
RECOVERY FOR MEMORY-RESIDENT

DATABASE SYSTEMS

By

HWEI JIUN CHANG .,
Bachelor of Arts

Chinese Culture University

Taiwan

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

Oklahoma State Univ. Library

RECOVERY FOR MEMORY-RESIDENT

DATABASE SYSTEMS

Thesis Approved:

-~----{;-~~-~---------
Thesis Adviser

/-Ito~ j, a a(;~
------~~----------------------------

_tikr_E ______ ~

___ I2~Ll~_ll~----
Dean of the Graduate College

11
1318386

PREFACE

This paper presents a recovery mechanism for memory­

resident databases. It uses some stable memory and special

hardware devices to eliminate expensive I/O operations handled

by the main processor. And, through this achievement, the

throughput rate is improved.

I wish to thank my major adviser, Dr. G. E. Hedrick, for

his guidance and invaluable aid. Thanks as well to the other

committee members, Dr. H. Folk and Dr. H. Lu, for their

advisement of this paper.

Special thanks are due to Dr. D. D. Fisher, for his

helpful suggestions at the beginning of this paper.

My deepest appreciation is extended to my parents and my

husband for their constant support, moral encouragement, and

understanding during my coursework at Oklahoma State

University.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION.
Terminology .•.•••..
Types of Database Failures • . . • . . . • .
Literature Review. . • • •
overview of These ..•......•....

II. RECOVERY FOR DISK-BASED DATABASES •

III. RECOVERY FOR MEMORY-RESIDENT DATABASES ..

Single-User Database Systems .
Multi-User Database Systems ..

IV. A PROPOSED RECOVERY DESIGN •.••••

v.

Objectives . . . • •
Description of Hardware Components •
Logging ..•••..•..
Checkpointing •••••••
Crash Recovery • . • . • .
Discussion of the Proposed Model

SUMMARY, CONCLUSIONS AND FUTURE WORK ..

SELECTED BIBLIOGRAPHY ••

APPENDICES • .

APPENDIX A - SINGLE-USER MAIN MEMORY DATABASES

Page

1

2
9

11
16

18

24

24
27

32

32
33
34
36
37
37

44

47

50

AND THEIR RECOVERY POLICIES. • . . • 51

APPENDIX B - GLOSSARY . . • • . 56

iv

LIST OF TABLES

Table

I. Frequency of occurrence and Recovery Time
for Three Types of Failure . • .

II. Database Recovery Operations.

III. Parameters and Measures •

IV. Throughput Rate .••.

v

11

14

39

42

LIST OF FIGURES

Figure

1. Example of a Transaction.

2. Transaction Log .••.•...•.

3. Three Different Criteria for Checkpoints.

4. The Proposed Recovery Model . •

vi

Page

3

5

8

33

CHAPTER I

INTRODUCTION

When a database system does not perform according to

its specifications, a failure occurs. A failure is an event

which places the system into an error state. Some failures

are caused by human errors; e.g., a user mounts a wrong disk,

software faults; e.g., inappropriate data, or hardware faults;

e.g., loss of power. When a system becomes inoperable,

several problems must be addressed. First, normal functions

must continue. Second, computer operational and maintenance

personnel must work quickly to restore the system as closely

as possible to the last non-falling state. Third, users

must know what to do when the system becomes available again.

Because some work may need to be re-entered, users must know

how much work to repeat. In order to cope with failures,

additional components and algorithms for abnormal situations

are added to a database system. These components and

algorithms both remove erroneous data and restore the database

systems to correct states from which normal processing can

continue. These additional components and recovery algorithms

used to return to normal states from abnormal states in database

systems are called recovery techniques.

1

2

Terminology

Database technology can seem complex and complicated. In

part, this is because database terminology is inconsistent.

Similar concepts have different names; for example, object and

entity are synonyms in some contexts, and the same name often

refers to different concepts; for example, the term object has

different meanings depending its context. This situation exists

because database technology does not originate from a single

source (111. Therefore, in this section, a general description

of database terminology is given. The single terminology

presented here is used throughout the paper.

A database consists of a collection of logical records.

The record is the granule at which transaction interface

operates. Records also are grouped into large units called

pages and segments. If a page has a new update copy, then the

old page is the shadow for the new one(the updated copy). The

new page is called a dirty page. Pages are the granule of data

transfer between the primary and secondary memory. A segment

is a granule of storage organization in secondary storage.

A transaction is a linear sequence of actions with the

following properties:

Atomicity: either all actions are done or nothing happens.

Consistency: the property of being able to change the overall

logical and physical structure of the database when a transaction

is completed. Thus, it preserves the consistency of the database.

Durability: a characteristic of a database in which once a

----- -----

3

transaction is committed to the database, the results of the

transaction survive any system failures.

Isolation: the condition of events within a transaction

being hidden from other transactions which run concurrently.

A general example of a transaction which transfers money

from one account to another is given [201 (Figure 1).

FUNDS_TRANSFER:PROCEDURE;
$BEGIN_TRANSACTION;
ON ERROR DO;

$RESTORE_TRANSACTION;
GET INPUT MESSAGE;
PUT MESSAGE('TRANSFER FAILED');
GO TO COMMIT;

END;

I* in case of error *I
I* undo all work *I
I* reacquire input */
I* report failure */

GET INPUT MESSAGE; I* get and parse input *I
EXTRACT ACCOUNT_DEBIT, ACCOUNT_CREDIT, AMOUNT

FROM MESSAGE;
$UPDATE ACCOUNTS

SET BALANCE = BALANCE - AMOUNT
/* do debit *I

WHERE ACCOUNTS.NUMBER = ACCOUNT_DEBIT;
$UPDATE ACCOUNTS I* do credit *I

SET BALANCE = BALANCE + AMOUNT
WHERE ACCOUNTS.NUMBER = ACCOUNT_CREDIT;

$INSERT INTO HISTORY I* keep audit trail *I
(DATE,MESSAGE);

PUT MESSAGE ('TRANSFER DONE');
COMMIT:
$COMMIT_TRANSACTION;

END;

/* report success */
/* commit updates */

/* end of program */

Figure 1. Example of a Transaction

In the above example, a transaction is initiated

explicitly when an existing process issues BEGIN_TRANSACTION.

All changes made by the transaction are recorded in the

transaction's logical file called the log. Two records usually

are retained on the log. The first is a copy of every

record before it was changed. such records are called before

images. The second is a copy of every record after it was

changed. These records are called after images.

If at any point in ~ime before reaching the COMMIT_

TRANSACTION something goes wrong, the user enters the

ERROR clause and the update may be undone. If the trans­

action reaches the normal end but has not committed its

results to the database, then it is always redone. This is

the case when a system crash occurs.

4

There are two ways for a transaction to commit its

results: first, the transaction flushes its own records to the

log disk before completion; second, the transaction log

records are not written to the log disk, instead, they are

collected into a log page and a flush is delayed until a log

page becomes full. Commits of the first sort are called

immediate commits, those of the latter sort are called group

commits.

The log itself is recorded on a dedicated medium. once a

log record is recorded, it cannot be updated. Figure 2-a shows

an example of transaction activities happen at a time period.

These activities are recorded on a transaction log (Figure 2-b).

For this sample log, each transaction has a unique name

for identification purposes. Further, all images for a given

transaction are linked together with two way pointers. one

pointer points to the previous transaction-r~lated record.

The other pointer points to the next transaction-related record.

A zero in the pointer field indicates the end of the list. The

transaction
activity

chanqe ORDER chanqe ACCNT
T1 I I
1---1-------------------1-----------1

store CUST
I

T2 1---------------i-----------1

chanqe SP
I

5

T3 I---------------I-----------------
T4 1--------------

22 23 24 25 26 27 28 29 30 31 32 33 time(9:00)

a. Transaction Activity

relative
record

I --
1 T1 0 2 9:22 START

------ ------- ------ ---------- ----------
2 T1 1 5 9:23 MODIFY ORDER old value new value

------ ------- ------ ---------- ----------
3 T2 0 6 9:26 START

------ ------- ------ ---------- ----------
4 T3 0 7 9:27 START

------ ------- ------ ---------- ----------
5 T1 2 8 9:28 MODIFY ACCNT old value new value

------ ------- ------ ---------- ----------
6 T2 3 10 9:30 INSERT CUST value

------ ------- ------ ---------- ----------
7 T3 4 12 9:31 MODIFY SP old value new value

------ ------- ------ ---------- ----------
8 Tl 5 0 9:31 COMMIT

------ ------- ------ ---------- ----------
9 T4 0 13 9:32 START

------ ------- ------ ---------- ----------
10 T2 6 0 9:33 COMMIT

------ ------- ------ ---------- ----------
b. Loq Instance for Four Transactions

Fiqure 2. Transaction Loq

6

recovery manager uses these pointers to locate all records for

a particular transactions rapidly.

