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by the main processor. And, through this achievement, the 
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CHAPTER I 

INTRODUCTION 

When a database system does not perform according to 

its specifications, a failure occurs. A failure is an event 

which places the system into an error state. Some failures 

are caused by human errors; e.g., a user mounts a wrong disk, 

software faults; e.g., inappropriate data, or hardware faults; 

e.g., loss of power. When a system becomes inoperable, 

several problems must be addressed. First, normal functions 

must continue. Second, computer operational and maintenance 

personnel must work quickly to restore the system as closely 

as possible to the last non-falling state. Third, users 

must know what to do when the system becomes available again. 

Because some work may need to be re-entered, users must know 

how much work to repeat. In order to cope with failures, 

additional components and algorithms for abnormal situations 

are added to a database system. These components and 

algorithms both remove erroneous data and restore the database 

systems to correct states from which normal processing can 

continue. These additional components and recovery algorithms 

used to return to normal states from abnormal states in database 

systems are called recovery techniques. 

1 



2 

Terminology 

Database technology can seem complex and complicated. In 

part, this is because database terminology is inconsistent. 

Similar concepts have different names; for example, object and 

entity are synonyms in some contexts, and the same name often 

refers to different concepts; for example, the term object has 

different meanings depending its context. This situation exists 

because database technology does not originate from a single 

source (111. Therefore, in this section, a general description 

of database terminology is given. The single terminology 

presented here is used throughout the paper. 

A database consists of a collection of logical records. 

The record is the granule at which transaction interface 

operates. Records also are grouped into large units called 

pages and segments. If a page has a new update copy, then the 

old page is the shadow for the new one(the updated copy). The 

new page is called a dirty page. Pages are the granule of data 

transfer between the primary and secondary memory. A segment 

is a granule of storage organization in secondary storage. 

A transaction is a linear sequence of actions with the 

following properties: 

Atomicity: either all actions are done or nothing happens. 

Consistency: the property of being able to change the overall 

logical and physical structure of the database when a transaction 

is completed. Thus, it preserves the consistency of the database. 

Durability: a characteristic of a database in which once a 
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transaction is committed to the database, the results of the 

transaction survive any system failures. 

Isolation: the condition of events within a transaction 

being hidden from other transactions which run concurrently. 

A general example of a transaction which transfers money 

from one account to another is given [201 (Figure 1). 

FUNDS_TRANSFER:PROCEDURE; 
$BEGIN_TRANSACTION; 
ON ERROR DO; 

$RESTORE_TRANSACTION; 
GET INPUT MESSAGE; 
PUT MESSAGE('TRANSFER FAILED'); 
GO TO COMMIT; 

END; 

I* in case of error *I 
I* undo all work *I 
I* reacquire input */ 
I* report failure */ 

GET INPUT MESSAGE; I* get and parse input *I 
EXTRACT ACCOUNT_DEBIT, ACCOUNT_CREDIT, AMOUNT 

FROM MESSAGE; 
$UPDATE ACCOUNTS 

SET BALANCE = BALANCE - AMOUNT 
/* do debit *I 

WHERE ACCOUNTS.NUMBER = ACCOUNT_DEBIT; 
$UPDATE ACCOUNTS I* do credit *I 

SET BALANCE = BALANCE + AMOUNT 
WHERE ACCOUNTS.NUMBER = ACCOUNT_CREDIT; 

$INSERT INTO HISTORY I* keep audit trail *I 
(DATE,MESSAGE); 

PUT MESSAGE ('TRANSFER DONE'); 
COMMIT: 
$COMMIT_TRANSACTION; 

END; 

/* report success */ 
/* commit updates */ 

/* end of program */ 

Figure 1. Example of a Transaction 

In the above example, a transaction is initiated 

explicitly when an existing process issues BEGIN_TRANSACTION. 

All changes made by the transaction are recorded in the 

transaction's logical file called the log. Two records usually 

are retained on the log. The first is a copy of every 



record before it was changed. such records are called before 

images. The second is a copy of every record after it was 

changed. These records are called after images. 

If at any point in ~ime before reaching the COMMIT_ 

TRANSACTION something goes wrong, the user enters the 

ERROR clause and the update may be undone. If the trans­

action reaches the normal end but has not committed its 

results to the database, then it is always redone. This is 

the case when a system crash occurs. 

4 

There are two ways for a transaction to commit its 

results: first, the transaction flushes its own records to the 

log disk before completion; second, the transaction log 

records are not written to the log disk, instead, they are 

collected into a log page and a flush is delayed until a log 

page becomes full. Commits of the first sort are called 

immediate commits, those of the latter sort are called group 

commits. 

The log itself is recorded on a dedicated medium. once a 

log record is recorded, it cannot be updated. Figure 2-a shows 

an example of transaction activities happen at a time period. 

These activities are recorded on a transaction log (Figure 2-b). 

For this sample log, each transaction has a unique name 

for identification purposes. Further, all images for a given 

transaction are linked together with two way pointers. one 

pointer points to the previous transaction-r~lated record. 

The other pointer points to the next transaction-related record. 

A zero in the pointer field indicates the end of the list. The 



transaction 
activity 

chanqe ORDER chanqe ACCNT 
T1 I I 
1---1-------------------1-----------1 

store CUST 
I 

T2 1---------------i-----------1 

chanqe SP 
I 

5 

T3 I---------------I-----------------
T4 1--------------

-----------------------------------------------------------
22 23 24 25 26 27 28 29 30 31 32 33 time(9:00) 

a. Transaction Activity 

relative 
record 

I ----------------------------------------------------------
1 T1 0 2 9:22 START 

------ ------- ------ ---------- ----------
2 T1 1 5 9:23 MODIFY ORDER old value new value 

------ ------- ------ ---------- ----------
3 T2 0 6 9:26 START 

------ ------- ------ ---------- ----------
4 T3 0 7 9:27 START 

------ ------- ------ ---------- ----------
5 T1 2 8 9:28 MODIFY ACCNT old value new value 

------ ------- ------ ---------- ----------
6 T2 3 10 9:30 INSERT CUST value 

------ ------- ------ ---------- ----------
7 T3 4 12 9:31 MODIFY SP old value new value 

------ ------- ------ ---------- ----------
8 Tl 5 0 9:31 COMMIT 

------ ------- ------ ---------- ----------
9 T4 0 13 9:32 START 

------ ------- ------ ---------- ----------
10 T2 6 0 9:33 COMMIT 

------ ------- ------ ---------- ----------
b. Loq Instance for Four Transactions 

Fiqure 2. Transaction Loq 
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recovery manager uses these pointers to locate all records for 

a particular transactions rapidly. 

Other data items in the log are the time of the action, 

the type of operation (START, COMMIT, INSERT, MODIFY, etc.), 

the object being modified, and the before and after images. 

The before images are always written to the log before the 

change has been made to the database. This is known as the 

write ahead log protocol £161 so when a failure occurs after 

the log has been written, but before the database has been 

changed, all activities are known. In addition to these 

fields in the log, some other data items can be added, such as 

action identifier, length of log record, and record identifier. 

Lo9s, sometimes called audit trails or journals, are used 

in the recovery process. Given a log with both before and 

after images, the undo and redo operations are 

straightforward. Undoing a transaction involves applying 

before images of all of its changes to the database. Redoing 

a transaction involves applying after images of all of its 

changes to the database. In this case, the before and after 

images are sometimes referred to undo-information and 

redo-information. This action assumes that an earlier 

version of the database is available. If it is necessary 

to restore a database to its most recent usable. state 

and to reapply all transactions, then a great deal of processing 

time may be required. To minimize this problem, the database 

management system provides a facility called a checkpoint. 

