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CHAPTER I 

INTRODUCTION 

Understanding of energy transfer processes has gained increased 

importance in recent years because of the need to develop lasers with 

better performance. Ultrasonic measurements (1-5) and shock tube 

studies (6-12) have long been able to provide valuable information on 

various energy transfer processes. Recently, laser methods (13-29) and 

molecular beam studies (30) have begun to provide a deeper insight into 

the problem especially at a molecular level, and this has served as a 

stimulus to the development of better and more realistic theoretical 

approaches to the problem. 

The basic problem is twofold: one is to compute the potential-

energy of the system and the other is to solve the scattering problem 

for atoms moving under the influence of this potential. Ever since the 

formulation of the LEPS (London-Eyring-Polanyi-Sato) surface (35) for 

H + H2 system, semiempirical surfaces (36) have dominated the field. 

Only recently have ab initio calculations of chemical accuracy become 

+ available for simple systems like H + H2 (37), F + H2 (38) and Li + 

H2 (39) in restricted conformations. Less accurate potential-energy 

surfaces (40-44) are becoming increasingly available for several 

systems and well-written computer programs (45) are now able to perform 

routine calculations of potential-energy for systems of reasonable size. 

However, these computations can only provide numerical values of the 
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potential-energy of the system for each specified conformation. In 

order to be of use in scattering studies, the calculations have to be 

repeated for several conformations. The resulting tables of numbers 

then need to be fitted to an analytic function or interpolated numeri­

cally. Fitting the values to an analytic function has remained a 

formidable task (46) and recently, Mclaughlin and Thompson (47) pointed 

out the possible use of a spline interpolation method to handle this 

problem numerically. A computer code for a three dimensional spline 

interpolation has been written and its accuracy tested for quasi­

classical trajectory studies as described in Chapter III. 

Undoubtedly, the best solution to the scattering problem would be 

to solve the quantum mechanical equations considering all the electrons 

and nuclei in the system. Unfortunately, at the present time the 

difficulties encountered in such a computation are insurmountable in 

nature for systems of the type co2-H2 . Quantum mechanical methods 

(49-51) are available for atom-diatomic molecule collinear collisions 

and recently, a detailed three-dimensional quantum mechanical scattering 

calculation (52) has been reported for the H + H2 system. On the other 

hand, since atoms are heavy particles, they might be treated as classical 

particles. Several semiclassical methods (49) (53) could then be used to 

study the molecular dynamics. The most popular of them, quasiclassical 

trajectory analysis was first used by Eyring and Polanyi (54a) and later 

developed in detail by Wall, Hiller and Mazur (54b) and Karplus, Porter 

and Sharma (55). The literature on this method has been recently 

reviewed. Several attempts (51) (52) (56) have been made to check the 

validity of the quasiclassical method. We have carried out one such 

study on He + H; system that is described in Appendix A. Generally, 
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it has been found that the average of quasiclassical trajectory results 

agree with that of quantal results and equally important, results from 

quasiclassical trajectory studies, in several instances, have been 

found to be in excellent accord with experimental findings in spite of 

the semiempirical nature of the potential-energy surfaces employed and 

the approximations made. Thompson (57) showed that the quasiclassical 

trajectory method could be used to study the vibrational energy transfer 

in systems of the A+ BC type. Suzukawa (58) has recently' reported a 

successful application of the method to a study of the vibrational 

energy transfer from a polyatomic molecule, carbon dioxide, during its 

collision with an inert gas atom. 

The present study attempts to investigate and solve some of the 

problems involved in energy transfer processes between a typical poly­

atomic molecule and a diatomic molecule - carbon dioxide and hydrogen. 

This particular system was chosen because a great wealth of information 

is available. Also, it is a versatile system in that several processes, 

viz., intermolecular vibrational-vibrational (V+-+V), vibrational­

rotational (V+-+R), vibrational-translational (V+-+T) and intramolecular 

vibrational-vibrational (Vr:.V) energy transfer can occur. (+-+ is used 

to represent the intermolecular processes while ~ is used for intra­

molecular processes). At the same time, it is sufficiently simple to be 

handled theoretically. The existing data exhibit several interesting 

features. For instance, the mass dependence of energy transfer from 

different vibrational modes of carbon dioxide is quite different and 

the temperature dependence is not as predicted by Landau-Teller 

theory (31). This system has been the focus of several theoretical 

calculations (32) (33) (34). But the problem of energy transfer between 



molecules in general, and carbon dioxide and hydrogen in particular, 

demands a better treatment than these theories have been able to offer. 

4 

These theories were unsuccessful because they, necessarily, restricted 

the geometry of molecular collisions mostly to collinear conformations. 

They also failed to consider detailed intermolecular potentials. In 

the present study, the computer program, Gaussian-70 (48), has been 

employed to compute the (co2-H2) intermolecular potential. The 

resulting potential-energy values have then been spline-fitted using 

the routine mentioned before. The details of this procedure are 

discussed in Chapter II. We have extended Suzukawa's (58) procedure to 

a study of the energy transfer between co2 and H2. The details of the 

method are described in detail in Chapter IV, and some preliminary 

results are reported in Chapter V. 



CHAPTER II 

POTENTIAL-ENERGY SURFACE 

The calculation of a completely ab initio potential-energy hyper-

surface for the co2-H2 system by varying each of the ten internuclear 

distances (Figure 1) is beyond the scope of the present study and that 

of today's computer technology. Even if the potential energy is 

computed only at 10 points along the direction of each basis vector in 

10 the 10 dimensional space of the hypersurface, 10 computations will 

be needed. However, we may reduce the magnitude of the computational 

problem while still remaining in the realm of ab initio calculations if 

the potential energy of the system is defined as the sum of the poten-

tial energy of the individual molecules plus the intermolecular 

potential: 

V = VCO + VH 
2 2 

+ v. . inter 
(II-1) 

Since only inelastic processes will be considered in this study, such 

an approximation is not unreasonable. Both carbon dioxide and hydrogen 

are two spectroscopically well-studied molecules, and accurate spectra-

scopic information is available for both. 

For carbon dioxide (59), 

(II-2) 

where ~R. is the displacement of R. from the equilibrium internuclear 
l l 

5 
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Figure 1. Internuclear Distances in co2-H2 System 



distance R , fJ.a is the deviation of the 0-C-O bond angle from 1T radians, 
e 

and FR and Fa are the stretching and bending force constants of co2 , 

respectively. The stretching potential VM(tJ.R) is fitted accurately by 
• 

a Morse function, 

7 

(II-3) 

The potential is transformed from a function of the valence coordinates 

(R1,R2 ,tJ.a) to a function of the internuclear distances (R1,R2,R3) by 

noting that 

fJ.a = 1T - arc cos (U) , (II-4) 

where 

(II-5) 

The potential paremeters of the co2 molecule are given in Table I. 

Morse parameters (60) for H2 are also given in Table I. 

Vibrational energy transfer is believed to depend mainly on the 

short-range potential (33). Earlier studies on closed shell systems 

like (HF) 2 (65a), H2o-H2 (65b), HCN-HF (65c) and inert gas dimers (65d) 

have shown that single configuration calculations might give good 

results in such non-van der Wals regions. This is because, in these 

regions, correlation energy (66) is not significant and it becomes 

important only at large distances where dispersion forces are dominant. 

Hence, the intermolecular potential for co2-H2 was computed by an 

LCAO-MO-SCF procedure using an extended (split valence) gaussian basis 

(4-31G) set (61) described in Appendix B. Both molecules are placed in 

their respective equilibrium positions as determined by geometry optimi-

zation using the same LCAO-MO-SCF procedure, with their centers of mass sep-

arated by a distance Rand their relative orientation specified by angles 9, cp 



TABLE I 

THE POTENTIAL-ENERGY PARAMETERS FOR co2 AND H2 

Parameters for CO a 
2 

D = 5.453 eV e 

°M = 3.028 A-l 

R = 1.1615 A e 

F = 1. 268 mdyne -1 
R A 

F 0.582 -1 
= mdyne A 

a 

Parameters for H b 
2 

D = 4.7466 eV 
eH 

2 

R = 0. 7419 A 
eH 

2 

aH = 1.9736 A-l 
2 

a Reference 59 

b 
Reference 60 

7.91481 eV A-2 

3.63282 eV A- 2 

8 
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and T (see Figure 2). The results of the geometry optimization computa-

tions are presented in Table II. For T = 0, intermolecular potential 
0 

values are reported in Table III for {R,8,cp}, l.5.$R:.:;5.0A, 0.$6.$1T/2, 

0.::; cp .$TI. Some of the distinct orientations investigated are plotted in 

Figure 3. Values are reported for 8 = 0 to TI/2 only since the system is 

synnnetric and the potential for the conformation with e = e is the same 

as that fore= TI - e. Inclusion of conformations with nonzero Tvalues 

would undoubtedly produce a better potential-energy surface. If a 

minimum of 5 points are included in the T axis for each {R,8,cp}, com-

putational requirements increase five-fold and the available spline 

interpolation procedure, to be described in detail in a later part of 

the thesis can handle only three independent variables. Hence the 

potential-energy values are reported only for T = 0. The values in 

parentheses were obtained by extrapolating lnV vs R plots for small R 

values (1.5 :5. R :s 3. 2) at each angular orientation. Figure 4 shows 

representative plots for cp = 0 and T 0 orientations. In this region, 

the potential is mainly exponential in nature and the accuracy of the 

results obtained from these plots is sufficient for the present study 

since regions with intermolecular potential greater than 1-2 eV is not 

sampled during thermal and hyperthermal molecular collisions as has 

been pointed out by Gordon (62). Preliminary studies with trajectories 

having relative translational energies of 0.1 eV and 1.0 eV support 

this view. These values are needed only to "fill" the "holes" in the 

rectangular grid required for numerical interpolation. The values 

with asterisk on them were obtained by using the symmetry of the 

system. The zero valu~s in parentheses were taken thus because they 

were smaller than the inherent error in the calculation. The variation 
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Figure 2. Orientation of C02-H2 
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TABLE II 

RESULTS OF GEOMETRY OPTIMIZATION USING GAUSSIAN 70 

Energy Values in au for Different Basis Sets a 

ST0-3C ST0-4G ST0-5G ST0-6G 4-31G 

COz -
r = 1.10 A -187. 31137 

r = 1.15 A -185.06143 -186.39185 -186.74178 -186.84888 -187.32774 

r = 1.20 A -185. 06777 -186.39787 -186.74750 -186.85457 -187.32092 

r = 1.25 A -185.05340 -186.38330 -186.73271 -186.83975 

r = 1.1903 A -185.06838 op 

r = 1.1896 A -186.39854 op 

r = 1.1889 A -186.74824 -186.85532 
op 

r = 1.1603 A -187.32797 
op 

Hz 
-

r = 0.71 -1.11750 -1.12397 -1.12566 -1.12652 

r = 0.73 -1.11719 -1.12361 -1.12529 -1.12683 

r = 0.75 -1.11615 -1.12252 -1.12419 -1.12654 

r = 0. 7117 -1.11751 op 

r = o. 7103 -1.12397 op 

r = o. 7100 -1.12566 op 

r = 0.7304 -1.12683 op 

a Reference 61 



R 

1.5 

1.8 

2.1 

2.3 

2.5 

2.8 

3.0 

3.2 

3.5 

3.8 

4.0 

4.5 

5.0 

6.0 

1.5 

1.8 

2. 1 

2.3 

2.5 

2.8 

3.0 

3.2 

3.5 

3.8 

4.0 
4.5 
5.0 

12 

TABLE III 

THE 4-31G INTERMOLECULAR POTENTIAL FOR C02-H2. ENERGIES ARE 
MEASURED IN eV FROM THE ENERGY OF C02 AND H2 AT INFINITE 

SEPARATION. ALL VALUES ARE FOR T = 0. 

8=0 e =rr/8 8=rr/4 e = 3rr /8 e = rr /2 

A. <I> = 0 

(330.) (86.5) (24.5) (7.10) 4.4587 

(56.8) (31.8) (9.4) 2.9388 1. 8789 

(20.5) (11. 5) (3. 6) 1. 24 73 0.7591 

(10. 2) (5.82) 1. 9205 0.6780 0.4059 

5.1718 3.0139 1. 0350 0.3596 0.2144 

1. 8817 1. 1276 0.3848 0.1331 0.0812 

0.9229 0.5571 0.1903 0.0660 0.0427 

0.4349 0.2636 0. 0891 0.0307 0.0229 

0.1266 0.0752 0.0220 0.0071 0.0097 

0.0262 0.0127 -0.0012 -0.0002 0.0049 

0.0024 -0.0024 -0.0062 -'0. 0011 0.0036 

-0.0102 -0.0094 -0.0055 (O.O) 0.0022 

-0.0065 -0.0053 -0.0020 (O.O) 0.0016 

-0.0017 -0. 0013 -0.0004 (O.O) o. 0007 

B. <P = rr/8 

(188. 7) ( 81. 5) (20. 9) (6. 3) (4.31) 

(66.7) (30. 6) (8.5) 2. 7284 1.7699 

(18. 5) (11. O) (3. 39) 1.1672 0.7054 

(11. O) (5. 81) 1.8604 0.6416 0.3720 

(5.37) 2.8956 1. 0212 0.3460 0.1928 

1. 8372 1.1089 0.3954 0.1336 0.0701 

0.9080 0.5603 0.2038 0.0697 0.0353 

0.4327 0.2738 0.1019 0.0355 0.0179 

0.1299 0.0859 0.0322 o. 0118 0.0068 

0.0300 o. 0211 0.0065 0.0036 0.0032 

0.0059 0.0044 0.0001 o. 0019 0.0023 
-0.0079 -0.0054 -0.0019 0.0014 0.0015 
-0.0053 -0.0031 (O. O) (0.0) (O.O) 
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TABLE III (Continued) 

R 8=0 e=n/8 e=n/4 e = 3n /8 e =n/2 

c. <P = n/4 

1. 5 (131. 6) (56. 8) (14. 6) (5.81) 3.6584 

1. 8 (49.4) (23. 1) 6.6027 2.4085 1.5171 

2. 1 (17. 8) (9.03) 3.0418 1. 0197 0.5806 

2.3 (9.03) 4.9554 1. 7335 0.5568 0.2935 

2.5 4.6088 2.7610 o. 9600 0.2984 0.1432 

2.8 1. 7408 1.0736 0.3799 0.1139 0.0445 

3.0 0.8740 0.5531 o. 2003 0.0590 0.0186 

3.2 0.4265 0.2786 0.1037 0.0300 0.0066 

3.5 0.1368 0.0953 0.0366 o. 0104 0.0004 

3;8 0.0385 0.0298 0.011 0.003 -0.0007 

4.0 0.0138 0.0122 0.0049 0.0021 -0.0007 

4.5 -0.0026 -0.0003 0.0010 (O.O) -0.0001 

5.0 -0.0023 (O.O) (O.O) (O.O) (O.O) 

D. <P = 3n/8 

1.5 (181. 3) (59.1) (17. 8) (5.26) 3.1839 

1.8 (64.1) (23.6) (7.10) 2.1608 1.2829 

2. 1 (21. 8) (9.03) (2.945) 0.8921 0.4643 

2.3 (10. 6) (4. 85) 1.6219 0.4762 0.2208 

2.5 (5.16) 2. 6 773 0.8955 0.2474 0.0974 

2.8 1. 6578 1.0431 0.3520 o. 0877 0.0209 

3.0 0.8424 0.5405 0.1845 0.0417 0.0029 

3.2 0.4194 0.2754 0.0949 0.0185 -0.0038 

3.5 0.1424 0.0979 0.0334 0.0042 -0.0056 

3.8 0.0462 0.0338 0.0111 0.0003 -0.0044 

4.0 0.0210 0.0163 0.0053 -0.0003 -0.0034 

4.5 0.0024 0.0029 0.0015 -0.0002 -0.0017 

5.0 0.0005 0.0013 o. 0010 0.0000 -0.0009 

E. <P = n/2 

1.5 (103. 5) (69.4) (16.8) (5.26) 3.0047 
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TABLE III (Continued) 

R 8=0 8=rr/8 e=rr/4 e = 3rr/8 8 = Tf /2 

1.8 (39.6) (26. 6) (6.82) 2.0980 1. 1916 

2. 1 (15. 2) (10. 0) 2.7973 0.8445 0.4192 

2.3 (8. O) (5.2) 1. 5785 0.4393 0.1924 

2.5 4.2737 2.6787 0.8613 0.2197 0.0795 

2.8 1.6264 1.0353 0.3283 0.0694 o. 0116 

3.0 0.8300 0.5323 0.1666 0.0276 -0.0031 

3.2 0.4163 0.2686 o. 0817 0.0076 -0.0080 

3.5 0.1444 0.0936 0.0253 -0. 0031 -0. 0079 

3.8 0.0491 0.0315 0.0059 -0.0045 -0.0058 

4.0 0.0239 0.0150 0.0015 -0.0039 -0.0045 

4,5 0.0045 0.0026 -0.0005 (0. 0) -0.0023 

5.0 o. 0017 (O. 0) -0.0001 (0. 0) (O.O) 

