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CHAPTER I 

INTRODUCTION 

1. 1 PREVIOUS WORK IN THE FIELD 

The general subject of reliability may be subdivided into many 

categories such as reliability prediction and analysis, reliability 

measurement, redundancy, etc. Balaban ( 1) presents one method 

of classification and a selected bibliography on reliability in general. 

Although there is no unique or universally accepted classification of 

reliability, redundancy is commonly considered to be one of the subclasses 

of reliability theory and practice and is of primary concern in this 

investigation. 

Since initially proposed in 1956 by J. von Neuman (20), 

the area of "synthesis of reliable organisms from unreliable 

components" has been given considerable attention. Redundancy, as 

defined by Webster, is "quality, instance, or state of being redundant, " 

and redundant is defined as "exceeding what is natural and necessary" 

or as "being superfluous. " This connotation is rapidly becoming 

outdated, since redundancy may be an absolute requirement and the 

only means by which an extremely high reliability can be achieved. 
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Short ( 18) presents an excellent bibliography in the redundancy field, 

listing 347 sources which are indicative of the rather concentrated effort 

in this field since 1956. 

Historically, reliability improvement has been attacked through 

simplicity in concept, conservative design, utilization of highly reliable 

component parts, and extensive test programs and procedures. Within 

the past two decades, tremendous strides have been taken in the 

improvement of component part reliability. For example, in electronic 

circuitry, the transistor demonstrated a marked reliability improvement 

in comparison to the electron tube, and, in more recent years, 

microminiaturization and integrated circuits have contributed 

significantly to the improvement of electronic circuit reliability. 

Although large-scale integrated circuits are presently being used in a 

limited sense, they will be massively employed in future systems, which 

will result in another significant improvement. However, even with these 

advances in basic technology, overall system reliability, in many cases, 

will not improve sufficiently to meet tomorrow's critical demands 

because ( 1) systems are becoming more sophisticated and are, 

therefore, more complex, and (2) systems are being required to 

operate over extended periods of time. Therefore, other techniques 

must be employed, and redundancy provides a means of increasing 

reliability beyond the point which can be obtained through basic technology 

alone. 
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Several redundant forms, or configurations, have been discussed 

in the literature. Typical examples are duplexing, quadruplexing, one­

out-of-n parallel redundancy, and majority logic. The investigation 

herein is primarily concerned with the development of the unique two­

out-of-n configuration which is derived basically from the concept of 

majority logic. Although the term "majority logic" will not be employed 

extensively beyond Chapter II because it is no longer descriptive of the 

configuration under study, the literature on majority logic provides a 

firm foundation on which this investigation is based. Rozenberg and 

Ergott (14) have treated two-out-of-three majority logic and have 

shown that the mean time to failure of output voting is greater than that 

of input voting. Teoste ( 19) has shown that the mean time between 

failures of digital electronic equipment can be increased by several 

orders of magnitude by the use of von Neumann's multiplexing 

redundancy. However, the mean time between failures is not always a 

meaningful parameter to employ when comparing redundant and non­

redundant configurations or in comparing various forms of redundant 

configurations. The best placement of voters in a triplicated logic 

network is treated by Gurzi ( 8), who shows that the utilization of a 

voter with each module employed is to be preferred to a single voter 

per redundant module. In his work, however, the logic necessary to 

perform the voting function is not taken into consideration. Lyons and 

V anderkulk ( 11) discuss the use of the triple modular redundancy 
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technique and point out the possibility that, in addition to voting or fault 

masking, failure detection and isolation are possible; but they do not 

consider the logic necessary to accomplish this function. Failure 

detection and isolation in a triple modular configuration may be very 

important in reducing maintenance problems and may be employed solely 

for that purpose rather than just for increasing system reliability. 

Triple modular redundancy is also treated by Brown, Tierney, and 

Wasserman (5) who also consider the logical design of the voter. 

The literature indicates that very little work has been done in majority 

logic of degrees greater than three. 

In addition to the study and analysis of a two-out-of-n configuration, 

a major effort in this investigation will be made to optimize the 

redundant system in the presence of constraints. Many excellent papers 

concerning system optimization are available. Bellman and Dreyfus (4) 

treat the generalized approach of dynamic programming and show how 

it can be applied to optimizing redundant systems. Least-cost allocations 

of reliability investment are considered by Kettelle (10) who utilizes the 

dynamic programming approach and another method which he says 

yields an explicit solution to the investment allocation problem if the 

unreliability of each stage decreases exponentially and continuously as 

its cost increases. However, the validity of the assumptions in the 

second approach is questionable. Bellman, Dreyfus, and Kettelle 

assume a one-out-of-n configuration which is not physically realizable. 
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Gordon (7) treats optimum component redundancy for maximum system 

reliability in series-parallel configurations and considers optimization 

in the presence of constraints such as cost, weight, and power. But 

ideal models have been assumed, and the effect and reliability of the 

decision element are neglected as usual. Barlow and Hunter (2) also 

treat optimization in series-parallel configurations, utilizing the 

Lagrange multiplier technique. Herron ( 9) utilizes the Lagrange 

multiplier approach in optimizing tradeoffs of reliability versus weight. 

In any reliability optimization process, figures of merit are very 

important; i.e. , system optimization must take place with respect to 

a particular system parameter. For example, it may be desired to 

obtain the maximum gain in system reliability with respect to system 

cost. Nathan ( 13) discusses a generalized figure of merit which is 

applicable to a wide variety of applications. He is primarily concerned 

with optimizing system performance, whatever it may be, with respect 

to system cost. In the investigation herein, criteria functions, which 

serve the same purpose as the figures of merit, will be developed and 

discussed. 

Perhaps, particular mention should be made of Sasaki's (15, 16) 

work in the area of optimizing system reliability in the presence of 

constraints. Sasaki proposes a decision algorithm to optimize a 

system utilizing parallel redundancy where only one module must be 

functional. In particular, he proposes adding a module, one at a time, 

5 
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to the redundant stage which has the greatest failure probability. This 

process is continued until either the constraint condition has been 

reached or until the desired reliability goal is achieved. However, 

he does not prove that the decision algorithm will result in the most 

economical system. It is shown in the investigation herein that Sasaki 's 

algorithm is a special case of the more generalized criterion function 

(AP) , where AP is the gain in system reliability resulting from 
max 

adding a module to a particular stage. Sasaki's algorithm is, therefore, 

not applicable to all redundancy configurations. It is important to note 

that optimization will depend directly on the criterion function utilized, 

In this investigation, the criterion function ( ~~) (i.e. , ratio of 
max 

gain in system reliability to increase in system complexity) is 

recommended and is compared to the criterion function (AP) • 
max 

The vast amount of literature available on the subject of 

redundancy is generally deficient in the following areas: ( 1) adequate 

consideration has not been given to the decision element either in the 

reliability or the optimization model, and (2) a one-out-of-n 

configuration is often assumed which is not physically reliable due 

to the lack of a generalized decision element. The intent of the 

investigation herein is to eliminate, insofar as possible, these 

deficiencies. 



1. 2 STATEMENT OF THE PROBLEM 

Numerous redundancy configurations have been proposed which, 

under certain conditions, may be used to increase system reliability. 

Majority logic, duplexing, quadruplexing, and, in general, requiring 

only one-element-out-of-n parallel elements to be functional are 

examples of configurations which have been considered and proposed. 

Duplex and quadruplex configurations can only be used in very special 

applications. Presently, there is no known design which is suitable for 

a decision element in generalized parallel redundancy where only one 

unit out of n is required to be functional. Therefore, this type of 

configuration appears only in mathematical models as a figment of 

imagination and is not physically realizable. To date, majority 

logic probably has been the most widely used approach and still offers 

considerable promise in digital applications. It can also be adapted to 

analog systems; however, the feasibility of the adaptation has not 

been firmly established. 

The basic problem in this investigation is to develop a generalized 

redundancy configuration which will yield ultrareliability and which is 

physically realizable. A necessary and important aspect of this 

problem is the logic design of a decision element which provides 

fault masking, failure detection, isolation, and module switching. After 

this problem has been addressed, system design optimization utilizing 

the proposed technique will be studied. System design optimization 
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entails methods and procedures for segmenting or subdividing a non­

redundant system. Also included in the optimization process is the 

method in which these segments or modules are made redundant; i.e., 

the degree of redundancy applied to each module to maximize reliability 

within given constraints. 

The concept of a generalized parallel configuration where two, as 

opposed to only one, of the parallel units are required to be functional 

for correct operation is proposed herein as a method of meeting the 

objectives of the basic problem and is derived from the majority logic 

technique. However, since the term "majority logic" is no longer 

descriptive of the system under study, the term "two-out-of-n" will 

be utilized. The configuration is general in that theoretically there 

are no restrictions on n except n ~ 3 . Logic can be designed for a 

particular n and then be projected and derived as a function of n . 

Because the approach to generalized redundancy is derived 

from majority logic, a thorough discussion of majority logic is given 

in Chapter II. A decision element which can be used with that 

configuration is developed and, although only voting or fault masking is 

required, failure detection, isolation, and module switching are covered 

for two reasons: ( 1) they are basic to the development in Chapter III 

and (2) when they are incorporated, the potential of majority logic 

is extended tremendously; i.e., when automatic failure detection and 
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isolation is used with manual replacement. Finally, in keeping with the 

overall approach, system design optimization utilizing majority logic is 

discussed. 

Chapter III treats the generalized two-out-of-n configuration 

where n is arbitrary but must be equal to or greater than three. 

It is shown that the redundant system has the greatest reliability for a 

given complexity when a nonredundant system is divided into modules of 

equal reliability and when equal degrees of redundancy are applied to 

each of these modules. This result is then utilized to show that a 

reliability as close to unity as desired can be obtained with the proposed 

approach. System complexity utilizing this method is also determined. 

Throughout this chapter, it has been assumed that a decision element 

is used with each module in the system. Although a single decision 

element per redundant stage is possible, multidecision elements 

eliminate the possibility of single point failures. 

In any practical application, it may not be possible to divide a 

nonredundant system into modules of equal reliability. If this is the 

case, it also follows that the degree of redundancy applied to each 

module need not necessarily be the same. A new problem is encountered 

if the degree of redundancy of each module is different; namely that of 

interconnecting the n. outputs from one redundant module to the n. 
l J 

inputs of the next module. This problem is discussed in Chapter IV 

and a method of solution is proposed. 
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Optimization of real systems is investigated in Chapter IV where 

two criteria functions and decision algorithms are developed and applied 

to a hypothetical system. Initially, for the sake of simplicity, 

consideration is not given to the incorporation of the decision element. 

Later, however, it is shown how the initial development can be modified 

to include this element, and the previous example is revisited for this 

purpose. 

The results and their usefulness, in any particular application, 

to a great extent depend upon the assumptions which have been made. 

These assumptions, in many respects, are analogous to axioms which are 

. 
basic and from which mathematical theory is developed; if the axioms, 

or assumptions, are not applicable to a particular situation, then the 

theory and results which follow are of little value. Some of the 

assumptions on which this investigation is based are as follows: 

1. Failures are independent. Redundancy techniques of any 

sort are of little value if this assumption is not applicable. 

2. The techniques developed are primary applicable to digital 

circuits where outputs are in discrete form. Thus the output is a logical 

"1" if the output voltage is high, and a logical "0" if the output voltage 

is low when positive logic is utilized, and vice versa when negative 

logic is used. Intermittent failures are possible and are taken into 

consideration. Although the technique investigated is primarily for 

digital application, theoretically, there is no reason why it cannot be 



adapted for continuous or analog systems when suitable analog-to-digital 

and digital-to-analog converters have been used. 

3. The techniques studied are applicable to both "powered-off" 

and "powered-on" standby units. Powered-off standby units will probably 

yield higher reliability; however, it is possible that a switching sequence 

would be required before they are actively employed in the system. 

The technique proposed allows sequencing of powered-off standby units 

with little adverse effect. 

4. Output voting, as opposed to input voting, is assumed. 

Thus, it is assumed that the signals entering the system are correct. 

This assumption places no limitations on the technique which is 

equally applicable to input voting. 

5. Component parts, circuits, and modules are assumed to 

obey the exponential failure law. Certain assumptions are implicit 

when this law is assumed and may be found in any good textbook on 

probability theory. 

6. The reliability of a simplex component, circuit, and 

module is assumed to be a function of the number of components under 

consideration and their average failure rate and operating time. Inter­

connections, such as solder on weld joints, are not included. However, 

the techniques proposed allow for the inclusion of the interconnections if 

so desired. Although discrete component parts have been assumed, 

11 



the number of gates employed on a chip, or the number of chips utilized 

in a system, could be readily used in the analysis in case of large-scale 

integrated circuit implementations. 

1. 3 METHOD OF SOLUTION AND RES UL TS 

The basic problem consists of developing a generalized approach 

to parallel redundancy which is physically realizable and which can be 

utilized to obtain ultrareliable systems; then this approach is used to 

determine how a system should be organized, either to yield maximum 

reliability within given constraint conditions or to meet a given 

reliability goal utilizing a minimum amount of resources. 

It is shown that ultrareliability can be achieved by utilizing a 

two-out-of-n redundancy configuration as opposed to the one-out-of-n 

configuration most frequently considered. Although the one-out-of-n 

configuration theoretically yields greater reliability than a two-out-of-n 

configuration, the generalized approach to the one-out-of-n arrangement 

is not physically realizable. (The ratio of failure probability of a two-out-

of-n to a one-out-of-n configuration is given by ~ - (n-1) , where n is 
R 

the number of parallel elements per module and R is the failure probability 

of a nonredundant module. This expression is always greater than 1 since 

R < 1.) Thus, the primary reason for selecting a two-out-of-n form of 

redundancy is that it is possible to design a decision element which can be 

used with this configuration in general, and this configuration yields the 

12 
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highest reliability possible next to the one-out-of-n configuration. The design 

and development of the decision element, which detects and isolates failures, 

masks errors, and switches to functional operational units as failures are 

detected, are a major aspect of this investigation. The feasibility of the 

design of the decision element proposed to satisfy the functional requirements 

has been established through the construction and operation of a demonstra­

tional breadboard. The breadboard, which accommodates up to 10 inputs, 

functions as expected and predicted. From the logical design of the decision 

element, it is possible to project the design complexity and thus the effect 

upon system reliability for an arbitrary number of inputs. It is also shown 

how a nonredundant system should be divided into modules to obtain maximum 

system reliability when redundancy is applied to the modules. To achieve 

maximum reliability, a nonredundant system should be divided into modules 

of equal reliability, and equivalent degrees of redundancy should be applied to 

each of these modules. When the system is organized in an optimum manner, 

and when a decision element is used with each module, it is shown that system 

reliability as close to unity as desired can be obtained. Overall system 

complexity can also be readily determined and predicted. The availability of 

resources is the only factor which limits the reliability that can be obtained. 
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In a practical application, it may not be possible to divide a system 

into portions each consisting of the same reliability. If this cannot be 

accomplished, then it is no longer desirable to apply equal degrees of 

redundancy to the modules. Utilizing different degrees of redundancy 

within a system creates the additional problem of interconnecting or 

interfacing n. outputs from one redundant stage to the n. inputs of the 
1 J 

next stage. The interconnection would be no problem if a single decision 

element as designed herein were used between stages; however, the 

possibility of single-point failures would have been introduced into the 

system. Both the interfacing problem and the possibility of single-point 

failures can be eliminated by utilizing majority logic in the decision 

element. 

Methods and techniques are investigated which can be employed 

in the optimization of a practical system when consideration has been 

given to constraints in system design parameters. Two criteria functions 

are developed which are used in the decision algorithm in the system 

optimization process. The optimization process is an iterative process 

and consists of adding an additional module to the ith stage according 

to a decision algorithm or criterion function. (Since it is assumed that 

if redundancy is used, it will be of degree three or greater, the initial 

allocation to each nonredundant module is two additional parallel elements; 

thereafter, only one element is added at a time.) In particular, the 

two criteria functions or decision algorithms which are derived and 
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discussed in detail are as follows: ( 1) modules are added in such a manner 

to maximize the gain in overall sys tern reliability, and ( 2) modules are added 

in a manner to maximize the ratio of gain in system reliability to the 

increase in system complexity. It is shown that the second method 

leads to a system of maximum reliability with the expenditure of a 

minimum amount of resources. 

The results of this investigation are significant because for the 

first time a method is developed for theoretically obtaining and 

physically realizing ultrareliability in a generalized parallel redundant 

configuration. In this work, unlike much of the effort which has been 

expended in the past, the theoretical development and the practical 

aspects of realizability have been considered of equal importance and 

treated accordingly. Therefore, it is sincerely hoped that the results 

of this effort will be beneficial to the engineering field, in particular, 

and to mankind as a whole. However, it should not be considered as a 

means to an end, but rather as a stepping stone from which to proceed. 



CHAPTER II 

MAJORITY LOGIC REDUNDANCY OF 

DEGREE THREE 

2.1 INTRODUCTION 

This chapter develops the foundation from which a more generalized 

treatment may be pursued in Chapter III. Majority logic consisting of three 

parallel units of which only two must be functional for successful system 

operation will be of primary concern here. Logic will be developed for fault 

masking, failure detection, and failure isolation, and consideration will be 

given to system optimization with this and other designs. 

·The concept of majority logic is not new, having been proposed as 

early as 1956 by von Neumann as a means of masking failures; however, the 

additional features of failure detection and isolation have not been investi -

gated in as great a detail. If failure detection and isolation can be satisfac­

torily accomplished, these techniques may be used to increase reliability; a 

great potential also exists for reducing or eliminating maintenance cost, 

troubleshooting time, equipment downtime, etc. 

The term "majority logic" as used in this chapter will be limited 

to a serial-parallel configuration such as tliat shown in Figure 2.1. 1, in 

16 



n 

A1 

MODULE 

DUPLICATION 8 1 

!DEGREE OF MODULE 

REDUNDANCY),__~~_, 

c, 
MODULE 

mSTAGES 
(LEVEL OF REDUNDANCY) 

A2 

MODULE 

B2 

MODULE 

c2 
MODULE 

Figure 2. 1. 1. Two-Out-of-Three Majority Logic 
With Output Voting 

which two-out-of-three redundant elements must be functional to obtain 

a correct output. This will be referred to as redundancy of degree three. 

The level of redundancy (i.e., the number of modules into which a 

nonredundant system is divided) will be optimized with respect to the 

decision element or voter. To accomplish this, it is necessary to develop 

the logical design for the decision element. It is also sometimes possible 

to obtain a correct output even when two modules or voters in the same 

stage have failed. This can occur if failures in the same stage are in 

opposite directions such that the third output must always agree with at 

least one of the failed unit's output. Initially, this will not be considered; 

however, the development will later be modified to take this into 
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consideration. The true reliability will be bounded within these limits. 

The value that one wishes to use depends on the application, personal taste, 

and conservatism. It is emphasized throughout the entire investigation that 

the major concern is techniques leading to relatively high reliability 

when compared to a nonredundant system rather than an absolute estimate 

of reliability, although naturally one can possibly lead to the other. 

In considering the two-out-of-three (i.e., degree three) approach, 

two methods of decision making, or voting, are possible; input voting and 

output voting. Output voting is shown in Figure 2. 1. 1. Input voting is 

illustrated in Figure 2. 1. 2. Notice that the essential difference in these 

two figures is the first set of voters; i.e. , output voting is basically input 

voting if it can be assumed that the signals entering the system are 

correct. This may be a trivial point; however, Ergott and Rozenberg ( 14) 

have shown that output voting is always superior to input voting. As 

system! size increases in the limit, the two methods yield equivalent 

results. Output voting will be assumed in the development herein, with 

the primary concern being relative reliability improvement. Karyl J. 

Gurzi (8) has treated the application of three versus a single voter between 

the redundant stages. To eliminate single point failures, three voters will 

be assumed in the work herein. However, similar design and analysis 

would be applicable to a single voter. A single decision element may be 

required at the last section. If a single signal is required in the next 

system, rather than carrying the three redundant signals on to the next 
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Figure 2. 1. 2. Two-Out-of-Three Majority Logic 
With Input Voting 

system, this would become a requirement. As will be shown later, this 

may really be the limiting factor in reliability improvement. 

Three axioms of probability theory which will be useful in the 

development of the reliability equations are: 

1. If p denotes the probability that an event will occur, then 

1 - p denotes the probability that the event will not occur. 

2. If the events ~ 1 , h . . . ~ are independent events with 
n 

probabilities Pt, P-J, • • • p , respectively, then the probability that all 
n 

of the events should occur simultaneously when all are in question is the 

product of the probabilities 
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n 
p =np . 

. 1 1 t= 

3. If the probability of mutually exclusive events ~ 1 , ~2 ••• ~ 
n 

is Pt , P2, • • . p , respectively, then the probability that any one of these 
n 

events should occur when all are in question is the sum of the probabilities 

n 
p = 2.: pi 

i=1 

In the development which follows, these axioms will be asswned to be 

understood and will be referred to only rarely. 
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To apply the exponential distribution to either the system, subsystem, 

or component level, the following asswnptions are necessary: 

1. Component failures are independent and random. 

2. The component failure rate, l\., is constant over the time 

frame being considered. This effectively asswnes adequate burn-in and 

screening of components. 

3. Components are not subject to wear or fatigue. Thus, the 

analysis is restricted to electrical components, and mechanical systems 

are not included except under unusual cases. (If mechanical components 

are replaced, thus circwnventing a failure caused by wear, other type 

mechanical failures might possibly be considered as being random. ) 

The term "module" will be used to describe the number of sub-

systems or elements into which a simplex or nonredundant system has been 

divided and will be denoted by m . For simplicity, it will be assumed 



that the modules have the same number of component parts and thus the 

same reliability. For a system of given complexity, m may be said to 

represent the level of redundancy which is to be used. It will be shown in 

Chapter III that dividing a system in modules of equal reliability leads to 

the greatest reliability improvement when the modules are replicated. 

After a nonredundant system has been divided into m modules of equal 

reliability, each module is replicated n times and is then called 

a redundant module or simply a stage. Thus, n represents the degree of 

redundancy applied to each stage or to the system as a whole. Chapter III 

will also show that stages processing equivalent degrees of redundancy 

lead to maximum system reliability. For the purpose of this chapter, n 

will be restricted primarily to three; however, the reliability equations 

will be derived in general terms so that they may be used in Chapter III. 

The failure probability (unreliability) and success probability (reliability) 

of a nonredundant module will be denoted by R and R , respectively, 
m m 

while that of a redundant module or stage is P and P , respectively. 
m m 

The failure probabilities of a nonredundant and redundant system will be 

represented by R and P, respectively. R may be used for different 
s 

purposes; however, it will generally be used to denote the product of a 

module and decision element reliabilities. 1 

1Depending upon the circumstances, it is sometimes more 
convenient to deal with success probabilities and sometimes more desirable 
to use failure probabilities. Throughout this investigation, axiom (1) will 
be assumed to be understood and transformation between success and 
failure probabilities will be made as convenient. 
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2. 2 DERIVATION AND OPTIMIZATION OF THE 

RELIABILITY EQUATION 

The failure probability of a single redundant module containing 

n parallel elements in which two or more units must be functional such as 

shown in Figure 2. 1. 1 can be found from the binomial distribution and is 

given by the expression 

(2.2.J.) 

where ( : ) denotes 
n! 

which represents the number of 
i ! (n-i) ! 

combinations of n things taken i at a time. 2 For the binomial distribution 

to be appropriate the following conditions must be fulfilled: 

1. There exist n independent trails; i.e., the outcome of any 

trial is not dependent on those preceding it. (A trial here is assumed 

to be the operation of an element, usually a module, over a given 

period of time; the outcome is determined by the success or failure of the 

module.) 

2. The experiment is dichotomous; i.e., there are only two 

possible outcomes at each trial. For the purposes herein, the possible 

2There are many ways in which this can be viewed and derived. 
With axiom ( 1), this can be put in another form. Also, truth tables can be 
used to derive the binomial distribution and thus this expression. Moskowitz 
(12) uses flow graphs and networks to derive and manipulate reliability 
equations. 
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outcomes are only success and failure. 

3. The probability of any particular outcome at any trial remains 

constant through the experiment. 

Equation (2. 2. 1) can be expressed in the expanded form: 

(2.2.2) 

= (1-R)n-1 [1 + (n-1)R] 

or it may be alternately represented by 

::n-1 -
P = R [n - (n-1)R] 

m (2.2.3) 

In Equation (2. 2. 2), R represents the product of the reliability of the 

module and the decision element, since as many decision elements are to 

be employed as there are modules (Fig. 2.1. 1). Thus, in Equation (2. 2. 2) 

or (2. 2. 3), the module and decision element may be considered to be 

lumped together; i.e., 

R = R R m v (2.2.4) 

In Equation (2. 2. 4), R and R are the reliability of the module and 
m v 

decision element or voter, respectively. From axiom ( 1) , it follows that 

(2.2.5) 
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Substitution of Equation (2. 2. 5) into (2. 2. 3) yields the following relation-

ship for failure probability of a redundant module or stage: 

(2.2.6) 

It is desired to determine the system organization which yields 

optimality; i.e., how should a nonredundant system be subdivided to 

optimize (minimize) the overall redundant system failure probability? If 

R R is small compared to R and R , the overall redundant system 
mv m v 

failure probability may be approximated by 

(2.2.7) 

where m represents the number of modules into which a nonredundant 

(simplex) system has been divided and n the degree of redundancy applied 

at each stage, which for the purposes of Chapters II and III has been 

assumed to be the same for all stages. For Equation (2. 2. 7) to be valid 

or a good approximation, the cross terms or second-order terms must be 

small in comparison to the first-order terms. 

Much difficulty is encountered if an attempt is made to use classical 

techniques to optimize this equation; i.e. , to take the first partial 

derivatives, set them equal to zero, and solve for the variables; then 

take the second partial derivatives to test for minimum-maximum 

conditions. In the first place, four variables are present such that a 

complex relationship is obtained when the partial derivatives are taken and 



set equal to zero. Much simplification is possible, however, if the ratio of 

the unreliability of a nonredundant module to that of a redundant module is 

considered. This ratio will be denoted by (3 and is given by the relation-

ship 

p 
m 
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(2. 2. 8) 

If maximum reliability is gained at each stage, it follows that maximum 

gain in system reliability results. R will be taken as being fixed since 
v 

it requires a given number of component parts to accomplish the 

decision element function; for the purposes of this chapter, n will 

be taken as fixed at n = 3 . A general treatment will be considered 

in Chapter Ill. Under these assumptions, Equation ( 2. 2. 8) takes the 

form 

R 
m (3 =-----------------,,__;;;;;.;;.__~~---------..,,-

3( R + R - R R )
2 

- 2 (R + R - R R )
3 

m v mv m v mv 

Differentiating Equation (2. 2. 9) with respect to R and setting the 
m 

result equal to zero yields 

_JJfi_ = N 

BR 
m 

D 

(2. 2. 9) 
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where 

N = 3(R + R - R R ) 2 
- 2(R + R - R R )3 

m v mv m v mv 

- R [6(R + R - R R ) (1 - R ) - 6(R + R - R R ) 2 (i - R )] m m v m v v. m v m v v 

and 

2 

D = [3(R + R - R R )
2 

- 2(R + R - R R ) 3
] m v m v m v m. v 

(2. 2. 10) 

Multiplying by the denominator and dividing by R +R -R R 
m v m v 

yields 

2 

3(R + R - R R ) - 2(R + R - R R ) - 6R (:1 - R ) m v mv m v mv m v 

+ 6R ( R + R - R R ) (1 - R ) = 0 m m v m v v 
(2.2.11) 

Since second- and higher-order terms are relatively small and may be 

neglected without appreciable error, Equation (2. 2. 11) becomes 

3R + 3R - 6R = O 
m v m 

R =R (2. 2. 12) 
m v 

The fact that this leads to a maximum reliability gain rather than a 

minimum or an inflection point will not be covered in more detail here, 

but will be covered in general in Chapter III. Detailed numerical examples 

will also be given there to demonstrate that this indeed represents an 
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optimum design; thus, the minimum failure probability of a single redundant 

module is given by the expression 

2 3 

( - - 2) ( - - 2) 
Pm = 3 2Rm - Rm - 2 2Rm - Rm (2. 2. 13) 

when the system is organized in the optimum manner. 

2. 3 CONSIDERATION OF FAILURES IN 

OPPOSITE DIRECTIONS CANCELLING 

When the majority logic or two-out-of-three technique is used, 

some advantage can be taken by noting that failures in opposite 

directions can cancel each other, in which case, only one module, rather 

than two, is required to the functional. To indicate how the failure 

probability expression can be derived under these conditions, Figure 2. 3.1 

will be helpful. 

F and S (Fig. 2. 3.1) indicate failures and successes, 

respectively. The remarks under system status are applicable to the 

situation where two-out-of-three modules must be good; i.e., they do not 

consider the possibility of failures in the opposite direction cancelling. 

If it is assumed that R =Rb = R which is valid since they are 
a c 

identical modules as far as possible, combinations 1, 2, 3, and 5 in 

Figure 2. 3. 1 result in a failed system given by the expression 



28 

COMBINATION 
Ra Rb Re SYSTEM STATUS 

NUMBER Ra 

1 F F F FAILED 

2 F F s FAILED 

3 F s F FAILED 

4 F s s OPERATIVE 

5 s F F FAILED 

6 s F s OPERATIVE 

7 s s F OPERATIVE 

8 s s s OPERATIVE 

Figure 2. 3.1. Block Diagram of a Two-Out-of-Three Majority 
Logic With Its Truth Table 

_3 _2 _3 _2 ( -) _2 _3 
P = R + 3R R = R + 3R 1-R = 3R - 2R . 

m 

(2.3.1) 

This is equivalent to Equation (2. 2. 3)"which was derived directly from 

the binomial distribution. Notice that in the second combination of the 

truth table, shown in Figure 2. 3. 1, the system would not have failed if 

Ra had failed to a logical 11 011 and Rb to a logical "1" or vice versa. 

This may be expressed in the Boolean form 



where the second subscript indicates failure mode. Since this condition can 

occur in three ways (combinations 2, 3, and 5 in Figure 2. 3.1), the 

reliability gained by taking into consideration the possibility that failures 

can cancel is 

(2.3.2) 

The total probability of a failure is the sum of the probabilities of 

component failures to a 11 011 state and to a 11 111 state; thus, R =Ro + R1 • 

Without further lmowledge of a specific application or circuit, there is no 

reason to suspect a failure to any particular state to be more predominant 

1- - 1-
than to the other state; consequently, Ro = 2 R and R1 = 2 R • This 

leads to the conclusion that Ro= i (1-R) and R1 = i (1-R) • Substituting 

these values into Equation (2. 3. 2) yields the reliability gained from 

consideration of failures in opposite directions which is given by 

(2.3.3) 

Thus, the reliability of one module of a majority logic system when the 

possibility of failures cancelling has been taken into consideration is given 

by 
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(2.3.4) 

and the failure probability is given by3 

(2.3.5) 

Since it has been shown that 

R=R +R -RR 
m v m v 

and that when the system is organized optimally, Rm = Rv , Equation 

(2. 3. 5) may be expressed as 

(2.3.6) 

The actual value of the failure probability for a majority logic module lies 

somewhere between the values obtained from Equations (2. 3. 1) and (2. 3. 6); 

the choice of which is used depends upon the amount of conservatism one 

wishes to include. However, it is noted that Equation (2. 3. 6) yields 

almost one-half the failure probability that Equation ( 2. 3. 1) yields. The 

possibility that failures can cancel will not be discussed further in this 

work. Again, major emphasis is not upon reliability prediction, but rather 

31t should be noted that in general it is not possible to obtain the 
expression for the failure probability by simply replacing R in the 
reliability expression with R . This is possible for a two-out-of-three 
system since two operational units result in an operational module and two 
failed units result in a failed system. (See the truth table of Figure 2. 3. 1.) 



upon techniques which lead to highly reliable systems and system 

organization to accomplish this purpose. 

2. 4 LOGIC DESIGN FOR FAILURE DETECTION, 

ISOLATION, AND FAULT MASKING 

In practice, if a system is to be optimized, the procedure which 

should be used is as follows: Develop the decision element logic design 

and estimate its failure probability. Subdivide the nonredundant system 

into m modules, each of which has a failure probability equal to that of 

the decision element. Since the decision element and the problem of 

fault masking, failure detection, and isolation play such a vital role in 

system organization, it is logical to address this aspect next. 

The decision element can be designed for two different purposes 

depending upon application. In one case, it may only be necessary to 

fault mask failures and not be concerned about failure detection and 

isolation. Such may be the case if nothing can be done about the failures 

once they have occurred; i.e., repair and replacement are not feasible. 

Only one failure per stage is permissible, the module and decision element 

being regarded as an integral part of the module. On the other hand, if 

a failed module can be replaced either manually or automatically, then 

automatic failure detection is very desirable and could lead to a reliability 

limited only by the spare parts available and possibly also could result 

in potential cost savings in troubleshooting, repair, periodic maintenance, 
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equipment downtime, etc. Automatic failure detection and isolation, 

although not having been given adequate attention in the past, possess a 

tremendous potential in certain applications. For example, failure detection 

and isolation may not be worthwhile in realtime missile systems where 

repair and replacement are not possible; on the other hand, it may be very 

desirable and beneficial in a commercial computer system where repair and 

replacement are permissible. 4 In the past, primary emphasis has been 

given to reliability improvement alone without replaceable items; however, 

in the future, when maintenance, system downtime, etc., are taken into 

consideration, automatic failure detection and isolation as well as fault 

masking could become very important. The techniques proposed herein 

become of interest when viewed from this standpoint and are very likely 

to receive much more attention in the future. The technological growth 

in electronic elements may reduce circuit costs below maintenance cost, 

downtime, etc., making redundancy attractive when viewed from a cost 

standpoint alone. 

The logical design of a decision element or "voter" whose output 

represents the majority of the inputs is not particularly new and may be 

found in Shooman (17) as well as other sources. Table 2.4.1 shows that 

an output is desired for the following conditions: 

4Manual repair and replacement may be possible in earth orbital 
space stations and interplanetary manned missions. In fact, this may be 
the only means of obtaining satisfactory reliability over the desired time 
frame. The example given here is meant to apply primarily to boost and 
reentry phases of flight. 
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f1 ==ABC +ABC +ABC +ABC ==BC +AC +AB (2. 4. 1) 

TABLE 2. 4. 1 

TRUTH TABLE FOR LOGIC DECISION ELEMENT 

Desired Output 
A B c f Error Conditions 

0 0 0 0 None 

0 0 1 0 f c 

0 1 0 0 f B 

0 1 1 1 f A 

1 0 0 0 f A 

1 0 1 1 f B 

1 1 0 1 f c 

1 1 1 1 None 

Thus, an output of a logical "1" is des ired when any two or all inputs are 

logical "1 's." The gating necessary to accomplish this function is shown 

in Figure 2. 4. 1. This figure shows a very simple circuit consisting of 

only three AND gates and an OR gate. From this, it may be concluded 

that a very low level of redundancy can be applied to a system if design 

optimality is the objective; i.e., a nonredundant system can be 
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subdivided into m modules, each equivalent to only four gates such that the 

condition R = R is met. 
m v 

A 

B 

A 

c 

B 

c 

Figure 2. 4. 1. Fault Masking Logic 

OUTPUT 

The logic element described in the previous paragraph serves only 

the function of failure masking. Failure detection and isolation may also 

be of interest as previously indicated. For failure detection, a logic 

element is desired which provides an output under the condition 

ft =ABC +ABC 

(2. 4. 2) 

ft (A + B + C) (A + B + C ) 

Several different equivalent Boolean expressions may be derived to 

represent this function, such as 
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f1 =AC +AB +AB +AC (2.4.3) 

The logic necessary to implement this function is shown in Figure 2. 4. 2 

and consists of four AND gates and an OR gate. 

A ----t 

e--,__..,,, 

~ 
A 

IJ 

ERROR INDICATION 

~ 

B 

~ 

c 

Figure 2. 4. 2. Failure Detection Logic 

Thus far, a voter whose output represents the majority of the 

inputs and a failure detector which has an output when a disagreement 

occurs in the inputs have been developed. It is desirable not only to be 

able to detect a failure, but also to isolate it to the module so that it might 

possibly be replaced either manually or automatically. From Table 2. 4.1, 
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it is observed that modules A, B, and C have failed under the following 

conditions: 

fA =ABC +ABC 

fB =ABC +ABC (2.4.4) 

fC =ABC +ABC 

To implement this function and isolate a failure, only six AND gates and 

three OR gates, as shown in Figure 2. 4. 3, are required. It should be 

noted that the failure detection and isolation logic would not normally be 

considered as part of the voter failure probability (R ) for a two-out-of­
v 

three organization and would have no influence on system design optimization 

since reliability as developed in this chapter is not dependent on these 

functions. However, whenever automatic repair and replacement are 

considered, they very definitely play a vital part in system reliability. 

