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CHAPTER I
HISTORY AND INTRODUCTION

This thesis is concerned with the positive integers and some of
their special properties in terms of their divisors. An N will be
used to denote this set of positive integers and only small letters will
be used to denote positive integers unless otherwise specified.

From ancient times some positive integers have been considered to
have magical properties. Some such positive integers are 7 and 40
from their use in the Bible, 6 which is the number of days in the
creation ofwthe world, and 28 which is the length of the lunar cycle
[1;p. 94].1_:_i

One classification made by the ancient Greeks depended upon the

sum of the aliquot parts of .a positive integer n, that is, the
divisors of n other than n itself. The positive integer n 1is

deficient, abundant, or perfect if the sum of the aliquot parts is less

than, greater than, or equal to n. For example, 8 is deficient since
1+2+4=7<28, 12 1is abundant since 1 + 2 + 3 + 4 + 6 =16 > 12,
and 6 1is perfect since 1+ 2 + 3 = 6., The ancient Greeks knew five
perfect numbers 6, 28, 496, 8128, and 33550336. Later mathemati-
cians have extended this list to include twenty-four perfect numbers,

the largest of which contains 12,003 digits [2].

lNumbers in brackets refer to the bibliography at the end of the
thesis.



In the third century B.C. Euclid proved that if

p=l42+22 4+ o0 gk _

is prime, then ka is perfect. This is proposition 36 in Book IX of

The Elements. In the eighteenth century Leonhard Euler proved that all

even perfect numbers are of this type. Euler also determined some con-
ditions necessary for odd numbers to be perfect [3]. However, no one’
has yet proven the existence or nonexistence of odd perfect numbers.

In 1965 M. 'V, Subbarao and L. J. Warren studied unitary perfect

numbers. - A number is unitary perfect if the sum of its unitary divisors,
other than itself, is equal to the number where a divisor d of a

number n 1is.a unitary divisor if d and n/d are relatively prime

numbers [4].
Chapter II will show a comparison between Euclid's method and the
modern method of -proving that a number of the form ZP_;(ZP'— 1,
where 2P -1 is a prime, is perfect. It will be shown that all even.
perfect numbers are of this form. The value of p for the twenty-four
known perfect numbers and the numerical value of the first thirteen
perfect numbers will be listéd. Interesting, but not as well known,
properties of even perfect numbers will be presenﬁed.
Chapter III will show that if an odd perfect number exists, it is
of the form n =-papiblpzb2 e pibk

P> i=1, 2, ...y, k are distinct odd primes. Other restrictions for

, where p = az1lmodé4 and P>

P> 3 Py and bi’ i=1, 2, ..., k are included. It will be shown
that for n to be an odd perfect number, n = 1 mod 4 and

n=1med 12 or n =9 mod 36. It will be shown that there is at most



a finite number of odd perfect numbers with a given number of distinct
prime factors.

Included are some upper bounds for Py " the smallest prime divisor
of an odd perfect number, such as Py <k, Py <;§ k + 2, and
Py :_%-k + 1 where k is the number of distinct prime divisors. 1In

addition, if n is an odd perfect number, then

1 1
ADIEEERLE S

pln

where p 1is a prime. Improvements on these bounds will also be shown.

Chapter IV will show that all unitary perfect numbers are of the
form n = 2tpilp:2 o p:k where the pi's are distinct odd primes and
t > 0. The five known unitary perfect numbers will be shown.

Parts of this thesis could be used in a seminar for high school
students and for enrichment and supplementary material for an elemen-
tary number theory course. Also, this thesis could be used as a
reference by others wigshing to do work in the area of perfect numbers
or unitary perfect numbers.

It is not necessary for a person to have an extensive knowledge of
mathematics or number theory to read this thesis, but some background in
selected topics of number theory such as congruences and number-

theoretic functions would be helpful.



CHAPTER II
EVEN PERFECT NUMBERS

The theory of even perfect numbers is well developed. Euclid
proved that 1f p =1+ 2+ «+» + 25 = 2 = 1 45 prime, then 25p is
perfect. Euler proved that all even perfect numbers are of this form.

Many interesting facts about even perfect numbers are also known.

In his theorem, Proposition 36 in Book IX of The Elements, Euclid

used Proposition 35 which states that if .a set of numbers is in con-
tinued proportion (a geometric progression), and if the first number is
subtracted from the second and last numbers, then the ratio of this -
first difference is to the first number as the second difference is to
the sum of all the numbers before it [5;p. 420]. That is, stated in
present day symbolic algebra, if a, ar, ar2, ceey ark is a geometric -

progression then

k
ar - a _ ar -~ a

a.

a + ar + ar2 + e + ark—l

This is equivalent to

k .
a+ ar + arz + oo + ark—l = éﬁ%_::Iil

which is the well-known formula for the sum of a geometric progression.



The following is Euclid's proof of Proposition 36 as taken from
the translation by Sir Thomas L. Heath [6;p. 421]. Although the proof
is difficult to read, most.of the terminology and symbolism of Heath's
translation is retained in order to show, by comparison with a proof
later in this chapter of the same proposition, the advantage of using
the present day symbolic algebra and number theory techniques.

Let the numbers . A, B, C, D (not necessarily four in number)
beginning from a unit (the ‘integer one) be set out in double propertion
(A 1is double the unit and each of the others is double the preceding
number) until the sum of all, including the unit, is a prime. Let E
be equal to this sum. Let FG:  be the product of E and D, Then FG
is perfect. For however many numbers there are in A, B, C, D, let the
same amount E, HK, L, M be taken in double proportion beginning frem
E. Therefore, the product-ef E and D is equal to the product of A,
and M. But the product of E and D dis FG. Therefore, the preduct
of A and M is FG. Since A is the double of the unit, FG is
the double of M. Then E, HK, L, M, FG are in double proportion.
Subtract from HK and FG  the numbers HN and FO each equal to E.
Therefore, by Proposition 35, the ratio of the first difference NK is
to E as the second difference- 0G is to the sum of E, HK, L,  and
M, But since HK 1is the double of E, NK 1is equal to E. Therefore,
OG equals the sum of E, HK, L, and M. But FO 1is also equal to E
which is the sum of the unit, A, B, C, and D. Therefore, the whole
FG 1is equal to the sum of E, HK, L, M, A, B, C, ﬁ‘ and the unit.

Also, FG is measured by E, HK, L, M, A;;B}fb, D and the unit. That

is, these -are all factors of  FG.



FG is not measured by any other number. For, let P measure FG
and be different from E, HK, L, M, A, B, C, D, and the unit. Let Q
be the_numBer such that FG 1s the product of P and Q. Since the
product of E and D 1s alse FG, the ratio of E to Q is equal to
the ratio of P te D. Since A, B, C, D are continuously propertion-
al beginning from a unit, D i1is measured by no number other than A, B,
or C. Since P is not A, B, or C, P does not measure . D. Then"
E does not measure Q. Then, since E 1is prime, E and Q are-
prime to one another. . Thus, the ratio of E to Q 1is a fraction
reduced to lowest terms. Since the ratio of E to Q is equal to the
ratio of P to D, E measures P the same number of times .that . Q
measures D. Since D is measured only by A, B, and C, Q 1is
either A, B, or C. Let D be equal to B. How many numbers there
are in" B, C, D, let the same amount  E, HK, L ' be taken. Then the
ratio of B to D is equal to the ratio of E to L. Therefore, the
product of B and L is equal to the product of D and E. Since
the product of D and E . is equal to the product of Q and P, the
product of Q and P is equal to the product of B and L. There-
fore, the ratio of Q to B 1is equal to the ratio of L . to -P..
Since Q is equal to B, L dis equal to P. This is impossible since
P is different from E, HK, L, M, A, B, C, D, and the unit. There-
fore, no number other than A, B, C, D, E, HK, L, M, and the unit
measures. FG.

Since bFG is the sum of A, B, C, D, E, HK, L, M, and the unit

and is measured only by .them, FG is perfect.



If a,b ¢ N, the greatest common divisor of a and b is
denoted by (a,b). If a and b are relatively prime, (a,b) = 1.
The notation a]b indicates that a divides b.

A function f defined on the positive integers i1s said to be.

multiplicative if f(mn) = f(m)f(n), whenever (m,n) = 1,

Any positive integer greater than 1 can be expressed uniquely in
canonical form, that is, if n € N, there exists primes Py € N .and

numbers a i=1, 2, ..., k such that

i,
k
aj a ag T ay
m=pyPy ttpe <]y
i=1

If g(n)- represents the sum of the divisors of n, including n 1t-

self, then

I‘E"‘ ai
c<n>=Zd=/ L+, + oee ¥ p,)
i

d]n
s+1
= ) .
g1 4

This functien is multiplicative -[1;p. 95].
For ne N, n- is perfect if o(n) = 2n; n is abundant if
c(n) > n; and n. is deficient if o(n) < n. These are equivalent to

the definitions given in Chapter I.

Theorem 2.1. If n is a perfect number and k ¢ N and k > 1,

then kn 1s abundant.



PROOF: Let d,, d

12 g5 cees ds be the divisors of n. Since n is

perfect, .
s
o(n) = :E: d
i=1

If ke N and k > 1, then some of the divigors of kn are 1,

kd kdz, ey kds. " Therefore,

s
o(kn) > 1+ :E: > k :E: di = 2kn,

i=1 i=1

l,

and kn 1is abundant.

Theorem 2,2. If n is a perfect number and k # n is a divisor

of n, then  k is deficient.

PROOF: If d., d ds are the divisors of k, then 1,

1? Go2 0o
(n/k)dl, (n/k)dz, vees (n/k)dS are divisors of n. Then

S S
n c(n)>l+Z£— Zd .

i=1 -
‘) = 2k and  k is abundant.

Pi‘l:!
o

8=

Then, o(n) < 2n<
Basic,Theoréms

Euclid's theorem can now be stated and proved in the following

manner.

Theorem 2.3, If 2k ~ 1 1is a prime, then 2k_1(2k -1) is a

perfect number.



PROOF: Since Zk -1 is a prime, (2 »2 =1) =1 and

K
o[251 2% - 1] = g2 o2k - 1) - =i+ @ - D)
= (2k - 1)2k = 2[21“1(2k - 17.

Therefore, Zk-l(Zk - 1) 1is perfect [l;p. 98].

The next theorem is the converse of Theorem 2.3 and was first

proved by Euler {3;p. 19].

Theorem 2.4, If n 1is an even perfect number, then there exists

2k-l k

a number k such that n = (27 - 1) where (Zk - 1) is a prime

number.

PROOF:  Since n 1is even, n = 2tm, where m is an odd integer

and t £ N. Then (Zt;m) =1 and

t+l
o@) = 02w = 02MHom = EFH—TL o(m)
= " - Dom).
. t t+1l
But since n is perfect, o(m) =2n = 2(2™m) = 2" "m. Thus,
(2t‘+l - 1)o(m) = 2t+lm and then (2t+l - 1)12t+lm. Since 2t+1 -1
is odd, (2t+1 - l)]m. Then m = (2t+1 -~ 1u, where u is an odd

integer. Suppose u > 1. Then 1, u, and (2t+l - 1)u are distinct

divisors of m, so that

o(m) > 1+ u+ (2t+1 - Du > 2t+lu.

Therefore,
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t+l - t+l

el 1yo®ly - on,

o(n) = (2 = Do@m > (2

which contradicts n being perfect. Thus, u =1 and m = 2570 -1,

Suppose that m is not a prime. Then, .

t+l 1

om) > 1+ (2% - 1) = 2F1,

Then,

HtHl t+l _ t+l _

o(n) = ( - Do(m) > (2 1)2 . 2n.

This contradicts n being perfect.. Therefore, m 1s a prime. Let

2k—l k.

k=t+1 and then n = (27 - 1) with (2k - 1) a prime [1;p. 98].

Theorem 2.5. If 2k - 1 1is prime, then k is prime.

PROOF: If k=ab, a>1l, b>1, then

k ab

27 -1 =2 -1 = (23. _ 1)(23(b“l)- + za(b-Z)

+ o0 +2% 41

and 2k -~ 1 1is not prime. Thus, if Zk - 1 is prime, k must be

prime also.

Numbers of the form Mn =2 -1 are called Mersenne.numbers

after Marin Mersenne. The problem of finding even perfect numbers is,

therefore, the problem of finding Mersenne primes of the form.

MP =2P -1, Mersenne in the seventeenth century stated that Mz, M3,
M5, M7, Ml3’ Ml7’ M19’ M3l’ M67’ M127, and M257 were prime. However,
M67 = 267 - 1 = (193707721)(761838257287) and M257 is also composite

[3;p. 29]. Twenty-three Mersenne primes, and hence, twenty-four

perfect numbers are now known. They are Mp for p=2, 3,5, 7, 13,
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17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,
4423, 9689, 9941, 11213, and 19,937, The twenty-first, twenty-second,
and twenty-third of these were discovered by the use of Illiac II at the
Digital Computer Laboratory of the University of Illinois. The times
required by the computer were one hour and twenty-three minutes, one
hour and thirty minutes, and two hours and fifteen minutes, respectively
[6]. The last one was discovered by Bryant Tuckerman, a mathematician
with the International Business Machines Corporation using a System/360
Model 91 computer, the largest IBM machine in common use today. The
time required was nearly forty minutes [2].