F. cp = 5rr/8 

1.5 (181.3)* (75.2) (20. 9) (5.81) 3.1839* 

1. 8 (64.1)* (28.2) (8.00) 2. 2596 1. 2829* 

2.1 (21.8)* (10.6) (3. 06) 0.9019 0.4643 

2.3 (10.6)* (5.37) 1.6195 0.4640 0.2208* 

2.5 (5.16)* 2.7686 0.8688 0.2278 0.0974* 

2.8 1. 6578* 1.0549 0.3185 0.0676 0.0209* 

3.0 0.8424* 0.5330 0.1545 0.0236 0.0029* 

3.2 0.4194* 0.2619 0.0703 0.0027 -0.0038* 

3.5 0.1424* 0.0850 0.0161 -0.0078 -0.0056* 

3.8 0.0462* 0.0243 -0.0013 -0.0082 -0.0044* 

4.0 0.0210* 0.0089 -0.0046 -0.0068 -0.0034* 

4.5 0.0024* -0.0012 -0.0039 -0.0033 -0.0017* 

5.0 0.0005* -0.0010 -0.0019 -0.0016 -0.0009 

G. cp = 3rr/4 

1.5 (131. 6)* (84.8) (24.5) (6.55) 3.6584* 

1.8 (49.4)* (31. 2) (9.21) 2.5885 1.5171* 

2.1 (17. 8)* (11.5) (3.39) 1. 0474 0.5806* 
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TABLE III (Continued) 

R 8=0 8=TT/8 8=TT/4 e = 3rr/8 e = rr /2 

2.3 (9.03)* (5.81) 1. 7341 0.5440 0.2935* 

2.5 4.6088* 2.9135 0.9176 0.2707 0.1432* 

2.8 1. 7408* 1.0902 0.3274 0.0841 0.0445* 

3.0 0.8740* 0.5398 0.1543 0.0321 0.0186* 

3.2 0.4265* 0.2570 0.0663 0.0068 0.0066* 

3.5 0.1368* 0.0756 0.0106 -0.0072 0.0004* 

3.8 0.0385* 0.0156 -0.0067 -0.0088 -0.0007* 

4.0 0.0138* 0.0012 -0. 0096 -0.0074 -0.0007* 

4.5 -0.0026* -0.0063 -0.0069 -0.0033 -0.0001* 

5.0 -0.0023* -0.0037 -0.0031 -0.0014 (O.O) 

H. cp = 7rr/8 

1.5 (188.7)* (91.) (22.2) (6. 96) (4.31)* 

1.8 (66.7)* (33.1) ( 8. 85) 2.8862 1.7699* 

2.1 (18. 5)* (11. 94) (3.46) 1. 1982 0.7054* 

2.3 (11. 0) * (6.05) 1. 864 7 0.6366 0.3720* 

2.5 (5.37)* 3.0263 0.9881 0.3271 0.1928* 

2.8 1. 8372* 1. 1198 0.3545 0.1117 0.0701* 

3.0 0.9080* 0.5485 0.1685 0.0499 0.0353* 

3.2 0.4327* 0.2565 0.0736 0.0184 0.0179* 

3.5 0.1299* o. 0710 0.0128 -0.0010 0.0068* 

3.8 0.0300* 0.0104 -0.0068 -0.0054 0.0032* 

4.0 0.0059* -0.0038 -0.0104 -0.0051 0.0023* 

4.5 -0.0079* -0.0097 -0.0076 -0.0019 0.0015* 

5.0 -0.0053* -0.0055 -0.0033 -0.0004 (O.O)* 

I. cp = Tr 

1.5 (330.)* (86.5)* (24.5)* (7.10)* 4.4587* 

1.8 (56.8)* (31.8)* (9.4)* 2.9388* 1. 8789* 

2.1 (20.5)* (11.5)* (3.6)* 1.2473* 0.7591* 

2.3 (10. 2)* (5.82)* 1. 9205* 0.6780* 0.4059* 

2.5 5 .1718* 3.0139* 1.0350* o. 3596* 0.2144* 
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TABLE III (Continued) 

R 8=0 8 =TI /8 8 = TI/4 e = 3n/8 8 = TI/2 

2.8 1. 8817* 1.1276* 0.3848* 0.1331* 0.0812* 

3.0 0.9229* 0.5571* 0.1903* 0.0660* 0.0427* 

3.2 0.4349* 0.2636* 0.0891* 0.0307* 0.0229* 

3.5 0.1266* 0.0752* 0.0220* 0.0071* 0.0097* 

3.8 0.0262* 0.0127* -0. 0012* -0.0002* 0.0049* 

4.0 0.0024* -0.0024* -0.0062* -0. 0011* 0.0036* 

4.5 -0.0102* -0.0094* -0.0055* (0.0)* 0.0022* 

5.0 -0.0065* -0.0053* -0.0020* (O.O)* 0.0016* 

6.0 -0.0017* -0.0013* -0.0004* (O.O)* 0.0007* 
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Figure 4. Plot of LnV Against R for ¢ = 0 
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of the intermolecular forces between the carbon dioxide and hydrogen 

molecules is shown in Figures 5-9 where the potential is plotted 

against the center of mass separation for various orientation angles or 

against the angles for fixed R values. Figure 5 illustrates the R -

dependence of the potential for <!> = rr/2 and 0 s: es: rr/2. At short 

distances, the intermolecular potential is rising exponentially and at 

larger distances, it shows an attractive potential with a minimum at 

0 
R = 3.3 A, e = rr/2, <!> = rr/2 and this is clearly seen by a magnified 

view in Figure 6. Figure 7 is similar to Figure 5 except that <!> = rr/4. 

Figure 8 is a cumulative plot with 1.5 .s_ Rs: 5.0, 0 ,s, e .s_ rr/2 and 0 .s_ <!> ~ rr/2. 

The shapes of these curves are similar to that·of the Lennard-Jones 

potential and Buckingham (6-exp) pote~tial (64) and modified forms of 

the latter. The data were fitted to these functions: 

v C /R6 - C /R 12 
l 2 (Lennard-Jones) 

v = Aexp(-BR) - C/R6 (Buckingham-6-exp) 

v Aexp (-BR) C/R6 D/R8 (Buckingham-6,8-exp) 

v = Aexp (-BR) - C/R6 D/R8 - E/RlO (Buckingham-6,8,10-exp). (II-6) 

Table IV lists some of these parameters for specified angular orienta-

tions. The reproducibility of the original data by these functions is 

excellent in most of the cases, standard error estimate being as low as 

0.02 kcal/mole. A closer look at Figures 5, 7 and 8 reveals that the 

potential is strongly dependent upon 8 and less dependent on <f> as one 

would expect from chemical intuition. The explicit dependence of the 

potential upon e and <!> is plotted in Figure 9 for R 2.8 A. The top 

curve is for 8 = 0 and the bottom curve is for <!> = O. 
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TABLE IV 

PARAMETERS FOR BUCKINGHAM-6-EXP AND -6,8-EXP FUNCTION-FIT TO 
INTERMOLECULAR POTENTIAL AS A FUNCTION OF R. 

FUNCTION: Aexp(-BR) - C/R6 

25 

Orientation A B C Std. Deviation/ 

e = Tr/2, cf>= Tr/2 

e = Tr/2, ct>= Tr/4 

e =Tr/2, cp= o 

8=Tr/4, cjl=Tf/2 

e = Tr/4, cp = Tr/4 

e =Tf/4, ¢= o 

e = o, <P = o 

Orientation 

kcal/mole 

18197.363 3.332088 633.740739 0.02 

14941.187 3.166095 512.63576 0.05 

12332. 596 3.031009 318.39683 0.06 

35332.310 2.863556 1877.2844 0.10 

35502.304 2.766954 3116.2839 0.20 

60448.212 3.022612 1885.9131 0.03 

434081.49 3.2207934 4631.3604 0.02 

Function: Aexp(-BR) - C/R6 - D/R8 

A B c D Std. Deviation/ 
kcal/mole 

e =Tf/2, cf>= Tr/2 17544.272 3.2947341 681.06552 -97.973643 0.02 

8=Tf/2, ¢=Tf/4 15735.892 3.2119111 397.97521 202.51047 0.04 

8=Tf/2,¢=0 12992.140 3.0915746 118.76246 321.92372 0.05 

e =Tr/4 cp= Tr/2 75761.984 3.1312229 116. 79657 15031.561 0.02 
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The variation of potential with respect to two variables is 

represented by a series of intermolecular potential contour plots in 

Figures 10-18. It is difficult to write functions with more than one 

independent variable to describe the variation of these potential 

values correctly. In the early stages of the study using Marquardt's 

method (63), about 100 potential values (some of them were for nonzero 

T also) were fitted to a 50 parameter function described in Appendix C 

with a standard deviation of 0.165 kcal/mole only to find out that it 

could not predict the potential correctly at 'arbitrary' conformations 

especially when R is large. Since attempts to fit the data to an 

analytic function proved futile, attention was diverted to numerical 

interpolation. The best choice proved to be a three dimensional cubic 

spline interpolation method. Details of the method, with a critical 

study of its accuracy and usefulness in a molecular dynamics study are 

presented in Chapter III. The same method is used in interpolating the 

intermolecular potential for the co2-H2 system. 

Derivatives of the Potential Energy 

of the System 

Quasiclassical trajectory studies use the derivatives of the 

potential energy with respect to the coordinates of the system. Once 

the derivatives with respect to the distances and angles have been 

evaluated, they can easily be transformed to derivatives with respect 

to the cartesian coordinates of the system. For details of the 

coordinates and distances used the reader is referred to Figure 19. 

The potential energy of the system has already been described: 
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Figure 10. Intermolecular Potential Contours for ¢ 0 
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Figure 11. Intermolecular Potential Contours for ~ rr/4 
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Figure 12. Intermolecular Potential Contours for </> = 7f/2 
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Figure 19. Coordinates, Distances and Angles Used in Calculation of 
Derivatives of Potential-Energy of the co2-H2 System 
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V = V + V + V. co2 H2 inter 

(II-7) 

Since we assumed the potential to be independent of angle T, the 

derivative of 

av 
aqi 

= 

the potential with respect to an ith coordinate, 

av co 
2 

aqi 

3 
E 

j=l 

+ 

avH av. 
+ 2 + inter 

·aq. aq. i i 

av co aRj avH aR4 2 2 -- + --+ 
aR. aqi aR4 aq. 

J i 

av. inter "e av. _a_ + inter 
ae aq. acp 

i 

~ 
aq. 

i 

av. inter aR 
aR aq. i 

qi, is 

(II-8) 

Relations between angles and distances and distances and coordinates 

are as follows: 

e arc cos 
[Ri + R2 -

2R1R 
R~] 

[R; + Rz· - R!J [ R; + R2 - R~J 
<¥ = arc cos = arc cos (II-9) 

2R7R R4R 

R2 (x2 
2 

(y2 
2 (z -

2 
xl) + - y ) + zl) 1 1 2 

R2 (x2 
2 2 2 = x3) + (y2 - Y3) + (z2 - z3) 2 

R2 (x3 
2 2 2 

= xl) + (y3 - y ) + (z3 - zl) 3 1 
2 

(y 4 + y s 2 
(z4 + zs -

2 
R2 (x4+ xS - x2) + - y ) + z2) = 2 

2 2 2 

R2 (x - 2 2 2 
= xs) + (y4 - y ) + (z - zs) 4 4 s 4 

R2 (x4+X5 
2 

(y 4 + y s 2 
(z4 + zs -

2 - x ) + - y ) + zl) = 1 1 s 2 2 2 
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(II-10) 

The calculation of the derivatives of distances with respect to the 

coordinates is trivial and only the nonzero derivatives of angles with 

respect to distances are reported here: 

as/aR1 = (R cos 8 - R1) /Rl Sin 8 

ae/aR (Rl cos 8 - R) /Rl R Sins 

ae/aR5 = R5/R1R Sin 8 

aqi/aR = (R7 cos<jl - R) /RR7 Sin <jl 

aqi/aR7 (R cos <jl - R7) /RR7 Sin <jl 

aqi/aR6 = R6 /R7R Sin <jl (II-11) 

av. av. av 
Values of ( inter) ( inter) and ( inter) are obtained from the 3D aR ' ae ' aijl 

spline interpolation. The derivatives with respect to R1, R2 , R3 and R4 are: 

av/aR1 = 2aMDe[exp(-a~R1 ) - exp(-2a~R1 )] 

+ FRt.R2 + F R2t.a(+ - _!L) (1 - u2)-~ 
a e 2 Rl 

av/aR2 = 2a~ e [exp ( -aMt.R2) - exp ( -2aMt.R2) ] 

+ 2 1 u u2 -~ F l'l.R + F R l'l.a(- - -) (1- ) 
R 1 a e Rl R2 

av/aR3 
2 2 -~ -F R l'l.a(l U ) R/ (R1R2) a e 

av/aR4 = 2aH D [exp(-aH t.R4) - exp(-2aH t.R4)] (II-12) 
2 eH 2 2 2 



Appendix D lists expressions for derivatives of the total potential 

with respect to each of the cartesian coordinates after omission of 

the zero-valued quantities. 

Validity of the Potential Energy of the System 
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The lack of detailed experimental knowledge of the potential 

energy of the co2-H2 system makes it difficult to assess its accuracy. 

Only the qualitative features of the hypersurface have been checked as 

has been described in the earlier part of the chapter. Recent ab initio 

calculations reportedly have yielded satisfactory results for the 

intermolecular potentials of different systems (65) like (HF) 2 , 

H2o-H2 and HCN-HF. Short range interactions are known to be well­

predicted by single determinant LCAO-MO-SCF calculations for closed 

shell systems (65), while accurate predictions of long range forces 

requires the use of configuration interaction studies (66). It is 

generally believed that short range forces play a dominant role in 

vibrational energy transfer processes (33) and hence, it is likely 

that this potential-energy hypersurface for co2-H2 is sufficiently 

accurate to yield meaningful results in a molecular dynamics study. 

Plans are being made to carry out configuration interaction calcula­

tions on this system to further assess its accuracy. 

In order to choose the appropriate basis set for our calculation, 

potential energies of co2 and H2 were calculated using different basis 

sets, and the results are reported in Table V. The energy is lower 

when extended basis sets rather than minimal basis sets are used. 

Results are improved when the number of gaussian functions is increased. 

However, the improvement is less for the case of the interaction 



TABLE V 

ENERGY VALUES FROM CALCULATIONS USING DIFFERENT BASIS SETS 

minimal basis sets extended basis sets 

Molecule ST0-3G ST0-4G ST0-5G ST0-6G 4-3lG 5-31G 6-31G 

co2 -185.06838 -186.39854 -186.74824 -186.85532 -187.32797 -187.47666 -187.51497 

-1.11751 -1.12397 -1.12566 -1.12683 -1.12683 -1.12683 
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potential (V) and is still less in the case of the difference in inter-

action potentials (~V). This is illustrated in Table VI. Since only 

the derivatives of the potential and not the absolute values are of 

interest to us, extended basis (4-31G) set should suffice our purposes. 

Preliminary studies were made to test the validity of the 

assumption that the intermolecular potential is independent of the 

geometry of the individual molecules and is also independent of the 

angle T. Intermolecular potentials were computed for the co2-H2 system 

at three different {R,8,.} for T = 0 with both molecules in their 

equilibrium geometries or either of them in a distorted configuration. 

A comparison of the results given in Table VII shows that the error 

involved is not serious. Results for different T but same {R,8,.} are 

reported in Table VIII. Obviously, the change in potential with change 

in T of as much as rr/2 is not significantly large (maximum being 

0.035 eV) when compared to the result of corresponding change in 8 or ¢. 

The increased effort involved in computing more ab initio points and 

the fact that 'good' four-dimensional interpolation procedures are not 

available makes this change less important. 

The present study uses only a 13x9x9 grid in the {R,8,¢} space of 

the intermolecular potential hypersurface. The interpolation 

reproduces the input data but this is not necessarily a reliable check 

on the accuracy of the numerical interpolation. At typical conforma-

tions encountered during the course of a nonreactive trajectory, the 

interpolated values are compared with the ab initio results in Table 

IX, and the agreement is good, the standard deviation being 0.014 eV. 