Other data items in the log are the time of the action,

the type of operation (START, COMMIT, INSERT, MODIFY, etc.),

the object being modified, and the before and after images.

The before images are always written to the log before the

change has been made to the database. This is known as the

write ahead log protocol £161 so when a failure occurs after

the log has been written, but before the database has been

changed, all activities are known. In addition to these

fields in the log, some other data items can be added, such as

action identifier, length of log record, and record identifier.

Lo9s, sometimes called audit trails or journals, are used

in the recovery process. Given a log with both before and

after images, the undo and redo operations are

straightforward. Undoing a transaction involves applying

before images of all of its changes to the database. Redoing

a transaction involves applying after images of all of its

changes to the database. In this case, the before and after

images are sometimes referred to undo-information and

redo-information. This action assumes that an earlier

version of the database is available. If it is necessary

to restore a database to its most recent usable. state

and to reapply all transactions, then a great deal of processing

time may be required. To minimize this problem, the database

management system provides a facility called a checkpoint.

Checkpointing algorithms require the system periodically

7

make a copy of the database. The checkpoint process consists

of writing a BEGIN_CHECKPOINT record in the log, along with a

list of currently active transactions, then flushing a backup

copy of the database on secondary storage, and finally writing

an END_CHECKPOINT record in the log.

Checkpointing is necessary for database recovery

because it affects the amount of work that needs to be done at

recovery time. Four distinct approaches are introduced £221

to show how checkpoint activities generated:

1. Fuzzy Checkpoints. The backup database is being

produced while executing transactions are occurring. The

backup database produced by such a checkpoint is called fuzzy

because it may contain partial updates from transactions.

2. Transaction-Oriented Checkpoints. The checkpoint is

initiated after a transaction is completed. Hence, the

END_TRANSACTION record of each transaction can be interpreted

as a BEGIN_CHECKPOINT and END_CHECKPOINT record. Transaction­

oriented checkpoints are given in Figure 3-a. Checkpoints cl

and c2 are taken when transactions Tl and T2 reach normal

termination.

3. Transaction-consistent Checkpoints. When a

checkpoint generation is signaled by the recovery components,

all incomplete transactions must be completed. Then the

checkpoint is performed and all new transactions are delayed.

After the END_CHECKPOINT record has been written to the log,

normal processing is resumed. This is illustrated in Figure

3-b. Transactions T3 begins after checkpoint cl is taken and

checkpoint
generated

I I
Tl 1----------------1 I I

T2 1------1-------1 I
T3 1---1-------1-------------1

I I I
cl c2 system crash

a. Transaction-Oriented Checkpoints

checkpoint
cl generated checkpoint

signal ,-.A--., I
I I I

Tl 1--------.-----1 I I I
T2 1---.------------1 I I

T3 1 •..•• 1 ••••. 1--------1 I

processing delay
for new transactions

T4 1---------1
I

system
crash

b. Transaction-consistent Checkpoints

checkpoint checkpoint cl
signal fgenerated
·~ I
. I I I

Tl l----l----1-l------l---------l----------------1
T2 1---1-1------1-------------1------------1

. I I T3 1----1----------1---1
T4 1----1----1 . I I I

TS 1----1-1• 11-----1 I
. I I T6 1----1---1---1 I
""---v----J I

8

processing system
delay for action crash

c. Action-consistent Checkpoints

Figure 3. Three Different Criteria for Checkpoints

completes before the system crash, so T3 needs to be redone;

whereas, transaction T4 is incomplete, so it must be undone.

There is no effect on transactions Tl and T2, since their

updates are saved on the checkpoint disk.

9

4. Action-consistent Checkpoints. Action-consistent

checkpoints are generated in a way similar to the

transaction-consistent checkpoints. The checkpoint for

action consistency is geperated when no update action is

being processed. Figure 3-c illustrates action-consistent

checkpoints. The actions of transactions Tl and T2 since the

preceding checkpoint, cl, must be undone. Transaction T3

must be rolled back. The recovery process must redo the last

action of transaction TS and all of transaction T6.

Checkpoints also are called dumps and/or saves. There

are two different aspects of checkpoints. Either the entire

database or only those portions of the database that have

updated since the last checkpoint are recorded on each

iteration. Checkpoints which belong to the former classes are

called full checkpoints. The others are called partial check­

points. Using the log together with a most recently checkpointed

database, the recovery manager can restore the database to a

usable state from which normal processing is allowed to proceed.

Types of Database Failures

A wide variety of failures can occur in processing a

database, ranging from the input of incorrect data to complete

loss or destruction of the database. Three of the most common

10

types of errors are aborted transactions, system failure, and

database loss or destruction. Each of these types of errors

is described below, and the most common recovery procedure

is indicated.

Transaction Failure. For some reason, the transaction

does not reach its normal termination. Example of such errors

are deadlocks, timeout, incorrect input data, and protection

violations.

When a transaction aborts or must be aborted by the

system, any changes made by the transaction but not yet

committed to the database must be undone in reverse order.

The recovery action for this kind of failure is called

transaction UNDO.

System Failure. The system is shut down in an

uncontrolled manner. The contents of main storage are lost.

Such a failure can be caused by an operating system fault,

power loss, or operator error.

When the system crashes, the changes caused by all

incomplete transactions must be removed, and the changes caused

by all completed transactions must be redone. The recovery

action of the first sort is called global UNDO; whereas, the

latter is called partial REDO.

Media Failure. A media failure is a failure in which

some portion of the database has been destroyed physically. A

typical cause of media failure is· a disk head crash.

A backup copy of the database is required for recovery in

this situation. The first step is to restore the latest

consistent backup copy and then performs REDO operations for

all transactions completed since the copy was created. This

recovery action is called global REDO.

11

The above three types of failure are generally happen in

classical database systems. In Haerder and Reuter (221, they

give some interesting empirical figures regarding frequency of

occurrence and typical recovery times for three kinds of

failure in a typical large system (TABLE I).

TABLE I

FREQUENCY OF OCCURRENCE AND RECOVERY
TIME FOR THREE TYPES OF FAILURE

Failure Type

Transaction

system

Media

Frequency of Occurrence

10 to 100 per minute

Several per week

Once or twice per year

Literature Review

Recovery Time

same as trans.
execution time

few minutes

1 to 2 hours

Making computers easier to use is the goal of most

software. Database management systems, in particular, provide

a programming interface to ease the task of writing electronic

bookkeeping programs. The recovery manager of such a system

in turn eases the task of writing fault-tolerant application

12

programs [271 £301.

System R is a database system which provides a

relational model of data. It uses write-ahead logging in

combination with shadow pages [211 [311 to support COMMIT,

ABORT, and UNDO actions. A major virtue of shadows is that

they ensure that a system restart always begins with a RSS

(Research Storage System. an internal system which supports

data access method) action-consistent state. This is quite a

simplication and probably contributes to the success of system·

restart." Shadow schemes, however, consume an inconsequential

amount of disk space. On the other hand, in order to use the

shadow mechanism, one must :reserve a large amount of disk space

to hold the shadow pages.

Database cache £141 is the other recovery mechanism for

disk-based databases. It uses large amounts of main memory

space to store all currently active pages plus some other pages

which are needed for reading. The design of database cache is

to achieve the goal of high throughput of short transactions.

A long update transaction may cause the cache to overflow.

A demand paging technique can be used to bring pages into

main memory [311 to avoid the overhead of using the entire

database. No log is used, rather a safe located in non­

volatile memory containing data needed to reconstruct part of

the cache after failure is maintained.

