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PREFACE

This paper presents a recovery mechanism for memory-
resident databases. It uses some stable memory and speclal
hardware devices to eliminate expensive 1/0 operations handled
by the main processor. And, through this achievement, the
throughput rate 1s improved.
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CHAPTER 1
INTRODUCTION

When a database system does not perform according to
its specifications, a fallure occurs. A fallure is an event
which places the system into an error state. Some fallures
are caused by human errors; e.g., a user mounts a wrong disk,
software faults; e.qg., lnapprbpriate data, or hardware faults;
e.g., loss of power. When a system becomes inoperable,
several problems must be addressed. Flrst, normal functions
must continue. Second, computer operational and maintenance
personnel must work quickly to restore the system as closely
as possible to the last non-failing state. Third, usérs
must know what to do when the system becomes available again.
Because some work may need to be re-entered, users must know
how much work to repeat. 1In order to cope with fallures,
additional components and algorithms for abnormal situations
are added to a database system. These components and
algorithms both remove erroneous data and restore the database
systems to correct states from which normal processing can
continue. These additional components and recovery algorithms
used to return to normal states from abnormal states in database

systems are called recovery techniques.



Terminology

Database technology can seem complex and complicated. 1In
part, this is because database terminology is inconsistent.
Similar concepts have different names; for example, obJject and
entity are synonyms in some contexts, and the same name often
refers to different concepts; for example, the term object has
different meanings depending its context. This situation exists
because database technology does not originate from a single
source [11]. Therefore, in this section, a general description
of database terminology 1s given. The single terminology
presented here ls used throughout the paper.

A database consists of a collection of logical records.

The record 1s the granule at which transaction interface
operates. Records also are grouped into large units called
pages and segments. If a page has a new update copy, then the
0ld page 1s the shadow for the new one(the updated copy). The
new page is called a dirty page. Pages are the granule of data
transfer between the primary and secondary memory. A segment
1s a granule of storage organlzation iIn secondary storage.

A transactlion is a linear sequence of actlions with the
following properties:

Atomicity: elther all actions are done or nothing happens.

Consistency: the property of being able to change the overall
logical and physical structure of the database when a transaction
is completed. Thus, it preserves the consistency of the database.

Durability: a characteristic of a database in which once a



transaction is committed to the database, the results of the
transaction survive any system failures.
Isolation: the condition of events within a transaction
being hidden from other transactions which run concurrently.
‘A general example of a transaction which transfers money

from one account to another 1is given [20] (Figure 1).

FUNDS_TRANSFER :PROCEDURE;
$BEGIN_TRANSACTION;

ON ERROR DO; /* in case of error */
$RESTORE_TRANSACTION; /* undo all work */
GET INPUT MESSAGE; /* reacquire input */

PUT MESSAGE( 'TRANSFER FAILED'); /* report fallure */
GO TO COMMIT;
END;
GET INPUT MESSAGE; /* get and parse input */
EXTRACT ACCOUNT_DEBIT, ACCOUNT_CREDIT, AMOUNT
FROM MESSAGE;
SUPDATE ACCOUNTS /* do debit */
SET BALANCE = BALANCE - AMOUNT
WHERE ACCOUNTS.NUMBER = ACCOUNT_DEBIT;
S$UPDATE ACCOUNTS /* do credit */
SET BALANCE = BALANCE + AMOUNT
WHERE ACCOUNTS.NUMBER = ACCOUNT_CREDIT;

$INSERT INTO HISTORY /* keep audit trail */
(DATE,MESSAGE) ;
PUT MESSAGE ('TRANSFER DONE'); /* report success */
COMMIT: /* commit updates */
SCOMMIT_TRANSACTION;
END; /* end of program */

Figure 1. Example of a Transaction

In the above example, a transaction is initiated
explicitly when an exlisting process issues BEGIN_TRANSACTION.
All changes made by the transaction are recorded in the
transaction's logical file called the log. Two records usually

are retained on the log. The first is a copy of every



record before it was changed. Such records are called before
images. The second is a copy of every record after it was
changed. These records are called after images.