Such considerations are the subject of Chapter III; however, there it will be 

considered from a slightly different viewpoint. When the above functions 

have been incorporated in system design, the following functions can be 

accomplished: 

1. Faults are automatically masked and no single failure will 

cause a system failure. The number of failures most likely to occur 

before the redundant system fails is a function of system complexity, 
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B 

c 

A 

If 
C' 

MODULE A FAILED 

MODULE B FAILED 

MODULE C FAILED 

Figure 2. 4. 3. Failure Isolation Logic 

the number of modules into which a nonredundant system is divided, 

operating time, etc. 5 

2. Automatic failure indication. 

3. Failure isolation to the module level. 

By utilizing the above approach, it is possible to: 

5see Appendix A for a more detailed treatment of the number of 
failures most likely to occur. 
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1. Improve considerably the reliability of a system. For a 

system with manual replacement, reliability is basically limited only to the 

supply of spare modules. 

2. Delete periodic maintenance requirements. 

3. Reduce troubleshooting time, repair time, etc. 

4. Eliminate equipment downtime. 

5. Possibly minimize spare parts supply. 

Much more research is required to determine the trade offs in 

increased hardware cost necessary to accomplish 1., 2. , and 3. above and 

the amount of savings to be realized when these are accomplished. In 

general, with the type system proposed, Appendix A indicates that there 

is no great hurry to replace a failed module since the total system is 

still operational and is likely to remain in that state even after several 

failures have occurred. The major theme of this investigation is 1. above, 

so little more will be said about automatic failure detection and isolation 

when used with manual replacement. However, these techniques and 

approaches if properly used can also have a tremendous influence on 1. as 

will be given in Chapter III. 

Before proceeding, it is instructive to note that the logic 

developed for the functions above is not unique and can be implemented 

in several alternate forms. The method one uses will depend to a very 

large extent upon the type of logic building blocks available. Another way 

of implementing the failure detection and isolation is shown in Figure 2. 4. 4. 
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E1 =A•+ C8 
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e 
e,:[f 
E2 A error 

A 

c 

A 

I' 

A 

B 

ERROR £,=er e2 
8error 

e,:[f 
£2 cerror 

E2 • A8 +Be 

Figure 2. 4. 4. Alternate Method of Implementing Failure 
Detection and Isolation Logic. 

Since E1 represents an error either in A or C and E2 an error in 

A or B, these can be logically combined to isolate the failure as shown. 

AND/OR/INVERT and AND/INVERT logic blocks have been used in this 

implementation. Only 12 gates are required here while 14 were required 

in the previous implementation. However, five inverters have been added, 

which may be part of a logic block. 

2. 5 RELIABILITY GAINED THROUGH REDUNDANCY 

OF DEGREE THREE 

The logic necessary for the decision element has been developed; 

now, an estimate of system reliability can be obtained by using the 

majority logic approach with optimum design. T,he voter consisted of 

only five gates or approximately 20 discrete component parts, which 



would indicate that for optimum system design, a module should also contain 

approximately 20 component parts. For optimality, the failure 

probability of a module (R ) can be expressed in terms of the failure 
m 

probability of the total nonredundant system (R ) and the number of 
s 

modules (m) into which it has been sulxlivided as follows: From 

axiom (2), it follows that the reliability of a nonredundant system (R ) 
s 

expressed in terms of R and m is given by the relationship 
m 

R = (R )m 
s m 
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R 
s 

m - m 
= 1 - R = 1 - (R ) = 1 - ( 1 - R ) 

s m m 
(2. 5. 1) 

R 
s 

= 1 - [ 
(m) (m - 1) R 2 ] 

1 - mRm + ______ m_ - ... 
2 ! 

Thus, if R is small, second- and higher-order terms can be neglected 
m 

in which case the module failure probability can be approximated by 

R !:::i 
m 

R 
s 

m 
(2. 5. 2) 

Substituting Equation (2. 5. 2) into (2. 3.1) and noting also that P i:::i m P 
m 

in a manner similar to that shown above yields the following relation-

ship: 

p !:::i 
( - - )3] 2R R 2 

- 2 ms - i:2 (2.5.3) 



Also, let NT be the number of component parts in a nonredundant system 

and n be the parts in a module which for optimum design was estimated 
m 

to be approximately 20 with the above voter design; then 
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m- n 
m 

(2.5.4) 

and Equation (2. 5. 3) takes the form 

_ _ [ (40Rs 400Rs 2)
2 

(40Rs 400Rs2
)

3
] 

P - O. 05 NT 3 N - N 2 - 2 N - N 2 
T T T T 

(2.5.5) 

The failure probability of a nonredundant system is given by the expression 

R 
s 

(2. 5. 6) 

where NT is the number of components in the nonredundant system, "'A 

the average component failure rate, and t the operating time. 6 Arbitrarily, 

take a reasonable value of "'A = 10-B and t = 1o4 ; then Equation (2. 5. 6) 

is given by 

R 
s 

-10-4N 
T = 1 - e (2.5.7) 

61n Equation (2. 5. 6), t = 1/"'ANT is the mean time between failures 

(mtbf) of the complete nonredundant system; thus, R = 0. 632. In some 
s 

cases, it would be desirable to normalize about this value; however, if NT 

is varied (e.g. , increased) since "'A is a constant, this effectively alters 
(decreases) t and makes the given nonredundant system more reliable. 



Table 2. 5.1 shows P and a = R/P for three values of NT which cover 

a fairly reasonable range. The last value shown in Table 2. 5. 1 for 

NT = 100 k is of particular interest. The failure probability of a simplex 

system has been decreased from practically 1 to almost 0 through the 

application of the optimum redundancy organization. 

TABLE 2. 5. 1 

TYPICAL SYSTEM PARAMETERS FOR A. = 10-s FAILURES 

PER HOUR AND OPERATING TIME OF t = 1o4 HOURS 

- -
NT m R p Cl! 

s 

1k 50 0.09500 0.000007 13. 57 x 103 

10k 500 0.632000 0,000957 660. 40 

100k 5000 0.999955 0.002340 427.33 

The relative complexity of a redundant system when compared with 

that of a simplex system is given by 

c=n(1+a") 
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n 
where n is the degree of redundancy and -a = _y_ ; i.e., the ratio of 

n 
m 

decision element and module complexity. For optimum design, it has 

been shown that a = 1, and since in this chapter n = 3 is assumed, it 

is noted that the redundant system which is optimally designed will 

contain approximately six times as many component parts as a nonredundant 

system. From this, it may be concluded that by utilizing the two-out-of-

three majority logic technique, the relative complexity of the redundant 

system should be no greater than six nor less than three times that of a 

nonredundant system regardless of optimality considerations. The exact 

value depends upon the level of redundancy application. 

Does the majority logic scheme always improve the reliability of a 

system? To answer this question, Equation (2. 3. 1) can be equated to the 

failure probability of a module and the equation solved for R • Thus, 
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2R2 - 3R + 1 2:': 0 (2. 5. 8) 

1 
R2:':1,R::s-

2 

The first case where R ~ 1 is not physically realizable since 0 :::::: R < 1 ; 

- 1 
thus, only R:::::: 2 yields a reasonable bound. Therefore, majority logic 

yields a reliability improvement only if 

R + R 
m v 

(2. 5. 9) 



This equation also indicates why the last term can be ignored, because it 

can never be more than roughly 1/16 of the total or approximately 1/8 

that of R + R . Intuitively, Equation ( 2. 5. 9) is minimized when 
m v 

R = R as was previously shown. Thus, for optimum design, Equation m v 

(2. 5. 9) becomes 

2R 
m 

1 
- R 2 < -

m - 2 (2.5.10) 

and solving for R a value of R =::.; O. 293 is obtained. The failure 
m m 

probability of the total simplex system has not been restricted by this 

condition since it is given approximately by 

R 
s 

= mR 
m 

(2. 5.11) 

Only the failure probability of a module and decision element is restricted 

to be within these limits. 

Notice also that although time does not appear explicitly in the 

above equations, it nevertheless is included through the relationship 

-N i\t 
T 

-i\ t 
s 
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R 
m 

= 1 - e 
-n i\t 

m = 1 - e 
m m = 1 - e (2.5.12) 

For Equations (2. 5. 10) and (2. 5. 12) to be valid 



m -
t ~ - - ln (1 - R ) 

i\ m 
s 

t ~ m 
- ~ ln (O. 707) (2. 5. 13) 

s 

t ~ 0.342m 
i\ 

s 

where i\ is the failure rate of the nonredundant system, m is the number 
s 

of modules into which the simplex system has been divided, and t is the 

operating time. With t = k/i\ (i.e., operating time is k times the mtbf 
s 

of a simplex machine), then Equation (2. 5. 13) becomes 

k ~ O. 342m 

For an optimally designed machine, m will be fixed since NT is fixed 

and the operating time then must be less than the above constant value for 

an improvement in reliability. 

2.6 SUMMARY 

The purpose of this chapter has been primarily to develop the 

necessary background from which a more generalized analysis can be 

treated in Chapter III. It has been shown that system reliability can be 

improved considerably with majority logic techniques, especially when 

the system is organized in an optimum manner such that R = R • 
m v 

Consideration has been given to the logical implementation of fault masking, 

failure detection, and failure isolation. It has been suggested that a 
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tremendous possibility exists when these techniques are incorporated with 

manual replacement where feasible and it is recommended that further 

research should be undertaken in this area. The functional relationship 

between the number of failures which may be expected before a redundant 

system can be expected to fail was also developed as Appendix A to this 

chapter. 

In Chapter III, the basic approach developed in this chapter will be 

continued; however, it will be desirable to view the organization from a 

slightly different standpoint. Although the idea of majority logic will no 

longer be required, only that two modules in any stage be functional, the 

similarity to this chapter, both in system approach and logic design 

development, will become readily apparent. 
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CHAPTER III 

GENERALIZED PARALLEL REDUNDANCY 

REQUIRING TWO-OUT-OF-n 

FUNCTIONAL ELEMENTS 

3. 1 INTRODUCTION 

In Chapter II, techniques were developed for fault masking, failure 

detection, and failure isolation in a major logic, two-~mt-of-three 

configuration. It was also mentioned that failure detection and isolation 

may be used to considerable advantage when combined with manual 

replacement of modules. It is quite natural to question why they could not 

also be used for automatic replacement of modules. This basic question 

is the primary subject of this chapter. 

Although the subject of automatic replacement of modules is 

embedded in the subject of majority logic, it is much more general. The 

term majority logic is no longer descriptive of the system under stu~y. 

In general, it is only required that two-out-of-n parallel modules in each 

stage be functional for correct operation; it is general in another aspect 

as well. For years now, probability models of parallel units have been 

studied, usually without regard to the decision or switching element. In 

the rare cases where consideration has been given to this element, the 
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number of parallel modules used was restricted to a particular configuration. 

In the investigation herein, a decision and switching element will be 

developed which can be adapted to any number of n parallel units. The 

effect of this design upon system reliability will be indicated, and system 

optimization will be treated taking into consideration the decision element 

design. The question of practicability will also be covered. 

The generalized system to be studied is shown in block diagram'form 

in Figure 3. 1. 1. The nonredundant system will be divided into m modules 

of equal reliabilities and replicated n times. It will be assumed that the 

degree of redundancy (n) of each stage is the same. Initially, it will be 

assumed that a decision and switching element is provided for each 

module. This condition will be relaxed in Chapter IV, as well as the 

condition of equal n for each stage. Thus, failure of a decision element, 

in effect, appears as if the following module has failed and is compensated 

for in the following decision element. Essentially, the next decision 

element in the serial chain corrects for either a preceding decision element 

or module failure. 

3. 2 CONSIDERATION OF EQUIVALENT STAGES 

YIELDING OPTIMALITY 

It can be shown that the assumption of breaking a nonredundant 

system into m identical modules and replicating n times for each stage 

leads to optimum reliability improvement; i. e. , it can be shown that in 



49 

!..,. .. ..,__ _____ m MODULES (LEVEL OF REDUNDANCY) . 

r R 
D&S a, 

R 
P""'+ ELEMENT - 82 -

· 1 

D&S ---- ELEMENT 

v a, yam 

D&S 
Rb - Rb lo-1 ELEMENT 2 

D&S ---- ELEMENT 

. 
vb 

. 
I I 
I 

,, I 
I I I 
I I I 

vb 
Im 
I 

I 
D&S R D&S 

R 
...... 

ELEMENT "2 
,... 

"1 
---- ELEMENT 

v vn 
m 

Figure 3. 1.1. Generalized Parallel Redundant System 

order to obtain maximum reliability, it is necessary that 

and that n1 = n2 = n3 = .•• =nm . (The first subscript 

on R is not required here since R = Rb = R , etc. , and will be dropped. ) 
a1 1 c1 

The generalized reliability is a function of R and n as follows: 

(3.2.1) 

Equation ( 3. 2. 1) simply states that the overall redundant system reliability 

which is a function of the reliability of each module and the degree of 



redundancy applied to each module is given by the product of the 

reliabilities of the individual stages. It should be noted that the functional 

forms of the individual stages are the same; this is the reason the notation 

f(R 1,n1)f (R 2 , n2)· ••• f (Rm, nm) is used in lieu of f (R 1 , n1)g(R2 , n2 ) 

.•.• h(Rm , nm) . Further, R1 · R2 .•.• Rm is simply the reli-

ability of a nonredundant system and is given by 
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R · R .... R =R 
1 2 m s 

(3. 2. 2) 

It will be assumed that the total number of modules will be constrained to 

K units. In effect, this is constraining the complexity of the system, by 

assuming a given amount of resources. Thus, 

n +n + ••• +:a =K 
1 2 m 

(3.2.3) 

Equation (3. 2. 1) is to be optimized, subject to the constraints given by 

Equations (3. 2. 2) and (3. 2. 3). If the Lagrange multiplier technique is 

used, the problem can be formulated as 

(3.2.4) 

where A1 and A2 are called the Lagrange multipliers. At the optimum 

point, the partial derivative of each variable must vanish; i.e., 
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aP = O aP 
= 0' £E_ = 0 

aR1 ' aR2 
... ' aR 

m 

aP = O aP 
= 0' aP = 0 

an1 ' an2 
... ' an m 

Taking the partial derivatives of Equation (3. 2. 4) with respect to each 

variable yields the following sets of equations: 

(3.2.5) 



and 

I 
I 
I 

affR ,n ) f(R ) \ m m 
m-1 ,nm-1 an 

m 

Notice in Equations (3. 2. 5) that 

R1R3 .... Rm 

I I 
I I 
I I 

R1R2 ' ... Rm-1 

R 
s 

R2 
I 
I 
IR s 

R 
m 
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(3. 2. 6) 

With the above substitutions, the first two sets in Equations (3. 2. 5) can be 

solved for ~\ Rs and equated yielding 
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R 18f (R 1 , n1) 
f ( R2 , n2 ) 

8f (R 2 , n2) 
= R2 f ( R1' nt) 8R 8R1 2 

r(R 1 ,n1) R1 
8f ( R 1 , n1) 

(3.2.7) 
8R1 

f (R 2 , n2) 
= 

8frR2 , n2] 
R2 8R2 

The first two sets of Equation (3. 2. 6) can be solved for A.2 and equated 

resulting in the relationship 

= 
8f ( R 2 , n 2 ) 

an2 

(3. 2. 8) 

When Equations (3. 2. 7) and (3. 2. 8) are solved simultaneously, the result 

is 

R1ar(R1 ,n1) af (R2 ,n2) 

aR 1 an2 

R2af (R 2 , n2) af ( R1 , n1) 

aR 2 an1 
(3. 2. 9) 

and it follows that this relationship is satisfied only if 

and 
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When the first and third parts of Equations (3. 2. 5) and (3. 2. 6) are solved 

simultaneously, it may be shown in a similar manner that 

and 

or, using the first and last sets of Equations (3. 2. 5) and (3. 2. 6), that 

and 

Therefore, it may be concluded that the conditions 

R = R = R ---- = R 
1 2 3 m 

and 

yield the optimum results. 

Strictly speaking, it has not been proven that a maximum value of 

reliability results from the above conditions, but only that an extremum 

value has been found. In other words, the vanishing of the derivatives 

with respect to each of the variables is a necessary but not a sufficient 

condition for a maximum. However, it will be clear through further 

considerations that a maximum reliability is given by these values. To 

be more specific, consider a three-stage system with reliabilities given 

by 



(3. 2. 10) 

Since P = P 1 • P 2 • P 3 , an expression for P in Lagrange formulation 

is given by the expression 

P = { 1-( 1-R1) n-l [1 + (n1-1)R1J] 

x { 1- (1-R2)n2-1 [1 +(n2-1)R2Jl 

x / 1- (1-R3)n3-1 [ 1 + (n3-1)aaj) 

+ A. (R • R • R - R ) 1 1 2 3 s 

(3. 2. 11) 

are variables. Taking the partial derivatives with respect to each variable 

and setting them equal to zero yields 
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:;1 = O = -{ (n1-1) ( 1-R1) °C2 [ i + (ni-t) RiJ + (ni-i) (i-Ri) 01-i} 

x Ii - (i-R2) "2-I [ i + (n2-i)R2J I 
x I 1 - (i-Ra) na-t [ 1 + (na-i) Ra JI +>.1 (R2Ra) 

:;2 = o = - ( 1- (t-Rt)°1-i (1 +(n1-t)R1J J 

x I ( n2-t) (t-R2) 0 2-2 [ 1 + h-t) R2 J 

+ h-i) (i-R2) n2-1J 

x I 1 - (i-Ra) ~-i (1 + (na-1) Ra JI +Ai (R1 · Ra) 

:;3 = o = -1 i - (i-Ri) nci [i + (nd Ri J) 

x I i - (1-R2) 02-i [ i + (n2-i) R2 J I 

x I ( na-1) (i-Ra)°a-2 [ i + ( na-i) Ra] 

+ (na-1) (i-Ra) na-1 I+ Ai (R1. R2) 

(3. 2. 12) 



x { 1 - (1-R2) 02-1 [1 + (n2-1)R2l] 

x { 1 - (1-Rs) ns-1 [ 1 + (ns-1 )Rs]) +A2 

~=2 = 0 = - 11 - (1-R1) 01-1 [1 + (ni-1)R1]) 

x { (1-R2) 02-1 
ln (1-R2) [1 + (n2-1) R2] 

- (1-R2) n2-1 R2) 

x { 1 - (1-Rs) ns-1 [1 + (ns-1 )Rs]) + >.2 

~=S = O = - { 1 - (1-R1) 01-1 [1 + (n1-1)R1]) 

x { 1 - (1-R2) 02-1 [1 + (n2-1h]] 

x I (1-Rs) ns-1 ln (1-Rs) [1 + (nd Rs] 

- (1-Rs) ns-1 Rs) + A2 

(3. 2. 13) 

When the first two parts of Equation (3. 2. 12) are solved for ;>i. 1 Rs and 

equated, the following equation results: 
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{(n1-1)(1-a1) n1-2 [1 +(n1-i)a1] - (nd (1-a1) n1-1 }{1- (i-a2) n2-
1 [1 + (n2-1) a2 ]} 

= { 1- (1-a1)n1-1 [1 + (ni-')a1] l {(n2-1) (1-R2) n2-
2 [1 + b-1)a2J - (nd (1-a2/

2-
1l (3.2.14) 

and when the first two parts of Equation (3. 2. 13) are solved ior A.2 and 

equated, the following result is obtained: 

(3. 2. 15) 

Solving Equations (3. 2.14) and (3. 2. 15) simultaneously yields 

{b-1) (i-a2) n2-
2 [1 + (nda2] - (nd (i-a2)n2-

1 l k1-a1) n1-1 tn(i-a1) [• + (ni-1)a1J - (•-a1) n1-1 a1) 

• {(n1-1)(1-ai)°1-
2 (1+(nda1] - (n.-1)(1-a1)n1-1l k1-a2)n2-

1tn(1-a2 )[1+(nda2] - (1-aJ2-\J (3. 2.16) 

It is quite obvious Equation (3. 2. 16) can only be satisfied if 

and 

In a similar manner, it can be shown that R1 = R3 and n1 = n3 , and 

the desired results have been obtained. 

Thus, the above result justifies the assumptions of modules of 

equal reliability and equal degrees of redundancy in each stage. With 

these assumptions, the mathematical models are simplified considerably. 

However, practical considerations may make them unfeasible at times; 
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i.e., it may be impossible or inconvenient to divide a nonredundant system 

into m equivalent modules because "natural" divisions exist in a particular 

system organization and design. More will be said about this later; 

however, for the purposes of this chapter, only the above conditions will 

be treated. 

3. 3 SYSTEM OPTIMIZATION WITH EQUIVALENT STAGES 

The next factor to be considered is system optimization; i.e., 

given a nonredundant system with a failure probability R , into how 
s 

many modules should it be divided? What level of redundancy should be 

utilized to maximize the reliability of the redundant system? To treat 

this question, a ratio (y) will be used. The ratio (y) is defined as 

the failure probability of a nonredundant system to that of a redundant 

system. It is given approximately by 
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R s 
(3.3.1) 

where the cross terms RmRv have been neglected and P = 1 - (i-P m )m 

has been approximated by P i:::i mP • In Equation (3. 3. 1), R is a 
m m 

function of R and m and is given approximately by the relationship 
s 

R 
m 

R s 
Ri -

m 



R will depend on the logical design of the decision and switching element, 
v 

which will be covered in detail later. In general, Rv will depend on n~ 

With these substitutions, the variables m and R can be removed from 
s 

'Y , yielding 
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'Y Fl:! 

R 
m 

(Rm + Rv t-1 (n - (n-1)( Rm + Rv) J 
(3. 3. 2) 

which is the ratio of the failure probability of a nonredundant module to 

that of a redundant module or stage. Thus, there are essentially two 

variables in Equation (3. 3. 2), R and n , since R is also 
m v 

considered to be a function of n • Taking the partial derivatives of 

Equation (3. 3. 2) with respect to R yields 
m 

- Rm { (n-O(Rm + Rv)"-
2 

[ n - (n-1)( Rm+ av) J 

-(Rm+ Rv) n-'1 fo-1)} 

divided by 

(3.3.3) 
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Setting the above equal to zero, multiplying through by the denominator, 
n-2 

and dividing through by (Rm+ Rv) yields 

(Rm+ Rv) [n-(n-1) (Rm+ Rv)] - Rm ( (n-1) [n - <D-1) (Rm+ Rv)] 

(n-1)(Rm+Rv)} = O 

If second- and higher-order terms are neglected, the above equation 

becomes approximately 

Solving for R yields the result 
m 

R 
m 

R 
~ .2-

n - 2 

(3.3.4) 

(3.3.5) 

(3.3.6) 

Notice that this general result agrees with the special case considered in 

Chapter II, where it was shown that with n = 3 1 R ::::i R . 
m v 

Taking the partial derivative of Equation (3. 3. 2) with respect to 

n yields 

~ ,. -Rm { [ n - (n-1)( Rm +RV)] [(Rm+ Rvf-11n(Rm ~RV) 
n-2 oR ] 

+ (n-1)(R +R) _..;!_ m v an 

+ (Rm+ RJ°-l [1 - (Rm+ RJ - (n-1) ::v]} = 0 . 
(3.3.7) 
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The previous equation is over the square of the denominator of Equation 

(3. 3. 2). Multiplying through by this and dividing through by 
n-2 

- R ( R + R ) yields m m v 

+ (R + R ) [1 - (R + R ) - (n-1) aRV] = 0 
~ m v m v h 

Equation (3. 3. 8) must also be compatible with Equation (3. 3. 6). 

(n-1)R 

(3. 3. 8) 

v 
Therefore, Rm + ~v = (n-2) can be substituted into Equation (3. 3. 8) 

yielding 

[n -
2- ] (n-1) RV 

{<n-1) R ln n-2 n-2 v 

(n-1) R [1 - (::~) R + n-2 v v 

Equation ( 3. 3. 9) may be expanded to obtain 

2- ] (n-1) RV 

n-2 · ( n-1) R 1. n 
n-2 v 

2 

(n-1)R 
v 

n-2 

(n-1)8Rv J 
an 

(n-1)R 
v 

n-2 

(n-1)aR 

} v 
+ 

an 

= 0 

(3. 3. 9) 

_ (n-1) R 2 
n-2 v 

[ 
2- ] n(n-1) R aR 

+ n(n-1) - v v = O 
n-2 an 

(3.3.10) 



n-2 
Multiplying Equation (3. 3. 10) by n-1 yields 

2-] (n-1) Rv 

n-2 
R .tn 

v 

(n-1)R 
v 

n-2 
+ R - (n-1)R 2 

v v 

aR 
+ n [ (n-2) - (n-1)Rv J an v = o 

(3. 3. 11) 

By neglecting second-order terms of R , Equation (3. 3. 11) is given 
v 

approximately by 

(n-1)R 
1 

+ [~:2) (n-1)] aR 
ln v v 0 + - - = n-2 n an 

(3. 3. 12) 

or by rearranging terms 

(n-1)R 

rn-1) - (::)J aR 1 
.t n 

v v = n-2 an n 
(3. 3. 13) 

Equation (3. 3. 13) is a transcendental function and it is impossible to 

aR 
v 

solve explicitly for n in terms of Rv even if a;- were known. It was 

noted that R is also a function of n ; therefore, when n is known, 
v 

aR 
Rv and an v will also be known. The decision element logic design 

oR 
will now be considered to determine R and v 

v on 
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3. 4 LOGIC DESIGN OF A GENERALIZED 

DECISION ELEMENT 

The decision element to be developed herein must accomplish the 

following functions: 

1. Fault masking such that as long as two modules out of n are 

operational, the output is always correct. 

2. Failure detection to sense that something needs to be done. 

3. Failure isolation so that the failed module can be identified. 

4. Automatic module switching such that a failed module may be 

replaced with a good unit. 

Factors 1., 2., and 3. above have been considered in Chapter II; 

therefore, all that remains to be considered here is 4. A block 

diagram of the decision element which will accomplish these functions is 

shown in Figure 3. 4. 1. The diagram consists of three basic parts: 

( 1) module selection logic, ( 2) failure detection and control logic, and 

(3) a voter similar to that considered in Chapter II. A decision element 

will be employed with each module in the system. 

The basic operating philosophy is as follows: Out of the n inputs 

to the module section logic, three are selected for use in the system. 

Initially, these will be inputs A, B, and C and will be assigned to 

channels X, Y, and Z, respectively. As failures occur in these 

channels, they are detected by the failure detection and the control 

logic which switches out the failed module and switches to the next 
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X CHANNEL 

FAILURE DETECTION 
V CHANNEL 

AND CONTROL 

Z CHANNEL LOGIC 

(VOTER OUTPUT TO THE 
NEXT MODULE 

Figure 3. 4. 1. Block Diagram of Generalized Decision 
and Switching Element 

good wiit. Means must be provided for remembering which of the n 

modules is being used and in which channel it is being employed. 

Arbitrarily, it was decided to initially assign and use A, B, and C 

only in the X, Y, and Z channels, respectively. However, the 

remaining n-3 modules can be assigned sequentially to any of these 

channels as failures occur. When the nth module has been assigned 

to either the X, Y, or Z channel, another failure causes either the 

A, B, or C modules to be reassigned, depending on whether that 

failure was in the X, Y, or Z channel; a failure in X results in A 

being reassigned to X , a failure in Y results in B being reassigned to 
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Y , etc. Thus, A, B, and C can only be assigned to channels X, Y, 

and Z, respectively. 

The basic elements were developed in Chapter II; however, means 

of selecting three out of the n modules and control and switching logic 

must also be developed. The detailed logic for controlling a stage 

consisting of six modules ls shown in Figure 3. 4. 2. 

The logic equations for the various portions of the decision 

element are as follows: Notice that since AND/OR INVERT logic ls 

being used, the output will be in complement form. 

Voter 

f = XYZ +XYZ +XYZ +XYZ 

= XY + XZ +YZ 

Error Detection 

No X and Y errors have occurred if 

X • Y = XYZ +XYZ +XYZ +XYZ 
e e 

or there exists an error in X or Y if 

X +Y = XYZ +XYZ +XYZ +XYZ 
e e 

= XY +XY = E R2 

(3.4.1) 

(3.4.2) 

(3.4.3) 



c c - c - c Cz2 
MODULE GATING LOGIC 

ER1 Cz1 ER1 :•'bJ; ==~r; =·'~ .. ,~ 
ER2 ER2:h:I@ ER2 

Cx1 Cx2 

CX1 CX2 

Cx1 Cx2 

CX1 CX2 

Cv1 Cv2 

Cv1 Cv2 

Cv1 Cv2 

CV1 Cy2 

Cz1 Cz2 

Cz1 Cz2 I }--, L_ 

Cz1 Cz2 -1 }--J .-

cz1 Cz2 I }---J 

R2 J Q 
E1 E2 

R2 J Q 
E1 E2 J Q E1 J Q E2 

C3 ..fCl I C3 C C3~ I C3-fel I C3..fel I C3 

)o 1 I x ---r--
E~-~E~E n' ER1 R1 ER1 R1 R1 

I ER2Em ER2fi<lroi ER2 K Q ER2 K Q ER2 K Q ER2~ 11 .. I 

x-1 E1 ~- E2 ~- E1 E2 E1 E2 I c c - - -

>o• :v 

v-

I 
X1 X2 Cv1 Cv2 Cz1 Cz2 

l TRANSFER HOLDING REGISTER 
---------------------------­r-----------, 

I ERROR DETECTION I 
I x ER1 I 
I z I 
I x I 

,-- -- - ------
I ERROR COUNTER 

I 
I 
I 
I 

E1 E2 

I z ERi 
I X )0-~--+--.... -.i 
I y-t.__...1 
I x 
I v 
I L ___________ .....J 

c, 

r- - ~TER- - --, 

I 
I 
I 
I 
I 
I 
I 
I 

I I 
·- I 
z-

I I I 
z.L 

L-/ I I 
I 
I 

Figure 3. 4. 2. 

I 
I 
I 
I 
I 

L E, E ___________ :. 
)0 I 1 OUTPUT TO NEXT MODULE 

Logic Diagram For Generalized Decision Element O"l 
~ 



68 

Similarly, there are no X or Z errors if 

X · Z = XYZ +XYZ +XYZ +XYZ 
e e 

(3. 4. 4) 

or an error has occurred in X or Z if 

X + Y = XYZ + XYZ + XYZ + XYZ 
e e 

= XZ +XZ = ERi 

If there are no ER 1 and ER2 , then no error has occurred; i.e. , 

ERi · ER2 = (XY + XZ) (XY + XY) = ER 

(3. 4. 5) 

ERi • ER2 = ERi + ER 2 =XZ +XZ + XY +XY =ER 

(3.4.6) 

Thus, ERi · ER2 indicates an error in X . Similarly, ERi · ER 2 

represents an error in Y and ER 1 · ER2 an error in Z . 

The error counter simply counts the errors as they occur. It is 

necessary to remember which module is being used in the X, Y, and Z 

channels. This function is served by the X, Y, and Z transfer 

registers which consist of J-K flip-flops. When an error occurs in 

one of the channels, this value is simply transferred to the appropriate 

holding register. In other words, these registers, consisting of two 

flip-flops each, simply copy the error counter when an error is sensed 

in the appropriate channel. 



To better understand the operation of the decision element, it is 

desirable to go through the sequence of operations which results as 

failures occur. Initially, the error counter and transfer registers will be 
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in the reset condition. Therefore, the signals C xi • C x2 , C yi · C Y2 , and 

Czi · cz2 will be in the "set state" or represent a logical "1" condition, 

thus gating A, B, and C inputs to channels X, Y, and Z, 

respectively. When an error occurs in X, Y, and Z , the 

signals ER1 · ER 2 , ER1 · ER 2 , and ER! • ER 2 are turned on, 

respectively. An error ER is therefore detected when ER1 · ER2 

is high. Assume, for example, a failure in channel Y (thus indicating 

a failure of the B input). The signals ER 1 · ER 2 and ER are 

generated and the counter is stepped one. The signal that the error has 

occurred in the Y cha,nnel and some "clock" c 3 , which occurs a short 

time later, allows the contents of the error counter to be transferred to 

the Y-channel holding register, thus generating the condition C yi C y2 

Notice that the contents of the other (X , Z) transfer registers 

have not changed. As the Y -transfer register changes from the condition 

C yi • C y2 to C yi · C y2 , input B is switched out of channel Y and 

input D is switched in. When another failure has been detected, the 

error counter is advanced by one count. Whether its contents are then 

transferred to the X-, Y-, or Z-holding registers depends on the 

channel in which the error occurred. For example, if the second error 

was also in the Y channel (input D failure), a count of two would be 



transferred to the Y-holding register and the condition C yi · C y2 would 

be generated, thus switching input D out and input E in. However, 

had the second error occurred in the X channel, the count of two would 

have been transferred to the X-holding register and the condition Cxi · cx2 

would cause E to be switched in the X channel in lieu of input A . The 

conditions of the other holding registers would not change; therefore, the 

inputs being employed in those channels cannot change. 

The inputs to the next module are voted; thus, these inputs are 

correct as long as two out of the three inputs are correct. Therefore, 

there is no particular hurry to switch out the failed input and switch in a 

new input. This allows the possibility of setting up a sequence of events 

between a failure indication and the actual switching operation. For 

instance, if the spare inputs were in a power-off mode, it may be 

desirable to turn power on the next unit to be employed and allow a 

warmup period before it is actually employed in the system. Utilizing 

spares in the powered-down mode might possibly increase system 

reliability considerably. With only two operational inputs in a stage 

(i.e., all inputs are incorrect except two), there is a possibility of 

cycling; i.e. , the system searches for an input which agrees with the 

two being employed. This cycling is not detrimental to the system due 

to the voted output. The decision element also allows intermittent 

failures in that when a module fails, it is switched out; however, it will 

be used again at a later time. 
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It should be noted that the module-selection gates consist of 

three input AND circuits. The design herein is general and applicable 

to any number of inputs or modules. As another module is added, the 

number of inputs to each input gate is increased by one, and the number 

of gates in the X, Y, and Z channel is increased by one each. 

Additionally, to employ four modules, four flip-flops are required; 

i.e., one in the error counter, and one each in the X-, Y-, and Z­

transfer registers. By adding one more flip-flop to the counter and 

each of the registers, six modules can be accommodated. If it were 

then required to use seven modules, four more flip-flops would be 

required, but with the additional flip-flops, up to 1 O modules could be 

accommodated without having additional flip-flops. The relationship 

between the number of bits in the error counter and n is given by the 

expression 
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(3.4.7) 

where n is the number of modules employed and c is the number of 

flip-flops or bits required in the error counter. The total number of 

flip-flops required is 4c or FF 's ~ 41 n2 (n-2) . As n is increased 

by one, the total number of input gates is increased by three, and the 

total number of inputs to each input gate is increased by one. Therefore, 

it is readily apparent that the complexity of the decision element is more 

affected by additional flip-flops rather than gates. Very distinct increases 
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in complexity occur at n = 5, 7, 11, 19, etc. , because the maximum 

number of modules which can be used with a c-bit counter is 

c 
n = 2 + 2 

max 
(3. 4. 8) 

The number of discrete component parts necessary for the 

decision element is shown in Table 3. 4. 1. 7 As mentioned previously, 

definite jumps are noted at 5, 7, etc. 

The number of parts in a decision element has been plotted as a 

function of the number of modules employed in Figure 3. 4. 3. An, 

analytical expression for the number of parts in the decision element is 

desired to generalize the treatment. As shown in Figure 3. 4. 3, the 

function 

nv = (243 + 3n) l n2 (n-2) + 12n + 108 (3. 4. 9) 

7 The number of parts used in the logic becomes rather obscure 
when large-scale integrated circuits are used. The question then arises 
as to what a part is. Further, the reliability is often quoted in terms of 
a logic block, and little concern is given to what is in the logic block. 
Large-scale integrated circuits make the techniques used in this investiga­
tion even more attractive. However, to treat relative complexity, 
discrete component counts will be utilized. Anything gained through 
integrated circuits then will be over and above that considered here. It 
is reiterated that the techniques proposed herein become even more 
palatable or feasible when advanced circuit technology is utilized. In fact, 
the feasibility of such an approach may depend directly on technological 
development. If the proposed approach is not feasible today, it will 
become so at some future date. 



TABLE 3.4. 1 

NUMBER OF EQUIVALENT DISCRETE COMPONENTS REQUIRED 
FOR A GIVEN NUMBER OF MODULES 

Number of Modules Number of Component Parts 
Employed in the Decision Element 

3 21 

4 420 

5 655 

6 685 

7 960 

8 975 

9 1000 

10 1020 

fits the salient points on the graph; i.e., the points beyond which a 

large increase in decision element hardware is required to obtain an 

increase in reliability. If optimum n occurs below these points, it is 

safe to say from the previous discussion that n can be rounded up to 

these values with a minimum increase in complexity to achieve a 

sizable reliability gain. 