It may be possible to improve the agreement by imposing the boundary 

condition F = F F" = F" in the 8 and • axes instead of using 
1 N' 1 N 



TABLE VI 

RESULTS OF INTERMOLECULAR POTENTIALS USING DIFFERENT BASIS SETS 

4-31G 5-31G 6-31G 

Configuration E t.E = V 
inter 

E t.E = V inter 
E 6E =V 

inter 

co2 -187.327970 -187.476661 -187.514968 

H2 -1.126828 -1.126828 -1.126828 

co2H2, R = oo -188.454798 0.0 -188.603489 0.0 -188.641796 o.o 

C02H2, R = 1.8, 
8=<jl=T=1f/2 -188.408541 0.04626 -188. 557129 0.04636 -188.595416 0.04638 

C02H2, R = 4.0, 
8=<jl=T=0 -188.454729 0.00007 -188.603356 0.00013 -188.641660 0.00014 

Change in intermolecular 0.04619 0.04623 0.04624 
potential 



TABLE VII 

INTERACTION POTENTIAL FOR EQUILIBRIUM AND NON-EQUILIBRIUM GEOMETRIES 

Configuration Energy Interaction Potential Vinter for Equil. 
geometries 

coeq 
2 

-187.32797 

Heq 
2 

-1.12683 

* co2 -187.32092 

* H2 -1.11774 

* eq R=2.S, 8=¢>=rr/2 -188.44476 0.00299 C02H2 , 

eq * Average 0.00310 0.00308 
co2 H2, R=2.S, 6=cf>=n/2 -188.44249 0.00322 

* eq R = 1. 8, 8=¢>=n/2 -188.40454 0.04321 C02H2 , 

eq * Average 0.04462 0.04379 
co2 H2, R=l.8, 6=cf>=n/2 -188.39967 0.04604 

* eq R=3.0, 6 =cf>= 0 -188.40914 0.03861 co2H2 , 

eq * Average 0.03785 0.03782 
co2 H2, R = 3. 0, 8 = cf> = 0 -188.40862 0.03709 

* Refers to distorted geometry: rco = 1.20 and rHH = 0.8564 and eq refers to optimized geometry. 
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TABLE VIII 

INTERMOLECULAR POTENTIAL AS A FUNCTION OF T 

Potential Values in eV for 

0 
Rf A 8/rad cp/rad T= 0 T=7T/4 T = 7T /2 

1. 5 7T/2 7T/2 3.0046 2.9977 2.9834 

2. 1 7T/2 7T/2 0.4193 0.4514 0.4818 

3.0 1T/2 7T/2 -0.0030 0.0056 0.0143 

2.1 1T/2 1T/4 0.5806 0.6006 0.6197 

3.0 1T/2 1T/4 0.0186 0.0234 0.0282 

3.0 7T/4 1T/2 0.1665 0.1726 0.1782 

2.5 7T/4 1T/4 o. 9601 0.9332 0.9562 

3.0 1T/4 7T/4 0.2003 0.1652 0.1852 



R/A0 

4.90684 

3. 60775 

2.64324 

2.29157 

2.27661 

2.55840 

2.95712 

4.28538 

3.08976 

2.63668 

2.87553 

3.16081 

4.09819 

TABLE IX 

COMPARISON OF (13x9x9) 3D SPLINE INTERPOLATED RESULTS 
WITH GAUSSIAN-70 RESULTS AT TYPICAL CONFORMATIONS 

v. inter 
in eV 

45 

e/deg <Ji/deg Spline Gaussian-70 

70.10 67.56 -0.0001 -:-0.0001 

79.89 58.54 -0.0016 -0.0002 

84.04 72. 67 0.0526 0.0530 

87.88 99.47 0.2069 0.2062 

89.07 112. 74 0.2429 0.2425 

93.24 127. 11 0.1018 0.1035 

96.89 124.40 0.0153 0.0207 

126.79 33.47 0.0003 -0.0008 

126.94 15.12 0.0956 o.b789 

129.52 7.64 0.04876 0.4958 

130.28 17.72 0.2460 0.2202 

134.28 30.19 0.1143 0.0794 

142. 72 53.09 0.0055 -0.0065 

Standard deviation 0.014 eV 



Lagrangian interpolation method as described in Appendix E. Also, a 

finer grid may be employed for the interpolation. This may not 

necessarily require additional ab initio computations. Repeated 

application of lD spline interpolation procedure along each line of 
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the grid may be sufficient enough to accomplish this as lD spline 

interpolation is far more accurate than 2D and 3D spline interpolations. 

The accuracy of the derivatives of the potential cannot be tested with 

complete certainty as no known values are available. However, correct 

behavior of derivatives is ensured in the framework of spline inter­

polation procedure, i.e., the function and the first and second deriva­

tives are required to be continuous at the knots. Therefore, it is 

hoped that the 13x9x9 grid interpolation yields reasonably accurate 

derivatives of the potential with respect to R, 8 and ~· 



CHAPTER III 

QUASICLASSICAL TRAJECTORY STUDIES USING 3D 

SPLINE INTERPOLATION OF AB INITIO SURFACES 

Ab initio calculations yielded tables of numbers for the (co2-H2) 

intermolecular potential. As was indicated in Chapter II, initial 

attempts to fit those values to an analytic function were unsuccessful. 

Therefore, three dimensional cubic spline interpolation method was 

employed to interpolate the potential-energy values numerically. The 

computer code for this procedure has been written and its accuracy 

tested by quasiclassical trajectory studies on He + H; and D + ClH 

systems. The following is a reproduction of the paper that has been 

accepted for publication in the Journal of Chemical Physics and it 

describes the method and the results obtained in our study. 

Introduction 

The investigation of the dynamics of a chemical reaction under 

conditions for which the Born-Oppenheimer separation of electronic and 

nuclear motion is accurate requires that the stationary-state 

Schrodinger Equation be solved for the system energy as a function of 

the nuclear coordinates. If this solution is to be effected by an ab 

initio procedure, a number of difficulties immediately arise. First, a 

majority of collisional systems of interest may involve large, many­

electron atoms so that the mathematical difficulties encountered in the 

47 
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accurate solution of the Schrodinger Equation become insurmountable. 

Second, if the system has sufficient simplicity to permit solution of 

the quantum mechanical problem, the number of statistically important 

nuclear geometries for which the energy must be computed may be so 

large so as to preclude the calculation. Finally, if the above two 

problems can be overcome, there arises the problem of using in a 

scattering calculation the discrete set of energy values that make up 

the ab initio potential-energy hypersurface. Such calculations 

generally require either the energy or the gradients of the energy over 

a continuum of nuclear geometries so that it becomes necessary to devise 

some method for interpolation between the discrete set of ab initio 

points and also for extracting the gradients of the hypersurface. 

This latter problem has generally been attacked by fitting the 

computed ab initio energy values. to some analytic function. For 

example, Krauss and Mies (67) employed a combination of exponential 

functions and Legendre polynomials to fit their numerical values for 

the He-H2 surface. A similar form was also employed by Gordon and 

Secrest (68) to fit their results for this same system. White and 

Hayes (69) have carried out quantum mechanical scattering studies on 

+ the Li -H2 system using an analytical fit to an ab initio surface 

obtained by Lester (70). + The D +H2 reaction has been investigated by 

Csizmadia, Polanyi, Roach, and Wong (71) using a Wall-Porter (72) fit to 

the ab initio surface (73). More recently Polanyi and Schreiber (74) 

have investigated the F +H2 reaction dynamics by fitting the collinear 

ab initio surface for FHH obtained by Bender, O'Neil, Pearson, and 

Schaefer (75) to an LEPS-type function (76). 
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While the above approach has been moderately successful, it 

encounters several obvious difficulties. The parametrized analytic 

function employed to fit the ab initio surface is arbitrary and may fit 

well in some regions but poorly in others. The difficulties so encoun-

tered are illustrated by recent studies of inelastic scattering in the 

He-H2 system by Alexander and Berard (77) using four different analytic 

fits to the Gordon-Secrest (68) ab initio potential surface. These 

difficulties have recently been discussed by Secrest (78) and by 

Alexander (79). In addition, a considerable amount of effort may be 

expended in an unsuccessful attempt to fit the ab initio points to a 

given form. For example, Polanyi and Schreiber (74) were unable to fit 

the Bender, et al. (75) surface using a hyperbolic map function (80), 

and Yarkoni, et al. (81) were unable to obtain a suitable analytic fit 

to their ab initio surface for the (HF) 2 system. 

An alternate approach has recently been employed by McLaughlin and 

+ Thompson (82) in their study of the HeH +H2 reaction dynamics. In 

this study the SCF-CI ab initio surface obtained by Benson and 

McLaughlin (83) for the planar H3He+ system with c2v symmetry was 

represented by a combination of a two-dimensional cubic spline fit and 

a one-dimensional cubic spline fit. These authors have concluded on 

the basis of their study that multidimensional spline fitting of ab 

initio points can serve as a useful, objective interpolator. 

It is undoubtedly true that a spline fit has a number of attrac-

tive features. The procedure is relatively general; thus removing the 

necessity of making an arbitrary choice of an analytic interpolation 

function. The procedure ensures the continuity of the energy and the 

first two derivatives over the entire hypersurface and thus facilitates 
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the computation of the gradients required for a quasiclassical trajec-

tory calculation. Several problems and unanswered questions remain 

however! A full, three-dimensional cubic spline fitting routine has 

yet to be developed and tested. The number of ab initio points needed 

is not accurately known. The relative increase in computer computation 

time over that required for analytic semiempirical surfaces is not 

known, and finally the overall accuracy of the procedure in quasi-

classical trajectory studies has been only partially evaluated. 

The present paper reports the development of a full three-dimen-

sional cubic spline fitting routine. The accuracy of the spline proce-

dure has been investigated for Morse potentials, Lennard-Jones 

+ potentials, and a collinear He-H2 potential-energy hypersurface. In 

addition, its accuracy when employed in a three-dimensional quasi-

classical trajectory study has been examined for the D + HCl exchange 

reaction and inelastic He-H; collisions. Section II presents the 

algorithm for three-dimensional spline interpolation. The results are 

given and discussed in Section III, and the final section Summarizes 

all conclusions. 

Three Dimensional Cubic Splines 

The theory of splines has previously been discussed in several 

standard references (84). The treatment presented here closely follows 

that of Walsh, Ahlberg, and Nelson (84) and that of Jordan (85). 

McLaughlin and Thompson (82) have presented a similar discussion 

restricted to one and two-dimensional cubic splines. 

The cubic spline approximation consists of joining the assigned 

points with cubics, requiring that the slopes and curvatures be 
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continuous at the junction points which are referred to as nodes or 

knots. Let x be a point in the ith interval, xi :s x :s xi+ 1 . Further 

let x1 < x2 < x3 < --- < ~-l < ~· Let F(x) be the value of the 

function that is to be splinefitted, and let S.(x) be the approxima-
1 

ting cubic spline in the ith interval: 

3 2 S.(x) = A.x + Bix + C.x + D. 
1 1 1 1 

(III-1) 

Differentiation of Eq(III-1) twice followed by equating the result to 

F"(x) at the nodes yields 

where 

S'.' (x) 
1 

Fii 

i+l 

(x - x.) 
1 

!::. • 
1 

+ F" 
i 

(III-2) 

(III-3) 

Integration of Eq(III-2) twice followed by equating the result to the 

function values at the nodes gives, after some algebraic rearrangement, 

F ii 

i + 1 3 [x - xi] 

F F"A 

61::.. 
1 

. il.li 
+[fl~ - -6-· ](xi+l-x) 

1 

(III-4) 

The spline function is thus defined for arbitrary x in the ith interval 

in terms of the second derivatives at the ith and (i+l) nodes. The 

first derivatives can be obtained directly from Eq(III-4): 



I 

Si (x) = 

-F" 
i 

2b.. 
1 

2 
(xi+ 1 - x) + 
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Fii 

i + 1 2 (x - x.) 
21:,. l 

l 

(III-5) 

By requiring the derivatives to match at the nodes, i.e., 

(III-6) 

the unknown second derivatives may be obtained in terms of the known 

function values. The result is 

b.i + 1 F" 
6 i +2 

(III-7) 

for ( i = 1 , 2, 3, 4 .•• (N - 2)) 

Equation (III-7) represents a set of N - 2 linear equations in N 

unknowns. Two more equations are therefore required to completely 

specify the spline fit. In the present work a four-point Lagrangian 

interpolation as described in Appendix E was employed to estimate the 
I I 

values of s1 (x1) and SN_ 1 (~). These values, coupled with Eq(III-5), 

provide the two additional equations required for the one-dimensional 

spline fit. 

The above equations may be recast in matrix form: 

* S . (x) = P. (x) C. , 
1 -1 -1 

(III-8) 

where 

and 
(III-10) 
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with 
3 

P. (x) = 
l 

x 
xti. 

]_ 

6 
(II!-11) 

The N linear equations yielding the second derivatives form a 

tridiagonal matrix equation which is easily solved (84a) (85). It has 

the form 

where 

* F = (Fl, F2' F3, 

F" * = (F" 1' F" 2' F" 3' 

A. . 1 = t:,. 1/6 
1,1- 1-

A .. = (/:,. l +t:,.)/3 
11 ]_ - 1 

A. . + l t:,. /6 
1,1 ]_ 

A .. = 0 = Bij for j 
l.J 

and 

~,N-1 = l:'J.N- /6 
BN,N - 1 = l/f).N - 1 

... ' 

... ' 

AF" 

FN) 

F") 
N 

= BF+ 

Alj 0 

B •. = 0 
l.J 

G 

for j > 2 

for j > 2 

B .. 1=1/t:,. 1 
i,i- J.-

B .. = - [l/t:,i + 1/t:,. 1] 
]_]_ ]_ -

B. . + l = 1/ {).. 
1,1 1 

:fi-1, i, or i+l 

~N D.N - /3 ~j = 

BNN = -1 ft:, BNj N 

(III-12) 

2 .s: i .s: N -, 1 

0 for j < N - 1 

0 for j < N- 1 

The above procedure has been extended to two-dimensions in a con-

venient manner by Jordan (85) and by DeBoor (86). Let the function to 

be splinefitted, Fij' be given at grid coordinates (xi,yj) on a rect­

angular grid of points with interval sizes ti. and t:,, in the x and y 
]_ J 

directions, respectively, where i = 1,2, ... , I andj = 1,2, ... , J. 

Define P.(y) and P.(y) in a manner analogous to Eqs.(III-9) and 
-J J 
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. xx 
respectively, and let F .. be F'.' on the lD spline curve to F .. 

i] i i] 
(III-11), 

j with F~~ being the corresponding quantity for the spline 
iJ 

for fixed 

f . F f . d . Th . . Fyyxx h f h it to .. at ixe i. e quantities . . represent t e ourt 
i] i] 

derivatives required by the lD spline fit to FYY for fixed i with j = 
ij 

1,2, ... , J. The second and fourth derivatives are obtained by 

repeated solution of Eq(III-12). The spline interpolation then has the 

form (85,86) 

[P. (x) * Cij ]P j (y) S .. (x,y) = 
i] i (III-13) 

where 

yyxx Fyyxx xx xx 
Fi+l,j+l Fi+l,j+l F. + 1 . i + l ,j i ,J 

Fyyxx Fyyxx xx F~~ F .. + 1 
c .. = 

i,j + 1 ij i,J i] 
i] yy YY 

Fi+l,j+l F. + 1 . Fi+l,j+l Fi+ 1,j i ,J 

(III-14) 

yy Fyy 
F .. + 1 F .. F i,j + 1 ij i,J i] 

for i = 1,2, ••• , (I-1) and j =1,2, ... , (J-1). 

The first derivatives with respect to x and y are 

x [P '. (x) * Ci. ]P. (y) S .. (x,y) = 
i] i J J 

and (III-15) 

y 
[P'. (x) * C.j]P'.(y) S .. (x,y) = 

i] i i J 

The extension of the procedure to three dimensions is straight-

forward. Following the earlier notation let F .. k be given at grid 
1,J' 

points (x.,y.,zk) for i=l,2, .•. ,I; j =1,2, ... , J, and k=l,2, ... ,K. 
i J 

We now 

(1) Splinefit F for fixed (j,k) todetermine Fxx i,j,k i,j,k 



(i=l,2, ..• ,I). 

(2) Repeat step (1) for fixed(i,k) to determine Fyy 
i ,j 'k 

(j= 1,2, .•. , J). 

(3) Repeat step (1) for fixed (i,j) to determine F22 
i ,j 'k 

(k = 1 , 2, .•. , K) • 

(4) S 1 . f" the d i 1 b · Fyyxx Fyyzz and p ine it secon part a s to o tain i,j,k' i,j,k, 
Fxxzz 
i,j ,k . 

(5) Splinefit the values of Fyyxx for each (i,j) pair to obtain 
i,j ,k 

Fyyxxzz 
i,j,k • 

Step (1) requires the solution of I linear equations given by 

Eq(III-2) for each fixed value of j and k. Thus the complete set of 

Fxx values requires (J•K) sets of I linear equations to be solved. 
i,j ,k 

Steps (2) and (3) require the solution of (I·K) sets of J linear 

SS 

equations and (I·J) sets of K linear equations, respectively. Step (4) 

requires the solution of (J•K) sets of I linear equations and 2(J·I) 

sets of K linear equations. Finally, in the fifth step (I·J) sets of 

K equations must be solved. 

