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1 STATEMENT OF THE PROBLEM AND RESULTS

We have studied T-invariant rational equivalence in a B-variety X, i.e a smooth pro-
jective variety over C with a T-action; T' = (C*)"*! is the algebraic torus, and a finite
set of fixed points of T. Our main research goal is to prove the conjecture that the
equivariant k-th Chow group A¥(X) is isomorphic to the ordinary k-th Chow group
A(X), find a computational algorithm for A7 (X), and apply it to some interesting
cases. The previous conjecture has been proved using torus action on families. In
a B-variety X we say that two T-invariant k-dimensional subvarieties V, V' are T-
invariantly rationally equivalent if there exists a sequence of T-invariant k-dimensional
subvarieties V5 = V, Vi, ..., V,, = V' and a sequence of T-invariant (k + 1)-dimensional
subvarieties Wi, Ws, ..., W,, such that V;_;,V; are contained in W; and V,_; is hn—
early equivalent to V; in W,;. Theorem 5.5.44 is an in’ceres‘cin‘soT new result. It gives
a necessary and sufficient condition for two T-invariant subvarieties Dy, Dy C X of
dimension k to be T-invariantly rationally equivalent using the weights of the char-
acters x;(t) = t; where ¢ € T' and T-invariant subvarieties Z C X of dimension &k + 1.
We have investigated the case where the set of fixed components is a finite set of fixed

points.

We have studied the Hilbert scheme Hilb X which is the scheme representing the
functor Hilby : {Category of schemes} — {Category of sets} where Hilbx U is the
set of flat families of closed subschemes W of X parametrized by U. If U’ — U is
any morphism, W —— W xy U’ gives a map Hilbx U — Hilbx U’, which makes
" Hilbx a contravariant functor on the category of schemes. In Theorem 5.5.22, we
have proved that for any B-variety X any component of the Hilbert scheme Hilb X

can be embedded T-equivariantly in P(V') for some T-representation V. This result



was used in the proof of the conjecture that the equivariant k-th Chow group A% (X)
is isomorphic to the ordinary k-th Chow group Ax(X). On the other hand, Theorem
5.5.22 was also used to prove Theorem 5.5.2. The Hilbert scheme Hilb X was also
useful to understand the limit of fibers of a family contained in X or Cx X. We were
interested in the situation Z ~ 0 in V where V is a subvariety of the B-variety X,
trying to understand why tli_r)no t.Z ~ 0 inside tli_n)lot.V where t lives in a one parameter
subgroup C* C T'. Initially, this case was studied using the limit concept and the
Hilbert scheme Hilb X. This approach ended with an unsolved question. The limit
argument above was used in the proof of the injectivity part of the conjécture above.
The successful approach used to prove the above limit argument was based on the
following observation in section 10.1 of [10]: Let G denote an irreducible variety of
dimension m > 0. The notation “a € G” will be used to denote a regular, closed point
of G(Appendix B.1 [14]). By abuse of notation we will write ¢ in place of Spec(k(?)),

where k£(t) is the residue field of the local ring of G at the point, and we denote by
t:{t} — g

the canonical inclusion of Spec(k(t)) in G. The assumption that the point is regular
means that t is a regular embedding of codimension m. Any (k + m)—cycle « on a
scheme Y, or more generally any rational equivalence class a € Ay, (Y) determines

a family of k-cycle classes a; € Ax(Y}), for all t € G, by the formula
Qy = t’(a)

where t' : Ap (V) — Ag(Y;) is the refined Gysin homomorphism defined from the

fiber square

Yi—Y

|

{t}—¢



by construction of section 6.2 in [17]. If @ = [V] where V is a subvariety of J of pure
dimension k + m, then oy = [V]; = {s(V;, V) }x where V; =V NY;, and s(V;, V) is the
Segre class of V; in V. (This follows from proposition 6.1 (a) and the fact that the

normal bundle to ¢ in G is trivial). In particular, if V C Y, then [V]; = 0.

In 1987, Ellingsrud and Strgmme gave a precise description of the additive structure
of the homology of Hilbd(]P’2), applying the results of Bialynicki-Birula on the cellular
decompositions defined by a torus action to the natural action of the maximal torus
of SL(3) on Hilb%(P?). We say that a scheme X has a cellular decomposition if there
is a filtration X = X, D X,—1 D ... D Xj VD X_1 = ¢ by closed subschemes with
each X; — X;_; a disjoint union of schemes U;; isomorphic to affine spaces A™J. The
U,;’s are called the cells of the decomposition. A rather easy consequence of the fact
that this action has finitely many fixed points is that the cycle maps between the
Chow groups and the homology groups are isomorphisms. In particular there is no
odd homology, and the homology groups are all free. They computed the ranks of
these groups, i.e the Betti numbers of Hilb?(P?). In a recent work, Laurent Evain
gave a new proof of the result by Ellingsrud and Strgmme, namely the main lemma
of the computation of the Betti numbers of the Hilbert scheme Hilb%(P?). Also he

described the Bialynicki-Birula cells of Hilb%(P?) by means of explicit flat families.

Let X be a smooth projective variety with a C*-action and a finite set of fixed points
{p1,..-,pn} of the action. Then by the Bialynicki-Birula theorem X has a cellular
decomposition with cells X, = {z € X : Jim ¢z = p?}. Let H = Hilb*(P?) and
let HT be the fixpoint locus of the C*-action on #; then HT = {(z%,9), (z,%?),

(%,2), (2,2%), (v%2), (1,2°), (2,9) N (2,2), (2,9) N (:2), (¥,2) N (z,2)}. Let

Xp ={Z € # : limt.Z = p} be the cell that corresponds to the fixpoint p € HT.
—

Consider the C*-action on P? given by t.(zg,71,72) = (%2, t°11,%°zy) such that

a>b>c Lety=2,2=2 andlet A = (y°2), B = (y,2°) then A, B

zg’



are two fixpoints of H supported at py = (1,0,0). Now the C*-action above can
be written as follows: t.(y,z) = (7%, %2). Let Q4 = Cly, 2]/A then the tan-
gent space Ty = Hom((y2 2),Cly, 2]/(#?,2)) = Hom(A4,Q4) = A ® Q4. Let
ep = 4% ey = 2z, e3 = 1, and e, = y then the set {¢; ®e; : i = 1,2, j = 3,4}
forms a basis for T4H. Let us apply the C*-action above on the basis elements
and then count the number of positive weights to get the dimension of the cell X 4.
First we will compute the weights of the C*-action on the basis element e, ® e;.
Since t.e; = t7ley = t7ly? = 720b-9)y2 = p2Ae-b)y2 — 2Aebe’ and tes = es,
it follows that t.(e] ® e5) = (% Ve)) ® e5 = t2@ V(e ® e3). Using the addi-
tive notation, the weight of the C*-action on basis element e; ® es is 2(a — b).
Similarly t.(e; ® e;) = 2@ Ve] @ th0ey = 20 Dt-0(e] @ ¢4) = t*P(e; ® ey),
t.(e; ® e3) = t°(e; @ e3), and t.(e; ® e4) = t*(ey ® e4). Therefore the weights
of the C*-action on the basis above are 2(a — b), a — b, a — ¢, and b — c. Now
since ¢ > b > c the number of positive weights is 4. So X4 =~ C*. Therefore
dim X4 = 4. To calculate the dimension of the cell Xp, let Qp = Cly, 2]/B then
TsH = Hom(B, Qp) = B’ ® Qp. By similar reasoning one may generate 4 basis
elements. Applying the C*-action on those elements we pick up 4 weights namely,
a—b,c—b,2(a—c), and a — c. Now since a > b > ¢ the number of positive weights

is 3. So Xp ~ C3. Therefore dim X4 = 3.

Recall that the equivariant cohomology of X where X is a topological space with a
T-action, T = (C*)? is the algebraic torus acting on X, is defined to be H}(X) =
H*(X x7ET) where H*(X x7 ET) is the ordinary cohomology of the bundle X x4 ET
over BT with fiber X, and ET — BT is a principal T-bundle. We want to under-
stand how to deform an i dimensional cell of Hilb*(P?) to an (i + 1)** dimensional
cell of Hilb?(P?). In the above example we deform the 3-dimensional cell Xp to the
4-dimensional cell X4 via y — ay-+bx where a, b € C*. We were able to understand

what the closure of every cell is and how those cells are connected using deformations.



The result is a perfectly symmetric picture of Hilb*(P?). We have done the same in-
vestigation for Hilb?(P?). This is the part that has been completed. The remaining

part is to define the isomorphism

H(Hilb*(P?)) @ Q(A1, A2, As) ~ @) Hy(z;) @ Q(Ar, Az, As) (1)

where T = (C*)? is the algebraic torus acting on Hilb*(P?), {2;}9_, is the fixed point
locus of T, and A; denote the weight of the character p;(t1,%2,t3) = ¢;, ¢ = 1,2,3.
For H = Hilb*(P?) although we have discovered the nature of the cells and learned
its cellular decomposition, we would like to find a computational algorithm for the
integral inlbz(Pz) P where P is a polynomial in classes of cells. We would like to

compute integrals like

/H'le(IP’z) Kt [ Ko

A ((C*)”’-a,ction on a smooth complex projective variety X has an infinite number of
1-parameter subgroups ¢ : C* — (C*)" where ¢(t) = (™, ..., %), a; € Z. We want
to understand how the cellular decompostion of X depends on a;, 1 = 1,...,n. Asume
that the C*-action above has a finite set of fixed points. For example if a; < ag < ... <
an, we get a finite set of fixed points. The set {(a1,...,a,) 1 a1 < a2 < ... < ap} C Z"
gives us a cellular decomposition while the set {(ai, ..., a,) : a1 > a2 < ... < a,} C Z"
gives us another cellular decomposition. We have tried to describe the sets in Z"™
which give different cellular decomposition and understand the general structure. For
this purpose we studied the toric varieties P*, F,, where F,, denotes the rational ruled
surface P(Op1 ® Op1(—n)) and the nontoric varieties Hilb?(P?), Hilb?(P?) to find an-

swers to these questions.

A computational algorithm for the integral [, P(c,, (E,),[Yi]) is known by equivariant

cohomology where P is a polynomial in chern classes of the vector bundles E, on the
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B-variety X and classes of G-invariant subvarieties Y; C X where G = C* C T' = (C*)"
is a l-parameter subgroup. The simple result is that the localization formula of
equivariant cohomology implies the following formula in terms of various weights of

the G-action on X

. Plew i = 3 Ffte) ®)
where fy,(z) is the product of the weights of the normal bundle Ny, x at z if z € Y]
and zero otherwise, g,,(2) = o,, (weights of the G-action on E,|,) where g, is the a,"
elementary symmetric function. We have computed the integral [, P(c,,(E;),[Yi])
by replacing c,, (E;)(resp.[Y;]) by the equivariant chern class ¢& (E,)(resp.[Y;g]) and
pulling back via the inclusion map iy : pt — (CP*®)™. To see that this gives the

integral [, P(c,,(E,),[Yi]), consider the commutative diagram

X —pt (3)
lix lipt
X¢— BG

where ix is the inclusion map. This implies i © Jx, = fX oi%. Hence

ity 0 [y, PG (B, [Yigl) = [y ixP(cC (B, [Via)) = [y Pca,(E:), [¥i]). The key
point is that [ Xg is an equivariant integral which can be computed by localization.
By localization we mean the procedure of equivariantly restricting a class to each fixed
point of the G-action on X and dividing by the equivariant Euler class of the normal
bundle of that component. This reduces the calculations of an equivariant integral of
a class to the sum over all fixed point components of the equivariant integrals of the

restrictions of the class.



2

2.1

LOCALIZATION

EQUIVARIANT COHOMOLOGY

For the sake of convenience we will use a smooth B-variety to denote a projective

variety with a torus action and a finite set of fixed points where the torus T is the

maximal torus (C*)"*! unless it is mentioned otherwise.

Definition 2.1.1. Let X be an n-dimensional B-variety, and let 7 = (C*)"*! be the

maximal torus. Fix a system of homogeneous coordinates xy, ..., Zy,.

(a)

Let p; be the character of T defined by p;(t1, ...tn+1) = ti. Let Xxo, ..., X denote
the complex characters of T where y; = H?:o p;-”j and n;; € Z. Then T acts on

X via t.x; = x; '(t)z;, and on points (ay, ..., a,), this action is given by
t.(ag, ...y an) = (Xo(t)ag, - Xn(t)an)

Let » € N = Hom(C*,T), an let x € M = Hom(T,C*) then x o %(t) = ¢,
where k € Z. We define the dual pairing <,>: NQ M — Z by < ¢, x >= k.
The one parameter subgroup % : C* — T acts on X via ¥(t).z; = t~<VXi> g,

and on points (ay, ..., a, ), this action is given by

¢(t).(a0, reey a'n) = (t<w’X°>a0, ey ‘[;<¢7Xn>an)

If f: X — P! is a rational function on X then we define the action of the

1-parameter subgroup ¥(t) on f(z) by

(). f(z) = FW N E).z) = F(E<YX0> g, .. 1 <VXn>g)

Definition 2.1.2. Let Y be a topological space and let T = (C*)"™' be an algebraic

torus acting on Y. A principal T-bundle B over Y consists of the data of a topological

space B and a continuous map f : B — Y, together with additional data consisting

of an open covering {U;} of Y with homeomorphisms p; : f~1(U;) — U; x T, such

7



that for any ¢ we have m o p; = f|f-1(y;) where 7, is the projection map to Uj, and
transition functions g;; : U; (\U; — T given by (p; o p;l)(y, t) = (v, 9i;(y) - t) where
(1) € UiNU;) x T

Remark 2.1.3. Let B be a principal T-bundle over Y then there exists a T-action
B x T — B on B given by b.t = p;*(p;(b).t), where b € f~*(U;) for some 1.

Definition 2.1.4. Let X be a topological space with a T-action 7' x X — X, and
let B — Y be a principal T-bundle. The fiber bundle B x1 X is defined to be

BxpX=(BxX)/((u,z)~ (u-t71,t-z)) (4)

forany x € X,t €T, and u € B.

Definition 2.1.5. Let S be the tautological bundle on CP* whose sheaf of sections
is Ogpo(—1), and let BT = (CP*°)™. The principal T-bundle ET over BT is defined

to be

ET =7niS®..®n,S (5)

where 7; : BT — CP® is the 5** projection map. For the definition of a tautological

line bundle see [8].

Definition 2.1.6. Let X be a topological space with a T-action, and X7 = B xr X
be a fiber bundle over BT with fiber X. The equivariant cohomology of X is defined
to be

Hp(X) = H(Xr) (6)
where H*(Xr) is the ordinary cohomology of Xr.

Remark 2.1.7. If Y C X is a T-invariant subvariety of X then Y7 C Xp. For
example if X =P?| Y = Z(x¢ = 0) then [(zo = 0)7] C PZ.

8



Remark 2.1.8. H}({point}) = H*(BT).

Definition 2.1.9. A representation of an algebraic group G is a vector space V over

C and a map G x V — V where (g,v) — g - v such that:
(a) g- (avy + bv) = a(g - v1) + b(g - v2) where a,b € C.
(b) 1-v=mw.

(¢) (9192) " v=91" (g2 ).

Remark 2.1.10. There exists a one-to-one correspondence between the group of

characters M(T) and the set of 1-dimensional representations of T given by

X (t-z=x(t)z) (7)

Example 2.1.11. Let V = C be a vector space with an action of T' = (C*)* given
by

t-z=]] )™

i=0
where t; € T, m; € Z are fixed integers, and z € C. As mentioned in remark 2.1.10

this action corresponds to the character x : T'— (C)* given by

2

X(to,t1,t2) = [ [ (&)™

=0
Let M(T) be the group of characters of T then M (T) ~ Z3 via the group isomorphism

2

(mo, ma, m2) —> (t — H (tz)mz)

Fact 2.1.12. If V is a finite dimensional representaion for T' = (C*)" then there

exists characters x1, ..., xn € M(T) such that V ~ @, V,,. See [2].



Let x € M(T) where T = (C*)"*'. Define the action T x C —» C as follows.
(t,z) — t.z where t-z = x(t)z, t € T'and z € C. So by the previous remark this gives
a 1-dimensional representation C,. If L, = (C,)r is the corresponding line bundle
over BT, then the assignment x — —c;(L,) defines an isomorphism ¢ : M(T) —
H?*(BT): first we show ¢ is injective. Suppose —ci(L,) = 1, then L, is the trivial
bundle. So x(t) = 1. So ¢ is injective. Second we show that ¢ is surjective. Solet o €
H%*(BT) = C{Ag, ..., An], then o = D" a;Ai. But A = ¢1(O(N;)) = ¢1(Ly,)- It follows
a=-3roai(—a(ly)) = - Xiaola) = — Yo dlaxa) = (- Xieax)- So
¢ is surjective.

We call ¢(x) the weight of x. In particular, if x; € M(T) is defined by x;(to, t1, ..., tn) =
t;, then we let ); denote the weight of x;, i=0,1,....n. Thus we get the isomorphism
Hx({point}) = H*(BT) ~ C[Xq, ..., \n] (see [8]). We denote the line bundle L,, by
O(=X\), so that A; = ¢;(O(N))-

Definition 2.1.13. Let X be a topological space with a T-action. An equivariant
vector bundle is a vector bundle E over X such that the action of T on X lifts to an
action on E which is linear on fibers. In this situation, FEr is a vector bundle over
Xr, and the equivariant Chern classes ci (E) € H%(X) are defined by the ordinary
Chern classes cx(Er). If E has rank r then the top Chern class ¢I'(E) is called the

equivariant Euler class of E and is denoted by Eulerp(E) € H(X).

Example 2.1.14. The diagonal action of T = (C*)™*! on C**! gives an equivariant
vector bundle E over Y = point such that Er = @ ,O();). Thus Ay, ..., A, are the

weights of this representation.

Remark 2.1.15. Consider the action of T = (C*)"*! on X = P" given by

(toy ooy tn)-(T0y ooy Tn) = (tg @0y ooyt T) (8)
The inverses has been chosen so that (%,...,t,) acts on the homogeneous form

z; € H%Opn(1)) as multiplication by ¢;. Note that P is the projectivization of

10



the vector bundle Fr = @7 ,O(—2;) over BT. Thus P4 = P(E%}) = P(Fr), where
E* is the dual of the bundle E defined in the previous example, and P denotes
the projectivization. This gives the tautological line bundle Opz(1), and we have
p = c1(Ops(1)) € HF(P"). Now since p is defined to be the equivariant Chern class

¢t (Opy (1)), we refer to p as the equivariant hyperplane class.

Remark 2.1.16. Consider the vector bundle Fr = &7 ,O(—);) on BT in the previous
remark. Let 7*(Fr) be the pullback of Fr via the map 7 : P(Fr) — BT, then n*(Fr)
is a vector bundle on P(Fr) and it has the subbundle

S ={(z.¢) € " (Fr) : 2 € P(Fr),e € (Fr),(,)}

where (Fr), ) is the fiber of Fir over m(z) € BT. The fiber of S over z, denoted by
S., is defined as follows: For any z € BT let (Fr), be the fiber of the bundle Fr over
x. If z € P(Fr) where

P(Fr) ={V C (Fr), : V is a linear subspace of (Fr),, z € BT} = U (P(Fr))e

x€BT

we fix a linear subspace [ C (Fr), such that z € [. Define the fiber S, by S, = [. Now
S = ey (=1) = Opy(—1) (because P(Fy) = B(@1,0(~A)) = B(CF) = Bp),
and the map ¢ : 7 (F}) — S* is surjective where 7*(F}) = @ ,O(X;) (see [8]).
Note that the induced map on the fibers ¢, : (7*(F})), — (S*), is defined as
follows: Since m*(F7), = (Ff),(,) = Hom((Fr),(,), C), and (5*), = V* = Hom(V, C),
)- We define the map ¢, by é,(f) = flv, where

where V is a linear subspace of (Fr)

f € Hom((FT)ﬂ'(z)7 C)

w(z

Theorem 2.1.17. [(z; = 0)r] = p — \; where z; € HO(Opa(1)).

Proof. Let Fr = @®,0(=\;) be the vector bundle defined above, and let
i : mO(Xg) — 7*(F}) be the inclusion map. Consider ¥ = ¢oi: 7*O(Ng) — O(p)
then for any y € P(Fr) the induced map on the fibers ¢, : (7*O(Xo))y — (O(p)), is

11



defined as follows: let s be a section of 7*O()g), and let a; be a section of T*O(—X),
i=0,1,...,n. If y € P(Fr) then s(y) € (7*O(Xo)), which implies that 1, (s(y)) lives
in (O(p))y = S; = Hom(S,, C) where S, C (7*Fr), = ®Po(1*O(=\)),. Define
by(s(y)) by

Yy (s(1))(00(y), -+ an(y)) = s(y)ao(y) (9)

then s(y)ao(y) € (T*O(Xo))y ® (7*O(—X0))y = 7*((O(Xo))y ® (O(—Xo))y) Which is
isomorphic to C because 7*((O(Xg))y ® (O(=X))y) = 7*(0(0)), ~ n*C ~ C. Now
the map 1, induces the map ¢, : S, — (7*O(—Xp)), in Hom(S,, (7*O(—Xo))y)
where ¢ : S — 7*O(—X\) lives in Hom(S, 7*O(—X)). But Hom(S,7*O(=X)) =
I'(S* @ 7O(—X)) = Hom(S ® 7*O(Xg),C). Therefore Hom(S ® 7*O(X\),C) is
not empty. Recall P(Fy) ~ P% let z = (z9,...,2,) € PJ. Define the section
To : Sy ® (1*O(Xg))s — C by

zo((ao(x), ..., an(2)) @ do(z)) = ag(x)do(x) (10)

then zo € Hom(S ® 7*O(\), C)

= (8" @ mO(=Xy)) = I'(S* ® O(=Xo)). But
['(S5* ® O(=X)) = T'(O(p) ® O(=o))

= I'(O(p — \o)). Therefore the equivariant
class [(zg = 0)7] = ¢1(O(p — Ag)) = p — Ag. Similarly we can define the section
z; 0 Sz ® (m*O(Ni))e — C by

zi((ao (@), -, an (7)) ® di(w)) = ai(z)di(z) (11)

where i = 1,..,n. It follows z; € Hom(S ® 7*O(\;),C) = I(S* ® 7*O(=);)). But
L(S* @ m*0(=X\)) =T(S*® O(—X\)) = I'(O(p) @ O(—=N;)) = T'(O(p — Ai)). Thus
[(z; =0)r] = (O(p—N)) =p— N, i =1,...,n. Thus theorem 2.1.17 is proven.

Let a; € Z, i = 1,...,n + 1. Consider the embedding i : C* < (C*)"*! of a one
parameter subgroup acting on P" where ¢ is given by i(t) = (t%,...,¢%+1). Let A
be the weight of the character x(¢) = t. We will check that the weights a;A of the

characters t* of the given one parameter subgroup are just the pullback of the weights
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of the characters x;(t) = t; of (C*)"™1. Take n = 2. Consider the C* action on P?

given by

t-(a,b,c) = (ta, b, c)

then t.(a, b, c) = (ta, t?b,c) = (t,t*,1).(a, b, ¢) = 4(t)(a, b, ¢), where the inclusion map
1: C* — (C*)3 is given by 4(t) = (¢,%,1). We are going to calculate 2*();), i=0,1,2.
Let x € M(C*) where x(t) = t. Then the map ¢ defined above induces the maps
o H2(B(C*)3) — H2*(B(CY)), ¢ : M((C*)®) — M(C*) where #;(p) = po:
for any character p € M((C*)?), and *(\¢) = bgA where b, € Z. Recall that
H?(B(C*)") = Z[Ay, ..., A\n]- Also recall that the map v, : M((C*)") — H?(B(C*)")
is an isomorphism where v, (8) = —c1(Lg), B is a character in M((C*)"). Clearly

1* 0 1)y = 1)y 01].

(1) To calculate 2*(A;). Let x1 (1,80, t3) = t1. Since 1* o1h = 1)5 04} then 1* o1hy(x1) = |
1 o4 (x1) so 1*(Wa(x1)) = ¥1(¢5(x1)). Therefore v*(A1) = ¥1(x). But ¢¥1(x) = A
Thus 2*(A) = A

(2) To calculate 2*(A3). Let x2(t1, €2, t3) = ta. Since 1* 01)y = 1)1 01} then 1* o 9a(x2) =
1 0 15(x2) so *(Y2(x2)) = ¥1(25(x2))- Thus using the additive notation we have
*(A2) = ¥1(2x) = 291 (x). Hence 1*(Ag) = 2.

(3) To calculate 2*(\3). Let x3(t1, t2,t3) = t3. Since t* 01hy = 9y 01} then 1* oda(x3) =
W1 015 (x3) 50 2*(¥h2(x3)) = ¥1(1¥ (x3)). Thus 2*(A3) = 91(1) = 0. Hence 2*(A;) = 0.

3 A FORMULA FOR ORDINARY INTEGRALS

The notation of equivariant cohomology and localization theorem that we are about
to explain is valid for any compact connected Lie group. We will only state without
proof the results that will be using. The main reference here is [1]. For a detailed

exposition of this subject we suggest Chapter 9 of [8]. Let X7 = UX; be the de-
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composition of the fixed point locus into its connected components. X; is smooth
for all j. Let i; : X; — X be the inclusion. The normal bundle N; of X, in
X is equivariant therefore it has an equivariant Euler class Fulery(N;). We will be

using the following form of the localization theorem to calculate equivariant integrals.