If at any point in time before reaching the COMMIT_
TRANSACTION something goes wrong, the user enters the
ERROR clause and the update may be undone. 1If the trans-
action reaches the normal end but has not committed its
results to the database, then it is always redone. This is
the case when a system crash occurs.

There are two ways for a transaction to commit its
results: first, the transaction flushes its own records to the
log disk before completion; second, the transaction log
records are not written to the log disk, instead, they are
collected into a log page and a flush is delayed until a log
page becomes full. Commits of the first sort are called
immediate commits, those of the latter sort are called group
commits.

The log itself is recorded on a dedicated medium. Once a
log record is recorded, it cannot be updated. Figure 2-a shows
an example of transaction activities happen at a time period.
These activities are recorded on a transaction log (Figure 2-b).

For this sample log, each transaction has a unique name
for identification purposes. Further, all images for a given
transaction are linked together with two way pointers. One
pointer points to the previous transaction-related record.
The other pointer points to the next transaction-related record.

A zero in the pointer field indicates the end of the list. The
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6
recovery manager uses these polnters to locate all records for
a particular transactions rapidly.

Other data items in the log are the time of the action,
the type of operation (START, COMMIT, INSERT, MODIFY, etc.),
the object being modified, and thé before and after images.
The before images are always written to the log before the
change has been made to the database. This is known as the
write ahead log pfotocol {16] so when a fallure occurs after
the log has been written, but before the database has been
changed, all activities are known. 1In addition to these
fields in thé log, some other data ltems can be added, such as
action identifier, length of 1log record, and record identifler.

Logs, sometimes called audit tralls or journals, are used
in the recovery process. Given a log with both before and
after images, the undo and redo operations are
straightforward. Undoing a transaction involves applying
before images of all of its changes to the database. Redoing
a transaction involves applying after images of all of its
changes to the database. 1In thls case, the before and after
images are sometimes referred to undo-information and
redo-information. This action assumes that an earlier
version of the database 1is avallable. 1If it is necessary
to restore a database to its most recent usable state
and to reapply all transactlons, then a great deal of processing
time may be required. To minimize this problem, the database
management system provides a facility called a checkpoint.

Checkpointing algorithms require the system periodically
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make a copy of the database. The checkpoint process consists
of writing a BEGIN_CHECKPOINT record in the log, along with a
list of currently active transactions, then flushing a backup
copy of the database on Secondary storage, and finally writing
an END_CHECKPOINT record in the log.

Checkpointing is necessary for database recovery
because it affects the amount of work that needs to be done at
recovery time. Four distinct approaches are introduced [22])
to show how checkpoint activities generated:

1. Fuzzy Checkpoints. The backup database 1is being
produced while executing transactions are occurring. The
backup database produced by such a checkpoint is called fuzzy
because it may contaln partial updates from transactions.

2. Transactlon-Oriented Checkpoints. The checkpoint is
initiated after a transaction is completed. vHence, the
END_TRANSACTION record of each transaction can be interpreted
as a BEGIN_CHECKPOINT and END_CHECKPOINT record. Transaction-
oriented checkpoints are given in Figure 3-a. Checkpoints cl
and c2 are taken when transactions Tl and T2 reach normal
termination.

3. Transaction-Consistent Checkpoints. When a
checkpoint generation is signaled by the recovery components,
all incomplete transactions must be completed. Then the
chgckpoint is performed and all new transactions are delayed.
After the END_CHECKPOINT record has been written to the log,
normal processing 1s resumed. This is illustrated in Figure

3-b. Transactions T3 begins after checkpoint cl is taken and
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Figure 3. Three Different Criteria for Checkpoints



completes before the system crash, so T3 ﬂeeds to be redone;
whereas, transaction T4 is incomplete, so it must be undone.
There is no effect on transactions Tl and T2, since their
updates are saved on the checkpoint disk.