The three-dimensional spline function is given by (19) 

4 4 4,e. m n fun 
S. j k(x,y,z)= L L L Pi(x)P.(y)Pk(z)Ci. k 

1 ' ' l = 1 m= 1 n= 1 J 'J ' 
(III-16) 

where the elements of P. (x) are given by Eqs. (III-9) and (III-11) with 
1 

Pj(y) and Pk(z) defined similarly, and 

Fyyxxzz 
i+l,j+l,k+l 

Fyyxxzz 
i+l,j,k+l 

Fxxzz 
i+l,j+l,k+l 

Fxxzz 
i+l,j,k+l 

Fyyxxzz Fyyxxzz Fxxzz Fxxzz 

cfu1 = 
i,j+l,k+l i,j,k+l i,j+l,k+l i,j,k+l 

Fyyzz Fyyzz Fzz Fzz i,j ,k i+l,j+l,k+l i+l,j,k+l i+l,j+l,k+l i+l,j,k+l 
Fyyzz 
i,j+l,k+l 

Fyyzz 
i,j,k+l 

Fzz 
i,j+l,k+l 

Fzz 
i,k,k + 1 
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and 
Fyyxx Fyyxx Fxx xx 
i+l,j+l,k+l i+l,j,k+l i+l,j+l,k+l Fi+l,j,k+l 

Fyyxx Fyyxx Fxx Fxx 
c&3 = 

i,j+l,k+l 
i,j,k+l i,j+l,k+l i,j,k+l 

i,j 'k Fyy Fyy 
Fi+l,j +l,k+l Fi+l,j,k+l i+l,j+l,k+l i+l,j,k+l 

Fyy 
i,j+l,k+l 

Fyy 
i,j,k+l Fi,j+l,k+l F' ' k 1 i,]' + 

(III-17) 

In Eq(III-17) l and m refer to row and column indices, respectively, 

.em2 m4 .em1 &3 
and C .. k and C .. k , are identical to C and C .. k , 

i,J, i,], i,j,k i,], 

respectively, except that the index k + 1 is replaced by k. 

The first derivatives are computed from eq(III-16). They are 

x 4 4 4 .l' m n fu 
S .. k(x,y,z) = I I I P. (x) P. (y) Pk(z) C. ~ k (III-18) 
i,J' l=l m=l n=l i J i,J' 

with similar equations for s~ . k(x,y,z) ands~ . k(x,y,z). 
i,], i,], 

values are readily obtained from Eq(III-11). 

Results and Discussion 

l' 
The Pi (x) 

An indication of the accuracy of a one-dimensional spline fit has 

been investigated for the cases of chemical bond potentials and weak 

van der Waals type interactions. The Morse function for the H2 

molecule (76) and the Lennard-Jones potential for the Ar2 molecule (87) 

were used to generate function values at different nodes. These values 

were then splinefitted using Eqs(III-8)-(III-12) with a four-point 

Lagrangian interpolation being used to compute the first derivatives at 

the end points. Tables X and XI give representative results chosen at 

random for a 15-point spline fit. It is apparent that the function 

values are well represented by the spline fit. For example, the 
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TABLE X 

COMPARISON OF A 15-POINT SPLINE FIT WITH EXACT RESULTS FROM 
MOR~E POTENTIAL FOR H2 (ALL ENERGY VALUES ARE IN eV) 

R (au) Function Value First Derivative 

Exact a Spline Exact a Spline 

0.9 -2.49189 -2.49188 -11.5424 -11.5573 

1.4 -4.74658 -4.74657 -0.02080 -0.02071 

1.9 -3.96600 -3.96664 2.39007 2.38509 

2.5 -2.53682 -2.53708 2.14903 2 .14609 

3.3 -1.2178 -1. 2i 78 1.1777 1.1776 

3.9 -0.67321 -0.67314 0.67619 0.67593 

4.7 -0.29827 -0.29826 0.30644 0.30660 

Std. Deviation: .00028 0.00237 

aReference 76 



0 
R (A) 

3.332 

3.6 

3.74 

4.0 

4.4 

5.2 

6.0 

Std. 

TABLE XI 

COMPARISON OF A 15-POINT SPLINE FIT WITH EXACT RESULTS FROM LENNARD-JONES 
POTENTIAL FOR Ar2 MOLECULE (ENERGY VALUES IN JOULES) 

Function Value x 1020 F" D . . 1020 irst er1vat1ve x 

Exact a Spline Exact a Spline 

0 0.56541 x 10-3 -1.1741 -1.1792 

- .15221 -0.15221 -.17578 -.17610 

-.16300 - . 16305 -.000036539 +0.002169 

-. 14505 - .14525 +. 10842 +.11316 

- • 099771 -.099774 +.10443 +.10442 

-.042005 -.041995 +.044864 +.044974 

-.018563 -0.18563 +.018002 +.01905 

Deviation: .00025 x 10-20 .00301 

aReference 87 

x 10-20 

U1 
00 
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standard deviation at 100 randomly selected values of R, (0.9 ~ R ~ 4.7) 

for H2 is 0.00028. The values of the first derivatives are in reason­

able accord with the exact result although the accuracy of the fit is 

substantially lower than that for the function value itself. This 

reduced accuracy is reflected by an increased standard deviation of 

0.00237. 

It is of some importance to examine the variation of the standard 

deviation with the number of fitting nodes employed. Table XII gives 

representative results for the H2 system. As can be seen, there is 

initially a substantial increase in accuracy as the number of nodes is 

increased, but the rate of this increase rapidly decreases as the 

number of nodes rises. 

We have also examined the accuracy of one-dimensional spline fits 

to ab initio results for He - He (88), Xe - Xe, Xe - Ne, and Xe - Ar (89). 

In general, the accuracy of these fits were found to be comparable to 

that obtained for H2 and Ar2• 

The accuracy of a two-dimensional spline fit has been investigated 

using the semiempirical potential-energy surface for the D-Cl-H system 

previously employed by Porter, Sims, Thompson, and Raff (90). Both a 

(10x10) and a (15x15) spline fit were examined for collinear D-Cl-H 

conformations with the node positions being chosen so that the node 

density was approximately proportional to the surface curvature. 

Figures 20 and 21 show the nodal positions for each fit. Table XIII 

gives representative results chosen at random for each spline fit. The 

standard deviations for the function value and both first derivatives 

are also given. Several points are clear: (1) The (15x15) splinefit 

yields a substantial increase in accuracy. The standard deviations are 
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TABLE XII 

VARIATION OF THE STANDARD DEVIATION OF THE SPLINE INTERPOLATED RESULTS 
FROM THE EXACT VALUES FOR A MORSE POTENTIAL FOR Hz AS A FUNCTION 

OF THE NUMBER OF FITTING NODES 

Nodes Standard Deviation Standard Deviation 
in Potential in Derivative 

10 3.08 x 10-3 5.35 x 10-2 

12 8.26 x 10-4 1. 07 x 10-2 

14 4.75 x 10-4 4.88 x 10-3 

16 1.83 x 10-4 3.57 x 10-3 

20 1.44 x 10-4 3.03 x 10-3 

between a factor of 2 to a factor of 3 smaller than the corresponding 

values for the ( 10 x 10) fit. This factor roughly corresponds to the 

2 2 
ratio of the number of fitting nodes in the two cases, 15 /10 = 2.25. 

(2) The function values are again more accurate than the first deriva-

tives, the ratio of standard deviations being between 0.1-0.5 for each 

spline fit. (3) The overall accuracy of the (15xl5) two-dimensional 

fit is less than that of a 15-point one-dimensional fit. Comparison 

with Table I indicates that the increase in the standard deviations 

may be as much as a factor of 10. 

The full three-dimensional spline fit given by Eq(III-16) has been 

+ examined for the (He+H2) and the (D+HCl) systems. + The He +H2 

potential-energy surface obtained by Kuntz (91) using a "diatomics-in-

molecules" (DIM) approach was used to generate energy values over a 
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TABLE XIII 

COMPARISON OF SPLINE FIT RESULTS WITH CALCULATED VALUES FOR D + Cl - H SEMIEMPIRICAL 
POTENTIAL-ENERGY SURFACE (COLLINEAR GEOMETRY) - ALL ENERGY VALUES IN eV 

Exact Values a 10 x 10 SEline Fit 15 x 15 SEline Fit 

R (au) R2 (au) E dE/dRl dE/dR2 E dE/dRl dE/dR2 E dE/dRl dE/dR2 

4.8000 4.65730 -1.24630 o. 43773 0.63240 -1. 2415 0.43299 0.63710 -1. 24497 0.43620 0.63388 

2.6575 3.5797 -4.47986 1.24650 0.25306 -4.48501 1. 24176 0.21468 -4.48308 1. 24150 0.23807 

3.8935 4.7400 -2.06370 1. 50838 0.15750 -2.06800 1. 52373 0.14577 -2.06690 1. 51222 0.14645 

2.3300 3.5909 -4.58726 -0.97537 0.07419 -4.59444 -0.95804 0.04122 -4.59057 -0.97816 0.06494 

4.0980 4.3716 -1. 90120 1. 03972 0.45762 -1.90124 1. 02506 0.45232 -1.90093 1.03807 0.45797 

3.8749 2.0673 -3.87713 -0.20782 -5.18617 -3.87408 -0.18534 -5.17676 -3.87386 -0. 20569 -5.18684 

4.3420 3.5890 -2.62884 0.16016 1. 78210 -2.62485 0.14800 1. 77505 -2.62858 0.16347 1.78095 

2.9032 3.9408 -3.87888 2.02926 0.04402 -3.88033 2. 02711 0.06879 -3.87858 2.02959 0.03923 

2. 5057 3.4620 -4.65091 0.45121 0.36471 -4.64752 0.44173 0.28953 -4.64871 0.44550 0.31635 

2.2610 4.8569 -4.61444 -1. 68430 0.01319 -4.62331 -1.69478 0.03600 -4.61605 -1.67526 0.02040 

Std. Deviation: .00514 .01356 .03278 .00240 .00451 .01887 

aReference 90 
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(15 x 15 x 15) grid of internuclear distances. The variables R1 and R3 

represent the He - H distances while R2 is the H2 separation. Figure 22 

illustrates the grid spacings for the R1 - R2 planes. Similar spacing of 

the nodes was employed for R3 • The accuracy of the three-dimensional 

spline fit to these points is illustrated by the data given in Table 

XIV. The twelve results given in this table were randomly selected to 

avoid prejudicial sampling. Again there are several important features 

to be noted. (1) The accuracy of the interpolation for large values of 

R1, R2, or R3 is very poor as can be seen from results (1) and (2) in 

Table XIV. This is the result of the low density of nodes in this 

region of configuration space. Since such a region is of minor 

importance in chemically interesting processes, it is possible that 

such errors will be relatively unimportant in scattering calculations. 

(2) The derivatives are again less accurate than the energy values 

themselves. (3) If one omits the first two results of Table XIV, it is 

seen that the overall accuracy for the three-dimensional fit is less 

than that obtained for the two-dimensional case, but the decrease in 

accuracy with increased dimensionality does not appear to be as great 

as in going from one to two dimensions. 

The variation in accuracy with number of nodes for a three 

dimensional spline fit is shown in Table XV for the D + HClsurface (90). 

We have attempted to assess the utility of the three-dimensional 

spline interpolation procedure in quasiclassical trajectory studies by 

comparing the results of such calculations using both the spline fit 

and the full analytic potential-energy surface. Such a comparison has 

+ been made for both the (He+H2) and the (D+HCl) systems. The 

procedures employed to carry out the three-body quasiclassical 
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TABLE XIV 

COMPARISON OF A (15 x 15 x 15) SPLINE FIT WITH CALCULATED RESULTS FOR A DIM He + H; 
POTENTIAL-ENERGY SURFACE - ALL ENERGIES ARE IN eV 

R1 (au) R2 (au) R3 (au) 

1) 10.0006 2.1808 8.8675 

2) 7.7641 2.3570 6.5602 

3) 5.2309 2.1384 4.1491 

4) 3.1847 1. 7603 2.2013 

5) 2.6645 1. 8262 1. 6071 

6) 2.4314 2.2865 1.5524 

7) 2.2014 2.8946 2.5327 

8) 1.9504 2.6146 2.9224 

9) 1.8364 2.1917 3.1360 

10) 2.7851 2. 7165 4.6288 

11) 3.9961 2.1859 4.8790 

12) 7.3690 1.8608 6.0324 

Std. Deviation 

Std. Deviation (omitting 
first two results) 

aReference 91 

E 

SPLINE DIM a 

-0. 0448 0.0347 

0.1053 0.1247 

0.0023 0.0021 

-0.1124 -0.1114 

0.0617 0.0634 

0.1381 0.1381 

0.3379 0.3424 

0.0507 0.0543 

-0. 1785 -0.1782 

0.2839 0. 2877 

0.0126 0.0127 

o. 0178 0.0264 

0.0249 

0.0037 

DE/DR1 DE/DR2 DE/DR3 

SPLINE DIMa SPLINE DIM a SPLINE 

o. 0017 0.0000 0.3769 0.3784 -0.0079 

-0.0130 0.0001 0.6309 0.6314 -0. 0136 

0.0052 0.0043 0.3004 0.3005 0.0219 

0.0299 0.0251 -0.8247 -0.8258 0.0521 

-0.1281 -0.1222 -0.7049 -0.7053 -1.2273 

-0.3330 -0.3301 0.3402 0.3378 -1. 3569 

0.0747 o. 0738 o. 9252 0.9166 -0.0628 

0.0705 0.0687 0.7212 0.7341 -0.0731 

-0.1924 -0.1929 0.2569 0.2548 -0.0347 

0.1606 0.1614 0.8660 0. 8711 0.0050 

0.0266 0.0276 0.3885 0.3870 0.0081 

-0.0085 0.0002 -0.4193 -0.4190 -0.0086 

0.0054 0.0051 .0054 

0.0041 0.0056 .0031 

DIMa 

0.0000 

0.0006 

0.0222 

o. 0513 

-1. 2255 

-1. 3578 

-0.0628 

-0.0748 

-0.0398 

0.0049 

0.0072 

0.0014 

0\ 
0\ 



TABLE XV 

DEPENDENCE OF STANDARD DEVIATION UPON NUMBER OF NODES. 
3D CASE: D + ClH SURFACE. ENERGIES ARE IN eV 

Standard Deviations 

Size of the Grid aE aE --
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aE Energy 
aR1 aR2 aR3 

13 x 13 x 13 .054 .124 .214 .068 

15 x 15 x 15 . 027 .099 .205 . 0425 

20 x 20 x 20 .0078 . 029 .095 .016 

trajectory calculations have been fully described elsewhere (90) (92) 

(93). 

As a first test, individual trajectories with the same set 01= 

initial conditions were compared for the spline surface and the 

+ analytic surface for both the He + ~2 and the D + ClH systems. Table 

+ VII gives several such results for the He + H2 system. The coordinates, 

Q. (i = 1, 2, ... 6) listed in Table XVI have previously been defined (90) 
1 

(92) (93). It is clear that the trajectories on the analytic and spline 

surfaces do not match, even in an approximate way! This type of result 

is typical for both systems. Furthermore, it is a result that could 

have been anticipated from the data given in Table XIV. The first 

derivatives of the spline and analytic surfaces are very different in 

the non-interaction region due to the low density of nodes. Thus, the 

initial integration steps cause the two trajectories to rapidly diverge. 

Once the system enters the interaction region, the integrations become 

more nearly identical, but at that point the spline surface is 
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TABLE XVI 

COMPARISON OF INDIVIDUAL TRAJECTORY RESULTS ON DIM SURFACEa 
AND SPLINE FITTED SURFACE 

1. 9543 0. 607 9 -1. 1 985 

q· 
6 

Initial Conditions (au) 
0.0 0.6975 -9.9756 

Final Conditions (DIM Surface)a 

E (eV) 
rot 

-.2437 -.9157 1.5228 -8.1951 5.7600 .5056 .6373 

Final Conditions (Spline Fitted Surface) 
2.0312 .5705 -.2964 -7.6005 6.5563 .3048 .2503 

Initial Conditions (au) 
-1.4394 1.8827 -.0936 0.0 2.5240 -9.6762 

Final Conditions (DIM Surface)a 
-2.2136 -.7780 -.0016 .7783 4.0063 9.1940 .0157 

Final Conditions (Spline Fitted Surface) 
-2.2661 .2076 -.5492 .4675 3.3722 9.4669 .0057 

Initial Conditions (au) 
.2524 2.2237 -.7853 0.0 4.7659 -8.7912 

Final Conditions (DIM Surface)a 
0.0529 2.0912 -.2858 .0258 3.7215 9.3440 .0008 

Final Conditions (Spline Fitted Surfate) 
.0980 2.1329 -.0751 .0203 4.6966 8.8694 .0007 

Initial Conditions (au) 
1. 84 3 7 - . 1 714 1.4822 o.o 3.4562 -9.3837 

Final Conditions (DIM Surface)a 
1.0133 -.8303 1.6223 -.1026 .5836 10.0219 .0017 

Final Conditions (Spline Fitted Surface) 
1.4627 -.1781 1.0871 -.0040 1.5110 9.9320 .0000 

Initial Conditions (au) 
1.1498 2.0279 .4371 o.o 2.1742 -9.7608 

Final Conditions (DIM Surface)a 
-1.9968 -.2398 -1.4268 2.5608 7.2069 6.4859 .1590 

Final Conditions (Spline Fitted Surface) 
-2.0196 -.7786 -.8971 -2.4553 7.1766 6.5953 .1602 

a 
Reference 91 

E .b(eV) 
Vl 

.0695 

. 3729 

.1644 

.1457 

.1365 

.1383 

.1365 

.1399 

.2048 

.1358 
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: 
integrating a trajectory that essentially corresponds to a different 

set of initial conditions than that being integrated on the analytic 

surface. Thus the final results exhibit little correspondence. 