With the traditional databases, the current database

state exists partially in main memory, and partially in

secondary stora9e. Retrieval and update transactions suffer

13

the lonq delays caused by disk I/O when the desired record

does not reside in primary memory. Due to the declininq cost

per bit of main memory and to rising chip densities, it is

becoming feasible to store complete databases in primary memory.

With the entire database in main storage, transactions suffer

no disk delays. As a result, the memory-resident ~atabase

system can improve performance through reduced CPU overhead

as well as through the elimination of disk access time.

Because of the volatility of main memory, main memory databases

complicate database recovery issues, This makes the recovery

operations for disk-based databases dif~erent from that for

memory-resident databases.

When discussing the memory-resident database recovery, it

is important to realize that any recovery schemes must deal

with data in primary storage. Secondary storage is used only

for backup purposes. In memory-resident databases, a system

failure can be treated as a media failure with disk-based

databases and a global REDO performed. Media failures with

memory-resident databases can effect the archive database or

log, restoring these files may mean a global REDO applied.

However, when the specific location of media failure can be

identified, a partial REDO is required to recover the affected

area. The differences between disk-based database and memory­

resident database recovery operations are listed in TABLE II.

The issues concerning memory-resident database recovery

have been receiving increased exposure over the last few years.

One of the first memory-resident databases is IMS/VS Fast Path

£241 £251. IMS/VS Fast Path is the first commercial product

that uses the idea of group commit to reduce traffic to the

log disk by delaying flushes of several transactions' log

records during the commit phase. Transactions must spend

additional time waiting for their commit groups to assemble.

This becomes a great influence on throughput.

Failure
Types

Transaction

system

Media

TABLE II

DATABASE RECOVERY OPERATIONS

Recovery Operations

Traditional
Databases

Transaction UNDO

Global UNDO
Partial REDO

Global REDO

Memory-resident
Databases

Transaction UNDO

Global REDO

Global REDO
Partial REDO

DeWitt et al. [101 describe a recovery method with the

14

possibility of stable memory. They use a small non-volatile

random access memory as a log buffer to perform log

compression through which some undo and redo items can be

eliminated. They also proposed an overlapped checkpointing

algorithm which requires a high degree of synchronization

and data sharing.

15

Additional concerns center around the increasing in the

number of main memory components. These concerns are under

investigation at Princeton University. The Massive Memory

Machine [151 project is designed to support massive amounts of

primary storage to allow the serial execution of transactions.

The improved performance can eliminate-the need for concurrency

control. Associated with the Princeton project is the design

of a main memory database recovery scheme based on a hardware

logging device, HALO [181. HALO monitors the main CPU,

intercepts word-level writes to the database, and logs them

before passing them onto the database system.

In [231, Hagmann proposed using the existing recovery

techniques of fuzzy dumps and log compression to provide a

fast restart after a crash. His design concentrates

on medium-size main memory databases (approximately 1 Gbyte)

that have many small updates; e.g., debit/credit transactions.

Another recovery technique for main memory databases is

presented by Eich in [12). Eich in her paper describes an

automatic checkpoint which runs on a separate recovery

processor. In order to accomplish automatic checkpointing,

the log manager monitors the log state and finds the most

recent checkpoint record on the log, then the recovery

processor waits for the database system to become quiescent

and performs the checkpoint.

Putting the system into a quiescent state until no update

transaction is active may cause an intolerable delay for

incoming transactions. An algorithm for continuous consistent

16

checkpointing is presented by Pu in (321. Pu states that the

database system does not need to be quiesced to obtain a

consistent checkpoint; lnstead, the checkpoint runs

concurrently with the normal transaction processing, and locks

the entities in the database one by one so that transactions

which do not interfere with the checkpoint process are allowed

to run.

The design for a memory-resident database system

including data structures, query processing, and recovery

technique has been proposed by Lehman £281 £291. Recovery

processing uses a stable log buffer as well as a special log

processor to perform the checkpointing operation. The use of

a log processor reduces the amount of logging work done by the

main CPU. Thus, through decreasing CPU cost, a greater response

time in logging is achieved. Finally, £161 (171 presents a

a taxonomy of previous recovery policies on main memory

databases based on the update, logging, checkpoint, and backup

policies.

Overview of Thesis

This paper examines recovery techniques for both disk­

based databases and memory-resident databases, identifies

differences between the two, and proposes a memory-resident

recovery technique. The paper outlines the recovery-mechanisms

used in the disk-based databases; sketches previous work on

memory-resident database recovery; introduces a proposed new

design; presents a comparison among recovery techniques for

main memory databases; and concludes by listing areas for

future work.

17

CHAPTER II

RECOVERY FOR DISK-BASED DATABASES

The first recovery algorithm of interest is the one used

in system R (211. System R consists of an external layer

called the Research Data System (RDS) and a completely

internal layer called the Research Storage System (RSS). The

external layer provides a relational data model and operations

thereon. The RSS is a nonsymbolic record-at-a-time access

method. The RSS provides actions on the object it implements.

Each segment consists of a page table with pointers to the

data pages. Associated with each pointer in the page table

are three bits: a shadow bit; a cumulative shadow bit, and a

long term shadow bit. When a segment is updated, its new

value is put in a newly allocated page, and the current

version of the page table is updated to point to the new page.

The backup version remains unchanged. -For each page that is

updated, both the shadow bit and the cumulative shadow bit are

set in the page table entry of the segment containing the page.

When the current state of the segment is saved, the shadow bits

are switched off, and the old pages of the backup version, having

been replaced by the new versions from the current copy, are

released. Checkpoints for all the segments are taken regularly

in an RSS action-consistent state. This involves copying all

18

19

of the pages of all segments in the system for which the

cumulative shadow bit is on. The long term checkpoint bits

are used to make sure that subsequent saves do not release

the page before the checkpointing algorithm has copied them.

Implementors using this design suggest both that shadowing is

a very expensive process, and that logging would probably

sufficient in their system.

The TWIST algorithm devised by Reuter [341 is designed

for fast UNDO recovery. It uses a shadow pages scheme,

allocating two physical blocks for each database segment;

that is, it contains the new state of a segment and its before

image in secondary storage. In the TWIST algorithm, each

segment is augumented with a bit indicating which of the

two backup blocks of that segment is updated most recently.

When a checkpoint begins, it is assigned a timestamp.

During checkpointing, the segment is written to the least

recently updated of its two backup blocks. The timestamp of

the checkpoint also is stored with that flushed segment. When

recovery proceeds, the two backups of each segment are read.

The block with the larger timestamp is chosen and the segment

in primary memory is restored from that block.

Next in the TWIST algorithm is database cache [141. It

is designed to replace the traditional buffer, and therefore,

allows an efficient solution to low database traffic. The

design consists of three components: the physical database,

the cache, and the safe. The physical database contains

exactly one version of each database page. The cache, a part

of main memory space, holds all the pages that are needed

for reading or modifying of an active transaction. The

20

safe which resides on disk is a backup memory used to protect

the contents of the cache in case of a system failure. When

a transaction wants to update a page, then the desired page

is read from the database into the cache as the original if

it is not in the cache; otherwise, it is modified and becomes

a dirty version of that page. When a transaction reaches

the commit phase, all corresponding dirty pages are written

sequentially onto the safe; the changed pages are written

back to database from the cache with update-in-place. This

implies that a transaction-oriented checkpoint is taken after

every transaction. If a transactibn is aborted, or aborts

itself, all pages belonging to that transaction simply are

released in the cache; therefore, no I/O is required.

Recovering the database after a crash is simple, only involving

loading the safe back into the cache, then normal processing

is allowed to resume. The database cache approach shows high

throughput for short transactions. However, in the case of

a long transaction the cache cannot hold all of its pages so

some of them must be written to disk, thus requiring the use

of UNDO log records and write-ahead logging protocols.

Finally, a survey of recovery techniques used in

traditional database systems is given [351. These recovery

techniques, applied in different environments, provide

different kinds of recovery for databases and restore them

to a usable state. They are:

21

1. Recovery to a correct state (a database is in a

correct state both if the information in it consists of the

most recent copies of data put into the database by users and

if it contains no data deleted by user).