4., Action-Consistent Checkpoints. Actlion-consistent
checkpoints are generated in a way similar to the
transaction-consistent checkpoints. The checkpoint for
actlon consistency 1s generated when no update action is
being processed. Figure 3-c lllustrates action-consistent
checkpoints. The actlons of transactlons Tl and T2 since the
preceding checkpoint, cl, must be undone. Transaction T3
must be rolled back. The recovery process must redo the last
action of transaction TS5 and all of transaction T6.

Checkpoints also are called dumps and/or saves. There
are two different aspects of checkpoints. Either the entire
database or only those portions of the database that have
updated since the last checkpoint are recorded on each
lteration. Checkpoints which belong to the former classes are
called full checkpoints. The others are called partial check-
points. Using the log together with a most recently checkpointed
database, the recovery manager can restore the database to a

usable state from which normal processing is allowed to proceed.
Types of Database Fallures

A wide varlety of fallures can occur in processing a
database, ranging from the input of incorrect data to complete

loss or destruction of the database. Three of the most common
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types of errors are aborted transactions, system failure, and
database loss or destruction. Each of these types of errors
is described below, and the most common recovery procedure
1s indicated.

Transaction Fallure. For some reason, the transaction
does not reach its normal termination. Example of such errors
are deadlocks, timeout, incorrect input data, and protection
violations.

When a transaction aborts or must be aborted by the
system, any changes made by the transaction but not yet
committed to the database must be undone in reverse order.

The recovery action for this kind of failure is called
transaction UNDO.

System Failure. The system is shut down in an
uncontrolled manner. The contents of main storage are lost.
Such a fallure can be caused by an operating system fault,
power loss, or operator error.

When the system crashes, the changes caused by all
incomplete transactions must be removed, and the changes caused
by all completed transactiohs must be redone. The recovery
action of the first sort is called global UNDO; whereas, the
latter is called partial REDO.

Media Failure. A media failure is a fallure in which
some portion of the database has been destroyed physically. A
typical cause of media fallure is a disk head crash.

A backup copy of the database is required for recovery in

this situation. The flrst step iIs to restore the latest
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consistent backup copy and then performs REDO operations for
all transactlions completed since the copy was created. This
recovery action is called global REDO.

The above three types of fallure are generally happen in
classical database systems. 1In Haerder and Reuter [22], they
give some interesting empirical figures regarding frequency of
occurrence and typlcal recovery times for three kinds of

failure in a typical large system (TABLE I).

TABLE I

FREQUENCY OF OCCURRENCE AND RECOVERY
TIME FOR THREE TYPES OF FAILURE

Failure Type Frequency of Occurrence Recovery Time
‘Transaction 10 to 100 per minute  same as trans.
execution time
System Several per week few minutes
Media Once or twice per year 1 to 2 hours

- ——— - — ————— ———— — ——— ———— —————— —— —— — - —————— — - - - ———

Literature Review

Making computers easler to use 1s the goal of most
software. Database management systems, in particular, provide
a programming interface to ease the task of writihg electronic
bookkeeping programs. The recovery manager of such a system

in turn eases the task of writing fault-tolerant application
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programs (27] [30].

System R i1s a database system which provides a
relational model of data. It uses write-ahead logging in
combination with shadow pages [21] [31] to support COMMIT,
ABORT, and UNDO actions. A major virtue of shadows 1is that
they ensure that a system restart always begins with a RSS
(Research Storage System. an internal system which supports
data access method) action-consistent state. This is quite a
simplication and probably contributes to the success of system
restart. Shadow schemes, however, consume an inconsequential
amount of disk space. On the other hand, in order to use the
shadow mechanism, one must reserve a large amount of disk space
to hold the shadow pages.

Database cache [14] is the other recovery mechanism for
disk-based databases. It uses large amounts of main memory
space to store all currently active pages plus some other pages
which are needed for reading. The design of database cache is
to achieve the goal of high throughput of short transactions.

A long update transaction may cause the cache to overflow.

