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CHAPTER |
INTRODUCTION

In this study we discuss in Chapters |l and Ill two separate prob-
lems about constructing fixed-size confidence regions for multiparameter
estimation. We have reviewed the relevant literature separately at the
beginning of each chapter.

The second chapter deals with the problem of constructing a fixed-
size ellipsoidal confidence region for the difference of the mean vectors
of two independent multinormal populations. We have assumed that the co-
variance matrices of the first and second populations are respectively
given by o?H and ciH, where o? and cg are both unknown. Here, H is
assumed to be a known positive definfte matrix. The three cases namely,

(i) o, = and equal sample sizes, (ii) 9, # 0, and equal sample sizes,

) 2
and (iii) P # Oy and unequal sample sizes have been dealt with separ-
ately. We propose both two-stage and sequential procedures for each
problem and study various exact and asymptotic properties of these pro-
cedures through several Theorems.

In Chapter lll, we present the problem of constructing a fixed-size
ellipsoidal confidence region for regression parameters in a general
linear model under Gauss-Markoff set up. Here, we propose two-stage,
modified two-stage, sequentiél, and three-stage procedures to tackle this

problem. Again, we study various exact and asymptotic properties of

these procedures.



We also report numerical results in the form of tables to study the
moderate sample behaviors of the proposed procedures for both these prob-

lems.

The Chapter IV contains general comments and the summary of our
findings for both sets of problems.

In what follows, [x] will always stand for the largest integer smal-
ler than x. This notation has been primarily used in defining the two-

stage, modified two-stage, and three-stage procedures.



CHAPTER 11

FIXED-SIZE CONFIDENCE REGIONS FOR THE DIFFERENCE

OF THE MEANS OF TWO MULTINORMAL POPULATIONS
2.1. 1Introduction and Review

Let {gl, 32,...,§r,...} and {X], Y .,YS,...} be two independent se-

2’

quences of independent and identically distributed (i.i.d.) multivariate
random variables where each X is distributed as NP(E], O%H) and each Y is

2 1’ 72

that u,, u,, 02 and 02 are all unknown parameters. Here, H is assumed to
=1’ =2 1 2

distributed as Np(uz, ozH) with By M e®and 0 < 0., 0, < ®». We assume

be a known p x p positive definite matrix. Having recorded r observations
on g's and s observations on Y's, we wish to construct a confidence region
for the difference of the mean vectors, namely u = By T My Given

de(0,«) and ae(0,1), we propose to consider the region

= P, - -
R s fpem™ (T - w8 (T o -w <d?) (2.1.1)
- -1 r - -1 s - - -
where X_ = r 2, X., Y =5 2. Y, and T =X -Y . We now require
~r i=] ~i’ ~s Jj=1 ~j ~r,s ~r ~s
that
Plue R )21 -0, (2.1.2)

since the confidence coefficient associated with the region Rr s is given

by P(ue Rr S). Now, we have

b



— T - ] -
P(ue Rr,s) = P{(Ir,s u) H (Ir,s u) < d7}
[ o> 2|7 }
I S ST B
=P X S 1Tt d j (2.1.3)
G2 02 -1
= F “__]— __2.. d2
r s

where X%p) stands for a chi-square random variable with p degrees of free-
dom and F(-) is the distribution function of X%p). We now obtain the

positive number "a'' such that
F(a) = 1-a. (2.1.4)

Therefore, from (2.1.2), (2.1.3), (2.1.4) and the monotonicity property of

the distribution function F(:), it follows that r and s must satisfy the

inequality
02 O2 -1
1 2 2
e d” > a (2.1.5)
which implies
2 2
o o] 2
d,2.4 (2.1.6)
r s a

Let us define the usual unbiased estimators for c%, 0% as

2 -1 r -
Ul o= (e 0 E (X - X)) H

and



2 TS -
Vo = {p(s-1)} iz

respectively, for r 2 2, s > 2. We will also consistently write [x] for
the largest integer smaller than x.

In Sections 2.2 - 2.4, we will describe solutions for various sepa-
rate cases, namely (i) o? = ci and r = s, (ii) o? # og and r = s, and

(iii1) c? # 0§ and r # s. In each case, we propose a two-stage procedure
and also a sequential procedure. For each procedure we discuss several
important exact and asymptotic (as d - 0) properties.

In Section 2.5, we report numerical results in order to study moder-
ate sample size performances of all the procedures proposed in earlier
sections of this chapter.

In the case of p = 1, the basic problem we consider here is known as
the sequential analogue of the ordinary Behrens-Fisher problem. Various
authors, e.g. Robbins et al. (1967), Mukhopadhyay (1976, 1977), and Ghosh
and Mukhopadhyay (1980) proposed sequential procedures to estimate u when
p=1. Also, some two-stage procedures were considered in Chapman (1950),
Scheffe (1970), and Ghosh (1975a) in order to obtain fixed-width confidence
intervals for p when p = 1. The present work is the natural and useful
generalization of the results obtained in Al-Mousawi (1984). In this re-
gard, one is also referred to the solutions of Chatterjee (1959, 1960) and
Srivastava (1967, 1971) for the one-sample proplem. Our results are ex-

pected to lead to much better understanding of the sequential analogue of

the multivariate Behrens-Fisher situations.



2.2. The Case of Two Equal Covariance Matrices

and Equal Sample Sizes

2
Suppose that c? = ci = g where 02(>0) is unknown and we take

r=s=n. Utilizing (2.1.3) in this case, we would have

nd2
P(ue Rn’n) = F(——2 , (2.2.1)
20

and from (2.1.6) we get

92
> 239 (2.2.2)

Had 02 been known, the required optimal fixed sample size would then be

given by

c = Z2a0 (2.2.3)

. 2 . . . ' .
But, since o  is unknown, we will consider two procedures in order to
determine the sample size N as a suitable random variable for estimating

C.

2.2.1. A Two-Stage Procedure

We start with m(z 2) observations from each population, and then

define

N = max{m,[2b Si/dz] + 1}, (2.2.4)

i), and b = pb' where b' is the upper 1000% point of

the F-distribution with degrees of freedom p, 2p(m-1).



Thus, from the samples X ,X,, and Y], Y ""YN we compute

~2’

as in (2.1.1). Some of

P ey
TN N and propose the corresponding region R

the properties of this procedure are listed in Theorem 2.2.1.

N,N

Theorem 2.2.1. For the procedure in (2.2.4), for all u e ®  and

o e (0,°) we have: r

(@) P(ueR, )z1-a forall d>o,

N
(b) E(N/C) +-la’— as d >0,

. -2
(c) Var(N){p(m-l)(Zboz/dz) }>1 as d-+0, and

(d) P(E € Rﬁ'N) ~1 -0 as d=0.

2

Proof: To prove Part (a) first notice that

N = n}

]
[[[3¢2]
vl
—~

j =
(U]
pS)

P(B € RN’N)

-~

= ¥ P{ueR , N=n}

Now, the event {N = n} depends only on Si, and the event {u € Rn n} de-

pends only on Tn n for every fixed n > m. But, we know that Si and fn

2 b

are independent for every fixed n > m, and thus we can write

P(u e RN,N) = Z, Plue Rn’n}P{N = n}
o 2
= 3 F@L) PN = n)
n=m 2
20
2
= E{F(._Ndz)}_ (2.2.5)



2bs? o2 bsi
However, we have N > M which implies > . Thus,
2 2 2
d 20 o
bsi
Py e RN,N) 2 E{FQT;E)} .

Now, let Z ~ X%p) and let it also be independent of Si. Then, we can

write
b’ bs2 |
ElF—)} = EP{Zs—5 | S 1]
o o
= P{z/(s2/0%) s pb'} = 1-a,
Z 52
by the choice of b', since E-% —%- ~ F-distribution with p,2p(m-1) de-
o

grees of freedom.

To prove Part (b), we consider the basic inequality,

N
N

2b S 2b S :
m UL (2.2.6)

N
=
IN

and then we divide all throughout by C. Now, taking expectations on all
sides leads to the required result.
To prove Part (c), we again use the basic inequality (2.2.6); and we

obtain

2,2 2 A
- ~ X
However, 2p(m 1)Sm/o (2p (m=1)) and so we have



2

£(s2) = o” and E(STL;) = Hlpmp) " H 1Y .

Therefore, we can write

2 2 i 2 2 i 2
(2b§ ) {(pm-p) ]+]} < E(Nz) < (ZE%—O { (pm-p) Ty 1} + 2m(2bg ) + m2,
d d d
(2.2.7)
and
2 22 2 2
-l - 2m(31°‘2’—) - (ﬁé—) < - (EMN)Y < - (Zbg ) . (2.2.8)
d d d
Combining (2.2.7) and (2.2.8), we get
2 2 2 -2
1-2mp (m-1) (<35) = n’p(m-1) (<4) < var(W){p(m-1) (2b0%/d®) '} 5 1
2bo 2bo
2 2 2
+ 2mp (m-1) ( d 2) + mzp(m'l)( d 2) s
2bo 2bo

and now taking the limit as d >0 on all sides Part (c) follows.
To prove Part (d), we take the limit as d ~ 0 in (2.2.5) and apply

the dominated convergence theorem to write

2

Tim _ lim Nd
gop Pl € RN,N} = 0 E{F(——i)}

20

2

_ 1im Nd

20

From the inequality (2.2.6), it follows that

2
1im N2 b S

— = _.nl ]
d0 7 2 2 WPl
20 o]
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and thus we have

b 52

lim _ m
450 P(p e RN,N) = E{F( 62 )Y .

This was earlier shown to be equal to (1 - o). This completes the proof

of Theorem 2.2.1.

Remark 2.1: Part (a) tells us that the procedure (2.2.4) is "exactly
consistent' in the Mukhopadhyay (1982) sense, while Part (d) shows that
this procedure is also "asymptotically consistent'. In Part (b), we have
the limiting ratio g-which is always larger than one, that is to say that

the procedure (2.2.4) oversamples in estimating C even asymptotically.

2.2.2. A Sequential Procedure

We start with m(2 2) observations from each population, and then de-

fine the following stopping rule:

N = infln>m: n 2 5 1. (2.2.9)

When we stop, we have the samples X,, X,,...,X

10 %55 and Y., Y,,...,Y

N 1’ -2 ~N*

i R
We compute IN,N and propose the region N, N

properties of this procedure are stated in Theorems 2.2.2 and 2.2.3.

as in (2.1.1). Some of the

Theorem 2.2.2: For the procedure in (2.2.9), for all y ¢ RrP , and

c e (0,%) we have:
(@) E(N) s C+m+ 2 for all d>g ,

(b) N/C>1 w.p.1 as d=0



() E(N/C)>1 as d=~o0,

(d) Py e RN N) ~1-0 as d~+0, and

E

(e) /B(N-C) L

N(O,1) as d-~>0 .
/E sy

Proof: To prove Part (a), notice from (2.2.9) that we have

2a Sﬁ_]
N < — +m,
d
which implies
(N-2) (N-m) < 22 (N-2) 52
dZ N-1

Now, first assume that E(N) < ». Then, by Wald's first equation, we

have

22 E(N) o° 2 E((N-2) (N-m)}
d

v

E(N? - (m#2)N}

[\

EN Y - (m2)EN)

[\

which leads to

E(N) - (m¥2) < C,

that is

E(N) <. C+ m+2 ,

11
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assuming, of course, E(N) < ». The case of "E(N) = «'' may be tackled as

follows: Define Nk = min(N,k), and we have

E(Nk)s C+m+2 for all k = 1,2,...

Since Nk+N w.p.1 as k + =, by the Montone Convergence Theorem we conclude
that E(N) < C +m + 2.
To prove Part (b), we consider the basic inequality

2a S2 2a S2

N onege—Nin, | (2.2.10)

and then dividing by C and taking limits as d -~ 0 throughout this inequal-
ity we obtain %-+ I w.p.l as d >~ 0.