2. Recovery to a correct state which existing at some

moment in the past (i.e. a checkpoint).

3. Recovery to a possible previous state.

4. Recovery to a valid state (a database is in a valid

state if its information is part of the information in a

correct state).

5. Recovery to a consistent state (a database is in a

consistent state if it is a valid state, and the information

it holds satisfies the users' consistency constraints).

6. Providing crash resistence.

Techniques employed for different kinds of recovery are

divided into seven categories:

1. Audit trail -- An audit trail records the sequence of

actions performed on a file. It can be used for the purposes

of crash recovery and backing out to restore the database to

a correct state.

2. Backup/current version -- The files contain the

previous/present values form a backup/current version of the

database. Backup version can be used to restore files to a

previous state. If it is together with current version, they

are used to restore files to a checkpoint state.

3. careful replacement -- When the update is performed,

the copy of a component, which replaces the original, is kept

until after the replacement is made successfully. In other

words, two copies exist only during update; otherwise, there

is just one copy containing the current value. This makes

the update or sequences of updates as safe as possible by

reducing the chance of being left with an inconsistent copy

or mutually inconsistent files. This technique is used to

restore a state prior to update.

22

4. Differential files -- The. main file remains unchanged.

All changes that would be made to a main file are recorded in

a differential file. The differential files regularly are

merged with the main files. A differential file is a type of

audit trail, yet the actual updates have not been made. The

differential file can be used to restore the database to a

valid state.

5. Incremental dumping -- Incremental dumping creates

checkpoints for updated files. It copies updated files onto

archive storage either after a job has finished or at regular

intervals. Incremental dumping provides a facility of

restoring all the files to their previous consistent state.

6. Multiple copies At least two copies of each file

are kept. The different copies are identical except during

update. If the number of copies is odd, then a majority

having the same value is taken as the correct one. If there

are two copies of a file, then a bit can be used to indicate

"update-in-progress," while the state is inconsistent. This

technique provides crash resistence.

7. Salvation program-- A salvation program is a last

resort, used if all other techniques fail. It cannot bring

the database back to a previous state. It only rescues the

information that is still recognizable.

23

Although the traditional recovery algorithms may perform

correctly on a disk-oriented database, they might not perform

satisfactorily on a memory-resident database. Therefore,

several recovery algorithms for a memory-resident database

have proposed to log and checkpoint the memory-resident

database efficiently.

CHAPTER III

RECOVERY FOR MEMORY-RESIDENT DATABASES

One way to classify main memory database systems is

according _to the number of users they support. This

classification can affect the recovery components of the

system. In a single-user system with only one user at a time

processing the database, data integrity is simpler to maintain

·since data recovery algorithms can be implemented more easily.

In contrast, multi-user database systems are accessed

concurrently by many users. The recovery in a multi-user

system is much more complex than recovery in a single-user

database system. Special precautions need to be taken to

prevent data inconsistence. The following sections introduce

existing recovery methods for single-user and multi-user

database environments.

Single-User Database systems

Single-user memory-resident databases most frequently

are found on personal microcomputers. Reflex is a database

manager product from Borland International Company £41. The

database in Reflex is an organized collection of records, in

which information is entered. With the displaying and

manipulation of the database, Reflex provides five different

24

views for users to show the same information. These five

views are: Form, List, Graph, crosstab, and Report. Since

all five views arise from the same underlying·database,

changes made to one view instantly affect the others.

25

Additional features provided by Reflex include the Trans­

late Program and the Export facility. The Reflex Translate

Program converts files created with other programs to the

Reflex format. Conversely, the Reflex Export converts Reflex

files into a form readable by other programs.

The second generation of the Reflex database management

system is Reflex Plus. It is designed to support larger

record sizes (up to 4,080 characters per record for the APPLE

Macintosh users).

Data-recoverable capabilities of both Reflex and Reflex

Plus are at the record level. For internal recovery, undoing

any deletion of records is accomplished by a second confirmation

by the user so that the data is not erased when the user

accidentally deletes a record. Restoring removed and replaced

columns involves performing commands to restore their

original states without affecting the database. For external

recovery, a recovery program called Flexrec is used to recover

corrupted data from a disk crash. If the damaged portion of

the disk is recoverable, then the program outputs the

diagnostics to a .doc file and outputs the data which still

is recognizable to a .prn file. The .doc file contains

information about master record address, the address and the

length of the data records section, the names of the fields,

and errors. The .prn file along with the .doc file are used

both to identify damaged data and to restore the database.

26

The IBM OS/2 Extended Edition (EE) £261 has a bulit-in

database manager with support for structured Query Language

(SQL). The EE's database manager consists of an SOL-based

relational database engine, called Data services, and a front­

end application for this engine called the Query Manager. The

database engine (a collection of organized information

including the database itself and catalogs and access plans

for the database) also can be accessed by embedding SOL code

into custom applications. Like other SOL database engines the

EE database divides data into a series of relational tables,

with rows (records) and columns (fields). The user can

construct a VIEW of a database by SELECTing various columns

and JOINing tables.

The EE database also includes a transaction management.

The goal of transaction management is to ensure that a

transaction is completed successfully even when a catastrophe

occurs while the transaction is being processed. This problem

is handled by a pair of functions called COMMIT and ROLLBACK.

All transactions first are written to a buffer. After the

transactlons are completed, they are written (or committed)

to the database files. If a problem occurs before they are

completed, then the transactions are rolled back and executed

over again. The COMMIT and ROLLBACK functions are performed

automatically, but the user also can have explicit control

over them.

Another feature of the database engine for transaction

management is a recovery log. The log lists each new record

and the record that was replaced. Also, the recovery log is

written to disk before the database on the disk is updated.

With the log, the user can reconstruct the database or

complete the updating of the database.

27

In addition to its SQL capabilities, the database engine

also includes a number of interesting utilities. The system's

BACKUP and RESTORE utilities let the user do short,

incremental backups, or restore the database to any prior

condition.

Some other current single-user main memory databases

and the backup and recovery facilities they provide are listed

in Appendix A [51.

Multi-User Database Systems

The IBM IMS Fast Path £241 £251 is the first system that

uses a memory database which is treated differently from the

rest of the disk-oriented IMS database. Page updates are not

performed until commit time. Log records are not flushed

immediately upon commit, rather they are collected in a

special database buffer with other committed records so that

the cost of writing the log pages can be amortized over several

transactions. IMS Fast Path performs transaction-consistent

checkpoints which write entire database to the archive after

system quiesced.

Researchers at the University of California at Berkeley

28

[101 were the first to use the notion of a pre-committed

transaction. When a transaction commits, its commit record is

placed in the log buffer to allow other conflicting transactions

processing to begin. This accelerates the commit process by

reducing the amount of time a transaction must walt until its

log records are flushed. Commit processing actually completes

when the log buffer has been flushed to disk. Frequent

action-consistent checkpointlng is made in parallel with

transaction processing. The previous checkpointed pages are

written to disk as a temporary log while the memory copies of

the checkpointed pages are written in-place to the disk. once

all the checkpointed pages have been written to disk, the

temporary and memory copies are released.

IBM's Office by Example (OBE) £21 uses a memory-resident

database design including data structure representation and

recovery techniques. It is assumed that every relation

participating in a transaction is read once at the beginning

of the transaction and, if modified, written to disk at the

end. OBE uses shadow pages in stable storage. All new

copies of modified relations are written to shadow areas on

the archive database at commit time. Transaction-oriented

checkpolnting occurs continuously. The cost of flushing log

data at the end of every transaction appears to be very high.

The hardware logging device, HALO [18 J, is designed t.o

reduce some recovery duties handled by the main processor, such

as initiating I/O to the log disks and copying to buffers.

HALO has the internal registers and data and command paths both

29

to the main CPU and to primary memory. HALO intercepts

communications between the processor and the memory to create

a before-image and after-image log. HALO contains stable

random access memory which implies that the log buffers need

not be flushed before allowing transactions to commit. The

before-image log data is needed to undo aborted transactions.

Action-consistent checkpoints to the archive database occur

continuously and in parallel with transaction processing by

reading the entire main memory database and identifying

changed pages.