It would appear that the above situation will always exist unless 

the density of nodes in the noninteraction regions is significantly 

increased. Since 3375 nodes are presently being used, such an increase 

would clearly push the computer time requirement for the ab initio 

surface computations beyond the limits of present computational 

facilities. It must therefore be concluded that if a point-by-point 

match of individual trajectories is to be used as the criterion for 

acceptability, then spline interpolation must be discarded in quasi-

classical trajectory studies. 

There is a possibility that the above criterion is too extreme and 

demanding. If the initial integration errors on the spline surface 

·that result from the low node density in the noninteraction regions 

merely alter the effective initial conditions in such a manner that the 

distributions of these effective initial conditions are still in 

approximate accord with the correct distributions, then the cross 

sections, energy partitioning and spatial scattering distributions com-

puted on the spline surface will still be in good agreement with those 

obtained from the full analytic surf ace even though the individual 

trajectories do not agree. With this possibility in mind we have 

computed full spatial scattering and energy partitioning distributions 

He 

and cross sections on both the spline and analytic surfaces for the 

+ + H2 and D + HCl systems. 

+ A total of 92 (He + H2) inelastic trajectories were examined on 

both the spline and DIM surfaces (91). In each trajectory the initial 
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+ vibrational and rotational quantum numbers for H2 were set to zero, and 

all trajectories had an initial relative translational energy of 

0.80226 eV. The Monte Carlo averaging over initial orientation, 

vibrational phase, and impact parameter has been previously described 

(93). The classical equations of motion were integrated with a Runge­

-16 Kutta-Gill procedure using a step size of 2.16 x 10 sec. 

Figures 23 (a, b, c ,d) give computed scattering distributions on 

both surfaces for e and </>, respectively. As can be seen, the He atom 

scattering is mainly forward and in-plane ( <P = 90° corresponds to in-

plane scattering). The final vibrational and rotational energies 
+ 

of H2 

are shown in Figures 24 and 25, respectively. It is clear that, within 

the statistical error of the calculations, distributions predicted by 

the spline surface are identical to those given by the DIM surface. 

Table XVII gives the averages of the four distributions for both 

surfaces. 

A more extensive comparison between spline and analytic surf aces 

has been made for the D + HCl +DC!+ H exchange reaction. Raff, 

Suzukawa, and Thompson (94) have examined a total of 3049 trajectories 

on the semiempirical potential-energy surface previously formulated by 

Porter et al. (90). A (15 x 15 x 15) spline fit to this surface was 

generated using the node spacing illustrated in Figure 21, and 500 

classical trajectories were then calculated on this surface. In all 

5 calculations the initial relative velocity was 6.050 x 10 cm/sec, and 

the maximum impact parameter was 4.0 au. The initial HCl vibration-

rotation states were averaged over a Boltzmann distribution at 250K, 

and integrations over impact parameter, initial relative orientation, 

and the HCl rotational angular momentum direction and vibrational 
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phase angle were carried out in the manner previously described (95). 

TABLE XVII 

COMPARISON OF AVERAGE RESULTS ON THE TWO SURFACES. 
He + ~ SYSTEM 

Results 
a DIM Surface Spline Fitted Surface 

Average scattering angle 8 

Average scattering angle ~ 

Average final vibrational energy (eV) 

Average final rotational energy (eV) 

aReference 91 

30-40° 30-40° 

90-100° 90-100° 

0.21 

0.13 

0.20 

0.09 

Figures 26 and 27 compare the computed differential scattering 

cross sections for product DCl obtained from the two surfaces. The 

error bars shown on the distribution obtained from the analytic 

surface, Figure 26, represent one sigma limit. The statistical uncer-

tainty for the spline surface is larger due to the lower number of 

total trajectories examined. The two distributions are very similar. 

Both indicate predominately backward scattering with a small forward 

component approximately one-third the intensity of the backward compo-

nent, and both components have approximately the same half-widths. 

Figure 28 shows the computed energy partitioning distribution for 

the exchange reaction where ft represents the fraction of the total 
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available energy partitioned into relative translational motion. Again 

the spline distribution is very similar to that obtained from the full 

analytic surface. The spline distribution yields an average value of 

ft of 0.43. This value is 0.46 on the analytic surface. 

The computed total reaction cross sections for exchange are, 

within statistical error, identical. The spline fit gives a value of 

3.25 ± 0.20 12 compared to 3.38 ± 0.11 12 from the analytic surface. 

The above results suggest that the criterion of point-by-point 

trajectory matching may be unnecessarily demanding. + If the He + H2 

and D + HCl systems can be taken to be typical, it would appear that a 

3D cubic spline fit is capable of yielding reasonably accurate results 

for the quantities of interest. 

It is of some interest to examine the CPU computation time require-

ments for use of spline surfaces. All present computations were 

carried out on an IBM 360/65 machine. For a (15 x 15 x 15) three-

dimensional grid, 22 sec of CPU time were required to obtain the second, 

fourth, and sixth derivatives. These values may, of course, be stored 

on disk so that for a given spline fit this computation need not be 

repeated. + For both the He + H2 and D + HCl systems, the spline 

trajectories required a factor of 5.0-5.2 times the CPU time needed for 

integration on the analytic surfaces. These times could undoubtedly be 

reduced somewhat by optimized machine language coding as opposed to the 

Fortran codes used in the present work. 

Summary and Conclusions 

The accuracy of lD spline fits to Morse and Lennard-Jones type 

potentials has been quantitatively examined, and the accuracy of 2D 



spline fitting was investigated for the case of a collinear D-Cl-H 

potential-energy surface. A 3D spline algorithm developed by Jordan 

+ (85) was coded and tested against both a DIM surface (91) for He + H2 
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and a DHCl surface (90). The adequacy of 3D spline surfaces in quasi­

classical trajectory studies has been examined for both the He + H; and 

D + HCl systems. The results indicate the following: 

(1) One-dimensional spline fitting is very accurate. 

(2) An (a x a) 2D spline fit is substantially less accurate than a 

one-dimensional spline with a nodes. 

(3) For the case examined an (a x a x a) 3D spline has less 

accuracy than an (a x a) 2D spline fit, but the decrease in accuracy is 

less than for the 1D-2D comparison. 

(4) First derivatives obtained from the spline fit are generally 

less accurate than the corresponding function values. 

(5) (15 x 15 x 15) cubic spline fits do not possess sufficient 

accuracy to give a point-by-point match of a quasiclassical trajectory 

to that obtained on the full analytic surface. 

(6) Total reaction cross sections, energy partitioning distributions, 

and spatial scattering distributions computed by quasiclassical trajec-

tories on spline surfaces were found to be in good accord with those obtained 

from the full analytic surface for the two cases examined. It therefore 

appears possible that the criterion of point-by-point matching of 

trajectories may be unnecessarily demanding. 

(7) The computation time requirements for use of 3D-spline 

surfaces are considerably larger than for semiempirical analytic 

surfaces but are still within the range of present computer facilities. 



CHAPTER IV 

FIVE-BODY QUASICtASSICAL TRAJECTORY CALCULATIONS 

The method of quasiclassical trajectory calculation for chemical 

systems, in general and co2-x system in particular has been described 

by Porter and Raff (96) and Suzukawa (58), respectively. The method 

adopted for co2-H2 system closely follows that of Suzukawa and hence 

only the resulting equations are reported. 

If atoms can be approximated as classical particles, their motions 

may be described by Hamilton's Equations: 

-aH/aq. , (i = 1,2, .... JN) , 
1 

(IV-1) 

where the q. 's are the coordinates and the p, 's the conjugate momenta 
1 1 

of an N-particle system. The dot on the variables represents the time 

derivative. H is the classical Hamiltonian of the system which for a 

conservative system is defined by 

H = T + V = constant, (IV-2) 

where T is the kinetic energy and V the potential-energy of the system. 

It has been found that cartesian coordinates are the most suitable 

for systems with more than three atoms (99). The ones used in this 

study are: 

(1) space-fixed XYZ. 
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(2) nonrotating, XYZ; parallel to XYZ but with its origin trans-

lating with the center of mass of carbon dioxide. 

(3) rotating xyz; the molecule-fixed axis system for co2• The 

orientation of the x,y,z axes in the XYZ coordinates are described by 

angles a, a, y. 

(4) X'Y'.Z', similar to XYZ, but with its origin translating with 

the center of mass of H2• 
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(5) x'y'z', similar to xyz, but with orientation angles ai, Si, Yi· 
All these systems are represented in Figure 29. Using the cartesian 

coordinates described in Figure 30, 

The potential has been described in Chapter II. The equations of 

motion are: 

pi= -av/aqi' i = 1,2, •.••• 15 (IV-4) 

where mi = mA when i = 1,2,3, mi = ~ when i = 4,5,6, mi = me when i = 

7,8,9, mi = mD when i = 10,11,12 and mi =Ill; when i = 13,14,15. 

Description of vibrational motions of molecules is easier using 

normal coordinates. Q1, Q2a, Q2b and Q3 represent the normal coordin­

ates of co2 and QH represents the normal coordinate of H2• Assuming 

the molecular axes to be in the z and z' directions respectively for 

co2 and H2, the normal coordinates are expanded in terms of molecule­

fixed coordinates: 
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(q7,q8,q9) 

(P1,Pa 1 P9) me 

(q4,q5,q5) 

(P4 ,P5, Ps) 

(q, ,q2,q3) 

(P1,P2,P3) mA 

( X3, Y3, Z3) 

( Px3, Pv3, Pz3) 

( X2, Y2 ,Z2) 

(Px2 ,Py2,Pz2) 

Figure 30. Cartesian Coordinates and Conjugate Momenta for the 
co2-H2 System 
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me ~ 
..:. f:,.z ) Ql = [-Z-] (t:,.z3 1 

Zmc~ ~ 
t:,.x3)] QZa = [ ] [t:,.xz - ~(t:,.xl + 

~ 

ZmCmB i 

QZb = [ r [t:,.y - ~(t:,.y + t:,.y 3)] 
~ z 1 

Zmc~ i 

Q3 = [ r [t:,.z2 - ~(f:,.zl + /j.z3)] 
~ 

QH = [~]~ (t:,.zs - t:,.z4) (IV-5) 
z 

The !:,.x, t:,.y, f:,.z's indicate displacements from the equilibrium x, y, z's. 

A = X eq t d ux1 1 - x1 e c. , an (IV-6) 

it is assumed that mA = me, ~ = ~ = ~ and ~ = mA + ~ + me = total 

mass of carbon dioxide. 

Since energy transfer is the problem of interest to us, it is 

essential to separate translational, rotational and vibrational motions 

for each molecule. Translation is rigorously separable from the 

internal motions, but the vibrational and rotational motions are not. 

Certain approximations are therefore necessary. Let the origins of the 

molecule-fixed coordinate systems for COz and Hz be placed at ~cm(COZ) 

and R (Hz) respectively in the space-fixed system. Let the position -cm 

of atom i in the COZ-molecule-fixed system be !i (i = 1,Z,3) and that of 
. 

atom i in the Hz-molecule-fixed system be r.(i=4,S). Let ri=v. be the 
-i - -i 

corresponding velocities. Let the COZ-molecule-fixed system and the 

HZ-molecule-fixed system rotate with angular velocities ~(COz) and 

~(Hz)' respectively. The total velocity of atom i, in the space-fixed 

frame is 

i = 1,Z,3 (IV-7) 
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and 
. 

(~total)i = ~cm(H2) +~(Hz) X Ei +Ii' i =4,5 · (IV-8) 

The kinetic energy of the co2 molecule is, 

3 

Teo = ~ l: m.(vt t 1): 
2 i=l 1 o a 1 

3 3 
= L[R2 (C02) "' + "' ( ) ~ cm ~ mi 

1
. __ ~ 1mi ~(co2 ) X ~i 

i=l 

+ 
3 2 • 
l: m . v • + 2 ~cm (CO 2 ) 

i=l 1 1 

3 

3 

~(C02) X i:lmiEi 

3 
+ 2R (co2) · l: m.v. + 2~(CO) 

-cm i=l 1-1 2 

and that of H2 molecule is, 

(l!;l(CO ) X r.) 2 -1 

(IV-9) 

5 5 

TH2 = ~[R~m(H2) i:4mi + i:4mi(~(H2) X Ei) . (~(H2) X Ei) 

5 
+ l: m.v~ + 2~cm(H2 ) 

i=4 1 1 

5 

5 
~(H ) X l: m. E. 

2 i=4 1 l 

3 
+ 2 R (H2) · l: m. v. + 2 ~ (H ) • l: m. r. X v. J • 

-cm i=4 1-1 2 i=4 1 l -1 
(IV-10) 

Imposing the condition that the origin of the molecule-fixed system is 

the molecular center of mass and the Eckart conditions, which come 

close to making the molecular angular momentum in the xyz frame equal 

to zero, 

3 3 

Teo = (~)[R2 (co2) _l: mi+ L: mi(~(CO) Xr.) ·(~(CO) Xri) 
2 cm 1=1 i = 1 2 - 1 2 

3 3 
+ 2 

l: rn. vi + 2 ~ (CO ) • l: m. ( {). r . X v . ) J 
i=l 1 2 i=l 1 -l -l 

(IV-11) 

The first term of Equation (IV-11) is the translational energy of the 

molecular center of mass. This term need not be considered further 
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since the translational motion can be separated rigorously in the 

absence of external fields. The second and third terms are purely 

rotational and vibrational energies, respectively, while the fourth 

term arises from the rotational and vibrational motion. The existence 

of this fourth term, called the coriolis term, prevents the rigorous 

separation of the rotational and vibrational energies. Similarly, 

5 5 

TH2 (~)[R~rn(H2) i:4mi + i:4rni(~(H2) X Ii) . (~(H2) X Ei) 

+ 
5 2 
I m.v.] . 

i=4 l. l. 

Note that coriolis term is zero for hydrogen molecule. 

(IV-12) 

Cartesian coordinate displacements may be expressed as a linear 

combination of normal coordinates: 

4 
b.xi I n.kQk 

k=l l. 

4 
b.y. 

l. 
I µ.kQk 

k=l l. 

If the equilibrium position is defined to lie along the z axis, 

mB i 

- (-2-m-m-) "2 Q 2a 
C T 

(IV-13) 



l'.yl 

l'.y2 

l'.y3 

l'.zl 

l'.z2 

l'.z3 

Similarly, 

m 
~ -( B ) 

Q2b 2mCmT 

2mc i 
(--)~ Q2b mB~ 

mB ~ 
-(2m m ) Q2b 

C T 

1 ~ mB 
-(2m ) Ql -(2m m ) 

c C T 

2m 1 

(-c-)~ Q 
mBmT 3 

1 k m 
~ 

(2m) 2 Ql -( B ) 
c 2mCmT 

f'.z4 = -(-1-)~ Q 
2~ H 

1 ~ 
l'.z = ( ) Q 

5 2~ H 
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~ 
Q3 

Q3 (IV-14) 

(IV-15) 

Substituting Equation (IV-14) in Equation (IV-11), the total kinetic 

energy in the molecular center of mass becomes 

Teo = T "b(C02) + T (C02) 
2 vi rot 

2 2 = ~[I w + I w xx x(C02) yy y(C02) 

4 
E c/ 

k 
i=l 

(IV-16) 
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where I , I , I are the instantaneous moments of inertia and I , xx yy zz xy 

Iyz and Izx are the instantaneous products of inertia for co2 defined 

as: 

2 2 I = E mi (y. + z.) xx . 1 1 
1 

2 2 
I = Em. (x. + z.) 

YY . 1 1 1 
1 

2 2 
I = Em. (x. + y.) zz . 1 1 1 

1 

I = E m.x.y. xy . 1 1 1 
1 

I E m.y .z. yz . 1 1 1 
1 

I = E m.z.x. zx i 1 1 1 
(IV-17) 

= T .b(H2) + T (H2) 
vi rot 

(IV-18a) 

where IH is the moment of inertia for H2; 

(IV-18b) 

From this expression for the kinetic energy, both the total angular 

momentum Meo and M_ and the momenta conjugate to the normal coordin-
- 2 C:..1f2 

ates Pk and PH can be found: 

( aT I aw ) =I w - I w - I w co2 y(co2) yy y(co2) xy x(co2) yz z(C02) 

+ (Q3Q2a - Q2aQ3) 

aTCO 
--2-'--- = I w - r w - I w + (Q Q - Q Q ) 
awz(C02) zz z(co2) xz x(co2) yz y(co2) .2a 2b 2b 2a 
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ClTH 

M 2 
IHwx(H2) = = x(H2) awx(H2) 

M = 
y(H2) IHwy(H2) 

M = z(H2) 0 (IV-19) 

and 
aTco 

pl 
2 

Ql . 
aQ1 

aTCO 
2 . 