To prove Part (c), we note from Part (a) that

lim sup E(N/C) < 1 ,
&0

and from Part (b) and Fatou's Lemma together we get

lim inf E(N/C) 2 1
d>0
This implies E(N/C) ~ 1 as d ~ 0.
To prove Part (d), we first note the event {N = n} and the event

{une Rn n} are independent, and thus we obtain

b

2
P(u e Ry N) - E{F(ﬂg—o} . (2.2.11)

’ 202

Then, from Part (b) we can easily obtain



13

2
H27-+ a w.p.l, asd-> 0.

20

Now, combining this and the dominated convergence theorem we have

lim lim Nd2
d—»OP(E € RN,N) = E{F(d->02?)} =F(a) =1 - o,

by the choice of a.
To prove Part (e), we first use Part (b) and Anscombe's (1952) re-

sults (Theorems Al.1 and Al.2 in the Appendix) to conclude

BN (55 - o%)
> L, N(0,1) as d- o0,
o
and
/N (sﬁ_] - o) L
7 —>N(0,1) as d > 0.
o

Then, using the theorem of Ghosh and Mukhopadhyay (1975) (Theorem A2 in

the Appendix), we have

/p (N-C) L

N(0,1) as d » 0.
T (0,1)

This completes the proof of Theorem 2.2.2.

| Before we state and prove the next stronger version of our result,
let us discuss some basic notations borrowed from non-linear renewal
theoretic results of Woodroofe (1977) (Section A4 in the Appendix). The

sequential procedure (2.2.9) can be equivalently stated as follows:



=
1]
3
Th
~
3
[\%
3

inf{n 2 m: ?g: Zi < 221%:1124 ,

(2.2.12)

where Z Z.,,... are i.i.d.X%

12 Zys random variables. The condition (2.5)

2p)
in Woodroofe (1977) (Condition C3 in Section Al4) is easily shown to be

satisfied. Also, one can readily see that (2.2.12) had the same form as

Woodroofe's (1977) equation (1.1) (C1 in AL4) with his a =2, B =1,

c = %?, g = 2p, 12 =bp, Ax=C,a=p, LN =1+n ], and starting sample

size (m-1). The constant v given in (2.4) of Woodroofe (1977) (C3 in AlL)

would have to be evaluated as

-1

— - pat - + k
v = p+l ngl n E{(Wn knp) ™} ,

n + 2
_ - . - . .X *
where Wo= L, 7., and (x) max(0,x). Since Z,, are i.i.d (2p) it

=]
follows that Wn ~ X% Thus, we can write

2np)

2P
r(np)

E{ (W -ﬁnp)+} = J (w-bnp) wnp-l e-m/Z du
" Lnp

Let G(.,.) be the incomplete gamma function defined by

6(a*,b%) = /7, £ " de, (2.2.13)
for a*, b* > 0 .

Then it follows that

_] _
E{(Wn‘hnp)+} = {Tmp)} 12(2np)™ e Znp 2np G(np, 2np)} .



Let us write

no= (2p)7F (v-2) -1, (2.2.14)

Theorem 2.2.3: For the procedure in (2.2.9), for all uoe IRP, and

o ¢ (0,%) we have as d ~ 0:
(@) E(N) =C+n+o(l) if m>1+ p-], and

(b) Plee Ry ) = l-a+5(d/0)" n+gxlpma-2)} Fla) + o(d)

if (i) mz 4 for p=1, (ii) m 2 2 for p=2,3,...

where the number n is defined in (2.2.14), and f(:) is the p.d.f. of

2
")
Proof: Part (a) follows directly from theorem 2.4 of Woodroofe

(1977) (Theorem A4.1 in the Appendix) with the number n coming from

(2.2.14).
To prove Part (b), we recall from (2.2.11) that we have
2
Py e RN,N) = E{F(-——)} .
20

Using Taylor's expansion for the function F(-) at the point a, we have

2 ! Ndz 2

s ) = F(a) + C——— - a) Fla) + 5= -a) F'(W,

o c 20
Nd2
where W is a suitable random variable between a and -5 - This implies

20
2 2

FAT) = 1+ Lot f(a) + 3 O gy,

20
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where f(-) is the p.d.f of a X%p) random variable. Hence, we get

Py e Ry ) = 10 + 5(d/6") (F(aJE(N-C) + § EON*F' (W)}, (2.2.15)

2
where N = iﬂ%El— - It is clear that W= a in probability as d +~ 0.

-x/2 x(p/Z)-].

Now, let h(x;p) = e Then, h(x;p) attains its maximum at

x = p-2 for every fixed p > 2. Also, for x > 0, we can write

f'(x) = - ky hix;p) + k,h(x;p-2),

(p/2)+1

where k; = {2 r(p/2)1" and ky = ((p/2)-1302°"% 1 (p/2)17". e

now consider several separate cases for p, namely p > 4, p = 1,2,3 and 4.

Case 1: Let p > 4. Then,
INEL (W) | < N¥C] =k h(p=2;p)] + [k,h(p-b;p=2) |} .

Notice that the two terms inside the brackets are bounded. Also, Wood-
roofe's (1977) Theorem 2.3 (Theorem AL.2 in the Appendix) implies that N*
is uniformly integrable if m>]+p_]. Thus, N*f'(W) is also uniformly inte-
grable if m>1+p-]. Now, from Part (e) of Theorem 2.2.2, it follows that
pN* L, x%]) as d > 0. Since W+ a in probability as d =0, pN*f' (W) ~
f' (a) X%]) as d ~ 0. Hence, we obtain E{N*f' (W)} = p_lf'(a) + o(1) as

d > 0. Thus, (2.2.15) and the identity af'(a) = %{p-a-Z)f(a) immediately

lead to Part (b).

Case 2: Let p = 4. Then,
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N | = N9 - 22r ()37 husk) + 270 (2)3 Th(ws2) |

* 1 . L
< N {8 h(2:4) + 4} R

where the quantity inside the brackets is bounded positive constant.

Therefore, N*F' (W) is again uniformly integrable if m > 1 + p-], and we

obtain the same result as in Case 1.

Case 3: Let p = 3. Then,

INFr )| = V] - 12272 m (37237 e W2 W2 4 L0372 1(30)y7)
W2 12
= W22 r (32| - W22k MR
= |v|, say.

Let A be the event N > %-C. Write V = VI(A) + VI(AC)

indicator function. Then,

, where I(-) is the

L[To EW) = YT Evr(a)} + )T JEVI(AT)}, if the limits exist.

Now,
VIA)] = N 2272 r372)y ) |me ™2 W12 4 W2 1211 (g
< 5/2 P(3/2)} W/Z w1/2 I(A) + e-W/z
w2 1)y,
Nd> ] Nd>
Since W is between a and ——E-and A is the event N > E—C, we have —5 >
20 20

1

7 aon the set A. Thus W > %—a on the set A, and we obtain



5/2 1 {e-l/Z 1 a)-]/z

+ (=

r(3/2)} >

[vI(A)| < N*{2 ).

Hence, |VI(A)| is uniformly integrable if m > 1 + p—]. Also, I(A) > 1

in probability as d = 0. Thus, we have

E{VI(A)} = p_]f'(a) + o(1) as d » 0.

On the other hand, we know that N < %—C on the set A and thus,

ECVI(AS) |} = 7 . IN“F' (W) | dP
< 1222 1 (372)1"
x |5 = NE M2 (12 2y e
AC
< 22 ry o W e s N2y
A A
2 NdZ ]
Again, we have W between a and —5»a and — syaon the set AS Thus,
20 20
2 _ -1/2
we have W > Eﬂz which implies W 172 < (Ndz) . Therefore,
20 20
c 5/2 -1 Ny 2 Ny 2
ECvI(AT) [} < (2777 1(3/2)} " (s _c(1 -3 dP+ s _c(l -3
Ac Ac : C
-1/2
X (Nd2 dP}
20
222132yt s dp s a2
A
x CJ (C/N)]/Z dP}
A
< 12272 1(3/2)17"
x {CP(N < %-c) +a V232 by %-c)} .
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From Lemma 2.3 of Woodroofe (1977) (Lemma Ak in the Appendix), we have

for 0 <Y < 1,

1

PN < 5C) = o(c'3(”"”) +0(c”'T/?)

’

as d > 0 where E(Z;) < o with suitable r 2 2. Thus, one can readily see

1 1lim

that tor m > 1 + 5 &0 E{VI(A®)} = 0. This leads to Part (b) for p = 3,

since now we can write

E(v) = p_]f'(a) + o(1) as d > 0.
Case 4: Let p = 2. Then,

INEL ) | = NE|- e MR e
Since, N* is uniformly integrable for m > 1 + p_] it follows. that
[N*f'(W)I is uniformly integrable. This leads to Part (b) for p = 2, as

in Case 1.

Case 5: Let p= 1. Then,

INFr | = N2 r(72)yT| W2 W2 W2 312

Again, let A denote the event N > %-C. Then

N 232 ()l (™2 T2 pa) &2 2 1(a)y

[vI(A)] 5

IA

A

V22 11 (er2)T 2w (ar2) TR,

where the quantities inside the brackets in the right hand side are posi-
tive constants. Hence, |VI(A)| is uniformly integrable if m > 2, which

in turn implies that E{VI(A)} =|3-]F(a) + 0o(1) as d » 0. Again with
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1

K;': = {23/2 11(_) }']

, we can write

2
ECVI(A9) [} = s _|V|dp
A
s KE U N2V 2 ey NF W2 32 gy
A® A¢
<k N WY ap s N W2 gpy
AC AS
) 2 -1/2
Also, W 172 < (ng) on the set AS, and so we obtain
20
2 .2 -1/2 ) 2
EC|VI(A®) |} < K* s . cl -%) (—Nd—2 e+ ks e - Y
A 26 A€ c
2 -3/2
(y_d? dp
20
N A (R I e L (Y D EAa
A A
< k;’:a-l/Z C3/2 P(N < _;_ C) + k:'ca-3/2 CS/Z P(N < % C)

In order to make both 03/2 P(N < %-C) and C5/2 P(N < l-C) converge to

2
zero as d -~ 0, the same basic techniques used at the end of Case 3 would
now lead us to the sufficient condition that %—- (m=-1) <0, that is we
need m > %n Earlier, we found the condition m > 2. Thus, for m 2 4, we

have Him E{VI(A®)} = 0. Hence, for p = 1 we have
d-0

E(N*f' (W)} = p—]f'(a) +0(1) as d ~0 if m=2 4.

This completes the proof of Theorem 2.2.3.
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Remark 2.2: Part (a) of this theorem shows that the sequential pro-

cedure (2.2.9) is indeed "asymptotically second order efficient' in the

Tim

Ghosh-Mukhopadhyay (1981) sense, since we have &0

E(N-C) = q.

2.3 The Case of Two Covariance Matrices Being

Unequal But Sample Sizes are Equal

Let 02 = c? + 0; and r = s = n. Utilizing (2.1.3) in this case, we

would have

nd2
PueR ) = FG?T_ , (2.3.1)
K n,n
o
and from (2.1.6) we would obtain n = 3%— . If o and o, were known, the
d
required optimal fixed sample size would have been C = E%— - But o, and
d

o, are unknown, and so we will now consider two procedures for determining
the sample size N as a suitable random variable, and this N will estimate

the unknown C.

We define

%, =Y, =T VH (X, -Y =T ), (2.3.2)

for n > 2.

2.3.1 A Two-Stage Procedure

We start with m(z 2) observations from each population, and define

the following stopping rule

N = max{m,[bZ:]/dz] £ 13, (2.3.3)
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where b = pb' and b' is the upper 1000% point of the F-distribution with

degrees of freedom p,p(m-1). Thus, from the samples X], XZ""’XN and

Y and propose the region R

Y Xz""’XN we compute, as in (2.1.1).

NN N, N

Some of the properties of this procedure are listed in Theorem 2.3.1.

Theorem 2.3.1: For the procedure (2.3.3), for all u ¢ RP, and

~

9,5 O £(0,») we have:

2

(@) P(upeR )2 1-a for all d > 0,

N,N

(b) EN/C) + 2 as d > o0,

2 2

(c) var(N) {Eig:ll-(ELEQ } > 1as d-+0, and
bo

(d) P(E € RN N) + 1-a as d -~ 0.

We omit its proof for brevity as it follows along the lines of proof

given for Theorem 2.2.1.

2.3.2 A Sequential Procedure

We start with m(x2) observations from each population, and then de-

fine the following stopping rule:

N = infln 2m: nz—2} . (2.3.4)

When we stop, we have the samples 5]’ 52""’¥N and y], YZ""’XN'

We compute T and propose the region RN N @S defined in (2.1.1). Some

N,N

of the properties of this procedure are listed in Theorems 2.3.2 and

2.3.3.



