation analogous to those in (2.2. 12), we can easily 

rewrite (3.5.1) - (3.5.2) in the following equivalent fashions: we have 

M 

N 

max{m,[ra U /d2] + 1}, 
m 

- 2 
max{M,[a UM/d] + 1}, 

(3.5.3) 

(3.5.4) 

- -1 k-p 2 2 
where Uk = (k-p) i~l Ui' k = m, m+l, ... , the Ui's being i.i.d.cr X(l)' 

Some properties of this procedure are listed in Theorems 3.5. 1 and 

3.5.2. 

Theorem 3.5.1: For the procedure in (3.5.1)- (3.5.2), for all 

S € IR0 , and 0 €(0,oo) we have as d + 0: 

(a) E(N) = 1 -1 
C + 2 - 2r + o(l), 

(b) Var(N) = 2r- 1c + o(A), and 



2 where A = a/d . 

(c) EIN - E(N) 13 = 

60 

2 
0 (A ) ' 

Proof: We follow very closely the developments in Hall (1981). We 

indicate only some of the basic steps assuming cr2 = 1. Using (4. 1) of 

Ha 1 1 ( 1 981) , we get 

-1 = >. - r Var(U 1) + o(l) 

-I 
= A-2r +o(l) (3.5.5) 

- [ - J I Also, E{>. UM- A UM} = z + o(l), and this can be justified along the 

1 i nes of Ha II ( 1981) . Let T = [A UM] + I • 

(4.2) will lead to 

Then Hall 1 s (1981) equation 

E(N) = E(T) + o(l) 

Using (3.5.5) we have 

E(N) = A+~- 2r-l + o(l). (3.5.6) 

2 Notice now that Acr = C, and this leads to Part (a). Again, by using 

(4.3) and (4.4) from Hall (1981), we obtain 

Var(N) = Var(T) + o(l) 

= 
-1 

r A Var(U 1) + o(l) 

(3.5.7) 
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In (3.5.7), replacing A by Acr2 we obtain Part (b). We omit the proof of 

Part (c) as it can be tackled along the similar lines as in Hall (1981). 

This completes the proof of Theorem 3.5. l. 

We now modify the three-stage procedure (3.5. 1) - (3.5.2) slightly 

so as to be able to conclude that the resulting coverage probability, 

namely, P(§ E RN) turns out to be (1-a.) + o(d2). In order to achieve that 

goa 1 , we define: 

and 

3r-l - _!_ (p-a) 
2 

-1 
r 

1 
2' 

(3.5.8) 

2 
a SM 

N~'< = max{M, [-2- + m1] + 1} . 
d 

(3.5.9) 

Once we determine N* 
' 

A 

we compute S and propose the corresponding 
-N~·~ 

region RN~'< for §as in (3.1.2). 

Theorem 3.5.2: For the procedure in (3.5.8) - (3.5.9), for all 

S E :JRP, and cr ~::(O,oo) we have as d-+ Q: 

(a) = 
2 1-a. + o(d ), and 

(b) E(N 7~) = C + r-l- i (p-a)r-l + o(l). 

Proof: We first verify Part (a). In fact, we start working with 

(M,N) from (3.5. 1) - (3.5.2), and at the end we show that N must be 

modified toN* defined in (3.5.9) to conclude Part (a). 

We start with 



= 

where £ = d2/cr2 . Now we can write 

2 
E{F(~)} 

2 
cr 

E{F(£N)}, 

E{F(£N)} = F(H(N)) + t £2E(N- E(N)) 2 F11 (H(N)) + r 1 (d), 

say, where 
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by Part (c) of Theorem 3.5. 1. Here, K is used as a generic positive con-

stant independent of d. We have used the same K whenever needed. 

Again, we can write 

F(£E(N)) = F(a) + {£E(N)-a}F' (a) + r 2 (d), (3.5. 10) 

where we let 

1 2 
r 2 (d) = ~2E(N)-a} F''(z), 

for a suitable positive number z. 

2 
Let us now take A= A(d) = a(l+s)/d , and with this choice, we have 

H(N)-a 

Also, we have from Part (a) of Theorem 3.5. 1 

£{\cr2 + ~- 2r-l + o(l)}- a 
2 

d2 1 -1 2 
= as+ :2 (Z- 2r ) + o(d ). 

cr 
(3.5.11) 
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Thus, com~ining (3.5.10) and (3.5.11), we obtain 

F(H(N)) d2 1 -1 2 2 
= F(a) +{as+ 2 ~- 2r )} F'(a) + o(d) + o(d +lsi). 