Checkpointing algorithms require the system periodically 
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make a copy of the database. The checkpoint process consists 

of writing a BEGIN_CHECKPOINT record in the log, along with a 

list of currently active transactions, then flushing a backup 

copy of the database on secondary storage, and finally writing 

an END_CHECKPOINT record in the log. 

Checkpointing is necessary for database recovery 

because it affects the amount of work that needs to be done at 

recovery time. Four distinct approaches are introduced £221 

to show how checkpoint activities generated: 

1. Fuzzy Checkpoints. The backup database is being 

produced while executing transactions are occurring. The 

backup database produced by such a checkpoint is called fuzzy 

because it may contain partial updates from transactions. 

2. Transaction-Oriented Checkpoints. The checkpoint is 

initiated after a transaction is completed. Hence, the 

END_TRANSACTION record of each transaction can be interpreted 

as a BEGIN_CHECKPOINT and END_CHECKPOINT record. Transaction­

oriented checkpoints are given in Figure 3-a. Checkpoints cl 

and c2 are taken when transactions Tl and T2 reach normal 

termination. 

3. Transaction-consistent Checkpoints. When a 

checkpoint generation is signaled by the recovery components, 

all incomplete transactions must be completed. Then the 

checkpoint is performed and all new transactions are delayed. 

After the END_CHECKPOINT record has been written to the log, 

normal processing is resumed. This is illustrated in Figure 

3-b. Transactions T3 begins after checkpoint cl is taken and 



checkpoint 
generated 

I I 
Tl 1----------------1 I I 

T2 1------1-------1 I 
T3 1---1-------1-------------1 

I I I 
cl c2 system crash 

a. Transaction-Oriented Checkpoints 

checkpoint 
cl generated checkpoint 

signal ,-.A--., I 
I I I 

Tl 1--------.-----1 I I I 
T2 1---.------------1 I I 

T3 1 •..•• 1 ••••. 1--------1 I 

processing delay 
for new transactions 

T4 1---------1 
I 

system 
crash 

b. Transaction-consistent Checkpoints 

checkpoint checkpoint cl 
signal fgenerated 
·~ I 
. I I I 

Tl l----l----1-l------l---------l----------------1 
T2 1---1-1------1-------------1------------1 

. I I T3 1----1----------1---1 
T4 1----1----1 . I I I 

TS 1----1-1 .....• 11-----1 I 
. I I T6 1----1---1---1 I 
""---v----J I 
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processing system 
delay for action crash 

c. Action-consistent Checkpoints 

Figure 3. Three Different Criteria for Checkpoints 



completes before the system crash, so T3 needs to be redone; 

whereas, transaction T4 is incomplete, so it must be undone. 

There is no effect on transactions Tl and T2, since their 

updates are saved on the checkpoint disk. 
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4. Action-consistent Checkpoints. Action-consistent 

checkpoints are generated in a way similar to the 

transaction-consistent checkpoints. The checkpoint for 

action consistency is geperated when no update action is 

being processed. Figure 3-c illustrates action-consistent 

checkpoints. The actions of transactions Tl and T2 since the 

preceding checkpoint, cl, must be undone. Transaction T3 

must be rolled back. The recovery process must redo the last 

action of transaction TS and all of transaction T6. 

Checkpoints also are called dumps and/or saves. There 

are two different aspects of checkpoints. Either the entire 

database or only those portions of the database that have 

updated since the last checkpoint are recorded on each 

iteration. Checkpoints which belong to the former classes are 

called full checkpoints. The others are called partial check­

points. Using the log together with a most recently checkpointed 

database, the recovery manager can restore the database to a 

usable state from which normal processing is allowed to proceed. 

Types of Database Failures 

A wide variety of failures can occur in processing a 

database, ranging from the input of incorrect data to complete 

loss or destruction of the database. Three of the most common 
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types of errors are aborted transactions, system failure, and 

database loss or destruction. Each of these types of errors 

is described below, and the most common recovery procedure 

is indicated. 

Transaction Failure. For some reason, the transaction 

does not reach its normal termination. Example of such errors 

are deadlocks, timeout, incorrect input data, and protection 

violations. 

When a transaction aborts or must be aborted by the 

system, any changes made by the transaction but not yet 

committed to the database must be undone in reverse order. 

The recovery action for this kind of failure is called 

transaction UNDO. 

System Failure. The system is shut down in an 

uncontrolled manner. The contents of main storage are lost. 

Such a failure can be caused by an operating system fault, 

power loss, or operator error. 

When the system crashes, the changes caused by all 

incomplete transactions must be removed, and the changes caused 

by all completed transactions must be redone. The recovery 

action of the first sort is called global UNDO; whereas, the 

latter is called partial REDO. 

Media Failure. A media failure is a failure in which 

some portion of the database has been destroyed physically. A 

typical cause of media failure is· a disk head crash. 

A backup copy of the database is required for recovery in 

this situation. The first step is to restore the latest 



consistent backup copy and then performs REDO operations for 

all transactions completed since the copy was created. This 

recovery action is called global REDO. 
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The above three types of failure are generally happen in 

classical database systems. In Haerder and Reuter (221, they 

give some interesting empirical figures regarding frequency of 

occurrence and typical recovery times for three kinds of 

failure in a typical large system (TABLE I). 

TABLE I 

FREQUENCY OF OCCURRENCE AND RECOVERY 
TIME FOR THREE TYPES OF FAILURE 

Failure Type 

Transaction 

system 

Media 

Frequency of Occurrence 

10 to 100 per minute 

Several per week 

Once or twice per year 

Literature Review 

Recovery Time 

same as trans. 
execution time 

few minutes 

1 to 2 hours 

Making computers easier to use is the goal of most 

software. Database management systems, in particular, provide 

a programming interface to ease the task of writing electronic 

bookkeeping programs. The recovery manager of such a system 

in turn eases the task of writing fault-tolerant application 
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programs [271 £301. 

System R is a database system which provides a 

relational model of data. It uses write-ahead logging in 

combination with shadow pages [211 [311 to support COMMIT, 

ABORT, and UNDO actions. A major virtue of shadows is that 

they ensure that a system restart always begins with a RSS 

(Research Storage System. an internal system which supports 

data access method) action-consistent state. This is quite a 

simplication and probably contributes to the success of system· 

restart." Shadow schemes, however, consume an inconsequential 

amount of disk space. On the other hand, in order to use the 

shadow mechanism, one must :reserve a large amount of disk space 

to hold the shadow pages. 

Database cache £141 is the other recovery mechanism for 

disk-based databases. It uses large amounts of main memory 

space to store all currently active pages plus some other pages 

which are needed for reading. The design of database cache is 

to achieve the goal of high throughput of short transactions. 

A long update transaction may cause the cache to overflow. 

A demand paging technique can be used to bring pages into 

main memory [311 to avoid the overhead of using the entire 

database. No log is used, rather a safe located in non­

volatile memory containing data needed to reconstruct part of 

the cache after failure is maintained. 

With the traditional databases, the current database 

state exists partially in main memory, and partially in 

secondary stora9e. Retrieval and update transactions suffer 
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the lonq delays caused by disk I/O when the desired record 

does not reside in primary memory. Due to the declininq cost 

per bit of main memory and to rising chip densities, it is 

becoming feasible to store complete databases in primary memory. 

With the entire database in main storage, transactions suffer 

no disk delays. As a result, the memory-resident ~atabase 

system can improve performance through reduced CPU overhead 

as well as through the elimination of disk access time. 