The numerical values.of the first thirteen perfect numbers have
been listed by Uhler [7]. However, the fifth number listed is
incorrect. It is listed as 33350336 but according to Dickson .

[3;p. 7] it should be 33550336.  Uhler's list with this correction

made i1s as follows:

2022 - 1) = 6

2223 - 1) = 28
24(2° - 1) = 496
2827 - 1) = 8128
212213 _ 1y = 3355 0336
21017 - 1) = 85898 69056
21821 _ 1) = 13 74386 91328
23023 _ 1) = 2305 84300 81399 52128
260281 _ 1) = 26 58455 99156 98317 44654 69261 59538 42176
288289 _ 1y = 1915 61942 60823 61072 94793 37808 43036

38130 99732 15480 69216
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,106 ,107 _

( 1) = 14 13164 03645 85696 48337 23975 34604 58722
91022 34723 18386 94311 77837 28128

21262127 _ 1y < 47401 11546 64524 42794 63731 26085 98848
15736 77491 47483 58890 66354 34913 11991
52128

2720221 _ 1) = 2356 27234 57267 34706 57895 48996 70990

49884 77547 85839 26007 10143 02759 75063
37283 17862 22397 30365 53960 26005 61360
25556 64625 03270 17505 28925 78043 21554
33824 98428 77715 24270 10394 49691 86640
28644 53412 80338 31439 79023 68386 24033
17143 59223 56643 21970 31017 20713 16352
74872 98747 40064 78019 39587 16593 64010

87419 37564 90579 18549 49216 05556 46976.
Some Congruence Relations

It was once thought that even perfect numbers ended alternately in
6 or 8. This was due to the belief that some Mersenne numbers were
prime when they were actually composite, and consequently, did not give
numbers that were perfect. However, even perfect numbers do end in a-
6 or an 8. That they do not .end alternately in a 6 or an 8 is
seen from the fact that the fifth and sixth perfect numbers both end

in 6.

Theorem 2.6. If n-= 2p~l(2p - 1) is a perfect number where p

is ‘a prime number, then n ends in' 6 or 28,
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PROOF: In n # 6, p is odd and of the form p =2k + 1. Then,

n = 22K (p2kHL _

( 1) = 45k - 1y,

k

It can be shown that 4 4 or 6 mod 10. If 4k £ 6 mod 10,

n =454k -1y

6(12 - 1) £ 6 mod 10,

and . n ends in a 6. If 4k Z 4 mod 10, there exists an integer m
such that 45 = 4 + 10m. Since ,4|4k and 4|4, then 4|10m which

implies that Zlm. Thus,. 4k =4 + 20t for m = 2t. Then

n = (20t + 4) (40t + 8 - 1) = (20t + 4) (40t + 7)

= 800t2 + 300t + 28 = 28 mod 100,
and . n ends in a 28, Thus, n ends ina 6 or a 28.

If n e N is written in the usual base 10 notatien with digits

a» aZ’_"" a where 0 < a; <9 for O :_i_i_k -1 and 0 < ak_i 9,
then
k k
n = :E: a, 10" = :E: a, mod 9
i i
i=0 i=0
and

k
S a
- 1
- i=0

Let n, be the sum of the digits of n, let n, be the sum of the

digits of n and continue this process until a one digit number . o,

l’
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is obtained. One obtains a finite sequence n > n, >‘n2 > eee > o

such that n = ny = n, Z oeee = n, mod 9.

Theorem 2.7. If n 1is any even perfect . number, except 6, then

n =1 mod 9. Thus, if ny is the sum of the digits of n, n, the
sum of the digits of Dyy sees Mo the sum of the digits of n,,
then n > ny > n, > eee > n, >1 and n = ny = n, S eee = n, Z 1 mod 9. :

PROOF: If n 1s an even perfect number other than 6, there

exists a positive integer k such that n = 4k(2-4k -1

k

) by the proof

of Theorem 2.6. Since 4 1, 4, or 7 mod 9, -then

Hi

nz1l(2-1) =1 mod 9,
n s 4(8 ~1) =28 21 mod 9,
or
n=7(4 -1) =291 =1 mod 9.
Thus, n > nl > n2 > nt‘> l and n = nl = n2 S ees I nt = 1lmod 9 by

the remarks preceding the theorem.

As an ‘illustration of Theorem 2.7 consider the sixth even perfect

number n = 8589869056.

N =8+5+8+9+0+6+9+0+5+6=64
n, =6+ 4=10
nyg=1+0-=1

8589869056 = 64 = 10 = 1 mod 9

Theorem 2.8. If n 1is any even .perfect number other than 28,

then n = 1 mod 7.
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PROOF: Let n = 2p_l(2p ~-1)., Then p 4is of the form p.= 3k,

p=3k+1, or p=3k+ 2, S8Since p is a prime, if p =3k, k=1
and p = 3. Then n =28. If p=3k + 1,
n=2FE¥ gy =g -1 212 -1) 51 mod 7.
If p= 3k + 2,
- 23k+l(23k+2 - 1) = 2-8k(4-8k -1
22(4-1) 26 = -1 mod 7. .
Therefore, n =28 or n = 1 mod 7.

Theorem 2.9. If n dis an even perfect number, other than 6,
then n =1, 2, 3, or 8 mod 13.

PROOF: Since n 1is perfect, n = 2p—l(2p,_ 1) where p is a
prime. If p=2, n=6. If p=3, n=2832med 13. If p =35,
n =496 = 2mod 13. " If p=7, n = 8128 = 3 mod 13. If p > 13,
since p 1s prime, .p is of the form p =12k + 1, . p = 12k + 5,
p=12k + 7, or p =12k + 11. Now,

212k _ g3k = 33k - 57k 2 gk 21 pog 13,
If p= 12k + 1,
- 2le(212k+l ~1) = 212k(2.1212k - 1)
£ 1(2 - 1) =1 mod-13.
If p =12k + 5,
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pL2kHh 12kH5 1y e p12k g, 12k

3¢1(6°1 - 1) = 3(5) =15 = 2 mod 13,

- 1)

e

If p=12k + 7,

o gl2KH6 12kT

( 1) = 16-4-222K(16.8.21%F _ 1)

2 .3.4(3:8 - 1) = 12(23)

~1(-3) = 3 mod 13
If p= 12k + 11,

n = Q2O OI2KHLL oy 2, 12k g (20 012k oy

Hi

3%4e3%8 - 1) = 36(72 - 1) = ~3(71) = ~3(-7)

21 = 8 mod 13.
Therefore, n =6 or n=1l, 2, 3, or 8 mod 13.
Geometric Numbers

A number n dis triangular if n points can be arranged in a
triangular diagram by the following procedure. - The diagram for the
first triangular number is an equilateral triangle with sides of unit
length and points at the three vertices. The first triangular number
is then 3. . Let one vertex be an origin. The diagram for the second"
triangular number is obtained by superimposing an equilateral triangle
with sides of length 2  units on the diagram for the first -triangular
number so that a vertex and adjacent sides ceincide with the origin and
its adjacent sides. The third side of the superimposed triangle is
then partitiened by points inte two segmeﬁts of unit length. The
second triangular number is then the number of points that are now in

the diagram. In general, the diagram for the (k + 1)th triangular
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number is constructed by superimposing an equilaﬁeral triangle with
sides of length k + 1 units on the diagram fer the kth triangular
number so that a vertex,and'adjacent sides-coincide‘with‘ﬁhe'origin and
its adjacent sides. The third side of the superimposed triangle is
then partitioned by points into k + 1 segments of unit length. The
(k + 1)th triangular number is then the number of peints in the
diagram. The first four triangular numbers are 3, 6, 10, and 15.

Their diagrams. are shown below.

If n 1is the kth triangular number,

(k + 1)k +2)

n=1+2+ e+ (k+1) =

2

Thus, a number is triangular if it is of this form.

A number n 1is hexagenal if n points can be arranged in a
hexagonal diagram by the following procedure. The diagram for the first
hexagonal number is a regular hexagon with sides of unit lengfh and

points at the 6 vertices:. The first hexagonal number is then 6. Let
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one vertex be an origin. The diagram for the secend hexagonal number is
obtained by superimposing a regular hexagon with sides of length 2
units on the diagram for the first hexagonal number so that a vertex
and adjacent sides coincide with the origin and its adjacent sides.

The other four sides .are then partitioned by .points inte two segments.
of unit length. _The second hexagondl number is then the number of
points that are now in the diagram. 1In general, the diagfam.for the

(k + l)-th hexagonal number is constructed by superimposing a regular
hexagon with sides of length . k + 1 wunits on the diagram .for the kth‘
hexagonal number so that a vertex and its adjacent sides coincide with
the origin and its adjacent sides. The other four sides of the super-
imposed hexagon are then partitioned\b§ points inte k + 1 segments of
unit length, The (k + l)th hexagonal number 1s then'the number of
points in the diagram. The first three hexagonal numbers are 6, 15,

and 28, Their diagrams are shown below..
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th
If n 1is the k hexagonal number,

n=1+5+9+13+ ¢+ + (4k + 1)

»=w+¢§%+2>=w+1ﬂk+1x

Thus, a number is hexagonal 1f it is of this form. Since,

(2k + 1) (2k + 2)'

n=(k+1)(2k + 1) = >

a hexagonal number .is alse a triangular number.

Theorem 2.10, - If n 1is an even perfect number, n 1s a hexagonal-

number, and hence, also a triangular number.

PROOF: Since n . is perfect,

n=2PP oy = 2P L 2P g g

Pl o1+ DREP - D+ 1)

(k + 1)@k + 1)

foxr k= 2p_l - 1., Therefore, n is hexagonal and, hence,; also

triangular.
Harmonic Mean of the Divisors

If <t(n) is the number of positive divisors of n, then

k k ,
@ =T | ] ey | =] (et D
i=1 i=1

The function 7T(n). is.multiplicative [1l;p. 95].
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Let H(n) be the harmonic mean of the divisors of n, ﬁhat’is

the reciprocal of the arithmetic mean of the reciprocals of the divisors

of n. Then,

1. 1 _ Z n__1 z ' a(n)
H @ @) d nT(n) d  nt(n) nt(n)
d|n d|n d'|n
where dd' = n. Therefore,
nt(n)
H( ) = O(n)

and H(n) ' is a multiplicative function. Then

K K a

~— ay (o pil(ai + 1) »
s -3\ T [ |- ] | iy

1=1 jmp T ¥Ryt ot py

Laborde [8] proves that H(n) > 1 when n >1 and H(n) > 2
except when n is a prime or when n =1, 4, or 6. H(n) > 2 for all

odd composite numbers.,

Theorem.2.1l. If n is an even perfect number, then
B -1 HM gy

PROOF: Since n 1is perfect, o(m) = 2n. Also, there exists a

prime p such that n = 2p_l(2p'— 1) where 2P - 1 is a prime so that

_ntm) _n(p-1+1A+1) _
B = @) 7
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Therefore,

n =-2H(n)--l H(n) _

(2 1).

Theorem 2.12. If n 1is even and has the form.

n = 2H(n)—l H(n) _

(2 1,

then n  1is perfect,

i) 1 is prime. Since

H(n)-1 P

PROOF: It suffices to show that P = 2

n. is-even, H(n) > 1. Since P 41is odd (2 ) = 1. Then,

2H(n)—l~ H(n)jl'

\%

2H(n)‘ 2

H(n)-1, (2 )
H(n) = HE2 " HHE) = - H(P)
H(n)-1 H(n)-1
27V T T[H@) - 1+ 1] 25V T ()
= ~ H(P) = —5———= H(P)
2 ~ 1
M e | B@uE)

This gives that H(P) < 2, Since P is odd and P > 1, P is a prime

by the remarks preceding Theorem 2.1l. Therefore, n is perfect [8].
Other Properties

Lemma:.

K
Z (21 + 12 = & + 1)2% + 4k + 1)
=0

PROOF: The equation is satisfied for k = 0. If it is true for

k = m, then



7~
N
[
+
[
N~
w
]
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m+ 12 + 4m+ 1) + 2n + 3)°

(m2 + 2m + l)(2m2 +4m+ 1) + 2m + 3)3

3

2m4 + 8m3 + llm2 +6m+ 1+ 8m™ + 36m2 + 54m + 27

2m4 + l6m3 + 47m2 + 60m + 28 = (m + 2)2(2m2 + 8m + 7))

m+ D%2m+ )% + 4m+ 1) + 1].

Thus by induction, the equation is true for any k.-

Theorem 2.13. If n 1is an even perfect number, other than. 6,

then there exists an integer - k such that

PROOF:

Then

Then if k

Since n is perfect; n # 6, then n = 27 (2

k
n= :E: (21 + 1)3._
i=0

2s,,2s+1 - 1).

o= 2282228 - 1) = 29212252 - 17.

-1,

k + D22k + 1% = 1] = (k + 12K + 4k +.1).

