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CHAPTER 1

INTRODUCTION

1.1 PREVIOUS WORK IN THE FIELD

The general subject of reliability may be subdivided into many
categories such as reliability prediction and analysis, reliability
measurement, redundancy, etc. Balaban (1) presents one method
of classification and a selected bibliography on reliability in general.
Although there is no unique or universally accepted classification of
reliability, redundancy is commonly considered to be one of the subclasses
of reliability theory and practice and is of primary concern in this
investigation.

Since initially proposed in 1956 by J. von Neuman (20),
the area of ''synthesis of reliable organisms from unreliable
components' has been given considerable attention. Redundancy, as
defined by Webster, is "quality, instance, or state of being redundant,"
and redundant is defined as ""exceeding what is natural and necessary"
or as "being superfluous.'" This connotation is rapidly becoming
outdated, since redundancy may be an absolute requirement and the

only means by which an extremely high reliability can be achieved.



Short (18) presents an excellent bibliography in the redundancy field,
listing 347 sources which are indicative of the rather concentrated effort
in this field since 1956.

Historically, reliability improvement has been attacked through
simplicity in concept, conservative design, utilization of highly reliable
component parts, and extensive test programs and procedures. Within
the past two decades, tremendous strides have been taken in the
improvement of component part reliability. For example, in electronic
circuitry, the transistor demonstrated a marked reliability improvement
in comparison to the electron tube, and, in more recent years,
microminiaturization and integrated circuits have contributed
significantly to the improvement of electronic circuit reliability.
Although large-scale integrated circuits are presently being used in a
limited sense, they will be massively employed in future systems, which
will result in another significant improvement, However, even with these
advances in basic technology, overall system reliability, in many cases,
will not improve sufficiently to meet tomorrow's critical demands
because (1) systems are becoming more sophisticated and are,
therefore, more complex, and (2) systems are being required to
operate over extended periods of time. Therefore, other techniques
must be employed, and redundancy provides a means of increasing
reliability beyond the point which can be obtained through basic technology

alone.



Several redundant forms, or configurations, have been discussed
in the literature. Typical examples are duplexing, quadruplexing, one-
out-of-n parallel redundancy, and majority logic. The investigation
herein is primarily concerned with the development of the unique two-
out-of-n configuration which is derived basically from the concept of
majority logic. Although the term '"majority logic' will not be employed
extensively beyond Chapter II because it is no longer descriptive of the
configuration under study, the literature on majority logic provides a
firm foundation on which this investigation is based. Rozenberg and
Ergott (14) have treated two-out-of-three majority logic and have
shown that the mean time to failure of output voting is greater than that
of input voting. Teoste (19) has shown that the mean time between
failures of digital electronic equipment can be increased by several
orders of magnitude by the use of von Neumann's multiplexing
redundancy. However, the mean time between failures is not always a
meaningful parameter to employ when comparing redundant and non-
redundant configurations or in comparing various forms of redundant
configurations., The best placement of voters in a triplicated logic
network is treated by Gurzi (8), who shows that the utilization of a
voter with each module employed is to be preferred to a single voter
per redundant module. In his work, however, the logic necessary to
perform the voting function is not taken into consideration. Lyons and

Vanderkulk (11) discuss the use of the triple modular redundancy



technique and point out the possibility that, in addition to voting or fault
masking, failure detection and isolation are possible; but they do not
consider the logic necessary to accomplish this function. Failure
detection and isolation in a triple modular configuration may be very
important in reducing maintenance problems and may be employed solely
for that purpose rather than just for increasing system reliability.
Triple modular redundancy is also treated by Brown, Tierney, and
Wasserman (5) who also consider the logical design of the voter.
The literature indicates that very little work has been done in majority
logic of degrees greater than three.

In addition to the study and analysis of a two-out-of-n configuration,
a major effort in this investigation will be made to optimize the
redundant system in the presence of constraints. Many excellent papers
concerning system optimization are available. Bellman and Dreyfus (4)
treat the generalized approach of dynamic programming and show how
it can be applied to optimizing redundant systems. Least-cost allocations
of reliability investment are considered by Kettelle (10) who utilizes the
dynamic programming approach and another method which he says
yields an explicit solution to the investment allocation problem if the
unreliability of each stage decreases exponentially and continuously as
its cost increases. However, the validity of the assumptions in the
second approach is questionable. Bellman, Dreyfus, and Kettelle

assume a one-out-of-n configuration which is not physically realizable.



Gordon (7) treats optimum component redundancy for maximum system
reliability in series-parallel configurations and considers optimization
in the presence of constraints such as cost, weight, and power. But
ideal models have been assumed, and the effect and reliability of the
decision element are neglected as usual. Barlow and Hunter (2) also
treat optimization in series-parallel configurations, utilizing the
Lagrange multiplier technique. Herron (9) utilizes the Lagrange
multiplier approach in optimizing tradeoffs of reliability versus weight.
In any reliability optimization process, figures of merit are very
important; i.e., system optimization must take place with respect to

a particular system parameter. For example, it may be desired to
obtain the maximum gain in system reliability with reépect to system
cost. Nathan (13) discusses a generalized figure of merit which is
applicable to a wide variety of applications. He is primarily concerned
with optimizing system performance, whatever it may be, with respect
to system cost. In the investigation herein, criteria functions, which
serve the same purpose as the figures of merit, will be developed and
discussed.

Perhaps, particular mention should be made of Sasaki's (15, 16)
work in the area of optimizing system reliability in the presence of
constraints. Sasaki proposes a decision algorithm to optimize a
system utilizing parallel redundancy where only one module must be

functional. In particular, he proposes adding a module, one at a time,



| to the redundant stage which has the greatest failure probability. This
process is continued until either the constraint condition 'has been
reached or until the desired reliability goal is achieved. However,

he does not prove that the decision algorithm will result in thé most
economical system. It is shown in the investigation herein that Sasaki's
algorithm is a special case of the more generalized criterion function
(AP)max , where AP is the gain in system reliability resulting from
adding a module to a particular stage. Sasaki's algorithm is, therefore,
not applicable to all redundancy configurations. It is important to note
that optimization will depend directly on the criterion function utilized,

In this investigation, the criterion function (%) (i.e., ratio of

gain in system reliability to increase in system complexity) is
recommended and is compared to the criterion function (AP)max .
The vast amount of literature available on the subject of
redundancy is generally deficient in the following areas: (1) adequate
consideration has not been given to the decision element either in the
reliability or the optimization model, and (2) a one-out-of-n
configuration is often assumed which is not physically reliable due
to the lack of a generalized decision element. The intent of the
investigation herein is to eliminate, insofar as possible, these

deficiencies.



1.2 STATEMENT OF THE PROBLEM

Numerous redundancy configurations have been proposed which,
under certain conditions, may be used to increase system reliability.
Majority logic, duplexing, quadruplexing, and, in general, requiring
only one-element-out-of-n parallel elements to be functional are
examples of configurations which have been considered and proposed.
Duplex and quadruplex configurations can only be used in very special
applications. Presently, there is no known design which is suitable for
a decision element in generalized parallel redundancy where only one
unit out of n is required to be functional, Therefore, this type of
configuration appears only in mathematical models as a figment of
imagination and is not physically realizable. To date, majority
logic probably has been the most widely used approach and still offers
considerable promise in digital applications. It can also be adapted to
analog systems; however, the feasibility of the adaptation has not
been firmly established.

The basic problem in this investigation is to develop a generalized
redundancy configuration which will yield ultrareliability and which is
physically realizable. A necessary and important aspect of this
problem is the logic design of a decision element which provides
fault masking, failure detection, isolation, and module switching. After
this problem has been addressed, system design optimization utilizing

the proposed technique will be studied. System design optimization

-1



entails methods and procedures for segmenting or subdividing a non-
redundant system. Also included in the optimization process is the
method in which these segments or modules are made redundant; i.e.,
the degree of redundancy applied to each module to maximize reliability
within given constraints.

The concept of a generalized parallel configuration where two, as
opposed to only one, of the parallel units are required to be functional
for correct operation is proposed herein as a method of meeting the
objectives of the basic problem and is derived from the majority logic
technique. However, since the term "majority logic" is no longer
descriptive of the system under study, the term "two-out-of-n'" will
be utilized, The configuration is general in that theoretically there
are no restrictions on n except n = 3. Logic can be designed for a
particular n and then be projected and derived as a function of n.

Because the approach to generalized redundancy is derived
from majority logic, a thorough discussion of majority logic is given
in Chapter II. A decision element which can be used with that
configuration is developed and, although only voting or fault masking is
required, failure detection, isolation, and module switching are covered
for two reasons: (1)they are basic to the development in Chapter III

and (2) when they are incorporated, the potential of majority logic

is extended tremendously; i.e., when automatic failure detection and



isolation is used with manual replacement. Finally, in keeping with the
overall approach, system design optimization utilizing majority logic is
discussed.

Chapter III treats the generalized two-out-of-n configuration
where n is arbitrary but must be equal to or greater than three,

It is shown that the redundant system has thé greatest reliability for a
given complexity when a nonredundant system is divided into modules of
equal reliability and when equal degrees of redundancy are applied to
each of these modules. This result is then utilized to show that a
reliability as close to unity as desired can be obtained with the proposed
approach. System complexity utilizing this method is also determined.
Throughout this chapter, it has been assumed that a decision element

is used with each module in the system. Although a single decision
element per redundant stage is possible, multidecision elements
eliminate the possibility of single point failures.

In any practical application, it may not be possible to divide a
nonredundant system into modules of equal reliability. If this is the
case, it also follows that the degree of redundancy applied to each
module need not necessarily be the same. A new 'problem is encountered
if the degree of redundancy of each module is different; namely that of
interconnecting the n, outputs from one redundant module to the n,
inputs of the next module. This problem is discussed in Chapter IV

and a method of solution is proposed.
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Optimization of real systems is investigated in Chapter IV where
two criteria functions and decision algorithms aire developed and applied
to a hypothetical system. Initially, for the sake of simplicity,
consideration is not given to the incorporation of the decision element,
Later, however, it is shown how the initial development can be modified
to include this element, and the previous example is revisited for this
purpose.

The results and their usefulness, in any particular application,
to a great extent depend upon the assumptions which have been made.
These assumptions, in many respects, are analogous to axioms which are
basic and from which mathematical theory is developed; if the axiomé,
or assumptions, are not applicable to a particular situation, then the
theory and results which follow are of littlé value. Some of the
assumptions on which this investigation is based are as follows:

1. Failures are independent. Reduﬁdancy techniques of any
sort are of little value if this assumption is not applicable.

2. The techniques developed are primary applicable to digital
circuits where outputs are in discrete form. Thus the output is a logical
"1" if the output voltage is high, and a logical 0" if the output voltage
is low when positive logic is utilized, and vice versa when negative
logic is uséd. Intermittent failures are possible and are taken into
consideration. Although the technique investigated is primarily for

digital application, theoretically, there is no reason why it cannot be
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adapted for continuous or analog systems when suitable analog-to-digital
and digital-to-analog converters have been used.

3. The techniques studied are applicable to both "powered-off"
and "powered-on'" standby units. Powered-off standby units will probably
yield higher reliability; however, it is possible that a switching sequence
would be required before they are actively employed in the system.

The technique proposed allows sequencing of powered-off standby units
with little adverse effect.

4. Output voting, as opposed to input voting, is assumed.

Thus, it is assumed that the signals entering the system are correct.
This assumption places no limitations on the technique which is
equally applicable to input voting.

5. Component parts, circuits, and modules are assumed to
obey the exponential failure law. Certain assumptions are implicit
when this law is assumed and may be found in any good textbook on
probability theory.

6. The reliability of a simplex component, circuit, and
module is assumed to be a function of the number of components under
consideration and their average failure rate and operating time, Inter-
connections, such as solder on weld joints, are not includéd. However,
the techniques proposed allow for the inclusion of the interconnections if

so desired. Although discrete component parts have been assumed,



the number of gates employed on a chip, or the number of chips utilized
in a system, could be readily used in the analysis in case of large-scale

integrated circuit implementations.
1.3 METHOD OF SOLUTION AND RESULTS

The basic problem consists of developing a generalized approach
to parallel redundancy which is physically realizable and which can be
utilized to obtain ultrareliable systems; then this approach is used to
determine how a system should be organized, either to yield maximum
reliability within given constraint conditions or to meet a given
reliability goal utilizing a minimum amount of resources.

It is shown that ultrareliability can be achieved by utilizing a
two-out-of-n redundancy configuration as opposed to the one-out-of-n
configuration most frequently considered. Although the one-out-of-n
configuration theoretically yields greater reliability than a two-out-of-n
configuration, the generalized approach to the one-out-of-n arrangement
is not physically realizable. (The ratio of failure probability of a two-out-

of-n to a one-out-of-n configuration is given by % - (n-1) , where n is
R

the number of parallel elements per module and R is the failure probability
of a nonredundant module. This expression is always greater than 1 since
R < 1.) Thus, the primary reason for selecting a two~out-of-n form of
redundancy is that it is possible to design a decision element which can be

used with this configuration in general, and this configuration yields the
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highest reliability possible next to the one-out-of-n configuration. The design
and development of the decision element, which detects and isolates failures,
masks errors, and switches to functional operational units as failures are
detected, are a major aspect of this investigation. The feasibility of the
design of the decision element proposed to satisfy the functional requirements
has been established through the construction and operation of a demonstra-~
tional breadboard. The breadboard, which accommodates up to 10 inputs,
functions as expected and predicted. From the logical design of the decision
element, it is possible to project the design complexity and thus the effect
upon system reliability for an arbitrary number of inputs. It is also shown
how a nonredundant system should be divided into modules to obtain maximum
system reliability when redundancy is applied to the modules., To achieve
maximum reliability, a nonredundant system should be divided into modules
of equal reliability, and equivalent degrees of redundancy should be applied to
each of these modules. When the system is organized in an optimum manner,
and when a decision element is used with each module, it is shown that system
reliability as close to unity as desired can be obtained. Overall system
complexity can also be readily determined and predicted. The availability of

resources is the only factor which limits the reliability that can be obtained.



In a practical application, it may not be possible to divide a system
into portions each consisting of the same reliability. If this cannot be
accomplished, then it is no longer desirable to apply equal degrees of
redundancy to the modules. Utilizing different degrees of redundancy
within a system creates the additional problem of interconnecting or
interfacing ni outputs from one redundant stage to the nj inputs of the
next stage. The interconnection would be no problem if a single decision
element as designed herein were used between stages; however, the
possibility of single-point failures would have been introduced into the
system. Both the interfacing problem and the possibility of single-point
failures can be eliminated by utilizing majority logic in the decision
element,

Methods and techniques are investigated which can be employed
in the optimization of a practical system when consideration has been
given to constraints in system design parameters. Two criteria functions
are developed which are used in the decision algorithm in the system
optimization process. The optimization process is an iterative process
and consists of adding an additional module to the ith stage according
to a decision algorithm or criterion function. (Since it is assumed that
if redundancy is used, it will be of degree three or greater, the initial
allocation to each nonredundant module is two additional parallel elements;
thereafter, only one element is added at a time.) In particular, the

two criteria functions or decision algorithms which are derived and

14
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discussed in detail are as follows: (1) modules are added in such a manner
to maximize the gain in overall system reliability, and (2) modules are added
in a manner to maximize the ratio of gain in system reliability to the
increase in system complexity. It is shown that the second method
leads to a system of maximum reliability with the expenditure of a
minimum amount of resources.

The results of this investigation are significant because for the
first time a method is developed for theoretically obtaining and
physically realizing ultrareliability in a generalized parallel redundant
configuration. In this work, unlike much of the effort which has been
expended in the past, the theoretical development and the practical
aspects of realizability have been considered of equal importance and
treated accordingly. Therefore, it is sincerely hoped that the results
of this effort will be beneficial to the engineering field, in particular,
and to mankind as a whole. However, it should not be considered as a

means to an end, but rather as a stepping stone from which to proceed.



CHAPTER II

MAJORITY LOGIC REDUNDANCY OF

DEGREE THREE

2.1 INTRODUCTION

This chapter develops the foundation from which a more generalized
treatment may be pursued in Chapter III. Majority logic consisting of three
parallel units of which only two must be functional for successful system
operation will be of primary concern here. Logic will be developed for fault
masking, failure detection, and failure isolation, and consideration will be
given to system optimization with this and other designs.

"The concept of majority logic is not new, having been proposed as
early as 1956 by von Neumann as a means of masking failures; however, the
additional features of failure detection and isolation have not been investi-
gated in as great a detail. If failure detection and isolation can be satisfac-
torily accomplished, these techniques may be used to increase reliability; a
great potential also exists for reducing or eliminating maintenance cost,
troubleshooting time, equipment downtime, etc.

The term "majority logic' as used in this chapter will be limited

to a serial-parallel configuration such as that shown in Figure 2.1.1, in

i6
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Figure 2.1,1, Two-Out-of-Three Majority Logic
With Output Voting

which two-out-of-three redundant elements must be functional to obtain

a correct output. This will be referred to as redundancy of degree three.
The level of redundancy (i.e., the number of modules into which a
nonredundant system is divided) will be optimized with respect to the
decision element or voter. To accomplish this, it is necessary to develop
the logical design for the decision element, It is also sometimes possible
to obtain a correct output even when two modules or voters in the same
stage have failed. This can occur if failures in the same stage are in
opposite directions such that the third output must always agree with at
least one of the failed unit's output. Initially, this will not be considered;

however, the development will later be modified to take this into
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consideration. The true reliability will be bounded within these limits.

The value that one wishes to use depends on the application, personal taste,
and conservatism. It is emphasized throughout the entire investigation that
the major concern is techniques leading to relatively high reliability

when compared to a nonredundant system rather than an absolute estimate
of reliability, although naturally one can possibly lead to the other.

In considering the two-out-of-three (i.e., degree three) approach,
two methods of decision making, or voting, are possible; input voting and
output voting. Output voting is shown in Figure 2.1.1., Input voting is
illustrated in Figure 2.1.2, Notice that the essential difference in these
two figures is the first set of voters; i.e., output voting is basically input
voting if it can be assumed that the signals entering the system are
correct. This may be a trivial point; however, Ergott and Rozenberg (14)
have shown that output voting is always superior to input voting. As
system’! size increases in the limit, the two methods yield equivalent
results. Output voting will be assumed in the development herein, with
the primary concern being relative reliability improvement. Karyl J.
Gurzi (8) has treated the application of three versus a single voter between
the redundant stages. To eliminate single point failures, three voters will
be assumed in the work herein. However, similar design and analysis
would be applicable to a single voter. A single decision element may be
required at the last section. If a single signal is required in the next

system, rather than carrying the three redundant signals on to the next
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Figure 2. 1,2, Two-Out-of-Three Majority Logic
With Input Voting

system, this would become a requirement. As will be shown later, this
may really be the limiting factor in reliability improvement.

Three axioms of probability theory which will be useful in the
development of the reliability equations are:

1. If p denotes the probability that an event will occur, then
1 - p denotes the probability that the event will not occur.

2. If theevents &, & ... §n are independent events with
probabilities p;, py, . . . P, respectively, then the probability that all
of the events should occur simultaneously when all are in question is the

product of the probabilities

Y
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3. If the probability of mutually exclusive events &y, & ... gn
is Py Py .. P> respectively, then the probability that any one of these
events should occur when all are in question is the sum of the probabilities

n\
P = Z, P,
i=1

In the development which follows, these axioms will be assumed to be
understood and will be referred to only rarely.

To apply the exponential distribution to either the system, subsystem,
or component level, the following assumptions are necessary:

1. Component failures are independent and random.

2. The component failure rate, A, is constant over the time
frame being considered. This effectively assumes adequate burn-in and
screening of components.

3. Components are not subject to wear or fatigue. Thus, the
éna.lysis is restricted to electrical components, and mechanical systems
are not included except under unusual cases. (If mechanical components
are replaced, thus circumventing a failure caused by wear, other type
mechanical failures might possibly be considered as being random. )

The term ""module'" will be used to describe the number of sub-
systems or elements into which a simplex or nonredundant system has been

divided and will be denoted by m . For simplicity, it will be assumed



that the modules have the same number of component parts and thus the
same reliability. For a system of given complexity, m may be said to
represent the level of redundancy which is to be used. It will be shown in
Chapter III that dividing a system in modules of equal reliability leads to
the greatest reliability improvement when the modules are replicated.
After a nonredundant system has been divided into m modules of equal
reliability, each module is replicated n times and is then called

a redundant module or simply a stage. Thus, n represents the degree of
redundancy applied to each stage or to the system as a whole. Chapter III
will also show that stages processing equivalent degrees of redundancy
lead to maximum system reliability. For the purpose of this chapter, n
will be restricted primarily to three; hpwever, the reliability equations
will be derived in general terms so that they may be used in Chapter III,
The failure probability (unreliability) and success probability (reliability)
of a nonredundant module will be denoted by Em and Rm, respectively,
while that of a redundant module or stage is Bm and Pm’ respectively.
The failure probabilities of a nonredundant and redundant system will be
represented by Es and 3, respectively. R may be used for different
purposes; however, it will generally be used to denote the product of a

module and decision element reliabilities. 1

1 . . it .

Depending upon the circumstances, it is sometimes more
convenient to deal with success probabilities and sometimes more desirable
to use failure probabilities. Throughout this investigation, axiom (1) will
be assumed to be understood and transformation between success and
failure probabilities will be made as convenient.

21
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2.2 DERIVATION AND OPTIMIZATION OF THE

RELIABILITY EQUATION

The failure probability of a single redundant module containing
n parallel elements in which two or more units must be functional such as
shown in Figure 2. 1.1 can be found from the binomial distribution and is

given by the expression

n . .
= \ n n-1 1 :
P.= ), (i)R (1-R) (2.2.1)
i=n-1
t
where ( !:) denotes 7(1:1—_-1-)—,- which represents the number of

combinations of n things taken i at a time. 2 For the binomial distribution
to be appropriate tﬁe following conditions must be fulfilled:

1. There exist n independent trails; i.e., the outcome of any
trial is not dependent on those preceding it, (A trial here is assumed
to be the operation of an element, usually a module, over a given
period of time; the outcome is determined by the success or failure of the
module.)

2. The experiment is dichotomous; i.e., there are only two

possible outcomes at each trial. For the purposes herein, the possible

2There are many ways in which this can be viewed and derived.
With axiom (1), this can be put in another form. Also, truth tables can be
used to derive the binomial distribution and thus this expression. Moskowitz
(12) uses flow graphs and networks to derive and manipulate reliability
equations.
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outcomes are only success and failure.
3. The probability of any particular outcome at any trial remains
constant through the experiment.

Equation (2.2.1) can be expressed in the expanded form:

?o= () R(1-R)"" +() @R

m
(2.2.2)
= (1-R)™* [1 + (n-1)R]
or it may be alternately represented by
-_— —n-1 —
P =R [n - (n-1)R] . (2.2.3)

In Equation (2.2.2), R represents the product of the reliability of the
module and the decision element, since as many decision elements are to
Ibe employed as there are modules (Fig. 2.1.1). Thus, in Equation (2.2.2)
or (2.2.3), the module and decision element may be considered to be

lumped together; i.e.,
R =R_R . (2.2.4)
m

In Equation (2.2.4), Rm and R, are the reliability of the module and

decision element or voter, respectively. From axiom (1), it follows that

R=1- (1-§ )(1-5) -R +R -R R . (2.2.5)
m m Vv m Vv



24

Substitution of Equation (2.2.5) into (2. 2.3) yields the following relation-
ship for failure probability of a redundant module or stage:

—_— J— . —_— — n-i — — —_— —

P_ = ( R_+R - RmRv) [n - (n-1)(Rm +R_ - RmRv>]

(2.2.6)
It is desired to determine the system organization which yields

optimality; i.e., how should a nonredundant system be subdivided to
optimize (minimize) the overall redundant system failure probability? If

R_R_ is small compared to R_ and R , the overall redundant system
m v m \4

failure probability may be approximated by

P~ m(Rm +§v>n-1 [n - (n-1)(§m +§v)] (2.2.7)

where m represents the number of modules into which a nonredundant
(simplex) system has been divided and n the degree of redundancy applied
at each stage, which for the purposes of Chapters II and III has been
assumed to be the same for all stages. For Equation (2. 2.7) to be valid
or a good approximation, the cross terms or second-order terms must be
small in comparison to the first-order terms.

Much difficulty is encountered if an attempt is made to use classical
techniques to optimize this equation; i.e., to take the first partial
derivatives, set them equal to zero, and solve for the variables; then
take the second partial derivatives to test for minimum-maximum
conditions. In the first place, four variables are present such that a

complex relationship is obtained when the partial derivatives are taken and



set equal to zero. Much simplification is possible, however, if the ratio of
the unreliability of a nonredundant module to that of a redundant module is
considered. This ratio will be denoted by B and is given by the relation-

ship

(2.2.8)
If maximum reliability is gained at each stage, it follows that maximum
gain in system reliability results. Ev will be taken as being fixed since
it requires a given number of component parts to accomplish the
decision element function; for the purposes of this chapter, n will
be taken as fixed at n =3 . A general treatment will be considered
in Chapter III. Under these assumptions, Equation (2. 2. 8) takes the

form

(2.2.9)
Differentiating Equation (2. 2. 9) with respect to ﬁm and setting the

result equal to zero yields

B _
9R

olz

m

25
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where

and

(2.2.10)
Multiplying by the denominator and dividing by Em +R - Emiv yields

+R -R 'ﬁ) - 6R (1-§)
Vv m

3(R +R -R E)-z(ﬁ
m m v m

+6R (R +R -§§)<1-§)=0 ) (2.2.11)
m

Since second- and higher-order terms are relatively small and may be

neglected without appreciable error, Equation (2. 2. 11) becomes

R =R ) (2.2.12)
m Vv

The fact that this leads to a maximum reliability gain rather than a
minimum or an inflection point will not be covered in more detail here,
but will be covered in general in Chapter III. Detailed numerical examples

will also be given there to demonstrate that this indeed represents an
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optimum design; thus, the minimum failure probability of a single redundant

module is given by the expression
_ - - 2 _ — 2
P = 3(2R -R_ ) - 2(2R -R ) (2.2.13)

when the system is organized in the optimum manner.

2.3 CONSIDERATION OF FAILURES IN

OPPOSITE DIRECTIONS CANCELLING

When the majority logic or two-out-of-three technique is used,
some advantage can be taken by noting that failures in opposite
directions can cancel each other, in which case, only one module, rather
than two, is required to the functional. To indicate how the failure
probability expression can be derived under these conditions, Figure 2. 3.1
will be helpful.

F and S (Fig. 2.3.1) indicate failures and successes,
respectively. The remarks under system status are applicable to the
situation where two-out-of-three modules must be good; i.e., they do not
consider the possibility of failures in the opposite direction cancelling.

If it is assumed that Ra =R, = Rc which is valid since they are

b

identical modules as far as possible, combinations 1, 2, 3, and 5 in

Figure 2. 3.1 result in a failed system given by the expression
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COMBINATION
NUMBER

SYSTEM STATUS

1

FAILED

FAILED

FAILED

OPERATIVE

FAILED

OPERATIVE

OPERATIVE

OPERATIVE

Figure 2.3.1.

Ra had failed to a logical '"0" and R

3

P =R +3RR =R +3R
m

b

This may be expressed in the Boolean form

Block Diagram of a Two-Out-of-Three Majority
Logic With Its Truth Table

-3
=3R -2R .

(2.3.1)

This is equivalent to Equation (2.2.3) which was derived directly from
the binomial distribution. Notice that in the second combination of the
truth table, shown in Figure 2.3.1, the system would not have failed if

to a logical '"1'" or vice versa.




where the second subscript indicates failure mode. Since this condition can
occur in three ways (combinations 2, 3, and 5 in Figure 2.3.1), the
reliability gained by taking into consideration the possibility that failures

can cancel is

Pg =Ra0. Rbi ) Rc-ipRa.i | RbO. Rc+Ra0. Rb. Rcl

* Ry TRyt R tRy Byt By *R By - Ry .

(2.3.2)
The total probability of a failure is the sum of the probabilities of
component failures to a "0" state and to a "1" state; thus, R =R, +R, .
Without further knowledge of a specific application or circuit, there is no
reason to suspect a failure to any particular state to be more predominant

than to the other state; consequently, ﬁo =—R and Ry = -;—ﬁ . This

Do

(1-R) . Substituting

— 1 -
leads to the conclusion that R, = P (1-R) and R; =
these values into Equation (2. 3.2) yields the reliability gained from

consideration of failures in opposite directions which is given by

1 2 3R 2
P, = 6R | 5 (-R)| = = [1- 2R +R
(2.3.3)
Thus, the reliability of one module of a majority logic system when the

possibility of failures cancelling has been taken into consideration is given

by

29
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3R 3 ) 1
= 2_ 3 — -— 3 = - - 3
P = (3R 2R)+(2 3R2+2R 5 (3R-R%) (2.3.4)
and the failure probability is given by3
P =Ll@GR-R) . (2.3.5)
m 2
Since it has been shown that
R=R_+R_-R_R
m v m v

and that when the system is organized optimally, Rm =§v , Equation

(2.3.5) may be expressed as

[3<2§m -R_2)

The actual value of the failure probability for a majority logic module lies

P =

N - (2_m - §mz>3] . (2.3.6)

DO | ==

somewhere between the values obtained from Equations (2.3.1) and (2.3.6);
the choice of which is used depends upon the amount of conservatism one
wishes to include. However, it is noted that Equétion (2.3.6) yields

almost one-half the failure probability that Equation (2. 3.1) yields. The
possibility that failures can cancel will not be discussed further in this

work. Again, major emphasis is not upon reliability prediction, but rather

3It should be noted that in general it is not possible to obtain the
expression for the failure probability by simply replacing R in the
reliability expression with R . This is possible for a two-out-of-three
system since two operational units result in an operational module and two
failed units result in a failed system. (See the truth table of Figure 2.3.1.)
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upon techniques which lead to highly reliable systems and system

organization to accomplish this purpose.

2.4 LOGIC DESIGN FOR FAILURE DETECTION,

ISOLATION, AND FAULT MASKING

In practice, if a system is to be optimized, the procedure which
should be used is as follows: Develop the decision element logic design
and estimate its failure probability. Subdivide the nonredundant system
into m modules, each of which has a failure probability equal to that of
the decision element. Since the decision element and the problem of
fault masking, failure detection, and isolation play such a vital role in
system organization, it is logical to address this aspect next.