Theorem 2.3.2: For the procedure (2.3.4), for all U € I?, and

e(0, .
o5 9, (0,»), we have:

(@) E(N) s C+m+ 2 forall d>0,
(b) N/C->1 w.p.l as d=~0,
(¢) E(N/C) =1 as d =0,

(d) P(E e R )= 1-a as d -0, and

N,N

(e) 1227%ﬂ:£l L5 N0, 1) as d - 0.

We omit its proof for brevity. We can easily construct a proof

along the lines of proof of Theorem 2.2.2.

Theorem 2.3.3: For the procedure (2.3.4), for all u ¢ IRE and

gy 9y e(0,»), we have as d -~ O:
(@ EN) = C+n+o(l), ifm>1+2 3
2 1
(b) P(ne RN’N) = l-a + (d/o)"{n + §E4p-a-2)}f(a)
2

+o(d), if (i) m27 forp=1, (ii) m2 3 for
p=2or 3and (iii) mx> 2 for p > 4.

Here f(:) is as in Theorem 2.2.3, and n = —(v-2)-1 where v is given by

O |—

=24 3
v 2 %

L {nI’(nP/Z)}*-‘{Z(np)np/2 e P - an(%fs np)},

G(.,.) being defined in (2.2.13).
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We omit its proof for brevity, as it can be given along the lines of

proof of Theorem 2.2.3.

2.4 The Case of Two Covariance Matrices Being

Unequal and Unequal Sample Sizes

In this case again, the confidence coefficient associated with the

region Rr < is the same as in (2.1.3). Our objective is to minimize
2 2

o] Oy d2
(r+s) such that 77-+ < <3 Using Lagrange's multiplier X, we have
the equation
0? oi d2
(l"+S) +)\(T+-S—‘—5—) . (2.4.])
We find that (2.4.1) is minimized for
a o,
r = ' = 5 (c] + 02) , (2.4.2)
d
N a o,
s = s = ——7—-(01 +0.) . (2.4.3)
d 2 |

Had o been known, the optimal fixed sample sizes would have been

1 %2
r* and s* from the X's and Y's respectively, and the total optimal fixed

sample size would then turn out to be

0.2, (2.4.4)

We note that

L —- (2.4.5)
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r 02 are actually unknown, we will consider two pro-

cedures for determining (R,S) as random variables in order to estimate

But, since o

(rz': , S;‘:) .

2.4.1 A Two-Stage Procedure

We start with m(z2) observations from each population, and then de-

fine the following stopping rule: Let N =R+ S with

=
I

max{m,[hUi/dz]H}, (2.4.6)

w
1]

max{m,[hV;/d2]+l}. (2.4.7)

where h is a suitable constant such that

! h L8
EF?——()——Z— = I-a (2..)
s
U v
m m

The reader may note that '"h' depends only on m, p and a.
Thus, when we stop, we would have the samples 51, XZ""’XR and
Xl’ !2,...,!5. We compute TR,S and then propose the corresponding region
RR g @s in (2.1.1). Some of the properties of this proceadure are listed
’

in Theorem 2.4.1.

Theorem 2.4.1: For the procedure (2.4.6) and (2.4.7), for all

pe ®P and 0,, 0, £(0,%) we have:

1 72

(@) P(ue R, ) z1-a forall d>0;

R,S

ho

% ]
(b) E(R/r™) > ngTﬁ;jgzy >



ho

% 2
E(S/s™) - , and
afg] + 025 —_
' h(c% + og)
E(N/n™) - 7 as d > 0;
a(cl + 02)
2 2
(c) Var(R){p(g-]) (9—79 } > 1, and
hOl
2 2
Var(S){B(mzl) (Q_i) } -1 gé_d -+~ 0; and
hcz
(d) Plue RR,S) +~1-a as d~+0

Proof: To prove Part (a), we first note the event {R=r, S=s} and

the event {y ¢ Rr s} are independent, and thus we obtain

b

02 02 -1
el 22 g2
Plu e RR,S) = EF{|x+ 5| d
hu? hv?
However, we have R 2 > and S 2 ——%-which imply that
d d
02 2 2 02 02
1,22 4T,
R S h 2 2
U v
m m
that is
{02 GZJ-] 2 G2
1 2 2 1 2
—+—=f d z hj—+ —
R S UZ VZ
m m

Thus, we obtain
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by the choice of h.

We omit proofs of Parts (b), (c) and (d) for brevity as they follow

along the lines of proofs given for Parts (b), (c) and (d) of Theorem 2.2.1.

2.4.2 A Sequential Procedure

We start with m(z2) observation from each population. Then, if at
any stage we have taken r (zm) observations on K's and s(zm) observations

on Y's, we take the next observation, if needed,

U
(a) on X's if E-s VL ,
5
_u
(b) oh Y's if §'> VL

0w

The motivation seems to be clear when one looks at (2.4.5). We now

propose four more or less equivalent stopping rules, easily motivated
from (2.1.6) and (2.4.2) - (2.4.4).

Ri: The stopping time N = N(d) is the smallest positive integers
n(32m) such that if R=r observations on §'s and S=s observa-

tions on Y's have been taken with n = r+s such that,

n > i?:- (u, + VS)2 ) (2.4.9)

a

R¥: The same, with (2.4.9) replaced by

Ui Vi dZ
T+ ~ S? (2.14.]0)

S
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R¥: The same, with (2.4.9) replaced by

-
rz——(Ur+VS) and s 2 — (Ur+vs) (2.4.11)

an ,2 2
e = Ur and s” > =V (2.4.12)

These rules are of the same form as those of the rules defined in
Mukhopadhyay (1976). Using any particular one of these rules, we finally
obtain R observationson X's and S observations on Y's, namely
o Ky g

sponding region R

..,X, and X], Y Y

YoreeonYso R,S

as in (2.1.1). Some of the properties of these rules

We compute T and propose the corre-

R,S
are listed in Theorems 2.4.2 and 2.4.3.

Theorem 2.4.2: For the pfocedure defined by Rz, for all p e I?,

s 9, €(0,») and d > 0, we have:
(@) ER) < r* +m+ oD,
(b) E(S) < s*+m+ oD, and
(¢) ENN) £ n™ + bm ,

where D = Z(am/d2 ]/2.

Proof: From the definition of the procedure in RZ we obtain

2 2
(R-1)% < 5 (N-1) Up_

d 1
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on the set R > m. But, since (R-m)2 < (R-l)2 and i% (N-1) g-f%
d d

N

we obtain the following inequality

2 a 2
(R-m)™ s = N Up_y
d
which implies that
N = d2 R-1°

From Wald's 1st equation (Govindarajulu (1981), page 43) we have

2 2 . .
E{(R-Z)UR_]} < o]E(R) and using convexity argument and Jensen's inequality
we also have

E(R-2) (€ (R-m)}” _ [, (R-2) (R-m)®,
) .

E(N)
Therefore, we have
2 29
{E(R-m)}" < —— E(N) . (2.4.13)
d
In the same way we can obtain
2
s 230,
{E(S-m)}" < > E(N) . (2.4.14)
d” .

Notice, that N-2m = (R-m) + (S-m). Therefore, from (2.4.13) and (2.4.14)
we obtain

2 N

{E(N-Zm)}2 < iz E(N) (0, + o = n" E(N)

)
4 17 %2

But, {E(N)}2 - b4m E(N) < {E(N—Zm)}z. Hence, we have
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oo

E(N) < n + bm .

0f course, we assumed thus far that E(N) < «. In case E{(N) = «, we can
use a truncation technique similar to the one we used in the proof of Part
(a) in Theorem 2.2.2. This proves Part (c). To prove Part (a), we have

from (2.4.13):

1/2

e(Rem) s () o E'2M)
1
d
From Part (c) we have E]/Z(N) < (™ + hm)]/z, and we also know that

(n-,': + LHT])]/Z < n:‘:]/z + 2m1/2.

Therefore, we have

a 1/2
E(R-m) < ('d—z-) op

(V2 4 /2y (2.4.15)

From (2.4.2) and (2.4.4) we obtain

From this and (2.4.15) we have

E(R) < e m o o]D,
am 172
where D = 2(—7
d
This proves Part (a). In the same way we can prove Part (b).

This completes the proof of Theorem 2.4.2.

oo
w

1

p

Theorem 2.4.3: For the proceduresdefined by RT - Ri, for all p e IR,

and oy» © £(0,») we have as d -~ 0:

2
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(@) N/n* > 1 w.p.l,

(b) E(N/n*) > 1, and

() P(upe RR S) > 1-o .

b

Proof: Let Ni denote the total sample size required by the rule R?.

Notice that

N, s N, s Nps N w.p.1 . (2.4.16)

oL
W

Now, from R] we obtain the inequaljty

a 2
N] > ;7 (UR + VS) .

since Up ~ o and Vg > 0o w.p.l as d +~ 0, we obtain

2

liminf ., %
40 NI/n >1 w.p.1. (2.4.17)

From RZ, again we obtain

(R-m)2 < 2N U2 and (S-m)2 < 2N U2
2 R-1 2 S-1
d d
VWhich implies
_ a /S 2 a (R 2
Nh = R+S < dz (R + 1) UR—I + dz (S + 1) US—] + bm . (2.4.18)

From the Lemma of Robbin et al. (1967) (Lemma A3 in the Appendix) we ob-

tain as d -~ 0O:

R %
=> — w.p.l . (2.4.19)
S o,y
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But, we know that Ué_] - c? and Vg_] -> oi w.p.1 as d > 0. Therefore, from

these facts together with (2.4.18), and (2.4.19) we obtain

limsup N, /n* < 1 . (2.4.20)

d>0 b

Now, from (2.4.16), (2.4.17), and (2.4.20) Part (a) follows.

To prove Part (b), we first have from Part (a) and Fatou's lemma

liminf %, %
40 E(Ni/n ) =21,

i=1,2, 3, 4.
Then, from Part (c) of Theorem 2.L4.2 we obtain
Timsup *
5o E(Nh/n ) < 1.
This implies Part (b).
To prove Part (c), notice that the events {R=r, S=s}, and {pe Rr s}

are independent for all fixed r > m and s 2 m. From this we have

{ 2 2] l
- 1, 2} 2
Pue Re o) = BR[|+ 3 d

’

Now, we have the basic inequality

a
— N U
dZ

XN
[a N
N
X

which implies

a /S 2 a (S 2
d_Z(EJr DU < R < z (+ 1) Up_, + 2m.

A
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Dividing this inequality by rx, and then taking the limit throughout as

d +~ 0, and also using (2.4.19) we obtain

5:-+ 1 w.p.l asd-> 0.
P
Now,
2 2 -1
ﬁ(f‘_+fi) - ﬁ( RS ) = l{ol(c‘+02)}
R S a s z, Rcz r* 2,R277
9 2 1TSS 9
Therefore, we conclude
2| ol
—;——[5\—'1'? >~ 1 w.p.1 as d -0,
which implies
02 02 -T
d2 7%-+-7§ +~a w.p.l as d =+ 0.

Hence, using the dominated convergence theorem, we obtain

lim

M ) = Fla) = 1-a,

Plue R s

by the choice of 'a'.

This completes the proof of Theorem 2.L4.3.
2.5 Moderate Sample Size Performance

In this section, we present numerical results obtained through simu-

tatfons using PROC MATRIX from the SAS package. The subsections 2.5.1,
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2.5.2 and 2.5.3 respectively present results of our simulation studies
for the case of equal covariance matrices and equal sample size as dis~-
cussed in Section 2.2, the case of unequal covariance matrices and equal
sample sizes as discussed in Section 2.3, and the case of unequal covari-
ance matrices and unequal sample sizes as discussed in Section 2.k4.

In Equation (2.4.8), we introduced a constant 'h'', which depends on
the starting sample size m, the dimension parameter p, and the confidence

coefficient (1-a). From (2.4.8) we may recall that

62 02 -1
B F{h|— + — = 1-a
U Vv
m m
Let us define
q(x) = XY (]_x)-Y+] e-x/(l-x)

for 0<x<1 where Y = p(m-1)/2.