Thus, if - n # 6,
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Theorem 2.14. If n = 2p-l(2p - 1) is perfect, then

——

[ 1 e=="

d,n
d<n

PROOF: - Since 2P -1 is prime,

——

| |4 =12 2Pl 0P _1y.a2(2P - 1) ... 2P72(0P - 1y

313 [?p—;)g] [?p-Zz(p-l{] )
2 2 2P - P~

E 3 _2)].
2
2

(2P - 1Pt

2
=_2(P"1) (2P - l)P‘l = [Zp_l(Zp - l)]P_l'

np_l »

Binary Notation

If n= 2p—l(2p - 1) is perfect and is expressed.in binary.
notation, the binary notation will consist of p. ones followed by

P -1 zeros because

2p-2
-1,,P PP _ o
n=2P"@P - 1) = 228 = 2%,
2 - 1
i=p-1

The binary representation of this is

%ll *++ 1000 ++- 0 (binary).
-

P p-1
ones Zeros
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3-1

For example, 28 = 2 (23

-1, p=3, and

28 = 24 + 23 +-22 = 11100 (binary).

If 1, dl, d2, ceey dk are the divisors of an even perfect n,
excluding n. ditself, then for each di there exists a dj such that-
n =.didj. Then,

and

For the perfect number 28 this is

1,1

1.1, 1
wrtu Tttty

If these fractions are expressed in binary notation and added, the

result .is

35 = .000010010010++- (binary)
%Z = .000100100100+++ (binary)
%v= .001001001001«++ . (binary)
%-= .010000000000+ -+ (binary)
%-= .100000000000+ ++  (binary)
1= .1i1111111111;-a (binary)
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The fractions add te 1 without a single carry. As Daniel Shanks
[93p. 25] has said, "Is this not perfection--of a sort?" This result is

the same for any even perfect number.

Theorem.2.15a If n is an even perfect number and dl’ d2, ceny dk

are the divisors of n, other than 1, and if .the reciprecals of

dl’ d2’ ...,-dk are expressed in binary notation their sum will be
1 =.,11111+++ without a single carry.

PROOF: 8ince. n 1is perfect, there exists a prime p such that
n= 2p—l(2p -'1l) where- 2P-1 is prime. The divisors of n, other

than 1, are 2, 22, ..., 2P7Y, @P - 1), 2(2P - 1), 2%2P - 1), ...,

2P P _ 1y,
R 1 = 2-p — = Z z—ip
P _ _ o2 P
P 1 1-2 =
= .00 **+ 0100 +++ QLO0 <++ Qle++ (binary).
u__\,__9 &__\,__9 . — ( y

p-1. p-1 p-1.. '
zZeros Zeros Zeros

FOI‘ j = l? 2, so vy P-l,

120 :E: ,~i-ip
23P -1 1-27P° &

i=1
= .00 +++ 0100 +-+ 0100 +++ QLe++  (binary)
—_——
pH-1  p-l1  p-l.
Zeros zZeros Zeros

For j =1, 2, ve.s p-1,
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L =232 00 ... 0100--+ (binary).
2J e
j=1
zeros
p-1 p-l o
Z_'_l______ l_z_l_
3P _ 1y j ip
j=.0,2 (2 1) j=0 2 i=1 2
1 1l
= Zg: ,ip + :E: 21+ip :E: J2+ip o :E: —l+1p
i=1 — i=1 i=1 ° 1=l
For any m > .p, =kp+r where 0 <r <p-1 and k e N. Hence,
1/2" = l/2r+kp_ appears as an addend in only the sum
2
r+ip’
i=] 2
Thus,.
p—l,. © ©
v eI IR
29 (2° . 2 i :
3=0. ( D j=p j=p
Then
p-1 p-1 ® p-1 © .
SR ey Y
2° (2% -1 ¢ 2 ' :
j=0 ¢ ) j=1: j=p 3=l i=1
= ,1111+++ (binary).



CHAPTER III
ODD PERFECT NUMBERS

The theory of odd perfect numbers is not as well developed as the
theory of even perfect numbers. No odd perfect numbers have been found,
but no one has proven that they do not exist. However, many conditiens

that they must satisfy, if they do exist, are known. .
Basic Structure

The first condition proven about odd perfect numbers is the
following theorem .which was first proven by Euler in the nineteenth

century. [3]. -

Theorem 3.1, If n is an odd perfect number, then

k-
a7 2bj
n =-p l | Pi
i=1

where pr a=1lmod 4 and p; pl,'pz, «ees P are distinct primes.

PROOF: Let Py» Pys pz, cees Py be distinct primes where

&£ .
n=[| Pil"
1=0

Since  n is perfect,
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a
For some i, say. 1 =.0, 1 + po + e + pOO must be of the form 2m,

m odd. Thus, a, 2s + 1 for some .s. Let p=p, and a=-a

0 0
then
ag a atl _ 1
L+pg+ oo +py =1l+p+ s +p =P————~—-~-,p__l
+ + +
D Sttt B¢ el D1C Sl D)
p-1 p-1
+1 -1 .
T A D - DET T4 e 4 1)
- e —— :
= (psfl + l)(pS + qul + eeo + 1),
s+1 R ) : ; o
For any s, p + 1 4is even. Therefore, s = 2t, for some t; in
order that pS + ps'-l + e + 1 is odd. Thus, a = 4t +.1. Then-
ps+l + 1= p2t+l'+ 1l =2w, w odd. That is ,p2t+l‘+ 1 =2 mod 4. But
p2t+l + 1= p2tp +1=p+1 mod-é. Thereforé{ P 21 mod 4. Since

aji
1+ 1 + e + Py is odd for 4 =1, 2, v.., k then a, = 2bi,

i=1, 2, ..., k. Therefore,

2b '
n= pa'7—T 1 i, azp =1 mod 4.

i=1

Corollary 3.2. If n i1s an odd perfect number, n = 1 mod 4.
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2b,
PROOF: Since, for each .1, Py is odd, then Py * = 1 mod 4.

Therefore, n represented as in Theorem 3.1 yields:

nzp’ s p4t+l z p4tp Zp=1mod 4.

Others have proven additional restrictions of this form. Steurwald
proved that an odd number n is not perfect if bl =;b2 = see = bk = 1
[10;p. 44]). Kanold proved that n 1is not perfect if any of the

following hold:
1. bl =1b2 = eee = bk =2,
2, 9, 15, 21, or 33 divide the greatest common divisor of

bl + l,‘b2

3. by =b, =2 and by=b, =+ =b

4, a=5 and bi =1 or 2 for i=1, 2, ..., k,

+1, ..., b

]
o

]
=

5. 3 does noet divide n, b, =b, = c¢¢ = bk =1, and
a=1 or 5, and

6. b, =b, =+ =b =1 and 2b, < 10 [10;p. 44].

2 3 “k 1
The next theorem was proven by Brauer [11;p._715]. _In:the proof
Brauer used a theorem of J. J. Sylvester which states that if n. is
not divisible by 3, it containé at leaét 8 different prime factors.

Also, Brauer used the following two lemmas [1l;pp.'713—714].

Lemma 3.3. Let q . be a positive prime. The Diophantine equation

qz +q+ 1= ym has no soelution for m> 1.

Lemma 3.4. Let r and s be different positive integers and p

be a prime. - The system of simultaneous Diophantine equations
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x2 +x+1-= 3pr, y2 + y + 1 =‘3ps has no solution in positive

integers x and y.

Also, Brauer used the following lemma concerning cyclotomic.

polynomials., If - e is an nth root of 1 and all the numbers

‘eo; el, e2, ...,-en_l' are distinct, then e_ 1s a primitive nth
m’> m’ m m : m , :

root .of unity. The polynomial

F_(x) = ’[_l (x - e),
a

the product extending over all primitive nth roots of unity, is

called the cyclotomic polynomial of index n or the nth cyclotomic

polynomial. The symbol Fn(x) will be used for the nth cyclotomici
polynomial. The degree of Fn(x) is ¢(n) where ¢(n) is the number

of positive integers less than n which are relatively prime to =n

l

[12;p. 158].

{

/
Lemma 3.5. If p is a prime, the only divisors of-pr(m), me N,

!
is of the form ph + 1, he N or p ditself [1l; p, 714].

Theorem 3.6. An odd number of the form n = paq2q2 oo q2 qé
—_— 1172 t-17¢
where p, dys dps »ee5 Q. are distinct primes and p = a 21 mod 4 is

not perfect.

PROOF: By changing notationj;- let n be written in the form
n =-paqiq§ see qirirg ses ris4, k >0, m>0, where the primes
q = 1. mod 3 and the primes r, 21 mod 3. If n is perfect

o(n) = 2n. Then
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508.2.2 L. o222 Loy

P 919, W1y m®
k m

_ a, T 2, T 2, . 2 3 4

= o(p’) [ | (1 +.q; +q)) [ | (L+r, +r)D@+s+s8"+s" +s8). (L)
i=]1 i=1

Since each 9 is of the form 3b + 1, each

14 (3b+1) + (3b +1)2

2
1+ qi + qi

3+ 9 + 9b2 = 3(1 + 3b + 3b2)

is divisible by 3 but not by 9. If for some i, r, =.3, then

1+ ri + ri =1+ 3+9 =13, For all other i, r, is of the form

3b + 2. Then each

1+r, + ri =1+ (3b+2) + (3 +2)2=09b% + 15 + 7.

Thus, . 3 1is not a facter of any 1 +.ri + ri. Since

2 Fx+l= NN

by Lemma 3.5,'a11_other prime factors of .

k :m

— 9. — 2
I I (1 +'qi,+ qi) , | (1 + r, + ri)
i=1 i=1-

are of the form 3h + 1, h e N.

Case I: n # 0 mod 3. This implies that k = 0. Since n is
not ‘divisible by 3, it follows from Sylvester's theorem that n

contains at least 8 different primes. Hence, m > 6. Equation (1)
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is then,
m m
~— ~—
2pas4 I | r2 = 0’(pa)(l + s + S2 + S3 +S4) / I (l + r'+_r%).
i , i i
i=1 i=1
Since»the factors of each 1 + r, + ri are of the form. 3h + 1 and
each r, 21 med 3,
m
y 2
[ | QHrg+rp
i=1

is a divisor .of pas4. It could be that one of the m factors of this
product equals p, but by Lemma 3.3 each of the remaining m - 1
factors cannot be a power of p. Hence, each of these m - 1 factors
must be divisible by s and their product diQisible by at least s5.

This is a contradiction.

The proof involves two more cases: n = 0O mod.3 and. n 0 mod 27;
and s = 3, The second case invelves nine subcéses, and hence, both

are referenced instead of being included for bulk [12].

The next three theorems concerning the form of an odd perfect

number, if one exists, were proven by Paul J. McCarthy [13].
Theorem.3.7. If n is odd and

m
a " 2bi
n=p llpi ]

i=1

a=1mod 4, r 1s a prime that does not divide n, and

o
1



33

pe = 1med r for some e € N, then n is not perfect if

a+1 =0 mod (er) [13;p. 257].

PROOF: To prove that n is not perfect it is sufficient to show

that c(pa)» has a factor which does not divide n. If

a+ 130 mod (er), there exists an integer k such that a + 1 = erk,

Then
+1
o a) ) pa -1 Perk -1
P p-1 p-1
ORI DYC kil SETTI S8 S
_ ST

O e i T RSl B Y¢Skt SETTIE B OR
_ v et .

with p - 1 a divisor of pe - 1. Then since_,.pe E

|
[

mod r, -

pe(r—l) 4 200 +p¥+1 =14 00 +1+41=r=0modr.

H

Therefore, r divides c(pa) but not n. Thuis, n- is not perfect.
The next theorem by McCarthy 1s an extension of one by Steuerwald.

Theoremv3.8. If n is odd, not divisible by 3, and

k
a 2bi
n=0"|q
i=1

with p = a = 1 mod 4, then n  is not perfect if bi Z1mod 3 for

i=1, 2, ..., k. [13;p. 258].
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PROOF: 1If each bi =1 mod 3, then bi is of the form  3h + 1.

- If, for any 1, 9, = 1 mod 3,

2by 2(3h+1) 6h+2
c(qi ) -‘c(qi ) =1+ qi,+ ses o+ qy

1H
1l

l1+1+ ++++1=%6h+ 3 =0 mod 3.

2 mod . 3.

Thus, 3lnA which i1s impossible, and for each 1, 9y
Suppose that n 1s perfect. Let q be the smallest prime diviser of

n, Since a =4t + 1 for some nonnegative integer t,

a+l Lt+2
p -

-1 1
a(p®) =vpp o
2 2t . 2t- 2
IR TSR TE S i 1))
: T .
2t -2 2
= (p+ 1)(p Ey pzt T+ see +p7 + 1)

2 ( ;»l) SR S R R ]

and . (p + 1)/2 1s a facter of n. If p=gqg, n 1is divisible-by

(p+1)/2 < q. Hence, q. is one of the q- Since-

q5h+3 -1 q3(2,h+l)».__ 1
q -1, q-1.

o (23D |

3.

@ - D@ AV, Py

q-1

3(2h) + q3(2h-rl) 3

9 .
(@ +q+ L(q + e +q° + 1),

q2 +q+1=gq' is a divisor of n. Since gq does not'divi&e q',

if q' 4is composite and all prime divisors are larger:than‘ q, then

q' > (q +,l)2 =,q-2 + 2q+ 1 > q' which is not possible. Thus, if q'

is composite, it has a divisor less than ¢. Thus, n would have a
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prime factor less than q which is impossible: Thus, q' is a prime.

