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CHAPTER I

INTRODUCTION

’Geographical maps consisting.of regions bounded by simple closed
curves on a plane or sphere are most often colored in such a manner
that no two states or subdivisions of a country or continent which
border are of the same color. The figure below 1s an example of a map

in which four colors are necessary to accomplish this,

/// Green

Blue Red

Yellow

/

The question of whether four colors is sufficient to color & planar
or spherical map has never been successfully answefed° This queétion
was formulated és a mathematical queétibn as early as 1850 by Augustus
DeMorgan.and was but‘before a wide mathematical public in 1878, when
Arthur Cayley proposed it to. the London Mﬁthematical Society. The next

year in Volume 11 of the American Journal of Mathematics, a solution




was pubiished"by Alfred B. Kempe.  However, the problem was definitely
‘unsolved again eleven years later, when Percy John Heawood pointed out
an error in Kempe's reasoning. He did show by a revision of Kempe’é
proof, that five colors are always sufficlent to color a planar or
sphericai map. However, there has never been an example given of a map
where five are necessary.

The problem 1s today probably one of the most simply stated of the
unsolved problems in mathematics. It has held the Interest of many
famous and capable mathematicians, ﬁot‘the least of whom are G. D, Birk-
hoff,.Kempé,.Veblen, Brahana, Balantine, Reynolds, P. J. Heawood, CQ.E.
Winn, and Philip Franklin. The endurance record of Iinterest undoubtedly
goes to Heawood, who‘becgme interested in the problem in the eighties
while a student under Cayley. He published his first paper on. the
problem in 1890, and several others including one as recent as 1935.
Some of the research of F. Harary and G. Prins received financial
éupport from the National Science Foundation and thelr results were

published in the Canadian Journal gglMathematics. G. A, Dirac published

results related to tgé problem as late as 1957, and G. Ringle published
a solution to a relatéa‘ﬁfoﬁlem in:l95.9° Even tbday the prOblém iéla.
popular topié for magazines and books. on mafhematicso

| In generai the mathematics student is not well acquainted.wiﬁh
mathematics outside the textbook and he frequently considers even the
statement of unsolved problems as being outside the realm of his under-
standing. However, here 1s a clasgical unsolved problem whose statement

he can read and understand. In fact, many of the attempts to solve the

- problem utilized only techﬁiQues&oﬁ%&oﬁcepﬁs;jkgﬁ%yguld@ﬁé,Within the

level of understanding of many high school students.



A teacher well versed in the four-color problem could readily
introduce ah interested mathematics student to that section of the world
of sophisticated mathematics apart from the pages of the textbook. The
primary function of this paper is to provide a means for a teacher to
interest such students in the problem and many of its related areas.

A second function is to provide the serious reader with an Inter-
esting inroad on the study of graph fﬁeory. Graph theory is an important
mathematical tool that can be universally applied. The study of graphs
came about simultanedﬁsiy iﬂ a number of widely diversified disciplines
and only regently has been treated as a SubJect independent of any
specific application. The four-color problem has been a very large
contributor to graph theory.

The study of the four-color problem has led to many interesting
related areas. Many of these will be identified in this thesis and some
of them will be emphasized.

Chapter two presents the definitions of terms used in the rest of
the paper, as well as Euler's Theorem. The third chapter is intended
for the lay reader. It contains a nontechnical account of the prObleh,
Chapter four is intended for the interested but inexperienced mathe~
maticé reader; it should be readable to the above-average high school
student. The remainder of the paper is not above the undergraduste

mathematics major.



CHAPTER IT

DEFINITIONS

A finite map on ‘the plane is a subdivision of the Euclidean plane
into regions by a finite numbér of finite arcs such that no region lies
on both sides of any arc, and no two distinct arcs have more than their
endpoints in common. A division of the plane by arcs such as 1s illus-
trated in Figure E.I,d is not a finite map. The combination of two or
more afcs can form a loop, as is illustrated by arcs ql and aé in Figure
'2.1;b.and 2.1,c; hence, the condition that the endpoints of ah arc are
distinct does not exclude the possibility of a loop.

An arc is anything topologically equivalent to the closed interval
(c,11.

:If S 1s the plane and A the union of the set of arcs fo;ming a map
M, then S ~ A is a collection of disjoint, connected open sefs each of
which 1s called a region of the mép M.

A’boundary'between any two regions of a map 1s the union of that
collectién of arcs that separate those two and only those two reglons.
An arc is sald to separate twb regions if it 1s adjacent to both regiops
(eyery nelghborhood of an interior point of the arc contains a point of
each region). nghce, the union of the interior of an arc with the two
‘regions it separétgsiis a ¢connected open set.  Since two arcs can have
only their endpoints in common; no region‘is,ééparated from two other

regions by the same dgrc. Since no region lies on both sides of any arc,



every arc must be part of ‘some boundary,.that is, arcs such as &_, and a&

3

in Figures 2.1,d are not admissible as par£ of avprope} map.

A'#ertéx of a map, referred to hereafter as a vertex; is a point

common to at least two'boundarieé. The exiéténcp of two boundaries ap'b
é‘point im@lies the presence.pf'at least threé reéidﬁé;ht\tﬁat point.
Referfto a fertex as an énd of a bopndary‘aS»oftén as it appears as an
énd of an arc in the boundary. It follows that a vértex is aﬁ'end of at
least th:ee;/not necessarily, aiétinct béundaries.~ Notice that éince’a
jbéundary can have.more than two ends, Figure 2fl,a, there ma&’be.mqre
than two verticés iying'on one bQuhdary; Also, two ends of é boundary
vmay‘be‘the same point thus allowing the possibility of énly one verfex
.én a boundary, Figure 2.1,b ér; a boundary may have no Qettiéés‘of\the
map (as contrasted with vertices of arcs), Figure E,l,c.’_These possibil-

ities are illustrated.

Figure 20;

It can be shown that a boundary has no more than th;ends'(of its
arcs) at a vertex.
" Even though we-have defined a map in terms of a set of arcs on the

plane, the map as dériGEd.is rather independeﬁt of the set of arcs used



to establish it. That 1s, for any particular map, the set of arcs from
which it could be derived, 1s not unique. This is easily seen by
considering the numerous ways in which a single boundary could be broken
up into a set of arcs. Therefore, we shall lose the need for reference
t0 the arcs making up a map rather early in our discussion.
Mathematicians like to make general statements and do not believe
that exceptions prove the rule. The assertion that a,quadratic equation
has two roots is not tfue if we restrict ourselves td the real numbers.
This was a powerful reason for Introducing the complex numbers; in the
enlarged number field the statement is true, counting multiple roots.

The function:f(x,y) = =5 X 5 i s maps the entire plane (except

2
X +y X +y

(0,0)) on the entire plane (except (C,0)), in a one-to-one fashion.
fThese exceptions are found distasteful, and for this reason we consider
\the extended plane. Our extended plane consists of all the Euclidean
plane with the annexation of one more point, the ideal point. We extend
the function f to contain the ideal point and (0,0) as images of each
other, preserving one-to-oneness.

A set of points consisting of the ideal point and a2 Euclidean line
through the origin maps onto & Eucllidean line through the origin and the
ideal point. Tne set of points {(x,y) | v = ax +vb}, b # 0, maps into
a}circie through the origin with the excepfion of the origin itself.

If we define a line in the extended plane to COntain'the ideal point,

as well as a Euclidean line, the image of & line is a circle or a line
through the origin. According to our definition the ideal point lies on
every line in the extended plane. This changes the concept of paréllel

lines as well as many of the intuitive concepts of geometry. On the



extended plane two lines are considered parallel 1f thelr only point of
intersection is the ideal point.

To consider maps on the extended plane 1t 1s approprlate to consﬂﬁ-
er boundaries that are not finite; let us visualize what could happen
to our concept of a -map: Infinite boundaries cqntain the ideal point
and could not possibly be made up of a finite number of finite arcs of
the Euclidean plane. Such & boundary contains a subset which is
topologically equivalent to {x[x =]¢§,O <t S'l}; we shall call such a

subset, with the ideal point for the end point, an infinite arc. If two

or more boundarles contalin infinite arcs then the ldeal point is common
to them and is a vertex of the map. If only one boundary contains an
infinite arc then this boundary will contain two, and the ideal point
will be a point of that boundary without being an end.

When we consider only those geometric properties that are related
to the problem, there is no distinction between a map on the extended
plane and a map on a sphere. To see this, consider a sphere tangent to
the plane at any polnt, T, on the finite plane. Let N be the point on
the sphere diametrically opposite T. For every boint p on the finite
plane, there exlists a line Np which intersects the sphere at some point

p', other than N. Likewise, each p' other than N determines a point p.

This gives us a one-to-one correspondence between the polnts on
the finlte plane and the polnts on the sphere other than N. Then N is
made to correspond to the ideal point of the extended plane. Such a
- transformation is called a sterecgraphic projection. Each reéion in the
plane corresponds under this transformation to one and only one region
on the spheren. Continuity and one-to-oneness of the transformation

require'that the boundaries maintain the same relative configuration



under this tranSiormation; If a boundary of the map on the sphere
contalns the point N as an interior point then that boundary is the
projection of two infinite‘arcﬁ on the plane. These two arcs have the
ideal point as an end in common. Since they separate the same two
unbounded regions they'are part of ‘jthefsame"boundary° If several bound-
aries have the point N in common then 1t is“a vertex of the map on the
sphere, corresponding to the situation in which the ideal point is a
vertex of a map on the extended plane. With our new concept of an

infinite arc we can consider maps on the extended plane.

Figure 2.2

A map on the extended plane or sphere is a subdivision of the
extended plane or sphere into regions by a finite number of arcs (finite
or infinite), having only their endpoints in common, such that no region
lies on both sides of any arc. With arc meaning either finite or
infinite arec, our definitions remain unaffected. That is, a region is
still a connected open set. End of boundary and vertex have picked up

‘no new concepts, except that they may be the ideal point.



Actually we could avoid the problem of considering maps on the
extended plane since each such map is homeomorphic té a map on the
finite plane. Such a homeomorphism could be cbtained by the composition
of two stereographic projections. ILet M be a map onvthe extended plane
such that the ideal point P is on some boundary. Projéct M on the
with point of tangéncy T

sphere by a projection f and let fl(M) = M.

1 1
Let Tg'be a point on the sphere such that N2, the point diametrically
opposite T2, does not lie on any boundary of M. Let f2 be the stereo-

graphic projection of Mi onto the plane with N2 as the pole of
projection, and let fg(Mi) = Meo Now the ideal point is not on a
boundary of Mé, Mé is the homeomorphic image of M under the transforma-
tion f3 = f2 o] fl°

Euler'’s Theorem. If M is a simply connected map on a sphere with

v >0 vertices, E edges and F faces then V - E + F = 2. We shall defer
proof of this result until the end of the chapter.

The remainder of this chapter may prove to be tiresome reading
since there is very little need for discussion of the definitions that
remain. Continuity will not be lost if the reader goes on to chapter
three and uses this chapter for reference when necessary.

The multiplicity of a vertex is the number of ends of poundaries at .

that vertex. By definition the multiplicity of a vertex of a map is at
least three. However, it will sometimes be advantageous to speak of a
"vertex of multiplicity two" as a particular point which is not an end-
point of a boundary but is on a boundary.

Two vertices are said to be neighboring if there exists an arc
which is 2 combination of the arcs that make up the map, with those two

vertices as ends and with no vertex of the map an interior point of that
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arc. For example,Vi and V2 in Figure 2.l,8 are neighboring.

An edge of a region is that portion of a boundary that lies between
two neighboring vertices. Note that a boundary is not necessarily the
union of a set of edges. BSee Figures 1l.l1,b and l.l,cC.

Two regions are contiguous (neighboring) if they have a boundary in
common. It follows from the definition of boundary and edge that if two
regions have an edge in common, they have a boundary in common, but not
conversely.

A map is properly colored if contiguous regions are assigned

different colors. This term will sometimes be shortened t¢c saying a map

is colored or colorable.

A connected map is one whose regions are simply connected. The
unlon of a simply connected region and its boundaries may not be sinply
connected, for example Figure 2.1,b. It will be shown in the third
chapter that for such simply connected maps there always exists a
sequence of edges forming a path between any two vertices. With this we
can see that the vertlces and boundaries of a contected map form a con-
nected graph. It also follows, although we will not prove it, that a
connected graph which forms a map on a plane or sphere forms a comnected
map, thus the two are equivalent on a plane or sphere.

A regular map ls a connected map such that each vertex has multi-
plicity exactly three.

A connected map is a polyhedral map if and only if every region has
more than two boundary edges and every boundary‘edg@,hasftwpldiéﬁind;ends=
Loops such as those in Figure 2.1,b and ¢ are not present, by &efinitiono

This polyhedral map as defined here is a generalization of the con-

cept of a polyhedral graph as defined in [13}. A polyhedral graph does



not allow two nodes to be connected by more than one edge whereas the
graph composed of the boundaries and vertices of our map may have two or
more edges between the same two vertices. As a result, everything that
is done with polyhedral maps is applicable to polyhedral grephs.

If a convex polyhedron 1s enclosed in a sphere so that the center
of the sphere i1s inside the polyhedron then it 1s apparent that the pro-
jection from the center of the sphere, of the vertices and edges of the
polyhedron onto the sphere forms the boundaries and vertices of a poly-
hedral map. It is in fact a polyhedral graph on the sphere. However,
a convex polyhedron cannot have two faces with more than one edge in
common. Figure 2.3 shows a polyhedral map on the sphere and an eguiva.-

lent non-convex polyhedron.

Figure 2.3

Certain polyhedra cannot be realized as a polyhedral wap on the

sphere. Figure 2.4 is an example of such a polyhedron.
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Figure 2.4

An isthmus is a boundary line which separates a region from itself.

This situation cannot occur in a proper map. However, we use the term
in discuSsing certain reduction processes which must be avoided since
they can result in an isthmus.

A map is Epducible for a specified number of colors if a coloratibn
may be made to depend on a coloraticn, in the same number of colors, of

a .regular map with fewer regions.

A set of regions in a map is sald to be a reducible configuration
if its presence in the map renders it reducible.

The chromatic number of a map on any surface ls the minimum number

of colors‘in which the mep can be properly colored.

A §£égg_consists of & set of discrete points called nocdes or zero-
cells with a set of arcs called edges or one-cells such that each
endpoint of an arc is a node and two arcs intersect only at nodes. A

zero-cell is glso called a vertex or a zero-simplex.
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The number of nodes in a graph is called the‘order of thé gr@ph.
A graph of order k is called a k-graph.

If the nodee and edges of a graph G are also nodes and edges of a
graph G' then G is sald to be a subgraph of G'.

If the number of edges of a graph meeting at a vertex is the same
for each vertex, counting each loop twice, then the graph is called
regular. If that number is N, say, then it is called a regular graph

of degree N.

A regular graph is said to be factorable if it can be obtained by
superimposing the vertices but not the edges of two regular graphs of
the same order but each of lower degree. A regular graph of third
degree may be factorable into two factors, one of firét degree and the
other of second degree. If the second degree factor 1s also factorable
then thé third degree graph is factorable into three factors of first
degree. A non-factorable graph is said to be primative [4]. PFigure 2.5

shows & factorable graph with a set of factors and a primative graph.

_u><““*"'jg@

Figure 2.5

If from one vertex of a graph to another, both vertices of order
greater than two, there exists only one path, and that along a single

edge, then this edge is called a bridge. If this edge is removed, the



1k

graph is separated.
- A graph is of EEEE§>ES£9.if it is homeomorphic to a graph on a
sphere.
A path that includes every edge of the graph once gnd only once is
called an Euler path.
In a graph a.path that includes each vertex of the graph once and

only once 1ls called a Hamiltonian path.

A leaf is a portion of a graph which is connected to the rest of
the graph only by a single l-cell such that no proper part of the leaf
has this property [36]. A node of degree one is a leaf; in a tree the
leaves are all nodes.

A graph is sald to be k-chromatic if its nodes can be properly

colored (nodes on the same edge hawing different colors) in k colors and
if for j < k there exists no proper coloration of the graph in j colors.

A graph with finite chromatic number is called critical if it has
no subgraph of smaller order with the same chromatic number.

A surface i1s sgild to have connectivity h if h - 1, but not h, arcs

can be found on it In a certain order that do not separate the suﬁfacey
where it is stipulated that the first arc is actually a simple closed
curve and that every subsequent arc connects two points lying orn the.
preceding arc [47]. This means that for the sphere h = 1, for the Kline
bottle h = 33_torus'ﬁ = 3, and the projective plane h = &,

Three-~dimentional modéls of surfaces of odd connectivity can be
obtalned, whereas surfaces of even cénnectivity can be resliized only in
a space of higher dimension. Also, there are surfaces of odd comhecs
tivity that cannot be realized in three gpace.

Consider a sphere with two holes in 1t. Suppose the boundaries
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(the contours a, a') of the holes are oriented in opposite senses,
Figure 2.6,a. If we consider several sets of points all as the same set
" of polnts, for example by stretching the figure homeomorphically unﬁil
they coincide, we say we have made an identification of these sets. We
shall call such an identification of a with a' as an identification of
ﬁhe first kind. If the sense of each contour is the same, e.g. Figure
2.6,b. We shall call this én identification of the second kind. We can
then say that the ldentiflcation of the filrst kind is the fitting of a
and a' with a handle of the first kind; and an ldentification of the
second kind is the fltting of a and a' with a handle of the second kind.

This can be illustrated for the handle of the first kind by a cylinder

Figure 2.6

bent like an elbow macaroni and its ends fitted on the contours & and af
(see Figure 8.2). The torus is equivalent to a sphere with one handle
of the firstkkind° A handle of the second kind cannot be realized in
three space since the cylinder would have to pass through the surface
of the sphere in order to link up with the contour a' with the proper

orientation. This may be illustrated as in Figure 2.7; however, cne
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must keep in mind the apparent intersection of the handle with the

surface does not actually occur.

Figure 2.7

It seems that a bug walking along the surface would pass through
the handle aﬁd.be on the inside. It is for this reason the surface Is
sald to be one-gsided. If the bug were hitched to a triangle originally
at ABC such that, as the bug moved, the triangle slid alcng the surface;
thevbug could pass through the handle and return to where it sitarted
- but it would be impossible to rotate the triangie in the surface so that
thevvertices woula fall in the same place they were before. That is,
the trlangle would now be oriented ACB. It is for thls reason the sur-
face ig called non-orientable. A gphere with handles of the first kind
is two-sided and is called orientable since sliding the trisngle around
gives to the surface at each point a unlque orientaﬁiono

A Mobius band is aone-sided, one-edged surface. A mocdel of cne can
be made by putting a half twist in a rectangular piece of paper and

pasteing the ends together. The Mobius band is also non-orientable,
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Tf a one-to-one continuous correspondence is made between the points on
the edge of a Mobius band and the points on the edge of a hole in a
sphere, the hole is sald to be fitted with a crosscap, thus closing the
- hole. This of course cannot be doﬁe in three space. Another way of
regarding a crosscap that is‘sometimes more meaningfulyﬁis te identif&

. the diametrically opposite points of a hole. To vi-su:a,;']}.jlz:ev'’tah:‘l,s‘9 stretch

the edge of the hole as indicated in Figure 2.8.

In the words of H. S. M. Coxeter, "A crosscap is a hole in a sur-
face with the magical property that a bug approaching the hole on one
gide would suddenly find himself at the diametrically opposite point and
on the opposite side of the surface.”

It can be shown that a sphere with two crosscaps is topologically
equivalent to a sphere with & handle of the second kind. To see this
consider two crosscaps as indicated by the two circles in Figure 2.0,
with opposite péints identified. If we pull a portion of the plane
through the crosscap on the right until B and D fall on the edge of that

crosscap we get Figure 2.9,b. Note that points H, G and F are no longer



Figure é.9

on a crosscap and the arc B, D is reversed upon passing through a eﬁossm
caﬁ. By stretching the‘sufface we can obtain the situation iilustrated
in Figﬁre 209,0, which is equivalent to that in Figure 2.9,d. The
éituation illustrated in Fiéure 2.9,d is recognized as & handle of the

second kind.