The decision element can be designed for two different purposes
depending upon application. In one case, it may only be necessary to
fault mask failures and not be concerned about failure detection and
isolation. Such may be the case if nothing can be done about the failures
once they have occurred; i.e., repair and replacement are not feasible.
Only one failure per stage is permissible, the module and decision element
being regarded as an integral part of the module. On the other hand, if
a failed module can be replaced either manually or automatically, then
automatic failure detection is very desirable and could lead to a reliability
limited only by the spare parts available and possibly also could result

in potential cost savings in troubleshooting, repair, periodic maintenance,
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equipment downtime, etc. Automatic failure detection and isolation,
although not having been given adequate attention in the past, possess a
tremendous potential in certain applications. For example, failure detection
and isolation may not be worthwhile in realtime missile systems where
repair and replacement are not possible; on the other hand, it may be very
desirable and beneficial in a commercial computer system where repair and
replacement are permissible. 4 In the past, primary emphasis has been
given to reliability improvement alone without replaceable items; however,
in the future, when maintenance, system downtime, etc., are taken into
consideration, automatic failure detection and isolation as well as fault
masking could become very important. The techniques proposed herein
become of interest when viewed from this standpoint and are very likely
to receive much more attention in the future. The technological growth
in electronic elements may reduce circuit costs below maintenance cost,
downtime, etc., making redundancy attractive when viewed from a cost
standpoint alone.

The logical design of a decision element or 'voter'" whose output
represents the majority of the inputs is not particularly new and may be
found in Shooman (17) as well as other sources. Table 2.4.1 shows that

an output is desired for the following conditions:

4Mamual repair and replacement may be possible in earth orbital
space stations and interplanetary mamned missions. In fact, this may be
the only means of obtaining satisfactory reliability over the desired time
frame. The example given here is meant to apply primarily to boost and
reentry phases of flight,



f, = ABC + ABC + ABC + ABC = BC + AC + AB

TABLE 2.4.1

TRUTH TABLE FOR LOGIC DECISION ELEMENT

33

(2.4.1)

Desired Output

A B C f Error Conditions
0 0 0 0 None

0 0 1 0 f C

0 1 0 0 fB

0 1 1 1 f A

1 0 0 0 f A

1 0 1 1 fB

1 1 0 1 f c

1 1 1 1 None

Thus, an output of a logical '"1" is desired when any two or all inputs are

logical "1's.'" The gating necessary to accomplish this function is shown

in Figure 2.4.1. This figure shows a very simple circuit consisting of

only three AND gates and an OR gate. From this, it may be concluded

that a very low level of redundancy can be applied to a system if design

optimality is the objective; i.e., a nonredundant system can be



subdivided into m modules, each equivalent to only four gates such that the

condition E = E is met.
m v

OUTPUT

Figure 2.4.1. Fault Masking Logic

The logic element described in the previous paragraph serves only
the function of failure masking. Failure detection and isolation may also
be of interest as previously indicated. For failure detection, a logic
element is desired which provides an output under the condition

f, = ABC + ABC

(2.4, 2)
(X+§+E) (A +B +C)

Mg
Il

Several different equivalent Boolean expressions may be derived to

represent this function, such as

34
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f, = AC + AB + AB + AC . (2.4.3)

The logic necessary to implement this function is shown in Figure 2.4, 2

and consists of four AND gates and an OR gate.

ERROR INDICATION

ﬁ)L[JL’)U

-
B ————
Figure 2 4.2, Failure Detection Logic

Thus far, a voter whose output represents the majority of the
inputs and a failure detector which has an output when a disagreement
occurs in the inputs have been developed. It is desirable not only to be
able to detect a failure, but also to isolate it to the module so that it might

possibly be replaced either manually or automatically. From Table 2.4.1,
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it is observed that modules A, B, and C have failed under the following

conditions:

£ = ABC + ABC

g = ABC + ABC (2.4.4)

f, = ABC + ABC

To implement this function and isolate a failure, only six AND gates and
three OR gates, as shown in Figure 2.4. 3, are required. It should be
noted that the failure detection and isolation logic would not normally be
considered as part of the voter failure probability (-ﬁv) for a two-out-of-
three organization and would have no influence on system design optimization
since reliability as developed in this chapter is not dependent on these
functions. However, whenever automatic repair and replacement are
considered, they very definitely play a vital part in system reliability.
Such considerations are the subject of Chapter III; however, there it will be
considered from a slightly different viewpoint. When the above functions
have been incorporated in system design, the following functions can be
accomplished:

i. TFaults are automatically masked and no single failure will
cause a system failure. The number of failures most likely to occur

before the redundant system fails is a function of system complexity,



MODULE A FAILED

MODULE B FAILED

MODULE C FAILED

Figure 2.4.3. Failure Isolation Logic

the number of modules into which a nonredundant system is divided,
operating time, etc.

2. Automatic failure indication.

3. Failure isolation to the module level.

By utilizing the above approach, it is possible to:

5See Appendix A for a more detailed treatment of the number of
failures most likely to occur.
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1. Improve considerably the reliability of a system. For a
system with manual replacement, reliability is basically limited only to the
supply of spare modules.

2. Delete periodic maintenance requirements.

3. Reduce troubleshooting time, repair time, etc.

4. Eliminate equipment downtime.

5. Possibly minimize spare parts supply.

Much more research is required to determine the tradeoffs in
increased hardware cost necessary to accomplish 1., 2., and 3. above and
the amount of savings to be realized when these are accomplished. In
general, with the type system proposed, Appendix A indicates that there
is no great hurry to replace a failed module since the total system is
still operational and is likely to remain in that state even after several
failures have occurred. The major theme of this investigation is 1. above,
so little more will be said about automatic failure detection and isolation
when used with manual replacement. However, these techniques and
approaches if properly used can also have a tremendous influence on 1. as
will be given in Chapter III.

Before proceeding, it is instructive to note that the logic
developed for the functions above is not unique and can be implemented
in several alternate forms. The method one uses will depend to a very
large extent upon the type of logic building blocks available. Another way

of implementing the failure detection and isolation is shown in Figure 2, 4. 4,
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A — B 2
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A == E1—-
B |

EZ’Ae+aa

Figure 2.4.4. Alternate Method of Implementing Failure
Detection and Isolation Logic,

Since E; represents an error either in A or C and E, an error in

A or B, these can be logically combined to isolate the failure as shown.
AND/OR/INVERT and AND/INVERT logic blocks have been used in this
implementation. Only 12 gates are required here while 14 were required
in the previous implementation. However, five inverters have been added,

which may be part of a logic block.

2.5 RELIABILITY GAINED THROUGH REDUNDANCY

OF DEGREE THREE

The logic necessary for the decision element has been developed;
now, an estimate of system reliability can be obtained by using the
majority logic approach with optimum design. ’Ihe voter consisted of

only five gates or approximately 20 discrete component parts, which
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would indicate that for optimum system design, a module should also contain
approximately 20 component parts. For optimality, the failure

probability of a module (Em) can be expressed in terms of the failure
probability of the total nonredundant system (Es) and the number of
modules (m) into which it has been subdivided as follows: From

axiom (2), it follows that the reliability of a nonredundant system (RS)

expressed in terms of Rm and m is given by the relationship

R = (R )™
S m

R =1-R =1-R )™ =1-(1-Rr )™ (2.5.1)
S S m m

_ _ (m) (m - 1) R_2

R =1-|1-mR_ + = -
] m 2!

Thus, if Em is small, second- and higher-order terms can be neglected
in which case the module failure probability can be approximated by
R

ey S
R~ —
m m

(2.5.2)
Substituting Equation (2. 5. 2) into (2.3.1) and noting also that Prm Em
in a manner similar to that shown above yields the following relation-
ship:
2 — .3

_ T <2§S RSZ)
sz3———-——r;2' —2";-;17 . (2.5.3)
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Also, let N,_, be the number of component parts in a nonredundant system

T

and n be the parts in a module which for optimum design was estimated

to be approximately 20 with the above voter design; then

Np
m =——=0,05N (2.5.4)
T
m
and Equation (2.5. 3) takes the form
— — 2 _ — 3
_ 40R_  400R ? 40R_  400R ?
P=005N_1|3 - 5 -2 - 5 )
T N Np N, N,
(2.5.5)

The failure probability of a nonredundant system is given by the expression

-NTAt

RS=1—e (2.5.6)

where NT is the number of components in the nonredundant system, A
the average component failure rate, and t the operating time. 6 Arbitrarily,
take a reasonable value of A =107 and t =10%; then Equation (2.5.6)

is given by

-1074N
1-e . (2.5.7)

=)
€]
I

6In Equation (2.5.6), t = 1/7\NT is the mean time between failures

(mtbf) of the complete nonredundant system; thus, RS =0.632. In some

cases, it would be desirable to normalize about this value; however, if NT

is varied (e. g., increased) since A is a constant, this effectively alters
(decreases) t and makes the given nonredundant system more reliable.



Table 2.5.1 shows P and « =§S/§ for three values of NT which cover
a fairly reasonable range. The last value shown in Table 2. 5. 1 for

NT =100 k is of particular interest. The failure probability of a simplex
system has been decreased from practically 1 to almost 0 through the

application of the optimum redundancy organization.

TABLE 2.5.1
TYPICAL SYSTEM PARAMETERS FOR A =10"% FAILURES
PER HOUR AND OPERATING TIME OF t =10* HOURS

(i.e., At =107%)

N T m —ﬁs 5 o

1k 50 | 0.09500 0. 000007 13.57 x 10°
10k 500 | 0.632000 | 0.000957 660. 40
100k | 5000 | 0.999955 { 0.002340 427.33

The relative complexity of a redundant system when compared with

that of a simplex system is given by

¢ =n(1l +a)

42
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n
where n is the degree of redundancy and a = HY— ; i.e,, the ratio of
m

decision element and module complexity. For optimum design, it has
been shown that a =1, and since in this chapter n =3 is assumed, it
is noted that the redundant system which is optimally designed will
contain approximately six times as many component parts as a nonredundant
system. From this, it may be concluded that by utilizing the two-out-of-
three majority logic technique, the relative complexity of the redundant
system should be no greater than six nor less than three times that of a
nonredundant system regardless of optimality considerations. The exact
value depends upon the level of redundancy application.

Does the majority logic scheme always improve the reliability of a
system? To answer this question, Equation (2.3.1) can be equated to the

failure probability of a module and the equation solved for R. Thus,
R = 3R? - 2R®
2R’ - 3R +1 =0 . (2.5.8)
R=1, R= -;—

The first case where R =1 is not physically realizable since 0 = R<1 H
thus, only R= -;: yields a reasonable bound. Therefore, majority logic
yields a reliability improvement only if

R +R -R R =

(2.5.9)
m v m v

DO | =



This equation also indicates why the last term can be ignored, because it
can never be more than roughly 1/16 of the total or approximately 1/8
that of Rm + Rv . Intuitively, Equation (2.5.9) is minimized when

Rm = Rv as was previously shown. Thus, for optimum design, Equation

(2.5.9) becomes

2R -R %=

(2.5.10)
m m

Do

and solving for Em a value of Em = 0,293 is obtained. The failure
probability of the total simplex system has not been restricted by this
condition since it is given approximately by

m
R_~ ), R_ =mR : (2.5.11)
S =1 ml m

Only the failure probability of a module and decision element is restricted
to be within these limits,

Notice also that although time does not appear explicitly in the
above equations, it nevertheless is included through the relationship

-N_2At At
_ ot T s

R =1-e m e ™ g™ . (2.5.12)

For Equations (2.5.10) and (2.5.12) to be valid
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m -
tS—A 1n(1—Rm)

S
t < -Aﬁ In (0.707) (2.5.13)
S
0.342m
t < —=2ell
A
S

where )\S is the failure rate of the nonredundant system, m is the number
of modules into which the simplex system has been divided, and t is the
operating time, With t = k/)\s (i.e., operating time is k times the mtbf

of a simplex machine), then Equation (2,5.13) becomes
k = 0.342m

For an optimally designed machine, m will be fixed since NT is fixed
and the operating time then must be less than the above constant value for

an improvement in reliability.
2.6 SUMMARY

The purpose of this chapter has been primarily to develop the
necessary background from which a more generalized analysis can be
treated in Chapter III, It has been shown that system reliability can be
improved considerably with majority logic techniques, especially when
the system is organized in an optimum manner such that Em =§v .
Consideration has been given to the logical implementation of fault masking,

failure detection, and failure isolation. It has been suggested that a



tremendous possibility exists when these techniques are incorporated with
manual replacement where feasible and it is recommended that further
research should be undertaken in this area. The functional relationship
between the number of failures which may be expected before a redundant
system can be expected to fail was also developed as Appendix A to this
chapter.

In Chapter III, the basic approach developed in this chapter will be
continued; however, it will be desirable to view the organization from a
slightly different standpoint. Although the idea of majority logic will no
longer be required, only that two modules in any stage be functionai, the
similarity to this chapter, both in system approach and logic design

development, will become readily apparent.
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CHAPTER 1III

GENERALIZED PARALLEL REDUNDANCY
REQUIRING TWO-OUT-OF-n

FUNCTIONAL ELEMENTS

3.1 INTRODUCTION

In Chapter II, techniques were developed for fault masking, failure
detection, and failure isolation in a major logic, two-out-of-three
configuration. It was also mentioned that failure detection and isolation
may be used to considerable advantage when combined with manual
replacement of modules. It is quite natural to question why they could not
also be used for automatic replacement of modules. This basic question
is the primary subject of this chapter.

Although the subject of automatic replacement of modules is
embedded in the subject of majority logic, it is much more general. The
term majority logic is no longer descriptive of the system under study.

In general, it is only required that two-out-of-n parallel modules in each
stage be functional for correct operation; it is general in another aspect
as well. For years now, probability models of parallel units have been
studied, usually without regard to the decision or switching element. In

the rare cases where consideration has been given to this element, the
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number of parallel modules used was restricted to a particular configuration.
In the investigation herein, a decision and switching element will be

developed which can be adapted to any number of n parallel units. The
effect of this design upon system reliability will be indicated, and system
optimization will be treated taking into consideration the decision element
design. The question of practicability will also be covered.

The generalized system to be studied is shown in block diagram'form
in Figure 3.1.1. The nonredundant system will be divided into m modules
of equal reliabilities and replicated n times. It will be assumed that the
degree of redundancy (n) of each stage is the same. Initially, it will be
assumed that a decision and switching element is provided for each
module. This condition will be relaxed in Chapter IV, as well as the
condition of equal n for each stage. Thus, failure of a decision element,
in effect, appears as if the following module has failed and is compensated
for in the following decision element. Essentially, the next decision
element in the serial chain corrects for either a preceding decision element

or module failure.

3.2 CONSIDERATION OF EQUIVALENT STAGES

YIELDING OPTIMALITY

It can be shown that the assumption of breaking a nonredundant
system into m identical modules and replicating n times for each stage

leads to optimum reliability improvement; i.e., it can be shown that in
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Figure 3.1.1,
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Generalized Parallel Redundant System

order to obtain maximum reliability, it is necessary that

on R is not required here since Ra =R

R
a

m

and that n, =n_=n

1 2

1

b

1

om0 (The first subscript

=R

1

o »ete., and will be dropped. )

The generalized reliability is a function of R and n as follows:

P(RI,RZ,...,Rm, nl,nz,...,nm) = f(Rl,ni)f(Rz,nz)..

.f(Rm,nm) .

(3.2.1)

Equation (3.2.1) simply states that the overall redundant system reliability

which is a function of the reliability of each module and the degree of
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redundancy applied to each module is given by the product of the
reliabilities of the individual stages. It should be noted that the functional
forms of the individual stages are the same; this is the reason the notation
f<R1’n1)f (Rz, nz). f(Rm, nm) is used in lieu of f(R1 , ni)g<R2 , nz)
c e .h(R , N ) Further, R, - R_....R_ is simply the reli-

m’ m m

1 2

ability of a nonredundant system and is given by
R 'R o--OR =R - (3.2.2)
m

It will be assumed that the total number of modules will be constrained to
K units. In effect, this is constraining the complexity of the system, by

n 4 n s 0 n - ]( . (3.2.3)
1 2

Equation (3.2.1) is to be optimized, subject to the constraints given by
Equations (3.2.2) and (8.2.3). If the Lagrange multiplier technique is

used, the problem can be formulated as

P(Rl’ Ry, R o1 ,nz,...,nm/) =f(R1 ,ni)f(Rz,nz) e f(Rm’nm)

where A 1 and 7\2 are called the Lagrange multipliers. At the optimum

point, the partial derivative of each variable must vanish; i.e.,
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9P 9P P
=0, =0, ..., =0
8R oR, oR

1 2

Taking the partial derivatives of Equation (3. 2.4) with respect to each

variable yields the following sets of equations:

8P _ . =Mf<32,n2) f(Rm,nm> +x1(RZRS...Rm>

oR oR
3P af<Rz’nz)
55;-—0-f@%,n0 = ...f(Rm,%n)+A10HR3 ) Rm>
| 1 |
l I
l | (Rl )
of ,
2_2311;—~ =0= f<R1 ’n1)f(R2’n2> e f<Rm—1 ’nm—1> 8r§m =

(3.2.5)
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and
Bf(R n )
5P 171
on, 0" on f(R2’nz>"" f(Rm'nm)H\z
af(R n )
P 2’ 2
c—<0= f(Ri,n1> ™ f(Rm,nm> A,
9 2
| l |
| 1 !
| ' (
8f\R n
P m’ m>
0 (o ) o ()
m m
+ }\2
(3.2.6)

Notice in Equations (3.2.5) that

RS
R.Rg - Rm=R_1
RS
RBg.eet R =1
2
[ l |
l | l
| l I R
R R R = £
1 2 m-1 R

With the above substitutions, the first two sets in Equations (3.2.5) can be

solved for A { Rs and equated yielding
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Riaf(Ri ,n1> " e il af(Rz, n2>
( z’n2> - T ( 1’“1)

aR1 8R2
af(R n)
1’71
R, ———— (3.2.7)
f(Ri,ni) ) 1 oR,
f(Rz,nz) . angz,nﬂ
2 aR2

The first two sets of Equation (8. 2. 6) can be solved for A_ and equated

2

resulting in the relationship

af(Ri,n1> (2 YA af(Rz,n2>
(2’ 2) (1’ 1) on,,

an1 n
of (R n)
11
(3.2.8)
f(Ri,n1> _ an1
fG&,nQ Mng,nz?
8n2

When Equations (3, 2.7) and (3. 2. 8) are solved simultaneously, the result

is

RM(R,n)af@,n) Raf@,n) M(R,n)
1 10y 2'"2) _ T 27 P9 10 (5.2.9)

8R1 8n2 8R2 8n1

and it follows that this relationship is satisfied only if

and
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When the first and third parts of Equations (3.2.5) and (3.2.6) are solved

simultaneously, it may be shown in a similar manner that

and

and

and

yield the optimum results.

Strictly speaking, it has not been proven that a maximum value of
reliability results from the above conditions, but only that an extremum
value has been found. In other words, the vanishing of the derivatives
with respect to each of the variables is a necessary but not a sufficient
condition for a maximum. However, it will be clear through further
considerations that a maximum reliability is given by these values. To

be more specific, consider a three-stage system with reliabilities given

by
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n1—1r E
P1=1-<1-R1> 1+<n1-1)R1

L R

n_-1rp ]
1+(n -1
(nz )Rz

Y
[\)
1]
—

[}
~
—

1
o]

[\
N’
(W)

L

3 [
P3—1-<1-R3) 1+<n3-)R3]

(3.2.10)

Since P =P " P2 + P an expression for P in Lagrange formulation

3 1

is given by the expression

x {1- (1_33) I P (n3—1)R3” (3.2.11)

+7\2 (n1+n2+n3-K)

where Rs and K are constants and R1 , R2 , R3 » 0y, M, , and ng

are variables. Taking the partial derivatives with respect to each variable

and setting them equal to zero yields
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2
1= (1- -
x Rz) [1 + (n 1>R2
L
n3-1 .
x {1- 1-33) [1 + (n3—1)R3 +2,
n -1
8P _ o= 1-(1-3) [1+(n—1)R]
n 1 1 1
2
n2-1
x (1-R2> in (1-32) 1+ (n -1)32
n -1
2
- 1.
(-r,) ° ®,

(3.2.13)
When the first two parts of Equation (3.2.12) are solved for A 1 Rs and

equated, the following equation results:



{(ﬂ,-‘)('-ﬂl) n-2 [‘*(“;")Rx] - (2 (1 -R) " }{ (xn "t 1+(n2—1) Rz]}
f ) [ om0 o] - €)™ (50001

and when the first two parts of Equation (3. 2. 13) are solvedor A_ and

2
equated, the following result is obtained:
{(1 Rl) 1- R‘) [x + (n 1) ] (1 n) - } {1 - (1-}'(2)“‘2-1 [x + ("2")“2]}
{(uz l+nl } {IR 1n 1+(n 1) ] (IR) } (3.2.15)

Solving Equations (3. 2.14) and (3. 2. 15) simultaneously yields

{("2") (l-Rz) v [l + (n 1) - n 1) 1- n } {(1 )" ln(l -R) ("1'1)R1] . (‘_R‘) n -t n‘}
e ™ feeon] - o)™ e el eopn] - (07 8] (3.2 16)

It is quite obvious Equation (3.2. 16) can only be satisfied if

and

In a similar manner, it can be shown that R1 = R3 and n o =ng, and
the desired results have been obtained.

Thus, the above result justifies the assumptions of modules of
equal reliability and equal degrees of redundancy in each stage. With

these assumptions, the mathematical models are simplified considerably.

However, practical considerations may make them unfeasible at times;
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i.e., it may be impossible or inconvenient to divide a nonredundant system
into m equivalent modules because '"natural' divisions exist in a particular
system organization and design. More will be said about this later;
however, for the purposes of this chapter, only the above conditions will

be treated.
3.3 SYSTEM OPTIMIZATION WITH EQUIVALENT STAGES

The next factor to be considered is system optimization; i.e.,
given a nonredundant system with a failure probability ES , into how .
many modules should it be divided? What level of redundancy should be
utilized to maximize the reliability of the redundant system? To treat
this question, a ratio (y) will be used. The ratio (y) is defined as
the failure probability of a nonredundant system to that of a redundant

system. It is given approximately by

R
s

lf 5,) " [n- 00T, o)

where the cross terms Em—ﬁv have been neglected and P=1- <1-T5m>m

Y (3.3.1)

has been approximated by Pr mfm . In Equation (3.3.1), Em is a
function of Es and m and is given approximately by the relationship
R

-5

m

R ~
m
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iv will depend on the logical design of the decision and switching element,
which will be covered in detail later. In general, -ﬁv will depend on n,
With these substitutions, the variables m and Es can be removed from

v , Yyielding

-ﬁm
v & 1 (3.3.2)

(Fu*%,) - @on(F, +5)]

which is the ratio of the failure probability of a nonredundant module to

that of a redundant module or stage. Thus, there are essentially two

variables in Equation (3.3.2), Rm and n, since -ﬁv is also
considered to be a function of n. Taking the partial derivatives of

Equation (3. 3.2) with respect to Em yields

Q.)./'."' ~ (Em +T?-V)n-1 [n - (n—1)(§m +§v)]

n-2
®, {<n-1>(§m 7)) [r- (R R (5..9)

divided by



Setting the above equal to zero, multiplying through by the denominator,

n-2
and dividing through by (_ﬁm +§v) yields

(7, +R) [n-(n-n(’ﬁm +§v)] -R_ {(n—l) [n - (1) (B +§v)]
- (n-1)(§m +§v) } =

(3.8.4)
If second- and higher-order terms are neglected, the above equation
becomes approximately
n(ﬁ +R ) - n(n-1)R_ =~ 0 . (3.3.5)
m v m .
Solving for Em yields the result
R ~— (3.3.6)

Notice that this general result agrees with the special case considered in

Chapter II, where it was shown that with n =3, Em ~ R

Taking the partial derivative of Equation (3. 3. 2) with respect to

n yields

% ™ _Em [n - (n-i)(ﬁm +§v)] [(Em +§v) . ln(ﬁm +§v)
2 0R
+ (n—i)( +R ) a—n—]
* (ﬁm +-I-iv " [ - (Em +§v) - (o-1) E!il} =0

on
(3.3.7)
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The previous equation is over the square of the denominator of Equation

(3.3.2). Multiplying through by this and dividing through by
n-2
-R (R +R ) yields
m\ m v

- (T +5)] (R R 10 o7, ) o0 2
- (‘R‘m +§v) [1-(§m +§v) - (n-1) ;&L 0 .  (3.3.8)

Equation (3. 3. 8) must also be compatible with Equation (3. 3.6).

- (n-1)R
Therefore, R_ +R_ = ———X  can be substituted into Equation (8. 3. 8)
m v (n-2)
yielding
2 — — —_—
(n-1)" R (n-1)R (n-1)8R
0 - v n;i_)-— in LA v
n-2 n-2/ v n-2 on
El) = [ n_-1) = (n—1)8Rv] o
n-2 v n-2 v on

(3.3.9)

Equation (3. 3.9) may be expanded to obtain

[n_ (n-1)2§v:|. (n—i)'ﬁ i _(n_—i—)_EY. N 11:1) R

n-2 n-2 v n-2 n-2 v

= 0

on

n(n—1)2 R ] 5R
v v
n-2

2
- E-—i- R 2 + [n (n_i) -
n-2 v

(3.3.10)
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Multiplying Equation (3. 3.10) by ::;j yields

[ (n-l)ZEV] _ (n-1)_1$V _ — 9
n- R {n —m——— + R =~ (n-1)R
v v v

n-2 n-2
_ (3.3.11)
- oR
+n [(n—2) - (n—1)Rv] Sn—! = 0 .

By neglecting second-order terms of Ev , Equation (3.3.11) is given

approximately by

(n-1)Rv

fn —¥ i, [i'l'-“’i)- - (n-1)] —X = 0 (3.3.12)
n-2 n - on
R
v
or by rearranging terms
(n-1)R 8R
fn —— = li(n-i) - (n'Z)] v._ 1 (3.3.13)
n-2 E on n
v

Equation (3. 3.13) is a transcendental function and it is impossible to
_ oR
solve explicitly for n in terms of Rv even if P were known. It was

noted that Ev is also a function of n ; therefore, when n is known,
_ aﬁv
Rv and on will also be known. The decision element logic design

will now be considered to determine -ﬁv and -an—v



3.4 LOGIC DESIGN OF A GENERALIZED

DECISION ELEMENT

The decision element to be developed herein must accomplish the
following functions:

1. Fault masking such that as long as two modules out of n are
operational, the output is always correct.

2. Failure detection to sense that something needs to be done.

3. Failure isolation so that the failed module can be identified.

4. Automatic module switching such that a failed module may be
replaced with a good unit.

Factors 1., 2., and 3. above have been considered in Chapter II;
therefore, all that remains to be considered here is 4. A block
diagram of the decision element which will accomplish these functions is
shown in Figure 3.4.1. The diagram consists of three basic parts:

(1) module selection logic, (2) failure detection and control logic, and
(3) a voter similar to that considered in Chapter II. A decision element
will be employed with each module in the system.

The basic operating philosophy is as follows: Out of the n inputs
to the module section logic, three are selected for use in the system.
Initially, these will be inputs A, B, and C and will be assigned to
channels X, Y, and Z, respectively. As failures occur in these
channels, they are detected by the failure detection and the control

logic which switches out the failed module and switches to the next
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8 T Y CHANNE FAILURE DETECTION
me—
MODULE ,-..A—L._ AND CONTROL
C ey SELECTION 2 CHANNEL LOGIC
INPUTS | LOGIC \ &
n —l—
VOTER OUTPUT TO THE
NEXT MODULE

Figure 3.4.1. Block Diagram of Generalized Decision
and Switching Element

good unit. Means must be provided for remembering which of the n
modules is being used and in which channel it is being employed.
Arbitrarily, it was decided to initially assign and use A, B, and C
only in the X, Y, and Z channels, respectively. However, the
remaining n-3 modules can be assigned sequentially to any of these
channels as failures occur. When the nth module has been assigned
to either the' X, Y, or Z channel, another failure causes either the
A, B, or C modules to be reassigned, depending on whether that
failure was in the X, ¥, or Z channel; a failure in X results in A

being reassigned to X , a failure in Y results in B being reassigned to
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Y, etec. Thus, A, B, and C can only be assigned to channels X, Y,

and Z, respectively.

The basic elements were developed in Chapter II; however, means

of selecting three out of the n modules and control and switching logic

must also be developed. The detailed logic for controlling a stage

consisting of six modules is shown in Figure 3.4.2,

The logic equations for the various portions of the decision

element are as follows: Notice that since AND/OR INVERT logic is

being used, the output will be in complement form.

Voter

? = 56{2 +§5{Z +§(YE +X§Z

=3-(§+ XZ +—1-{Z

Error Detection

No X and Y errors have occurred if

-}z . Q—e = ?Z +_}Z§Z +XYZ +XYZ

or there exists an error in X or Y if

X, +Y, =XYZ +XYZ +XYZ +XYZ

= XY +XY = ER2

(3.4.1)

(3.4.2)

(3.4.3)
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Similarly, there are no X or Z errors if

68

X, " Z_ =XYZ +XYZ +XYZ +XYZ (3. 4. 4)
or an error has occurred in X or Z if
X +Y_ = XYZ +XYZ +XYZ +XYZ
(3.4.5)
=XZ7Z +XZ = ERi
If there are no ERI and ERZ , then no error has occurred; i.e.,
ERi . ER2 = (XY +XZ) (XY +XY) =E
ERi . R2 = ERi +ERz =XZ7Z +X7Z + XY +XY =ER
(3.4.6)

Thus, ERi . ERZ indicates an error in X . Similarly,

represents anerrorin Y and E_ ' E an error in Z .

Ri R2

The error counter simply counts the errors as they occur.
necessary to remember which module is being used in the X, Y,
channels. This function is served by the X, Y, and Z transfer

registers which consist of J-K flip-flops. When an error occurs in

It is

and Z

one of the channels, this value is simply transferred to the appropriate

holding register. In other words, these registers, consisting of two

flip-flops each, simply copy the error counter when an error is sensed

in the appropriate channel.



To better understand the operation of the decision element, it is
desirable to go through the sequence of operations which results as

failures occur. Initially, the error counter and transfer registers will be
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in the reset condition. Therefore, the signals Cx * C , C . C , and

i X2 yi y2

- C will be in the ''set state' or represent a logical '"1'" condition,

Czi z2
thus gating A, B, and C inputs to channels X, Y, and Z,

respectively. When an error occurs in X, Y, and Z , the

R2 * TRr1 Frg - and

signals E E are turned on,

. E .
| R1 R2

R

respectively. An error ER is therefore detected when ER g ER 2

is high. Assume, for example, a failure in channel Y (thus indicating

a failure of the B input). The signals ERi . ERZ and ER are

generated and the counter is stepped one. The signal that the error has
occurred in the Y channel and some 'clock" C g which occurs a short

time later, allows the contents of the error counter to be transferred to

the Y-channel holding register, thus generating the condition Cy $ Cy2

Notice that the contents of the other (X , Z) transfer registers
have not changed. As the Y-transfer register changes from the condition

C C to C ,-C , input B is switched out of channel Y and
yi  y2 yt  y2

input D is switched in. When another failure has been detected, the

error counter is advanced by one count. Whether its contents are then

transferred to the X-, Y-, or Z-holding registers depends on the

channel in which the error occurred. For example, if the second error

was also in the Y channel (input D failure), a count of two would be



transferred to the Y-holding register and the condition Cy ¢ Cy2 would
be generated, thus switching input D out and input E in. However,
had the second error occurred in the X channel, the count of two would

have been transferred to the X-holding register and the condition CX " ’ sz
would cause E to be switched in the X channel in lieu of input A . The
conditions of the other holding registers would not change; therefore, the
inputs being employed in those channels cannot change.