Because of the volatility of main memory, main memory databases 

complicate database recovery issues, This makes the recovery 

operations for disk-based databases dif~erent from that for 

memory-resident databases. 

When discussing the memory-resident database recovery, it 

is important to realize that any recovery schemes must deal 

with data in primary storage. Secondary storage is used only 

for backup purposes. In memory-resident databases, a system 

failure can be treated as a media failure with disk-based 

databases and a global REDO performed. Media failures with 

memory-resident databases can effect the archive database or 

log, restoring these files may mean a global REDO applied. 

However, when the specific location of media failure can be 

identified, a partial REDO is required to recover the affected 

area. The differences between disk-based database and memory­

resident database recovery operations are listed in TABLE II. 

The issues concerning memory-resident database recovery 

have been receiving increased exposure over the last few years. 

One of the first memory-resident databases is IMS/VS Fast Path 



£241 £251. IMS/VS Fast Path is the first commercial product 

that uses the idea of group commit to reduce traffic to the 

log disk by delaying flushes of several transactions' log 

records during the commit phase. Transactions must spend 

additional time waiting for their commit groups to assemble. 

This becomes a great influence on throughput. 

Failure 
Types 

Transaction 

system 

Media 

TABLE II 

DATABASE RECOVERY OPERATIONS 

Recovery Operations 

Traditional 
Databases 

Transaction UNDO 

Global UNDO 
Partial REDO 

Global REDO 

Memory-resident 
Databases 

Transaction UNDO 

Global REDO 

Global REDO 
Partial REDO 

DeWitt et al. [101 describe a recovery method with the 

14 

possibility of stable memory. They use a small non-volatile 

random access memory as a log buffer to perform log 

compression through which some undo and redo items can be 

eliminated. They also proposed an overlapped checkpointing 

algorithm which requires a high degree of synchronization 

and data sharing. 
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Additional concerns center around the increasing in the 

number of main memory components. These concerns are under 

investigation at Princeton University. The Massive Memory 

Machine [151 project is designed to support massive amounts of 

primary storage to allow the serial execution of transactions. 

The improved performance can eliminate-the need for concurrency 

control. Associated with the Princeton project is the design 

of a main memory database recovery scheme based on a hardware 

logging device, HALO [181. HALO monitors the main CPU, 

intercepts word-level writes to the database, and logs them 

before passing them onto the database system. 

In [231, Hagmann proposed using the existing recovery 

techniques of fuzzy dumps and log compression to provide a 

fast restart after a crash. His design concentrates 

on medium-size main memory databases (approximately 1 Gbyte) 

that have many small updates; e.g., debit/credit transactions. 

Another recovery technique for main memory databases is 

presented by Eich in [12). Eich in her paper describes an 

automatic checkpoint which runs on a separate recovery 

processor. In order to accomplish automatic checkpointing, 

the log manager monitors the log state and finds the most 

recent checkpoint record on the log, then the recovery 

processor waits for the database system to become quiescent 

and performs the checkpoint. 

Putting the system into a quiescent state until no update 

transaction is active may cause an intolerable delay for 

incoming transactions. An algorithm for continuous consistent 
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checkpointing is presented by Pu in (321. Pu states that the 

database system does not need to be quiesced to obtain a 

consistent checkpoint; lnstead, the checkpoint runs 

concurrently with the normal transaction processing, and locks 

the entities in the database one by one so that transactions 

which do not interfere with the checkpoint process are allowed 

to run. 

The design for a memory-resident database system 

including data structures, query processing, and recovery 

technique has been proposed by Lehman £281 £291. Recovery 

processing uses a stable log buffer as well as a special log 

processor to perform the checkpointing operation. The use of 

a log processor reduces the amount of logging work done by the 

main CPU. Thus, through decreasing CPU cost, a greater response 

time in logging is achieved. Finally, £161 (171 presents a 

a taxonomy of previous recovery policies on main memory 

databases based on the update, logging, checkpoint, and backup 

policies. 

Overview of Thesis 

This paper examines recovery techniques for both disk­

based databases and memory-resident databases, identifies 

differences between the two, and proposes a memory-resident 

recovery technique. The paper outlines the recovery-mechanisms 

used in the disk-based databases; sketches previous work on 

memory-resident database recovery; introduces a proposed new 

design; presents a comparison among recovery techniques for 



main memory databases; and concludes by listing areas for 

future work. 
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CHAPTER II 

RECOVERY FOR DISK-BASED DATABASES 

The first recovery algorithm of interest is the one used 

in system R (211. System R consists of an external layer 

called the Research Data System (RDS) and a completely 

internal layer called the Research Storage System (RSS). The 

external layer provides a relational data model and operations 

thereon. The RSS is a nonsymbolic record-at-a-time access 

method. The RSS provides actions on the object it implements. 

Each segment consists of a page table with pointers to the 

data pages. Associated with each pointer in the page table 

are three bits: a shadow bit; a cumulative shadow bit, and a 

long term shadow bit. When a segment is updated, its new 

value is put in a newly allocated page, and the current 

version of the page table is updated to point to the new page. 

The backup version remains unchanged. -For each page that is 

updated, both the shadow bit and the cumulative shadow bit are 

set in the page table entry of the segment containing the page. 

When the current state of the segment is saved, the shadow bits 

are switched off, and the old pages of the backup version, having 

been replaced by the new versions from the current copy, are 

released. Checkpoints for all the segments are taken regularly 

in an RSS action-consistent state. This involves copying all 

18 
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of the pages of all segments in the system for which the 

cumulative shadow bit is on. The long term checkpoint bits 

are used to make sure that subsequent saves do not release 

the page before the checkpointing algorithm has copied them. 

Implementors using this design suggest both that shadowing is 

a very expensive process, and that logging would probably 

sufficient in their system. 

The TWIST algorithm devised by Reuter [341 is designed 

for fast UNDO recovery. It uses a shadow pages scheme, 

allocating two physical blocks for each database segment; 

that is, it contains the new state of a segment and its before 

image in secondary storage. In the TWIST algorithm, each 

segment is augumented with a bit indicating which of the 

two backup blocks of that segment is updated most recently. 

When a checkpoint begins, it is assigned a timestamp. 

During checkpointing, the segment is written to the least 

recently updated of its two backup blocks. The timestamp of 

the checkpoint also is stored with that flushed segment. When 

recovery proceeds, the two backups of each segment are read. 

The block with the larger timestamp is chosen and the segment 

in primary memory is restored from that block. 

Next in the TWIST algorithm is database cache [141. It 

is designed to replace the traditional buffer, and therefore, 

allows an efficient solution to low database traffic. The 

design consists of three components: the physical database, 

the cache, and the safe. The physical database contains 

exactly one version of each database page. The cache, a part 



of main memory space, holds all the pages that are needed 

for reading or modifying of an active transaction. The 
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safe which resides on disk is a backup memory used to protect 

the contents of the cache in case of a system failure. When 

a transaction wants to update a page, then the desired page 

is read from the database into the cache as the original if 

it is not in the cache; otherwise, it is modified and becomes 

a dirty version of that page. When a transaction reaches 

the commit phase, all corresponding dirty pages are written 

sequentially onto the safe; the changed pages are written 

back to database from the cache with update-in-place. This 

implies that a transaction-oriented checkpoint is taken after 

every transaction. If a transactibn is aborted, or aborts 

itself, all pages belonging to that transaction simply are 

released in the cache; therefore, no I/O is required. 