Theorem 3.0.18. Let o € H*(X71) ® C(\g, ..., As). Then

/XT @ Z/ EulerT ) (12)

Fact 3.0.19. Let X be a smooth projective variety with a torus action such that
the fixed point locus X7 = {p; € X : i = 1,...,n}. There exists a localization map
@i+ H(X) — H%(p;) such that if w € H*(X) then

/ v Z II welghts of X (13)

Fact 3.0.20. Let Z be a T—1nvar1ant submanifold of the B-variety X and let the set
= {p;}7-; be the fixed point locus of T. Then [Z] € H*(X) and
product of the weights of (Nzx)|p, p; € Z

In this study we will be interested in the case X = P*. Let xg, X1, .-, Xs be characters

vi([2]) =

of the torus T = (C*)°*'. Clearly a basis for the characters of the torus is given by
gi(to, ..., ts) = t;. In terms of this basis let x; = (a;;). We will say that the weight of
the character ¢; is \; where \; € H*(BT) = C[), ..., A,]. Similarly the weight of the
character x; is 3 a;;A;. Let O(xi) = O(3; aij);) be a line bundle over (CP)**1.
Consider the following action of T on P°

(t0s ey ts)-(20y -ry 25) = (X0(t) 20, -y Xs(t)25) (14)

Then Pf = P(®;0(x;)). Let p = c1(Ops,(1)). Then
HI(P*) ~ ClAo, ... 57P]/H Zaij)\j) (15)
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as rings. We will be interested in the case x; = ;. For the corresponding T-action

we have .
H3(P*) = C[Ag, ooy s, 1)/ H(p ) (16)

Let us see what the localization theorem says in this case. The locus of the fixed points
consists of points p; for j = 0,1, ..,s where p; is the point whose j-th coordinate is
1 and all other ones are 0. Let ¢; = Hk;éj(p — X\) for 5 = 0,1,...,5. Then for
a, B € H*(P%) ®c C( X, ..., As) we have
a=p& oquﬁk:/ B U ¢y for all k (17)
P P
Also i3(¢;) = [l12;(Aj — Ax) = Bulery(Nj). The localization theorem says that for
any polynomial G(p) € C(Ay, ..., As)[p] we have

"Gy
| =3 Hk#(gj ) o (18)

Definition 3.0.21. Let X be a B-variety, and Let X7 be the fixed point locus of the

torus 7' = C*. Then

(a) If Y C X is a T—invariant submanifold, Ny|x is the normal bundle of Y in X.
Let \ be the weight of the character x(t) = t. We define the map fy : XT — Z
that corresponds to Y as follows

product of the v&:erights of (Nyx)lz JCcY

0 z¢Y

fr(z) =

where r is the codimension of Y in X.

(b) Let E be a vector bundle on a smooth projective variety X, we define the func-
tion g; : XT — Z as follows: let {b; : b; € Z}?.; be the weights of T on E|,.
Define g;(z) = ¢;(O(by) & ... ® O(b,)). It follows g;(z) := o;(weights of T on
E|,) where o; be the i-th elementary symmetric function. If X = {p;}2_, then

we set g; = (gil, ---,gm) where g;; = gi(pj)a Jj=1..,n

15



Theorem 3.0.22. Let X be a B-variety, and let XT = {p;}?, be the fixed point
locus of T where T is a one dimensional torus. Let E, be a vector bundle on X with
a T-action, r = 1,..., 4, and let Y; C X be a a T—invariant subvariety, ¢ = 1,...,v.
Forr = 1,..,u, let g2 = (¢Z,,...,gZ,) be the function on X* that corresponds to
the chern class ¢l (E,), where g2 , = 0,, (weights of T on (E,|y,)r). Fori=1,..,v,
let /3 = (f#1, > [n) be the function that corresponds to [Yir], where f{, is equal

to the product of the weights of ((Ny;(x)p,)r. Consider the polynomial

14

i
P(xh ey Lys Y1, "7yu) = Z G'{Zi:l ik+2:=1jr:u}(H x;ck)(H yrr) (19)

Zl):=1 ik‘*‘Z::l Jr=u k=1 r=1
of degree equal to u where v is the dimension of X. Let P(c,,(E,),Y;) denote the

polynomial of chern classes and subvarieties P(c,, (E1), ..., €, (Er), [Yi], .-, [Y2]), then

[ P, = 30 et (20)

where dim X = u, A\BF, ..., \G¥ are the weights of the tangent space T, X such that
BEeZ,i=1,.,uk=1,...,n

Proof. Suppose that we have a vector bundle E with a T-action over a smooth variety
X with a T-action(T = C*). Let X” = {pi, ..., pn} be the fixed point locus of T. For
each p; € X7 the restriction (E|,,)r decomposes into characters of T, say xj, .., x;-
So (Elp,)r = ®Z:1(Cx§ )r. If Ly = (ij-“ )r then (Elp,)r = i1 Lys. Let x(t) =t,
and let A denote the weight of the character x. Then using the additive notation
for characters (i.e, (Bx + vx)(t) = X*().x"(t)) we have x¥ = ofx where of € Z,
k=18 But Ly =Ly y =Ly ®..® Ly = O(-)) ® ... ® O(-)) = O(—afA).
It follows (weight of x¥) = (weight of afx) = —c1(Lgky) = —c1(O(—af X)) = b
So the action of T on (E|p;)r has weights o, ...,a5) and (E|p;)r = @5_,0(—ak)).
Let ¢; : p; — X be the inclusion map. Then the map i; induces the map ;. :

H3(X) — H}.(p;). Therefore
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Z;T(cf(E)) = cf(E[pj) = ak(ozjl.)\, ey QGA) = )\kak(a;, ey OF5)

Now let us check that cf (E|,,) = ox(aj), ...,a5)). Consider the fiber bundle

(Blp))r = ;=1 O(—05 ).

For simplicity let V' = E|,,. Now if c(V') is the total chern class of V then

(V) = c(@j_0(—af))) = []e(0(-cN)

= Y oi(—afA, .., —aA))
=0

Let P(T1, .0 Ty Yty -0 Yo) = Doy Doy by Consider the fiber diagram

Xy — BT

This implies iz, 0 [, = [y oi%. It follows that

i H%@%MﬂzL&ﬂ%@%Mﬂ=Lﬂ%@%M)

Let us check that i%cl (E,) = ¢,,(E,) : Consider the commutative diagram

17
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B, (E,)r | (24)

|

2

XC__X__> Xr

This implies t% (E,)r = E,. Now i%(cI (E;)) =i%(ca, (Er)1) =Co, (% (Er)T) =Ca, (Er).
Let My = T, X then by theorem 3.0.22 we have

[RCEANEEEDS i B 1) -

Now since the rank of the bundle NV = dim X = u, it follows that

Bulerr(Ni) = ¢l (Ne) = ou(ABF, ., ABE) = oy (BF, ... BE) = M [ [ BF (26)

t=1
Let T = [, P(c,, (Er), [Yi]). If Ao, ..., Ao} are the weights of the torus T on (E |, )r,

Adj1, ... Adjq, are the weights of T on ((My;|y)lp;)r where ¢; = codimY;. Let T =
Jx P(ca (Er), [Yi]) then

1 = ’I,;t/;{ P(CZ;(ET)>[Y;]T)

i e PUEL (B2, V)
P k=1 )\u Ht:l ’Bf

_ o N~ Plires (B, i Vi)
point e )\u szl ﬂg"

_ N Plea (Brlp,) i [Yilr)
k§=:1 A¥ H?:l ﬂéc

. = POA¥ 0, (o]}, ..., af), product of the weights of(Ny;x)p.)

3

P(A" 0, (', -y a?), A% T Ow)
k=1 Au Hi‘:l 61‘{‘:
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o7 g, (arl,...,ats) A% T]H
Let O = P(X T(aiunﬁ;f 21 %) o0d et ay..} denote Q¥ iyt S jo=u}- b

follows that

Q = Z a Ll(’\araar (0‘121’ ) a?))i’“ ® H::l()‘qi 21;1 6kl)jr

Eﬁ:l i+ Jr=u

- Z a AR ngl(aar (azla ey a?))ik o \Vii H::l( ;1121 (5kl)jT
v XTI, F

Yh=1 ety dr=u

= > ag }/\““r“qi—um:l(% (o, o)™ o TTr_ (T Ow)r
- . cae - u k
S it = [Ties B

Therefore

; En: } : N [ P N (e DL I N § B
7T = ’L* a /\Nar+VQz u k=1 T k y Lep r=1 =1
pt {...} - -
k=130 it Yy dr=u [T B

First note that pa, + vg; — u can not be greater than zero because the degree of the
polynomial P is equal to u. It follows that

n M v .
-k (Uar (a£17 "'7azs))mr( zg:]. 61{6)’”Z
7 = O'zpoint(z Z Z bTi H?—l Bt{c )

k=1 r=1 i=1
= 0.

If pa,+vg;—u < 0, then every term in the polynomial P, which is a product of classes,
has dimension less than the dimension of X and greater than zero. But the integral [,
is the pushforward map 7, where 7 : X7 —> pt. Now since the pushforward map =,

preserves dimension, it follows that [, P = 0. Let 3. , denote DS S i
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If pa, + vg; — u = 0, then

-k ar+v (Jar (CY ) 70/5 )Zk ® :: q; 5kl)jr
I = $oim Zza{ JAHar e w1k k l'fu) o [l (T )
k=1 {..} t=1 Pt
(303 o (e 0 o0 o T ([T )
k=1 {..} [T B
— iP(Jar(ak7 o), [ T%, Oka)
_ otnt
P k=1 I_ItZZI /3t
. - P(aar (04217 ""0‘23)’ ;1;1 5kl)
= Zzpoint( Hu ﬂk )
E—1 t=1 Pt

Note that o}’ € Z, so 04, (o', ..., 0}*) € Z. Also 0y € Z implies [/, 0r € Z. Thus
P(00, (..., o), TI%, 61) € Z. But B € Z. Tt follows Lo (@i mei) i bt) ¢

H:’:l 'Bilic
1 Ts q;
Therefore zpomt(P(J” (0 Hua’“ﬂz = %)y — P(U“’(a’“ﬁ ’a’“ﬂ) L %) 1t follows that
t=1 Mt =1~

Ts qi
1' Z Uar ak )t ’ak Iz’ Hl:l 5kl) (28)
Ht:l /Bt

Now since o, (af},...,05") = 0,,( weights of T on E,|,,) = g,

fix = product of the weights of (AVy;(y)p,)r. It follows that
ga 7fY
I T 7 (29)
Z ITi=: B
4  EXAMPLES
Example 4.0.23. Consider the action of T'= C* on P? given by

t.(wo, T1, T2, T3) = (870, 17" 71,17 @2, 17 73)

where all the a;’s are distinct and non zero. Let L = Z(x2, z3)={(z0, 1, 22, 23) €
P3 : 25 = z3 = 0} be an algebraic subvariety of P3, and let ¢;(Ops(1)) be the first

chern class of the vector bundle Ops(1). In this example we are going to calculate

[ aOn).L
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Note that the fix point locus of the T-action on P* = {py, ..., ps} where the i* coor-
dinate of p; is nonzero, all other coordinates being 0. First we need to calculate the

weights of the bundle (Mg, )y, Consider the exact sequence
0—7TL ——)7‘P3|L — NL|P3 — 0
which induces the exact sequence

0— 7;)0L — 7;0]1)3|L — (NL|P3)IJ0 —0

It follows that (NVij,)po = (TpolP?|1)/(TpoL). This is a two dimensional vector space

with basis {%_g—), W%g_)}' We will calculate the weights of the T-action on this basis.
Since
5~ e 0
< Zo 0
this implies that the weight of the T-action on the basis element 6(2—3) is equal
to ag — ag. Similarly the weight of the T-action on the basis element %_0&) is

equal to ag — az. Therefore the weights of the torus action on the basis above are

ap — @z, a9 — az. Now by part (a) of definition 3.0.21 above it follows that

fr(po) = (ao — as)(ap — as) (31)

Similarly since {ﬁ, ﬁ} is a basis for (Mg ,)p, we have
z zq
fr(p1) = (a1 — az)(a1 — as3) (32)

Note that fr(p2) = 0 since po ¢ L. Also fr(ps) = 0 because ps ¢ L. Let fr =

(f2, f f%, 12). Since fi = (a; — ay)(a; — as), i = 0,1,2,3 we have

fr = ((ao — az)(ao — a3), (a1 — az)(az — a3),0,0) (33)
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Now we are going to find the map g; : X7 —+ Z that corresponds to the chern class
c1(Ops(1)). Clearly g1(px) = o1(weights of T on (Ops(1))|,,) by part (b) of definition
3.0.21. Note that I'(Ops(1)) =Span{z;: 1 =0,1,2,3}. So I'(Ops(1) |p,) = Span{z}
and t.xy = t*x. It follows that g;(py) = ag. Similarly the weight of the torus action

on (Ops(1))|p, = ai, 1 =1,2,3. Let g1 = (99, 91, 9%, ¢3) where ¢¢ = g1(p;),i=10,1,2,3

\

then g; = (ag, a1,a2,0a3). Let T = fPS c1.L then by theorem 3.0.22 it follows that

8 i i
T — Z f1-91
— product of the weights of 7,, X

o ao(ay — az)(ao — as) a1(ay — ag)(a1 — as) A
= a0 - a)(@ @)@ —a) | (@ - a)(@ — ax)(ar —ag)

Qo a1

+
ag — a1 ay — Qg

= 1L
Example 4.0.24. Consider the action of T'= C* on P* given by
t.(o, T1, T2, T3, Tg) = (t7 %0, 1™ " 21,87 T0, 17 P a3, 17 " 24)

where all the a;’s are distinct and non zero. Let L = Z(z9, z3)={(%0, Z1, %2, T3, 24) €
P* : 25 = 23 = 0} be an algebraic subvariety of P* | and let c(7p<) be the second

chern class of the tangent bundle 7ps+. In this example we are going to calculate

/11»4 ca(Tps).L

The fix point locus of the T-action on P* = {py, ..., ps} where the i* coordinate of p;
is nonzero, all other coordinates being 0. First we need to calculate the weights of

(ML} 4)po- Consider the exact sequence
0— TL— TP, — N, — 0
which induces the exact sequence

00— TpoL — 7;011)4[13 — (NL|]F4)I)0 —0
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It follows that (Nzj,,)pe = (TpP*|L)/(TpL). This is a 2-dimensional vector space

with basis {ﬁ, WgT)}' We will calculate the weights of the T-action on this basis.

Since
0 0 0
bmros = s = 1 Py (34)
0%)  O=ma) (%)
this implies that the weight of the T-action on the basis element ?2_2—) is equal to
zQ

ag — ag. Similarly the weight of the T-action on the basis element 5(42_&—) is equal to
zQ
ag — az. Therefore the weights of the T-action on the basis above are ag — a9, ag — as.

Now by part (a) of definition 3.0.21 above it follows that

fr.(po) = (ap — az)(ag — as) (35)

&

Since {a(%-)’ 3(61)} is a basis for (NVy|,)p, it follows that

8

fo(p1) = (a1 — az)(a; — a3) (36)

Similarly f.(ps) = (a4 — as)(as — a3). Note that fr(pe) = 0 since po ¢ L. Also

fr(ps) = 0 because p3 ¢ L. Let fr = (f2, fi, f2, f3). Since fi=(a; — az)(a; — a3) ,
1=0,1,2,3,4. Then

fr = ((a0 — az)(ao — a3), (a1 — az)(a1 — a3),0,0, (a4 — az)(as — az)) (37

Now we are going to find the map g, : X7 —+ Z that corresponds to the chern class
co(Tps). Clearly, ga(pr)=02(weights of T on 7,,P*) by part (b) of definition 3.0.21.
Now let us find g2(po). Consider (TP*)|,,=T,,P* which is a four dimensional vector

space with basis
{ a 0 0 0 )
O(Z) o(2)" o(2) 0(32)

o Zo Zo
Since t. 6(‘2_(1)) = X iaa(l)”) = oo~ 8(%) then the weight of the T-action on the basis
o

element Waﬂ_) = qp — a;. Similarly the weight of the T-action on the basis element
zo

a—(’zj) = ap — as. Thus the weight of the T-action on 7,,P* are ag — ay, a9 — a2, ap —
zo

as, ap — ay. It follows that go(po) = o2(ag — a1, ap — ag, ag — as, ap — a4). Consider the
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tangent space (7ps)|p, =7,,P* which is a four dimensional vector space with basis
( 0 0 0 9] )
0(32) 0(2) 0(32)" 0(3)

As above we have go(p1)=02(a1 — ap,a1 — a2,a1 — a3, a1 — a4). Similarly we have

92(p2)=02(a2 — Gg,..., G2 — 04), gz(p3)=02(a3 — Ggy...,03 — a4), and
92(ps) = 02(as — ao,...,as — a3). Let g = (93,93,93,95,95) where gi=gs(p;),
i=0,1,2,3,4. Let T = [, c,.L then by theorem 3.0.22 it follows that

4

product of the weights of 7,, X

=0

(o2(ag — a1, a0 — ag, a9 — as, ap — a4)).(ag — ag)(ao — a3)
(a0 — a1)(ao — az)(ao — a3)(ao — a4)

(Uz(al — Qp, a1 — Q2,01 — Q3,01 — a4)).(a1 - a2)(a1 - a3)

" (a1 — a)(a1 — az)(a1 — a3)((a1 — a4))
+ 040
4 (02(04 —Qp, 04 — Q1,04 — Q2,04 — 03))-(014 - ag)(a4 - a3)

(ag — ao)(as — a1)(as — az)(as — a3)

= 10.
Example 4.0.25. Consider the action of T'= C* on P* given by
t.(z0, 1, T, T3, 4) = (t

%0, 1T M, 1T mg, 1T R, 1T y) (38)

where all the a;’s are distinct and non zero. Let ¢;(7p4), c3(7p+¢) be the first, and third

chern classes of the tangent bundle 7ps. We are going to calculate

/ c1(Tp4).c3(Tpa)

P4

Note that the fix point locus of the T-action on P* = {py, ..., p4} where the i* coor-
dinate of p; is nonzero, all other coordinates being 0. By part (b) of definition 3.0.21
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we have g;(px) = o;(weights of T on 7,,P*), 7 = 1,3, and k¥ = 0,...4. Let us find
g;(po), 3 =1, 3. Consider the tangent space (TP*)|,,=7,,P! which has the basis

2o 2o o
Since
t. a(?;—;) = 8(%;82{7&) = gmootn %ﬁ—é)‘ (39)
o
then the weight of the T-action on the basis element a—(%;_) is equal to ag—a;. Similarly

the weight of the T-action on the basis element 8(—2_25 = a9 — ag. Thus the weights of
z0

the T-action on ’7;,01?4 are ag — a1, Ay — Ao, Gy — a3, Gy — G4. It follows that
91(]00) = 01(00 — a1, ..., G0 — 04), 93(1?0) = Us(ao — QG1;--., G0 — a4) (40)
Similarly we have

91(1%') = al(ai — AQy eery G — a4), 93(pi) = Us(az' — Qg, ..., Q5 — a4) (41)

wherei =1,2,3,4. Let g1 = (97,91, 91, 3, 91), 93 = (93, 93, 93, 93, 93) Where gi=gs(p;),
j=1,2,and 1 =0,1,2,3,4. Let T = fP4 ¢;.cs then by theorem 3.0.22 it follows that
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4 . .
91-93

T =
; product of the weights of 7,, X

(o1(a0 — a1, ..., a0 — a4)).(03(ap — as, ..., ap — a4))
(a0 — a1)(ao — az)(ao — a3)(ao — a4)

(0'1(0,1 — ag, ..., A1 — a4)).(03(a1 — a(j, ey 1 — CL4))

T @ a)(@ - a)(ar - ap)((@ - ar))

O (PR (R rser) R
L (et (et e creer
+ (01(ag — ag, ..., a4 — a3)).(03(as — ay, ..., a4 — az))

(a4 — ag)(aqg — a1)(—aq4 + as)(aq — as)

= 50.
Another way to calculate fHM c;.cs is the following. Consider the exact sequence
0 — Ops — Ops(1)> — TP* — 0
Let ¢(Op4(1)) be the total chern class, and let & = ¢1(Op+(1)) be the hyperplane class.
Using properties of chern classes we have
c(Ops(1)°) = c(Ops) c(TP) =1. ¢(TP*) (42)
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Therefore

5
o(TP*) = c(Ops(1)%) = [ c1(Ops(1)) = (1 + h)® = 1 + 5k + 10h% + 10A® + 5h%.
=1 ,

But c(TP*) = Y0, c;i(TP*), where ¢;(TP?*) is the i-th chern class. It follows that
c1(TP) = 5h , c3(TP*) = 10h3. Therefore

/01.63 = /5h10h3
P4 P4
= / 50h%
IF’4
= 50 / Kt
]p:4

= 50 .1

= 20.
Example 4.0.26. Consider the action of T = C* on P? given by
t.(xg, x1,L2) = (t7 %z, ™Mz, t %2 29) (43)

where all the a;’s are distinct and non zero. The fixed point locus of the torus action
on P? = {poy,p1,p2} where the 1™ coordinate of p; is nonzero, all other coordinates
being 0. Recall that P7. = P(®7_Opz (—ai))), where A is the weight of the character
x(t) = t which lives in the group of characters M(C*). Also recall that
3
p = c1(Op3 (1)) € H7(P?) = Clp, Ao, s, Xl /([ [ P — M) (44)
‘ i=0

is the equivariant hyperplane class. As before, the map i;7 : (p;)7 — P% induces the

map i3 : H*(P3) — H*((p;)r). We are going to calculate

Ap
PF

By theorem 3.0.22 it follows that

2

)\.p:Z/ ]T)\p Z ]T)\p (45)

P2 = Joir Eulerr(N. Eulerp(N.
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But i¥5(A.p) = i5r(A) #5p(p) = A . a;A = a;A%, 5 = 0,1, 2. Thus

(\.p) 2 (\.p) 2. a; M2
]T JT E )
/1?2 AP Z/ Eulerp(N, Z Eulery(N — Eulerr(N;) (46)
T j=0 Y (@i)T =0 !

i)
Recall [po] = [(z1 = 0)7].[(z2 = 0)r] = (p — Ao)(p — A1), and
Eulerr(Ny = T, P?) := Eulerz((O(p — a11) @ O(p — a2)) | (po)r)
(O(p — a1))|po)r ® O(p — a22) |po)r)
= Eulerp((Op)r (@A — a1A) @ Oy, (aoA — az))
= c1(Opo)r (@A —a1})) . Cl(o(po)T (oA — az))
= (agA — a1A)(ag) — ag))

(
= EulerT(
(

= (ap— a1)(ag — az) \?
Similarly Eulerr(Ny) = (a1 — ao)(a1 — a2) A2, Eulerr(Ny) = (as — ag)(as — a1) A2

Thus

2

a; \?
Ap = —
/Pz = Eulerp(Nj)

T

. g )\2
(ao — al)(ao - CLQ) A2
051 /\2
+ 2
(a1 — ao)(al — a2) )\
(45) )\2
_|_

(as — ag)(ag — ay) A2
ap(ay — az) — ai(ag — az) + az(ag — ay)
(a0 — a1)(ao0 — a2)(a1 — a2)
0
(ap — a1)(ao — az)(ar — az) -
= 0.

Example 4.0.27. First recall that if E is a vector bundle of rank r on X, and 0 <
d < r, there is a Grassmann bundle, denoted Grassy(E), of d-planes in E, with a
projection map 7 : Grassy(E) — X, and a universal rank d subbundle S of 7*E;

S is also called the tautological bundle on Grassq(E). The bundle Q = (7*E)/S is
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called the universal quotient bundle, and the sequence below is called the universal

exact sequence.

0—-S—n"F—09—0

Let G = Grassy(C*) be the Grassmann of 2-planes in C*. If E = C* x X is the trivial

bundle on X then we have the following universal exact sequence
0—S—C'xG—Q9-—0

where S is the tautological bundle on G, and (C* x G)/S is the universal quotient
bundle on G. Moreover Ty = Hom(S, Q) = S’ ® Q. Consider the action of (C*)* on
P? given by

(tl, ...,t4).($0, ceey .’173) = (tl—lxo, ceey t4_1$3) (47)

This action induces an action on G with (;) = 6 fixed points p;;, i € I = {1,2,3},
j € J=4{23,4} and i < j where the p;; = {(0,4a;,0;,0) : a;,a; € C}. Recall fact
3.0.19. Then we have the following special case.

SPECIAL CASE. The following is a special case of fact 3.0.19: If E is a vector bundle
over X, and w = ¢;(E) then we have ¢;(w)=0;(weights of E at p;), where o; is the
i-th elementry symmetric function.