Hagmann [231 outlines a method of doing recovery that

uses fuzzy dumps and log compression to provide a quick

transaction processing and rapid restart after a crash. A

memory image is periodically written to disk while the normal

database system is running and modifying the database. There

is very little coordination between the dumper and the main

database system. The dump is inconsistent since it may

contain partial updates from transactions. This method

provides an almost up-to-date and stable copy of the database

with the oldest data only a few minutes old. In order to

support this type of fuzzy dump, the UNDO and REDO log

information must be in physical before-image or after-image

form. Therefore, the log grows large quickly. Log compression

then is needed to keep the log short so that crash recovery

only processes a small amount of log; that is, the redo part

of aborted transactions and the undo part of committed

transactions can be eliminated. This is performed by a

software compressor. The logging, in this case, is done at

the page level which requires much more log data to be

manipulated than if logging were done at the record level.

30

Another technique that uses main memory shadow pages,

pre-committed transactions, automatic checkpointing, and a

recovery processor is given by Eich [121. Main memory shadow

pages are used to achieve the goal of no I/0 for transaction

UNDO. Update transactions create duplicate copies of these

pages. At commit time, a commit record is written in the log

buffer. As soon as this occurs, other conflicting

transactions are allowed to progress. They use the data

in the dirty pages or, if needed, create new copies of ~ny

modified pages. If a transaction commits, the previous

clean pages are released and the dirty pages become the new

clean ones. Undoing the effects of a transaction simply

releases the dirty pages. The automatic checkpoint is

obtained in a way that the log manager monitors the state of

the log and keeps track of it. The log state has an initial

value of 0. When the BEGIN_TRANSACTION record is written to

the log, the state value is incremented by 1. Whereas the

COMMIT_TRANSACTION and ABORT_TRANSACTION records decrement the

state value by 1. When the log manager detects a state value

of 0, a transaction-consistent checkpoint is then triggered.

The checkpointing is accomplished by a recovery processor.

It waits for the database system to become quiescent, then

it blocks out other transactions while the entire database is

written to disk.

31

Lehman £281 £291 sketches a method on efficient logging

mechanism that uses stable random access memory and a recovery

processor. Transaction update operations are performed in a

volatile UNDO space at the record level. When a transaction

terminates normally, records in the UNDO space are moved to

the stable memory and become the REDO records. Transactions

UNDO are done by discarding its UNDO records. The recovery

manager, running on the recovery processor, organizes the

REDO log records into partition bins. A partition bin is a

unit of transfer that is larger than a typical disk page.

As partition bins become full, they are written to the log

disk. Each partition bin also has an update count. When a

partition has accumulated a specified threshold count of log

records, it is marked to be checkpointed. If a partition

not having a sufficient number of updates but remaining in

the stable memory longer enough, it is also marked to be

checkpointed because of age. Actual checkpointing is

performed by the transaction manager that runs on the main

processor. For each partition checkpoint request, the

transaction manager reads the specified partition from the

database and writes it to the checkpoint disk on a

transaction-consistent state basis. Since each partition

is checkpointed at a time, the cost of a checkpointing is

amortized over several update transactions.

CHAPTER IV

A PROPOSED RECOVERY DESIGN

Objectives

In most modern computers, the main processor is considered

such a valuable resource that it should spend as little time

as possible perform activities other than normal processing.

In a high-performance database system, transaction throughput

is important, so the time required for the commit phase

should be small. This can be accomplished by using stable

random access memory. In addition, any I/O needed should be

performed asynchronously with normal processing. This implies

that log I/O occur not only at commit time, but also throughout

transaction processing. Moreover, frequent checkpoints are

necessary to speed recovery in order to reduce the amount of

log data that must be scanned. Checkpoint policies can be

divided into two aspects: full and partial. For better

efficient checkpointing algorithms, partial checkpointlng is

performed with little interference on transaction processing.

Therefore, the use of three different processors to perform

three tasks for normal processing, logging, and checkpointing

is proposed to achieve the following requirements:

1. Reduce main CPU overhead.

2. Accomplish frequent checkpoint with little

32

33

interference on normal processing.

3. Acquire greater throughput.

Description of Hardware components

The proposed model (Figure 4) is composed of a main

processor, log processor, a recovery processor, stable memory,

and a set of disks. The main processor -- an IBM 3090 model

type of CPU -- is designed for heavy transaction processing

loads which can process up to 79 millions of instructions per

second (MIPS) [71 £61. The VAX 8620, containing two VAX 8700

CPUs which perform as the log and recovery processing, offers

performance of 11.4 MIPS (6). Each processor in the VAX 8820

also can initiate its own I/O.

CPU (main)

v

I I
I main memoryl DBMS
I database I

I --------
1<->1 log I
I lbufferl

(stable
memory)

CPU I (log)

v -------
<----> I log 1<->

I tail I

(stable
memory)

I I
I log I
I disk I
I I

v

<--1 CPU I
v

I
I (checkpoint
I disk)
I

(recovery)

Figure 4. The Proposed Recovery Model

Furthermore, two to six VAXBI buses (an electronic link

for input and output in VAX machines) are available on the

VAX 8820 to speed the transfer between the main memory and

secondary memory.

The recovery processor has access to the stable memory.

34

The stable memory, made of non-volatile random access memory,

is divided into two parts: a log buffer, and a log tall. The

stable log buffer is used to hold tran~action log records;

whereas, the stable log tall contains units of log records.

The disks used for maintaining recovery information are

separated into two groups. one set of disks holds log

information while another set of disks holds checkpoint

information. Redundant copies of the recovery information

can be provided to further protect data on secondary

storage from a media failure.

The three processors have logically different functions.

The main processor is in charge of regular transaction

processing. The log processor manages the log information.

It collects log records and groups them into units for

transferring to the log disk. The two CPUs are required to

shared only the stable log buffer, using it as a communication

buffer along with its other uses. The recovery processor

manages checkpointing operations, archive storage, and if

necessary, restore the database in case of a system crash.

Logging

The logging procedure consists of three steps. First,

35

transactions create REDO log records. The REDO log records

are placed in the stable log buffer. second, the log manager,

which runs on the log processor, reads the log records of

committed transactions from the stable log buffer and places

them into the stable log tall. In the stable log tall, log

records are grouped into pages unit&. Third, these page units

are written to disk when they become full.

When a transaction reaches its commit processing phase,

the main CPU places its REDO log records in the stable memory

so that the transaction can commit immediately. once this is

done, other conflicting transactions can begin to proceed.

This is the only logging operation which involves the main CPU.

Since the REDO log records are kept in the stable memory,

the log only maintains the after images of modified data. If

a system failure occurs, then committed transactions are

redone. If a transaction abnormally terminates, then undoing

the effects of the transaction simply releases the UNDO

records in main memory.

The log processor collects transaction log records in the

stable log tail and organizes them into page units according

to their corresponding memory allocations. When the log

records fill up a log page, the records are ready to be

written out to the log disk. The log processor initiates a

disk wr 1 te r.equest for that page. Log records in that page

unit are maintained in commit order so that they can sent to

disk in commit order.

checkpointinq

System checkpoints are triggered at regular time

intervals by model parameters. The recovery processor

performs checkpoints at each interval to obtain an up-to-

date backup copy of the database. Each database page is

augumented with a dirty bit which is set by transaction

updates and cleared when the page has been checkpointed.

When a checkpoint begins, the checkpointing algorithm writes

a BEGIN_CHECKPOINT record in the log, and scans through the

database from the most recently checkpointed page until a

dirty page is found. After a page has been identified as

being dirty, the checkpointing algorithm sets a read lock

36

on the page and waits in a high priority basis until it is

granted (if there are several read locks in a waiting list,

then the read lock issued by the checkpointing algorithm has

the highest priority among others). When the read lock on

that page is granted, the checkpointing algorithm allocates

a block of memory large enough to hold the page, copies it

into that memory, and released the read lock. Pages locks

are held just long enough to copy at memory speeds, so there

is little synchronization between the checkpointing and normal

transaction processing. A checkpoint ends after writing an

END_CHECKPOINT record in the log. Finally, the recovery

processor records the address of the most recent checkpoint in

the archive database.