The inputs to the next module are voted; thus, these inputs are
correct as long as two out of the three inputs are correct. Therefore,
there is no particular hurry to switch out the failed input and switch in a
new input. This allows the possibility of setting up a sequence of events
between a failure indication and the actual switching operation. For
instance, if the spare inputs were in a power-off mode, it may be
desirable to turn power on the next unit to be employed and allow a
warmup period before it is actually employed in the system, Utilizing
spares in the powered-down mode might possibly increase system
reliability considerably. With only two operational inputs in a stage
(i.e., all inputs are incorrect except two), there is a possibility of
cycling; i.e., the system searches for an input which agrees with the
two being employed. This cycling is not detrimental to the system due
to the voted output. The decision element also allows intermittent
failures in that when a module fails, it is switched out; however, it will

be used again at a later time,
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It should be noted that the module-selection gates consist of
three input AND circuits. The design herein is general and applicable
to any number of inputs or modules. As another module is added, the
number of inputs to each input gate is increased by one, and the number
of gates in the X, Y, and Z channel is increased by one each.
Additionally, to employ four modules, four flip-flops are required;
i.e., one in the error counter, and one each in the X-, Y-, and Z-
transfer registers. By adding one more flip~flop to the counter and
each of the registers, six modules can be accommodated. If it were
then required to use seven modules, four more flip-flops would be
required, but with the additional flip-flops, up to 10 modules could be
accommodated without having additional flip-flops. The relationship
between the number of bits in the error counter and n is given by the

expression
n-2=<2 (3.4.7)

where n is the number of modules employed and c¢ is the number of
flip-flops or bits required in the error counter. The total number of
flip-flops required is 4c or FF's 2 4£n2(n-2) . As n is increased
by one, the total number of input gates is increased by three, and the
total number of inputs to each input gate is increased by one. Therefore,
it is readily apparent that the complexity of the decision element is more

affected by additional flip-flops rather than gates. Very distinct increases
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in complexity occur at n =5, 7, 11, 19, etc., because the maximum

number of modules which can be used with a c-bit counter is

n =2% 412 (3.4.8)
max

The number of discrete component parts necessary for the
decision element is shown in Table 3. 4. 1. 7 As mentioned previously,
definite jumps are noted at 5, 7, etc.

The number of parts in a decision element has been plotted as a
function of the number of modules employed in Figure 3.4.3. An.
analytical expression for the number of parts in the decision element is
desired to generalize the treatment. As shown in Figure 3. 4.3, the

function

n, = (243 + 3n) 1n2 (n-2) +12n + 108 (3.4.9)

7The number of parts used in the logic becomes rather obscure
when large-scale integrated circuits are used. The question then arises
as to what a part is. Further, the reliability is often quoted in terms of
a logic block, and little concern is given to what is in the logic block.
Large-scale integrated circuits make the techniques used in this investiga-
tion even more attractive. However, to treat relative complexity,
discrete component counts will be utilized. Anything gained through
integrated circuits then will be over and above that considered here. It
is reiterated that the techniques proposed herein become even more
palatable or feasible when advanced circuit technology is utilized. In fact,
the feasibility of such an approach may depend directly on technological
development. If the proposed approach is not feasible today, it will
become so at some future date.



TABLE 3.4.1

NUMBER OF EQUIVALENT DISCRETE COMPONENTS REQUIRED
FOR A GIVEN NUMBER OF MODULES

Number of Modules Number of Component Parts
Employed in the Decision Element
3 21
4 420
5 655
6 685
7 960
8 975
9 1000
10 1020

fits the salient points on the graph; i.e., the points beyond which a
large increase in decision element hardware is required to obtain an
increase in reliability. If optimum n occurs below these points, it is
safe to say from the previous discussion that n can be rounded up to
these values with a minimum increase in complexity to achieve a
sizable reliability gain.

A decision element utilizing the design shown in Figure 3.4.2

has been breadboarded for 10 inputs and is shown in Figure 3.4.4. The
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design functions as expected and demonstrates the feasibility of the
proposed approach. The breadboard was packaged in a small briefcase

to make it portable and more convenient for demonstrational purposes.

3.5 SYSTEM OPTIMIZATION INCORPORATING THE

GENERALIZED DECISION ELEMENT DESIGN

An expression for Ev in terms of n is desired so that Equation
(3.3.13) can be evaluated. Since an exponential distribution is assumed
for component parts in this investigation, the failure probability of the
decision element is given by the relationship

-n At
= v
R =1-e (3.5.1)
A
where nV is the number of components in the element, A the average
component failure rate, and t the operating time., Differentiating

Equation (3.5.1) with respect to n yields

oR -n At 9n
v v v
on on

where n is given by Equation (3.4.9) and

an
— =3¢ -
on - 3im (n-2) +

1,44 (243 + 3n) +
n-2

12 . (3.5.2)



Figure 3.5.1 shows n plotted as a function of n [Equation (3.4.9)] and

indicates that the curve is asymptotic to the line n =2, Figure 3.5.2
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on
indicates how —a-n! varies with n and was obtained from Equation (3.5.2).
_ aﬁv
Figures 3.5.3 and 3. 5.4 show Rv and 0 plotted as a function of

n, respectively. In Figure 3.5.4, a value of At =10~ has been

arbitrarily chosen; however, this is a reasonable value. From this figure,
R

it is evident that _é_;v approaches zero as n increases, and from

Figure 3.5. 3 it is seen that Ev approaches unity as n increases. Thus,

for a very large n and small At, Equation (3.3.13) is given

approximately by
i
fn — =~ - = . (3.5.3)
n

This equation is only satisifed in the limit; i.e., as n approaches
infinity. Therefore, there is no theoretical limit in the reliability which
can be obtained with the technique. However, there are several practical
reasons why a limiting value should be placed on n.

It is not necessary to utilize the figures to demonstrate that a
reliability as close to unity as desired can be obtained. However, the
curves help give an intuitive feeling of the influence of n on each

parameter. Substituting Equation (3.5.2) into Equation (3. 3. 13) gives
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(n-1)R _
. [ v:|= {(n_i) i (i-z)J (R, ) 2t [3“2(11_2) , 1.44 (243 +3n)

n-2
+ 12] -

Bl

(3.5.4)
It is readily apparent from Equation (3.5.1) that EV approaches unity .
as nv increases without bound. From Equation (3.4.9), it is seen that
as n approaches infinity n must also increase without bound. In other

words, as n becomes very large, RV approaches unity. Thus, the

right side of Equation (3.5.4) approaches zero as n approaches infinity.

Since Ev and 2%; approach one in the limit, the left side also
approaches zero as n increases without limit. Therefore, Equation
(3.5.4) is only satisfied as n approaches infinity. It has not been shown
yet that the vanishing of the derivative [i.e., satisfying Equation (3.5.4)]
yields a minimum failure probability, but only that an extremum has been
found. However, it will be shown through numerical evaluation that the
extremum found indeed represents a minimum value.

If At is very small (of the order of 107* or less), then

-nvht
R =e ~ 1 - nVM
and

-nmxt
R =e m 1-n At
m



or

R~ n At
v v
and
E ~n At
m m
Substituting these values into Equation (3. 3.6) yields

n
n = —%
m n-2

(3.5.5)

B |r—]z

Thus, the number of modules into which a nonredundant system should be

divided is given approximately by

NT (n-2) NT (n-2)

m = n_ " (243 +3n) 4n, (n-2) + 12n + 108 - (8.5.6)

An alternate and more accurate expression for m can be obtained by
noting that since

R
)
m

R ~ (n-2) R and R &
A\ m m

-nvM Es (n-2) (1 - _NTM)
1-e ~ (n-2) — = &
m m
Thus,
=N At
(n-2) (1 -e T )
m ~ (3. 5. 7)

" e—[(243 +3n) Lny (n-2) + 12n + 108] At
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or normalizing by letting t = A?k-, which is k times the mean time
T

between failures of a nonredundant system, Equation (3.5.7) becomes

(n-2) (1 - e_k)
-[(243 +3n) £n, (n~-2) + 12n + 108]

Np

(3.5.8)

1-¢

The two previous equations are accurate only if

(1-Rm)mz m_ﬁmﬁ—ﬁs

is accurate.
A limiting value on m can be found from Equation (3.5.7) by

letting N, approach infinity; thus

T

m = n-2 (3.5.9)
max ‘- e—[(243 +3n)fn, (n-2) +12n + 108] At ° e

The failure probability of a redundant system can be expressed

approximately as

(3.5.10)
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where as usual

_ -N_At
R =1-¢e
s

This equation has been numerically evaluated and P has been plotted as a

function of m for discrete values of n when Es =0,632 and Es = 0, 865

and for EV =0.1 and EV = 0,05 in Figures 3.5.5 through 3.5.8. As
(n-2) Es
indicated in these figures, A is the point where m & ————— which
R
\s
theoretically has been determined to be the point where the system
failure probability is minimum. From these figures, there can be little
doubt that the extremum found through theoretical analysis does indeed
yield a minimum, as opposed to a maximum, failure probability. They

also indicate that the approximations made in theoretically determining

(n-2) R
that m ® ———— yields optimum design are accurate for all

\'

practical purposes. In addition, from these figures two additional facts
may be noted: (1) after the optimum point has been reached, increasing
m causes the failure probability to increase very slowly (i.e., m is not
a very critical parameter), and (2) n has much greater influence on the

failure probability than m .
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For optimum design,
R_=(n-2)R
v m

and Equation (3.5.10), which is an approximation, can be written exactly

as

F-1-{1-[F_(1)-F_*m2)] i {n - @-1) [E_(a-1)
I
-Emz(n-z)]}l
(3.5.11)

where

— 1 —
R =1-R /m=1-<1-3)1/m
m S S

This equation yields the optimum design of a system as a function of Es s

n, and m , when utilized simultaneously with Equation (3.5.8). For a

given n, m can be found from Equation (3.5.8), Rm can be calculated

88

from the above equation, and finally P can be found with Equation (3.5.11),

These two equations have been numerically evaluated for k=1, 2, 3;
ie., Es =0.632, 0.865, and 0. 950. Figures 3.5.9, 3.5.10, and 3.5. 11

show m plotted as a function P for values of n =4 through n =10

and for Es = 0,632, 0.865, and 0.950, respectively. P has also been
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plotted as a function of n in Figures 5.3.12, 5.3. 13, and 5. 3. 14 for
various size nonredundant systems for Es = 0.632, 0.865, and 0. 950,
respectively.

For illustration, consider three nonredundant systems which
contain 25K, 50K, and 75K component parts. The 25K system will be
taken as a reference and it will be assumed that it has a reliability of

RS =0.632 or NTM =1, i.e., it is to be operated until it reaches

its mean time to failure. Since

1
25,000

At = =4x 1073

Assume that it is desired to achieve a reliability goal of 1x 1076,

How should each of these systems be organized? From Figures 3.5.12,
3.5.13, and 3.5. 14 it is found that n = 8.6, 8.1, 8.0 for the 25K, 50K,
and 75K systems, respectively. Notice that since At is assumed to be
constant, all three figures must be used. From Figures 3. 5. 9 through
3.5.11, the values of m =80, 195, and 335 are found which correspond
to these values of n for the respective systems. The theoretical solution
to this problem is summarized in Table 3.5.1. The significant points of
Table 3.5.1 are that n does not change appreciably as the size of the
system increases, because the failure probability is held constant,

but m increases considerably, and the number of component parts in
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a module decreases as NT increases. As noted in Figures 3.5.12,

3.5.13, and 3. 5. 14, for a constant N to obtain an appreciable decrease

T ?
in failure probability, n must change considerably. As expected,
failure probability is more critically related to n, while the number

of parts into which a nonredundant system is divided (m) is more

closely associated with system size.

TABLE 3.5.1
THEORETICAL OPTIMUM DESIGN FOR THREE DIFFERENTLY

SIZED HYPOTHETICAL SYSTEMS

N R P
T R S n m nm

25K 0.632 1x 1078 8.6 80 313
50K 0. 865 1x 1078 8.1 195 256

75K 0. 950 1x 1078 8.0 335 224

Since n (Table 3.5.1) is not an integer value, those organizations
are not realizable. If it is desired to achieve a reliability goal of no less
than 1x 107, then n must be rounded up to nine in the first two
cases. But when this is done, the failure probability which can be

obtained changes considerably. The results of practical systems

94



95

utilizing optimum design are given in Table 3.5.2. As in the previous case,
At =4 x 107% has been assumed. The number of components required
in the decision element can be found directly from Figure 3.5.1. The

relative complexity (Cr) will now be treated analytically in more detail,

TABLE 3.5.2
REALIZABLE OPTIMUM DESIGN FOR THE PREVIOUS

HYPOTHETICAL SYSTEMS )

NT R P n m {n | n nv/nm C

25K 1 0.632 | 4.6 x 1077 |9 [117 | 214 1000 4. 67 51.1
50K [0.865 | 1.15x 1077 9 |315| 159 1000 6.29 65.6

75K {0,950 | 1,0x 1078 | 8 [335]| 224 900 | 4.02 40,1

The complexity or the total number of components in a nonredundant

system is given by the relationship

NT =n m (3.5.12)

where n_ is the number of component parts in a module and m is as
previously defined, the total number of modules in a simplex or nonredundant

system. The number of components in a redundant module is given by



Nm = n(nm +nv) (3.5.13)

where n is the degree of redundancy applied and nV the number of parts

in the decision element. For optimum design, it has been shown that

_ R
Rm = n-2

or that the relationship

-4n [1 - (n-2) (1 - e-nmm)]

n ~ Y ' (3.5.14)

-nmxt nvxt
should be satisfied. For small At, 1 -e and 1-¢ can

be approximated by nmxt and nvM , respectively, and the optimum

design is given approximately by

n 8 — . (3.5.15)

In this case, Equation (3.5.13) can be written as
N = n(n-1) n (3.5.16)
m m

or since the number of components in a redundant system is m times
that in a redundant module, the total number of components in a

redundant system is given by

N ~n(n-1)n m . (3.5.17)
r m
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The relative complexity of a redundant system to that of a simplex system
is, therefore, found approximately by dividing Equation (3.5.17) by

Equation (3.5.12), yielding
Cr ~ n(n-1) . (3.5.18)

For n =3, Equation (3.5.18) yields a relative complexity of six, which
agrees with that found in Chapter II. The relative complexity estimated

by Equation (8.5.18) is given more accurately by the relationship

in [1 - (n-2) (1 - e-nmM )]

Cp=m! n_At
m
(3.5.19)
Since
NT
n = — ,
m m
Equation (3.5.19) can be expressed as
I: < ) NT“’)}
m
C =n {t1-4nli-(2) M-e ' . (3.5.20)
T N, At
T
m
By letting t = 7\—Nk— (i.e., by normalizing by expressing t as k times

T

the mtbf of a simplex machine), Equation (3.5.20) becomes



C.=n {1 - -‘kﬂ £n [1 - -2 (1- e'k/m):l } : (3.5.21)

The complexity obtained from Equation (3.5.21) has been plotted
as a function of m for several values of n when k =1 as shown in
Figure 3.5.15. As m increases, Cr rapidly approaches the value
approximated by Equation (3.5.18). Also, this equation is more
accurate when n is small. Although the effect of k on the relative
complexity cannot be determined from this figure, it can be shown that
as k increases the curves approach more slowly the values estimated
by Equation (8.5.18). In other words, Equation (3. 5.18) becomes a
better approximation as k and n become smaller; however, m has a
dominating influence. The relative complexity is also given by the
relationship

C_ = M . (3.5.22)

r n
m

This relationship was used in calculating the values in Table 3.5.2
because nm and n were known. When Equations (3.5.18) and
(3.5.22) are equated and solved for nm , the result is that obtained
previously in Equation (3.5.15).

The results of this section have shown that infinite reliability can
be obtained with the proposed approach under the assumption that a

nonredundant system can be broken into as many modules as desired.
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However, the approach is expensive since the relative complexity increases
roughly as the square of the degree of redundancy employed when n is

large [Equation (3.5.18)].

3.6 CONSIDERATION OF THE REQUIREMENT

FOR A SINGLE OUTPUT

The previous development treated the idealized two-out-of-n
organization with little regard to practical application. It has been
shown that when this technique has been applied to a system, any
desired reliability can be obtained if the resulting complexity can
be tolerated. The question of the feasibility of application of this
technique to a practical system arises: Can unlimited reliability
really be achieved if relative complexity is not a factor? The answer
to this question naturally depends on the system itself, and the remainder
of this chapter will be devoted to a discussion of this question.

The physical nature and requirements of the outputs of an
individual system provide the key to the reliability which can be
obtained Wim the technique proposed herein. If this technique can also
be employed in the next system which follows it, or all the redundant
signals can be used in the preceding system, then with the proposed
technique a reliability as close to unity as desired can be achieved,
provided that cost (i.e., complexity) is of no concern. However, in

many applications, it is not possible to use multioutputs from a system.
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Suppose, for example, that signals from a digital computer system position
a servomechanism system. It is conceivable that the servomechanism is
redundant; however, it may also be possible, and more likely, that the
servomechanism system is being used to position a single physical

device. Thus, it is possible that regardless of the degree of redundancy
that is applied internally in a system only one output can be accommodated.
In any system, it is most probable that there exists a requiremeht for a
single signal at some point, in which case the redundant system must

be '"necked'' down to provide a single output. The single element which
accomplishes the converging of the redundant signals must act in series
with the redundant elements; therefore, it introduces the possibility

of a single-point failure and thus limits the reliability of the total system
because the reliability can never be greater than the reliability of this
element. In terms of the previous discussion, this element is simply

the decision and switching element which accepts ni inputs and provides

a single output. This element is identical to that shown in Figure 3.4. 2.

The old adage that a chain is no stronger than its weakest link
also applies to the reliability of a system consisting of a chain of several
elements. If a decision element at the output of a system is required
which acts in series with the redundant system, the total system
reliability can be no greater than the reliability of the decision element.

Thus, system reliability becomes limited when viewed from this point.
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However, this may not be a severe limitation because the overall system
may consist of thousands or hundreds of thousands of component parts,
while the single decision element may be made up of only a hundred or

less component parts. The reliability of the configuration being considered

is given by

v myv

P |i-(F, +F,-F,5,)

1 -Emn'i [n - (n-1) Em]

(3.6.1)
where the first portion of the equation is the reliability of the m-1 stages
containing a decision element with each module, the second portion is
the reliability of the mth module containing no decision element, and

Rv is the reliability of the single decision element in the serial chain.

Notice that
R +R -R R =R (1_§)+§ ,
m v m v m v v
and since
- 1
R =1-Rr /™
m s
then
- = = = 1
R +R -R R =1-RR Y™ | (3.6.2)
m v m v v's
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Since
—nvM
R =e
v
and
-N_At
R =e¢e T
s
k
or when normalized about t = — ,
AN
T
'kn\/ Np
R =¢e
v
and
R = e_k
8

Equation (3.6.2) can be expressed as

nV 11
-k (ﬁ— + E
= T

-ﬁ +§ —ER =1-e
m v m v

(3.6.3)

Substituting Equation (3. 6.3) and the above relationships into Equation

(3.6.1) yields
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n n-1 n m-1
v, 1 v 1
—k<NT * m) —k<N * m)
P=| 1-]1-e n-(n-1)\1-e T
kn
- —
n-1 N
1- (1—e-k/m ) lin- (n-1) ( —e_k/m>] e !
(3.6.4)

where
n = [(243 +3n) L ny (n-2) + 12n + 108]

Equation (3.6.4) has been numerically evaluated with the aid of
a digital computer. The redundant system failure probability (P) has
been plotted as a function of the number of modules in a simplex system
(m) for various size systems and for NTM =k =1, 2, and 3 in
Figures 3.6.1, 3.6.2, and 3.6.3, respectively. From these figures,
it is clear that P does indeed reach a minimum value. Figures 3.6.4,
3.6.5, and 3.6.6 show m plotted as a function n for the parameters
contained in the previous curves. The vertices of the curves (i.e.,
where n reaches a minimum value) correspond to the minimum P
found in Figures 3.6.1 through 3. 6. 3.

For illustration, consider a system consisting of 25, 000
component parts and which has a reliability of 0.368 (k =1) after some

period of operation. Thus,
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A single output is required. What is the minimum failure probability
which can be achieved, and how should the system be organized? From
Figure 3. 6.1, a minimum P of approximately 2.12x 10~2 is found

at m = 110, Figure 3. 6.4 gives the value of the degree of redundancy
(n) which should be employed in the system at the point where m = 110
and NT =25,000 to be 4.4. The ratio of failure probability of the
simplex system to that of the redundant system is approximately 30.

Suppose that the simplex system just considered doubled its size

in its development process. What is the minimum failure probability
which can be obtained, and how should it be organized? Assuming the
system had the same component failure rate and operating time,

At = 4x 107, since N,, has doubled, then k =2 must be used;

T
i.e., at 50K, m =300 must be employed. In Figure 3. 6.2, a minimum
P of 2.35x 107 is found when m ~ 300. A value of n~ 4.7 is then
found in Figure 3.6.5. Therefore, approximately the same failure
probabilities can be achieved in the two systems by varying the way
the nonredundant system is divided and by employing different degrees
of redundancy.

An interesting result is that the system is organized in such a
manner to fulfill the moo relationship found in Equation (3.5.9).
This function has been plotted and appears as a dotted curve in

Figures 3.6.4, 3.6.5, and 3.6.6. It is seen that this curve passes

through the vertices of the other curves, which indicates that as much
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reliability as possible must be gained in the system through the subdivision
of the nonredundant system. Although as shown previously, reliability
is more readily affected by changing n rather than m  for single
output systems; increasing n causes the reliability of the last decision
element to decrease, thereby decreasing the overall redundant system
reliability.

Since the values of n in the example are not integers, they
are only of theoretical value and should be rounded for any practical
application., However, theoretically they are of considerable value in
determining the effects of system parameters on system reliability.

Since the condition

_ n-2
max -knv/ NT
1-e

is always approximately fulfilled, it is possible to remove a variable,
either NT or m, from Equation (3.6.4). Since NT is generally

known, it may be more beneficial to remove m by substituting the above

expression into Equation (3.6.4). The expression



. K (n-1)
-k A _1_ k e n-2
NT n-2 E
P = 1i-1J1-e e
n-2
-kn /N
kn 1-e v T
=Y
\'s 1 NT
-kf— + — k e
NT n-2 n—_z'
n-(n-1)\1-¢
- (n-1)
-4
N
ok \t-e T
1i-L1-e n-2
kn
_ -V
N
n - (n-1) e T
(3.6.5)

is then obtained where
n = [(243 + 3n) g¢ny (n-2) +12n + 108]

An evaluation of Equation (3.6.5) will not be undertaken since little

additional information would be obtained.
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The relative complexity of the system can be found from Equation
(3.5.21) or (3.5.22). Since the value of n is limited, a limit exists
in relative complexity.

In this section it has been shown that the failure probability of a
simplex system can be decreased considerably, particularly if the simplex
system is very unreliable, even when a single system output is required.
It has been determined how a system should be organized to achieve
maximum gain in reliability. However, due to the single output require-
ment, it is not possible to obtain infinite reliability as in the last section.

It is possible to obtain still greater reliability by using a
majority logic two-out-of-three configuration in the single decision
element. This type of element is illustrated and discussed in Chapter IV.
The equations developed in this section can be readily modified
to accommodate this situation by substituting R", given in Equation (4.4.1)
for RV in Equation (3.6.1). This will not be done here since techniques
rather than numerical results are of prime interest. However, a
limiting value in reliability will still exist because the output signal
must still pass through, in this case, a single voter similar to that
shown in Figure 2.4.1, Such a device would consist of only approximately
20 component parts. The decision element considered in this section
contained 400 to 650 parts, depending upon the degree of redundancy
employed in the system; thus, the limiting value on failure probability

would be expected to decrease considerably.



CHAPTER IV

PRACTICAL SYSTEM OPTIMIZATION

WITH CONSTRAINTS

4.1 INTRODUCTION

In the previous chapters, optimization of an ideal system was con-

sidered. It was shown that for optimality, a system should be organized such

I':UI
<

that _Rm R s and that overall system reliability could be increased to a
value as close to unity as desired, provided that system complexity could be
tolerated and that the n redundant outputs could be utilized as inputs in the
following system. If only one input could be accommodated by the next
system, the failure probability of the system can be no less than that of the
single decision element in the series chain. In addition, it was further proven
that all the modules into which a nonredundant system was divided should

have the same reliability and that the degree of redundancy applied to each
module should be the same. These conditions lead to optimum system
reliability. The question now arises as to the practicability of this approach

and the underlying assumptions. If such an approach is not practical, how

should a system be designed to achieve a reasonable gain in system reliability
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with reasonable or limited resources? This problem can be framed in two
basic ways as follows:

1. Given a practical system (organized in a manner such that the
modules do not have equal reliabilities), what is the maximum reliability
which can be achieved within given complexity constraints such as cost,
weight, power, etc?

2. The dual problem to {1, is that given a reliability requirement,
how can this requirement be achieved to minimize the resources, cost,
weight, power, etc?

Since it is quite likely that the reliability of the modules into
which a nonredundant system can be naturally segmented will not be
"equal, it therefore follows that the degree of redundancy used at each
stage may not necessarily be equivalent. This inherently introduces
a new problem: that of interfacing or interconnecting n, redundant
elements in one stage to nj redundant elements in the next stage.

Notice that generally n, ¥* nj . One method of accomplishing this
function will be covered in detail.

There are several theoretical approaches which can be used to
optimize a system under the above conditions. Classically, Lagrange
multipliers might be used provided certain conditions, such as
continuity and differentiability, are satisfied. It was shown in
Table 3.4.1 and Figure 3.4.2 that in actual practice the reliability

and number of component parts in the decision element are a discrete
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function of n. , the degree of redundancy applied to the ith stage, although
for the development herein, a continuous approximation was used. Further,
as the number of stages increase (they could conceivably approach a
hundred), the Lagrange formulation becomes unwieldy.

Another technique which has been developed by Bellman (3) in
recent years is the so-called dynamic, iterative, or recursive programming.
This approach, which is numerical in nature and had to await the
development of digital computer systems, circumvents the aforementioned
problem of continuity and differentiability. In addition, a large number
of stages can be adequately handled, provided sufficient computer capacity
(time and memory) is available. From a practical point of view,
however, the number of constraints which can be handled with this
approach must be limited, again depending upon computer capacity
and time available. The Lagrange formulation may also be coupled
with the dynamic programming method to facilitate convergence.

A technique has been proposed by Sasaki (16) which he says
leads to optimum reliability gain with a minimum expenditure of
resources. However, he does not prove this will always be the case
and essentially just states a decision algorithm. The first method to
be discussed herein yields results similar to those of Sasaki; however,

derivation will be given to show under what assumptions this approach



should be used. In addition, Sasaki's algorithm in general does not lead
to the most economical system. The second method developed herein
leads to the most economical design.

Many figures of merit or criteria functions may be considered,
and the final results possibly depend upon the one employed. Three
basic criteria functions will be considered herein, and examples of each
will be considered and the results compared. Many figures of merit
have been proposed by various authors for numerous applications. A
plausible criterion function to be first considered is simply (AP)max ;
i.e., redundancy should be added to a system to maximize the gain in
overall system reliability. The decision algorithm proposed by Sasaki is
to increase the reliability of the least reliable stage which is a special
case of the general case (AP)maX . It is not clear that Sasaki's
approach or that the function (AP)max leads to a system of minimum

cost. Another criterion function that will also be discussed is

<%) , Which represents the ratio of the gain in system reliability
max

to the increase in the overall system complexity. In essence, it
represents the system reliability and cost gradient and should, therefore,
be as large as possible. This function does indeed yield optimum

reliability at minimum cost. Still, another possible criterion function

that can be used is ‘A‘PB AC—C , wWhich is defined as the ratio of the
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percentage gained in reliability to the percentage increase in overall
system comélexity.

The basic approach in this chapter will be to develop theorems
pertinent to the criteria functions and decision algorithms without initially
considering the decision element. An example will then be worked
using each of these criteria functions, and the results will be compared.
A decision element necessary for utilizing n, outputs with nj inputs
will be proposed and it will be shown how the decision element may be
included in thé previous development. Finally, the example will then

be revisited incorporating the decision element design.

4,2 DEVELOPMENT OF CRITERIA FUNCTIONS

AND DECISION ALGORITHMS

In this section, the criteria functions mentioned in the previous
paragraph will be discussed and developed in more detail. To facilitate

this development, several theorems will be stated and proven.

Theorem 1i: In a system consisting of m serial elements with
reliabilities p; , P, P3¢« .., pm » respectively, and a system

reliability given by

P:pl'pz‘pa..-o- pm

when parallel elements are to be added to the system, maximum gain in

Ap,
system reliability is obtained by adding it such that p_! is maximized.
i
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Notice P, is the reliability of the ith stage which may either be nonredundant
or redundant with at least degree three. If the redundant two-out-of-n
approach is being assumed, it must contain at least three parallel elements.

Thus, initially, it may be required to add two parallel modules.

Proof: Assume that the pi's have been ordered such that

Py<Pp<---<p_ . The system reliability is given by

P=p "Py*"DP3:..0:DP . (4.2.1)

Adding Ap to the ith stage yields

P+AP =p = py. .. (B, +AP) ... B . (4.2.2)

Notice that ;P =PpP3..... P OF that in general Equation (4.2.2)
1

can be expressed as

(4.2.3)

Ap,
Since P is a constant at any step, the maximum -p—l therefore will
i
yield maximum gain in system reliability, AP , and the theorem is
proven.