Figure 2.9 . .-

Ba

A handle of the first kind and a crosscap ls eguivalent to a handle
of the second kind and a crosscap. This can be seen by passing one of
the circles of the handle through the crosscap, thus reversing 1ts sense
and obtaining two circles of the same sense.

The Kline bottle is a sphere with two crosscaps, thoughn it is usu-

ally pictured (Figure 2.7) as a sphere with a handle of the second kind.



The projective plane is a sphere with one crosscap.

The connectivity of the Kline bottle is the same as the torus.
Note also that a surface of coﬁnectivity k = 25 + r may be obtained from
a sphere with s - 1 handles and r + 21, crosscaps where 1 is any integer
such that these values are both nonnegative. The equivalence of these
sﬁrfaces is stated in the following theorem, the proof of which can be
found in {1].

Two closed suffaces are homeomorphic if and only if they are both
orientable or both non-orientable and 1f they have the same connectivity.

For our purposes, we shall consider a closed surface, usually re-
ferred to as the surface, to be a sphere with m handles of the first
kind and n crosscaps where m and n are nommegative integers.

A region has been definéd as a connected open set and in a connect-

ed, map these regions must be simply connected. A region is said to be

o7

simply-connected if every simple closed curve lying entirély within the
region can be contlnuously shrunk to a point. A simply-connectsd region
2 2

is homeomorphic to the interior of the unit circle,{(xgyﬁl x" +y" =1}
on the coordinate plane. Such a region cannot pass completely around a
handle (nor, equivalently, around the hole formed by a handle) nor can
it contain a crosscap. If a region contains a crosscap, & simple closed.
curve can be in the region and encircle the crosscap; ‘this curve cénnot
be continuously shrunk to a point. The presence of a crosscap alsc
allows the existance of a simple closéd curve lying entirely'in the
region and not separating it, Figure 2.10. This is contrary to the
Jordan Curve Theorem if the region is homeomorphic to the unit disk.

In Pigure 2.8 one can also see that a oiosed curve cutting the

line AB; CD, does not separatz the surface. Because of the Jordan curve
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Figure 2.10

property of a disk, for a connected map, any arc conhecting two points
(or a loop from a single point) or the boundary of a fegion and lying in
the region;, separates the region into two simply-connected regions and
forms a new connected map.

These same properties of a simply-connected region give us the

follaowing theorem:

Theorem 2.1. The edges and vertices of a connected map form a connected

graph.

This result is restated and proved as a lemma in'the next chapter.
Although the context restricts the readers attention to the sphere, the
proof being basea upon the simply-connectedness of the regions holds for
more general surfaces.

We shall now consider a result proved by Leonherd Euler: If V is
the number éf vertices of a convex polyhedron (in thrée space), such as
a cube or tetrahedron, and E the number of edges and F the number of
faces, then V - E + F = 2, |

Since the surféce of a convex polyhedron is homeomorphic to the
sphere with a mab on its surface, with the same number of vertices, edge

and faces, we will state the theorem as follows: If M is a connected
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map on the sphere with.v > 0 vertices, E edges and F regions then
V-E+F=2. The result has been generalized by more recent authors

into the followihg:

- Theorem 2.2. If M is a connected map on a surface of connectivity
wifhlv >0 vértices,'E edges, and F regions then V - E+ F =%. Chi

ié calied the Euler-poincare characteristic of the surface aﬁa is equal
to 3 ~-h, whefé his the connectivity of the surface. Furthermore,
X=2 - 2p -q where ﬁ is the number of handles and q the number of
crosscapé‘placed on a sphere to obtain the surface.

We shall use the following lemma to prove this result:

Lemma: If edges (and vertices) are added to a connected map M with E
edges, V vertices, and F regions, so as to form a connected map M' of

V' vertices, E' edges and F' regions, then V « E + F = V' - E' + F',

The edges can be added singly so as to obtaln a connected map ét
each stage. 1In doing this one must have the edges of the map form a
connected graph with each addition.

CQnsider first the addition of an edge between two existing
vertices. This edge must lie entirely within a single region and there-
fére separates that region into two simply-connected regions. As a
result V' =V, E' =E+1land F' =F + 1 so that V -E + F = V' - E' + F%

If a point of a boundary, which is not a vertex, 1s considered a
vertex of multiplicity two, we see that one verfex is gained and one
edge is created thus not changing the Value of V.- E + F. Also if a
point interior to a region is connected'ﬁy twb arcs to two vertices

(multiplicity 2 2) of the map, the region‘is separated giving us a new
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map with V + 1 Vertices and E + 2 edges and F + 1 regions. However,
(Vv + i) -{(E+2) + (F+ i) =V - E + F and the lemma follows.

Let M and M' be two connected maps on a surface. Let M have V
vertices, E edges, and F regilons and‘le£ M! have V' vertices, E' edges,
and F' regions. Form a new map M" from M! by adding new edges and
vertices so that M" contains a submap fhat is homeomorphic to M, allowa,
ing vertices of order two (which may be removed). To do this consider
‘a submap of M' that is homeomorphic to a submap of M; it may be quite
simple. (If such a submap is not readily apparent, edges and vertices méy
‘be added to M and M' before constructing M".) Add all the edges of M |
that are not in thié submép (or their homeomorphic eguivalents) to M'! as
new edges formingAM". Since M" was obtained from M! by the addition of
new edges and since M" can be obtained fro@ M by the addition of new
edges, V! - B' +F' = V' -E" + F' = V-E + F = C where C is a constant
peculiar to the surface in question.

On a surface of connectivity h> 1, consider a set of h- 1 arcs
meeting at one vertex and forming the boundary of one simply-connected
region'gn'the surface. Now if each arc 1s split, say, so that we have
2(h- 1) arcs giving us a connected map of 1 + (h- 1) rééions and one
’ Qértex, tﬂenlwe‘have 1-2(h- l),} 1+ (h-1) =C. We see that for
each surfaée of connectivity h> 1 the constantiis 3 _ h.
| In thé‘éése where h= 1 we consider a map of 2 vertices and three
edges, forming 5:simp1y-connected regions. This map yields a constant

of>2 which is again 3.- h.



CHAPTER ITII

A HISTORY OF THE PROBLEM..

It was noticed by English cartographers that it had never been
necessary to use more than four colors to properly color any map. In
1850, it occurred to Francis Guthrie, a student of mathematics at
Edinburgh, that if this were really so, it would be an interesting mathe-
matical theorem. He discussed this ldea with his brother Frederick
(later to become professor of chemistry and physics at the newly created
School of Science, South Kensington), who communicated it to Augustus
De Morgan, his teacher. De Morgan, Professor of Mathematics at Univer-
sity College, London, and founder of the London Mathematical Soclety, was
in a position to make many capable mathematiciang aware of tne:problem
and did so when a solution proved evasive. It was through De Morgan that
the famous mathematician Arthur Cayley learned of the problem.

ngley is an importaﬁt figure in the history of mathematics, and
desef&es more than & casual reference. The extensive and fruitful
reseérch of this indefatigable worker (whose collected mathematiéal
paperé comprise-13 large quarto volumes) attests to his versatility and
energy° This 1s to be wondered at, because for many years hls profesfg
sioﬁal interest was directed elsewhere.  Arthur Cayley was born in 18éi
inj.‘Surrey° He grew up in St. Petersburg, where his father was & merchant.

In 1838 he went to Cambridge, where he took Firsts in 0ld English Usage;

by the time he was 20 he began to publish 1n the field of mathematics.
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From 1843.1863, he practiced. law in London, and 1t 1s notable that it was
‘during this time that he published ﬂis most significant mathematical
papers. In édditiéﬁ to his papers on algebraic geometry, Cayley also
published works on mechanlcs, astronomy, and many othér subjects. His
research oﬁ the théory of topological graphs deserves mention here
becausevof its connection with the map-coloring problem. The theory of
graphs is also important in other filelds: ih determining the number of
possible isomers in organic chemistry, in Kirchoff's theory of networks,
etc.

It was through Cayley that the bulk of the mathematical world became
aware qf the problem. He proposed it to the LOndbn.Mathematical Soclety
in an address published in the Proceedings of that Soclety in 1879. When
the renownedeayley confessed that with all his efforts he had been
unable to profe the conjecture, he stimulated other mathematiclans to
attempt a sclution. One of these was A. B. Kempe.

Kempe was born in Kensington on July 6, 1849. Hé was the third son
of thé Reverand Jomn E. Kempe, Rector of St. James's Cathedral,i |
Piccadilly. He received the M.A. degree with honors in mathematic; from
Trinity College, Cambridge.v Although much of his interest and efforts
were given to his church, he found time to cultivate his recreative

interests in mathematics and music. -In 1879 ne pubiished his first proof

of the four.color theorem in the American Journal gf_Mathematics. W; E.:
Story, an editor fdf the Jjournal, noted several errd:s in this proof that
could be corrected, and he did so in a paper immediatéiy followihg'

Kempe's. In Story's words, "Mr. Kempe has substantially proved the fund-
amental theorem which has been so long a desideratum, by & very ingenious

method, but 1t seems desirable to make the proof absolutely rigorous, and
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I have endeavoured to do this." [49] In 1880 Kempe published another
proof of the theorem in Nature magazine, [50]. This proof used a
different technique ana contained none of the errors Story had noted in
his first proof. In Chapter Four, these proofs will be given in reverse
order; all the corrections in Kempe's‘first proof that were made by
Story are made as the proof 1s presented. These proofs appear to have
been accepted as valid by all concerned (including Felix Kline) until
1890, when they were refuted by Percy John Heawood in his first paper

which was published in the Quarterly Journal g£ Pure and Applied

Mathematics [39].

Heawood was born in September, 1861 at Newport, Shropshire, the
eldest of four sons of the Reverend J. R. Heawood, who was rector of a
church near Ipswick. In 1880 he went up to Oxford with an Open Scholar-
ship from Exeter College. He stayed in Oxford until 1887 when he became
~ lecturer in mathematics at the Durham Colleges, later Durham University.

Heawood's mathematical career at Oxford was extremely distinguished.
He obtained a First class in Mathematical Modérationscin 1881 and a
First class in Mathematical Finals in 1883. He was awardedbthe Junior
Mathematical Scholarship of the University in 1882 and the Senior
Mathematical Scholarship of the University and the Astronomical award in
1886. 1In addition, he obtained a Second Class in Classics in 1885. He
became a B.A. in 1883 and an M.A. in 1887. It was in this year hé went
to Durham.

His most prominent contributions to mathematics were fhose concerned
with the coloring of maps; he was the chief architect of thls branch, the

central subject of which is the’ four-color problem.
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Heawood's first paper was not Just destrucﬁive in nature. It 1Is
undoubtedly the greatest contribution so far made to the mathematical
theory of the coloring of maps. The paper gave several remarkable
generalizatibns of the problem, as well as their rigorous proofs. The
most noteworthy of these generalizations was that for h > 1 the chromatic
number of a map on a surface of connectivity h is at most Nh’ where
Nh.= (1/2(7 + 45137?"53)]; ([x] denotes tne integral part of x.)[27]

” In March, 1879, just after the publication of Kempe's proof,

. P. G. Tait gave a proof to the assembly of the qual Society of Edinburgig
however, later that same year he published a retraction for he had noted
his proof was nhot complete [55]. He briefly described how the proof
could be corrected. He baséd his proof on the conjecture, which he felt
he had shown, that all the edges of any convex polyhedron with triple
vertices could be traversed by one circuit. Tait's conjecture, as it is
now called, would imply the four-color conjecture. Unfortunately, the
four-color conjecture does not imply Tait's conjectﬁre.  In 1940,
Franklin showed by non-convex example that if Tait's conjecture were
true, then some condition implied by cohvexity is necessary. In 1946,
W. T. Tutte of Cambridge gg&e a convex counter-example to Tait's conjec-
ture; hence, it 1s false. |

There is a bit of confusion about Tait's conjecture. The following
statement, also proposed by Tait, is a result of Tait's conJecture, and
has come to be known by the same name. Every bridge-less regular graph
of degree three and genus zero separates into three facﬁors. This state-
ment 1s equivalent to the four-color conjecture and implies Petersen's

theorem which we shall consider in Chapter Nine.
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The general approach to the four -color problem has been that of
trying to determine the character of a minimum irreducible map. Such a
map, 1f it exists, i1s not colorable in four colors; and any other ﬁap
not colorable In four colors has at least.as many regions. These
requirements mean the map cannot contain any reducible configurations.
If one were to discover enough of the nature of minimum irreducible maps
he might be able to conclude that they do not exist and thus conclude
that the four-color conjecture is true.

With this in mind George David Birkhoff, Professor of Mathematics
at Harvard, published an article in 1913 [6] in which he gave several
reducible configurations. He showed that a minimum irreducible map had
| no regions of less than five sides, that each verteX had multiplicity
three, and that each region was simply-connected.

In 1920 Philip Franklin, Professor of MathéMatics at Massachusetts
Instituté of Technology, showed several more configurations were reduci-
ble and witn thesé reductions managed to prove that every irreducible
mep had at least 26 regions {32]. Five years later C. N. Reynolds
succeeded in replacing the number 6f 26 by 28, and gave an example which
showed that the number could not be ralsed further without additional
reductionsl[SB]. He was able to simplify hils argument by employing
certainireducgions due to A. Errera. |

In l958'botthTanklin and C. E. Winn came up‘with several new reduc-
tions‘which enabled Winn to show that any map of less than 36 regions
was colorable in four colors [34%, 65]. |

Franklin used a much simpler argument to show that any map of less

than 32 regions was colorable in four colors [34].
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In the September 1960 issue of Scientific American, Martin Gardner

stated that the four-color conjecture had been proven for all maps of 37
or fewer regions. Unfortunately he quoted no reference and an extensive
search of the literature falls to turn up any verification of this
statement.

There have been a multitude of fallacious proofs of the four-color
conjecture, and many more will undoubtedly follow. The bulk of these
have been honest attempts and have proved a result that is often confused
with the four-color conjecture; This result states that there is possible
no more than four mutually adjacent regions on the surface of a sphere.
~For an extensive discussion of this problem see Chapter 1k of [56].

| In the past two decades there have been many contributions to the
mathematical theory of coloring maps. Most of these were results In the
more general field of graph theory. A highly significant result was
published in 1956 by G. A. Dirac [26]. In this paper, he gave proofs of
the following three theorems, the first of which we shall consider in
detail in Chapter Seven.

For h = 3 an& for n 2 5 a map on a surface of connectivity h with
chromatic number Nh always contains Nh mutually adjacent countries. As
'béfore Nh is the number obtained from Heawood's color formula.

A 6-chromatic map on a surface of comnectivity 2 (projective plane)
contains 6 mutually adjacent countries, or a map containing 6 mutually
adjacent countries can be obtained from it by deleting suitably cﬁosen
boundary lines and uniting those countries which they separate.

If a 7-chromatic mep 1s, on a surface of connectivity 4, either it

contains 7 mutually adjacent countries or a map containing 7 mutually
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‘adjacent countries can be obtained from it by deleting suitably chosen
boundary lines and uniting those countries which they separate.

fhis relates the problem, on any surface but the'plane or sphere,gf?
to the problem of determining the meximum number of neighboring domains
possible for that surface. These numbers havé‘been obtained for
‘h = 3,5,7,9,11,13,15 by L.‘Heffter [(46], for h = 2 by H. Tietze [56],
for h = 4 by I. N. Kagno [48], for h = 6 by H. S. M. Coxeter [17], for
h = 8 by R. C. Bose [10] and for h = 10,12,14 by Heffter [26]; Iﬂfeach
of these cases the numbers agree with the number Nh’ and the proofs in
some cases are of a general enough nature to hint that the number Nh is
not only an upper bound for the chromatic numbers of maps on a surface
of connectivity h but that it is in fact the least upper bound. However,
one exception is noted in Chapter Nine.

Since the four-color conjecture has not been established, in a mathe~
matical sense it 1s not known whether it is true or not. However,
practically all those who have worked on the problem are inclined to
guess that it is true.

An admittedly crude prébability argument was given by Heawood [35].
The argument indicates that the probability of being unable to color a
map of‘F reglons and V vertices with four colors 1s of the order of
(L - B"F)QV, or when F is fairly large e'(h/B)F, approximately. This

is less than 1 in lOlO’OOO

when F exceeds 35, so that if the probability
argument were valid, and uncoiorable meps exist, they should not‘bebeasy
to find.

We have called the map coloring problem a topological problem.
Although topology has developed enormously during the past few decades,

when the original four-color problem was first proposed there was no
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field of topology. There were isolated.prOblems, but no discipline as
such. Since then an eﬁtensive theory has been developed by many
respected representatives of the field from all nations. Many difficult
and far-reaching problems have beeﬁ proposed and solved. Yet the modest
problem of map-coloring has withstood all efforts at solution. |

We cannot tell at this time whether, when a solution is found, the
methods used will have wider mathematical significance. If this should
turn out to be so, then the significance of the map-coloring problem in

the history of mathematics will be greater than it already is.



CHAPTER IV
TWO AND THREE COLOR MAPS

The gquestion of what maps can and cénnot be colored in two or three
‘colors has been successfully answered. This chapter will present some

of the more general theorems concerning maps in two or three colors.

Theorem 4,1. Let n straight lines be drawn in the plane. The map of
simple connected regions formed by these lines can be properly colored

in two colors.

This can be shown by inductidn. It fo;lows from plane geometry that
one line drawn In the plane divides it into exactly two distinct regions,
so such a map can be properly colored in two colors. Now suppose every
map formed by X straight lines in the plane can be properly colored in
two colors and consider any map M formed by k + 1 straight lines.

Choose one of these lines, 1, and erase 1t. By hypothesis, the result-
ing map, M*, can be properly colored in two colors. Now replacé l. The
line 1 divides the plane into two half planes, each of which is properly
colored in two colors. If the colors of the regions in one of these
half planes are interchanged, the half plané.is‘still properly colored
in two éﬁgors. | (

If two neighboring‘regions of map M are in different half planes,
they border each other along a segment of the line l,‘but of no other

line. The new regions are formed by the disection of some region of the
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Figure 4.1

map M%* by the iline 1, and are made different colors. If two nelghboring
regions of map M are in the same half plane, they must have different
colors since the half planes are each properly colored. Thus, if every
map formed by k straight linez in the plane is properly colorable in two
colors then every map formed by k + 1 stralght lines in the plane can be

properly colored in two colors.

The following theorem ls equivalent to the one just proven.

Theorem 4.2. Let n circles be drawn on the sphere such that they all
have g common point, P, of intersection. The map of simply connected

regions thus formed is properly cclorgble in two colors.

The eguivalence of this %theorem to Theorem 4.l can be seen if P is
used as the center of a stereographic projection of the sphere onto a

plane.
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Theorem 4.3, Let n circles be drawn in the plane. The map formed by

these circles can be properly colored with two colors.

This theorem can be proved exactly as the preceeding theorem,
since no two clrcles can have an arc in common. However, conglder the
following proof’:

Let g be a.function defined on the regions of the map, such that
g(x) is the number of circles which region x lies interior to. DNow if
x., and X ‘hre neighboring regions, lg(xl) - g(x2)| = 1. This follows

1 2

since the boundary of xl and Xy is part of some circle and if the
circle were removed, then g(xl) = g(xg) since x, and x, would be parts
of the same region. (Note that there are at least four regions at a

point of tangency of circlea,)

Figure 4.2

Now, if the circle is replaced, exactly one of the regions Xy or

Xp lies on its interior and one.on its exterior.l Thus, one of these

lAppendix: Jordan Curve Theorem
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regions will lie on the interior of exactly one more circle than does
the other. Thﬁs, it 1s sufficient to color regions whose g valué is
even, one coior, and thosé.ﬁhose g value is odd, another color. Inuthis
way no two neighboring regions have the same color and the map is

propérly colored.