Since-
' 2 — 2 -
q'=q¢ +q+1=2"+2+15=1mod 3,
q' = p. Then n is divisible by
q" = g +1 = 224'"“@"“"‘-’2___ q2‘+ 441
2 2 2 v

Since q does not divide q" and. (q + l)2 > (q2 +q/2+1, if q"
1"

is composite, it contains a factor less than q. Therefore, ¢ is a

prime. Since

then q'" = p. But,

This is a eontradiction. " Thus, n. is not perfect.

From Theorem 3.8, if n is not divisible by 3, a necessary

conditien that

2b 2
n =% - o

is not perfect is the condition that b = 1 mod 3. The next theorem

shows that this requirement can be dropped if a condition is imposed on

9
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Theorem 3.9. If 3 does not divide the odd n and

__,az2b 2 2
D=Ppqy gyttt G

then n 1is not perfect if q; = 2 mod 3 [13;p. 258].

PROOF: Suppose n 1is perfect and that = 2. mod 3, If for any

4
i, 2<1<k, q = 1 mod 3, then

c(qi) =1+q + qi =1+1+1

i

0 mod 3,

and 3]n which is impossible. Therefore, for 1 =2, 3, ..., k,

q = 2 mod 3. Since _c(qg) = F3(q), q  cannot divide c(q%) for
1 =1, 2, ..., k- by Lemma 3.5. Thus, c(qg) = p°. By Lemma 3.3,

m = 1. The same is true for i = 3, 4, ..., k. Since k > 3 by the
theorem of Sylvester, o(qg) = c(qg) = p, eVen,thOugh dy # q3. This

is impossible. Therefore, n 1s not perfect if q, E 2 mod 3.

The next theorem was proven by G. Cuthbert Webber [14]. The
proof, which is quite -lengthy, has been omitted. The techniques and
procedures used are very similar to those used in Theorem 3.6, Webber
used Lemmas 3.3, 3.4, and 3.6. In addition, he used the following

lemmas.

Lema 3.10,0 ‘ ‘If

and m, q, and s  are integers, t a prime, then
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(a) m[s implies fm(x)lfs(x),

(b) If q =1 mod t, then fs(q) Z 0mod t, if and only if
tls, and

(¢) TIf k 1is the smallest positive integer such that

qk =1 mod t, then fs(q) Z 0Omod t 4if and only if k]s.

Lemma 3.11, If q and r are positive integers, then f

2r 2r-1
- q

9r41 (D

and g, .,(q) =4 4+ ¢++ - q+ 1. do not have a common prime

factor.

Lemma 3.12. If 2r + 1 1is a prime, and ¢  an.integer, then

2r+l

f and f (q

2r+l(q) or+l ) do not have a common factor other than

2r+1

2r + 1; likewise, for g2r+l(q) and 32r+l(q ).

Lemma 3.13. If 2r + 1 '1s a prime and p > 1 1is a positive

2r+l 2r+l

) are

integer, f2r+l(P) s 82r+l(P) Py f2r+l (P ) and 82r+l(P

divisible by four distinct primes, that is, each of the functions is
divisible by one of the four distinct primes and no two by a single one

of the primes.

Lemma 3.14. If 3If4r+2(p) and, in case p = -1 mod 3,

fip40(®) 20 mod 31 but p+1#0med 3, then £,(p) and g,

are factors of f4r+2(p).

The theorem that is then proved using these lemmas is the following

one.

Theorem 3.15. The number

_ j2b_a 1 2bp 2bs
n PS; 8y 8537,



1° So»- and Sy

P=az=1mdbé4, is not perfect..

"where. p, s

The next theorem was proven by R. J. Levit [15]. The-

the following lemmas. In the first lemma and the theorem,

notation is used with the convention that if a > b,

b

——

i=| x; = 1.

The first lemma can easily be proven by induction.

Lerma 3.16. If Cys Cps eve Cp are integers, t. > 2,

t | j-1 t t t -
:E: [ | (cil- 1) [ | c; | = l | ey - I | (ci -
j=1 | 1=1 1=4+1 i=1 i=1

38

are distinct. odd primes # 3 and

proof uses

the product

then

1.

Lemma 3.17. If a>1 is an integer and p a prime such that

a ZpZ1modé4,  then ‘o(pa) is divisible by at least two distinct

odd primes.

PROOF: It is sufficient to exhibit two odd mnontrivial

o(pa) which are relatively prime. Since

o(p?) =1l +p+.+ee+pP =1 +1+ e +lza+lz2
o(pa) has but one factoer of 2. Then
5% = pa+_-1._ 1, p(...aH.-l)/2A+Al P(a+l_)/2»_ 1
p-1 ' 2 p-1

Then the required divisors are .

divisers of

mod -4,
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(atl)/2
= : =2 =1
dl 5 — and d2 P 1 .

They are relatively prime since »Zdl - (p - 1)d2 = 2 sgo that if there

were a common divisor of dl and d2 it would have to divide 2.

They are nontrivial since dl > d2 >1 for a > 1. Thus, c(pa) has

at least two distinct odd prime divisors.

Theorem 3.18, If

k

r— a
n = p° / | pi

i=1

. - = a aj ax
is odd with p = a = 1 mod 4 and o(p°)/2, c(pl s eees c(pk ) are

all powers of primes, themn n  1is not a perfect number.

PROOF: By Lemma 3.17, a(pa)/z a power of a prime implies that

a =1, Suppose n 1is perfect. Then

k k- . k
22T 2yt =0 | | ooy = 2 ZR oo

i=1 i=1 i=1

Without loss of génerality the pi' may be numbered recursively in
the following manner. Let Py be that prime such that pll =o(p)/2,
Py be that prlme such that p22 = c(pl ), and in general let P, be
that prime such that pm = c(p:mll). This process can be continued
until a prime P, is reached such that p = c(p:t). Suppose that

t <'k. Then numbering the -remaining Py in any order as

Poy1® Prygs +++» Pys oRE obtains



k k

- aj — a4

[} e =[] o).

i=t+1 i=t+1 -
But this i1s impossible since

k k k
r— aj — aj_ N T ai
[ ] oD = || @+py+ +p,7) [] »¢
i=t+1 i=t+1 , i=t+1
Hence, t = k and
ak+1
a pk -1
1 _o( _ptl _ Ak, _
p]- 2 = 2 aP"U(Pk)-,pk_l
ai_1+l 1
ay aj-1, _Pis1 T
p, =o(p,7,7) = - s 1=2,3, ..., ke
i i-1 Pi 1 1
a

Let ey =Py and bi = 1/(pi ~1) for i=1, 2, ..., k then

b

~pt+t1 - -
P = DePrC ~ by

¢1 2

c, = b -b

1™ Pi1Pi1%54 1=2;3, «..; ke

i-1°
Eliminating p from equation (1) gives

2cl -1 ﬂ'bkpkck - bk'
The first two equations from (2) are

c, = blplcl - bl’, cq =-.b2p2c2 - b2'

Together, these give

40

@

@)

3)
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3 = byPy(bypicy = by) - by

= (b - [bl(b ) + b2].

1P1PoPy) ¢ 2P2

Then, using the third equation from (2) one obtains

b

¢, = bgPycy = by

= bypg{(bypibypyley = by (bypy) + by - b

= (byp1byPybspg)ey = [by(bypybspy) + by(bypy) + byl

Continuing inductively, one gets

k-1 k-1 k~1
r— - ,
e = l l bipi ¢, —,ZE: bj l I bipi. ()
=1 Jo1 T d=gHl

Combining equations (3) and (i) glves

2cl -1l = bkpkck - bk
k-1 k-1 k-1
=DePy || | | PaPr e T :E: By || PBaPi | T D%
i=1 =1 i=g+1
k K
L
= | | |PsPs)e :E: bj “byPy
i=1 j=1 —J+l
or
k k
— |
[ | P4Ps - Z by 1] bypg*1=o0
1=1 =1 1= j+l

Multiplying both sides by
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k- k
r——— /—1
[| (g =1 or [ )%~
i=1 g=1 1
which are equal, gives
k k k j=1 . k
— ~— ™ — N
(H?i"zll(l’i'l))cl‘z(H(Pi'l) |1 »
i=1 i=1 - j=1.\1i=1 i=j+1
k
—_—
+ I I (pi -1) =0
i=1

Then by Lemma 3.16

k k k k
(I |2y -2 /| (pi'l)) °1_-'I gt [ eyg-D
i i

I |
i=1 i=1 =1 =1
k
—
+ I | (pi -1)=0
i=1
or
k k k - k
— ~— — —
(I | »y -2 [ (Pi\'l)) €y ~ (I | Py -2 /| (pi"l))=°‘
i=1 1=1 i=1 i=1
Then

This implies that either
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k k

al r—— r——
Pyo=ep=loor [ oy =2] (-1

i=1 i=]

The first of these is impessible since . 12 > 3. The second is impos-

sible since the right member is even and the left member is odd. Hence,

n cannot be perfect.

The results of this theorem can be restated in .the following form.

Corollary. 3.19.. Let

k
a~ . a4
n=p Hpi
i=1

with p=azlmodé4. If n d4s an odd perfect number, then at least
a a1 ag -
two of o(p7)/2, c(pl s vens U(pk‘) must have a common factoér greater

than 1.

The next theorem, which was proven by Paul J. McQarthy [16J, uses

lemmas concerning cyclotomic polynomials,

Lemma 3.20.
k
i —
i=0 d| (k+1)
d#1

Lemma. 3,21, If rIFn(q), q a prime, then either r|n. or:

r 2 1 mod n.
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Theorem 3.23, If n 4is an odd integer and

k
_ a’ 2bi
I
i=1

where p S a = 1moed 4 and r is the smallest prime divisor of

1(n)/2, then n is not perfect if it has a prime divisor !

r such

that r > r' and p+ 1 # 0 mod r'. In particular, n is not perfect

if r > p.

PROOF: Suppose n is perfect, and that r' is a divisor of n
satisfying r > r' and p+ 1 # 0 moed r'. Then
k 2b
—_—
by
o(®@®) | | olay ) = 2n,

i=1

. 2b -
Therefore, r'Ia(pa) or r'la(qi l) for some 1. Since

a % 2bi
a(p?) = :E: p- and o(q ) = ZE: i,
i=0 $=0

by Lemma. 3.20 there is a divisor d # 1 of a + 1 such that r'|Fd(p)
or there is a divisor d # 1 of 2bi + 1, for some 1, such that

r'IFd(qi). Then by Lemma 3.21, either r'|d or r' =1 mod d. Since.

k
—
T(n) = (a + 1) , | (Zbi + 1),
, i=l
dIT(n); But, since. r'

<r and r is the smallest prime divisor of

o(n)/2, it is impossible for the odd prime r' to divide d. Thus,
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r' 21 mod d. Then d|(xr' - 1) which implies that d < r' - 1. But,
since dIT(n) and  r 1is the smallest odd prime that divides t(n),

' = 1 unleéss

d >r unless d = 2. Then, since r'<r, d>r>r'>r
d = 2. Thus, d = 2. Since d =2, d cannot divide 2bi + 1. for.

any i and, therefore, d 1is a divisor of a + 1 and r']Fz(p). Thus,
r'|(p + 1) which is impossible since p + 1 # O mod r'. Therefore, n

is not perfect.

The following theorem has been proven by Jacques Touchard [17] and
M. Raghavachari [18]. The follewing proof is the one by Raghavachari -

which is simpler than the one by Touchard.

Theorem. 3.24. If

k
a 2bi
=5t | g
i=1

is an odd perfect number with p = a = 1 mod 4, then n 1is of the form'

12m+ 1 or 36m + 9.

PROOF: By Cerollary 3.2, n = 1 mod 4.

Case I: 3|n. This implies that n  is of the foerm 12m + 3 or
12m + 9. Since 12m+ 3 = 3 mod 4, n is not.of the form 12m + 3.
Hence, n 1is of the form 12m + 9. Since p = 1 mod 4, p # 3. Hence,
for some 1, q; = 3. Thus, 32|n.‘ Therefore, 32|(12m + 9) wﬁich

implies that»,3|m. Therefore, n is of the form 36m + 9.

Case IT: 3 does not divide n. This implies that n is of the
form 12m + 1, 12m+ 5, 12m+ 7, or 12m + 11. Since

12m + 7 = 3 mod 4 and 12m+ 11 = 3 mod 4, n ds not of the form
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12m + 7 or 12m + 11. Suppose n  is of the form 12m + 5: Since any
" odd prime,. other than 3, is of the form 6t + 1 or 6t + 5, then

for any 1,

2b 2b; by ba
g C=(6t+ 1) T = (%’ +12t+1) L =10 =1 mod 12
or
2by 2b by by
9y 1. (6t + 5) 1. (36t2 + 60t + 25)"i =1 iwz’l mod.12.

Thus, for n to be of the form 12m + 5, pa must be of the form

12m + 5. Since a = 4s + 1 for some, s, p4sp is of the form 12m + 5.