Specifically, the two-out-of-n configuration is of basic interest

herein. However, notice that Equation (4. 2.3) is completely general and



119

applicable to any redundant configuration. In Chapter III, it was shown
that for a two-out-of-n configuration the reliability of a redundant stage

is given by

n. -1
1
P, = (1-R.) [1 +(ni-1) Ri] . (4.2.4)

Adding another module to the ith stage yields a new reliability given by

n,
Pl =1-(1- 1
. 1-(@1 Ri) [1 + niRi] . (4.2.5)

The reliability gained in the ith stage by adding another module therefore

is

n,
=p' - =1~ (1= 1
Ap; =p;-p; =1-(1-R) [1 * niRi]

ni—l
- {1 - (1-R) [1 +(n, - 1)Ri]}

n-1
_ i
Api = (1 - Ri) {1 + (ni - 1)Ri - (1 - Ri) [1 +niRi]}

(4.2.6)

Equation (4.2.6) may be simplified and written as

ni-i
n, (1 -R,) R.}?
1 1 1

i

Api
(4.2.7)

— — 2
Ap. = n.R, (1- Ri)
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When higher-order terms are neglected, Api is given approximately by

- ni—i
AD. =
P, niR1 . (4.2.8)
Equation (4. 2.4) shows that
_— ni—i —
=1 - - -
2 R [ni n, ”Ri] :
Again, neglecting higher-order terms yields
_n-1
& {1 - & 1-p
P, niRi i p; . (4.2.9)
Therefore, solving Equation (4. 2.9) for L—)i yields
_ ni-i
= o4
P, niRi (4.2.10)
Ap,
and the ratio of the —!;—1 is given by the expression
i
Ap, P,
i
L S ) (4.2.11)
p. — 1
i 1-p, — -1
i —_
P
Api _
In this case, a maximum _l_)_ is obtained when the largest pi is used;

i.e., when the most unreliable stage is improved. This was the result
obtained, or rather suggested, but not proven by Sasaki. However, it is

not general and depends on the type of redundancy being utilized. For
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example, it does not apply when going from a nonredundant module to a
two-out-of-three redundant module; i. e., when adding two more modules

in parallel. Since, in this case, it can be shown that

Ap,
— = R, -2R?, (4.2.12)
p. i i
1
AP — 1
then —p— occurs when Ri =7 The general case of
' max
Api
—F;— which is always applicable will be utilized as one case in

max
the remaining work in this chapter.

It is interesting to notice also that when an equivalent Ap has
been applied individually to each stage, the greatest gain in system

reliability is still realized when it is applied to the least reliable

stage. Since it was assumed that p; < py < pg =-=--< pm , and since
Ap,
AP, = —* P |
1 p

it follows that
AP-P>éEP>-éEP....>éEP
%1 b b3 Pm

and that AP; > APy > -~~~ APm ; i.e., the gain in system reliability

is greatest when the least reliable stage is made more redundant. In



practice, however, it would be difficult to apply an equal Ap to each

stage since the nonredundant system possibly cannot be subdivided into

modules of equal reliability.

AP Ap;
Theorem 2: The ratio —= is maximized when — is
AC Ani ci pi

maximized, where ci is the relative complexity of the ith nonredundant
module. In addition, redundancy is added in the most economical manner
when this criterion is satisfied.

Proof: If complexity were being determined in terms of the

number of component parts, it could be represented by

where nmi is the number of component parts in the ith module and NT
the total number of parts in the redundant system. If weight were of
concern, ci would represent the weight of the ith nonredundant module

to the weight of the nonredundant system. In general, cost, weight,

and power can have weighted values such that c, can be expressed in

122

the form
u, V. W,
c. =a l  + b L ¢ L (4.2.13)
1 m m m
), ) v, ), W,
= i= =1

m m m
where E ui s Z Vi , and E wi represent the total nonredundant
i=1 i=1 i=1
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system cost, weight, and power, respectively, and ui » Vi and wi the
cost, weight, and power of the ith module in the nonredundant system;

a, b, and ¢ are weighting factors representing relative importance

of these factors. Thus, the complexity of the ith redundant module is

given by the expression

u, v, w,
C.=nc =nJa 1 + b 1 + c 1 . (4.2.14)
i ii i m m m
E u, E v, w
i=t i=t =1 !

The change in system complexity by adding modules to the ith stage is

equivalent to the change in module complexity and is given by

ui vi w,
+ b + ¢ 1

m m m
.Z % E Vi L %
i=1 i=1

i=

AC = Ani c, = Ani a (4.2, 15)

Ap.
Theorem 1 shows that AP = —p_l P ; thus, dividing this by Equation
i

(4. 2.15) yields

ap _ 4B P

AC Ani ci pi

and since P is a constant for each step, the desired result is obtained.

The fact that the criterion leads to the most economy follows directly
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from the observation that the reliability/cost gradient is optimized at
each step; thus, the resulting system must necessarily yield the maximum
reliability which can be obtained within given cost constraints or
conversely minimum costs which are necessary to achieve a given

reliability requirement.

. AR/AC AP
Theorem 3: The ratio P / C is maximized when AC

is maximized.
Proof:

AP
P APC
AC PAC
C

and since % is a constant at each step, the desired results follow

immediately.
cp s AP
Thus, from theorems 2 and 3, it is observed that both AC and
AP /AC - e
—— /= are maximized when ————— is maximized.
P C Ani ci D,

Two theorems due to Sasaki (16), although not directly pertinent

to the developments herein, possibly are of passing interest and therefore

will be included.

Theorem 4: Assume that pi < pj . If P is increased by Api .

the overall system reliability may alternately be increased by an equivalent
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amount when pj is increased by

Proof: Assume that Api and Apj are added to the ith and jth

stages, respectively, such that the overall system reliability gain is the

same in each case. Further assume that the system has been ordered

such that
P <Pp<Pg---- <P
Then
+ . L]
P B P, _q (pi Ap.) pJ P,
= o M . . » o 4 Ms v ® 0 o + Py
By P2 Py P, (P Pi_y (B *+4p)) P
(4.2.16)
therefore,
= + A
(pi + Api)pj pi(pj pj)
=p A
Api p]. P, pj
and the desired results that
Ap. p.
Ap; = ——pl—l— (4.2.17)

follow immediately.
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Theorem 5: Assume that pi < pj I pi is increased by Api and
the result is such that

- Ap. p,
,+—1—-J->1

J P;

p

then the gain in system reliability is greater when D, is increased by

Api than when pj is made unity.’
S th .
Proof: The reliability of the j  stage must be between 0 and 1, i.e.,
p. + Ap, < 1
] pJ

The above inequalities can only be satisfied if

Ap, Ap
p p

and the desired result is obtained.

4.3 ILLUSTRATION OF UTILIZATION OF CRITERIA

FUNCTIONS AND DECISION ALGORITHMS

Thus far, nothing has been said of a decision element which can
accomplish the required function of interconnecting the n, stage outputs
to the nj inputs of the next stage and, as yet, no consideration has been
given to the incorporation of a decision element in the above theorems;
this will be discussed later. However, it is instructive and beneficial

at this point to illustrate how these theorems can be used in design



optimization. From the theorems, it is obvious that redundant elements
are to be added to one stage at a time so as to maximize one of the

parameters.

Ap,
(4P) o = | 57
max p;
max
(ég) _ (ap/p (AP
AC AC/C ~ \An_ c, p,
max m 1 171

max

The first function establishes a procedure of adding redundant elements
to give maximum gain in system reliability. In the second function,
primary emphasis is placed on adding modules such that the reliability/
complexity gradient is maximized. Which of these methods one wishes
to use depends on what one is after. Probably a more interesting
question is: Do these criteria functions lead to the same results?

As an example of the utilization of the criteria functions which
result in decision algorithms, consider a nonredundant system with
parameters given in Table 4.3.1. The problem is to optimize the
reliability of the redundant system within the constraints of a total
cost not to exceed 99, a total weight less than 57, and a total power
less than 83. It should be pointed out that the units on these can be
dimensionless. Thus, the final system cost can be no greater than

99/21 of the initial cost, final system weight no more than 57/12,
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the initial weight, etc. Also, the problem of minimizing costs, weight,
and power necessary to achieve a system reliability goal of 0. 9995 will be

treated for illustrative purposes.

TABLE 4.3.1

PARAMETERS OF A HYPOTHETICAL
NONREDUNDANT SYSTEM

Nonredundant Module Module Module
Module Cost Weight Power
Stage Reliability (ui) (vi) (wi)
1 0.99943 1 1 1
2 0. 94064 2 | 3
3 0.88185 3 2 2
4 0. 82306 4 2 2
5 0.76427 5 3 4
6 0.70548 6 3 5
Total System 0.36790 21 12 17

This problem will be solved with each criterion function developed
previously. The first criterion function considered is
A
Pj

(%) o = {5,
1

max



The iterative process or decision algorithm to determine the

maximum reliability within the constraint condition is as follows:

Ap,
1. TFor each possible stage change, calculate —p—l . Since a
i
two-out-of-n configuration is being assumed, the initial increment will

be to add two modules to the stages as determined by

m
2. The new complexity value is calculated from E nu o,
i=1

m
i=1

.th .
by the i~ stage, and ui R vi , and wi are the cost, weight, and
power values associated with the ith module.

3. The process continues as long as

m
K - iéi n u, = Ani (ui) .

m
K - Env_zAni(vi) .

min

K - E nw, = Ani (wi) . )

m
E ni vi, and E ni wi where ni is the number of modules employed
{24
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where Ku is the uth constraint, etc. In this example, Ku =99,

K =57, and K =83.
v w

d. After two modules have been initially assigned to a stage when

Ap.
its —p—l occurs, only one module at a time is assigned to a
'/ max

redundant element. In other words, if a nonredundant module is chosen
by the criterion function to be made redundant, two modules are initially
assigned to it. Thereafter, only one additional parallel module can be

assigned to that redundant stage at any particular step.

Ap,
Thus, the first step is to calculate —-I;-l for each possible
i

stage change. Since no redundancy has been added to the system, this

value is given in general by

Ap, 3R2- 2R3 -R,
i i i i 9
= = 3Ri - zRi -1 (4.3.1)

P R,

or expressing Equation (4.3.1) in terms of Ei and simplifying yields

— =R, <1—2R.> . (4.3.2)
P. 1 1
i
Api
The -—— for the various stages has been calculated and is

i

given as follows:
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APL _ 0. 00057 AP _ g 11432
o Py

%EZ = 0. 05231 AP _ . 12459

AP _ . 12104

AR _ 9. 09023
b3 Pg

(Notice that for this initial step, Equation (4. 2.12) indicates that maximum

Ap, _ Ap,
1 occurs for Ri closest to 0.2500; thus, the initial maximum —p—l
i

i
could have been determined by inspection. )

Since Aps is the largest value, and since this is the initial

assignment to that unit, two modules will be added. It will then have

a failure probability given by

Ps = 3R - 2R;® = 0.14051

The remaining resources to be allocated are
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Notice that since this is greater than Ani(ci) =1, other allocations
min

are possible.
A new équ is calculated by adding one module to the Sth stage.
5

In general, for one additional module, Api is given by Equation (4.2.7)

which is

Thus, for the 5th stage Apg; is 0.09738 and ép&‘ is 0.11329. This value
5

is compared to those previously calculated for the other stages, the
largest value is chosen, and that stage's degree of redundancy is increased
by one or two, depending on whether this is the first allocation to that

stage.

The épEﬁ = 0.12104 is now observed to be maximum; therefore,
6

two modules are added to it giving a failure probability of f)s = 0.20912,
The resources available for allocation after two modules have been added

to the 6th stage are

6
99 - ), n u, = 99 - 43 = 56
. 1 1
=1
6
57 - ) n. v, =57 - 24 = 33
.:111
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6
83 - ) n w, =83-35 =48
=1 ' !

The sequence in which modules are added to the various stages is
shown in Figure 4.3.1. The circled numbers indicate the step in the
process. For example, the first step is to increase the number of
modules in stage 5 from one to three, the second step is to increase the

number of modules in stage 6 to three, etc. The value of the criterion

function, ipp—l , at each step is also shown in this figure. The dashed
i

line (step 13) indicates that this stage was selected to be made more

redundant, but that a constraint would have been exceeded if this were

done. Therefore, the largest value of the criterion function which does

not exceed the constraints is chosen. The final system configuration is

given in Table 4. 3. 2.

The total overall system reliability is 0. 951709 and the total
cost, weight, and power are 98, 54, and 79 units, respectively. The
relative cost, weight, and power when compared to that of the nonredundant
system are 4.67, 4.50, and 4. 65, respectively. Appendix B.1 gives
more detail about the computer program which was used in the

optimization process and presents the detailed parameters of the system

after each step.
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Figure 4.3. 1., Optimization Sequence for Criterion Function

Api

(2%) e {5
1

max

This approach and computer program can also be used in
achieving a specific reliability goal. In this case, the constraint conditions
are removed and the process is continued until the goal has been reached.
The parameters of the system are then read out of the program at this
point. As an example, it is desirable to determine the cost, weight,
and power in achieving a reliability goal of 0.9995. Detailed data are

also given in Appendix B.1. The process proceeds initially as in the



previous example, but is carried on for several more steps. The final

system configuration and parameters are summarized in Table 4. 3. 3.

TABLE 4.3.2

SUMMARY OF RESULTS FOR CRITERION FUNCTION

Api

(AP)max = —gi—

max
Number of Stage

Stage Modules Reliability
1 | 1 0. 999430

2 4 0. 999201

3 4 0.993987

4 4 0.980782

5 5 0. 987472

6 6 0. 989967

P (Overall System Reliability) = 0.951709

Z n, u, (cost) = 98
1 1

Il

Z n v, (weight) = 54

79

Z n, W, (power)
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‘SUMMARY OF RESULTS FOR ACHIEVING A RELIABILITY
GOAL OF 0.9995 FOR BOTH CRITERIA FUNCTIONS

TABLE 4.3.3

Number of Stage

Stage Modules Reliability

1 3 0. 999999

2 5 0. 999941

3 6 0.999875

4 8 0. 999963

5 9 0. 999932

6 10 0.999877

P = 0,999588

Cr (cost) = 8.0 (168 units)

Cr (weight) = 7.75 (93 units)

Cr (power) = 7.76 (132 units)

Figure 4.3. 2 indicates how P varies with cost for each step in
the process. The other parameters, weight and power, have very
similar shaped curves, and it is not worthwhile presenting them.

Table 4. 3.3 indicates also that the relative complexities in cost, weight,

and power are nearly equal at the conclusion of the process.
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The example will now be solved, using the criterion function

A
Py

An, c, p.
i 1p1
max

Api

—

P

max

where values of a =b =c¢ =0, 3333 are used in ci which
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was calculated from Equation (4.2.13). The steps in the process along with

the value of the criterion function at each step are shown in Figure 4. 3. 3.
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Detailed data concerning variations of system parameters in the process
are presented in Appendix B. 2, and a summary of the final results is

given in Table 4. 3. 4.

DEGREE OF REDUNDANCY

STAGE 1 3 4 5

T H 7

I ! I
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Figure 4.3.3. Optimization Sequence for Criterion Function

AP (A
AC An, c, p.
max 1 171

max

The results obtained in utilizing this criterion function to achieve a
reliability goal of 0. 9995 are identical to those given in Table 4. 3, 3.

However, a comparison of Figures 4. 3.1 and 4. 3. 3 indicates that the
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TABLE 4.3.4

SUMMARY OF RESULTS FOR CRITERIA FUNCTIONS

ap) (T
AC An, c, p,
max iivi
max
Number of Stage
Stage Modules Reliability
1 1 0.999430
2 4 0. 999201
3 5 0.999118
4 5 0.995793
5 5 0.987472
6 5 0.971243
P = 0.952892
Z n, u, (cost) = 99
il
)y n v, (weight) = 55
Z n, W, (power) = 78

steps in arriving at this common solution are quite different. Detailed
data concerning the process may again be found in Appendix B. 2, and

Figure 4. 3.4 indicates how P varies with relative cost.
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It is desirable to compare the two criteria functions which have
been developed and the results obtained from the dual problem; i.e., of
maximizing reliability within given constraints and minimizing complexity
in achieving a reliability goal. For comparing the results of maximizing
reliability in the presence of constraints, Tables 4.3.2 and 4. 3.4 may
be used along with the sequencing information contained in Figures 4. 3.1
and 4.3.3. From Tables 4. 3.2 and 4. 3.4 it is noted that the final

configurations differ; 1, 4, 4, 4, 5, and 6 modules are used in the
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Ap.
consecutive stages when -Tl is utilized while 1, 4, 5, 5, 5,
' max
Ap,
and 5 modules are used in the consecutive stages when E—cl_p_
ii'i

max

is used. Therefore, the resulting reliabilities differ, 0. 951709 found

Api Ap,
from | — as compared to 0, 952892 from —
p. An, ¢, p,
i ii'i
max max
Api Api
The ratio of { — I S for cost, weight, and
P Ang ey by
max max

power is 98:99, 54:55, and 79:78, respectively. It is significant to

Ap.
notice that with Z-r_fc_lp-)— the constraint in cost was reached
ii’i max

141

but not in the other cases. In general, this criterion utilized more resources,

although this is untrue in the case of power, so possibly this is the reason
why a higher reliability is obtained. Figure 4. 3.1 shows the sequence in

which modules are added to the stages is 5, 6, 6, 4, 5, 3, 4, 6, 2, 3, 5, 6,

Ap.
and 2 for (f) and Figure 4. 3.3 shows 4, 4, 3, 5, 5, 3, 2, 6, 6, 6,
! max
Api Ap,
4, 2, and 3 for —_— . Thus, |— initially
An. c. p. p.
i7i%i i
max max
Api
concentrates more on the most unreliable modules while m
ii'i

max

5,



is initially more concerned with modules of intermediate reliability

and does not select the most unreliable modules until later in the process.

Figures 4. 3.2 and 4. 3. 4 illustrate the results obtained with the
two methods in obtaining a reliability goal of 0,9995. The final result
for both methods was identical and is summarized in Table 4. 3. 3.
However, it may be concluded from Figures 4. 3.2 and 4. 3, 4 where the
steps at which the results are identical are marked (i.e., steps 10, 11,
14, 15, 18, 19, 20, 26, and 29) that it was only coincidental that the
final results agree. The number of steps required to reach the design
goal was the same; therefore, it may be concluded that one method
does not converge any faster than the other. Also, the shapes of the
curves are similar and fall very close to each other. Generally, at

Ap,
each step the reliability of -p—l is higher but the relative

max

complexity is also higher, which is simply the nature of the two functions.

The subject of optimality in many cases must be treated more
qualitatively than quantitatively. For instance, there may be little
debate about the outcome of an optimization process once a particular
criterion has been selected; however, at the present time, there is no
universally accepted criterion function which serves all optimization
processes. Any criterion function must be tailored to one's particular
aims, needs, and goals. For this reason, this section as well as the

next may not appear to be mathematically rigorous. The criteria
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functions themselves have been developed with a fair degree of mathematical
rigor; however, the question of what constitutes a good criterion function
still remains. Much more work is required and this area is recommended
for further research.

From the examples, can any general conclusion be drawn, and is
one approach preferable to the other? Some conclusions which may be
drawn are:

1. The criterion (AP)maLX yields the steepest ascent for
increasing system reliability, and at each step has at least as high a
system reliability as the other method. However, this is no surprise

since it was designed specifically for that purpose.

A
2. For the function (A_g> , the steepest ascent approach
max

has been tempered somewhat to take into consideration system
complexity. The result is that generally the relative complexity is always
less than or equal to that obtained with the other method.

3. By maximizing reliability in the presence of constraints,

maximizing 2—(1; results in a higher system reliability because the
resources were more efficiently utilized.

4, In obtaining a reliability goal such that resources are
minimized, the same results were obtained. However, this is only

coincidental as can be seen by comparing the results at each step.

The rapidity of convergence of the two methods is quite close.
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5. The criterion (—A—E> allows the constraints to be weighted,

max

thus all constraints are considered simultaneously. Weighting of constraints

may be important since they may not always have the same criticality.
The value of the constraints imposed on the system can conceivably be
independent of the criticality of the constraint.

From the above, it is concluded that the <—i—g> criterion
max

is superior to (AP)max since consideration is specifically given to
system economy. The reliability which can be gained may not always
exceed that obtained with (AP)max , but the ratio of gain in system
reliability to the increase in system complexity is always assured to be

greater.

4.4 A DECISION ELEMENT FOR STAGES WITH

DIFFERENT DEGREES OF REDUNDANCY

The theorems which have been developed include no provision for
decision element reliability, unless possibly it can be lumped with the
pi's . If this cannot be done, then the above theorems must be modified
so that the ryeliability of this element is taken into consideration. At
this point in the development, it is advantageous to consider the logical

characteristics of the decision element,



In the previous chapter, the logic was developed for utilizing n
outputs of one stage with n inputs of the next stage. In other words,
the stages employed the same degree of redundancy. In this chapter,
this restriction is removed and the formidable problem of adapting n,
outputs of one stage as nj inputs of the next stage is encountered.
This basic problem is aggravated considerably because the problems
of fault masking, failure detection and isolation, module switching,
etc., now become embedded in the overall problem.

Several approaches to the problem are possible. The approach
which is most appropriate must be tailored to the specific application.
One approach which could be used is to employ a single decision
element similar to that developed in Chapter II. The system
organization suggested in Chapter III, however, employed as many
decision elements as modules for the obvious reason of deleting
single point failures, although considerable expense may be encountered
in doing this. As module-to-decision element complexity increases,

a single decision element has a decreasing effect on the overall system
reliability. Thus, the question of whether to use a single element or nj
elements can only be answered when the overall system design and
application have been considered and when tradeoffs have been made

in system reliability and complexity. A single decision element is

not proposed here because of the possibility of single point failures
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and because such an approach evades the basic problem. On the other
hand, n, decision elements (i.e., one with each module) will not be
proposed because of system complexity and because it does not solve
the basic interconnection problem.

The decision and switching element to be considered here is a
compromise between single point failures and complexity and offers
a feasible solution to the interconnection problem. It utilizes the
two-out-of-n approach; however, it is suggested that n be limited to
three. Unless n is limited to three, the age-old question of "who
checks the checker'" arises, and the interconnection problem still
exists. A block diagram of the redundant majority logic decision
element is shown in Figure 4.4.1. A decision element as previously
designed has been triplicated; the output gating which is fed back to
the module selection logic has thus been previously voted. The outputs
to the next stage have also been voted with inputs from different
channels. Since there are three i's, three ?'s, and three E's,
3% or 27 different combinations are possible; i.e., 27 outputs are
possible which have been derived from differently voted signals. A
one-to-one correspondence may be noted in Figures 4.4.1 and 3. 4. 2,
Twelve voters per channel or a total of 36 are required in the decision
element, plus one additional voter per output.

If a voted feedback control signal is in error, then another

module is switched into that particular channel; however, it should
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not affect system operation as long as the other two channels are
functioning properly. A failure in a voter which feeds the next stage
would effectively result in the decision element in the next stage
detecting the error as a failure in one of its modules and then
switching out that module. Since the decision element is primarily
two-out-of-three logic, each element would have a reliability closely

approximated by
R'=38R2-2R?3 (4.4.1)

where RV is the reliability of a single decision element and must be
modified slightly to include the additional voters. It is, therefore,
noted that RV and consequently RV' will be a function of the
number of component parts utilized in the ith redundant stage.

With this method of implementation, it is necessary that the
previously developed criteria functions be modified to include the
decision element before design optimization is possible., With this
approach, the basic theorems are applicable when pi and ci have
been modified to include decision element parameters.

-n_ At
v

Since R =e , When t = k& the reliability of one
v ANT

channel of the decision element is given by

R =¢ (4.4.2)
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where n = (243 + 3n) Lny (n-2) +12n + 350 , as shown in Chapter III,
except the constant 108 has been increased to 350 to account for the

12 voters in each channel. Each voter is assumed to contain approximately
20 components. Thus, the reliability of the redundant decision element

is found from Equations (4.4.1) and (4.4.2) to be

2kn 3kn
Vl V1
TN TN
R' =3e T 2e T . (4.4.3)

The normalized complexity of one decision element channel

when k =1 is given by

(243 +3n,) £ny (n, - 2) + 120, + 850

cv. = N . (4.4.4)

i T

For the total redundant decision element, the relative complexity is

approximately three times that of a single channel and is given by

38 [(243 + 3ni) Ln, (ni -2) + 12ni + 350]

c = . (4.4.5)
Yi N

Thus, when consideration is given to the decision element, the relative

complexity of a redundant stage is given approximately by
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u, 3 [(243 +8n,) L1, (ni -2) + 12, + 350]
C, =a +
i m NT
T u.
~ i
i=1
| v, 3[(243 +3n) £y (n, - 2) + 120, +350 ]
+ b + . (4.4.6)
m N
Z T
Vi
i=1
w, 3 [(243 +38n,) Iny (n, - 2) +12n, + 350]
+ o i ! i i
) T
w,
i=1
Equation (4. 4. 6) can be simplified to yield
(243 + 3ni) Ln, (ni - 2) +12n, +350
Ci = 3(a+b+c) 3
T
(4.4.7)
u, v, W,
+ a + b 1 + c !
m m m
Fo o Fw I
i=1 i=1 i=1

If a, b, and ¢ are normalized suchthat a+b+c =1, then

Equation (4.4.7) can be written as



(243 + 3ni) Ln, (ni -2) + 12n, + 350
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(4.4.8)

C. =3
i NT
u, v, W,
+ a 1 + b 1 + ¢ 1
m m m
) u 2 v, 2w,
i=1 i=1 i=1

In Equations (4.4.6) through (4.4.8), it has been assumed that the cost,

weight, and power of the decision element are linearly proportional
to the number of component parts contained in this element. In any
case, if the cost, weight, and power of the decision element are known
as functions of the number of component parts employed in the element,

then these can be incorporated in the above expressions.

It is desirable for computational purposes to use i—g ina

slightly different form than has heretofore been used. The complexity

of the ith stage is given by Equation (4.4.8). The change in system
h

complexity, resulting from adding additional modules to the it stage,

is identical to the change in the ith stage complexity and is given by




152

3

Ny

+ {[(243 + 3ni)£ n, (ni -2) + 12ni+ 350]

} [(243 +3n_ ) 4ny (n_-2) + 120 + 350]}

(4.4.9)
where the last term is the ratio of change in decision element complexity
to the complexity of the entire nonredundant system.

In theorem 1, it was shown that

Api
AP = — P ;
B;
thus,
Ap, .
AP i
== = 4.1
AC 3An P (4.4.10)
An, c, + Y p
ii NT i
where
u V. w1
c, =a 1 + b 1 + c
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as before, and

An = (243 +3n) Iny (n, - 2) +12n_+ 350
A\’ 1 1 1

(4.4.11)
- [(243 + 3ni_1) L, (ni_i—z) + 12ni_1 + 350]
anv
From Chapter III, 5 Was determined by Equation (3.5.2) and it
n

follows that

Anv ~ |:3 Ln, (ni -2) + 1.44n(12f32+ 3n) + 12] An,
Since Anv is calculated by a digital computer as an iterative process,
this approximation is not necessary; therefore, the former expression
will be used. Since P is the system reliability before additional
modules are added to the ith stage and is therefore constant at any

step in the optimization process, the criterion function can be expressed

as

Ap,
AP _ i
(AC> = e (4.4.12)
max An, ¢, + p
ii NT i
max

where ci and Ani are as previously given.
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It is also desirable to express the overall relative complexity
constraint in terms of individual weighted constraints. This is very
important for two reasons: (1) all constraints are taken into
consideration simultaneously, and (2) the criticality of each constraint
can be weighted to take into consideration its relative importance.

This can be accomplished with the relationship

ac + bcV + cc
C (constraint) = (4.4.13)
T m m m
a Z u, + b Z v, + ¢ Z LA
: 1 . 1 . 1
=1 i=1 i=1

where C, Sy and c, are the constraints of the redundant system,
including the decision element in cost, weight, and power, respectivelys a, b,

and c are weighting factors indicating relative importance of constraints

m m m
¢ ,c_,and ¢, respectively; and u, , Z v, , and Z w,
ey v i=t 1=t =t '

are the u, v, and w nonredundant system parameters assumed

herein to be cost, weight, and power, respectively. In the previous

example, which is to be reexamined, Cu =99, ¢, = 57 , cW =83,
6 6 6

Yyu =21 , ) v =12 , and ), w =17. With

o 1 o 1 o L
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a=b=c =0,333 as before, the overall relative complexity constraint is

determined to be

0.333 (99 + 57 + 83) - 239
0.333 (21 +12 +17) 50

Cr(constraint) = = 4,78

The reliability required in the criterion function is the product of
the reliability of the stage [derived from Equation (2. 2.2)] and the
reliability of the decision element [ Equation (4.4.3) with k =1],

and is given by

n -1 N N

i
p, = {1- (1-R)) [1 + (ni—i)Ri:I 3e - 2 (4.4.14)

where nV is a function of ni as previously shown. Notice, however,
i

that as given in Equation (4.4. 14), the reliability of the decision element

; i. e., the nonredundant system

L
AN

has been normalized about t =

has a reliability of 0.368 when ¢t = —1— or N At=1, If N_ is
7\NT T T

increased in this equation and R is assumed to be constant, this
would have the effect of decreasing At. If A is considered to be

constant, then an increase in NT results in a decrease in t. If t is

assumed constant, then an increase in NT results in a decrease in A .



Therefore, caution must be used in the application of Equation (4.4. 14)
in which Ri is the ith module reliability at the mtbf of the redundant

system. The example considered in the previous section was designed

with this in mind.

Equations (4.4.9) and (4. 4. 14) therefore allow the criterion
function Equation (4.4.10) to be evaluated giving consideration to the
incorporation of the decision element. Notice, however, that an
additional system parameter, NT , has been introduced and will be
assumed to be known. For illustration, it will be assumed that
N,_, =50,000 and the previous example will be revisited. Assuming

T
that N_. =50,000 implies that At =2x 1077 .

T

To solve the problems of designing a redundant system to yield
maximum reliability within an overall relative complexity of
Cr(constraint) =4.78 , and in achieving a reliability goal of 0. 9995
with minimum expenditure of resources, a computer program very
similar to that used previously has been developed and utilized.
In the program, it has been necessary only to modify the reliability
and complexity equations. The sequence of steps taken in the process
of maximizing reliability in the presence of constraints is shown in

Figure 4.4.2 and may be used in a manner similar to previous

discussion. The final results and system parameters are summarized
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in Table 4.4,1. Detailed data concerning system parameters at each
step in the optimization process are presented in Appendix B. 3 along

with the computer flow diagram.