Lemma: 1If all but one of the vertices of a map are of even multiplicity,

then that one 1s also of even myltiplicity.

Sﬁppose that vertices V., V,, VB,‘. . .; v, hﬁve multipiicities'Kl,
Ky, K53 o K respectively, Each edge contributes 1 to the multi}
plicity of two, not necessarily distinct, vertices. Since there is an
even number of ends of boundaries, (twice the number edges ), K + K

+ K3 + o s o F Kh 1s even. If we khow all but one of the Ki's a:e even
then it follows that that one is also even.

This lemms will be used in the next theorem to allow us to ignore
the problem of the multiplicity of the ideal vertex. That is, the mul-
tiplicity of the ideal wvertex is even if all the verticeé of the finiﬁe
plane are of even multiplicity.

- The following is a considérably’mpre general theorem concerning

maps of two colors.

Theorem‘h,h. A map of simply connected regions on the plane or sphere
can be properly colored with two colors if and only if all of its

vertices have an even multiplicity.

The "only if" part follows quite readily from the contrapositive
and an argument typified by the following figure. That is, 1f a vertex

is not of even multiplicity, the map cannot be properly colored in two
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colors.
The converse, however, is not so simple. To prove this, pick an

arbitrary vertex and suppose we travel over the boundaries and vertices

Figure 4.3

of our map. In doing so we shall leave a vertex along a boundary
different from that on which we arrived. Thus, having arrived‘at a
vertex (not'alreaay included), we can always leave since each vertex

is of even multiplicity, We continue this process until we ‘r‘each,9 fdr
the first tlme; a vertex, A, which we have me£ before. The boundaries
traversed betweén these two meetings of the vertex A, constltute a
simple closed cﬁrve or contour. Delete this curve from the map. Now
the vertices that do not balong to the closed contour are of their
previous mulﬁiplicities, and those that do are reduced in multiplicity
by exactly twod. It now becomes necessary to éonsider vertices of multi-
plicity 2, in the graph of remalning edges. In any case, vertices are
still even and the process can be repeated. In this way, it can be seen
that the map is made up of overlapping simple closed curves. Define a

function g as in Theorem 4.3. This function will assign a number to

each region. This number will be the number of simple closed curves
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(of our construction) on whose iﬁterior that region lies. Just as befare,

the function will dictate a proper coloration of the map in two colors.
Once the map 1s colored, it can be seen that the evenness or odd-

ness of each region ié independent of the way the simple closed paths

are chosen and is related to the color assigned a region whose funcfion

value is zero. However, the actual number assigned to each region does

depend on the closed curves chosen as the following example illustrates.

Figure L.h

Region II Méy be given numbers O or 2 depending on whiether we choose the

two paths afgdcb and hfedji or the two paths afedcb and hfgdji.

Corollary 4.5. A map on the plane or sphere can be properly colored with

two colors if and only I1f all of its werticies are of even multiplicity.

To prove this, consider s map containing a multiply-connected region
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R, such that all other regions of the map are simply connected and each

vertex has even multiplicity.

Figure 4.5

The complement of this region is several disconnected portions of
the plane. If all but one pilece is erased, that plece, on the plane,
forms a new map which satisfiss the hypothesils of the theorem just
proved, since no sides or vertices or multiplicity of vertices of this
plece are affected by the erasure. Thus, it is colorable in two colors.
The new map for each such piece is colérable in two"colorsy and,
conversely, being colorable in two colors ihplies that each new map has
vertices of even multiplicity. By merely interchanging the colors if
necessary, we can make the exterior region (that corresponding to the
multiply-connected region) of each new map the same color. DNow, if
these maps are all placed with the original multiply-connected reglon,
we obtain s proper coloration of the original map. By iﬁduction on the
number of multiélyiconnected regiohs.in the map, the corollary isﬂ
proved.

The nextithéorem is bésed uponvthe concept of aual polyhedral maps,

which we now define. A polyhedral map M¥ is said to be the dual of a

polyhedral map M, on the same surface, if the4two maps play complétely
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symmétrictroles, one to the other under the following conditions:

1) Each edge of one map intersects exactly one edge of its dual in
precisely one polnt.

2) 1In the interior of every region of one map, there is exactly
one vertex of its dual.

Immediately following from the definition we get;

3) There 1s a one-to-oneaqqrrespondence between the vertices of
one map and the regions of i1ts dual such that neighboring vertices
correspond to contiguous reglons.

4) If one of the vertices of one map has multiplicity, K, %hen the
reglon in the dual map corresponding to this vertex has K edgés.

For every polyhedral map M there existﬁﬁa polyhedral map M*, on the
$ame surface, that is its dval. We must show that the graph'féfmed‘by
the dualizing process forms a polyhedral map. The process divides each
region of M into gquadrilaterals. Reglons of M*'ape formed by regrouping
the quadrilaterials such that each group completely éﬁrrounds and shares
a common vertex of M. The union of the quadrilaterials of each group
yields a simply Qonnected region. Mf contains no isthmus and each bound-
ary edge has two endﬁ? since each boundary edge of M has two'diétinct
: ends énd M has no isthmus.

Let us also make note of the following definition:

Definition: If a polygon in the plane is partitioned into triangles in
such. & way that any two triangles either have no point in common, or have
a common vertex, or have a common side, such a partition is called a

triangulatibnmof that polygon.

.It i1s possible to triangulate the entire plane by consldering
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infinite boundaries all meeting &t an infinite vertex.
The following figures show that not all subdivisions of é polygon
Into triangles are triangulations of the polygon. The boundary a,b in

each case 1s not a side of the triangle ABC but oﬁly a portion of a side.

Flgure 4.6

That is, there are two triangles in each case that have more than a
vertex (i.e., have a boundary} in common but do not have a sidé in
common. However, in a map ABC would be considered & quadrilateral
instead of a triangie.

Suppose that a map consists of a triangulated polygon in the plane

and that the map is properly-colored in two colors. We shall showwthaﬁ

the dual map can be properly celored in three colors.

Lemme.: There always exists a sequence of edges or boundaries forming s

path between any twe vertices in a connected map.

Por suppose there exist two vertices A and B such that there is no
such path from A to B. Consider Sv to be the'set Qi all vertices reach-
able from A and S, £c»be the set gf all edges that have an end in},}Sv°
Let Sr be the set of regions of’the map such that at least one edge of
each is in Se. Let U be the union of all the regions in Sro Consider

U' (the eomplement of U). If U' is non-empty, U borders U* along the
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border of some region in Sr’ and some edge of this region is in Se'

Thus some vertex of this same region is in Sv. Since all the vertices
of this simply connected region are reachable from this vertex, then all
are in SV..vThis implies that eacp edge of this region is in Se and is

& border of U'. That is, a border of U' is in 8_. But this implies one
region of U' is inU. Now (from the finiteness of the map) U' @ U,
which implies U' = ﬂ. Thus every region is.iﬁ U and each édge,is in’Sé,
which implies all'vertiqes are in sw.’»ConseQuently, no such pair of
vertices exlsts and there will alﬁﬁis exist a path from any A to any B
in a conneétedfmap.

Now mark each boundary of the properly colored triangulated-plane-
polyéoﬁ map with an arrow, such that there will be one color (let us say
black) always to the right of the arrow and the other color (white) to
the left. It.1s possible to go from any one vertex to any other aﬁd
always tra&el the boundaries in the direction of the arrows. To see
this, take two arbitrary vertices A ana B. There exists a path from A
to B. If any segment of this path is traversed against the direction of
the arrows, the path may be altered by goling about the other “two edges
of either of the two regions that have that edge as a boundary. Sueh
alteration ylelds a path meeting our requirements. H

(Note:, It has not been required that the path not intépsect or
reuse a sidé; there is such a path possible by removing loops consisting
of circuits of edgesajb |

Consider g path with n sides that retufns to where it started and
does not retrace itsqlf. .If the path crosses itself at a vertex, it
forms-at least two loops, having Ki and_,K2 sides, respéctively. Let us

show that Ki (and similarly Ké) is divisible by three. The loop has p



k1

Figure 4.7

triangular regions that lie on its interior. Not more than Ki of these
will have a side of our path as one of its boundaries. These regions
will all be of the same color since they all lie to the right or the left
of our path depending on whether our path is directed clockwise or
counterclockwise. Now disregard all boundaries e%terior-ﬁo our path.
The one new exterior region is bordered by regions of one color, and
‘may be colored the opposite color. Now we have a new map with several
triangular regions and one exterior region with K, sides. Suppose we
have S triangu;ar regions with the same color as the exterior region with
Kl edges; these regions have three boundaries each. Suppose also that
we have T regions of the color opposite of that of thebexterior region;
~each of these regions has three boundaries. Each boundary beliongs to
one black and one white region;. so Ki + 38 = 3T, Hence, Ki is divisible
by three. A similar argument holds for any Kis Since n is a sum of
loops withiKi, Ké, +s0 boundsries with no boundary used more than once,

" n is also divisible by 3.

If a path does retrace itself; we merely need tc count the boundary
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each time it is used. In this manner the foregoing proof still holds
and & path of n edges (not necessarily distinct) that returns to where
it started will necessarily have n divisible by three.

"Now let A be an arbltrary vertex of our ofiginal map, assign it the
number zero. Let B be any 6ther vertex in the map. There exists a path
from A to B such ﬁhat each boundary is traversed in the direction of thé
arrows. I this path contains k boundaries, asSign to B the number k
(mod 3). |

Now let us show the number assigned to B ié independent of the path
chosen. Let p and g-be two distinct paths fr&m.A.to B, each following.
the arrovs. Construct a path r from B to A, féllowing'the arrows. Now

D,T sﬁarts at A and returns to A. The same for q,r. If p has n. bound-

1
ariés, if g has n, boundaries and if r has n3 boundaries then oy + n5 as
well as n, + D is divisible by three. Hence (nl + n3) - (n2 + n3) is
divisible by three and n, - n, = O (mod 3). Hence both paths will

1 2
assign the same label to the point B. It is also clear that no two

neighboring wvertices of our map will have the same label.

To each vertex there is assigned one of the three numbers, 0, 1, 2;
and these numbers are thus assigned to the corresponding regions of the
dual map. Since no two neighboring regions of the dual map will have
the same label, it can be colored in three cqlors.

The converse_fo}lows by reversing the above argument. Our original
map can have its vertices properly labeled 0, 1 or 2 corresponding to
the three colors of its dual. The two pessible orientations of the
triangles either 0, 1, 2 or O, 2, 1 give us the map colored in two
colors. Since a boundary shared by two triangles and traversed clockwise

with respéct to one triangle and counterclockwise with respect to the
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other, the map is properly colored in two colors.
The dual of a regular polyhedral mep on a sphere is a triangulgted
polygon (triangle) so that the forgoing with corollary 4.5 is a proof

of the following theorem.

Theorem 4.6. A,regdlar polyhedral wap on a sphere can be colored in

three colors if and only 1f each region has an even number of edges.

The restriction of Theorem 4.6 to polyhedral maps can be removed.
Consider a regular map M, on a sphere. A regular map on a sphere can
have a region of two boundary edges, otherwise it is polyhedra,l° It M
has three reéions it is colorable in three colors. If M h;é more thah:
three reglons then a region of two boundary edges can be shrunk to a '
point (no longer a vertex) forming & new regular map M¥, M* is color-
able in three colors:if and only if M is col;fable in £hree colors., If
M* has more than three regions then it is elther polyhedfél or it has»a
fegion of two edges which can be shrunk to a point preducing another
new map. Continuing in this’fashion we will obtain a three-region map
or a polyhedral map which is colorable in three colors if and only if M
is colorable in three colors. HNote that shrinking a two edgeﬁ region to .
a point changes the number of edges of each contiguous region by two.
That is, each region of M has an even number of edges 1f and only if
each region of M¥ has én.even number of edges.

An alternate proceduré would be to divide each two-edged region of
M into four quadralatérals$ Figure 4.8. This forms a new map M* that
i1s colorable in three colors if and only if M is colorable in three
colors.

Thus we see that Theorem 4.6 holds for regular meps in general.
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Figure 4.8

The following quggtiqn is yet to be considered: When are non-
regular maps coloféblé in three colors?

If each vertex is trivalent (of multiplicity three) the hypothesis
ofvsimply—connected is unnecessary. For suppose a map M, with each
'regidn having an even number of edges, contained a multiply connected
region R, of order k. More than one such region could be handled by
induction. Considey the k + 1 different maps m1, m23 -0 o mk+l each
obtained from M by erésing all but one of the disjoint secfions of the
complement of R. Now gach of the maps m. 5 me, m3, o o o mk + l'is
simply connected and, being regular, is colorable in phrée colors. By
‘proper permutation of the colors in each of the k + 1 maps we can have,
in each case, the region that cérresponds to R the same color. By
. supérimpOSing these maps on one another we obtain map M properly color-“
ed in three colors. 1In Obtgining the.con§erse we,need note that thé

original theorem holds for each map m, and thus each région of mi has

i

an even number of edges. Hence each region of M has an even number of

edges.
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Thus the theorem may be restated as follows:

Theorem 4.7. A map on a sphere with each vertex of multiplicity three
can be colored in three colors if and only if each region has an even
number of edges.

4

That we cannot remove the restriction on the multiplicity of the

vertices is apparent in the following examples:

Figure 4.9



CHAPTER V

KEMPE'S PROOFS AND THE FIVE}COLOR PROBLEM

Although Kempe's proofs are in error, it is worthwhile to consider
them for their approach to the problem. The basic attack on the problem
that has been used by many others was first outlined by Kempe in these
proofs. Let us consider his second proof first since it has none of the
curable errors found in the first proof. This proof was published in

Nature magazine, London, in 1880 shortly after the first proof was pub-

lished in the American Journal of Mathematics in 1879. We shall then

consider his first proof for sake of comparison of technique.

>

Lemma I. Every map of more than cne region on a plane or sphetre must

have at least one pair of adjacent regions which have only one common

edge.

Suppose this were not so, then consider a pair of adjacent regions
$
al and a 1°

were just one region in S

These two regions surround a set, S,, of regions., If there

1

then it would have a simple boundary with a. .

1 1

Consider a pair of adjacent regions a,, a'2 of Sl° These regions
surround a set,-Se, of regions. In fact we can consider an infinite
sequence of pairs of regions each surrounding the next. But this is

contrary to the finiteness of the map. Hence our supposition is false

and the lemma is true.

46
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Lemma II. In any .map on a plane or sphere there exists at least one

region of less than six edges.

If an edge whose ends lie at two different vertices 1s rubbed out,
the multiplicity of each vertex is reduced by one, or if either vertex
had multipliecity tyree it would no longer be a vertex of the map, fur-
ther reduciqg thé-number of edges. The result is that,rﬁbbing out &
boundary coﬁsisting of a single edge may reduce the nﬁﬁbeg (E) of edges
byvthreeo-‘It can; however, never cause a g;ééter reduyction, and may
cause & smaiier. This could happen when & loop is rubbed out or when
- the multiplicity of elther vertex_is greater than three.

’ Now,;the obliteration of simple boundary, B, causes the two regions
it séparates‘to coalesce, thus reducing the number of regions R in the
map by one; This newly formed map has a pair of regions with common
boundary consisting of one edge, according to our lemma. By obliterat-
ing edges that are complete.boundéries we finally get a single region;

' no boundaries and no verticﬁso Each such reduction of R by one cannéf
involve a reduction of E byfmore than three; thus R - 1 i,l/E E, which
implies 63 > 2E. Since 6R > 2E some region has less than six edges, and
our lemma follows. . : ;

vSuppose we have & map properly colored in four cc'ﬂ.,cor’s;9 blue, yellow,
red, green. Consider those regions colored red and green. They form me
or more noncontiguous connected §ect}ons of the map, each containing one
or more regions colored red.or green. These sections wi}l surround and
be surrounded by sectionélcontéining blue and yellow reg;;ions° va the
colors of the regions in ény arbitrary section are interchanggd, it will
not éffect the colors of other sections=gf the same two colors and ‘the

map is still properly colored.
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We can reduce a map to a single region by succé&ssive operations of
throwing two regions into one by rubbing.out the edge or edges bhetween
two regions one of which has leas than six boundary edges. Conversely,
we can develop a specified map, starting from a single region and adding
boundaries, at éach stage dividing a region into two, one of which kas
less than slx boundary edges. Suppose at some stage of 1ts development
by this process a map dan be colored with four colors (red, green, blue,
and yellow). Let these colors be indicated by colored wafers placed on
the regions. Proceed to the next operatioﬁé this divides a:w&fered
region Into two regions. Shift its wafer onto the reglon of these two
which is not the one which has less than six boundaries. If both have
less than six boundaries;, shift the wafer onto either. If.the region
(w) which 1s left without a wafer is touched by only ﬁhreefcblors it
can be colored the fourth, but if it is.%ouched by four colors we must
take another step. This can be necessary only 1f w has four or five
adjacent regions.,

Consider the first case, in which four regilons are adjacent to w.
If w surrounds at least one but not all, one of these regions it
surrounds can surrender its wafer to w and receive a wafer the color of
one that w{does not surround. It may be necéssary to pérmute the eolors
of the reéions surround?d by w before making the shift. To show this can
be doneg; ;n argument may be used that is similar to the cne in Chapter
IV that shows the sufficiency of a proof for simply connected maps. So
-consider the four regicns to surround or to be surrounded by w. Label
them clockwise g,b,cyd and let & be red; b blue, ¢ green, and d yellow.
Irf the'regions are not Iin & cyclical arrangement then s colorstion can

be obtained by a simpler argument. If starting from a, we can get to c,
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going through red and green regions, and not passing through anypyertius,
we cannot, starting from b, get to d, going simllarly only through blue
and yellow fegions, for otherwise two tracks which pass through differ-
ent reglons would cross. Thus b belongs to a set, G, of blue and yellow
regions which are cut off from the rest of the map by a chain (or chains)
of red and green ones. We can accordingly intercﬁange the blue énd yel-
low wafers in G without changing any other and the map remains properly
colored. This makes b yellow and we can put a blue wafer»Sn We
 Similarly, if we cannot pass from a to ¢, a belongs to a set of red and
'green reglons not containing c. Interchanging the wafers in this set
makes a green, b, c, and 4 remain unchanged; and a red wafer can be put
on w. The map 1s now properly colored.

Similar reasoning applies in the case of five surrounding or sur-
rounded regions: Figure 5.l. Label the regions e,fﬁg,hyg in 8 clock-
wise manner, making e green, f blue, g red, h blue, (two must. of course
have the same color) and k yellow. If the regions-afe’not in a cyclical
arrangement then one of them has at least two edges in contadt»with Wo
Such a situation would simplify the problem of finding a cclorastion

which would:bermit 8 proper coloration of w.

Figure 5.1
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If e belongs to a different redigreen section than does g, we can
interchange the colors in that sectlion to which e helongs, allowing a
green wafer for w. Similarly, if k béiongs to a different yellow-red
section than does g, we can interchange ﬁhe color in thatxséetion allow-
ing a yellow wafer for w. If neither of these 1s the case; then the
red-green sectlon to which e and g belong contains a red-green-chain
which separates the blue-yellow sections contalning k and f; i.e. they
are in different blue-yellow sections. Alséy the red-yellow section con-
taihing kX and g separates the blue-green sections containing e and h.
Now interchanging the colors in the blue-yellow section to which f begf
longs and in the blue-green section to which h belongs, makes I become
-yellow and h green, e, k, and g femaining unchanged. In-any case; the
number of colors adjacent to w is reduced to three and the maﬁ remains
- properly eolofedq We can place a wafer for the remaining color on w.
Thué? if the map can be colored as developed at any stage, it can be
colored at the next. Hence, since it can obviously be colored at the
stage where it contains four regions, it can be colored at the last
stage where we have our original map.

-Since the map considered was arbitrary, it follows that any map on
the plane or sphere can be colored in four colors.