4s

As in the case of the qifs,‘ P =1 mod 12 which implies that p is

of the form 12m + 5. Then since a = 4s + 1,

3/(@+p+ or + D) = o(pD.

Thus, . 3|n~ which 1is a éontradiction. Therefore, n is of the form

12m + 1.

Corollary 3.25. TIf

k
af—""' Zbi
nep ||y
i=1

is an odd even perfect number and 3 does not divide =n, then

P=1lmodl2 and a =1 or 9 mod 12.
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PROOF: From Case II of Theorem 3.24, n = 1 mod 12 and

~— 2by
' q " =1 med 12,
i=1
Thus, pa =1 mod 12. Since a = 4s + 1 for some s and

p*® = 1 mod 12,

pa - p4s+l - p4sp p mod 12.

Hence, p = 1 mod 12 which implies that p = 1 mod 3. Since

12¢ + 1, 12t +5, or 12t +9 for some t.

a=1lmod4 then a

Suppose a = 12t + 5, Then

p12t+5 12t+5

o(p®) = o( )=1l+p+ -t +p

1"

L2t + 6 0 mod 3.

Hi

Thus, 3lo(pa) and, therefore, 3[n' which is a contradiction. There-

fore, a =1 or 9 mod 12,
The Number of Prime Factors .

Let n be an odd perfect number with k distinct prime factors.
There seems to be disagreement ameng authors as to whap h#s been proven
about the value of k. Dickson [19] haS»stated thgt Sylvester has
proven.that k > 5 while Brauer [ll] has staﬁed that Sylveséér has
proven that k > 4. Also, according to Dickson [3], Sylvester proved
that if 3 does not divide n, k > 8 while according to Brauer [11],
Sylvester proved that k > 7. Dickson [3] also stated that Tepin

proved that if 3°7 doees not divide n, then k > 11, if 3+5 does
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not divide n tﬁen k >.14, and if 3<5:7 does not divide n then
"k > 19. Also, Catalan proved.that if 3+5+7 does not divide n,
k > 26. According to Karl K. Norton [20], Kihnel has proven that"
k > 6.

Norton [20] has also developed a formula for a lower bound on the
value of k which is based on the value of the smallest prime factor

of n. First, the following lemma is needed.

aj] ap a
Lemma 3.26. If n =p.7p LR ) is perfect, then
—— 1°2 k
k
~— P
2<I|p-l
i

PROOF: Since n i1s perfect

k ai+l
t—-pi -1
- as+1l
9 = oln) _ !=J F1 : _ ’E‘ pii -1
n. k ’[ zi( -1
7‘1 L i=1 Py Py 7
i=1
1.
k P17 7E ok
-1 p, - 1°
1 1 i=1 1

If Pr represents the rth prime, and- Pm is the smallest prime-

al 62 ak
divisor of the perfect number n = Py Py "t Py s then Lemma 3.26

implies that
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Let the function a(m) be defined for m > 2. by the following

inequality:

m+a (m) -2 P mta(m)-1 - P
[l ==7<2%2< || =1
ism f=m T

It follows that n must have a prime factor at least as laxge as PS
where s = g(m) = m + a(m) -~ 1. Norton provides a table of values for
a(m) and P for 2 <m < 100, The values increase rapidly. For

m = 100, a(m) = 26308 and PS = 304961.

If n is an abundant number and dl’ d2, ey dk' are the
divisors of =n, then the divisors of mn dinclude 1, mdl, md2, sens
mdk. .Thus,.

k k
— o
o(mn) >'1+ I l mdi >m I I di > 2mn.
i=1 i=1

This with Theorem 2.1 gives that a multiple of a nendeficient number is

nondeficient.

Definition: ' A nondeficient number is primitive if it is not the

multiple of a smaller nondeficient number.

The set of all nondeficient numbers is equal to the set of all
multiples of the primitive nondeficient numbers. Any perfect number is
a primitive nondeficient number since by Theorem 2.2 a divisor of a
perfect number is deficient.

There is an infinite number of nondeficient odd numbers having a

given number, greater than two, of distinct prime factors. For example:
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5(945) = 6(3%+5:7) = (L +3+9+27)(L + 5@ + 7)

= 40(6)(8) = 1920 > 2(945).

3 . 3 az . ak
Thus 37 +5¢7 4is abundant which implies that 3 °5'7°pl Py

where the pi's are distinct primes greater than 7, 1is an abundant
number. However, there are only a finite number of primitive non-
deficignt odd numbers having any given number of distinct prime factors,
and hence, there camnot be an infinite number of odd perfect numbers
with any given number of distinct prime factors. This has been proven
by L. E.'Dickson {19]. 1In order to prove this, the following lemmas

are needed.

Lemma 3.27. If pl,‘pz, ...,‘pk are given prime numbers, then any

set
ay a ax ' . .
s ={p;p,” *+*+ p | a;'s are integers > 0}
contains ‘a finite number of integers, Mys Doy evey O such that every

integer in S 1is a multiple of at least one ni.
bl
PROOF: For k =1, every element of S dis a multiple of p *.
where b 1is the smallest . a;. To proceed by induction, let .the lemma.
. . vCl Co i
be true for k - 1 dintegers. Select at random n; TPy Pyt Py

from the set S. Then any element of S .1is a multiple of n, if

ai Zrci for all i=1, 2, ..., k. 1If there are other elements in S,

consider the elements of S for which a, =v for some i, 1 <1i<k

and v a fixed integer such that 0 <v < ¢ After deleting the

i®

v .
common . factor - pi there is the set -
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ai-1 2i+1 ax

a]
s' = {pl Py 1 Piy Tt Py | aj's are integers > 0}.

By the induction hypothesis, S' contains a finite number of integers

ml, Moy ceey M such that all elements of §8' are multiples of at

t

least one mj. Thus, all elements of S for which a, = v are

i

multiples of at least two of . pz, m, m m . The number of cases

93 tees

arising by varying 1 and v is finite. Therefore, there is a finite
number ofiintegers in S for which each integer in. S is a multiple

of at least one.

a) az an
Lemma.3.28. Let n = Py p2 R where .pl, p2, cees pm are

| {

distinct primes and 0 < k <m, 1 < pi <Py, Py & prime, for 1 > k.

Let

1
m ( ai) m pi - —EI
P_ﬂf_ﬁ__ﬂ___‘ﬁ_
- ai p, —-%
i=1 Pi1. =1 I
. 7_' S ﬁc@ji) ﬂ b
0 T - 1° ko aj p. - 1°
i=1 Fi i=1 Pi  i=k1
m k i m '
~— P! — o(p,”) — P,
P! = Sl P! = i i
0~ I | p; - 17 'k =] | =% [ | p; - 1
i=1 i=1 P1 1=kl

Then n is deficient if P_< 2 or P; < 2 where s is an integer

S

such that . 0 < s <m. If n is odd and is deficient for all values of

as+l’ s @ then Ps < 2.
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PROOF: By definition, n 1is deficient if P < 2 and nondeficient

if P > 2., Since P; 2P, >PF, 0<s<m n isdeficient if P_ <2
and also if Pé < 2. Since Ps is the limit of P for a; > @,
i=s+1, ..., my and since P <2 if n is deficient, then P_< 2

s

if n 1s deficient for all values of a a . Suppose Ps = 2.

s+l? *°°?
Then m =1 wsince if m> 1 and pj is the greatest prime among
Pey1o ...,’pm{ no number in the denominator of Ps‘ is divisible by

P,. Thus,
J

. a
which implies that p, =2 and n = 2 1. Therefore, if n 1s odd and
1 !

deficlent for all values of a sers @, then-'Ps < 2,

g+l°’

Theorem 3.29. All primitive nondeficient odd numbers having a

given number. m of distinct prime factors are formed from a finite
number of sets of m primes. Thus, there cannot be an infinite number

of odd perfect numbers with any given number of distinct prime factors.

aj a an
PROOF: Consider numbers of the form n = P Py "t Py where

the - pi's are odd primes in ascending order of magnitude. ' Let

P; =P for 1 =1, 2, ..., m then n  is deficient if
m . m
e Py Py
P =I| T = <2
pl -1 P, - 1
=1 i 1

which implies that
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V2

P 2T
1l m/E -1

Thus, if n  1is nondeficient

"2

p, < T
1l m 5 -1

Therefore, there is a finite number of distinct primes for 120
Proceeding by induction, assume that Pys c+e» P v.<m is a particu-
lar set of a finite number of sets of v distinct primes. Since n 1is
aj a2 ay
to be a primitive nondeficient number n_=p;’'P, P, must be
deficient. Since each divisor of a deficient number is déficient, the
deficient nv's are the numbers in which certain>exponeﬁts
ajjs +ey afy are arbitrary, which each remaining exponent takes a
limited number of values, and further numbers in which every exponent-
is limited. . Consider one such type of n, which is one of a finite
number of analogous cases. After'permuting pi, +++5 P, assume that

u, 0 <u <v is an integer such that a are limited, while

l, ...,‘au

i=u+1l, ..., v takes all values. By Lemma 3.28, the deficiency

of n, implies that

a:

—~—olp, ) —~— p,

Pu B l | a3 l I Py ~ 1 <2
1=1 P i=u#l

the second product being absent 1f u = v. Since there is a limited

number of sets a sevy 8y each Pu is less than a constant M < 2,

l H]
' LI . = . } | .
Then for Pu use p. pi’ i u+1l, ..., v and Py Poy1?

i=v+1, ..., m. Then n is deficient if
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u ay m
e g A
Tag P -1
R S M

g
[

v ¢ ai) v . m-v
=7—i‘£%"'fT Py Py+1
i p! -1 \p -1
1=l Pi  g=pl O vl
P m~v
- M v+l_ - < 2.
Pyt
Thus, if n is deficient
Lo
(47
M = M
Por1 2 1 =M.
2 )
(%)™ -1
Hence, if n is nondeficient, P < M', and in a nondeficient n,

pv+1‘ is less than the largest of the limits obtained in the various
cases, finite in number. Consider the set S of primitive nondeficient
numbers having as distinct prime factors Pys +++5 P 2 particular one
of the finite number of possible sets of m primes. Since any greater
multiple of a nondeficient number is not primitive, the set S  is

finite by Lemma 3.27. Therefore, there can not be an infinite number of

perfect numbers with any given number of distinct prime factors.

Bounds On the Prime Factors

aj as . ar
If n = p‘l P, see P is an odd perfect number with

Py <Py <0t < Pys then Cesaro proved that Py i-k/f and Desboves
proved that Py <v2k [4]. Several such bounds have been proven for

P;- Servais proved the following theorem [4].
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ay a2 ak
Theorem 3.30, If n = PPy, " Py is an odd perfect number

with Py < Pytys i=1,2, ..., k-1, then 12 <k,
PROOF: Since the pi's are odd, P+ 1<piqgs. 1 1, 2, R
k = 1. Then for each i,
1 1
1+ —=— <1+ -
Pjyp ~ 1 ppti-1
which gives
Pip P t1
Piyg -1 ppti-l
This with Lemma 3.26 implies
k k-1
— pi — pl+i Pl+k"'1
2 < ——— & = - - ‘
[ 1o, -1 | |3 +T-1""p, -1
i=1 i=0

This implies that Py < k + 1. Therefore, Pq < k.

Another theorem, similar to the last one, has been proven by

M. Perisastri [21].

ay a2 ax '
Theorem 3.31. ' If n = PPy " Py is an odd perfec¢t number
. _ 2
with P, < P40 1= 1, 2, ..., k =1, then Py <.§~k + 2.

PROOF: Since the pi's are odd primes, 12 + 2(1 - 1) Py for

i=1, 2, ..., k. Then for each i,
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which implies

}pi Py +}21 -2

< - .
pi -1 - P +2i -3

This with Lemma 3,26 implies

,E_ P, k- py + 21 -2
2< | P, - 1 =] p ¥ 2L -3
i=1 i=1

But since

Py + .21 - 2 12 + 21

- . <
12 + 24 - 3 Py + 21 - 4
for 1 =1, 2, ..., ky then
K p, + 21 -2 2k P, +2i-2p +2i-3
4 <’/ | Py +2i -3 < / I Py + 21 - 3‘pl + 2i - 4
i=1 i=1
7ET P+ 21 -2 p+2k -2
= P, + 21 - & P, - 2 °
o1 1 1

Then Py < %-k + 2.

The next theorem has been proven by both T. M. Putnam [22] and
M. Perisastri [23]. It uses a different technique for establishing a

bound for the smallest prime divisor of an odd perfect number.

as ax
) Tt Py is an odd perfect number,

there exists at least one 1] such that ‘pi_< E;E§-+ 1. That is, -

a;
Theorem 3.32. If n = pl P

3
pi;i 2 k + 1.
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PROOF: The proof of Lemma 3.26 implies

k k
n T 1 "" 1
@ (l'—.) ull B R
R P1 =1 1t 3 o1

Suppose . p, >

5 n 2 +1, i=1, 2, ..., k. Since

% lIn 2
(1+lnx2.)x= 1+ in 2
In 2
is an increasing function. Therefore, for m > k
k
n>f—H 1L 1 ko 1 "
o(n) In -2 In 2 In. 2
i=1 1+ ” 1+ *—iz— 1+ —
Hence,
n.
n 1 1 1
> lim = = =,
o(n) e \1 + lnﬁz In 2 2

Therefore, 2n > o(n). Therefore, if n 1is perfect, at least one
< k
i In 2

that p; < %—k + 1.