CALCULATIONS

(a) We are going to calculate [, c}(7g). First we will calculate the weights of 7,,G.
Since p;2 is a 2-dimensional vector subspace of C* we let V denote this vector
subspace. Then 7,,,G=TyG=Hom(V,C*/V)=V"®C*/V. Let {e1, ..., e4} be the
standard basis for C* where e; = (1,0,0,0),....,e4 = (0,/0,0, 1). Then {e|, ey}

is a basis for the dual space V' of V where

1 i=j
0 1#]

e; (¢j) =
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and {[es],[es]} is a basis for C*/V. Let ); be the weight of the character

Xi(t1, ..., t4) = t;. Now since
((t1, 2, B3, ta)-€1) (1) = €1 (877,51, 57 87 ) €1) = € ((t2,0,0,0)) = t1e; (e1)

then the weight of the T-action on e\ll is equal to A;. Similarly the weight of the
T-action on e;/ is equal to Ay. Thus the weights of the T-action on the basis
{e], ey} are A, ;. A similar argument gives the weights of the T-action for the

basis {[es], [e4]}. Those weights are —A3, —\4. To see this, first note that
(t1,t2, 3, ta) [es] = [(t1, 22, 3, 2a)-€3]) = [(0,0, t?Tl’ 0)] = [t?jl (0,0,1,0)] = t?jl [e3]

Similarly (t1,%2,%3,%4)-[ea] = £;* [e4]. Using the additive notation, the weights
of the T-action on the basis {[es], [es]} are —\s, —A4. Since {e; ® [es], e] ® [e],
e; @ [es], e; ® [es]} is a basis for the vector space TG = V' @ C*/V . It
follows easily that the weights of the T-action on the vector space Ty G are

Al'— A3,A1'— A4,A2'—'A3,A2'—'A4 because
(i, ta ts ta).(e; @ [ej]) =ti e ® t5h [e5] = tity e; ® [ej] (48)

where ¢ = 1,2, 7 = 3,4. Now using the additive notation the weight of the
T-action on the basis element e; ® [e;] is equal to A; — );. In table 1 (on page
31), we have listed the weights of the T-action on the bundles 75, S, and Q at

the point p;;.

Let GT = {p;; : i € I, j € J} be the fixed point locus of the torus action on G.

We will calculate the following integrals:

(a) Let T = [,ci(7g) then

4 .
_ ot (weights of 7,,.G)
= 2 T Bulers(Wohy)

pi; €GT

= 512
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(4,7) | weights of T, wts of S at p;; | wts of Q at p;;
(1,2) | A1 — A3, A1 — Ag, Ao — Az, Ao — Ay | —Ap, = =3, — Ay
(1,3) | A1 — Ao, A1 — Ay As — Ao, Az — Mg | —Aq, =3 =2, — g
(L,4) | A1 — Aoy A1 — A3, As — Ao, Mg — A3 | —Aq, =g =Xz, — A3

1 @3) [ A=A A = A As = A As = Ag | =g, A -1, =\
(2,4) | A2 — A A2 — A3, A — A, A — A3 | =g, — A4 =1, — A3
(3,4) | Az — A, A3 — Ao, Adp — A, A — Ag | =3, =\ —A1, =g

Table 1: the weights of the T-action on the bundles 75, S, and Q at the point p;;

(b) To calculate [, c}(Tg)ca(Tg). Let T = [, c}(Tg)ca(Tg) then

)
I - Z o} (weights of 7,,.G).o2(weights of 7,,.G)
a lyuzerT((jvb)pu)

pi; €GT

= 224.

(c) Let Z= [, c1(Tg)-cs(Tg) then

I _ Z o1 (weights of 7y,.G).03(weights of 7,,.G)
N Eulerr((Ng)p,;)

pi; €GT

= 48.

Example 4.0.28. Let Hilb?P? be the Hilbert scheme parametrizing finite subschemes

of length 2 in the projective plane (see [12]). Consider the C*-action on P? given by

t.(z0, 31, 32) = (£ %0, t "1, 7 22) (49)

where a, b, ¢ are non zero integers and a # b, b # ¢, and a # c. The fixed points are
clearly po = (1,0,0), p1 = (0,1,0), and p2 = (0,0,1). Let L be the line zo = 0, and
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put Fy = {po}, F1 = L—py, and F, = P>~ L. Then F; ~ A?, and they define a cellular
decomposition of P2. The action of C* on P? induces in a natural way an action of C*
on Hilb?P2. If Z C IP? corresponds to a fix point of this action, clearly the support of
Z is contained in the fixpoint set {pg, p1,p2} of C*. Therefore we may write Z = ZyU
7,UZy where Z; is supported in p; and corresponds to a fixed point in Hilb?P%, where
d; = length Og,. For any Z C P? of finite length 2 we can write Z uniquely as a
disjoint union Z = Zy, U Z; U Z, where each Z; is a closed subscheme of P? supported
in F;. Put d;(Z) = length (Oyg,). For any triple (dy,d;, ds) of non-negative integers
with d = do+d; +da, we define W (dy, di, ds) to be the locally closed subset of Hilb*P?
corresponding to subschemes Z with d;(Z) = d; for i = 0, 1, 2. Clearly

Hit’P = |J W(do,dy,dy) (50)

do+d1 +d=2

Let 4 = Hilb*P? and let H” be the fixpoint locus of the C*-action on H. Then H' =
{=% ), (z,97), (2% 2), (z,2%), (4%, 2), (y, 2%), (2, y)NV(z, 2), (2, y)N(y; 2), (¥, 2)N(z, 2) }-
Let X, = {Z € H : lim;_0t.Z = p} be the cell that corresponds to the fix-
point p € HT. Given any C*-action on P? that respects the cellular decomposi-
tion {Fy, Fy, Fo} of P?, then this action induces a cellular decomposition of Hilb*P?
and W (dy, dy,ds) is a union of cells from this decomposition. The spaces W (2,0,0),
W(0,2,0), and W(0,0,2) are contained in H3ilb?P?. They are unions of cells from a
cellular decomposition of Hilb*P?. The cells contained in W (2,0, 0) (resp. W (0, 2,0),

W(0,0,2)) are exactly those corresponding to fixpoints supported in py (resp. pi, pe).

CAsE 1. Consider the C*-action on P? given by t.(zo, 71, T2) = (t %z, t 21,1 xy)
such that a > b > c. Let y - 2, z=2 andlet A = (y%2), B = (y,2%) then A, B are
two fixpoints of H supported at the point py = (1,0,0). Clearly W(2,0,0) = X UX5.
Now the C*-action above can be written as follows: t.(y,2) = (%7 %y, °z). Let

Q4 = Clz,y|/A then the tangent space

TaH = Hom((3?, 2), C[z,y]/(v%, 2)) = Hom(A, Q4) = A" ® Q4 (51)
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Let e; = y2, e; = 2, e3 = 1, e, = y then the set {eiv Qe 1 =12, j =34}
form a basis for T4H. Let us apply the C*-action above on the basis elements and
then count the number of positive weights to get the dimension of the cell X 4. First
we will compute the weights of the C*-action on the basis element e; ® es. Since
te, =t ey =t ly? = tHeNg2 = 20-0)y2 — 20-0)e’ ¢ ey = g, It follows that
t.(e] ® e3) = (20%e]) @ e3 = 20~ (e] ® e3). Using the additive notation, the
weight of the C*-action on basis element e, ® es is 2(b — a). Similarly ¢.(e] ® e4) =
2 0e] @ 170y = POV (e] @ ey) = 10 (e) ® en), t(e; ® €3) = 17%(e, ® €3),
and t.(e; ® e4) = tb(ey; ® e4). Therefore the weights of the C*-action on the basis
above are 2(b — a), b — a, ¢ — a, and ¢ — b. Now since a > b > ¢ the number of
positive weights is 0. According to Bialynicki-Birula theorem (see [12]) dimX, =
dim(TaH)* = 0 where (T4H)" denotes the part of T4H where the weights of the
C* —action are positive So X4 = {A}. To calculate the dimension of the cell Xg,
let Qp = Clz,y]/B then TgH = Hom(B, Qp) = B’ ® Qp. Again you have 4 basis
elements. Applying the C*-action on those elements we pickup 4 weights namely, b—a,
b— ¢, 2(c—a), and ¢ — a. Now since a > b > ¢ the number o.f positive weights is 1.
Thus W(2,0,0) = X4UXp = {A}UCL. Consider the fixpoint I = (z,y)N(y,2) € HT
then

TrH = Hom((z,y), Cz,y]/(z, y)) ® Hom((y, z), Cly, 21/ (y, 2)) (52)

Applying the C*-action on the basis elements we pickup 4 weights namely, a—c¢, b—c,
b—a, and c—a. Now since a > b > c the number of positive weights is 2. It follows that
X7~ C?. Sodim X; = 2. In table 2(on page 34), we have listed all the fixed points of
H = Hilb>P?, the weights of the C*-action on the tangent space at the fixed point, and
the cell that corresponds to the fixed point. We let Nt denote the number of positive
weights. Now we can calculate the BETTI numbers of H. Let the BETTI number
b; = number of i-th dimensional cells where ¢ = 0,1,2,3,4. It follows that: by = 1,

b1:2,b2=3,b3:2,andb4:1.
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Fixed point p | weights of the C*-action on 7,4 | N* | X,

(z2,y) 2(a—c),a—c,b—c,b—a 3 |C

(z, %) 2(b—c),b—c,a—c,a—b 4 | C

(z2, 2) 2(a —b),a —b,c—b,c—a 2 |C

(z, 2%) 2(c—b),c—b,a—b,a—c 2 | C

(% 2) 2(b-a),b—a,c—a,c—b 0 | {(*2)}

(y, 2%) 2(c — a),c—ab a,b—c 1 |
(z,y)N(z,2) |a—c,b—c,a—b,c—b 3 C3
(z,y)N(y,2) |la—c,b—c,b—a,c—a 2 1C?
(z,z2)N(y,2) |a—bc—bb—a,c—a 1 C

Table 2: the fixed points of H = Hilb?P?, the weights of the C*-action on the tangent

space at the fixed point, and the cell that corresponds to the fixed point.

5 CHARACTERIZATION OF T-INVARIANT RATIONAL

EQUIVALENCE
Let T = (C*)™*! be the algebraic torus. Consider the action of T on P" given by
t(2o, ..., Tn) = (t;' 20, ..., 1 )

In this section a subvariety Y of P" is T-invariant if it is fixed by the torus T, i.e,

t.Y =Y wheret e T.

5.1 T-INVARIANT LINEAR EQUIVALENCE IN P7

Definition 5.1.1. Let X be a B-variety. An embedding ¢ : X — P" is a T-
equivariant embedding if for any subvariety Z C X we have 9(t.Z) = t.(Z) for
allt e T.

In section 5.5 we will prove that for any component Hilb” X of the Hilbert scheme
Hilb X there exists a T-representation V such that Hilb? X can be embedded

T-equivariantly in P(V).
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In the following definitions we will consider schemes satisfying the following condition:

(*) X is noetherian integral separated scheme which is regular-in codimension one.

See [25].

Definition 5.1.2. A prime divisor on X is a closed integral subscheme Y of codi-
mension one. A Weil divisor is an element of the free abelian group Div X generated
by the prime divisors. We write a divisor as D = ) n;Y;, where the Y; are prime
divisors, the n; are integers, and only finitely many n; are different from zero. If all
the n; > 0, we say that D is effective. If Y is a prime divisor on X, let £ € Y be its
generic point. Then the local ring O x is a discrete valuation ring with quotient field
K, the function field of Xb. We call the corresponding discrete valuation vy the valua-
tion of Y. Note that since X is separated, Y is uniquely determined by its valuation.
Let f € K* be any nonzero rational function on X. Then vy (f) is an integer. If it is
positive we say that f has a zero along y, of that order; if it is negative, we say f has

a pole along Y, of order —vy(f).

Lemma 5.1.3. Let X satisfy (*), and let f € K* be a nonzero function on X. Then

vy (f) = 0 for all except finitely many prime divisors Y. See [25]

Definition 5.1.4. Let X satisfy (*), and let f € K*. We define the divisor of f,
denoted by (f), by (f) = >_ vy (f) Y, where the sum is taken over all prime divisors
of X. By the lemma 5.1.3, this is a finite sum, henée it is a divisor. Any divisor which

is equal to the divisor of a function is called a principal divisor.

Definition 5.1.5. Let X satisfy (*). Two divisors D and D’ are said to be linearly

equivalent, written D ~ D', if D — D' is a principal divisor.

Definition 5.1.6. Let X be a B-variety. We define the action of T on the Weil divisor
D =3 "n;Y; by setting t.D = > n;(t.Y;), where ¢.Y; = {t.y : y € Y;}.
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Remark 5.1.7. Let X = P". Consider the fiber diagram

X - pt (53)

The inclusion map ¢ : X < X7 induces the map % : Hp(X) — H*(X) defined

by % ([Z7]) = [Zr xXx; X] where Z is a subvariety of X. But Z7 xx, X = Z. So

(1) Check % (p) = H. Let E be an equivariant rank r vector bundle over X.

Consider the following commutative diagram

b

3

XC_X> Xr

It follows that i% (Er) = E. Note that i% (] (E)) = i%(c;(Er)) = ¢;(i%(Er)) =
¢;(E). So i%(cj (E)) = ¢;(E). Thus

i (p) = 1% (c1(Opy (1)) = % (e (Opn(1)) = c1(Opn(1)) = H  (55)

(2) Check i%(A;) = 0. First note that \; := 7*()\;), ¢ = 0,1,2,...,n. Also note

*

that the commutative diagram in (1) above implies i% o 7* = 7, o 47,. Now

5 (Ag) = 5% (5(N)) = T (55,(N;)) = 73,(0) = 0 because iy,();) € H*(pt) = 0.

I will use i} instead of 4,7 for simplicity where 4;7. : H}(X) — Hj(p;) is the map

induced by the equivariant inclusion i, : (p;)r — Xr.
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Theorem 5.1.8. Let X = P" equipped with a T-action and a finite set of fixed points
{p;}}—o where the n + 1 fixed points p;, ordered as usual, so that the j-th coordinate
of p; is nonzero, all other coordinates being zero. Let H3;(X) be the equivariant
cohomology of P*, and let D; C X be a T-invariant subvariety of codimension one,

i =1,2. Then

(a) D1 ~ Dy & [Dir] — [Dar] € Span{); : i = 0,1,2,..,n}, where
Span{X; :i=10,1,2,..,n} ={3" jcihi: ¢ € Z}

(b) Let ¢;* : H7(X) — Hy(p;) be the map induced by the equivariant inclusion
ijr : (pj)r — Xr. If [Dr] € HE(X) is any equivariant class such that there
exists a; € Z, i = 0,1,2,...,n with i¥([Dr]) = Yor o ai for all j, then [Dy] =
Z’inlz() a'z/\@

Remark 5.1.9. (a),(b) implies D; ~ Dy < there exists a; € Z, 1 =0, 1,2, ...,n such
that Z;([DlT] - [DQT]) = Z?:O ai)\i, V] = 0, 1, 2, ey

Proofs.

(a) (=): Suppose that D; ~ Dy. Since the equivariant class [Dir — Dor] € HZ(X)
then

[Dir — Dor] = a.p + Z CiA; (56)

i=0
Consider the map ¢ : X < X which induces the map % : Hx(X) — H*(X)

where % ([Zr]) = [Z], Z is a subvariety of X. Applying i% to equation (56)

above we get
i%([Dir — Dorl) = ik (ap+ D _ cihi) = aikx(p) + > ciix(\)  (57)
i=0 i=0
It follows from remark 5.1.7 above that

i%((D1 = Da)r]) = i%([Dsr — Dorl) =a.H+» 0=aH  (58)

=0
But D; ~ D, implies [D; — Dy] = 0. Thus 0 = [D; — D] = aH implies a = 0.
Hence [Dir — Dor| = Y s ¢;Ai € Span{); :4=10,1,2,...,n}.
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(«<):Suppose [Dyr — Dor| € Span{X; : i =0,1,2,...,n} then there exists ¢; € Z
such that [Dir — Dop| = > o ci . 1t follows

n
7% ((D1=Da)r]) = i% ([Dyr—Dar]) = i% (D eid Zcz ix (A Zcz 0=0
=0
which implies [D; — Dy] = 0. Thus Dy ~ D..

(b) Consider the equivariant class [Dy] € H2(X) such that there exists a; € Z with
i5([Dr]) = Yigaid, Vi = 0,1,2,...,n. Since [Dr] € H}(X) it follows that
[Dr] = a.p+ Y ;¢ for some a,¢; € Z, i =0,1,2,...,n. Applying the map
7,7 =0,1,2,...,n we get |

i3 ([Dr]) ap—I—ZcZ = a.3; —|—ZcZ ) =a.A; +Zcz

But #([Dr]) = D7 gaid. It follows D7 aihi = a.Xj + Y7 cidi, Vi, So
Yoiolai — )N =a;, 5 =0,1,2,...,n implies adg = a); = ... = a), which
implies a = 0. Thus [Dr] = a.p+> o ycihi = 0.p+D 0 g cihi = Yoo, A where
G €L4,1=0,1,2,...,n ‘

5.2 T-INVARIANT LINEAR EQUIVALENCE IN A B-VARIETY

As in section 2.1 we will use a B-variety to denote a projective variety with a torus

action and a finite set of fixed points.

Remark 5.2.1. Let F be a sheaf on a topological space X, 7 : X7 — BT be a
continuous map of spaces. Consider an injective resolution of F

0+F>F ->Fl-F -

where F is a sheaf on X, 4 > 0. We then have a long exact sequence of sheaves
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. i1 . 3 M
T Ft — g Ft —> g, Fi!

The i-th direct image sheaf Rim,F = ker 6;/im§;_;. If F = C then R'7,C is a sheaf

on BT. Furthermore, R'm,F is the sheaf associated to the presheaf
Vs H(a (V), F =) = H(m (V),©)
on BT.
Definition 5.2.2. A spectral sequence is a sequence {&,.,d,}(r > 0) of bigraded

groups

7,9
Dp,g>0E7”

together with differentials
. bl W 1 2 J—
dp 1 EPT —y EPTHITTHL 2 = (),

such that
H*(&) = &rya.

Notation. {£27}, ;>o this notation means the following:
(1) For k >> 0, & degenerates i.e. we have
p = Ef = £ty =
Where all d = 0. We say 84 = £,

(2) Suppose & degenerates when k = n. Then there exists a filtration (FP€y,d) of
& whose graded quotients are £7 where p+ ¢ =nie. Gréy = @p>o GrP €

where GrP €, = FPEy [FPTE =E29 p+q=n.
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Definition 5.2.3. Suppose we are given topological spaces X,Y with a continuous
map f: X — Y and a sheaf F over X. The ¢ — th direct image sheaf is the sheaf
RIf.(F) on Y associated to the presheaf

U— HU(fHU),F).

The Leray spectral sequence, is a spectral sequence {&,} with

oo == H*(X, F),
& = HY (Y, Rf(F))

Example 5.2.4. Consider the map 7 : P% — BT then the sheaf R!7,C = 0
because the fiber (R'7,C), = H(n (p),C) = H'(P*,C) = 0, p € BT. Thus
HI(BT,R'7,C) =0, j > 0.

Remark 5.2.5. Consider the map 7 : X7 — BT then the Leray spectral sequence
{€,} degenerates i.e., E21 = £ p,q > 0 and for any sheaf F on X7 there exists a
filtration of H?(F)

H*(F) = F°H*(F) > F'H*(F) > F?H*(F) > ... D F"H*(F) D F""'H*(F) =0

such that FPH?(F)/FPHLH?(F) ~ EP27P. For simplicity I will use F? to denote for
FPH?*(F). Now if F = C then

F°/F' = £%? = H°(BT, R*x.C) (60)

F'/F?* =Lt = HY(BT,R'7.C) =0 (61)

Because R!7,C = 0. But F! # 0 implies F! = F?,

F?/F? = % = H*(BT,R"r.C) = H*(BT,C) (62)
Pt =£3"1=0 (63)
Thus F? = 0 and by a similar argument F* = F° = ... = 0.
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Lemma 5.2.6. Let X be a B-variety, and let C be the constant sheaf on X. Consider
the map 7 : X7 — BT. Then 7,C = C.

Proof. Let X = Xy, Y = BT. Consider the constant sheaf Cy on X, and the con-
stant sheaf Cy on ). We need to define a morphism of sheaves
Y : C — mCyx. So let U be an open subset of ). Define a morphism of
abelian groups ¥(U) : Cy(U) — m.Cx(U) as follows: For simplicity we will use
¥ to denote for ¥(U). Let Cy(U) = {f : U — C where f is a constant map },
mCx(U) = Cx(n " U)) = {g : 7 ' (U) — C where g is a constant map }. We
define ¢ : Cy(U) — m.Cx(U) by ¥(f) = fox for any f € Cy(U). Clearly ¢ is
well-defined.

claim: v is an isomorphism. By abuse of notation we define ¥~ : 7, Cy Uy —
Cy (M), and again for simplicity we will use ¢~ to denote for ¢(U) ™", by ¥ ' (g) = h
where h(p) = g(z~ (p)) for any p € Y. This definition makes sense because g is a
regular function on the fiber 771(p) = X, which is a connected projective B-variety,
so g is a constant function on X. It remains to check that ¥~ o1 = Idc, ), and
Yot = ldncew. First. let f € Cy(Ud) then (¥~ o 9)(f) = ¢ ((¥)(f)) =
Y (fom). Ifp €U then (¥ (fom)(p) = (fom(m (p) = f(p). Tt follows
¢ (fom) = f. Thus ¢ o4 = Idc,w) Second. Let g € mCx(U), and let
5= (¥ )(9) then (You ™ )(9) =9(¥ (9)) =9(6) =Fom Nowif s € w (U) then
(6 om)(s) = 6(n(s)) = (¥ (9))(w(s)) = g(z " (x(s))) = g(s) because g is a constant
map. It follows (6 o 7)(s) = g(s) for each s € = (U). Thus (o™ )(g) = g. Hence
o =1Idn.cy): |

Definition 5.2.7. Let U be an open subset of the topological space X and let G be
the sheaf associated with the presheaf G on X. Then G(U) is defined as the set of

functions s from U to the union UpepG, of stalks of G over points of U, such that
(1) for each p € U, s(p) € G,, and

(2) for each p € U, there is a neighborhood V of p, contained in U, and an element
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t € G(V), such that for all ¢ € V, the germ ¢, of t at q is equal to s(q).

ie, GU) = {(s(p))per: $(p) € G, and for each p € U, there is a neighborhood V of
p, contained in U, and an element ¢ € G(V'), such that for all ¢ € V, the germ ¢, of t

at q is equal to s(q)}.

Remark 5.2.8. Consider the commutative diagram of group homomorphisms with

the horizontal row exact

CLAIM. If yo = Opgp then there exists a group homomorphism h : ¢ — D such
that h3 = ty. PROOF. Let ¢ € C. Since f is surjective there exists b € B such that
| B(b) = c. Define h(c) = v(b). Now if &' € B such that S(b') = ¢ then (¥ — b) =
B(b') — B(b) = 0. But the horizontal row in diagram (66) is exact. So there exists
a € A such that a(a) = ¥ —b. So ya(a) = (' — b). But ya = Opgp. It follows
v(® —b) = 0. Thus ~(b) = ~(V'). Hence hp = 1.

Fact 5.2.9. Let V be a T-invariant open subset of the B-variety X. Let v : ET —
BT be a principal T-bundle. Let f : V — C be a rational function such that
t.f = p(t)f where p is the character with weight } " ,a;\;. We define the sheaf
O((fr)) as follows: Let g € I'(v*(C,)7). Then g(a) € (v*(Co)r)a = ((Cp)7)1(a) = Co-
So g(at™") = t.g(a) = p(t)g(a). Define s([a,v]) = g(a)f(v) where [a,v] is a class
in Vo = ET xp V. We check that s is well-defined: s([at™,tv]) = g(at ) f(tv) =
p(t)gla)p™ ) f(v) = g(a)f(v) = s(la,v]). Let f ' (co) be the divisor of poles of
f. Define O((fr))(Vr) to be the ring O((fr))(Vr) = {s : (V — f  (c0))y — C :
s(a,v]) = 9(a) £ (&) where g € T(7*(C,)r)}-
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Fact 5.2.10. Let X be a B-variety. Then the k-dimensional vector space H?*(X,C)
over C is generated by the set {[D1],...,[Dx] : D; C X is a C*-invariant subvariety of

codimension 1}.

Proof. Let X be an n-dimensional B-variety, i.e a smooth projective variety with a
T-action and a finite set of fixed points {zg,...,z,}. Then by the Bialynicki-Birula
theorem (see [12]) X has a cellular decomposition with cells X; = {z € X : tli_n)lot.a: =
z;}. By part (ii) of proposition 1.5 in [12], H?(X,C) is generated by the classes of
the closure of the (n — 1)-dimensional cells (note that H*(X,C) = Hapn_1)(X,C)).

It follows that the k-dimensional vector space H?*(X,C) is generated by the set

{[Xn-11], - [Xn-14]} where X,,_;; is the closure of the (n — 1)-dimensional cell
Xn-1;. It remains to check that X,_;; is C*-invariant. Let x € X,_;; we show
that t'.z € X,,_;; for any ' € C*. So we need to check that tli_r)not.(t’.x) = z;. But
tli_r)not.(t'.x) = lt1i_r+n0(t.1f').a: = tl.ltigo(t.t').:c. Let r = t.t' then tl.ltigo(t.t').x = Tli_I)nor.a: =

z; because x € X,_1 ;. So z € X,_; ; implies t'.x € X,,_;; for any t' € C*. Therefore

Xn-1,; is C'-invariant. So X,,_; ; is C*-invariant.

Lemma 5.2.11. Let X be a B-variety, and let C be the constant sheaf on Xr.
Consider the map 7 : X7 —> BT. Then R?r,C = C* where k is the dimension of
H?*(X,C).