Now let us'examine‘Kémpe’s first proof.

First, consider a vertex of multiﬁlicity three. The regions meeting
there must be.colored in exactly three colors.

Next consider & vertex, p, of multiplicity four ﬁith three regions.
There can be only three colors at such & vertex. Next consider & vertex
of multiplieiﬁy four with four distinct reglons, labeled clockwise &b,

¢,d, meeting there. These reglions may be colored in twéQsthree, or four

»f
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colors., If they are colored in four colors then pyo of the regions must
belong to different sections in their colors; tha£.is,,if-b and 4 belong
to the same red and green section but are»notradJaeenttregiOns at the
vertex, then that section surrounds a blue and ye@low séction containing
either a or ¢ but not both; thus a and ¢ are in differeﬁt blue and yellow
sections. If wé_interchanged the colors in elther one of these ééc-
tions, we would have just three colors at the vertex p and the map would
be properly colored in four colors. v

Next, consider the case of a vertex of multiplicity five. The
regions meeting at this vertex may happen £o be colored with three col-
ors, but they may happen to be colored with four. Figure 5.2 shows the
only form which the coloring can take place in that case, one color of

course occuring twice.

Figure 5.2

If & and c belong to different yellow and red sections, interchang-
ing the colors in either makes & and ¢ become the same color. If a and

¢ belong to the same yellow and red section, see if a and d belong to
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the same green and red section. The two sectlons cut off b from e, so
that the blue and green section to which b belongs is different from
that to which d and e belong, and the blue and yellow section to which
e belongs is different from that to which b and ¢ belong. Thus, inter-
changing the colors in the blue and yellow section to which e belongs,
and in the blue and green section to which b belongs makes b become
green and e yellow, a, ¢, and d remaining unchanged. In each of the
three cases, the number of cclors at the vertex under consideration is.
redﬁced to three and the map remains properly colored.

“ What has been shown is that in any masp properly cclored in four
colors, for any selected vertex of multiplicity less than six there
exists a proper coloration of the map such that only three colors asppear
at that vertex.

Now consider the four-color theorem: Let M be any map on the plane
(or sphere). Let r be & region of M with less than six edges. Take a
plece of pdper and cut it out the same shape as r, but rather larger; so
a8 Just to overlap the boundaries when laid on r. Fasten this patch to
the surface and.produce'the boundaries which meet the patch, 1f there are
any, to meet at a polnt, p, within the patch; making sure that any two
boundaries that had met the region in the same vertex are joined in a
vertex on the patch before they are joined td p. (If v is not simply
connected the pstching process is still valid. WG.could, of coursey ..
avoid the consideration of multiply connected regions as we did in
Chapter Ivo) If there are more than twe boundaries so produced then the
point wiil be a vertex of the newly fbrmed map Mly Figure 5.3, M1 has
one less region than M, {(or fewer if we consider 2 multiply connected

region). M.L has a region rl’ of less then six edges and that region
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Figure 5.3

can he patched forming & map M2° This patching process can he repéated
as long as there is a region left to operate upon, the patches being in
some cases stuék partially over others. The process will eventually
result in a map of only one region, devoid of vertices and boundaries.
This map can be properly colored in not more than four colors. Now
reverse the patching process, and strip off the patches in reverse order,
taking off first that which was pub on last. As each pstch is stripped
off it disclosed a district of lese than six edges. If map Mk can be
properly colored in four colors then it can be properly colored in four
colors such that only three colors meet on the patch next to come off.
When that patch is then stripped off, the region it reveals will be
surrounded by three colors and can be properly colored the fourth color.
.Thus, map Mkml can be properly coelored in fpur colers. Consequently, if
& map Mk is colorable in four colors then map Mkml is colorable in four
colors; and, by induction, map M is c¢olorable in four col@rso

As presented here, the corrections in this proof due‘to Wo E. Story

have been made.
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Let us consider a third proof, which involves a technique used by
Heawood in proving another theorem, making a revision of the proof we
have Juéf seen.

Suppose the four-color conjecture is false. Then there exists a
map (or maps)‘that is not properly colorable in foﬁr colors. If this be
the cage then there 1s such a map, M; with a minimum number of regions,
k. That is, any wmap not colorable in four'colors has as many regions as
M. Now, there exists a region r of M with less than six edges. If r is
patched, a new map M! is produced with k - 1 (or fewer) regions. This
map, according to hypothesis, is colorable in four colors. TFurthermore,
a coloration exists, according to the foregoing proof, such that only
three colors occur at the vertex on the pétcha Now, 1f every region of
M is assigned the color that is assigned to the corresponding region of
M' it is properly colored except for r. :But only three colors surrcund
r so the fourth color can be assigned tc r producing a proper coloration
of M. Hence, M‘is colorable, contradicting our assumption. Thus, our
assumption 1s false and the four coleor conjecture is true.

The region r and its surrounding regions are referred to as a
reducible configuration making M reducible. Thus we see that the mini-
mum irreducible map (if it exists) does not contain a reducible
configuration.

It should be evident by now that any error common to these proofs
would heve to lis in =tther pur lemmas or in the proof that a reglon of
iess than six edges and~itsvsuerunaing'r@gi@naif@rm & reducible confi-
guration. Each of these statements has beeh proven here essentially as
Kempe proved them; but as Heswood poihted out there is an error in the

proof of the statement that a reglon of less than six sides and its
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surrounding regions form a reducible configuration.

The error lies in the proof for the case of a vertex of multiplicity
five. Suppoéé, Figure 5.4, there is a green region x in the blue and
green section to which b belongs which borders a yellow region y in the
blue-yellow section to which e belongs and; furthermore, two yellow

regions bordering x and e are both contiguous to the same green region,

Figure 5.4

© Interchanging the colors in the blue-yellow section to which e belongs
will bring d into the same blue-green chain to which b belongs. As a
result, interchanging the colors in the blue-green chain to whiéh”b
belongs will make d blue and we still have four colors. As Heawood put
it, "It is conceivablé that though either transposition would remove a
blue, both may not remove both blues.”

Although the proof dces not hold, the statement that for any vertex
of multiplicity less than six thére exists a proper celoration of the

map such that only three colors sppear &t that vertex, still may be true,
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The Figure S.ha is not a counterexample of the statement for there does
exist a coloration of the figure such that no more than three colors

meet at the vertex In question. If there did not exist such a coloration
for Figure 5.h4a, then it would be impossible to color Figure 5.4b in
four colors and salthe four color conjecture would be proven false.

Let us now consider the five-color theorem due tc Heawood.

- Lemma: A region of less than six edges and its surrounding regions form

& reducible configuration in five colors.

If the region, call it r, has less than five edges, the map pro-
duced by patching it has a vertex on\the<patch of multiplicity less than
five. Coloring the reduced map dictates a coloration of the original
map since at most four colors are adjacent to r, thus allowing a fifth
color for it prbducing a pfoper coloration of the map.

If the region r has five edges, the map produced by patching r has
a vertex p of multiplipity five on the patch. Supposea colorétion of
this map. If the five regions around r are not distinctgithen a color
for r is avallable and the lemma follows. Furthermore, if all five
colors do not appear at p, a color for r is available and the lemms
follows., L&bel.the regions combiguous to r as a,b,e,dse in a clockwise
fashion, and sﬁppoée their colors are red, blue, green, yellow, and
orange respectively. |

If & and c belong to different red-green sections, we can inter-
change the colors in the red-green section containing a to yield a
broper coloration with only four colors adjacent to r, thus showing the

conf'liguration reducible.
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green

—

red & d yellow

e orange

Figure 5;5

- If a and c beléﬁg to the same red-green ch&ingiﬁhe chain cuts off
the blue-ogangevsection containing b from the blue-orange section con-
talning e. Hence we can interchange the colors in the blue-orange
section'ﬁbﬁﬁaining e, making e blue and leaving a,b,c, and d unchanged,
to yileld a proper coloration of the mep outside r. This transposition
yields only four colors contiguous to r, making r aﬁd its neighbors a

reducible configuration. 1In any case, the lemme is true.

Theorem 5.2. Every map on the plane or sphere can be colored in five

colors.

Suppose there exists & map not c@lorable,ip fTive colors, . Then
there is one with & minimum number of regions; call it M. M must be
irreducible in five colors. But M céntains a region of less than six
edges.. So M. is reducible, this cohtradicts our sssumption. Thus our
assumption 1is false and the theorem is true.

We see that the problem of proving the four-color conjecture is
equivalent to showing that every map on the plane or sphere is reducible
in four colors. That is, there exists no minimum irreducible map for

four celors.



CHAPTER VI

REDUCTIONS

In this chapter as in the last we shall confine ourselves t0 maps
on the plane or sphere. If a map am-a plane or sphere exists that is
not colorable in four colors then there is one with as few regions as
any other. Such a map must be free of any conflgurations reducible in
four colors. We shall call such a mep & minimum irreducible map.

De Bruljn [26] showed that the number éf regions in a minimum irreduci-
ble map would be finite. Reductions are usually considered with the
hope of limiting the classes of meps that could contain a minimum
irreducible map to the point of conecluding that such a map could not

exist.

Theorem 6.1, If more than three edges meet at any vertex of a map, the
coloring of the map may be reduced to the coloring of a map of fewer

regions.

From the Jordan Curve-theorem, not every pair of reglons meeting at
such a vertex havé an edge in common, as is the case when three edges
meet at a vertex. Thus we may Jjoin two of these regions without a com-
mon edge by opening the vertex so as to fqém a map of one less region.
When this map is colored, the original map is obtalned, properly colored,

by merely restoring the vertex to its original form.

Theorem 6.2. If any region of a map 1s multiply-connected, the coloring

58
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wf the map may be reduced to the coloring of maps of fewer regions.

For, we may color the partial maps which arise when all but one of
the bérts'into”which such a multlply-connected region separéteslthe sur-
‘face are efased, and afterward give the éame color to this region in all
the partial maps by & permutation of the colors. By éssigning the
‘ colors of the regions of the partjal maps to their corresponding regions
of the original mep, we obtain a coloring of the original map.

It is now evident that if the four-color conjecture holds for
regular maps then it holds for all maps on § sphere and we shall hence-
forth consider only fegular maps .

The following new terms will prove useful. A major polygon in &
map 1s one with more than six boundary edges where&s a minor polygon
refers to a pentagon or a hexagon. A triad of regions is a set of three
mutually contiguous regilons, all appearing at-thé same vertex. A cap on
é ring is a region in triad:with two regions of the ring (See discussion
following Theorem 6.4). We shall usually refer to a cap as being next
' ﬁo two particular regions of a ring by the following notation: 5(5)765
means a ring of a pentagon, s heptagon, a hexagon and ancther pentagon
with & pentagon In triad with the first‘pentagon and the heptagon.

The following is a list of all the known significant reductions,
giving credit to thelr discoverers, along wlth several results concern-
ing irreducible maps.

W Those marked * are generalized by a later result. Those marked *%
involve a combination or generalization of several different previous:
fesults.

l. (Kempe) More than three regions at & vertex fprm a reducible

éonfigurationo
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2.  (Kempe) A multiply connected region forms reducible configure-
tion. o

3, - (Kempe by Birkhoff) A region of less than five sides forms a
reducible configuration.

4. (Birkhoff) If two or three regions form a multiply connected
region the map is reducible.

5. (Birkhoff) Four or five regions surrounding more than one
;egion form a reducible configuration.

6. (Birkhoff) An edge having only pentagons at each vertex forms &
reducible configuré,tion°

T*, (Bigkhoff) A region completely surrounded by pentagons is a
vreducible configuration.

8. (Birkhoff) An even edged region completely surrounded by
iex&gons is reducible.

9. (Kempe by Franklin) ZEvery map containing no triangles or
'éuadrilaterals and having three regions abutting on each vertex contains
at least 12 pentagons. |

10. (Franklin) A minimum irreducible map must contain a pentagon
adjacent to two other minor polygons {a polygon of 5 or 6 sides).

11. (Franklin) An edge of a hexagon surrounded by this hexagon
and three pentagons is a reducible configuration.
~ 12#%, (Franklin) A pentagon in contact with three pentagons and a
hexagon is a'Qeducible configuration.

13. (Franklin) A pentagon surrounded by two pentagons and three
hexagons is a reducible configuration.

1k, (Franklin) An even-edged region completely surrounded by

hexagons and pairs of pentagons, the twoc of each palr being adjacent 1s
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a reducible configuration.
15. (Franklin) A hexagon surrounded by four pentagons and two
hexagons is a reduclble configuration.
16%. (Franklin) A region of 2n edges surrounded by 2n - 2 penta-
gons and the two remaining regions adjacent is a reducible configuration.
17*. (Franklin) A region of 2n - 1 edges surrounded by 2n - 2
pentagons énd any other region is a reducible configuration.

18*7 (Franklin)  Every map of 25 or fewer regions can be colored
in four colors.

19%, (Errera) Any mép containing no major polygons is reducible.

20. (Winn) A heptagqn flanked by four consecutive pentagons is a"
reducible configuration.

21, (Winn) An even polygon bounded by two even sequences of
pentagons, a hexagon and another polygon is a reducible configuration.
| po#%, (Winn) Any configuration bounded by & ring of an even
number of pentagons together with a) two other adjacent polygons or
£> one other polygon is reducible.

2%, (Ratib) . A hexagon surrounded by a ring n55665 is a reducible
éon‘figuf&tionn |
’. 2h, (Errera) An irreducible map contains at least 6 major
polygons. |

25, (Winn) A hexagon surrounded by the ring mn5565 is reducible.

26, (Winn) A heptagon touching 4 pentagons and 3 hexagons in any
order is reducible.

27. (Winn) An even polygon enclosed by the ring in 1% in which
éne hexagon is repiaced by a pentagon, e.g. 55665666, is a reducible

configuration.,
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28. (Winn) A pentagon flanked by % minor polygons of which the
first and last minor polygons of the sequence are pentagons 1s a
reducible configuration.

29. (Winn) A hexagon in contact with 5 minor polygons of which
the first and last are pentagons is-a reducible configuration.

30. (Winn) A hexagon touching two separate pairs of pentagons
when each pair is in triad with another pentagon is a reducible
éonfiguration.

| 3l. (Wwinn) In an irreducible map a minor polygon must touch a
major polygon (a polygon of more than 6 sides).

T 32 o (Winn) In an irreducible map a major polygon must touch
either anbther major polygon or else 3 or more hexagons.

3%, (Winn) A heptagon in contact with the chain 55655 is a
reducible configuration. (The heptagon is contiguous to each region of
the chain.)

34, (Winn) A psir of pentagons in triad with a heptagon and
touching no other major polyson is reducible.

35, (Winn) A pair of hexagons in contact with 55655 or 556655 is
reducible. {One of the palr is contiguous to each region of the chain.)

36. (Franklin) An odd-edged region surrounded by hexagons and one
éQternal pentagon 6(5)66 . + . 66, is & reducible configuration. The
(5) denotes a pentagonal cap on the ring.

37. (Franklin) Two adjescent penbtagons, each touching the same
heptagon which together with five hexagonsnsurrounds~ﬁhe'pentagcns5 is
;ﬂreducible configuration.

38, (Franklin) An odd-edged region surrounded by 5(5)66 . . . 6

is reducible.
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39. (Franklin) A polygon surrounded by 5(5)76 . . . 6 is
'reduciblé.

40.  (Franklin) In 39 one or more pairs of consecutive hexagons
may be replaced by paifs of pentagons.

41, (Franklin) Every irreducible map must contain at least 32
regions.

42, (Franklin) Any map containing at most one major polygon is
coiorable in four colors.

L3%%, (Winn) Every irreducible mep must contain at least 36
regions.

b, (Sg M. De Backer) A pentagon touching two other non-
cansecutive minor polygons is a reducible conflguration.

The most recent results found in this area are Winn's 4% in 1941
éﬁd Dé Backer's 44 in 1946, De Backer's results supercedes reductions
6, 7 and 11 through 40 exeept 18, 19, 24, 31, 32 and 36. Although his
résult is guite powerful, it came considerably later and was not slgni-
Ticant in establishing the best result in connection with the number of
régions in an irreducible map.

To consider here the proofs of all the reductions of our list would
téﬁd to distrac%‘from rather than add to the main theme of this paper.
M@st of the proofs are guite long and inveolve considerable case making.
‘fhe proofs of the firsﬁ eleven are presented, not for the sake of rigor,
gﬁt rather with the intent of giving the resder exampies of the way in

whiich these proofs are made. L

Theorem 6.3, If a map contains any 1, 2, 3, or I edged regions, the
coloring of the mep may be reduced to the coloring of a map of fewer

regions.
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If a 1- or 2-edged region be present, the ﬁap would be reducible
by Theorem 6.1 or 6.2. If a 3medééd region be present, we may shrink
this region to a point, color the resulting map, then introduce the
region again in a color different from the colors of the regions to
which it is adjacent. If a L-edged region be present, at least one of
the pairs of regions which abut on opposite edges are separated by other
fegions, i.e., have no common edge. Let the two opposite regions of
this kind coalesce with the 4 .edged region. If the resulting map in
t;b fewer reglons 1s colored, the original map may be colored by insert-

'Tng the b.edged region in a color different from that of the two or

three coleors of the regions adjacent to it.

Theorem 6.4. If two or three regions of & map form a multiply-connected
" reglon, the coloring of the map may be reduced to. the coloring of meps

of fewer regions.

In fact, tlhese-regions separate the surface into two or more parts
each with fewer regions (counting the two or three regions in common).
If we color the partial ﬁaps which arise when all but one of these parts
are erased, and by a permutation of the cclors then make the colors of
the two or three‘regions the same on each of the partial maps, the ori-
ginal map may be colored by a nabtural correspondence to the partial meps

Cur quest for an irreducible map bhas now narrowed te the considera-
tion of regular maps in which no two or three regions form a multiply-
connected region, and every region has at least five edges. Any map now
under considerétion is & pblyhedral Map .«

Consider now in a regular map a cyclical arrangement of n region%

Tys Ty o o o5 r. such that each of these reglons has a boundary in
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common with the one preceeding and the one following it in the cyclical
order, but with no other region of the set. We shall call such a set of
reglions a ring of regions.

" A ring R of regiogs of this kind divides the maps Into two zets of
regions Mi and Mé which together with R make up all the regions of the
map M.

The partial map Mi + R conszsists of the regions in‘Mi and the

reglons in R. ‘Mi + R and M, + R are bordered by the ring R of n

2
regions. If it is possible to color M. + R and Mé + R 8o that the

1
arrangement of colors on R is the same in both cases, it is.clearly
possible through a natural correspoﬂdence to assign the colors to the
map M = Mi + M2 + R. If the arrangement of colors cn R is the same
except for a permutation of the colors, then the scheme of colors on R
s the same and through a permutation of zolors it is asgalin possible to
color M.

Two colorations of Mi + R.are sald to have the same scheme On_R if
the regions of R have the same colors or if the colors of the regions of
R can be made the same by permubting the colors of one of the colorations.

Now consider any pair of regions on the ring R in the partial map
Ml + R. Suppose one is colored a and the other colored either s or bh.
If these two regions belong to the same a-b "Kempe Chain” in M+ R,
this fact may be indicated by Joining the two regions by a é;b line,
marked a-b, lying within the chain., Note that being on. the same a-b
line is a symmetric and transitive relation (§n egulivalence relation for
this pair of c@lors)j and that either of two regions of R on the same

a-b line determine the same equivalence class of reglons.