P + 1 < 1.45k + 1. Thus, there exists at least one Py such

By Theorem 3.24, if n is an odd perfect number, n is of the
form 12m + 1- or 36m + 9. 1In the proof of the theorem it is seen that

n 1is of the form 36m + 9 only if 3]n. Thus, if n 1is of the form
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36m + 9,"pl = 3 and no bound is needed. Thus, the bounds developed

are for the case when n is of the form 12m + 1.

The following theorem provides a bound for P, other than Py [4].

ay az ag
Theorem 3.33. " If n = Py Py *** P s Py <Py <t < Py is an

odd perfect number and L is defined by

. < L(k — m) f 2'
m 2 ~-L

PROQF: For i =m+ 1, m+ 2, ..., k, " P, <P + i implies that -

pi pm + i pm + i -m

< — < —,
Py - 1 Py +1i-1 P, +i-m-1

This with Lemma 3.26 gives

< e, & ————
- p, - 1-— p, -1
i=1 1 i=m 1
,E_ pm + i'— m \ L(Pm + k - m)
<L/|pm+1-m—1= p. -1
i=m

This implies

Lk - m) + 2.
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Sum of the Reciprocals of the Prime Factors

In 1958, M. Perisastri [21] established both upper and lower
bounds on the sum of the reciprocals of the prime factors of an odd

perfect number, if one exists. In his proof he used the fact that

Wbk

where p runs through all primes. The follewing theorem is the one-

proven .by Perisastri.

alp az ak
Theorem 3.34. If n = PP, *** P is an odd perfect number,

then

'UII—'

k
7<)
i=1

i

PROOF: I1If n 4is perfect, then

rg_ a;+l fg_
- /1(1 a].;ﬂ)
oo _i=1 Pi” L a1 Pi
n k k
~ a4 — 1)
et 1)
i=1 1
Thus,
k k
— 1\
23] =TT ) <
P
i=1 1 i=1 Pyt

Then,



which implies

Since p; 2 3, P, 25,

prime,

Ti6H)

i=1

This gives

k
D)
i=1
"'pk:qk’

|v
'_l

|
w ]~

S
R
'_l

[}

where

4 1 1
=-—l_—— l_.—.-_
3-( 22)( 32
47
>"3'H(1’ ¥
p p

for 0 < x <1,

Qe

is the kt

h

odd

60
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Hence,
k
1 1 i
2<Z;;<21n"§'.
i=1

From this theorem it is seen that

K
5 < Z :—;—< .903.
i=1 *

D. Suryanarayana and Venkateswara Rao [24] have improved on both the

upper and lower bound in the following theorem.

ai a a :
Theorem 3.35. If n = pllp22 see pkk' is an odd perfect number,
then
k
In 2 1 1.
5@n 5 -0 &) z p, <1273
i=1

if n is of the form 12t + 1 and

K ‘
_;+21n2-1n3<zL<1;§_+ 53
3 Py

5(n 5 - 1n 4) 2137 150
i=1

if n is of the form 36t + 9.

PROOF: Since n 1is perfect

k k
r—~— 1 r—~— 1

2T (1-50) <11 o) < @
1=1 i=1 Py*
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Therefaore,
1
2 < o
—_—
11(-5)
k=1
which implies
k
In 2 < - 1n <1 - ——-)
=1 1
k
= - S U S A
p, 2 2
i=1 * Py Py
k k k-
1,1 1,1 1 ... |
ZP1+222+3Z3+"' (2)
i=1 i=1 Py i=1 P1
Equation (1) also gives
k
1
[1[+ -
5 - =1 Py
k
—_
(%)
i=1

which implies

In 2

]
M=
=
=}
—————————
e
1
']
+
ot
———
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i=1 i=1 j=1 P31

k k o
“Z%‘ ZZ(:}_,_J_)J'H ZZ“‘G&HTT
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(3)

Let Py be the prime divisor of n such that: P, £ 1 mod 4 and

a 1l mod 4. Alse, let the other primes be such that

1
p2<p3 ‘< --o(pk with zlai’ i=2’ 3. '.~,vk.

Case ' l: n is of the form 12t + 1. By Corollary 3.25,

not divide n - and 121 1 mod 12, Hence,. 1 > 5 for

i=1, 3, ..., k' and Py > 13. Then from (2) -
k k k
1,1 S cer
AP RS DN D
i=1 i=]1 i i=1
k
1 1 11 1.1
> :E: P, ( s5t2.273 3" )
i=1
k k
= - -1 1 _ 2 1
-51n(l s)zpi 51naz:pi
i=1 i=1
which implies
k
ln 2 Ll
5(in 5 - 1n 4) pi'
i=1

From (3)

3 does



64

S - ]
- i1~ , (&FDF |
w2 el | S g 1)1;»J ip, L

Since a >2 for 1=2,3, ..., k each term in the second summation

is positive, and hence, the sum is positive. Similarly, the fourth

term is positive. . Since Py > 13 and a1~i 1,

i __1 1 .1 _._
) aFL =~ 2 2 2
2 Py

1.1 __ 1
- 2

T 338"

Tﬁus,

i=1 1
which gives
k
:E: %Z <1ln 2 + 338"
i=1

Therefore, if ' n 1s of the form. 12t + 1

" 1n 2 1 1
5(n 5 - 1n &) | Z'ﬁ:< In 2 + 335
i=1

Case 2: n is of the form 36t + 9. Then clearly 3|n. and
P, = 3. Since P, £ 1 med 4, pl‘z;S. Since Py >3 for

i=3,4, .¢., k inequality (2) gives



In 2 <

This implies

From (3)

w1 YRS S

i=m]

In

In

1In .

In

N
+
W

N
+
v

21ln2-1n 3
5(ln 5 - 1n 4)

1
3 +

1
&, )]
jpy 1

j+1

i3 j=1( 3+ l)p

kD)

j=2

N WAL
(j+1)pJ g, 1

U
( 2p2 p
1 1

65
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1
+ E .
J+1 G ,t1)]
j= (j + l)p ip,

Since a; >2 for i=2,3, ..., k each term in the second summation

1s positive, and hence, the second summation is positive.. The third

summation 1s positive since every term is positive., Since Py >.5 and

121

1 1 11 __ .1 . _1 1
2 T2 |

1 .

2p] Py 2p; P 2p] 2(5)

Then since P, = 3 and a, > 2,

In 2 >

11 1 1
—— e 4 -
Py 30 223 ( G+ 1)3J+l 333 )

"UII—'
i
(9]
I
+
E\/ja
.|
w |
Cde
i
wl~
'
t\/]B
P
> {H
(W%
N’
(35

i=l
k
= :E: %;-- ln %-+ ln‘ig - I%%
i=1
k
=_ZE: %;'+ In ig-— i%%ﬂ

[N
il
|_l

This implies
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K
1 18 . 53
Z b, In 73+ 150
i=1

Therefore, if n 1s of the form 36t + 9,

k
1 . 21n2-1n'3 N Ll 18 53
37 5 5 - In 4)'<Zp.<1“13+ 50°
i
i=1
If the bounds in the last theorem are approximated to three
decimal places the results are stronger bounds than those derived by
Perisastri. In 'decimal form, this theorem says that if n is of the

form 12t + 1

K
621 < Z L. 696
Py
i-1

and if n is of the form 36t + 9

K
.591 < 2L< 679,
& Py '

i=1

D. Suryanarayana [25], using the same techniques as Suryanarayana
and Rao, has improved these bounds even more. The proof of
Suryanarayana's theorem which follows has been omitted. The proof is

quite lengthy.

a; a a
Theo;em 3,36. Let n = pllpz2 sen pkk be an odd perfect number.

If n is of the form 12t + 1 and 5|n, then



s <Laly 2B 5 < 1 <il+ 2o+ 130 < 679,
: 57 11 p, 5 2738 R TR

111n35 i1

If n is of the form 12t + 1 and 5 does not divide n, then -

12 k
1 ln—-

657 < o e ¢ Z—< In 2 < .693.
7 i Py
0 i-1

If n 1is of the form 36t + 9 and 5]n,_. then

1n£6- k.
596 < 24ty — L2y L
35 q7mi Py
16 i=1
1 1, 1 65
<3 + B + 13 + ln..61 < .674.

If n is of the form 36t + 9 and 5 does not divide n, then

ln.i k
1 1 l 1 18
600<-—+-—-—— —_— < = 4 ===+ 1ln o=,
37 .1 E:p 37 338 13

6 i=1

M. Perisastri [23] has used the Rieman.Zeta function

r(s) = i Ls_

to establish a lower bound on the sum of the primes. The following

theorem states his results.
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a1 a2 ax
Theorem 3.37. If n = PPy, "'t Py is an odd perfect number and
s 1s the smallest a;s i= 1,.2, ey ky then
< 1 25t 4
z—-—> In z(s + 1).
Py 2°
i=1

Lower Bounds On n

Various lower bounds for odd perfect“numﬁers have been obtained.
In 1908, Turcaninov obtained 2(10)6 as a lower bound [11l]. This was
improved to 10%0 by H. A. Bernhard [26] and to 1.4(10)** by Kanold
[Li]. This bound was later improved to 1018 by J. B. Muskat and to
1020 by Kanold [27]. The best improvement which is ‘1036 has been

made by Bryant Tuckerman.[2].



CHAPTER 1V
UNITARY PERFECT NUMBERS

Unitary perfect numbers are defined in terms of unitary divisors
analogous to the way.perfect numbers are defined in terms of divisors.
For completeness, the following definitions whic¢h first appeared in

ChapterlI are restated. The positive integer d 1is a unitary divisor

of the positive integer n, written d|n, if dln and (d,n/d) = 1.

If ne N, then n dis unitary perfect if

n-= :E: d.

dfln
d#n

If paﬂn, where p is a prime, then _pa is the largest power of
p that divides n. For example, the unitary divisors of 28 are 1,
4, 7, and 28,

*
If o (n) represents the sum of the unitary divisors of . n,

k
— ai_
=l 2L
i=1
then
k
* ~ aj
¢ (n) = (1 +p,0.



*
Thus, o (n) is a multiplicative function [28;p. 37]. It is .clear

*
that n 1is unitary perfect if and only if o (n) = 2n.

The first four unitary perfect numbers are 6, 60, 90, and

87,360 [4]. They are unitary perfect since

6¥(6) = o [2(3)] = (L + 2)(L+3) = 3(4) =12 = 2(6),

" (60)

n

*
o (90)

and

*
o (87,360)

While it is not

numbers, it is quite

o [22(3)(5)] = (L + 25 (L + DA + 5)

5(4) (6) = 120 = 2(60),

o 12(32)] = (L +2)A + 3@ + 5)

3(10) (6) = 180 = 2(90),

12235y (M a1

1+ 26)(1 + 3@ +5+ DA+ 13)

65(4) (6)(8) (14) = 174,720 = 2(87,360).

known if. there do or do not exist odd perfect

easy to prove that there do not exist any odd

unitary perfect numbers.

71

Theorem 4.1. There do not exist any odd unitary perfect numbers,

PROOF: Suppose

number. Then

o Ty -2
i

ai a a
n = P11p22 ""pkk is an odd unitary perfect

k k
r—"~ai_

l P, = 2n.
i=1 =1
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a ad
Since 1 + pii is even for i =1, 2, ..., k and pi1 is odd for

i=1, 2, ..., k, k=1 and

al _, al
1+ P, = 2p1
al .
which implies that Py =1 which is a contradiction. Thus, there are

no odd unitary .perfect numbers.
Theorem 4.2. If n = 2t, n 1is not unitary perfect.
PROOF: Suppose n is unitary perfect.  Then

*
o(n) =1+ 2% =2.2%<0p

which implies that 1 ='2t which is impossible. Therefore, n is not:

unitary perfect.
Thus, any unitary perfect number is of the form

0= otn = ot 82 ak
4 Py Py Py
where each Py is an edd prime.

The following lemmas.and theorem were proven by M. V. Suﬁbarao and
L. J. Warren [4]. However, the proofs.presented here, in most cases,
do not follow the pattern of Subbarao and Warren.

The following notation will be used throughout the remainder of
the chapter. Unless otherwise specified, m represents an odd integer.
greater than 1 and n. is an.even integer given,By- n= 2tm with ¢t

. . al az ak
a positive integer, If m is written in the form m = Py Py " P s

then Py < p2 < oo <‘pk. If m is written in the form m = mymymg,
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then ~(ml’m2) = (ml,m3) = (mz,m3) = 1; every prime divisor of m  1is
congruent to 1 modulo 4; every prime divisor of m, is congruent to
3 modulo 4 and occurs with an even exponent; and every prime divisor .of

m, 1is congruent te 3 modulo 4 and occurs with an odd exponent. For

3

any fixed m, - let a, b, and ¢ denote the number of distinct prime

factors of m, m and m respectively. For given nonnegative

2% 3?

integers a, b, and ¢, not all zero, the set of all odd numbers

m = m,m,m., associated with a, b, and ¢ will be denoted by K(a,b,c).

