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Abstract 

Currently, seismic facies and structural analysis requires a significant amount of 

time and effort by skilled interpreters. With the advances made by companies such as 

Amazon and Google with AI (artificial intelligence) and machine learning, many 

geoscientists (and perhaps more so, many geoscience managers) have identified the 

application of such technologies to the seismic interpretation workflow. Advancements 

of such technologies, such as machine learning based interpretation like self-organizing 

maps (SOM), principle component analysis (PCA) and independent component analysis 

(ICA), will both accelerate and quantify the seismic interpretation process.  

Seismic attributes highlight subtle features in the seismic data that help identify 

architectural elements that can be used to further define the environment of deposition. 

Likewise, seismic attributes delineate subtle faults, folds, and flexures that better define 

the history of tectonic deformation. However, the understanding of “which attribute best 

illuminates which feature” requires either considerable experience or a tedious search 

process over years for published analogues. The objective of this thesis is to identify the 

seismic facies of interest through a prototype a web-based seismic attribute-seismic 

facies analysis database that can be used not only as a guide for human interpreters, but 

also to select attributes for machine learning. I propose a rule-based decision tree 

application that suggests which attributes are good candidates for machine learning 

applications.  

There are many seismic facies. This thesis illustrates the objectives and a 

prototype web application using only two seismic facies: marine mass transport deposits 

and karst collapses. After initial validation, this product can then be improved and 
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expanded upon by a larger user community to provide an interactive attribute selection 

platform for interpreters at large. 
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Chapter 1: Introduction 

Taner (2003) noted that seismic attributes provide “qualitative information on 

geologic facies, geometry and rock physics”. Chopra and Marfurt (2007) stated that a 

“seismic attribute is any measure of seismic data that helps us visually enhance or 

quantify features of interest.” Barnes (2016) viewed attributes as “quantifying 

properties of seismic data that can then be interpreted to determine geologic relevance.” 

Overall, a good seismic attribute helps identify subtle features that might otherwise be 

overlooked, quantifies the seismic amplitude expression of geologic features of interest 

for both subsequent risk analysis and machine learning, and provides images that may 

be more easily understood by colleagues or business investors with limited experience 

in 3D interpretation of seismic amplitude volumes.  

The first step in an attribute-assisted 3D seismic facies analysis is a conventional 

interactive interpretation of each target seismic facies on a few vertical and time slices 

through the seismic amplitude volume. The second step is to then identify which 

features internal to the target facies differentiate it from surrounding conformal, 

continuous reflectors.  The third step is to then determine which attributes quantitatively 

measure these features. 

The term facie was first coined by Gressly (1838) to describe the aspects or 

“faces” of a geologic terrain. Walker (1993) defines facies as “A body of rock 

characterized by particular combination of lithology, physical and biological structures 

that bestow an aspect different from the bodies of rock above, below and laterally 

adjacent.” 
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The term “seismic facies” is less precise than geologic facies and used by 

geophysicists (Alexander et al. 1985; Qi et al. 2017, Zhao et al. 2018; Marfurt, 2018) to 

describe the seismic expression of geologic features of interest. Seismic facies are 

mappable, three-dimensional seismic units composed of groups of reflections whose 

parameters differ from those of adjacent reflectors. Seismic facies analysis requires the 

description and interpretation of seismic reflection parameters including configuration, 

continuity, amplitude, and frequency within the stratigraphic framework of the 

depositional sequence unit. Seismic attributes measure these same reflection parameters 

and are key to quantifying the facies with machine learning. Barnes and Laughlin 

(2002) find that the choice of attributes is more important to effective machine learning 

that the machine learning algorithm used.  

Pigott et al. (2013) identified two common analytical methods for attribute 

application. The first analysis method is stochastic, whereby the candidate seismic 

attributes are statistically correlated to a given geologic property or zone of interest. The 

stochastic approach requires an understanding of the attribute-to-facies relationship but 

can suffer from false positive correlations (Kalkomey, 1997). Pigott et al. (2013) found 

the stochastic analysis to be relatively fast, without requiring a deep understanding of 

the dataset; however, spurious seismic attribute correlations can lead to misinterpreting 

the geology. Modern “deep learning” algorithms based on convolutional neural 

networks are stochastic (Qi, 2018). 

The second method is deterministic and involves more planning but may save 

the interpreter time and computational cost in the end. In the deterministic method, the 

interpreter has a predefined understanding of the geologic features of interest and has a 
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working knowledge of which attributes can be used to delineate relevant features within 

the basin (Pigott et al., 2013; Chopra and Marfurt, 2007). In general, the deterministic 

approach requires a deeper understanding of seismic attributes, the seismic expression 

of geologic features, and an appropriate depositional, diagenetic, or tectonic model. A 

pitfall of the deterministic analysis is “confirmation bias,” whereby we ignore 

alternative interpretations in favor of a preconceived geologic model and exploration 

objective (Infante-Paez, 2018; Posamentier, 2018).  

The deterministic method requires background knowledge and either a skilled 

(more experienced) geoscientist, costing more money, or a less experienced interpreter, 

costing more time. My goal is to capture some of the knowledge of a skilled interpreter 

and create an attribute-to-seismic-facies database that is more accessible to an 

interpreter than using a general-purpose search engine to find published papers. 

Capturing this information and accessing it in a web-based application may not impart 

interpreter expertise but can be used to select a subset of attributes for subsequent 

stochastic evaluation based on their previous performance.  

There are four advantages to a web-based system. First, a web-based system is 

not limited to a 2-dimensional table but rather can sort n-dimensional tables by seismic 

facies, by attribute, by depositional environment or (in a corporate environment) by 

exploration objective. Second, a web-based system can contain modern interactive 

capabilities such as animation, 3-dimensional rotation, fade-in overlays, and gliding 

options to give more dimension to the information that is not possible in printed media.  

A web-based application provides the links available to online publications, including 

attribute definitions, software documentation, and links to algorithmic details and 
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relevant case studies. Third, a web-based system can be linked to a decision tree 

whereby the interpreter examines features in the seismic data, compares it to similar 

features on the web site and then clicks candidate attributes to be computed and 

evaluates either interactively using 3D visualization, or as input to a machine learning 

algorithm. Fourth, and finally, a successful web-based application can grow into a 

“wiki,” providing a platform for enhanced information sharing.  

1.1 Strategy  

I begin my thesis in Chapter 2 with a review of alternative seismic attribute 

taxonomies, providing a framework for a web-based application. Then, in Chapter 3, I 

briefly review modern practices in multi-attribute analysis, beginning with interactive 

3D multi-attribute visualization, progressing into unsupervised classification, and 

ending with supervised machine learning algorithms. In chapter 4, I analyze two seismic 

facies: mass transport deposits and karst collapse features, defining not only their 

appearances on seismic amplitude data, but also their appearance on seismic attributes. 

To be useful, this suite of images should be as comprehensive as possible, including 

attributes that don’t help differentiate the target feature from the background conformal, 

coherent reflectors. In chapter 5, I use these two examples to provide the data needed to 

populate my prototype web application. In chapter 6, I use this (highly pruned) decision 

tree to define which attributes should be considered for delineation of these two facies. I 

then insert these attribute volumes into modern machine learning algorithms developed 

by my colleagues at the University of Oklahoma. Finally, In Chapter 7 I conclude with 

a summary of my findings, assessing current limitations, and defining future steps 

towards building a more comprehensive attribute selection decision tree.  
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Chapter 2: Attribute Taxonomy 

The goal of this thesis is to build a more modern version of a seismic 

interpretation “attribute handbook,” focusing on only a few branches (seismic facies) 

(mass transport deposits and karst collapse) of the tree. My ultimate goal is to emulate 

Amtmann et al.’s (2013) software database and create web-based application that 

applies previous and current work that is user friendly and available to the public at 

large (Figure 1).  