Recovering the database after a crash is simple, only involving 

loading the safe back into the cache, then normal processing 

is allowed to resume. The database cache approach shows high 

throughput for short transactions. However, in the case of 

a long transaction the cache cannot hold all of its pages so 

some of them must be written to disk, thus requiring the use 

of UNDO log records and write-ahead logging protocols. 

Finally, a survey of recovery techniques used in 

traditional database systems is given [351. These recovery 

techniques, applied in different environments, provide 

different kinds of recovery for databases and restore them 

to a usable state. They are: 
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1. Recovery to a correct state (a database is in a 

correct state both if the information in it consists of the 

most recent copies of data put into the database by users and 

if it contains no data deleted by user). 

2. Recovery to a correct state which existing at some 

moment in the past (i.e. a checkpoint). 

3. Recovery to a possible previous state. 

4. Recovery to a valid state (a database is in a valid 

state if its information is part of the information in a 

correct state). 

5. Recovery to a consistent state (a database is in a 

consistent state if it is a valid state, and the information 

it holds satisfies the users' consistency constraints). 

6. Providing crash resistence. 

Techniques employed for different kinds of recovery are 

divided into seven categories: 

1. Audit trail -- An audit trail records the sequence of 

actions performed on a file. It can be used for the purposes 

of crash recovery and backing out to restore the database to 

a correct state. 

2. Backup/current version -- The files contain the 

previous/present values form a backup/current version of the 

database. Backup version can be used to restore files to a 

previous state. If it is together with current version, they 

are used to restore files to a checkpoint state. 

3. careful replacement -- When the update is performed, 

the copy of a component, which replaces the original, is kept 



until after the replacement is made successfully. In other 

words, two copies exist only during update; otherwise, there 

is just one copy containing the current value. This makes 

the update or sequences of updates as safe as possible by 

reducing the chance of being left with an inconsistent copy 

or mutually inconsistent files. This technique is used to 

restore a state prior to update. 
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4. Differential files -- The. main file remains unchanged. 

All changes that would be made to a main file are recorded in 

a differential file. The differential files regularly are 

merged with the main files. A differential file is a type of 

audit trail, yet the actual updates have not been made. The 

differential file can be used to restore the database to a 

valid state. 

5. Incremental dumping -- Incremental dumping creates 

checkpoints for updated files. It copies updated files onto 

archive storage either after a job has finished or at regular 

intervals. Incremental dumping provides a facility of 

restoring all the files to their previous consistent state. 

6. Multiple copies At least two copies of each file 

are kept. The different copies are identical except during 

update. If the number of copies is odd, then a majority 

having the same value is taken as the correct one. If there 

are two copies of a file, then a bit can be used to indicate 

"update-in-progress," while the state is inconsistent. This 

technique provides crash resistence. 

7. Salvation program-- A salvation program is a last 



resort, used if all other techniques fail. It cannot bring 

the database back to a previous state. It only rescues the 

information that is still recognizable. 
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Although the traditional recovery algorithms may perform 

correctly on a disk-oriented database, they might not perform 

satisfactorily on a memory-resident database. Therefore, 

several recovery algorithms for a memory-resident database 

have proposed to log and checkpoint the memory-resident 

database efficiently. 



CHAPTER III 

RECOVERY FOR MEMORY-RESIDENT DATABASES 

One way to classify main memory database systems is 

according _to the number of users they support. This 

classification can affect the recovery components of the 

system. In a single-user system with only one user at a time 

processing the database, data integrity is simpler to maintain 

·since data recovery algorithms can be implemented more easily. 

In contrast, multi-user database systems are accessed 

concurrently by many users. The recovery in a multi-user 

system is much more complex than recovery in a single-user 

database system. Special precautions need to be taken to 

prevent data inconsistence. The following sections introduce 

existing recovery methods for single-user and multi-user 

database environments. 

Single-User Database systems 

Single-user memory-resident databases most frequently 

are found on personal microcomputers. Reflex is a database 

manager product from Borland International Company £41. The 

database in Reflex is an organized collection of records, in 

which information is entered. With the displaying and 

manipulation of the database, Reflex provides five different 
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views for users to show the same information. These five 

views are: Form, List, Graph, crosstab, and Report. Since 

all five views arise from the same underlying·database, 

changes made to one view instantly affect the others. 
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Additional features provided by Reflex include the Trans­

late Program and the Export facility. The Reflex Translate 

Program converts files created with other programs to the 

Reflex format. Conversely, the Reflex Export converts Reflex 

files into a form readable by other programs. 

The second generation of the Reflex database management 

system is Reflex Plus. It is designed to support larger 

record sizes (up to 4,080 characters per record for the APPLE 

Macintosh users). 

Data-recoverable capabilities of both Reflex and Reflex 

Plus are at the record level. For internal recovery, undoing 

any deletion of records is accomplished by a second confirmation 

by the user so that the data is not erased when the user 

accidentally deletes a record. Restoring removed and replaced 

columns involves performing commands to restore their 

original states without affecting the database. For external 

recovery, a recovery program called Flexrec is used to recover 

corrupted data from a disk crash. If the damaged portion of 

the disk is recoverable, then the program outputs the 

diagnostics to a .doc file and outputs the data which still 

is recognizable to a .prn file. The .doc file contains 

information about master record address, the address and the 

length of the data records section, the names of the fields, 



and errors. The .prn file along with the .doc file are used 

both to identify damaged data and to restore the database. 
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The IBM OS/2 Extended Edition (EE) £261 has a bulit-in 

database manager with support for structured Query Language 

(SQL). The EE's database manager consists of an SOL-based 

relational database engine, called Data services, and a front­

end application for this engine called the Query Manager. The 

database engine (a collection of organized information 

including the database itself and catalogs and access plans 

for the database) also can be accessed by embedding SOL code 

into custom applications. Like other SOL database engines the 

EE database divides data into a series of relational tables, 

with rows (records) and columns (fields). The user can 

construct a VIEW of a database by SELECTing various columns 

and JOINing tables. 

The EE database also includes a transaction management. 

The goal of transaction management is to ensure that a 

transaction is completed successfully even when a catastrophe 

occurs while the transaction is being processed. This problem 

is handled by a pair of functions called COMMIT and ROLLBACK. 

All transactions first are written to a buffer. After the 

transactlons are completed, they are written (or committed) 

to the database files. If a problem occurs before they are 

completed, then the transactions are rolled back and executed 

over again. The COMMIT and ROLLBACK functions are performed 

automatically, but the user also can have explicit control 

over them. 



Another feature of the database engine for transaction 

management is a recovery log. The log lists each new record 

and the record that was replaced. Also, the recovery log is 

written to disk before the database on the disk is updated. 

With the log, the user can reconstruct the database or 

complete the updating of the database. 
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In addition to its SQL capabilities, the database engine 

also includes a number of interesting utilities. The system's 

BACKUP and RESTORE utilities let the user do short, 

incremental backups, or restore the database to any prior 

condition. 

Some other current single-user main memory databases 

and the backup and recovery facilities they provide are listed 

in Appendix A [51. 

Multi-User Database Systems 

The IBM IMS Fast Path £241 £251 is the first system that 

uses a memory database which is treated differently from the 

rest of the disk-oriented IMS database. Page updates are not 

performed until commit time. Log records are not flushed 

immediately upon commit, rather they are collected in a 

special database buffer with other committed records so that 

the cost of writing the log pages can be amortized over several 

transactions. IMS Fast Path performs transaction-consistent 

checkpoints which write entire database to the archive after 

system quiesced. 