17273
ay a a b1 b b
Lemma 4.3, If n = pllp'z2 ---‘p33, m = q11q22 ses qkk and
aj by

1 :“qi , 1i=1,2, ..., k, then

PROOF :
k aj x
o @m ~—L1*tPy  — 1
ST =Tk
i=1 Pi i=1 Py
k k i
Rl PR S el B AT ¢
- I | ‘ bi , l bi m
i=1 9 i=1 U
t £ aj ap ay

Lemma 4.4. If n=2m=2 Py Py 't P is unitary perfect,

(l) pk](2t +1) if a, = a, = *** = a 1;

17 % k-1
(2) a+b+ 2c<t+1 and equality holds when c = 0.
PROOF: (1) If a; =a, = =a =1 and n is unitary:

perfect,
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k-1
* t ak,
o (@ = (2" + 11 +p ) / | (1+p))
i=1
k-1
_ oo t+l gk T _
=2 [ |y = 2
i=1
Since P > Pys i=1,2, .¢e., k-1, Py does not divide 1 + Pys

ak

i=1,2, ..., k - 1. Then, since does not divide 1 + Py >

Py
t
pkl(2 + 1).
(2) If m= mmym, and the prime plml, then
*
P=1mod 4. Thus, o (pS) =1+ pS = 2 mod 4 which implies that

2ll(L + p°), where s dis the exponent of p in n. If the prime

plmz, then p = 3 mod 4 and the power of p 1is even. . Thus,

2s 2s.

% .
o (PZS) =1+p" =1+ (32)S = 2 mod 4 which implies that 2{[(1 + p“7),
where 2s 1s the exponent of p in n. If the prime p|m3, then

P Z 3mod & and the power.of p is odd. Thus,

=1+ 303%)°% = 4 mod 4

~
~
I
=
+
i

2s+1

which implies that &4|(1 + p ) where 2s + 1 is the exponent of

p in. n. Since n is unitary perfect,

k :
_ ot+l _ ty T . a1, _ *
2n =-2 mlmzm3 = (1 + 2°) l l (L + Py Y =0 (n).
i=1
Thus, 2t+1 divides

K ' a
|| @+p.

i=
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a

But a+ b of the factors (1 + pii) each contain exactly one factor
a

of 2 while ¢ of the factors (1 + pii) contaln at least two

factors of 2. Thus, a+b+ 2c.<t+ 1. If c =20, then

a+b=t¢t+1.

Lemma 4,5. If n = Ztm is unitary perfect and 3 does not

divide n, then:.

(1) t {is an even integer;

(2) if ps"m,‘ then ps Z 1 mod 63

(3) there is a prime p such that p|m, P 25 mod 6, and
p occurs with an even exponent in m;

(4) m has an even number of distinct primes.
PROOF: (1) Since n is unitary perfect,

o n) = @+ 250 (m) = 2t

m = 2n.
If t =25+ 1 is-.odd, then

2s+1

1+25=1+2 =1+ 2% = 0 mod 3.

*
Thus, 3|o (n) which implies that 3|n. Therefore, t cannot be odd.
and must be even.

(2) Since p 1is odd and p # 3, pSAE 1 or 5 mod 6.

Suppose ps £ 5 mod 6, then 1 + pS £ 0 mod 6 which implies that
*
3lc (n), and hence, 3|n which is impossible, Therefore,

ps = 1 mod 6.
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(3) Since t = 2s 1s even,

1+25=1+2% 21445 = 5 mod 6.

*
Therefore, there exists a prime p such that- p]o (n), and hence,

plm with p 2 5 mod 6. Since p = 5 mod 6,

p28tL L 5028 - 55%)8 = 5 pod 6.

Therefore, by (2) the power of p must be even.

aj a a
(4) Let n = 228pllp22 oo pkk.' Since, for
a

a-
i=1,2, ..., k pii =1mod 6, then p,° = 1mod 3. Then

k
28+l ai

I l

2 mod 3

and

K
o @) = (2%% + 1) 7_1 (1 + pii) =@+ 1A+ DF = 2T e 3.

i=1

Therefore, 2k+l

311

2 mod 3 which implies k is even.

Although they have not been able to find any unitary perfect
numbers not divisible by 3, Subbarao and Warren [5] have not been

able -to prove that there are none.

t 21 22 8 L
Theorem 4.6. Let n = 2 Py Py Py be unitary perfect.

(1) If k=1, then n = 6.

(2) If t =1 then n

6 or 90,

(3) If t =2, themn n = 60.
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(4) If k=2, then n =60 or 90.

[}
w
[
=
W

(5) It is not possible for k

(6) It is not possible for t

[}
w
-
o~
-
i
-
(o]
H
~

(7) 1f t =6, then n = 87,360.

(8) If k=4, then n = 87,360.

PROOF: (1) If k=1, n= 2tpa. By Lemma 4.5 part (4), 3|n.

Therefore, p = 3. Then

* .
o (m) = (2% + 1)(3® + 1) = 2132 = o,

Since 2 does.not divide 2t +1 and 3 does not.divide 3% + 1,

2t + 1 =3 ana 3%+ 1 =2

which implies

2t 4141 = ot

or

which implies that . t = 1, and hence, a = 1. Therefore, n = 6.

(2) 1f t =1, by Lemma 4.5 part (1), 3|n. Since. 3

is a factor of m, or m not both b and ¢ can.be 0. By

2 3

Lemma 4.4 part (2) there are two cases. Either a =0 and c =1

1]
o

]
[

or a=b=1 and c¢ = 0. 1In the first case, k and then by (1),

2rps. Then

n==6. In the second case, n = 2°3

* .
o (@) = 33% + 1% + 1) = 223%p% = 25

which implies that 3|(p® + 1). This implies that p = 2 mod 3 and s
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is odd. Since p 4is one of the factors of m

fore, p = 5 mod 12. Suppose ps > 17. Let n' = 2-3217. Then by

P = 1 mod 4. There-

Lemma 4.3,

* *
o (2‘32rps),< 0% (2:3%17)

2.3%55 T 5.3%17

Then, 1f n 4is unitary perfect,

s 2+ DG+ 1A7 + 1)
- 2.3%17

_3(10)(18) _ 30
2(9)(17) 17

which is a contradiction. Therefore, ps'= 5. Then p=5 and s =1,

Then if n  is. unitary pérfect

=235 0+ DET L DG+ =0 @),

This implies that

10-3%F = 9.3%T 4 g

which shows that,“32r =9, Thus,, r=1 and =n = 2°325

90. There-

fore, n =6 or 90.

(3) Let t = 2. Then ZZﬁn "and p = 22+ 1 =5 divides
n. Then a > 1. By Lemma 4.4 part (2), a+b + 2c.< 3. Thus,
(i) a=1,b =2, and ¢=0, ({i>a=2,b =1, and c =0, or .
(1ii) a=c¢=1 and b = 0.
2,2r.s_2u.

Case (i): a=1,b =2, and ¢ =0Q. Then n=2"3""5"p with

p> 7. Consider n' = 22325-72. By Lemma 4.3,



* 2.2r_s

o (2°3°%5%

2u
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2,2r.s_2u - ,2,2_ .2

2°37°57p

27375+7

Then if n is unitary perfect,

*
) o (2°3%5.7%)

, @G+ nEE D

22425.72

_5(10)(6) (50) _ 250

T 4(9)(5)(49) T 147

which is a contradiction. Therefore, n is not"

Case (ii): a =2, b =1,
3]“- 2.2r. s u

unitary perfect.

and ¢ = 0. By Lemma 4.5 part (4),

2

Then n =.2°3""5p with p > 13, Let n' = 223 5-13. Then by

Lemma 4.3

*
o (n)

*
o (2%3%5.13)

n.

Then if n i1is unitary perfect,

22325.13

9 < 2+ 1E2+ DG F 1A+ D)

223%5.13
_ 5(10)(6) (14) _ 710
53 (13) " 39

which is a contradiction. Therefore, n is not

Case (iii): a=c=1 and b =0. Then n

P = 3 mod 4. Suppose. p > 7.

n is unitary perfect,

Let n' =-225-7.

unitary perfect.

= 225%p%  ith

Then by Lemma. 4.3, if

yoo@ ek Qe nGHnOr 12

DT 9254

225-7

7
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which is a contradiction. Therefore, p =3 1if n 1s to be unitary

perfect and n = 22385r- Suppose s > 1, Let n" = 22325. Then by

Lemma 4,3

* *
@%3%) _@2rnEtenGry s
> T %% 2%3%5 3

which is .a contradiction. Therefore, s =1 and n = 223-5r. Then

since n 1is unitary perfect,

2.2%23.57 = 22+ 1)(3 + 1) (5T + 1)

or

24+5% = 20(5° + 1).

1. Therefore, n = 223~5 = 60,

Thus, 5" = 5 which implies that «~

(4) Let k=2. Then n = 2tp§p§. Suppose t > 3.
Since \p{ > 3 and pz > 5, Lemma.4.3 shows that if n is unitary

perfect, then

% x 3 3
_ g (n) < 0 (273-5) _ (27 + l)(3‘+ 1)(5 + 1)

BT 9335 233.5
_9We) _ 9
8(3)(5) . 5

which is a contradiction. Therefore, for n  to be unitary perfect,
t =1 or 2. But (2) states that if t =1, then n = 90 and (3)
states that if t = 2, then n = 60. Therefore, if k = 2, then
n =60 or 90.

(5) Case (1): k = 3. By Lemma 4.6 part (4), if n is

t,r 81 A2
to be unitary perfect, 3[n, Let - n =273 P, P,y be unitary perfect.
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Then by Lemma 4.3,

_odm gt @f35e7)

2
n 2%3.5.7
P DB DG DG 1)
253.5.7

NARSNOIOION
253.5.7

This implies that .

35(2%) < 32(2%) + 32
or

32%) < 32,

which implies that t =1, 2, or 3. But by (2) and (3), t cannot.
be 1 or 2. Thus, t = 3. Since 23 +1=9, r>2, Then by
Lemmé. 4-3',

_o@ o @33Rse7)

noo= 533254,

AR RN BN CE BN R BT
233257

_9(10)(6)(8) _ 12
OIS

which is a contradiction.. Therefore, n 1s not unitary perfect for
k = 3.

a] ap a3 a4 as
Case (2): k=5. Then n = 2 P Py P3P, P5 - Suppose n is

unitary perfect. Then by Lemma 4.3
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% * t
, o) o (253:5:7:11:13)
n 2%3.5.7.11.13

QP+ DB+ DG D@+ AL+ 1)(A3 + 1)
253.5.7.11.13

which gives
715(2%) < 768(2% + 1)

which 1is not true for any t > 1. Thus, n is not unitary perfect for

k.= 3.

(6) Case (1): t = 3. Since 23 +1 = 9, 321n if n
is unitary perfect. Since a + b + 2c < 4, there are at most 4 odd
prime factors of n. From (1) and (4) there are at least 3 odd prime

factors of n. Since

@C+0EP+ e+ DO+ @A 1E+DEFDE DAL+
233%5.7 233%5.7.11
_9310)(6)(8)(12) _ 144 _

~ 89 () (1Y) 77

by Lemma 4.3 no such n can be ﬁnitary perfect.

Case (2): t = 4. Since 2% +1 =17, 17|n. Since
a+b+2c<5, k<5, But (1), (4), and (5) imply .that k = 4 if n
is to be a unitary perfect number. Suppose there exists a p such that
p]mz. Then p > 3 and has an exponent greater than or equal to 2.

Then by Lemma.4.3, if n is unitary perfect,

* * 4.2
g =9.@ g (2735-7:17)
2%3%5.7.17
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vt ety
24325.7.17

_ 17(10) (6)(8)(18) _ 12
16(9) (5)(7) A7) 7

which 1s a contradiction. Therefore, for n.. to be unitary perfect,
b = 0. Thus, the only possible case is a =3 and c¢ = 1. Suppose

172|n, then 1if n d1s unitary perfect, by Lemma 4.3

* * 4 2
) o0 (@) o (273-5-13+17%)

DT 84050130172

AR SR AR R B Y e il B

243'5°l3'l72

_ 17(4) (6) (14) (290) _ 406
16(3) (5) (13)(289) 221

which is a contradiction. Thus, l7ﬂn if n 4is unitary perfect.
Then 17 + 1 = 18 dimplies that 32‘n. Then by Lemma 4.3, 1f n is

unitary perfect,

* %
, o O . o 2%3%5-13-17)

n = 54250407

- *+ DE P+ DG F A3 F AT + 1)
A ™ :

27°35+13+17
o 17(10) (6) (14)(18) _ 21
16(9) (5)(13)(17) 13

which is a contradiction. Therefore, n is not unitary perfect for

t =4,
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Case (3): t =5. Since 2° +1 = 33 = 3(11), 3|n and 1l}n.
Since a+ b+ 2¢c <6, k< 6. By (1), (4), and.(5) the-qnly possibili-
ties are k=4 or 6 if n is to be unitary perfect. Suppose there
exists a p such that p[mz. Then p > 3 and has an even exponent.