2.1 Overview of Attributes 

Seismic attribute application began in 1940s with sonograms and directional 

reception (Taner, 2003). The definition of a seismic attribute has changed from the 

1970s and evolved from just seismic attribute application to seismic structural mapping, 

stratigraphic analysis, lithologic characterization and reservoir monitoring (Chen, 

1997). Since the 1970s, the diversity of attributes and seismic attribute applications 

have expanded significantly. Although these attributes provide new methods to interpret 

seismic data, many interpreters feel they have too many choices. Interpreters commonly 

question which attribute to use to identify a given feature. There are few publications 

that identify this problem and even fewer that give a solution to the question, “Which 

attribute is best suited for my data?” This thesis is a step towards answering that 

question as it will cover which attributes can be used for specific seismic facies using a 

web-based decision tree for easy user application. 

 Chopra and Marfurt (2007) stated that a “seismic attribute is any measure of 

seismic data that helps us visually enhance or quantify features of interest.” Barnes 

(2016) views attributes as a means to quantifying properties of seismic data that can 
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then be interpreted to determine the geologic relevance.  Taner (2003) noted that the 

study of seismic attributes is meant to give qualitative information on geologic facies, 

geometry and rock physics. Overall, seismic attributes are meant to help quantify 

geologic features that are not identified by the seismic amplitude data alone. 

 Barnes (2016) and Marfurt (2018) provided more recent taxonomies that 

emphasize structural, stratigraphic, or lithological properties of the subsurface geology 

(Tables 1 and 2).  Barnes’ (2016) geologic seismic attributes include lithological and 

reflection patterns which are subdivided into structural and stratigraphic subcategories. 

Structural seismic attributes include dip magnitude and dip azimuth, curvature, shape 

indices, aberrancy, reflector convergence and parallelism, and alterative measures of 

discontinuities and other fault indicators. The same structural attributes can be applied 

to stratigraphy, thereby mapping the discontinuity of channel edges, or the curvature 

expression of differential compaction, while spectral components provide measures of 

thickness within the structure. Barnes’ (2016) mathematical attributes overlap with 

Marfurt’s (2018) textural attributes and quantify statistical patterns within the data. 

Likewise, Barnes’ (2016) lithologic attributes include Marfurt’s (2018) impedance 

attributes. The work done in this thesis builds on these two taxonomies and present an 

applied taxonomy to the seismic facies studied in this work including karst and MTDs, 

where the emphasis envisions multiattribute machine learning as well as 3D 

multiattribute visualization.  

In some cases, different attributes provide the same (or redundant) results 

(Barnes, 2007). Barnes (2017) also identifies attributes that are useless for geologic 

interpretation but have been retained in commercial software for historical reasons.  
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Selecting the best attributes is invaluable to the interpreter as it saves time and 

computational cost. Some attributes are easy to understand. Dip azimuth, dip 

magnitude, most-positive and most-negative curvature, and coherence (dissimilarity) 

are concepts fundamental to geologic mapping. Geomechanical attributes such as P-

wave impedance, Poisson’s ratio, and azimuthal anisotropy are also clearly defined. 

Attributes that are more statistical include root-mean-squared amplitude, chaos, 

parallelism, and gray level co-occurrence matrix texture attributes such as entropy 

(Marfurt, 2018). 
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Figure 1. Amtmann et al. (2013) data base of attributes provided by multiple 

technology suppliers. In this work they do not attempt to define which attribute might 

be “best” for a specific objective. 

 

 

 



 

9 

 

 

Table 1. Barnes’ (2016) taxonomy containing three main categories for seismic 

attribute application.  
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Table 2. Marfurt’s (2018) taxonomy showing seven attribute families. 
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Reflector Configuration Attributes 

Reflector dip vector 

Most-positive curvature value, k1 

Most-negative curvature value, k2 

Most-positive curvature vector, k1 and ψ1 

Most-negative curvature vector, k2and ψ2 

Shape index and curvedness 

Reflector convergence vector 

Reflector nonparallelism 

Reflector rotation 

Reflector aberrancy (flexure) vector 

Apparent dip 

Apparent (Euler) curvature 

Apparent aberrancy (flexure) 

 

Table 3. A table of reflector configuration attributes that I will use in my web-based 

application for each seismic facies. Attributes that effectively differentiate some facies 

of interest will appear in a green box, those that are less generally effective in a yellow 

box, and those are generally of limited use in a white box. For each facies, clicking the 

box will display vertical and time slices through one or more data examples. 
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Chapter 3. Integrating the Information Content of Multiple Attribute 

Volumes 

3.1 Multiattribute Review 

 Russell (1997) defines multiattribute seismic analysis is a wide-ranging term 

that incorporates all methods that utilize more than one attribute to predict some 

physical property of the sub-surface. There are three common workflows to integrate 

the information content of multiple attribute volumes. The first workflow is to co-render 

three and sometimes four attribute volumes using HLS, RGB, or CMY color models 

coupled with alpha-blending (also called opacity or transparency) (e.g. Marfurt, 2015).  

The second workflow is to combine two and sometimes three attributes using 

crossplotting tools. The third is to extract the information content of three or more 

attributes using projection techniques including principal component analysis, self-

organizing maps, and generative topologic maps, or machine learning algorithms such 

as multilayer feed forward neural networks and random forest decision trees. (Qi et al., 

2017; Zhao et al., 2018; Kim, 2018; Lubo-Robles, 2018; Infante-Paez, 2018). The key 

to attribute-assisted facies identification is to find attributes that differentiate one facies 

from another. The numerical values resulting from seismic attribute computations can 

be used in machine learning to not only identify which facies is more likely at a given 

voxel, but also to quantitatively estimate the confidence that one has in a given 

prediction.  
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3.1.1 Interpreter Driven Workflows 

 Seismic attributes are chosen by the interpreter’s based on previous knowledge, 

publications or from experience. A common interpreter-driven multiattribute analysis 

workflow includes multiattribute display and cross plotting. Most modern interpretation 

workstations provide some form of mulitattribute co-rendering using transparency, 

which is alternatively called opacity and alpha-blending (Marfurt, and Alves 2015; 

Marfurt, 2015; Marfurt, 2018; Henderson, 2008). Figure 2 shows a co-rendered image 

of dip-azimuth, dip-magnitude, and coherence volumes, which is utilized to identify the 

MTD. A second interpreter-driven workflow is cross plotting, where the interpreter 

defines polygons around “clusters” of points seen in a 2D histogram, Figure 3 shows a 

2D histogram of reflector convergence magnitude and coherence for the data volume 

shown in Figure 2. The 2D histogram is then used to correlate the attributes with the 

seismic facies by drawing a yellow polygon around areas of low coherence and high 

reflector convergence magnitude, thereby highlighting zones of that behavior in the 3D 

volume (Figure 4) Unfortunately, current commercial software does not allow the 

definition of polygons for more than two attributes. While at least one software package 

allows the definition of a 3D hexahedron (simple limits along each attribute axis), cross 

plotting is underdeveloped as a tool for three attributes and not developed at all for 

more than three attributes. 

Cross-correlation of multiple attributes has been of great interest as the 

relationship between attributes facilitates quantification of the seismic facies of interest. 

Attribute correlation to seismic facies helps the interpreter and the machine to quantify 

the facies with the applied attributes. Therefore, attribute selection is critical to 



 

14 

 

quantification of the seismic facies, as not all attributes are created equal when it comes 

to facies quantification. The identification of both useful and useless attributes further 

facilitates machine learning by editing the attributes for specific facies of interest 

(Barnes, 2007). 