DEGREE OF REDUNDANCY

STAGE 1 3 . . .
| r T ! |
1 0.003804 ] : | : :
F
i ! : I I
2 0.201317 | °-°5,7\887 : 0.003570 I |
| @ E l : |
|
3 0.293018 ' 0.211722 | 0.032016 | | !
- 10 >l G) |
| 0.396064 | 0.089277 0.018579 | ]
4 0.336561 H py R el | |
0.439172 0.126227 ] 0.035703 i
0.246516
° | 'O .l 6 N Ty N |
| A4 ] 2 I 17 ' |
{
6 0.209995 l 0558340 : 0.13294 l 0.066946 | !
> G > 8 > 10
] \Y ] —&) 1 i '

Figure 4.4.2. Optimization Sequence of System With
Decision Elements for Criterion Function
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AC - 3n
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TABLE 4.4.1

SUMMARY OF RESULTS OF OPTIMIZING A SYSTEM WITH DECISION
ELEMENTS UTILIZING THE CRITERION FUNCTION

ap)  _ 2Py
AC 3n
max An, c, + — p
ii NT i
max
Number of Stage Reliability
Stage Modules (Including Decision Element)
i 1 0.999430
2 4 0.998700
3 4 0.993497
4. 5 0.995013
5 5 0.986699
6 5 0.970483
P (overall system reliability) = 0, 944827
Cr (total) = 4,712

It is interesting to compare the results of Table 4. 4. 1 with those
of Table 4. 3.4 to determine the effect of the decision elements. It is
noted that the decision elements reduced system reliability from

0. 952892 to 0, 944827. The overall complexity constraint of the
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system was not used in Table 4. 3.4 since individual constraints were

employed. However, since a =b =c¢ =0.333, itis calculated to be

_0.333 (99 +55 +78) 232
r 0.333 (21 + 12 +17) 50

= 4,640

The relative complexity of a system with decision elements is shown
in Table 4.4.1 to be 4.712. This comparison is illegitimate in several
respects; one being that if an overall constraint of 4. 78 had been
imposed on the system of Table 4. 3, 4, then more redundant modules
would have been added and the reliability of that system would have
been greater. It is clear, however, that incorporating the decision
element into the model has adversely influenced system reliability.
Table 4. 4. 2 is the results obtained in an attempt to achieve a
reliability goal of 0, 9995. Since a maximum reliability of only 0, 990275
was obtained, the goal was not achieved and the result was a dismal
failure. Detailed results at each step are shown in Table B. 3.2 of
Appendix B. The last entry in this table indicates that according to
the decision rule if another module had been added to any stage after
this step, the system reliability would have been reduced, since all
criteria values would become negative; i.e., Api becomes negative.
This is because the reliability of the decision elements decreases more
than that gained in the stage by adding additional modules. Thus, a

limiting value in system reliability has been found.
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TABLE 4.4.2

SUMMARY OF RESULTS IN OBTAINING A RELIABILITY GOAL
IN A SYSTEM WITH DECISION ELEMENTS
FOR CRITERION FUNCTION

Ay Py
AC max 3nVi
Ani ci + _N; pi
Number of Stage Reliability
Stage Modules (Including Decision Element)

1 1 0. 999430
2 4 0.998700
3 5 0.998335
4 6 0. 998077
5 7 0,997772
6 9 0, 997921
P (overall system) = 0.990275
Cr (total) = 6.656

Although the results of this section vastly differ from those of
Chapter III, where it was shown that infinite reliability is theoretically
and physically possible under ideal conditions, it has been shown that

from a practical point of view, system reliability can be substantially
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increased from 0. 368 to 0, 944827 within the constraints imposed. A
maximum reliability of 0. 990275 was achieved without regard to system
complexity, In any case, however, it must be concluded that considerable

differences exist in ideal and practical models.



CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 SUMMARY

This investigation develops a generalized approach which can be used
with parallel redundancy of three degrees or greater. Idealized models of
parallel redundancy have been studied previously by several investigators
with the assumption that only one-out~of-n parallel units must be operational
for the redundant module or stage to be functional. But the problem of pro-
viding a decision element to detect and isolate failures and then without inter-
ruption to switch to a parallel module has not heretofore been considered.
When this has been done, the idealized model changes drastically. Thus, a
primary concern in this investigation has been to develop a generalized deci-
sion and switching element for a two-out-of-n parallel redundancy configura-

tion, which is physically realizable and which can be used for an arbitrary

number of inputs. System organization optimization from a reliability
viewpoint utilizing this generalized element is then considered. Chapter II
provides a technical introduction and the foundation upon which the

other chapters are based. Although generalized equations for a

two-out-of-n system are developed in Chapter II, beyond this, the
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chapter is treated as a special case of the two-out-of-n configuration with
n =3 . The logic necessary for fault masking, failure detection and
isolation, and module switching is developed. The problem of breaking
a nonredundant system into modules and then making them redundant
to maximizZe the overall redundant system reliability is considered.
Also, the number of nonredundant elements which can be expected to
fail before the redundant system fails is developed in Appendix A.
The generalized problem is then treated in detail in Chapter III,
The logic necessary for the generalized decision element is developed.
The complexity of this element is projected as a function of the number
of inputs to it, It is also shown that optimum reliability results
when redundant modules have the same reliability; i. e., when the
level and degree of redundancy are the same in all the stages. With
the decision element, which has been developed, and a system organized
as recommended, a reliability as close to unity as desired can be
obtained. However, system complexity is approximately the
square of the number of parallel modules employed in each stage.
System reliability as close to unity as desired can only be
obtained if the next system can accommodate or utilize the generated
n-redundant system outputs. If the next system can utilize only one
input, then the signals must be '""necked' down through a single decision
element. However, this single decision element is identical to those

employed throughout the redundant system. In this case, the redundant
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system reliability is limited and can be no greater than the reliability of
the decision element. System organization is then viewed from this
standpoint. The necessity of a single decision element may not severely
limit the gain in reliability which can be obtained with the proposed
method because a nonredundant system may consist of hundreds of
thousands of component parts, while only a hundred or so are required
in the decision element.

A more practical system approach is considered in Chapter IV
where the assumptions that a nonredundant system has been divided
into modules of equal reliabilities and that identical degrees of redundancy
are applied at each stage have been removed. This inherently
introduces a new problem: interfacing n, outputs from one stage
with n:i inputs to the next stage. A method is proposed to solve
this problem. A primary objective of Chapter IV is to find a solution
to the problem; given system constraints, such as cost, power, weight,
etc., how can the reliability of the system be maximized; or conversely,
given a reliability goal, how can this goal be achieved to minimize
these resources? Criteria functions are proposed and developed that
lead to decision algorithms which can be used to solve these problems.
Initially, the decision element is ignored in the illustrative example.
However, after the decision algorithms have been thoroughly discussed
and understood through examples, they are extended to include
consideration of the decision element. The examples considered

previously are then revisited.



5.2 CONCLUSIONS

The technique proposed herein for theoretically obtaining and
physically realizing ultrareliability through redundancy depends to a
very large extent upon the development of a decision element for fault
masking, failure detection and isolation, and module switching.

Although idealized models have been studied for some time where only
one-out-of-n parallel modules was required to be functional, little
practical value resulted from these models. In the idealized mathematical
models, the decision element may have been included only as a
mathematical symbol. However, the basic problem is that a generalized
decision element satisfying the requirements of such a model has

never been designed or physically realized. A two-out-of-n system

is proposed for the simple reason that a generalized decision element
can be realized. The basic approach to a two-out-of-n configuration

is derived from the concept of majority logic, but the term '"majority
logic" is no longer descriptive for the generalized case.

A generalized decision element which can perform the functions
of fault masking, failure detection and isolation, and module
switching has been developed. Figure 3.4.2 shows the logic design
of this element for six inputs, and the constructed breadboard
(Fig. 3.4.4) accommodates 10 inputs. A particular advantage which

has been realized through the logic development of the decision element
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is that it is possible to project its complexity for an arbitrary number of
inputs, thus yielding reliability estimates as a function of the number
of inputs.

With the two-out-of-n configuration and the assumption that a
decision element is employed with each module, maximum reliability

_ R _

of the redundant system occurs when Rm R oo where Rm is
the failure probability of a nonredundant module and Ev is the failure
probability of the decision element; EV is also a function of n .
It has also been shown that for maximum reliability all modules
should have the same reliability and that the same degree of redundancy
should be applied to each stage. If the n outputs from the system
can be utilized as inputs to the next system (i.e., the redundancy
approach can be carried through to the next system), then a reliability
as close to unity as desired can be obtained. However, such an
accomplishment is not without penality. The relative complexity of
the redundant system organized in an optimum manner compared
to a nonredundant system is given by n(n-1) or, for large n, by
approximately the square of the degree of redundancy utilized.

If only one input can be accommodated in the next system, a
single decision element must be employed at the last stage, and the
reliability of the redundant system is limited and can never be

greater than the single element. In practical applications, this is not

a severe limitation because the decision element may consist only
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of a hundred or less component parts while the nonredundant system may
contain thousands or even hundreds of thousands of component parts. The
assumption that it is possible to subdivide a nonredundant system into

m modules of equal reliabilities is not very practical, although from a
theoretical standpoint, it is very valuable in establishing the possibility
of the existence of an upper limit on reliability. However, it has been
shown that there is no upper limit to the reliability which can be

achieved with the proposed technique.

The division of a nonredundant system into segments of equal
reliabilities is, quite likely, impractical. In this case, it necessarily
follows that the degree of redundancy applied to these modules may be
different. This introduces a new problem: designing a decision element
which can accept ni inputs and produce nj outputs. A single
decision element designed herein could be used for this function;
however, the entire redundant system would fail when a decision
element fails. To circumvent this problem, it is proposed that
two-out-of-three majority logic be employed in the decision element.
This does not create severe system limitations since in a practical
application the complexity of the system will likely be much greater
than that of the decision element. Furthermore, the interconnection
problem can be readily solved with this approach.

With the above practical considerations, the question arises as

to how to maximize system reliability within given constraints, such as
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cost, weight, power, etc., or conversely how to meet a reliability goal
while expending a minimum amount of resources? To provide a solution
to this problem, figures of merit or criteria functions are investigated.
These lead to decision algorithms which are used in a recursive or
iterative manner to arrive at a solution. Two criteria functions

R . R . AP .
investigated in detail are (AP)max and |—= . In the first

AC
max

case, redundant elements are added to the various stages in a manner
to yield greatest gain in system reliability. In the second case,
modules are added to maximize the reliability and complexity (cost,
weight, or power, etc.) gradient. It follows that if 2—5— is maximized
at each step in the process, then the final system will also possess a
maximum -2—5 . Detailed examples have been considered both with
and without the decision element. | An illustrative example has been

considered in detail to show generally how the optimization process is

accomplished with the type of configuration proposed herein.
5.3 RECOMMENDATIONS FOR FURTHER STUDY

One can draw an analogy between an investigation of this nature
with its many related facets and a long hall with many branching
corridors. One could easily take any one of these; however, if this
happens, then one does not accomplish his goal. There are, therefore,

several related areas requiring research which for several reasons

could not be undertaken here. The investigation which has been performed
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required specialization in each of three areas: (1) digital system logic
design, (2) probability theory, and (3) system optimization techniques
which is often considered to be in the field of operations research.
Therefore, any of the tasks mentioned will fall in one or more of these
areas, The sequence in which the items for further study are listed in
no way indicates the order of importance or preference,

1, A closed-form solution should be developed for

m
o n ) .
n n-1 1
[1t- X (i)R (1-R) | at
0 i=n-1
where
_ Kkt
m

The above integral represents the mean time to failure of a redundant

system with m identical modules, each with a redundancy of degree n.

This integral was solved numerically in Appendix A. Although a closed-
form solution for the integral is possible as shown in the appendix,

a great deal of difficulty was encountered in evaluating the integral

for large m . It appears that the solution of this integral might be
expressed in terms of the Bessel function of the first kind or possibly

in terms of Legendre polynomials, A neat, closed-form solution

which can be readily evaluated is desired.
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2. Logical design and development of a decision element which
will accept n, inputs and yield nj outputs, The case of i =j has
been covered in this investigation and a majority logic approach has
been proposed which circumvents the problem. However, the basic
requirement suggested is to design a single (nonredundant) decision
element for i #j where both i<j and i> j are possible.

3. The optimization technique proposed and the results obtained
herein should be studied and compared with those obtained from dynamic
programming., Are there clear advantages to either method?

4, The redundancy technique proposed herein is primarily for
digital systems. How can this technique be adapted for use in analog
systems, and is it practical?

5. Itwas suggested that the majority logic technique along with
the proposed decision element could be used in a system where manual
repair and replacement were possible, not necessarily just to increase
system reliability but primarily to reduce system downtime, trouble-
shooting time, repair time, etc. What are the tradeoffs in redundant
system costs versus the saving obtained by a reduction of these items?

6. In some applications, a single decision element may be
desirable between the redundant stages rather than utilizing a decision
element with each module. It is certainly less expensive. If this

were done, since the failure probability of the decision element increases
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exponentially with the degree of redundancy employed, one would expect
a limiting system reliability. This aspect should be investigated in much
the same manner as that undertaken herein.

7. With the advent of large-scale integrated circuits,
redundancy techniques possibly could be used to overcome some of the
production yield problems. Thus, many circuits could be made
redundant on one chip which could therefore tolerate several failures
before having to discard the chip, With a nonredundant chip, a single
failure results in a loss of the entire chip. Is there reason to consider
this approach from an economic standpoint?

8. Adequate consideration has not been given to majority logic
of higher degree than three. What is required, for example, in a
decision element for a five-out-of-nine configuration and how does
this affect the overall system organization? Is such a configuration
feasible when the logic for the decision has been considered?

9. Multiprocessing is of current interest in the computer
field. One of the primary problems in multiprocessing systems is to
inhibit a malfunction in a particular processor from destroying the
operatiqn of a complete system consisting of several individual
processors. Can the techniques of failure detection and isolation
developed herein be advantageously employed in a multiprocessing

system?



10, In the field of operations research, there is a dire need for
determining methods and procedures for establishing overall system
reliability goals. What usually happens is that, due to lack of
direction, when a reliability goal is to be established, top management
simply pulls a number out of the air, However, a reliability goal
should be considered as insurance, for it is a way of expressing the
chances of something being successful on a particular trial. Are
expected losses being minimized, or are human lives being protected?
This, of course, depends on the system under consideration, but in
any event, a method needs to be developed to express areas of primary
concern (i.e., objectives) in terms of a reliability goal rather than
to choose a number which is palatable and pushes the state-of-
the-art, etc. An actual example of a so-called reliability specification
is given by the following example: One of this country's future
space systems is to be designed such that "two failures could be
tolerated without loss of mission and the third failure should not result
in loss of the vehicle." The exact meaning of this ground rule is left
to the imagination of the reader; but in all fairness, it should be
pointed out that many thousands of engineering manhours have been
expended on its interpretation. Perhaps, this example exemplifies
the point and stresses the necessity for mathematical analysis of

management problems, particularly in the area of reliability.
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The preceding items which are recommended vary greatly from
a well-defined problem (item 1) to the investigation of a completely new
discipline (item 10). However, this is as it should be, and it
emphasizes the great need and the latitude that one has in this

relatively new and fertile area of research.
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APPENDIX A

NUMBER OF FAILURES MOST LIKELY TO OCCUR
IN A TWO-OUT-OF-n REDUNDANT SYSTEM

BEFORE SYSTEM FAILURE

An interesting problem not only from an academic standpoint but also
one which arises in the application of replaceable modules, is the
question of how many module and voter failures can one expect to have
occurred before the redundant system fails. The answer to this question
will give some insight into how often maintenance is required in a
redundant system. To treat this problem, a slight digression is
necessary to define and develop expressions for mean time between
failures (mtbf).

The mtbf is an interesting and sometimes useful parameter in
reliability theory. 8 Two specific requirements for any probability

or reliability distribution function are:

8Although the mtbf is a very useful parameter, its value in
determining the reliability of a system should not be overemphasized.
Redundant systems whose reliability may be very good over some
predetermined time period may fall off very rapidly and would not have
an extremely large mtbf. The mtbf is of considerable value; however,
when estimating equipment downtime, the number of failures most likely
to occur in any time frame, etc.
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1. The distribution function R(t) must satisfy

R() —0 as t — 0

-I?(t)—-i as t — ,

Here, R(t) denotes the probability of failure which is a function of time.

2. When the frequency function is integrated with respect to time
between the limits of -« to +w, a unit value must be obtained. The frequency
function is obtained by differentiating E(t) with respect to time. Thus,

T dR() . _
f g dt =1

~ 00

or, since time cannot be negative,

The mean or expected value is by definition the first central moment

and is given by
o0

= [ tft)dt

- 00

where f(t) is the frequency function. Thus, the above equation can

be written as

oo

T = {——t AR{E) o : (A.1)
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The mtbf can be written as a function of R, which often results in a more

compact and useful form. Let
u=t
dv = gd% dt
then
du = dt
v =R

and Equation (A. 1) takes the form

o0 o0
V=00
T = fudv = uv:lv=0 - fvdu (A.2)
0 0
or
e —
T —tR]t=0 - [Rat
0
t o0
=00
:t(1—R)] - {(i-R)dt
(A.3)

t [> ] o0
f=={ o]
- (t—tR)] o - {dt + {Rdt

[+ o]
t:oo
=tR] o {Rdt
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Because

R—+0 as t—»

and

R—1 as t—0

the first term vanishes leaving

v = [ Rdt . (A.4)
0 .
-NTM
For a nonredundant system, R =e , Where NT is the number

of components (diodes, resistors, capacitors, etc.) in the system, A is
the average component failure rate, and t is the operating time.
Equation (A.4) may be readily evaluated to yield

—NTM',

0
T = f e dt = —— (A.5)
0 ANT

where ANT is defined as the nonredundant system failure rate.

The reliability of one triplicated redundant stage (m=1) is given by

P = 3R% - 2R® (A.6)

—At(nV + nm)
where R=R R =e . For optimization'n = n
m v v

and because replication occurs at the systems level n_ + n =~ 2N



Equation (A.6) can be written as

4N, At -6N_At
P=3 L -2 T . (A.7)
Integrating Equation (A.7) between the limits of 0 and = yields an

mtbf of

5

"Tm=t = 12 AN (A.8)

Thus, it is seen that the mtbf of a redundant system triplicated at the
system level is approximately only one-half that of a nonredundant
system. However, the reliability of the redundant system is higher
for R =< 1/2 or for t=0.693 TS i.e., when the operating time
is less than 0. 693 times the mtbf of a simplex system. The system
just considered is of no practical interest since the nonredundant system
consisted of only approximately 20 component parts because
optimization was assumed; i.e., nv = nm and the decision element
can be designed with 20 parts. However, the point that mtbf and
reliability have different meanings in redundant systems is well
demonstrated.

The remainder of this appendix consists of determining the mtbf
of a redundant system with n degrees of redundancy applied at each
stage, and for a nonredundant system which has been divided into

m modules of equal reliability. When this parameter has been
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determined, the number of failures which may be expected to have
occurred within the redundant system at the mtbf can then be estimated.
The relative complexity of decision element to module will be treated
as a system variable, but the system will be numerically evaluated
for optimum design,

The reliability of a redundant system containing redundancy of

n degree and consisting of m identical modules is
P={1- (1-R)" ! [n- (n-)R]}™ (A.9)

where R is the reliability of each module and decision element and is

given by the expression

-nmkt —nVM —M(nm + nv)
R=R R =¢e e =e (A.10)

where A is the average component failure rate, t is the operating time,

and noo nV are the number of parts in the module and decision

nv NT
element, respectively. Letting a=— and n_=— |,
n m m
m
Equation (A. 10) becomes
(1+a)NT7\t

R =e m (A.11)
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and Equation (A.9) can be written as
n-1
(1+a)NT7\t (1+a)NT7\t

P=]1-\1l-¢ m n-(n-1) \1 -e

(A.12)
This function must be respected, because considerable
difficulty arises when an attempt is made to integrate it in closed form
with respect to time between the limits of 0 and « . Two specific
cases, n =3 and n =4, will be treated before an attempt is made to
obtain a generalized solution to this problem.

For n =3, Equation (A.12) may be written as

m
2(1+a)NT7\t 3(1+a.)NT7\t

P = |3 m - % m . (A.13)

Expansion of Equation (A. 13) yields

(1+a)NTM
RERINAN |, T TTm
P =e 3 -m3 2e

( (1+a)NT>\t z
+ m(m-1) 3m—2 2e— m ) F e et iee
(A.14)
(n-1) (1+a)NTAt

- -n+1
+ 2" ! m(m-1) (m-2) .... (m-n+2) 3m nE e m
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This series can be integrated term by term since it converges absolutely

for any value of m . When this is done, the result is

-1
2m? 3™ 22 m?(m-1) 37 2

1 3
RT N, |2 T am+t 7 2! (2m+2)
(A.15)
. . (- 1)n 1 i~ 1 mm ! 3m-n+1 l
(n-1) ! (m n+) ! [2m+(n-1)][
or in general
m-~k
i 1
TR - (1+a)7\N Z L')(If-kl;nl'n(zi T k) (A.16)
T k=0

The summation in Equation (A, 16) in many respects resembles a Bessel
function of the first kind; however, an unfruitful effort resulted from an
attempt to define the equation in these terms.

For n =4, the reliability is given by the series expansion

(1+a)NT7\t 2(1+a)NT7\t>

~2(1+a)N_At e — e ———
P=e T em-mem'1<8e = - 8 m

m - m

2
< (1+a)N At 2(1+a)N At
+ m{m-1) 6m-2 8e - 3e

(A.17)

3
(1+a)NT}\t 2(1+a)NT7\t
+

~ m(m-1) (m-2) Gm—3 (Se m - 3e m
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Equation (A, 17) can be written in the form

_kt 2kt _ 3kt
P—e_2kt a-be T+ce T o—de 4., (A.18)
where
k=(1+a)NT7\t
a=6m
b=8m6m_1
i 2

¢ =3m 62" +32m(m-1) 6™

24(m) (m-1) 6™72 - % m(m-1) (m-2) 6"

3

[oN
1l

or Equation (A. 18) can be written as

(A.19)

Since Equation (A. 19) has a finite number of terms (m+1) for any
m < o , it converges absolutely and can be integrated term by term

between the limits of 0 and « yielding

_ila _m . m o _m
™R " k| 27 2(2m+1) 2(2m+2) 2(m+3) .

(A.20)
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Thus, the mtbf of a redundant system can be expressed as a function of

k = (1+a)AN This is important because numerical methods can be

T
used to evaluate the integral given in Equation (A.12) by assuming some
value of k. For adequate precision, numerical integration is necessary
rather than an evaluation of the series given in Equation (A.16). For
example, utilizing a Univac 1108 digital computer and double precision
arithmetic, m is restricted to be less than 20 when the series evaluation

approach is taken. The functional form of Equations (A.16) and (A.20) is

given by

f(m,n) or fm,n)= k (A.21)

R

O Lo

TRT

The number of terms in the series expansion of f(m,n) is determined

by n while m establishes the value of the function for any given n.

The integral of Equation (A. 12) between the limits of 0 and «
can be found utilizing one of several numerical techniques. Simpson's
rule has been used herein, and the mtbf is given approximately by

TR = % [P(t=0) + 4 P(t=1) + 2P(t=2) + 4 P(t=3) + ¢ u.s...

(A.22)
+ 2 P(t=998) + 4 P(t=999) + P(t=1000)]

Equation (A, 12) is therefore evaluatedat t=0, 1, .... , 1000, and

Equation (A.22) is evaluated at these points. The term k/m was chosen such
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that .002 = k/m =< 0.003. This choice assures that the integral
converges and also gives reasonable accuracy.

The error of the approximation is given by

1

AM = € = AM

where

Att (b-a)

A= 7750

M' and M are the largest and smallest values, respectively, of the
fourth derivative of the function P within the limits of integration a and
b. M' and M can be found by the Gregory-Newton interpolation

formula given by

n
- Y (] i 3 ] 2 i 3 ] 4
pj a ig’o(l)Apo"po+(1)Apo+(2)Apo+(3)Apo+(4>Apo+""
) = Llap o+ (o) a% o 3% i +2 A3 2i° - 952+ 115 - 3 AL
pyix R R S LY e G P, iz P T v
2

‘ 2

pj(z)(x) = —ATZ' |:A2pO + (j-1) Aapo + (ﬁ]_i;]_*j}_) A4po + ]
(A. 23)

00 - g [a o (32) oty o]

At
p(4)(x)

-
|
B |-
N
[ |
P
-~
N
[=]
+
—
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The actual error depends on the specific values of n and m used:
however, the maximum error over the range of values considered here
is approximately -0.0011 =< € lax =< + 0.0017.

Before discussion of the results of the evaluation of Equation (A, 22),
it is desirable to proceed with the derivation of the number of failures
expected in the redundant system before system failure. The total

number of equivalent modules in the redundant system is given by
C = nm(1i+a) (A.24)

where n and m are the degree and level of redundancy employed and

a is as previously defined. The reliability of one module is given by

-an:
R =e . (A, 25)
m
Letting
NT
n =—
m m
and
¢ = _ f(m,n) _f(m,n)
"™RT Tk T (1+a)AN ’

Equation (A.25) can be written as

R =e . (A.26)
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Thus, Equation (A.26) gives the reliability of a single module at the
mtbf of the redundant system. Equation (A.24) gives the equivalent
number of modules employed in the redundant system.

The number of failures which can be expected to have occurred by
time T_ is simply the mean or expected value of the binomial

R

distribution and is given by

By = c( - Rm)
_ f(m,n) (A.27)
=pm(i+a) |1 ~-e m (1+a) .

The standard deviation in the number of expected failures with

a binomial distribution is

_ f(m,n) _ f(m,n)
o, = nm (14a) {1 - e m(i+a) o m(1+a)

(A.28)

Notice that since

f(m,n) =k R = (1+a)7\NT R (A, 29)

and because the mtbf in the nonredundant is given by
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Equation (A.29) can be expressed as

-
f(m,n) = (i+a) ;B . (A.30)
S

Equation (A. 30) gives more of an intuitive feeling for the function
f(m,n) than the previous equations.

It is shown in Chapter III that for optimum design

and Equation (A, 27) can be written as

_ f(r(n,n)
He ® n(n-i)m |1 -e m(n-1) (A, 31)
or by substitution of Equation (A.30) as
mT
He = n(n-1)m [1 -e .

When the product m(n-1) is large, the standard deviation of the
estimate is given by approximately /uf

R

From the numerical evaluation of f(m,n) , the ratio of = can
S

be found from Equation (A.30). Figure A.1 shows this ratio plotted
as a function of n . for several values of m when optimum system
n

design is assumed; i.e., when a = E!- ~ n-2 , It is noted that for
m
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r
agiven m , a maximum i3 results from a specific n; e.g., for
s
r
m =50, amaximum ;— = 4,05 is noted at approximately n =9 .
S
. o
Increasing n further causes = to decrease slowly., Although it is
S
R
not shown in the figure, the ratio = is less than one for any
S

m=7 and n= 11,

Figure A. 2 shows the number of failures expected in the
redundant system, uf , plotted as a function of m for several values
of n. Again, it has been assumed that the system has been optimally
designed or that é =n-2 . Redundant system complexity is given by
Equation (A.24); e.g., in a system which has been optimally
designed with m =100 and n =5, approximately 110 failures could
be expected to have occurred before the redundant system fails.
However, the nonredundant system contains 100 modules and the

redundant system contains
C = nm(i+a) = n(n-1)m = (5)(4)(100) = 2,000

equivalent modules. Thus, the redundant system can only tolerate

approximately 5. 5-percent failure in the total system before failure.
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The factor ‘TRk has been plotted as a function of m for several

values of n in Figure A.3. Nothing new can be obtained from this
figure and it has been presented only as a means of quickly determining

., for any value of a, A, and NT; e.g., for m=100 and n=5,

R

a value of 22.5 is shown in Figure A. 3 with

= 1078 failures/hr

>
|

NT = 25 x 10°

22.5 292.5
= = = 1 3 . .
R (1+a)AN 2(107%) (25 x 10°) 45 x 10° hrs/failure
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Figure A. 3, 'rRk Versus m Where k = (1+a)7\NT



APPENDIX B

COMPUTER PROGRAM FLOW DIAGRAMS AND
DETAILED RESULTS OF THE

OPTIMIZATION PROCESSES

This appendix presents detailed information concerning the
computer programs and mathematical computations which were utilized
in the optimization processes considered in Chapter IV. The appendix

is divided into three sections: the first treats the optimization

Ap,
process employing the criterion function (AP) Sy — ;
max pi
max
Ap
AP i
h d the functi — = [|[————— :
the secon e function (AC) Ani ci pi ;
max

and the third modifies the second function to include the decision element

and is given explicitly by the function

max

In each section, the dual problems of organizing a system to optimize
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reliability within given constraints and of achieving a reliability goal

with minimum resources are treated,

B.1 COMPUTATIONS FOR CRITERION FUNCTION

(AP) = |—
max P

Figure B. 1.1 illustrates the logical flow diagram of the

computer program utilized in the optimization process with the criterion

function (AP) = | —= . The flow diagram is straight-
max p

max
forward and requires little explanation except possibly definition of some

of the terms used. The system inputs are defined as follows:

N Number of stages or modules into which a nonredundant

system has been divided.

u Parameters of each module, taken here to be cost,
\% weight, and power. Thus, in the example used, there
w are six each of these,

Failure probability of the ith module.

R,
i
Y
Constraints in redundant system cost, weight, and
v
c .
power, respectively.
w
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I This is a bit which determines the dual problem to be
solved; i.e., maximize system reliability within given
constraints or achieve a reliability goal with minimum

resources.

P Reliability goal to be achieved when Ic is setto a

L
logical "1."
a
Weighting factors which can be applied to cost,
b
weight, and power, respectively.
c

Detailed computer printouts showing the results of the dual
problem at each step in the process are shown in Tables B.1.1 and

B.1.2.

B.2 COMPUTATIONS FOR CRITERION FUNCTION
Ap

AP _ i
AC An, c, p,
max ii”i

max
The logical flow diagram of the computer program is shown in
Figure B. 2.1 and is very similar to that used in the previous section.

The major difference is the specific calculations which are made at

each step.

Detailed results of each step are given in Tables B.2.1 and B. 2. 2,
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B.3 COMPUTATIONS FOR CRITERION FUNCTION

2
AP\ _ Py
AC 3An
max Vi
A +
0% N P
L Jmax

The logical program for system optimization when consideration
is given to the decision element is shown in Figure B. 3. 1. Again, the
logical developments are similar to those used previously, the primary
difference being in specific calculations used.