A demand paging technique can be used to bring pages into
main memory [(31] to avoid the overhead of using the entire
database. No log 1ls used, rather a safe located in non-
volatile memory containing data needed to reconstruct part of
the cache after failure is maintained.

with the traditional databases, the current database
state exlists partially in main memory, and partially in

secondary storage. Retrieval and update transactions suffer
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the long delays caused by disk I/0 when the deslired record
does not reslide 1h primary memory. Due to the declining cost
per bit of main memory and to rising chip densities, it is
becoming feasible to store complete databases in primary memory.
With the entire database in main storage, transactions suffer
no disk delays. As a result, the memory-resident database
system can improve performance through reduced CPU overhead
as well as through the elimination of disk‘access time.
Because of the volatility of maln memory, main memory databases
complicate database recovery 1lssues, This makes the recovery
operations for disk-based databases different from that for
memory-resident databases.

wWhen discussing the memory-resident database recovery, it
is important to realize that any recovery schemes must deal
with data in primary storage. Secondary storage is used only
for backup purposes. In memoreresident dqtabases, a system
failure can be treated as a media faillure with disk-based
databases and a global REDO performed. Medla fallures with .
memory-resident databases can effect the archive database or
log, restoring these flles may mean a global REDO applied.
However, when the specific location of media fallure can be
identified, a partial REDO is requlred to recover the affected
area. The differences between disk-based database and memory-
resident database recovery operations are listed in TABLE II.

The issues concerning memory-resident database recovéry
have been receiving increased exposure over the last few years.

One of the first memory-resident databases i1s IMS/VS Fast Path
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(24] [25). IMS/VS Fast Path is the first commercial product
that uses the idea of group commit to reduce traffic to the
log disk by delaying flushes of several transactions' log
records during the commit phase. Transactions must spend
additional time waiting for their commit groups to assemble.

This becomes a great influence on throughput.

TABLE II

DATABASE RECOVERY OPERATIONS

Fallure Traditional Memoiy-resident
Types Databases Databases
Transactlion Transaction UNDO Transaction UNDO
System Global UNDO Global REDO

Partial REDO

Media Global REDO Global REDO
Partial REDO

DeWitt et al. [10] describe a recovery method with the
possibility of stable memory. They use a small non-volatlile
random access memory as a log buffer to perform log
compression through which some undo and redo items can be
eliminated. They also proposed an overlapped checkpointing
algorithm which requires a high degree of synchronlzation

and data sharing.
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Additional concerns center around the increasing in the
number of main memory components. These concerns are under
investigation at Princeton University. The Massive Memory
Machine [15] project 1s designed to support massive amounts of
primary storage to allow the serlal execution of transactions.
The improved performance can eliminate the need for concurrency
control. Assoclated with the Princeton project is the design
of a main memory database recovery scheme based on a hardware
logging device, HALO (18). HALO monitors the main CPU,
intercepts word-level writes to the database, and logs them
before passing them onto the database system.

In [23], Hagmann proposed using the existing recovery
techniques of fuzzy dumps and log compression to provide a
fast restart after a crash. Hls design concentrates
on medium-size maln memory databases (approximately 1 Gbyte)
that have many small updates; e.g., debit/credit transactions.

Another recovery technique for main memory databases is
presented by Eich in [12]. Eich in her paper describes an
automatic checkpoint which runs on a separate recovery
processor. In order to accomplish automatic checkpointing,
the log manager monitors the log state and finds the most
recent checkpoint record on the log, then the recovery
processor walts for the database system to become gquiescent
and performs the checkpoint.

Putting the system into a quiescent state until no update
transaction is active may cause an intolerable delay for

incoming transactions. An algorithm for continuous consistent
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checkpointing is presented by Pu in (32]. Pu states that the
database system does not need to be quiesced to obtain a
consistent checkpoint; instead, the checkpoint runs
concurrently with the normal transaction processing, and locks
the entities In the database one by one so that transactions
which do not interfere with the checkpoint process are allowed
to run.