Researchers at the University of California at Berkeley 
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[101 were the first to use the notion of a pre-committed 

transaction. When a transaction commits, its commit record is 

placed in the log buffer to allow other conflicting transactions 

processing to begin. This accelerates the commit process by 

reducing the amount of time a transaction must walt until its 

log records are flushed. Commit processing actually completes 

when the log buffer has been flushed to disk. Frequent 

action-consistent checkpointlng is made in parallel with 

transaction processing. The previous checkpointed pages are 

written to disk as a temporary log while the memory copies of 

the checkpointed pages are written in-place to the disk. once 

all the checkpointed pages have been written to disk, the 

temporary and memory copies are released. 

IBM's Office by Example (OBE) £21 uses a memory-resident 

database design including data structure representation and 

recovery techniques. It is assumed that every relation 

participating in a transaction is read once at the beginning 

of the transaction and, if modified, written to disk at the 

end. OBE uses shadow pages in stable storage. All new 

copies of modified relations are written to shadow areas on 

the archive database at commit time. Transaction-oriented 

checkpolnting occurs continuously. The cost of flushing log 

data at the end of every transaction appears to be very high. 

The hardware logging device, HALO [ 18 J, is designed t.o 

reduce some recovery duties handled by the main processor, such 

as initiating I/O to the log disks and copying to buffers. 

HALO has the internal registers and data and command paths both 
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to the main CPU and to primary memory. HALO intercepts 

communications between the processor and the memory to create 

a before-image and after-image log. HALO contains stable 

random access memory which implies that the log buffers need 

not be flushed before allowing transactions to commit. The 

before-image log data is needed to undo aborted transactions. 

Action-consistent checkpoints to the archive database occur 

continuously and in parallel with transaction processing by 

reading the entire main memory database and identifying 

changed pages. 

Hagmann [231 outlines a method of doing recovery that 

uses fuzzy dumps and log compression to provide a quick 

transaction processing and rapid restart after a crash. A 

memory image is periodically written to disk while the normal 

database system is running and modifying the database. There 

is very little coordination between the dumper and the main 

database system. The dump is inconsistent since it may 

contain partial updates from transactions. This method 

provides an almost up-to-date and stable copy of the database 

with the oldest data only a few minutes old. In order to 

support this type of fuzzy dump, the UNDO and REDO log 

information must be in physical before-image or after-image 

form. Therefore, the log grows large quickly. Log compression 

then is needed to keep the log short so that crash recovery 

only processes a small amount of log; that is, the redo part 

of aborted transactions and the undo part of committed 

transactions can be eliminated. This is performed by a 



software compressor. The logging, in this case, is done at 

the page level which requires much more log data to be 

manipulated than if logging were done at the record level. 
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Another technique that uses main memory shadow pages, 

pre-committed transactions, automatic checkpointing, and a 

recovery processor is given by Eich [121. Main memory shadow 

pages are used to achieve the goal of no I/0 for transaction 

UNDO. Update transactions create duplicate copies of these 

pages. At commit time, a commit record is written in the log 

buffer. As soon as this occurs, other conflicting 

transactions are allowed to progress. They use the data 

in the dirty pages or, if needed, create new copies of ~ny 

modified pages. If a transaction commits, the previous 

clean pages are released and the dirty pages become the new 

clean ones. Undoing the effects of a transaction simply 

releases the dirty pages. The automatic checkpoint is 

obtained in a way that the log manager monitors the state of 

the log and keeps track of it. The log state has an initial 

value of 0. When the BEGIN_TRANSACTION record is written to 

the log, the state value is incremented by 1. Whereas the 

COMMIT_TRANSACTION and ABORT_TRANSACTION records decrement the 

state value by 1. When the log manager detects a state value 

of 0, a transaction-consistent checkpoint is then triggered. 

The checkpointing is accomplished by a recovery processor. 

It waits for the database system to become quiescent, then 

it blocks out other transactions while the entire database is 

written to disk. 
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Lehman £281 £291 sketches a method on efficient logging 

mechanism that uses stable random access memory and a recovery 

processor. Transaction update operations are performed in a 

volatile UNDO space at the record level. When a transaction 

terminates normally, records in the UNDO space are moved to 

the stable memory and become the REDO records. Transactions 

UNDO are done by discarding its UNDO records. The recovery 

manager, running on the recovery processor, organizes the 

REDO log records into partition bins. A partition bin is a 

unit of transfer that is larger than a typical disk page. 

As partition bins become full, they are written to the log 

disk. Each partition bin also has an update count. When a 

partition has accumulated a specified threshold count of log 

records, it is marked to be checkpointed. If a partition 

not having a sufficient number of updates but remaining in 

the stable memory longer enough, it is also marked to be 

checkpointed because of age. Actual checkpointing is 

performed by the transaction manager that runs on the main 

processor. For each partition checkpoint request, the 

transaction manager reads the specified partition from the 

database and writes it to the checkpoint disk on a 

transaction-consistent state basis. Since each partition 

is checkpointed at a time, the cost of a checkpointing is 

amortized over several update transactions. 



CHAPTER IV 

A PROPOSED RECOVERY DESIGN 

Objectives 

In most modern computers, the main processor is considered 

such a valuable resource that it should spend as little time 

as possible perform activities other than normal processing. 

In a high-performance database system, transaction throughput 

is important, so the time required for the commit phase 

should be small. This can be accomplished by using stable 

random access memory. In addition, any I/O needed should be 

performed asynchronously with normal processing. This implies 

that log I/O occur not only at commit time, but also throughout 

transaction processing. Moreover, frequent checkpoints are 

necessary to speed recovery in order to reduce the amount of 

log data that must be scanned. Checkpoint policies can be 

divided into two aspects: full and partial. For better 

efficient checkpointing algorithms, partial checkpointlng is 

performed with little interference on transaction processing. 

Therefore, the use of three different processors to perform 

three tasks for normal processing, logging, and checkpointing 

is proposed to achieve the following requirements: 

1. Reduce main CPU overhead. 

2. Accomplish frequent checkpoint with little 
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interference on normal processing. 

3. Acquire greater throughput. 

Description of Hardware components 

The proposed model (Figure 4) is composed of a main 

processor, log processor, a recovery processor, stable memory, 

and a set of disks. The main processor -- an IBM 3090 model 

type of CPU -- is designed for heavy transaction processing 

loads which can process up to 79 millions of instructions per 

second (MIPS) [71 £61. The VAX 8620, containing two VAX 8700 

CPUs which perform as the log and recovery processing, offers 

performance of 11.4 MIPS (6). Each processor in the VAX 8820 

also can initiate its own I/O. 

CPU (main) 

v 

I I 
I main memoryl DBMS 
I database I 

I --------
1<->1 log I 
I lbufferl 

(stable 
memory) 

CPU I (log) 

v -------
<----> I log 1<-> 

I tail I 
-------

(stable 
memory) 

------
I I 
I log I 
I disk I 
I I 
------

v 

<--------------------------------------------1 CPU I 
v 

I 
I (checkpoint 
I disk) 
I 

(recovery) 

Figure 4. The Proposed Recovery Model 



Furthermore, two to six VAXBI buses (an electronic link 

for input and output in VAX machines) are available on the 

VAX 8820 to speed the transfer between the main memory and 

secondary memory. 

The recovery processor has access to the stable memory. 
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The stable memory, made of non-volatile random access memory, 

is divided into two parts: a log buffer, and a log tall. The 

stable log buffer is used to hold tran~action log records; 

whereas, the stable log tall contains units of log records. 