The checkpoint disk space must be large enough to hold two

37

complete copies of the database: a previous copy and a current

copy. The two backup copies are written alternately. This

backup policy is a way to protect the archive database from a

media failure.

crash Recovery

Since the primary copy of the database is memory­

resident, a transaction can begin to run if the information it

needs is in main memory. Restoring the memory copy of the

database involves reloading the most recent copy of the

database, then using the log -- both active and archive

portions .-- to redo all transactions that completed since that

copy was taken. There is -no need to undo transactions that

were still in progress at the time of the crash, since all

updates of such transactions have been lost.

System restart proceed as follows: The recovery manager,

running on the recovery processor, loads an earlier copy of

the database back into the main memory. Next, it reads the

log backwards to the point where the last checkpoint was

taken. Then the database is rolled forward reapplying after

images for all transactions that were proceeded after that

checkpoint. Once the information has been restored, regular

transaction processing begins.

Discussion of the Proposed Model

This section uses a performance model based on the model

introduced in [11 £131 [331 to compare recovery methods in a

38

normal database system. Performance measures of transaction

cost and throughput are derived based on estimate of CPU and

I/O costs involved in database processing. The transaction

cost includes costs for the main CPU and any I/O needed prior

to commit processing. The transaction cost also includes

costs for transaction undo and logging. The throughput rate

is calculated by using the transaction cost. The checkpoint

cost also is considered when calculating the throughput rate

by reducing the main CPU processing power. The parameters and

measures used by the performance model are shown in TABLE III.

Based on the Reuter's information [331, CPU time for

accessing a page, Cp, and for copying a page, Ceo, are taken

to be 0.8 ms. Based on Reuter's statistics [331, the I/O time

for writing a loq record is assumed to be 10 ms. The Pd

parameter is estimated half duplication of the modified pages

which is required for checkpointing. Based on the information

given by Eich (131, the probability of update transactions, Fu,

is normally 0.25 and the percent of transaction undo is 0.03.

Based on the statistics given by Agrawal and DeWitt [11,

the percent of referenced pages of update transaction is 0.5.

Based on the Reuter's information (331, the S parameter is the

average number of pages referenced per transaction. It is

taken to be 500. The main CPU involves the amount of logging

activity is based on the size of a log record, sr, since the

size of a log record may influence on I/O. The Sr has a

default value of 0.25. When a group commit is used, the

number of transactions committed in a group is assumed to be

39

5. Based on £191, the checkpoint interval, I, is taken to be

300 seconds. Based on £221, the average time between system

failures T, is assumed to be 3 days.

TABLE III

PARAMETERS AND MEASURES

Parameter Description

Cp
Ceo
Cio
Pd
Fu
Pb
Pt
s
Sr
n
I
T

Measure

Cb
Cc
Cl
cr
ct
cu
Rt

CPU time to access page
CPU time to copy page
I/0 time to write page
Percent of duplicate updates
Percent of update transactions
Percent of transaction undo
Percent of page updated
Number of page referenced
Size of log record
Number committed in group
Checkpoint interval
Failures interval

Description

Cost for transaction undo
Checkpoint Cost
Logging cost
Cost of retrieval transaction
Cost of average transaction
Cost of update transaction
Throughput rate

Default

0.8 ms
0.8 ms
10 ms
0.5
0.25
0.03
0.5
500
0.25
5
300 sec
3 days

General types of transactions are transaction reads and

writes. Most of the time the transactions are reads. The

transaction cost is calculated based on the frequency of

retrievals and updates:

Ct = Cr * (1 - Fu) + CU * Fu.

In turn, the cost of retrieval transactions is based on

the number of pages referenced:

Cr = S * Cp.

The cost updating a transaction includes the number of

pages to be read, the cost for logging the updates of the

transaction and the cost for transaction undo:

Cu = S * Cp + Cl + Pb * Cb;

40

where, Cb is the cost for rolling back the transaction in

case of an isolated transaction failure, and Pb is the

probability of such an event. Backout cost, Cb, is based on

that no I/O is required and only a memory copy is needed:

Cb = Sr * (S * Pt) * Ceo.

Computing the cost to perform logging has several

different aspects. If special logging hardware is used, there

is no impact on transaction processing so that Cl is taken to

be 0. Without logging hardware, the calculations must consider

writing one BEGIN_TRANSACTION and one END_TRANSACTION record

per update transaction and, for each page being modified, a

before_image and an after_image are needed. If a group

commit is used, then log records are grouped together until a

log page becomes full thus amortizing the I/O time over all

update transactions in the group:

Cl = Sr * (2 * S * Pt + 2) * (Ceo+ Cio).

If an immediate commit is used, then each transaction

flushes its log records before completing; thus, partial pages

may be written:

Cl = (Sr * (2*S*Pt + 2) *Ceo) + crsr * (2*S*Pt + 2)1* Clo).

41

Anothe~ calculation fo~ Cl is based on that some stable

memory is used. No IIO is needed before transaction

commit:

Cl = Sr * (2*S*Pt + 2) * Ceo.

The t~ansaction cost is modified when a g~oup commit is

used. Since there a~e n transactions committed in a group,

the value of ct becomes:

n

Ct = (L i * Ct) I n.
i=O

The transaction th~oughput is obtained by reducing any

checkpointing overhead provided by the main CPU. The cc

value is computed by using the ct value obtained, determining

the number of transctions processed between checkpoints, and

then the number of updates pages:

Cc = (I * Fu * S * Pt * Pd * Ceo) I Ct.

If checkpointing is performed by a separate p~ocessor,

then there is no influence on the normal transaction

p~ocessing so that Cc is assumed to be 0. The checkpoint

cost is then used to determine the th~oughput rate:

Rt = (T * (1 - Ccii) + Ccl2) I Ct I I.

This throughput rate is based on the assumption that the

final crash occurs in the middle of a checkpoint interval.

Using this performance model, the throughput rate of

va~iou~ recovery techniques for memory-resident databases

is ~hown in TABLE IV.

TABLE IV

THROUGHPUT RATE

Recovery Techniques Throughput(transactions/sec)

IMS Fast Path 1.3

OBE 1.67

DeWitt 1.3

HALO 2.34

Hagmann 2.35

Eich 1.75

Lehman 2.27

Chang 2.42

The results based on throughput rate show several

aspects which can affect the performance of transaction

processing. First, the nonstable classes of recovery

techniques give lower degree of throughput rate than the

stable classes of recovery techniques. This is because,

without stable memory, transaction commit processing cannot

begin until all log I/O has been performed successfully.

This I/O overhead directly affects response time. With

enough stable memory to contain the log buffer, once log

records have been written to the buffer commit processing

can occur. Therefore, the use of stable memory eliminates

the impact that logging I/0 has on transaction performance.

Second, transaction throughput is sensitive to the impact

42

----- -----

of main CPU overhead for logging. If a logging device is

used to perform the main CPU logging function, then the use

43

of this hardware eliminates the main CPU overhead for logging.

Third, another impact on the throughput rate is

checkpoint overhead. The use of a separate checkpoint

processor can eliminate the main CPU for checkpointing which

implies that the main CPU processing speeds increase. These

factors show the availability of stable memory and special

logging and checkpointing hardware are the crucial recovery

factors impacting transaction throughput. Judging from

these results, the proposed recovery algorithm gives a

greater performance on transaction processing than prior

recovery algorithms.

CHAPTER V

SUMMARY, CONCLUSIONS AND FUTURE WORK

summary

In a high-performance memory-resident database system,

transaction throughput rate is important. such a system needs

an efficient logging mechanism that can assimilate log records

as fast as possible. It needs efficient checkpoint operations

that can produce a reliable backup database and at the same

time with little impact on normal processing. Finally, the

recovery algorithm should not burden the main processor and

affect transaction performance.

The new design for a recovery algorithm meets these three

criteria. With the use of stable memory and a log processor,

the logging mechanism cannot inhibit the performance of

the system. Checkpointing operations are performed by a

recovery processor, so very little synchronization is needed

between the checkpointing processor and the main processor.

With the ease of the tasks for logging and checkpointing, the

main processor can work solely on transaction processing.