3.1.2 Algorithmically (or machine-driven) workflows 

 Unlike multiattribute visualization and crossplotting, machine-driven workflows 

can easily analyze patterns lying in high dimensional spaces. There are three broad 

cases of machine-driven workflows: projection algorithms, unsupervised learning 

algorithms, and supervised learning algorithms. Projection algorithms define a plane or 

surface in some lower-dimensional space onto which the higher dimensional input data 

are projected. The most common projection algorithm is principal component analysis 

(e.g. Roden et al., 2015; Zhao et al., 2015) where the resulting projections are analyzed 

using either 2D crossplots or 3D red-green-blue (RGB) color-blending. A more recent 

variation on this is independent component analysis (e.g. Lubo, 2018) where the data 

are projected onto non-orthogonal basis functions that attempt to separate one type of 

“signal” from another using non-Gaussian statistics. 

 Unsupervised learning techniques include k-means (Coleou et al., 2013), 

Gaussian mixture models (Hardesty, 2017), self-organizing mapping or SOM (Coleou et 

al., 2013, Roden et al., 2015; Zhao et al., 2016, 2017)), generative topological mapping 

or GTM (Roy et al., 2015; Qi et al., 2016), and random forest decision trees (Kim, 

2018). SOM and GTM project the high dimensional data onto a lower dimensional 

manifold. Both SOM and GTM both start with PCA as an additional projection, such 

that both are unsupervised learning projection methods. 
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Supervised learning techniques include probabilistic neural networks (Russel, 

1997), multilevel feedforward neural networks (Russel, 1997) convolutional neural 

networks (Qi, 2018), and proximal support vector machines (Zhao et al., 2018). At least 

one commercial software package, OpendTect, provides a preselected suite of attributes 

that have proven to be appropriate to map gas chimneys, salt diapirs, or karst collapse 

and other features used in subsequent neural network analysis (Figure 5). 

Zhao et al. (2018) utilized the multiattribute application to confirm the most 

useful attributes for karst features within a Fort Worth Basin seismic survey. Zhao et al. 

(2018) identified the best attributes by using attributes that users and algorithms utilize 

to define patterns within seismic data volumes. Zhao et al. (2018) augmented a 

qualitative attribute selection process with quantitative measures to differentiate 

features of interest. Zhao et al.  (2018) then assigned weights to the attributes and the 

interpreters favored attributes as well as the attributes that the learning algorithm favor 

to create a SOM that best delineates the facies. These attributes highlight the features 

associated with karst facies, these include peak spectral magnitude, peak spectral 

frequency, most positive and most negative curvature, most positive and negative 

amplitude curvature, energy-ratio similarity (coherence) and GLCM (texture) 

homogeneity (Table 4). Zhao et al. (2018) then applied these attributes to create a self-

organizing map 

Qi (2016) applied multiattribute methods to create a seismic clustering algorithm 

to delineate seismic facies packages within the Gulf of Mexico 3D seismic dataset. The 

first step in this clustering technique is to identify the best attributes that identify the 

facies of interest. The facies of interest in this case include salt, mass transport 
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complexes and shale deposits. His workflow for identifying the best attributes that 

delineate these features included a large-scale attribute application process and applied 

Kuwahara filter to those attributes to gain a smoother image for complete segregation of 

the facies (Qi et al., 2016) (Figure 6). After computing the histogram of the correlation 

coefficients between the attributes applied to the seismic data, Qi et al. (2016) identified 

the best attributes that differentiate the selected facies. The attributes best suited for this 

method are coherence, reflector convergence, GLCM entropy, and GLCM dissimilarity 

(Figure 7). He then clustered these attributes to obtain a 3D view of the facies (Figure 

8). 

3.2 Multiattribute Application 

I investigate an example of structural deformation in a survey dominated by salt 

tectonics to better understand the concept of multiattribute analysis and which attributes 

to use to investigate the geologic features of interest, MTDs. The survey used to 

investigate MTDs was acquired in the late 1990s and imaged using prestack time 

migrated. Figure 9 shows vertical slices and a time slices at t=1.180 (s) through the 

seismic amplitude volume. Figure 9 highlights an MTD within the seismic volume. The 

MTD shows highly chaotic amplitude responses.  

Figures10 and 11 show corresponding slices through coherence and the total 

energy (within a 5 trace by 20 ms analysis window) used in the energy ratio coherence 

algorithm. Note that the salt and the MTDs exhibits both low energy and low coherence. 

Figure 11 shows corresponding time slices through co-rendered most-positive and most-

negative structural curvature. Although the curvature images clearly delineate faults and 

flexures of interest within the minibasin, the strongest anomalies occur internal to the 
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salt and the MTDs, where the low-amplitude chaotic events also exhibit chaotic dip. 

This rapid change in dip gives rise to high-amplitude curvature artifacts which was 

filtered out using a structure-oriented filter. Although these artifacts were filtered out, 

usually a human interpreter has no problem “ignoring” such artifacts; however, a simple 

threshold-based computer algorithm would give erroneous results to a voxel-by-voxel 

interpretation.  

Consciously or subconsciously, a human interpreter is using a Venn diagram, 

such as that shown in Figure 12. The Venn diagram shows three attributes that when 

they overlap identify an MTD. This is the same process a human takes to determine the 

seismic facies of interest. A decision tree would implement the same construct 

algorithmically rather than visually.  
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Figure 2.Vertical slices and a time slice at t= 1.80 (s) through coherence, dip 

magnitude and dip azimuth volumes. Low coherence discontinuities appear black. A 

layer of conformal sediments dipping to the NE appears as magenta on the SW edge of 

the minibasin while those dipping to the SW appear as green on the NE side of the 

minibasin. The chaotic, rotated blocks within the MTD dip in all directions therefore the 

response is polychromatic, separated by low coherence. 
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Figure 3. 2D Histogram of the seismic attribute coherence and convergence magnitude 

highlighting the relationship between the two attributes with MTDs. The defined 

convergence (non-parallel) incoherent yellow polygonal voxels exhibiting incoherent 

reflections, representative of MTDs and salt shown in the next figure.  
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Figure 4. Such crossplots facilitate geobody extraction of MTDs and salt within the 3D 

seismic volume. Voxels (in yellow) defined by the polygon shown in the previous 

figure.  
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Figure 5. dGB’s OpenDtect’s subset of plugin applications that pre-selects the 

appropriate attributes to delineate specific seismic facies using a multilinear feed 

forward neural network. (dGB Earth Sciences, 2018). 
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Table 4. In the left column Zhao’s et al. (2018) list of attributes useful in delineating 

karst features. The right column provides a geologic and/or a seismic imaging 

justification that a given attribute differentiates a karst feature from a background 

composed of laterally coherent, smoothly varying conformal reflectors 
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Figure 6. Qi et al.’s (2016) workflow to identify the most useful attributes to 

differentiate salt, shale, and mass transport deposits. Highlighted in red, they compute 

histograms of the attribute distribution for each of the selected facies as a measure of 

similar or dissimilar attribute response for each seismic facies discarding attributes that 

provide little discrimination.  
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Figure 7. Qi et al.’s (2016) seismic facies expression of salt, mass transport deposits 

and conformal sediments. Shown on the vertical slices along line B-B′ and time slices at 

t=1.172 s through seismic amplitude co-rendered with Kuwahara filtered attributes, (a) 

coherence, (b) magnitude of reflector convergence, (c) GLCM entropy, (d) GLCM 

dissimilarity, and (e) coherent energy.  
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Figure 8. Qi et al.’s (2016) 3D geobody of salt, mass transport complexes and 

conformal sediments obtained by drawing polygons on the 2D GTM latent space. 