The design for a memory-resident database system
including data structures, query processing, and recovery
technique has been proposed by Lehman (28] [29]. Recovery
processing uses a stable log buffer as well as a special log
processor to perform the checkpointing operation. The use of
a log processor reduces the amount of logging work done by the
main CPU. Thus, through decreasing CPU cost, a greater response
time in logging is achlieved. Finally, [16] [17] presents a
a taxonomy of previous recovery policles on main memory
databases based on the update, logglng, checkpoint, and backup
policies.

overview of Thesis

This paper examines recovery techniques for both disk-
based databases and memory-resident databases, ldentifles
dlfferences between the two, and proposes a memory-resident
recovery technique. The paper outlines the recovery mechanisms
used in the disk-based databases; sketches previous work on
memory-resident database recovery; introduces a proposed new

deslign; presents a comparison among recovery techniques for



main memory databases; and concludes by listing areas for

future work.
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CHAPTER 1I1I
RECOVERY FOR DISK-BASED DATABASES

The firSt recovery algorithm of interest is the one used
in System R [21]. System R consists of an external layer
called the Research Data System (RDS) and a completely
internal layer called the Research Storage System (RSS). The
external layer provides a relational data model and operations
thereon. The RSS is a nonsymbolic record—at-a-tiﬁe access
method. The RSS provides actions on the object it implements.
Each segment consists of a page table with pointers to the
data pages. Assocliated with each pointer in the page table
are three bits: a shadow bit, a cumulative shadow blt, and a
long term shadow bit.‘ When a segment is updated, its new
value is put in a newly allocated page, and the current
version of the page table is updated to point to the new page.
The backup verslon remains unchanged. -For each page tﬁat is
updated, both the shadow bit and the cumulative shadow bit are
set in the page table entry of the segment containing the page.
When the current state of the segment is saved, the shadow bits
are switched off, and the o0ld pages of the backup version, having
been replaced by the new versions from the current copy, are
released. Checkpoints for all the segments are taken regqularly

in an RSS action-consistent state. This involves copying all

18
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of the pages of all segments iln the system for which the
cumulative shadow bit is on. The long term checkpoint bits
are used to make sure that subsequent saves do not release
the page before the checkpointing algorithm has coplied them.
Implementors using this design suggest both that shadowing is
a very expensive process, and that logging would probably
sufficient in thelr system.

The TWIST algorithm de&ised by Reuter [341]1 is designed
for fast UNDO recovery. It uses a shadow pages scheme,
allocating two physical blocks for each database segment;
that 1is, it contains the new state of a segment and its before
image in secondary storage. 1In the TWIST algorithm, each
segment is augumented with a bit indicating which of the
two backup blocks of that segment is updated most recently.
When a checkpoint begins, it is assigned a timestamp.

During checkpointing, the segment 1s written to the least
recently updated of its two backup blocks. The timestamp of
the checkpoint also 1s stored with that flushed segment. When
recovery proceeds, the two backups of each segment are read.
The block with the larger timestamp 1s chosen and the segment
in primary memory is restored from that block.

Next in the TWIST algorithm is database cache [14]. It
is designed to replace the traditional buffer, and therefore,
allows an efficlent solution to low database traffic. The
design consists of three components: the physical database,
the cache, and the safe. The physical database contailns

exactly one version of each database page. The cache, a part
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of maln memory space, holds all the pages that are needed
for reading or modifying of an active transaction. The
safe which resides on disk is a backup memory used to protect
the contents of the cache in case of a system fallure. When
a transactlon wants to update a page, then the desired page
is read from the database into the cache as the orliginal 1if
it is not in the cache; otherwise, it is modified and becomes
a dirty version of that page. When a transaction reaches
the commit phase, all corresponding dirty pages are written
sequentially onto the safe; the changed pages are written
back to database from the cache with update-in-place. This
implies that a transaction-oriented checkpoint is taken after
every transaction. If a transaction is aborted, or aborts
itself, all pages belonging to that transaction simply are
released in the cache; therefore, no I/0 1Is required.
Recovering the database after a crash 1ls simple, only involving
loading the safe back ‘into the cache, then normal processing
is allowed to resume. The database cache approach shows high
throughput for short transactions. However, in the case of
a long transaction.the cache cannot hold all of its pages so
some of them must be wrltten to disk, thus requiring the use
of UNDO log records and write-ahead logging protocols.