2

22 1yy2, 2 2
We know that p(m l)Um/o] X(p(m-l))’ p(m I)Vm/O2 " Xp(m-1))°

and then making some simple transformations we can easily show that

2 2)-1
] o _ 1 (1 - . -1
EFh—%+-—§ Vo= {r(v)} 2[ J F{—z- (]—3(-+]—-y-) } q(x)q(y)dx dy.
X y
U v 0’0
\ m m (2-5-])

We use FORTRAN Language on an IBM 3081D computer system with WATFIV com-

piler, and utilize the subroutine called DMLIN from IMSL (1982) in order
to numerically evaluate the integral in (2.5.1). Using this subroutine
we calculate the values of h for p = 2,3,4,5, m = 2(1)10, and o = 0.10,
0.05 and 0.01. But, due to some peculiarities of the integrand, this

subroutine fails to evaluate the integral (2.5.1) for p =5, and m > 15.

So, we tried to find a simpler integral which is equivalent to (2.4.8).
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We can show that

),

T iz

1
| 1 1
EEF{h|-5 + = = P(?"'+ Fos
1 2

where (F], F2) has a bivariate F-distribution of Kimball (1951) with de-
grees of freedom (p,p(m-1)) and (p,p(m-1)). From the joint density of

(F], FZ) and a simple transformation thereafter we can write

pm _
7 -1 BR_g

1 1 h 1l (Y‘Yz) XZ
P(-l:_——+F—S—) = c(p,m,h) JJ g dx dy’(2'5-2)

1 2 P 0’0 p(m - 2)

hx 2
1 + p7m‘y(¥"/ )
where
hP/2 T{p(m - —;—)}{p(m-l)}_p/2
c(p,m,h) =

2
T (p/2) {r{P-(%'—‘-)-}}

We used the old subroutine DMLIN and the integral in (2.5.2) to calculate
the values of h for p=2,3,4,5, m = 15(5)40(10)80, 100, and o = 0.10, 0.05,
0.01.

The values of h for p = 2,3,4,5, oo = 0.10, 0.05, 0.01, and m = 2(1)
10(5)40(10)80,100 and when m -~ = are reporfed in Table V. The values of h
when p=1 can be obtained from Ghosh's (1975b) table.

Let us now explain the way we carry out the simulations. In any
particular table we used a particular ''rule' to determine the sample sizes
N or (R,S) depending on what case we are considering. In all the cases we
take H=I, the identity matrix. [f p=2, we take E; = (1 2) and Eé = (0 0),

and if p=3 we take g; = (1 2 3) and Hé = (0 0 0). Then, if p=2 we have
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Pt o= (u]uz) = (12), and if p=3 we have 1~ = (1 23). In the case of 0,=0,

we take c]=02=l, and in the case of 01#02, we take o]=1 and 02=2. A par-

ticular ''rule'" is replicated k times, the ith replicate giving rise to ob-

served values of N and TN N (or (R,S) and TR s) as, say, n(j) and

=1

(i) nG) (or (r(j), s(j)) and Tr(j),s(j)) respectively depending on

what case we are considering. Then, we estimate E(N) and U (or (E(R),

- - k ~ -
E(S)) and ui) by n = k ] L. n(j) and i k!

i iE) Tin(yan(p) forr=k
-1

]

il
it x

ko= a1 ko .
j£1 r(j), s =k jél s(j) and u, = k

i x

1 Tir(j),s(j)) respectively de-

pending on what case we are considering. We also compute the corresponding

standard errors

- - k - 1
o) = (0507 () and
) = (kERT 5 G D Kt I T B SO
Ui _j=] in(_]),n(j) i s [ X 5P
or
- - - k - - i
s(r3) = (037 Ly (r() +s(G) - r-5)%)1 and
sD(u,) = {(kz-k)_] % (T -1 )2}% = 1.2
ST gl Vir(g),sG) i 2EaneoP

depending on what case we are in. We consider j=1,...,k. While using a
particular rule, we also estimate the coverage probability of the region

R (or RR

NN ), say, by c.p. where
b

»S

p -
c.p. = rélative frequency of iél (Tin(j),n(j) _ i)2 < dz,

or
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P
c.p. = relative frequency of igl (Tir(j),s(j) - ;)2 < a2
from all the replicates for j = 1,2,...,k depending on the case. Here we

are considering 95% confidence regions only, that is, we keep o = 0.05
fixed and d is computed for given C or n* which depends on what situation

we are considering. For all the cases and rules, we took k = 500.

2.5.1 Moderate Sample Size Performances for the

Problem of Section 2.2

For the two-stage and the sequential procedures defined by (2.2.4)
and (2.2.9), we present results when p=2 and 3, m=5 and 10, and C = 10,
Lo, 70, 100. The Table | summarizes our findings for the two-stage pro-

cedure. The Table Il summarizes our findings for the sequential procedure.

Remark 2.3: From Table |, we notice that nis always larger than C,
however, almost always the estimated coverage (c.p.) exceeds the target
which is 0.95. The result gets better in the sense of less oversampling
as m increases and this is generally expected. From Table || we notice
that both n and c.p. are close to C and 0.95 respectively for the sequen-

tial procedure.

2.5.2 Moderate Sample Size Performances for the

Problem of Section 2.3

Here we use the ''rule'' as being the two-stage procedure and the se-
quential procedure defined by (2.3.3) and (2.3.4) respectively. For both
these procedures, we give results for p=2 and 3, m=5 and 10, and C = 10,

Lo, 70, 100. The Table !l1l summarizes our findings for the two-stage



TABLE |

EQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES:

TWO-STAGE PROCEDURE (2.2.4)

38

m C d n SD (n) i 1, 3 c.p.
5 10 1.095 13.02 0.20 1.013 2.020 0.954
Lo 0.547 48,74 0.73 1.014 2.009 0.948
70 0.414 86.27 1.33 0.996 1.996 0.958
100 0.346 125.05 2.01 1.004 1.995 0.932
10 10 1.095 12;99 0.09 0.931 1.832 0.956
4o  0.547 Li L6 0.44 0.998 2.008 0.950
70 0.414 76.20 0.79 0.998 1.995 0.944
100 0.346 109.48 1.10 1.003 2.009 0.946
5 10 1.250 12.56 0.16 1.033 1.993 2.992 0.954
4o 0.625 k7.47 0.61 0.985 2.010 2.983 0.952
70 0.472 79.82 1.02 1.008 2.002 3.005 0.954
100 0.395 117.16 1.45 0.996 2.006 3.010 0.956
10 10 1.250 11.51 0.07 1.005 2.038 2.997 0.970
Lo 0.625 43.73 0.37 0.991 2.016 3.002 0.938
70  0.472 74.66 0.62 1.006 2.002 2.99 0.944
100  0.395 105.77 0.89 0.998 2.000 2.995 0.932




39

TABLE |1

EQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES:
SEQUENTIAL PROCEDURE (2.2.9)

C d n sD(n) gl gz §3 c.p.

10 1.095 10.22 0.1t 1.008 2.000 0.930
Lo 0.547 40.20 0.20 1.000 2.012 0.956
70 0.414 69.82 0.26 1.000 2.007 0.932
100 0.346 99.63 0.31 1.000 2.003 0.952
10 1.095 10.99 0.06 0.997 1.989 0.950
Lo 0.547 39.93 0.20 1.002 1.994 0.940
70 0.414 70.29 0.26 1.000 2.008 0.944
100 0.346 100.09 0.32 0.999 1.996 0.946
10 1.250 10.17 0.09 1.012 1.985 2.998 0.930
4o 0.625 Lo.56. 0.16 1.017 1.987 3.008 0.932
70 0.473 70.59 0.22 0.999 1.997 2.992 0.954
100 0.395 100.42 0.24 1.006 1.994 3.004 0.962
10 1.250 10.90 0.05 0.968 1.965 3.026 0.958
40 0.625 4o0.07 0.17 1.006 2.009 3.002 0.960
70 0.473 70.27 0.21 0.996 1.991 2.994 0.948
100 0.395 100.57 0.25 1.003 2.001 2.993 0.962
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TABLE 111

UNEQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES:
TWO-STAGE PROCEDURE (2.3.3)

C d n sD(n) ﬁ] ﬁz ﬁ3 - c.p.

10 1.731 14.69 0.29 0.999 2.026 0.964
Lo 0.865 58.61 1.23  0.97h4 1.992 0.950
70  0.654 102.94 2.22  0.995 1.996 0.936
100 0.547 146.53 3.09 1.003 1.988 0.954
10 1.731 12.82 0.15  0.971 2.042 0.958
Lo  0.865 47.50 0.68 0.979 2.005 0.942
70  0.654 82.00 1.26  0.995 2.001 0.954
100 0.547 120.10 1.64  1.003 1.992 0.958
10 1.977 13.83 0.24 0.982 1.971  2.981 0.954
4o 0.988 53.95  0.92 1.004 1.974 2.982 0.946
70 0.747 94.97 1.72  0.984 1.992 2.992 0.962
100 0.625 134,47 2.28 1.007 2.006 2.996 0.954
10 1.977 12.23 0.12 0.969 2.037 3.019 0.966
Lo  0.988 46.31 0.52 1.030 1.982  2.993 0.946
70  0.747 79.95 0.93 0.999 2.005 3.003 0.956
100  0.625 111.91 1.35 0.986 1.993  3.006 0.942




L

TABLE iV

UNEQUAL COVARIANCE MATRICES AND EQUAL SAMPLE SIZES:
SEQUENTIAL PROCEDURE (2.3.4)

sD(n)

C d n ﬁ] Hy Ha c.p
5 10 1.731 9.52 0.1k 0.998 1.983 0.922
Lo 0.865 Lo.24 0.30 0.992 1.990 0.936
70 0.654 69.35 0.39 0.999 1.983 0.956
100 0.547 99.20 0.45 1.003 2.009 0.960
10 10 1.731 11.15 0.07 0.984 1.984 0.960
Lo 0.865 38.97 0.29 1.011 2.002 0.938
70 0.654 69.35 0.38 0.994 1.991 0.956
100 0.547 99.61 0.4h 1.018 2.011 0.950
5 10 1.977 9.83 0.12 1.021 1.976 2.957 0.932
Lo 0.988 4o.08 0.24 1.008 2.005 3.002 0.934
70 0.747 69.70 0.30 1.011 1.989 3.006 0.956
100 0.625 100.6k4 0.35 1.003 2.004 2.993 0.944
10 10 1.977 11.02 0.06 0.955 2.023 3.044 0.956
4o 0.988 4o.07 0.25 1.006 2.002 3.005 0.944
70 0.747 69.75 0.29 0.993 1.992 2.981 0.964
100 0.625 99.82 0.36 0.979 2.006 2.992 0.936
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procedure. The Table IV summarizes our finding for the sequential pro-
cedure.

Remark 2.4: From Table |11, we notice, as we expect that n is always
larger than C. The amount of oversampling reduces when we go from p=2 to
p=3. The results also get better in this sense as m increases. The esti-
mated coverage probability (c.p.) almost always exceeds the target which
is 0.95 for the two-stage procedure. From Table [V, we notice that both n
and c.p. are very close to ¢ and 0.95 respectively for the sequential pro-
cedure, and naturally, the sequential procedure also performs better when

m increases.

2.5.3 Moderate Sample Size Performances for the

Problem of Section 2.4

We use the ''rule'' as being the two-stage procedure defined by (2.4.6)

and (2.4.7). We give results for p=2 and 3, m=5 and 10, and n* = 20, 80,

oS

140, 200 where n* = r* + s™. For each R? (considered in subsection
2.4.2) defining the sequential procedure, we give moderate-sample results
for p=2 and 3, m=5 and 10, and n* = r* + s* = 20, 80, 140, 200. The Table

V1 reports the results for the two-stage procedure, and Tables Vil, VIII,

o8
w

IX and X report the results for the sequential procedures defined by R],

RZ’ R3 and Rh’ respectively.

- ot
Remark 2.5: From Table VI, we notice that s always overestimates s~

by a large margin but r is a fairly good estimator for r*. This is due to

the fact that o§ is four times larger than of.

probability (c.p.) always seems to exceed the target which is 0.95. We

The estimated coverage

notice also that the amount of oversampling is reduced when we go from p=2
to p=3. As m increases the two-stage procedure (2.4.6) - (2.4.7) performs

better.