Vertical slices along line B-B′ and time slices at t=1.172 s through (a) seismic 

amplitude and amplitude co-rendered (b) with salt facies (in red), (c) MTD facies (in 

yellow), (d) sediment facies (in green), and (e) with all three facies. 
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Figure 9. Vertical slices and a time slice at t= 1.80 (s) through seismic amplitude 

volume with highlighted interpreted facies. Gray arrows and the yellow polygon areas 

identify MTDs within the seismic data volume. Surrounding the MTDs are conformal 

sediments, as well as salt diapirs creating the minibasins. Salt withdrawal formed 

minibasins resulting in sediment instability and mass transport deposits. 
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Figure 10. Vertical slices and a time slice at t= 1.80 (s) through seismic coherence 

volume. This figure displays the same vertical slices as the previous figures. The gray 

arrows identify the MTD facies. The MTDs display low coherent values due to the large 

variation of sediment content and internal structures.  
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Figure 11. Vertical slices and a time slice at t= 1.80 (s) through seismic total energy 

volume. The gray arrows identify the interpreted MTDs. The MTDs express high to low 

chaotic energy responses. This is due to the varying sediment content of the MTDs. The 

conformal sediments express laterally extensive and layered low to moderate energy 

responses.   
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Figure 12. A conceptual Venn diagram showing the observation that curvature artifacts 

are more likely to occur in areas that exhibit low energy and low coherence. In a 

decision tree, such a combination would indicate that any curvature anomalies in such 

an area are noise, rather than signal and should not be used for structural or stratigraphic 

analysis. 
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Chapter 4: Seismic Expression of Karst and Mass Transport Deposits 

The initial goal of this thesis is to prototype a decision tree that represents a 

subset of commonly encountered geologic features. The longer-term goal is to build a 

web-based application to which other interpreters can add, attaining a more 

comprehensive seismic facies analysis tool at some future date which might be used by 

machine learning software. Using the pioneering work by West et al.’s (2002) analysis 

of channel systems, and Meldahl et al.’s (1999) analysis of gas chimneys as models, in 

this work it begins by documenting the attribute expression of just two seismic facies – 

karst collapse and mass transport deposits. Although these facies will vary greatly from 

basin to basin they are both amenable to a voxel-by-voxel analysis using seismic 

attributes. Infante-Paez (2018) calls the lateral, vertical, and scale consistency of such 

patterns monogenetic. The primary goal here is to capture their expression for at least 

one data volume, and thereby begin populating my website with images and 

recommendations. The application of seismic facies analysis will use Marfurt’s (2018) 

attribute table (Table 2) to answer the questions that interpreters have for seismic facies 

analysis. The study of facies expression will further evolve into a decision tree of facies 

analysis and develop a database for users.  

4.1 Karst Geologic Feature Summary 

Karst form by carbonate dissolution from the underlying soluble bedrock 

creating collapse features. There are two types of dissolution processes associated with 

karst processes, which are identified by the type of dissolution that occurs. The first 

type is hypogene where the dissolution of the bed rock occurs owing to non-meteoric 

solvent. The second type is owing to a meteoric based solvent (Cazarin et al., 2016; 
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Stafford et al. 2008). Common bedrocks associated with karsting are evaporites, 

dolomites, limestones, halite, and gypsum. The mineralogical makeup of the bedrock is 

one controlling factor of dissolution rates. For example, salt that has encounter the 

water table or is extruding at the surface due to diapirism allows the rate of 

karstification to occur more rapidly than a limestone under the same environmental 

conditions. The chemical diagenesis of carbonates occurs with dissolution, 

remobilization, and precipitation of calcium carbonate producing the karst features 

(Milad, 2017; Milad and Slatt, 2017). This in turn affects the overlying deposition 

which karst create diverse structures like sinkholes, underground river system, caverns, 

which in turn can be difficult to identify using seismic alone (Zhao et al., 2018). The 

identification of karst features can be difficult to determine in seismic because they may 

be under the tuning zone or resolution zone and they can be misinterpreted as other 

facies.  

These collapse features can take a variety of forms including sinkholes, 

fractures, and subsurface caverns (Figure 13). Loucks (2008) defined karst as “the 

diagenetic features and drainage systems produced during chemical dissolution and 

associated modification of soluble rocks.” Karst structures can form where rain water or 

groundwater has dissolved the underlying carbonate or evaporite rock thereby d of the 

area such that basinal fluids such as H2S can rise and encounter oxidized groundwater 

(Natural Resource Report, (2007/003). The resulting sulfuric acid can then dissolve the 

carbonate rock like the Carlsbad Caverns in New Mexico (Natural Resource Report, 

(2007/003). These features are common within carbonate groups like the Hunton 

Limestone of Oklahoma where they enhance the permeability of fractures within 
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locations of interest (Milad and Slatt, 2018; Milad, 2017). Figure 14 shows sink hole 

features from karstification of the Hunton Group by the stratigraphic cross section of 

well logs where the thickness of the Hunton Group changes laterally, resulting in an 

increased thickness of the overlying Woodford Shale (Milad and Slatt, 2017). In this 

case, it is pertinent to know karst locations for Woodford sweet spots.  

4.1.1 Seismic Amplitude Expression of Karst Features 

 Karst features will be encased by planes of curved and non-parallel reflectors 

with offset dependent on the extent of the collapse depth of the karst. In many cases 

multiple karst features developed in an area with similar seismic amplitude expression 

to one another (Figure 15 and 16). They exhibit continuous to semi-continuous reflector 

continuity within the collapse feature depending on the severity of the karst collapse. 

The collapse depth depends on the amount of dissolution, and collapse depth of the 

underlying bedrock. The karst feature can contain a variety of sedimentary rocks 

including the host carbonates or evaporites. The collapse is due to the overburden and 

the instability of the carbonate sediments owing to dissolution. The amplitude of the 

karst feature will be moderate to high impedance contrast as the sediment contents 

within the collapse feature varies from carbonates and evaporites to sand and mud 

(Figure 15). In the time or depth domain the karst feature will look like a pocket, in that 

it will be circular, or it will have polygonal shape with joint connectivity (Qi et al. 2018) 

(Figure 15). Seismic images may show sink features, polygonal faulting, and structural 

lows that delineate the joints, caves and collapse features of karstification (Qi et al. 

2018). In vertical slices these features become evident in their amplitude expression 

(Figure 16). The cross-section of these features is shown in Figures 16. Karst form sinks 
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or collapse features that can be identified by the discontinuities of reflectors on vertical 

slices as seen in Figure 16. 

4.1.2 Seismic Attribute Expression of Karst Features 

 The nature of a karst feature is more structural than stratigraphic, therefore the 

best type of seismic attribute to apply to a seismic data set with these features would be 

geometric attributes and spectral attributes which delineate the discontinuities and the 

spectral magnitudes identifying the lithological changes and the geometric changes in 

the deposits. The karst features can be differentiated from the surrounding less altered 

dolomite by multiple attributes that measure reflector configuration, discontinuity, 

texture and spectra (Figure 17-22). Sullivan et al. (2006) used curvature, coherence, and 

energy ratio similarity to map karst. Zhao et al. (2018) used peak spectral magnitude, 

peak frequency, most negative and positive curvature, coherence and GLCM textures 

(Qi et al. 2018; Zhao et al. 2018). 

 Karst features are identified as structured features with the collapse features 

encased by polygonal faults and outer edge collapse features and can therefore be firstly 

interpreted with the geometric attributes. These include the coherence where the 

coherence response is low due to the collapse feature (Figure 17) (Torres-Parada et al., 

2017). Dip azimuth and dip magnitude are used in this facies example to express the 

dipping direction of the collapse features. The response from the dip magnitude and the 

dip azimuth (Figure 19) shows polychromatic responses from the internal structures of 

the karst. The dip azimuth response is due to the bowl shape of the karst features 

creating a multi-directional response within the karst. The most positive and negative 

curvature delineates change in the dip which expresses the karst features as they have 
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dip change within the collapse feature and the external edges of the collapsed feature 

(Figure 18). The most positive curvature response (k1) is exhibited on the outer rim of 

the karst facies and the internal structure is expressed by the most negative curvature 

(k2).  