Proof. Fix a T-invariant divisor D C X. Then F = R27,C is the sheaf associated
to the presheaf F where F(U) = H?(x" (U),C), U open in BT. Now consider the
equivariant divisor Dy C Xp. Let Lp, be the line bundle on X7 associated to the
divisor Dr, then ¢1(Lp, [-1)) € H?(n" (U),C) = F(U). Let sy=c;(Lp, L1 0))-
Let V be an open subset of U, consider the restriction map p¥ : F(U) — F(V)
which is defined as follows: Let i : 7 (V) < « (U) be the inclusion map. Define

0% (sy) = i*sy where

’i*SU = i*cl([’DT |7r_1(U)) - cl(i*’cDT IW_I(U)) = Cl(ﬁDT |7r—1(V)) = Sv
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So p¥(sy) = sy. Therefore we get a global section D € F(BT) = H*(Xr,C).

Consider the exact sequence
0 — H*(BT,C) —»™ H?*(Xp,C)—YH°(BT,R*,C) — 0 (65)

Let D be a T-invariant divisor in X. Define the map ¢ : H*(X,C) — H°(BT, R*x,.C)
by ¢([D]) = D where D = (D).

(*) ¢ is an isomorphism:
First we show that ¢ is injective. Consider the exact sequence
0 — H*(BT,C) —™ H*(Xr,C) —¥ H°(BT,R*r,C) =0 (66)

So keryy = im7* C C[Ag, ..., \s] (H*(BT,C) c H*(BT,C) = C[Xg, ..., A\s]). Now
Suppose that ¢([D]) = 0 where D is a T-invariant divisor in X. Then ¢([D]) =
D =9¢D) =0 SoD € keryy = ima* C Clhg, .., \). So D = 3" ;)
where a; € C. So D — 3" a;); = 0 € F(BT) = H*(Xp,C). Tt follows that
pBT(D — Y% a;\;) = 0 where U is an open subset of BT and p&T : F(BT) —»
F(U). So pBT(D) — pBT (3% aidi) = 0. So ¢1(Lpy -t y) — 2imo @A = 0). Let
j:w (U) — « (BT) be the inclusion map. Then j*(c;(Lp,) — Soroaih) =0
(note that 7*(D 1, aidi) = Y roaiXi because j* is a C[)y, ..., Ay]-module homomor-
phism). But ¢;(Lp;) — D g aidi = c1(O(Dr)) — ci(O3 -1 paidi)) = a1(O(Dr) ®
O(= Ximo aihi)) = a1(O(Dr — 3530 aiXy)). So j*(e1(O(Dr — 327y a;hi))) = 0. But
j§* is the restriction map. It follows Dy — Y7 a;)\; is linearly equivalent to zero. So
[Dr] — 377 o asX; is rationally equivalent to zero. So #%([Dr] — 3. iy aiX) = 0. But
i% ([Dr]) = [D] and % (\;) = 0. Therefore [D] = 0. So ¢ is injective.

44



Second we check that ¢ is surjective. Note that the surjectivity of the map ¢ follows
immediately from diagram below because it is commutative. So ¢ 0% = 1. But 4 is

surjective so ¢ is surjective.

H2(X7p,C) —% H(BT, R?r,C) (67)

o

H%(X,C)

To check that the above diagram is commutative it is enough to check that

Y([Fr] — ’L@]) = 0 where F is a T-invariant subvariety of X of codimension one

e —

(because ([ Fr] — % [Fr]) = $([Fr]) — (&% [Fr)) = $([Fr]) — do ik ((Fr])). Let {Ui};

wyle(Lrr) =
iy (U‘)[FT] = pBT[Fr]. So pBY([F] - [Fr]) = 0 for all i. It follows from a sheaf axiom

~ o —

that [F] — [Fr] = 0. So $(([Fr] — ix Fr)) = $(0) = 0.

be an open cover for BT. Since pZ7 ([F]) = c1(Lr, ) = Lo

Third we will check that ¢ is well-defined. Suppose [D] = [D']i.e D ~ D' where D and
D’ are T-invariant divisors in X. Then there exists a rational function f : X — C

such that D — D' = (f).

STEP 1: there exists a character p such that ¢t.f = p(t)f.

Let t € T then t.f and f have the same zeros and poles since D — D' is T-invariant.
So % has no zeros or poles in X where X is a compact set. Therefore % = ¢; where
c; is a constant. Let us check that ¢; is a character. First recall that a character
x : T — C* satisfies the property x(¢t.t') = x(t)x(t') where ¢, ' € T. Also recall
that (¢.t').z = t.(t.z) where z € X. So it is enough to check that ¢,y = cicy. First

note that ¢.f(z) = c:f(z) implies f(t7'z) = cif(z). Write f(t71z) = (f o t71)(2)
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where ¢! defines the bijection on X given by z — t7'x. So (f o t7})(z) = c,.f(z).
Now crpf(z) = (t4)-f(z) = f((tt) ) = (fo (L)) (2) = (fo (¢ 7))(a)-
But (f o (71 "))(z) = (f ot~ 1) (¢ x). It follows oy f(z) = (f ot (' '2) =

(e ) —lx) =cf (¢ _lx) = ¢ycp f(x). Therefore ¢,y = ciey. Thus step 1 is done.

StEP 2: O((fr)) =~ 7 (C,)r

PRrooF. Let V be a T-invariant open subset of the B-variety X. Define a morphism
of abelian groups ¢(Vr) : #*(C,)r(Vr) — O((fr))(Vr) as follows: for simplic-
ity we use ¢ to denote p(Vy). If B € 7*(C,)r(Vr) then B([a,v]) = {a} x gs(a)
where the function gs : ET — C. So t.gs(a) = p(t)gs(a) where a € ET. De-
fine o(B8) = gs(a)f(v) where a € ET, v € V. Then ¢(8) € O((fr))(Vr) by fact
5.2.9. To check that ¢ is an isomorphism, we define the morphism of abelian groups
p(Vr) : O((fr)) (Vi) — 7*(C,)7r(Vr) as follows: for simplicity let p denote p(Vr). If
s € O((fr))(V) then by fact 5.2.9 s([a,v]) = 325, g:(a) f(v) where g; € T(v*(C,)7).
We define p(s) = a where a([a,v]) = {a} x 32F_ g:(a). Now a € 7*(C,)r(Vr)
because a([a,v]) € (7*(C,)r)an] = ((Cy)r)a = {a} x C, and g;(a) € C, (since
9 € T(v*(C,)r)). Clearly po ¢ = Idpc,)pvy) and ¢ o p = Idoysr)) vy Thus
O((fr)) ~ m*(C,)r. Hence step 2 is done.

Note that 7*(C,)r = 7*O(— Y 1, a;A;) where > a;)\; is the weight of the char-
acter p. But 7021 jaidi) = O yaim* ) = O, ai);) since A; := 7\,
So m(C,)r = O(—>.7 ,a;A). Now let us check that ¢ is well-defined. Sup-
pose [D] = [D'], i.e D ~ D' where D and D’ are T-invariant divisors in X. Then
there exists a rational function f : X — C such that D — D' = (f). Now

D— D' =4(D) — (D) = (D - D).

STEP 3: D— D' = — Yoo o aim*N;. Therefore
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D—D' == am* ) =—> a;(pom*)(A) =0
i=0 i=0
because 9 o 7 = 0,4, since the sequence (66) is exact. Therefore ¢ is well-defined.

Now we prove D-D=- Z?:o a;7* ;. Let U; be an open cover for BT. Then (D -

D') |v;= s, = s, = &1(Ly le=1y) = 1Ly L1 ) = 121 (@(L0r) = e1(Ly))
where the map -1, : 7 (U;) — X is the inclusion map. Let O(Dr) denote Lp,
then (D= DY) lu= %1 5 (1(O(Dr)) — s(O(D5)) = % (1(O(Dr ©O(D})) =
i1 gy1(Dr = D) = it g s (O()). But O((fr)) = 7(C,)r = O(= Tgaihy).

It follows

A A

(D - DI) lUi: z.j,.:.—l([]i) (01(0(_ ZO al’\z))) = Z.;kr—l(Ui)(_ ZO az)\z) = - ZO @i

since iy, H2(n ' (U;),C) — H2(Xr,C) is a C\g, ..., Ay]—module homomor-

(Ui
phism. So (D — D' + 37 a:\) |v;= 0 for all i. It follows from a sheaf axiom

D-D + Y or paidi =0. So D-D=- > o aii. Thus step 3 is done.

I will use 4} instead of ;. for simplicity where %,%. : H3(X) — Hp(p,) is the map

induced by the equivariant inclusion i;, : (pj)7 — Xr.

Theorem 5.2.12. Let X be a B-variety and let D; C X be a T —invariant subvariety

of codimension one, ¢ = 1,2. Then

(8 Dy ~ Dy & [Dip — Dor] € Span{); : 1 = 0,1,...,n}, where
Span{X; :i=0,1,..,n} ={d " ;e\ :¢ € L}

(b) Let p; € X7, i;* : H#(X) — H}(p;) be the map induced by the equivariant
inclusion 4, : pjr — Xr. If [Dr] € HZ(X) is any equivariant divisor such that
there exists a; € Z, i = 0,1,2 with }([Dy]) = > 7 a:A\i, Vi = 0,1,...,n, then
[Dr] =320 aihi.

Proof.
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(a) (=): Suppose that D; ~ Dy then [Dy — D3] = 0. But i%([(D1 — D2)7]) =
[D; — Dy] = 0 implies [(D; — Ds)r] € keri%.

CLAIM. keri% = Span{\; :1=0,1,...,n}. Consider the commutative diagram

X 2 pt | (68)

Which gives the following commutative diagram

H*(BT) 22~ H*(pt) (69)

lw* lﬂ-;;t

H*(Xp) > H*(X)

Note that H*(BT) = C[Ao, A1, ..., An] C H*(X7) where \; :=7*();),1=0,...,n.

Since the above diagram is commutative, 7% o 7*(\;) = m, o in, (X)) = 0,
i = 0,..,n which implies i%(Ai) = 0, i = 0,...,n. Thus kers% contains

span{; : ¢ = 0,...n}. It remains to show that ker % C span{);:i=0,...,n}.
H*(F)=F'> F' = F? (70)

This gives rise to a short exact cohomology sequence

0— F?— F' < F'/F* >0 (71)

But F3 = 0 (see remark 5.2.5 above) implies F2 = F2/F% = H?(BT,C), and
F°/F? = F°/F' = HY(BT,R*m.C). By lemma 5.2.11 R?m,C = C*. It follows
that
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F%/F% = HY(BT,C*) = o*_  H(BT,C) =af C=C*

where H°(BT,C) = C because BT is connected. Also, by Lemma 5.2.6

7,C = C. Thus our short exact sequence becomes
0 — H*(BT,C) — H*(Xy,C) — H%(BT,C*) - 0 (72)

Recall from Lemma 5.2.11 the isomorphism ¢ : H*(X,C) — H°(BT,C*) de-
fined by ¢([D]) = D where D is a T-invariant divisor in X, and D is the global
section associated with D. Let p = ¢~ then poyp = i%. Since R2m,C ~ C* it fol-
lows that H°(BT, R?r,.C) = H°(BT,C*) = % , H(BT,C). But H(BT,C) =
C because BT is connected. So H°(BT, R?r,C) = C*. But H*(X,C) is a k-
dimensional space. It follows p is an isomorphism of k-dimensional spaces. Also
note that i% o 7 = Oypep, Where Opg, i the zero map. Clearly H*(BT,C) is a
subset of H*(BT,C) = Cl[Ag, ..., \p]. If ¢ is in H%(BT,C), then ¢ = 3% a;);,
a; € C. Since 7% o m* = 7}, 0 @5, it follows that (i% o 7*)(c) = (m%, o %) (c).
But (m; o i;t)(Zle aidi) = Z?:l aimyy (i (X)) = Z?:l a;my(0) = 0. Thus

-5 *
1% 0" = Omgp-

0 —= H2(BT,C) > H%(Xy,C) —> HO(BT, C*) —0 (73)

H*(X,C)

Now we show that p is injective < ker % = H?(BT, C) (see the diagram above).

(«<): Suppose p(s) = 0 where s € H°(BT,C*). We will show that s = 0.

Since ¢ is surjective there exists w € H?*(Xr,C) such that ¢(w) = s. It

49



follows p((w)) = p(s) = 0 But p o4 = i% implies i%(w) = 0 which
implies w € kerit, = H?*(BT,C) C H*(BT,C) = C[),...,\y]- It follows
w = Y b b € C Now w = Y70 b = > bn*(\). It follows
5 = w(w) = BT b () = S0 (e (W) = X, 5.0 = 0 (because
ker+) = im7* since our sequence above is exact). Thus s = 0. Hence p is
injective.

(=): Suppose p is injective. Let a € kerdk then i%(a) = 0. It follows
0 = i%(a) =(po ¥)(a)= p(¥(a)). But p is injective implies ¢(a) = 0 which
implies o € kery = im7*. Thus o € H?(BT,C). Hence keri% C H?*(BT,C).
It remains to show that ker i% contains H%(BT,C). So, let 5 € H*(BT,C). By
part (2) of remark 5.1.8 we have % om* = Opyqp. It follows im 7% C ker. Thus

B lives in ker i%. Hence keri% D> H?(BT,C).

But p is an isomorphism. It follows kers%, = H?(BT,C) C H*(BT,C) =
Cl[Ao, -, Ay). Thus we have keri%, C Span{); : i« = 0,...,n}. But keré} D
Span{); : 1 = 0,...,n}. Therefore ker % = Span{X; : ¢ = 0,...,n}. Thus laim
1 above is proven . Hence we are done with the proof of Theorem 5.2.12 part
(a) (=)

Now let us prove the other direction of part (a) of Theorem 5.2.12.

(a)(<=): Suppose [D17—Daor| € Span{A; :i=0,1,...,n} then there exists ¢; € Z
such that [Dy7 — Dor| = Z?:o ¢; ;. Consider the inclusion map ix : X — Xp
where i%([Z]r) = [Z]. Consider diagram (69). Note that A\; := 7*()\;). It
follows [Dyr — Dar] = 3.7, c;.m*(N\;) which implies that #%([Dir — Dar]) =
7" (o 6 (M) = Vi ik (% (X)) = 2ig cimpy(ige(A))- But g, (X) = 0.
It follows % ([Dir — Dar]) = Yo i3 (0) = 32 ¢;.0 = 0. Thus [Dy — D, =
5% ([(D1 — Do)7|) = % ([D11r — Daor]) = 0. Hence Dy ~ Ds.

(b) Let C(A\) = C(Ao, ..., A\y) be the field of fractions of C[)\g, ..., A,]. Consider the
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map ¢ H5(X) 00y ©) — G5-oHi(p) Oy € where d(a & S0V) =
(i3().f (N)j=o- Let [Dr] € HZ(X) C HE(X) ® C()) such that for each j we
have 5([Dy]) = {(X) where I(X) = D"  aidi. Then ¢(I(A) @ 1) = ¢(1®1(N)) =
(5(1)-LAN)j=0 = U(A))f=o = (([Dr])j=- But ¢([Dr] ® 1) = (55([Dr])j,- Tt
follows ¢(I(A\) ® 1) = ¢([D7] ® 1). But ¢ is injective implies [(A) ® 1 = [Dr]®1
which implies (I(A) — [Dr]) ® 1 = 0. Thus [Dr] = I(}).

5.3 T-INVARIANT RATIONAL EQUIVALENCE IN P?

Definition 5.3.1. Let X be a projective variety. Two k-dimensional subvarieties
V and V' are said to be rationally equivalent, written V ~ V', if there exists a
sequence of k-dimensional subvarieties Vy, = V,Vi,...,V, = V' and a sequence of
 (k + 1)-dimensional subvarieties Wl, ...y Wy, such that V;_;,V; are contained in W;,
and V, 1 ~V,inW; ,i1=1,..,n.

Definition 5.3.2. Let Z be a B-variety. A T-invariant k-dimensional subvariety V of
Z is T-invariantly rationally equivalent to a T-invariant k-dimensional subvariety V' of
Z, written V A , if there exists a sequence of T-invariant k-dimensional subvarieties
Vo=V, W,...,V, = V' and a sequence of T-invariant (k + 1)-dimensional subvarieties
Wy, ..., W, such that V;_{,V; are contained in W;, s = 1,...,mand V;_;y ~ V; in W, ,

1=1,...,n.

Definition 5.3.3. If f : X — Y is a regular embedding of codixﬁension d, and
g : Y — Y is an arbitrary morphism such that Y’ is a smooth variety. Form the
fiber square i.e. X' = X Xy Y’ = g7}(X). We define the refined Gysin homomorphism
fri Ap(X') —> Ap_q(Y") by the formula fi[V] = f,[V].[X'] where f’ is the morphism
in the fiber square. See 6.2 in [17].

Example 5.3.4. Let X be a projective variety with an action of 7' = (C*)™, and
a finite set of fixed points, and let Z C X be a T-invariant subvariety. Consider

the fiber square below where ¢ is a regular embedding of codimension d, i7 is the
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inclusion map induced by 4. Then 4, : Ax(Z7) — Ap_q(X7) is given by the formula

W[V] = i [V].[Z2].

Conjecture 5.3.5. Let X be an n-dimensional projective variety with a torus action
T = (C*)™*! and a finite set of fixed points X” = {g;}%_,. Consider the equivariant
maps ;% : Hp(X) — Hp(q;), 455 « Hp(Z) — Hj(g;), where Z is a T-invariant
subvariety of X, and ¢; € Z for some j. Let D C Z be a T-invariant subvariety. If

1: Z — X is the inclusion map we have

(i5% o @) ([Dr]) = (i52)([Dr])-(i5% ) ([Zr])-

Example 5.3.6. Consider the action of T = (C*)® on X = P2. Let D = Z(z, 1),
and let Z = Z(zg). Let i : Z < X be the inclusion map then
i;X oi[Dr] = i;Xi!(p - A) = i;X([ZT]'(p - A1) = i;X((p —do)(p — M)

= (4 =) — A1) |
But Z;Z[DT]’I,;X{ZT] = Z;Z(p - /\1)7,;X(p - /\0) = ()\] — /\0)()\] - )\1) Thus

(é5% o )([Drl) = (52)((Dr])-(5%) ([Zr])-

Theorem 5.3.7. Let X = P? equipped with a torus action 7' = (C*)® and a finite
set of fixed points X7 = {p; ?:o of the torus action, where the three fixed points p;,
ordered as usual, so that the j — th coordinate of p; is nonzero, all other coordinates
being zero. Let Z C X be a T—invariant subvariety of codimension one, D; C Z be

a T'—invariant subvariety of codimension two in X, i = 1,2. Then
(1) If Z is irreducible then

Dy ~ Dy in Z < [Dir — Dor] € Span{\;.[Z7] :1=0,1,2}
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where Span{\.[Zr] 11 =0,1,2} = {37, ci\i[Zr] ¢ € Z}

(2) If Dy ~ Dy in Z where Z is an irreducible subvariety of X then there exists an
IN) =37 gaidi, a; € Z, i = 0,1,2 such that i;*([Dir — Dar]) = I(A).i;*([Z7]),
j =0,1,2, where i;* : Hx(X) — Hy(p;), j = 0,1,2 is induced by the equiv-

ariant inclusion ¢: Z; =<+ X, 7 =0,1, 2.

3 If Dy A Dy and D; C U ,Z;, © = 1,2 is a codimension 2 subvariety of X
k=0
such that D; = Yo  aulpl, i = 1,2, Ya ot = Yoo oaok, and [Z;] =
[rrx = 0] where z; is a coordinate of P2, k = 0,1,2. Then there exists an
L(N) = 07 bighi, bir € Z, 5 =0,1,2, k = 0,1,2 such that i;*([Dir — Dor]) =
> b0 k(N 457 ([Zar)), § = 0,1,2,

Proofs. Part(1) is a special case of part(1) of theorem 5.4.1 which will be proven
in the next section. To prove part(2), Suppose that Z C P? is an irreducible,
T—invariant subvariety of codimension 1 then the cycle [Z] = [z; = 0] for some i,
i = 0,1,2. So the equivariant cycle [Zr] = p—\;, for some 4,7 = 0,1,2. Since D; C Z,
i = 1,2 is a T—invariant subvariety of codimension 2 in P?, and D; ~ D, in Z then
[(Dy — Dy)r] = 332_, ay[prr] such that S2_ a, = 0. Clearly [D; — Do) = 327, a,[p,]
is a class on Z implies a, = 0, for some r. Now if ag = a; = 0 then a; = 0. So
[D; — Dy] = 0. Take [(A\) = 0. Similarly if ag = a3 = 0 or a; = a2 = 0 then
[Di — Do) = 0. Take I(X) = 0, so i;*([Dir — Dar]) = I(X).i;°([Zr]) is satisfied,
j = 0,1,2. Suppose as = 0 such that as # ag, and as # a; then a; = —ay, and
[Z7] = p — As. Now

i;"([Dir — Dar]) = 4" (aol(po — p1)7]) = a0-3;"([(po — p1)7])
= ao.3; ([por — p17]) = a0-4;"((p — A)(p — A2) — (P — Ao)(p — A2))
= ag.i;" (Ao — M) (@ — A2)) = ao.(Ao — A1)i"(p — A2)
= ao-(do — M)t ([Zr])
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Take I(A) = ag.(\o — A1) then i ([Dir — Darl) = I(A).i;*([Zr]), = 0,1,2. Similarly,
If a; = 0 such that a; # ag, and a; # az then take [(A) = ag.(Ag — A2). Finally, if
ap = 0 such that ag # ay, and ag # as then take [(A) = a1.(A; — A2).

To prove part(3), Suppose D, < D, in P? then Dy — Dop = Z?:o a;pir, 0 € Z,

1 =0,1,2 such that Z?:o a; = 0. Now since ay = —ag — a; then

ij*([Dir — Dar)) = " (> ailpir]) = 45" (ao[(po — p2)r] + a1 ({(pr — p2)1))-

=0

But [(po — p2)r] = (Ao — A2)(p — A1), and [(p1 — p2)r] = (A1 — A2)(p — Ao). So

i*([Dir — Daor]) = 45" (ao(Ao — A2)(p — A1) + ar(A — A2)(p — Ao))

= ao(/\o - /\2)7,]*(]) — /\1) -+ al()\l — /\2)23*(]) - )\0)

Let lo(X) = a1(A1 — Aa), l1(A) = ag( Ao — A2), l2(A) = 0, and let the equivariant class
[Zir] = (2 = 0)r] = p— i, § = 0,1,2 then i*([Dir — Dor]) = o lu(N)-i5* ([Zr]),
7=0,1,2.

5.4 T-INVARIANT RATIONAL EQUIVALENCE IN A B-VARIETY

Theorem 5.4.1. Let X be an n-dimensional B-variety where X* = {¢;}7.,. let
Z C X be a T—invariant subvariety of dimension £+ 1 < n, and let D; C Z be a

T'—invariant subvariety of dimension k, ¢ = 1,2. Then

(1) If Z is irreducible then

Di~DyinZ & [DlT — DQT] € Span{)\z[ZT] 1 =0,1, ,n}

where Span{\;.[Z7] : 1 =0,1,..,n} = {31 s cXi.[Zr] 1 ¢; € Z}.
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(2) If Dy ~ D, in Z where Z is an irreducible subvariety of X then there ex-
ists an [(A) = Y0 @M, a; € Z, i = 0,...,n such that i;3([Dir — Dor]) =

(3) If Dy < Dy and D; C U Zk, © = 1,2 is a subvariety of dimension r such
that D; = Y 4o Dik, and Dy ~ Dy in Z, where Z, C X is an irreducible
T-invariant subvariety of dimension r + 1 and Dy, C Zj is a T-invariant sub-
variety of dimension r. Then there exists an Iy = Y 0 o GikA Where\ ayx € 7,

i=0,..,n, k=1,...,m such that

ii%([Drr — Dar]) = Yl ([Zir])

where j = 0,...,n.
Proofs.

(1) PrROOF. (=) Suppose that Dy ~ Ds in Z where D;, Z are T-invariant then
D, — Dy = (f) where f : Z —» P! is a rational function on Z. As in the
proof of lemma 5.2.11 there exists a character p such that ¢.f = p(t)f. Re-
call the map 7 : X7 — BT where Xr is a fiber bundle over BT. Let V
be a T-invariant open subset of the B-variety X. Recall Vf = ET X7V and
let [a,z] denote a class in V7. We define the sheaf O(Dj,.), j = 1, 2 as fol-
lows: O(Djp)(Vr) = {Zle hi(z)gi(a) : hiy(z) is a meromorphic function on
V, and g;(a) is a continuous function on ET such that (h;) + D; > 0 and
hi(tz)gi(at") = hi(z)gi(a)}. Claim: O(Dig) = O(Dar) ® 7(Co-1)r. Let ¢
denote (V). We define the morphism ¢ : O(Dyr)(Vr) ® 7(C 1 )r(Vr) —
O(Dir)(Vr) by p(h(z)g(a) ® k(z)l(a)) = k(z)h(z)f ™ (z)g(a)l(a). First we
check (khf™') 4 Dy > 0. Clearly (khf )+ Dy = (k) + (h) + (f ) + Dy =
(k)+ (h) + D, (note that (f77) = Dy—D;). But (h)+Dy > 0 (because h(z)g(a)
lives in O(Dqr)(Vr)). Also (k) > 0 (because k(aj)l(a)' is a section so it has to
be defined for all a € ET, and for all v € V, i.e k, | can not have poles). Sec-
ond we check that k(tz)h(tz)f (tz)g(at i(at™") = k(z)h(z)f  (z)g(a)l(a).
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(3)

Clearly k(tz)h(tz)f ™ (tz)g(at”)l(at) = k(@)l(a)p " (t)h(z)g(a)p(t)f™ (z) =
k(x)h(z)f ™ (x)g(a)l(a) (note that f~' (¢ z) =¢.f (z) = p~ (1) (z) implies
f(tz) = p(t)f ™ (x)). Therefore k(z)h(z)f ™ (z)g(a)l(a) € O(Dyr)(Vr). Tt is
easy to check that ¢ is an isomorphism.