From & given coloring on Mi + R we can derive & second coloring by
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transposing 8 pair of colors on the entire paftial>map or on one or
more chains in those two colors. In the first case the scheme on R is
unchanged. In the second ease the scheme on R may be changed,

Suppose that in M we replace Mé + R by a set of regiqns Mé of not
more than a ceftain number k of regions but with the same peripheral
po;ndary edge as R has with M1, such that‘Mi + Mé is regulgro 'Twé
edges of this bouﬁdary will @e adjacent boundaries of the same region
on ﬁhe’periphery of Mé’if‘and only if they are a@gaceﬁt edges on the
same region of R. As a result of this construcﬁion, a célofaﬁign_for
Mé Qill didtaté a coloration for R. In this manner we férm a map
Mi + '5 whichvhagafewer regions than M if k 1s smdLler than the number
of regiqns in M2 + R. We agsume“Mi + Mé to be colorable. Fbr a parti-
cular’ choice of M} we get a finite number of choices of colors on R
which are consistent with colorations for Ml,fan@ hence a set of schemes
for Mi +‘R;

Likewise, under simllar assumptions, by forming é pertial map M{
and then Mé + Mi we get a set of schemes for»M2 + R,

If it can be shown that for sultably smell k there is a scheme In®
common to both sets, the'coﬁfiguration‘ig reducible. The coloring of
.Mi + R“and{Mé + R% such that the ring R has the same coloré in each
éé;Oring, dictateé a coloring of M in é natural way. Since both
Mi + Mg.and M, + Mi each have fewer reglons than M we are Justified in
the word reducible.

We mighﬁ ha#é'a Similar situation ih which we can show that a cefa
tain ring R of n regions is such that any ﬁossible set of schemes
deduced for Mé Mwy where Mi has fewer regions than Mi + R, always

contains at least one coloring for R suitable for Mi + R In such a
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case the ring R will be called reducible with respect to Mi,

 Since the partlal map Mi‘+ R is regular, only three colors appear
at a vertex and ﬁwo regions are either adjacent or are separated by a
‘region or regions. Thus two regions x and y of R in cne or both of any
pair of colors are either joined by a line in these cclors or else
geparated by & chain of reglons in the complémentary pair of colors.
That is, a pair of regions u and v of R, such thaﬁ X,u,¥,V occur in
the cyclical order on R, are joined by & line in their colors or are

separated by a line in the complementary pasir of colors.

Theorem 6.5. If a map contains a ring of four or five regions about

more than one region, it is reducible.

A ring of four regions about a single region is a reducible

configuration since that regiom would be & quadrilateral.

59 Ahy sbout more

than one region in a map not subject to any of the previously proved

Let us consider a ring of four regions Al’ A25 A

reductions. Let R be the ring of regions.Ajs Apy A%9 and 4 . Consider

the maps'Ml + M% and MP + Mi where Mé and. Mi are formed from M, + R and

)

My

A, and A,. The possibilities for the colors are essentiaslly elther

1 3

a;,b,a,b or a,b,a,c for Al’ Agﬁ .1-\..;iy

appears for both, we have a coloring. Otherwise we have a;b;a,b for

+ R by shrinking M? and Mi,.respectivelyg +0 & point and by joiningi
Ak respectively. If elther scheme

M1 + R, and a,b,a,c for Mb + R, say. Now form a second cholce for Mi

by shrinking Mi 1O & point and joining A.2 to Ahj giving a,bya,b or

a,b,c;b for Mé + R

The only case necessary for us to consider ié‘thé second of these

two since the first is listed for M1 + R. Thus we have the scheme
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a,b,a,b for M, + R, and the sghemesja,b,a,c aﬁd a,b,c,b for M, + R.
Infﬁherschéme,a,b,a,b for‘Mi + R‘either a chainfof-regions in
coloré;a,d conéects the regions ai, a3 in which case we obtain a;b,a,c

by'intérChangiﬁg'c and b ‘in the Kempe Chain.containing @, s or else &
chain of célofs b,c connects the reglons colored b, and we get a,b,d,b
by interchanging a and'd in the Kempe Chain containing a3° In eiﬁher
c?se we get a schemé found in the set of schemes for M2.+ R. Hence,
éhe ring of four regions is reducible.v

The proof for a ring of five regioﬁs uses partial maps MU and M'
_‘consisting of R with a pentagon replacing M& and M respectively. The
scheme c a,b a,b is then shown to be in both sets (that iz, the odd-
colored region.c at the same place on the ring). The oddmcolored
regions are first shown to be adaac;nty by showtng that othierwise the
scheme,gibycydwb is in botn sets. USing transpositions owm colorations
obta;ned from different partial maps'Mg and MgW which are formed by
shrinking Miland ME resﬁect&vei& to a point aﬁd Jjolning the two
bfcolored reéions of R; the scheme in one set is rotated two regions

cn R. By three repititions, four such rotations are ancompli hed
DRt

bringing the odd-colored regions to the same place.
Theorem 6.6. An edge surrounded by four pentagéns is reducible.

We may assume M is not;subject‘to‘any‘previously proved. reductions.
8.5 By, By‘Bh be the pgﬂtagonalfregionsg surrounded by the ring of
regions a, o 37 @LD an, e as indicated in Figure 6.1. The eycli -

cal order of R is assured by trivalence, and reductlion 6.5 assures no

two. noncongecutive regions of R are adjacent.
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Figure 6.1.

Let Bl,

this choice of Mi we obtéin a coloring b,*,a,%,a,% of R in a scheme for-

. . . yo ? i
Bg, BB, Eh,,a5j a5 of M1 + R coalesce to form ﬁlo With

Mé + R. The only eggentially different céses ares
bycsasbya,c _ byeya,ca,c b,c,a,d,a8,cC
b,c,a,b,8,d bse,a,c,8,d by,c,a,d,a,d4
Direct trial shows it is possibkble to color Mi + R starting with any one
of thése except b,cya,c,a,¢ which must be considered.
A c-d line in Mé + R muast connect all of the regions colored ¢ in
b,c,8,c,8,0C for if not we could transpose ¢ and d in-sdme Kempe’Chaih
. and get a scheme previously acceptable. Hence any interchange of the
colors a,b in R is permiszsible; one of thésé'gives b,e;bs;c,a,c which
is a suitabigrarrangemehﬁ for Mi + R

Thus, in every case, we are led to a scheme for M_, + R having a
[ :

coloring on R suitable for Mi + R, and the theorem is true.

Theorem 6.7, A region completely surrounded by pentagons is a:reducible

configuration.
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Lét M be a map not subject 10 any of the previously prbved
reductions° Let Ml consist of thb given region V and tne ring of
pentagons around it. Asg before the sebt of regions R surrounding Mi is

a ring by trivalence and Theorem 6.4. Let & 5s + + ey @ Dbe then

l?
regions of R in cyeciical orderj and let Bl o o oy Bn be the

pentagonal regions of Mi that abut on (ai,aé)(ag,az), o s oy (Qhﬂ ai)
5 az, o o ey o 4

if n is even, and alternate

respectively. To form Miﬁ let alternate regions o

coalesce with a single region replacing Mi

reglons oy 35 soos & if n 15 odd. We thus obtain in a scheme for
.ME + R a coloring a;*ya,*y00°gayb or a9*5a5o;°§aybyco
In the first case if the *-colors are all one color b we can color

B.y cooy Eh in ¢ and 4 and then V in a. If this is not so, by taking

lﬁ
account of the circular symmetry we can assume that we have a,c,a,%,

o o oy8,b, 1e&8., We may assume @é and Qh are not the same color. Now

a in b, B in d, B, in & color different

colbr B, which sbuts on & 3

1 1’

from that of ajg Qh'and g0 on, unbtlil we reach Bn’ which may be
colored in a different color than that of Q55 Bn-l and.aio But @ and
Bl are both colored b, so that this ls acceptable. Having colored 319

o o oy Bn in the three colors different from a, we may color V iﬁ o
In the second case we can employ a similar process as follows:

First color Bn in b. If then @é is alsoc colored in b, we can without

‘usingAgolor & color Bnmlg o & ey Bl and use a for V as in the first

case. Obtherwise ab is in ¢ or 4, and Bl may be colored in & or ¢, and

B, in b. Here again, if & iIs colored in b, we may color Bn 17 0 ° e

B, as in the first case. Otherwise*@h is in ¢ or &, 80 BQ5 mey be
] i

colored in d or o, and Bb in b. Repeat until b i1s encountered as a

color for aiy where 1 is even; this occurs with & 1 if not before,

Liesk
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In this way we color Bl’ o o ey B dnb,c;d and V in a. Thus we have

"appropriate schemes.,

Theorem 6.8. An even-edged region completely‘surrounded by hexagons is

reducible.

Let Mi consist of the set of 2n hexagons about the single region

V. As before we are assured that the regions surrounding M. form a

1
‘r;ngé Let Rrbe that ring of 4n regions. Let Opy Opy Uy @ v oy %,
be the reglons of R, and B, Bys o » «» B, “the hexagons, so that

@, o o b, O abut on B, (Blng'XBg, (BysBg)s o wBys (B,0B)),
respectively. To form Mi ;gifaé, Gh, o o ey ahn éoalescg with a single
region replacing Mi and obtain'a scheme *,a,%a,% ...,a, for R + M.
The regions Bi each touéh.two éégions qzi and Qné *¥-region. If the
*aregions are all in_one color b, we7may color-the regions 31 in ¢ and
d, alternately, and the n-sided region'in g or b, If thisiis.not the
case, we may assume that we have c,a,...,0,8 for aipaé,.;.,dhn and
proceed to colqp Bl(in b), Ba,,.oﬁBgn, snccegsively, and ﬁhén'vbjust as
we did in the preceding reduction.

The simplest appliéation»is t0 a hexagon surrounded by six_

hexagons,

Theorem 6.9, Every regular m&p of more than two regions contalning no
triangles, quadrilatersls, or two-edged regions contains at least

~ twelve pentagons.

According to Buler'’s formula V - E + F = 2, but since exactly
thréé,negions are at a vertex with no tw0=edged,regions, triangles, or

guadrilaterals, 2F = 3V = y n Ah where An is the number of regions in

n>5

o
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the map with n edges. ' From this we get 2E = 6 (F-2)=%n An. But

since F=3X A , we have 6 (T A -2) = ¥ n A_wvhich may be written:
, = “n n s B

A5 =12 + n};{ (n - 6) A_ and since & (n - 6) & >0, Ay mist be at

least 12.

Corollary. Every irreduciblé map contains at least 12 more pentagons

than major'polygons.

The nexﬁ theorem does not identify & reducible configuration.
However, it does tell us something of the nature of the minimum
: ifreducible map. The credit for 1t goes to P. Wernichke and Philip

Franklin.

Theorem 6.10. A minimum irreducible map must contain a pentagon

adjacent to two other minor polygons.

- Buppose this were not so. Let us count fhe number of vertices in
the mép which beldngyto.hexagons andvpenta,gons° We find. that the num-
. ‘ber éf Qeftiges eontributed.by_hexagons novhere in contact with
pentagonsLWill Eeigreater than twice the number .of such hexégons since
each héxagon hasAsix vertices and no vertex belongs to more than three
hexagons. - In a cluster of hexasgons, the*twp vertices ccntributed'by an
exterior hexagon may be chosen so that only One 1s not‘in common with
énothér hexagon° Pentagons lsolated from hexagons'or other pentagons.
will‘givé’five‘vértices each. Two péﬁﬁégons'adaacent to easch other but
40 no other pentagons of hexggonsfgive elght verticeg tqgether; and
hence average four each. A pentagon adjascent to & hexagon gives at
le&st four #ertices while ailowing the hexagon to gccount for twéo

A pentagon adjscent. to s éluster of hexagons can-be adjacent to only
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ohe of the cluster; thus-it contributes four vertices and allows the

hexagon to contribute two,'oné of which it may have in common with the

pentagon. Thus the number of vertices would be at lea‘st'hA5 + 2A6,

where Ai is the number of regions with 1 edges, and we would have to
have: V E-hAS + 2A6° From the'preéeding proof and. the obvious
inequality ¥ (7 - n) A <Oweget X A +12< A5 80 % An+ 12 <
7 RT n>7 > 5
.+.A . From Euler's formula, for a regular_map, L A =F= ¥ + 2
5. 76 : 3 o5 P 2

we hévevg‘¥ 1h:< 2A5 5 * 2A¢ which contradicts that

hA5 +28 <V, and proves the theorem.

2A

+ A6’ or V + 28 < LA

- Theorem 6.11. An edge»df a hexagon sﬁfrounded by this hexagon and

three pentagons is a,reducible configuration.

As before; the surrounding regions form & ring of séven:regions.

If we erase the lines that are dotted in Figure 6.2, we would obtain a
ﬁew map ﬁhich would contain fewer regions than an irreducible map and
hence be colorable.

~ From the way we selected the lines which were erased, regions 1 and
4 would have the same color, say a; while regions 5 and 7 would have a
different common color? say b, Of the five essentially dlstinet color-
ations of M (allowing for symmetry of thé configuration), the three
cases shown in (a), (b), and {c) permit immediate coloration, as
indicated. In the case shown in (4}, if 5 is joined %o T by a b-d
chain in M, + R, 6 may be changed to ¢ reducing the problem to case (a),
while if 5 is joined to 3 by & b-d chain, 4 may be changed toc ¢, and the
map colored as shown in (e). If neither of these chains exists, 5 may

be changed to d, and the map colored as shown in (f). Finally in the
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case given in (g); either a bed chain Joins 7 with 5, and we reduce to
(e) by changing 6 to a; or é chain joins 7 with 3, and we color as in
(n) after interchanging a and ¢ in the a=c chain including 1 and 2; or
7 may be changed to d and we color as in (i).

Theorem 6,12 follows from 6.6 and 6.11.

Theorem 6.13 through 6.40 (except 18) use essentially the approach-
es which bhave been illustrated., Our next comsideration will be a
theorem on the minimum number of regions in an irreducible map.

Putting together reductions 6, 11, 16, 17, and 20 of our list we
have§

A) A polygon of 5, 6, T, or n> 7 edges is reducible when in con=
tact with 3, 3, 4, or n-1 adjacent pentagons.

For our next theorem we will have need of some new n@tati@n;

A shall dencte a region of any map, M,

An shall denote a region of n edges.

a5 shall denote the number of pentagons, A5, in M.

I

polygons An where n 2 6, Making use of this notation we have the

shall denote the number of contacts of the pentagens of M with

fellowing relation:

10 a5 2 356 + 2 n§7 an 2 has.
The left inequality is obvious. The right follows since the conbribue
tion of an A5 to the center member when it touches one or no ether
pentagons is neot less than four; when it touches exactly twe other
pentagons, it touches three other pelygons at least one of which is
major, thereky contributing at least four; when it touches three penta-
gons, by 28, the cther contacts cannot be minor polygons, so that it

contribvutes four.
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As(t) shall denote an A_ contributing 4 + t to the center

>
expression of the relation Jjust discussed., Let as(t) be the number of
such pentagons and we have:
. 6 6
Zzz ; ;) = Py 3
J56 +2 27 an tmo(h + t)as(t) has B tas(t)
Further, for n> 5 let A (r) be an A rouchlng r pentagons and a (r)

their number, It follows from A) that an = E ra, (r) Cowbining
4 ne-2

i 2 .°'Z o -~

these two relations we have: ra6(r) + 2 n§7 ré ra_(r)

6
has + t~ ta (t) and noting that a 2 Z a (r) we get

6 ne? ‘
2n§6 3n=17)a. * a6(3) + Ra (la-) 2 has tmltas(t) + 2n§7 rgl(jn-r-l"()an(r).

Consequently if we show

6
B) ag(3) + 2ag(h) s I tas(t) v 2 T “z (30-r-17)a_(r)

it will follow that n§6(5n=l7)an = 25.5. This can be reduced to

2 - B =f' 18 1 3 ¢ =
ag + n§6 & 5&5 % n§7 (n o)an and using Euler's relation we get

385 = 3n27(n=6)a, .._5n§5 naé)a = 3(6 % a =L na)= 3(6F - 2E), But
for regular maps 3V = 3E and 6F = 2E = 6F =~ 6E + 6V = 12, Hence

ag + n§6 a 2 36, Then establishing B) proves Theorem 43,
Theorem 6.43, Every irreducible mep must have at least 36 regions.

The remainder of this chapter will be devoted to the tedious chore
of establishing B), above. It is here one can note the tremendous
effort that has g@né into obteining these results.

Before doing this we shall alter the statement by removing the
only negative term, given by n = 7, r = 5, from the double sum on the

right and tramspesing it to the left member so as to give the following



statement, where n # 7 when r = 5:

6 n-2
a6(5) + 2a6(h) + 2a7(5) Stél tas(t) + 2n§7 ;El(jnar=17) an(r)a

To establish B), we shall set against A6(3)’ A6(h) respectively
one or two polygons As(t), An(r) adjacent to them as compensating ele-
ments which.contribute to the right-hand side; and against A7(5) one or
two elements As(t)° It will then be necessary to verify that ?he
number of sources of a given element, after considering twicefehe
source AT(S) yielding a single element, is at most egual to the corres-
ponding coefficient on the right of B).

A hexagon in contact with the chain 5565 or 55665 is reducible by
25 and 29, From 29 we ccenclude that a hexagon of M that makes non=
adjacent contacts with 3 pentagons must touch at least two major
polygons. ‘Ehus Aé(j)‘és tounded by either 5n5N5Ny 55N5Nn, or SN5nN5,
where now and hereafter N2 7 and n 2 6, In the former two cases we
take as our element a the last pentagon adjacent to A6(§), which is
bounded by 6NxxN. .

In the last case let bede be the last four polygons'about A6(§)y
and let f be the outside polygen touching de. THen, if ¢ is a major
polygon, we choose the element b(ENxxl),. (i.e., b bounded by 6NxxN).

If ¢ = 6 and £ = 5, we choose e, which, on account of A) or 11, iéﬁ
bounded by 65N5N. If ¢ = 6 and f is a major polygon, we choose
e(65xNN)o‘ Finally, if e¢ = £ = 6, our element is d(66...65); if d is an
AT(r'), we infer by 26 that r € 3, so that neithezi AT-@L) nor A7(5) is
chosen as an element. ;

The contacts of;Aé(#) are 55N55N in view of A} and 25. Moreover,

we conclude from 30 that one of these palrs of pentagons g,g' are not
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in triad with a third pentagon nor, by A), with another hexagon when
g,8" are in chain with a third pentagon. We here select two elements,
namely g,g° both (65NxN) or both {656nN).

On account of A) and 33 the ring around AY(S) is 555N55N, If the
fourth (or last) polygon is alsc an AT(S), wé take the two pentagons
h, h' touching both AT(S)“So These are both A5(2)'sy their contacts
being T5N57 by A). But, if there is no adjacent A7(5)9 we consider the
center pentagon of the first threej by virtue of 28 it touches an out-
side major polygén; thus another of the first three, call it i, is also
adjacent to this major polygon. We have then a single element bounded
by 75NxN', where N' is not an AT(s).,

In each of the above rings about an element we have placed first
its source. A polygon with such contacts might occur as an element as
often as one of its adjacent polygons fits into the first place of %he
ring (allowing for a reversal). We have thus tc examine the possible
occurrénces of AS(t)_v where ilﬁ t < 5, and of An(r)g %here 1S r€n-=2
or 3, according as n 1s greater than or egual to T.

The incidence of AS(J.) is at a, b(6NS5N); e, g, g' (6SNSN);
e(6550M); &, &' (6566N). |

" There is no repetition here éinae the two adjacent hexagons
touching g or g' cannot come firét in any of the four rings.

The incidence of AB(Q) is at a, b{ANS6N); e, g, g' (656NN); g, &'
(65M6N); h, h' (75N57); 1(T5N5N*). |

We observe that this element cccurs at most twice in the first
three rings, which contain only two hexagons. :These rings are also
distinet from the last two. Now, by suppositiony the last polygon in

the fourth ring is an AL(5), whereas the last in the fifth is not.
‘ Brials
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Hence an element AS(E) can only appear twice in the fourth ring and
once in the last, but not in both. Th@syields altogether a maximum of
2 occurrences, counting that at i twice because only one element i was
selected to account for a coefficient 2 on the left side of B)o

The incidence of As(;) is at a, b(6NSNN) or (6NGON): e, g,

g’ (65NuN); 1(75N6N').