TABLE V

THE h-VALUES NEEDED FQR THE TWO-STAGE PROCEDURE
DEFINED BY (2.4.6) AND (2.4.7)

____________________________ D e

_______________ 2 3

R S S | PR S—

_.l..0.10 0,05 0.0l | 0.10_ 0.5 0.0l _
2 % 42.8106 85.5927 412.5142E 33.9436 54.8146 155.5587
E 3 g 17.8003 26.9637 61.8595§ 19.5283 26.8801 49.5526
‘ 4 i 13.9247 19.7438 37.7372E 16.6165 21.9875 36.5761
j 5 i 12.4330 17.1556 30.4958' 15.3980 20.0346 31.9482
i 6 % 11.6520 15.8475 27.1373 14.7345 18.9935 29.6134

; 7 } 11.1736 15.0629 25.2226, 14.3170 18.3484 28.2135j
1 8 ! 10.8511 14.5413 23.9911 14.0307 17.9102 27.2824

} 9 % 10.6192 14.1700 23.13473 13.8222 17.5933 26.6192“
%10 i 10.4445 13.8924 22.5053 13.6637 17.3536 26.1230
515 E 9.9716 13.1500 20.8670 13.2276 16.6992 24.7896
i20 2 9.7605 12.8229 20.1659 13.0287 16 4047 24.2024
;25 ; 9.6410 12.6389 19.7770 12.9165 16.2374 23.8716
330 g 9.5641 12.5211 19.5298 12.8435 16.1297 23.6618
é35 E 9.5105 12.4391 19.3588, 12.7923 16.0542 23.5140
%40 | 9.4711 12.3788 19.2335: 12.7545 15.9986 23.4052
éSO 9.4167 12.2960 19.0621  12.7024 15.9219 23.2557
60 9.3812 12.2418 18.9504% 12.6680 15.8716 23.1579
170 9.3560 12.2036 18.8718% 12.6439 15.8361 23.0889
;80 9.3374 12.1753 18.8136i 12.6259 15.8096 23.0376
GOO 9.3114 12.1359 18.7329% 12.6008 15.7729 22.9665
é o 9.2103 11.9829 18.4207; 12.5028 15.6295 22.6898




TABLE V (Continued)

| g PSP AR, A SRR, G0 I A N (L A0 2 B B £ U, N5 N

2 32.8601 48.0374 106.5254| 33.7425 46.5578 89.8196
3 21.9035 28.6976 47.6389| 24.4461 31.0450 48.3801
4 19.3834 24.7027 38.2284} 22.1523 27.5172 40.6595

18.2991 23.0206 34.5786| 21.1265 25.9827 37.5113

17.6889 22.0990 32.6582' 20.5467 25.1276 35.8121

7 17.3004 21.5183 31.4770! 20.1744 24.5832 34.7505:
8 17.0314 21.1193 30.6779| 19.9153 24.2064 34.0249
9 16.8343 20.8283 30.1017! 19.7245 23.9303 33.4976
10 16.6837 20.6068 29.6784, 19.5783 23.7192 33.0971
15 16.2659 19.9962 28.4825; 19.1705 23.1334 31.9975 .
25 15.9645 19.5591 27.6490; 18.8742 22.7105 31.2142;

30 15.8932 19.4561 27.4543:

!
i
%
20 16.0744 19.7181 27.9509% 18.9825 22.8647 31.4989 "
|
!
© 18.8039 22.6105 31.0302
; .

35 15.8432 19.3841 27.3184 | 18.7546 22.5403 30.9014

40 15.8062 19.3308 27.2181: 18.7180 22.4884 30.8062
50 15.7552 19.2573 27.0801 18.6675 22.4167 30.6750
60 15.7216 19.2090 26.98953 18.6342 22.3696 30.5888
70 15.6978 19.1748 26.9255| 18.6106 22.3362 30.5279
80 15.6801 19.1494 26.8779 18.5931 22.3113 30.4825

100 15.6555 19.1140 26.8117| 18.5687 22.2767 30.4194

e T B S T VR



TABLE VI

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: TWO-STAGE PROCEDURE (2.4.6) AND (2.4.7)

~

= >
(9]

m r* s* d r s SD(r + s)

ﬁ] u2 3 'p‘
5 6.7 13.3 1.642 7.33 25,61 0.56 0.950 1.989 0.980
26.7 53.3 0.821 26.55 102.99 2.29 1.006 2.021 0.956
L46.7 93.3 0.621 Ly 17 183.02 4. 07 0.993 2.009 0.956
66.7 133.3 0.519 63.35 255.58 5.70 1.007 1.997 0.964
10 6.7 13.3 1.642 10.01 21.10 0.28 0.974 2.016 0.986
26.7 53.3 0.821 21.21 83.28 1.25 0.988 2.000 0.954
L6.7 93.3 0.621 36.67 147.82 2.35 1.005 2.017 0.962
66.7 133.3 0.519 52.43 199.53 3.07 0.992 2.001 0.942
5 6.7 13.3 1.875 6.47 23.15 0.41 1.016 1.980 3.032 0.972
26.7 53.3 0.938 23.43 93.74 1.74 0.992 1.988 3.023 0.940
L6.7 93.3 0.709 39.66 159.30 2.98 1.002 2.018 2.978 0.960
66.7 133.3 0.593 57.42 227.81 L. 4o 0.992 2.012 3.001 0.930
10 6.7 13.3 1.875 10.00 20.39 0.23 1.012 © 1.992 3.013 0.992
26.7 53.3 0.938 20.28 79.11 0.91 0.981 1.999 2.996 0.962
46.7 93.3 0.709 34.49 139.73 1.66 0.995 2.010 2.999 0.964
66.7 133.3 0.593 49.79 201.16 2.31 1.007 1.993 3.008 0.952

S



TABLE VI

oL
w

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE Rl (2.4.9)

~ A ~

r s d r s SD(r + s) My u, M3 c.p
5 6.7 13.3 1.642 6.52 12.00 0.22 1.031 1.942 0.930
26.7 53.3 0.821 26.33 52.47 0.41 1.008 1.994 0.922
L6 .7 93.3 0.621 46 .28 93.01 0.53 0.998 2.019 0.942
66.7 133.3 0.519 66.49 132.95 0.63 1.016 1.993 0.952
10 6.7 13.3 1.642 10.02 11.68 0.12 0.934 1.945 0.948
26.7 53.3 0.821 26.19 52.23 0.42 0.996 2.004 0.938
4.7 93.3 0.621 49,19 91.96 0.52 1.011 1.997 0.942
66.7 133.3 0.519 66 .54 132.61 0.64 1.017 2.018 0.950
5 6.7 13.3 1.875 6.70 12.54 0.18 1.013 1.977 2.971 0.908
26.7 53.3 0.938 26.75 52.91 0.32 0.979 1.984 2.989 0.962
Le.7 93.3 0.709 L6 .71 93.26 0.42 0.991 1.995 2.990 0.952
66.7 133.3 0.593 66.57 132.47 0.50 0.996 2.008 3.009 0.944
10 6.7 13.3 1.875 10.01 11.43 0.10 1.019 1.975 3.007 0.922
26.7 53.3 0.938 26.78 53.18 0.30 0.988 2.010 3.016 0.958
46.7 93.3 0.709 46.40 92.59 0.L44 1.017 2.021 2.988 0.960
66.7 133.3 0.593 66.55 132.92 0.50 0.987 2.009 3.011 0.918

9



TABLE V111

ot
<

UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R2 (2.4.10)

r s d r s SD(r + s) ﬁ] ﬁz ﬁ3 c.p
5 6.7 13.3 1.642 6.52 12.13 0.21 1.031 1.942 0.932
26.7 53.3 0.821 26.33 52.48 0.4 1.008 1.994 0.922
46.7 93.3 0.621 L6 .28 93.01 0.53 0.998 2.019 0.942
66.7 133.3 0.519 66.49 132.96 0.63 1.016 1.993 0.952
10 6.7 13.3 1.642 10.02 12.33 0.12 0.945 1.935 0.956
26.7 53.3 0.821 26.19 52.25 0.42 0.996 2.003 0.938
L46.7 93.3 0.621 L46.19 91.97 0.52 1.011 1.997 0.942
66.7 133.3 0.519 66.54 132.61 0.64 1.017 2.018 0.950
5 6.7 13.3 1.875 6.70 12.63 0.18 1.009 1.969 2.973 0.914
26.7 53.3 0.938 26.75 52.92 0.32 0.979 1.984 2.989 0.962
46,7 93.3 0.709 L. 71 93.26 0.42 0.991 1.995 2.990 0.952
66.7 133.3 0.593 66.57 132.47 0.50 0.996 2.008 3.009 0.944
10 6.7 13.3 1.875 10.01 12.15 0.10 1.013 1.974 3.003 0.924
26.7 53.3 0.938 26.78 53.20 0.30 0.987 2.011 3.015 0.958
L6 .7 93.3 0.709 46 .40 92.59 0.44 1.017 2.021 2.988 0.960
66.7 133.3 0.593 66.55 132.92 0.50 0.987 2.009 3.011 0.918

Ly



UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE R; (2.4.11)

TABLE 1IX

~

m r s* d SD(I_’ + ;) ) My u3 c.p.
5 6.7 13.3 1.642 6.71 12.66 0.21 1.032 1.955 0.936
26.7 53.3 0.821 26.55 52.89 0.41 1.008 1.991 0.924
L6.7 93.3 0.621 L6.50 93.47 0.53 0.997 2.018 0.946
66.7 133.3 0.519 66.72 133.32 0.63 1.015 1.993 0.958
10 6.7 13.3 1.642 10.03 13.59 0.13 0.954 1.944 0.966
26.7 53.3 0.821 26.38 52.68 0.41 0.995 2.004 0.938
L6.7 93.3 0.621 k6.37 92.42 0.52 1.011 1.997 0.940
66.7 133.3 0.519 66.72 133.04 0.64 1.017 2.018 0.950
5 6.7 13.3 1.875 6.86 13.15 0.17 1.021 1.986 2.969 0.926
26.7 53.3 0.938 26.93 53.29 0.32 0.981 1.986 2.987 0.962
h6.7 93.3 2.709 46.87 93.62 0.1 0.990 1.994 2.990 0.948
66.7 133.3 0.593 66.77 132.83 0.50 0.997 2.008 3.009 0.950
10 6.7 13.3 1.875 10.01 13.57 0.11 1.018 1.972 2.998 0.942
26.7 53.3 0.938 26.96 53.57 0.30 0.985 2.014 3.016 0.954
L6.7 93.3 0.709 46.59 92.99 0.44 1.016 2.022 2.989 0.964
66.7 133.3 0.593 66.72 133.31 0.50 0.988 2.009 3.010 0.914

8h



UNEQUAL COVARIANCE MATRICES AND UNEQUAL SAMPLE SIZES: SEQUENTIAL PROCEDURE Rz (2.4.12)

TABLE X

m re s* d SD(r + s) 1 iy ﬁ3 c.p.
5 6.7 13.3 1.642 6.83 13.11 0.21 1.036 1.959 0.938
26.7 53.3 0.821 26.87 53.23 0.4 1.006 1.990 0.922
L6.7 93.3 0.621 L6.67 93.82 0.53 0.997 2.018 0.946
66.7 133.3 0.519 66.88 133.64 0.63 1.0156 1.992 0.956
10 6.7 13.3 1.642 10.03 15.15 0.13 0.954 1.933 0.974
26.7 53.3 0.821 26.51 53.01 0.41 0.996 2.004 0.938
Le.7 93.3 0.621 L46 .54 92.75 0.52 1.011 1.998 0.940
66.7 133.3 0.519 66 .84 133.37 0.64 1.017 2.018 0.948
5 6.7 13.3 1.875 6.98 13.57 0.17 1.011 1.984 2.968 0.938
26.7 53.3 0.938 27.07 53.63 0.32 0.980 1.985 2.988 0.956
L46.7 93.3 0.709 46.99 93.96 0.43 0.990 1.994 2.990 0.948
66.7 133.3 0.593 66.89 133.12 0.50 0.997 2.008 3.009 0.958
10 6.7 13.3 1.875 10.01 15.10 0.11 1.035 1.973 2.994 0.964
26.7 53.3 0.938 27.09 53.92 0.30 0.985 2.011 3.018 0.954
L46.7 93.3 0.709 L6 .74 93.33 0.4%4 1.015 2.020 2.988 0.962
66.7 133.3 0.593 66.90 133.64 0.50 0.989 2.009 3.011 0.910

6
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Remark 2.6: |If we let Ei to be the total sample size estimated from

using the rule R%, we can immediately readout from Tables VII, VIII, 1IX

i
and X that ﬁ] < 52 < 53 < Bh’ and this is quite expected. The estimated

coverage probability (c.p.) is not so close to the target 0.95 for these

sequential procedures for some of the entries.