Let Y, a;A; be the weight of the character p. Then ¢i(7*(C,)r) = 7*e1((C,) 7).
But 7*¢1((Cy)r) = 7*e1 (O(= Y i g aidi)) = (= D g @idi) = — Yo g Gim*N; =
— " g\ (note that X = X;). Now O(Dir) ~ O(Dyr) ® 7*(C,)r and
O((fr) ~ 7(C,)r (see lemma 5.2.11) implies [Dig — Dag] = (fr). Also
O((fr)) ~ 7*(C,)r (see lemma 5.2.11) implies (fr) = ¢1(7*(C,)r |z,). So the
equivariant cycle [Dir — Dar] = (f7) = ci(n"(Cy)rlz,) = a1(m*(Cy)r).[Zr] =
(=", a;\s).[Z7] which lives in Span {\.[Z7] : i = 0,1,...,n}. Therefore
[D1r — Dyr] belongs to Span {\;.[Z7] :4=0,1,...,n}.

(<=) Suppose that [Dir — Dar] = > iv; aiXi.[Z7] where a; € Z, 1 = 0,...,n
Recall the map i : Hj(X) — H*(X) where i%([Wz]) = [W]. It follows
(D1 = Ds] = #%([D1r — Darl) = i% (X0 aidi[Zr]) = S aiik(N).i% ().
But 7% ();) = 0 implies [D; — Dy] = 0. Thus Dy ~ D, C Z.

Suppose Dy ~ Dy in Z then by part(1) of this theorem, we have [Di7 — Dor|
in Span{Ai.[Z7] :i=0,1,...,n}, i.e, [Dip — Dor] = Y7 o a;\.[Zr]. Let I(\) =
D im0 @i then 455 ([Dir — Dor]) = 4% (301 aidi.[Z7]) = 3000 aidiij5 ([Zr]) =
(N7 (2.

i5% ([Drr = Dar]) = 5% 252 (D — Dax)r))

= D i1 % ([(Di — Dax)))

Using part(2) there exsists an Ix(\) = > o bixAi, where by, € Z, k = 1,...,m
such that 4;% ([(Dix — Dak)r]) = lk(A).3;% ([ Zer]), where j = 0,...,n. Therefore
1% ([Dir = Deorl) = 3252, (M) 4% ([Zkr]), 5 =0, ...,m
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5.5 MAIN THEOREM

Definition 5.5.1. Let ¥y € N = Hom(C*,T), and let x € M = Hom(7,C*) then
x o ¢(t) = t*, where k € Z. We define the dual pairing <,>: N® M — Z by
<P, x >=k.

Definition 5.5.2. A family of closed subschemes of a given scheme Y over a base B
is a closed subscheme X C B XY, together with the restriction to X of the projection
map B X Y — B; the fibers of X over b € B are the naturally closed subchemes of
the fibers Y, of B X Y over B.

Definition 5.5.3. A family of schemes ¥ : X — B is flat if for every point
z € X the local ring Ox,z, regarded as a Opy(;)—module via the map of local

rings ¥ : Op y(z) — Ox ¢ is flat.

Remark 5.5.4. As a reference for the notion of the limit of a 1-parameter familly of

‘schemes see 11.3.4 of [18].

Definition 5.5.5. Let D C X x C* be a subscheme over C*where X is a B-variety.

Let D, denote the fiber of D over t € C*. We define lim D, by lim D, := (D), where
t—0 t—0

D is the closure of D in X x C.

Fact 5.5.6. Saying the functor Hilby is representable is the same thing as saying
that there exists a universal family, that is a scheme H and a subscheme C C X x H
flat over H such that given a subscheme Y C X x B flat over the scheme B there
exists a unique morphism h : B — H such that Y = (B x g C);, where (B xyg C), is
the fiber product via h and B is any base scheme. In this case H denotes the Hilbert
scheme Hilb X.

Fact 5.5.7. (C* xy C); = (Cx g C)p where (C* x g C)y is the closure of (C* x5 C);
in (Cxy C)p and f': C — H is the unique morphism extending f : C* — H. The
existence and uniqueness of f’ follows from Proposition 6.2 in Chapter one in [25] since

the Hilbert scheme H is projective. Note that the closure of (C* x5 C)sin (Cxpy C)p
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is equal to the closure of (C* x g C)f in Cx X because (C* xz C); C (Cxy C)p and
(Cxpg C)p C Cx X is a closed subscheme being the pullback of the closed subscheme

C C H x X as shown in the diagram below.

((C* XHC)fC—>(CXHC)fI————>T (74)
e c——nm
Form the fiber square
(C* % C)f > (Cxxg O)p (75)
C+¢ C

We will show that h is a dominant morphism. Therefore (C* xg C); = (C xg C) .
Solet Y = (C* xg C)f and let E = (C xy C)p. We need to show that h: Y — F
is a dominant morphism. Consider the affine schemes U = SpecA , W = SpecAs;,
where A is a Noetherian ring and b € A is a nonzero divisor. We will show that
b . SpecAy — SpecA is a dominant morphism. Let n; € U; be the generic point
for U; where U; is an irreducible component of U. It is enough to show that n; € W.
Therefore 75; C W. But 7; = U;. So U; C W for alli. So U C W. Therefore U = W.
It follows h' is dominant.

Now let us show that n; € W. Recall that a generic point of U = SpecA corresponds
to a minimal prime ideal in the ring A. It is enough to show that if P is a minimal
prime ideal in A and b € A is a nonzero divisor then P lives in A;. Now to prove
the previous statement we need to check that if P is a minimal prime ideal in A and
b € A is a nonzero divisor then b ¢ P. Suppose b € P. Let 3: A — Ap be the ring
homomorphism defined by f(z) = z/1. Let @ = S “'P where S = A — P, then Q is
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an ideal in Ap. But Ap is a zero dimensional ring (because p is a minimal prime)
and Noetherian (because A is Noetherian) so it is Artinian. It follows there exists a
positive integer n such that Q* = 0. Now since b € P then b/1 € ST P = Q. So
b"/1 € Q™ = 0. So there exists s € A — P such that sb” = 0. But b is a nonzero

divisor. Contradiction.

Definition 5.5.8. Let 7 : D — X be a closed imbedding where X is a B-variety X.

Let the map ¢ : C* x X — X be given by ¢(¢,z) = t~1.z. Consider the fiber square

D—>C x X - (76)

L

D——X

Since Hilby is a representable then as in fact 5.5.3 there exists a universal family— that
is, a scheme H and a subscheme C' C X x H flat over H —such that D = (C* xy C),

for a unique morphism g : C* — H. We define limD; by lim D; := (D).
t—0 t—0

Remark 5.5.9. The scheme D = (C* xg C); in the definition above is flat over C*,
i.e D is a flat family. For simplicity we let C* x g C denote (C* x g C);. Consider the

fiber square

C* xyg C—=C (77)
c—r g

Let z = (t,x) € D such that f(t) = a(z) = s € H. Then Op, = O¢x,¢,(t2) =
Oct oy, Oce. Now we verify Op, is a flat Oc- ;—module. Let E — F be an

Oc¢+ ;—module monomorphism. Consider the tensored sequence below
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0— OD,Z ®OC*,t E — OD,Z ®OC*,¢‘. F (78)

We will check that (78) is a monomorphism. But Op, R0, E 18 equal to the
tensor product Oc¢+ ¢ ®oy, Ocz ®0g. , B = Oce oy, E. Similarly Op Q0. , I' =

Ocz oy, F. So we get the sequence

O — OC,“’ ®OH,S E N OC,x ®OH,5 F . (79)

which is a monomorphism because the universal family C is flat over H (by defini-

tion). Therefore (78) is a monomorphism.

Notation. We will use the script letter V to denote the scheme over C* with fibers
t.V, the script letter £ to denote a scheme over C with fibers ¢.E| and so on as defined

in definition 5.5.5 unless otherwise specified.

Definition 5.5.10. Let X be a B-variety, and let C* be a 1-parameter subgroup of T.
Fix z € X. Let g : C* —» X be given by g(t) = t.z. Consider the imbedding C* —
P! (t — (1,t)). Since X is projective there exists a unique liftiting ¢' : P! — X.

We define limt.z = ¢'(1,0).
t—0

Definition 5.5.11. Let E be a subvariety of a B-variety X, and let Hilb be the
component of the Hilbert scheme Hilb X containing E. Let £ C C* x X be a flat
family over C* with fibers t.E. Define F' : C* — Hilb by F'(¢) = ¢.E. Since Hilb is

projective there exists a unique lifting F' : C — Hilb. We define tlimot.E = F'(0).
-.___)

Proposition 5.5.12. The Hilbert definition of the limit (DEFINITION 5.5.11) and

the closure definition of the limit (DEFINITION 5.5.5) agree.

Proof. Let V C X be a subvariety of the B-variety X, and let V C C* x X be
the scheme with fibers V;, = t.V. Recall that the functor Hilby is representable by
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the scheme H = Hilb X, i.e there exists an isomorphism « : Hilby — Hom( , H).

Consider the commutative diagram below

Hilb, C* . Hom(C*, H) (80)

l l

Hilb,y Spec(k(t)) — Hom(Spec(k(t)), H)

where oy denote agpec(r(r)). Let f : Spec(k(t)) — C* be a morphism of schemes,
then h(f) : Hilb,C* — Hilb,Spec(k(t)) is defined as follows: if Y C C* x X is
a closed subscheme which is flat over C*. We define h(f)()) = ); where ), is the
fiber of Y over ¢t € C*. Clearly since ) is flat over C* then Y, is flat over Spec(k(t)).
For simplicity I will use a to denote ag«. Recall ¥V C C* x X is flat over C*. Let
g = a(V) and let H(B) be the set of closed points of the Hilbert scheme H = Hilb X
where B is any base scheme. Now since the set H(C*) is identified with the set of
morphisms Hom(Spec(k(t)), H) and Hom(Spec(k(t)), H) is identified with the set of
fibers of flat families in Hilb,C*. It follows from the commutativity of diagram (80)
that ¢g(t) = V; = t.V. By proposition 1.6.8 in [25], there exists a unique morphism
g : C — H extending g. Let C C X x H be a universal family (fact 5.5.6). Form

the fiber square

c—L ~H

Let V' = CxzgC. But ¥V = V' (fact 5.5.7). So (V)o = (V')o. Note that (V')y =
¢'(0) follows from representability: considerAthe bijection of sets a¢ : HilbyC —
Hom(C, H), then ac(V') = ¢’. Now since the set H(C) is identified with the set of
morphisms Hom(Spec(k(t)), H) and Hom(Spec(k(t)), H) is identified with the set of
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fibers of flat families in Hilb,C. It follows from the commutativity of diagram (82)
below that ¢'(t) = (V')

Hilb, C X~ Hom(C, H) (82)

l l

Hilby Spec(k(t)) — Hom(Spec(k(t)), H)

So ¢'(0) = (V')o. Therefore (V)q = (V')o = ¢'(0). Thus the Hilbert definition of the

limit (tli_l)not.V = ¢'(0)) and the closure definition of the limit (}_i_r}not.V = (V)o) agree.

Thus the proposition is proven.

The following key lemma which will be used later in proving several results is due to

Strgmme.

Lemma 5.5.13. Let X be a B-variety and let V be an (n + 1)—dimensional rep-
resentation for the torus T acting on X. Then by Fact 2.1.12 there exist characters
X0,----sXn such that V = @_,V,,. Let T € ]P’(V)v. Choose a 1-parameter subgroup
¥ : C* < T such that Vi # j we have x; — x; ¢ Hy = {x :< ¢, x >= 0} where Hy is

the orthogonal complement of 1 in M. Then tlim()z/;(t).ﬁ;‘ is T-invariant.
___)

Proof. Let T = (xy, ..., z,) € P(V), we calculate 1(t).Z by

PY(t).T = (tPX07 gy, ..., 1V,

But x;, — x; ¢ Hy implies < 1,x; — x; ># 0 where ¢ # j which implies
< th,xi >#< b, x; > where i # j. Therefore t<¥Xi> £ +<¥Xi> for each i, j where
i # 5. Let m =min {< ¢, x; >€Z:i=0,...,n} then this minimum is unique. For if
both < 1, xx >, and < 9, x; > is a minimum of the set {< ¥, x; >€Z :1=10,...,n}
then < ¥, xx — xi >=< v, xx > — < 9, x; >= 0 which implies x; — x; € Hy. Con-

tradiction.
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Let m =< %, xx > then

V()T = (E<¥X>gg, . t<VXe=1> gy gty T<YXER> L X > g )

= {t—m (t<¢,X0>gjO’ ey t<¢’Xk_1>.fEk._1, tmTy, t<'¢:Xk+1>a;k_+_1, . t<1/17Xn>xn)

= (t<¢aX0>_m$07 s t<’¢’7Xk—1>"mmk_1’ Tg, t<"/):Xk+1>_mxk+17 ey t<¢’X">_m.’En)

But m = min {< ¥,x; >€ Z : i = 0,...,n} implies (< ¥,x; > —m) > 0 for
all i # k which implies lim¢<¥X>~™g;, = 0. Therefore we have lim(t).T =
t—0 t—0

(0,...,0,z,0,...,0) = (0,...,0,1,0,...,0) = p; which is T-invariant.

Lemma 5.5.14. Let ¢ : S — N be a graded homomorphism of graded rings
(preserving degrees) such that ¢4 : Sg —> Ny is an isomorphism for all d > dy, where

dy is an integer. Then f : projN — projS is an isomorphism.

Proof. Let {g,} be a set of generators for N, where N, = @, Na( See IL.2
in [25]). Then UaDn(ga) = Ua{z € ProjN:g, ¢ z} _ ProjN (since every prime
in Proj N must omit some g,). If y € ProjN then g, ¢ y for some a otherwise
9o € y for each @ so Ny C y contradiction because y 2 N, (since y € ProjN).
Therefore y € Dy(gq) for some a. So y € UyDn(gs). But UyDn(g9,) € ProjN.
It follows ProjN = U,Dn(g4). Note that g, ¢ =z iff g,% ¢ z for x prime. So we
can replace the set of g,’s by elements of N>4, and still have a cover of ProjN by
distinguished open sets. Our strategy is as follows. We first show that f|py(g.) :
Dn(9a) — Ds(p1(ga)) is an isomorphism for each  and then show that the open
sets Dg(¢p1(ga)) cover ProjS. Then showing that f is injective completes the proof.
Let g = g, be one of our g,’s. By Proposition 2.5 in [25], Dy(g) ~ SpecN(y where
N(g) is the subring of elements of degree 0 in the localized ring Nyg). So f|py(ga)
is a morphism of schemes where f|py(g,) : SpecNy —+ SpecS(,-1(g)- This map
is induced by the map P : S(,-1(5) — N(g) where ¥ is the localization of the ring

homomorphism ¢ : S — N. So we just need to verify that ¥ : Si,-1¢5) — Ny
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is an isomorphism. Recall P is defined by @(s/h) = ¢(s)/¢(h) where h & (©™*(g))
implies (h) ¢ (g). Suppose that p(a/b) = 0. Then 0 = B(ap~'(9))/(bp~*(9)) =
p(ap™(9))/p(bp~(9))- So ¢lap~(9))/¢(bp~"(g)) = 0 in Ny, implies that there

1 . .
"1 — 0in S since

exists an integer n such that g"¢(ap=(g)) = 0 in N. So ap~'(g)
¢ is an isomorphism in high enough degree (To see that simply apply ¢! to both
sides you get ' (g"p(ap~1(g))) = 0 in S. But ¢ is an isomorphism in high enough
degree implies o~ (g")¢o H(p(ap(g)))) = 0 in S which implies ¢~ *(g™)ap~'(g) = 0.
So ap~t(g"*!) = 0 because ¢! is a ring homorphism in high enough degree. So
ap™ ()" = 0in S). Thus a = 0 in Sgy-1(y)), 50 & = 0 in S,-1(yy). This shows that
¥ is injective. To see that @ is surjective. Let a/g™ € N, then ¢ (ag)/p (g™
is a well-defined element of S(,-1(g)) and (¢~ (ag)/¢  (¢"™)) = ag/g"™* = a/g",
which shows that @ is surjective. Next we verify UaDs( *(ga)) = ProjS. Clearly
UaDs(¢ ™ (ga)) € ProjS because Ds(¢ ' (ga)) C ProjS for each a. To show that
UaDs(p ™ (ga)) 2 ProjS. Let x € ProjS. Suppose that £ ¢ UaDs(¢ ' (go)) then
z ¢ Ds(p1(gy)) for all . Then p~1(g,) € z for each a, so, since we may assume
that {go} generates N4, we have ¢ 1(N>q,) C 2. But ¢ is an isomorphism in high
enough degree implies S>q, = cp‘l(NZdo) C z. So S»¢, € = and x is prime. So
S, C z, a contradiction since z € ProjS. Now we verify that the induced map
f: ProjN — ProjS is injective. Let p,q € ProjN and suppose that f(p) = f(q).
Then ¢~1(p) = ¢~*(q). But g is an isomorphism for d > dy implies pN Ny = g N Ny
(This is true because ¢~ 1(p) = ¢~'(g) implies ;' (p) = ©7'(g) so 7 (p) NS4 =
07" (q) NSy where Sy = ¢ 1(Ny) for d > dy. So 7 (p) N (N,) = 3 (q) N (Ny).
Thus ;' (p N Ng) = ¢; (g N Ng). But g is an isomorphism for d > dy implies
pN Ny = qN Ny for d > dy). So if a € p homogeneous then af € pN Ny soa® € qgn Ny
so a? € q so a € q because q is prime. Thus p C ¢. Likewise a € ¢ implies a € p.

Thus p = ¢ so f is injective.

Lemma 5.5.15. (a) Let ¢ : S — N be a surjective homomorphism of graded

rings, preserving degrees. If U = {p € ProjN : p 2 ¢(S;)} then U = ProjN.
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(b)
(c)

The morphism f : ProjN — ProjS is a closed immersion.

If I ¢ S is a homogeneous ideal, take N = S/[ and let Y be the closed sub-
scheme of X = ProjS defined as the image of the closed immersion ProjS/I —
X. Then different homogeneous ideals can give rise to the same closed sub-
scheme, i.e, If dy is an intéger and I' = @g>q,lq then I and I’ determine the

same closed subscheme.

Proof.

(a)

We know that U C ProjN. We need to show that U 2 ProjN. Let ¢ € ProjN
then ¢ 2 Ny. Since ¢ is graded and surjective, ¢(S;) = N4. Thus ¢ € ProjN
and g 2 ©(Sy). It follows g € U.

Let f : ProjN — ProjS be a morphism. Since  is surjective then by the
first isomorphism theorem N ~ S/Kerp. So f(ProjN) = f(Proj(S/Kery)) =
V(Kery) where V(Keryp) is defined in [25]) is a closed subset of ProjS. This
follows from the fact that there is a one to one correspondence between homo-
geneous ideals of S/Kery and homogeneous ideals of S which contains Kery.
So f: ProjN — ProjS is a homeomorphism of ProjN onto the closed sub-
scheme V(Kerp) of ProjS. Now let us check that the map of structure sheaves
Oprojs — [+Oprojiv is surjective. Let y € V(Kery) it is enough to check that
the map on the stalk Oproj5y — (f+Oprojn)y is surjective. But since the map
f: ProjN — V(Keryp) is a bijection it follows y = f(z) for some z € ProjN.
S0 (f«Oprojn)y = Oprojn,f-1(y) = Oprojn g Recall that ¢ : .S — N induces
J i ProjN — ProjS i.e, f(p) = ¢ (p) for any p € ProjN. It follows that
the map on the stalk is the map Op,ois5,,-1(z) — Oprojnz. By Proposition 2.5
page 76 in [25] we have Op,ojne = Niz), and Oprojnp-1(z) = S(p-1(z))- S0 the

map on the stalk corresponding to the point z € ProjN is the map

Ste=(x)) — Na)



which is surjective because ¢ : S — N is surjective. Thus the induced map

on the sheaves is surjective.

(c) Let ¢ : S/I' — S/I be the natural projection homomorphism. This map makes
sense because S/I is a quotient of S/I'. Indeed S/I = (S/I')/®o<d<dold- The
map ¢ is a graded homomorphism of graded rings such that
©a: (S/I")g —> (S/I)q is the identity map for d > dy. By lemma 5.5.14 ¢ in-
duces an isomorphism f : ProjS/I — ProjS/I'. But the map ProjS/I —
ProjS (resp. ProjS/I' — ProjS) is a closed immersion implies ProjS/I
(resp. ProjS/I') is isomorphic to a closed subscheme V (resp.V’) of ProjS. It
follows that V' ~ V' because ProjS ~ ProjS/I'. Thus I and I’ give rise to the

same closed subscheme.

Fact 5.5.16. For any subscheme C C P" there exists an integer m such that the
Hilbert function h(n) of C is equal to the Hilbert polynomial p(n) for n > m. See
[22].

Fact 5.5.17. There exists an integer m, which is the same integer m in fact 5.5.16,

such that the homogeneous ideal of C is generated by its m-th graded piece. See [22].

Definition 5.5.18. A numerical polynomial is a polynomial P(z) € Q[z] such that
P(n)e Zforalln>>0,n € Z.

Definition 5.5.19. An algebraic family of closed subschemes of a scheme X, parametrized

by T, is a closed subscheme Z C X x T.

Definition 5.5.20. Let Hilby (7)) be the set of flat families of closed subschemes Z
of X parametrized by 7. If 7' — 7T is any morphism, Z — Zx77" gives a map
Hilby(7) — Hilb,(7"), which makes Hilby a contravariant functor on the category
of schemes. The scheme Hilb X representing the functor H;lbx is called the Hilbert

scheme of X.
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Definition 5.5.21. If P is a numerical polynomial, let Hilb” x be the open and closed
subfunctor of Hilby given by flat families with Hilbert polynomial P in all geometric

fibers (See [34]). The scheme representing this functor Hilb” y is denoted by Hilbk.

Let X be a B-variety. Fix an imbedding of X as a closed subset of P" for some r.

Then we have the following theorem

Theorem 5.5.22. Let X be a B-variety and let P be a numerical polynomial. Let
Hilb’ X be a component of the Hilbert scheme HilbX then there exists a
T-representation V such that Hilb” X can be embedded T-equivariantly in P(V).

Proof. Recall Hilby(A) is the set of flat families of closed subschemes Z of X
parametrized by A. Now since the definition of Hilby(A) is independent of the
embedding of X in P" then we can replace X by P". Recall Hilb" P" is the scheme
representing the subfunctor @1{; where Hi_lbﬁ:, is a subfunctor of the contravariant
functor Hilbp. defined as follows: given a scheme C we let Hi_lbﬂfrC be the set of flat
families (of closed subschemes E of X parametrized by C) with Hilbert polynomial P
in all geometric fibers (see [34]). We will show that there exists a T-representation
V such that Hilb” P" can be embedded T-equivariantly in P(V'). By virtue of fact

5.5.16, for any subscheme C the subspace

Ag = HO(P', Io(m)) € HY(P", O(m))

of polynomials of degree m in P" vanishing on C has codimension exactly P(m). By
fact 5.5.17, the subscheme C is determined by the subspace A¢. Thus we can associate
to C the point

Ac € Grass(N — P(m), N)

where N = dim H(P",O(m)) = (™). Let k = N — P(m) then the locus of points
in Grass(k, N) arising in this way coincides with the Hilbert scheme Hilb” P" set-

theoretically. The above description does not give the scheme structure. Clearly
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Hilb"P" can be embedded in Grass(k, N) via the embedding
C+— AC = HO(]PT, Ic(m))

Let W = H°(P",O(m)) then Grass(k, N) is embedded in P(AFW) via the Plucker
embedding as follows: Let U = Span {u; € W : i = 1,...,k} € Grass(k, N). Define
the embedding 1 : Grass(k, N) — IP’(/\’“W) by ¥(U) = [ug A ug A ... Auy). For more
details see Lecture 6 in [23]. Given a T-action on P", this action will induce an action

on W = H(P", O(m)) which will induce an action on V = A¥W given by
t.(wy Awg A .. Awg) =tawg Atawg A ... Aty

Thus Hilb” P” is embeded in P(A*WW). Let ¢ : Hilb”P" — Grass(k, N) be defined by
(V) = H(P", Iy (m)) Claim: ¢ o ¢ : Hilb"P" < P(V) is a T-equivariant embedding,
ie Yod(t.Z) =t.(po¢d(Z)). Soif Y € Hilb"P" then ¢(Y) = H°(Iy(m)) = Span
{91, gk : deg g; = m}. So Yo d(Y) = [g1 A g2 A ... A gg]. Therefore t.(p o ¢(Y)) =
tlgr A ga Ao A gkl = [t.gi Atga A ... At.gy] where t.gi(z) = g;(t71.z). Now let
Z € Hilb"P" then the homogeneous ideal of Z, I(Z) = (fi,..., f;) where f; is a
homogeneous polynomial. By fact 5.5.17, I(Z) is generated by its m-th graded piece
I(Z),, = Span {h, ..., hy} where deg h; = m. Now we have two homogeneous ideals
that give rise to Z, namely (fi,..., f;) and (hy,..., hs). By part (¢) of lemma 5.5.15
different homogeneous ideals can give rise to the same closed subscheme so we have
Z = Z(f1,.... fi) = Z(h1,...,hs). So t.Z = t.Z(hy,...,hs) = Z(t.hy,...,t.h;). Now
Yo d(t.Z) =1pod(Z(t.hy,...,t.hs)) = ¥( Span {t.hy,...,t.hs}) = [t.hy A ... At.hg]. But
[thi A Nthg =t[hi A Ahg] =t(p o @d(Z)). Thus Yo ¢(t.Z) = t.(v o ¢(Z)).
Fact 5.5.23. The scheme C = {(W,S) : W, S € HilbX and W C S} is a closed
subscheme of Hilb X x Hilb X. See [29].