A decision element utilizing the design shown in Figure 3. 4. 2 

has been breadboarded for 10 inputs and is shown in Figure 3. 4. 4. The 
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design functions as expected and demonstrates the feasibility of the 

proposed approach. The breadboard was packaged in a small briefcase 

to make it portable and more convenient for demonstrational purposes. 

3. 5 SYSTEM OPTIMIZATION IN CORPORA TING THE 

GENERALIZED DECISION ELEMENT DESIGN 

An expression for R in terms of n is desired so that Equation 
v 

(3. 3. 13) can be evaluated. Since an exponential distribution is assumed 

for component parts in this investigation, the failure probability of the 

decision element is given by the relationship 

R 
v 

= 1 - e 
-n A.t 

v 
(3.5.1) 

where n is the number of components in the element, A. the average 
v 

component failure rate, and t the operating time. Differentiating 

Equation (3. 5. 1) with respect to n yields 

aR 
v 

an 

-n A.t an 
= A.te v v 

an 

where n is given by Equation (3. 4, 9) and 
v 

an 
v 

an = 31~ (n-2) + 
1. 44 (243 + 3n) + 12 

n-2 
(3. 5. 2) 
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Figure 3. 5. 1 shows n plotted as a funCtion of n [Equation ( 3. 4. 9)] and 
v 

in<Jicates that the curve is asymptotic to the line n = 2 . Figure 3. 5. 2 
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indicates how 
on 

v 
on varies with n and was obtained from Equation (3. 5. 2). 

Figures 3. 5. 3 and 3. 5. 4 show R and 
v 

oR 
v 

on plotted as a function of 

n , respectively. In Figure 3. 5. 4, a value of A.t = 10-4 has been 

arbitrarily chosen; however, this is a reasonable value. From this figure, 

it is evident that 
oR 

v 
on approaches zero as n increases, and from 

Figure 3. 5. 3 it is seen that R approaches unity as n increases. Thus, 
v 

for a very large n and small A.t , Equation (3. 3. 13) is given 

approximately by 

.tn n-1 
n-2 

~ - 1 
n 

This equation is only satisifed in the limit; i.e., as n approaches 

(3.5.3) 

infinity. Therefore, there is no theoretical limit in the reliability which 

can be obtained with the technique. However, there are several practical 

reasons why a limiting value should be placed on n . 

It is not necessary to utilize the figures to demonstrate that a 

reliability as close to unity as desired can be obtained. However, the 

curves help give an intuitive feeling of the influence of n on each 

parameter. Substituting Equation (3. 5. 2) into Equation (3. 3. 13) gives 
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f <n-1)R ,l [ J 
ln t n-2 vj = (n-1) - (it (1-R ) 71.t [ 31 ( 2) 1.44 (243 + 3n) 

v n2 n- + n-2 

(3.5.4) 

It is readily apparent from Equation ( 3. 5. 1) that R approaches unity . 
v 

as n increases without bound. From Equation (3. 4. 9), it is seen that 
v 

as n approaches infinity n must also increase without bound. In other 
v 

words, as n becomes very large, R approaches unity. Thus, the 
v 

right side of Equation (3. 5. 4) approaches zero as n approaches infinity. 

Since R and n-2
1 approach one in the limit, the left side also 

v n-

approaches zero as n increases without limit. Therefore, Equation 

(3. 5. 4) is only satisfied as n approaches infinity. It has not been shown 

yet that the vanishing of the derivative [i.e., satisfying Equation (3. 5. 4)] 

yields a minimum failure probability, but only that an extremum has been 

found. However, it will be shown through numerical evaluation that the 

extremum found indeed represents a minimum value. 

If 71.t is very small (of the order of 1 o-4 or less) , then 

-n At 
R 

v 
1 - n At = e ~ 

v v 

and 

-n A.t 
R 

m 1 - n A.t = e ~ 

m m 



or 

and 

R ~ n A.t 
v v 

R ~ n A.t 
m m 

Substituting these values into Equation (3. 3. 6) yields 

n 
m 

= 

n 
v 

n-2 = m 
(3.5.5) 

Thus, the number of modules into which a nonredundant system should be 

divided is given approximately by 

NT (n-2) 
m = = 

n 
v 

NT (n-2) 

(243 + 3n) J.. ~ (n-2) + 12n + 108 
(3.5.6) 

An alternate and more accurate expression for m can be obtained by 

noting that since 

Thus, 

R ~ (n-2) R 
v m 

and 

-n A.t R 

R ~ 
m 

R 
s 

m 

v s 
1 - e ~ (n-2) = 

( -N A.t) 
(n-2) 1 - e T 

m m 

( -N A.t) 
(n-2) 1 - e T 

1 _ e -[ (243 + 3n) J.. n2 (n-2) + 12n + 108] A.t 
(3.5.7) 
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or normalizing by letting t = A.~ , which is k times the mean time 
T 

between failures of a nonredundant system, Equation (3. 5. 7) becomes 

1 - e 

-[ (243 + 3n) 1. Di (n-2) + 12n + 108] 

NT 

The two previous equations are accurate only if 

mR ~ R 
m s 

is accurate. 

(3. 5. 8) 

A limiting value on m can be found from Equation (3. 5. 7) by 

letting NT approach infinity; thus 

n-2 
m = max 1 -[ (243 + 3n) 1. n2 (n-2) + 12n + 108] A.t 

- e 
(3. 5. 9) 

The failure probability of a redundant system can be expressed 

approximately as 

p = 1 - 1 - [:: (1 - Rv) + RJ n-
1 

( n - (n-1) [:: ( 1 - Rv) 

+Rv]} ro 
(3. 5. 10) 
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where as usual 

R 
s 

This equation has been numerically evaluated and P has been plotted as a 

function of m for discrete values of n when R = o. 632 and R = O. 865 
s s 

and for R = O. 1 and R = O. 05 in Figures 3. 5. 5 through 3. 5. 8. As 
v v 

indicated in these figures, ~ is the point where m RJ 

(n-2) R 
s 

R 
v 

theoretically has been determined to be the point where the system 

which 

failure probability is minimum. From these figures, there can be little 

doubt that the extremum found through theoretical analysis does indeed 

yield a minimum, as opposed to a maximum, failure probability. They 

also indicate that the approximations made in theoretically determining 

that m RJ 

(n-2) R 
s 

R 
v 

yields optimum design are accurate for all 

practical purposes. In addition, from these figures two additional facts 

may be noted: ( 1) after the optimum point has been reached, increasing 

m causes the failure probability to increase very slowly (i.e., m is not 

a very critical parameter) , and ( 2) n has much greater influence on the 

failure probability than m . 
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For optimum design, 

R = (n-2) R 
v m 

and Equation (3. 5. 10), which is an approximation, can be written exactly 

as 

- 2 J)lm 
- Rm (n-2) J 

(3.5.11) 

where 

This equation yields the optimum design of a system as a function of R , 
s 

n , and m , when utilized simultaneously with Equation (3. 5. 8). For a 

given n , m can be found from Equation (3. 5. 8), R can be calculated 
m 
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from the above equation, and finally P can be found with Equation (3. 5. 11). 

These two equations have been numerically evaluated for k = 1, 2, 3 ; 

i.e. ' R = O. 632, 0. 865, and O. 950. Figures 3. 5. 9, 3. 5. 10, and 3. 5. 11 
s 

show m plotted as a function P for values of n = 4 through n = 10 

and for R = O. 632, O. 865, and O. 950, respectively. P has also been 
s 
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plotted as a function of n in Figures 5. 3. 12, 5. 3. 13, and 5. 3. 14 for 

various size nonredundant systems for R = 0. 632, 0. 865, and 0. 950, 
s 

respectively. 

For illustration, consider three nonredundant systems which 

contain 25K, 50K, and 75K component parts. The 25K system will be 

taken as a reference and it will be assumed that it has a reliability of 

Rs = O. 632 or NTA.t = 1 ; i.e., it is to be operated until it reaches 

its mean time to failure. Since 

1 = 4 x 10-5 
25,000 

Assume that it is desired to achieve a reliability goal of 1 x 10-6 • 

How should each of these systems be organized? From Figures 3. 5. 12, 

3. 5.13, and 3. 5.14 it is found that n = 8. 6, 8.1, 8. 0 for the 25K, 50K, 

and 75K systems, respectively. Notice that since A.t is assumed to be 

constant, all three figures must be used. From Figures 3. 5. 9 through 

3. 5. 11, the values of m = 80, 195, and 335 are found which correspond 

to these values of n for the respective systems. The theoretical solution 

to this problem is summarized in Table 3. 5. 1. The significant points of 

Table 3. 5. 1 are that n does not change appreciably as the size of the 

system increases, because the failure probability is held constant, 

but m increases considerably, and the number of component parts in 
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a module decreases as NT increases. As noted in Figures 3. 5. 12, 

3. 5. 13, and 3. 5. 14, for a constant NT , to obtain an appreciable decrease 

in failure probability, n must change considerably. As expected, 

failure probability is more critically related to n , while the number 

of parts into which a nonredundant system is divided (m) is more 

closely associated with system size. 

TABLE 3.5.1 

THEORETICAL OPTIMUM DESIGN FOR THREE DIFFERENTLY 

SIZED HYPOTHETICAL SYSTEMS 

- -
NT R p n m n 

s m 

25K 0.632 1 x 10-6 8.6 80 313 

50K 0.865 1 x 10-6 8. 1 195 256 

75K o. 950 1 x 10-6 8. 0 335 224 

Since n (Table 3. 5. 1) is not an integer value, those organizations 

are not realizable. If it is desired to achieve a reliability goal of no less 

than 1 x 1 o-6 , then n must be rounded up to nine in the first two 

cases. But when this is done, the failure probability which can be 

obtained changes considerably. The results of practical systems 



utilizing optimum design are given in Table 3. 5. 2. As in the previous case, 

A.t = 4 x 1 o-5 has been assumed. The number of components required 

in the decision element can be found directly from Figure 3. 5. 1. The 

relative complexity (C ) will now be treated analytically in more detail. 
r 

TABLE 3.5.2 

REALIZABLE OPTIMUM DESIGN FOR THE PREVIOUS 

HYPOTHETICAL SYSTEMS 

- -
NT R p n m n n n /n c 

s m v v m r 

25K 0.632 4. 6 x 10-7 9 117 214 1000 4.67 51. 1 

50K 0.865 1. 15 x 10-7 9 315 159 1000 6.29 65.6 

75K 0.950 1. 0 x 10-6 8 335 224 900 4.02 40.1 

The complexity or the total number of components in a nonredundant 

system is given by the relationship 

N =n m T m 
(3.5.12) 

where n is the number of component parts in a module and m is as 
m 
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previously defined, the total number of modules in a simplex or nonredundant 

system. The number of components in a redundant module is given by 



(3. 5. 13) 

where n is the degree of redundancy applied and n the number of parts 
v 

in the decision element. For optimum design, it has been shown that 

or that the relationship 

n :::::i 
v 

-ln 

R :::::i 
m 

R 
v 

n-2 

-n A.t 
m 

should be satisfied. For small A.t , 1 - e and 

(3.5.14) 

n A.t 
v 

1 - e can 

be approximated by n A.t and n A.t , respectively, and the optimum 
m v 

design is given approximately by 

n :::::i 
m 

n 
v 

n-2 

In this case, Equation (3. 5. 13) can be written as 

N :::::i n(n-1) n 
m m 

(3. 5. 15) 

(3.5.16) 

or since the number of components in a redundant system is m times 

that in a redundant module, the total number of components in a 

redundant system is given by 

N :::::i n(n-1) n m 
r m 

(3. 5. 17) 
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The relative complexity of a redundant system to that of a simplex system 

is, therefore, found approximately by dividing Equation (3. 5. 17) by 

Equation (3. 5. 12), yielding 

C ~ n(n-1) 
r 

(3. 5. 18) 

For n = 3 , Equation (3. 5. 18) yields a relative complexity of six, which 

agrees with that found in Chapter II. The relative complexity estimated 

by Equation (3. 5. 18) is given more accurately by the relationship 

Since 

C =n 
r 

n = 
m m 

Equation (3. 5. 19) can be expressed as 

C =n 
r 

m 

(3.5.19) 

(3. 5. 20) 

By letting t = (i.e. , by normalizing by expressing t as k times 

the mtbf of a simplex machine), Equation (3. 5. 20) becomes 



(3.5.21) 

The complexity obtained from Equation (3. 5. 21) has been plotted 

as a function of m for several values of n when k = 1 as shown in 

Figure 3. 5. 15. As m increases, C rapidly approaches the value 
r 

approximated by Equation (3. 5. 18). Also, this equation is more 

accurate when n is small. Although the effect of k on the relative 

complexity cannot be determined from this figure, it can be shown that 

as k increases the curves approach more slowly the values estimated 

by Equation (3. 5.18). In other words, Equation (3. 5.18) becomes a 

better approximation as k and n become smaller; however, m has a 

dominating influence. The relative complexity is also given by the 

relationship 

c = 
r 

This relationship was used in calculating the values in Table 3. 5. 2 

because n and n were known. When Equations (3. 5. 18) and 
m v 

(3.5.22) 

(3. 5. 22) are equated and solved for n , the result is that obtained 
m 

previously in Equation (3. 5. 15). 

The results of this section have shown that infinite reliability can 

be obtained with the proposed approach under the assumption that a 

nonredundant system can be broken into as many modules as desired. 
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However, the approach is expensive since the relative complexity increases 

roughly as the square of the degree of redundancy employed when n is 

large [Equation (3. 5. 18)]. 

3. 6 CONSIDERATION OF THE REQUIREMENT 

FOR A SINGLE OUTPUT 

The previous development treated the idealized two-out-of-n 

organization with little regard to practical application. It has been 

shown that when this technique has been applied to a system, any 

desired reliability can be obtained if the resulting complexity can 

be tolerated. The question of the feasibility of application of this 

technique to a practical system arises: Can unlimited reliability 

really be achieved if relative complexity is not a factor? The answer 

to this question naturally depends on the system itself, and the remainder 

of this chapter will be devoted to a discussion of this question. 

The physical nature and requirements of the outputs of an 

individual system provide the key to the reliability which can be 

obtained with the technique proposed herein. If this technique can also 

be employed in the next system which follows it, or all the redundant 

signals can be used in the preceding system, then with the proposed 

technique a reliability as close to unity as desired can be achieved, 

provided that cost (i.e., complexity) is of no concern. However, in 

many applications, it is not possible to use multioutputs from a system. 



Suppose, for example, that signals from a digital computer system position 

a servomechanism system. It is conceivable that the servomechanism is 

redundant; however, it may also be possible, and more likely, that the 

servomechanism system is being used to position a single physical 

device. Thus, it is possible that regardless of the degree of redundancy 

that is applied internally in a system only one output can be accommodated. 

In any system, it is most probable that there exists a requirement for a 

single signal at some point, in which case the redundant system must 

be "necked" down to provide a single output. The single element which 

accomplishes the converging of the redundant signals must act in series 

with the redundant elements; therefore, it introduces the possibility 

of a single-point failure and thus limits the reliability of the total system 

because the reliability can never be greater than the reliability of this 

element. In terms of the previous discussion, this element is simply 

the decision and switching element which accepts n. inputs and provides 
1 

a single output. This element is identical to that shown in Figure 3. 4. 2. 

The old adage that a chain is no stronger than its weakest link 

also applies to the reliability of a system consisting of a chain of several 

elements. If a decision element at the output of a system is required 

which acts in series with the redundant system, the total system 

reliability can be no greater than the reliability of the decision element. 

Thus, system reliability becomes limited when viewed from this point. 
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However, this may not be a severe limitation because the overall system 

may consist of thousands or hundreds of thousands of component parts, 

while the single decision element may be made up of only a hundred or 

less component parts. The reliability of the configuration being considered 

is given by 

m-1 

x I - n-1 1-R m 
R v 

(3.6.1) 

where the first portion of the equation is the reliability of the m-1 stages 

containing a decision element with each module, the second portion is 

the reliability of the m th module containing no decision element, and 

R is the reliability of the single decision element in the serial chain. v . 

Notice that 

and since 

then 

+R 
v 

R 
m 

= 1 - R 1/m 
s 

R +R -R R m v m v 
= 1 - R R i/m 

v s 
(3. 6. 2) 



Since 

-n At 
R 

v = e v 

and 

-N A.t 
T 

R = e s 

k 
or when normalized about t = 

A.NT 

and 

R 
v 

R 
s 

Equation (3. 6. 2) can be expressed as 

R +R -RR m v m v 

-k = e 

= 1 - e 

-k ( nv + ·~) 
NT m 

(3.6.3) 

Substituting Equation (3. 6. 3) and the above relationships into Equation 

(3. 6. 1) yields 
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p = 1 -

n-1 [ ( )] ~) -kCV + ~) 
m ] n - ( n-1) 1 - e NT m 

m-1 

-k/m -k/m ( ) n-1 [ ( )] 
1- 1-e n-(n-1) 1-e e 

(3.6.4) 

where 

n = [ (243 + 3n)1 n2 (n-2) + 12n + 108] 
v 

Equation (3. 6. 4) has been numerically evaluated with the aid of 

a digital computer. The redundant system failure probability (P) has 

been plotted as a function of the number of modules in a simplex system 

(m) for various size systems and for NTA.t =k = 1, 2, and 3 in 

Figures 3. 6. 1, 3. 6. 2, and 3. 6. 3, respectively. From these figures, 

it is clear that P does indeed reach a minimum value. Figures 3. 6. 4, 

3. 6. 5, and 3. 6. 6 show m plotted as a function n for the parameters 

contained in the previous curves. The vertices of the curves ( i. e. , 

where n reaches a minimum value) correspond to the minimum P 

found in Figures 3. 6. 1 through 3. 6. 3. 

For illustration, consider a system consisting of 25, 000 

component parts and which has a reliability of O. 368 (k = 1) after some 

period of operation. Thus, 

1 
= 4 x 1 o-5 

25,000 
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A single output is required. What is the minimum failure probability 

which can be achieved, and how should the system be organized? From 

Figure 3. 6. 1, a minimum P of approximately 2. 12 x 10-2 is found 

at m ~ 110. Figure 3. 6. 4 gives the value of the degree of redundancy 

(n) which should be employed in the system at the point where m ~ 110 

and NT = 25, 000 to be 4. 4. The ratio of failure probability of the 

simplex system to that of the redundant system is approximately 30. 

Suppose that the simplex system just considered doubled its size 

in its development process. What is the minimum failure probability 

which can be obtained, and how should it be organized? Assuming the 

system had the same component failure rate and operating time, 

At = 4 x 10-5 , since NT has doubled, then k = 2 must be used; 

i.e., at 50K, m = 300 must be employed. In Figure 3. 6. 2, a minimum 

P of 2. 35 x 10-2 is found when m ~ 300. A value of n ~ 4. 7 is then 

found in Figure 3. 6. 5. Therefore, approximately the same failure 

probabilities can be achieved in the two systems by varying the way 

the nonredundant system is divided and by employing different degrees 

of redundancy. 

An interesting result is that the system is organized in such a 

manner to fulfill the m relationship folUld in Equation (3. 5. 9). 
max 

This function has been plotted and appears as a dotted curve in 

Figures 3. 6. 4, 3. 6. 5, and 3. 6. 6. It is seen that this curve passes 

through the vertices of the other curves, which indicates that as much 
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reliability as possible must be gained in the system through the sulxlivision 

of the nonredundant system. Although as shown previously, reliability 

is more readily affected by changing n rather than m for single 

output systems; increasing n causes the reliability of the last decision 

element to decrease, thereby decreasing the overall redundant system 

reliability. 

Since the values of n in the example are not integers, they 

are only of theoretical value and should be rounded for any practical 

application. However, theoretically they are of considerable value in 

determining the effects of system parameters on system reliability. 

Since the condition 

is always approximately fulfilled, it is possible to remove a variable, 

either NT or m , from Equation (3. 6. 4). Since NT is generally 

known, it may be more beneficial to remove m by substituting the above 

expression into Equation (3. 6. 4). The expression 



p = 
[ 

_ k(nv + _1) 
N n-2 

T 
1 - e 1 - . e 

k 
n-2 

e -n~i] 

n-
( -k(nv + _1 )) 

N n-2 
(n-1) 1 - e T · 

1 - 1 - e 

k 
n-2 

n - (n-1) 

(n-1) 

k ( _ e-

n-2 

k 
n-2 

e 

(n-1) 

e 

e 

is then obtained where 

n = [ (243 + 3n) tn2 (n-2) + 12n + 108] 
v 

n-2 
-kn /N 

1 v T -e 

(3.6.5) 

An evaluation of Equation (3. 6. 5) will not be undertaken since little 

additional information would be obtained. 
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The relative complexity of the system can be found from Equation 

(3. 5. 21) or (3. 5. 22). Since the value of n is limited, a limit exists 

in relative complexity. 

In this section it has been shown that the failure probability of a 

simplex system can be decreased considerably, particularly if the simplex 

system is very unreliable, even when a single system output is required. 

It has been determined how a system should be organized to achieve 

maximum gain in reliability. However, due to the single output require-

ment, it is not possible to obtain infinite reliability as in the last section. 

It is possible to obtain still greater reliability by using a 

majority logic two-out-of-three configuration in the single decision 

element. This type of element is illustrated and discussed in Chapter IV. 

The equations developed in this section can be readily modified 

to accommodate this situation by substituting R' given in Equation (4. 4. 1) 
v 

for R in Equation ( 3. 6. 1). This will not be done here since techniques 
v 

rather than numerical results are of prime interest. However, a 

limiting value in reliability will still exist because the output signal 

must still pass through, in this case, a single voter similar to that 

shown in Figure 2. 4. 1. Such a device would consist of only approximately 

20 component parts. The decision element considered in this section 

contained 400 to 650 parts, depending upon the degree of redundancy 

employed in the system; thus, the limiting value on failure probability 

would be expected to decrease considerably. 

112 



CHAPTER IV 

PRACTICAL SYSTEM OPTIMIZATION 

WITH CONSTRAINTS 

4. 1 INTRODUCTION 

In the previous chapters, optimization of an ideal system was con-

sidered. It was shown that for optimality, a system should be organized such 

R 
that R ~ 

m 
v 

n-2 
and that overall system reliability could be increased to a 

value as close to unity as desired, provided that system complexity could be 

tolerated and that the n redundant outputs could be utilized as inputs in the 

following system. If only one input could be accommodated by the next 

system, the failure probability of the system can be no less than that of the 

single decision element in the series chain. In addition, it was further proven 

that all the modules into which a nonredundant system was divided should 

have the same reliability and that the degree of redundancy applied to each 

module should be the same. These conditions lead to optimwn system 

reliability. The question now arises as to the practicability of this approach 

and the underlying asswnptions. If such an approach is not practical, how 

should a system be designed to achieve a reasonable gain in system reliability 
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with reasonable or limited resources? This problem can be framed in two 

basic ways as follows: 

1. Given a practical system (organized in a manner such that the 

modules do not have equal reliabilities), what is the maximum reliability 

which can be achieved within given complexity constraints such as cost, 

weight, power, etc? 

2. The dual problem to 1. is that given a reliability requirement, 

how can this requirement be achieved to minimize the resources, cost, 

weight, power, etc? 

Since it is quite likely that the reliability of the modules into 

which a nonredundant system can be naturally segmented will not be 

equal, it therefore follows that the degree of redundancy used at each 

stage may not necessarily be equivalent. This inherently introduces 

a new problem: that of interfacing or interconnecting n. redundant 
l 

elements in one stage to n. redundant elements in the next stage. 
J 

Notice that generally n. =F n. . One method of accomplishing this 
l J 

function will be covered in detail. 

There are several theoretical approaches which can be used to 

optimize a system under the above conditions. Classically, Lagrange 

multipliers might be used provided certain conditions, such as 

continuity and differentiability, are satisfied. It was shown in 

Table 3. 4. 1 and Figure 3. 4. 2 that in actual practice the reliability 

and number of component parts in the decision element are a discrete 
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function of n. , the degree of redundancy applied to the ith stage, although 
1 

for the development herein, a continuous approximation was used. Further, 

as the number of stages increase (they could conceivably approach a 

hundred) , the Lagrange formulation becomes unwieldy. 

Another technique which has been developed by Bellman (3) in 

recent years is the so-called dynamic, iterative, or recursive programming. 

This approach, which is numerical in nature and had to await the 

development of digital computer systems, circumvents the aforementioned 

problem of continuity and differentiability. In addition, a large number 

of stages can be adequately handled, provided sufficient computer capacity 

(time and memory) is available. From a practical point of view, 

however, the number of constraints which can be handled with this 

approach must be limited, again depending upon computer capacity 

and time available. The Lagrange formulation may also be coupled 

with the dynamic programming method to facilitate convergence. 

A technique has been proposed by Sasaki (16) which he says 

leads to optimum reliability gain with a minimum expenditure of 

resources. However, he does not prove this will always be the case 

and essentially just states a decision algorithm. The first method to 

be discussed herein yields results similar to those of Sasaki; however, 

derivation will be given to show under what assumptions this approach 
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should be used. In addition, Sasaki 's algorithm in general does not lead 

to the most economical system. The second method developed herein 

leads to the most economical design. 

Many figures of merit or criteria functions may be considered, 

and the final results possibly depend upon the one employed. Three 

basic criteria functions will be considered herein, and examples of each 

will be considered and the results compared. Many figures of merit 

have been proposed by various authors for numerous applications. A 

plausible criterion function to be first considered is simply (AP) ; 
max 

i.e., redundancy should be added to a system to maximize the gain in 

overall system reliability. The decision algorithm proposed by Sasaki is 

to increase the reliability of the least reliable stage which is a special 

case of the general case (AP) . It is not clear that Sasaki's 
max 

approach or that the function (AP) leads to a system of minimum 
max 

cost. Another criterion function that will also be discussed is 

( ~~) max , which represents the ratio of the gain in system reliability 

to the increase in the overall system complexity. In essence, it 

represents the system reliability and cost gradient and should, therefore, 

be as large as possible. This function does indeed yield optimum 

reliability at minimum cost. Still, another possible criterion function 

that can be used is A:/ ACC , which is defin.ed as the ratio of the 



percentage gained in reliability to the percentage increase in overall 

system complexity. 

The basic approach in this chapter will be to develop theorems 

pertinent to the criteria functions and decision algorithms without initially 

considering the decision element. An example will then be worked 

using each of these criteria functions, and the results will be compared. 

A decision element necessary for utilizing ni outputs with nj inputs 

will be proposed and it will be shown how the decision element may be 

included in the previous development. Finally, the example will then 

be revisited incorporating the decision element design. 

4. 2 DEVELOPMENT OF CRITERIA FUNCTIONS 

ANO DECISION ALGORITHMS 

In this section, the criteria functions mentioned in the previous 

paragraph will be discussed and developed in more detail. To facilitate 

this development, several theorems will be stated and proven. 

Theorem 1: In a system consisting of m serial elements with 

reliabilities Pi , PA , Pa • • • • • , p , respectively, and a system 
m 

reliability given by 

P=Pi 0 P2°Ps····· P m 

when parallel elements are to be added to the system, maximum gain in 

Ap. 
system reliability is obtained by adding it such that 1 is maximized. 

pi 
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Notice p. is the reliability of the ith stage which may either be nonredundant 
1 

or redundant with at least degree three. If the redundant two-out-of-n 

approach is being assumed, it must contain at least three parallel elements. 

Thus, initially, it may be required to add two parallel modules. 

Proof: Assume that the p. 's have been ordered such that 
1 

p1 < P2 < --- < p . The system reliability is given by 
m 

Adding Ap to the i th stage yields 

P +AP == Pt • P2 . . . (p. + Ap.} . . . p 
i i m 

(4. 2.1) 

(4.2.2) 

Notice that 
p 

== P2 P3 . . . . . p or that in general Equation (4. 2. 2) 
P1 m 

can be expressed as 

P +AP 
p 

(p. + Ap.) 
1 1 pi 

Ap. 
AP == 1 P 

p. 
1 

(4.2.3) 

Ap. 
Since P is a constant at any step, the maximum - 1 therefore will 

pi 

yield maximum gain in system reliability, AP , and the theorem is 

proven. 

Specifically, the two-out-of-n configuration is of basic interest 

herein. However, notice that Equation (4. 2. 3) is completely general and 



applicable to any redundant configuration. In Chapter III, it was shown 

that for a two-out-of-n configuration the reliability of a redundant stage 

is given by 

n. - 1 

pi= (1-Ri) 1 [1+(ni-1)Ri] (4.2.4) 

Adding another module to the ith stage yields a new reliability given by 

n. 
P~ = 1 - ( 1 - Ri) 1 [1 + niRi] (4.2.5) 

The reliability gained in the i th stage by adding another module therefore 

is 

n. 
D.pi == p~ - pi == 1 - ( 1 - Ri) 1 [1 + niRi] 

n -1 
D.p. == (1 - R.) i 

1 1 

n -1 
(1-R.) i 

1 

f 1 + (n. - 1)R. - (1 - R.) [1 + n.R.J} 
\ 1 1 1 1 1 

Equation (4. 2. 6) may be simplified and written as 

n -1 
D.p. = n. (1 - R.) i R.2 

1 1 1 1 

n -1 
i 

D.p. = n.R. 
1 1 1 

- 2 
(1-R.) 

1 

(4.2.6) 

(4.2.7) 
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When higher-order terms are neglected, Lip. is given approximately by 
1 

Llp. 
1 
~ n.R. 

1 1 

n -1 
i 

Equation (4. 2. 4) shows that 

n.-1 
p. = 1 - R. 1 

1 1 [ n. - (n. - 1)R.J 
1 1 1 

Again, neglecting higher-order terms yields 

p. R:J 
1 

n -1 
i 

1 - n.R. R:J 1 - p. 
1 1 1 

Therefore, solving Equation (4. 2. 9) for pi yields 

and the ratio of the 
Lip. 

1 

n -1 
- i 
p1. R:J n.R. 

1 1 

is given by the expression 

Lip. 

(4. 2. 8) 

(4.2.9) 

(4.2.10) 
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pi 1 1 
(4.2.11) = -- = 

pi 1 
1 - P. - 1 

1 
p. 

1 

Lip. 
In this case, a maximum ·p. 1 is obtained when the largest pi is used; 

1 

i.e., when the most unreliable stage is improved. This was the result 

obtained, or rather suggested, but not proven by Sasaki. However, it is 

not general and depends on the type of redundancy being utilized. For 
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example, it does not apply when going from a nonredundant module to a 

two-out-of-three redundant module; i.e., when adding two more modules 

in parallel. Since, in this case, it can be shown that 

~p. 
1 = R. - 2R.2 , 

1 1 
(4.2.12) 

then 

( :~i) 

(~~!) 
max 

p. 
1 

occurs when 
1 

Ri - 4 . The general case of 

which is always applicable will be utilized as one case in 

max 

the remaining work in this chapter. 

It is interesting to notice also that when an equivalent ~p has 

been applied individually to each stage, the greatest gain in system 

reliability is still realized when it is applied to the least reliable 

stage. Since it was assumed that p1 < P2 < P3 ---- < pm , and since 

~P. 
D.P. = 1 p 

1 P. 
1 

it follows that 

~ ~ ~ ~ P> P> P .... > P 
Pi P2 P3 Pm 

and that ~P1 > ~P2 > ---- ~P ; i. e. , the gain in system reliability 
m 

is greatest when the least reliable stage is made more redundant. In 



practice, however, it would be difficult to apply an equal .1.p to each 

stage since the nonredundant system possibly cannot be subdivided into 

modules of equal reliability. 

.1.P 
Theorem 2: The ratio .1.C is maximized when 

.1.p . 
l 

.1.n. c. p, 
l l l 

is 

maximized, where c. is the relative complexity of the ith nonredundant 
l 

module. In addition, redundancy is added in the most economical manner 

when this criterion is satisfied. 

Proof: If complexity were being determined in terms of the 

number of component parts, it could be represented by 

n . 
m1 

c. = --
1 NT 

where n . is the number of component parts in the ith module and NT 
m1 

the total number of parts in the redundant system. If weight were of 

concern, c. would represent the weight of the ith nonredundant module 
l 

to the weight of the nonredundant system. In general, cost, weight, 

and power can have weighted values such that c. can be expressed in 
l 

the form 

u. v. w. 
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1 b l l (4. 2. 13) c. =a + + c 

where 

l 

m 

L: u. ' 
. 1 l 
i= 

m m 

L: u. L: 
i=1 l i=1 

m 
l: v. , and 
. 1 l 
l= 

m 
V. L: w. 

l i=1 l 

m 
L w. 
. 1 l 
i= 

represent the total nonredundant 



system cost, weight, and power, respectively, and u. , v. , and w. the 
1 1 1 

cost, weight, and power of the ith module in the nonredundant system; 

a, b, and c are weighting factors representing relative importance 

of these factors. Thus, the complexity of the ith redundant module is 

given by the expression 

u. V. w. 
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c. 1 
b 

1 1 
(4. 2. 14) = n. c. = n. a + + c 

1 1 1 1 Ill Ill Ill 

~ u. ~ V. ~ wi 
i=1 

1 
i=1 

1 
i=1 

The change in system complexity by adding modules to the i th stage is 

equivalent to the change in module complexity and is given by 

u. v. W. 
AC =An. c. =An. 

1 
b 

1 1 
(4. 2. 15) a + + c 

1 1 1 m Ill m 

~ ui ~ vi ~ w. 
i=1 i=1 i=1 1 

Ap. 
1 

Theorem 1 shows that AP = - P ; thus, dividing this by Equation 
pi 

(4. 2. 15) yields 

AP 
AC = 

Ap.P 
1 

An. c. p, 
1 1 1 

and since P is a constant for each step, the desired result is obtained. 

The fact that the criterion leads to the most economy follows directly 



from the observation that the reliability/ cost gradient is optimized at 

each step; thus, the resulting system must necessarily yield the maximum 

reliability which can be obtained within given cost constraints or 

conversely minimum costs which are necessary to achieve a given 

reliability requirement. 

Theorem 3: The ratio ~P / ~C is maximized when ~~ 

is maximized. 

Proof: 

.6.P 
p 

.6.C 
c 

· .6.PC 
== P.6.C 

d . c 
an smce p is a constant at each step, the desired results follow 

immediately. 

.6.P 
Thus, from theorems 2 and 3, it is observed that both .6.C and 

.6.P 1.6.C . . .6.pi 
- -C are max1m1zed when A 

P '-l.n. c. P. 
1 l l 

is maximized. 

Two theorems due to Sasaki ( 16), although not directly pertinent 

to the developments herein, possibly are of passing interest and therefore 

will be included. 

Theorem 4: Assume that p < p. . If p. is increased by .6.p. , 
i J 1 l 

the overall system reliability may alternately be increased by an equivalent 
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amount when p. is increased by 
J 

~P. = 
J 

Proof: Assume that ~P. and ~P. are added to the ith and jth 
1 J 

stages, respectively, such that the overall system reliability gain is the 

same in each case. Further assume that the system has been ordered 

such that 

Then 

P1 < P2 < P3 ---- < P m 

P1 ' Pl · · • • P. 1 (p. + ~p.) · · · · P. · · · · P 1- i i J m 

= P1 · Pl · Ps • • • p. 1 P. · · · · P. 1 (p. + ~p.) " · • Pm 
1- 1 J- J J 
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(4. 2. 16) 

therefore, 

(p. + ~p.)p. = p. (p. + ~p.) 
1 1 J l J J 

and the desired results that 

follow immediately. 

~P. P. = p. ~P. 
l J l J 

~p. = 
J 

(4.2.17) 



Theorem 5: Assume that p, < P. . If p1, is increased by 6p. and 
l J l 

the result is such that 

.6..p, P. 
P. + 1 1 > 1 

J pi 

then the gain in system reliability is greater when p, is increased by 
l 

.6..p. than when p, is made unity.· 
l J 
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Proof: The reliability of the {h stage must be between O and 1, i.e., 

The above inequalities can only be satisfied if 

and the desired result is obtained. 

4. 3 ILLUSTRATION OF UTILIZATION OF CRITERIA 

FUNCTIONS AND DECISION ALGORITHMS 

Thus far, nothing has been said of a decision element which can 

accomplish the required function of interconnecting the n. stage outputs . . l 

to the n. inputs of the next stage and, as yet, no consideration has been 
J 

given to the incorporation of a decision element in the above theorems; 

this will be discussed later. However, it is instructive and beneficial 

at this point to illustrate how these theorems can be used in design 



optimization. From the theorems, it is obvious that redundant elements 

are to be added to one stage at a time so as to maximize one of the 

parameters. 

(~~) 
max 

= ( bop. ) 
b.n. c~ p. 

1 1 1 
max 

The first function establishes a procedure of adding redundant elements 

to give maximum gain in system reliability. In the second function, 

primary emphasis is placed on adding modules such that the reliability/ 

complexity gradient is maximized. Which of these methods one wishes 

to use depends on what one is after. Probably a more interesting 

question is: Do these criteria functions lead to the same results? 