Tables B. 3.1 and B. 3. 2 give detailed results obtained at each
step in the optimization process. Table B, 3.1 is applicable to optimizing
system reliability in the presence of constraints while Table B, 3.2
presents the results obtained in achieving a reliability goal with

minimum resources.
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SYSTEM OPTIMIZATION USING (AP)maX =

AND CONSTRAINTS

___INPLT DATA

TABLE B.1.1

A
Py

P;
max

C =99, C_ =57 AND C_ =283
u v w

N x 6 NEW NI = 3 NEW NI = 4
1CaN = 0 Foa »41373126E 0D P = 19897 /05228 Q0
PLIMIT VALUE = ;99950000 SUM NIsUHl ® 32000000 02 SUM NIsUN] = ,49000000& 02
A s L 83335000 9 = 133333000 C = , 33333000 SUM NTaynl = 18000009k 02 Sys NIsvHl- & 27000000k 02
Ug 4 = 1,00320000 SUM NlswWil] = ,25000000E 02 SUuM NIeWNI = ,400N00000E 02
ug 23 = Z2,00000000 FI¢ 17 = »99943000E 00 PIt 1) = 1 99945000E 00
Ug $) = 3,0v00000n Pl 2) = «940064000E 04 Pl¢ 2) = 194064000E 00
Ut 4) = 4,00000000 PIC 3) = +BBIB5000E 00 PIt $) = ,88185000E 00
ut 5) = 5,U80000600 PI( 4) = +B23060D0E 00 . _P1{ 8) = ,B23060C0E 0V
Ut 6) = 6,00000000 PI( 5) =  85949249E 00 Fl( ®) 3 ,85949249E 1Y
Ve 1) = 1,00000000 PI( 6) =  .70548000E 00 PI{ 6) =  .92038349E 00
Vi 2) 3 1,00000000 1 DELTA PIC 137P[( 1) = ,56935020E-03 1 DE[TA PIC 1)/PIC 1) = ,55935020E=03
V( 3) = 2,00000000 4 DELTA PIC 23/PIC 2) = ,52312781F-01 1 DELTA PIC 22/PIt 2) = ,52512781E~01
V( 4) = 2,00000000 ‘1 DELTA PIC 31/PIC 3) a  ,90231159E~01 i TELTARTC3I7F1C 37 s, 97231153E-01
Ve 5) = 3,00000000 1 DE[TA PIt 4)/P1¢ 4) =  ,1143%2447E 00 1 UELTA PI¢ 4)/PIC 4} 3 p11432447E 00
V( 6) © 3,00070000 3 DELTA PIT B1/P1( 5) = ,11329285E 00 $ DELTA PIC 5,/PTC 5) s ,11529285E 00
W( 1) = 1,00000000 . — 1 DELTA PIC 6)/PIC 6) =  ,12108594E 00 4 DELTA PIC 6)3/PI( 6) =  ,55259247E-01
W( 21 s 3,00000000 ;
W( 3) = 2,00000030 R I
W( 41 = 2,00070000
W( b) = 4,00000000 I e
W( 6) ® 5,00000000
RBARC 1) = ,00057000 NEW NI = 3 . NEw Nl =2 $
RBART 23 = , 05936000 Pz ,403H1882L QU o P 160146474 (O
RBAR( 35 = ,11815000 Siv NJ#UN] & ,4389000Q0NE 02 SUm NI®UMI = ,57000000k 0%
REART 41 = ,17694000 SUM NI#VHl ® ,240000008 07 SuM NTeyiH] & ,310600D0E 07
RBARC 5) = ,23573000 ____SUM NlewWhl = _ ,39000000f 02 _SUM NIewHD & ,44000000E 02 o
RBARC 6) 2 - 129452000 PI¢{ 1) = ,99943000E 0U
cy = ¥9,90000000 Cv = 57,00000000 CW = 83,00000000 PI{ 2) = ,940064000E 00

PI( 3) = +B3185000E o0

PlC 4) = ,82306010E 00

Plc 5) = 85949249E 00
Nl B 1 L JPle b) 3 ,/9086843E 00 . R
SuM NI#UN] ¥ 21000000k 02 1 DELTA PIC 19/7P1C 1) %~ ,56¥35020E-03
SyM NI#yN] ® 312000000k 02 1 __DELTA PIC 2:/P1¢C 2) =  ,52312781E=01
SUM NI®WR] & ,17000000F 02 1 DELYA PIU 8)/PTt 3) 3 ,90231155¢=01

1 DELTA PI( 4:/7P1¢ 4) = 232432447E {0
3 UELTA PI{ 5)/PIC 5) =  11329285E 00"

INITIAL P VALUE = ,36790819E 00 3 DELTA PIC 6J/PTC 6) 3 16376308k 00

002



TABLE B.1.1. (Continued)

) it oo ggw = ;360-031E o < - ;E: = ;23&5&38& 00 B
Pl1¢ 2) = ,94064000E 00 = 73000 3 O oone 0o P e
e RNt oh St e T0000E 02 SUw NIsynl § 143000000k 02 o
P ——iee o 23: :%::ni i :bzgdunnc& 02 SUM NIeWhl = .590008000E 02
PI¢( 6) &  ,92088349E QU PIC 1) = .99943000E 00 PI( 1) = -?9942929E gﬂ
z 20E-03 PI( 2) = .94064000E 00 PI( 2) = ,9406403GE 0U
1 DELTA PIC 1)/PIC 1) \56935020E=0 = 406400 P1e2) - 79064020€ L
1 DELTA PIC 2)/PIC 2) = _ ,52812781E~01 PIC 8) = ,96142034E 00 s 176132054€
. A531155E PI{ 4) = ,91719590€ 00 PI( 4) = ,9807B215E 0U N
1 DELTA PIt 3)/P1¢ &) 3 ,90231155E-01 ‘ Y1715 g
) = 237384; - FI( o) = ,I5686684E 00 PIt ) = 1 99686684E QU
I TR S TR L L TR R P Z;E oé PI( 6) = .9208834%E 00 PIC 6) ®  ,97124319E 20
D Ditra bl etk '11329?§7E : 1 TCELTA PIC 1/7P1C 11 3 ,5mr935020E~03 1 DELTA PIC 1)/PIC 1) = ,55935020E~03
4 DELTA PIC 6)/P1C &) = 1 55259247E-01 L DELTA PIC 2)/PI( 2) = /5281278101 1 DELTA PIC 2)/PI¢ 2) = 1 52312781E-01
3 DELTA PIU 37P1( 3) =  ,3387368726-01 3 DELTA PIC 31/7PIC¢ 3) =  ,33878B72E=-01
3 DELTA PIC 4i/P1( 4) = ,60875424E=01 4 __UELTA PIC 4)/PI¢ 4) = ,15304880E=-01
4 DefTA PIC 51/PIC 5) = , $.985024E~01 4 DELTA PIC B5)/PIC 5y = 1 31985024E-01
4 DELTA PI( 6)/PI( 6) =  ,55259247E=01 5 DELTA P14 6)/P1C &) = ,15275383E-01
NEW NI = 4
P = ,6Nh962666k 00 » e R
SuM NI#UMI =  ,62000000F 02
SUM NIeVH] & 34000000k 02  NEu NI = 4 e . _
SUM NIwWMN[ = ,4BQHCO0Q0F Q2 P = 1 78U69610E 00 NEW N] 3 3
PIc 1) = ,99945000E QU SyM NleUN] 8 ,72060000§ 02 e B56SI307E 5O
T haissaroe o SuM NIeVIl = .30000C00E 02 Suv NISUN] 3 ,82000000F 02
PLC 3) = .BB1B50C0E 00 Sum NJewN] € ,54000000k (2 TUSUM NTSVNT ® . 45000000k 02
FIC4) = 33749590 OO PLC 30 = 499943000 00 SUM NIsWN] # 65006000 G2
Ple ) = 19H68066%54E 00 P1¢( 2) = +94004030E 0N ;l(~f7";M oS aS000E 00
R R TR N I T AR RN Ty F LTI PiL S) & F6142034E 00 PIC 2) = ,98984749E QU
1 DELTA PIC 1)/PIC 1) = ,56935020E=03 Ple 4) = .9BD/B215E QU PIC &) = 76142u34E 00
1 _OELTA PIC 2i/PI1C 2) = ,57812781E-01 PIt 5) = ,95686684E 00 PI¢ 4) = ,9807B215E 00
3 DECTA bt aibie oy 5 i Midienes  o—tlt &)= SpossmasE o 1020 oSHOIZLRE Bo
3 DELTA PJC 4,;/PI( 4q) = ,6(‘5754?4&-01 1 DELTA PIC 13/PIC 1) = 1 53935N20E=03 PIC 6) = '97124319E 0U
4 DELTA PIC 5)/PIC 5) = ,31985C24E-01 1 UELTA PYC 2)/PI¢ 2) =  ,52812781E=01 JRLe o) = w97324919E 0L
4 DVELTA PIC 6)/P1( 6) = 55259247E=01 3 DELTA PIC 3)Y/PI¢ 3) = V338738726401
4 DEITA PLC 4)/PI( 4) = ,15304B30E=01
4 DELTA PIC 5)/PIC 5) = ,31985024E-01
4 _DELTA PI® 6)/PIC ) = _ ,55259247E=01

10¢



DELTA

TABLE B.1.1,

NEW NI s 5

(Concluded)

P =
SUM

\92496857E 00
NI#UN] = ,90000G00E

02

SUM NleyN] & ,50000000&
Sym_ NJekN] B ,71000000F

02
g2

PI( 1) = 199943000E 00
PI¢ 2) 198984749E 00

PI¢ 3) 199398737E 00
FI¢ 4) 198078215 00

P15 1 98747225E 0D
PI{ 6) = 297124319E 00

UDELTA PIC 1)/7PIC 1)
DELTA PJC 2)/P1C 2)

,56935020E~03
,94490389E-02

SELTA PIC S1/7PTC &)
DELTA PIC 4)/P1( 4)

\51614264E=02
,15304B30E-01

LORV L VS AL o

TELTA PIC GI7PI( 5)
DELTA PIC 6)/PI( 6)

\91326782E-02
,19278383E-01

NEW NI =

6
F = ,99230046E 00

NEW NI
P =

4

1 92170902E 00

SUM
SyM

NIeUR] =
NisVM] &

»98000000F 02
124000000k 02

Sum
PI( 1)

NIQNN[ H

s 99945000E

ou

L 79000000E 02

PI( 2)
P1( $)

1 ¥9920060E
1 99398737E

or
or

PIt &)
Pl 2)

\9807B215E
,98747225E

oc
00

PIL 6)
DELTA

°
—

\98996716E

1)/P1¢

1)

ou

196935020E-03

DELTA
DELTA

PT¢
Pt

2)7P1¢
3)/PIC

2)
3)

1 74085952E-03
191014264E=02

DELTA
DELTA

Pl
PI¢

4)/7P1¢
5)/P1¢

4)
5)

,00100000E 00
191326782E-02

[0 S1V B0 NI 4E o

DELTA

PRIt

€17P1t

6)

1 66B45753E=02

SUmM

NI#UN] 8 ~,960000060E 02

Sym
SyM

NIsyN] = ,53000000E 02
NIeWN] = ,7600G000E 02

I
PIt

1) = ,99943000E 0U
2) 1 9898B4749E 0O

1 PIC 1)/PIC 1) =  ,5693502UE~03
3 DELTA PIC 2i/PI( 2) 3 ,5449038%9E~02
3 DELTA PIC &)/PIC 8) =  ,33873872E=~02
4 DELTA PIC «)/PI( 4) &= ,15304830E=~01
4 DELTA PI( S)/PIC 5) = 31985024E~01
5 DELTA PI( 6)/PIC 6) = .19275353& 04

NEW NIl = 4

P =z ,89650U3BE 00

SyM Nleyn] = ,85000000F 02

SyMm NIeYN] ® ,47000000E n2

SUM NI#WN] € ,67000000E 2

Pl¢ 1) = +99943000E OU

PI( 2) = 1 98984749E 00

PI( 3) = 1993987378 00

Pl¢ 4) = ,98078215E 00

PI( ®) s 195686684E 00

Pl( 6) ¢ «97124319E 00
1 DELTA PIC 1)/PIC 1) ©  ,56935020E=03
3_DELTA PIt 2)/PI( 2) = ,344903B9E-02
4 DELTA PIC 3)/PIC 3) = ,51614264E=02
4 DELTA PIC 4)/PIC 4) = 4 15304830E=01
4 DELTA PIC 5)/7PI( 5) = 1 31985024E~01
5 DELTA PIC 6)/PI( 6) =  ,18278383E=01

PIt
PI¢

3) 199398737 N0
4) 19807824 5E 00

PI¢

5) 1 FB74T7225E OB

LIMIT
LIMIT

N
UN U

EXCERDEN,
EXCEEDED,

ELIMINATE
ELIMINATE

MBDULEC 3)
MBRULEC &)

LIMIT
LIMIT

UN y

EXCEETED,
EXCEELED,

ELIMINATE
ELIMINATE

MBDULEC 3)
M@DULE( 2)

LIMIT

gN U

EXCE=DED)

ELIMINATE

MPUULEC 1)

ALL

MODULES ELIMINATED

PI1¢ 6)

»

4 98995718E

s 1f]

DELTA
DELTA

PRI
PIC

1)7P1(
21/7P1 ¢

v
2)

,5693502UE=03
1 94490389E=02

DELTA
UELTA

Pl
Pl

3/PI¢
3)/P1t

3
4)

1 516142649E-02
_415304830E-04

O T D KN

UELTA
DE{ 1A

PIC
Pl¢

5)/P1C

8§)/P1¢

5)
6)

¢91326782E~02
1 66845753E~02

¢0¢



TABLE B.1.2

Api
SYSTEM OPTIMIZATION USING (AP) =\
max [)i
max
TO ACHIEVE A RELIABILITY GOAL OF 0. 9995
INPUT DATA NEW NI = 3 NEW NI = 4
P = ,41374126€ 00 P s 58977522 00
Nz 6 SyUM NI#UN] 3 ,3510000908 G2 SUM NI#UN] = ,49000000¢ 02
ICON = 1 Sy NI#yNT 3 ,1B000000r 02 SUM NIe«yNl & ,270060000K 02
PLIMIT VALUE = (99950000 Syv NI#wd] 8 ,25000999E 92 _ SUM NloWH] = ;40000000k 02
A =z (33333000 B = 133333300 C = 133333000 PIC 1) = 199945000E 00 PI¢ 1) = ¢99943000E 00
Ug 1) = 1,90000000 Pl¢( 2) = $940640N0E 00 . Pre 2) = 194064000E 08
g 2) s 2,00000000 PI¢ 3y = ,88185000E 00 PI( 3) = 1 8B18500CF 00
e 3) = 3,90000000 PI{ 4) = 182306000 03 Pl 4) = §82306000E 00
U 4) = 4,00000000 PIt 5) = 1 85949249E 04 PI( 5) = 185949249E 00
u¢ ) = 5,0008000¢ PI( 6) = +70548000E 39 L, Pl¢ &) = 192038349E 00
U( 6) = 6,70000000 1 DELTA PIT 11/P1¢( 1} = 1 56935020E03 1 DELTA P 1J/PIC 1) = +56935020E#03
V(1) = 1,00000009 _ 1 DELTA PIC 23/P1C 2) = 1 52812761E-01 "1 DELTA PI( 2)/P1¢ 2) = $528127H81E=01
Vi 2) = 1,00000000 1 UELTA Pl 3)/P1C 3) = 190231159E=01 1 BELTA PIC 3)/PI( 3) = 1 G0eIL1ISBE-0L
v 3) = 2,00000009 .1 DELTA Pl1C 4)/PI{ 43 = £11432447E 00 i VELTA PIC 4)/P1( 4) = 111432447€ 00
V( &) = 2,000000802 3 DELTA PIC 5)/PI( 5) = 111329285 00 3 DELTA PIC 53/7PT( S = 1113829285E 00
v( 5} = 3,90000000 1 DELTA PIt 6}/PIK 6) = 112103594 00 4 DELTA PIC 6)/P1¢ &) = 155259247E-01
V( 6) & 3,00000009
__M( 1) s 1,00000000
Wt 2} 3,00000002
W( 3) = 2,0000000
W 4) = 2,000000073
W{ 5} = 4,00000063 NEW N] = 3 NEW NI = 3
W( 61 = 5,000000C3 P 2 ,46881bH2E 00 P7e ™ ,60148474F 00
. RBARC 1) = 400057000 _SyM Nl®uNl ®= . 430006000E 02 SUM NI®UN] ®  ,b7000000E 02
RBARC 2) = (05935000 Sun Nlsym] & ,24000000F 02 SU¥ NT«yNT = | 31000060E 02
RBARC 3) = ,11815u00 . 5yM NIewd] X 85000000k 92 Sym NleWh] 8 ,440000008 02
RBAR( 4) = ,17654000 PI( 1) = 199943000€ 90
RBARC 5) = ,235730600 Pl¢ 2) = 1¥4064003€ 0O
RBAR( 6) = 29452900 PIe $) = ;BE185000E 00
Cy = 99,00800000 cy s 57,30000000 CW = 83,00000000 PI( 4} = 182306000E 00
Pl¢ ®) = »B594924%E 00
___Plec o) = (79CB6843E 08 _
1 DELTA PIC 1)/P1C 1) = s 56935020E-03
NI 3 1 1 DELTA PI( 2}/Pit 2) =  ,523312781E~01
SUM NTeUNT = ,21000000& 22 1 DELTA PI{ 3)1/PIC 3) = 1 90231155E~01
Suv NIeyNl = ,12000000€ 02 1 DELTA PIC 4)/P1¢ 4) = 113432447E 00
SUW N]*WNI ¥ ,17GCO000F (2 3 DELTA FIL B)/PIL 5) = y11329285E 00
3 DELTA PI¢ 6)/PIC 6) = 1 168763U8E 00

INITIAL P VALUE =

1S679G319E 00

£€0¢



TABLE B. 1.2,

(Continued)

Pl 1) = ,99948000E 00 NEW NI @ 3 ___NEW NI = 5
__P1¢2) = ,94064000E 0O ) F x  ,7300%703E. 00 P =  ,82383678E 00
P1¢ $) = ,BB185000E 0O Sus NIs=UMN] & 68000000 02 SUM NIsUNM] = ,78000000€ 02
P1( 4) = _ ,91719%90E 00 Suv N1&VM] & ,3800000NE 02 Sum NIeyN] & 43000000k 02
PIC 3) = ,85949249E 00 SUM Nle#WNI ® ,52000000& 02 SUM NIsWh]l & ,59000000E 02
Ple 6) =  ,92038349F QU PI( 1) & 4999Ya30060F 00 PI( 1) = ,99943000E On
1 DELTA PIC 1)/PIC 1) = ,5693%C20E~03 PI{ 2) = ,94064000E OU Pl 2) = ,9406400GE 00
1_DEITA PIC 23/P1C 2) 3  92312781E-01 PlC 3) = ,961642034F 00 PIC 31 & ,96142034E 00
1 DELTA PLC 3)/P1( 3) = 4 90231155E~-01 Pi( 4) = 191715590E QU PI( 4) = 1 98078215E 0u
3 _DELTA PIL 4)/PI( 4) =  ,69375424E=01 PI¢ 5) & ,956866B4E 0U PIC 2) 8  (95606684E 00
3 DELTA PIC S)/PIt 5) = ,11$29285E 00 PIt 6) £ 920383498 QO Plt 6) 3 ,97124319E oo
4 OFLTA PIC 6)/P1t 6) =  ,55459247k=04 1 DELTA PIf 1)/PIC 1) 3 56935020E=03 1 DELTA PIU 1)/PIC 1) = ,56935020E=03
1 DELTA PI¢ 2)/PIC 2) = ,52812781E=~D1 1 DELTA PJC 2)/P1t 2) = ,52312781E=01
- I DELTA PIC ¥)7PIt 3) = | 33873872E=01 3 DELTA PIt 3)/7PTC 3) = ,33873872E~01
3 DELTA PIC 4)/P1L 4) = ,69373424E=01 4 DELTA PIC 41/PIC 4) 3 ,153048430E-01
4 DELTA PIC 5)/PIC 5) =  ,31985024E-01 4 DELTA PIC 5)/PIf 5) = ,31985024E-01
4 DELTA Py 6)/PIC 6) = ,55259247E=01 5 DELTA PIC 61/P1¢ 6) s  ,19278383c-01
NEW NI & 4
P = ,660962366E 00
SUM_NI#UN] B ,62000000F 02
Sus NIeyNl 3 ,$4000000E 02
SyM NI#WH] ® ,48000000k 02 NEW NI = 4
Pi¢ 1) = ,Y9945000E OU Pz  ,7H069010E 00 NEW NI = $
PI( 2) ® 194064000E 00 SUM NI«UN] s ,72000000E 02 P a 1 86693397E 0D
PIC 3) = 1 88185000F 00 Sym NIsyKR] = ,40000000& 02 SUM NI#UN] ® ,82000000F 02
. Pre 4y = ,9Y1715590E 00 Sum NleWN] ® ,540D00000E 02 SUM NI#yKl = ,45000000F 02
PI¢( 2) = 1 95656684E 00 Pl¢ 1) a ¢ $9943000E QU SuM NI#WH[ ® ,65000030E 02
PI( &) a  ,92088349F 0U Pl( 2) = ,94064000F OO PIC 1) = , 99943000 OU
1 DELTA PIC 1)/PIC 1) = 56935020E~03 P1( S) & ,96142034E 00 PIC 2) ®  ,98984749€ 00
1 DELTA PIC 2)/P1¢ 2) = 152812781E~01 PI¢( 4) = +»9B078235E 0O PI¢ 3) = 1 P6142034€ 00
1 DELTA PIC 3)/F1C 3) =  ,90231155E=01 Plt 5) 8 ,956566B4E 0D PI( 4) & ,%8078215€ 00
S UDELTA PIC 4)/PI¢ 4) = 169373424E-01 PIt &) 3 1 92038349E QU PIC 5) = +I56H6684E 00
4 DELTA PIC 5)/PIt 5) =3 131985024E~01 1 DELTA PIC 1)/PIC 1) = 156935020E=03 Pl1( 6) = 1971243195 no
4 DELTA PIC 6)/P1C 6) = ,55259247E-01 1 DELTA PIC 2;/P]¢ 2) 3 ,52312781E=01
3 DLDELTA PIC 3)/PIt{ 3) & ,33873B72En0Q1
4 DELTA PIC 4)/P1( 4) = ,15304830E»01
4 DELTA PICL 5)/7P1t 5) s  31985024E=01
4 DELTA PIC 6)/P1¢ 6) =  ,55259247E~01

P0¢



AR R N SR

TABLE B.1.2,

{Continued)

DELTA PIC 1)/7P1C 1) = )26935020€=03

JDELTA PLC 2)/P1% 2) 2 ,94490389E-02

DEIL.TA Pl¢ 3)/P[t 3) = 1 33873872E-01
_BELTA PIC 41/P1( 4) = 115304850E-01

DELTA PI{ 52/7P1C 5) = 1 31985%024E-01

DELTA Pl A)/PIL 6) = ,19278363E~01

NgiW N] = 4

P =z ,8968UU3RE 00

LGSUM NTeURL s 350000092 02 L

Sy4 Nlsynl & ,47000000E 02

S MI#WNE = ;b/LQQQU”r 02

PI( 1) = (999480008 0

Pi¢ 2) = 1989347495 Q1)

Pl1¢ $) s 493“8/67‘— o4

Pl¢ 4) = ¢ 780782158 00 -

Pi¢ 2) = ,95036584E 0Q

PI¢ 6) = »971243%1%95 00
1 UELTA PIC L1/7PIC 10 = y56935020E=03
3 DELTA PIC 2)/P1y &) = 1 94490389E=02
4 BELTA 2IC 33/P1( 8) = 151614264E=-(2
4 UELTA PIC 41/P1¢ 4) = 115304830E=01
4 DELTA PIC 5}/PL{ 5) = 151985024E-01
5 DELTA 1t 6)/P1C 6) = ,19278383£-01

Ngw NI = 5 o _NEW NI = 5

P = ,92498857€ 00 Pz ,95722907E 00

SUM NJeUN] = ,20000000% Q2 SUM NI&#UN] = ,1000000CE 03

SUM NJeyN] = 50000000k Q2 SUm NIeyNl % ,55000000E 02

SUM NIewWR] & ,71000000= 02 SUM NI#¥N] s  ,78000N00F 02

PI( 1) = 179943000 90 PI( 1) = 199943000 GO

PI¢( 2) = 1 78934749E QU o Pl ey = 1 7B984749E 00

Pre 8) = «¥9398737E 01 PI( ) = 1 99398737€ C0

Pl 4) = 1 78078215€ 00 PI( 4) 3 1995792855 00 B

PI( 2) = 1787472258 00 PI¢ 5) = 1 98747225€ 270

LPIC o) = 497124319E 04 PI{ 6) = ,9B996718F 1

1 DELTA PICLY/PTIC 1Y = (56935020E-03 17 DELTA PIC 1)/7P1C 1) = 1 56935020E~03
S _DELTA PIL 23/PLC 2) = ,944903U89E-02 3 DELTA PJC 2)/PI1C 2) = 1 94490389E-02
4 TELTA PIC S)/7PIC 3) = 1216142064E-02 4 DELTA PIC 8)/PIC( 3) = pD16142064E-02
4 UELTA PI( 4)/P1¢ 4) = 1 15304880E~-01 5 DELTA Pl( 4)/P1C 4) = 1 33340191E-02
5 DELTA PIC 5)/PIC 53 = 191326782E-02 5 DELTA PIC B5)/PI( 35) = .91326762t -02
S DELTA PIG _6)/PIC 6) =  ,192783B3E=C1 6 DELTA PIC 63/P1¢ 6) = 1 64845753E=-02

_NEA NI = b NEW NI = 4

Po= 1 9428U046E Q0 P s 196627477E 00

SyUm N]leUNl = ,96000000E 02 SUM NJeUNT 3 ,10200900E 02

SUM NI#yN] ® ,5300000CE 02 Sym NT#VN] 3 56000000 02

SUM NIeWNI ® ,76000G00E D2 R SUM NI#WN] = ,81000900E 02

PI¢ 1) = 4 9994300CE CO PI¢ 1) = ¢ 999430N0% 09

_Pl¢ 2) 3 4IBYB4749E 0O PI¢ 2) = ,99%20060F 00

PRI $) = 179398737 U PI( 3) = 1993987375 00

P1¢ 4) = 198078215F (0 PI¢ 4) = 199579285 00

P1e o) = +FB747229E 00 PI¢ 5) = 1987472252 00
.. Ple 6) = 198996718E 00 PI¢ 61 = (7859967485 00
1 DELTA PIC 1)/PIC 1) = 156935020E~03 1 UELTA FIC 1)/PIC 1) = 1 56935020E=03
3 DELTA PIC 2)/PIC 2) = 44944903395 02 4 UELTA PIC 2)/P1C 2) = 1 74089952E~03
4 DELTA PIC S8)/PIC 3) = 151614264E-02 4 LELTA P1{ 3)/PI( 3) = ;51@1429?E -2
4 VELTA PIC 4)/P1( 4) = 115304B3U0E=01 5 DELTA PIC 4)/PI1¢ 4) = 133340191€-02
5 DJELTA PIC 5i/P1C %) = 191326782E=02 5 DELTA PIC 5)/PJC B) = 191324782E=02
6 DELTA PIL 6)/P1C 6) = ;66845708E-02 6 MHELTA FI{ 6)/PI¢ 6) =  ,66845753E=02

<0¢



TABLE B.1.2.