Notation The field of rational functions on a variety X is denoted by R(X); the

non-zero elements of this field form the multiplicative group R(X)*.

Definition 5.5.24. Let X be a projective variety. A k-cycle on X is a finite formal sum

>~ n,[V;] where the V; are k-dimensional subvarieties of X, and the n; are integers. The
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group of k-cycles on X, denoted Z;(X), is the free abelian group on the k-dimensional

subvarieties of X; to a subvariety V of X corresponds [V] in Z(X).

Definition 5.5.25. Let X be an algebraic sheme. For any (k + 1)—dimensional
subvariety W of X, and any f € R(W)*, define the k-cycle [(f)] on X by

(N =D ordv(f)IV],

the sum over all codimension one subvarieties V of W; here ordy (f)[V] is the order

of the function in R(X)*. (see [17]).

Definition 5.5.26. Let X be a variety, V a subvariety of codimension one. The local
ring A = Oy x is a one-dimensional local domain. For r € A we define ordy(r) =

€4(A/(r)) where £4 denotes the length of the A-module in parentheses.

Definition 5.5.27. Let V be an irreducible (k + 1)-dimensional subvariety of X.

A k-cycle f is linearly equivalent to zero in V if there exists g € R(V)* such that
B =1(9)).

Definition 5.5.28. A k-cycle « is rationally equivalent to zero, written o ~ 0, if there
exists a finite number of (k + 1)—dimensional subvarieties W; of X, and f; € R(W;)*,
such that o = Y _[(fi)].

Definition 5.5.29. The k-cycles rationally equivalent to zero form a subgroup Ry (X)
of Z,(X). The group of k-cycles modulo rational equivalence on X is the factor
group Ai(X) = Zp(X)/Rp(X). Define Z,(X)(resp. A.(X)) to be the direct sum
of Zi(X)(resp. Ax(X)) for k = 0,...,dim X. A cycle (resp. cycle class) on X is an
element of Z,(X)(resp. A.(X)).

Remark 5.5.30. Let X be a B-variety. Two subvarieties V, V' are rationally equiv-
alent iff the corresponding cycles are rationally equivalent. This follows immediately

from the definition.
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Definition 5.5.31. Let D C C x X be a family over C, the fiber of D over t € C is
denoted D;. Let D* = D — Dy. We define limD; by setting lim D; = (D*)q where
. t—0 t—0

(D*)o is the fiber of the family D* over zero.

Example 5.5.32. Consider the scheme D = Spec C[t, z]/(tx) over C. Then D* =
Spec C[t]. So D* # D.

Definition 5.5.33. Let X be a B-variety. For any k-cycle @ = > ny[V] on X, the
support of «, written ||, is the union of subvarieties V with non-zero coefficient in

a lfteT
(a) We define t.[V] by setting t.[V]=[t.V].
(b) We define t.a by setting t.ae = > nyt.[V].
(c) Let ¥V C C* x X be a subscheme over C*. We define tli_r)not.a = va[(V)o].

Remark 5.5.34. Let f € R(V)* be an irreducible function where V is a subvariety
of the B-variety X. Let Z(f) be the zero locus of f which is a subvariety of X, i.e
Z(f) = {z € V : f(z) = 0}. Then t.Z(f) = Z(t.f) where t.f(z) = f(t71.x),
Zt.fy={zetV:(t.f)(z)=0},and t.2Z(f) ={t.z: 2z €V and f(z) =0}.

Definition 5.5.35. Let f € R(V)* be an irreducible function where V is a subvariety
of the B-variety X. Let D; = f1(0) and let Dy = f~1(00). Then (f) = Dy — D, where
D; C X is a codimension one subvariety of X. Let D; C C* X X be a subscheme over

C* with fibers ¢.D;. Then t.(f) = t.D; — t.D5. We define tlimot'(f) = (D1)o — (Da)o.
—

Definition 5.5.36. The group of T-invariant k-cycles on X, denoted Z{ (X), is the
free abelian group on the T-invariant k-dimensional subvarieties of X; to a subvariety
V of X corresponds [Vr] in ZF (X). The T-invariant k-cycles rationally equivalent to
zero form a subgroup R} (X) of Z{(X). The group of T-invariant k-cycles modulo
T-invariant rational equivalence on X is the factor group AL (X) = ZF(X)/RE(X).
Define ZT(X) (resp.AT(X)) to be the direct sum of Z7 (X) (resp.A% (X)) for k =
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0,...,dim X. A T-invariant cycle (resp. T-invariant cycle class) on X is an element of

Z7 (X)(resp. A7 (X)).

Notation. Let G denote an irreducible variety of dimension m > 0. The notation
“a € G” will be used to denote a regular, closed point of G(Appendix B.1 [14]). By
abuse of notation we will write ¢ in place of Spec(k(t)), where k(t) is the residue field

of the local ring of G at the point, and we denote by
t:{t} —¢g

the canonical inclusion of Spec(k(t)) in G. The assumption that the point is regular
means that t is a regular embedding of codimension m. Script letters will be used to
denote schemes over G, with corresponding Latin letters, subscripted by t, denoting
the fiber over ¢t € G. Given the morphism of schemes p : Y —» G then Y; = p~1(2);

Y; is regarded as an algebraic scheme over the ground field k(%).

Fact 5.5.37. Let G be a smooth variety, ¢ € G be a regular closed point of G. Any
(k+m)—cycle o on Y, or more generally any rational equivalence class @ € Agm(Y),

determines a family of k-cycle classes oy € A;(Y}), for all ¢ € G, by the formula
oy = t'(a)

where t' : Apim(Y) — Ag(Y;) is the refined Gysin homomorphism defined from the

fiber square

Y, —)Y

-

{t} —¢

by construction of section 6.2 in [17].

Fact 5.5.38. If a (k+1)—cycle 3 is rationally equivalent to zero on Y then #'8 is ratio-

nally equivalent to zero in Y;. This follows easily because #' is a group homomorphism.
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Let § denote the cycle class of B then 8 =0 € Ay.1(Y). So ¢'(B) = ¢'(0) =0 € Ax(Y7).

But #(B) = t'(8) = 0 € Ax(Y;). Therefore t'(8) € Ry(Y;). Hence t'(8) is rationally

equivalent to zero in Y;.

Fact 5.5.39. If & = [W] where W is a subvariety of ) of pure dimension k + m,
then oy = [W]; = {s(W;, W)}, where W, = W NY;, and s(W;, W) is the Segre class
of Wy in W. (This follows from Proposition 6.1 (a) in [17] and the fact that the
normal bundle to ¢ in G is trivial). In particular, if W C Y}, then (W], = 0. If G
is a curve and « is a (k + 1)—cycle on Y, then o is well-defined as a k-cycle on Y;.

For if @ = Y ny[W;], with W is a variety then we define a; = Z n;[(W;):] where

WiV
(Wl)t == Wz n Y;

Our goal in the next two pages is to verify that 0'[(F)] = [tlimot.( )] Let f € R(V)*
—

where V is a subvariety of the B-variety X. Let ¥V C C* x X be a family with fibers

t.V. We define the rational function F*(¢,z) on the total space of the family V by

F*(t,z) = (t.f)(x) (t is not fixed). Let F' € R(V)* such that F(t,z) |y= F*(t, ).
First note that

(O =[F W)= mVil= > mVi]= Y mVil= > m[V] (83)
nViGV—V

nv; eV v, €V v, €WV)o
where 7y, € V; is the generic point of the codimension one subvariety V; C V and

m; = ordy, (F') (definition 5.5.25). It follows

(P =[(F W= > milVi] (84)

ViC(V)o

Note that V is a variety because V is a variety and the closure of a variety is a
variety. The fact that V is a variety can be checked easily. Consider the isomor-
phism P, x ¢ : C* x X — C* x X where P, is the projection to the first fac-
tor, i.e @(t,z) = (t,+ 'z) (the inverse map is defined by (¢,y) — (¢, ty)). Then
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(P X ¢) |yt ¥V — C* x V is an isomorphism. But p* x V is a variety so V is a
variety.Suppose that V; ¢ (V). CLAIM: ordy;(F) = brdVi(F).

PROOF. Since F' € R(V)* = K(Oy,y), where K(Oy, y;) is the quotient field of the
domain Oy, 5. Then F' = g/h where g, h € Oy, 3. So ordy(F') = ordy;(g) —ordy-(h) =
YO 5/(9)) — £(Oy;5/(h)) (definition 5.5.26). But Oy = Oy; p: this follows easily
because K(Oyy) = R(V)* = R(V)* = K(Oy,y). So K(Oyp) = K(Oy,y). Now
since Oy y, Oy;,y are domains with the same quotient field. It follows Oy = Oy, p.
Therefore £(O5;5/(s)) — {055/ (B)) = UOvw/(s)) — UOvw/ (W) = ordy(g) -
ordy; (h) = ordy;(g/h) = ordy;(F'). So ordy(F) = ordy;(F).

Let ny, be the generic point of V;. Then

[(F)] = Zmi[ﬂw]+ Z m;[nv;]

= Zordw(F)[n%]+ Z m;[ny;]

nv; €Y nv,€(V)o

= Y ordg(F)wl+ Y. milnvl

ﬂVi ey ﬂVIE(V)O

But ny;, = ny;. It follows

(F)] = Y ordg(F)lngl+ Y miln]

nv; €V 7v; €(V)o
= > milVil+ Y milvi
ViZ(Mo ViC(V)o

So [(F )] = Z m;[V; V] (note that V; NV is empty if V; C (V)y). So
Vig(V)o
[(F |y)] =>_m[Vi]. But [(F |y)] = [D1] — [Ds]. Therefore
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()] =[D1] - [Da)+ > milVi] (85)

Thus 0'[(F)] = 0'(D1] - 0'[D3]+0'( Y mu[Vi]) = [(D1)o] ~ [(P2)o] = [(Pr)o — (D2)ol.
ViCWV)o
But [(D1)o — (Da)o] = [Jim¢.D; — tli_rif:lo t.Do] = [lim (£.D; — t.Dp)] = [limt.(f)]. So

0'[(F)] = [tlimo t.(f)]- But the cycle [(F)] is rationally equivalent to zero on the total
—
space of the family V, being a cycle of a rational function, implies (by fact 5.5.38) that
0'[(F)] is rationally equivalent to zero in the fiber (V). So [tlimot.( f)] is rationally
_—)
equivallent to zero in (V) = lim¢.V. Therefore lim¢.(f) is linearly equivalent to
t—0 t—0
zero in lim¢.V.
t—0
Geometrically we observed from examples that the graph of tlimot. f consists of several
_)

components and is not necessairly a graph of a function. Consider the function
F on the total space of the family V then the graph of the divisor (F) in V has
components that live in (V),. When we apply the map 0' to the cycle [(F)] we
kill those components in (V)o. So if v = [(F)] = Z n;[Ci] + Z m;|E;] then

DiC(V)o E;¢(V)o
oy =0[(F) = 3 miol]

Definition 5.5.40. Let X be an n-dimensional B-variety and let Div X be the free
abelian group generated by prime divisors. We define the cycle > n;D;] by setting
D> niD;]l = > m;[D;] where [D;] is the cycle that corresponds to the divisor D;.

Lemma 5.5.41. Let X be a B-variety, and let Z be a k-dimensional subvariety of X
such that Z ~ 0in V. Let ¢y : C* — T be a 1—parameter subgroup of T such that

th_r)nozp (t).Z and th—n}ow (t).V are T-invariant. Then tl_lgl()w (t).Z is a subset of th_r)now (t).V.

Proof. Since Z C V then (Z,V) € C (fact 5.5.23). Define the map f : C* — Hilb? X
(resp.g : C* — Hilb?X) by f(t) =t.Z (rep.g(t) = t.V) where Hilb? X (resp.Hilb?X)
is the component of the Hilbert scheme Hilb X containing Z (resp.containing V). Since

Hilb X is projective there exists a unique lifting f' : C — Hilb’ X (resp.¢': C —
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a

HilbX) such that Jim(1).Z = f(0) (resp.lim (). = ¢/(0)). Define the limit of
the family {(¢.Z,t.V) }sec+ by t%(t.Z, t.V) = (f(0),4'(0)). Then {(t.Z,t.V) } e is
a family in C because t.Z € Hilb’ X, ¢t.V € Hilb?X, and t.Z C t.V (since Z C V).
Also {(t.Z,t.V) }sec> converges to (f'(0), ¢'(0)). So (f'(0),4'(0)) € C = C. Therefore
f'(0) € ¢'(0)).

Lemma 5.5.42. Let X be a B-variety, and let Z be a k-dimensional subvariety of X
such that Z ~ 0in V. Let ¢ : C* — T be a 1-parameter subgroup of T such that
th_lgnoz/)(t).Z and th_r)noxb(t).v are T-invariant. Then th_rr}oz/)(t).Z ~ 0 in tlg)now(t).V.

Proof. For simplicity we replace ¥ (t) by t. Let Z' = tli_r)not.Z and let V' =
tli_r)not.V. By lemma 5.5.41 Z' .C V'. We will show that Z/ ~ 0 C V'. Since
Z ~ 0 C V then Z = (f) where f : V — P! is a rational function on the
(k 4+ 1)-dimensional variety V. So [Z] = [(f)]. Let V¥ C C* x X be a family with
fibers V, = t.V. Let (f(z)) = Dy — D, where Dy = f~ (0), Dy = f~'(00). Fix t € C*
then (¢.f(z)) = t.D; —t.Dy. Let D; C C* x X be the subscheme with fibers ¢.D;. Let
F*(t,z) = (t.f)(z) € R(V)* (here t is not fixed). Note that F* is a nonzero rational

function on the total space of the family V. It follows (F*) = D; —D,. Let F € R(V)*
such that F' |y= F*. As explained in fact 5.5.39 we have

[(F)] =[D1]— Do)+ > miVi] (86)
ViC(V)o
Thus 0'[(F)] = 0'[Dy] = 0'[Da] +0'( > mu[Vi]) = [(D1)o] —[(D2)o] = [(D1)o — (D2)o-
ViC(V)o

But [(D1)o — (D2)o] = [tli_r)not.Dl - tl_i_)nl()t.Dz] = [th_n)lo(t'Dl —t.Dp)] = [tli_r)not.(f)]. So

0'[(F)] = [tli_)mo t.(f)]. But the cycle [(F)] is rationally equivalent to zero on the total

space of the family V, being a cycle of a rational function, implies (by fact 5.5.38) that

0'[(F)] is rationally equivalent to zero in the fiber (V). So [tlim0 t.(f)] is rationally
—

equivalent to zero in (V)o = lim¢.V. Therefore limt.(f) is rationally equivallent to

t—0 t—0

zero in lim¢.V. But Z' = limy,_,¢t.Z = limt.(f) and V' = lim¢.V. It follows Z' is

t—0 t—0

t—0

linearly equivalent to zero in V. Thus lemma 5.5.42 is proven.
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Remark 5.5.43. Let V be a subvariety of a B-variety X. It can be checked easily
that if V is T-invariant, i.e t.V = V then ltlimoq/)(t).V‘z V. Let V C C* x X be the
— .

subscheme with fibers ¢.V. Consider the fiber square

CxV—>V (87)
Idx1 7

CxX2-%x

Since the closed imbedding C* x V — C* x X is Id x ¢ it follows V = C* x V. So
the closure V of V in C x V is equal to C x V which is equal to the closure of V
in C x X because C x V is a closed subset in C x X containing C* x V. Therefore
V) ={0} xV =V. But tli_r{lot.V = (V)o. Therefore ltli_)mOt.V =V.

In the following theorem we gave a necessary and sufficient condition for two T-
invariant subvarieties Dy, Dy C X of dimension k to be T-invariantly rationally
equivalent to zero. This condition is expressed using the weights of the characters
Xi(t) = t; where ¢ € T, and and T-invariant subvarieties Z C X of dimension
k + 1. Using this theorem we can calculate the dimension of the C—module R%(X)
and determine the BETTI NUMBERSV of X by calculating the dimension of A%(X) =

ZE(X) ) R(X).

Theorem 5.5.44. Let X be a B-variety, and Let D;, Dy be T-invariant subvarieties
of dimension k. Let A; be the weight of the character x;(t) = ¢; where ¢ € T'. Then
D, % D, iff [Dir — Do) € Span {\;.[Z;r] : where Z; C X are the T-invariant

subvarieties of dimension £ + 1}.

Proof. (=) Suppose D; % D, where D;, D, are T-invariant subvariety of dimen-
sion k. Then Dy — Dy = > % E; such that E; ~ 0 in C; where dim E; = k, and
dimC; = k + 1. Let Hilbg, (resp. Hilbg,) be the component of the Hilbert scheme

Hilb(X) containing F; (resp. C;). By theorem 5.5.22 there exists a T-representation
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W, = &% W,, (tesp. N; = &;.,W,,, ) such that Hilbg, (resp. Hilbe,) is em-
bedded T-equivariantly in P(W;) (resp. P(NV;)), i = 1,...,m. Consider the set of
characters S = {x;; : 4 =1,...m, j=1,.m}U{px :i=1,....m, k=1,.,r}.
Choose a one parameter subgroup ¢ : C* — T such that p — v does not live in
H, = {x :< ¢,x >= 0} for each p, v € S. Then by lemma 5.5.13 tli_r)nod)(t).f
is T-invariant VZ € P(@™,W;) and VZ € P(@7™,N;). But E; € Hilbg, C P(W;)
implies tli_r}n()¢(t).E,- is T-invariant Vi = 1,...,m. Also C; € Hilbg, C P(V;) im-
plies tli_r)nov,b(t).Ci is T-invariant Vi = 1,...,m. Let E| = tli_,rrl()¢(t)'Ei’ and let C! =
tli_r)noz/;(t).C'i then EI, and C] are T-invariant and by lemma 5.5.41 E! C C! be-
cause E; C C;. By lemma 5.5.42 it follows that E; is linearly equivalent to zero
on C}. Consider w(t).(D — Dy) = ¢(t). Y By = Y 0, (t).E;. It follows that

hm 1/)( Z hmz/) ).E;. Let & C C* x X be the subscheme with fibers
t.E;. Then lim(t).(D1 ~ Dy) = Z(E)o. So limy(t).Dy — limt.Dy = > (Do

i=1 =1
But D; is T-invariant, i.e t.D; = D; implies lim w(t).Di = D; (remark 5.5.43). It

follows that D; — Dy = Y i (&;)0. Now since the Hilbert definition of the limit and
the closure definition of the limit agree (proposition 5.5.12), it follows that (&;)q is T-
invariant. Let E! = (£;)o then Dy — Dy = Y_" | E! such that E! C C! where E!, C! are
T-invariant and E; ~ 0 C C. It follows from part (1) of theorem 5.4.1 that the equiv-
ariant cycle [E].] € Span {\¢.[Cip] : k =1,...,7}. Thus [Dig — Dor] = Y12 [Elr] €
Span {A;.[Cir] 1 4 = 1,...,m, k = 1,...,7 where C] are T-invariant subvarieties of
dimension k+1} C Span {A.[Z;r] : £ =1, ...,r where Z; are T-invariant subvarieties

of dimension £ + 1}.

(<=) Suppose that [Dip — Dog| € Span {\;.[Z;r] : where Z; C X is a T-invariant
subvariety of dimension k+1}. Then [Dyp—Dor] = >0 3L, ag)g.[Zir] where ay €
Z. Recall the map ¢% : Hp(X) — H*(X) where i%([Wr]) = [W]. It follows that
[Dy=Ds) = Sy Sy i g [Zir). S0 [Dy—Dy] = S0y Sy i (0g) - (Zir)

7



But 7% (\,) = 0 implies [D; — Do) = 0. Thus D; = Ds.

Definition 5.5.45. A scheme X has a cellular decomposition if there is a filtration
X =X,D2Xn1D..2XyD X 1 = ¢ by closed subschemes with each X; — X;_;
a disjoint union of schemes U;; isomorphic to affine spaces A™i. The Uj;’s are called

the cells of the decomposition.

Proposition 5.5.46. Let X an n-dimensional B-variety then A, (X) is generated by
the closure of T-invariant classes. If X has a cellular decomposition then the k-th
Chow group Ag(X) is generated by the classes of the closures of the k-dimensional
cells. See [12].

Remark 5.5.47. Let X be a B-variety and let ¢ € T where T is the torus acting
on X. Define y : X — X by u(a:) = t.x. Then p is a bijection. Let V C X be a
T-invariant subset. It follows that u(X — V) = pu(X) —pu(V) =X -V (V) =V

because V is T-invariant). So X — V is T-invariant.

Definition 5.5.48. Let X be a B-variety. A k-cycle « is T-equivariantly rationally
equivalent to zero, written « < 0, if there exists a finite number of T-invariant
(k +1)—dimensional subvarieties W; of X, and f; € R(W;)*, such that £.[(f;)] = [(fi)]
with a = Y _[(fi)]-

Remark 5.5.49. Let q € P!. Form the fiber square

X x{g}——X x P! (88)

L]

{}f——pm

Let V C X x P! be a (k + 1)—dimensional subvariety such that the projection to the

second factor induces a surjective morphism f from V to P!. Form the fiber square
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V xp {g}——V (89)

|

{g})——P

Let P be the projection from X x P! to X. Note that the scheme-theoretic fiber
fYg) = V xp {q} is a subscheme of X x {¢}, which P maps isomorphically

onto a subscheme of X; we denote this subscheme by V(g). Note in particular that

Plf )] = [V(9)] in Zx(X).

Definition 5.5.50. (Hirschowitz) Let Y be an algebraic variety acted on by an al-
gebraic group G. Let U and V be two invariant cycles on Y under G and let R be a
cycle of Y x P! which gives the rational equivalence between U,V, i.e (for example)
U = R(0), V = R(cc). We say that the rational equivalence R is equivariant if
there exists an algebraic action of G on P! which fixes 0, oo, such that the cycle R
is invariant under the corresponding action of G on ¥ x P!. And we say that the
rational equivalence R is invariant if it is the trivial action of G on P! which makes

the rational equivalence equivariant ([26]).

Fact 5.5.51. Definition 5.5.48 and Definition 5.5.50 are equivalent if G = T is a

torus.

To see that we will prove the following theorem.

Theorem 5.5.52. vLet X be a B-variety. A k-cycle a is T-equivariantly rationally
equivalent to zero, written « & 0, if and only if there exists a finite number of
(k + 1)—dimensional equivariant subvarieties Vi, ..., V; of X x P!, i.e there exists an
action on P! which fixes the two points g, Zo in P! such that the cycle [Vi] is invariant
under the corresponding action of T on X x P!, with o = Y_;_,[Vi(0)] — [Vi(o0)] in
Zy(X).
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Proof. (<=): Suppose that there exists a finite number of (k+1)—dimensional equiv-
ariant subvarieties V1, ..., V5 of X x P! such that o = Y ;_ [Vi(0)] — [Vi(00)] in Zk(X).
Let f; : V; — P! be the morphism induced by the projection to the second factor, i.e
fi = w3 |v; where my : X x P! — P! is the projection morphism. Let P be the projec-
tion from X x P! to X. It follows that a = >_;_,[V;(0)] = [Vi(o0)] = D0, P[(fi)]- But
PJ(f:)] = [(N(f:))] (Proposition 1.4 in [17]) where N(f;) € R(P(V;)) is the norm of
fi, 1.e the determinant of the R(P(V;))-linear endomorphism given by multiplication
by fi. We check that V; is equivariant implies P(V}) is T-invarie;nt. Note that T is the
group acting on X by p: T — Aut(X) where Aut(X) is the group of automorphisms
on X, and on P! by ¢ : T — Aut(P') (Aut(P!) is the group of automorphisms on
P'). Now if z € X, y € P! then we have the actions: t.z = p(t)z, t.y = o(t)y, and
t.(z,y) = (p(t)x,0(t)y). Let z € P(V;) C X. We check that t.z € P(V;) wheret € T.
Let z = P(z) where z € V;. Then t.x = t.P(z) = P(t.z) because P is an equivariant
map (P(t.(a,b)) = P(p(t)a,o(t)b) = p(t)a = t.a = t.P(a,b) ). But t.z € V; because
V; is equivariant. It follows that P(t.z) € P(V;). So t.x € P(V}).

It remains to check that [(N(f;))] is T-invariant. Note that [(N(f;))] = B[(f:)] =
[Vi(0)] = [Vi(oo)] and V;(0) = P(V; xp: {0}) where V; xp1 {0} = £7'(0) = (m [v;
)71(0) € X x {0} C X x P!, We check that V; xp1 {0} is T—invariant. Let s € T
Then s.(V; xp1 {0}) := s.V; xp1 s.{0}. But V; is equivariant, i.e V; is T—invariant
and s.{0} = {p(¢).0} = {0}. It follows that s.V; xp: s.{0} = V; xp1 {0}. So
Vi xp1 {0} is T—invariant. Therefore P(V; xp1 {0}) = V;(0) is T-invariant. Hence
[Vi(0)] is a T-invariant cycle. By a similar argument [V;(co)] is T-invariant. So

[(N(f:))] = [Vi(0)] — [Vi(c0)] is a T-invariant cycle.