P2a = = Q2a + wy(C02)Q3 - wz(C02)Q2b . 
ClQ2a 

aTCO 

p2b = 2 
Q2b - wx(C02) Q3 + wz(C02)Q2a = . 

aQ2b 

aTco . 2 
p3 = = Q3 + wx(co2)Q2b wy(C02)Q2a 

ClQ3 

ClTH 

PH = 2 
QH (IV-20) = . 

aQH 

The most convenient expression for the total vibrational kinetic 

energy for carbon dioxide is 

Tvib(co2) = (~) ~p~, (k=l,2a,2b,3). (IV-21) 

However, there are terms in T "b which also appear in the total angular 
V1 

momentum ~C02 . Care must be taken to avoid counting these terms in 

both the vibrational and rotational energy. Therefore, the vibrational 

angular momentum is defined as: 
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(IV-22) 

This vibrational angular momentum is subtracted from the total angular 

momentum, giving the total kinetic energy for co2 as 

~[(Mx(C02 ) -~x)wx(C02 ) + (My(C02) -~y)wy(C02 ) 
4 

+ (Mz(C02) -mz)wz(C02) + k:lp~ ] . 

The rotational energy of co2 is therefore: 

z 
T (CO ) = E (CO ) = k l: (M ~ ) w rot 2 rot 2 " . i(Co2) - i i(co2) . 

Sununing up, 

i=x 

z 

Erot (C02) = ~ i:x (Mi (C02) - mi)wi (C02) 

2 
Tvib (Hz)=~ PH 

Erot(H2) =~ IH (w~(H2) + w~(H2)) 

(IV-23) 

(IV-24) 

(IV-25a) 

(IV-2Sb) 

(IV-25c) 

(IV-2Sd) 

The internal energy is now separated into a vibrational and a rotation-

al component. The separation, however, depends upon the vibrational 

motion. The quantity labeled as rotational (or vibrational) energy 

will change with the evolution of time. 

The vibrational energy of co2 can be subdivided further into the 

energies of the individual vibrational modes, 
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Evib(C02) Tvib(C02) + vco2 
= L: E:k' (k = l,2a,2b,3) 

k 

where 

i (P2 2 
(IV-26) E:k ~ k + \kQk) 

Evib(H2) = Tvib(H2) + VH2 
£ = !.: (P2 +A Q2) (IV-27) 
H 2 H H H 

Since the potential energy used is not harmonic, normal coordinates and 

their energies can only approximate the real behavior of the molecule. 

Selection of the Initial Conditions 

The initial physical state of the quasiclassical carbon dioxide 

molecule - hydrogen molecule.collision system is defined by the 

following parameters: for carbon dioxide the vibrational and rotation-

al quantum numbers n1,n2a,n2b,n3 and J, the vibrational phase angles 

o1,o 2a,o2b and o3, the orientation angles a, S and y; for hydrogen, 

vibrational qauntum number ~' rotational quantum number JH, the vibra-

tional phase angle oH, the orientation angles a 1, s1 , and y 1; the 

impact parameter b; the initial relative velocity vector yR; and the 

initial separation Rs between centers of masses of co 2 and H2 . 

The internal energy of co2 for a given quantum state is 

Eint(C02) = wl (nl +~) +w2(n2a +n2b + l) +w3(n3 +~) 

2 2 2 
+ xll (nl +~) + x22 (n2a +n2b + l) + x33 (n3 + ~) 

+ Xl2(nl +~) (n2a +n2b + l) +Xl3(nl +~) (n3 +~) 

2 2 
+ x23 <n2a +n2b + 1) (n3 +~) +BJJ(J + 1) - DJJ (J + 1) 

(IV-28) 
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where the constants are defined by Herzberg (97) and are given in 

Table XVIII. Division of cross terms in the Equation (IV-28) equally 

between the internal vibrations gives the normal energies: 

+ ~ x23 (n2b +~) (n3 +~) 

2 
s3 = w3(n3+~) +X33Cn3+12) +~Xl3 (nl +~)(n3+~) 

E (C02 ) rot 

+~X23(n3 +~)(n2a +n2b +l) 

B3J(J + 1) - D3J 2 (J + 1) 2 

The internal energy of H2 for a given quantum state is 

(IV-29) 

(IV-30) 

where the constants are again defined by Herzberg (98) and are also 

given in Table XVIII. We assume that the vibrational energy is given 

by, 

(IV-31a) 

The remaining internal energy is assigned to rotation: 

(IV-3lb) 



TABLE XVIII 

SPECTROSCOPIC CONSTANTS OF co2 AND H2 

CO a 
2 

Harmonic Frequencies 

w1 = 1351. 2 cm -l 

672. 2 

2396. 4 

-1 
cm 

-1 
cm 

Anharmonic Constants 

xll -0.3 -1 
x22 = -1.3 

-1 cm 
' cm 

x33 -12.5 -1 
x12 5.7 -1 = cm = cm 

x23 -11. 0 -1 
xl3 -21. 9 -1 

= cm cm 

Rotational Constants 

BJ 0.3906 cm -1 
DJ o.oo -1 

' cm 

0.00121 cm -1 
al = 

-1 
a,2 -0. 00072 cm 

-1 
a,3 0.00309 cm 

H b 
2 

4395.2 -1 
WH = cm 

-1 
~H = -ll7. 90 cm 

B 60.809 cm -1 
e 

-1 
a 2.993 cm 

e 

aReference 97 

b Reference 98 

93 



94 

For a harmonic potential, the time dependence of the normal 

coordinate is 

(IV-32) 

where Q~ is the maximum displacement of Qk(t). 'rhe maximum displace-

ment of a normal coordinate occurs at the point where all of the energy 

is in the potential-energy, thus 

2E:k 1 

q0 = [ ]~ (IV-33) 
k Ak 

with the values of Q~ and ok' Qk(t=O) is found. The Pk(t=O) are 

obtained from the expression 

(IV-34) 

The + sign is used when 0 S ok S TI and the negative sign when TI s ok ~ 

2TI. 

The normal coordinates Qk are transformed to the molecule-fixed 

cartesian coordinates: 

~ ~ 
xl -(2m m ) Q2a 

C T 
2mc i 

x2 = (-·-)~ Q2a 
~~ 

x3 = ~ ~ 
-(2mc~) Q2a = xl 

Y1 = . ~ ~ 
-(2mc~) Q2b 

Y2 = 
2mc ~ 

(~~) Q2b 

~ ~ 
Y3 = -<2mc~) Q2b = y 

1 

~ ~ 1 ~ 
- ReCO zl = -(2mc~) Q3 - <2m ) Ql 

c 
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2m 1 

z2 = (--c )~ Q 
mBID.r 3 

~ !:z + (-1-) !:z Q 
-(2m m ) Q3 2mc 1 + ReCO 

C T 

x4 = Y4 = x = Y5 = 0 
5 

Z4 = -(-1-) !:z Q - !,; R 
2ll)i H 2 eHH 

ZS = (-1-)!:z Q + k R 
2nii H 2 eHH 

(IV-35) 

From these cartesian coordinates, the moments of inertia I , I and 
xx YY 

I and the nonzero product of inertia I for co2 and moment of 
zz yz 

inertia IH for H2 are calculated. The non-zero component of vibration-

al angular momentum mx for co2 is calculated from the Qk and pk using 

Equation (IV-22). 

The angular momentum and angular velocity of co2 and H2 are 

determined from their rotational energies. The co2 molecule is 

assumed to be linear, and the rotation of the molecule is assumed to be 

in a plane perpendicular to the xy plane and rotated away from the xz 

plane by the angle y. Under these conditions, the components of the 

angular momentum are: 

= [2 I E (co2)] 
xx rot 

cosy 

Ly(co2 ) = [2 I E (C02 ) ]!:z sin y 
yy rot 

The components of the angular velocity are: 

Lx(co2) 
wx(C02) = I 

xx 

(IV-36) 



Similarly, 

and 

L (C02) 
wy(C02) = r 

I 
YY 

wz(co2) = 0 

~ = [2 !HE (H2)] sin y' 
rot 

0 

wx(H2) 
Lx(H2) 

= 
IH 

wy(H2) = 
\'.:(H2) 

IH 

wz(H2) 0 

Given the Qk's and Pk's and the angular velocity, the time 

derivatives of the normal coordinates are: 

. 
Ql = pl 

Q2a P2a - wy(C02)Q3 + wz(C02)Q2b 

Q2b p2b + wx(C02)Q3 - wz(C02)Q2a 

Q3 = p3 - wx(C02)Q2b + wy(C02)Q2a 

. 
QH = PH • 
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(IV-37) 

(IV-38) 

(IV-39) 

(IV-40) 

The conjugate momenta to the molecule-fixed coordinates are then: 
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~ ~. 
py1 = -mA(2mCmT) Q2b - mAzlwx(C02) 

2mc ·~ . . 
PY2 = ~(~tn.r) Q2b - ~z2wx(C02) 

P = -m..z w (H ) 
y 4 ti 4 x 2 

P = -m..z w (H ) 
Ys ti 5 x 2 

p = -m.._(~1~)~ Q 
z 4 ti 2~ H 

(IV-41) 

The molecule-fixed coordinates are now transformed to the space-

fixed coordinate frame. The origin of the space-fixed frame is defined 



as the center of mass of co2 • The molecule-fixed coordinates of co2 

are rotated by an angle a about the Y axis and an angle 8 about the Z 

axis using the rotation matrices given in Table XIX. The third 

98 

Eulerian angle y has already been used. The coordinates of H2 are 

rotated by angle a 1 about the Y' axis and an angle 81 about the Z' axis. 

The coordinate system X'Y'Z' is at distance R from the center of mass 
-s 

of co2 and hence the origin of the space-fixed frame. The coordinates 

of H2 are therefore: 

X = (R ) + x4 4 s x 

(R ) + XS s x 

(IV-42) 

If the impact parameter is b and if the center of mass of H2 is approaching 

from the -Z direction in the YZ plane, 

(R ) = 0, (R ) = -b and (R ) = -(R2 - b2 )~ . 
s x s y s z s (IV-43) 

There is no loss of generality if the relative velocity is defined 

to be along the Z axis and if it ·is defined such that the center of 

mass of the total system does not move with time. Thus, the center of 
mco2 

mass of H2 translates in the Z direction with velocity (m + )VR, 
C02 ~2 

and the center of mass of co2 translates in the -Z direction with the 
mH2 

velocity <m + m.. )VR where mH = 2~ and mco = mA + ~ + me. 
C02 tt2 2 2 

The complete set of initial cartesian coordinates and momenta is 

now defined. The momenta in the space-fixed frame are: 



TABLE XIX 

THE ROTATION MATRICES. THE MATRIX Rq($) ROTATES COORDINATE 
AXES IN A COUNTERCLOCKWISE DIRECTION ABOUT AXIS q 

THROUGH AN ANGLE $ 

R ($) 
x 

R ($) 
y 

R ($) 
z 

= 

= 

= 

1 

0 

0 

cos$ 

0 

sin$ 

cos$ 

-sin$ 

0 

0 

cos$ 

-sin$ 

0 

1 

0 

sin$ 

cos$ 

0 

0 

sin$ 

cos$ 

-sin$ 

0 

cosl/J 

0 

0 

1 
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p Py p 
~2 

PX Pz p mA (m + )VR 
1 xl 1 yl 1 zl co2 ~2 

PX p Py p p p 
ll\12 

= = mB(m + ~ )VR 
2 x2 2 Y2 z2 z2 co2 2 

p Py p Pz p 
Il\i2 

PX = = mC(m + )VR 
3 x3 3 Y3 3 z3 co2 Il\i2 

mco 

PX p Py p p p + 2 

4 x4 4 Y4 z4 z4 Il\i(mco + Il\i )VR 
2 2 

mco 
p Py p p p 2 (IV-44) PX + Il\i(m + ~ )VR 

s XS s Ys ZS ZS co2 2 

Numerical Integration of the Equations of Motion 

Once the initial coordinates and momenta are defined, the thirty 

coupled first-order differential equations (Hamilton's Equations) may 

be solved numerically to study the evolution of the system. 

In this study, an Adams-Moulton type fifth-order predictor-sixth-

order corrector method of numerical integration with a fourth-order 

Runge-Kutta scheme as the initiator was employed (100). 

The accuracy of the trajectory of integration was judged by three 

different criteria. The total energy and the total angular momentum were 

expected to be constant at the beginning and at the end of each trajectory. 

Results of back integration of a trajectory were expected to match the start-

ing coordinates. Some of the trajectories were integrated twice; once with a 

step size hand next with half the original stepsize. Both of them were ex-

pected to yield the same final state of the molecules. The units employed 

in this study are listed in Table XX. 



Quantity 

energy 

mass 

distance 

time 

velocity 

momentum 

angular 
momentum 

Planck'~ cons ant (ti) 

Boltzmann 
constant (k) 
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TABLE XX 

UNITS USED IN THE COMPUTER CODEa,c 

Program Unit 

1 eV 

1 amu 
0 

1 A 

1 time unit 

1 velocity unit 

1 momentum unit 

1 angular momentum unit 

0.0646531465 

8.6170651 x 10-5 

. b 
CGS Unit 

-12 
1. 6021 x 10 erg 

1. 6604345 x 10-24 

10-8 cm 

gram 

1. 01804287 x 10-14 sec. 

O. 9822769 x 106 cm sec. -l 

-18 
1. 631006 x 10 dyne sec. 

-26 1. 631006 x 10 erg sec. 

1. 05450 x 10-27 erg sec. 

-16 0 -1 1. 38054 x 10 erg K 

aThese units are similar to the RMU units used by Raff et al., J. Chem. 
Phys. 56, 5998 (1972). The units differ only in the unit of distance. 

bUnits based on physical constants recommended by NAS-NRC and adopted 
by NBS (NBS Technical News Bulletin, Oct. 1963). 

c Reference 58, p. 67. 

Calculation of the Final State of the System 

The final physical state of the collision system is determined 

from the positions and momenta at the end of the trajectory. The 

determination of the 'end' is rather easy for nonreactive collisions. 
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The centers of mass separation are required to be greater than or equal 

to R . In order to minimize errors in the calculation of change in 
s 

energy in each mode, initial energies were calculated in the same way 

as described here for the calculation of final energies. 

The total energy of the collision is defined by the classical 

Hamiltonian, Equation (IV-Z) and (IV-3). The total angular momentum is 

1z = 12 + 12 + 12 
x y z 

(IV-45) 

where 
5 

1 L Y.P Z.Py x i=l 1 zi 1 . 1 

5 
1 L: Z.PX X.Pz y 

i=l 1 i 1 . 1 

5 
1 = • E Xi PY. - y p 

z i x. 1=1 1 1 
(IV-46) 

The motion of the system center of mass has been set to zero. The 

final velocity of the Hz-center of mass is 

The final 

. 
x4 + 

V' ( 
-H 2 2 

relative velocity 

V' 
-R 

. . . 
XS y4 + Ys 

2 

is 

The final relative translational energy is 

mco ~ 
E' = ~( 2 2 )V'2 
trans mCO + ~ R 

z 2 

~2 2 
~ -- (m + )V' 

mco co2 Il\i2 Hz 
z 

. 
z4 + ZS 

2 
) (IV-47) 

(IV-48) 

(IV-49) 
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The center of mass scattering angle is also determined from y~ . Since 

the initial direction of YR is along the Z axis, the scattering angle 

QCM is given by 

[ 
cy~)z ] 

arc cos . !.:: • 
(V' • V') 2 
-R -R 

(IV-50) 

To compute the final internal energies, the space-fixed coor-

dinates are transformed to the molecule-fixed coordinate frames. The 

motion of the molecular center of mass is subtracted from the molecular 

coordinates: 

= PX. 
1 

ll\i2 

~2 

ll\i2 
= pz + m.( + )(VR')z ' 

i 1 mco ~ -
2 2 

p = p 
z. z. 

1 1 

mco 
- m. ( ! )(VR' ) z 

i mco 11\i -
2 2 

(i = 1,2,3) . 

(i = 4 and 5). (IV-51) 

The atomic coordinates relative to the respective molecular center of 

mass are: 

1 
x. = X. - -(mAXl + m_X2 + mCX3) 

1 1 mco JS 
2 



1 
y =Y - -(m Y + m_Yz + mCY 3) 

i i mco A 1 ti 
z 

1 
z. =z. - -(mAZl + m_Zz + mCZ3), 

i i mco ti 
z 

I x. = X. - -(m__X4 + m._X5 ) 
l. l. ~ H H 

z 

1 y. = Y. - -(m__Y + m__Y ) 
l. l. ~ H 4 H 5 

z 
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(i = I, Zand 3). 