As an example of the utilization of the criteria functions which 

result in decision algorithms, consider a nonredundant system with 

parameters given in Table 4. 3.1. The problem is to optimize the 

reliability of the redundant system within the constraints of a total 

cost not to exceed 99, a total weight less than 57, and a total power 

less than 83. It should be pointed out that the units on these can be 

dimensionless. Thus, the final system cost can be no greater than 

99/21 of the initial cost, final system weight no more than 57/12, 
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the initial weight, etc. Also, the problem of minimizing costs, weight, 

and power necessary to achieve a system reliability goal of o. 9995 will be 

treated for illustrative purposes. 

Stage 

1 

2 

3 

4 

5 

6 

Total System 

TABLE 4.3.1 

PARAMETERS OF A HYPOTHETICAL 
NONREDUNDANTSYSTEM 

Nonredundant Module Module 
Module Cost Weight 

Reliability (u.) 
l 

(v.) 
l 

0.99943 1 1 

o. 94064 2 1 

0.88185 3 2 

0.82306 4 2 

0.76427 5 3 

0.70548 6 3 

0.36790 21 12 

Module 
Power 

(w.) 
l 

1 

3 

2 

2 

4 

5 

17 

This problem will be solved with each criterion function developed 

previously. The first criterion function considered is 

(
Ap.) (.6.P) = _1 

max p, 
l 

max 
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The iterative process or decision algorithm to determine the 

maximum reliability within the constraint condition is as follows: 

D.p. 
1. For each possible stage change, calculate --1 • Since a 

pi 

two-out-of-n configuration is being assumed, the initial increment will 

be to add two modules to the stages as determined by 

m 
2. The new complexity value is calculated from ~ n. u. , 

. 1 1 1 
l= 

m m 
~ n. v., and 

. 1 1 1 
~ n.w. 
. 1 1 1 
l= 

where n. is the number of modules employed 
1 

l= 

by the 1. th t d d th t s age, an u. , v. , an w1 are e cos , 
1 1 

power values associated with the i th module. 

3. The process continues as long as 

K -
u 

m 

~ n. u. ::=::: D.n. (u·) 
·111 l l. i= min 

weight, and 
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where K is the uth constraint, etc. In this example, K = 99 , 
u u 

K = 57 and K = 83 . 
v ' w 

d. After two modules have been initially assigned to a stage when 

1. ts (6Ppi~ \ ) occurs, only one module at a time is assigned to a 

max 

redundant element. In other words, if a nonredundant module is chosen 

by the criterion function to be made redundant, two modules are initially 

assigned to it. Thereafter, only one additional parallel module can be 

assigned to that redundant stage at any particular step . 

.6.p. 
Thus, the first step is to calculate - 1 for each possible 

pi 

stage change. Since no redundancy has been added to the system, this 

value is given in general by 

3R.2 - 2R.3 - R. 
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6p. 
1 

= 
1 1 l 

R. 
= 3R . - 2R. 2 - 1 

1 1 
(4. 3.1) 

1 

or expressing Equation (4. 3. 1) in terms of R. and simplifying yields 
l 

6p. 
1 

.6.p. 
1 

The - for the various stages has been calculated and is 
pi 

given as follows: 

(4.3.2) 



~ = 0.00057 ~ = 0. 11432 
Pt P4 

~ = o. 05231 ~ = 0. 12459 
P2 Ps 

~ = 0. 09023 ~ = o. 12104 
P3 Ps 

(Notice that for this initial step, Equation (4. 2. 12) indicates that maximum 

Ap. 
l 

occurs for R. closest to 0. 2500; thus, the initial maximum 
l 

could have been determined by inspection. ) 

AP. 
l 

Since ~ is the largest value, and since this is the initial 
Ps 

assignment to that unit, two modules will be added. It will then have 

a failure probability given by 

P5 = 3R52 - 2R53 = 0. 14051 

The remaining resources to be allocated are 

6 
99 - L n. u. = 99 - 31 = 68 ~ 1 

. 1 l 1 
l= 

6 
57 - L n. v. = 57 - 18 = 39 ~ 1 

i=1 
1 l 

6 
83 - L n. W, = 83 - 25 = 58 ~ 1 

i=1 
1 1 
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Notice that since this is greater than An.(c.) = 1, other allocations 
l l . mm 

are possible. 

A new ~ is calculated by adding one module to the 5th stage. 
Ps 

In general, for one additional module, Ap. is given by Equation (4. 2. 7) 
l 

which is 

Thus, for the 5th stage .6.p5 is 0. 09738 and ~ is 0. 11329. This value 
P5 

is compared to those previously calculated for the other stages, the 

largest value is chosen, and that stage's degree of redundancy is increased 

by one or two, depending on whether this is the first allocation to that 

stage. 

The ~ = 0. 12104 is now observed to be maximum; therefore, 
Ps 

two modules are added to it giving a failure probability of p6 = O. 20912. 

The resources available for allocation after two modules have been added 

th 
to the 6 stage are 

6 
99 - ~ n. u. = 99 - 43 = 56 

i'7'1 l l 

6 
57 - ~ n. v. = 57 - 24 = 33 

. 1 l l 
i= 
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6 

83 - ~ n. W. 
. 1 1 1 
1= 

83 - 35 = 48 

The sequence in which modules are added to the various stages is 

shown in Figure 4. 3.1. The circled numbers indicate the step in the 

process. For example, the first step is to increase the number of 

modules in stage 5 from one to three, the second step is to increase the 

number of modules in stage 6 to three, etc. The value of the criterion 

function, 
~P. 

1 

pi 
, at each step is also shown in this figure. The dashed 

line (step 13) indicates that this stage was selected to be made more 

redundant, but that a constraint would have been exceeded if this were 

done. Therefore, the largest value of the criterion function which does 

not exceed the constraints is chosen. The final system configuration is 

given in Table 4. 3. 2. 

The total overall system reliability is O. 951709 and the total 

cost, weight, and power are 98, 54, and 79 units, respectively. The 

relative cost, weight, and power when compared to that of the nonredundant 

system are 4. 67, 4. 50, and 4. 65, respectively. Appendix B. 1 gives 

more detail about the computer program which was used in the 

optimization process and presents the detailed parameters of the system 

after each step. 
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DEGREE OF REDUNDANCY 

STAGE 3 4 5 6 

0.000669 1 ._. __ .,. 

0.062313 
0.000741 

0.090231 0.033874 0.005161 

3 

0.114324 0.069373 

4 
I 
I 

0.124603 0.113293 I 0.031985 

6 ,---®··)I 
I I I 
I I I 

0.121036 0.163763 I 0.055259 I 0.006685 I 
I I 

6 

Figure 4. 3. 1. Optimization Sequence for Criterion Function 

(AP.) (AP) = - 1 
max p. 

1 max 

This approach and computer program can also be used in 

achieving a specific reliability goal. In this case, the constraint conditions 

are removed and the process is continued until the goal has been reached. 

The parameters of the system are then read out of the program at this 

point. As an example, it is desirable to determine the cost, weight, 

and power in achieving a reliability goal of o. 9995. Detailed data are 

also given in Appendix B.1. The process proceeds initially as in the 



previous example, but is carried on for several more steps. The final 

system configuration and parameters are summarized in Table 4. 3. 3. 

TABLE 4. 3. 2 

SUMMARY OF RESULTS FOR CRITERION FUNCTION 

( Ap.) 
(AP) = - 1 

max P. 
1 

max 

Number of Stage 
Stage Modules Reliability 

1 1 0.999430 

2 4 0.999201 

3 4 0.993987 

4 4 0.980782 

5 5 0.987472 

6 6 0.989967 

P (overall System Reliability) = O. 951709 

~ n. u. (cost) = 98 
1 1 

~ n. v. (weight) = 54 
1 1 

~ n. w. (power) = 79 
1 1 
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TABLE 4. 3. 3 

'SUMMARY OF RESULTS FOR ACHIEVING A RELIABILITY 
GOAL OF O. 9995 FOR BOTH CRITERIA FUNCTIONS 

Number of Stage 
Stage Modules Reliability 

1 3 0.999999 

2 5 0.999941 

3 6 0.999875 

4 8 0.999963 

5 9 0.999932 

6 10 0.999877 

p = o. 999588 

Cr (cost) = 8. O ( 168 units) 

Cr (weight) = 7. 75 (93 units) 

Cr (power) = 7. 76 ( 132 units) 

Figure 4. 3. 2 indicates how P varies with cost for each step in 

the process. The other parameters, weight and power, have very 

similar shaped curves, _and it is not worthwhile presenting them. 

Table 4. 3. 3 indicates also that the relative complexities in cost, weight, 

and power are nearly equal at the conclusion of the process. 
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Goal of 0. 9995 with the Criterion Function 

(AP.) (AP) = _1 
max p. 

1 
max 

The example will now be solved, using the criterion function 

( An~:~ p.) 
l l l 

max 

where values of a = b = c = O. 3333 are used in c. which 
l 

was calculated from Equation (4. 2.13). The steps in the process along with 

the value of the criterion function at each step are shown in Figure 4. 3. 3. 
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Detailed data concerning variations of system parameters in. the process 

are presented in Appendix B. 2, and a summary of the final results is 

given in Table 4. 3. 4. 

DEGREE OF REDUNDANCY 

STAGE 3 4 5 6 7 

0.004600 I 
1 I 

0.006260 I 
2 

0.221016 I 
I 

0.316846 0.237897 I 
3 I 

0.361182 0.438346 0.096706 I 
4 2 I 

I I 
0.258366 1 0.469846 0.037875 I -

I 
6 --{15}-;.1 

I - I 
0.218786 I I ,.. ::'I 6 --114'"-.. , , 

Figure 4. 3. 3. Optimization Sequence for Criterion Function 

( AP) ( Api ) 
AC = An. c. P. 

max i i i 
max 

The results obtained in utilizing this criterion function to achieve a 

reliability goal of O. 9995 are identical to those given in Table 4. 3. 3. 

However, a comparison of Figures 4. 3. 1 and 4. 3. 3 indicates that the 
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TABLE 4.3.4 

SUMMARY OF RESULTS FOR CRITERIA FUNCTIONS 

( 6.P) ( 6.pi ) 
6.C = 6.n. c. p. 

max 1 1 1 
max 

Number of Stage 
Stage Modules Reliability 

1 1 0.999430 

2 4 o. 999201 

3 5 o. 999118 

4 5 0.995793 

5 5 0.987472 

6 5 0.971243 

p = o. 952892 

L n. u. (cost) = 99 
1 1 

L n. v. (weight) = 55 
1 1 

L n. w. (power) = 78 
1 1 

steps in arriving at this common solution are quite different. Detailed 

data concerning the process may again be found in Appendix B. 2, and 

Figure 4. 3. 4 indicates how P varies with relative cost. 
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Goal of 0. 9995 with the Criterion Function 

( AP) ( Api ) 
AC = An. c. P. 

max i i i 
max 

It is desirable to compare the two criteria functions which have 

been developed and the results obtained from the dual problem; i.e., of 

maximizing reliability within given constraints and minimizing complexity 

in achieving a reliability goal. For comparing the results of maximizing 

reliability in the presence of constraints, Tables 4. 3. 2 and 4. 3. 4 may 

be used along with the sequencing information contained in Figures 4. 3. 1 

and 4. 3. 3. From Tables 4. 3. 2 and 4. 3. 4 it is noted that the final 

configurations differ; 1, 4, 4, 4, 5, and 6 modules are used in the 
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(
b.p.) 

consecutive stages when Pi1 is utilized while 1, 4, 5, 5, 5, 

max 

and 5 modules are used in the consecutive stages when 1 

b.n. c. p. 
l l l 
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( 
b.p. ) 

max 

is used. Therefore, the resulting reliabilities differ, O. 951709 found 

from (~~i) 
max 

as compared to O. 952892 from (b.n~:i. p.) 
l l l 

max 

(
b.p.) ( b.p. ) 

The ratio of --1 : b. 1 
P. n. c. p. 

for cost, weight, and 
l l l l 

max max 

power is 98: 99, 54: 55, and 79: 78, respectively. It is significant to 

notice that with ( b.pi ) the constraint in cost was reached 
b.n. c. p. 

l l l 
max 

but not in the other cases. In general, this criterion utilized more resources, 

although this is untrue in the case of power, so possibly this is the reason 

why a higher reliability is obtained. Figure 4. 3. 1 shows the sequence in 

which modules are added to the stages is 5, 6, 6, 4, 5, 3, 4, 6, 2, 3, 5, 6, 

and 2 for ( b.ppii) 

4, 2, and 3 for 

and Figure 4. 3. 3 shows 4, 4, 3, 5, 5, 3, 2, 6, 6, 6, 5, 

max 

( 
b.p. ) 

b.n. c~ p. 
l l l 

max 

( b.ppii) Thus, initially 

max 

concentrates more on the most unreliable modules while 1 ( 
b.p. ) 

b.n. c. p. 
l l l 

max 



is initially more concerned with modules of intermediate reliability 

and does not select the most unreliable modules until later in the process. 

Figures 4. 3. 2 and 4. 3. 4 illustrate the results obtained with the 

two methods in obtaining a reliability goal of O. 9995. The final result 

for both methods was identical and is summarized in Table 4. 3. 3. 

However, it may be concluded from Figures 4. 3. 2 and 4. 3. 4 where the 

steps at which the results are identical are marked (i.e., steps 10, 11, 

14, 15, 18, 19, 20, 26, and 29) that it was only coincidental that the 

final results agree. The number of steps required to reach the design 

goal was the same; therefore, it may be concluded that one method 

does not converge any faster than the other. Also, the shapes of the 

curves are similar and fall very close to each other. Generally, at 

( D.ppii) each step the reliability of 

max 

is higher but the relative 

complexity is also higher, which is simply the nature of the two functions. 

The subject of optimality in many cases must be treated more 

qualitatively than quantitatively. For instance, there may be little 

debate about the outcome of an optimization process once a particular 

criterion has been selected; however, at the present time, there is no 

universally accepted criterion function which serves all optimization 

processes. Any criterion function must be tailored to one's particular 

aims, needs, and goals. For this reason, this section as well as the 

next may not appear to be mathematically rigorous. The criteria 
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functions themselves have been developed with a fair degree of mathematical 

rigor; however, the question of what constitutes a good criterion function 

still remains. Much more work is required and this area is recommended 

for further research. 

From the examples, can any general conclusion be drawn, and is 

one approach preferable to the other? Some conclusions which may be 

drawn are: 

1. The criterion (AP) yields the steepest ascent for 
max 

increasing system reliability, and at each step has at least as high a 

system reliability as the other method. However, this is no surprise 

since it was designed specifically for that purpose. 

2. For the function ( ~~) , the steepest ascent approach 
max 

has been tempered somewhat to take into consideration system 

complexity. The result is that generally the relative complexity is always 

less than or equal to that obtained with the other method. 

3. By maximizing reliability in the presence of constraints, 

maximizing 
AP 
AC 

results in a higher system reliability because the 

resources were more efficiently utilized. 

4. In obtaining a reliability goal such that resources are 

minimized, the same results were obtained. However, this is only 

coincidental as can be seen by comparing the results at each step. 

The rapidity of convergence of the two methods is quite close. 
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5. The criterion (~~) allows the constraints to be weighted, 
max 

thus all constraints are considered simultaneously. Weighting of constraints 

may be important since they may not always have the same criticality. 

The value of the constraints imposed on the system can conceivably be 

independent of the criticality of the constraint. 

(~cP) From the above, it is concluded that the ~ criterion 
max 

is superior to (D.P) since consideration is specifically given to 
max 

system economy. The reliability which can be gained may not always 

exceed that obtained with (D.P) , but the ratio of gain in system 
max 

reliability to the increase in system complexity is always assured to be 

greater. 

4. 4 A DECISION ELEMENT FOR STAGES WITH 

DIFFERENT DEGREES OF REDUNDANCY 

The theorems which have been developed include no provision for 

decision element reliability, unless possibly it can be lumped with the 

p. 's . If this cannot be done, then the above theorems must be modified 
l 

so that the reliability of this element is taken into consideration. At 

this point in the development, it is advantageous to consider the logical 

characteristics of the decision element, 



In the previous chapter, the logic was developed for utilizing n 

outputs of one stage with n inputs of the next stage. In other words, 

the stages employed the same degree of redundancy. In this chapter, 

this restriction is removed and the formidable problem of adapting n. 
1 

outputs of one stage as n. inputs of the next stage is encountered. 
J 

This basic problem is aggravated considerably because the problems 

of fault masking, failure detection and isolation, module switching, 

etc., now become embedded in the overall problem. 

Several approaches to the problem are possible. The approach 

which is most appropriate must be tailored to the specific application. 

One approach which could be used is to employ a single decision 

element similar to that developed in Chapter II. The system 

organization suggested in Chapter III, however, employed as many 

decision elements as modules for the obvious reason of deleting 

single point failures, although considerable expense may be encountered 

in doing this. As module-to-decision element complexity increases, 

a single decision element has a decreasing effect on the overall system 

reliability. Thus, the question of whether to use a single element or ni 

elements can only be answered when the overall system design and 

application have been considered and when tradeoffs have been made 

in system reliability and complexity. A single decision element is 

not proposed here because of the possibility of single point failures 
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and because such an approach evades the basic problem. On the other 

hand, n. decision elements (i.e., one with each module) will not be 
l 

proposed because of system complexity and because it does not solve 

the basic interconnection problem. 

The decision and switching element to be considered here is a 

compromise between single point failures and complexity and offers 

a feasible solution to the interconnection problem. It utilizes the 

two-out-of-n approach; however, it is suggested that n be limited to 

three. Unless n is limited to three, the age-old question of "who 

checks the checker" arises, and the interconnection problem still 

exists. A block diagram of the redundant majority logic decision 

element is shown in Figure 4. 4. 1, A decision element as previously 

designed has been triplicated; the output gating which is fed back to 

the module selection logic has thus been previously voted. The outputs 

to the next stage have also been voted with inputs from different 

channels. Since there are three X's, three Y's, and three Z's, 

33 or 27 different combinations are possible; i.e. , 27 outputs are 

possible which have been derived from differently voted signals. A 

one-to-one correspondence may be noted in Figures 4. 4. 1 and 3. 4. 2. 

Twelve voters per channel or a total of 36 are required in the decision 

element, plus one additional voter per output. 

If a voted feedback control signal is in error, then another 

module is switched into that particular channel; however, it should 
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not affect system operation as long as the other two channels are 

functioning properly. A failure in a voter which feeds the next stage 

would effectively result in the decision element in the next stage 

detecting the error as a failure in one of its modules and then 

switching out that module. Since the decision element is primarily 

two-out-of-three logic, each element would have a reliability closely 

approximated by 

R I = 3R 2 - 2R 3 
v v v 

where R is the reliability of a single decision element and must be 
v 

modified slightly to include the additional voters. It is, therefore, 

noted that R and consequently R ' will be a function of the 
v v 

number of component parts utilized in the ith redundant stage. 

With this method of implementation, it is necessary that the 

previously developed criteria functions be modified to include the 

decision element before design optimization is possible. With this 

approach, the basic theorems are applicable when p. and c. have 
1 1 

been modified to include decision element parameters. 

Since R = e 
v 

-n A.t 
v k 

, when t == 
A.NT 

channel of the decision element is given by 

R = e 
v 

the reliability of one 
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(4.4.1) 

(4.4.2) 



where n = (243 + 3n) .tn2 (n-2) + 12n + 350 , as shown in Chapter III, 
v 

except the constant 108 has been increased to 350 to account for the 

12 voters in each channel. Each voter is assumed to contain approximately 

20 components. Thus, the reliability of the redundant decision element 

is found from Equations (4. 4. 1) and (4. 4. 2) to be 

2kn 
v. 

l 

3kn 
v. 

l 
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R' = 3e v. - 2e (4.4.3) 
l 

The normalized complexity of one decision element channel 

when k = 1 is given by 

(243 + 3n.) J. ~ (n. - 2) + 12n. + 350 
l l l 

c = 
vi NT 

For the total redundant decision element, the relative complexity is 

approximately three times that of a single channel and is given by 

c = v. 
l 

3 [<243 + 3ni) .t ~ (ni - 2) + 12ni + 350] 

NT 

(4.4.4) 

(4.4.5) 

Thus, when consideration is given to the decision element, the relative 

complexity of a redundant stage is given approximately by 



C. = a 
l 

+ b 

+ c 

u. 
l 

m 
Y' u '"'"' . . 1 l l= 

v. 
l 

m 

2: v . 
. 1 l i= 

w. 
l 

m 

2: w . 
. 1 l l= 

+ 3 [(243 + 3ni) J. ~ (ni - 2) + 12ni + 350 J 
NT 

3 [(243 + 3n.) J. ~ (n. - 2) + 12n. + 350 J 
l l l 

+ 
NT 

+ 3 [(243 + 3ni) J. n2 (ni - 2) + 12ni + 350 J 
NT 

Equation ·(4. 4. 6) can be simplified to yield 

C. = 3(a+b+c) 1 [ 
(243 + 3ni) J.n2 (n. - 2) + 12ni + 350] 

i NT 

u. v. w. 
l 

b 
l l 

+ a + + c 
m m m 

2: u. 2: v. 2: w. 
i=1 

l 
i=1 

l 
i=1 

l 

If a, b, and c are normalized such that a + b + c = 1 , then 

Equation (4. 4. 7) can be written as 
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(4.4.6) 

(4.4.7) 
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(4. 4. 8) 

u. v. w. 
1 

b 
1 1 

+ a + + c 
m m m 

L u. L v. L w. 
i=1 

1 
i=1 

1 . 1 1 l= 

In Equations (4. 4. 6) through (4. 4. 8), it has been assumed that the cost, 

weight, and power of the decision element are linearly proportional 

to the number of component parts contained in this element. In any 

case, if the cost, weight, and power of the decision element are known 

as functions of the number of component parts employed in the element, 

then these can be incorporated in the above expressions. 

t.P 
It is desirable for computational purposes to use t.C in a 

slightly different form than has heretofore been used. The complexity 

of the ith stage is given by Equation (4. 4. 8). The change in system 

complexity, resulting from adding additional modules to the ith stage, 

is identical to the change in the ith stage complexity and is given by 

u. v. w. 
t.C = t.C. = t.n. 

1 
b 

1 1 
a + + c 

1 1 m m m 

L u. L V. L w. 
i=1 

1 
i==1 

1 
i=1 

1 
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(4. 4. 9) 

where the last term is the ratio of change in decision element complexity 

to the complexity of the entire nonredundant system. 

thus, 

where 

In theorem 1, it was shown that 

c. =a 
l 

D.P 
D.C 

= 

u. 
l 

m 

L u. 
i=1 

l 

+ b 

D.p, 
l 

v. 
l 

m 

L 
i=1 

+ 

v. 
l 

(4. 4. 10) 

w. 
l 

c 
m 

L w. 
i=1 

l 
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as before, and 

an t:: (243 + 3n.) .t n2 (n. - 2) + 12n. + 350 
v 1 1 1 

(4. 4. 11) 

[<243 + 3ni_1) 1 ~ (ni_1-2) + 12ni-i + 350 J 

From Chapter III, 

follows that 

an 
v 

an 
v 

() 
n 

was determined by Equation (3. 5. 2) and it 

[ ( 1. 44 (243 + 3n) + 12] 
i:::i 3 .t ~ ni - 2) + n _ 2 ani 

i 

Since an is calculated by a digital computer as an iterative process, 
v 

this approximation is not necessary; therefore, the former expression 

will be used. Since P is the system reliability before additional 

modules are added to the i th stage and is therefore constant at any 

step in the optimization process, the criterion function can be expressed 

as 

(~~) 
max 

( 
3an ) 

an. c. + -N v p. 
i 1 T 1 

where c. and an. are as previously given. 
1 1 

(4. 4. 12) 

max 
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It is also desirable to express the overall relative complexity 

constraint in terms of individual weighted constraints. This is very 

important for two reasons: ( 1) all constraints are taken into 

consideration simultaneously, and (2) the criticality of each constraint 

can be weighted to take into consideration its relative importance. 

This can be accomplished with the relationship 

ac + be + cc 
C (constraint) 

u v w 
(4.4.13) = 

r m m m 
a Lu. + b L v. + c L w. 

. 1 1 . 1 1 . 1 1 l= l= i= 

where c , c , and c are the constraints of the redundant system, 
u v w 

including the decision element in cost, weight, and power, respectively1 a, b, 

and c are weighting factors indicating relative importance of constraints 

c , c , and c , respectively; and u v w 

m 

L U, ' 
. 1 1 l= 

m 
L v. , and 
. 1 1 l= 

are the u, v, and w nonredundant system parameters assumed 

m 
L W. 
. 1 1 l= 

herein to be cost, weight, and power, respectively. In the previous 

example, which is to be reexamined, c = 99 c = 57 c = 83 u , v ' w 

6 
l: u. = 21 
. 1 1 l= 

6 
l: v. = 12 
. 1 l l= 

6 
and l: w. = 17. With 

. 1 1 l= 



a = b = c = O. 333 as before, the overall relative complexity constraint is 

determined to be 

C (constraint) = 
r 

o. 333 (99 + 57 + 83) 
o. 333 (21 + 12 + 17) 

= 239 = 4. 78 
50 

The reliability required in the criterion function is the product of 

the reliability of the stage [derived from Equation (2. 2. 2)] and the 

reliability of the decision element [Equation (4. 4. 3) with k = 1], 

and is given by 

2n 
v. 

l 

3n 
v. 

l 
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3e 
NT 

- 2e 
NT 

(4.4.14) 

where n is a function of n. as previously shown. Notice, however, 
v. l 

l 

that as given in Equation (4. 4. 14), the reliability of the decision element 

1 
has been normalized about t = -- ; i.e., the nonredundant system 

A.NT 

1 
has a reliability of 0. 368 when t = A.N . or NTA.t = 1 . If NT is 

T 

increased in this equation and R is assumed to be constant, this 

would have the effect of decreasing A.t. If A. is considered to be 

constant, then an increase in NT results in a decrease in t . If t is 

assumed constant, then an increase in NT results in a decrease in A. . 



Therefore, caution must be used in the application of Equation (4. 4. 14) 

in which R. is the ith module reliability at the mtbf of the redundant 
1 

system. The example considered in the previous section was designed 

with this in mind. 

Equations (4. 4. 9) and (4. 4. 14) therefore allow the criterion 

function Equation (4. 4. 10) to be evaluated giving consideration to the 

incorporation of the decision element. Notice, however, that an 

additional system parameter, NT , has been introduced and will be 

assumed to be known. For illustration, it will be assumed that 

NT = 50, 000 and the previous example will be revisited. Assuming 

that NT = 50, 000 implies that >..t = 2 x 10-5 . 

To solve the problems of designing a redundant system to yield 

maximum reliability within an overall relative complexity of 

C (constraint) = 4. 78 , and in achieving a reliability goal of O. 9995 
r 

with minimum expenditure of resources, a computer program very 

similar to that used previously has been developed and utilized. 

In the program, it has been necessary only to modify the reliability 

and complexity equations. The sequence of steps taken in the process 

of maximizing reliability in the presence of constraints is shown in 

Figure 4. 4. 2 and may be used in a manner similar to previous 

discussion. The final results and system parameters are summarized 
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in Table 4. 4. 1. Detailed data concerning system parameters at each 

step in the optimization process are presented in Appendix B. 3 along 

with the computer flow diagram. 

STAGE 

2 

3 

4 

5 

6 

DEGREE OF REDUNDANCY 

3 4 5 

0.003804 

0.201317 0.067887 0.003570 

9 3 

0.293018 0.211722 0.032016 

3 6 

0.336561 
0.396064 0.089277 0.018579 

2 

0.246516 
0.439172 0.126227 0.035703 

4 5 11 

0.209995 
0.558340 0.191794 0.066946 

7 8 10 

Figure 4. 4. 2. Optimization Sequence of System With 
Decision Elements for Criterion Function 

6.p. 
1 (~~) = 

max (-6.n. c. + :v) p. 
i 1 T 1 

max 
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TABLE 4.4.1 

SUMMARY OF RESULTS OF OPTIMIZING A SYSTEM WITH DECISION 
ELEMENTS UTILIZING THE CRITERION FUNCTION 

(~~) = 
max 

Number of 
Stage Modules 

1 1 

2 4 

3 4 

4. 5 

5 5 

6 5 

.6.p, 
l 

( .6.n. c. + N3nv) p. 
i i T l 

max 

Stage Reliability 
(Including Decision Element) 

0.999430 

0.998700 

0.993497 

o. 995013 

0.986699 

0.970483 

P (overall system reliability) = 0.944827 

C (total) = 4.712 
r 

It is interesting to compare the results of Table 4. 4. 1 with those 

of Table 4. 3. 4 to determine the effect of the decision elements. It is 

noted that the decision elements reduced system reliability from 

O. 952892 to O. 944827. The overall complexity constraint of the 
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system was not used in Table 4. 3. 4 since individual constraints were 

employed. However, since a = b = c = O. 333 , it is calculated to be 

c = 
r 

o. 333 (99 + 55 + 78) 
0.333 (21+12+17) = 

232 
50 

- 4. 640 

The relative complexity of a system with decision elements is shown 

in Table 4. 4. 1 to be 4. 712. This comparison is illegitimate in several 

respects; one being that if an overall constraint of 4. 78 had been 

imposed on the system of Table 4. 3. 4, then more redundant modules 

would have been added and the reliability of that system would have 

been greater. It is clear, however, that incorporating the decision 

element into the model has adversely influenced system reliability. 

Table 4. 4. 2 is the results obtained in an attempt to achieve a 

reliability goal of o. 9995. Since a maximum reliability of only O. 990275 

was obtained, the goal was not achieved and the result was a dismal 

failure. Detailed results at each step are shown in Table B. 3. 2 of 

Appendix B. The last entry in this table indicates that according to 

the decision rule if another module had been added to any stage after 

this step, the system reliability would have been reduced, since all 

criteria values would become negative; i.e. , .6.p, becomes negative. 
l 

This is because the reliability of the decision elements decreases more 

than that gained in the stage by adding additional modules. Thus, a 

limiting value in system reliability has been found. 
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TABLE 4.4.2 

SUMMARY OF RESULTS IN OBTAINING A RELIABILITY GOAL 
IN A SYSTEM WITH DECISION ELEMENTS 

FOR CRITERION FUNCTION 

(~~) = 
max 

Number of 
Stage Modules 

1 1 

2 4 

3 5 

4 6 

5 7 

6 9 

.6.p. 
1 

(n. c. + 3Nnvi) P. 
\ i i T i 

max 

Stage Reliability 
(Including Decision Element) 

0.999430 

0.998700 

0.998335 

0.998077 

0.997772 

0.997921 

P (overall system) = 0.990275 

C (total) = 6. 656 
r 

Although the results bf this section vastly differ from those of 

Chapter III, where it was shown that infinite reliability is theoretically 

and physically possible under ideal conditions, it has been shown that 

from a practical point of view, system reliability can be substantially 
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increased from O. 368 to O. 944827 within the constraints imposed. A 

maximum reliability of O. 990275 was achieved without regard to system 

complexity. In any case, however, it must be concluded that considerable 

differences exist in ideal and practical models. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 SUMMARY 

This investigation develops a generalized approach which can be used 

with parallel redundancy of three degrees or greater. Idealized models of 

parallel redundancy have been studied previously by several investigators 

with the assumption that only one-out-of-n parallel units must be operational 

for the redundant module or stage to be functional. But the problem of pro­

viding a decision element to detect and isolate failures and then without inter­

ruption to switch to a parallel module has not heretofore been considered. 

When this has been done, the idealized model changes drastically. Thus, a 

primary concern in this investigation has been to develop a generalized deci -

sion and switching element for a two-out-of-n parallel redundancy configura­

tion, which is physically realizable and which can be used for an arbitrary 

number of inputs. System organization optimization from a reliability 

viewpoint utilizing this generalized element is then considered. Chapter II 

provides a technical introduction and the foundation upon which the 

other chapters are based. Although generalized equations for a 

two-out-of-n system are developed in Chapter II, beyond this, the 
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chapter is treated as a special case of the two-out-of-n configuration with 

n = 3 . The logic necessary for fault masking, failure detection and 

isolation, and module switching is developed. The problem of breaking 

a nonredundant system into modules and then making them redundant 

to maximize the overall redundant system reliability is considered. 

Also, the number of nonredundant elements which can be expected to 

fail before the redundant system fails is developed in Appendix A. 

The generalized problem is then treated in detail in Chapter III. 

The logic necessary for the generalized decision element is developed. 

The complexity of this element is projected as a function of the number 

of inputs to it. It is also shown that optimum reliability results 

when redundant modules have the same reliability; i.e., when the 

level and degree of redundancy are the same in all the stages. With 

the decision element, which has been developed, and a system organized 

as recommended, a reliability as close to unity as desired can be 

obtained. However, system complexity is approximately the 

square of the number of parallel modules employed in each stage. 

System reliability as close to unity as desired can only be 

obtained if the next system can accommodate or utilize the generated 

n-redundant system outputs. If the next system can utilize only one 

input, then the signals must be "necked" down through a single decision 

element. However, this single decision element is identical to those 

employed throughout the redundant system. In this case, the redundant 
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system reliability is limited and can be no greater than the reliability of 

the decision element. System organization is then viewed from this 

standpoint. The necessity of a single decision element may not severely 

limit the gain in reliability which can be obtained with the proposed 

method because a nonredundant system may consist of hundreds of 

thousands of component parts, while only a hundred or so are required 

in the decision element. 

A more practical system approach is considered in Chapter IV 

where the assumptions that a nonredundant system has been divided 

into modules of equal reliabilities and that identical degrees of redundancy 

are applied at each stage have been removed. This inherently 

introduces a new problem: interfacing n. outputs from one stage 
1 

with n. inputs to the next stage. A method is proposed to solve 
J 

this problem. A primary objective of Chapter IV is to find a solution 

to the problem; given system constraints, such as cost, power, weight, 

etc. , how can the reliability of the system be maximized; or conversely, 

given a reliability goal, how can this goal be achieved to minimize 

these resources? Criteria functions are proposed and developed that 

lead to decision algorithms which can be used to solve these problems. 

Initially, the decision element is ignored in the illustrative example. 

However, after the decision algorithms have been thoroughly discussed 

and understood through examples, they are extended to include 

consideration of the decision element. The examples considered 

previously are then revisited. 
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5. 2 CONCLUSIONS 

The technique proposed herein for theoretically obtaining and 

physically realizing ultrareliability through redundancy depends to a 

very large extent upon the development of a decision element for fault 

masking, failure detection and isolation, and module switching. 

Although idealized models have been studied for some time where only 

one-out-of-n parallel modules was required to be functional, little 

practical value resulted from these models. In the idealized mathematical 

models, the decision element may have been included only as a 

mathematical symbol. However, the basic problem is that a generalized 

decision element satisfying the requirements of such a model has 

never been designed or physically realized. A two-out-of-n system 

is proposed for the simple reason that a generalized decision element 

can be realized. The basic approach to a two-out-of-n configuration 

is derived from the concept of majority logic, but the term "majority 

logic" is no longer descriptive for the generalized case. 

A generalized decision element which can perform the functions 

of fault masking, failure detection and isolation, and module 

switching has been developed. Figure 3. 4. 2 shows the logic design 

of this element for six inputs, and the constructed breadboard 

(Fig. 3. 4. 4) accommodates 10 inputs. A particular advantage which 

has been realized through the logic development of the decision element 
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is that it is possible to project its complexity for an arbitrary number of 

inputs, thus yielding reliability estimates as a function of the number 

of inputs. 

With the two-out-of-n configuration and the assumption that a 

decision element is employed with each module, maximum reliability 

R 
of the redundant system occurs when R R:: __.:!_ where R is 

m n-2 ' m 

the failure probability of a nonredundant module and R is the failure 
v 

probability of the decision element; R is also a function of n . 
v 

It has also been shown that for maximum reliability all modules 

should have the same reliability and that the same degree of redundancy 

should be applied to each stage. If the n outputs from the system 

can be utilized as inputs to the next system (i.e., the redundancy 

approach can be carried through to the next system), then a reliability 

as close to unity as desired can be obtained. However, such an 

accomplishment is not without penality. The relative complexity of 

the redundant system organized in an optimum manner compared 

to a nonredundant system is given by n(n-1) or, for large n, by 

approximately the square of the degree of redundancy utilized. 

If only one input can be accommodated in the next system, a 

single decision element must be employed at the last stage, and the 

reliability of the redundant system is limited and can never be 

greater than the single element. In practical applications, this is not 

a severe limitation because the decision element may consist only 
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of a hundred or less component parts while the nonredundant system may 

contain thousands or even hundreds of thousands of component parts. The 

assumption that it is possible to subdivide a nonredundant system into 

m modules of equal reliabilities is not very practical, although from a 

theoretical standpoint, it is very valuable in establishing the possibility 

of the existence of an upper limit on reliability. However, it has been 

shown that there is no upper limit to the reliability which can be 

achieved with the proposed technique. 