Filnally, a survey of recovery techniques used in
traditionalldatabase systems is given [35]. These recovery
techniques, applied in different environments, provide
different kinds of recovery for databases and restore them

to a usable state. They are:
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1. Recovery to a correct state (a database is in a
correct state both i1f the information in it consists of the
most recent coples of data put into the database by users and
if it contains no data deleted by user).

2. Recovery to a correct state which existing at some
moment in the past (i.e. a checkpoint).

3. Recovery to a possible previous state.

4. Recovery to a valld state (a database 1s in a valid
state 1f its information is part of the information in a
correct state).

5. Recovery to a consistent state (a database 1s in a
consistent state if it iIs a valid state, and the information
it holds satisfies the users' consistency constraints).

6. Providing crash resistence.

Techniques employed for different kinds of recovery are
divided into seven categories:

1. Audit trall -- An audit trall records the sequence of
actions performed on a file. It can be used for the purposes
of crash recovery and backing out to restore the database to
a correct state.

2. Backup/current version -- The files contain the
previous/present values form a backup/current version of the
database. Backup version can be used to restore files to a
previous state. If it is together with current version, they
are used to restore files to a checkpoint state.

3. Careful replacement -- When the update is pérformed,

the copy of a component, which replaces the original, is kept



22
until after the replacement is made successfully. In other
words, two coples exist only during update; otherwise, there
is just one copy containing the current value. This makes
the update or sequences of updates as safe as possible by
reducing the chance of being left with an inconsistent copy
or mutually inconsistent files. This technique is used to
restore a state prior to update.

4. Differential files -- The. main file remains unchanged.
All changes that would be made to a maln file are recorded in
a differential file. The differentlal files regularly are
merged with the main files. A differentlal file is a type of
audit trall, yet the actual updates have not been made. The
differential file can be used to restore the database to a
valid state.

5. Incremental dumping -- Incremental dumping creates
checkpoints for updated files. It copies updated files onto
archive storage elther after a Jjob has finished or at regular
intervals. Incremental dumping provides a facility of
restoring all the files to their previous consistent state.

6. Multiple coples -- At least two coples of each file
are kept. The different coples are ldentical except during
update. If the number of coples 1s odd, then a majority
having the same value 1is taken as the correct one. 1If there
are two coples of a flle, then a bit can be use@ to indicate
"update-in-progress," while the state is inconsistent. This
technique provides crash resistence. ‘

7. Salvation program -- A salvation program is a last
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resort, used if all other techniques fail. It cannot bring
the database back to a previous state. It only rescues the
information that is still recognizable.

Although the traditional recovery algorithms may perform
correctly on a disk-oriented database, they might not perform
satisfactorily on a memory-resident database. Therefore,
several recovery algorithms for a memory-resident database
have proposed to log and checkpoint the memory-resident

database efflciently.



CHAPTER III
RECOVERY FOR MEMORY-RESIDENT DATABASES

One way to classify main memory database systems is
according to the number of users they support. This
classification can affect the recovery components of the
system. 1In a‘single—user system with only one user at a time
processing»the database, data integrity is simpler to maintain
‘since data recovery algorithms can be implemented more easily.
In contrast, multi-user database systems are accessed
concurrently by many users. The recovery in a multi-user
system i3 much more complex than recovery in a single-user
database system. Speclal precautions need to be taken to
prevent data inconsistence. The followlng sections introduce
existing recovery methods for single-user and multi-user

database environments.
Single-User Database Systems

Single-user memory-resident databases most frequently
are found on personal microcomputers. Reflex is a database
manager product from Borland International Company [(4]. The
database In Reflex is an organized collection of records, in
which information is entered. With the displaying and

manipulation of the database, Reflex provides five different
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views for users to show the same informatlion. These flve
views are: Form, List,'Graph, Crosstab, and Report. Since
all five views arise from the same underlying database,
changes made to one view instantly affect the others.