The disks used for maintaining recovery information are 

separated into two groups. one set of disks holds log 

information while another set of disks holds checkpoint 

information. Redundant copies of the recovery information 

can be provided to further protect data on secondary 

storage from a media failure. 

The three processors have logically different functions. 

The main processor is in charge of regular transaction 

processing. The log processor manages the log information. 

It collects log records and groups them into units for 

transferring to the log disk. The two CPUs are required to 

shared only the stable log buffer, using it as a communication 

buffer along with its other uses. The recovery processor 

manages checkpointing operations, archive storage, and if 

necessary, restore the database in case of a system crash. 

Logging 

The logging procedure consists of three steps. First, 
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transactions create REDO log records. The REDO log records 

are placed in the stable log buffer. second, the log manager, 

which runs on the log processor, reads the log records of 

committed transactions from the stable log buffer and places 

them into the stable log tall. In the stable log tall, log 

records are grouped into pages unit&. Third, these page units 

are written to disk when they become full. 

When a transaction reaches its commit processing phase, 

the main CPU places its REDO log records in the stable memory 

so that the transaction can commit immediately. once this is 

done, other conflicting transactions can begin to proceed. 

This is the only logging operation which involves the main CPU. 

Since the REDO log records are kept in the stable memory, 

the log only maintains the after images of modified data. If 

a system failure occurs, then committed transactions are 

redone. If a transaction abnormally terminates, then undoing 

the effects of the transaction simply releases the UNDO 

records in main memory. 

The log processor collects transaction log records in the 

stable log tail and organizes them into page units according 

to their corresponding memory allocations. When the log 

records fill up a log page, the records are ready to be 

written out to the log disk. The log processor initiates a 

disk wr 1 te r.equest for that page. Log records in that page 

unit are maintained in commit order so that they can sent to 

disk in commit order. 



checkpointinq 

System checkpoints are triggered at regular time 

intervals by model parameters. The recovery processor 

performs checkpoints at each interval to obtain an up-to-

date backup copy of the database. Each database page is 

augumented with a dirty bit which is set by transaction 

updates and cleared when the page has been checkpointed. 

When a checkpoint begins, the checkpointing algorithm writes 

a BEGIN_CHECKPOINT record in the log, and scans through the 

database from the most recently checkpointed page until a 

dirty page is found. After a page has been identified as 

being dirty, the checkpointing algorithm sets a read lock 
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on the page and waits in a high priority basis until it is 

granted (if there are several read locks in a waiting list, 

then the read lock issued by the checkpointing algorithm has 

the highest priority among others). When the read lock on 

that page is granted, the checkpointing algorithm allocates 

a block of memory large enough to hold the page, copies it 

into that memory, and released the read lock. Pages locks 

are held just long enough to copy at memory speeds, so there 

is little synchronization between the checkpointing and normal 

transaction processing. A checkpoint ends after writing an 

END_CHECKPOINT record in the log. Finally, the recovery 

processor records the address of the most recent checkpoint in 

the archive database. 

The checkpoint disk space must be large enough to hold two 
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complete copies of the database: a previous copy and a current 

copy. The two backup copies are written alternately. This 

backup policy is a way to protect the archive database from a 

media failure. 

crash Recovery 

Since the primary copy of the database is memory­

resident, a transaction can begin to run if the information it 

needs is in main memory. Restoring the memory copy of the 

database involves reloading the most recent copy of the 

database, then using the log -- both active and archive 

portions .-- to redo all transactions that completed since that 

copy was taken. There is -no need to undo transactions that 

were still in progress at the time of the crash, since all 

updates of such transactions have been lost. 

System restart proceed as follows: The recovery manager, 

running on the recovery processor, loads an earlier copy of 

the database back into the main memory. Next, it reads the 

log backwards to the point where the last checkpoint was 

taken. Then the database is rolled forward reapplying after 

images for all transactions that were proceeded after that 

checkpoint. Once the information has been restored, regular 

transaction processing begins. 

Discussion of the Proposed Model 

This section uses a performance model based on the model 

introduced in [11 £131 [331 to compare recovery methods in a 
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normal database system. Performance measures of transaction 

cost and throughput are derived based on estimate of CPU and 

I/O costs involved in database processing. The transaction 

cost includes costs for the main CPU and any I/O needed prior 

to commit processing. The transaction cost also includes 

costs for transaction undo and logging. The throughput rate 

is calculated by using the transaction cost. The checkpoint 

cost also is considered when calculating the throughput rate 

by reducing the main CPU processing power. The parameters and 

measures used by the performance model are shown in TABLE III. 

Based on the Reuter's information [331, CPU time for 

accessing a page, Cp, and for copying a page, Ceo, are taken 

to be 0.8 ms. Based on Reuter's statistics [331, the I/O time 

for writing a loq record is assumed to be 10 ms. The Pd 

parameter is estimated half duplication of the modified pages 

which is required for checkpointing. Based on the information 

given by Eich (131, the probability of update transactions, Fu, 

is normally 0.25 and the percent of transaction undo is 0.03. 

Based on the statistics given by Agrawal and DeWitt [11, 

the percent of referenced pages of update transaction is 0.5. 

Based on the Reuter's information (331, the S parameter is the 

average number of pages referenced per transaction. It is 

taken to be 500. The main CPU involves the amount of logging 

activity is based on the size of a log record, sr, since the 

size of a log record may influence on I/O. The Sr has a 

default value of 0.25. When a group commit is used, the 

number of transactions committed in a group is assumed to be 
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5. Based on £191, the checkpoint interval, I, is taken to be 

300 seconds. Based on £221, the average time between system 

failures T, is assumed to be 3 days. 

TABLE III 

PARAMETERS AND MEASURES 

Parameter Description 

Cp 
Ceo 
Cio 
Pd 
Fu 
Pb 
Pt 
s 
Sr 
n 
I 
T 

Measure 

Cb 
Cc 
Cl 
cr 
ct 
cu 
Rt 

CPU time to access page 
CPU time to copy page 
I/0 time to write page 
Percent of duplicate updates 
Percent of update transactions 
Percent of transaction undo 
Percent of page updated 
Number of page referenced 
Size of log record 
Number committed in group 
Checkpoint interval 
Failures interval 

Description 

Cost for transaction undo 
Checkpoint Cost 
Logging cost 
Cost of retrieval transaction 
Cost of average transaction 
Cost of update transaction 
Throughput rate 

Default 

0.8 ms 
0.8 ms 
10 ms 
0.5 
0.25 
0.03 
0.5 
500 
0.25 
5 
300 sec 
3 days 

General types of transactions are transaction reads and 

writes. Most of the time the transactions are reads. The 

transaction cost is calculated based on the frequency of 

retrievals and updates: 

Ct = Cr * (1 - Fu) + CU * Fu. 



In turn, the cost of retrieval transactions is based on 

the number of pages referenced: 

Cr = S * Cp. 

The cost updating a transaction includes the number of 

pages to be read, the cost for logging the updates of the 

transaction and the cost for transaction undo: 

Cu = S * Cp + Cl + Pb * Cb; 

40 

where, Cb is the cost for rolling back the transaction in 

case of an isolated transaction failure, and Pb is the 

probability of such an event. Backout cost, Cb, is based on 

that no I/O is required and only a memory copy is needed: 

Cb = Sr * (S * Pt) * Ceo. 