 The lateral changes in layer thickness and impedance produce lateral variation in 

spectral components (Figure 20) (Qi et al. 2014; Torres-Parada et al., 2017). The 

chaotic collapse features and rugose surfaces give rise to non-specular scattering, which 

in turn gives rise to constructive interference at low frequencies and destructive 

interference and at high frequencies, resulting in lower bandwidth and lower peak 

frequency (Qi et al. 2014). Figure 20 is the spectral magnitude response co-rendered 

with coherence to highlight the spectral magnitude response of the karst feature 

expression. The spectral magnitude expression of the karst features are low values and 

highlight the expanse of the feature.  

 Karst features yield textural effects within the seismic data due to the chaotic 

amplitude response of the karst facies. The attributes that best delineate these features 

are GLCM dissimilarity and contrast (Figures 21-22). GLCM texture attributes are a 

suite of statistical measures that attempt to quantify lateral patterns in reflectivity along 

structural dip. These calculations are relatively insensitive to the amplitude magnitude. 

The attribute delineates the contrast of the karst to the sediments surrounding the feature 

(Figures 21-22) (Marfurt, 2018).  

4.2 Mass Transport Deposits 

Mass transport deposits are defined as mass flow deposits that have occurred 

owing to slope failure, allowing sediment to move down the slope face and to be 
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deposited down dip. Mass transport deposits are sedimentary deposits that have 

exceeded the slope stability angle causing slope failures and gravity flow processes 

which can lead to amalgamation surfaces at the base, slump scars, large 

geomorphological structures and convoluted bedding (Slatt, 2006). 

Mass transport deposit (MTD) is a simplistic term representing many 

depositional environments ranging from submarine fan clastics to sands and muds in the 

Gulf of Mexico (Oyedele, 2005) to the mixed lithologies containing Bone Springs in the 

Delaware Basin, slope carbonate aprons in the Midland Basin of Texas and New 

Mexico, chalk in the Danish section of the North Sea, and sand wedges in the South 

China Sea (Gong et al., 2014). Mass transport deposits travel basinward and can vary in 

size and shape based on the slope failure type and the sediment composition. 

Moscardelli and Wood (2008) characterized the morphology of these deposits as a 

function of location and mechanics of failure (Table 7). (Moscardelli and Wood, 2008; 

Bull et al., 2009). There are many factors that control mass transport deposits including 

slope failure location, slope failure type, kinematic movement of the failure and the 

mass flow of the failure. The variable types of failure make delineating the MTD 

important for further determination of composition, internal and external structures that 

could be associated with the feature as well as the identification of depositional 

environments.  

Depending on the lithology and location, MTDs can be reservoirs, seals, or 

drilling hazards (Bull et al., 2007; Gong et al., 2014). Slatt (2007) defines MTDs as 

“massive slope failures allowing sediment to flow down slope causing large-scale 

erosion on the underlying sediments”. The forms of these features and the lithology of 
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the MTD are dependent on the location of the slope failure within the basin and can 

range from inner shelf slopes to basinward valleys. MTDs often interact with previous 

mass transport deposits, giving a rise to the term mass transport complex (MTC). 

 Moscardelli and Wood (2008) divide MTDs into two classes determined by their 

slope failure mechanisms as well as their source area. The first class of MTD is by 

continued debris attachment to the slope failure. The slope failure attachment or 

detachment indicates the casual mechanisms as well as the source location (Table 6). 

The casual mechanism of the MTD can give information of the depositional 

environment at the time of failure and can help to identify the matrix of the MTD. The 

mechanisms of the MTD can also be a significant indicator to the erosional surface on 

the underlying sediment layer on which the MTD travels (Moscardelli and Wood, 

2008). These MTDs contain chaotic, low-amplitude reflections with variable reflector 

continuity and contained irregularly shaped internal geometry caused by the internally 

rotated blocks (Gong et al., 2017). The same amplitude expression occurs within the 

MTDs in the Gulf of Mexico where minibasins are formed due to salt diapirism (Figure 

22)  

4.2.1 Seismic Amplitude Expression of Mass Transport Complexes 

Mass transport deposits vary in seismic amplitude characteristics by their 

mechanism of transport, the stratigraphic structures and the seismic response in 

amplitude. The interpretation of these features is dependent on the resolution of the data 

and the size of the MTD. If the feature falls below the tuning limit then the features are 

not reliably interpreted; however, often the features are large enough to distinguish 

some of the common internal features (Gong et al., 2014; Moscardelli and Wood 2007). 
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The mechanism, sedimentary structures and the seismic expression delineate the type of 

MTD within the location of interest. MTDs are subdivided into the three types of 

transports, debris flow, slump, slide deposit, by their transport mechanisms, 

sedimentary structures and seismic expression. The mechanisms within the MTD is 

dependent on the rotation of the internal sediments or the internal deformation 

(Moscardelli, and Wood, 2007). The sedimentary structures are defined by the internal 

structures and the matrix of the MTD. The seismic features are the structures associated 

with the MTDs massive movement as well as the internal expression of the MTD.  

In the northern Gulf of Mexico, the sediments transported consist primarily of 

sand and mud (Sarkar and Marfurt, 2017). Slope failures are initiated by both sea level 

fluctuation and salt diapirism.  Due to these external factors that have caused slope 

structure instabilities within the Gulf of Mexico there are many MTDs (forming 

multiple MTCs) in our 3D seismic survey. Gong et al. (2014) described four types of 

MTDs utilizing the methods from Moscardelli and Wood (2008), Bull et al. (2009), and 

Olafiranye et al. (2002) within a large seismic data within the northern South China sea 

margin.  

The seismic amplitude expression of mass transport deposits is often chaotic in 

nature on both vertical and time slices (gray arrows in Figure 22). In this image there 

are multiple MTDs stacked with conformal layered sediments separating them. The 

MTDs exhibit variable amplitudes within the structure and near the slope scarp location. 

Towards the toe of the MTD the amplitudes become less chaotic as the transport thins 

and the kinematic energy of the MTD flow dissipates (Figure 22). 
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Examining the surrounding context, the seismic expression about the MTD is in 

general more continuous, with less lateral variation than the internal MTD structure 

(Figure 22). The bottom of the MTD erodes the sediments below, truncating preexisting 

layered sediments, channels, faults, and other MTDs (Figure 23).  

4.2.2 Seismic Attribute Expression of Mass Transport Complexes 

 Given this preliminary interpretation of the mass transport deposit, I evaluated a 

suite of twelve candidate geometric and spectral attributes with the goal of 

differentiating the MTDs from the surrounding facies. Based on previous experience by 

Qi et al. (2016) I generated the suite of attributes shown in Figures 22-31, where the 

relative value of each attribute is displayed in each caption. Note that while a given 

attribute, such as the vector dip, may be of significant value to a human (in context) 

interpreter examining the neighboring facies, it has only limited value if the goal is to 

construct a voxel-by-voxel classification using machine learning.  

The list of attributes is not exhaustive; other GLCM texture attributes as well as 

the spectral bandwidth and peak frequencies can be used to differentiate the MTD from 

the surrounding facies. The inclusion of such an exhaustive analysis is well suited for a 

web application.  
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Figure 13. Loucks’ (2008) cartoon of karst features within the Ellenburger formation in 

Texas. This shows the type of faults that occur with karst as well as the type of fill, cave 

formation and sink holes.  
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Figure 15. Vertical slices and time slice at t=0.75s through the seismic volume. The 

teal polygons highlight the karst facies within the Ellenburger Formation. These facies 

display circular collapse features as well as faulting near the collapse clusters (Data 

courtesy of Marathon Oil Co.).  
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Figure 17. Vertical slices through seismic amplitude volume and a phantom horizon 25 

ms below the top of the Ellenburger formation through the seismic coherence volume. 