0 (3.5. 12) 

Again, we have from Part (b) of Theorem 3.5. 1 

2 ± £2E{(N-E(N)) 2} = a~ r- 1 + o(d2). 
0 

By combining (3.5.12) and (3.5.13), we get 

E{F(£N)} 

wh i ch imp 1 i es 

i 1 -1 2 
1-a + F' (a) {as + 2 (2 - 2r )}+ o(d ) 

0 

2 
+ {a~ r- 1 + o(d2 )} F"(a) + o(i +lsi), 

0 

E{F(£N)} = 
i 1 -1 

1-a + {as+ 2 (2 - 2r )}F' (a) 
0 

2 
+ a~ r- 1 F"(a) + o(d2) + o(i + lsi)· 

0 

Now, note that 

a F"(a) 1 
= 2 (p-2-a) F' (a) , 

and thus we get 

(3.5.13) 
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d2 1 -1 r -l 
E { F ( £ N) } = ( 1 -a) + {as + 2 ( '2 - 2 r ) + T (p- 2-a) } F 1 (a) 

0 

2 2 I + o(d ) + o(d + Is). (3.5.14) 

Now, in order to make the second term from the left in (3.5.14) vanish, 

we choose s such that 

c s = 2r-l - ~ (p-2-a)r-l - ~ 
2 2 

= 

Hence, we can immediately see from (3.5. 14) that 

P((3sR . .J 2 
1-a + o(d ) as d + 0. 

- N" 

This proves Part (a). 

For Part (b), simply notice from Part (a) of Theorem 3.5. 1 that 

E(N'~) = C + ±- 2r-l + {3- Jp;a)}r-l - ~ + o(l) 

= 
-1 1 -1 

C + r - Z(p-a)r + o(l). 

This completes the proof of Theorem 3.5.2. 

3.6 Moderate Sample Size Performance 

In this section, we present numerical results obtained through simu-

lations using PROC MATRIX from the SAS package. The subsections 3.6. 1, 
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3.6.2, 3.6.3 and 3.6.4 respectively present the results of our simulation 

studies when we used the two-stage, the modified two-stage, the sequen-

tial and the t~ree-s~age procedures. 

Let us now briefly explain the way we carried out the simulated ex-

periments in the computer. In any particular table we use a particular 

stopping "rule" to determine the sample size N, say. We generate a se-

quence of random samples {E., i=1,2, ... } from N(O,l) and let 
I 

= l ,2'... . 

In all our procedures we take 8 1 = (80 , 81) = (1,0.5) and cr = 1. We fix 

X~ = [ 
2 

5 
] where 5 • I , 2 , • . . . 

A particular 11 rule11 is replicated k times, the jth replicate giving rise 

to observed values of N and §N as, say, n(j) and S (•) respectively. -n J 

-1 k 
Then, we estimate E(N) and 8 by n = k .2: 1 n(j) and Sn 

t j= "' 

-1 k 
= k .2:1 

j= 

8tn(j) respectively,~= 0, l. We also compute the corresponding standard 

error, namely 

so(~) 
2 -1 k - 2 ~ 

{ (k - k) j~ 1 (n (j) - n) }2 , 

fort= 0,1. While using a particular ••rule••, we also estimate the 

coverage probability of the region RN by, say, c.p. where 
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c.p. = Observed relative frequency of 

among all tbe replicates for j = 1,2, ... ,k. 

For all the simulations we consider 95% confidence regions only, 

that is, we keep a= 0.05 fixed and d is computed using the relationship 
.1 

d = (a/C) 2 • All computations are carried out with k = 500. 

3.6. 1 Moderate Sample Size Performances of the 

Two-Stage Procedure 

We use the ••rule11 as being the two-stage procedure of Section 3.2. 

We give results for m=5 and 10 and C = 10, 40, 70, 100. Table XI summa-

rizes our findings. 

Remark 3.5: From Table XI, we notice that n is always larger than 

C, however, almost always the estimated coverage (c.p.) exceeds the tar-

get which is 0.95. In the sense of less oversampling, the results get 

better as m increases. We suggest that m be taken as 10 in the absence 

of any further knowledge. 

3.6.2 Moderate Sample Size Performances of the 

Modified Two-Stage Procedure 

Here, we use the 11 rule11 as being the modified two-stage procedure 

of Section 3.3. We naturally have to choose p(>O) suitably. We may 

notice that as p decreases the starting sample size m incre2ses. We 

first fix C = 10, 40, 70, 100 and then we select p = 0.05, 0.1, 0.3, 0.5. 

In Table XII, we summarize our findings. 
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TABLE XI 

TWO-STAGE PROCEDURE (3.2. 1) 

SD(~) 
A A 

m c d n so s1 c.p. 