The division of a nonredundant system into segments of equal 

reliabilities is, quite likely, impractical. In this case, it necessarily 

follows that the degree of redundancy applied to these modules may be 

different. This introduces a new problem: designing a decision element 

which can accept n. inputs and produce n. outputs. A single 
1 J 

decision element designed herein could be used for this function; 

however, the entire redundant system would fail when a decision 

element fails. To circumvent this problem, it is proposed that 

two-out-of-three majority logic be employed in the decision element. 

This does not create severe system limitations since in a practical 

application the complexity of the system will likely be much greater 

than that of the decision element. Furthermore, the interconnection 

problem can be readily solved with this approach. 

With the above practical considerations, the question arises as 

to how to maximize system reliability within given constraints, such as 



cost, weight, power, etc., or conversely how to meet a reliability goal 

while expending a minimum amount of resources? To provide a solution 

to this problem, figures of merit or criteria functions are investigated. 

These lead to decision algorithms which are used in a recursive or 

iterative manner to arrive at a solution. Two criteria functions 

investigated in detail are (~P)max and (~~) . In the first 
max 

case, redundant elements are added to the various stages in a manner 

to yield greatest gain in system reliability. In the second case, 

modules are added to maximize the reliability and complexity (cost, 

weight, or power, etc.) gradient. It follows that if ~~ is maximized 

at each step in the process, then the final system will also possess a 

maximum ~~ • Detailed examples have been considered both with 

and without the decision element. An illustrative example has been 

considered in detail to show generally how the optimization process is 

accomplished with the type of configuration proposed herein. 

5.3 RECOMMENDATIONS FOR FURTHER STUDY 

One can draw an analogy between an investigation of this nature 

with its many related facets and a long hall with many branching 

corridors. One could easily take any one of these; however, if this 

happens, then one does not accomplish his goal. There are, therefore, 

several related areas requiring research which for several reasons 

could not be undertaken here. The investigation which has been performed 
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required specialization in each of three areas: ( 1) digital system logic 

design, (2) probability theory, and (3) system optimization techniques 

which is often considered to be in the field of operations research. 

Therefore, any of the tasks mentioned will fall in one or more of these 

areas. The sequence in which the items for further study are listed in 

no way indicates the order of importance or preference. 

where 

1. A closed-form solution should be developed for 

m 

j [1 - . L (~) Rn-i (1-R)i] dt 
0 i==n-1 

R == e 

kt 
m 

The above integral represents the mean time to failure of a redundant 

system with m identical modules, each with a redundancy of degree n. 

This integral was solved numerically in Appendix A. Although a closed-

form solution for the integral is possible as shown in the appendix, 

a great deal of difficulty was encountered in evaluating the integral 

for large m . It appears that the solution of this integral might be 

expressed in terms of the Bessel function of the first kind or possibly 

in terms of Legendre polynomials. A neat, closed-form solution 

which can be readily evaluated is desired. 
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2. Logical design and development of a decision element which 

will accept n. inputs and yield n. outputs. The case of i = j has 
1 J 

been covered in this investigation and a majority logic approach has 

been proposed which circumvents the problem. However, the basic 

requirement suggested is to design a single ( nonredundant) decision 

element for i * j where both i < j and i > j are possible. 

3. The optimization technique proposed and the results obtained 

herein should be studied and compared with those obtained from dynamic 

programming. Are there clear advantages to either method? 

4. The redundancy technique proposed herein is primarily for 

digital systems. How can this technique be adapted for use in analog 

systems, and is it practical? 

5. It was suggested that the majority logic technique along with 

the proposed decision element could be used in a system where manual 

repair and replacement were possible, not necessarily just to increase 

system reliability but primarily to reduce system downtime, trouble-

shooting time, repair time, etc. What are the tradeoffs in redundant 

system costs versus the saving obtained by a reduction of these items? 

6. In some applications, a single decision element may be 

desirable between the redundant stages rather than utilizing a decision 

element with each module. It is certainly less expensive. If this 

were done, since the failure probability of the decision element increases 



exponentially with the degree of redundancy employed, one would expect 

a limiting system reliability. This aspect should be investigated in much 

the same manner as that undertaken herein. 

7. With the advent of large-scale integrated circuits, 

redundancy techniques possibly could be used to overcome some of the 

production yield problems. Thus, many circuits could be made 

redundant on one chip which could therefore tolerate several failures 

before having to discard the chip. With a nonredundant chip, a single 

failure results in a loss of the entire chip. Is there reason to consider 

this approach from an economic standpoint? 

8. Adequate consideration has not been given to majority logic 

of higher degree than three. What is required, for example, in a 

decision element for a five-out-of-nine configuration and how does 

this affect the overall system organization? Is such a configuration 

feasible when the logic for the decision has been considered? 

9. Multiprocessing is of current interest in the computer 

field. One of the primary problems in multiprocessing systems is to 

inhibit a malfunction in a particular processor from destroying the 

operation of a complete system consisting of several individual 

processors. Can the techniques of failure detection and isolation 

developed herein be advantageously employed in a multiprocessing 

system? 
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10. In the field of operations research, there is a dire need for 

determining methods and procedures for establishing overall system 

reliability goals. What usually happens is that, due to lack of 

direction, when a reliability goal is to be established, top management 

simply pulls a number out of the air. However, a reliability goal 

should be considered as insurance, for it is a way of expressing the 

chances of something being successful on a particular trial. Are 

expected losses being minimized, or are human lives being protected? 

This, of course, depends on the system under consideration, but in 

any event, a method needs to be developed to express areas of primary 

concern (i.e., objectives) in terms of a reliability goal rather than 

to choose a number which is palatable and pushes the state-of-

the-art, etc. An actual example of a so-called reliability specification 

is given by the following example: One of this country's future 

space systems is to be designed such that "two failures could be 

tolerated without loss of mission and the third failure should not result 

in loss of the vehicle." The exact meaning of this ground rule is left 

to the imagination of the reader; but in all fairness, it should be 

pointed out that many thousands of engineering manhours have been 

expended on its interpretation. Perhaps, this example exemplifies 

the point and stresses the necessity for mathematical analysis of 

management problems, particularly in the area of reliability. 
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The preceding items which are recommended vary greatly from 

a well-defined problem (item 1) to the investigation of a completely new 

discipline (item 1 O). However, this is as it should be, and it 

emphasizes the great need and the latitude that one has in this 

relatively new and fertile area of research. 
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APPENDIX A 

NUMBER OF FAILURES MOST LIKELY TO OCCUR 

IN A TWO-OUT-OF-n REDUNDANT SYSTEM 

BEFORE SYSTEM FAILURE 

An interesting problem not only from an academic standpoint but also 

one which arises in the application of replaceable modules, is the 

question of how many module and voter failures can one expect to have 

occurred before the redundant system fails. The answer to this question 

will give some insight into how often maintenance is required in a 

redundant system. To treat this problem, a slight digression is 

necessary to define and develop expressions for mean time between 

failures (mtbf). 

The mtbf is an interesting and sometimes useful parameter in 

reliability theory. 8 Two specific requirements for any probability 

or reliability distribution function are: 

8 Although the mtbf is a very useful parameter, its value in 
determining the reliability of a system should not be overemphasized. 
Redundant systems whose reliability may be very good over some 
predetermined time period may fall off very rapidly and would not have 
an extremely large mtbf. The mtbf is of considerable value; however, 
when estimating equipment downtime, the number of failures most likely 
to occur in any time frame, etc. 
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1. The distribution function R (t) must satisfy 

R(t) -o as t-o 

R (t) - i as t - co 

Here, R (t) denotes the probability of failure which is a function of time. 

2. When the frequency function is integrated with respect to time 

between the limits of - co to +co , a unit value must be obtained. The frequency 

function is obtained by differentiating R ( t) with respect to time. Thus, 

00 

d R (t) f dt 1 = 
dt 

-00 

or, since time cannot be negative, 

00 

d R (t) f dt 1 = 

0 
dt 

The mean or expected value is by definition the first central moment 

and is given by 

00 

T = f tf(t)dt 
-00 

where f (t) is the frequency function. Thus', the above equation can 

be written as 

T = 
00 f t d R (t) dt 
0 dt 

(A. 1) 
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The mtbf can be written as a function of R, which often results in a more 

compact and useful form. Let 

then 

u = t 

dv = dR dt 
dt 

du = dt 

v=R 

and Equation (A. 1) takes the form 

or 

00 00 

T = udv = uv - J vdu J J v=oo 

0 v=O 0 

00 

J t=oo J = t(1-R) t=O - (1-R)dt 
0 

00 00 

J 
t=oo 

= (t - tR) t=O f dt + f Rdt 
0 0 

00 

= tRJ t=oo + f Rdt 
t=O 

0 

(A. 2) 

(A. 3) 



Because 

R - 0 as t - oo 

and 

R - 1 as t - 0 

the first term vanishes leaving 

00 

T = f Rdt 
0 

(A. 4) 

For a nonredundant system, 
-NTA.t 

R = e , where NT is the number 

of components (diodes, resistors, capacitors, etc.) in the system, A. is 

the average component failure rate, and t is the operating time. 

Equation (A. 4) may be readily evaluated to yield 

oo -N A.t 
T = f e T dt 

0 

where A.NT is defined as the nonredundant system failure rate. 

(A. 5) 

The reliability of one triplicated redundant stage (m=1) is given by 

where R =R R =e 
m v 

P = 3R2 - 2R3 

-A.t(n +n ) 
v m 

For optimization 1 n ~ n , 
v m 

and because replication occurs at the systems level n + n ~ 2NT , 
m m 

(A. 6) 
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Equation (A. 6) can be written as 

-4NTA.t -6NTA.t 
P = 3e - 2e 

Integrating Equation (A. 7) between the limits of 0 and oo yields an 

mtbf of 

T m=1 
= 

5 
12 A.N 

T 

Thus, it is seen that the mtbf of a redundant system triplicated at the 

system level is approximately only one-half that of a nonredundant 

system. However, the reliability of the redundant system is higher 

for R :S 1/2 or for t :S 0.693 T ; i.e., when the operating time 
s 

is less than O. 693 times the mtbf of a simplex system. The system 

(A. 7) 

(A. 8) 

just considered is of no practical interest since the nonredundant system 

consisted of only approximately 20 component parts because 

optimization was assumed; i.e., n = n and the decision element 
v m · 

can be designed with 20 parts. However, the point that mtbf and 

reliability have different meanings in redundant systems is well 

demonstrated. 

The remainder of this appendix consists of determining the mtbf 

of a redundant system with n degrees of redundancy applied at each 

stage, and for a nonredundant system which has been divided into 

m modules of equal reliability. When this parameter has been 
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determined, the number of failures which may be expected to have 

occurred within the redundant system at the mtbf can then be estimated. 

The relative complexity of decision element to module will be treated 

as a system variable, but the system will be numerically evaluated 

for optimum design. 

The reliability of a redundant system containing redundancy of 

n degree and cons is ting of m identical modules is 

P = {1- O-R)n- 1 [n- (n-1)RJ}m (A. 9) 

where R is the reliability of each module and decision element and is 

given by the expression 

R = R R 
m v 

-n At -n A.t 
m v 

= e e 
-A.t(n + n ) 

m v 
(A. 10) = e 

where A. is the average component failure rate, tis the operating time, 

and n , n are the number of parts in the module and decision 
m v 

element, respectively. Letting a= 

Equation (A. 10) becomes 

R = e 

n 
v 

n 
m 

and n = 
m m 

m 
(A. 11) 
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and Equation (A. 9) can be written as 

[ ( 
(1+a)NTAt \l) 

n - (n-1) 1 - e m }j 
m 

(A. 12) 

This function must be respected, because considerable 

difficulty arises when an attempt is made to integrate it in closed form 

with respect to time between the limits of O and oo • Two specific 

cases, n = 3 and n = 4 , will be treated before an attempt is made to 

obtain a generalized solution to this problem. 

For n = 3 , Equation (A. 12) may be written as 

- 2e (A.13) 

Expansion of Equation (A. 13) yields 

I ( (1+a)NT71.t) 
- 2 (l+a)NT7l.t m m-1 - m 

P=e 3 -m3 2e 

( 
(1+a)NT71.t) 2 

m-2 - m 
+ m(m-1) 3 2e + .••••••• 

(A.14) 

, (n-1) (1+a)N~t l 
n-1 m-n+1 - m 

+ 2 m(m-1) (m-2) .••• (m-n+2) 3 e 
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This series can be integrated term by term since it converges absolutely 

for any value of m . When this is done, the result is 

1 

or in general 

2m2 3m-1 

2m + 1 
22 m2 (m-1) 3m-2 

+ I 
2 ! (2m + 2) 

+ •••.•• 
n-1 n-1 m-n+1 l 

(-1) 2 mm.! 3 
+ (n-1) ! (m-n+1) ! [2m + (n-1)] f 

1 m (-1)k 2k mm! 3m-k 
TR = (1+a)ANT ~ k ! (m-k) ! (2m + k) 

k=O 

(A. 15) 

(A. 16) 

The summation in Equation (A.16) in many respects resembles a Bessel 

function of the first kind; however, an unfruitful effort resulted from an 

attempt to define the equation in these terms. 

For n = 4 , the reliability is given by the series expansion 

( 
(1+a)NT;l.t 

m-2 - m 
+ m(m-1) 6 Be 

(A. 17} 

( 
(1+a)NT;l.t 

m-3 - m 
- m(m-1) (m-2) 6 Be 



Equation (A.17) can be written in the form 

P = e -2kt [a -be - : + ce !t -de 
3
:: + ..... , , , . ] 

where 

m 
a = 6 

m-1 
b =Sm 6 

m-1 m-2 
c = 3m 6 + 32 m(m-1) 6 

d = 24(m) (m-1) 6m-2 - 256 m(m-1) (m-2) 6m-3 
3 

or Equation (A. 18) can be written as 

2kt 
. -kt( 2i:-1) -kt( 2n:2) -kt ( 2i:-3 ) 
be + ce - de + P = ae 

m 

Since Equation (A.19) has a finite number of terms (m+1) for any 

m < oo , it converges absolutely and can be integrated term by term 

between the limits of 0 and oo yielding 
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(A. 18) 

(A. 19) 

(A. 20) 
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Thus, the mtbf of a redundant system can be expressed as a function of 

k = ( 1 +a) ANT . This is important because numerical methods can be 

used to evaluate the integral given in Equation (A.12) by assuming some 

value of k. For adequate precision, numerical integration is necessary 

rather than an evaluation of the series given in Equation (A.16). For 

example, utilizing a Univac 1108 digital computer and double precision 

arithmetic, m is restricted to be less than 20 when the series evaluation 

approach is taken. The functional form of Equations (A.16) and (A.20) is 

given by 

1 
TR= k f(m,n) or f(m,n) = krR (A. 21) 

The number of terms in the series expansion of f(m,n) is determined 

by n while m establishes the value of the function for any given n. 

The integral of Equation (A. 12) between the limits of O and oo 

can be found 'utilizing one of several numerical techniques. Simpson's 

rule has been used herein, and the mtbf is given approximately by 

TR = ~t [P(t=O) + 4 P(t=1) + 2 P(t=2) + 4 P(t=3) + ••••••• 

(A. 22) 

+ 2 P(t=998) + 4 P(t=999) + P(t=1000)] 

Equation (A. 12) is therefore evaluated at t = 0, 1, . . . • , 1000, and 

Equation (A. 22) is evaluated at these points. The term k/m was chosen such 



that • 002 ::s: k/m ::s: O. 003. This choice assures that the integral 

converges and also gives reasonable accuracy. 

where 

The error of the approximation is given by 

AM ::s: E ::s: AM' 

A = 6.ti (b-a) 
180 

I 
M and M are the largest and smallest values, respectively, of the 
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fourth derivative of the function P within the limits of integration a and 

b. M' and M can be found by the Gregory-Newton interpolation 

formula given by 

(2)( ) __!... [A2 (J-l) A3 (6j2 - 18j + 11) A4 ] pj x 2 '-' p + '-' p + 12 '-' p + ..•. 
At o o o 

(A. 23) 

(3)( ) 
pj x 1 [ 3 (~) 4 ] At3 A po + 3 A po + .••. 
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The actual error depends on the specific values of n and m used; 

however, the maximum error over the range of values considered here 

is approximately -0. 0011 =s e =s + O. 0017. 
max 

Before discussion of the results of the evaluation of Equation (A. 22), 

it is desirable to proceed with the derivation of the number of failures 

expected in the redundant system before system failure. The total 

number of equivalent modules in the redundant system is given by 

C = nm(i+a) 

where n and m are the degree and level of redundancy employed and 

a is as previously defined. The reliability of one module is given by 

Letting 

and 

t = T = 
R 

R 
m 

-n A.t 
m 

= e 

n -
m m 

f (m, n) 
k 

= f (m, n) 
(1+a)A.NT 

Equation (A. 25) can be written as 

R =e 
m 

f(m,n) 
m(1+a) 

(A. 24) 

(A. 25) 

(A. 26) 
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Thus, Equation (A. 26) gives the reliability of a single module at the 

mtbf of the redundant system. Equation (A. 24) gives the equivalent 

number of modules employed in the redundant system. 

The number of failures which can be expected to have occurred by 

time TR is simply the mean or expected value of the binomial 

distribution and is given by 

µ =C(1-R) 
f m 

[ 
f(m, n)] 

- m(1+a) = nm(1+a) 1 - e 

The standard deviation in the number of expected failures with 

a binomial distribution is 

Notice that since 

and because the mtbf in the nonredundant is given by 

f (m, n) 
m(1+a) 

(A. 27) 

(A. 28) 

(A. 29) 
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Equation (A. 29) can be expressed as 

f(m,n) (A. 30) 

Equation (A. 30) gives more of an intuitive feeling for the function 

f(m, n) than the previous equations. 

It is shown in Chapter III that for optimum design 

and Equation (A. 27) can be written as 

[ f(m,n)J 
- m(n-1 

µf ~ n(n-1)m 1 - e ) (A. 31) 

or by substitution of Equation (A. 30) as 

[ 
TR ] ---

IDTS 

µf = n(n-1)m 1 - e 

When the product m(n-1) is large, the standard deviation of the 

estimate is given by approximately Jlii . 

From the numerical evaluation of f(m, n) 
TR 

the ratio of - can 
TS 

be found from Equation (A. 30). Figure A.1 shows this ratio plotted 

as a function of n for several values of m when optimum system 

design is assumed; i.e. , when a 
n 
v ~ n-2 . It is noted that for 

n 
m 
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a given m , a maximum results from a specific n ; e.g. , for 

m = 50 , a maximum is noted at approximately n = 9 . 

Increasing n further causes to decrease slowly. Although it is 

not shown in the figure, the ratio is less than one for any 

m ~ 7 and n ~ 11 . 

Figure A. 2 shows the number of failures expected in the 

redundant system, µf , plotted as a function of m for several values 

of n . Again, it has been assumed that the system has been optimally 

designed or that a= n-2 . Redundant system complexity is given by 

Equation (A. 24); e.g., in a system which has been optimally 

designed with m = 100 and n = 5 , approximately 110 failures could 

be expected to have occurred before the redundant system fails. 

However, the nonredundant system contains 100 modules and the 

redundant system contains 

C = nm(1+a) = n(n-1)m = (5) (4) (100) = 2, 000 

equivalent modules. Thus, the redundant system can only tolerate 

approximately 5. 5-percent failure in the total system before failure. 
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10 100 
Ill ,,.. NUMBER OF MODULES 
IN NONREDUNDANT SYSTEM 

1000 

Figure A. 2. µf Versus m Where a= n /n ~ n-2 
v m 

The factor TRk has been plotted as a function of m for several 

values of n in Figure A. 3. Nothing new can be obtained from this 

figure and it has been presented only as a means of quickly determining 

TR for any value of a , i\ , and NT ; e.g., for m = 100 and n = 5 , 

a value of 22. 5 is shown in Figure A. 3 with 

a = 1 

i\ = 1 o-8 failures/hr 

22.5 22.5 
= 45 x 103 hrs/failure. 
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APPENDIX B 

COMPUTER PROGRAM FLOW DIAGRAMS AND 

DETAILED RESULTS OF THE 

OPTIMIZATION PROCESSES 

This appendix presents detailed information concerning the 

computer programs and mathematical computations which were utilized 

in the optimization processes considered in Chapter IV. The appendix 

is divided into three sections: the first treats the optimization 

(
Ap.) 

process employing the criterion function (AP) = - 1 
max p. 

1 
max 

( AP) ( Ap. ) the second the function AC = An. c~ p, 
max i i i 

max 

and the third modifies the second function to include the decision element 

and is given explicitly by the function 

Ap, 
1 

( 
3An) 

An. c. + -N v p. 
i i T i 

max 

In each section, the dual problems of organizing a system to optimize 
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reliability within given constraints and of achieving a reliability goal 

with minimum resources are treated. 

B. 1 COMPUTATIONS FOR CRITERION FUNCTION 

(
6.p.) (6.P) = _1 

max p. 
l 

max 

Figure B. 1. 1 illustrates the logical flow diagram of the 

computer program utilized in the optimization process with the criterion 

function (
6.p.) (6.P) = _1 

max p. 
l 

max 

. The flow diagram is straight-

forward and requires little explanation except possibly definition of some 

of the terms used. The system inputs are defined as follows: 

N Number of stages or modules into which a nonredundant 

u 

v 

w 

R. 
l 

u 
c 

v 
c 

w 
c 

system has been divided. 

Parameters of each module, taken here to be cost, 

weight, and power. Thus, in the example used, there 

are six each of these. 

Failure probability of the ith module. 

Constraints in redundant system cost, weight, and 

power, respectively. 
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I This is a bit which determines the dual problem to be 
c 

a 

b 

c 

solved; i.e. , maximize system reliability within given 

constraints or achieve a reliability goal with minimum 

resources. 

Reliability goal to be achieved when I is set to a 
c 

logical "1." 

Weighting factors which can be applied to cost, 

weight, and power, respectively. 

Detailed computer printouts showing the results of the dual 

problem at each step in the process are shown in Tables B.1. 1 and 

B. 1. 2. 

B. 2 COMPUTATIONS FOR CRITERION FUNCTION 

( .6.P) ( .6.pi ) 
.6.C = .6.n. c. p. 

max i i i 
max 

The logical flow diagram of the computer program is shown in 

Figure B. 2. 1 and is very similar to that used in the previous section. 

The major difference is the specific calculations which are made at 

each step. 

Detailed results of each step are given in Tables B. 2. 1 and B. 2. 2. 
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B. 3 COMPUTATIONS FOR CRITERION FUNCTION 

(~~) = 
max 

~P. 
l 

( 
3~n ~ ~n. c. + N vi p. 

i i T l 

max 

The logical program for system optimization when consideration 

is given to the decision element is shown in Figure B. 3. 1. Again, the 

logical developments are similar to those used previously, the primary 

difference being in specific calculations used. 

Tables B. 3.1 and B. 3. 2 give detailed results obtained at each 

step in the optimization process. Table B. 3. 1 is applicable to optimizing 

system reliability in the presence of constraints while Table B. 3. 2 

presents the results obtained in achieving a reliability goal with 

minimum resources. 
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Pi _{iii"i·1)1n. - (n.-1) ii.I ~ I I I 

Piold • 1 - Piold 

A Pi • iiiold - iii 

STOP 
YES 

SYSTEM INPUTS 
n, u,v,w, ii I z O PLIMIT IS NOT CHECKED 

c 

uc, vc, we, le 

p1, a, b, c, NT 

I Apil 
COMPUTE Qi• Iii MAX 

FIND Qi MAX 

UPDATE Qi FOR THE 

NEXT ni 

CALCULATE NEW p 

m 1 PLIMIT IS CHECKED 

YES 
STOP 

m 
SUMS ARE l: ni ui 

m 

l: "i vi 

i = 1 
m 
J:niwi 
i. 1 

Figure B.1. 1. Logic Diagram of Computer Program 

for Optimization P(r~~~s)s Utilizing 

(~p) == -. _1 
max P. 

1 
max 

199 



INPIJT DATA 

N • 6 
IC~N • 0 
~LIMIT VALUt • 1 9Y9~0000 
A • 1 JJ33300C 8 • ,33333000 
uc 11 • 1.uoo~oooo 
uc 21 = 2,uooooooo 
u1 J> • 3,uuooooon 
u1 41 • 4,o~onoooo 
UI 5j • 5,UOOOD~OO 
U< 61 • 6,00000000 
VC li = 1,_Q_l)_QOOOOO 
vc 21 • 1,uoonoooo 
v1 31 • 2,uooooooo 
vc 41 • 2,ouoooooo 
vc 51 • 3,uuoooooo 
V( 61 • 3,UOOQUOOO 
we 1i • 1,ooonoooo 

--~we" 21 • 3,uoonoooo 
we 31 = 2,ooooooon 
w1 41 = 2,uuo1uooo 
w1 ~> • 4,uoauoooo 
WI 6) • 5,0~000000 
RBAR< 1) • ,000~7000 
RBAR< 2) • ,a:;9J6000 
RBAR< 3l : ,11815000 
RBARI 4) • ,17694000 
RBARI 5) • ,23573000 
RBARI 6) • 1 <9452UOO 

TABLE B.1.1 

SYSTEM OPTIMIZATION USING (~P) 
max c~i) 

AND CONSTRAINTS C 
u 

99, c 
v 

57, 
max 

AND C == 83 w 

c • ,33333000 

New NI • 3 
---------iro ,4t371i26c on 

SU!'< N!•Ui°ll ii- ,JlOOOOODE o;. 
su~ Nl•VNI • ,1aooooooE 02 
SUH Nl•WHI • 1 2~0000DOE 0~ 
PT("ITS-----;iT9'T"43~1) 

Pi f 2> • ,94061000E 00 
~I( 3) • ,88l8,01IOE OIJ 
Pi( 4) • ,S23U6000E OU 
Pl( 51 • ,85949249E 011 
P! ( 6) • , lQ548000E Oli 

1 DELIA Pll lllPI< 11 • 156Y35020E•03 
1 DELTA Pi< 2l1Pll 21 • 1 5?.312761E•_D1 

'1 UELTA Pit 31/PJ< 3) • 1 90231l~~E-01 
L_!lil~~-4j!Pll 4> • .~~Q 
3 DELTA P!< ~l/Pll 51 • 1 11329285E OD 

. .l_____!,l.E.LTA Pl< 61/l'l.1_---61___!_ 1 1?iOJ594E DO 

NEW NI • 3 
P = ,4o3~l882t oo 
su~ N!•UNI .-- .~_0000~ 02 
SUM Nl•V~I • ,24000000c 02 

--~U!Lfil..!...~!U_;: _ _,3!>QOJ!Q.O~---· 
Pl( 11 • ,Y9943000E OU 

CU • 99,0000UOOO CV 57,UOODOOOO CW • 83,00UOOOOO _ ____f_U_ 2 I • , 9 4 0 6 4 0 11 0 E _J[!!_ ______ __ 

Ni • 1 
su~ N!•UN! 
SUM Nl•VNI 
SUM Nl•-w"ITT • 

,21onoooor. u~ 
,12000000~ o;. 
,llOOOOOOE oi 

INITIAL P VALUE • ,J6790J19E UU 

Pj( JI • ,8d18!>0ll0E 00 
P!f 4) • ,il23Q60~llE 00 
Pi r 5> • .s~949249E on · 
P!( 6) • .~9066843E 00 

i ileLrrP"ff-1 Tl"Pfi1> --. - , !>~~:i5ozoi:--03 
J ____ .Q!;_LTA Pl l 2llP! ( 2> • .~?.312?81!:•01 
1 DELTA PIC 3)/Pll 31 • 1 902311~,E-01 
1 DELTA P!< 41IPll 41 • 1 1:432447E OD 
J DEl TA Pl I 51/PI C 5> • 1 1t3292~5E OD" 
~ DEl .. TA Pl< 61/Pll 6) • 1 163763U81:__JJ_!I_ 

NEW N l • 4 
P • ,5JY71~22c on 
SUM Nt•0~j =· 1 49000000~ 02 
su~ N!•VN~. .~7DOOOOOE o~ 
su~ N!•WN! • ,400noooo= 02 
Plf 11 • ;9994JOODE DO 
Pie 2) • ;Y406400DE no 
Pit JI • ,68185000E 00 
PI< 4) • ,62306oooe oo 
~j··-·- ,85949249E OU 

Pl< 6) • ,9203834.9E 00 
1 DELTA P!C lllf'!< 11 = 1 56935020c•03 
1 DELTA P!C 211Pl1 21 • __.)2312781E·01 
i Tih IT"""PTC3T1Pll"":Fo - 1 9:iz31f5"5"E-OT 
L __ ..Q.[:J.~ __ f.!.!___~~!.f'l.!. ... ~.?......!.________._J,l432447c QQ.. 
3 DELTA P!f 51IP!l 5l • 1 1tJ29?.85E OD 
4 DELTA Pl l oitP! I 61 : 1 5~25"9247E•Dl 

NEW NI • J 
P c 1 6hl4D474~ 00 
SUM N!•Ufl! .- ,>7000000~ ~O~~~----­
SU• N!•VN! • ,JlOOOOOOE 0~ 

---~Ll!:'_ _NJ.•Wll I_ r:_ _ _._~11_.Q.QQ_QE__ 02 ___ _ 

t\J 
0 
0 



Pl< l): ,9994..SOOUE 00 
P!( 2) • ,940b4QC'OE on 
Pit 3) • ,88185QOQE nu 
P!I 4) = .~1715590E on 
Pl< 5) : .b5949249E 00 
Pj( 6) : ,Y20J8349E OD 

l UELTA PI< lllPI< ll : 1 5t1935020E•03 
1 DEi TA PIC 2)/pJ< 2> : 1 52312781E .. Q1 
1 DELTA Pl\ 3)/Pl1 3) : ,9r231155E·Ol 
3 UELTA P!C 4ilPIC 41 : ,693734~4E•Ol 
3 DELTA P!C 51/P!C 51 z 1 113292~5E 00 
4 UELTA Ptl 6l/Pl< ti): ,55259247E-01 

NEW NI : 4 
P : ,6~96~bb6~ QO 

___ su~1·i.i~!1 __ =- ,62oooooor 02 
SUM NI•VNI : ,340D~OOOE: 02 
SUM N!•WMI : ,4BQOQOOOE 02 
Pie ll : ,999~..SO~OE OU 
P!r 2> = ,9406•000E on 
PI< 3) = .B81B5oroE OU 
PI< 4) : ,91715590E 00 
Pl< 5) : .~56866S4E 00 
P!C o): ,920.SB349E 00 

1 DELTA P!l 1)/P!< 11 : 1 5693502DE•03 
1 DELTA Pt< 2UP!c 2) : 1 5?3127blE•01 
1 DELTA P!C 31/Plt 31 = 1 9G231155E-01 
3 DELTA PIC 4i/PI( 4l : 1 6<'37J4<°!4E.,01 
4 DELTA Pll 51/Pl< 51 : 1 31985C24~•01 
4 DELTA PII 6l1Plt 6l : .5~259247E-01 

TABLE B.1.1. (Continued) 

NEW NI : 3 
P " , 7300..>003E Qli 
SUM Nl•U~I : ,680rOODOE 02 
SUM NI•vrn ~JsooooooE:: 02 
SuM NI•WNI ,52~00000E o~ 

-~ 1) : 99943000E OU 
Pl ( 2) = .Y40c4oooE OU 
PI C 3) : , 961 112034E OU 
P!( 4): ,Y17l5500E 00 
P! ( 5) : -- , 9S66fi6'14E f)U 
PI C o) : .920J8349E OU 

1 ~ELTA P!C 1;/p~t~(~l~>-=---,=5-~=9=3=5=0=2=o=E--=0=3 

1 DELTA Pli 2l1Pl< 21 : 1 5?312781E•Ol 
TLJECTAPTt--377Pt < 31 = ,331l73B72E:-01 
3 DELTA PIC 4i/pJ\ 41 : 1 693731<°!4E•01 
4 DEi.TA P!( ~l/Pl( 5> = ,3"-98~024E..;01 
4 D Et.. T A p I t ,, ) Ip I ( 6 ) = I 5 c; 2 5 112 4 7 ~_ .. _[)_! 

Nb! NI : ___ 4~------
-~p----;- , 78U6'1blt1E 00 

SUM N!oUNl ~ ,720~0000E 02 
SU"! N!•Vl~l ,400r•OCOOt: 02 

_ -~illL_~_V/~U. , 5 4 0 0 0 0 0 0 C: 0_2 ______ _ 
P!I l) : 99943QOOE 00 
PI! 21 = .~40o4Q30E ~o 
P!c ..si = ,Y61'120.54E on 
Pl~ 4) z .~BD/8215E OU 
PI c :> l : .'156t!6634E 00 

___ _f'_lJ (:)_L =. _ -'.~2.Q,Bl3_.'l9E JlJL 
1 DELTA Pll l>IP!C-1> : 1 55935n~OE·03 
J,___{)_£Ll_~ p It 2 j Ip I I 21 = I ~23127ti1E .. Q1 
3 UELTA PJC 31/Pll 31 : 1 3JH738~2C:•Ol 
4 DEi TA Pl( 4llfll 41: 1 l<;JQ48.30h01 
4 UELTA PI< 5)/PIC 51 = 1 319850Z4E-01 
4 Q.EJ..I~ f'J~ _ ~-Uf>.IJ_~_l__::_ ____ , ~2~?-~__?4 7t~ll 

ll:EW NI " 5 
-· p-,;; 1 823836731;; Oil 

SUM N!•U~l i- ,780QOOOO~ 02 
SUM NI•VNI : 1 430JOOOOt 02 
su~ NI•WNI = ,59000000~ o~ 
Pl( l) = 1 9994..SUGOE 00 
PI( 2) : ,940640JOE OU 
P 1 < .s > .. • '16142o34Ccn __________ _ 
Pl ( 4) = ;9so782l.5E DU 
~)---= --. 9~68 b6 s l!Eou ________ ---
PI< 6) : 1 ~712~319E 00 

1 DELTA Pl( lllPI< ll = 1 5~935020E-03 
j, ___ DELTA PI< 21/Plt 2> : ,52J1271.11E•Ol 
3 DELTA Pl! 3l/PI( 3): ,33U7J812E•Ol 
!_ _ _JJ_E:J,.T A _ _f>_l(__ 4 iLEE ~L = __ _.1.?.l.Qi8~0~·_Q_l 
4 DELTA Pl( 5)/PI< 5J : 1 3198,024E•Ol 
5 DELTA Pl\ 6)/PI< ~l : ,19275383E·Ol 

NEW NI " 3 
P = ,8o693397E: 00 
su~ N!•U~l i- ,H2GOOOOO~ 02 

--SUMN!*VNI z ,45U00000f. O?. 
---~l,,i'Lr-./l_"lo/NL_=~--~_(JjljiQO Ot__Ji_?__ __ 

PJ ( l) = ,9994300UE nu 
Pl( 2) : ,989H4749E OU 
PI< 3) : ,li6142u34E OlJ 
PJ( 4) : ,98078215E OU 
p I ( 5) : I 956d6btl4E Ou-----·---·---· 

___ P_U -~L = __ __.~7_1t!4~.1~t_9_l!_ _____ _ 

NJ 
0 
....... 