CHAPTER 11

FIXED-SIZE CONFIDENCE REGIONS FOR THE REGRESSION
PARAMETERS IN THE GENERAL LINEAR MODEL

WITH NORMALITY
3.1 Introduction and Review

We start by formulating the problem. Suppose we have the general

linear model given by

Y = X@g+E (3.1.1)

where !n is an observed nx! random vector, Xn is a known nxp matrix of

rank p, B8 is a pxl vector of unknown regression parameters, and En is nxl

random vector of errors distributed as Nn(Q, Ozln), with o €(0,») being

unknown. We assume that p 2 2.
Given two numbers de(0,~) and ae(0,1), we propose to consider the

following ellipsoidal confidence region for 8. We define

-1

A A 2
R o= WerP: n (B -w'(x! X)(B -W=d}, (3.1.2)

where én = (X; Xn)_] XB Y, with p > n. Now, the confidence coefficient

associated with this region Rn is given by

a \ . ~ _ 2
P(BeR) = Pl(g -8 (X X)(B -8 <nd}
= Pl (B gyt (k) (B og) < N9
02 n ~ nn §n B) s 02

51



52

2
2 nd
= P{x < }
(p) = 2
2
- nd
F(_.._Z , (3.1.3)

where F(-) is defined as in Chapter i, that is
F(t) = POG | st) fort >0
(p)

Remark 3.1: In (3.1.2), we take the weight matrix as %—(X; Xn).
Since %—(Xé Xn) is generally assumed to converge to a positive definite

matrix A, say, as n > « in order to study large sample properties in the

theory of linear regression analysis. However, we do not make this

assumption.

Now, we require the confidence coefficient to be at least (I-a), so

we need the sample size n to be at least E%— = C, say, where F(a) = 1-a.
d

This '"'C'"" is referred to as the '"optimal fixed sample size' required to
solve the problem if 02 is known. However, C is unknown since 02 is
unknown and thus we must estimate C by using a suitable positive integer
valued random variable N, say. Once we determine N, we propose the cor-
responding confidence region RN for 8. Naturally, the characteristics
for '"goodness'' of having the region RN for B will depend on the ''close-
ness'' between N and C.

In Section 3.2, we propose a two-stage procedure along the lines of
Stein (1945, 1949), Chatterjee (1959, 1960), and Mukhopadhyay (1982), and

study various properties.
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Our Section 3.3 deals with a modified two-stage procedure to obtain
"asymptotic efficiency' in the Chow and Robbins (1965) sense. This pro-
cedure is motivated by the results of Mukhopadhyay (1980, 1982).

In Section 3.4 we present a sequential procedure where we take one
sample at a time after we start to get to the stopping stage. Here, we
derive second order expansions for E(N) and P(@ EZQN) using the nonlinear
renewal theory of Woodroofe (1977, 1982) as it was carried out in Al-
Mousawi (1984).

Our Section 3.5 deals with a three-stage procedure proposed along
the lines of Hall (1981) and Al-Mousawi (1984). The motivation behind
this procedure can be summarized as follows. After starting the experi-
ment with m(> p+1) samples, we estimate a fraction rC of the optimal
fixed sample size (¢ by, say, M. Then, depending on the size of M, we de-
cide whether to obtain all the remaining samples of size N-M where N is
the estimate of C found in the third stage.

Section 3.6 is devoted to numerical studies found by simulated ex-
periments for all the procedures proposed in previous sections of this
chapter. These results help us in exemplifying the moderate sample size
behavior of all our proposed sampling techniques.

Gleser (1965, 1966) proposed a sequential procedure to construct a
spherical confidence region for the regression parameters without the
normality assumption. Albert (1966) and Srivastava (1967, 1971) proposed
sequential procedures to construct both spherical and ellipsoidal confi-

dence regions for the regression parameters without the normality assump-
tion. Mukhopadhyay (1974) proposed a sequential point estimation pro-
cedure for the regression parameters assuming the loss function to be

squared error plus linear cost. Recently, Finster (1983) studied
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sequential point estimation problems for the regression parameters in a
multivariate linear model, and thus these are natural extensions of the
work of Mukhopadhyay (1974). In this chapter again we write [x] for the
largest integer smaller than x. Let Si be the usual estimate of 02, that
is the mean squared error, namely

s2 o= (mee) (Y, - X B, - % B, (3.1.4)

n*n’ '~n n<n
for n 2 p+1 and p > 2.
3.2 A Two-Stage Procedure

We start with m(z p+1) samples, and define
2,.2
N = max{m,[bsm/d 1+ 13, (3.2.1)

where b = pb', b' being the upper 100a% point of the F-distribution with
degrees of freedom p, m-p.

If N=m, we stop sampling at the starting stage. Otherwise, we sam-
ple the difference N-m at the second stage. Thus, when we stop we have
XN as our random vector for the response variable. Then, we compute EN

and propose the corresponding region RN as in (3.1.2). Some of the

properties of this procedure are stated in Theorem 3.2.1.

Theorem 3.2.1: For the procedure in (3.2.1), for all B ¢ &P, and

o €(0,=) we have:

() P(BeRy) z1-a foralld>o0,

(b) E(N/C) »-g as d~>0,
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g2 2
(=) }>1 as d~>0, and
bo

(&) var(n) ({25m)

(d) P(geRy) >1-a as d-o0.

We omit its proof for brevity, as it can be given along the lines of

the proof of Theorem 2.2.1.

Remark 3.2: Part (a) tells us that the procedure (3.2.1) is 'exactly
consistent' in the Mukhopadhyay (1982) sense, while Part (d) shows that
this procedure is also '"asymptotically consistent" in the Chow and Robbins
(1965) sense. In Part (b), we have the limiting ratio g-which is always

larger than one which means that N overestimate C, even asymptotically.
3.3 A Modified Two-Stage Procedure

Motivated by the results of Mukhopadhyay (1980, 1982), we first
choose and fix a real number pe(0,=) and let the starting sample size be

1
2 TIE
m = max{p+l,[(asd”) 1+ 1} .

Then, we define the stopping rule as:
2,2
N = max{m,[bs /d"] + 1} . (3.3.1)

The number b remains the same as in (3.2.1). Again if N=m, we stop

sampling at the starting stage itself. Otherwise, we sample the differ-
ence N-m. We compute EN and propose the corresponding confidence region
RN for B as in (3.1.2). The main point to observe here is that m > « as
d - 0, however, m/C > 0 as d - 0. Thus, b/a > 1 as d -~ 0. Some of the

properties of this procedure are listed in Theorem 3.3.1.
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Theorem 3.3.1: For the procedure (3.3.1), for all 8 etma and

o £(0,%) we have:

(@) P(8eRy) 2 1-a forall d>o0,

(b) E(N/C) > 1 as d~ 0,

2 2
() var(n) (5™ (@73 5 1 as d > 0, and
" bo '

(d) P(§ € RN) + 1-a as d +~ 0 .

Proof: Parts (a), (c) and (d) follow along the same lines as those
discussed in the proof of Theorem 2.2.1. To prove Part (b), we consider

the new basic inequality

—ab—s E(N/C) < -'a’-+ S 0 B _PE_‘_ .

Then, taking limits as d - 0, we can conclude
E(N/C) -1 as d >0 .
This completes the proof of Theorem 3.2.1.

Remark 3.3: The important thing to note here is that by manipulating

the starting sample size m, we can make the two-stage procedure to be



"asymptotically first-order efficient'" in the Ghosh-Mukhopadhyay (1981)
Tim

sense, that is we can conclude &0

E(N/C) = 1 for the modified two-stage

procedure (3.3.1).
3.4 A Sequential Procedure

Here, we start with the sample size m(x p+1), and define the stopping

rule

N = inf{n 2m:n 5 } (3.4.1)

For all B ¢ ® and o €(0,»), N is a positive integer valued random
variable which can be easily shown to be finite with probability one.
Thus, when we stop, we compute éN and propose the corresponding con-

fidence region RN as defined in (3.1.2). Some of the properties of this

procedure are listed in Theorem 3.4.1 and 3.L4.2.

Theorem 3.4.1: For the procedure (3.4.1), for all B ¢ nﬁ{ and

o €(0,») we have:
(a) E(N) sC+m+p+1 forall d>o,
(b) N/C>1 as d-0,
(c) E(N/C) 1 as d=~o0,

(d) P(@eRN)—>]-oc as d->0, and

() B Lowio,n as o

We omit its proof for brevity, as it follows along the lines of

Theorem 2.2.2 with obvious modifications in various steps.
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Theorem 3.4.2: For the procedure (3.4,1), for all > Igﬁ and

o £(0,») we have as d -~ 0:

(@) EN)=Cc+v-2-p+o(l) ifmzp+3,

(b) P cR) = 1=+ (4/a)7 (v - 3 - {Balyeca)

+ o(dz), if(i) m 2 p+3 for p=2 or p > 4 and

(ii) m> 7 for p=3.

Here f(-) is as in Theorem 2.2.3 and

o]

-1
v=3o B a®) a2 e - ne@ ),

the function G(.,.) being defined in (2.2.13).

We omit its proof also for brevity. The tedious derivations will

follow along the same lines of proof of Theorem 2.2.3.

Remark 3.4: The Part (a) of Theorem 3.L4.2 shows that the sequential

procedure (3.4.1) is indeed 'asymptotically second-order efficient' in
lTim
d-0

v-2-p. The modified two-stage procedure (3.3.1) can be shown to have the

the Ghosh-Mukhopadhyay (1981) sense, since we have E(N-C) =

property ;Lg E(N-C) = = instead.

3.5 A Three-Stage Procedure

Motivated by the results of Hall (1981), we now propose the following
three-stage procedure in order to estimate C and thereby estimating 8 in

the end.
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We start with a sample of size m(z p+1) and fix a real number

r €(0,1) and let,
2,,2
M = max{m,[ra Sm/d 1+ 13, (3.5.1)

We take fresh samples, if needed, to form an Mxl vector YM at this stage.

Then, we compute EM and later obtain Sﬁ. We now define

N = max{M,[a Sﬁ/dzj + 1}, (3.5.2)

and take new samples, if needed, to form Y Once we determine N, we com-

N
pute @N and propose the corresponding region RN as in (3.1.2).

Using representation analogous to those in (2.2.12), we can easily

rewrite (3.5.1) - (3.5.2) in the following equivalent fashions: we have
M = max{m,[ra Dm/dz] + 11, (3.5.3)
N = max{M,[a UM/dz] + 1}, (3.5.4)
where Uk = (k-p)-] té? U, , k=m, ml,..., the Ui's being i.i.d.cz X%]).

Some properties of this procedure are listed in Theorems 3.5.1 and

3.5.2.

Theorem 3.5.1: For the procedure in (3.5.1) - (3.5.2), for all

8 ¢ ®, and o £(0,2) we have as d = 0:

]

(a) E(N) = C+ %-- 2r '+ o(1),

(b) Var(N) = 2r 'c+o(2), and
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(c) EIN - E(N)l3 = o(Az),
where A = a/dz.

Proof: We follow very closely the developments in Hall (1981). We
indicate only some of the basic steps assuming o2 = 1. Using (4.1) of

Hall (1981), we get

i

A E(DM) A -] Var(U]) + o(1)

r-2e b e o(n) . (3.5.5)

Also, E{X UM - [ UM]} = %—+ o(1), and this can be justified along the
lines of Hall (1981). Let T = [ GM] + 1. Then Hall's (1981) equation

(4.2) will lead to

E(N) E(T) + o(1)

1+ E( UM) - E{) Uy - [A uM]} + o(1) .