Since

@+ DE+DE+DE DAL+ 1)

25325-7-11

P+ DE DG FDE DAL+ A3 + AT + 1)
2°3%5.7.11+13-17

(2

<

_33(10)¢6)(8)(12) (14) (18) _ 432
32(9)(5)(7)(11)(13)(17) 221

< 2

by Lemma 4.3, n is not unitary perfect for either k =4 or k = 6.
Thus, for n to be unitary perfect b = 0. Then 3]m3 and lllm3
and c¢ >'2. This leaves no possibility for n to be unitary perfect

which 1is a =2 and c.

2, If n 4is unitary perfect, by Lemma 4.3

.
, 0@ . 0 (2°3:5:11-13)
m T 2°3.5.11413
@ E DG+ DG+ DAL+ A3 + 1)
LG+

273-5-11-13

= 336)(6) (12) (14) _ 126
T 32(3)(5) (A1) (13) 65

which is a contradiction. Thus, n cannot be unitary perfect feor

k =5,

Case (4): t=7. Since 2’ +1 =129 = 3(43), 3|n and 43|n
if n dis unitary perfect. Suppose n 1s unitary perfect. Since

a+b+2c<8, k<8, By (1), (3), and (5), k=4, 6, 7, or 8.
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*
o (2735.7.43)

85

QTG DG G F DG+

273-5-7'43

by Lemma.4.3,

n 1s not unitary perfect for k. =.4.

273.5.7.43

_ 129(4)(6)(8) (44) _ 66
128(3) (5)(7) (43)

..35<2,

Thus,

k=6, 7, or 8. Since
* *

o (2'3%5.7111-13.43) _ o”(273%5:7%11+13-17-43)
273%5.7211 41343 27325.7211.13-17+43

A

*
o"(273%5.7°1113-17-19-43)
27325.7%1113-17+19-43

_e 1@+ D @% + 12 A4 18) (20) (44)

= .29393

27(3%) (5) (7%) (11) (13) (17) (19) (43)

54000 _

by Lemma 4.3, n  is not unitéry perfect if b > 1. . Thus, since 3

and 43 divide e,ither.vm2 or m,, either (i) a=5 and b=c¢ =1,
(ii) a=4 and b=c=1, (iii) a=3,b =1, and ¢ =2, or
(iv) a=4,b =0, and c = 2. Since

* 5 .
o (273%5-7+13+17-43)

* 7.2
o (2°375°13°17:29:43)

7325.7.13+17+43

2

27325.13.17-29-43

*
. 9 (273%5+13+17+2937-43)

27425.13.17-29+37+43

_ @7+ 13% + 1) (6) (14) (18) (30) (38) (44)
27(3%) (5) (13) (17) (29) (37) (43)

_ 395010
237133

< 2
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by Lemma 4.3, (i), (ii), and (iii) are not possible, Since

o (273:5:1317-29+43) _ (27 + 1) (4) (6) (14) (18) (30) (44)

273.5.13+17.29+43 27(3) (5) (13) (17) (29) (43)

_ 12474
6409

< 2

by Lemma.4.3, (iv) is not possible and n is not unitary perfect.

Therefore, n 1s not unitary perfect for t = 7.

= 5(13), 1if n is

(7) Let t = 6. Since 26 + 1
unitary perfect 5|n, 13|n and a > 2, Since a+ b + 2¢c < 7,
k < 7. Then by (1), (4), and (5), k=4, 6, or 7. Since
* *
g (26325 7213) g (26325 7211 +13-17)

20325.7213  2%325.9297.13.17

A

g (2 3 5 7 ll 13-17- 19)

26325 +7711-13-17-19

A

- (2 + l)(3 + l)(6)(7 + l)(12)(14)(18)(20)

26325 *77°11°13°17-19

then b < 2. Thus, b=1 or O. Then either (i) a = 7 and
b=c=0, (ii) a=6,b=1 and ¢ =0, (iii) a=2 and b =c =1,
(iv) a =3, b =0, and c % 1, (v) a=4 and b=c¢c=1, (vi) a =35,
b=0, and c=1, or (vii) a=c¢ =2 and b = 0. Since 3 does
not divide n and k is odd, (i) does not give a unitary perfect

number. Consider
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n, =-26mé = 26325-13-17-29-37.41, m) e K(6,1,0),

n, = 2°n) = 2°3%5-7.13, m} e K(2,1,1),
6 , 6 '

n, = 2 m, = 2°3+5-13-17, m, e K(3,0,1),
6, _ 6.2 | | ,

ng = 2 mg = 2°3%5+7+13+17-29, mg € K(,1,1),

and

6, 6 _ .

ng =2mg = 23°5-13:17-29-37, mg € K(5,0,1).

* *
Then for i =2, 3, 4, 5, 6, ¢© (ni)/nikj_o (n)/n for any n.= 26m

with m 4in the appropriate K(a,b,c). Also,

0*(n3) < 0*(n5) <0*(n2)

. 'l:].5 n2

n

3

and

o*(m,) o (@) o ()
n n n
0 709 70

4 3

)

Then since

* X 6.2
c (nz) o (2737513+17+29+37+41)

Dy 26325.13.17.29-37+41

(2° + 1) (3% + 1) (6) (14) (18) (30) (38) (42)
2832 (5) (13) (17) (29) (37) (41)

_ 65(10) (6) (14) (18) (30) (38) (42)
T 64(9)(5) (13) (17)(29) (37) (41)

_ 1256850

747881 - 2

i

there can be no unitary perfect number in cases (ii), (iii), (iv), (v)

i
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and (vi). This leaves only-the case with a=c¢ =2 and b = 0. Then

2657135,%7.  Since

o"(2%5-7-11-13) _ 513)(6)(®) (12)(14) _ 18

6 11

: 3 < 2
275741113 2°(5)(7) (11)(13)

and

0" (2%3%5:7:13) _ 5(11)(10)(6)(®)(14) _ 5
2°3%5.7.13 25(3%) (5) (1 @3)

<2,

by Lemma 4.3, 3|ln. Then n =_263.5r133Pu.' Since.

o (2%3-5%7.13) _ 5(13) (4) (26) (8) 14) _ 26

203.527.13 2%(3) (52) (7) (13) 135

<2,

and

0" (2835.7.13%) _ 5(13)(4) (6)(8) (170) _ 170

6 2 91

6 ) <2
273547413 2°(3) B33

by Lemma 4.3, r =s =1. Then n = 263'5-13pu. Then 1f n 1s unitary

perfect

20 = 273:5-13p% = 5(13)(4) () AN G + 1) = o*(@)
or

8p" = 7(p" + 1)

vhich gives p = 7. Then n = 2°3-5.7-13 = 87,360.

(8) k=4, Let n.be unitary perfect. Suppose
/

, o ) o (2%5.71113) _ (2% + 1)(6)(8) (12) (14)
BT otsi7.11413 22y anas

Then
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5005(2%) < 4032(2% + 1)
or

973(2%) < 4032,

which implies that- t =1 or 2 which leads to a contradiction.

Therefore, 3]n. Suppose

o (2"3%5-7-11) _ (2% + 1) (10) (6) (8) (12)

2 <
28325.7.11 22(3%)(5) (7) (11)

Then -
725 < 642" + 1)
or

13(2%) < 64,

which implies that t =1 or 2 which is a contradiction. Therefore,

Bﬁn.- Suppose

o (253:7.11-13) _ (2% + 1) (4) (8) (12) (14)

2 < - -
= 2%3.7.11.13 2%(3) (7) (11) (13)

Then

1001 (2%) < 896(2% + 1)

| A

or

105(2%) < 896,

which implies that t =1, 2, or 3 which is a contradiction. Thus,

Sln.v Suppose

0" (253-5%7.11) _ (2" + 1) (4)(26) (8) (12)
2%3.5%7.11 25(3) 5% () A

2 <



Then

1925(2%) < 1664(2% + 1)
or

t .
261(2°) < 1664,

90

which implies that t =1 or 2 which is a contradiction. Thus,

5§n. Suppose

* t t :
g (2 3'5-11°13) _ (2" + 1) (4)(6)(12) (24)

2 <
~  2%3.5.11.13 25(3) (5) (11) (13)

Then

715¢2%) < 6722 + 1)

I A

or

43(2% < 672,

which implies that t =1, 2, or 3 which is a contradiction.

7|n. Suppose

o (253-5.7%11) _ (2% + 1) (4) (6) (50) (12)

2 <
= 2f3.s5.7%11 25(3) (5) (7%) (11)

Then

539(2%) < 480 (2% + 1)
or

59(2%) < 480,

which implies that t 1, 2, or 3 which is a contradiction.

fore, 7En; Thus; n = 2°3+5:7p°. Suppose p > 17. Then

Then

There-
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o (2%3.5:7-17) _ (2° + 1) (4) (6) (8) (18)
2%3.5.7.17 25(3) (5) (7) (17)

22

which implies that

595(2%) < 570(2% + 1)
or

19(2%) < 576.

Then t =1, 2, 3, or 4 which is a contradiction. 1Therefore, p =11

or 13. Since
o (3-5:7p%) = 4(6)(8) (p% + 1) = 2°(3)(p" + 1),

t > 6, Then

0"(2°3-5.7pT) _ 65(4)(6)(®) (" + 1)

6

2_<_ 6
203.5.7pF 2°(3) (5) (7)p"

which implies ‘that
lap” :_l3(pr + 1)

or

r

p. < 13.

Thus, "r =1 for p =11 or 13. Suppose p = 11, then

o (2%3+5.7.11) _ (2" + 1) (4) (6) (8) (12)

2= | t ‘
2°3:5.7-11 2°(3)G)(M @A

which implies that
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385 2%y = 384(2F + 1)
or
2t = 384

which is a contradiction. Thus, p can'only be 13. If p = 13,

* .t t
o0 (273-5-7-13) _ (2" + 1)(4)(6)(8) (14)

’ 253:5.7-13 25(3) (5) (7) (13)
which implies that
63(2%) = 64(2% + 1)
or
2t = 64

which implies that t = 6. Then n = 263-5-7°13 = 87,360.

Subbarao [29] has stated that he has proven the following theorem

with "extensive and exhausting calculations using a desk calculator."

Theorem 4.7. If n = 2'n is a unitary perfect number with the

same notation as in Theorem 4.6,

(1) it is not possible for t =8, 9, or 10, and

(2) it 1is not possible for k = 6.

These theorems ‘can be used to show that after 87,360 there exist.
no unitary perfect number with less than 20 digits. Charles R. Wall

of the University of Tennessee has discovered one with 24 digits [29].
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It is

218.3.5%.7.11.13+19+37.79-109 157+ 313.

Subbarao conjectures that there is only a finite number of unitary

perfect numbers [29].



CHAPTER V
SUMMARY

The study of perfect numbers has fascinated mathematicians for
centuries. Perhaps this collection of known facts about perfect numbers
can aid others in working in this interesting area of mathematics.

The theory of even perfect numbers seems well established, and the
form is well known (See Theorem 2.3, page 8 and Theorem 2.4, page 9).
Other even perfect numbers can and, undoubtably, will be found by
finding new Mersenne primes. This will need to be done by the use of
computers. It will take considerable time, even with computers, to
check Mersenne numbers until a prime is found.

It still is not known whether or not there exists an infinite
number of even perfect numbers. This fact depends, of course, upon
whether or not there are an infinite number of Mersenne primes. Perhaps
some day someone will be able to prove that there are either an infinite
number or a finite number of Mersenne primes.

The situation with odd perfect numbers is much different. The
existence of odd perfect numbers is still an open question. Many
mathematicians are still working on this problem today.  With -all the
restrictions that have been proven, it looks doubtful that there do
exlst any odd perfect numbers.

As was pointed out in Chapter III, authors do not agree on what

has been proven, especially about the number of distinct.prime factors
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Al

that an odd perfect number, if it exiéfs; must have. Perhaps it would -
be worthwhile for someone to research the original works of some, such
as J. J. Sylvester, to determine what has been proven.

The basic form of an odd perfect number, if it exists, is well
known (See Theorem 3.1, page 27). More restrictions on this form can
be made., However, it appears that unless other techniques are developed,
such proofs will be quite lengthy. Perhaps better bounds on the prime
divisors or the sum of the reciprocals of the prime divisors is a better
area for investigation.

The study of unitary perfect numbers, since it is a much newer
topic, presents a topic for much more investigation. However, it
appears that to continue the search for unitary perfect numbers would
involve quite lengthy proofs unless other techniques are developed.

The procedures that have been used invelve considerable numerical calcu-
lations.

Subaarao's.conjecﬁure that there is only a finite number of
unitary perfect numbers is interesting. This presents a challenge for
someone to prove or disprove. If it could be shown that there are only
a finite number, it would then become an interesting problem to
discover all of them. If there are an infinite number of unitary
perfect numbers, perhaps more about them can be studied. Something
analogous to what has been done with perfect numbers could be done.

There are still many questions that remain unanswered. Is 3
always a factor of a unitary perfect number? Except for 6, all of
the known unitary perfect numbers contain the factor of 5. Do all of

the unitary perfect numbers greater than 6 ceontain 5 as a factor?
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There remain many areas of investigation in the study of unitary
perfect numbers.

It is hoped that the work done in this dissertation will be helpful
to someone desiring to investigate further the subject of perfect or

unitary perfect numbers.
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