This element occurs only once in the last ring since the third
polygon being next to a hexagon is not an AT(5) with this as its
element. It can then fall but once elsewhere, namely in the first ring.
Thus the maximum amounts to 3 (twice for i), since none of the first
three rings contain more than 3 hexagons.

The incidence of A5(lz-) is &t &, b(6NN6EN); i(75NNN').

The N betwéen N and N' not being an AT(S) with this as its ele~
ment, we infer that this element can only fall twice in the last ring,
and not then in the first. Hence, as the first ring contains but twb
hexagons, the maximum here is four.

Lastly, an“AS(S) is only to be found once, at a, b(SNNNN), while
A5(6) does not occur at all., So altogether the number of pentagons
compensating A6(5)’ A6(H) and AT(S) is not in excess of the first sum
on the right of B).

The nuwber of occurrences of An(r) at d(66...65), as an element
for an A6(5)5 cannot exceed the number of hexagons ﬁouching d, which is
at most n - r. But the coefficient of an(r) in B%yis 2(3n = r = 17),
which igzat least n -~ r unless n= 7, r = 2 or 3, Moreover, in the
last two cases the largest number of hexagons coming third in the
sequence 6566 (or second in 6656) is found by inspection to be 4 or 2

respectively, i.e., not more than the coefficient of a7(r). This



concludes the demonstration of B) and of Theorem 6.43.

80



CHAPTER VII
COLORING GRAPHS

It is the modern trend to consider the nodes of a graph rather
than the regionsgof a map. Since we can limit the typgs qf maps under
_ consideration to those that are feg&}ém, have no two-region rings, and
d ﬁavé no region of less than -five edgesp we are assured that”%hese maps .
;have unique dﬁalso Asg a.matter”of fact all polyhedral maps have unique
" duals (see Chapter.Fbur)° Since there is a one-to-one correspondence
vbetween the regions of s m&ﬁ and the nodes of its dual and since the
nodes corresponding to contiguous regions areljoinedey,an edge, we have.
the equivalent problem‘of coloring the nodes of a graph in a surface
sﬁchvﬁhat no two nodes joined by an edge are the same color. Of course
the graphs considered wlll have no node Joined to itself by an edge;
two nodes are joined by at most one edge (since s map containing’a‘n
ring of two regions is not under consideration); two edges»meet.in a
node or not at all.

' The term colored graph (coloring of graphs) is somevhat amblguous
. since it is also used to describe the situation in which tﬁé l-cells eof
a firét degree factor of a third degrge graph are colored one color
(usuallyfred) ana'those of the second degree factor blue. N;te.thére
are_two blue édges and one red é&gé-at each vefiexa‘ ngevefy the

’éﬁﬁiguity is_remoVed by the context. In this chapter we shall consider

* both types of coloring, but our first almost trivial theorem deals with
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simple graphs.

A simple graph is a connected regular graph of third degree with-

—br-—-ﬁ— .

out leaves. . It is easy to see that & connected third degree graph is
simple when and only when every l<cell is on a closed circuit, a
circuit being a finite path in which the ;nitial node coincides with
the terminal node and all other nodes are distinct. The order of such
a greph 1s necessarily even as seen in Chapter Four. Note also that

in a third degres graph a loop with a vertex is a leaf.

Theorem T.l. Given a simple graph of order greater:thag>twoj we can
always obtain from 1t a simple graph of lower order by removing any

l=-cell and properly Jjoining the four incident l-cells in pairs.

Flgure 7.1.

One of two a;terations will give us the desired graph. The first
shown inkFigure quby 1s obtained by deleting x and jJoining 1 to 3 and
2 to 4, The second; shown in Figure T.lc, is obbained by deleting x
and joining 1 to 4 and 2 to 5°. Note it 1s not necessary to consider
the graph on a surface.

The results of the first alteration will be a simple graph unless
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a bridge results or the graph becomes disconnected. If either of these
be the case, there must be in the originsl graph a path from 1 to 3 aﬁd
a path from 2 to 4, besides x; furthermore,.these two paths do not
intersect. For example, if there were no path from 1 to 3 besides x
then either 1 or % would be the stem of a leaf, or s bridge. If the
filrst alteration did ﬁot produce a simple graph, the second one will.
To prove this i1t is sufficient to show that the closed circuits thfough
l-cells, 1, 2, 3 and 4 have been (in the second alterastion) replaced
by new ones containing all théir 8rCS.

The circuits through 1 and 3 have been 1engthenéd (except for the
obvious .combination of arcs), the l-cell x hsving been replaced by the
path.we:proved to exist from 2 to 4. Note, this path is contained
entirely in that part of the graph containing 2 and & that is copnected
by at most one l-cell to the part containing 1 and 3. Circuits through
2 and.h are replaced in & similar manner. As for circuits through 1L
and 2, 1f the first alteration disconnected the éraph these mnst cone
tain 3 and 4% and hence the second alteration would restére:them a8
circuits. If the first alteration resulted 1n a bridge, however, a
circuit through 1 and 2 need not contain 3 and 4 if it contained the
bridgéb In this case, the second alteration produces two new circuits
through the.bridge which together will contain all the a:cs‘of the
original circult through 1 and 2. The same argument a@pliés in the
case of circuits through 3 and 4. The circuits through 1 and h and
through 2 and 3 have not been dlsturbed by the second alteration.

If there exists in a colored graph a closed path consisting of an
even number of l-cells colored alternately red‘and,blde’(a red-blue

path) we can interchange colors along this rath and obtain & new



coloration and hence a new factorization of the graph.

‘Theorem T.2. BEvery l-cell of a colorable simple graph is on a closed

red-blue path and hence can have its color changed.

For the simple graph of order two, Theorem 7.l (which we will use)
would not apply, but the conclusion is then obvious. Suppose the
theorem were false. Then, there would exist & colored simple graph of
lowest order containing a l-cell not on & closed red-blue path, If
this l-cell is red then none of the four blue l-cells adjacent to it-is
on a red-blue path. Consider such a blue l-cell, c¢all 1t x, not on any
clogsed red-blue path. Take a blue l-cell adjacent to x, call it y, and
delete the red l-cell iﬁcidﬁnt with the other end of y Jolning loose
ends as allowed by Thecrem 7.l to obtaln a new simple graph of lower
order. In the new graph which isg also colored, there must exist a
closed red-blue path through x, which capnct contain y. But such a
path exists in tﬁé‘original graph, becsuse its red-blue charscter is
not destroyed by réstoring the deletéd red l-cell. It is possible that
a closed red-blue path containing y might be disturbed by this restora-
tiQn,~but x and y, being adjacent blue lmcellsyiéannot be on the same

red-blue path. Thus, we obtain a contradiction andrthehtheorem follows.
Theorem 7°5°‘vaery simple graph is coiorable.

Here again, the theorem is obvious for a graph of order two. ‘If
the theorem were false there would exist & non-colorsble simple graph
of lowest order. Lower its order as allowed by Theorem 7.1l and color
it. ‘Three cases arise. Case I. If both new l-cells are colored blue;

restore the deleted licell colored red. Case II. If one is colored
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blue and the oth%r red, restore the deleted l-cell colored blue.

Case III. If both new l-cells are colored red, change the color of one
of them as allowed by Theorem 7.2. »If thls changes the color of the
other also, we have Case I; if not; Case II. In any case we have g
coloratyon of the original graph.

'Thé following proof of Heawood's formula is due to &. A. Dirac,
[24"]. ‘
| Suépose_G is a graph drawn on & surface of connectivity h which
divides the sufface into polygonal regions (simply connected régions of
3 or more sides). Let N denote the number of nodes, E-the nﬁmber of
edges and F the numﬁer of polygonal regions into which the surface is
divided, then Euler's Theérem states that N+ F - E= 3 - h.

If there are regions on the surface which are bounded by more than
three'edgesj it is possible to add new edges until a graph is obtained
Which divides the surface into polygons bounded by three edges. The
number of nodes of the new graph is s8till N. Let the number of edges
be E' and the number of triangular %aces F‘, then E' > E and F* > F.
Ndw every triangie is bounded by three edges and every edge seéarateg
tﬁo trisngles; hence 3F' = 2E', By Euler's Theorem, 3N + 3F! - 3Ef =
9 - %h; hence 3N - E' = 9 . 3h and 8o 2E'/N = 6(1 +(nh =3)/N). Since
E' > E for the original graph 2B/N < 6(1 +(hc=5}jN)o Let us call this
relation A) so we can easi;y refer to it.

A connected graph drawn on the surfaée whichk does not divide it
into polygbnal‘regions can be dﬁ&wn on a surface with Smailer commectl -
vity, or cén be made to divide the Surface into‘polygohél regions by
the addition of edges. Thus, A) holds for all connected graphs drawn

on & surface of connectivity h.
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Let k be the chromatic number of a graph drawn on & surface of
gonnec?;vity h. 1If this graph is infinite, De Bruijn showed that‘it
contains a finite k-chrométic subgrapho If this subgraph 1s not
critiCai, it has a nodema, whiéh is not critical, and the deletion of
this node yields a k-chromatic graph which if not critical has a non-
eritical node b. By successively deleting non-critical nodes in this
way, after a finite number of steps we obtain a critical k-chromatic
subgraph. Let this subgraph have N.nodes and E edges. Then clearly
N>k, The degree of each node is at least k - 1, so that EE/NVEZK - L.
S!incle A) holds, if h >3, k -1 < é(]ﬁ(h»jﬁ‘)/k)o It follows that: if
h 2 3, every graph dréwn on a surface of connectivity h can be colored
using at most»Nh colors, where Nn is the greatest integér'satisfying
N, -1 <6(h3ly ). Ifh=2 we have from A) that k -1 <6, that is
k < 6. The value of Nh explicitly is [ (7 + NEER T 53} where [ )
stands for the greatest integer in the enclosed real number. When
h % 2, this;eipressibn.giﬁes the correct value 6. Thus we have a proof

of the theorem by Heawood:

Theorem T.4. The chromatic number of a mep on a surface of connecti-

vity h <2 1s at most N, where N, = [} (7 + Vit - 2331,

If N denotes the number of nodes and E the number of edges of a
“eritical k-chromatic graph, the degree of every node is at least k - 1,
and 2B/N >k - 1. Brooks established {for k < k) ﬁha-t; a k-chromatic
graph, either contains a complete k-graph as a subgréph or contains a
node oft degree K. ;Hence, if N >k then it does not contain a complete
k-graph; so it contalns s node of degree >.k and EE/m >k - L. Let ﬁs

call this relation B}. Using the same notstion we shall establish our
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next result in the form of a lemma.

Lemme I If k >5 and N = k + 2 for a critical graph, then 2E/N >

k +1 - 12/k+2.

From a result established by Dirac, see [2&], it follows that a
critical k-chromatic graph of order k + 2 contains a complete (k - 1) -
graph ﬁs a subgraph. Let k-z’S and let the nodes of such & graph be
dénoted by 815 Bps o ; °y 8y y5 blg baj bzy vhere every pair of Y
e:o °5 8 v is Joinéd by an edge. B§¢ause the graph is eritical, bl’

b., and b, are each joined to at least k - 1 nodes. 'The number of

2’ 3 _
edges in the graph, consistent with this requirement, would be least

(1.e., the most economical distribution of edges is obtained) if each

of bly bey and b, ig Jjoined to the other two and to k - 3 of the nodes

3
alj Bos o o ey akﬂlo In this case the graph would contain

3(k - 1)(k - 2) + 3 (k - 3) + 3 edges; with any other distribution of
edges 1t contains more. Hence, for such a graph, 2E/N >k +1 =12/ (ke 2),

But with the distribution described above, unlesé bl, bay and b. are all

)
Joined to the same k - 3 nodes from among Bys 8oy o o o akalﬂlthe
graph can be colored with k - l-colors. :If‘bly bgy and b, are all
Joined to the same k - 3 nodes- from among_al, aay_o o o5 By o then

these nodes together with b, b, and b, form a set of k nodes of which

1’ T2’ 3

each pair is Joined by an edge, so that the graph contains a complete
k-graph as a subgraph and is not critical. This most economical dis-
tribution is therefore not permissible; and so, for a critical k-

chromatic graph of order k + 2, 2B/N >k + 1 - 12/k+2,

Lemma IT. If O <n <Xk -1, a k-chromatic graph either contains a

complete {(k - n)-graph as a subgrasph or it has at least X + n + 2.nodes.
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If we let n = 0, we get the specilal statement; a k-chromatic
graph which does not contain a completé k~graph as a subgresph contains

at least k + 2 nodes. For proof of Lemma II, see [23].

Lemma III. In the notation of B), if k >5 and N = k + 3 for a

eritical graph, then 2E/N >k + 2 -24/{k+B).

- The proof of‘this lemma ie similar to the proof of Lemma I.  These
proofs were presented by Dirac see [24k]. The following theorem is also

from the same article.

Theorem 7.5. For h = % and h 3'5, a graph of chromatic ngMber Nh on a
surface of connectivity h, when it exists, always coﬁtains~Nh mutually
adjacent nodes.

Existénce will be considered in the next'ahapter.

To prove Theqrem Ts5 1t 18 to be shown that for h = 3 and h 2-5
“the only critical Nh—chromatic graph'ghich cén'be drawn on & surface
of connectivity h is the compleie Nnagraph, To do this we shall prove
it for h = % and for h 2 5 first prbve fhat no critical Nhuchromatié
. graph of order Nh + 4 can be drawn on & surface of connectivity h.

Then it will be proved that no critical thchromatic graph of order,
N+ 2 or N’+_3 can be drawn on such a surface. Theorem 7.5 will then
follow from the special case of Lemms IT.

Case h = 3. 1In this case N, = 7 By B) for N>k vith k=T,
2E/N > 6 and by A) with b = 3, 2E/N < 6. This is a contradiction. So
N = k and we hawve completed the proof of Theorem 7.5 for the case h ”,5
‘and excluded N, ‘

h

Suppose & critical thchromatic graph of order > Nh + 4% is drawn

= T from further counsideration.

on a surface of'connéqtivity\h. If E denotes the number of edges and
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N the number of nodes then, by B), 2E/N >N, -1; and by A), since ‘
h>5, 2B/N< 6 (1+(hw5%vh+}p)))o Hence, N, -1 <6 (1+(h..3y(m +4) while N,

satisfies the inequalities: N -1 <6 ‘(lf}(h-ff})/l\fh), Nh > 6 (14a-3Y, +1)

From these we get the following two relations. Ni
2

- 5N. > 6h - 11; hence, Nh < 10, It remains to examine those cases

- Bmh < 6h + 9 and

where N < 10 and h > 5

h
By A) with h = 5 and N > N o+ k= 12, 2E/N < 6 (1+g/12) = T. Thisg is a

Case N =8. If N =8 then h =5, By B) with k = 8, 2E/N > 7.

contradiction.

Case N = 9. If N = 9 then h = 6 or h = 7. Consider first the
caseh = 7. By B) with k =9, 2B/N >8, By A) withh =7 and N >N _

+ b4 =13, 2B/N <6 (1 + hylj) = 7 11/13. This is a contradiction. In
& similar fashion the case h = 6 would lead to a contradiction.

Case N, = 10, If N = 10 then h = 8 or b = 9 or h = 10. Consider

first the case h = 10. By B) with k = 10, 2E/N > 9. By A) with h = 10
and N >N + h - 14, 2E/N < 6 (L + 714} = 9, This is a contradiction
and cases 8 and 9 alsc lead t0 & con’cradiqtion°

These contradictions prove ﬁbat for h > 35 no cfitical Nh_chromatic

graph of order > Nh + 4 can be drawn on & surface of comnectivity h.

It remains to be seen whether an thchromatic graph of order Nk + 2 or

- Nh + 3 can be drawn. These cases will be conglidered in turn.

r

Graphs of order Nh + 2. 'Sappose a critical thchromatic graph of

order Nh + 2 is drawn on a surface of comnectivity h > 5. By Lemma I
for such a graph 2B/N >N +1 - 12/@\1 +9>° By A), 2E/N < 6 (1 +(h-3)/,1\rh

+ 2) hence N, + 1 - 12/N 2 < 6 (.1+(u 3)y@\r +2) that is, 'f - ‘51\3 < 6h+3,

But from the definition of N for b >3, N > 6 (l%h iWN +L»j that is

2

h - 5N > 6h - 11, and so BV% < 1k, or Nh < 7. Dbut we have already



disposed of the case Nh = T

h + %, Suppose a critical Nhnchromatic‘graph of

+ % is drawn on a surface of connectivity h. By Lemma III,

Graph of order N
order Nh |
for such a graph, 2E/N > N +2 - el;/mhﬁ,‘ By A), 2E/N < 6 (14@1@5)/@\@:’3»;
hence Nh+2_21+/1\1h+3 <6 (l+(1r1«~5)/(1\'(h+5)), that is, 1\_1h2 - N, < 6n+ 17, But
by the Gefinition of N, W >6 -(1«}@»5)/@\1&& ), that is, Nhg - 5N, 3‘
éh - 11, and so hNh < 28, or N < 7. But we have already dlsposed of
this one. This completes the proof of Theorem T.5.

By this thedfeﬁ one can see that the problem of determining the
least upper bound of the chromatlic numbers of maps on surfaces 1is
directly relaﬁed 1o the problem of determining the maximum number of
mutually adjacent regions. Certainly, the maximum number of mubtually
adjacent regions, Ah conld not exceed Nh for the chromatic mumber of
any map must be at least as large asg tﬁe Jargest rumber of mutually

adjacent regions in the map. However, 1f Nh >.Ah for any surface,

where h = 3 or h > 5, this theorem shows that Heawood's number is not

the least upper bound. There has been one example of this given.
Franklin showed, [33] that any map on a Kline bottle can be colored in
six colors whereas N3 = T

Theorem 7.5 was sﬁpplemented by Dirac [24) with twe weaker
theorems, one for surfaces of comnectivity 2 and.one for surfaces of
connectiyity 4, Por their statement see Chapter Three. Surfaces/of
connectivity 2 and b are exceptions to the proof of Theorem 635‘but are
not necessarily exceptlons to the theorem itself. Dirac felﬁ that the

. theorem held even for 2 and &.



CHAPTER VIII
GENERALIZATTONS

It would seem, since the chromatic number of the sphere has
remained undetermined; that the problem of determining the chromatic
number for surfaces of higher genus would be difficult indeed. However
"this is not the case.

The following table shows the values of Nh corresponding to the

values of h (up to 16) and %(the Euler-Poincare characteristic).

X 21 0-1 234 .56 .7 B8 -9 -10 -11 -12 .13

hif 1/]2 3 bk 5 6 7 8 9 10 11 12 13 14 15 16

N Lie 7 7 8 9 91010 10 11 11 12 12 12 1%

‘Heawood“s color formulé.(Theorem 74#) places an ypper bound on the
chromatic numbers of maps on a surface of connectivity h. When Heawood
advanced the theorem, he was thinking only of orientable surfaces.

More recent authors have shown that his theorem applies equally well to
non-orientable surfaces.

Heawood's color formula also applies to surfaces that are not
closed such as the Mobius strip. The Mobius strip being homeomorphic
to a crosscap will have connectiﬁity 2 and therefore any map on its
surface can be coiored‘inv6 colors. An example demanding 6 colors is
easy to findo This is of course assuming that coloring a region on a

surface 1s analogous to dying & portion of a cloth. That is, the color

g1
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penetrates and both sides in the local sense are the same color. If on
the contrary, you painted the reglon on a8 surface (that is to say the
color does not pénetrate the surface) then the questions involving
chromatic numbers séem guite different, at least in the case of non-
orientable surfaces.

There is & noteworthy construction by deRham 511 associated with
the question of orientability. He shows that for éach non-orientable
surface there is an orientable surfece that can be mapped onto that
non-orientable surface in & two-to-one fashion. This means that our
pending question on painting a non-orientable surface is closely
related to the question of dying the regions. That is, with the estab-
lishment of the proper orientable manifold for éach non-orientable oneg
we have avolded the question of whether we are dying or palnting.