(Continued)

NEW N 3 & Nelk NI = %

P 3 \97509944E 00 P = 1 98668412E 00

SymM N[#UN]L *® ,10700900¢ (3 Sym NI#UN] = ,11600G00E 03

Sud NI#VUN] =  ,59000300E 02 Sy NIeyN] & ,640000Q0E 02

Sys NIsWNI ® ,85000900E 02 SUv N1wWN] & ,92000G03E 92

PI¢( 1) = 199%43000% 00 PI¢ 1) 3 ,99943000F 00

PI({ 2) = 1999200605 09 P1¢{ 2) s 1993200608 00

PIC 3) = 1993987378 00 PI( 8) 2 199911777 20

P1{ 4) = 1 99579285E 03 PI({ 4) = 199579285F 00

PI( 5) = ¢99649052€ 09 PI( 5) = 199649052E 20

Pl¢ 6) = 198996718% 90 _ Pl( &) = 1 99658B469E 00
1 WELTA PI{ 1)/PI1( 1) = 1 56935020E-03 1 DELTA PIC 1)/PIC 1) = ,5693502UE=03
4 DELTA PIC 2)/R1¢ 2) = 1760385952233 4 DELTA PIC 2)3/PY1C 2) = 1 74085952E~03
4 DELTA PI( 3)/PI( 3) = 151614264E~02 5 DELTA PIC 3)/PIC 3) = (75836392E-03
5 DELTA PIt 4)/P1( 4) = «33360191E=02 5 DELTA PI( 4)/P1I¢ 4) = 4 33340191E=02
6 BDELTA FIL 3)/PII 5) = ,25600355E-02 6 DELTA PI( 5)/PIC 5) =  ,25600355E-02
6 DELTA PIC 6)/PI¢ 166845793E=02 7 _DELTA PIC 6)/P1¢ 6) = +22816180E=(2

NEw N = 7 _NEW NI = 0

P = ,98161/57E 00 P = «98957374E (0

Sym NIGJNI £ ,1313000NG0E 03 Syum NI#UN] % ,12000090E 033

SyM NI*yN] = ,62000000E 02 Siym NIe#yN] *  ,66000C00E 02

Sym NIe«wN] 8  ,90000000E 02 SyM NJewN] ® ,94000090E 02

PI( 1) = 1 99943000F 00 PI( 1) = 199943000 00U

Pl1C 2) = 1 79920060F 00 Pl 2)r s 1 99920060E 00

PIC 8) = 1 79398737¢ 00 PI¢ &) = 1 99911777€ o0

PI¢ 4) = 1995792856 09 PI1( 4) = 199911284E 00

P1( 5y = 199649052E 00 PI( 5) = 199649052E 00

PI{ 6) = 1 Y9458469E 0Y PIt 6) = 1 99658469E 00
1 DELTA PIC 1)/PIC 1) = 1 56935020E-03" 1 DELTA PIS 1)/PI¢ 1) = 56935020E-03
4 DELTA PIC 2)/P1¢ 2) = 1 74085952E-03 ¢ DELTA PI( 2)/PI¢ 2) = L74085%25 =03
4 DELTA PIC 3)/PTL 3) = 1 51614264E-02 5 DELTA PIC 3)/7PT( 3) = 1 75836392E-03
S UELTA PIC 4)/P1( 4) = 1 33340191E=02 6 DELTA PI( 4)/P1( 4) = 1 70555328E=03
6 DELTA PI({ B)/PI( 5) ¢ 125600355E-02 6 DELTA PI( 5)/PI( 5) = 125600355E02
7 LELTA PI{ &3/P[C 6) = .22816130E =02 7 UELTA PI{ 6)/P1( 6) = l228161605 =02

NEw NI = 7
P = 99250811k 00
SUM NJwUNI = ,12500000€ 93
Sym NJ®VNl = ,69000000E a7
SyM NJw=WNI = ,9800000CE 02
PIC 1) = 199943000E €O
PI( 2) = 199920050E QU
PIC 8) = V99911777E GO
Pl 4) = (99911284E 00
PI¢ B) = ¢ 99904157 00
PI( 6) = 199658469E 00
1 DELTA FIC 1)/PIC 1) = ,556935020E=03
4 DE|LTA PI( 2)/P1( 2) = 1 74085952E-03
5 DELTA PIC 3)/PT1¢ 3) = 1 79636392E=0D
6 DELTA PlU 4)/P1C ¢) = 170555328BE=03
7 DELTA FIC 3)/P1( 5) = 1/ 1225889E=03
7 DELTA PIC 6)/P1( 6) = 4 22816180E=-D2
_NEW NI = 3 _
P oz 4 99477263E 00
SUM NI#UN] = ,13300002%E 93
SyM NIeVN] = ,72000000F u?
Sys NJsdn] 8 ,10300000E g3
PI¢ 1) = +99943000E QO
P1¢ 2) 3  ,99920060F 10
PI( ) = 1 99911777€ 00
Pl( 4) = 1 92911284E 00
PIC 9) = 1 99904157€ 00
P1{ 6) = 1 99685852E (0
1 DELTA PIC L)/P1C 1) = 1 56935020E=03
4 DELTA PIC 23/P1< 2) = 1 74089992E~03
5 DELTA PIC¢ 3)1/FIC 3) = 1 75B36392E=Q3
6 __DELTA PI¢ 4)/PIC 4) = 4_0222328}3_11_
7 DELTA PI( 5)/P1( 51 = 1 70225889E~03
8 DELTA FI( 6}/P1( 6) = 1 16622967E%03

903



TABLE B.1.2. (Continued)

NEw N[ = b4 e . NEW Nl = 5 _NEW ND = 8 -

P = ,99553445E 00 P s ,99702794E 00 F 27T 99543206E 00

SuUM NIeyN] ® ,157000Q4E 03 , SUM Nleyn] = ,142060003¢ 03 Sym Mreuni =  ,15100000& 03

SuM NI#VN] = ,75000000E @2 i SyM NJayNI = ,7800000%E 02 SUsM NJeyN[ = ,8500C000E 02v
_ SyM NlerN] = ,1088000GE 03 f SyM NJ#wnN] 8 ,113G00QNE 03 ~ SUM NI#WN] 3 ,121900000% 03

PI( 1) = 199943000E GO : FI( 1) = 199943000E 90 PI¢ 1) = 1 999430G0E 0V

Pl¢ 2) = 199920060E CQ o ... Pl¢ 2) = ,99794p87E 50 FI( ¢) = 4 99994087E 09 - _

PI({ 3) = 1 ¥9911777E €O PI( 3) s (Y99B7546E 20 Fre¢ 8y = 1 999873546E 00

PI( 4) = 199911284E G0 PI{ 4) = (999112B4E 10 e PIC 4) = ,999381777E 03

PI( 5) = 199904157E ©Q | PI( 2) = +99704157E 24 FI( 9) = 99274316 00

Pl( 6) = 199962387E 10 L Ple 6) = 199962387E 90 _Pl( 6) 8 ,939962387E 03 _
1 DELTA PIC 1M/FIC 1) = 1 56935020E=03 "4 DELTA PIC 1)/PI( 1) = 1 96935020E£-03 1 O0&LTA PLC 1)/7PIC L) = 15693502003
4 VELTA PIC 2)/P1C 2) = ,7408%952E-(3 5 DELTA PIC 2)/P1( 2) =  ,54931080Ew04 5 UELTA Pt 2)/P1¢ 2) = ,5453108UE=-04
5 DELTA PIC 3)/FIC 3) = 4 75836392E=-03 (6 DELTA PIC 3)/PIC 3) = ¢ 1i1743986E~03 6 DELTA PIC 3)/PI( 3) = y107439386E=03
6 UELTA PJ¢ 41/PIC 4) = 1 70555828E=03 6 DVELTA PIC 43/P1C 4) = 3705553286203 7 LELTA PI{ 4)/P1( 4) = . ,14554467E=03
7 DELTA PIC B)/PIC 5) = .70225889E 03 7 DELTA PI( 5)/PIC(C 5) = 1 701225889E-03 3 0L TA PI( 5)/PI( 35) = .18909979E 03
9 DVELTA PIC 6)/P1( 6) = ,25565456E 03 9 DELTA Pl( 6)/PI{ 6) = 1 2RSABASIE=03 9 DELTA PI{ 6)/PI( 5) = (25368433E-03

NEW NI = 6 e i NEW NI = 7 ~  NEW NI K] B

Pz 199628983 00 Ps SYT7T7314CE 00 P = .9090u052: 0a

Sy~ NI*LNI = ,14000000E 03 SiM NIwUN] = L 1960000CE 03 SyM NJ#UNT = ,19309000K 03

Syv NIsyNl 8 /770000008 02 . Sym Ml=syhM] = ,8U000000E 02 SUM NI#VN] = ,45000000& 02

SUM NIewNI ®  ,11000006c 03 ' SUM NlekN]l 3 ,1150000CE 0F SYM NI#aN] =  ,12100000E 03 .

Pl¢ 1) = ) 99943000E 00 PI¢C 1) = ¢+ 99943000E Qg PI¢ 1) = 1999399738 09

PI1( 2) = 199920060E 00 PI{ 2) = 199994087 (0 O P1C 2) s 493999987E 04 . .

PIC 3) = 19998/546E 03 ‘ PI( ) = 199987546E 00 PI¢ $) = 1 ¥9937546E 00

PI¢ 4) = 199311284E C3J e Pl( 4) = 199981777E (0 Pl( 4) = .99961777E g

PI( %) = 199904157 00 P1¢ ) = 199904157E 00 PI{ 9) 3 1999743166 0

PlC 8) = 1 99362387E G0 Pl 6) = 199562387E ©0 C PI{ 6) = ,99982387E 00 o
1 DELTA PLC 1)/PIC 1) = 1 26935020E#03 1 DELTA PIC 1)/PIC 1) = ¢56935020E=03 3 UELTA Pit 1)/PI( 1) = W I7859011E~06
4 DELTA PIC 2)/PI1( 2) = 1 74085952E-03 5 UE{TA P1C 22/PI( 2) = 54931080E-04 5 DELTA PIC 2)/P1¢ 2) = ,54934,080£-04
6 DELTA PIC 8)/PI( 3) = 110745956E~03 6 DELTA PTC 8)/PIC 3) = +1L743936E=03 6 DELTA PI( $)/PI(¢ §) = 1 10743936E~-03 -
6 DELTA Pli 4}/PI( 4) = ,70555328E=03 7 _DELTA PI( 4)/PIC 4) = 1145544067E-03 7 UELTA PIC 43/P1¢ 4) = 114559467E=03
17 UOELTA PIC B)/PIC 5) = ) 70225889EmD3 7 UELTA PI( B5)/PI¢ 5) = 17 0225889E-03 8 UELTA PIC 9)/P1C 5) = y18909979E~03
‘9 UELTA PIC 8)/P1C 6) = 125568433E-03 9 DELTA PIC 6)/PIC 6) = ,253684383E=03 9 D, TA PIC 5)/PI( $) = 125363433E-03

L0OZ



TABLE B.1.2. (Concluded)

NEW N] = g NEW NI = 9 ) NEW NI = &

Pz y 999253956 20 ] P = 199944287 00 F =z 199958833k 00 )
Sym NI#UNI 2 ,15900000E 33 o __ SuMm NieyW] = ,16400000E g3  Sym Nl=yM] s ,1680G00CE 03

SyM NlaVvN] = ,84500000E 2 SUM Nle«yNI &8  ,91000000E 02 SUM NIsVMI = ,9350C0000F 02

SUM NIeWNl ® ,12600000& 33 Sym NIsWN] = ,1300D000E 03 Sym NI#WNI =  ,13200000E 03

PI( 1) = y99999303E 00 FI¢ 1) 1 99999993E 00 FI( 1) 1 99999903E 00

PIC 2) 199994087E 00 PI¢ 2) 1 99394087E 00 FI( 2) 159994087E 0O

L] F3 =

PI( 3) = +99987546F 00 PI¢ ¢) = +199987546E 00 Fl1( 3) = +99987546F 0L

PI( 4) & ,99981777E 00 P1¢ 4) = ,99981777E 00 FI( 4) = ,9999£325E 00

P1¢ ) = 1 99974316E 00 FI1¢ 9) = 19999321 7E NnO F1( 5) = 1999952178 GG

PI( 6) = 21799687746E 0D Pl 6) = 199987746E 0D PI( 6) = 1 99987746E 00
3 DELTA PIC 1)/PIC 1) =  ,97359011E~06 $ DELTA FIt 1)/PIC 1) =  ,97359011E-06 3 DELTA PIC 1)/7PIC 1) = ,973%9011iE-06
5 UELTA PI( 2)/PIC 2) = ,545310B0E£=04 _ 5 DELTA PIC 2)/PIC 2) = ,54931080E-04 5 DELTA PIC Z)/PI1¢ 2) = ,54921080E=04
6 DELTA PIC S)/PIC 3) = ,10743936E-03 6 LELTA PIC 3)/PIC 8) s ,10743936E=DJ 6 UELTR PI( X)/PIt 3) =  ,10703936E-03
7 DELTA PIC 4)/PIC 4) =  ,14554467E-03 7 _UELTA PIt 4)/P1( 4) = ,14554467E~03 8 LELTA PIC 4)/P1C 4) =  ,29427345E=-04
B DELTA PIC 5)/PIC 3) = ,18505979E=03 9 TELTA PIC 5)/PI( 3) = ,50128469E-04 9 DELTA PIC 5)/7PIC 5y &  ,50178469e~04
0 DNELTA PIC( &)/PI( &) = ,92953732¢=-04 10  UELTA PI¢C £)/P1C 6) = 282965732¢=04 10 DPELYA PI( 6)/PTC 6) = (829558752E=-04

CONATHAINT LIMIT REACHED
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TABLE B.2.1
AP AP
SYSTEM OPTIMIZATION USING — = -
AC An, c, p.
1 171
max
AND CONSTRAINTS C =99, C =57, AND C_ =83
u v w
INPUT DATA NEW NI s 3 1 Q¢ 1) = ,45002226E-02
Pz 40996353E (0 1 8¢ 2) = ,22101597& 0@
N 3 6 - SyM NJeUN] = ,2900000GE 02 1 Q¢ ) = 1 $1684765E 00
1CpN = Q - SUH NTe¥NT ® ~,1600C00CE 02 4 Q¢ 4) = ,96705820e-01
PLIMIT VALUE = 199950000 SuM KkIeWN] & ,21000000E 02 1 G( 51 = ,é5835460E 0D
A = ,33333000 B = 133333000 C = , 33333000 PT¢C Iy ®  (99543000E 00 1 0¢ 6) = ,21878614E 00
ug 1) = 1,00000000 Pl( 2) =  (¥4064000E 0y
Ue 2) = 2,00000300 P17 37 = .38185000E 00
ug 3) = 4,00000000 PIt 4) 5  ,9171559GE 00
Ul 4 = 4,00000000 PI( ) =  ./6427000E €4
g 5) = 5,000060Q0 Pl¢ €) = ,70548B00CE PO
ug 6) = 6,00000000 C( 1) = 1 63258004E=01 ° NEw 1 @ 3
Ve 1) = 1,00000000 _ e C( 2) = 111834616E 00 TP a ,47796182E 00
Vi 2) = 1,00000000 Ct 3 = 1314238887 00 SyMm NISUN] 3 ,89000000E 02
V( 3) = 2,00000000 ) C¢ 4) = ,15826172¢ 00 Sy™ N]sYN] & ,2¢000000E 02
V(4) = 2,00000000 Ct 51 = 23112737k 0C SuUM NIsWNI % ,2700000CE 02
V( 5) = 3,00000000 CC 6) = 127660788k, (0 PI{ 1) = W 999430Q0E 00
V( 6) = $,000000200 1 Gt 1) = ¢e49002226E=02 PI( 2) = +94064000E 00
W 1) = 1,00000000 o 1 8¢ 2) = ,22301997 @0 P1( $) t  ,96142034E 00
w( 25 = 3,00000007 1 0¢ 3) = ,81684765E 00 PI¢ 4) 3 ,98078215E 00
W( $) = 2,00000000 4 Q¢ 4) = 143634649t (0 PI¢ 5) = \76427000E 0O
W( 4) = 2,00000000 1 Q¢35 = 122835460k (P PI{ 6) = , 70548000 00
W( 5) = 4,00006000 1 Q¢ 6) = ,21878614F 0§ C( 1) = ,63256004Ev01
Wi 6) = >,0000cC000 C{ 2 =  ,11834616E 00
.RBAR( 1) = 00057003 _ e T( 3) = .14258887E 00
REARC 2) = (05936000 t¢ 41 = .15826172€ 00
RBARC 3) = 211815000 C( 51 = ,24112737€ o0
REARC 4) = 117692000 €t 6) = ,27660788E g0
RBARl 5) = ,23573000 NEW N] = 4 17q9¢ 17 = +45002226£=02
REaR( &) = ,29452000 . P= ,43840411E 00 1 G6¢ @) = ,22101597€ 00
Cy = $9,100000000 oV = 57,00000000 CW = 83,00000000 . SUM neUN] = ,33000G0QGE 92 3 B¢ 37 = ,237896%91€ 0¢e
Sym MIayN] = ,1B00CQOCE 02 4 QC 4) = ,96705B20E~01
. BUM_M[#WN] = ,2300u0GCE G2 1 Q¢ 5) = ,£9885460= 00
PIt¢ 1y = ,Y9943000E 00 1 G¢ 62 = ,2i878614E 00
N[ & 1 PI¢ 2} = 29406400CE 00 -
Sum NJwUNT s ,2100000Qk €2 PIe 8y = 288185000 00
SumM MIeVN] = ,1200G00GE 02 _ Pl 4) = 198078215 00
SUM KTsWN[ = ,17000000F 02 PI( 5) 8  76427000E CO
PI¢ 6) = ,70548000E PO
Ct 17 =  ,03258004e-01
INITIAL P VALUE = ,36790319€ 00 C( 2) = ,11834616F GO
C(¢ 3) = ,14238887F 4O
O = DELTA PI/DELTA NIwClep] T 4y = ,15826172¢ Op
- C(C 57 = ,24112737¢ o0
LU 6) = ,27660788t 00

01¢



TABLE B.2.1. (Continued)
NEWw N1 = S NEW M1 = NEW NI & 3 NEW Nl =
P =z 1 537512%8BE 00 P 2 ,6186/911t 0o R o= 1 /2984365E 00 P = ,d%suusat 00
SYm NJeUN] ®  ,49000000E 0?2 Syw MJeUN] = ,5700GG00E 02 Sy NJeUN] = ,73000900E 92 SuM NJeUN] 3 85000000 02
SyM NlayN] = ,28000000E (2 SUM NI#yN] = ,335000000E D2 SyM NIeyNl = ,41000300E (2 Sum WNI#yN] = ,47000090E 02
_Sum NI#wWN]l = ,350Q0U030FE 02 SuyM Ml#WN] @ ,41000CQ0E g? SU NIwWN] 3 ,537/000290e 32 __.SUM NI®4NJ = ,670000)0E 02
PI¢ 1) = 1 99943000E €O PIt 1) = 2 7994500GE 00 PI¢ 3) = 1799435002 9 PI¢C 1) = +99943000E 00
Pl 2) = 1 940G64000E 00 PIC ) = 1 Y40640006E 00 PI¢( 2) 3 1989847493 09 _P1( 2) = ,9BUB4749E U _
FI( 3) = +76142034E 00 PI¢ &) = «99Z9E737E 00 PIC 8) = ' ¥9398737% no P1¢ 3) = 1 99398737E 34
PI¢ 4) = WJEN78215E 00 Pl¢ 4) = 2 ¥8078215E 00 Pre 4) = 1981782158 09 PI1¢ 4) s 1 98178210E 00
PI( 3) 3 ,B5949249E 00 P1¢ o) 3 1 YH6B6EBLE 00 PI¢( 5) = 1 75A866845 NY PI¢ 5) = 195686684F 11
PI¢ 5) = .7054BOOUE 0y PI¢ &) = 1 70548000E 0F PI( 6) = 3790868435 00 PI( . 6) 5 497124319 09
TTCC ) = 1 63258004E=01 Ce 1) = 1 63258004E=01 Ct 1) = 63258004E~D1 e 1) .6625d004t 01
Ct 2) = ,11834616E D0 L 2) = 211834616¢ 09 C¢ 2) = +11B34616E 06 Ct. 2) 2 11334646E 09
C( $) = ,14238887F 00 C( 3 = 114238887k 00 C¢ &) = .142388887E 0N C¢ 3 114238887 NN
C({ 41 = «15826172E 00 C( 4) = 115826172€ 00 C( 4) = Ji5B26172E 0N £t 4) = 115326172 90
C( 50 = 124112737E 0D C( 5 = .24112737E 00 €t 5) = 124112737E 06 Ct 9 = 129112737E J0
C( 6) = 127650788E 00 g 6) = +27660788E 010 C( 6) = :27661788E (0 Gt 6) = ,27560738E 43
1 QU 1) = 14900222602 1 QL = +45002226E-02 1 Q¢ 1) = 145002226E=N2 1 9t 1) = .Q>JU££26& u2
1 0¢ 2) = 122101997k 00 1 Q¢ 2) = 2221015978 00 3_Q¢ 2) = W 798428682601 3 Q¢ 2) = 1 798642382E=91
3 Qe 8 = 123789691E 0N 4 Q(C 3) = 1 86248806E-01 4 Q( 3) = 28952488 06E=D1 4 G 3 = 1 96248306E~01
4 Q¢ 4) = 1 96705820E=01 4 Q¢ 4) = 1 ¥6705820E=01 4 Q( 4) = - ,96705820E=01 4 Q¢ 4) = 2 96705820E=01
3 Q( 51 = 146984049E 00 4 Q( 5 = 115264783E 00 4 Q¢ 9 = ,15264783E (0 4 Q¢ 9) = .l§264253t 50
1 Q¢ 6) = £1878614F 00 1 Q¢ 6) = ,21878614E 00 3 _0¢ 6) = ,99204056E 00 5 Q. 6) = ,09699711E=G1
NEW W] s 4 NEWw N = 3 NEWw NI = 4 NEW Nl =
P = 159840470E 00 P = +69104394E 00 P e 18493651 0E 00 . P = .9z49odb7E 00
SymM HIeUN] = ,54000000& 02. __ SUM NIeUNl = ,61000000E 02 SyM NIeUN] = ,790000CCE 02 SuUM NIsUN] = ,90000000E 02
. Sum NIsyNl = ,31000000E 02 SUM NIeyNl = (35000000E 02 SUM NTeVN] 3 ,44000000F 02 SUM NIeYyHI 8 ,50000000E 02
SUM NJukN] & ,39000000E 02 SUM NI#WNIl = ,4700G000E 02 Syr NIsWN] & ,620000CCE 02 SUM NlaWh] '8  ,710000GCE U?
PI( %) & 1 75943000E 00 PIC 1) = 1 9994300GE 0O PT¢ 1) = 99945000F 09 PI¢ 1) = y9U943000E N}
P1¢ 2) = 194064000 0D PI¢ 2) = 1 98984749E 00 P1( 2) = 1 9898474%9F 00 PI( 2) = 1 J6984749E 0O
PI( $) = 1 76142034E 00 PI( 3) = 199398737E 00 PI( 3) = 1 99398737F 00 PI( ) = 1 99398737E 0N
Pl¢ 4) = 1 980768215E 00 Pl¢ 4) = 1 98078215E 00 PI¢ 4) = 98078215 CO Pl¢ 4) &  9BO78B215E 0u
PI( 5) = 195686684C 00 PI( 9) = 195686684E 00 PT¢( 5) = 195686684E D) PI( 5) = 196747225€ 0N
PI( &) & , 70548000E 00 PI( 6) = 170548000E 00 PI¢ 6) = 1 Y2038349E 09 Pl1¢ 6) = 197124319E RO
Cr 1)y = ,65258004Rk~01 c( 1) = +53258004E=01 C( 1) = 1038258004E~01 C( 1) = 163256004E=D1
C( 2) = +11834616E 00 C{ 2) = +11834616E 00 C( 2) = 111834616E 00 C¢ 2) = -11834616E €0
C{ 3) = 114238887 00 C¢ 3) = +14238887E 00 {3 = +14238887E 00 Cc &) = 117238887k U0
C( 4) = ,15826172E 00 C( 41 = ,15826172E 02 C( 4) = 1158261726 of Ct 4) = 115826172E 06
e 5 = ,24112737E 00 ¢ 5) = ,g§1127375 sa ; Ct 57 = 124112737 00 C( 9) = .2‘}11&/37& co
C( 6) = ,¢7660788E 00 Cg 6) = 127660788 00 ' C( 6) = .276607885 0o C{ 6) = 127660788E (0
|1 0t 1) = 142002226E=02 1 ¢ 1 = 199002226E=02 1 0 1= +42002226E-02 1 R 17 = +45002226E-02
1 6( 2) = ,22101597¢ 00 S Q¢ 2) =  ,79842382E=01 3 Q¢ 2) = 1y 79842582E-01 3 Q¢ 2) = 1 79842382E~01
3 0( 3) = 125789691E 00 4 Q¢ 8 = »30248806E=01 4 Q¢ 3) = 1 36248806E-01 4 Q( 3) = ¢ $0243806E=01
4 Q¢ 4) = 1 90705820Em(] 4Gt 4) = (908795820€%01 4 Q¢ 4) = 1 96705820E-01, 4 Q¢ &) ,-90705,§49L0_1,,,,
4 Q¢ 5) = 113264783 (0 4 Q¢ 5) = +139264783E 30 4 Q¢ 5) = 113264783E 00 5 Q¢ 5} 1 878749912E=01
1_0¢ 6) = «21878614E 00 1 G¢ 6) = 1 21878614E 00 4 Q¢ 6) = 119977467E 00 5 Q¢ 6) = ,69695711E=01"
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TABLE B.2.1, (Concluded)

NEW NI & 5 NEW NI = 4 LIMIT @N U EXCEEDED, ELIMINATE 4@DULE(. 6)
P =z ,9359123505k 00 . ' P = 9479YEREE OO LIMIT BN U EXCEEDED, ELIMINATE M@DULEC( 5)
SUM NJeON] = ,94200000E 02 SUM NIeUN] ® ,9600000CE 02
Syv NlayH] = ,%2000000£ 02 SuM NleVNT 3 ,5300000CE Q2
Sym NJewWMNl &  730CO0Q0E 02 SUM NIekN]I 8 ,7600000Q00E D NEW NI = 5
PI( 1) = 1 99943000E nQ PI¢ 1) = ¢¥9¥45000E CC P = 1 95289191E 00
Pl( 2) = +98964749E 00 PI( 2) = 199920060E GO SUM NJeUk] 8 ,99000000F 02
P1e 8) = 99398737 00 PIe 3) = 99398737k 0L SuM NleyNl & ,55000000F 02
PI( 4) & 199579285 N0 Plt 4) = 199579285E 0¢ Sym NleWh] = ,78000000F Q2
FI( 5y = |98747225E J¢ PIC 5) =  ,98747225F 0OC PI¢ 1) = ,999430C0E 0O
Pl( 6) = ,97124319E 54 PI¢ 6) =  ,97124319E OC PI( 2) 5  ,99920060E 0C
C( 1) = 105258004E=01 co1) = 16325E004E=01 PI( 3) = 199931777E 0OC
C( 2) = +11834616E 07 C¢ 2) = 111834616E 00 P1t 4) = 199573285E QU
C({ 3) = ,1423B8B7E (" C( 31 = 1 1423BEB7E OO0 PI( ) = 1 98747225E QG
C( 4) = J15826172E 00 C{ 4) = ,15826172E 0O PI¢ 6) = 197124319E 0f
C( %) = y2%112737€ 0D C( 5) = 129112737€ 0O G( 1) = J08258004E=01
C( 6) = ,27660788E 0D C( 6) = WE7660788E QOO0 B C¢ 2! = +11634616F -00

1 0( 1) = 1 450N2226E=07 1 Q¢ 1) = 145002226E=02 C( 3) = «14238587E 00

3 Gt 2) = 1 79842382E=01 4 D¢ 2) = 1 62601064E=02 Ce 41 = «15826172E 00

4 0( 3) =  9624BBOGE=DY 4 QC 3) = 1 9024BBJ6E=D1 C¢ 5) = «24112737E 0D

5 Q( 4) = y21066491F w01 5 Q¢ 4) = 121066491E=01 C( o) = 27660788 [0

5 Q( 5) = W S7874917E-02 5 Q(C 5) = +$7B74912E~01 1 ¥ 1) = 145002226k =02

5 Q( 6) = ,69665711E=01 5 Q¢ 6) s 269695711E=01 4 Q¢ 2) = 1 62601064E02

S Q( $) = «25260058E=02
5 08¢ 4) = 2 21066491E=01
5 Q¢ %) = ,00000900E GO
5 0¢6) = .L00O0CUOPE 0D

LIMIT @N U EXCEEDEU, ELIMINATE MBDUYLE( 4)
LIMIT ¢N U EXCEEDED, ELIMINATE M@DULE( 2)
LIMIT @N y EXCEEDED, ELIMINATE MEDYLE( 3)
LIMIT 6N U EXCEEOFD, ELIMINATE MPHULE( 1)

_ALL MADYLES ELIMINATED

A4



TABLE B.2.2

AP Ap,
SYSTEM OPTIMIZATION USING - = |~
AC An, ¢, p.
max 1 11
max
TO ACHIEVE A RELIABILITY GOAL OF 0. 9995
INPUT DATA NEW N] = 3 1 0¢C 1) = ,45002226E=02
P s +40996353E 00 1 ug 2y = 222103397E 0N
BN 6 _ SUM NI#UNI 3 ,2900000CE 02 1 0¢ 3) = ,314847565E 00
TCoN = 1 SuM NI#VN] % ,16000000E 02 4 Q¢ &) = ,96705820E=01
PLIMIT VALUE = ,99250000 SUM NJoWN] & ,21000000E 02 1 Q¢ 5) = ,258354560E 00
A = 53333000 B = , 33333000 C = , 33333000 FI¢c 1) = v 99943000E 0C 1 Q¢ &) = +21878614E 00
g 1) = 1,00000000 PI( 2) = ,94064000E QO
g 2) = 2,00000000 Fi¢ 31 = ,BB18B000E 00
ug 3) = 3,00000000 Fit 4) & ,91715590E 00
UG 4 = 4,00000000 PI( ©) &  ,/6427000E 00 o
U 5) = 5,00000000 PI( 6) a +70548000E 00
e 6) = 6,0c000000 “TC( 1) = ,68258004Ee01 NEWw NI = s
Ve 3 = 1,00000000 G( 2) =  ,11834618E 00 P e ,47796182E 190
vV( 2) = 1,00000000 TGt 3) = ,14238837& 00 SyM NI#UN] ®  ,390000Q0E 02
v( 3) = 2,00000000 C( 4) « ,158261728 00 . SuM NT#VNT £  22)00000E 02
V( 4) = 2,00000000 C{ 5) = 24112737 00 SYM NIwWN] = ,27000000E 02
V( 5) = 3,01000000 C( 6) = ,27660788E 00 P1¢ 1) = 199943000E 00
Vi 6) = s,ovpo0000 - : 1 Q@ 12 = ,945002226E~02 P1¢ 2) a3 494064000E 00
We 1) = 1,00000000 1 0(2) = ,22101%97& 00 Pl ) s 96142034k 00
W 27 = $,00000000 1 G( 3) = (31584765E 00 PIt 4) & ,98078215E 0O
W( 3) = 2,00000000 3 Q( 4) = ,48334619E (0 PI( 5) = 1 76427000E 00
K( 4) = 2,00000000 1 Q( 5) = «22835450E 0D PIC &) = «70548900E 00
k[ 5) a 4,00000000 1 Q¢ 6) = ,21878614E QO C( 1) = 163258004E~01
¥{ &) = 5,00000000 C( 2) = .11834616E 00
RBAR( 1) = , 00057000 o CC3) = ,14238837E o0
REAR( 2} = ,8593A000 oo o C¢ 4y = .15826172E 00
RBARL 3) = 411815000 C( 5) = 124112737€ 00
RBAR( 4) = 117694000 B¢ 6) = ,27660788E 00
RBAR( 5) = (23573000 NEW NI = 4 E TR A 1 45002226E=02
RBARC 6) = y 29452000 P w  ,43B840411E D 1 Q¢ 2) = 1 22101597E 00
Cy = $9,00000000 Cv a 57,00000000 CH = 83,00000000 SUM NI®UN] = ,33300000E 92 3 3¢ ) = ,23789691E 00
TTTSyUM NIsYNI & 180000008 02 4 Q¢ 4) = 1 98705820Ewp1
SiyM NJ®WN][ 8 ,28000000E 02 1 0¢5) 2 125835469E 00
Pi( 1) = 1 999438300E 00 4 B¢ 6) = ,21878614E 00
N = 1 . PI( 2) = 1 94064000E 00
SUM NIeQNI ® ,2100G00CE 02 P1¢ 3) = 8B8185000E 00
Sym NJeVN] ® ,12000000E 02 . PI{ 4) = 1 98078215E 0
Sym NIewN] *= ,17000000E 02 TTPI( D) 3 y76427900E 0O
Pl( &) = 1 70548200E 00
: C( 1) =& ,63258004EnD1
INITIAL P VALUE = 136790319 00 G( 2) = ,11834616E 00
C{ 3 = ,19238837E 00
G s DELTA PI/DELTA NleC]#P] €¢ 4) = ,12826172€ 00
C{ %) = ,24112737E 00
C( 6) = ,27660788E 00

S1%¢



TABLE B. 2.2,

(Continued)