The karst features exhibit a low coherence response.  
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Figure 18. Vertical seismic amplitude slices and a phantom horizon 25 ms below the 

top of the Ellenburger formation through the corendered seismic coherence and 

curvature volumes. Gray arrows indicate karst features. The vertical slices express the 

amplitude co-rendered with the most-positive and most-negative curvature to delineate 

the karst collapse features. The bowl-shaped karst features exhibit a strong negative  

curvature internal response (in blue) a low-coherence internal response (in black) and a 

positive external response (in red). 
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Figure 19. Horizon slice along the top Ellenburger formation through co-rendered dip 

azimuth and dip magnitude volumes. The karst features display high dip magnitude 

values as well as variable dip azimuth. Curvilinear faults strike toward the northeast.  
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Figure 20. Vertical seismic amplitude slices and a phantom horizon 25 ms below the 

top of the Ellenburger formation through corendered seismic coherence and spectral 

magnitude volumes. Karst features display low spectral magnitude within the collapse 

feature.  
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Figure 21. Vertical seismic amplitude slices and a phantom horizon slice 25 ms below 

the top of the Ellenburger formation through the corendered seismic amplitude and 

GLCM dissimilarity volumes.  Karst features display high dissimilarity values. 
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Figure 22. Vertical seismic amplitude slices and a phantom horizon slice 25 ms below 

the top of the Ellenburger formation through the corendered seismic amplitude and 

GLCM contrast volumes. Karst features exhibit high contrast values.  
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Table 8. A comparison of attached versus detached mass transport complexes 

characterized by the location and mechanism of slope failure (After Moscardelli and 

Wood, 2008).  
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Figure 23. Vertical slices and a time slice at t=1.180 s through the seismic amplitude 

volume. The MTDs exhibit chaotic reflectors within the structure as well as pinch out 

features at the toe of the MTD. The external features of the MTD include conformal 

sediment deposits both on the top and the bottom of the feature.  
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Figure 24. Vertical slices and a time slice at t=1.180 s through the seismic amplitude 

and seismic coherence volume. The MTDs exhibit chaotic reflectors that are highlighted 

by low coherence. The salt exhibits the same coherence expression whereas the 

conformed sediments are high coherence.  
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Figure 25. Vertical slices and a time slice at t=1.180 s through corendered coherence, 

dip magnitude, and dip azimuth volumes. Low coherence discontinuities appear black. 

A layer of conformal sediments dipping to the NE appears as magenta on the SW edge 

of the minibasin while those dipping to the SW appear as green on the NE side of the 

minibasin. The chaotic, rotated blocks within the MTD dip in all directions so appear 

polychromatic, separated by low coherence discontinuities. 
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Figure 26. Vertical slices and a time slice at t=1.180 s through corendered coherence, 

convergence magnitude, and convergence azimuth volumes. Low coherence values as 

well as chaotic convergence azimuth delineate the MTDs and the salt structures. The 

MTDs express variable convergence directions in the internal structure due to rotated 

blocks. The conformal sediments exhibit continuous convergence. The NW layered 

sediments converge toward the NE and the layers on the NE side of the minibasin 

converge SW.   
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Figure 27. Vertical slices and a time slice at t=1.180 s through corendered coherence, 

convergence magnitude, and convergence azimuth volumes. Low coherence values as 

well as chaotic convergence azimuth delineate the MTDs and the salt structures. The 

MTDs express variable convergence directions in the internal structure due to rotated 

blocks. The layered sediment exhibits continuous convergence. The NW conformal 

sediments converge toward the NE and the layers on the NE side of the minibasin 

converge SW.   
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Figure 28. Vertical slices and a time slice at t=1.180 s through the corendered most-

positive and most-negative curvature (k1 and k2) volumes. Gray arrows indicate MTDs. 

The MTDs display large variations in the internal structure with the response of k1 and 

k2 expressed throughout the feature. The salt diapirs respond with the strongest 

structural anomalies internally, but in general correspond to mismigrated noise.  
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Figure 29.. Vertical slices and a time slice at t=1.180 s through total energy volume. 

Gray arrows indicate MTD facies that exhibit high coherent energy. In contrast, the 

incoherent salt diapirs exhibit low total energy. 
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Figure 30. Vertical slices and a time slice at t=1.180 s through corendered envelope 

and coherence volumes. Gray arrows indicate MTD facies which exhibit low to high 

envelope values. The conformal sediments and salt exhibit low envelope values. 
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Figure 31. Vertical slices and a time slice at t=1.180 s through corendered GLCM 

homogeneity and amplitude volumes. The GLCM homogeneity attribute highlights 

chaotic features particularly well. The MTD facies exhibit low homogeneity response 

within the data. The salt diapirs exhibit the same expression as the MTD as they are 

variable internally. The conformal sediments display high homogeneity. 
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Chapter 5: Web-Application 

The software package utilized for this thesis is called “Wix” to prototype my 

web application. Wix is an open platform that requires a domain name and some cost 

for additional functionality that are pre-defined by Wix within the platform signup. The 

legal terms of agreement do not provide Wix any ownership to the user data (i.e. 

images, videos, documents…) by the intellectual property clause within the contract in 

(Figure 35) where the user has complete ownership of the website (Figure 35). 

The Wix platform is designer-friendly, where the Wix provides predefined 

templates that can be edited and applied to the web page without prior knowledge of 

html. The easy-to-follow guidelines within the application allow the designer to obtain 

help from the company at any time. The webpage is easily edited directly in the 

application rather than programming in html. If the user would like to program in html 

they may through the web-program. Within Wix the designer can import multiple files 

including images, tables, videos, and interactive applications. The only limitation found 

within the Wix web-platform is the main menu pages can only have one subdirectory 

page or sub-page (Figure 36).   

The domain name of the website is www.seismicfacies.org and the website is 

open to the public for usage. For editing purposes in the future, the user will have to 

login to the account associated with the website.  Initially, editing capabilities will be 

limited to AASPI students and collaborators. The AASPI website is connected to this 

website by an internal link on the AASPI logo at the top of the menu. The user can 

always go to the AASPI website for additional information concerning the attributes or 

for an additional resource.  
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Within seimsicfacies.org I have created a menu consisting of home, about, 

seismic facies, seismic amplitude and seismic attribute (Figure 36). The main pages are 

seismic facies, seismic amplitude and seismic attribute. These menu pages consist of 

multiple sub-pages that distinguish either the feature of interest or the attribute of 

interest. The organization of the routing pages is for user-friendly access to the 

information of interest. The organization of the website such that it imitates a decision 

tree, based on user queries (Figure 37). For example, “I have an MTD. What will it look 

like in amplitude?” or “I have a chaotic feature that has low entropy values. Is it an 

MTD?” (Figure 38). These questions can be answered through the web-based 

application. This knowledge can then be applied to SOM, PCA, ICA, and neural 

network application.  
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Figure 32.The legal language from the Wix website stating all intellectual property 

rights.  
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Figure 33. This is an image of the directory menu. The image reflects the lack of 

multiple internal directories.  

 

 

Figure 34. The menu of the seismicfacies.org website. 
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Figure 35. This figure is a database diagram of the facies and the attributes that best 

suit them. At present, the only facies investigated in this thesis are karst and MTDs. 