After a crash, information requested by transactions are

recovered first so that transactions processing can begin.

Partial memory recovery also in beneficial in the

.44

event of a failure. When part of the main memory fails, the

information in that part of memory is lost. Some existing

recovery methods would have to recover the entire database.

45

In the case of a partial memory loss with this proposal, only

the lost portion of the database can be restored once the

required information has been filtered out from the checkpoint

copy and the log.

Conclusions and Future Work

Recovery techniques are used to ensure that any erroneous

database state due to transaction, system, or media failure

can be repaired to restore the database into a usable state

from which normal processing can resume. such techniques

are used widely in disk-based database systems. However,

some problems which exist in traditional database systems

may not appear in a memory-resident database environment.

The major problem of memory-resident databases deals with

the volatility of main memory. This problem has been

recognized and several new techniques for memory-resident

database recovery have been proposed. Along with the useful

ideas that have been generated so far, there are still

several aspects of memory-resident database recovery that

need better, more efficient algorithms.

This paper proposes a recovery technique for a

memory-resident database system. A performance model for

comparing different recovery techniques with respect to their

impact on overall system performance is given. It shows that

46

some key parameters can influence database performance, and

that the proposed recovery design meets these requirements

better than previous methods. The performance model, however,

is not intended to yield exact performance predictions in

terms of throughput, rather it is intended to show three keys

parameters -- stable memory, separate logging and

checkpointing hardware -- influencing database performance

most significantly. In order to approach an exact model,

one must include many details about the implementation of

the recovery algorithm and other components of the database

management system it has to cooperate with. Simulation or

improving the precision of the model is needed to determine

how the various logging, checkpolnting hardware and recovery

operations interact when all three operations are running

in separate processors. This is an area for future work.

SELECTED BIBLIOGRAPHY

(11 Agrawal, R. and DeWitt, D. J. "Integrated concurrency
Control and Recovery Mechanisms: Design and Performance
Evaluation," ACM Trans. on Database Sys., 10, 4,
(Dec. 1985), 529-564.

(21 Ammann, A., Hanrahan, M. and Krishnamurthy, 'R. "Design of a
Memory Resident DBMS," Proc. IEEE COMPCON,. San
Francisco, (Feb. 1985).

[31 Bernstein, P. A. and Moodman, N. "Timestamp-based
Algorithms for Concurrency Control in Distributed
Database systems," Proc. 6th International Conference on
Very Large Database, (Oct. 1980).

[41 Borland International Inc. 4585 Scotts Valley Dr., scotts
Valley, CA 95066.

£51 computerworld, "Data Dispersal starts as Trickle,"
(March 14,. 1988), S1-S12.

[61 Computerworld,. "VAXs Tuned for Mainframe Challenge,"
(March 14, 1988), 1.

[71 computerWorld,. "IBM Propels DB2 into Database Top Spot,"
(April 25, 1988).

£81 computerworld,. "Amdahl Tops IBM MIPS," (May 9,. 1988), 1.

£91 Date, c. J. An Introduction to Database Systems 4th ed.
Addison-Wesley Publishing Company, 1986.

(101 DeWitt D. J., Kate, R. H., Olken, F., Shapiro, L.,.
Stonebraker, M. and Wood, D. "Implementation Techniques
for Main Memory Database Systems," ACM, (1984).

£111 Dolan, K. A. and Kroenke, D. M. Database Processing:
fundamentals, design, implementations , 3rd ed.
SRA,1988.

[121 Eich, M. H. "Main Memory Database Recovery," Proc. ACM­
IEEE Fall Joint Computer Conference, (1986).

47

£131 Eich, H. H. "A Classification and comparison of Main
Memory Database Recovery Techniques," Proc. 3rd
International conference on Data Engineering, Los
Angeles, CA, (Feb. 1987), 332-339.

48

£141 Elhardt, K. and Bayer, R. "A Database cache for High
Performance and Fast Restart in Database Systems," ACM
Trans. on Database Sys., 9, 4, (Dec. 1984), 503-525.

(151 Garcia-Molina, H., Lipton, R. J. amd Valdes, J. "A
Massive Memory Machine," IEEE Trans·. on Computers,
C-33, 5, (May 1984), 391-399.

(161 Garcia-Molina, H. and Salem, K. "Checkpointing Memory­
Resident Databases," Princeton University Computer
Sciences Department Technical Report, December, 1987.

(171 Garcia-Molina, H. and Salem, K. "Crash Recovery for
Memory-Resident Databases," Princeton University
Computer Sciences Department Technical Report,
November, 1987.

[181 Garcia-Molina, H. and Salem, K. "Crash Recovery Mechanisms
for Main Storage Database Systems," Princeton
University Computer Sciences Department Tech. Rep.
April, 1986.

£191 Gray, J. "Notes on Data Base Operating Systems," in
Operating systems: an Advanced course, G. Seegmuller,
Springer-Verlag, (1978), 393-481.

(201 Gray, J. "The Transaction Concept:virtues and limitations,"
Proc. 7th International Conference on Very Large
Databases, (Sep. 1981).

[211 Gray, J., McJones, P., Blasgen, H. Lindsay, B. Lorie, R.,
Price, T., Putzolu, F. and Traiger, I. "The Recovery
Manager of the System R Database Manager," Computing
Surveys, 13, 2, (June 1981), 223-242.

£221 Haerder, T. and Reuter, A. "Principles of Transaction­
oriented Database Recovery," Computing Surveys, 15,
4, (Dec. 1983), 287-317.

£231 Hagmann, R. "A crash Recovery Scheme for a Memory­
Resident Database System," IEEE Trans. on Computers,
C-35, 9, (Sep. 1986), 839-843.

£241 IBM, IMS/VS Version 1 FastPath Feature General
Information Manual, GH20-9069-2, April 1978.

[251 IBM World Trade Systems Centers, IMS Version 1 Release
1.5 FastPath Feature Description and Design Guide,
G320-5775, 1979.

(261 IBM Corp. Old orchard Rd., Armonk, NY 10504,
IBM's OS/2 Extended Edition.

49

(271 Lampson, B. and sturgis, H. "Crash Recovery in a Distributed
Data Storage System," XEROX Research Report,
Palo Alto, CA, 1979.

C281 Lehman, T. J. "Design and Performance Evaluation of a
Main Memory Relational Database System," cs Tech. Rep.
1656, Computer Sciences Department, University of
Wisconsin, Madison, WI, Aug. 1986.

[291 Lehman, T. J. and carey, M. J. "Query Processing in Main
Memory Database management Systems," Proc. of the ACH­
SIGMOD International Conference on Management of Data,
(Hay 1986).

[301 Lindsay, B., Selinger, P., Galtieri, c., Gray, J., Lorie,
R., Price, T., Putzolu, F., Traiger, I. and Wade, B.
"Notes on Distributed Databases," IBM Research Rep. RJ
2571, San Jose, CA, 1979.

(311 Lorie, R. A. "Physical Integrity in a Large Segmented
Database," ACM Trans. on Database Sys., 2, 1,
(March 1977), 91-104.

£321 Pu, c. "On-the-fly, incremental, consistent Reading of Entire
Databases," Proc. International Conference on Very
Large Databases, stockholm, (1985), 369-375.

[331 Reuter, A. "Performance Analysis of Recovery Techniques,"
ACM Trans. on Database Sys., 9, 4, (Dec. 1984),
526-559.

(341 Reuter, A. "A Fast Transaction-oriented logging Scheme
for UNDO Recovery," IEEE Trans. on software Engineering,
SE-6, 4, (July 1980), 348-356.

£351 Verhofstad, J. s. M. "Recovery Techniques for Database
Systems," Computing Surveys, 10, 2, (June 1978),
168-195.