(=): Let a = [(r)], r € R(W)* where W is a T-invariant (k¥ + 1)—dimensional
subvariety of X. Let U be an open subset of W such that r is defined on U. Note
that ¢.r = x(¢)r where x(t) is a character. Define an action on P! by t.y = x~!(t)y
where y € P'. Let T be the group acting on X by p: T — Aut(X) where Aut(X)
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is the group of automorphisms on X, and on P! by x : T — Aut(P') (Aut(P') is
the group of automorphisms on P!). Now if z € X, y € P! then we have the actions:
tx = p(t)z, ty = x(t)y, and t.(z,y) = (p(t)z, x 1(t)y). Let U = Uyept.U. Then
U is an open subset of W. Let V be the closure of the graph of r |7 in X x P!
(which is equal to the closure of the graph of r |5 in W x P! because W x P! is
a closed subset of X x P'). Let Id : U — U be the identity morphism. Then
V = (Idxr|5)(U). Let P be the projection from X x P! to X. Then P maps
V birationally and properly onto W. Note that P is proper being a composition of
proper maps. Also P is birational because P is an isomorphism of (Id x r [4)(T)
with U. We check that V = (Id x r |;)(U) is T—invariant. It is enough to check
that (Id x r |3)(U) is T—invariant. So let (z,7(z)) € (Id x 7 |5)(U) and let t € T.
Then t.(z,7(z)) = (t.z,t.r(z)) = (p(t)z, x 1 (#)r(z)). But t.r(z) = x(t)r(z) implies
tLr(z) = x“L(t)r(z). So r(t.z) = x H(t)r(x). It follows that (t.z,x (¢)r(z)) =
(t.a,r(t.z)) € (Id x 7 |3)(U) because x € U and U is T—invariant. Therefore
(Id x 7 |5)(U) is T—invariant. So (Id x r |5)(U) is T—invariant, i.e (Id x r |7)(07)
is equivariant.

Note that N(r) = r, where N(r) is the norm of r, because R(W) ~ R(V). Then
a = [(r)] = [(N(r))]. Let f be the induced rational map from V to P* (r induces
f). But [(N(r))] = P[(r)]( proposition 1.4 in [17]). So a = PB[(r)] = PJ[(f)] =
[V(0)] = [V(e0)].

Theorem 5.5.53. Let X be an n-dimensional B-variety then A%(X) ~ A*(X).

For a proof of this theorem see [26]. We will provide a new proof for this theorem.

Proof. Let [C] be the cycle class corresponding to C' where C C X is a T-
invariant subvariety of codimension k in X. We define the group homomorphism
¢ : AR(X) — A*(X) by ¢([C]) = [C]. The surjectivity of ¢ follows from Proposition
5.5.46. To show that ¢ is injective, it is enough to show that ZT (X)NR:(X) = RI(X).
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It is clear that ZX(X) N R*(X) D R%(X). We will show that the inclusion

Zp(X) N RM(X) C Ry(X)

holds. Let [Z] € Zk(X) N R¥(X) then [Z] is a T-invariant (n — k) — cycle and [Z] ~ 0
on X. So there exists a finite number of (n — k + 1)—dimensional subvarieties V; of
X, and f; € R(V;)*, such that [Z] = Y " ,[(fi)]. Let Z; = (f;) and let Hilby, (resp.
Hilbz,) be the component of Hilb(X') containing V; (resp. Z;) then there exists a T-
representation W; = @72, W, (resp. N; = &L, W,,; ) such that Hilby; (resp. Hilbz,)
is embedded T-equivariantly in P(W;) (resp. P(2V;)), ¢ = 0, ...,n. Consider the set of

characters

S={xij:1=0,..,n,j=1,..m}U{pix:1=0,...,nk=1,...,7m}.

Choose a 1-parameter subgroup ¢ : C* — T such that x;x — xj ¢ Hy and pg, —pji €
Hy. Then by lemma 5.5.13 tli_r)noz/)(t).f is T-invariant VZ € P(W;) and VZ € P(}V;).
But V; € Hilby, ¢ P(W;). So V] = t%¢(t).% is T-invariant Vi = 0,...,n. Also
Z; € Hilbz, C P(V;). So Z = tli_)molb(t).zi is T-invariant Vi = 0, ..., n.

For simplicity we will use t to denote for 1(¢). Let V; C C* x X (resp.£ C C x X)
be the subscheme with fibers ¢.V; (resp.t.Z). Since f; € R(V;)* then (f;) = Diy — Di2
where D;; = fz-_l(O)7 Dy = fi_l(oo). Let D;; C C* x X be the subscheme with fibers
t.D;; where j =1,2,1=0,1,...,n. Let F;(t,z) = (t.fi)(z) (¢t is not fixed). Note that
F}(t,z) is a non-zero rational function on the total space of the family V;. It follows
(F¥) = Diyy — Dip. Let F € R(V;)* such that F; | V; = F¥. Then as explained in fact
5.5.39 (see (85)) we have |

[(F)] = Dal - Dal+ Y mylVi] (90)

ViiC(W)o
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Thus 0'((F;)] = 0'[Dia] = 0'Da] +0'( Y mu[Vil) = [(Daa)o] = [(Diz)o] = [(Dix)o —
ViiC(Vido
(Diz)o]. But [(Di1)o — (Dia)o] = [lim¢.Dyy — limt.Dip] = [lim (£.Dyy — 1.Dsp] =

[tli_r)not.( fi)]- But the cycle [(F;)] is rationally equivalent to zero on the total space
of the family V;, being a cycle of a rational function on V; implies (by fact 5.5.38)
that 0'[(F})] is rationally equivalent to zero in the fiber (Vi)y = tliToWi = V/. But
Z! = th_r}nof.( fi) is T-invariant (resp. V; is T-invariant). So [tl_iglot.( fi)] is a T-invariant
cycle. So 0'(F;)] is a T-invariant cycle. Therefore 0'[(F;)] is a T-invariant cycle
which is rationally equivalent to zero in the fiber (Vi)y and (Vi)y is T-invariant (
Vi) = Jimt.V; = V! and V/ is T-invariant ). Thus 0'[(F;)] is T-invariantly rationally
equivalent to zero. Now ¢.[Z] = Y o ([((t.f;)(z))] (here t is not fixed) implies [¢] =
S [(Fi(t,2))] where F; € R(VR)". Applying 0' we get 0'[g] = S, O(Fi(t )]
But [(F})] is T-invariantly rationally equivalent to zero. So Y . ,[(F;)] is T-invariantly
rationally equivalent to zero. So 0'[¢] is T-invariantly rationally equivalent to zero.
But 0'[¢] = [(6%)o] = [th—n»lot’Z]' Also [Z] is a T-invariant cycle, i.e t.[Z] = [Z], implies
t.Z = Z. Now by remark 5.5.43 it follows lim¢.Z = Z. Therefore 0'¢] = [Z]. Thus

[Z] is T-invariantly rationally equivalent to zero.

6 APPLICATION

Let Hilb*P? be the Hilbert scheme parameterizing finite subschemes of length 2 in

the projective plane (see [12]). Consider the C*-action on P? given by
t.(.’l?o, x, .’E2) = (t~a$0, t_b$1, t_CSUQ) (91)

where a, b, ¢ are integers. We will use H to denote Hilb?P2. Let HT = {(2%,y), (=, v?),
(22, 2), (z, 2%), (v*, 2), (v, 22), (yz, z), (z2,9), (zy, 2)} be the fixed point locus of the
C*-action. Let Py = (v%,2), P» = (z,2%), Py = (z,9%), Py = (22,y), Ps = (22, 2),
Ps = (y,2%), P = (zy,2), Py = (yz,7), Py = (z2,y). Let Ax(H) be the k-th Chow
group of the Hilbert scheme Hilb?P2. We will use our method namely, theorem 5.5.44
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to determine the rational equivalences for the Chow ring Ag(#). This new method
will work to give new results for more complicated B-varieties. We will leave this for
future work.

Consider the above C*-action on P? such that a # b, a # ¢, and b # c. Let E = {e;}3_;
be the fixed point locus of C*-action on P? where the i-th coordinate of e; is nonzero,
all other coordinates being zero. Let the line L., = (z = 0), L., = (y = 0), and
Lo, = (z = 0). Then A.(H) is genera;ted by the following T-invariant cycles (see
Proposition 5.5.46)

(1) Ao(H) is generated by the nine classes [P;r] where [P;r] denote the class of the
closure of the cell P; below:

P, = {{eo,e0} € H : {eo, €0} is contained in the line L., }

Py = {{e1,e1} € H : {e1,e1} is contained in the line L.}

P3 = {{e2,e2} € H : {ea, ez} is contained in the line L.}

Py = {{es,e2} € H : {ez, €5} is contained in the line L., }

Py = {{e1,e1} € H : {e1,e1} is contained in the line L., }

Ps = {{eo,e0} € H : {eg, €0} is contained in the line L,, }

P; = {{ep,e1} € H : eg,e; € E}

Ps={{e1,ea} € H:e1,e0 € E}

Py = {{eo,e2} € H : eg,e2 € E}

(2) Ai(H) is generated by the nine classes [l;r], [mir] where [l;7] (resp.[m;r]) denote
the class of the closure of the cell I; (resp.m;) below:

I ={{eo,s} EH e € E,s€ L}

lo ={{eo,s} eH:eg € E,s€ L}

Is={{ei,s}eH:e € E,s€L,}

lh={{e1,s} eH:e1 €E,s€ L}

Is={{es,s} €M :e3 € E, s€ L}

le ={{ex,s} €H:e2€E, s€ Le, }

my = {{eo,e0} € H : ey € E and there exists a line of P? containing the double point
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{eo, e0}}

mg = {{e1,e1} € H : e; € E and there exists a line of P? containing the double point
{er,e1}}

m3 = {{eg, €2} € H : €3 € E and there exists a line of P? containing the double point
{ez, e2}}

(3) A3(H) is generated by the nine classes [pir], [¢ir), and [rir] where [p;r] (resp.[gir],
[rir]) denote the class of the closure of the cell p; (resp.g;, r;) below:
p={{w,s}eH w,s€ L}

pr={{w,s} € H:w,s € Ly}

p3s ={{w,s} € H:w,s € L, }

q = {{es,w} € H:ey € E, w € P?}

g ={{e,w} €EH: e € E, weP?}

g3 = {{es,w} € H:e; € E, w € P?}

ri = {{v,v} € H : {v,v} € L., and there exists a line of P? containing the double
point {v,v}}

ro = {{v,v} € H : {v,v} € L, and there exists a line of P? containing the double
point {v,v}}

rs = {{v,v} € H : {v,v} € L., and there exists a line of P? containing the double
~ point {v,v}}

(4) As(H) is generated by the six classes [t;r], [uir] where [t;r] (resp.[u;r]) denote the
class of the closure of the cell ¢; (resp.u;) below:

ty={{s,v} € H:s€ L, veP?}

ty={{s,v} € H:s € L, v € P?}

t3 = {{s,v} € H:s € Ly, v € P?}

u; = {{s,v} € H : there exists a line of P? containing e, s,v}

ugs = {{s,v} € H : there exists a line of P? containing e, s,v}

uz = {{s,v} € H : there exists a line of P? containing e, s,v}

(5) A4(#H) is generated by one class which is the class of the closure of the cell
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{{p,q} : p,q € P?}.

Case(I): We will determine the rational equivalences in the Chow ring A¢(#) using

theorem 5.5.44. Now according to theorem 5.5.44

Zal Py] ~ 0 iff Z ai[Pir] € Span{\.[lir]}2_, ® Span{A.[mr]}i, (92)
So

9

Z a;[Pir) ~ 0 iff Zai[Pz’T] Z i) lir) + Zgz [mir) (93)

=1

Recall the map i} : AL(H) — AL(P)). In order to determine the rational equiva-
lences in the Chow ring Ag(#H), we need to solve the following linear system which

we get by applying the map ¢} to the previous equation above:

System 1

ayii[prr] = AN L] + g1 (A)ii[rmar] (94)
agig[per] = fa(A)is[lar] + g2(N)ig[mer] (95)
agt3[par] = fo(A)i3(ler] + gs(A)iz[mar] (96)
asiglper] = fs(A)tillsr] + g3(A)izlmar] (97)
asis[psr] = fs(A)i5[lar] + g2(A)i5[mer] (98)
astglper] = f2(A)ig[lar] + g2(N)iglmer] (99)
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azizprr] = f3(A)izllsr] + fr(A)iz[lir] (100)
asig[pst] = fa(N)igllar] + fo(A)ig[ler] (101)
agiy[por] = fa(A)igllar] + f5(N)ig[lsr] (102)

We evaluate i%[P;r), i}[ler], and if[myr] as follows:
(a) To evaluate 5[P;r] we calculate the weights of the normal bundle Np,|, = Tr,H.
Then 4}[P;r] is the product of those weights.
1) #4[Pir] = (2a — 2b)(a — b)(a — ¢) (b — )

2) #§[Pyr] = (b — a) (26— 26) (b — ) (c — a)

3) #§[Pyr] = (c — ) (b — @) 2c — 26) (c — 1)
4) i5[Pyr) = (2¢ — 2a)(c — a)(c — b)(a — b)
b—a)(2b—2a)(b—c)(a—c

(
51 ( )
) ilPer] = (2a - 2¢)(a — b)(a — ¢)(c — D)
7) #[Prr] = (a = b)(a = ¢)(b - a)(b - ¢)
) 3[Per] = (b= a)(c = b)(b — ¢)(c — a)
) i5[Por] = (a = b)(a = ¢)(c = a)(c = b)

(b) To evaluate #%[lxr] we calculate the weights of the normal bundle of I in H at P;
namely, the weights of (N, )p; (see example 4.0.23). Then i[lxr] is the product of
those weights. Similarly i}[mgr] is the product of the weights of (N, ) p;-

(c) As in (1) and (2) above 4}[prr] = product of the weights of (Np,,)p;. Similarly
i%[grr] = product of the weights of (Ng,,,)p;, and }[rgr] = product of the weights of
(Nriia) By -

(d) As explained above i}[tyr] = product of the weights of (N, )p;, and if[upr] =
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product of the weights of (My,),,)p;-

In table 3(on page 89), we calculated all the deformations between the fixed points
of H. Note that ab denote the weight a — b, ba denote the weight b — a, 2ba denote
the weight 2(b — a),... etc.

In table 4(on page 89) the first entry % : (2a — 2b)(a — ¢)(b — ¢) denotes i}[l;7] =
(2a — 2b)(a — ¢)(b — ¢),...etc. Therefore using table 3, 4, and the calculations above
we substitute for i}[Pyr], 45[ler], and 45[myr] in the previous linear system above to

get the following linear system of nine equations:

System I (weights)

a1(2a—2b)(a—b)(a—c)(b—c)A\* = f1(\)(2a—2b)(a—c)(b—c)+g1 (\)(2a—2b)(a—b) (a—c)
(103)

az(b—a)(2b—2c)(b—c)(c—a)A* = f4(A)(b—a)(2b—2¢)(c—a)+ga( ) (b—a)(20—2c)(b—c)
(104)

az(c—a)(b—a)(2c—2b)(c—b)A* = fs(\)(c—a)(b—a)(2c—2b)+g3())(c—a)(2c—2b)(c—b)
(105)

as(2c—2a)(c—a)(c—b)(a—b)A* = f5(\)(2c—2a)(c—b)(a—b)+gs(N)(2¢—2a)(c—a)(c—b)
(106)

as(b—a)(2b—2a)(b—c)(a—c)A* = f3(\)(2b—2a)(b—c)(a—c)+ga () (b—a)(20—2a) (b—c)
(107)
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Fixedpoint | P, | P, | P3s | Py | Ps | Ps | P | Py | Py

P, ac 2ab | bc | ab

P, 2bc ca | ba be

P ca | 2ch ba ch

P, ab | cb | 2ca ca

P 2ba | ac bc ba

P cb | ab 2ac ac

P; ba ab ac | be

P ch | bc ca ba

P, ac ca |cb |ab

Table 3: deformations between the fixed points of H

cell /i

I it (2a—2b)(a—c)(b—c) | 5: (a—c)(a—b)(b—c)

Iy i5: (2a — 2¢)(a—b)(c—0) | i5: (a—b)(a—c)(c— )

I3 it (2b—2a)(b—c)la—c) | B:(b—a)(a—c)(b—c)

Iy |45:(b—a)2b—2¢)(c—a) |i5:(b—a)(d—c)(c—a)

I iy (2c—2a)(c—b)(a—=10b) | i5: (a—b)(c—a)(c—b)

le |#5:(c—a)(b—a)(2c—2b) |if:(b—a)(c—0b)(c—a)

my |15 (2a—2b)(a—b)(a—c) | if: (2a — 2¢)(a — b)(a — ¢)

my |5 (b—a)(2b—26)(b—¢) | it: (b—a)(2b—2a)(b—c)

m3 |45 (c—a)(2c—2b)(c—10b) | i} :(2¢c—2a)(c—a)(c—b)

Table 4: the pull backs i}[lxr], and % [myr]
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a(2a—2¢)(a—b)(a—c)(c—-b)A* = f2(1)(2a~2c)(a—b)(c—b)+g:(A)(2a—2¢)(a—b)(a—c)
(108)

az7(a—b)(a—c)(b—a)(b—c)\* = f3(N)(a—c)(b—a)(b—c)+ f1(A)(a—b)(a—c)(b—c) (109)
ag(b—a)(c—b)(b—c)(c—a)\* = f1(A)(b—a)(b—c)(c—a)+fs(N)(b—a)(c—b)(c—a) (110)

ao(a—b)(a—c)(c—a)(c—b)At = fo(N)(a—b)(a—c)(c—b)+fs(N)(a—b)(c—a)(c—b) (111)

Using Maple we solve the linear system to get the relation Z?:l a; = 0.

Case(Il): We will determine the rational equivalences in the Chow ring A;(#{) using

theorem 5.5.44. Now according to theorem 5.5.44

6 3 6 3
Z a; [llT]-l-Z bl [sz] ~ 0 iff Z ai[liT]—I—Z bz[sz] € Span{)\.[piT], )\.[qiT], )\[T‘iT]}?:l
i=1 i=1 i=1 i=1

(112)
So Yoy @illir] + 3, bilmr] ~ 0 iff
Z aillir] + Z bilmir] = Z fi(N).[pir] + Z 9i(N)-lgir] + Z hi(A).[rir]  (113)

In order to determine the rational equivalences in the Chow ring A;(?), we need to
solve the following linear system which we get by applying the map i} to the previous

equation above
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System 11

arifllar] + buislmir] = fu(Viller] + g (Nitlaar] + hs Viilrar] + ho(Viglroa] (114)
auiillar] + baislmar] = fo(N)igfper] + ga(Nilaer] + by (Visfria) + ha(Vislrar] (115)
a3 lor] + byiglmar] = Fa(Nisfpar] + ga(Ni3lasr) + haN)isfrar] + hs(Niglror] (116)
asillsr] + bt fmar] = Jo(ilpsr) + 95 (il + ha(N)iflrar] + ha(ilrar] (117
asigllsr] + baiglmar] = fi(\ilprr] + ga(N)idlagar] + b (Vislrar] + ha(Nizlrar] (118)

azigller] + briglmar] = f3(A)iglpar] + g1(N)iglair] + ha(Niglrir] + ha(A)iglrsr] (119)

arizllir] + asizllsr] = fL(N)ir[pir] + 91 (N)islar] + g2(A) 33 gor] (120)
aaigllar] + agigller] = f2(N)iglpar] + 92(A)ig[ger] + ga(A)iE[%T] (121)
asig|lar] + asigllsr] = fa(N)iglpsr] + g1 (N)iglarr] + gs(V)iglasr] (122)

We evaluate 3[lxr], #5[mur], i}[per], iflger], and @3[ryr] using table 3, 4, and the

calculations below :
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Using Maple we solve the linear system that we get after substituting the values of

i3 [lkr]; i [mwer], 35 [Pt %ger], and ¥ [rer] to get the relation S e =0,30 b =0.

Case(I1I): We will determine the rational equivalences in the Chow ring A(#) using
theorem 5.5.44. Now according to theorem 5.5.44

S alprl+ Yo bilgr Yo cilrir] ~ 0 0 ailparl+ Y0y bilgir ]+ Yoo cilrir]
belongs to Span {\.[t;r], A.Juir]}3.;. So

Soims @lpirl+ o bilgir ]+ cilrar] ~ O3 300 ailpar]+ 300 bilgir]+ Yoo, cilrir]
is equal to Y25, fi(A)[tir] + 30y gi(V)[uir]

In order to determine the rational equivalences in the Chow ring A2(H), we need to
solve the following linear system which we get by applying the map } to the previous

equation above

System 111

a1i1[pir) + bt ] + eidi[rir) + esii{rar] = fiil[tar] + foii[tar] + 197 [uar] + 9ot} [uar]
(123)

Aoty por] + b2t3[gor] + c113[rir] + catyrar] = frisltir] + f 305[t3r] + galsuar] + g3i5[usr]

(124)
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azt3[par] + baiz[gsr] + caiz[ror] + cai3[rsr] = foii[tor] + faizltsr] + 9203 [uar] + gaih[usr]

(125)

aziy[psr] + bsiylqsr] + caty[rar] + csiy[rsr| = foiiltor] + faiiltsr] + gritluir] + gsis|uar]

(126)

arig[prr] + baizlgor] + crii[rir] + cati[rar] = fiii[tir] + faisltar] + gritluir] + g2t uor]
(127)

azig[psr] + biiglgir] + crig[rir] + csig[rsr] = fiigltir] + foigltor] + gurigluir] + gsigusr]

(128)

a7 [p17] + biizlqir] + botilger] = fits[tir] + foi[tor] + fais[tar] + G183 [urr] + goi% uar]
(129)

agig|per] + batglqar] + bsiglasr] = fiig[tir] + foigltor] + faigltar] + gotguar] + gif[usy]
(130)

asig[psr] + brig[air] + baiggsr] = frig[tir] + faisltar] + fais[tsr] + grig[uir] + gsiflusr]
(131)

we evaluated ¢} [pyr],ij[ger], and §[rir] above. Now we calculate @5 [tyr], @5 [usr):

1) #§[tir] = (2a — 2¢), i3[tir] = (2b — 20), iEftir] = (2b — 2) , itftir] = (2a — 2¢),

#ltir] = (a+b— 2¢), ig[tir] = (b —¢), i§[tir] = (a —c)

2) if[tar] = (2a — 2b), i[tar] = (2¢ — 2b), i[tar] = (2¢ — 2b), E[ter] = (2a — 2b),
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iltar] = (a — b), i7[ter] = (¢ = b), 5[tar] = (a + c — 2b)

3) i3[tar] = (2b — 2a), #3[ts7] = (2¢ — 2a), iiltsr] = (2¢ — 2a), ii[tsy] = (2b — 2a),
isltar] = (b~ a), igltar] = (b + c — 2a), i5ltar] = (c — a)

4) 13[urr] = (a—0), iuar] = (a—b), iluar] = (a—0), igluar] = (a—b), i7[urr] = (a—c),
iglurr] = (@ — b) _

5) 11[uar] = (b—c), B3[uar] = (b—a), 13[uzr] = (b—a), iuer] = (b—c), i7[uar] = (b—c),

i3[uzr] = (b —a)

6) is[usr] = (c—a), i3[usr] = (c—a), ti[usr] = (c—b), ig[usr] = (c—b), i3[usr] = (c—a),

ig[usr] = (c — b)

Using Maple we solve the linear system that we get after substituting the values of
i*lper], itlawr), i3lreT], lter], and if[ukr] to get the relations Y7 a; =0, Y5 1 b; =
0,and 337 ¢; = 0.

Case(IV): We will determine the rational equivalences in the Chow ring Az(#) using
theorem 5.5.44. Now according to theorem 5.5.44

S ailtar] + X2 bibuir] ~ 038 Y2, aifter] + YL, bifuir] € 62, Span {A1}. So
T2 ailtar) + XL biluar] ~ 03 YL aiftir] + S0 bifuir] = F(N).

In order to determine the rational equivalences in the Chow ring A3(#), we need to
solve the following linear system which we get by applying the map 7} to the previous

equation above

System IV

ali‘{ [tlT] + (Iziik[tQT] + b1’LT [ulT] + b2’l/; ['LLQT] = f()\) (132)
al'é; [tlT] + agig[th] + bg’i;[’u,gT] + bg’l:;[Ugﬂ = f(/\) (133)
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azz'; [tQT] + CL3Z§ [t3T] + bz’I,; [UQT] + b32§ [’U,3T] = f()\) (134)

agiy[tor] + asij[tar] + bitsluir] + bsiglusr] = f(A) (135)
arizltir] + asisltsr] + bris[uir] + bais[uar] = f(A) (136)
avigltir] + asoigltar] + brigluir] + baigfusr] = f(A) (137)
ariztir] + azi;[th] + agiz[tsr] + biiz[uar] + baid{uar] = f(A) (138)
a1tgltiT] + asigltar] + asigltsr] + baiglusr] + bsig[usr] = f(A) (139)
arigltir] + agiyltor] + asig[tsr] + biiglurr] + bsiglusr] = f(A) (140)

We evaluated z’;[tkT], and zj[ukT] above. Using Maple we solve the linear system

that we get after substituting the values of i}[tyr], and i}[usr]. We get the relations

Yooy ai=0, 35, b =0.