(i = 4 and 5) . (IV-SZ) 

The normal coordinates Qk (k = 1, Za, Zb, 3 for coz and k =H for HZ) 
. 

and their time derivatives Qk are obtained from the transformation from 

molecule-fixed coordinates to normal coordinates, Equation (IV-5). 

Derivatives of the molecule-fixed coordinates are obtained from the 

conjugate momenta. The molecule-fixed coordinates are also used to 

calculate the moments of inertia and the products of inertia for COZ 

and Hz. The final angular momenta ~(COZ) and ~(H2 ) are obtained from: 

3 
Mx(C02) E y.P 

i=l 1 zi 
z.P 

i Yi 

3 
M (COZ) 2: z.P - x.P y . i=l i xi l. z. 

l. 

3 
Mz(C02) = 2: x.P - Y.P 

i=l i Yi l. x. 
l. 

5 
Mx(Hz) = 2: y.P - z.P 

i=4 1 2 i l. Yi 

5 
My(Hz) 2: z.P x.P 

i=4 l. x. l. z. 
l. l. 



5 
L: x.P - y.P 

i=4 1 Yi 1 xi 
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(IV-55) 

Angular velocities for co2 are obtained from Equation (IV-19) as follows: 

-1 . 
wx(co2) I -I -I Mx (C02) - (Q2b Q3 - Q3Q2b) xx xy xz . . 
wy(C02) -I I -I My(C02) - (Q3Q2a - Q2aQ3) xy YY yz . . 
wz(co2) -I -I I Mz (C02) - (Q2a Q2b - Q2b Q2a) xz yz zz 

(IV-56) 

If I is the moment of inertia matrix, 

-1 1 -t 
I = det I I 

-t 
where I is the transpose of the adjoint of I, 

( I I - 1 2 ) yy zz yz -(-I I -I I ) xy zz xz yz 

-(-I I -I I ) xy zz yz xz 
(I I - 1 2 ) xx zz xz 

(I I +I I ) xy yz yy xz 

Angular velocities for H2 

-(-I I -I I ) xx yz xy xz 

are: 

wx(H2) = Mx(H2)/IH 

wy(H2) My(H2)/IH 

wz(H2) = Mz(H2)/IH 

(IV-57) 

(I I +I I ) xy yz xz yy 

-(-I I -I I ) xx yz xy xz 

( I I - 1 2 ) xx yy xy 

(IV-58) 

(IV-59) 

The final normal momenta Pk are calculated using Equation (IV-20) and 

the vibrational angular momentum is found using Equation (IV-22). 

The final rotational energies for co2 and H2 are obtained from: 

z 
E' (C02) = ~ L: (M.(C02) - m.)w.(C0 2) rot . 1 1 1 1=x 

The total internal energies of the molecules are: 

(IV-60) 



3 1 
(P2 p2 p2 ) E ! (CO ) = ~ l: m. + + + int 2 i=l i x. Yi z. i i 

= E~ib (C02) + EI (C02) rot 

and 
5 

1 (P2 p2 + p2 ) E ! (H ) = ~ l: + + int 2 i=4 mi x. Yi z. i i 

The final vibrational energies are: 

E~ib(C02) 

E~ib(H2) 

= E! t(C02) - E' t(C02) in ro 
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vco 
2 

VH 
2 

(IV-61) 

(IV-62) 

Attempts are being made to calculate at least average normal energies 

for the carbon dioxide molecule. 

The energy changes are the differences between the initial and 

final energies: 

llE = E' - E 
trans trans trans 

llE (C02) 
rot E;ot(C02) - Erot(C02) 

llE (H2) = E;ot(H2) - Erot(H2) rot 

llEvib(C02) = E~ib(C02) - Evib(C02) 

llEvib(H2) = E~ib(H2) - Evib(H2) (IV-63) 

Ensemble Sampling and Averaging 

In a chemical system, large numbers of collisions occur. Any 

theoretical study must therefore consider the various possible colli-

sions in order to make the comparison with experimental results meaningful. 

Each trajectory depends upon 19 physical parameters: the vibra-
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energy (E ), molecular orientation (a.,B,y} for co2 and similarly rot 

sH, 6H, Erot(H2), a. 1, B1 and y 1 for H2; the impact parameter b; and 

the initial relative velocity VR. In this study, the initial s 1 ,s2a' 

s 2b,s3 ,eH and VR are held constant, and the other variables are 

chosen at random from appropriate distribution functions (58) (96). 

B, y, and B1 and y 1 are determined by: 

B = 27T t;. 1 

y 27T t;. 2 

Bl = 27T S.3 

yl = 27Tf;.4 (IV-64) 

where the ~. are random numbers uniformly distributed in the interval 
1 

0 .$ ~ • .s; 1. 
1 

a. and a. 1 are selected by requiring that 

cos a. = 1-2 t;. 
5 

1-2 t;.6 (IV-65) 

These choices weight the solid angle elements by sina. and sina. 1, 

respectively, as required. The vibrational phase angles are determined 

by: 

61 27T S.7 

62a = 27T t;.8 

62b 02a + 7T/2 

63 27T t;.9 

oH = 27T t;.10 (IV-66) 

Assuming separability of rotational-vibrational motion and also assum-

ing the molecules to be rigid rotors, for co2, it is the solution of 

(IV-67) 

and for H2 , it is the solution of 



where 

J 
~ ( 2 J ' + 1) exp [ -J ' ( J ' + 1rt2 I 2 I kT] 

J'=O 

00 

Q = ~ (2 J+ 1) exp[-J(J + l)ti2 /2IkT]. 
r J=O 
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(IV-68) 

(IV-69) 

The impact parameter is selected using a b2 distribution between 0 and 

b max 2 2 
b = b ~ .• max 11 

(IV-70) 

All the variables were chosen at random as above at a rotational temp-

erature of 1000 K with co2 and H2 in their ground vibrational states. 

The relative translational energy was kept at 1.0 eV. The results of 

preliminary studies of the dependence of translational energy transfer 

upon impact parameter are shown in Figure 31. As can be seen, at 

impact parameter above 3.5 A, little or no net energy transfer occurs. 
0 

Thus, b in Equation (IV-70) was chosen to be 3.5 A. 
max 

Since the variables were chosen from appropriate distribution 

functions, Monte Carlo (96) averaging of energy transfer in different 

modes corresponds to a simple averaging of energy changes in 

individual trajectories over N trajectories computed for a particular 
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CHAPTER V 

RESULTS AND DISCUSSION 

Carbon dioxide - hydrogen molecule system is the first polyatomic 

molecule - molecule system to be investigated by detailed dynamical 

studies on an ab initio potential-energy surface. It poses several 

questions on energy transfer processes that have remained unanswered. 

There is a multitude of processes (V~ V, V~R, V+-+V, V+-+R, V+-+T etc.) 

that can occur simultaneously and their mechanisms and relative 

importance may depend upon the conditions of molecular collisions. The 

calculation of relaxation times for each co2 normal mode and the 

investigation of the transfer mechanism requires a systematic analysis 

of the results obtained from numerous trajectories with varying initial 

conditions. ·Only preliminary results of such a study are reported here 

as the problem is being pursued further. 

Energy transfer results from a quasiclassical trajectory study 

must be interpreted with care due to the nonquantized nature of the 

calculation. Quantum mechanical scattering calculations are difficult 

to carry out, but once completed, the results are easy to interpret. 

They simultaneously yield information about all channels considered in 

the process. Quasiclassical trajectory calculations, on the other 

hand, are relatively simple and straightforward. The main difficulty 

in interpreting their results lies in the "classical" nature of the 

system. Under the quasiclassical assumption, initially the system is 
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in a quantized energy state. However, once the trajectory is started, 

the system is completely classical in nature and the energy can flow 

from one mode into another in any amount. If, for example, the transi-

tion probability for a quantum of energy to be transferred is one in 

one hundred, it is necessary to assume that the same energy would be 

transferred in 100 classical collisions. Such assumptions may or may 

not be valid. Frequently one finds that the average classical energy 

transfer is too large. 

In the preliminary investigations, an initial separation of the 
0 0 

molecules of 5 A, b of 3.5 A and a timestep of 0.02 molecular units max 

were used. Initial vibrational states of the molecules and their 

relative translational energ~es were chosen to be specific values while 

rotational states were averaged over a thermal distribution at TK. All 

other variables were selected randomly from their appropriate distribu-

tion functions as was discussed in Chapter IV. 

In the first set of calculations, the rotational temperature was 

set at lOOOK, and the relative translational energy was taken to be 

1.0 eV. The impact parameter was restricted to be 0.0. The hydrogen 

molecule was placed in its v = 0 vibrational state and the average 

energy transfer was examined for co2 in either its (0000), (1000), 

(0100), (0010) or (0001) states. The numbers in parantheses represent 

vibrational quantum numbers for Q1 , Q2a, Q2b, and Q3 modes, respectively. 

In each case 20 trajectories were run. The results are reported in 

Table XXL 

In the second set of calculations, the rotational temperature was 

changed to 300 Kand the relative translational energy to 0.1 eV while 

the impact parameter was selected from a random b2 distribution with 
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0 
b = 3.5 A. 150 trajectories for the (1000) state and 100 max 

trajectories for the other (v1, v2a' v2b, v3) states were computed. 

The results are presented in Table XXII. For (0010), the calculations 

were repeated after suppressing the zero point energy from all modes. 

When the relative translational energy is 1.0 eV, the main 

process would be expected to be the flow of energy from translational 

motion into internal modes of co2 and H2 . This is found to be the 

case: (T + V) seems to be the main process, about three fourths of 

the relative translational energy being converted. into the vibrational 

energy of carbon dioxide. Except when the Q3 mod& is excited, the 

(T + V) process seems to be independent of the initial vibrational 

state of co2• The rest of the translational energy seems to be 

divided equally between rotational motions of co2 and H2 internal 

energy. It is difficult to answer the question of which vibrational 

mode of co2 is excited during this (T + V) process. Extensive studies 

of Parr (101) show that normal mode energies are not separable; 

energy flows from one normal mode into another in its own potential 

field. However, it may be possible to obtain an average of the 

normal mode energies by allowing the co2 molecule to vibrate over a 

specified period of time after the collision and thus determine the 

normal mode that has been excited. This possibility is being 

investigated. 

When the relative translational energy is low, the first excited 

normal modes of co2 have energies comparable to that of the 

translational motion. Hence energy could flow out of the internal 

modes of co2 and H2. Indeed, <Ev(co2)> is found to be negative. It 

should be pointed out that it is negative even when the co2 molecule 



TABLE XXI 

RESULTS OF AVERAGE a 
ENERGY TRANSFER AT Etrans = 1.0 eV, 

b = 0.0, Trot = 1000 K FOR DIFFERENT INITIAL 
VIBRATIONAL STATES OF co2 

co2 Vibrational State <E > 
trans <Ev(co2)> <E (CO )> 

r 2 <Ev(H2)> <E/H2)> 

(0000) -0.222 0.167(0.75) 0.023 0.015 0.02 

(1000) -0.189 0.139(0.74) 0,018 0.008 0.025 

(0100) -0.185 0.138(0.75) 0.016 0.014 0.019 

(0010) -0.199 0.152(0.76} 0.015 0.014 0.021 

(0001) -0.162 0.160(0.99) 0.014 0.013 0.021 
~ 

aUnits are in eV. 

bValues in parentheses are fractions of the translational energy transferred into vibrational energy 
of co2• 

..... ..... 
w 



co2 Vibrational State 

(0000) 

(1000) 

(0010) 

(OOlO)b 

au · · v nits are in e . 

TABLE XXII 

RESULTS OF AVERAGE ENERGY TRANSFERa AT Etrans = 0.1 eV, 
bmax = 3. 5 JL Trot = 300 K FOR DIFFERENT INITIAL 

VIBRATIONAL STATES OF CARBON DIOXIDE 

<E > <E (CO )> <E (CO )> <Ev(H2) trans v 2 r 2 

-0.00118 -0.00015 -0.00029 0.00027 

-0.00021 -0.00208 0.00023 0.00246 

-0.00091 -0.00055 -0.00018 -0.00144 

-0.00276 o. 00131 0.00063 o. 01136 

bl .. 1 . h nitia state wit zero point energy suppressed from all modes. 

<E (H )> 
r 2 

0.00253 

0.00198 

0.00154 

0.00066 
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is in its ground vibrational state. This spurious result arises due 

to the "classical" nature of the system and may be avoided by 

suppressing the zero point energies of all the normal modes. Results 

of one such calculation are reported in Table XXII. It would be prema­

ture to draw any conclusion at this stage as this problem is currently 

under careful investigation. 



CHAPTER VI 

CONCLUSIONS 

Our study on co2-H2 system illustrates that it is now possible to 

employ LCAO-MO-SCF procedure using extended split valence shell gauss­

ian basis set and compute intermolecular potential between two 

molecules, one of them having as many as 22 electrons. Utilizing the 

symmetry of the system and also the fact that certain regions of the 

potential-energy surface are not sampled during a trajectory, it was 

possible to compute intermolecular potentials at 1053 conformations. 

Three dimensional cubic spline interpolation procedure has been 

successfully applied to the problem of interpolating this table of 1053 

numbers. By a combination of the splinefitted intermolecular potential 

with the available spectroscopic information on intramolecular poten­

tials for individual molecules, it has been possible to construct 

potential-energy surface for co2-H2 system and to evaluate the deriva­

tives of the potential with respect to its coordinates which are 

required during a quasiclassical trajectory analysis. A computer code 

for performing five-body quasiclassical trajectory calculations is now 

available and has been tested for its accuracy as was explained in Chapter IV. 

Preliminary studies suggest the (T-+ V) process to be the major mode of energy 

transfer at a relative translational energy of 1. 0 eV and rotational tempera­

ture of 1000 K. It also seems to be independent of the initial vibrational 

state of co2 except when it is in its (0001) state. 
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At the present stage, for a specified set of initial conditions it 

is possible to compute a finite number of trajectories and calculate 

the amount of energy transferred from translational motion into vibra­

tional and rotational motions of either one or both of the.molecules or 

vice versa. Several questions remain to be answered: Of the four, 

which normal mode of co2 does gain or lose energy during such an energy 

transfer? Is it really meaningful to try to get an answer to this 

question when classical mechanics is used to study the molecular dynamics? 

Is it possible to suppress the zero point energy from all normal modes and 

then obtain a 'meaningful' measure of the energy transfer? These problems 

are currently being investigated. 

A theoretical study is complete only if it is able to compute 

experimentally measurable quantities and compare them with previously 

measured results. In experiments on energy transfer processes, relaxation 

time is the most commonly measured quantity. We are yet to develop a formal­

ism to calculate relaxation time from the amount of average energy 

transfer. 

It would be worthwhile to study the detailed mechanism of energy 

transfer from each excited vibrational state of co2 and also of H2 • It would 

also be interesting to study the effect of mass on preferential mode of energy 

transfer by using n2 instead of H2• One good test for this whole study would 

be to calculate the relaxation time as a function of temperature and compare 

with the experimental result. This theoretical calculation would be 

highly valuable if it could predict the relaxation time for Q1 mode as no 

experimental information is available on the energy transfer from this 

particular mode. 
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APPENDIX A 

ROLE OF VIBRATIONAL ENERGY IN REACTIVE 

COLLISIONS: 

The role of vibrational energy in reactive collisions has become 

of particular interest in recent years because of its importance in 

infrared chemical lasers (102-106) and the possibility of using 

vibrational excitation followed by competitive reaction as a means of 

effective isotopic separation. It is experimentally easier to select 

the vibrational state of reactants in the case of ion-molecules than in 

neutral species (107). A great wealth of information is available for 

ion-molecule reactions (108). On the other hand, very little has been 

done towards a detailed understanding of the problem, from a theore-

tical viewpoint. This is due, in part, to the nonadiabatic nature of 

many ion-molecule reactions. 

We chose to investigate the effect of vibrational energy of 

reactants on the probability of the reaction 

+ 
-+ HeH + H 

for the following reasons: 

(1) Chupka and coworkers (108a) have reported reaction cross 

sections for several (O - 5) initial vibrational states of H; at a wide 

range of total energies (1.0-4.0 eV). These results indicate a large 

vibrational enhancement of the reaction rate. 
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(2) This is an endoergic reaction (~H = 0.8 eV), and Polanyi et al. 

(103) have recently investigated the problem for a general A + BC 

reaction. This would enable us to compare the theoretical results for 

neutral reactions with those of ion-molecule reactions. 

(3) Ab initio LCAO-MO-SCF potential-energy surface (109) (41) is 

available for this system; a semiquantitative analytic fit (110) to that 

surface is also available, thus making reaction dynamics studies compu­

tationally less expensive. 

(4) Two independent quantum mechanical studtes (111) (112) have 

been made on this system and neither of them is in agreement with 

experimental results. In addition, they indicate that the common 

belief (103-106) that vibrational energy is more effective than trans-

lational energy in endoergic reactive collisions may not be a general 

effect. This system provides a unique opportunity to compare quasi-

classical trajectory results with the experimenta+ and quantum 

mechanical values. 