To give this more meaning, consider the Mobiuws strip where two
regiOns back to back along an edge could be considered contiguous along
that edge. Considering the map as a graph, we have merely added the
segments of the edge of the strip to the graph as edges of the graph.
If we imagine a sort of inflation to separate the two surfaces lying
back to back we would in effect obtain a torus.

Heawood [39] himself established by example that for an orientable
surface where h = 3 his formula actually gave the best value. That is,
N3 colors are necessary and suffizient to color every map on the
surface of a torus, see Figure 8.1. In l89l? Heffter E46}>showed for
orientable surfaces where h = 5, 7, 9, ll,;l3, and 15, that the number
determined by Heawood's formula was best. For h = 5 see Figure 3.2,

H. Tietze [17] showed that the projective plane (non-orientable with

h = 2) needed the full number of colors. I. N. Kagne [48] gave



23

Figure 8 ol

gure 8.2
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examples of maps on non-orientable surfaces where h = h, 5 and 7 that
"needed the full number of colors. Coxeter [17] filled the gap by
showing a non-orientable surface where h :‘6 needed the full number of
© colors. R. C. Bose {17, 9] extended it to h = 8 in 1939. Cases vhere
h = 10, 12, and 1% follow [24] since the connectivities of the surfaces
obtained frqm the sphere and from the projective plane by attaching n
handles are 2n + 1 and 2n + 2 respectively. Any map drawn on a sphere
with n handles attached can also be drawn on a projective plane with n
handles attached. It follows that Kén+2 > Kén+l where Kh is the maxi-
mum chromatic number of a map on & surface of connectivity h. Hence,
by Heffter's results, quoted above, and by the table of values of h and
N Heawood's result is best for h = 10, 12, and 1k.

It should be nobed that although the proof of Heawood's formula
does not hold for h = 1 (the sphere) the formula still yields the con-
Jectured value 4., This is thought-provoking in itself without
congidering all the forgoing cases where Heawood's formula gave the
best result. However, amidst all this evidence there is the result,
given by Franklin in an excellent article published im 1934, which
established that six colors were necessary snd sufficient to color any
map om & non-orientable surfacze of comnectivity 3, whereas N§ = To
Hence, if the four-color thecrem is faléeg it is pot a unique excep-
tional case.

In 1959 G. Ringel proved that Kiein bottle (k = 3) is the only
non-crientable surface not needing as many as Nh colors. He alsoc

showed that the chromatic number ¢f @ map on an orlentable surface

could not alffer fr@m'Nh by more than 2.
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Theorem 8.1. Seven colors are always sufficient and sometimes

necessary to color any map on a torus

The proof follows from Figure 8.1 since N, = 7.

3
A simple map was given by John Leach in 1953. It is shown in.
Figure 8.3 drawn first on a rectangle and then as it would look if the
rectangle were made into a torus by first joining the top and bottom
edges to form & cylinder and then bending the cylinder around to form

a torus.

Figure 8.3

Theorem 8.2. Eight colors are always sufficient and sometimes
necessary to color any mep on a sphere with two handles of the first

kind.

The proof follows from Figure 8.2 since N5 = 8,

Up to now our attention hasg been focused on surfaces th@t existed
in three space, whereas the Kleln bottle and the projective plane do
not, These surfaces do exist in four space as well a3 N space where

¥ Ejho The guestion naturally arises whether these results hold for
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surfaces even though théy are located in a space of dimension higher
than that necessary for their existence. That ls, does the embedding
of these surfaces in a space of higher dimension add properties to them
that would disturb the results of our theorems. Although no rigorous
answer will be given here, it seems that since the property of "being a
neighbor of" is an intrinsic one that the results would be undisturbed
by the surfaces® extending into another dimension, just as they are

already two-dimensional extending into the third dimension.

Theorem 8.3. Six colors are necessary and sufficient to color any map
on the projective plane.

We could argue the sufficiency from an extension of the five-color
theorem for surfaces of connectivity two, that is, a region of five
sides is reducible in six colors and every map has a region of less
than six sides. However, Heawcod's formula gives us the upper bound of

€ and it is attained by the map in Figure 8.4. The map is obtained by

‘Figure 8.k
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projecting the dodechedron lying on the projective plane from its
center. This produces six pentsgonal regions such that each region
touches every other region, necegsitating six colors to properly color

the map.

Theorem 8.4. 8ix is the least number of colors needed to color all

maps on & non-orientable surface of connectivity three.

Suppose there exists a2 map on the Klein bottle that cannot be
colored in 6 colors; then there exists one with fewest regions. If
this map contains multiply~-connected regions then make 1t simply-
connected by altering one of the boundaries of esach multiply-comnected
region as shown in Figure 8.5. The altered map has the same number of
regions, with cprresponding valrs of contlguous regionsg, thus it is
colorable if and only i1f the originel map is colorsble; call the simpliy-
comnected minimum irreducible map M.

Now M contains no region of less than six edges since it cannot be
reducible in six colors. Now 3V S 2E = aF, where V 1s the number of
vertices of M, E the number of edges, F the number of regions and a the
average number of edges per region; apd since V - E + P = X we have

2B '

E<3(E - V) = 3(F - %), Tausa==<6( - %) and when X = O, & < 6.

It follows that all regions of M muéﬁ be hexsgonal, with & = 6. HNow
sinée V-E+F=0,aV -aF = 0 but aF = 2E and & = 6 so 6V - 6E + 2F
= 0, Consegquently, 3V = 2F and 1t follows that each vertex is triva-
lent (M is reguléf)o Hence, M iz & network of hexagons with three

hexagons at each vertex. Let one of the hexagons be labeled 7,

surrounded by hexagons labeled 1, 2, 3, 4, 5, 6 as shown in Figure 8.6.

The regions 1, 2, 3, 43 5, 6 must be distinct since a contragtion of 7



98

to a point would show M to be reducible.

Figure 8.5 Figure B.6

Again, region 1 must have a common edge with 3. For if they do
not the configuration is reducible in six celors by a coalition of
regions 1, 7, and 3. By a similar argument, the regions 1, 2, 3, Lo s,
6 are mutually contiguous.

We shall now show that such a map M is possible only on an
orientable surface. This will mean that & minimum irreducible map (in
six colors) cannot eﬁist on the Klein bottle and that each map on the
Klein bottle is colorable in 6 colors.

If, in Figure 8.7, the center hexagon ig 7 and those adjacent to
it are 1, 2, 3, 4, 5, 6, the outer hexagons, which are the last six
repeated, must each be one of the numbers placed'in thé top of the
respective hexagons. Since hexagon Y must be 2, 3, or % (because it
touches 6 which touches 1, 7, 5,and also 3, 4, or 5 (because it touches
1), we see that ¥ must be 3 or 4. If ¥ 18 3, then 2 must be 4 or 5.
Suppose Z is b: then U must be 5; and V must be 6 (not 4 since Z also

contacts U); but then W cannot be 5 or 6, as it should be. It follows
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Figure 8.7

that Z cannot be 4 and must therefore be 5 when ¥ 18 3. But with Z 5,
we get a unique representstion given by the numbers on the left edges
of the outer hexagons. Similarly, if ¥ = 4, one finds that we get the
unique representation given by the numbers on the right edges of the
outer hexsgons. We have reached the conclusion that 1f M exists on the

Klein bottle then it must be one of the two represented by Figure 8.8.

Figure 8.8
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But it cannot be these for each of these forms a torus, instead of
a Klein bottle. Consequently M does not exist on the Klein bottle and
slx colors are sufficient to color any map on the Klein bottle.

We shall show by example that six may be necessary. Consider the

map in Figure 8.9 to be on the projective plane.

Figure 8.9

This map can be colored in no less than 6 cclors. But this map
can be drawn on the Klein bottle. To see this, lnsert a‘cross cap in
the hexagonal region in the center of Figure 8.9. This changes the |
projective plane into the Klein bottle without destroying the pairs of
contiguous regions. Thus & colors are necessary and the theorem

follows.

Theorem 8.5, The maximum chromatic number of a map on a non-orientable

surface of comnectivity 4 is 7.

. Here again, by Heawood's color formula, the 7-point graph in
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_Figure 8,10a, proves the theorem. The free edges of the figure are
ldentified as indicated.  Figure 8.10b is the same graph using the
illustrative technigue of Coxeterg by constructing the dual of this
graph we obtain a map of seﬁen mutually contigubus hexagons, Figure
8.10c. The dual map given by Kagno iS shown im Figure T7.10d4, the free
edges being identified as indicated. 'X and X' are joined through a
crbsscap, similarly for ¥ and ¥' and for Z and Z°'. The three cross-

caps ralse the connectivity to 4.

Flgure 8.10
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Theorem 8.6. The maximum chromatic number of a map on a surface of

connectivity 5 is 8.

The graph of a complete eight point on such a surface is shown in
Figure 8.11. The free edges, identified as indicated, have the order
(a,a',b,b',c,c’,d,d') from which we see that the sﬁrface is non-
orientable and of connectivity 5. By comnstructing the dual of this
graph we obtain a map of eight mutu#lly touching heptagons. This hap
is shown in Figure 8.12, the free edges being:identifiEQ as indicated.

‘Theorem 8.2 provides for the orientable case.

Figurs 8,12

Theorem 8.7. The maximum chromatic number for maps on a surface of

connectivity 6 is 9.
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A complete 9 point graph and a map of 9 mutually touching odtagons

on a surface of connectivity 6 are given in Figure 8.13.

Figure 8.13

Theorem 8.8. The maximum chromatic number of s map on a non-orientable

surface of comnectivity 7 is 9.

This theorem follows from Theorem 7.7 slnce any map on & surface
éf conneéctivity 6 can be drawn on & surface of connectivity 7. This
can be seen by placing a crosscap in the interior of regions 9 of
Figure 8.1%b, raising the comnnectivity of the surface to 7. K&gn@§
hdwever, proved this theorem by giving the example in Figure 8.1k,

several years before Coxeter proved Theorem 8,7.

Theorem 8.9, The maximum chromatic number of maps drawn on & surface

of connectivity 8 is 10.

This map is given in Figure 8.1%,
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Figure 8.14

Figure 8.15
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Theorem 8.10. The maximum chromatic number of maps drawn on a non-

orientable surface of connectivity 9 is 10.

Any map that can be drawn on a surface of non-orientable surface
of connectivity 8 can be drawn on a non-orientable surface of
comnectivity 9. Thus the map used to establish the necessity of 10
colors in Theorem 8.9 accomplishes the same purpose here.

From remarks made earlier in the chspter and Heffter's examples

we have:

Theorem 8.11. The maximum chromstic number for maps on non-orientable
surfaces of connectivity 10, 12, and 1k are 10, 11, and 12

respectively.

Similarly, any map drawn on & surface of connectivity 13 can be
drawn on a non-orientable surface of connectivity 1% or 15 by the
addition of 1 or 2 cross caps interior to any region of the map. With
the establishment of Heffter's result we have the following:

_ The maximum chromatic number of maps on & non-orientable surface
of connectivity 1% or 15 is 12,

There 1s a gap in these theorems presented thus far. For a non-
orientable surface of connectivity eleven no map requiring eleven
colors is known to have been presented. However, Ringel proved that
the Heawood nﬁﬂber,is correct for all non-crientable surfaces, except
the Klien bottle, thus, filling the gap and solving the remaining

problems of a similar nature.

Theorem 8.12. - The maximum chromatic number of maps on a non-orientable

surface of connectivity h > 3 is Nh°
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The question'of whether the Heawood number is correct for all
orientable surfaces of comnectivity h > 15 has not yet been determined.

However, Ringel proved the following.

Theorem 8.13. If Kh is the maximum chromatic nunmber of maps on an

orientable surface of connectivity h then Kh 2 Nh - 2a

The problem may be extended in another direction. In actual maps
the countries sometimes congist of severél detached portions forming»
an empire, with the further stipulationwfhat & mother country and its
colonies be similarly colored. If theré is no limit to the number of
colonies in each empire, the number of colors needed may be arbitrarily
large. If no empiré consists of more than r separate pleceg, not only
is the problem tangible but in 1891 Heawood gave a formula for an
upper bound on the number of colors necessary to color such msps.

In the case of regular maps Euler’s formula says V. - E + F = X
and 3V = 2E so that %E = 6(1 = %)o If we consider a regular map of n
regions (n = F) we have the average number of contacts per region as

. %E = 6(1 m:%)o If & map is not trivalent the value of A is lower

A
since a trivalent map can be obtained by adding new edges and vertices
at each of the original vertices with multiplicity greater than three,
and this map h&s.all ﬁhe contacts of the cld map with new contacts
added; donsequently, the average for the new trivalent mesp is higher.
If the map ccntains a multiply-connected region, form a new map by
altering the boundarlies on each sﬁch region indicated in Figure 8.5.
The new map is simply-connected and the average will again be raised by

meking it trivalent. It follows that if Aﬁ is the maximum of An over

all maps of n regions then the maps %o which'A;correspondsnmstberqmlan
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Consider first waps of empires on a sphere and further suppose
that each empire consists of exactly two distinet portions. Then the
average number of contacts per empire in a given map of g-empires is
C= QAn < EAA. If we let X = EEAQ] + 1 then X colors are sufficient to
color a map of %-empires. For, some empire of that map does not have
more than X - 1 contaets an& henece is a reducible configuration im X
colors. That is, if that empire were removed and the surrounding
regions closed up in any fashion we would have a map of n' < n regions
and since aAn, < 2A, = 12(1 - %3) <12(1 - %) = 2A} < X ve again are
assured of an empife of less than X contacts; and the pirocess ecan be
repeated eventually giving us a maﬁfof X or fewer empires, which can
certainly be colored in X colors. This in turn dictates a coloring of
our original map. Hence, [12(1 =- %D] + 1 colors are sufficient to
color any map of g-two-region empires on the sphere,

Now if n is as large as 24 then this number is 12. If n is small-
er, 12 colers are still sufficient so that 12 colors are sufficient to
color any map of two=-regions empires on the sphere. For a map with
each empire consisting of at most two regioms, 12 colors are still
sufficienﬁ since for each single region empire, a new region can be
added as a eircular patch on an edge that is not an edge of that
empire, The resulting wap can be colered in 12 colors and the patehes
then removed revealing the original wap properly colored in 12 colors.

At least as many colors are hecessary as the largest number of
mutually contiguous empires, T. In & map of k mutually contiguous
empires, C is not less than k - 1 since each empire touches k = 1
others at least once. T could not be greater than Y, the greatest

integer y such that in.a map of preecisely y two-region empires
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¢<12(1 - %;) soy-1%12 - % and y € 12, Therefore T could not
be more than 12, which we hope can be attained. However an example
must be found showing that 12 can be realized.

Since 12 - %g-a y -1 vhen y = 12 there are Just enough contacts
available for 12 mutually contiguous empires. With each of 12 empires
in two regions the chanece of duplicate contacts between some pair of
empires is greatly increased, and this would necessitate that some
other pair of empires would fail to touch. This difficulty seems to
oceur with any symmetrical arrangement of 24 regions, and no general
principle seems to lead to the discevery of a suitable arrangement.
However, one example is sufficient to complete the proof; and that
given in Figure 8.16 is an instance of 12 pairs of regions,bwhich have
the desired contacts, onece and only cnece with a region of every other

pair. Figure 8.16 then proves that 12 is the number of colors

12
2 /4 5
6/ 429565 8 0
& 9 A 11\
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Figure 8,16
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necessary ana sufficient to color any érﬁangement of empires of at most
two regions on the'sphere; When we proceed to empirés vhich may consist
of 3 or more colonies( up to r say, we have CZS T AQ,‘ 6r (1 - %ﬁ.“lf
the map is regular, ﬁAn = 6r (1 = %ﬁfso it*fb;lows?that
Al = ér (1 - %ﬁ and the largest X = [rAé] + 1 could be is 6r. As
before, 6r colors are sufficient. Also rA'rY = 6r gl - %f) = Q%Cf - %J
which is greater than Y - 1 when Y = 6r, provided r > 2. In this case
thén there are more than enough contacts for 6r empires. The verifica-
tion examples, to shew that proper distribution of centacts c@uld be
realized, would theﬁ determine 6r as the number of colors necessary and
suffieient to c¢olor meps of empires, comsisting of no more than r
regions, on tﬁe sphére. The only such map found in the litefature is
the one given in Figure 8.16. Although Heawood was not concermed with
non-orientable surfaces, we can note that the map is slso an example
on the projective plane if we place a erosscap interior to some regien
of the map on the sphere. Later we shall see that 12 is also an upper
bound on the projective plane.

Moreover, extending'the preoposition to the case of the torus,
where A < 6(1 -.%).ﬂféy we have C < ﬁAn < rAé = 6r, and the largest X
could be is 6r + 1. Also, rhA}

Y

Y = 6r + 1; and here again X = ¥. There are Just enough centacts for

= 6r, whieh is exactly ¥ - 1 when

6r + 1 eﬁpires and an example showing proper distribution of these
contacts would complete the proof. The example for the case where
r=1 was givern esrlier in this chapter.

Censider next maps with empires of exsietly r regions on a surface
of characteristie ¥ < 0. We have A < A;j_ = 6(1 - %’ Let Z be the

greatest value of w such that 6r(l - é;ﬁ 2 w = 1; then for w> Z,
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6r(1 ~ &) < w - 1. Now if we let X = [Z] then 6r(1 - %) =2 ~1<X.
Any map of not more than X empires is colorable in X colers. A map of
m > X empires is alse éolorable in X colors since the average number of
*x X
b 4 i § ! = - e b - <
contacts per empire, C < rA < rAr 6r(1L mr) < 6r(1 }Tﬁ))
(X+1) -1=X,
Now since X is the greatest integer such that 6ér(1L - %;)_2 X=-1

we bhave enough contacts for X'empires (hut not for more). From

2% « (6r + 1)7 = -6x ve get 2 = 3(6r + 1 + v (6r + 1)° - 24%) so that
X = [5(6r + 1 +V(6r + 1)% - 28],

For maps with empires of ‘not more than r regions, we could show X
eolors sufficient by &dding regions as before.
If % = 0 then #(6r + 1 + v (6r + l)Q = 6r + 1 = X as we previously

showed, The reader should show that for r2 2, 6r < %(6r + 1+

J(6r + l)2 - 24(2) < 6r + 1 to establish the more general expression
for X in the case of the gphere. Heaw@dd was concerned with orientable
surfaces oﬁly, and our development thus far has been essentially his
[59]. However, his result appiies directly *o noneerientable surfaces
with one exception, the projective plane, This exception can be
inéluded with the verificétidn that a similsr argument applies for

= 1 and giveslthe valge 6r. We see then that the examples for the
sphere dlso work for the projective ﬁlane.

The more general expreséion for X then gives an u@per bound for
the number 6f colors necessery to color a map'@f empires each containe
ing not mo?e than r regi@ns on a surface of characteristic X, except
ﬁhereﬁy,m é and r = i which is of course the four-preblem pr@blem.

We have thus far considered only regions which are two-dimensional

on & surface in a space of N dimensions where N is sufficiently lar@e
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to allow. the actﬁal existencé of the surface under ¢onsidération.
Aecording to the following, [63], five-space is sufficiently iarge for
any surfaée thus far considered: Suppose X is a compactYSPace and the
dimension of X is £ n, n finite; then X is homeomorphic te a subset of
the eross product of [0,1] with itself 2n + 1 times. Since all of the
surfaces thus far considered are compact 2-manifolds they can be
~embedded in 5-space.