More geologic features will be added in the future. 
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 Chapter 6. Decision Trees 

 The earliest versions of geoscience decision trees were handbooks written by 

what are now called specialty domain experts on seismic processing and well log 

analysis. Since that time, decision trees have evolved into a supervised learning method 

used for classification and regression of large-scale data sets. The decision tree utilizes a 

predictive model from data points or observations guided by a series of questions to 

lead to a final solution (Figure 38). Decision trees built by experts provide a means to 

capture and disseminate best practices to a non-expert community, or if programmed, 

provide a means to accelerate simpler, more mundane, components of the interpretation 

process. Figure 38 provides an example of a decision tree that captures the 

interpretation process used in interpreting structural deformation. An example of a 

decision-tree application in seismic data is the implementation of automatic horizon 

picking.  

 The goal of this thesis is to build a more modern version of a seismic 

interpretation “attribute handbook,” focusing on only a few branches of the tree, or 

seismic facies including karst collapse and mass transport complexes. There are several 

advantages to a web-based system. First, it is not limited to a 2-dimensional table but 

rather can sort n-dimensional relations by seismic facies, by attribute, by depositional 

environment or by exploration objectives. Second, a web-based system can be 

populated by seismic 3D animations for higher quality information which can link the 

geologic feature to a 3-dimensional view. The examples and definitions of the seismic 

attributes have references to further the density of information for the user. These 
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references will help define the subjects that may be unclear to the user as the expected 

user will range in educational levels.  

6.1 Decision Tree Background 

As the name suggests, there will be branches that are classified further into 

nodes (Figure 38) (Song and Lu, 2015). There are three types of nodes within a decision 

tree. The first is a root node which represents a choice that will result in the subdivision 

of all records into two or more mutually exclusive subsets. The secondary nodes are 

internal nodes which represent the possible choices available from that point in the tree. 

Finally, there are leaf nodes which encompass the final solutions. In Figure 38 the root 

node is the first question asked, the internal nodes are the questions that come after the 

root node and the leaf nodes are the final solutions or the red cylinders.  The branches 

connect the nodes to finally come to the leaf node solution. 

The larger branches may be defined by their tectonic, depositional and 

diagenetic geologic expression (Figure 39). There will then be subdivisions of these 

larger branches by the type of geologic setting such as compressional versus extensional 

for tectonic and lacustrine or marine environment of deposition. As the tree grows, the 

branches become more specific, allowing an expert interpreter to associate a given 

feature with one or more attributes.  

In this case, the decision tree will be a support tool that utilizes data objects 

based on predefined input knowledge of previous work captured by journals and 

software packages. The decision tree within this project will go through facies, 

structures, and attributes that are most common elements within a geologic system. The 

decision tree will then be applied to a web-based application for seismic facies 
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interpretation. Then the decision tree will predict the “values” or geologic features of 

interest (Figure 40), which will serve as input to a machine learning tool (Figure 41). 

The user is able to use the features of the dataset within the web-based application to 

answer questions defining the geologic facies, the amplitude expression, and the 

attribute expression. The web application is used in order to identify facies using data 

that has already been interpreted and has applied attributes. The role of the decision tree 

in this work is simply to choose those attributes that are good candidates for subsequent 

machine-learning facies prediction using a random decision tree method (Kim, 2018) 

(Figure 40).  

6.1.1 Random Forest Decision Tree Application 

Kim (2018) utilizes a random forest algorithm utilizing an ensemble of decision 

trees, in this case trained by a bagging or bootstrap aggregation. The benefit of a decision 

tree is the ability to identify redundant and pertinent attributes with a quantitative measure 

for each attribute for a given facies. While a decision tree is a white box algorithm, a 

random method takes advantage of decision trees but alleviates overfitting of training 

data. The Random Forest decision tree application is less biased than a decision tree alone 

since it integrates individual trees rather than a whole tree. The application of a decision 

tree forest results in a higher accuracy rate of predication. Both the decision tree and the 

random forest algorithms predict multiple classes that are available rather than one 

individual class.  

The random forest method takes many decision trees which have a root node to a 

leaf node to make repeated predictions of the training data as the input (Breiman, 2001). 

Breiman defines random forest as a “classifier consisting of a collection of tree-structured 
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classifiers {h (x, k), k = 1, 2, ...} where the {k} are independent identically distributed 

random vectors and each tree casts a unit vote for the most popular class at input x.” The 

random forest method uses a subset of training data that are randomly chosen and then 

replaced for several times equal to the number of trees in the ensemble (Carranza and 

Laborte, 2014). The random forest decision tree method is the bootstrap aggregation 

method for random decision trees. This allows two thirds of the training samples to be 

used for prediction accuracy. For each split in the decision tree, a random selection of the 

predictor variables is made. Then the prediction output is based on the average of the 

predictors of all the regression trees.  

The random forest method has been utilized in predicting surface lithology classes 

from airborne geophysical data, topographic data for mineral locations, or remote sensed 

satellite data (Ham et al., 2005; Pal, 2005; Waske et al., 2009; Duro et al., 2012; Carranza 

and Laborte, 2014). Uncertainty estimates in prediction of lithology contact zones or in 

lithology mapping suggest random forest algorithm recovers data points better than 

inherent dependencies over spatially varying input data than support vector machine 

algorithm (Cracknell and Reading, 2016).  

The byproduct of random forest algorithms is variable importance (Breiman, 

2001b; Liaw and Wiener, 2002). Some attributes are more efficient and accurate 

predictors, and other attributes may include little information for prediction. Selecting 

attributes which contribute best to classification can speed up the process and improve 

prediction accuracy. 3D seismic in geophysical exploration are large-scale data. Since 

computation time is proportional to the number of variables and size of the data set, 

reducing dimensionality is crucial for learning algorithms. Selecting appropriate features 
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is important in machine learning algorithms. Some features are more powerful for 

classification, and others may be redundant. Reduction of dimension based on feature 

selection can speed up the learning process, as well as improve prediction accuracy. For 

this process the most pertinent attributes and facies are identified by the random forest 

decision tree method.  

       Botanical trees are three dimensional. Our decision tree will in general be higher 

dimensional. In addition to the tree major branches described above, knowledge of the 

geologic environment will provide improved interpretation. In terms of structural 

features, are we in a compressional, extensional, or strike-slip regime? Are we in 

environment conducive to carbonate, evaporite, or volcanic features? Is the environment 

fluvial, lacustrine, or deep water? These additional “dimensions” are routinely used by 

human interpreters to set the context for observed seismic features. 
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Figure 36. A simplified example of a decision tree to identify the root node, the internal 

nodes, and the leaf node.  
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Figure 37. A simplified decision tree for MTD identification within seismic datasets. 

The decision tree in this figure depicts the nature of a decision tree as well as the 

thought processes of a seismic interpreter to identify the geologic feature of interest 

utilizing seismic attributes. 
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Figure 38. A chart of the normalized features regarding the attributes. The best attribute 

identified by Kim (2018) are total energy, peak magnitude, chaos, RMS (root mean 

square) amplitude, absolute magnitude and GLCM entropy and homogeneity. 
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Chapter 7: Limitations and Conclusions 

 The most challenging aspect in constructing such an application are the thought 

processes (geopsychological analysis) of the skilled interpreter – what do they see when 

they identify a specific geological feature, and how can this pattern be quantified by 

seismic attributes or a decision tree workflow?  

 Seismic data quality can be as important as geology in attribute selection. While 

some features, such as faults and karst collapse can be classified voxel by voxel, other 

features, such as progradations and meandering channels need to be placed in context of 

the geologic features seen above, below and around the target of interest to confirm the 

interpretation. Such in context analysis falls into the computer vision domain of scene 

analysis. 