Using (3.5.5) we have

1

E(N) = X+ %-~ 2r '+ o(1). (3.5.6)

Notice now that Ao = C, and this leads to Part (a). Again, by using

(4.3) and (4.4) from Hall (1981), we obtain

Var(N) Var(T) + o(1)

= r—]A Var(U]) + o(1)

= 2r 4+ 00n) . (3.5.7)
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In (3.5.7), replaciﬁg A by koz we obtain Part (b). We omit the proof of
Part (c) as it can be tackled along the similar lines as in Hall (1981).
This completes the proof of Theorem 3.5.1.

We now modify the three-stage procedure (3.5.1) - (3.5.2) slightly
so as to be able to conclude that the resulting coverage probability,

namely, P(B ¢ RN) turns out to be (1-a) + o(dz). In order to achieve that

goal, we define:

m. = 3r -7(p-a)r -7
2,.2
M = max{m,[ra Sm/d 1+ 1}, (3.5.8)
and
a Sﬁ
N* = max{M,[—-7-+ m]]+ 1} . (3.5.9)
d

A

Once we determine N*, we compute B and propose the corresponding
NK

region?ZN* for B as in (3.1.2).

Theorem 3.5.2: For the procedure in (3.5.8) - (3.5.9), for all

8 e R, and 0 £(0,2) we have as d -~ 0:

(a) P(gcR@ = I1-u+ old), and
e "] ] -]
(b) E(N*) = C+r - 5—(p-a)r + o(1).
Proof: We first verify Part (a). In fact, we start working with

(M,N) from (3.5.1) - (3.5.2), and at the end we show that N must be
modified to N* defined in (3.5.9) to conclude Part (a).

We start with
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2
E{F@%}O}
)

0
—_
(o]
m
~
~—
|

E{F(2N)},
2,2 .
where & = d " /o”. Now we can write

ECFN)} = FQEMN) + 3 t%E(N - EN))Z FI(RE(N) + v (),

say, where

e @1 s k22 BN - EN]?Y = 0(d?),

IA

by Part (c) of Theorem 3.5.1. Here, K is used as a generic positive con-

stant independent of d. We have used the same K whenever needed.

Again, we can write

F(2E(N))

F(a) + {2E(N)-alF'(a) + r2(d), (3.5.10)
where we let

rz(d) = %{RE(N)-a}Z F''(z),

for a suitable positive number z.
Let us now take A = A(d) = a(]+e)/d2, and with this choice, we have
Irz(d)l =0 (d2 + |e|). Also, we have from Part (a) of Theorem 3.5.1

z{xoz + L. 2r-] +0o(1)} - a

2E(N)-a 3

2
ac + & (% -2+ o(dd). (3.5.11)
(o]



63

Thus, combining (3l5.]0) and (3.5.11), we obtain

2

FREMN)) = Fla) + {ae + & (- 2r7 )} F'(a) + o(d) + o(d” + [e]).
¢ (3.5.12)
Again, we have from Part (b) of Theorem 3.5.1
1 2 2 a d? - 2
5 2 E{ (N-E(N))“} = >— r  + o(d). (3.5.13)
(e}

By combining (3.5.12) and (3.5.13), we get

& -1 2
E{F(aN)} = 1-a + F'(a) {ae + —7-(5-- 2r )}+ o(d%)
o
2
# 2T s 0@y Fi(a) + old® + |e)),
o
which implies
& -1
E(FeN)} = l-a + {ac + — (5 - 2r )}F'(a)
g
ad2 -1 2 2
+ = F''(a) + o(d”) + o(d” + |e]).
o
Now, note that
a F(a) = 2(p-2-a) F'(a) ,

and thus we get
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4 -1 !
E{F(aN)} = (1-a) +{ae + ~ (-2— -2r )+ 5 (p-2-a)} F'(a)
o
+ o(d®) + o(d® + le]). (3.5.14)

Now, in order to make the second term from the left in (3.5.14) vanish,

we choose € such that

Ce = 2r - %-(p-z-a)r-] - %
- 3-epalynt
= m
Hence, we can immediately see from (3.5.14) that
PBe R, = l-a+ o(dz) as d = 0.

P N7
This proves Part (a).

For Part (b), simply notice from Part (a) of Theorem 3.5.1 that

E(NY) = C+ LR L {3 - j%gl}r-l - -;"‘“ o(1)

= C+r - %{p-a)r_] + o(1).
This completes the proof of Theorem 3.5.2.
3.6 Moderate Sample Size Performance

In this section, we present numerical results obtained through simu-

lations using PROC MATRIX from the SAS package. The subsections 3.6.1,
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3.6.2, 3.6.3 and 3.6.4 respectively present the results of our simulation
studies when we used the two-stage, the modified two-stage, the sequen-
tial and the three-stage procedures.

Let us now briefly explain the way we carried out the simulated ex-
periments in the computer. In any particular table we use a particular
stopping ''rule'" to determine the sample size N, say. We generate a se-

quence of random samples {Ei’ i=1,2,...} from N(0,1) and let

] 1 E 1 =
Yi BO + B]l + o 1,2,...

in all our procedures we take B' = (Bo, 6]) = (1,0.5) and 0 = 1. We fix

X' = where s = 1,2,...

A particular 'rule' is replicated k times, the jth replicate giving rise

to observed values of N and BN as, say, n(j) and En(j) respectively.
. ~ - _ -1 Kk - -1k
Then, we estimate E(N) and BL by n = k jgl n(j) and BZ = k jé

Bﬂn(j) respectively, £ =0,1. We also compute the corresponding standard

error, namely

so(n) = (k7 - k)7 jﬁl (n(G) - B2,
By = (2-0" 5 G - )%
so(g,) = iE By () TR

for £ = 0,1. While using a particular "rule'", we also estimate the

coverage probability of the region RN by, say, c.p. where
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c.p. = Observed relative frequency of
a - 1 i 2 _ 2
Br5) ~ B &Gy X)) Bagy - B = nl)e,

among all the replicates for j = 1,2,...,k.
For all the simulations we consider 95% confidence regions only,
that is, we keep @ = 0.05 fixed and d is computed using the relationship

1
d = (a/C)*. All computations are carried out with k = 500.

3.6.1 Moderate Sample Size Performances of the

Two-Stage Procedure

We use the ''rule'' as being the two-stage procedure of Section 3.2.
We give results for m=5 and 10 and C = 10, 40, 70, 100. Table XI summa-

rizes our findings.

Remark 3.5: From Table Xl, we notice that nis always larger than
C, however, almost always the estimated coverage (c.p.) exceeds the tar-
get which is 0.95. In the sense of less oversampling, the results get
better as m increases. We suggest that m be taken as 10 in the absence

of any further knowledge.

3.6.2 Moderate Sample Size Performances of the

Modified Two-Stage Procedure

Here, we use the ''rule'' as being the modified two-stage procedure
of Section 3.3. We naturally have to choose p(>0) suitably. We may
notice that as p decreases the starting sample size m increeses. We
first fix C= 10, 40, 70, 100 and then we select p = 0.05, 0.1, 0.3, 0.5.

In Table XIl, we summarize our findings.



TABLE XI

TWO-STAGE PROCEDURE (3.2.1)

m c d n sp(n) éo é] c.p

5 10 0.774 32.95 1.13 0.991 0.503 0.962
L0 0.387 134.23 L.56 0.975 0.503 0.956
70 0.293 210.30 8.24 1.005 0.501 0.944
100 0.245 307.23 11.01 1.005 0.500 0.956

10 10 0.774 15.94 0.31 0.985 0.501 0.978
40 0.387 56.77 1.2 0.991 0.501 0.952
70 0.293 104.03 2.27 1.000 0.500 0.944
100 0.245 149.96 3.30 1.010 0.500 0.946




TABLE X1

MODIFIED TWO-STAGE PROCEDURE (3.3.1)

68

o C d n sb(n) éO B c.p.
0.05 10 0.774 16.69 0.34 1.010 0.500 0.966
Lo 0.387 45,18 0.43 1.008 0.500 0.960
70 0.293 75.99 0.59 1.002 0.500 0.966
100 0.245 105.50 0.69 1.002 0.500 0.948
0.10 10 0.774 16.69 0.34 1.010 0.500 0.966
Lo 0.387 45,76 0.51 1.004 0.500 0.948
70 0.293 75.89 0.66 0.996 0.500 0.956
100 0.245 106.24 0.80 0.011 0.500 0.946
0.30 10 0.774 24.39 0.69 1.059 0.490 0.970
Lo 0.387 48.23 0.75 1.032 0.499 0.940
70 0.293 79.67 1.00 0.984 0.500 0.944
100 0.245 110.46 1.14 1.002 0.500 0.944
0.50 10 0.774 30.25 1.11 0.980 0.498 0.970
Lo 0.387 55.13 1.07 1.015 0.499 0.954
70 0.293 87.11 1.40 1.012 0.499 0.966
100 0.245 116.04 1.63 0.994 0.500 0.950
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Remark 3.6: From Table XII, we notice that the average sample size
n is close to C and the estimated coverage probability (c.p.) is also
close to 0.95. The results get better in the sense of less oversampling
as p decreases, and this is.generally expected. For this experiment,
p =0.05, 0.10 or 0.3 seems to be the right choice. We have also run the
same experiment with 02 = 0.5 and 0.25 and we found that the most suit-
able choice for p is 0.3. We recommend using the procedure in practice

with p = 0.3 in the absence of any further knowledge.

3.6.3 Moderate Sample Size Performances of the

Sequential Procedure

Here, we use the '‘rule'' as being the sequential procedure of Sec-
tion 3.4. We give results for m =5 and 10 and ¢ = 10, 40, 70, 100.

Table X!11 summarizes our findings.

Remark 3.7: From Table XI11, we notice that both n and c.p. are
very close to C and 0.95 respectively for the sequential procedure.

Naturally, this procedure performs better when m increases.

3.6.4 Moderate Sample Size Performances of the

Three-Stage Procedure

We use the '‘rule' as being the three-stage procedure of Section 3.5
which is defined by (3.5.8) and (3.5.9). We estimate E(M) and E(N*) by
mand n* respectively where

-1

- k - ko
m = k jgl m(j) and n” = k Z n"(j)

We also compute the standard errors



TABLE X111

SEQUENTIAL PROCEDURE (3.4.1)

70

m C d sD(n) éo é] c.p.

5 10 0.774 8.88 0.18 1.008 0.494 0.884
40 0.387 35.42 06.57 1.037 0.496 0.884
70 0.293 67.40 0.71 0.986 0.502 0.940
100 0.245 97.41 0.87 0.999 0.500 0.938

10 10 0.774 11.56 0.11 0.966 0.507 0.968
4o 0.387 38.45 0.46 0.998 0.502 0.922
70 0.293 68.53 0.62 1.012 0.499 0.922
100 0.245 97.36 0.66 1.000 0.500 0.940




TABLE X1V

THREE-STAGE PROCEDURE (3.5.8) - (3.5.9)

C d m sD(m) n* sp(n™) éo B, c.p
0.3 5 10 0.774 5.50 0.07 25.26 0.25 1.010 0.501 0.998
Lo 0.387 12.98 0.45 46.97 0.84 1.002 0.500 0.934
70 0.293 20.42 0.77 72.53 1.33 0.996 0.500 0.922
100 0.245 30.49 1.12 102.11 1.71 0.978 0.501 0.906
0.3 10 10 0.774 10.00 0.00 26.79 0.21 0.986 0.501 0.998
Lo 0.387 13.45 0.22 52.12 0.64 0.985 0.501 0.960
70 0.293 21.29 0.42 77.40 0.98 1.006 0.500 0.934
100 0.245 29.81 0.67 107.25 1.36 0.997 0.500 0.938
0.5 5 10 0.774 6.83 0.15 17.97 0.22 1.055 0.494 0.982
Lo 0.387 20.67 0.68 43.86 0.79 0.991 0.502 0.924
70 0.293 35.48 1.30 74,16 1.28 0.995 0.499 0.908
100 0.245 55.83 2.00 106.06 1.65 1.015 0.499 - 0.932
0.5 10 10 0.774 10.08 0.02 19.71 0.20 0.981 0.502 0.994
Lo 0.387 21.32 0.40 L46.10 0.59 1.014 0.500 0.952
70 0.293 35.81 0.80 74 .54 0.89 0.989 0.500 0.942
100 0.245 50.21 1.16 104.62 1.08 0.997 0.500 0.940

A
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sp(m) = (K2 -k

OOk e o
() = 105 -7 I R -aHh

In this experiment we also took k = 500. We consider r = 0.3, 0.5, 0.7,
C =10, 40, 70, 100 and m = 5, 10.