1 DELTA Pl< l !IP! I 1> " 1 5693502UE,.03 
3 DELTA Pit ~llP!I 2) • 1i4490369E .. Q2 
3 DELTA Pit ~1/Pl( ~l : 1 ~3~73672E•01 
4 DELTA Pl< 41/PI< 4) 1: 115J04830E.,01 
4 DcLTA Pl t ~llPI < 5) • 1 319850C!~E.,01 
5 DELTA P!I 611P!C 61 = 11927038.:SE•Ol 

NEW NI • 4 
P ,, 1896J0038E 00 
SUM Nl•UNI ~- ,65000000E 02 
SUM N!•VNI • 147000000E 02 
SUM Ni•WNI ~ ,07000000E U2 

PI C 3) = 1 993987~17E 00 
PJC 41 : ,9607B215E 00 

--P-i ( 5 l : , 95686684E 00 
P!C 6) : ,i7124319E Ofi 

1 DELTA p I ( 1) IP" 1 I " I :)693!jQ(OE .. 03 
3 DELTA Pi\ 2ilP!( 21 • .~44903B9E•02 
4 DELTA PIC -31/PIC 31: 1 51614264E .. 02 
4 DELTA Pit 4ilPIC 4l • 1 !53048JOE•01 
4 DELTA Pl< 5llPIC 5> = 1 J19B,024E-01 
5 DELTA PI< 6j/P!C 6> = ,192783BJE•01 

TABLE B. 1. 1. (Concluded) 

NEW NI • 5 
P =-~T2496857E 00 
SUM NI•UNl :· 190000COOE 02 
SUM NI•VNI • .~oooooooE 02 
SUM Nl•~NI " ,7iOOOOOOE 02 
Pie ll = ,9994300UE ~o 
P!C 2l " ,989H4749E OU 
PT(3)~ 1 99J98737E 00 
P!C 4) " 1 98070215E 00 
P!C 5) " ,98747225E oo 
Pl( 6) " ;97124319E 00 

1 UELTA P!C 1)ip1t ll = 156935020E-03 
3 IJEL TA Pl< <!)IP! C 2) = 194490389E..,02 
4 PELTA Pl< 3)1PJt 3) : 1 516~4264E~02 
4 DELTA Pl< <1llP!( 4> = 1 153C483(JE .. 01 
; l.iELTA Pl( ~;ilPII 5) = ,91326782e .. o2 
5 llELTA Pl( 611PJ' 6> • 1192763~3E•01 

"lE i;i NI = 6 
P a 1 942~0V461:: 00 
SUM Nl•VNl ir · ,960000001:: 02 
SUM N!•VN( : 1 53000000E 02 
SUH NI•WNI ~ ,7600UOOOE 02 
P!C l) • 1 99943000E OU 
PL( 2) : ,9S984749E OU 
i'IC 31 = ,9939S737E no 
P~L~- _;9eJJ78215E or; 
P!( 5) : 1 98747225E OU 
"'IC b);: ,9o996718E OfJ 

1 DELTA Pl< 1liPJt 1) : 1569350i!OE-03 
3 PELTA PIC 2/IPIC 2l : 1944903H9E,.Q2 
4 DELTA Pl i 3ilPI C 31 : 1 516142§4E•02 
4 PELTA Pl\ 41/PI< 41 : ,15304830E~01 

5 DELTA P!C 5/IPII 51 = 1 913267~2E~02 
Q___ffiI~JJL§J_!l'_U 6 l = , 668457:;~~ 

LIMIT ilN ll l::XCf;F.U!::ill1 ELIMINATE M0PULE! 4) 

NEW N l " 4 
P : ,9517U902E 00 
SUM NJ•UNI • 19800000DE 02 
SUM Nl•VMI : ,540000001:: 02 
su~ Nl•WNI = ,19QOOOOOE 02 
Pl( 1) : i99943000E OU 
PI! 21 = ,Y991.0060E or 
PI< 3> = ,99J<t8737E or 
P!C 4) : 1 98Ql8215E O~ 

P!C S1 = 1 987<17225E oa 
PIC 6) = 1 9899671BE OU 

1 llELTA Pl< l)fP!l .l>: ,~6Y35020E .. Q3 
4 DELTA Pll 211PIC 21: 1 74l185952E•03 
4 UELTA PI< 3i!Pl< 3> = 151h142b4E-02 
4 DELTA p I \ 4 ! Ip I t 4 ) = ' 0 0 I] 0 0 0 0 0 E 0 0 
5 DELTA Pl C 51/Pl < 5l : 1 91.S26782E·02 
6 DELTA Pl\ 611PIC 61 : 1 66R457~JE•02 

LIMIT 0N U l::~CE~PEU1 ELIMINATE M0DUL~( 5) 
LIMIT ~N U EXCE~DEb1 ELIMINATE M0DULEC 6) 
LIMIT IN U l::XCEED~D1 ELIMINATE M0DULE< .S) 
LIMIT 0N U l::XCl::EUE0, ELIMINATE M0DULEI 2> 
(!MIT 0NUTXCl::::!JEll; ELIMINATE M0DIJLl:< ll 

ALL M0UULl::S ELIMINATED 

f'V 
0 
f'V 



TABLE B.1. 2 

SYSTEM OPTIMIZATION USING (b.P)max = (~i) 
1 max 

TO ACHIEVE A RELIABILITY GOAL OF 0. 9995 

N • b 
!C0N • 1 
PL!M!T VALUE • ,9~950UOU 
A • 1 3J333000 8 • 
uc l> = - 1,uoaooooo 

1 33333JOO c • ,33333000 

U( 2) • 2 1 00000000 
U( 3) • 3,ilOOOOOOD 
U( 4) • 4 1 il0000000 
U< 5> = 5,ouooooor. 
U( 6) • 6,00000000 

--'LLQ • 1,uooooooo 
V< 2) • 1 1 00000000 
V< 3l = 2,uoooooon 
V( 4l • 2,00000000 
v< 51 • 3,aooooooo 
V( 6> • 3,UOOOOOOQ 

~"'-' 11 = 1,00000000 
W( 21 • 3 1 0000000J 
W( 31 : 2 1 00000000 
W( 41 • 2 1 00000001 
W( 5> • 4,U0000001 
W( 61 • 5 1 00000001 
RBAR( 1) • 1 00051000 
RBARC ?I : 1 05935UO~ 

RBAR( 3) : ______._11_8~=1~5~U~O~O~~~--~~~~~~~~~~~~~~~~~~ 
RBAR< 4) • 1 17694UOO 
~BAR< 5) : ,23573000 
RBAR( 6) • ,29452UOO 
CU • 99,00000000 CV • 57 1 00000000 CW • 63,00UOQOUO 

NI • 1 
SU~ N!•JN! 
SUM NI•VN! • 
SUM NI•W.~J • 

,<1000000~ J2 
1 120000000 C2 
,nac·oooni: r.2 

INITIAL I' VAL0c ,J679u319E UD 

Nb! NI • J ~~N~E~~_N_l"--c•~=~4~~-----------
p • ,H.S7H26~ oo P • ,5J9T1~22c aa 
su~ NI•Q~J i" ·,J10000~0E 02 su~ NJ•UNI j" ,4900000Dti 02 
su~ NI•VNI • ,18000000~ 02 SUM NI•VN! • ,27000000~ 02 
su~ NI•~NI • ,25QOOOOOE 02 SUN NJ•WNI • ,40000000b 02 
P!C 1) : 1 9994.SOOOE 011 Pi( ;> • ,Y9943QOOE 00 
PI ( 2) • 1940'>401JOE OU PI ( 2) • ,940o4QOOE on 
PI ( J) • ,8H1B5000E 00 Pl ( J) • ,~B1U5000E 00 
PIC 4) • ,82306000E oa f'I< 4) • ,6230oOOOE OU 
PI ( ~) • 11:15949249E o~ PI ( ~) • .~59•9249E: on 
Pi( 6) • ,70548QOOE 00 PJ( o) • ,9203BJ49E 00 

1 DELTA Pll 11/PIC ll • ,56935020E•03 1 VEL,TA PI< ll/P!( 11 • ,56n5D20E•-03 
L!!~I ( 2_)11'1 I 2l • ,52.s1278~ ____ J, _ _ll_llTA PI t 2)/PI ( 21 • ,5,.J1278lE-01 
1 llELTA PI< 3)/Pll 31 • 1 902311j~E•01 1 DELTA P!C 3)/PJt 3) • 1 9Di3l1'5E•Ol 
j_ _JlilTA PI ( 41/PI I ~) • ,1H32~47E on 1 DELTA Pl ( 4)/Pl I 4) = 111432•47E oo 
3 OE:~TA Pit ~)/PJI 5> • 1 11329285E 00 3 DELTA f'It 5l/P!< 5l : 1 1t329285E 00 
J,_~flllI~l' 6ilPJ ( 6) = ,1no.s5\14E 00 4 PEL TA r1 ( 61/PI \ 6) • ,55259247•·01 

NEW ~I • 
P : 1 46J8lb82E 00 
su~ NI•U~I • ,43000000t 02 
SUM NI•Vh! • ,~4000000~ 02 

--5J.L'< NJ•~:-11 • ,.s5onoo~o1: 02 
PI ( l) • ,9994.SOOOE oa 
PI< 2) • ,~40o4oooE oo 
Pj( J) • ,seis5000E OU 
Pl< 41 • 1 ~2:<U600iJE 00 
PI< ,, • .~5949249E oa 

___ f_! (_oJ__• __ ._79Cb6843l_O_[l_~--~-----
1 DELTA Pit 11/PJ< ll • 1 56~35020E~03 
j.___ll_~LTA PI< 2i/P!I 21 • ,52J127S1E•01 
1 PELTA Pl< 3llPit 3) • 1 9Dl311,~~·01 
1 DC:LlA Pl( 4j/Pll ~> : 1 11432447E 00 
3 DELTA PI< 5llPI I 51 : 1 ltJ292B5E 00 
3 oc:u• PI ( 61/P! ( 6) • ,16.S763U8E 00 

NC:~ NI • 3 
P • - , 6U146474f. 00 
su" N!•U"I ~ · .~1uoonooE 02 
SU• NI•'iITJa ---;-~lOOOOOOE 02 
su~ NJ•W"J • ,44QOOOOOE 02 

t-.? 
0 
1:.1:) 



Pl< 1) : ,11994.SOOOE OU 
_ __fjj___?L_=. _ __ , .l4C64000E Oll _____ _ 

PI< J) z 1 881B5000E 00 
E'lJ__~ ,111715590E 00 
PJ( 5) : 1 859411249E 00 
Pl( b): ,920~l6349E OCI 

1 UELTA Pjl 11/PJl 1~ : 1 56935D2DE-03 
__l DELTA Pl\ 21/Pl< 2): 1 2-2...U..U_~ 
l DELTA P!I 3jlPII 3) : 1 9C231155E•01 
3 DE! TA Pll 4)/PIC 4) = ,69373424E,.Q1 
3 DELTi Pll 51/Pll 51 : 1 l1329285E 00 
4 DELTA Pll 6l'Pll 61 : ,55i592~7E .. Ql 

NE\·' NI • 4 
P : ,6b962866E 00 
SUH Nii>UtJI =~noouot; 02 

s\jf1 ''I*VIJl • ,J4000000E: 02 
SUH NJi>WIJ! & ,48000000t 02 
P!( 11 : 1 11994..IOOOE OU 
PJ( ~> : ,94064000E OD 
PJC .5) • 1 88185000E OU 
PI< 4) = ,91715590E on 
PJ ( 5) : ,'156fi6684E Otl 

_ __f'_LJ 6) • 1 920.58349E OU 
1 DELTA P!I ll/PJC 1) • 1 56935020E,.03 
1 DE:LTA PIC 21/P! I 2) : 1 52.S12781E1101 
1 DELTA Pll s11e11 3) • ,90231155E•01 
3 DEbTA Pll 4)/Pll 4) a 1 69373424E .. Ol. 
4 DELTA Pll 5)/Pll 5) :s 1 3j985024E~01 
4 DELTA r1<_6)/Plc 6). ,55259247E-01 

TABLE B. 1. 2. (Continued) 

NEW NI • 3 
p z ,7J005003~ oo 
SUM NI•Uhl ~- 1 bBOOOOOOE 02 
SUM Nli>VN! ii ,380000UOE: 02 
SUM Nli>WNI : ,52000000E: 02 
PI< 11 s 1 999~3000F- OU 
P!( 2>: 1 9<iOMOOOE OU 
Pl( .Sl : 1 96142034r: 00 
Pl! 4) z 1 91715590E OU 
PI< 5) • ,95686684E O~ 
P!C bl : ,9203634\IE 00 

1 DELTA Plr 1JIP~l-<_1_)_: __ 1 ~5-6-9~3~5~0~2~0-E_•_0~3 

1 DEkTA Pl\ 2ilPI< 21 = ,523127~1E•Q1 
3 DELTA PI< 3llPII 31 : 1 33873872E•01 
3 UELTA Pll 4i1P!I 4l ~ 1 69S73424E•01 
4 DELTA Pl! 5)/P!I 5) : 1 31985024E•01 
4 DELTA Pll 61/P!< 6l = ,5~259247E•01 

Nf:::W NI s 4 
P • 1 7H069o10E 00 
SUH NI•Uijl ~- ,720DOOODE: 02 
SUM N!•V~I : 1 40QOOOOOE: 02 
SUM Nl*WNI • ,54000~00E: 02 
PJ( 11 z 1 7994.SOOOE OU 
PJ ( 2> : 1 940o4QOOI: Q[l 

P!I Jl a 1 ~6142034E OU 
P!( 4) • ,980782l5E 00 
Pl I 5) • 1 ~56!:i6684E 00 
P!( b) a 1 92Q38349E OU 

1 DELTA PJC 1)/Pll 1) z 1 56935020E•03 
1 DELTA Pl! 21/PJI 2> :s ,523127~1E•01 
3 DELTA P!< 3~/Pl< 3l z 1 33~73872E•01 
4 DELTA P!C 41/PJ( 4) ; ,15304830E~01 

~ DELTA Pll 51/Pll 5l • 1 31985024ER01 
4 DELTA PJI 61/P!I 6) s 1 55259247E•01 

NEW NI • :> 
p = ,82383678E: 00 
SUM NI•01J1 ~- ,78QOOOQOE 02 
SUM NI•VNI • ,430000UOt 02 
SUM Nl•WNI • ,~9000000~ 02 
Pl< l> • ,999~JoooE on 
Pl( ~) : 1 ~4064000!: 0~ 
Pl( JI : 1 96142034E 00 
PI ( 4) • ,9ao78215E Oll 
Pl( 5) a 1 95686684E OU 
Pl( bl a ,971i!4319E On 

1 DELTA Pjl 11/Pll 1l = 1 56935t120E .. 03 
1 DELTA Pl! 21/Plt 2l • ,52312761E .. Ql 
3 DEi. TA Pl\ 3!/Pl I 3) z 1 33t!7.S8?2E .. 01 
4 DELTA PI< 41/Plt 4l • ,153048.SOE-01 
4 DELTA Pll 51/PJ( !:>l = 1 31985024E•01 
5 DELTA PJI 6)/P!< 6) : 1 1927838JE•01 

NEW N l • .5 
P .. , 8t.>69J39?E-oo 
SUM NI•0~i ~- ,a2ooooone 02 
SUM NI•VNI • ,45000000~ 02 
SUM N!•WNI • ,b5QOOOOO~ 02 
P!( 1) : i999•3000E OU 
Pj( 21 • ,Y8964749E on 
PI ( 3) : 1 96142034E 00 
PJ( 4) a 1 9S078215E 00 
P!C 51 • ,956~6664E OU 
PI( b) • 1 97124319E 00 

['.:J 

0 ,..,. 



l DELTA Oj( 1!1P!I 11 = ,5693502UE·03 
3 Qt;LT~ "I' 2i1p u _~L ~- ___ ,<;1~1Jl]~9-~_g_~ 
3 DELTA Pit .3)/PJl 3): 1 331173872E·01 
'I _ _ll~lJ~ ?! < _ 4/ lf'JJ __ iL_=_-----1.15J04830E•D_l_ 
4 IJt:LTA Pl\ ?1/P!C 5) : 1 3!985024E•01 
5 iJELTA Pit 6llP!( 6l: rl927831:l3E•01 

''"''NI: •l 
P = ,896Juu;se~ oa 

_SUM \l*U~I i ,Y,QQ~Q~g~ 02_ 
SUM NI•VNJ = ,~1000000E 02 
_Si,i_c' r·!l~I!i:<I ;: _,'?llLQQQ_OQi: _Q~-----
P! ( 1) : ,i9943QOQE OU 
PJ( 2) : ,9~9~47495 OQ 
PI c 3) = , 993«ii7~l7E Oll 
Pj( 41 : ,~8018215E DU 
Pj( 'l : ,~56~6684E OU 
PJ( 6) = .~71~431YE on 

l 1J~L TA ·-pf ( ff/pJ(- i) - ;, - - ;-56Y35o-iOE:-;;o3-
3 Dt:LTA Pl C 2)/f'l 1 <'l : ,9449Q389E•02 
4 ilELTA '-'It 3llP!i 3l: 1 !'Hb142b4E-02 
4 l.J~J.,J~ _ f>_l_c __ 4 Ur:'.! L 4 l__ = ____ .11~iH!i J a~ -o l 
4 DELTA Pll 51/Pli 5l : 1 31985024E•01 
_5 __ ~~!._TA Pl_'. H'PJLQJ_:: __ ,_1927838]£~~l 

TABLE B. 1. 2. (Continued) 

\c'./ !\I I = 5 
p---:.,----;Y2<191lti-0r-on--
s uM NJ*UNJ ~- ,JOUOUOOD~ 02 
SUM NJ*VNJ = .~oooooooc: 02 

_ ~?_i.l'-1 !'!!~.!l!U_;: ___ _1_Z_ :to Q o o o o c o 2 
PJC 1) : 1 99943000E OU 

___ P_U __ 2L:r_ __ 1 ~!J~o4~~§_0_ll_ ___________ _ 
Ptc si = ,Y93987~7E on 
P!c 41 = 1 9001a215E on 
PTc-5T = ,·,1u14722:;e; on 
PI ( ol : ,971<:!4319E Ou 

1 - DELTA Pf( 117rn-u·: ---;-56935020E-03 
~ _[JEi,._TLP_1~ '2!1PI l 2l : ___t~<l_i9Q389E-:_Q1__ 
4 !J ~ u A p I I 3 11 p I I 3 l = I 51614 2 () 4 E., 0 '2 
4 0ELTA Pl( 4j1p\( 4) = 1 l5~0~8J~E•01 
5 DELTA P!I 5JIPll 5l : 1 91J267~2E•02 
5_OE_t,1~ Pl 1_~_1_~P_lj __ 6 _ _l__~ __ _il92783~3E-Cj._ 

;\JE .• NI : b 
-µ--;- -~9~-2-au-u46E"o-ri---

?6!M Nl_<>UNl = ___ d()QQ_ll_OOOE_02 _______ _ 
SUM Nl*V~l • ,)300000G~ D~ 

_ -2.V~_!i!*J.iN! • , 16ooocoof. 02 
Pj( 1) : 1 99943QOOE CU 

_P_JJ_;!)_: , ·~89d4749~E~· _O~O~------
P ! C 3) :: 1 993~8737E ~U 

Pic 4) = ,<.iao1a2t5F oo 
PI ( :>) : ,-i874722::>E OU 

__ P_J_L ~I _! ___ __1_~§__2jl ~ll_ll_(_ _ _Q_Q 
1 OELTA Pj( 1JIPil 1l : 1 56~35020E•03 
L _ _ll_EJ..1_~-- Pl c 2 llP IC 2 l :: __._ 9449 031:l9E· a 2 
4 DELTA Pl I 3JIP! ( Jl : 1 51b142b4E•02 
4 DELTA PJC 4)/PI< 4l : 1 15JQ48JUE•01 
5 JELTA P!C 5JIP!C 51 : 1 91326782E~02 
6 ~E_LT~ PU ()i IPJ(_ (>J__: _ ___._Q_~845753~ ~_g_?_ 

1 I 

3 
4 
5 
5 
6 

'"EW NI = 5 ---p- = - ,9::;ja'JI07E QO 
-·----------------

su·~ NI<iUMI • I lOOOOiJOOF; 0:3 
SUM Nl*VNI • ,55000000E 02 
SUM NI*WNI • ,7800000Cc 02 
PI< 1) = , .,i994.soooi: ca 
Pl ( 2) ;:; 1 'il:l984749E OU 
P I ( 3) = ,~93'Jl8737E Cil 
PI C 4) = 1995792115~ DO 
PI C 5 > :: ,98747225t: 00 
PI c 6) = 1969>16718E CiJ 
DELTA f' l C ll/Pl ( 1) = 1 56935020E.,.03 
UELTA PJC 2itPI( 2) : 1-94490389E-02 
DELTA PIC 31/Pl< 3) = 1 51.~1,420.4E-02 
DELTA PJ( 4ilP!< 4 ) = 1 333401'HE,.Q2 
PELfA PI( 51/PJ( 5) = 1 vt3267~2E: .. o2 
!Jf:LTA Pll 6l/Pl( 61 = ,6~645753E-U2 

NE:W NI : 4 
P = ,966214/?c oo 
SUM N!<>U~l ~- ,10200JOOE 03 
SU~ N!~VNI m 1 56000000E 02 
su~ Nl*WN! = ,81000~00E 02 
P!C 1) = 1 99943000~ 00 
Pi( 2) i ,99920060F. 00 
Pj( 3) : 1 993'JB737 !JO 
P!C 4> : 1 99579285 CO 
Pi ( 5l : 1 98747225 00 
PJ( 6> = 1 96996718 00 

1 DELTA PI< ll(PIC 11 ~ 1 5~935020E.,03 
4 UELTA Pl< 2)/P!C 2> : 1 74085952E•03 
4 UELTA Pt< 31/PJI 3) ~ 1 51614264E•02 
5 UEL TA Pl ( <Ii/Pl ( 4l : 1 33J401iliE•02 
5 DELTA Pi( 5)/PJ( 5l : 1 91326782E•G2 
6 UELTA FJI 6)/Pl( 6) = 1 668457S3~ .. 02 

N 
0 
CTI 



NE:.J ill! : 6 
P a .~7;09944c DO 
su~ NI•~~l ~- .10700~00E 03 
su~ N!*VNI • ,590QO~OOE 02 
SUM ~I•~NI • .asooo~one .02 
PI( ;1 : 1?994JOODE 00 
PJC 21 : 199Q2006QC OU 
Pl( J) : 199398737c 00 
Pl< 41 = 1 995792asc na 
Pie 51 : ,99649052E OQ 
PI< 61 a ,98996718E 00 

1 UELT~ Pll 11/Pit 11 • 156!3502DE•03 
4 UELTA Pll ?!IPII 21 ~ 1 7408~9~2E~~3 
4. DELTA Pll J!IPI< 3) : 1 51~1'2~!E~02 
2_____£.ELJl_eJJ.__~~ 41 • 1 33~401~1E~02 
6 DELTA Pll 51/PIC 51 = 1 25~00355E•02 
6 D:LTA PI< 6!/Plt 6l = 166~457~3e~o2 

"'JEw N l • 7 
P : ,9~161/57E 00 
su~ l'il•_;J_iiL_i._:._ .__ll,_~JLOJHiJlL03 
SUM NI•VNI • 1 62UOOOOOE 02 

~~ N!•wNI 8 ,90000000E 02 
Pl( ll a 1 99943000F. 00 
Pi( Zl = ,99920060F. 00 
Pil 3) : ,~9398737~ 00 
P!( 4J : 1 995/9285F. O~ 
P!( 5> • 1 9964!052~ 00 
Pl ( 6) : 1 99658469E 00 

1 UELTA Pll 11/P.ll 1l = 1569J5020E.,03' 
4 IJELTA Pl< 21/PII 21 = 1 74085952E~03 
4 DELTA Plt 3!/Pl( 31 = ,51~1'2~!E .. o2 
5 DELTA Pll 41/Pll 41 : 1 333~0191E~02 
6 ~DELTA Pl( 51/Pll 51 = 1 25~00355E.,02 
7 UELTA Pll 61/~il 61 • 1 22816130E~02 

1 
4 
5 
.2. 
6 
7 

TABLE B.1. 2. (Continued) 

NEw NI : ~5~~~-------
P • 1 9d66~412E 00 
SUM NI*~~t i- ,11600GOOE 03 
SUM NI*~Nl = 1 64000~00E 02 
su~ NI•WNI = ,92000DOOE 02 
PI< 1) • ' 1 99943000£; 00 
P!( 21.: ,99920060E 00 
Pi( .S) • 1~9911777!' 00 
PI< 4) : 1 9'il579285E 00 
Pi( 5) : 1 Y9649052E 00 
Pic 6> = ~~9~6~s~ai4~6~9E~--o~o~· _____ _ 
DE~TA Pl< 11/P!( 1) = 1 569350~UE .. 03 
DELTA Pll 2i1Pll 21 = ,740859~2E•03 
DELTA PI< 3!/P!I 3l : 1 75~363!2E•03 
DELTA PI! 4!/PII 4) : 1 33340191E .. 02 
UELTA Pit 5)/P!I 51 : 1 25600355E~02 
DELTA Pl( ~i/Pll 6) = ,22~1~1~0E~o2 

____ NE w _N_l__s ____ Q____ _______________ _ 

P : ,969~1314E OD 
SUM N!•UNl .- ,12000000E 03 
SUM NI•VNI • ,66000COOE 02 
s u" N I "1o1 N r_ s __ .~ 4 o o Uil c e a 2 
Pi( l.I • 1 9994.SOOOE 00 

_!'._! ( 2 ) 8 I 9 9 9 2 0 Q 6 0 E 0 0 
PI ( .S) : 1 99911777E 00 
Pl( 4) : ,99911284E 00 
Pl ( 5) • 1 99649052E 00 
P!C 61 • ;9965B469E 00 

1 DELTA Pit 1!/PII ll • 1 56935020E•03 
4 DE~TA Pf( 21/Pll 21 a 174085952E.,03 
5- DELTA Pll 31/PI( 3) = 1 75~3~3!2E~03 
6 DELTA Pl( 41/PI( 41 : 1 70555326E•03 
6 DELTA Pl< 51/Pll 5) • 1 25~003~5E•02 
7 DELTA PII 61/P!I 61 • ,228161JUE•02 

Nt:" NI : 7 
P : ,9925u~11E 00 
su~ NI*UNI 5- ,125000uOE U3 
SUM Nl*VNl = 1 69000000E J2 
SUM NloWNI : ,9MOQOOOOE O? 
P[( 1) • 1 99943000E CO 
Pl( 21 • 1 Y9920060E 00 
~.s--,--.--,99911777E 00 
PI< 4) = 1 Y991~1~2~8~4~E---=-O~U-----~ 

-Pl( 5) = 1 999~4157E 00 
PI< 6) : 1 Y965~469E 00 

1 OE~lA c(( 11/P!( 11 : 1 56935020E•03 
4 DELTA Pl( 2'/Pll 2> : 1 7408~9~2E~03 
5 DELTA Pit 31/Pl( 3) m 1 75836392E-.Q~ 
6 DELTA Pl( 4i1Pll 41 : 1 7~55S32BE•03 
7 DELTA Pl( 5)/P!( 51 • 1 ll2258~9E .. 03 
7 D~LTA Pll 6j/PII 6> : 1 228161~tiE .. D2 

NEW NI • d 

P : ,9947 26~E 00 
_SUM ~ 1 1.Sj,_QjlQ_Q_~----------· 

SUH Nl•V~Ji , 720000!!QF. \l2 
SU!>I NJ<>:.INI ,10300000E 03 
PJ< 11 = 1 999~3oooe oa 
PJ( 21 a ,99920Q60E 00 
P!( ~) = 1 ~9911777E 00 
PI< 41 : ,99911284E 00 
PI< ~I ,,; ;~9904157E 00 
PI< bl ,,; 1 99B65~JL _____ _ 

1 DELTA PII 11/Pll 11 = . 1 5693502UE•03 
4 Del TA PI ( 2j1r1 ( 21 = , z.igs:>952E .. Q3 
5 ,DEL.TA Pl( 3l/PI I J) : 1 7!:>836392E,.03 
f1.__Q_fLJ!_EJ_l_~j_tE.Lt_i_L~-------t-Z..O.lli~~il 
7 DELTA PII 51/PJ( 5) • 170225B89E-.03 
8 DELTA PI I 6j/P'I I 6l _ _!.__----1-.f6~229b7E .. o3 

1:-.:l 
0 
~ 



l\/EW Ni = Y ____ _ 
--P : , 9~55J~b')E QO 

S U '1 I\/ I " Ui'.JJ _! _ • l~ lJJ M UlLE____Q_3 
SUM NJ<>VNI : ,750000D~E 02 
SU '1 N I <> h N I Ii .! l 0 6 O_(J_Q Cl 0 E _ _(ll__ __ _ 
P!( 1) : 1Y9943QOOE 00 

__ _Pii__~!__ii'l~~QM_LQL ____________ _ 
Pi( 3) : 1 99911777E 00 
Pi( 4) ~ ,99911284E 00 
Pi( 5) : 1 Y~904157E CO 
Pi ( 6) : i_9\1962387E CO __ _ 

1 DEL1A Pl< 11/PI( 1l = 1 56935020E~03 
4 UEkTA Pl( 2l/PIC 2): _ _J_!Q859?2E,.03 
5 DELTA Pl( 3)/Pll 3l a 1 75d3~392E,.03 
6 PELTA Pl( 4i/PI( 4) = 1 70~5~321:lE,.03 
7 DELTA Pl( 51/PJ( 5l : 1 7022~8~9E•03 
9 lJEL,TA PI< 61/PI< 6l : 1 25J61:l4.SJE·03 

NEW NI : 6 
P : --;--9~ 621lV!l 3 E- u 0 
SUM_l'_l .. _t,:N I ;;- -~Q_l!~Q_Q_!:_ __ QL _________ _ 

--SUM N!*Vl\/I • 1 /lOOOOO~E 02 
SUM "ll*h~I • 1 11000000~ 03 
Pi( ll : 1 9994JOOOE 00 

_ _f_H _?L~---~ 9 n _Q_Q_~QE___Q_9-_ ______ _ 
Pi( J) : 1 99981546E Ov 
PJ( 4) : ,99911284E O~ 

----PIT~>-=- - I 999 0 415 7E 0 Q 

PI< 6) :: ;Y9'162387E OU 
1 DELTA Pll l!IPI< 1l s 1 56935020E•03 
i_~~___F'_l__(___?l_I f'.__LL _f_L~- _ _t_ 7 4 O 8 _5 9 5 2 E .. O 3 
·6 PE[.TA PIC 31fPll 3) = 1 107439~6E,.03 
L g_E!. T ~ _P !__i 4 !_l_E'J! ~_l ~ ___ _J-2~'~3.f.~~-H 

17 UELTA Pl< 51/Pll 5) s 1 7022581:l9E~03 
9 ___Qh_l_~ _P_l<_~lLf>J LJ_l_~ _ _._25A.¢tt~~~~_.. o 3 

TABLE B. 1. 2. (Continued) 

NEW NJ : 5 
- -p-:,--;-9--? 7o2794E o 0----------------------

s u~ Nl*UNI = ,1420QOOJ~ 03 
SUM Nl*VNl = ,78000000E 02 
SUM N!*~Nj a ,1130000~E 03 
p I ( l) "' I 99'/4.SOOOE ')Q 

_fl L ?J ~ __ -'- ~~'!.~~_Q_B_l.f ll_Q___ 
P!( J) : 1 Y9<;87546E OU 

. __f'___lJ_4) " ,9SJJ11284E 'JO 
1--Pl( ~) :: ,~9'J04157E OU -----------

Pl( 6) : 1 99962387E ~U 

:1 DEl.,TA Pl C 11/Pl ( 1l = 1 56935020E .. 03 
5 e_Ei,,J~ Pl_(_ -~l-~l1_ __ 2)_~ _ __.__2_'!_~~J.QtlU_!i ... _Q__! 
6 DELTA Pit JJ/PI( 31 = 1 107439J6E•03 
6 DELTA Pl< 4i/PlC 4) : 1 70555328E .. 03 
T--UEl..T A Pl l 5 l /PI I 5) -:--;) ll22581:l9E·03 
9 DELTA P!l 6)/PJ( 6l = 1 2536843JE-03 

Nt: W NI : 7 
f-' : ,9V77 ~4CE 00 
50M NI~UI'.( ,1460DOOOE 03 
SUM NI*V~I ,8000000DE 02 
SUM NI*WN! ,1150000CE 03 
PJ( 1) = ,9994~000E 00 
PJ( 2l ;; ;'i9994Q87E GO 
Pl( Jl a: 1 99987546E 00 
PI< 4> = ,'i9961777E ro 
f-'!( 5) = 1 Y9904l57E 00 
f-'J( 6) a: ,Y9962387E (':0 

1 DELTA Pl( 11/Pll 1) a 1 56935020~,.03 
5 DELTA P!I 21/PIC 2) = ,5493101:lOE .. 04 
6 DELTA Pl< 31/Pl( 3l = 1 1C743936E•03 
7 DELTA Pl ( 4j/pJ ( 4l : 1 145544b7E,.03 
r --- DE[fA-PlT---SUP-lT5Y :---;--1 c;r2-5889E-;o-3"" 
9 __Q_\:_!.._T~ PJ_~-~1_/_P_U 6_L_= _ _1_;2_?36_fl~JE-:_Q~ 

11.Ew rn = a 
--p--:;- -------~ 9Yb-4~-2if6F. O!l-
~UM NI•UNI i ,1s1ouoocE 03 
SUM Nl*VNI : .~.soooooof 02 
&WM NJ<>~NJ " 1 11900000~ 03 ---- PIT--r-,-:---- ,'i<i 94.nl-fioE"-oO ___ _ 

-~l_(_~L~ ____ t~92_94_Q!JE __ og __ 
PJ( Jl : 1 999b7546c 00 

___ f' __ JL _~J :_ ! ?9_9 a i777~Jlil 
P!( ~) : ,Y99/4316E OU 

__ ___ iJ_J__L_u __ ll ___ L?.n~ZJ_§_?_L__Q__L __________ _ 
1 O!';LTA Pl< 1)/PlC ll : 1 56935020E .. 03 
5 !JELTA PJ( 2ilPJ( 2l = ,549310tl0E-04 
6 DELTA Pll JI/Pl( J) = 1 107459~6E,.03 
l \if;LJA __ PlL '!)_/E'J L 4J :; ._H~-5_4'\9Z.b0__3 
8 LlELTA P[C j)/PJ( 5l = 1 19905979E,.OJ 
9 o_r.ui'_ P!_!__6/IPI1 ol = ,25~1i!!4~J(; .. g~ 

'l_!;\.J NJ ___ !'__ -- - ~ 
P : ,9'19U Q52~ UO 
SUM N!•UNI ,l~30JOOO~ 01 
su~ Nl•VNI .~~Jaoooo~ 02 
~JM Nl•WNI : .1210QGOO~ 03 
PJ( ll " 1 1199~99'3-SE O•.l 
P_lf gl_ ~----t_~}92__'!_JQ1LQ~ 
PJ( Jl : 1 '199J7546E 00 
PJ( 4) : ,<;99d1777E OJ 
PJ( ~l : 1 \199/4316E 00 
PJ( 6) : ,~99623d7E O'J 

3 llELTA pj(-1j/pf(-t).; --~~7j5~011Fo6 
____2 ___ Ll£!..IA EJ£.Zl_l_P_U_ ZL ;:__ __ .?<l.~JJ,Jt§Qt;.,_o4 

6 DELTA Pi( SllP!I J); 1 l0l43936E .. 03 
7 llEUA P!t 4ilPIC ·I) : ,1455HblE•03 
8 DELTA PJI ~l/P!C ~l : 1 t89Q~979E,.03 
9 l~C:I, TA P_I l ·~!(PI C S) : i2':>3~j~~~l:,.03 

tv 
0 
-:i 



NEW NJ 11 10 
P z 1 9992>395E 00 
SUM NI•O~l ~- ,15900000~ 03 
SUM NI•VNI • ,88JOOOOOE 02 
SUM Nl•WNI • ,1260UOOO~ J3 
PI< 1> .. ,999q9903E on 
PI< 2) • 1 ~999~087E oo 
PIT 3) • ,9996754oE oo 
PI< 4) • ,99981777E Oil 
Pi! >) : 1 ~997~316E OU 
P!C 6) a 1 99987746E 00 

3 DELTA Pl( l!IPI( ll : 1 97J590~1E•06 
5 UELTA Pl< 21/P!C 2l : ,549310SOE·04 
6 DELTA Pl< 31/Pl< Jl = ,107439JbE·03 
7 DELTA Pll cjtPIC 41 : ,14554467E·03 
8 DELTA Pl< 5!1PIC 5) : 1 1S905979E•03 

10 DELTA P!C ~)/Pl< 6l : 1 9299~732~·04 

TABLE B. 1. 2. (Concluded) 

NE~• N 1 11 9 
p = ,99944287~ 00 
SUM NI•UH! = ,1640000Q~ 03 
SUH N!•V~l = ,91000DOOE 02 
SUM N!•WN! ~ ,13000000E 03 
Pl< 1) : 1 99999903E OU 
PI< 2> • ,99994087E DD 
Pl( ~) = ,9998/546E 00 
PI! ~) .. ;99981777E ~o~o~~~~~~ 
P.11 ~) = ,9999J217E oo 
Pl( 6) = 1 Y998l746E 00 

3 UELTA Pl( 1)/Pll 11 = 1 97359D11E·06 
__ 2__~.LI~J''_l l 2 j /~LL 2) = I 549310~0E-04 

6 DELTA Pl< 3!1PIC Jl • 1 107439~6E•D3 
7 DELTA Pll 41/PIC 4) : r14554467E•03 
9 DELTA Pl( 51/P!I 5l = 1 501284b9E•04 

10 UELTA Pl( 6i1Pl! 61 = .s29q57j2c-D4 

lliEW NI = 8 
p = ,9995~~331: 01;1 
su1o1 NI•UNI • ,16800000E 03 
SUM NI•VNI • , <,i.~QOOQOOE 02 
SUM N!•Wlli! • 1 1320COOOE 03 
F 1 ( 1) : 1 999'1990..SE OD 
Fl C 2> : ,9999•087E 00 
Pl C J) : ,99987~4f.E OCi 
f'· I c 4 > = 1 99991'329E r.o 
F' IC ~) = 19999<·217E ro 
PI C b) :i 1"19987746E DO 

3 VELTA PI< 1llPI< 1> = ,97J!:9011E·06 
5 l•ELTA Pl< :<ilPI< 2) : 1549;.<11oiioE .. 04 
6 DELTA Pl( ~I/Pl! 3) : , 10 7•139J6E·03 
8 VELTA PI< 4)/Pl! ~l : .294273.ii~E- .. 04 
9 DELTA Pll 5)/PI( !:>) = ,501:'1:1469E•04 

10 l'E:LTA Pl< 6itP!C 6l : ,829'l57:S2E•04 

~!?NA TttA INT L _!!:_i__!_____!'._E_A~~!:l 

r..:i 
0 
00 



Qi=(~:) MAX z ~: :.ip~ MAX SYSTEM INPUTS y I I i} 

pi •old' - pi old 

Api =iii old - iii 

_ µ i vi 
C.-a- +b -

1 m m 
Iµi Ivi 

i = 1 i=1 

w. 
+c -•­m 

Iwi 

i = 1 

COMPUTE Q. 
I 

COMPUTE 

p =Pi P2"''Pn 

CALCULATE 

Qi MAX 

CALCULATE 
l1 ni 

CALCULATE 

UPDATE Q. 
I 

FOR NEW ni 

CALCULATE 
NEW 

p 

YES 

YES 

Figure B. 2. 1. Logic Diagram of Computer Program 

for( ~:t)imization (Proc;;is U)tilizing 

D.C == D.n. c. p. 
max i i i 

max 

209 

STOP 

STOP 



TABLE B. 2.1 

SYSTEM OPTIMIZATION USING (~~) 
max 

= 
An. c~ p. 