Seismic attributes capture and quantify many of the variations in seismic 

amplitude, continuity, orientation, and texture used by human interpreters. However, 

human interpreters typically analyze such features in context with surrounding facies 

coupled with an understanding of the depositional environment. To be useful for simple 

machine learning techniques, these attributes must be able to differentiate the target 

facies at a voxel-by-voxel granularity.  Post attribute processing, such as Kuwahara 

filtering proposed by Qi et al. (2016) partially addresses this challenge. Convolutional 

neural networks may provide similar advantages. In the meantime, we have constructed 

the first web page to link a given seismic facies to the attributes that delineates the 

features expressed in this thesis. 

The web-based application applies the knowledge of previously published 

papers and current attribute application practices to create a workflow, a database, and 
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an attribute taxonomy to answer the question “what attribute identifies the desired facies 

from the surrounding facies?” The web-based application is limited to two facies which 

are MTDs and karst seismic facies. These facies are expressed well in seismic data and 

exhibit distinct attribute expression in geometric-based attributes as well as textural 

attributes.  

In the future, I would like to see this website evolve into a larger database and 

workflow for more facies and attribute application to develop a SEG Wiki. This will be 

the most useful tool to create a database for machine learning or to apply this 

knowledge to SOM, ICA, or PCA. As this website grows into a living documentation of 

seismic facies and attributes it can be applicable to many questions that are being asked 

by professionals, students and academics. 
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Appendix A: Data Conditioning  

 The 3D seismic dataset used for MTD facies analysis covers an area of 8000 

km2 offshore Louisiana’s shelf edge. The seismic data were acquired by PGS using 

towed streamers with two sources and three receiver cables with a maximum offset of 

6000 m. The seismic data contains large minibasins formed from salt withdrawal. The 

salt withdrawal created large diapiric salt structures resulting in sediment destabilization 

resulting in massive gravity flows or MTDs. Migration aliasing and other limitations in 

the acquisition and processing gave rise to high-amplitude cross-cutting noise cutting 

lower-amplitude stratigraphic reflector. Multiples converted waves, and migration 

artifacts contaminate the interior of the salt domes with steeply dipping, chaotic events. 

In both cases, relatively strong, steeply dipping noise events can juxtapose weaker, 

relatively flat stratigraphic reflectors, resulting in high amplitude curvature impulse 

responses (Figure A1). To mitigate this problem, I first applied a lower-upper-median 

(LUM) filter to the volumetric dip components and then applied a structurally oriented 

filter to the seismic amplitude data (Figure A2). Figure A3 shows that these artifacts are 

no suppressed. 
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Figure A1. Vertical slices with a time slice at t=1.180 s through co-rendered most- 

positive and most-negative curvature volumes. Red arrows indicate artifacts due to 

rapid lateral changes in structural dip, usually associated with high-amplitude cross-

cutting noise cutting a low-amplitude stratigraphic reflector.   
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Figure A2. Structure-oriented filter workflow that suppresses both erratic dip estimates 

and crosscutting noise in the seismic amplitude volume.  If necessary, the filtered 

seismic data may be used as input for a second pass of filtering.   
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Figure A3. Vertical slices with a time slice at t=1.180 s through the structural curvature 

volume. The green arrows indicate areas where artifacts have been removed by the 

workflow in Figure A1. 
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Appendix B: Attribute Expression of a Mass Transport Deposit 

In this appendix I provide images of a Gulf of Mexico mass transport deposit for the 

suite of attributes listed in Table 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 km 

.25 

1 

2 

Ti
m

e 
(s

) 

A 

A’ 

B B’ 

2 km 

N 

(a) 

(b) A A’ 

MTD 



 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Co-rendered seismic amplitude and coherence seen on (a) a time slice at 

t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is highlighted by the 

black polygon. The MTD exhibits low coherence.  
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Figure B2. Co-rendered seismic amplitude dip azimuth and dip magnitude seen on (a) a 

time slice at t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is 

highlighted by the black polygon. The MTD exhibits variable dip azimuth response due 

to the large structural variability within the deposit.  
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Figure B3. Co-rendered seismic amplitude and homogeneity seen on (a) a time slice at 

t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is highlighted by the 

black polygon. MTD displays low homogeneity values due to large variations of 

sediments and structure internal to the deposit. 
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Figure B4. Co-rendered seismic amplitude, convergence azimuth and magnitude seen 

on (a) a time slice at t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is 

highlighted by the black polygon. The MTD, outline by the black polygon, displays 

variable convergence azimuth values due to the highly chaotic structures within the 

MTD.  
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Figure B5. Co-rendered seismic amplitude, variance, peak frequency, peak magnitude 

seen on (a) a time slice at t=0.608 s (b) along line A-A, and (c) along line B-B’. The 

MTD is highlighted by the black polygon. The MTD, outline by the black polygon, 

displays variable frequency responses that does not delineate the MTD from 

surrounding sediments.  
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Figure B6. Co-rendered seismic amplitude and non-parallellism seen on (a) a time slice 

at t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is highlighted by the 

black polygon. The MTD, outline by the black polygon, displays variable magnitude 

responses that does not delineate the MTD from surrounding sediments.  
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Figure B7. Co-rendered seismic amplitude and GLCM entropy seen on (a) a time slice 

at t=0.608 s (b) along line A-A, and (c) along line B-B’. The MTD is highlighted by the 

black polygon. The MTD is characterized by the high entopic response due to variable 

internal structures. 
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Appendix C: Attribute Expression of Karst  

In this appendix I provide images of a Harris karsts for the suite of attributes listed in 

Table 5.  
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Figure C1. Co-rendered seismic amplitude and coherence seen on (a) a time slice at 

t=0.75 s (b) along line A-A, and (c) along line B-B’. The karst is highlighted by the 

black polygon. The karst features, outline by the black polygon, displays low coherence 

responses due to the collapse structures and polygonal faults. 
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Figure C2. Co-rendered seismic amplitude k1 (most positive curvature) and k2 (most 

negative curvature) seen on (a) a time slice at t=0.608 s (b) along line A-A, and (c) 

along line B-B’. The karst is highlighted by the black polygon. The karst features are 

highlighted by black circles. The curvature response in time shows high curvature 

values outside the collapse and low curvature values in the collapse features. The 

polygonal faults have a positive value on the up thrown side of the block and a negative 

value on the down thrown block. 
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Figure C3. Co-rendered seismic amplitude, variance, peak frequency, peak magnitude 

seen on (a) Seismic time slice at t=0.75 s. (b) A-A’ cross-section. (c) B-B’ cross-

section. The karst features are highlighted by black circles. Karst display high variance 

responses as well as low frequency values 
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Figure C4. Co-rendered seismic amplitude and non-parallelism (a) Seismic time slice at 

t=0.75 s. (b) A-A’ cross-section. (c) B-B’ cross-section. The karst features are 

highlighted by black circles and yellow circles. Karst collapse features, highlighted by 

the yellow circle, high non-parallel values while the layers surrounding, highlighted by 

black circles, are expressed as low values.  

 

 

 

 

 

 

 

1 

Ti
m

e 
(s

) 

2 km 

.5 
B B’ 

(c) 

2 km 

5 

0 

Non-parallelism 
entropy 

Opacity 

0 100 



 

112 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B’ 

A’ 

(b) 

5 km 
N 

A 

B 

(a) 

A’ 
.5             

Ti
m

e 
(s

) 

      
1 

2 km 

A 



 

113 

 

 

 

  

 

 

 

 

 

  

 

 

Figure C5. Co-rendered seismic amplitude and GLCM homogeneity (a) Seismic time 

slice at t=0.75 s. (b) A-A’ cross-section. (c) B-B’ cross-section. The karst features are 

highlighted by black circles. Karst collapse features exhibit low homogeneous values.  
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Figure C6. Co-rendered seismic amplitude and GLCM entropy (a) Seismic time slice at 

t=0.75 s. (b) A-A’ cross-section. (c) B-B’ cross-section. The karst features are 

highlighted by black circles. Karst collapse features exhibit high entropic values.  
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