While carrying out simulation with r = 0.7, we noticed some insta-
bility in the estimated coverage probability (c.p.), with no detectable
change in the estimates of the average sample sizes. On the other hand,
the average sample sizes seemed to increase for r = 0.3. The results
for r = 0.5 seemed to be most stable. The results for r = 0.3 and

r = 0.5 are reported in Table X1V.

Remark 3.8: In Table XIV when r = 0.5, we notice that n" and c.p.

are very close to C and 0.95 respectively. When r = 0.3 we notice that

n" overestimates C. In the absence of any further knowledge, we recom-
mend using the three-stage procedure (3.5.8) - (3.5.9) with r = 0.5 and

starting sample size m = 5 or 10.

Remark 3.9: In a particular application, if all our procedures can
possibly be implemented, we will suggest using the modified two-stage or
the three-stage procedure, simply because these will be less time-consum-
ing. However, the sequential procedure will give the best theoretical
results if it can be implemented. The main point to note is that the
three-stage procedure can be almost as good. The final recommendation
should also consider the structure and design of the particular applica-

tion. We must also stress that we have the coverage probability to be
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Tim

450 E(N/C) = 1 for the modified two-stage procedure

at least (1-a) with
of Section 3.3. However, the coverage probability becomes only asympto-

tically (1-a) for the sequential and three-stage procedures.



CHAPTER IV
CONCLUSIONS

In this study we have presented two different problems in the area
of constructing fixed-size ellipsoidal confidence regions for multipara-
meter estimation. Fixed-size ellipsoidal confidence regions for the dif-
ference of mean vectors of two independent multinormal populations have
been constructed through two-stage and sequential procedures. For this
problem the three separate cases, namely, (i) the covariance matrices
being equal with equal sample sizes, (ii) the covariance matrices being
unequal with equal sample sizes and (iii) the covariance matrices being
unequal with unequal sample sizes have been discussed individually. Our
two-stage procedure in these contexts guarantee the exact confidence
coefficient to be at least the nominal prescribed level. Next, various
first-order and second-order asymptotic properties are also considered
for the proposed sequential procedures.

Through simulated experiments, we study the moderate sample behaviors
of these procedures, and we notice that these procedures perform very
well.

The final choice among those proposed procedures should depend on
the goals and the types of results one expects to have in a particular
context. 7

Next, we have dealt with the problem of constructing fixed-size

ellipsoidal confidence regions for the regression parameters in the

74
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11

general linear model under Gauss-Markoff set up through two-stage, modi-
fied two-stage, sequential and three-stage procedures. The proposed two-
stage and modified two-stage procedures guarantee the coverage probability
to be at least the preassigned nominal value (1-0). For our sequential
and three-stage procedures, the coverage probability is shown to be only
asymptotically close to (1-a). Numerical simulations for moderate sample
sizes have been used to show practical merits of the proposed statistical
procedures. Even though our theoretical results are mostly asymptotic

in nature, the numerical results indicated that the performances of all
these sampling procedures seem to be excellent, even for moderate sample
size. Again, the final choice among those procedures should truly depend
on the goals and types of results one expects to have in a particular

context.



BIBLIOGRAPHY

Albert, A. (1966). 'Fixed size confidence ellipsoids for linear regres-
sion parameters.' Ann. Math. Stat. 37, 1602-1630.

Al-Mousawi, J. S. (1984). ''Fixed size confidence regions for the mean
vector of multinormal distribution.!" Ph.D. dissertation in statis-
tics, Oklahoma State University.

Anscombe, F. J. (1952). ‘''Large sample theory of sequential estimation."
Proc. Cambridge Philos. Soc. 48, 600-608.

Chapman, D. G. (1950). ''Some two-sample tests.'' Ann. Math. Stat. 21,
601-606.

Chatterjee, S. K. (1959). 'On an extension of Stein's two-sample pro-
cedure to multinormal problem." Calcutta Stat. Assoc. Bul. 8, 121~

148. -

Chatterjee, S. K. (1960). ''Some further results on the multinormal
extension of Stein's two-sample procedure.'" Calcutta Stat. Assoc.
Bul. 9, 20-28.

Chow, Y. S. and Robbins, H. (1965). ''On the asymptotic theory of fixed-
width sequential confidence intervals for the mean.'' Ann. Math.

Stat. 36, 457-L62.

Finster, M. (1983). "A frequentistic approach to sequential estimation
in the general linear model.' Jour. Amer. Stat. Assoc. 78, 403-407.

Ghosh, B. K. (1975a). '"A two-stage procedure for the Behrens-Fisher
problem.'" Jour. Amer. Stat. Assoc. 70, L457-L62.

Ghosh, B. K. (1975b). 'On the distribution of the difference of two
t-variables.'" Jour. Amer. Stat. Assoc. 70, 463-467.

Ghosh, M. and Mukhopadhyay, N. (1975). "Asymptotic normality of stop-
ping times in sequential analysis.' Unpublished manuscript.

Ghosh, M. and Mukhopadhyay, N. (1980). 'Sequential point estimation of
the difference of two normal means.'' Ann. Stat. 8, 221-227.

Ghosh, M. and Mukhopadhyay, N. (1981). ''Consistency and asymptotic

efficiency of two-stage and sequential procedures.'' Sankhya, A, ﬂi,
220-227.

76



77

Gleser, L. J. (1965). ''On the asymptotic theory of fixed size confidence
bounds for linear regression parameters.'' Ann. Math. Stat. 36, 463-
467 (see correction note: Ann. Math. Stat. 37, 1053-1055 (1966)).

Govindarajulu, Z. (1981). The Sequential Statistical Analysis of Hypo-
thesis Testing, Point and Interval Estimation, and Decision Theory.
American Sciences Press, Columbus, Ohio.

Hall, P. (1981). "Asymptotic theory of triple sampling for sequential
estimation of a mean.'" Ann. Stat. 9, 1229-1238.

IMSL (1982). International Mathematical and Statistical Libraries.
Edition 9 (Revised 1982). Houston, Texas.

Kimball, A. W. (1951). '"On dependent tests of significance in the
analysis of variance. Ann. Math. Stat. 22, 600-602.

Mukhopadhyay, N. (1974). '"Sequential estimation of regression parameters
in Gauss-Markoff setup.'" Jour. Indian Stat. Assoc. 12, 39-43.

Mukhopadhyay, N. (1976). ''Sequential estimation of a linear function of
means of three normal populations.' Jour. Amer. Stat. Assoc. 71,

149-153.

Mukhopadhyay, N. (1977). '"Remarks on sequential estimation of a linear
function of two means: the normal case.'' Metrika gﬁ, 197-201.

Mukhopadhyay, N. (1980). '"A consistent and asymptotically efficient two-
stage procedure to construct fixed width confidence interval for the
mean.' Metrika 27, 781-78k4.

Mukhopadhyay, N. (1982). 'Stein's two-stage procedure and exact consis-
tency.'" Scandinavisk Aktuarietdskrif, 110-122.

Robbins, H., Simons, G., and Starr, N. (1967). 'A sequential analogue
of the Behrens-Fisher problem.'" Ann. Math. Stat. 38, 1384-1391.

Scheffe, H. (1970). 'Practical solutions of the Behrens-Fisher problem."
Jour. Amer. Stat. Assoc. 65, 1501-1508.

Srivastava, M. S. (1967). '"On fixed-width confidence bounds for regres-
sion parameters and mean vector.'' Jour. Roy. Stat. Soc., Ser. B,
29, 132-1k0.

Srivastava, M. S. (1971). ''On fixed-width confidence bounds for regres-
sion parameters.' Ann. Math. Stat. 42, 1403-1411.

Stein, C. (1945). "A two-sample test for a linear hypothesis whose
power is independent of the variance.'" Ann. Math. Stat., 16, 243-

258.

Stein, C. (1949). '"'Some problems in sequential estimation', (Abstract).
Econometrica, 17, 77-78.




78

Woodroofe, M. (1977). ‘''Second order approximation for sequential point
and interval estimation.'" Ann. Stat. 5, 984-995.

Woodroofe, M. (1982). !Non Linear Renewal Theory in Sequential
Analysis.!" The Society for Industrial and Applied Mathematics,
CBMS 39, Philadelphia.




APPENDIX

Al. Anscombe's (1952) Central Limit Theorem

Let {Yn} be an infinite sequence of random variables. We suppose
that there exists a real number 8, a sequence of positive numbers {Wn},
and a distribution function F(:), such that the following conditions are

satisfied:

Y -0
(c1) P < x) — F(x) as n —» =, for all x such

that F(*) is continuous at x.

(c2) {Yn} is uniformly continuous in probability.

(c3) {nv} is an increasing sequence of integers, and {Nv} is a
N
sequence of a proper random variable such that ;2- -+ 1 in

v
probability as v » «,

Theorem Al.1: Under all the stated conditions (C1)-(C3) we have

< x) > F(x) as v >,

for all continuity points x of F(-).

_7 N
Theorem Al.2: Let X[, X,,... be i.i.d., and Y =n ' I, X..
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W
Suppose (C1) is satisfied and W D> as n >, Then {Y } is uni-
n+l n
formally continuous in probability.

A2. Distribution of a Stopping Time:

A Theorem
Due to Ghosh and Mukhopadhyay (1975)

Let N=N =inf{nzn:nzvy T1},
v o’ - Vv n

where

(i) {¢v} is a sequence of positive numbers, and b, >
as v > »,

(i)

n=1,2,...
Suppose that

{Tn} is a sequence of statistics such that P(Tn>0) =1 for

[

1 Ty - a
(a*) Ni ; Lr N(0,1) as v > «, and
(T - a)
(b*) N% NV'] L
v

N(0,1) as v »

b
for some a, b > 0.

Theorem A2: Under the stated conditions we have

% (NV - awv)

by

L
a

< N

> N(0,1) as

v > ©,

A3. Robbins, Simons, and Starr's (1967) Lemma

Given constants C,

.~>c >0 as
J

(i,j = 1,2,...) such that 0 < C,
i,j > = and any integer n, 2 0 define i(2no) = j(ZnO) = n_ and for
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nz2n, let
o)

(1) i{n+1)

i(n)+1, j(n+l)

Ci(n), ()

Py e )
j(n
)

(D i) = 60, Gl = g e B s e

Lemma A3: Under the stated conditions we have

ALk, Woodroffe's (1977) Nonlinear Renewal

Theoretic Results

Suppose we have the following:

(c1) t. = inf{n 2 no(zl): S, < cn® L(n)}, where o >0, L(n) = 1

- -1 . -
+ Lon I, o(n ), LO e (-», »), and ¢ is a positive parameter

n
(which is often allowed to approach zero). Sn = iél Xi;xl’

X2 «ss are i.i.d, positive random variables with the distribu-

tion function F(-), such that E(X]) =y, Var(X]) = 12 and,

(c2) F(x) < Bx® for some a, B > 0.

g 1

(c3) v = E%-{(a-l)z uz + 12} - L n E{(Sn - nau)+},
where,

g = (a—l)_], A= uB ¢ B and v* = max(0,Y).
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Theorem Ak.1: Under conditions Cl - C3, and suppose E(X;) < o for

some r 2 2. Then we have as ¢ = 0.

) 4. 1 222
E(tc) = A+ Buy BL -~z aB T u "+ o(1)

if r(2a=1) > 4 and n a > 6.

Theorem Ak.2: Suppose E(X;) < » for some r > 2, and Cl - C3 are

_1
satisfied. Then, | I(tc-k)l2 is uniformly integrable, if 0 <s < min

{r, ¥(2a-1)r} and n.a > 3Bs.

Lemma Ak: Suppose E(X:) < o for some r > 2, and Cl - C3 are satis-

fied. Then, for 0 < §, Y < 1 we have

n_a
P(t, < 81) = of °%) +o(a7T/2

as c ~> 0.
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