Computing the cost to perform logging has several 

different aspects. If special logging hardware is used, there 

is no impact on transaction processing so that Cl is taken to 

be 0. Without logging hardware, the calculations must consider 

writing one BEGIN_TRANSACTION and one END_TRANSACTION record 

per update transaction and, for each page being modified, a 

before_image and an after_image are needed. If a group 

commit is used, then log records are grouped together until a 

log page becomes full thus amortizing the I/O time over all 

update transactions in the group: 

Cl = Sr * (2 * S * Pt + 2) * (Ceo+ Cio). 

If an immediate commit is used, then each transaction 

flushes its log records before completing; thus, partial pages 

may be written: 

Cl = (Sr * (2*S*Pt + 2) *Ceo) + crsr * (2*S*Pt + 2)1* Clo). 
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Anothe~ calculation fo~ Cl is based on that some stable 

memory is used. No IIO is needed before transaction 

commit: 

Cl = Sr * (2*S*Pt + 2) * Ceo. 

The t~ansaction cost is modified when a g~oup commit is 

used. Since there a~e n transactions committed in a group, 

the value of ct becomes: 

n 

Ct = ( L i * Ct) I n. 
i=O 

The transaction th~oughput is obtained by reducing any 

checkpointing overhead provided by the main CPU. The cc 

value is computed by using the ct value obtained, determining 

the number of transctions processed between checkpoints, and 

then the number of updates pages: 

Cc = (I * Fu * S * Pt * Pd * Ceo) I Ct. 

If checkpointing is performed by a separate p~ocessor, 

then there is no influence on the normal transaction 

p~ocessing so that Cc is assumed to be 0. The checkpoint 

cost is then used to determine the th~oughput rate: 

Rt = (T * (1 - Ccii) + Ccl2) I Ct I I. 

This throughput rate is based on the assumption that the 

final crash occurs in the middle of a checkpoint interval. 

Using this performance model, the throughput rate of 

va~iou~ recovery techniques for memory-resident databases 

is ~hown in TABLE IV. 



TABLE IV 

THROUGHPUT RATE 

Recovery Techniques Throughput(transactions/sec) 

IMS Fast Path 1.3 

OBE 1.67 

DeWitt 1.3 

HALO 2.34 

Hagmann 2.35 

Eich 1.75 

Lehman 2.27 

Chang 2.42 

The results based on throughput rate show several 

aspects which can affect the performance of transaction 

processing. First, the nonstable classes of recovery 

techniques give lower degree of throughput rate than the 

stable classes of recovery techniques. This is because, 

without stable memory, transaction commit processing cannot 

begin until all log I/O has been performed successfully. 

This I/O overhead directly affects response time. With 

enough stable memory to contain the log buffer, once log 

records have been written to the buffer commit processing 

can occur. Therefore, the use of stable memory eliminates 

the impact that logging I/0 has on transaction performance. 

Second, transaction throughput is sensitive to the impact 
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of main CPU overhead for logging. If a logging device is 

used to perform the main CPU logging function, then the use 
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of this hardware eliminates the main CPU overhead for logging. 

Third, another impact on the throughput rate is 

checkpoint overhead. The use of a separate checkpoint 

processor can eliminate the main CPU for checkpointing which 

implies that the main CPU processing speeds increase. These 

factors show the availability of stable memory and special 

logging and checkpointing hardware are the crucial recovery 

factors impacting transaction throughput. Judging from 

these results, the proposed recovery algorithm gives a 

greater performance on transaction processing than prior 

recovery algorithms. 



CHAPTER V 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

summary 

In a high-performance memory-resident database system, 

transaction throughput rate is important. such a system needs 

an efficient logging mechanism that can assimilate log records 

as fast as possible. It needs efficient checkpoint operations 

that can produce a reliable backup database and at the same 

time with little impact on normal processing. Finally, the 

recovery algorithm should not burden the main processor and 

affect transaction performance. 

The new design for a recovery algorithm meets these three 

criteria. With the use of stable memory and a log processor, 

the logging mechanism cannot inhibit the performance of 

the system. Checkpointing operations are performed by a 

recovery processor, so very little synchronization is needed 

between the checkpointing processor and the main processor. 

With the ease of the tasks for logging and checkpointing, the 

main processor can work solely on transaction processing. 

After a crash, information requested by transactions are 

recovered first so that transactions processing can begin. 

Partial memory recovery also in beneficial in the 
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event of a failure. When part of the main memory fails, the 

information in that part of memory is lost. Some existing 

recovery methods would have to recover the entire database. 
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In the case of a partial memory loss with this proposal, only 

the lost portion of the database can be restored once the 

required information has been filtered out from the checkpoint 

copy and the log. 

Conclusions and Future Work 

Recovery techniques are used to ensure that any erroneous 

database state due to transaction, system, or media failure 

can be repaired to restore the database into a usable state 

from which normal processing can resume. such techniques 

are used widely in disk-based database systems. However, 

some problems which exist in traditional database systems 

may not appear in a memory-resident database environment. 

The major problem of memory-resident databases deals with 

the volatility of main memory. This problem has been 

recognized and several new techniques for memory-resident 

database recovery have been proposed. Along with the useful 

ideas that have been generated so far, there are still 

several aspects of memory-resident database recovery that 

need better, more efficient algorithms. 

This paper proposes a recovery technique for a 

memory-resident database system. A performance model for 

comparing different recovery techniques with respect to their 

impact on overall system performance is given. It shows that 
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some key parameters can influence database performance, and 

that the proposed recovery design meets these requirements 

better than previous methods. The performance model, however, 

is not intended to yield exact performance predictions in 

terms of throughput, rather it is intended to show three keys 

parameters -- stable memory, separate logging and 

checkpointing hardware -- influencing database performance 

most significantly. In order to approach an exact model, 

one must include many details about the implementation of 

the recovery algorithm and other components of the database 

management system it has to cooperate with. Simulation or 

improving the precision of the model is needed to determine 

how the various logging, checkpolnting hardware and recovery 

operations interact when all three operations are running 

in separate processors. This is an area for future work. 
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COMPANY PRODUCT IBACK AND RECOVERY 
--------------1--------------------------

Acius Inc. 
(408)252-4444 

4th Dimension/IUser implemented 
4-D runtime I 

I 
I 

AD & P Analysis, 
Design & Program­
ming (703)790-9433 

Ultra-base !Not provided 
I 
I 
I 
I 

Advanced Business 
Hicrosystems Inc. 
(415)689-4515 

Data ace !Backup, restore partial, 

Advanced Data 
Institute Inc. 
(916)381-8334 

Aladin 

entire database 

Import, export, restart 

Ashton-Tate Corp. Dbase III Plus None 
(213)329-8000 

Dbase IV Full transaction processes, 
rollback,rollforward 

Blyth Software Inc omnis III PlusiNone 
(415)571-0222 I 

Omnis Quartz INone 
I 
I 

Borland Reflex IMedla recovery 
Internatinal Inc. I 
(800)543-7543 Paradox 2.0 !Table recovery 

I 
Paradox 386 !Table recovery 

I 
I 

Brock Software Brock Key- Rebuild function, floppy backup 
Products Inc. jstroke rela-
(815)459-4210 tional DB 

Campus America Poise DHS-Plus None 
Inc.(615)523-9506 

Century Analysis CFHS 
Inc.(415)680-7800 

Chang Laboratories C.A.T. 
(800)972-8800 

Event rollback 

None 



COMPANY !PRODUCT !BACKUP AND RECOVERY 
------------------I--------------1-------------------------
Conceptual Soft- Prodas !Backup copies of files 
ware.(713)667-4222 I 