Let us now consider solid regiqns in three space. That is, what
is the minimum number of colors necessary to color an arbitrary nﬁmbér
of solids such that no two contiguous solids are of the same color. 1%
cap be seen that this number can be wade arbitrarily large. For given
any positive inmteger N we shall construct a situation in which N
colors are needed. Consider 2N rectangular prisms of dimension 1 by 1
by N« Lay N of these side by side and pumber them 1 through N sush
that numbers 1 and i1 + 1 touch aleng a side of dimension 1 by . This
forms & censtructed selid, 1L by N by N. Similarly lay the remaining N,
numbered 1 through N, rectangular prisms en top of these with their
edges of N length peipendicular to those of the first N. This is

illustrated for N = 6 in Figure 8,17, This forms a constructed solid

Figure 8.17
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of dimension 2 by N by N. Now consider sclid 1 and 1' to be the same
(weld them together). Do the same for solid i and i', 1 ranging from
1 teo N; Thus we see that solid 1 touches all the rest as does each of
the others. As a result the minimum number of colers necessary to
color all suech eonfigurations is infinite.

Paul Stacked, University of Helidelberg, gave the same result using
only convex domains; [56 pege 78] a particularly eomplicated and sige
nifieant result.

We would certainly expectthe problem of é@loring N dimensional
regions in N space to have the same solutiom as three in threeuspgaeo
Also we could express the same confidence for M-dimensionel regiens
M2 3 in N space since three-dimensional regioms imr N space yleld the

game result as they do in 3-space,



CHAPTER IX
EQUIVALENT PROBLEMS

In this chapter we shall consider some problems that are implied by
the four-color proble, some that imply the four=-color problem, and some
that do both. We shall restrict our attention to the plane or sphere;

however, some of the results generalize readily to other surfaces.

Theorem 9.1. A regular map can be. properly colored in four colors if

and only if its boundaries can be properly numbered with three numbers.

First let us consider the "only if" part =-- if a regular mep can
be properly colored in four colors, then its boundaries can be properly
numbered with three numbers: Given a regular map colored with four
colors, call them (0, 0); (0, 1); (1, 0); (1, 1). Then assign to each
boundary the sum of the labels of the two regions that it borders, (by
the sum of (m, n) and (p, g) we mean ({m + p) mod 2, (n + gq) wod 2).
Now there are only three possible sums; (0, 1); (1, 0); (1, 1) since
a+b=(0, 0) =>a=h.

Since exactly three regions are mutually contiguous at each vertex
we get exactly three boundaries and the labels of these boundaries must
be different. For, consider one of the regions to have color a, and
the other two b and ¢. Now, a + b, & + c and b + ¢ must all be differ-
ent since a + b= a + ¢ = b = ¢c. Thus, the two'boundaries of the

region of color a, that are at this vertex, must have different numbers.

11k
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This holds for any two boundaries with a common vertex. Thus, the
numbering is'properu
Conversely, if the edges of a regular map can be properly numbered

with three digits then the map can be properly colored in four colors:
First let us show that any closed path on the surface of the map that
intersects each of any number of edges exactly once in & point that is
not a vertex, will do so such that the sum of the labels of these edges
is (0, 0). It is sufficient to show this for a simple closed path.
For, suppose a path can be broken into k loops. Then, the sum of the
labels of the edges crossed in each loop is (0, 0) and k(0, 0) = (0, 0),
thus the entire path yields (0, 0). Consider an érbitrary simple
closed path U, that intersects several edges of the map each at a point
that is not a vertex. Consider the vertices Vi, VE’ V5’ Vh’ o °'° 5 Vn
that lie inside the simple ¢losed curve., At each vertex we find the
three edges (0, 1), (1, 0), (1, 1) and the sum of these three is (0, o);
Now, the edges may be placed in two classes, those that bave both end-
points interior to our simple closed path ¥ and these with only one
inside W, Let x be the sum of those in the first class and y the sum
of those in the second. Now the sum of the labels of the edges that
lie &t each of these vertices is 2x ¥+ y since each edge in the first
class is counted twice and each in the gecond, Jjust dnce. But
2x + y = (0, 0) and since 2x = (0, 0) it follows that y = (0, 0). Thus
the sum of the labels of the edges crossed by our simple closed curve
is (0, 0).

| In a ¢losed path that crosses some edge more than once, a multiple
crossing can be reduced to one or no cressing since an odd number of

crossings contributes the edge label to the sum and an even number of
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erossings contributes (0, 0) to the sum,

Now, to show that a map with its boundaries properly numbered in .
three digits can be properly colored in four colors, consider an arbi=-
trary region, label it (0, 0). Consider a path that intersects gome
edge of each region at least once, and does not pass through any vertex.
Assign to each region that label that is the sum of the labels of the
edges crossed by the path while reaching the region. This labeling
process is consistent for suppose & region can be reached by two paths.
The label given by the first is a and the second is b. The two paths
form & closed curve, so a + b = (0, 0). But 'this implies a = b.
Furthermore, two neighboring regions have different labels since the
label of the edge between them is not (0, O) and the sum of either
region label and the edge must be the label for the other region. .

This result may also be stated in the following form: The color-
ing of the regiecns of a regular map in four colors is equivalént b the
coloring of its edges in three colors., In faect, in place of the edges,
we may use an edge map , ali of whose regicns are four-sided. Such &
map may be obtained from a regular wmap by Jjoining a point, er capital,
of each region te the vertices of that region, and then erasing =ll the
edges of the origiral map. We note that such edge maps are not regular.
For this reason their ecloration does net follow from Theorem 4.7,
Every map with all its regions four-sided is pot an edge map, and it is
not easy to characterize those maps which are edge maps. Theorem 9.1
is not restrieted to the sphere, however you will note that our proof of
it is.

Since each map has a region of less than 6 edges, a regular map

with each region of 3N edges must contain a traingle, and hence, is
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reducible., In fact, such a map is coloreble in four colors. Accerding
to the previcus theorem it is sufficient to show that the boundaries .-
can be numbered with three numbers. To achieve this, consider a path
along the edges of a regular map that includes each edge at least once.
Choose an arbitrary edge of the map, which we number 1, and number from
there on as follews.. After an edge is traversed and assigned the
number a we asgign a + 1 to the next edge if we went to the left at the

vertex and a = 1 if we went to the right at the vertex, Figure 9.1.

Y
—

atl

g=1

b

Figure 9.1

In general, an edge may recelve several distinet integers as
labels. However, it is our intention to show that the labels any one
edge receives are all congruent module three. In this sense we have
only three distinet labels, and no two neighboring labels are alike,

The first edge to be retraced by a path is retraced in either the
same or opposite direction. |

First suppose that an edge e, Figure 9.1b, is the first to be
retraced and that it is traversed in the same direction. Suppose the
first label e receives 1s p and the sesond is gq. Suppose further that

the simple closed path is treversed in a ¢lockwise fashion and contains
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b' edges, where it goes to the left bl times and to the right be times;
§ = -
b =-bl + b2 and g = p + bl b2.

but having vertices on the path belong to two clagsses, those lying on

All edges mot belonging te the path

the right with respect to the direction of the path (there are bl of

them) and those lying on the left (there are b, of them). An edge, both
of whose ends lie on the path, is counted twice. Let G be the domsin
ingside the path. The edges of the first type lie inside G and those Of
the gecond type lie outside G. Let V be the number of vertieces that lie
inside G, and Nl, Noy o o o Nr the number of edges of the regions
lying inside G. Since the map is regular, we have 3V = 2(b3 + b)) + by
also Ni + N2 P N& = 2b5 + b', Together these imply b’ +‘b2 =
3V = (Ni Ny + .. m&). By hypothesis N, is divisible by 3 so

b' + b2 = 0 (mod 3). But b' = bl + b25 heﬁee bl * Ebe - 5b2 = bl - bB
s 0 (mod 3) and p = q (mod 3). If the rotation were couvnterelockwise,
we need to interchange reoles of bl

Next suppose that the first edge to be traversed a second time is

and b2 to have a proof for that case.

e, 88 in Figure 9.1b. In the case of a clockwise rotation & would

have label p - 1 and e, would have label (p + 1) mod 3.

2

Then the second label applied to0 e, would bep + 2=p -1 {mod 3).

Also note that if several consecutive edges were retraced inm the oppo-

site direction the labeling stays consistent since right becomes left

and left becomes right reversing the addition and subtraction processes,
In the secend case, 1f the edge e

1

curve, the labels will change accordingly but the argument is essens

is inside the simple closed

tially the same. Counter-clockwise rotaiion ef the simple slosed curve
can also be similarly handled,

Since any closed path can be broken up into sections coensisting of
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simple closed paths and retraced (either direction) sections, it
follows that the second label given after traversing a closed path iéw‘
congrﬁent mod 3 to the first label.

Thus, we ean see that if we reduce our labels mod 3, each edge will
recelve a unigue label and no two edges with a vertex in common have the
same label, Conseguently, if each region of a regular map has 3N edges
then the boundaries can be properly labeled with three digits or

equivalently:

Theorem 9.2, A regular map with each region having its number of edges

s multiple of 3 ean be colored in four colors.

Once the edge marks used in the proof of this theorem have been
established they can be replaced by the edge marks of Theorem 9;1.
Note that all three labels will occur at each vertex in the same clock-
wise (counterclockwise) order sbout the vertex,

if we draw a smaell cirele about a vertex of a regular map, and
regard’it as an added region, we obtain a new regular map. We refe? to
this ﬁrocess as triangulating a vertex., Now, suppose that, for a given
Tregular map, we select certain vertices, V, which we leave unchanged,
arnd that we triangulate the remasining vertices, V', If the triangu-
‘lated map is colorable, so is the original map, since we have merely to
omit the triangles about vertices V', and leave the colering of the
other regiens as they were,

In particular, if the map can be triangulated in such a way that
each region of the new map has 3n edges, it will be colorable by the
last theorem. The added triangular regiens have three edges. Any

other region of the triangulated map will correspond to a regiom of the
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original map, and will have one vertex for each vertex V and tﬁo
vertices for each vertex V' in the original region. Thus, our problem
is to select the vertices V' such that, when we put 1 at vertices V and
-1 (or 2 modulo 3) at vertices V', the sum taken around any region will
be divisible by 3, (that is, 0 (mod 3)).

On the other hand, if our map is colorable in four colors, then
edge marks exist according to Theorem 9.1. ZEach vertex has its edges
labeled (0,1) (1,0) (1,1) in a clockwise or counterclockwise fashiop.
Labeling the first set 1 and the second set =1 we can see that trian-

gulation of one of the sets, =1 say, will give a new map with sll
élockwise vertices, BSubstituting the labels of Theorem 9.2 and revers-
ing the argument used there, we can see that each region of our
triangulated map has 3n edges so that the sum of the vertex labels
about each region is zero (mod 3). Since, by triangulation each =1
vertex contributes two to the sum of each region to which it belongs
and since -1 2 2 (mod 3), the sum taken about each region of our
original map is 0 (mod 3), as prescribed, and we have the following

theoren.

Theorem 9.5 The problem of colering regular maps in four colors is
egquivalent to the problem of placing 1 or =1 af each vertex in such s
way that the sum, taken about each region, is divisible by 3.

It is interesting to note that a set of vertex marks and its dual
set (the set obtained by interchanging 1 and -=1) each correspond to
three sets of edge marks that are all related through the permutaticns
of the three edge marks (there being 6 permutations). Also, each set

of edge marks correspondé to a set of 4 colorings (e.g. from the choices
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of (0,0) (0,1) (1,0) or (1,1) for an arbitrary region); these colorings
are‘all related through a permutation of colors. Each set of vertex
marks (and its dual set) then corresponds to a unique coloration

(24 colorings that are related through permutation of colors). In a
non-simply~connected trivalent map the partition of the vertices gives
a unique coloration in each partial map but not in the entire map.

Theorem 9.3 gives a theoretical method of coloring any colorable
mep. The marks for the vertices may be taken as variables, and the
conditions then leéd to a system of homogeneous linear congruences
modulo 3, Any solution with no variable zero gives a:coloration, and if
no such solution exists, there is no coloration.

This method is not practical even for simple maps. For example,
the dodecahedron may be easily colored empirically but the present
method leads to a system of l@ dependent equations in 20 variables.
Nevertheless, Heawood spent considerable time and effort in the inves-
tigation of these equations, which he called map~congruences. His
publication of five papers, totaling 69 pages, dealing primarily with
map-congruences, attests to his efforts. As he put it, "the analytical
method of %reatment seems to bring the problem still more into connec-
tion with other wmathematical questions, and to give a clearer grasp of
the conditions on which it depends;"

In 1891 Petersen showed that a third dégree linear graph, contain-
ing fewer than three leaves, contained a set of edges having exactly
one end point at each vertex. His proof was simplified by Brahana and
Errera. The proof we shall consider is due to O. Frink and is simpler
still. The restriction of fewer than three leaves in a regular map is

implied by the restriction that no region border itself, that is, the
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graph of & map has no leaves. Under this condition, the theorem of
Petersen asserts that it is always possible to color the edges iq two
colors such that one end of the first color and two ends of the second

color abut at each vertex.

Theorem 9.4. (Petersen's Theorem) A regular graph of the third

degree with fewer than three leaves is colorable (in two colors).

According to Theorem 7;3, a simple graph is colorable. A graph
with one leaf is impossible. To color one with twe leaves create a
- new vertex in a l-cell of each leaf, and join the new vertices by a new
l=cell. The resulting graph 1s simple and may be colored. If the new
l-cell is red, delete it. If it is blue, change its color according to
Theorem 7.2 and delete it; This restores the original graph, which is
now colored.

If on decomposing a graph of third degree by Petersen's theorem,
the cirecuits (blue) are all even, they may be broken up further to give
a coloring of the edges of the graph in three colors. The difficulty
comes when there is one or more pairs of cdd eircuits, as in the case

of the pair of pentagons in Figure 9.2.

Figure 9.2
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However, if the four-color conjecture is true then Petersen's
theorem on & sphere is a consequence since the edges would be colorable
in, three colors.

Sir William Hamilton noticed that the vertices of a dodecahedron

. v ,
coﬁld all be traversed by one circuit (along the edges) and made a
puzzle based on this fact. Tait conjectured that this held for any
convex polyhedron with triple vertices (his "true polyhedron"). This
result, if correct, would imply the four-color theorem. However,
W. T, Tutte gave the following countérexample.

Consider é pentagonal prism. The edges and vertices constitute a
cubical network N (regular third degree graph). Let the five edges

which Join a vertex of one pentagon to a vertex of the orther be, in

their cyclie order, AF, BG, CH, DI, and EJ.

Figure 9.3

In the network Nl of Figure 9.3, the operation of shrinking each
triangle to a point and taking these points as new Q-simplexes preserves

Hamiltonian circuits since, for example, a Hamiltonian circuit in this
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network must contain Just two of the l»simﬁléxes NG, OC, and PI. As
the operation gives a network equivalent to that of tbe pentagonal
prism, it follows that ne Hamiltonian circuit in Figu?e.9,3 contains
OC and LA since there is no Hemiltonian circuit in N containing AF aﬁd
HC.

Now if a Hamiltonian circuit in Nl contains NP, then it contains
one but not both of ON and OP, and therefore, it contains OC. Similar=-
ly, if it contains KM, it contains LA. Hence, no Hamiltonian circuit
in N contains both KM and NP,

Let Q be the mid-point of NP and R the mid-point of KM, Let us
now treat  and R as O-simplexes, replacing NP by lmsimplexes‘NQ,and QP
and reélacing KM by l-simplexes KR and RM. Let us introduce a new
l»simpiex Joining Q and R. The cubical network N2 thus constructed has
the same structure as the network Nj which is obtained by taking the
part of N, (Figure 9.4) contained in the triangle UVX with its interior,
and adding three other lasimplexesASOining U, V, and X to seme point S.
This correspondence is most easily traced by noting the three quadri-
laterals in each figure. Let M, K, Q and R correspond to U, V, X, and
S. |

Clearly any Hamiltonian circuit in N2 must contain QR. Otherwise,
it would be s Hamiltonian eircuit of Nl containing both NP and KM,
which we have seen to be impossible. Hence, by the correspondencé

between N2 and N .anyrﬁamiltonian circuit in N, must contain XS. Now

3 3

any Hamiltonian eircuit in Nh defines one in N5 in an obvious way; thus,
we can deduce that any Hemiltonian cireuit in Nh must contain XW.
Hence, by symmetry, it must contain all three of the l-simplexes WX,

WY, and Wz, which is absurd.
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Figure 9.4

Tait also proposed the following which femains unproven: Every
bridgeless regular graph of degree three and genus zero can be‘faqfored
into three factors. The edges of a trivalent mep on & spﬁeré form a
qollection of disjoidt simple graphs and is just‘such & graﬁho Such =
graph also'forms a triﬁalegt map. If we genefalize Theorem 9.1 to
gpply to all trivelent maps, the problem of nu@béring the boundaries

is that of factoring the corresponding graph intoaﬁhree factors.
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APPENDIX
Jordan Curve Theorem

The unit circle is a subspace of the coordinate plane consisting of
all points (x,y) that satisfy the equation % 4 y? =1,

A space C is said to be a simple closed curve if and only.if it is
homeomorphic to the unit circle. A homeomorphism, between & space S and
a space T, as you recall, is a one-to-one, open, continuousamapping.of
S onto T. S and T are sald to be homeomorphic.

The Jordan curve theorem is an-important and.frequently used
result in topology. It states roughly, that there is an inside and an
outside of a simple closed curve in a plaﬁe; More exactly, 1f a simple
closed curve C lies in a plane and 1f the polnts of C are removed from
the plane, the remainder cf the plane is composed of exactly two connect-
ed pieces (components) and the curve C is the boundary of each of these
p&eces, Intuitively it is impossible to get from one of these pieces to
the other in the plane withbut crossing the curve C.

‘Let S be a topological space. A subset X of S is said to be a
component of S if and only if it sa£isfies the following conditions:

i) ”X is non-empty
i1) X.is connected
iii) If Y is anyvconnected.subset of S satisfying
Yﬂx;é,réthenYﬁc:x,

With this definition and the following notation we can state the Jordan

130



131

Curve Theorem. We shall write E2 for the Fuclidean plane with its
ﬁsuai topology and‘K'for the union of A with its set of limit points.

| (The Jordan Curve Theorem) Let C be a simple closed curve in E°.
Then E - C consists of exactly tw§ components A and B. Moreover,
c=K-A=F8-B

For a rigorous development and proof of this theorem see‘[58].

For a more elementary discussion and a simple proof for the case of &
polygon see [2].

The stereographic projection of the extended plane onto the sphere
that was considered in Chapter II is a homeomorphism. The one-to-one
and onto properties follow from the geometry of the transformation.
That the transformation meps open sets into open sets can be seen from
én analytical point of view. To prove this it is sufficient to show
that circles on the plane transform into circles on the sphere and
eircles on the sphere, not having N as a point, map into circles on' the
Plane.

Let x and y be coordinates on the plane such that the coordinates
of T are (0,0) and let a,b, and ¢ be coordinates in space such that the
coordinates of T are (0,0,0) and of N are (0,0,1) and such that (x,y) is

(x,y,0). We have the following relationship:

@ 1l +r Ll +r l+r
and conversely:
% = 2 : - b . r2 _ ¢
T 1 -¢ : =g T 1 -c

A circle on the sphere 1s the intersection of the sphere with a plane
Pa + Qb + Re = W with P?‘+ Q° > MWW - R) to ensure actual intersection.

in & circle. Using the formulas for the transformation we get the



equation for the corresponding points on the plane to be;

(R _.W)(ﬁz + y2) +Px +Qy =W, This is a real circle in the plane
unles; ﬁ.z W, when it is a straight line. But if R = W then the clrcle
on the sphefe must pass through N. In any case the sphere is cut into
two disJoint open sets one mapping inside a circle on the plane and the
other outside unless the circle on the sphere maps into a straight line
in which case one open set will map Into the set on one side of this
line and the other get maps on the other side of this line. In any case
open sets mep onto open sets. Thls argument can be easily reverséd té
show. that a ecircle on thenlane maps into the'intersection of the sphere
with a plane. Thus, the mapping 1s inverse open and thus continuous.

Consequently, the transformation is a homeomorphism.
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