APPENDICES

50

APPENDIX A

SINGLE-USER MAIN MEMORY DATABASES

AND THEIR RECOVERY

POLICIES

51

52

COMPANY PRODUCT IBACK AND RECOVERY
--------------1--------------------------

Acius Inc.
(408)252-4444

4th Dimension/IUser implemented
4-D runtime I

I
I

AD & P Analysis,
Design & Program­
ming (703)790-9433

Ultra-base !Not provided
I
I
I
I

Advanced Business
Hicrosystems Inc.
(415)689-4515

Data ace !Backup, restore partial,

Advanced Data
Institute Inc.
(916)381-8334

Aladin

entire database

Import, export, restart

Ashton-Tate Corp. Dbase III Plus None
(213)329-8000

Dbase IV Full transaction processes,
rollback,rollforward

Blyth Software Inc omnis III PlusiNone
(415)571-0222 I

Omnis Quartz INone
I
I

Borland Reflex IMedla recovery
Internatinal Inc. I
(800)543-7543 Paradox 2.0 !Table recovery

I
Paradox 386 !Table recovery

I
I

Brock Software Brock Key- Rebuild function, floppy backup
Products Inc. jstroke rela-
(815)459-4210 tional DB

Campus America Poise DHS-Plus None
Inc.(615)523-9506

Century Analysis CFHS
Inc.(415)680-7800

Chang Laboratories C.A.T.
(800)972-8800

Event rollback

None

COMPANY !PRODUCT !BACKUP AND RECOVERY
------------------I--------------1-------------------------
Conceptual Soft- Prodas !Backup copies of files
ware.(713)667-4222 I

I
I

Condor Computer Condor 3 Automatic audit trails
Corp.(313)971-8880 release 2.20

Dataease Dataease
International Inc.
(203)374-8000

Empress Software Empress with
Inc.(416)922-1743 m-builder

1st Desk Systems
(800)522-2286

Fox software Inc.
(419)874-0162

General Data Sys.
(215)985-1780

IBM contact local
sales office

I
llstFile
I
llstFile 4.0
I
llstTeam
I
I
IFoxbase+
I
I
I
IGDX
I
I
I
OS/2EE

Import, export; backup,
restore of database

Transaction logging,warm
restart, backup recovery

None

None

File copy

I None
I
I
I
IRollforward,rollback,
I warm start
I
I
IFull,selected backup;
!restore to state of last
lbackup;load,unload table
loutput;warm restart;

53

commit,rollback functions

Infocom Inc. Cornerstone
(617)576-1851

Informix Software Informix SOL
Inc.(415)322-4100

Informix 4GL

Macon Systems Inc. ADBM
(719)520-1555

Backup,restore

Transaction logs

Transaction logs

Internal backup, damaged
file recovery

54

COMPANY !PRODUCT !BACKUP AND RECOVERY
------------------1--------------J--------------------------
HDBS Inc. 1Knowledgeman/21Not provided
(800)344-5832 I I

Microrim Inc.
(206)885-2000

Nantucket Corp.
(213)390-7923

Novell Inc.
(512)346-8380

Odesta Corp.
(800)323-5423

oracle Corp.
(800)345-DBHS

I I
I I
IR:base ILoad,unload,reload,verify
I !integrity of database
I I
I I
!Clipper !File copy
I I
IHcMax !Backup, restore programs
I Jvla programming language

XQL

Helix VHX

I
I
I Proprietary
I
I
I
ILogglng,autosave, save as
Jrevert to previous save
I

Double HelixiiiSame as Helix VMX

Oracle

I
I
I Roll forward, rollback
I recovery
I
I

Prime computer Prime Infor- ton-line transaction
Inc.(617)655-8000 mation llogglng,rollforward,

Progress Software
corp.(714)969-2431

ltape or disk backup.
I

Prime oracle !Rollback after image
Jjournaling;dynamic or
!static creation at AI
lfiles;import,export
I
I

Progress Crash-proof database
engine,before image
filing,rollforward,backup

Provue Develop- Overvue Hard-disk backup
ment(714)969-2431

Relational Techno- Ingres
logy(800)4-INGRES

Checkpoint,journaling,
rollback,rollforward

55

COMPANY !PRODUCT !BACKUP AND RECOVERY
------------------1--------------I-------------------------Rim Technology IRTI Rim INone
(206)451-8144 I I

I I
I I

Smith, Abbott& Co.IAutopro Audit trails, change .
(301)561-8411 I logging

Software AG of
North America
(703)860-5050

I
I
IAdabas
I
I
I
I

save, restore; walk
forward,backup functions

The Software Group Enable
(518)877-8600

Automatic database
backup,restore

Sybase Inc.
(415)548-4500

Unify Corp.
(916)920-5553

Wordperfect Corp.
(801)227-500

Sybase System Physical logging;multiple
!database support;control­
llable guaranteed recovery
ltime;log recovery;bulk
lcopy program;journaling;
ltable generator;monitor­
ling tools;resource
lcontrol;maintenance tool;
lconsistency checker
I

Dataserver !Same as Sybase System
I

Datatoolset ISame as Sybase System
I
I

Accell IDS !Transaction logging,
!database backup,
Jrollforward recovery
I

Unify rela- ISame as Accell IDS
tional DBMS I

I
I

Dataperfect !Regenerates indexes,
lfile copy
I
I

APPENDIX B

GLOSSARY

56

Abort. To terminate a transaction abnormally.

AFIH. After image.

After image(AFIH). The new value of the updated item.

Atomic. An adjective describing the actions of a transaction
that either are reflected in the database or nothing are
happened.

Audit trail. See log.

BFIH. Before image.

57

Before image(BFIH). The previous value of the updated item.

Checkpoint(n.). A backup copy of the database.

Checkpoint(v.). Write the database to the backup disk.

Commit. A transaction which reaches normal termination never
to be undone.

Dirty page. A page which is modified by a transaction that has
not been committed yet.

Dump(n. or v.). See checkpoint.

Durable. An adjective describing the results of a committed
transaction which must survive any malfunctions.

Full-checkpoint. The entire database which is written to disk.

Fuzzy dump(n.). A backup copy of the database which contains
partial updates from transactions.

Fuzzy dump(v.). Copy the database in parallel with normal
processing.

Global REDO. An operation for restoring the state of the
database after it is physically destroyed.

Global UNDO. A procedure for removing the effects of any
interrupted transactions from a system failure.

Group commit. Transactions whose records are contained on a
log page which is not flushed to disk until it is full.

HALO. HArdware LOgging. A device used to perform logging
functions.

Immediate commit. A transaction whose log records are flushed
to the log before completing.

58

IMS. Information Management System. A transaction processing­
oriented communications processor and DBMS developed by IBM.

Journal. See log.

Log. A logical file which contains information about active
transactions.

Log compression. A process for a log which filters out any
committed or aborted items since the latest checkpoint.

Partial-checkpoint. The portion of the database that have been
updated recorded on a secondary device since the last
checkpoint.

Partial REDO. A procedure for restoring the results of any
completed transaction which may not yet reflected in the
database after a system failure.

RDS. Research Data system. An external system of System R
which supports the relational data model and the relational
language SQL.

REDO. An operation for repeating the actions of a completed
transaction from a system crash.

REDO-information. See after image.

RSS. Research Storage System. An internal system of System R
which provides data access method.

Safe. A non-volatile·memory used to protect the contents of
the cache against loss.

Shadow page. An old page which is the shadow for the new one.

Stability. Non-volatility.

Stable log buffer. A stabe memory which keeps REDO log
records.

stable log tail. A stable storage where log records are
grouped according to their correspoinding partition.

stable memory. Non-volatile RAM.

Transaction. A sequence of actions.

Transaction UNDO. A procedure for recovery after a transaction
failure.

UNDO. An operation for removing all effects of an incomplete
transaction from a system failure.

UNDO-information. see before image.

Update-in-place. A_ performace which writes pages to the same
block.

WAL. Write ahead log.

Write-ahead log(WAL). A log protocol which requires UNDO­
information be flushed to the log before each update.

59

VITA

HWEI JIUN CHANG

Candidate for the Degree of

Master of Science

Thesis: RECOVERY FOR MEMORY-RESIDENT DATABASE SYSTEMS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Taipei, Taiwan, November 8, 1958,
the daughter of Chin May Shlu and Pel Shang Chang.

Education: Graduated from Ging May Girl Senior High
School, Ging May, Taiwan, in June 1977; received
Bachelor of Arts Degree in Economics from Chinese
Culture University in June 1981; completed
requirements for the Master of Science degree at
Oklahoma state University in December, 1988.