I 
I 

Condor Computer Condor 3 Automatic audit trails 
Corp.(313)971-8880 release 2.20 

Dataease Dataease 
International Inc. 
(203)374-8000 

Empress Software Empress with 
Inc.(416)922-1743 m-builder 

1st Desk Systems 
(800)522-2286 

Fox software Inc. 
(419)874-0162 

General Data Sys. 
(215)985-1780 

IBM contact local 
sales office 

I 
llstFile 
I 
llstFile 4.0 
I 
llstTeam 
I 
I 
IFoxbase+ 
I 
I 
I 
IGDX 
I 
I 
I 
OS/2EE 

Import, export; backup, 
restore of database 

Transaction logging,warm 
restart, backup recovery 

None 

None 

File copy 

I None 
I 
I 
I 
IRollforward,rollback, 
I warm start 
I 
I 
IFull,selected backup; 
!restore to state of last 
lbackup;load,unload table 
loutput;warm restart; 

53 

commit,rollback functions 

Infocom Inc. Cornerstone 
(617)576-1851 

Informix Software Informix SOL 
Inc.(415)322-4100 

Informix 4GL 

Macon Systems Inc. ADBM 
(719)520-1555 

Backup,restore 

Transaction logs 

Transaction logs 

Internal backup, damaged 
file recovery 
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COMPANY !PRODUCT !BACKUP AND RECOVERY 
------------------1--------------J--------------------------
HDBS Inc. 1Knowledgeman/21Not provided 
(800)344-5832 I I 

Microrim Inc. 
(206)885-2000 

Nantucket Corp. 
(213)390-7923 

Novell Inc. 
(512)346-8380 

Odesta Corp. 
(800)323-5423 

oracle Corp. 
(800)345-DBHS 

I I 
I I 
IR:base ILoad,unload,reload,verify 
I !integrity of database 
I I 
I I 
!Clipper !File copy 
I I 
IHcMax !Backup, restore programs 
I Jvla programming language 

XQL 

Helix VHX 

I 
I 
I Proprietary 
I 
I 
I 
ILogglng,autosave, save as 
Jrevert to previous save 
I 

Double HelixiiiSame as Helix VMX 

Oracle 

I 
I 
I Roll forward, rollback 
I recovery 
I 
I 

Prime computer Prime Infor- ton-line transaction 
Inc.(617)655-8000 mation llogglng,rollforward, 

Progress Software 
corp.(714)969-2431 

ltape or disk backup. 
I 

Prime oracle !Rollback after image 
Jjournaling;dynamic or 
!static creation at AI 
lfiles;import,export 
I 
I 

Progress Crash-proof database 
engine,before image 
filing,rollforward,backup 

Provue Develop- Overvue Hard-disk backup 
ment(714)969-2431 

Relational Techno- Ingres 
logy(800)4-INGRES 

Checkpoint,journaling, 
rollback,rollforward 
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COMPANY !PRODUCT !BACKUP AND RECOVERY 
------------------1--------------I-------------------------Rim Technology IRTI Rim INone 
(206)451-8144 I I 

I I 
I I 

Smith, Abbott& Co.IAutopro Audit trails, change . 
(301)561-8411 I logging 

Software AG of 
North America 
(703)860-5050 

I 
I 
IAdabas 
I 
I 
I 
I 

save, restore; walk 
forward,backup functions 

The Software Group Enable 
(518)877-8600 

Automatic database 
backup,restore 

Sybase Inc. 
(415)548-4500 

Unify Corp. 
(916)920-5553 

Wordperfect Corp. 
(801)227-500 

Sybase System Physical logging;multiple 
!database support;control­
llable guaranteed recovery 
ltime;log recovery;bulk 
lcopy program;journaling; 
ltable generator;monitor­
ling tools;resource 
lcontrol;maintenance tool; 
lconsistency checker 
I 

Dataserver !Same as Sybase System 
I 

Datatoolset ISame as Sybase System 
I 
I 

Accell IDS !Transaction logging, 
!database backup, 
Jrollforward recovery 
I 

Unify rela- ISame as Accell IDS 
tional DBMS I 

I 
I 

Dataperfect !Regenerates indexes, 
lfile copy 
I 
I 



APPENDIX B 

GLOSSARY 

56 



Abort. To terminate a transaction abnormally. 

AFIH. After image. 

After image(AFIH). The new value of the updated item. 

Atomic. An adjective describing the actions of a transaction 
that either are reflected in the database or nothing are 
happened. 

Audit trail. See log. 

BFIH. Before image. 

57 

Before image(BFIH). The previous value of the updated item. 

Checkpoint(n.). A backup copy of the database. 

Checkpoint(v.). Write the database to the backup disk. 

Commit. A transaction which reaches normal termination never 
to be undone. 

Dirty page. A page which is modified by a transaction that has 
not been committed yet. 

Dump(n. or v.). See checkpoint. 

Durable. An adjective describing the results of a committed 
transaction which must survive any malfunctions. 

Full-checkpoint. The entire database which is written to disk. 

Fuzzy dump(n.). A backup copy of the database which contains 
partial updates from transactions. 

Fuzzy dump(v.). Copy the database in parallel with normal 
processing. 

Global REDO. An operation for restoring the state of the 
database after it is physically destroyed. 

Global UNDO. A procedure for removing the effects of any 
interrupted transactions from a system failure. 

Group commit. Transactions whose records are contained on a 
log page which is not flushed to disk until it is full. 

HALO. HArdware LOgging. A device used to perform logging 
functions. 

Immediate commit. A transaction whose log records are flushed 
to the log before completing. 
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IMS. Information Management System. A transaction processing­
oriented communications processor and DBMS developed by IBM. 

Journal. See log. 

Log. A logical file which contains information about active 
transactions. 

Log compression. A process for a log which filters out any 
committed or aborted items since the latest checkpoint. 

Partial-checkpoint. The portion of the database that have been 
updated recorded on a secondary device since the last 
checkpoint. 

Partial REDO. A procedure for restoring the results of any 
completed transaction which may not yet reflected in the 
database after a system failure. 

RDS. Research Data system. An external system of System R 
which supports the relational data model and the relational 
language SQL. 

REDO. An operation for repeating the actions of a completed 
transaction from a system crash. 

REDO-information. See after image. 

RSS. Research Storage System. An internal system of System R 
which provides data access method. 

Safe. A non-volatile·memory used to protect the contents of 
the cache against loss. 

Shadow page. An old page which is the shadow for the new one. 

Stability. Non-volatility. 

Stable log buffer. A stabe memory which keeps REDO log 
records. 

stable log tail. A stable storage where log records are 
grouped according to their correspoinding partition. 

stable memory. Non-volatile RAM. 

Transaction. A sequence of actions. 

Transaction UNDO. A procedure for recovery after a transaction 
failure. 

UNDO. An operation for removing all effects of an incomplete 
transaction from a system failure. 



UNDO-information. see before image. 

Update-in-place. A_ performace which writes pages to the same 
block. 

WAL. Write ahead log. 

Write-ahead log(WAL). A log protocol which requires UNDO­
information be flushed to the log before each update. 

59 



VITA 

HWEI JIUN CHANG 

Candidate for the Degree of 

Master of Science 

Thesis: RECOVERY FOR MEMORY-RESIDENT DATABASE SYSTEMS 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Taipei, Taiwan, November 8, 1958, 
the daughter of Chin May Shlu and Pel Shang Chang. 

Education: Graduated from Ging May Girl Senior High 
School, Ging May, Taiwan, in June 1977; received 
Bachelor of Arts Degree in Economics from Chinese 
Culture University in June 1981; completed 
requirements for the Master of Science degree at 
Oklahoma state University in December, 1988. 