1 1 1 

( 
Ap. ) 

max 

INPUT OA TA 

N • 6 
ICM• : 0 
PLJM!T VALU~.: 1 99950000 
A : 1 33333000 8 : 
U< 11 = 1,ooooooon 
U< 21 = 2,ooooonoo 
U< 31 = 3 1 00000000 
U( 41 • 4,000DCOOO 
U( ~I : 5 1 00000000 
Ut 61 = 6 1 00000000 
V( 1' : 1_.0000000~ v ( 2) = 1,00-000000 __ _ 
V( 31 • 2 1 00000000 
V( 41 : 2 1 00000000 
V( ~j = 3 1 00000000 
V( 61 • 3 1 00000000 
W( 1) : 1 1 00000000 
w< 2 ' = 3 , a o o a o oon--
w t JI = 2,00000000 
W( 4) : 2 1 00000000 
W( 5l • 4,00000000 
w( 6> = ~.oooocoo~ 

.RHAR( 11 • 1 000~70~0 
R8AR( 2) • ,05936000 
RBAIH 3) : _____,JJ_81!:>000 
R5AR< 4) : 1 17694000 
fl8AR< 51 o 1 23573000 
RSAH< 61 • 1 294~2~00 

AND CONSTRAINTS C 
u 

,33333000 c = ,33333000 

99, c = 57' 
v 

NEW ti! : 

AND C 
w 

3 
P • ,4099c3'3cO-n 

83 

su~ ~!<>UNI ~ ,2900COOOE 02 
SUH Nl<>V~ ,1600C(lOf.E~ 
SUM ~l<>WN! • ,21000000E 0~ 
Pl( 1) • ,99943000E 00 
PJ( 2l : ,V4064000E 00 
Pl C ;:,- • -- ,o818'501J01: OU 
PJ( 4) • ,Y1715590E 00 
P!( 5> • ,7642700UE GO 
P!( ei • ,iQ54BOOtE ro 
C( i> • ;b.S251:l004E .. o1 

c< 21 = ,1ia34616c oc 
Ct 3l : ,l4238R87~ 00 
C( 4l : ,i58<6172E 00 
C( 5> • 1 24112737~ 00 
C( 6) = ~7_66078RL QC 

1 Q( ll • ,4~002226E~O~ 
1 Q( 2> = .~2101~97l 00 
1 Q( 3> = 1 J~684765E DD 

_L___QJ___ 4 l = 4363461 % _j/_I)___~ 
1 O< 51 = .~~a35460~ or 
1 QC ol • ,21676614E 00 

NEW ~I • 4 
P = ,43o4u411~ oo 

CU -•~~-99 1 QODOOOOD ~V • 57,00000000 cw 83, 00(100000 _ __5V~~UN I _;.- _._~~_Q_Q~_QQ_QJ;_ Jl-2 
- S-UM ~l•VN! " ,1600000~!: 02 

SUM l\.lH/NI • 1 _f-SQ01JO~-

NJ : 1 
Su~ Nl<>UN! : 
SUM ~-'l<>VNI •• 
SI.JM NI AioiN I 

.~1000000~-02 
,l200DOOOE 02 
,17000000~ 02 

l~!Tf Al P VAlUE : 1 36H0319ti uo 

Q • UElTA Pl/PE~TA N!•C!•~! 

Pj ( l) : ,Y9943QOOE 00 
Pl..L.-"'I_• ,Y406400CE OD 
PI ( ,S) : ,8818~00('E CO 
P!( •I • ,9~0782l~E 00 

PIT">--.--;164270-o{:F:co-
P J < 6) o ,i0548000E CO 

--ccl.-i=~-25il-oo·f[;ot-
c < ~' = ,i183~616~ oc 
C( 3) : ,14238887'; OG 
C( 4l : ,i~826172~ 00 

----cT·---sy:;-- , 2 ~ l f2 nrcar--
_ ___Qj_~--=--• '° 66 Q_7 88t 0 0 

1 Q ( 1) = , 4 ~ a o u 2 6 E:---0--2 -----
1 Q( 2) = 1 ~2101597£: OQ 
1 Q( 3) = ,J;684765E 00 
4 a< 4) = ,96705820~·01 
1 Q( 51 = 1 c5835460E 00 

_1 rJ( 6)__!________i~l878b14f. 00 

NEW tlf • J 
---l"i------;-4779c;1 if2i:-o a------

s u M ~JoUN! ~- ,J900000CE 02 
sw~ ~!•VNI • .22000000E 02 
su~ NI•WNJ • .~700DOOCE o~ 

--f'T(l)I:: 1 9994300uE OU 
Pl ( 2> • ,9~Q6409liE 00 
PJ ( J) • 1 961420HE 00 
PJt 4) • ,9eo1s21~E oo 
P! ( ?J • 17o427000E 00 
PI< 6) : ,i0548000E 00 
C( ll • ,6J~58004~~01 

c ( 2 l = I ll83~E.l~J1Q__~ 
C( 31 • ,14238887~ 00 
tc 4) = ,158261721:; 00 

--cc~-----,241127371: 00 
Gt 61 = ,2lo6078BE 00 

1 -Q--cTl= --,4!:>002n6t:•o2 
1 Q( 2l • ,~21Ul597t: 00 
J Q( 3> = ,23789691 00 
~_i_l__~1 Y67_1)5~20 •01 
1 Q( 5l • .~:>!JJ!:>460 00 
1 Q( 61 = ,2ib78614 00 

tv 
........ 
0 



NO:\~ 'l I • ~~ce;s~~~----
P : 1 5J751~38t 00 
sv~ N!•UNI s ,4900UOOOE O? 
SUH NI•VNI • ,2soonooot U2 

__ _?_l,il:l___c''!_!__owNL~_L.S5QQU000f;: 02 
PI< 1) : , '7\/94.SOO•lE CO 
Pi( 2) • .~4064000E 00 
Pj ( 3) : ,96142034E 00 
PI< 4) : ,ii8Q7821:iE OU 
PI ( :l) = .~594924ilE o·a 
Pl( 6) • ,7054800UE nu 
c ( 1l = 'C>J258004f;-01 
t ( 2 J = I iiB34616E 00 
C( 31 = ,l42388B7E ao 
C< 4> = ,iS826172c 00 
r,;( 5J = ,t!4112737E 00 
C( 6 > = ,2l66U788E 00 

1 01 11 = ,4:;002226c•02 
1 Q( 2> = ,i.!21015971: 00 
3 QC 31 = ,i!J789691E 00 
4 Q c 4 > = , 'i0705B20E•01 
3 Q( 5l = ,.i;6984049E 00 
1 Q( 6) = ,2!878614F. 00 

NEW •q • ___ 4~------
--P-i 1 5\184Uti70E 00 

su~ NI•uNI ~- ,:;400U000t 02 
SUM N!oVNI • ,31000000E 02 
su~ NI•WNI • ,J9000000E 02 
PI ( :l.) • 1 ~9943000E 00 
P!( ?.l • 1 \/4064000E 00 
PI C .S) • --,~6142034E 00 
P!c 4) • 1 \18076215E 00 
PI C ~l : ----;-\15686684E 00 
P!( 6): 1 l0548QOOE 00 
Cc 1l • ,DJ25800~fi01 
Cc 2J • ,li8341>16E 00 
C( 3J = 1 142Jlf887f. 00 
C< 4l • ,iS826172E 00 
cc 51 : ,2~H2737E 00, 

_ C( 61 • 1C:l660788E UO 
11 Qc ll : 1 ~5002226E.,02 
1
1 rn 21 = 122101597!' _Q_Q___ 

13 Q( 3l • ,C:J789691E 00 
14 QI 41 : ,'1<>70!:iB20E,.Q1 
14 Q ( 5) = I ~~264763(:' 00 
l.___ QI 61 • 1 2l878614E 00 

TABLE B. 2.1. {Continued) 

NE>1 r-! I • 4 
P • 1 61867911E 00 
~1J11UNI .. - ,5'7000~_Q2_ 
SUM NI•fNI ~ ,3JOOOOOOE 02 
SUM Nl•WNI • ,4iOOODOOE 02 
Pl C 1) "' 1 \1994.SOOOE 00 
~!( 2) • 1 ~406400DE 00 
PJ( ,I) : 1\19398737E 00 
P!C 'I) • ,~8~76215E OU 
PJ( :>) : 1 \15686684E OU 
Pie f.>) = ,ior;4800DE 00 
r,;( 1) = ,63258004E•01 
t< 2> = ,iiB34616t on 
CC 3) • ,l4238B87E 00 
cc 4) : ,iSB26172E 00 
C( 51 : ,24112737E 00 
C( 61 • ,2~6~07B8E 00 

1 Q( 11 : ,45002226E~02 
1 Q( 2) = ,l~101597E 00 
4 QC 3) : ,J624B806E•01 
4 Q( 4l = ,9670!:iB20E•01 
4 ac 51 = ,1J2647S3c oo 
1 QI 6> = ,?ia1a614t oo 

NEW ~I • 3 
P = ,65104J94E 00 
SUM NI•~Nl :- ,61000000E 02 
SUM Nl•VNI : ,350000'00E 02 
SUM N!•WN! : ,470000005 02 
PJc 11 = ,9994JOOOE no 
Pi( 2) ~ 1 !898~749E O~ 
Pl( J) = ,~9398737E 00 
Pl( 4) : ,98078215E 00 
P!( 5) a 1 \15686684E 00 
PJ( 6) s 1 l0548000E 00 
CC 1> = ~6j258004E~01 
tc 21 = ,il834616E 00 
r,;( Jl = ,14238887E 00 
cc 4i = ,i5s26112e on 
r,;( 5) : .~41t2737E 00 
CC 6i : ;2766U788E 00 

1 QC ll = .~5002226E~02 
3 Q( 2> = 1 7Y842J82E~o1 
4 Q( 3l : ,36248806E.,01 
_4_~> : ,9670:;820E•Ol 
4 Q( 5l = 1 132647BJE ~O 
1 Q( 6i = ,2io78614E 00 

NEW NI = J 
P : 1 /2984J6:iE DO 

____ SU_t:!__lll~UNL~=-___.___ll_Q_p 0 Oil_Q_~ 
SU~ NI~VNI = ,410QOOOOE 02 
su~ Ni~WN! • ,5/000JUO~ 02 

--p f(T)-=---,-\19'l4J 0 0 0 = 00-
P J ( 2l :i 1 9!j964749': 00 
Pi ( .II : ,~i9:S\16737: 00 
PI C . 4) • 1 Y8fJl8215E _ _Q_Q ___ _ 
PJ( S):---,cJ56o!i6B4i: nu 
PJ( b) = ,71108<>643': 00 
CC ll = ,6J256004E .. 01 
G( 21 = ,iiB34616E OG 
G( Jl • ,1423o887E 00 
C( 4) = ,iS826172E 00 
cc ~> : .~4112737E oo 
CC 6) : ,2i66D788E UO 

l (f(1> = ,4500222i;e .. n2 
3 QC 2) = .i~842J82E·~1 
4 Q( 31 = ,Jb248806E.,01 
4 QI 4) : ,9i705~20E•Dl 
4 QC 51 : ,1J264783E 00 
3 Q( 6) = ;~~2040561: 00 

NE:•' NI : 4 
P = ,849Jo510E OU 
SU~ NioU~l ~- ,790000CDE 02 
su~ NI•VNI • ,44000000F. 02 
SUM NI•WNI ~ ,62000000~ 02 

--f'TTT>=--, \1!.194JOOOF 01J 
Pt C 2) : 1'769!H749E' OQ 
PI ( 3J " 1993967.37F. 00 
f'I c 4l " ,98078215£' CO 
PJ< 5) • -----.--V56l!7)684E 00 
PJ ( 6) • 1 1120383491:: 00 
C( 1l : 1 6~258004E .. Q1 
C< 2i = ,ii834C>16E 00 

--------cr-31 = ,142386B7E 00 
c1 4> = ,i5826172E on 
Cc 5l = ,24112737E 00 
c:c 6l a ,2l660788E 00 

l ac 1> : ,45002226E·02 
3 Q( 2l = ,79B42JS2E~Ot 
4·-- 'Cl ( 3) • , 36248B06E,.01 

li____Q_J______il_~ ____ _.ji> 7 o 5B20E·O1 
4 ric 5> = ,1J2647e;se oo 
i ___ Q( 6l • ,i!i977467E 00 

__fil'.J Ni : :; 
P : 1 8963UU38t 00 
SUN Ni•UNI i ,d!:>QOOOOOE 02 
SUH NI*V~l : ,47COOO~JE 02 

--C;>Ut'. N]•Wr:-11 ":- ,~ZQQ!l__QOl'IE il.2 
PI ( ll : ,'7n4JQOOE' OU 

__ _f_U____?J~---- __,_ ~_!:!_9B4 H_'lL JJL 
PI ( 3) : 1 \1~39!l737E O•J 
PI< 4 I a , Y'31)7821~E 00 
P!C 5) : 1 956d66B4E JU 
Pi L?l : 1?Zt?'EU9!; _Qg 
C< 11 : ,<>J2!:iC!004t•01 

_ c; ~ ;n -~ ___ _,_!Jj :14 6j._f\!;_ _Q 1-
c < .:si = ,14<?3o1187t: ~o 
Cl 41 = ,iS~26172E UO 
C:( :i> ~ ,24U2737E .in 

_ ~_!_ ~!_:_ ___ _i~!__Q_l)_'l]3R_k _ _ll_Q_ __ 
l. r,ic ll = ,4:;:J02226E.,u2 
_L__fIL£1 __ : __ _,_ i '7 .§ ~? .l 8 2 E ~_21_ __ 
4 Cl( 3> : ,J6248~06E•u1 
4 Q( 4) = ,'1bl0!:ill2~1:-01 
4 Q( :;> = ,lJ264763E ~o 

L-9! -~l__:= ___ ,~~~~!±:1t:~P- _ 

NEW NI : !:i 
P : ,92496d!:i7E oo 
SUN NJoUNI ~- ,9UOOUOUOE 02 

-- s u., -NT<>vr.r-1a-----;-soooaoii"Or"o:? 
SUM NJoWNI ~ ,11oooocrE U2 
PI ( 1) • , 11994.lOOOE nil 
p I ( 2) • I Yf;984749E OU 
Pfc Jf-;;-----;·9~3;isiX7E u-rl 
Pi< 4) = ,<J807H2t,E OU 

---m--5> = ----;-9ti747225E ___ on-- -
Pi( 61 • ,Y7124319E 00 
C:C ll = ,6J2,8004E•01 
cc 2l = :tl!_8~l4616E: co 
cc 31 = ,14238887E LO 

-- _ ___£1_.iL_= ____ _,__i ~ 8 2 61 72 i: c c 
C( 51 : ,24112/37E: CO 
CC 6l : ,cl66078BE CO 

1 Q( ll = ,450Q2226~•02 
3 Q( 21 : ,f9!:!42382E•C1 
4---oc 3> : ---;-~o24dBOf>i:•01 

~. _(J '- ~ 1 = __ ,_2~?__Q__2~~Qt;_~·_Q_L 
5 QI 5> : ,JIB7~912E•01 
?_ 2_1__~1_ = _ , ~2_6 95 l J, lE •0_1 tv 

....... 

....... 



NEW NI = 5 
p = ,9~912~051:; 00 
S!JM Nl*UN! : 1 9400000!1E O? 
SlJt-- ""l*Vr·JI: ,52000000E 02 
5!.IM N 1 *~i~!I II 1 730DOOQQ~ Q2 
PI c 1 l : 1 99943000E ilO 
PI c 2 > : ,989b4749E OG 
PI c s) : 199398737E tit1 

PI c 4 > = 1 99579285E rio 
PI ( 5 l = 1 98747225E DO 
PI C o) : 197124319E '.JU 
cc 1) = ,f?.S258004E,.01 
c ( 2 l = , ll8.S4616E 00 

-gc 3> = 1 l.~2~8!:!87E OG 
C( 4l = ,:i.!':>B26172E on 
cc 5) = ,2?112737E on 
be 61 = ,276n078f:'E Oil 

l Q c l) = ,~50fJ2226E•O~ 1 
3 Q ( 2) = ,79842382E•Ol 4 
4 Q c 3) = ,~~248806E .. Q1 4 
5 Gl c 4 l = ,21066491E:,.Ol 5 
5 Q ( !:i' = ,o57874912E•O~ 5 
5 QC 6' = , 696<J57l1E•01 5 

TABLE B. 2. 1. (Concluded) 

NEW NI : 4 
p = , 9~ 79~~Bf':E on 
SUM NI•UNJ • ,1/600000(£: 02 
SUM NI*VNI ~ ,53ooooorE 02 
SUM Nl*~~I • ,7600000CJE 02 
PI ( l l : 1 99943000E CO 
PI ( 2) = ,99920060E 00 
PI< 3) = 1 ~9398737E 00 
p 11 4) : ,99579285E OC 
PI< 5) : ,~a74722!:iE or 
PI C o) • ,97124319E OQ 
C( 1) = .~~25Cl004E•01 
C( 2) = ,11834616E 00 
cc 3) = ,;~236887E DO 
c ( 4) = ,15626172f: 00 
cc 5) = ,241127.slE OC' 
c ( 6) = 1 2l66D7BBE 00 
Q( ll = ,45002226E .. 02 
Q( 2> = 1·02601064E .. 02 
Q ( 3) = .~~;?488()6E: .. Q1 
Q( 4) = ,21066491E .. 01 
Q ( 5) = .~7674912E•Ol 
Q( 6> = ,6969)711,E•Ol 

LIMIT 0N U E:XCE~DED1 ELIMINATE ~0DULE~ 
LIMIT 0N U EXCE~DE~, ELIMINATE M00U~EC 5) 

NE\-J NI : 5 
P : ,95269191E OD 
SUH NioU~I ~- ,99000000E 02 
~u~ NioVNl c ,55QOOOOOr. 02 
SUM NioWNI ~ ,/800UOOOE 02 
Pl( 1) : 1 999430COE 00 

__ _lli~!_ 1 Y9920060E .~O~C __ _ 
PlC 3) : 1 Y99~1777E Ou 
Pl< 4): ,995792fl5E Ov 
Pl( 5) : ,9874]225E 0£' 
PI< 6> c: ,97124319E Ofl 
cc ll = ,oJ25eJo~E-01 

________ __Q_( 2 l = , ii83416HE · 00 

l 
4 ---5-

2 
5 
5 

cc 3) = ,i423~887E: 00 
cc 4> : .i5826172E 00 
tc 5> = ~24112737E 00 
C( 6) : ,2l660788c 00 
oc ll = .4~00~226E:P-02 

rJ c 2 l = __1_ b26rJ1064E•02 
OC ~> = .~~260iJ58E,.02 
Q( 4l : ,2l066491E:•Oi.~~~~ 
QC 51 = .oooouaooE oo 
oc 61 = :GooacoooE: oo 

LIMIT 0N U E:XCEE:DEU, ELIMINATE ~0DVLEC 4) 
LIMIT 0N U EXCEtOED1 ELIMINATE H0DU~EC 21 
LIMIT 0N U ~XCEEJE01 ELIMINATE H0DULE:C 3) 
LIMIT 0N U EXCEE:O~U, ~LIMINATF M0DULE( ~) 

__ Al,L MVIDUL.t:~_.!::L!Ml~ATED 

tv 
....... 
tv 



TABLE B. 2. 2 

SYSTEM OPTIMIZATION USING (~n max 
== ~n. / p. 

1 1 1 

( 
~P. ) 

max 
TO ACHIEVE A RELIABILITY GOAL OF 0. 9995 

N 1 b 
TCC>!N-=-- l 
PL(MIT VAL~~ • ,99°50000 
~ : ,J3333DOO B : 1 J3333000 C • ,33333000 
II( 1> : -1,00000000 
U( 2) • 2,00000000 
uc 3> = 3,onoooooo 
U( 4> • 4,00000000 
UI 51 • 5,0UOOOQOO 
u( 6l : 6,0l!OOOOOC 
~< 1> = 1,ouonooory 

-VT ff=----1-, iJ[io oooof.--
v c 3> = 2,0~000000 

vc 4> = 2,onoooooo 
V( 5) • 3,00000000 
V( 6) : 3,00000000 

__'!_( _J,_)_= ____ L_IJ~(l_Q_QJL _______________ --------------
~ ( 2> • 3,uooooooo 
we 3i = 2,uroooooo 
•< 4) • 2,oroooooo 
~( 5> • 4,00000000 
~( 6) • 5 1 0DOOCOOO 
RBAR( 1) : ,00057000 
RBARI 2) • 1 0593~000 
RBAR( 3) : ,118150DO 
RBARC 4) : ,17~94000 
RBARI 5) : 1 23573000 
RBARI 6) : 1 294520GO 
cu • Y9 1 00000000 CV • 57,00000000 CW • 83,00000000 

~'I c 1 
SUM N!•U~ll • 
su~ NI•VNI • 
su~ Nl•WNI • 

,2iooooocc 02 
1 12000000E 02 
,17000000E 02 

INITIAL P VALUE • 1 36790319E 00 

_Q • DELTA Pl/DELTA Nl•Cl•Pl 

NEw NI : J 
P • ,4099a353E OQ 
SUM NI•UNJ a- ,2900000CE 02 
SUM N!•VNI • ,1600000Dc 02 
sw~ NI•WN! • ,21000000E 02 

PTI----rf-i ,119943000E oo ---
PJ ( ~) s ,94064000E 00 
PI< 3> • ,8818bOOOE ~~ 
PJ( 4) : ;9171559QE 00 
Pf(""5-,-.--, /64VOOOE 00 
P[( 6) • ,7054600_~0E~._o_o __ _ 

C( 1l • ,6.S25!!004c•01 
c ( 2' • ,i.1834616LJjl __ 
Cl 3) • ,142380871: 00 
cc 41 • ,iS826172E 00 
C( 5> • 1 24112737~ 00 
CC 6> • 1 2lb6U788E 00 

1 Q( 11 = ,4>002226E~02 
_1____Q_i 2> • ;i2101~97c ~ 
1 Q( 31 = ,31684765~ 00 
3 Q 1 4 ' = , 4 3 a 3 4 6__ti_E___Q_Q___ 
1 01 5) = .2~835460E on 
1 Q( 6) • ,2i878614E 00 

NE;i NI • 4 
P • ,43S4~411c o~ 

____ !i_V M____NL•__i.illi_i_ -:_._fl ·) Q 0 0 0 0 E 0 2 
SUM Nl•VNI • 1 18J00000c 02 
SUM N!•WN! a ,23000000E _Q_£ 
Pi ( 1) • 1 9994.SuOOE 00 
Pl( ~l : ,94064JOOE 00 
P! ( 3) • 11l8185JOOE OU 
P[( 4) • ,9B078215E on 
Pl( 'I • ,76427UOOE 00 
Pt< 61 :i ,7Q548JOOE OU 
Cc 11 • ,a3258004E"01 
cc 2> • ,ii834616E oo 
C( 3> • ,14238867E 00 
c1 4) • ,1SS2hl72E 00 
CC 5) • ,24112737E 00 
C( 6> • ,2l6607o8E 00 

i- lff l; i • , 4~002226E.,02 
1 u1 2> = .~~101sne on 
1 Q( 31 • ,J1684765E 00 
4 Q( 41 = ,967o5a2oe~o1 
1 UC 5> • ,ii!563,460E 00 
_!___(l_(___J>_)_ : , 21878b14 E O 0 

'1EW NI = 3 
p • I~ 77.9~~82c 00 
SUM N!•UNI • ,Hoooooor: 02 
SUH Nl•VN! • ,22JOOOOOE 02 

~l•WNI • ,210000001: 02 
f' I< l I • 1 119?43000E 00 
PI c ii!) = 1940fi4000E 00 
"IC .S) • ,96142034E 00 
PI< 4) .. 198076215E 00 
PI C !:i) • , 764Vuooe oo 
"IC 6) = ,ios4tioooE oo 
c ( 11 • ,o325auo41:~01 
t ( _2' . ,i1834616E l!Q 
c ( 31 • 1 14238B!l7i: 00 
c ( 4' • , i.5B26172E 00 
C( 5> • ,ii!'.!112737E 00 c ( 6' = ,2766076BE 00 

1 Q( 1 > • ,~5002226E~02 
1 QI 2> • 1 2ii!10l597E 00 
3 Gl( .S> • ,ii!~789~91E 00 
'l _ __i!_L4' • 1 11010,a2oe .. 01 
1 Q( 5' • ,2583~46~E 00 
j_ _ __QJ_ b) • ,h87dii14E 00 

tv 
f-"­
w 



NEW N l : 3 
·-~-~7~2..sil.:-Jlf 

SUM N!•U~! = ,49JOOOon~ 02 
su~ NI•VN! = ,2a~oooooe 02 
SUM NI *"l~lj ~. _ 1 .S!>']0.\)_0QQ[.! _ 02 
PI ( 1) = ,9994..SJOOE on 
P!C 2) ~ 1 94004000!= O:i 
P-H rr-=-1•n1wo34Y oil-
PI < 4) : ,980782t5E OQ 
P!( !>) z ,t!5949249E OiJ 
PI( 0) = ,105480DOE oa cr-n=- --,-l>S-25soa4r:~ar __ _ 
cc 2> = ,il834616E 00 

-cC3> .-----~142:rn86hOO ___ -
C( 4l : ,i5ti26172E 00 
C( ~l : 1 241127J7!:: 00 
C( 6> • ,Z,66Ui88E 00 

1orT>--=- -~q-;ti02226E•O?. 
1 Q( 21 = ,2210l597C: 00 
J~--.S-l -.---~_s 7 8 ~ 6 91 E 0 O 
4 Q( 4l = ,96705820E•01 
..S Q( ~l = ,46984649E 00 
1 Li( 61 = il.f87~614E: 00 

NE~ NI :r 4 
P-ii. l59FiliJB7()i:-oo-
!il.JM --~J" UNi_~-- .t.?~90 0 0 0 o_;__ji_? 
SUM Ni•VNI • ,J1000000~ 02 
SU~ NI•WNI ~ 1 J9000000E O? 
PI C 1l • 19994.SOOOE 00 
PI ( 2) • 1 Y4064000E 00 ----t>iT-:n --=-- ·1-y 614 2 o 3 .n:-oo __ _ 
P!( 4) • ,98078215E CO ----r:,rr··5r-: -,-9-56s6684e oo- -
P!C 6) : 170546~00E 00 
C( 1l = 1 6.S258004E.,01 
t;( 2l = ,iisHb16E OC1 

--C(3)_:_---;J,42_3 8 B 8 7 E 0 r. 
t:c 4l = ,i5B21H72ii 00 -c' s-> • , ~ 4T 12-r r'fE---or.- -

--~.( 61 : Li?_l~~Jl768ii_Q_QH 
1 QC ll • ,45002226E"O~ 
.L Q..L Zl :: _.,.~21JLl2.'l1Ji_Q_Q_ __ 
3 Cl( 31 • 1 2J789691E 00 
4 QC 4l • ,9i>7o5e.2JH:_••Jl1 
4 Q( 5l • ,i.S264l63E 00 
.1 _ll_( m~l =_ _ ___.~j_a78b1.4f__QJ1__ 

TABLE B. 2. 2. (Continued) 

- - _1,iJ:il.J _1'-J _ ..._ __ . -- _•L - ------ -- ---
P : 16lM67911E 00 
SUH N!oUNl_,;· 1 57QJ!_Q_QJ)_Qf__!l2 
SUM NioV~l • ,3~0000QOE 02 
SUM NI~~NI ~ ,41000000E 02 
PI< 11 ; ;119o4joooE r.u 
Pt e_n _._ __ 1 ~i.1'.Q.'.'IIJlOF DY 
f'l( J) • !~939U737E 00 

_ PH_ 41 " ,98~E CO __ _ 
PlC 5) • 1 ~5u86684E 00 
P!( 61 : ,7Q,48QOOE G~ 

C( ll = ,6.3258004E~01 
CC 2l = ,il834616E OQ 
cT3> = ,l4238d87E-oil __ _ 

__ __E_L.;_i__~ i S 8 2 817 2 E _!l_ii_ _. 
c< S> = ,i4112131e on 
C( 6l : ,~76h07B8E O~ 

1 Q( 1> = ,45002226Ew02 
1 QC 2> = .~~l01597E on 
·4··--oc;s-,-.----;-g1>21eso6t: .. o 1--· 

4 Q( 4l • ,967~5B20En01 
4 a< 51 = ,1J2&47B3E oa 
1 Q( bl = ,ii878614E 00 

NE>J NI ii: .S 
P • ~65104394E oo 

_ ~u~ N 1 •yr-. L~=H1~±.ll.O..Q.Q_Qil_§.._.!l_~ 
SUM Ni"V~l • ,.3500000DE 02 

. _ ~L,IM ~"."!J_l_ ~ .. --~!O_Q_ll_O_O _ _Q_~jl (! 
Pl( l) = ,9994JOOOE no 
Pi( 2) • ,Y8984749E 00 
PT( .S) : 199396737E: 00 

_ flL~ _ ____ii a o 7 a 2_ l. 5 _L_Q_\J_ 
Pi( 5) • 1 956866B4E 00 
Pl( 6) • ,70548000E Oll 

---··c(1)ii---~325B004e .. o1-
c( 21 a ,1i834616E oo 
C( 3l s 1 14238887E 00 
C( 41 a ,1Se26l72E oo 
C( 5l • 1 241127371: 00 
QJ_~l__: ___ t~J 6 6_!E!!l~Q 

i Q( ll : ,45002226E•02 
L_9_L_2_~-- j_z~~-4 2 J § 2E" o :!.~ 
4 Q( 31 • 1 J6246B06E•Ol 

_i_ __ .91_~_> .. ,91i705s2ae .. 01 
4 Q( 51 • ,1.S2647B3E 00 
L...QL~i = ,~ie7B614E 00 

NEW NI a 3 
p = ,72984365ii 00 

---~M ~I.•_(1~1__?_=__,130.QJl.!lJl.Qc 02 
SUM N!•VN! • 1 4lOOOOOOE 02 
~ NI•r!Nl_~l!l_Q_lliOt: 01_ 

P!( 1) "' 1 99943000E 00 
Pi( 2) : 1 98964749E GO 
Pj( .3) • 1 99398737E 00 
~I (_~L.." L~!l07!l_21~E QQ__ 
P!C ~I : 1956B6684E 00 
P!C 6):: 179086643E 00 

·-cc 11 = ,<>J<'5ij004E .. c1 
C< 2> = ,ii834b16E OC 
C( J l :- , 14231l887c CO 
c< 41 = ,iS020172e co 
C( 5l = ,C!<i312737E 00 
cc <>> = ,27~607BBE: on 

1 Q( 11 = 1 45002226E,,C2 
3 Q( 2i : ,7Y8423B2E .. C1 
4 a< 3> = ,3024aso6i:~o1 
4 QC 4l = ,96705820E·01 
4 QC ~> = ,1~e647s3C: o~ 
3 Q( 61 • ,;92040561:: 00 

NEW N l :: 4 
~ ,e49J6!>10E 00 
SUM N!<>~~I i. 1 790000COE 02 
suM NI•VNI • ,44oooouoe 02 
SUM NI•WNI c 1 620000COE 02 
PI< l) = 199943000E no 
Pi( 2> c 1 Y8984749E 00 
Pi( 3) :: 1?9398737E 00 
P!C 41 1: 1 9807U215E 00 
Pt( 5) P 195666684E 00 
Pi< <>1 .. ,92038349e no 
C( 11 = 1 C>J258004E~01 
C< 21 = ,iia34616E on 
C( 31 = ,1423BBB7E 00 
C( 41 c ,i5B26172E oa 
t:C 5l :: ,C!4112737E 00 
t< 6l a ,~,660788E DO 

1 QC 1) :: , 50C2226E .. o2 
3 Q( 2) C I 9642382E,.Ql 
4 Q( 31 • , ~24~806E~G1 
4 c.ic '" = , 6705s2oe .. 01 
4 Q( 5) " I J2647.33E co 
4 QL 6i ~-- • ?9i'HHE oa. 

NEW Ni = 5 
P ~ .~963U038E 00 
SUM Nl•~~I ~· ,850000JOE 02 
SUM Nl•VN! s ,47000000E C~ 
SU4 Nio~NI • 1 670000UQE 02 
Pie l) : 19994.SOOOE 00 
Pi ( 21 = ,Y8?64749E 00 
Pl( .3) = ,Y9~7B737E 00 
~ • , 98078215E _Q_Q___ _ 
PI ( 5) a 1 95f>Bb684E 00 
Pl< 6) • ,97:L24319E OU 
t:( 11 = 1!f25J004E•01-

___ _g_l__ll_~_.1.l.J._§.J_4616;._g_Q_ __ _ 
C( 31 = .i~236687E QO 
C( 41 = ,i5B26172E no 
C( 51 = ,241127J7E 00 
C( 6i = ,2766078BE DO 

1 Q( ll = ,45002226E•v2 
•L_Q.( ~L~ ___ _.]Ytl42J82E•01 ___ _ 
4 Q( 31 = 1 .So248806E•01 
4 Q( 41 = ,96705B20E .. 01 
4 Q( ~I = 1 i32647B3E GO -• 
5 QC 6l c ,bY695711E•01 

NEW NI s !:> 
P : ,92490tl~7E 00 
su~ NI•UNI •. ,90000000E 02 
SUM Nl•VNI a 1 500000UOE 02 
su~ N1~wN1 • ,7iooooooe 02 
P!( 11 : ,99943000E CO 
Pl( 21 a ,98964749E 00 
PI< 3) ; 1 99398737E CO 
PI< 41 • ,Y8078215E 00 
Pl( 51 a 1 9tl747225E 00 
Pi( 6) a 197124319E 00 
C( 1l : 1 63258004E•01 
C< 2i a ,iiB34616E ~c 
cc 3l • 1142388871: 00 

__ _f( 4 I = , i:i626172E O o_ 
CC 5> ~ ,24112737E 00 
C< 6l = ,2,6607B8E 00 

l Q( 1> = ,450022261::~02 
3 Q( 2i s ,79s42J62Ew01 
4 Q( 31 a 1 3624BB06E•01 
4 Q( 4> a ~705B20Ew01 
5 Q( 51 ~ 1 ~7874912E~o1 
5 Q( 6i • ,~Y695f11E•D1 

~ ..... 
~ 



NEW NI a 5 
P • 1 93912505E 00 
SUM Nl•UNI =. ,940000QOE 02 
SUM NI•VNI a 1 5200000DE 02 
SUM NI•WNI a 1 7JOOOOOCE 02 
Pl( 1) a i99943000E 00 
PI( 2) a ,Y6984749E 00 
P{( 3) a 1~9398737E 00 
Pre 4J s ,11957112s5E oo 
Pl( 5) s -;-9s74l225E 00 
Pl( 6) • ,117124319E OD 
C( ll = 1 6J258004E~01 
tc 2i : ,1i834616E 00 
C::( 3l : 1 1'1238887E 00 
tc 41 = ,i5826172E oo 
C( 51 • ,24112737E 00 
tc 6> = ,276607BBE ao 

1 Q( 11 a ,45Q02226E•02 
3 QC 2l : ,]9B42JB2E•01 
4 QC 31 a ,~6248806EP01 
5 Q( 4l a ,2l066491E•01 
5 QC 51 • 1 ~7874912E•01 
5 Q( 61 a ,69695711E•01 

NEW NI a 4 ~ 
P s 1 9479988RE 00 , 
SUM N!•IJNl i- 1 96000000E 02! 
SUM Nl•VNl • 1 53000000E 02: 
suM Nl•.WNI ,; , 16ooooooe 021 
Pl( ;> • 1 ~994~000E 00 I 
P!C 2> • 199920060E 00 
PJC J) • 1~93987J7E OQ 
P!C 4) • 1 995792B5E 00 
P!C 5f i~ ,96747225E 00 
PlC 6) 9 197124319E 00 
Cl 11 • 1 03258004Ee01 
~( 21 • ,ii8J4616E 00 
gr 3-1-.. ---,; ~ 2 :rs sue oo 
C( 41 • ,15B26l72E 00 
Cc 51 • 1 2~1!2737E oo 
C( 61 " 1 27660788E 00 

~ii • .~;oa2226e"o2 
4 Qc 21 • ,02001oo•e~o2 
4 OC 3l • 1 ~~248~Q6E~o1 
' Q( 41 • ,a~o66491E~o1 
,5- Q(" 8 I p8i49l,"2e;.,Q1 -- ~ 

5 Q( 61 a 1 09695711E"01 

TABLE B. 2. 2. (Continued) 

NEW Ni • 6 
P : .~6627~77E 00 
suw NI•uij~ ~- ,102oooonE o3 
SUM NJ•VNI • ,56000DOOE 02 
su~ NI•WNI • ,siuoouooE 02 
PI( ll " 1 ~994.SOOOF. 00 . 