5 10 0. 774 32.95 1. 13 0.991 0.503 0.962 
40 0.387 134.23 4.56 0.975 0.503 0.956 
70 0.293 210.30 8.24 1 .005 0.501 0.944 

100 0.245 307.23 11.01 1 .005 0.500 0.956 

10 10 0. 774 15.94 0.31 0.985 0.501 0.978 
40 0.387 56.77 1.24 0.991 0.501 0.952 
70 0.293 104.03 2.27 1 .000 0.500 0.944 

100 0.245 149.96 3.30 1 . 010 0.500 0.946 
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TABLE XII 

MODIFIED TWO-STAGE PROCEDURE (3.3.1) 

d SD(n) "' 
81 p c n so c.p. 

0.05 10 0. 774 16.69 0.34 1 .010 0.500 0.966 
40 0.367 45. 18 0.43 1.008 0.500 0.960 
70 0.293 75.99 0.59 1.002 0.500 0.966 

100 0.245 105.50 0.69 1.002 0.500 0.948 

0. 10 10 0. 774 16.69 0.34 1.010 0.500 0.966 
40 0.387 45.76 0.51 1.004 0.500 0.948 
70 0.293 75.89 0.66 0.996 0.500 0.956 

100 0.245 106.24 0.80 0.011 0.500 0.946 

0.30 10 o. 774 24.39 0.69 1 .059 0.490 0.970 
40 0.387 48.23 0.75 1. 032 0.499 0.940 
70 0.293 79.67 1.00 0.984 0.500 0.944 

100 0.245 110.46 1. 14 1.002 0.500 0.944 

0.50 10 0. 774 30.25 1. 11 0.980 0.498 0.970 
40 0.387 55. 13 1.07 1.015 0.499 0.954 
70 0.293 87. 11 1.40 1. 012 0.499 0.966 

100 0.245 116.04 1.63 0.994 0.500 0.950 
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Remark 3.6; From Table XI I, we notice that the average sample size 

n is close to C and the estimated coverage probability (c.p.) is also 

close to 0.95. The results get better in the sense of less oversampling 

asp decreases, and this is.generally expected. For this experiment, 

p = 0.05, 0.10 or 0.3 seems to be the right choice. We have also run the 

same experiment with cr2 = 0.5 and 0.25 and we found that the most suit-

able choice for p is 0.3. We recommend using the procedure in practice 

with p = 0.3 in the absence of any further knowledge. 

3.6.3 Moderate Sample Size Performances of the 

Sequential Procedure 

Here, we use the ••rule" as being the sequential procedure of Sec-

tion 3.4. We give results form= 5 and 10 and C = 10, 40, 70, 100. 

Table XI I I summarizes our findings. 

Remark 3.7: From Table XI I I, we notice that both n and c.p. are 

very close to C and 0.95 respectively for the sequential procedure. 

Naturally, this procedure performs better when m increases. 

3.6.4 Moderate Sample Size Performances of the 

Three-Stage Procedure 

We use the 11 rule 11 as being the three-stage procedure of Section 3.5 

which is defined by (3.5.8) and (3.5.9). We estimate E(M) and E(N~~) by 

--;'; 

m and n respectively where 

m = 
-1 k 

k .E 1 m(j) and 
j= 

We also compute the standard errors 
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TABLE XIII 

SEQUENTIAL PROCEDURE (3.4. 1) 

SD(~) 
A A 

m c d n so s1 c.p. 

5 10 0. 774 8.88 0.18 1.008 0.494 0.884 
40 0.387 35.42 0.57 1.037 0.496 0.884 
70 0.293 67.40 0. 71 0.986 0.502 0.940 

100 0.245 97.41 0.87 0.999 0.500 0.938 

10 10 0. 774 11.56 0.11 0.966 0.507 0.968 
40 0.387 38.45 0.46 0.998 0.502 0.922 
70 0.293 68.53 0.62 1.012 0.499 0.922 

100 0.245 97.36 0.66 1.000 0.500 0.940 



TABLE XIV 

THREE-STAGE PROCEDURE (3.5.8) - (3.5.9) 

SD (~) -.,'\ SD (~'~) " 
s1 r m c d m n so c.p. 