The molecules collisions were restricted to be collinear, and were 

studied by quasiclassical trajectory methods on the ab initio 

potential-energy surface of Brown and Hayes (41), fitted to an analytic 

function by Kuntz (110). Figure 32 shows the potential-energy contours 

for the collinear [He-H-H]+ system obtained from the analytic function. 

The initial vibrational state of H; was varied systematically from 0 

to 3. The relative translational energy was chosen such that the total 

translational plus vibrational) energy is 0. 94, 1. 0, 1.1, 1. 2 and 1. 4 eV' s. 

For each translational energy and vibrational state chosen, 200 trajector­

ies were run and the reaction probabilities were computed. The mathematical 

procedures employed in these calculations have been described elsewhere (55). 
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Figure 32. Collinear Potential-Energy Surface (111) for HeH~. 
Energies are in kcal/mole, Distances in ~ 
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The results of the trajectory analysis are plotted in Figure 33. 

The reaction probabilities are strikingly higher for iower vibrational 

states in contrast to the experimental (108a) reaction cross sections 

reported in Figure 34• The quantum mechanical results of Kouri and 

Baer (112) are plotted in Figure 35. Figures 36 through 39 compare 

results from quanta! and classical calculations for individual 

+ vibrational states of the H2 molecule. The classical results are in 

qualitative agreement with the quanta! results in spite of the fact 

that the potential-energy barrier is asymmetric. This result is 

interesting since recent results obtained by Kellerhals (51) and by 

Schatz, Bowman and Kuppermann (56c) have shown large differences 

between quantum mechanical and classical results for systems having 

asymmetric potential-energy barriers. 

The results of this theoretical study are hard to understand in 

light of the pioneering works of Polanyi and coworkers (102) (103) on 

the role of vibrational energy in reactive collisions. For several 

endoergic systems (113), vibrational energy has proven to be more 

effective than translational energy in enhancing reaction rate. The 

+ unusual behavior of the He + H2 system may be due to the unique 

behavior of ion-molecule reactions yet to be explored by detailed 

theoretical dynamical studies. Alternately, the results may be due to 

the location of the position of maximum curvature (114) along the 

reaction coordinate relative to the position of energy release. This 

may have its origin in the lack of understanding of potential-energy 

surfaces of ion-molecule systems. 

In this system nonlinear collisions may be very important and 

collinear trajectories may be unrealistic as was pointed out by Kouri 
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He+ H2(V) - HeH+ + H 
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O'--~~~---L~~~~--~~~---1.~~~~...L-.~~~_, 

0.9 1.0 I. I 1.2 1.3 1.4 
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Figure 33. Quasiclassical Reaction Probability as a Function of 
Total Energy of the System for Different Vibrational 
States 



1.5 

ul A2 

1.0 

0.5 

3 4 

TOTAL ENERGY/eV 

Figure 34. Experimental Reaction Cross Section as a Function of 
Total Energy of the System for Different Vibrational 
States 
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+ + He+H2 (V)-HeH +H 

0.6 

0.4 

0.2 

0o.9 1.0 I. I 1.2 1.3 

TOTAL ENERGY/eV 
Figure 35. Quantum Mechanical Reaction Probabilities (115) as a 

Function of Total Energy of the System for Different 
Vibrational States 
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Figure 36. 

132 

+ + He + H 2 ( V = 0) - He H + H 
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Comparison of Quasiclassical and Quantum Mechanical (115) 
Reaction Probabilities for v = 0 State of H; 
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He+ H~ (V=l )-HeH+-t-H 
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Figure 37. 

QM 
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Comparison of Quasiclassical and Quantum Mechanical (115) 
Reaction Probabilities for v = 1 State of H; 
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Figure 38. 
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Comparison of Quasiclassical and Quantum Mechanical (115) 

Reaction Probabilities for v = 2 State of H; 



+ + He+H2 (V=3}-HeH +H 
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Figure 39. Comparison of Quasiclassical and Quantum Mechanical (115) 
Reaction Probabilities for v = 3 State of H; 
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and Baer (111). It is known (77) that slight changes in potential­

energy surfaces may have significant bearing on the outcomes of the 

collisions. The analytic functional fit to the potential-energy 

surface employed in this and the two quantum mechanical calculations 

may not be appropriate for dynamical studies and a numerical spline 

interpolation procedure may be able to better reproduce the features 

of the LCAO-MO-SCF surface. This problem along with an investigation 

of the reaction path curvature is currently under study. If these 

studies should indicate that no significant errors exist in the calcu­

lations, a reinvestigation of the experimental details would appear to 

be in order. 



APPENDIX B 

DESCRIPTION OF THE BASIS SET USED IN THE 

LCAO-MO-SCF PROCEDURE FOR co2-H2 SYSTEM 

An extended (split valence) Gaussian basis (4-31G) set is used. 

That is, the inner shell of each atom is represented by a single basis 

function taken as a sum of four Gaussians and each valence orbital is 

split into inner and outer parts described by three and one Gaussian 

function, respectively. For carbon and oxygen, we may represent the 

functions as 

_,, 4 
-'> 

<Pls(r) = I: dl kg (alk' r) 
k=l s' s 

...li. 3 --"' ' 

<P2s(r) I d2s,k'gs(aZk' r) 
k=l 

_,. 

<P2p ( r) = 
x 

-'> ~ 

<P" (r) = d2sgs(a~k' r) 2s 

-"' --"' 

<Pzp Cr> = d2pgp ( " r) a2k' 
x x 

(B-1) 

and similarly for p and p orbitals. g's are Gaussian functions 
y z 

defined as 

g (a,--;) = (2a/TI) 314exp(-ar2) 
s 

g (a,-:)= (128a5 /TI 3 )~ x exp(-ar2). 
PX 

(B-2) 
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For hydrogen, there is no inner shell and we may take two functions 

_,. 
<Pis (r) 

_:. 

¢" ( r) 
ls 

....::. 
d g (a", r) 

s s k 
(B-3) 

representing the valence shell. The values of d's and a's are given in 

Table XXIII and are due to Pople and coworkers (48). 
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TABLE XXIII 

BASIS SET COMPONENTS 

Gaussian Functions 

Atom Orbital Exponent (a) s coef (d ) p coef (d ) 
Type s p 

Carbon ls 
0.486967E 3 0. l 77258E-l o.o 
o. 733711E 2 0.123478E 0 o.o 
0.164135E 2 0.433875E 0 o.o 
0.434498E 1 0.561504E 0 0.0 

2sp 
0.867352E 1 -0.121384E 0 0.635453E-l 
0.209662E 1 -0.227338E 0 0.298268E 0 
o. 604651E 0 0.118517E 1 0.762103E 0 

2sp 
0.183558E 0 O.lOOOOOE 1 O.lOOOOOE 1 

Oxygen 
ls 

0.883273E 3 0.175506E-l o.o 
0.133129E 3 0.122829E 0 o.o 
0.299064E 2 0.434884E 0 0.0 
0.797868E 1 O. 560011E 0 o.o 

2sp 
0.161944E 2 -0.113401E 0 0.685452E-l 
0.378008E 1 -0. l 77286E 0 0.331225E 0 
0.107098E 1 0.115041E 1 0.734608E 0 

2sp 
0.283880E 0 O.lOOOOOE 1 O.lOOOOOE 1 

Hydrogen ls 
0.187311E 2 0.334946E-l 0.0 
0.282539E 1 O. 234727E 0 o.o 
o. 640121E 0 0.813757E 0 o.o 

ls 
0.161278E 0 O.lOOOOOE 1 0.0 



APPENDIX C 

THE TRIAL FUNCTION 

The follo~ing is a fifty parameters function that was used in our 

initial attempts to fit the co2-H2 intermolecular potential to an 

analytic function. It is a combination of Buckingham-6,8,10-exp 

function (64) and several trigonometric functions. 

V(R,6,<j>, -r) = { (B(l) + B2 * C + B(3) *TC)+ (B(4) +B(S) * C + B(6) * TC)A 

+ (B(7) +B(8) * C +B(9) * TC)TB}* 

where 

exp-({(B(lO) +B(ll) *C+B(l2) *TC)+ (B(l3) +Bl4 *C+ 

Bl5 *TC) *A+ (B(16) +B(l7) *C+B(l8) *TC) *TB}R] 

-{ (B(l9) + B(ZO) * C + B21 *TC)+ (B(22) + B(23) * C + 

B(24) *TC) A+ (B(25) +B26 *C+B27 *TC)TB}/R6 

-{ (B(28) + B(29) * C + B(30) *TC)+ (B(31) + B(32) * C + 

B(33) * TC)A + (B(34) + B(35) * C + B(36) * TC)TB}/R8 (C-1) 

TB = 

TC = 

s = 

. ze sin 

. 2 
sin <j> 

. 2 
sin T 

A = sine 

C = sin<j> 

D = sin-r 

B2 = B(Z) + B(37) * D + B(38) * S 

B3 = B(3) +B(39) *D+B(40) *S 

Bl4 = B(l4) +B(43) *D+B(44) *S 

BIS = B(l5) +B(45) *D +B(46) * S 
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and 

B21 = B(21) +B(47) *D+B(48) *S 

B26 = B(26) +B(41) *D +B(42) * S 

B27 = B(27) +B(49) *D+B(50) *S 

The fifty parameters B(l) through B(50) are given in Table XXIV. 

B( 1) 
B( 2) 
B( 3) 
B ( 4) 
B( 5) 
B ( 6) 
B( 7) 
B( 8) 
B( 9) 
B(lO) 
B(ll) 
B(l2) 
B(l3) 
B(l4) 
B(l5) 
B(l6) 
B(l7) 
B(l8) 
B(l9) 
B(20) 
B(21) 
B(22) 
B(23) 
B(24) 
B(25) 

TABLE XXIV 

PARAMETER VALUES FOR ANALYTIC FITTING OF 
V(R,e,q,,-r) 

0.71035096D 06 B(26) -0.25954166D 05 
-0.12740077D 05 B(27) 0.27012564D 05 
-0.11727264D 06 B(28) 0.12570335D 06 
-0.12277416D 07 B(29) 0. l ll 94548D 06 
-0.10838327D 07 B(30) -0.10913717D 06 

0.13680391D 07 B(31) -0.18074lz7D 06 
0.53013337D 06 B(32) -0.63544123D 06 
0.11096923D 07 B(33) 0.61934263D 06 

-0.12437767D 07 B(34) 0.55334830D 05 
0.32882276D 01 B(35) 0.52692803D 06 

-0.90996557D-01 B(36) -0.51257380D 06 
0. 78209131D-01 B(37) 0.24255182D 05 

-0.27517143D 00 B(38) -0. 18281349D 05 
-0.49846722D 01 B(39) -0.21947453D 05 

0.41263227D 01 B(40) 0.64945996D 04 
0.69771398D-01 B(41) 0.12452563D 04 
0.59850064D 01 B(42) -0.10562951D 04 

-0.45218171D 01 B(43) 0.15478484D 00 
-0.25686016D 04 B(44) -0.22004310D 00 
-0.509465250 04 B(45) -0.15303357D 00 

0.23422928D 04 B(46) 0.18600425D 00 
0.87107345D 04 B(47) 0.32501662D 03 
0.291885120 05 B(48) -0.86975072D 03 

-0.27496241D 05 B(49) -0.14460331D 04 
-0.60212051D 04 B(SO) 0.14197774D 04 
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APPENDIX D 

THE DERIVATIVES OF THE POTENTIAL 

The expressions for derivatives of the potential with respect to 

cartesian coordinates are given below: 

av av aR1 av aR3 av ae --=-·---+----+-
axl aR1 ax1 aR3 ax1 ae ax1 

l:!__ = l:!__ aR1 + ~ aR3 + av lL 
ay 1 aR1 ay 1 aR3 ay1 ae ay 1 

lY_ = lY_ aRl + lY__ aR3 + av ~ 
az 1 aR1 az 1 aR3 az 1 ae az 1 

lY_ = lY__ aRl + l:!__ aR2 + av l!_ + av ~ + av lP.._ 
ax2 aR1 ax2 aR2 ax2 aR ax2 ae ax2 a~ ax2 

lY__ = lY__ aRl + lY__ aR2 + av ~ + av ~ + av 2.L 
ay2 aR1 ay2 aR2 ay2 aR ay2 ae ay2 a¢ ay2 

lY._ = lY__ aR1 + lY__ aR2 + av 1!_ + av ~ + av 2.L 
az2 aR1 az2 3R2 az2 3R az2 30 az 2 a¢ az 2 

~ = lY._ 3R2 + 2Y_ 3R3 
ax3 aR2 ax3 aR3 ax3 

av av aR2 --=----
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av av aR4 
+ av aR + av ae + av lf_ -=-- --- --

Cly 4 aR4 ay4 aR ay4 ae ay4 acp ay4 

av av ClR4 
+ av aR + av ae + av lf_ -=-- -- ---az4 ClR4 az4 ClR az4 ae az4 Clcj> az4 

av av aR4 
+ av 1!L + av ae + av l.L -=-- ---

axs aR4 ax5 aR ax5 ae ax5 acp axs 

av av aR4 
+ av R + av ae + av lf_ -=-- --- ---ays aR4 ay5 aR Y5 ae ay5 a<1> ay5 

av av aR4 
+ av~ + av ae + av lf_ (D-1) -=-- ---

azs aR4 az5 aR az5 ae az5 <lei> az5 



APPENDIX E 

FOUR-POINT LAGRANGIAN INTERPOLATION (116) 

FORMULA AND lD SPLINE 

y 

x 

Let us consider 

passing through those four points. Let 

ir 1 (x) = (x-x2)(x-x3)(x-x4 ) 

ir2 (x) = (x-x1)(x-x3)(x-x4) 

ir /x) (x - x 1) (x - x 2)(x - x 4) 

ir4 (x) = (x-x1)(x-x2)(x-x3) 
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1T 1 (x2) = 1T 1 (x3) 

=7T3(xl) 

1T2(xl) = 1T2(x3) = 

1T3(x4) = 1T4(xl) 

1T2(x4) 

1T 4 (x2) = 1T 4 (x3) = O' 

Expand f(x) in terms of 1T 1 (x), 1T2 (x), 1T3 (x) and 1T 4 (x) 

Yz f(x2) = b27T2(x2) 

Y3 f (x3) = b37T3(x3) 

y = 
4 

f(x4) = h41T4(x4) 

b = 
yl Yz 

' b3 
Y3 

and h4 
Y4 

1Tl(xl) ' b = 
1T /x3) 1T4(x4) 1 2 1T2(x2) 

Therefore, 

x - x 2 x - x3 x - x x - x x - x x - x 

= Y1 <x - x ) ( x ) ( ! ) + Yz ( ! ) ( ; ) ( ~ ) 
1 2 xl - 3 xl - 4 x2 - 1 x2 - 3 x2 - 4 
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(E-4) 

(E-5) 

(E-6) 

(E-7) 

x-x x-x x-x x-x x-x x-x 
+ y ( 1 ) ( 2 ) ( 4 ) + y ( 1 ) ( 2 ) ( 3 ) (E-S) 

3 x3 - x 1 x 3 - x2 x 3 - x4 4 x 4 - x 1 x4 - x2 x 4 - x 3 

f 1 (x) = _____ Y_l ____ {<x-x3) (x-x4) + (x-x2) (x-x4) + (x-x2) (x-x3)} 
(xl-x2)(xl-x3)(xl-x4) 

+ · y 2 {<x-x3) (x-x4) + (x-x1) (x-x4) + (x-x1) (x-x3)\ 
(x2-xl)(x2-x3)(x2-x4) J 

+ (x3-xl) (x3~;2) (x3~x4) {<x-x2) (x-x4) + (x-xl) (x-x4) + (x-xl) (x-x2)} 

+ y 4 {<x-x2) (x-x3) + (x-x1) (x-x3) + (x-x1) (x-x2)\ 
(x4-xl)(x4-x2)(x4-x3) J 

(E-9) 



146 

(E-10) 

Considering a set of points ~-3 < ~-2 < ~-l < ~ and ~-3 < x < ~ , 

f' (~) 

(E-11) 

Considering the problem of splinefit procedure discussed in 

Chapter III, first derivatives at x1 and ~ can thus be known from a 

four-point Lagrangian interpolation of (F1 , F2 , F3 , F4) and (FN_3 , 

FN_2 , FN-l' FN). Recall Equation (III-5): 

2 2 
(xi+l-x) F'' (x-xi) Fi+l -Fi 

S~(x)= -F" + + -(F" -F") 
1 i 2h.. i+l 2h.. h.. i+l i 

1 1 1 

By substituting i = 1, and x = x 1 , 

h. 
__! F" 
6 2 

h. • 

6
1 • (E-12) 

(E-13) 
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Similarly, 

l1 l1 
_]'_ F" + _!! F" 

6 N-1 3 N 
(E-14) 

Equations (E-13) and (E-14) provide the two additional equations 

required in solving N-2 equations and N unknowns. 
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