NEW NI = 3 . NEW NI e 4 NEW NI = 3 NEWw NI = 5
P a 193751238 )0 P s ¢61867911E 00 P = 1 729843658 00 P a «A963003BE 00
SyM NeuN] = ,49000000% 02 SUM NleUN]1 = ,570000Q0CE 02 _.SuyM NIsUN] B ,73000000E 02 Sy™ NXGUNX *  ,85000090€ 32
SuM NJ#VYNL = ,28900Q000% (2 SYM NI#VN[ = ,3300000PE 02 SyM NI#ynN] ® ,41000000E 02 SUM NI=vyNl = ,47000000E G2
SUM N[eWN] 3, $D)00000E 02 SUM_NIskN] =  ,41000000E 02 Sym NlawNI = ,570000G0E 02 Syv N]owWN]l & ,6700Q0U0E 02
PI( 1) = »99943200E 00 PI( 1) = +99943000€ 10 PI( 1) = +99943D00E 00 PI(C 1) = 1 99943000€ GO
_ PIt 2) 3 ,940549300F 03 Pl( 2) = _ ,94064000F DU PI¢ 2) = 198984749E 60 PI1( 2) = 198984749 €0
PI( 81 = 96142034E 03 PIC 3) & (99398737 00 PIC 8) = y99398737E 00 PI( $) 3 199378737 G0
PI¢ 4) = .98016?15E 00 PIC 4) = 1 98078215E €0 PlC 4) = ,9YB07B215E 00 PI( 4) = +YB078215E €O
Pl( ®) = 185949249E DU PI¢ 5) = 1 95086684E OU Pl S) = 1 956B6684E 00 Pl¢ 5) s 195686684E 00
_ P1( 06) = 170548900k 02 P1¢{ 6) = 2 70548B000E 00 _PIC 6) = 1 79086843E 00 Pl1¢( 6) = 1973124319€ 90
C¢ 1) = 163258004E=01 C( 1) = +05258004ER~01 C( 1) = 1 08255004E=01 C¢ 1) = 183525B8004E=01
C( 2) = ,11834616E 0O C¢ 2) = 111834616E 0N C( 2) = 111834616E CC € 2) = 111834616E N0
C( 3) = 1142343887k 00 C¢ 3) = +14238887€ 010 Ce ) = 114235887 (0 Cg 3) = .14238887t 20
C( 4) = .15826172E 00 C( 4) = «15826172E 9 LGt a) = 1158261728 CO C( 4) = 115626172 30
C( 5) = 124112787 Q0 ¢ 5) = 124112737E 00 C{ 51 = , 29112737 040 C( 5) = 124112737€ 00
C( 6) = 127660788E 04 C( 6) = 1 2766AU788E 01 C{ 6) = (27660788 00 C( 6) = 1 27560748E 00
1 0¢ 1) = 1 45002228E~02 1 0¢ 1) = +45002226E~02 1 Q¢ 1) s .4bb02226E =2 1 0f 1) = 145002226Em02
1 0¢ 2) = 122101597¢ 00 1 0¢2) =  ,22101597€ 06 3 Q¢ 2) 5  ,79542382E=01 30 2) = ,798423B2E=01
S 0C $) = 125789691E 00 49 Q¢ 3) = 1 $6248306E=01 4 Q¢ 32 = ) 36248806E-01 4 Q¢ 3) = 1 96248806E~01
4 Q( &) = 1 96705820E-014 4 Q( 4) = ,96715820ER01 4 Q( 4) = 96709820E=01 4 Q¢ 4) = ,96705820Ee1 :
S 00 5) = 1 46984€49E 00 4 Q¢ 5) = 113264783E 0N 4 Q(C 5) = 115264783 0O 4 Q¢ 5) = 113264783 (0 ’
1 G¢ 6) = 121878¢€14E 00 1 Q¢ 6) = 221878614E 0D 3 Q¢ &) = 1 99204056E 0D 5 Q¢ 6) = 109695741E~01
__NEw NI 3 4 NEW N] = 3 NEW NI = 4 NEW N] = )
[ \9964y870e 00 P e y651094394E 00 P = ,E4936510E 00 - Pz 192496857E (0
 SuM_ NIGUNI = ,54000000E 02 SuM NJeUN] = ,61000000E 0° SUM NIeyUN] & ,790000QCE 02 Sy4 NJ#UN] a ,90000000E 02
Sym NI«yN] & 310000008 02 "SUM NTeyMl ® ", 35000000E 02 SUM NI#yNIl ® ,44000000E 02 SyUM NJ#yN] 3 ,50000000E 02
SyM NJeWNI €, 3900000NE 02 SymM NleWNI ® ,47000000€ 02 SuM NI®WN] € ,62000000E 02 SUM NlewN] = ,71000000E 02
PI¢ 1) = 1 ¥9945000E 00 PI(C 1) = 179945000E 90 PI¢ 1) = 199943000 6O PI¢c 1) = 199943000€ 60
PI¢( 2) = ,94064000E 00 PIC 2) = 198984749E 00 PI( 2) & 198984749E 00 P1( 2) % 198984749E 00
PI( 3) = 1 76142034E 00 PI( 3) a + 99398737 00 PI( &) = 199398737E Q0 PlC 3) = 199398737 09
___Plc 9) = ,98N78215E 00 _PIt 4) ' ,98078215E 00U Pi¢ 4) = 1 98078215E GO Pl¢ 4) = 1 98078245€ 09
PI( ) ¢ 1I56BE66B4E 00 PI( B) = 195686684E 00 PI( 5) & 1956B6684E 00 PI( 5) = 198747225E 00
PI¢ o) = 1 70548(00E 00 ___Pre 6) = 1»70548000E OO0 PI¢{ &) = 1¥2038349€E 10 Pl¢ 6) @ 1¥7124319€E 00
C( 1) = 16525B004E=01 C( 1) = 1 65258004E=01 c( 1) = 165258004E=01 C( 1} = 103258004E=01
C{ 2) = 131834616E 0C C¢ 2) = +11834616E 00 C( 2) = 111834616E Q0 C( 2) = 2118346416E 50
C( 3) = 124238887E 00 C( 3) = 1149238887E 00 I C( ) = 1 14238887E 00 C( 3) = 119238887E 00
Bt 4) = ,15826172€ 00 C¢ 4) = 15826172 00 ! C¢ 4) ¢ 115826172E 00 C( 4) = 119826172E 00
Ct 5) = 129112787€ QC, C( 5) = 1151127375 00 C( 5 = .24112737E (13 Ct 5) s 184112737E 00
_L( 6) = ,2766U788E 00 C( 6) =  ,276K078BE 0O B C( 6) s 127660788 (0 C( 6) = 127660788E Q0
1 46 1) = 1A3002226E-02 i 8¢1r = 145002226E=02 1 ac 1) = 145002226EwC2 | 1 Q¢ 1) = 145002226E%02
1_G6¢ 2) = __,22101597E 00 3 Q2= (79842382Em01 3 _ Q¢ 2) e 1 79842382EmD1 . 3 08¢ 2) s 1 79842382Ew01
3 0¢85 = 1 287689691E OC ‘ ¢ Q( 3) = 1 36248B06E~01 4 Qr 37 ¢ \S6248806E=C1 4 Q¢ 3) = 1 90248B06ED]
4 _0( 4) = 196705820001 4 Q¢ 4) a 967058B20EmD] 4 Q¢ 41 = 196709620E04 4 Q¢ 4) = 196705820E=01
4 Q( 9) = 113264783E 00 4 0¢ 5) = 113264783E 00 4 G( 5) = '13264733E CO 5 Q(5) = 197874912001
1_08¢ 6) = 4421878¢14E i 1 O¢ 8) = 121878614E 0O 4 _Q( 6) = ,19977467E 04 5 B¢ 6) = 189695711E=01
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TABLE B.2.2. (Continued)

NEW N1 = 5  NEW Nl = 6 e ____NEW Nl = 5 NE4 N1 & 6
P = 193912505k 00 P 96627477E 00 P x 198013235E 00 P = FB997574E 00
_Sym NI#UNI s ,940000G0E 02 SUv NI#UN] & +10200000E 03 SyM NIeUN] ® ,31000900E 03 SUv_NIsUNI = ,12000000E G3
SuM NJeyNl 3 ,52000000E 02 SyM NT®UN] & ,56900000E 02 SyU4 NT#YNI = ,61000J00E 92 SU4 NJSYND 3 ,66000000E G2
Sym NI#WN] & ,7300000CE 02 SuM NIe#WNI s ,81000000E 02 SumM NIsUN] 3 ,87000300E 02 SUM NI#WN] s, 9490QC0UE 02
PI( 1) 3 ,99943000E 00 PI¢ 1) 3 999430008 00 PI( 1) 3 ,99943000& 00 PI¢ 1) & ,79943900€ 0O
PI( 2) & ,98984749E 00 _ Pl 2) a .999203@uA 20 PI( 2) 3 ,99920060% 09 PI¢ 2) = ,99920060F 09
PI( 3) & ,99398737E 00 PIC &) 3 ,99398737F 00 PI( 3) £ 999117775 00 PI( &) & ,79911777€ 00
PI( 4) = ,99579285E 00 PI( 4) 3 ,99579285¢ 00 Pl¢ 4) =  ,99579285€ 00 PIC 4) = .99911284F 00
PIC 5) s ,98747225E 09 PIt 5) &  98747225F N0 PIC 2) = .99649052r G0 PI( ) =  ,99649052E CO
P1{ 6) s  ,97324319E DO P1( 6) 3  ,98996718F 00 PI( 6) 8 ,98996718% 08 PI( 5) & ,99638469E €U
C( 1) = ,65258004E=01 C( 1) = ,63258004E-01 Ct 10 = ,63258004Ex01 C{ 1) = ,63253004E=01
Ce 2) = ,11834616E 00 C¢ 2) =  ,11834616E 00 Gt 2) = ,11834616E 00 G 2) = ,11834616E 0C
C( 3 = ,14238887E 00 C( $) = ,14238887E 09 C( 3) = ,1423BBa7E 0C €t 3) = ,14233887€ 0C
Cc 4) = ,15826172E 00 C¢ 41 = ,1®826172E 00 C¢t 4) = ,15826172E 00 C¢ 4) = ,12826172€ 00
C( 5) = 1@9112737€ 00 C( 5) = (24112737€ 00 C{ 5) = 24112737 00 C( %) = ,24112737E 0C
C¢ 6) = 127660788E 00 C( &) = .27660785E 0o C¢ 6) 3 +27660788E 00 C( 6) = 27660738 00 -
1 0¢ 1) = ,45002226E«(2 1 QC 1] =  ,45002226E~02 1 Q¢ 1) = ,45032226E~02 1 Q( 1) 3 ,45002226E~02
3 0G( 2) = ,79842382E-0} "4 Q¢ 2 = B260L064En02 4 Q¢ 2) = ,62601064E-02 4 9 2) = ,6260L064E-02
4 G( 31 3 ,36245505&—01 4 0( &) = ,aeg4eaooe 01 5 Q( 3) = ,53250058E+02 5 G( 3) =  ,53260053E=02
S Q¢ 4) 3 ,2I066491E-01 5 0( 4) =  ,21066491E=01 5 Q¢ 4) = . ,21056491E-01 6 O¢ 41 ,44581423E-02
5 0 5) = 137874912601 5 Qf %) = 1 97674912E~01 & Q¢ 5) = - ,10616943E=01 6 Q¢ 5} = ¢10616943E=-01
5 G( 6) s  ,69695711E~01 6 Q( 6) =  ,24166254En01 6 G( 6) =  ,24156251E=01 7_Q¢ 6) = ,82485468E=(2
|
NEW NI = 4 NEW NI = 6 NEW N1 = 7 NEy NI = 7
P& (94799888E 00 P a ,97509Y44E 00 F s ,98668412E 00 Pz ,99250811E 00
SyM N1#yUN] 8 ,96000000E 02 SyM NI¢UN] = ,10700900E U3 Sy Njeynw] s ,31608000f 0Z SuM NJ#UN] = ,12500000E 03
SYM NJ#VN] = ,53000000E 02, Sym NJeyNl & ,59000300E 02 Syu NlevyN] = ,64000300E 02 SUM NIsVN] q 169000000& 02
SUM NJwwN] ® ,76000000E 02 SyM NI#WN] ® ,85000000F 02 SyM Nl=WNI & ,92000000E 02 SyUM NIsWN] 198000000E 02
PI( 1) = |99943000€E 00 ! PI¢ 1) & ,99943000E 00 PIC 1) @ (999430008 00 PI¢ 1) = .999430005 00
Pl¢ 2) = ,99920060E 00 Pl{ 2) s ,99920060% 00 P1¢ 2) = ,99920060& 90 PI¢ 2) = ,99920060€ 00
Pl¢ §) & 99398737 00 . PI( 8) &  ,993987372 00 FI( 3) = ,99911777€ 39 PIC¢ 3) = ,99911777E 0¢
Pi¢ 4) = ,99579285E 00 _PIC 4) 3 99479285 00 PI¢ 4) = .9957928%E 00 Pi¢( 4) = ,99911284E 00
PI( 5) & ,98747225E 00 . TTTPIC B) =, 996490525 00 PI'C 5) = ,99649052F 00 PI( 8) = ,79904157E 00
PI¢ 6) &  ,9¥7124319E 00 Pl¢ 6) a  ,98996718€ 00 PIt 6) 3 99658469E 00 PI¢ 6) =  ,99558469E 09
C(C 1) =  ,63258004E=01 C( 1) =  ,63258004E=C1 C( 37 = ,6325B004E~01 C( 17 = ,63258004Ew01
Gt 2y = ,11834616E 00 ¢ 2) = ,11834646E 00 C( 2) = ,11834616E 00 _CG¢ 2) = ,11834616E 00
CC 3 s 1142388687E 00 C({ 3) = 114238887E 00 C( 9 = 114238887E 0C C( 31 » 14238887 00
C( 4) = ,158206572E 09 C( 4) = 15826172 00 C( 4§ s ,95826172E 08 Ct &) = ,15826172E 00
C{ 37 & (QA11Z2737E Q0 C( 51 = ,24112737€ 00 CTC5) & [ 24112737E 00 C{ 5) = ,2%112737€ 00
G( 6) = ,27680788E 00 C¢ 6) = ,27660788E (O C¢ 6) = ,2764D78BE 90 C{ 6) =  ,27660788BE 00
1 0= 145002226E~02 10t ) = ,9?002226E-02 FR T 145002226E~02 1 Q¢ 1) » ,4:002226&.02
4 0(.2) »  ,02601064Er02 4 Q¢ 2) s  ,62601064E02 4 Q( 2) = ,62601064E0D2 4 Q¢ 2) 3 ,52601064E«02
4 O( 31 %  ,36248806Er01 : 4 GC( 3) 8  ,3624BB06E~01 S Q( 3) = ,53260058Ew02 5 G( 3) 3 3326005BE~02
5 0¢ 4) 5 ,21066491E=01 | 5 0( 4) % ,25066491E~01 5 G 4) 3 ,21066491E901 6 Q¢ 4) =  44581423Ew02
5 G( 51 & 37B74912En04L - 6 G( 5) 8  ,10616943E01 6 a( 5) =  ,10616943E=01 7 Q( 51 3 ,29123980Ew02
S G( 6) 3 ,69695711EmD1 6 Q¢ 6) ®  ,28166251En01 7 Q¢ 6) =  ,82485468Ew02 7 Q( 6) =  ,B248%5468E=02
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TARLE B.2.2.

(Continued)

MEW NI a 8 NEW N] = 6 NEW N[ = 7 NEW NI = 9
P = ,99477263E 00 Pz ,99620457E OF P = ,99753511E Q0 P s ,999000%2E 00
Sym NI#UN] 3 ,13100000£ 63 Sys NJ#yM] ®  ,136009u0F 03 SuM NIeUN] 3 ,44200000& 03 Sym Niaytl ® ,315300000E Q3
SuUM WTeVYN] = ,72000000€E 02 Sy NlayN[ & ,75000000F 02 SYM NI#YN] & ,79000000E @2 SUM Nle#yNl s 85000000 02
_ SyM NIeWdl &£ ,10300300s 03 Syv NJeWH] ® ,10800000E 03 SUM_NIeWH] = 131200000k 03 SUm NIsWMN] € | 12100000E 03
PIC 1) = 1999430005 00 PIC I = ,99943000E OO PI( 1) = 199999903E 00 Plt 1) = 1 99999903E NG
PI( 2) = 1 ¥99200605 0D Pl( 2) = 1 99994087E ot Pl1¢ 2) = 1 79994087E DO PI( 2) = 199994087E 00
PI({ 3) = 199911777 0D PI( 3) = 1 99557546F 00 PI¢t 3) = 1 79987546E 00 PI¢ 3) = 1 99987546E 00
_PI( 4) = ,99911284E 00 P1t 4) =  ,99911284% 00 PI( 4) = ,99981777E 0b PI¢ 4) = ,99981777E 00
PI( 5) = 1999041575 0l FIC 5) = yY99U4157F o0 PI( 5) = 1 99904157E 0O PI( 5) 8 99974316E 00
Pl( &) =  (Y9BHSEHZE 03 PI( 6) & 199855852E 00 PI( 61 = 1 99BB5852E 00 PI( &) = 199962387E 00
Ct 1 = ,63251004E=01 C( 1) = ,63258004E~01 G 1) = 632%5004E~01 C( 1) = 163258004E«01.
C( 2) = 111834616E 00 C( 2y = ,11334616E 00 C¢ 2) = ,11836616E 00 € 2) = 111834616E (O
C¢ 3) = 114236887k 00 C( 3) = +142365687E 00 Tt 3) = , 13238887 00 C( 3) = 114238887 00
_Ct &) = 115820172E 00 C( 4) = +15826172¢ 00 Gt 4) = 119826172 00 C¢ 4) = 112826172 GO
C( 5 = ,€4112737E 30 C(D5) s 124112737 00 T = ,29112737E 00 Cr 57 = v 24112737 00
_.CL 6) = 4€7660788E 00 C( 6) =  ,2/66078BE 0O G( 6) = ,276EU7BBE DO C¢ 6) = ,2766078BE 00
1 Q¢ 1) = 195002226E=02 17060 1) = ,45002226E-02 3 G D = +19390781E~04 I (1= 115390781ER(4
4 Q( 2) s ,62601064E=02 5 Q¢ 2) = 196415602243 5 Q¢ 2) = 146415602E=03 5 Q¢ 2) 8 ,464156(02E«03
5 0( 3) = 58260058E=02 6 Q¢ &7 = 1 /D45 488BE=NJ 6 G¢ 8 = 1 79454888E~03 6 Q¢ 3) = ,75a54888Ew03
6_G( 4) = 14458142842 6 0C 4) = ,44581423E~02 7 Q¢ 4) = 191964546E~03 7 U 4) 3 191964546F=(3
7 Q¢ 5) = 129123980k~02 7 Q¢ 5) = 12912398NE~02 7 Q( 9 = 129123980E=02 8 4( 5) = , JTB4066N5Em0S
8 0t 6) = 227700934E%02 8. 0¢.6) = 1€7700934E=02 8 Q¢ 6) n 12/700934E02 9 Q¢ 6) = 191712618Ew03
NEW N] = NEw N ® 3 NEw NI = 8 NEW NI = 8
P = .99550961h cn Pz 19Y685180E 00 P = ,99823564E 00 ) y¥9914592E 00
_Sym NleUN] = ,13300000& 03 SUM NleyM] & 13800900k 03 SyM MI#UN] ® ,14700000E 03 SUM NIa#YNl ® ,35700000& 03
SuM NIeyMNI & 730000008 02 Sym NJeyN] ! +77000000k 02 SUM NI#yMN] = ,82000000E 02 SUmM NI#YNl = ,B7000000E 02
Sym NjewM)] ®  ,10600000F 03 Nowh 1 SUM NTwWN] = ,11600000E 03 SUM Nlwyh] & ,12300000E 03
PI( 1) = , 999430005 00 PI( 1) = ,999999035 00 PI( 1) = ,99999903E 0D PI¢ 1) 8 ,99999903E OU
PI( 2) = ,99994087F 00 P1¢ 2) s ,99994087F 0 PI¢ 2) = 199994087E 00 Pl 2) = 1Y9994087€ 09
Plc 3 = 1999117778 00 PIt $) 8 ,99987546E 00 PIC &) & 1 99987546E 00 PI( 8) = ,999B/546E 00
__Plt 4) = 199911284 00 Pi( 4) s 199911284E 00 Plc 4) = 199981777E 00 PI¢ 4) = ,99996329E 00
PI( ) &  ,99904157E 00 Pl¢ 5) & ,99904157E 00 PlC 5) = 199974316E 00 PI( 9) = 1Y9974316E Q0
PI( 6) = 499885852€ 00 PI({ 6) s ,99885852E 00 P1( 6) = 199885852E 00 PI¢ 6) & 99962387 01
C( 1) = ,63258004E=01 C( 1) = ,63258004E~01 C( 1) = 1 63258004E~01 Ct 12 = ,63258004E~01
Ct 2) = ,11834616E 00 Ge2) = ,11834616E 00 C( 2) = 111834646E 0O C(2) = ,31834616E 00
Gt &) = ,3423568887E 90 Ct 3) = 11923B88B7E U0 €t 3) = ,142388B87E 00 €t $) = ,14238887 00
_Eear s ,35826172€ 10 C{ 4) = 115826172E 0N €t ¢4) = +29826172E 00 C( 4) = 1420826172E 00
C( 51 &= ,24112737E 0O C( 5) =  ,24L12737E 00 C( 5) = 124142737E 00 C( %) & ,24112737E 00
C( 6) 3 ,27660788E DO Ct &) = .z7een7eee oo Ct 6) & .¢7oau7aaE 00 C( 6) = 227660788 00
1 Q1) = 14500C226E=02 3 Q1) s v1D39U7BLE=CQ4 I Q¢ 1) oe .;?3907515-04 3 Q¢ 1) v ,15390781Ew04
5 Q( 2) = 196415602E=03 5 Q( 2) ® ,46415802Ew03 Q¢ 2) = %6 5 Q¢ 2) = 1#6415602E03
5 Q( §) = H3260N05BE~02 6 G( 3) s 175454888E~03 6 Q( 3) = .754546535-03 6 Q( 3) = 175454888E.03
6_ 0 4) = 1949581423E=02 6 Q( 4) = ,44581423kw02 7 _Q( 4) = 1¥1964546Em03 6 Q¢ 4) =  ,38594103E=03
7 QU5 = 1€9123980E=02 7 Q( 5) = ,29123980E~02 8 G( 5) = ,7B406605E=03 8 Q¢ 5) ® ,78406805Ee03
B8 Q( 6) = 127700934E02 8 Q( 6) = 127700934E=D2 8 Q¢ 6) = 12770U934E=02 9 Q( 6) = 1 $1712618Ee(3

97¢



TABLE B.2.2.

(Concluded)

NEW NI = 10

P = 1 99939939E 00

SyM NJeUN] & ,16300000& 03
Sym NIeyNl & 900000008 (2
SUM NI#WNI ® ,12800000F 03
PI( 1) = ) 99999903E 09
P1( 2) = 1 99994087E 0O
PI( 3) s 1 Y9987546E 01
PI{ 4) s ' P9996329E DY
P1( >) = 1 99974316E 00
PI( 6) = 1 99987746E 00

C( 21 = ,63258004E=01

C( 2) = 111834616E (0

C( 8 = 114238887 00

C( 4) = 1 42826172E G0

C( 5) = , 24112737 00

C( 6) & 1 27560788E 00

3 6¢ 1) = y15390781E=04

5 0Q( 2) = ,86419602E=(3

6 Qt 8) = 1 7545488BEw(3

8 Q( 4) = ,18594104Em(3

8 B( %) = ,78406505E=C3

10 Q( 6) = ,60004863E-03
NEW NI = 9
P = 99958833k 00
SuM NI#UN] = 16800000 032
SumM NJeyNI & ,93G00000E 02
SUM NJIeWN] = ,13200000E 03

PIC 1) = 1 99999905E 00
PI( 2) = 1 97994087 00
PI¢ 3) = 999875456E 00
- Pl( 4) = 199996329E 03
PIL 2) = 1999938217E 00
PI( &) = 4¥9937746E 0

C( 1) = 1 63253004E=01

C( 2) = :11834616E 00

Ce 3) = ,14233887€ 00

C( 4) = 1 15326172E 090

C( 5) =  ,294112737E v0

C( 6) = , 2766U788E 00

3 Q1) = 112390781E»04
5 Q¢ 2) = 1 86415602E=03
6 Q( 3) = 1 70454888E=03
8 Q¢ 4) = 1 18593101Em03
9 Q¢ 5) = ,2U789207E=03
10 Q( 6) = 2 SU00N4833Ewl

CRONATRAINT LIMIT REACHED

LTg



a (AP_) (A
i\ Ao/ MAX Ao v MAX

SYSTEM INPUTS

COMPUTE Qi

COMPUTE

P=Py Py P

@
B @) - (-1 R
G =[1—{(1-Ri)ni'1 [1+n-1) Ri]}]
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InNPUT DATA

TABLE B.3.1

OPTIMIZATION OF SYSTEM WITH DECISION ELEMENTS
AND Cr(constraint) =4,78

N oz 5 . B NEW NI = 1 1 QC 1) = .38038842€~02
ICGN - 0 P o= .36790\519E 00 1 Q¢ 2) = 20131736 00
PLIMIT VALUYE = 99950000 o SUM NT#UNT = 21000000F Q2 1 08¢ 3) = «29301754E 00
A =z .33333000 B = 33333000 C = 33333000 SuM NlevNl = ,12000000E 02 4—0r 41 = 89227134601
NT = 50000.00008R00 | = 5 1 8¢ 5) = +24651583E 00
ue 1) = 1.00000000 PI1C 1) = +99943000E 00
ue 23 = 2.00000008 e P1¢( 2) = 94064000F 00
utr 3) = 3,00000000 PI¢ 3) = +88185000E 00
U( 4y =- 4,00000000 — [ Pl 4y = B2306000E 00 DELTA C( 6) = 57637576 00
U 5) = 5,00000000 PLC 5) = ,76427000E 00 CR IATAL = 1,33968345
U /) = 6.00000000 P1¢ 6) = 105480006 00 1 0( 1) = L38038842E~02
Vi 1) = 1.00000000 DEL 1A CC 1) = .14967601E 00 1 0(2) % 20131734F QN
Vi 2) = 1.00000000 - - = Q¢ 3) = . ,29301754E 00
v( 3) = 2.00000000 DEtTA C¢ 3) = .30793773€ 00 § Gt 4).= zoanixnn: ag
Ve 4) = 2.00000000 e ——— DELTA C( 4) = .33968345E 00 1 Q¢ %) = .24651583E 00
Vi 5) = 3.00000000 = Q 1 Q¢ &) = 20999485€ 00
Ve 6) = 3.00000080 DELTA €CC 6) = ,57637576E 00
W( 1) = 1.00000000 Co TATAL = 1.00000000
e 2) = 3,00000000 e 1 Q1) = .38038842E-02
W( 3) = 2,00000000 1 9¢ 2) = 201317365 00
W( 4) = 2,00000000 e PR 1 Q¢ 3) & .29301754E 00
Wi 5) = 4,00000000 1 0 4) 3 33656180F 00 NEW N1 = 4
W &) 3 5,00000000 1 Q¢ 5) = ,24651583E 00 Pz ,43818460E 00
RRAR( 1) = 00057000 1 9¢ 6) % 20999485F 00 N[w =
RRAR( 2) = 05936000 S - SUM NlaVvNl = L18000000E 02
RBAR( 3) = .11815000 SUM NiewWwN] = .23000000E 02
RBAR( 4) = 17694000 R _ - NEW NI = 3 PI( 1) = .99943000E 00
RBAR( 5) = .23573000 P = 40989117E 0O P1¢ 2) = .940640080F 00
RBARC 6) = 29452000 S1IM N1#UNI = ,29000000E 02 PIC 3) = 88185000 00
Cy = 99.00000000 Cv = 57.00000000 CW = 83,00000000 SuUM _NI#VNT = 16p00000E 02 PI¢ 4) = .98029108E 00
- SuM Nl#WN] = ,21000000E 02 PI( 5) = +76427000E 00
Pre 1) = 99943900FE 00 Pit 6) = .7(0548000E 00
S —— ————— P 2) = +94064000E 00 DELIA CC 1) = «14967601E 00
N] = 1 PI( 8) = 88185000F 00 DELTA €L 2) = ~25985231F 00
CANSTRAINT R = 4,78000000 PIL 4) = .91699401E 00 DELTA €( 3) = 30793773 00
SUM NTeUNL = ,21000000E 02 Pi( %) = 76427000 00 DELIA C( 4) = . 4
. = 02 e PIC 6) = .70548000E 00 DELTA C( 5) = .50541475€ 00
SUM NI#WNl = ,17000000E 02 DELIA C( 1) = £14967601F 00 DELTA C( &) = 57637576F 00
8 = DELTA PI'/DELTA Clrepl? - DELTA C( 2) = 25985231 09 CR TATAL = 1.51396517
DELTA C( 3) = 3In793773¢ 00
DELTA C( 4) = .17428172E 00
DEL TA C( 5y = 50541475€ 00
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TABLE B.3.1. (Continued)

NEW NI = 3 NEW NI = 4 4 QC 3) = .32015615E=~01 { =
P = .47763818E 0O _.._P_= 59770409E 00 . 4G 4) = 89277134E=04 - DELTA CC 6) = «28656310E 00
SUM NiasinN] = 39000000F 02 SUM NIsUN! = ,54000000E 02 4 QC 5) = .12622702€ 00 R TATAL = 3,811877252
SUM NIsVNI = ,22000000E 02 = 10t 6) s ,20090488F 00 1 QcC 1) = .38038842E~02
SyM NIsWN] = 272000000E 02 SUM NI=wWNI 2 ,39000000E 02 1_0¢2) = 20131734 00
PIC 1) = +99943000E 00 = - - 4 0 3) = +32015615E~01
Pye 2y = 940640806 00 PI({ 2) =  ,94064000E 00 4 GC4) = ,89277134E-04
PI¢ 3) = +96125064E 00 PI( 3) = 96125064 00 A4 Q8 = 12622702 00
PI{ 4) = 9580291 08E 00 PI( 4) = .98029108E 00 4 Q¢ 6) = .19179390E 00
PI( 5) = .76427000E 00 PI( 5y = 9543R8775F_ 00 NEW NI = 3
P1{ 6} = 20548000E 00 PIC 6) = .70548000E 00 P = .69239803E 00
DELTA C( 1) = +14967601E 00 DELTA C{ 1) = .14967601F 00 — =
DELTA CC 2) =  .25985231E 00 SUM NlevNl = ,39000000E 02
DELTA C( 3) = »15840887E 00 E 3 3 -
= DELTA C( 4) = «16821694E 00 PI¢ 1) = +99943000E 00 NEW N] = 3
DELTA C( 5) = .50541475E 00 z P1( 2) = 94064000E 00 P = 84751568E 00
DELTA C{ 6} = 574637876E (¢ DELTA C( 6) = .57637576E 00 PIC 3) = 99348969 00 SUM NIsUNI = ,79000000E 02
CR TBTAL = 1.821902%0 CR _TZTAL = 2 58444502 PI( &) = 980291 08E 00 SUM N]#yN! = 44000000 02
40 1) = 38038B42Ee02 1 Q( 1) = .38038842E=02 PI( 5) = .,95638775E 00 SUM NIeWNI = ,62000000E 02
1 Q¢ 2) = .20131736E 00 1_0¢2) = 20131734E_00 P1¢ 1) = L20043000E 00
I Q¢ 3) = 2117220%7F 080 3 QC 3y = .21172207€ 00 DELTA CC 1) = «14967601E 00 PI( 2) = +98967277E 00
4 Q( 4) = +89277134E~01 - 3 = PI{ 33 = 99348989F 00
1 Q(S)s® 24651583E 00 4 0C 5) = .12622702E 00 DELIA C¢ 3) = +15234409E 00 PIC 4) = .98029108E 00
1 Q¢ 6) = ,20999485E 00 1 0 8) = 20999485E 00 = PI¢ 5) 3 95638775E 94
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OPTIMIZATION OF SYSTEM WITH DECISION ELEMENTS
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