0.3 5 10 0. 774 5.50 0.07 25.26 0.25 1 .010 0.501 0.998 
40 0.387 12.98 0.45 46.97 0.84 1 .002 0.500 0.934 
70 0.293 20.42 0. 77 72.53 1. 33 0.996 0.500 0.922 

100 0.245 30.49 1. 12 1 02. 11 1. 71 0.978 0.501 0.906 

0.3 10 10 0. 774 10.00 0.00 26.79 0.21 0.986 0.501 0.998 
40 0.387 13.45 0.22 52. 12 0.64 0.985 0.501 0. 960 
70 0.293 21.29 0.42 77.40 0.98 1. 006 0.500 0.934 

100 0.245 29.81 0.67 107.25 1. 36 0.997 0.500 0.938 

0.5 5 10 o. 774 6.83 0. 15 17.97 0.22 1. 055 0.494 0.982 
40 0.387 20.67 0.68 43.86 0.79 0.991 0.502 0.924 
70 0.293 35.48 1. 30 74. 16 1.28 0.995 0.499 0.908 

100 0.245 55.83 2.00 106.06 1.65 1. 015 0.499 0.932 

0.5 10 10 0. 774 10.08 0.02 19.71 0.20 0.981 0.502 0.994 
40 0.387 21 . 32 0.40 46. 10 0.59 1 . 014 0.500 0.952 
70 0.293 35.81 0.80 74.54 0.89 0.989 0.500 0.942 

100 0.245 50.21 I. 16 104.62 1.08 0.997 0.500 0.940 

-.....J 



72 

SD(~) = { (k2 _ k) -1 k ( 1 - 2 -!-
~ ~ j~l md) - m) } , and 

In this experiment we also took k = 500. We consider r = 0.3, 0.5, 0.7, 

C = 10, 40, 70, 100 and m = 5, 10. 

While carrying out simulation with r = 0.7, we noticed some insta-

bility in the estimated coverage probability (c.p.), with no detectable 

change in the estimates of the average sample sizes. On the other hand, 

the average sample sizes seemed to increase for r = 0.3. The results 

for r = 0.5 seemed to be most stable. The results for r = 0.3 and 

r = 0.5 are reported in Table XIV. 

Remark 3. 8: 
-·k 

In Table XIV when r = 0.5, we notice that n and c.p. 

are very close to C and 0.95 respectively. When r = 0.3 we notice that 

n;'• overestimates C. In the absence of any further knowledge, we recom-

mend using the three-stage procedure (3.5.8) - (3.5.9) with r = 0.5 and 

starting sample size m = 5 or 10. 

Remark 3.9: In a particular application, if all our procedures can 

possibly be implemented, we will suggest using the modified two-stage or 

the three-stage procedure, simply because these will be less time-consum-

ing. However, the sequential procedure will give the best theoretical 

results if it can be implemented. The main point to note is that the 

three-stage procedure can be almost as good. The final recommendation 

should also consider the structure and design of the particular applica-

tion. We must also stress that we have the coverage probability to be 
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at least (1-a) with!~ E(N/C) = 1 for the modified two-stage procedure 

of Section 3.3. However, the coverage probability becomes only asympto­

tically (1-a) for the sequential and three-stage procedures. 



CHAPTER I'V 

CONCLUSIONS 

In this study we have presented two different problems in the area 

of constructing fixed-size ellipsoidal confidence regions for multipara­

meter estimation. Fixed-size ellipsoidal confidence regions for the dif­

ference of mean vectors of two independent multinormal populations have 

been constructed through two-stage and sequential procedures. For this 

problem the three separate cases, namely, (i) the covariance matrices 

being equal with equal sample sizes, (ii) the covariance matrices being 

unequal with equal sample sizes and (iii) the covariance matrices being 

unequal with unequal sample sizes have been discussed individually. Our 

two-stage procedure in these contexts guarantee the exact confidence 

coefficient to be at least the nominal prescribed level. Next, various 

first-order and second-order asymptotic properties are also considered 

for the proposed sequential procedures. 

Through simulated experiments, we study the moderate sample behaviors 

of these procedures, and we notice that these procedures perform very 

well. 

The final choice among those proposed procedures should depend on 

the goals and the types of results one expects to have in a particular 

context. 

Next, we have dealt with the problem of constructing fixed-size 

ellipsoidal confidence regions for the regression parameters in the 
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general linear'model under Gauss-Markoff set up through two-stage, modi­

fied two-stage, s.equential and three-s.tage procedures. The proposed two­

stage and modified two-stage procedures guarantee the coverage probability 

to be at least the preassigned nominal value (1-a). For our sequential 

and three-stage procedures, the coverage probability is shown to be only 

asymptotically close to (1-a). Numerical simulations for moderate sample 

sizes have been used to show practical merits of the proposed statistical 

procedures. Even though our theoretical results are mostly asymptotic 

in nature, the numerical results indicated that the performances of all 

these sampling procedures seem to be excellent, even for moderate sample 

size. Again, the final choice among those procedures should truly depend 

on the goals and types of results one expects to have in a particular 

context. 
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APPENDIX 

Al. Anscombe's (1952) Central Limit Theorem 

Let {Y } be an infinite sequence of random variables. We suppose 
n 

that there exists a real number e, a sequence of positive numbers {W }, 
n 

and a distribution function F(·), such that the following conditions are 

satisfied: 

y - 0 
(Cl) P( nW :$ x) __. F(x) as n + ""• for all x such 

(C2) 

(C3) 

n 

that F(·) is continuous at x. 