----1'..ll_il "- - -~~Q.E. _ _QjJ __ 
PIC J) ;i ;99.398737F. 00 

__llL 4) • I Y\1579285E 00 
Pi ( 5) s 1Y8147225F. 00 
Pl< o) s 19c;9967181;'. OD 
cc 1i = ,o.s2,soo4e.01· 
G( 21 " ,li83'1616E 00 
C( J) : 1 •4238887E O~ 
G( 4i : ,b826l.72E 00 
C( 5l c ,241l2737E 00 
C( bl = ,2l660788E 00 

1 QC 11 = ,45G~2226E•02 
4 oc 2i = ,o2001064E~a2 
4 Q( J> • ,J6248806E•01 
5 Q( 4) • ,2i066491E•01 
5 ac 51 = ,~7o74912E•01 
6 Q( 6l : ,i41~6251E~01 

NEW NI • 6 
P a 1 97509944E 00 
SUM Ni•UNI i- ,l0700J~ 
su~ NI•VNI • ,59000000E 02 
SUM Ni•WNi s ,85000000F. O?. 
Plc ~1 • 1 9994~oooe: o~ 
PI C 21 • 1"9920060'" OQ 
Pl( 3) • 1119398737~ 00 
PIC 4) " 1\l9579285E 00. 
Pl( 5) • 1 "19649052E 00 
PI( 6) " ,989\16718E 00 
9C 11 : 1 ~~258004E•01 
CC 21 : 11l.B34616E 00 
CC 3l • 1 14236887E 00 
tc 4l • ,iS826i72E co 
C( 5l • 1 24112737E 00 
t ( 6 I • I ~l660Y88E co 

l QC ll • ,4~002226E•02 
4 QC 2> • .. ,626010641:•02 
4 QC 31 • ,~a2488Q6E•01 
5 QC 41 • ,2~066491E•01 
b Q(·5) • ,10616943E•Ot 
6 Q( 6i • ,241662511:•01 

NE~ NI : 5 
P • 1 9801J235E 00 
SUM Nl•Uijl ~· 1 11000,00E 03 
SUM N!•VNI c ,61000JOOE ~2 
SUM NI•w~1 ~ ,s1ooo~ooc 02 
Pl( ll " 1 99043000~ OD 
Pl( i> : ,999iD060~ 00 
Pi( 3l c ,~9911777~ OD 
Pie 41 z 199579285E 00 
P!C 5l : 1 99649052~ DO 
Pi( 6) • 1 98996718E 00 
CC 1) = ,OJ258004E~01 
Cl 2l = .iiB34616E 00 
c; ( 3 I " , 14238887E OD 
C( 4) : ,i~B26172E 00 
cc 51 = ,24112737E on 
GC 6i = ,2l660788E DO 

1 Q( 11 = ,4,0~2226E~D2 
4 Q< 21 = .0~601064E~o2 
5 QC 31 • ,,J260058E~o2 

5 QC 4 > c - ; Zl066491E,.D1 
6 Q( ~l = ,iD616943E~D1 
6 QC 61 : ,Z4166251E•D1 

NEt-J NI • 7 
P : 198668412E DO 
SUM Ni•UNI .- .116DDOOOE 03 
SUM Nl•VNl • ,64DOOOOOE 02 
SUH Ni•~NI • ,92000000E 02 -p-, c 1) " I ~9943000E DQ 
P!C 2l • ,99920060E 00 
Pl< 3> • ,~9911777e o~ 
P)( 4) • ,99579285E 00 
P l'C 51 c 1 996490521'! OD 
Pl( 6> :t 1 99658469E 00 
C( 1l • 1 6JZ58~04ER01 
CC 21 • ,ii834616E DO 
cc J) • 1142388871: oc 
CC 41 • ,i5826172E 00 
C( 51 • 1 2~112737E OD 
CC 61 • ,2f6~0788E 00 

1 QC 11 "' 1 !~D02226E~02 
4 Q( 21 = ,62601D64E~02 
5 QC 31 • ,,~260~58E•D2 
5 QC 41 " ,2~066491E•01 
6 QC. 5l • ,~g616?•UE•D1 
7 QC 61 • ,82485468Ew02 

Ne~ NI : 6 
P = ,9B997J74E on 
SUN NI•U~l ~- 1 120DOOOOE 03 
SUM Nl•V~I a ,66ijOODOOE 02 
su~ Nl•WNI • ,94000QOOE 02 
Pl< ll • 1 9994JUOOE OU 
P!( 2) :______ii9920060E OU 
P!C Jl : ,119911777E OU 
P!( 4) = ,999l1284E 00 
P!( ~) a 1 99649052E CO 
PI< 6) • ,9967B469E nu 
Ci l> = 1 6325d0u4Ew01 
C< 2l : ,i16346t6E QC 
CC 31 : ,14233887E DC 
CC 4> : ,i)626172E 00 
C( 5> = ,241127J7E 00 
C( 61 : ,276607d8E 00 

1 QC 11 = ,4~002226E•02 
1 ~( 2l = 1 0~60lD64E•02 
5 QC 31 • ,5J260D>oE•02 
6 Q( 4l • ,4458142:s'E·02 
6 Qt 51 • 1 1U616943E•D1 
7 Q( bl = ,62495468E•02 

NE"' NI ;i 7 
P ,. 1 99250dl1E DO 
SUM NI•U~I .- ,t250DCDOE 03 
SUM ~l•VNi • ,~90000006 02 
SU~ NI•W~I s 1 98QOUOOOE 02 
PI< ;> s 1 ~9943DOOE DO 

-~PU 2l • 111992D06DE 00 
Pl< 3) • 1 ~9911777E O~ 
Pl< 41 • ,99911284E on 
PIC ~) a 1 99904157E OD 
PI< 6> • ,9965B469E 09 
C( 1l • 1 0325d004E•D1 
C( 2i : ,ii834616E 00 
CC 3> • 1 14238887E 00 
C< 41 • ,i,826172E 00 
C( 5l • 1 24112737E 00 
C( 6i • ,2l66078BE 00 

1 Q( 11 D ,4~002226E•02 
4 Q( 2i • ,o260~064E•02 
5 QC 31 : 1 >J26D058E"02 
6 Q( 4i • ,44581423E•02 
7 Q( 51 a 1 2~12J9SOE•02 
7 Q( 61 • ,624B>468E•D2 l'..:l 

....... 
Cll 



Ncl! NI = e 
p : ,9\147/2631:: 00 
SUM NI•U~I ~ ,13100000~ 03 
su'-1 ~T•v:n--=- ~720ooocron2 
SU'-1 N!<>W:Ji __ :i -'-10300000:.: 03 i>n n=---;'i994JOOOE~-
Pj c 2> = ,'Ji9noo6v<: Do 
PI< 3> = ,'J9911771E on 
Pl( 4): ,99911284!: OU 
PfT-g--,--..-- I 999U4157&:; Oil 
Pl C I>) : ,~98i!~852E 00 
i;; ( rr:---- ---;tl"3"2"5 'l 0 0 4 E: .. 0 1 ----
f; c 2) ; ,ll834616E: 00 
C( 3>-: ,1'+23t>8871:: 00 
C( 4) : ,i5821Jl72E OD 

---C(~-----;-24112 7 3 7EOO-
c c 61 • ,:<766~78Bt: oo 

1 Q-( ff~ -;-4500<!2261:-.:.02--
4______Q_( __ ~L-~-------'- ¢ ~6 o 1o641:: .. o 2 __ _ 
-5 Q( 3) : ,:>S2600581::•02 
6 Q ( 4) s '"4<1~8142Jl:: .. 02 
7 Q( 5l = ,2912.19801::•02 
8 Q( 6) : ,2770Q934E•02 

Nbi NI : 5 
P = ,99~509611:: on 

-----~.UI', _til<1WH ~~---•H3.nfil!Jlfil:.~ 
SUM NI•Vfll a ,73000000E: O~ 
SV'I Nl•W~l! a ,1060000~ 
F'IC 11 "' ;v99'13000i: 00 
F'l< 2> a ,cJ99\14087LJlil 
Pl C 3) s 199911777!' 00 
F'IC 4) .. ,Y9911284E on 

- -- i>1 c"- ~ )----.--------;-Y99o41-57EOii"--

P I ( 6 l : ; Y9Bl:l5852E 0 U 
C( ll : ,1,.n56004E.,01 
cc 2l = ,ii834616E: 00 
CC 31 : 1 l'12:H!B87E 00 
C( 41 = ,l.58261721: IJO 
9< 5) • ,2~112737~ 00 
C( 6l ,. ,V660788E 00 

1 Q( ll : ,4500~226E•02 
5 QC 21 : ,46415602E•03 
5 Q( Jf-~ ,:>J26l105BE•02 
6 Q( 4l = ,44561423E•02 
7 Q( 5) • ,291239801::•02 
6 Q( 6) ~ ,2;700934E~02 

TA"RLE B.2.2. (Continued) 

NE'; NI • b 
P : ,9Yb26457t Qr, 
su~ N!•U~I i- ,1J6000U0f 03 
su~ N!•VNI = ,75QQOOOOF 02 
suu NI•W~I ~ ,1oeoooool 03 

----Prc-T>.--------;<T9 9" J ooo"E_o_u __ 
P! C 2> : 1 Y99'14087G 011 

---PTT J l = , Y99ti7546i:-o-,1--
P ! c 4) ~ ,Y99112R4~ on 
PI C 5 l : , '199U4157E Q[l 

P!C 6) a ,Y98S5852E OU 
Cl ll : 1 f><~258004t-Ol 
tc 2> = ,iio346161:: oo 
CC ~l • ,14236887E 00 
cc 4l = ,i5826172t 00 
C( 5l : ,2'1112737E: OD 
C( 6l : 1 2l66~788E OD 

1 ,;J( ll = ,45002226£: .. 02 
5 Q( 2l = ,46415602c•U3 
6 Q( 3l = , ~545468Bc•03 
6 QC 4j : ,4458~423E~02 
7 ~c 5~- = .~~12~~8~~·b2-
6 r.JL ti 1 = ,vznu.'l.J.4E•02 _____ _ 

__ NEW __!!__L!__ -~3"-c--c-~---~ 
p = ,9~68Jl60t 00 
SUM Nl<iUtl! ;;- 1 138000001: 03 
SUM NI•VMI s ,770000001:: 02 
SUM N!•WMI c ,11QOOJOOt 03 
Pl( ll • 1 99999903E 00 
Pi ( 2l a ,cJ99940B7!0 OU 
P!C -ll a 1 119987546E O~ 
P!C 4) s ;999ll284E O~ 
Pl( 5) a ,Y9904157E O~ 
P!( 6) a ,9986~652E OU 
C( 1l = 1 63258004E•01-
CC 2l = ,ii634b16E 00 
C( 3l = 1 14231:1B87E 00 
C( 4) • ,i582b172E QO 
C( 51 = 1 2~112737E UO 
C( bl = ,27660788E DO 

3 QI ll • 1 15390781E•04 
~--~C 21 • ,4041~6Q2E•03 
6 Q( 31 = ,75454668E•03 
6 Q( 4) c ,445814231:~02 
7 Q( 5l a ,29123980E•02 
8 QC 61 • ,27700934E•02 

NEW NI a 7 
P : ,llY75J511c 00 
SUM NI~0~1 ~ ,142DOOOOE 03 
SUM NI•VNI c 1 790UOOOOE 02 
SUM N!<>Wl!J : 1 112000001: 03 
Pi ( ll • ,999\19903F. OU 
~IC ai • ,i9994067E OD 
P!C 3) : ,\19987546E 00 
Pl( 4l : ;cJ9981777E OD 
Pi( ~l a 1 1199~4157E 00 
_f"__I___L_2_l__~9865652E OD 
CC 11 = - 1 ~J25b004E~01 
~( 2l = ,ll834616E 00 
CC 3) = 1 ~~23888'/c OD 
CC 41 : 1 l582b172E 00 

----c;( 5) = I ii!4112737f: _O_O __ _ 

C( 6) : 1 ii!l66U788E 00 
3 Q( ll = ,15390781E•U4 
5 QC 2> = ,464t5602E•03 
6 Q( 31 = ,75454B881::•03 
7 Q( 41 : ,ii964546E~D3 
7 Q( 5> = 1 211123980E•02 
a Q( 61 R ,21700934e~o2 

NEW NI "' 8 P a , 99_8_2_3_5_6_4_E ___ o_n ____ _ 
SUM NioO~I j ,14700000E 03 
SUM NI•VNI s 1 620DOOUOE 02 
su~ NI•WNI • ,11600000E 03 
PjC ll a ,99999903E 00 
P!C 21 s 1 i9994087E OD 
PI< 3) • 1 999H7546E 00 
Pl< ~l ~ ,99981777E Oti 
PIC 5) a 1119971316E 00 
Pl( 6) a ,9988~852E 00 
C( 11 = 1 63256004E•01 
Cl 2l s ,ii834616E 00 
Cl 3) = ,1423HB87E 00 
C( ~) c ,ii826172E OD 
C( 51 = 1 241127J7E 00 
C( 6) D ,2766~788E OD 

3 Q( 11 a ,;~390781E•04 
5 QC 21 = ,1641~602E•DJ 
6 Q( 31 "' 1 75454866E•03 
L___g_! 4l a ,9i964546E•OJ 
6 Q( 51 = 1164D6605Ee03 
~ QC 6l = ,~i700934E•02 

NEW Ill I a 9 
P • ,9\190UU52E 00 
su~ N!•U~I ~ ,15JOOOOOE 03 
SUM Nl•VNI a ,H5QOOO~OE 02 
SUM Nl•WNI ~ 1 1~100000E 03 
P!< 11 a 1 119999903E 00 
PIC 21 : 1 99994067E OU 
P!C J) = 1 99987546E 00 
Pl! 'll s 1 119981777E OU 
Pi ( ~) :s 1 99974316E OU 
PJC 6) : ,999623B7E 00 
C( 1> = 1 63251:1004E•01 
C( 2i = ,i1834616E co 
C( 31 : 1 1423B8if7E 00 
C( 4l : 1 l~82c172E CO 
C< Sl : ,24112737E oo 
CC 61 = ,2l660786E 00 

~11 = ;15J90781E"04 
5 Q( 2i D ,4b41~602E•03 
6 Q( 31 = ,754548881::•03 
7 ac 4> = ,Yl964546F.•03 
8 0( 51 " , 7ti4Q66o5E-..-03 
9 Q( 6> = ,9111261ae.03 

New NI • 6 
P • ,99914~92E 00 
SU~ NI•U~I i - 1 15700000E 03 
SUM NI•VN! • ,87000000~ 02 
SUM NI•WNI ~ 1 12300000E 03 
P!C ll a .-~9999903E OU 
PI( 2) • ,cJ9994087F 00 
P!( 3) s 1 9998/546E 0~ 
P! ( 'il "'__.Y99_96329E OQ 
F'!C ~1 • 199974316E OU 
P!J 6> • ,i996~387E on 
C( ll = ,6J251:1004E~01 
cc 2j s .iiB34616E oo 
C( Ji • ,14236687E 00 
t1_4j ~ .i~826172E 00 
Ct 5l • ,2~1127~7E 00 
C< 6) :s ,2766078BE DO 

3 01 ll • 1 1~390781E•04 
5 Q( zj s ,i6415602E•03 
6 Q( 31 s ;,~~~~88BE•03 
8 Q_I ~J ___!__ _,:l,6594101E•03 
6 Q( 5> a 1 /l:l406605E•03 
~l 6j • ,91712618E•M3 

I\:) 
to"'" 

°" 



TABLE B. 2. 2. (Concluded) 

NEW NI:: 10 3 Q ( 1 > : ,~!:)J9U781E•Ci4 
p = ,9993~~39C: 00 5 Q( 2; ;: ,4641~602E•C3 
SUM NI .,.urq • ,16300rl00t: 03 6 Q ( 3) = ,75454888Ew03 
SUM NI•VN! • 1 900000uOE 02 8 Q ( 4) = 1 iB594101E"'03 
SUM NI *W~JI Iii 1 12800000E 03 8 Q( ~) :: ,7~40o605E .. o3 
PI( 1) : 1 ~999990.:SE OIJ 10 Q ( 6) = 1 300048J3Ett0·3 
PI( 2) : 199994087E O~ 
Pl< 3) :r 1 Y99ij7546E 00 
Pl( 4) ;I ,99996329E OIJ 
Pl ( !:)) : ,999743'.1.6E 00 
PI( 6) ;: 19991'7746E 00 
g ( 1) = .~325~004E:•01 NHJ NI = 9 
c ( 2) : ,11834616E ~O p = 999~81j33E 00 I . .. . - ... 
~ ( ..s) : 1 1423B887E 00 SUl.1 NI-ctl,JNI = 1 16BOOOOOE 03 
c ( 4) : ,·iSB26l.72E tiO SUM NI•VNI • ,li~OOOOOOF; 02 
c ( 5) : ,c4112737E 00 SUM N!HINI rl !l3200000E 03 
c ( 6) = 1 27(>6U788E 00 

PI< 1> :s ! ~999990..SE 0 r) 
PI< 2) :s ,919Y4087E 00 
PI c 3 > ~~99d7546E 00 
PI < 4 > ,Y999bJ29E 00 
Pl< 5) 1 99993217E 00 
PIC 6) 1 •n9o7746E 0:1 
C( 1> :: .~.S25d0041:.•IJ1 
c ( 2) = 1 l1834616E 00_ 
c ( 3) = ,;~23d887E 00 
c.; ( 4) = 1 15d2i.>172E 00 
c ( 5) = ,2~11(737E tJO 
c ( 6) = 1il!7660788t:: 00 

3 QC 1> :: ,;539fJ781E,..04 
5 Q( 2) :: 1 ~~4l5(;Q2E .. 03 
6 Q ( 3) : ,?~454oeat: ... o3 
8 Q ( 4) : 1 ;J.8594101E.,Q3 
9 Q ( 5) : , Z078·~207E .. 03 

10 Q ( 6) : 1 J0004833Eto0~ 

C0NAT~AINT LIMIT REA~HED 

f\j 
...... 
--;] 



( f1p) ( l1 P'; ) 
Qi - MAX = -- MAX 

l1c l1 c'i p'; 

-, 1- n.-1 -
Pi• R; r I In; - ln;-11 R;I 

P'; =[ 1-{ (1-R;)"i"1 [ 1 + (n;-11 R;l}] 

{
3e -2nvi -2e -3nvi} 

NT NT 

"vi • (243 + 3n;I log2 ln;.21 + 

12 n. + 350 
I 

l1p'; old"' ii'; old - P'; 

Ac';• ~T { [ (243 + 3 n;l log2 (ni_21 + 

12 "; + 350) 

- [ (243 + 3 ";.11 log2 (n;_1-21+12 "; + 

350)} 
r µ i vi 

+l1n.la - +b-- +c r m m 
l:µi l:vi 

i = 1 i = 1 

w. ] ~IWj 
i = 1 

3 l1nvi 
l1c'. = - - + l1n. c1• 

I NT NT I 

SYSTEM INPUTS 

COMPUTE 0. 
I 

COMPUTE 

p•p'1 p'2···P'n 

CALCULATE 

Qi MAX 

CALCULATE 

l1ni 

CALCULATE 

l1c'. 
I 

UPDATE 0. 

FOR NEW 

l1ni 

I 

CALCULATE 
NEW 

p 

YES 
STOP 

YES 
STOP 

Figure B. 3. 1. Logic Diagram of Computer Program 
for Optimization Process Utilizing 

(~~) = 
max 

.6.p, 
l 

max 
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11\i.PllT n.lTA 

IC0N : 
f'bP'l i 'IAL"E • ,99950000 
A = ,33333000 B 
NT = ~nnnn.nnnnn"nn 

U( ll = 1.00000000 
ii( 21 • 2 00000000 
UC 3) • 3,00000000 
11 1 4> - - 4, ooooonoo 
UC 5l • 5,00000000 
Ill f\l = l!i.nnn"nnnn 
vc 11 • 1.00000000 
v c :::i l = 1 _ n n-n n n n n n 
VC Jl = 2.00000000 
M( 4) - 2 000Q00QQ 
v ( 5) = 3,00000000 

l -

WC ll = 1,00000000 
W( ?l - l 00000000 
WC 3) = 2,00000000 
WC 4 l : 

we 5l = 
Wt ~l = ~.nnnnnnn" 

RAARC 1 I : , 00057000 
RBAH! 21 = ,059!6000 
RBARC 31 = ,11815000 
R9•R< 4) = 17694000 
RBARC 51 = ,23573000 
RRAAC ~l = -~94o;~noo 

CU = 99,00000000 CV 

NJ = 1 
C~NS1R61NT R = 4.780nnoon 
SUM NJoUNI = ,21000000E 02 
S!!M NloVNJ : ,12000000E 02 
SUM N!•WNI = .17000000E 02 

TABLE B.3.1 

OPTIMIZATION OF SYSTEM WITH DECISION ELEMENTS 
AND C (constraint) == 4. 78 

r 

.33333000 c = ,33333000 

NFW NI : 1 
P = ,36790319E 00 
S11M NI•11N1 = ,21000000F 02 
SUM NJoVNI = ,12000000E 02 
S1JM lllL<>i<N I ; .1 7n on no nF o:> 
PJC ll = ,99~43000E 00 
PT( 2> = ,94064QOOF 00 
Pl( 3) • ,86185000F 00 
l'+t-4-}__;_ 62306~~--
P t ( 5> = ,76427000F 00 
Pre 6l = .7no;otannol" nn 
DELIA CC ll = ·14967601F 00 

.DEi [A Cl 2l = 25985231F no 
DELfA CC 3l = ,J0793773E 00 

DELTA CC 4) = .33968345E 00 
DE! IA Cl 5> = 5n54u75E OJ)_ 

DELTA CC 6l = .57637576E 00 
CR HH.tL = 1 .nnnnooon 

-~----- ------------- QI 1 l = .3803BB42E•02 

57.00000000 cw 

1 <Jc 21 - 201317365 00 
1 QC 31 • .29301754E 00 
1 QC 4) ;; 3365618DF on 
1 w< 5l = .24651563E 00 
1 fl< bl = .;>09994B<;F no 

NE'W NI = 3 
P = 409B9117E on 
St1M NJolJN] : .29000000E 02 

83,QOOOOOOO S11M NJ•VNT : 16000000F 02 
SIJM N]<>WN! = .21000000E 02 
Pl< 1 > = 99943QOOE 00 
Pi( 2) = ,94Q64000E 00 
Pl< 3> = .8B1BS000F on 
PI! 4) = ,91699401E 00 
Pl< 5> = .76427nnoF no 
Pl C 61 = • 70548000E 00 
DFL[A_C( 1l : .14967601F 00 

Q-DE!TAPl'IOFIIA CltopJt ~------ DELTA CC 2l = ·259B5231E 00 
OFI TA r.c 3> = .3079:0731' nn 
DELTA CC 4) = .t7428172E 00 
DEi IA c< 5> = 50541475E no 

Q( l l • ,38038B42E•02 

! O< 41 _ so211134E•01 
Q( 5 l = ,24651583E 00 

1 Q( 61 • ,2099948~~ gg 

DELTA Cl 61 = .57637576E 00 
C~ l >IT .ii : 1 _ '.11396834<; 

1 D( ll • .3803B842E•02 
1 01 2> c 2013123AF on 
1 DC 31 = .29301754E 00 

NE-'W NI = 4 
P = ,43816460E 00 
SUM Nl•UNI = .33onoonnE 02 
SUM NI•VNI = ,1sooooooE 02 
SUM NloWNI = .23nnoonnE 02 
Pl( 1l = ,99943000E 00 
P1c 21 = .94064onoE no 
PI ( 3 l = , 8B185000E 00 
PJ ( 4) = ,9B02910BE 00 
Pre ~> = ,76427000E oo 
Pi( 61 = .7054BOOOE no 
DEL I A CC 1l = .1491>7601E 00 
DFI fA C'!C 2l : .?<;98<;2;n1= 00 
DELTA CC 3) = .30793773E 00 
DELrA CC 4l = .16821694E 00 
Dl=LJA CC 5) = .50541475E 00 
DEi rA r.l 6) = .57637576E 00 
CR 10TAL = 1.51396517 

t-.:i 
...... 
CD 



NEW NI = 3 
p • ,47763818E 00 
$11M NI•!INI = J9000000E 02 
SUM Nl•VNI • ,22000000E 02 
s11M N!•WNT = .21ooonooe 02 
PJ ( ll • ,99943000E 00 
PJ( 2> • 94Q64QQOE 00 
Pt< 3) • .96125064E 00 
PI< 4> - oao201oae oo 
Pt< ~l • ,76427000E 00 
Pl I 6) - 7"!548QOOE 00 
DELTA C( 1> • •14967601E 00 
O~LTA CC 2) • ·259852JlE 00 
DELTA CC 3l • .15840887E 00 
oe1 TA c' • > = ue2uo4e on 
DELfA CC 5l = .50541475E 00 
051 IA C( 6) • 57637576E 00 
CR T~TAL • 1.82190290 

1 oc 1> • 38038A•zE•02 
1 QI 2> • ,20131736E 00 
~ a 1 .o • . :111 2:nn71'___ll_ll 
4 ac 4) = ,89277134E•01 
1 Q c 5 > = 2465158JE 00 
1 QC 6> .• ,20999485E 00 

NEW NI : 3 
P = .537n5362E-1l1'1 
SUM NJ•UNI : ,49000000E 02 
S!!M NI•YNJ = .2ennooone 02 
suH NI•WNt • ,35ooooooe 02 

__f'_[C ll : o999430QOF QO 
Pt! 2l • .94064000E 00 
Pt! 3> = 96125064E 00 
Pt I 4> • ,\l8029H!8E 00 
P1t ~\ ~ -B~03•078F no 
Pi! 6) • ,70548000E 00 
DEL'A CC 1l • 149676015 00 
DELTA CC 2) ; ·259852315 00 
CELT' GI 3> • 1!!184Q88Hi 00 
DELTA C< 4l = o16821694E 00 
DilIA.CI 5) • 2!57l473Zi 00 
DELTA C( 6l • o57637,76E 00 
CR I0IAl = 2,32731765 

1 QC 1l • ,38038842E•02 
11Qc 2> • .20131736E oo 
~ t:lt ~\ = -~-1 __ 1122n7r; nn 

4 0< 4> • ,89277134E•01 
3 oc 5> • 43917183E 00 
1 QC 6) s ,20999485E 00 

TABLE B. 3.1. (Continued) 

NEW N l = 4 
P : .59/70_409E: llD 
SUM Nl•UN! • .5400-0000E 02 
S!IM NT•VNT • .31oonnonE 02 
SUM Nl•WNI = ,39000000E 02 
pre ll = ,99943QOOE oo 
PI! 2) • ,94064000E 00 
Pre 3> = .96t25n64E no 
Pf! 4) • .98029108E 00 
PT ( 5l : .9'itI.38775E OD 

P[C 6) = ,70548000E 00 
DELTA Cl 11 • ·149676Q1E on 
DELTA C< 2l = ·25985231E 00 
DEL fA c ( 3) .. .l 584Q98ZE on 
DELTA CC 4l • .16B21694E 00 
DE! TA c ( 5) = 251 08?59F 00 

DELT~ CC 6> • .57637576E 00 
r.~ TliH &I : :;>. o;g44,r;50:> 

1 QC ll = ,JBOJ8842E•02 
1 oc 2l : 2013l736E 00 
3 QC 3l = .2_1172207E 00 
4 n r 4 > = s22111 3•E .. 01 
4 Qc 5> = .12622zo2E oo 
1 oc 6> - ,20299485E 00 

NFW N l • 4 
P = ,61775028E 00 
s11M Nt•UN1 = ,5zooonnoe 02 
SUM Nl•VNI • ,33000000E 02 
SUM Nl•WNl : .410DOOODE 02 
Pl! ll = ,99943000E 00 
PI ( 2> = ,94Q64QOOE on 
Pl C 3) = ,99348969E 00 
PTC 4> = .9Ao291nei:: on 
P!C 5> = ,9563B775E 00 
PT< 6> = .7n54BnnoE no 
DELTA CC ll = ·14967601E 00 
DELTA cc 2> = ·259852JlE on 
DELTA C< 3) = ·15234409E 00 
DELTA cc 4) • .16821694E on 
DELTA Cl 5l = ·25108259E 00 
DE! TA r.c 6l s .57637576E DO 
CR T0TAL : 2,,4287389 

1 QC 1l • .3803B94:>E•O::> 
QC 2l • .20131736E 00 

4 Q( 3) • ,32015615E•01 
£ Of 4' • AQ~771~,~-n4 

4 il i 5 > = - :12622702"E ilo 
1 QI bl ; 20999485E 00 

Nl'W !;r • :I 

P : ,69239B03E 00 
Sl1M N!•!IN[ - ,69QQOOOQE 02 
SUM Nl•VN! • ,39000000E 02 
~llM NTaWNI = 'i1t'lf'llnnnrti~ n'!> 

Pt! ll • .99943000E DO 
Pl ( 2) c 940640QOE 00 
Pr< 3 > = , 99348969E 0 0 
Pr C 4 > - 9BQ29108E 00 
P ! < 5 > • • 95638775E 00 
PTt ;\\ :: _70,,7~A.lill4S::: nn 
DELTA CC 1l • •14967601E 00 
D~bTA C' 2) = ·259852315 00 
DELTA C< 3> = .15234409E 00 
O~bT• CC 4) = o16821694E 00 
DF.LTA CC 5l = .25108259E 00 
PET IA CC 6) R o292627BBE 00 
CQ T0TAL • 3,31924964 

1 QC l l • 3B038842E•02 
Qc 2) • ,20131736E 00 

4 ac 31 - , 321l15615E~01 
4 QC 4) • .89277134E:•01 
4 QC 5l = .t26::>27nlll' on 
3 Q( 6> = .55833966E 00 

NEW N l : 4 
P = ,l!0552600E 00 
SUM Nl•UN! : ,75Q00000E 02 
Sl!M NJ•VNJ = ,42000000E 02 
SUM Nl•WNI : ,56000000E 02 
PT 1 1 l = .99943nnoE no 
Pl ( 2l = ,94064000E 00 
PJC 3> ; 99J48969E 00 
Pl! 4) = .9B029108E 00 
p I ( 5 I • . 9ISA3877'il' no 
Pl( b) = ,91992266E 00 
DE! rA Cl l l • .U967601E 00 
DELIA CC 2l : ·25985231E 00 
OHTA CC 3) • •152344Q9E 00 
DELTA Cl 4) • .t6821694E 00 

DELTA C< 5) - .2510S259E OD 
DELTA ci 6>· = .28656310E 00 
_C__g_______I_Q'L\i : ~-£11A77~~ 

1 0< 1) • ,38038842E•02 
1 Qc 21 • ,2Dl 31736E 00 
4 QC 3> • ,32015615E·01 
4 QC 4l z .89277134E•01 
4 DC 5) • 126227025 00 
4 a1 6l • .19179390E 00 

NEW NI : 3 
P "----- • 84751568E on 
SUM NfoUN! • ,79QOOOOOE 02 
s11M N r •VN 1 = , uooooooE 02 
SUM NJ•WNI • .62000000E 02 
PI c 1 > = --99943onoF nn 
P!C 2) = ,98967277E 00 
P!C 3l = 9Q:Y8Q69F no 
Pl! 4) : .9802910BE 00 
PJI 5> • ,9563R775E 00 
Pl C 6> = ,91992266E 00 
DFI TA Cl l l • ,14967601E 00 
DELTA C( 2> : .13436616E 00 
DE! IA CC 31 : -l5234409E 00 
DELTA CC 4) = .t6821694E 00 
DELIA CC 5) = 2510A259E 00 
DELfA C< 6) • .28656310E 00 
CR JliJTAI • 3 8Zl72983 

1 QC 1> • .38038842E•02 
3 QC 2> = 67BB7l8iE•01 
4 QC 3) : ,320t5615E•01 
4 Q( 4l a B927713•E~01 

4 QC 5l • .12622702E 00 
<1 QC 6> ; 19179390E oo 

NEW N l • i; 

P : ,H9409604E 00 
s11M NJ•l!NJ = ,esooaoooe 02 
SUM N!•VN! : ,47QQ0000E 02 
S!IM Nf•WN{ c 67000000E 02 
Pl C 1) : ,99943000E 00 
Pl I 2l : ,98967?77E OD 
Pf! 3) ~ ,99348969E 00 
P!C 41 • 98Q29108E 00 
Pl< 5) • ,95638775E 00 
PJ< 6) = ,97o•e25se 00 Nl 

Nl 
0 



DELTA C< 1> = .1496f601E 00 
DFITA CC 2>: .134366l6E DO 
DELTA C< 3) : o15234409E 00 
DE! IA CC 4> : d6821694£______Qjl 
DELTA C< 5> = .251D8259E 00 
DELIA ~! 6> = ·2841j26bF DO 
CR T~TAL = 4,15829293 

1 QC 1> : .3803884,E-O' 
3 Q< 2> = .b7887181E-01 
4 Q_( _.3l :: • 32015615t-O'I 
4 Q( 4> = ,89277134E-01 
4 Qc 5> : ,126227D2E 00 
5 oc 6' - 66~456S5E-01 

N>'W NT : __ _5 

P = ,92243299E 00 
Si;M NI ••IN l : , 90000000F -0-2---
SU"i Nf•VN[ = ,50Q00000E 02 
$..LJ.M__.1') l um l - • 710 O 0 O g () E ~2--
P ! < 1> : ,99943000F 00 
P!C 2) = 96967c77E 00 
PJ( 3) : ,9934B969E 00 

_______f4--C------4-+ = ,9802910SE 00 
P!( 5) = ,98669894E 00 
D TI /;. \ .: 

DELTA CC 1l = ·14967601E 00 
DHlA C' 2l = ,1J436U6E 00 
DELTA cc 3) = .15234409E 00 
DELTA c ( 4) = , 1462169~ 
D~LIA CC 5) = .24!~3215E 00 
flELI'A CC 6l = .2S411266E-O-O 
CR l0TAL : 4,40937552 

1 oc i> - 1ao3aa42E-02 
3 QC 2> = ,61887181E-01 
4 QC 3l: .32015615E-01 
4 Q( 41 : .89277134E•01 
~ 0 ( ., ) - • .557Q32771i-01----
5 QC 6> = .66945685E-01 

TABLE B. 3. 1. (Concluded) 

NEW NI = 5 
P = .93n?A6D?E nn 
SUM N!•UN! = ,94DQOOOOE 02 
SUM NJ•VNJ = ,52ooooooE 02 
SUM Nl•WNI = ,73000000E 02 
Pf( l l = ,99943000E 00 
PJ( 2> : ,98967277E ~O 
P!C 31 = .993489~9E_nn 

P[( 4) = ,99501302E 00 
Pj( 51 : ,98669694E 00 
PI< 6) = ,91048258E 00 
DE! JA c< 1 l : .14967601E 00 
DELTA CC 2> = ·13436616E 00 
DEi TA Cl 3l : .j5234409E 00 
DELTA Cl 4> = .16576650E 00 
DE.l.J:.A__CI 51 = 24863215E 110 
DELfA Cl bl = .28411266E 00 

-----Cac mu' = 4, 577592~---
1 Q( 1£ = ,38038842E-02 
3 CJ( 21 : 67BB7j 81F-01 
4 Ll! 3> : ,32015615E-01 
5 rl C 4 l = , 185791 03E-01 
5 Qc -, I = • 35703277E-01 
5 Q( 6l : ,669(5685E-01 

NF.W NI : 4 
P = .944R26~7E on 
StJM Ill I !>UN I : , 96000000E 02 
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