Remark 6.0.54. In case III we calculate i[¢17] as follows: first note that P; = (zy, 2)
is a singular point because because P; lives in the in all the cells of dimension three and
it has four tangent weights. Now to calculate #4[t;7] we give local coordinates for H.
Let {(1,u,v)}, {(w, 1, s)} with origin (u,v,w,s) = (0,0,0,0) corresponds to the point
P;. In these coordinates ¢; has the equation vs = 0. Now to calculate the weights
corresponding to v and s, note that ¢.(1,u,v) = (¢79,t%u,t7%) = (1, % bu, t* ).
So the weight corresponding to v is @ — c. Similarly since t.(w, 1, s) = (t*~%w, , t*~¢s)
then the weight corresponding to s is b—c. Therefore i3[t;r] = a—c+b—c = a+b—2c.

Similarly i§[tsr] = b+ ¢ — 2a, and i}[tor] = a + ¢ — 2b.

96



CALCULATIONS.

Recall that the Chow ring A3(H) is generated by the classes [pir|, [¢ir], and [rir],

i =1,2,3. In the following calculations we used localization to compute the following

intersections: [pir].[p;rl, (@ir)-lg57)s [rar)-[rir], pir)-lajr], pir]-[rjr), and [gr).[rir).

_ (2a—=2¢)(b—c)(2a — 2b)(a — ¢)
/ prblaal = e ) (a=)(a=)=
N (a—c)(b—c)(a—1Db)(a—c)

_ (b—c)(a—c)(2b~2a)(b—c)
/ prller] = @ Tt — 0@ =0

_ (b—¢c) (b—-¢)
ERCEDRMCED
= 0
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[ [par].[gor]

/ [pr]-[g7]

(b—a)(c—a)(b—a)(2b—2c)

(b—a)(2b—2¢)(b—c)(c—a)

(b—a) (b—a)
(b—0)  (c=0b)
0

(c—a)(b—a)(c—a)(2c—2b)

(¢c—a)(b—a)(2c— 2b)(c—b)

(c=a) . (c—a)
CEDREE
0
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/ [psr].lair] =

[par ) -

(a—b)(c—b)(2a —2¢)(a —b)

(2a — 2c)(a — b)(a — c)(c — b)

(a—=b) (a—=10)
(@—c)  (c—a)
0

(c—b)(a—b)(2¢c —2a)(c—b)

(2¢ — 2a)(c — a)(c — b)(a — b)

(c=b) . (c—b)
(c=a) (a=c
0
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[l =

/ [D17].[r2r]

[paltrer) =

(a—c)(b—c)(2a — 2b)(a — ¢)

(2a — 2b)(a — b)(a — ¢)(b—¢)

2(a - ¢) N 2(b—¢)

(2a —2b)  (2b— 2a)

(b—c){a—c)(b—a)(2b— 2a)

(b—a)(2b—2a)(b—c)(a—c)

(@ —c)(b—c)(2a — 2b)(a — b)

(2a — 2b)(a — b)(a —c)(b—¢)
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[l i) -

/ [pr].[rar]

[l v

2(b—a) = 2(c—a)
(2b—2¢)  (2¢—2b)

2(b—c)
(2b — 2¢)
1

(c—a)(b—a)(2c—2b)(c—b)
c—a)(b—a)(2¢c—2b)(c — b)

—~
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[t} =

[t frar) =

/ [par].[rar] =

(a —b)(c—b)(2a — 2¢)(a — ¢)

(2a — 2¢)(a — b)(a — ¢)(c —b)

(¢ —b)(a—b)(2¢c — 2a)(c — a)
(2¢ — 2a)(c — a)(c —b)(a —b)

(¢ —b)(a—b)(2¢c —2a)(c—b)
(2¢ — 2a)(c — a)(c — b)(a — b)

(@ —b)(c—b)(a —b)(2a — 2¢)
(2a — 2¢)(a — b)(a — ¢)(c — b)

2(c—b) 2(a — b)
(2¢ — 2a) * (2a — 2¢)

2(c—a)
(2¢ — 2a)
1

102



[laalirar) =

/ i) [rar] =

(2a — 2b)(a — ¢)(2a — 2b)(a — ¢)

(2a — 2b)(a — b)(a — c)(b— ¢)

(2a — 2c)(a — b) (2@ —2¢)(a~c¢)

(20 — 2¢)(a — b)(a — ¢)(c — D)

2(a - c)  (2a—2c)

(b= ' (c=b)

(2a — 2b)(a — ¢)(2a — 2b)(a — b)

(2a — 2b)(a — b)(a — ¢)(b — ¢)

(2a — 2¢)(a — b)(a — b)(2a — 2¢)

(2a — 2¢)(a — b)(a — c)(c — b)

(2a —2b)  2(a—1b)

b=0 @ (c=b)
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/[qu]'[TlT] _ (b—a)(2b—2¢)(2b—2c)(b - ¢)

(b—a)(2b—2¢)(b—c)(c—a)

(2b — 2a)(b - ¢)(2b — 2a)(b — ¢)
(b—a)(2b—2a)(b—c)(a—c)

(26—2¢) 2(b—¢)
CEDINCED)

(b2 —20)(b - )2 - 2
/[qu]'[TZT] — (b—a)(2b—2¢)(b~c)(c—a)

(2b — 2a)(b — ¢)(b — a)(2b — 2a)
(b—a)(2b—2a)(b—c)(a—c)

2(b—a) (2b— 2a)
(c—a)  (a-9
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/ gar]-[rer] =

[l

2(c—a)  (2¢—2a)
(b—a) = (a-1D)
0
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2 _ (‘L—C)Q(b“c)2
/[p”’] " (2a—2b)(a —b)(a—c)(b—c)

/[pZT]Z = (b—a)?(c - a)?

(c = a)*(b - a)®
(¢ —a)(b—a)(2c — 2b)(c — b)

_ (b—a)(c—a)+ (c—a)(b—a)— (20— 2a)(c — a) _0
(26 —2¢)(b - ¢)
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(c = 0)*(a - b)°

(2¢ —2a)(c — a)(c —b)(a —b)

(@ —b)*(c—b)’

(2a — 2¢)(a — b)(a — ¢)(c — b)

(¢ —b)(a—b) + (a — b)(c — b) — (2a — 2b)(c — b)

(2¢ — 2a)(c - a)

107



2 (2a — 2b)*(a — ¢)?
/ lor]” = (2a — 2b)(a — b)(a — ¢)(b—c)

(2a — 2¢)*(a — b)?
(2a — 2¢)(a — b)(a — ¢)(c — b)

(2a — 2b)(a —c)(a—¢c) — (2a —2¢)(a —b)(a —b) — (a —b)(a—c)(a—c)
(@ —b)(b—c)(a—c)

(a —b)(a—c)(a—b)
(a —b)(b—c)(a—c)

(a—c)—(a—0b)
(b—¢)
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2 (b — a)*(2b — 2c)”
/[Q2T] T b—a)-20)(b-c)(c—a)

(2b — 2a)*(b — c)?
(b—a)(2b—2a)(b—c)(a—c)

(2a — 2b)(a — c¢)(a — ¢) — (2a — 2¢)(a — b)(a — b) — (a — b)(a — ¢)(a — ¢)
(@a—b)(b—¢)(a—-c)
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(c — a)?(2¢ — 2b)?

(c—a)(b—a)(2¢c— 2b)(c —b)

(2¢c—2a)  (2¢—2b) (a—c) | (b—c)

b-a)  (a-b ' (b-a)

(2¢ —2a) — (2¢—2b)+(a—c)— (b—¢)

(b—a)

(2b—2a) + (a—b)

(b—a)
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(2a — 2b)%*(a — ¢)?
(2a — 2b)(a — b)(a — ¢)(b— c)

(20— 2¢)%(b — ¢)?
(b—a)(2b— 2¢)(b— c)(c— a)

(2b — 2a)2(b — ©)?
(b~ a)(2b - 2a)(b—c)(a —¢)

(2a — 2¢)*(a — ¢)?
(2a — 2¢)(a — b)(a — c)(c —b)

2@a—c¢) (2b—2¢)(b—c) 2(b—¢c) (2a—2c)(a—c)

6—0 @ OB-ac—a a0 @=bc=0

—2(a—c¢)+2(b—c)
(a—b)
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[t -

(b — a)?(2b — 2¢)?
(b—a)(2b— 2¢)(b—c)(c—a)

(c — a)?(2c — 2b)?
(¢ — a)(b— a)(2¢c — 2b)(c — b)

(2¢ — 2a)*(c — a)?
(2¢ — 2a)(c — a)(c — b)(a — b)

(b—a)?(2b — 2a)?
(b—a)(2b— 2a)(b— c)(a— c)

(2b—2a) = (2c—2a) (2¢ — 2a)? (2b — 2a)?
c—a) " h=a -ha-b -9@-9

2(b—a)(a—b)(c—a)—2(c—a)(a—c)(b-a)
(b—c)

—-2(b—a)+2(c—a)
(b—c)

112



(2a — 2b)%(a — b)?
(2a — 2b)(a — b)(a — ¢)(b—¢)

(2¢ — 2b)%(c — b)?
(¢ —a)(b— a)(2c — 2b)(c — b)

(2¢ — 2a)*(c — b)?
(2¢ = 2a)(c — a)(c — b)(a — b)

(a —b)*(2a — 2¢)?
(2a — 2¢)(a — b)(a — ¢)(c — b)

2(a — b)? N 2(c — b)? 2(c — b)

@—ab-0 (c-a)b—a)  (a—b)

(2a — 2b)%(c — b) + 2(c — b)(b — ¢)(a — b)
(@a—b)(a—c)(b—c)
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[l -

/ [r17]-[rsr]

(2b —2¢)(b — ¢)(b— a)(2b - 2c¢)
(b—a)(2b—2¢)(b—c)(c—a)

(26— 2a)(b—¢)(b— a)(2b — 2a)
(b —a)(2b—2a)(b—c)(a—c)

2(b—c)  2(b—a)
(c—a)  a-o
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/ [ror].[rsr] = (c —a)(2¢c —2b)(2c — 2b)(c — b)

+ (2¢ — 2a)(c — a)(c — b)(a — b)
— 2(C_b) 2(C—a)

- (-0 " (a —b)

_ 2(a—b)

=

= -2

/[‘IIT]-[QzT] = (a~b)(a—c)(b—a)(b—c)
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_ (a=b)(a—c)(c—a)(c—1b)
/ lerllesnl = T T T e =D)

/[qu]'[QBT] = (b~ Z)(b —c¢)(c—b)(c—a)

The following integrals are equal to zero since the cells are disjoint: [[pir].[par],

f [plT]-[p3T]7 f [pZT]~[p3T]> f [p1T]-[(I3T], f [pzT]-[(hT], f [P3T]-[Q2T], f [C]1T]-[7“ 2T]7
[laor][rar], and [(gsr].[ri7].

Remark 6.0.55. We will calculate the following intersections using geometry and
check the intersection multiplicity using local coordinates:

(I) Recall [pir], [gir], [rir] € A2(H) generate the Chow ring Ay(#H) where [pir]
(resp.[gir], [rir]) denote the class of the closure of the cell p; (resp.p;, ¢;). Note
that the class [p;r] = [pjr| (resp.[rir] = [rj7], [ir] = gjr]) because the cycles p;r, pjr
(vesp.rir, Tj7, and g, ¢jr) are rationally equivalent. So we let [pr] (resp. [gr], [rr])
denote [p;r] (fesp.[qiT], [rir]). First we calculate [gi7].[gor] using geometry. Recall
g = {{eo,w} € H :eo € E, w € P?}, ¢ = {{e1,w} € H :e; € E, w € P?}.
Clearly the closures of the cells gy, ¢2 intersect at the point Pr = (zy,2) € H where
# = Hilb?P2. Now we check that the intersection multiplicity is equal to one. Let

{(1,a,b), (¢, 1,d)} with origin (a, b, c,d) = (0,0, 0, 0) corresponds to the point P; € H.
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Consider the ideal (z — ¢,z — d) N (y — a,z — b) then in the local coordinates a, b,
¢, d the cell ¢; has the equations ¢ = b = 0, and the cell ¢ has the equations
c=d =0 SolI(g) = I(Z(a,b) = /(a,b) = (a,b). Similarly I(g:) = (c,d).
Now since the equations of I(g;) and I(gz) are linear in a,b,c,d it follows that the
intersection multiplicity is equal to one. So [gi7].[gor] = 1. Therefore [gr]*> = 1.
Second to calculate [pir].[rar] using geometry. Recall p; = {{w, s} € H : w,s € L, },
ry = {{v,v} € H : {v,v} € L, and there exists a line of P? containing the dou-
ble point {v,v}}. Clearly the closures of the cells p;, o intersect at the point
Py = (2%, z) € H where H = Hilb? P2. Now we check that the intersection multiplicity
is equal to one. Consider the ideal (2% + az + b, z+ cx + d). Then in the local coordi-
nates a,b,c,d the cell 5 has the equations a?—4b = b = 0, and the cell p; has equations
¢ = d = 0. Clearly the cell p; has equations ¢ = d = 0 because when ¢ = d = 0 we get
the ideal (x2+az+b, z) which gives the cell p;. So p; = Z(c,d). To check that the cell
r9 has equations a® —4b = b = 0, first note that the quadratic equation 2?2 +az+b =0
has to be a complete square, i.e the discriminant a®>—4b = 0 is equal to zero. second to
get the ideal (22, z+cz+d) which gives the cell r, we must set b = 0. So ro = Z(a®—4b,
b). But I(ry) = I(Z(a® — 4b,b)) = \/(a® — 4b,b) = (a,b) (1/(a? — 4b,b) is the rad-
ical of the ideal (a® — 4b,b)). Similarly I(p;) = I(Z(c,d)) = \/(c,d) = (c,d). Now
since the equations of I(p;), I(rs) are linear in a,b,c,d it follows that the intersec-
tion multiplicity is equal to one. So [pir].[roar] = 1. Therefore [pr].[rr] = 1. Recall
g ={{es,w}EH:es€ E,we P}, r={{v,v} € :{v,v} € L, and there exists
a line of P? containing the double point {v,v}}, p1 = {{w,s} € H : w,s € L, },
p = {{w,s} € H : w,s € L, }. Using geometry it is clear that the cells g3 and r;
(resp. p1 and po, p; and g¢3) are disjoint. It follows [gs].[r1] = [p1].[p2] = [p1]-[gs] = 0.
Therefore [g].[r] = [p]* = [p].lg] = 0.

(IT) Recall [lir], [mir] € A1(#H) generates the Chow ring A;(H) and [tir], [uir] €
As(H) generates the Chow ring As(H). Note that the class [lir] = [l;7] and [mir] =
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[myr] (resp.[tir] = [tjr], [wir] = [u;r]) because the cycles lir, iz (resp.tiy and t;r,
u;r and u,r) are rationally equivalent. So we let [I7] and [my] (rvesp. [tr], [ur]) de-
note [l;7] and [myr] (resp.[tir), [wir]). Recall l; = {{es,s} € H:eg € E, s € Le, },
m; = {{eo,e0} € H : ey € E and there exists a line of P? containing the double
point {eg,e0}}, t1 = {{s,v} € H : s € L,, v € P2}, uy = {{s,v} € H : there exists
a line of P? containing e, s,v}. We calculate intersections using geometry. Clearly
the closures of the cells [; and us (resp.m; and ;) are disjoint. So [l17].[usr] = 0
(resp.[mir].[tir] = 0). So [lir].[ur] = 0 (resp.[mr].[tz] = 0). Next we calculate
[mar].[uer] using geometry. Clearly the closures of the cells my, uy intersect at the
point Py = (32, z) € H where # = Hilb? P2. Consider the ideal (y2+ay+b, z+cy+d).
Then as explained in (I) above, the cell m; has equations a? — 4b = b = d = 0, and
the cell u, has equations ¢ = 0. But I(my) = I(Z(a® — 4b,b,d)) = /(a® — 4b,b,d) =
(a,b,d). Similarly I(us) = I(Z(c)) = /(c) = (¢). Now since the equations of I(m,),
I(uy) are linear in a,b,c,d it follows that the intersection multiplicity is equal to one.

Therefore [mr].[ur] = 1.

(III) we calculate [l17].[ts7] using geometry. Clearly the closures of the cells l1, ¢35 in-
tersect at the point P; = (z,zy) € H. Now we check that the intersection multiplicity
is equal to one. Let {(1,a,b),(c,1,d)} corresponds to the point P; € H. Consider
the ideal (2 — ¢,z — d) N (2 — a,y — b). Then as explained in (I) above the cell I;
has equations @ = b = ¢ = 0 and the cell ¢3 has equations d = 0. So I(l;) = (a,b,c),
I(t3) = (d). Now since the equations of I(l;), I(t3) are linear in a,b,c,d it follows that

the intersection multiplicity is equal to one. So [l17].[tsr] = 1. Therefore [I7].[t7] = 1.

(IV) Let [ay7]denote the class of the closure of the cell a; below:
oy ={{p, ¢} €H:p€ L, q€ L}
ay={{p,q} €H:p € Ley, g € Le,}
as={{p,q} €M :p€ Ley, q € Le,}
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Consider table 5 below which gives the weights of the normal bundle of a4, in H at

P;, namely the weights of (Mo, )p;-

Fixed pt | P, P Py P, Py B P; P Py

oy ca.2¢ch | ¢b.2ca ba.ab | ba.ch | ab.ca
Qs 2bc.ba 2ba.be ba.ac | ca.bc | ac.ca
Qs ac.2ab ab.2ac | ab.bc | cb.be | cb.ac

Table 5: the pull backs i}[a1], 7}[ag], and i}[as]

Note that the intersection of the closures of the cells ¢, ®; contains a line. So we can

not calculate [ar].[oy7] by geometry. So we will use table 5 to calculate [our].[oy]

by localization:

/ [aar].Joer] =
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[iusbioa] = {Z0e=De=bl0—0

[fembia) = = o=9Na=D0—0

- +a c+1=2

(V) we calculate [pir].[a17] using geometry. Clearly the closures of the cells pi, oy
intersect at the point P; = (z,zy) € H. Now we check that the intersection mul-
tiplicity is equal to one. Let {(1,a,b),(c,1,d)} corresponds to the point P; € H.
Consider the ideal (z — ¢,z — d) N (2 — a,y — b). Then as explained in (I) above
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the cell p; has equations a = ¢ = 0 and the cell o; has equations d = b = 0. So
I(p1) = (a,¢), I(a1) = (d,b). Now since the equations of I(p;), I(a;) are linear in
a,b,c,d it follows that the intersection multiplicity is equal to one. So [pir].[oir]| = 1.

Therefore [pr].[ar] = 1.

(VI) Consider table 6 below which gives the weights of the normal bundle of py, gx,
and 7 in H at P;.

P b, Py Py Py B P, P Py
p1 | ac.be bec.ac ac.be
P2 ba.ca | ca.ba ba.ca
D3 cb.ab ab.cb ab.cb
g1 | 2ab.ac 2ac.ab | ab.ac ab.ac
g2 ba.2bc 2ba.bc ba.bc | ba.bc
q3 ca.2¢ch | 2ca.ch ch.ca | ca.cb
r1 | 2ab.ac | 2bc.be 2ba.bc | 2ac.ac
o ba.2bc | ca.2¢cb | 2ca.ca | ba.2ba
rs | 2ab.ab 2¢ch.cb | 2ca.ch ab.2ac

Table 6: the product of the weights of the normal bundle of py, g, and 71, in H at P;.

Note that the intersection of the closures of the cells g;, a; contains a line. So we can

not calculate [g;r].[ajr] using geometry. We will calculate [g;r].[ajr] by localization:
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Jlaslion) = G

Slmllarly [qiT].[ajT] = (.

(VII) we calculate [ri7].[air] using geometry. Clearly the closures of the cells 71, oy

are disjoint. So [ri7].[aar] = 0. Therefore [r7].Jar] =0

Note that 7> = —2 by localization. Also note that r;, r; are not transverse so we can
not calculate r% using geometry. On the other hand the intersections of o with each

of p, q, and r can be found by geometry. Now using theorem 5.5.44

S alpir] + Yo bilar] + S cilrir] + Yo eileur] ~ 0 o ailpir] +
S bilair] + Soi cilowr] € Span {\.[tir], A[uir] ooy So

Siailpir] + Yo biler) + S alrir] + S eilaur] ~ 0 30 ailper) +
Y2 bilar) + Y0 ailrir] + Y0 eifair] = S0 fI(Vtir) + 5, 040 [uir)

Now we apply the map ¢} to the previous equation above to get the following system

of linear equations
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System V

aiilpir] + biiflor] + Y cuirlrir] + esiifesr]
ke{1,3}

azilpar] + boislger] + Y cxiglrar] + eziffoar]
ke{1,2}

agi3[par] + bsizlgsr] + Z ckix[rer] + e113]onr]
ke{2,3}

aziy[pst] + bsiy[gsr] + Z crix[rir] + erigfonr] =
ke{2,3}

ayis[p1r] + b2is[gor] + Z ckig[Trr] + eatsonr]
ke{1,2}

asig[psr] + buiglair] + Z Crlxlrrr] + esig[ast]
ke{1,3}

3

a197[prr)+0193 [qur] +ba85 [gor +Z esisour] Z
1 ke{1,2,3}

aztg[par]+baiglgar | +baiglgsr +Z e;igaur)
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Z Srinlter]+

=1 ke{1,2,3}

Z frixlter] +

ke{1,2}

Z Frixlter] +

ke{1,3}

Z szk ter] +

kc{2,3}

Z fk% tkT

ke{2,3}

Z fklk tkT

ke{1,3}

Z szk tkT

ke{1,2}

'Lk tkT

> ghirlupr]

ke{1,2}
(141)

> Girlwer]

ke{2,3}
(142)

D Ghitlugr]

ke{2,3}
(143)

> Ghitlusr]

ke{1,3}
(144)

> grirfuer]

ke{1,2}
(145)

> ghiturr]

ke{1,3}
(146)

D Giinlwer] (147)

ke{1,2}

Y giinlur] (148)

ke{2,3}



3
asiy[psr)+briglqir)+bsiglasr)+ Y eiislar]l = > firltarl+ Y ghirluer] (149)
i=1 ke{1,2,3} ke{1,3}

First note that we evaluated 4%[pyr] in case(Ill) above. Using table 5 we evaluate
i5[ogr]. Second we use maple to solve the linear system that we get after substituting
for the values of 3 [prr], i}larr], i5[rer], ¥[owr], 4} [ter], and 45 [upr]. The result is the

following relations:

3 3
Y ai+2> =0 (150)
i=1 =1
> bi=0 (151)

3 3
Y+ e=0 (152)
i=1 =1

Subtracting (152) from (150) we get the relation

3 3 3 v
dai—) c+> e=0 (153)
=1 =1 =1

Similarly (150)—2x (152), (150)£(151), and (152)+(151) give the following relations:
3 3
> ai—2> =0 (154)
i=1 i=1
3 3 3
D) bi+2> e=0 (155)
i=1 i=1 i=1

3 3 3
£ b+ i+ Y e=0 (156)
=1 i=1 i=1

Let

a1p1 + agpg +azps +ciry +eja; =0 (157)
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in the Chow group As(#H). Using the equations above we have the following relations

between a1, as, as, c1, and ey:

a1+ ag +az + 261 =0 (158)

c1+e = 0 (159)

Take a; =1, ap = —1, a3 = 0, ¢; = 0, and e; = 0. Clearly these values satisfy the
relations above. Now substituting these values in (157) we get p1 = pa. Similarly take
a1 =1,a,=0,a3=-1,c; =0, and e; = 0 to get p; = p3. Therefore p; = py = ps.
To check that ¢; = g2 = g3, let

b1g1 + baga + b3gz = 0 (160)

in the Chow group Ax(#). Using the equations above we have the relation S0, b;.
Take b, = 1, by = —1, and b3 = 0. Clearly these values satisfy the previous relation.
Now substituting these values in (160) we get ¢; = ¢o. Similarly take b; = 1, by = 0,
and b3 = —1 to get ¢; = q3. Therefore ¢; = ¢ = ¢5.

To check that ry = ry = 13, let

a1p1 + €111 + corg + 373 + ejag =0 (161)

in the Chow group A2(#). Using the equations above we have the relations:

ai + 261 =0 (162)
citt+e+tes+ea; =0 ’ (163)
between ay, ¢, c9, c3, and e;. Take a; = 0, ¢; =1, ¢ = —1, ¢35 = 0, and ¢; = 0.

Clearly these values satisfy the previous relations. Now substituting these values in

(161) we get r; = ro. Similarly take a; =0, ¢, =1,¢3 =0, c3 = —1, and e; = 0 to
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get 71 = r3. Therefore r; = ry = r3.

Let

ap1 + by + e+ e =0 (164)

in the Chow group As(#H). Using the equations above we have the following relations

between a1, by, ¢1, and eq:

a1 +2e; =0 (165)

by =0 (166)

ci+e =0 (167)

ag—c¢+e =0 (168)

a;—2¢; =0 (169)

a1 £b+2e =0 (170)

+b+c1+e =0 (171)

Take a; = 2,0, =0, ¢, =1, and er = —1. Clearly these values satisfy the relations

above. Now substituting these values in (157) we get 2py + 71 — @y = 0. Therefore
2p+1r — o = 0 since the pls (resp.r}s, ais) are rationally equivalent. So r = —2p + a.

It follows r2 = —2p.r + a.r. But pr =1, o.r = 0. So 72 = —2.
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