{Y} is uniformly continuous in probability. 
n 

{n } is an increasing sequence of integers, and {N } is a 
v N v 

sequence of a proper random variable such that v + 1 in 
n v 

probability as v + ""· 

Theorem Al. 1: Under all the stated conditions (Cl)-(C3) we have 

YN - 0 

P( ~ ~ x) + F(x) as v + oo, 
n v 

for all continuity points x ofF(·). 

Theorem A1.2: Let x1, x2 , ... be i .i.d., and Yn 
-1 n 

= n .r 1 x .. 
1= I 
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w 
Suppose (Cl) is satisfied and~ + 1 as n + oo. 

n+l 
Then {Y } is uni­

n 

formally continuous in probability. 

A2. Distribution of a Stopping Time: A Theorem 

Due to Ghosh and Mukhopadhyay (1975) 

Let N = N = inf{n ~ n : n ~ ~ T }, 
v o v n 

where 

( i ) {~ } is a sequence of positive numbers, and ~ + oo 
v v 

as v + oo. 

( i i ) {T } is a sequence of statistics such that P(T >0) = 1 for n n 

n = 1 ,2, .... 

Suppose that 

(TN - a) 
.L v 

(a~·,) N2 -~--
v b 

L 
-r N(O,l) as v + oo, and 

(TN - a) 
N-l v-1 

v b 
L 

-r N ( 0, 1) as 

for some a, b > 0. 

Theorem A2: Under the stated conditions we have 

- a~ ) 
v L -r N ( 0,1) 

A3. Robbins, Simons, and Starr's (1967) Lemma 

i 'j 

Given constants C .. (i ,j = 1 ,2, ... ) such 
l,J 

+ oo and any integer n ~ 0 define i (2n ) = 
0 0 

as 

that 0 < C. . 
l,J 

·k 
+ c 

j(2n) = n and for 
0 0 

> 0 as 
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n :.: 2n , 1 et 
0 

(I) i (n+ 1) 

( I I) i (n+ 1) 

= i (n )+ 1 , 

= i (n) , 

j (n+ 1) = j (n) if i (n) 
}liiT 

j (n+ 1) = j (n)+l .f i (n) 
I TiiiT J n 

Lemma A3: Under the stated conditions we have 

i (n) ,., 
]'TnT -+ c as 

A4. Woodroffe 1 s (1977) Nonlinear Renewal 

Theoretic Results 

Suppose we have the following: 

:;; 
ci(n),j(n) 

> ci(n),j(n)" 

(Cl) t = inf{n;:: n (~1): 
c 0 

S < en a L ( n) } , where a > 0, L ( n) = 1 
n 

+ L n-l + o(n- 1), L £ (-oo, oo), and cis a positive parameter 
0 0 

n 
(which is often allowed to approach zero). Sn = i~l Xi ;X 1, 
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X2 ••• are i .i .d. positive random variables with the distribu-

tion function F(·), such that E(X 1) 2 = ~. Var(X 1) = T and, 

(C2) F(x) ~ Bxa for some a, B > 0. 

B 2 2 2 00 -1 + (C3) v =- { (a-1) ~ + T } - L: n E{(S - na11) } , 
2~ n=l n 

where, 

-1 B -s + 
max(O,Y). B = (a-1) ' A. = fl c and y = 



Theorem A4.1: Under conditions Cl - C3, and suppose E(X~) < oo for 

some r ~ 2. Then we have as c + 0. 

if 

E (t ) 
c 

-1 1 2 2 -2 
=A.+ Svf.l -SL0 - 2a.S T 11 + o(l) 

r(2a.-l) > 4 and n a> s. 
0 

Theorem A4.2: Suppose E(X~) < oo for some.r;:: 2, and Cl - C3 are 
_, 2 

satisfied. Then, it.. 2 (tc-t..)l is uniformly integrable, if 0 <s <min 

{r, H2a.-l)r} and n a >~Ss. 
-- 0 
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Lemma A4: Suppose E(X~) < oo for some r;:: 2, and Cl - C3 are satis­

fied . Then , for 0 < o , Y < 1 we have 

P ( t ~ oA.) 
c 

as c + 0. 
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