Additional features provided by Reflex include the Trans-
late Program and the Export facility. The Reflex Trans;ate
Program converts flles created with other programs to the
Reflex format. Conversely, the Reflex Export converts Reflex
filles into a form readable by other programs.

The second generatlon of the Reflex database management
syétem is Reflex Plus. It is designed to support larger
recoxd sizes (up to 4,080 characters per record for the APPLE
Macintosh users).

Data~-recoverable capabllities of both Reflex and Reflex
Plus are at the record level. For internal recovery, undoing
any deletlion of records is accomplished by a second confirmation
by the user so that the data is not erased when fhe user
acclidentally deletes a record. Restoring removed and replaced
columns involves performing commands to restore thelr
original states without affecting the database. For external
recovery, a recovery program called Flexrec is used to recover
corrupted data from a disk crash. If the damaged portion of
the disk is recoverable, then the program outputs the
diagnostics to a .doc file and outputs the data which still
is recognizable to a .prn file. The .doc flle contains
information about master record address, the address and the

length of the data records section, the names of the fields,
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and errors. The .prn flle along with the .doc file are used
both to identify damaged data and to restore the database.
| The IBM 0S/2 Extended Editlion (EE) (26] h%s a bulit-in
database manager with support for Structured Query Language
(SQL). The EE's database manager consists of an SQL-based
relational database engine, called Data Services, and a front-
end application for this engline called the Query Manager. The
database engine (a collection of organized information
including the database itself and catalogs and access plans
for the database) also can be accessed by embedding SQL code
into custom applications. Llke other SQL database englines the
EE database divides data into a serles of relational tables,
with rows (records) and columns (flelds). The user can
construct a VIEW of a database by SELECTing varlous columns
and JOINing tables.
The EE database also includes a transaction management.
The goal of transaction management 1s to ensure that a
transaction is completed successfully even when a catastrophe
occurs while the transactlion is beling processed. This problem
is handled by a pair of functions called COMMIT and ROLLBACK.
All transactions first are written to a buffer. After the
transactions are completed, they are wrltten (or committed)
to the database files. If a problem occurs before they are
completed, then the transactions are rolled back and executed
over again. The COMMIT and ROLLBACK functions are performed
automatically, but the user also can have explicit control

over them.
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Another feature of the database englne for transaction
management is a recovery log. The log lists each new record
and the record that was replaced. Also, the recovery log is
written to disk before the database on the disk is updated.
With the log, the user can reconstruct the database or
complete the updating of the database.

In addition to its sSQL capablilities, the database engine
also includesba number of interesting utllities. The system's
BACKUP and RESTORE utlilitles let the user do short,
incremental backups, or restore the database to any prior
condition.

Some other current single-user main memory databases
and the backup and recovery facillities they provide are listed
in Appendix A [5].

Multi-User Database Systems

The IBM IMS Fast Path [24] [(25) is the first system that
uses a memory database which ls treated differently from the
rest of the disk-orlented IMS database. Page updates are not
performed until commit time. Log records are not flushed
irmmediately upon commit, rather they are collected in a
special database buffer with other committed recoxrds so that
the cost of writing the log pages can be amortized over several
transactions. IMS Fast Path performs transaction-consistent
checkpolnts which write entire database to the archive after
system quiesced.

Researchers at the Unlversity of Californlia at Berkeley



28

[iOl were the first to use the notion of a pre-committed
transaction. When a transaction commits, its commit record is
placed in the log buffer to allow other conflicting transactions
processing to begin. This accelerates the commit process by
reducing the amount of time a transaction must wait until its
log records are flushed. Commit processing actually completes
when the log buffer has been flushed to disk. Frequent
action-consistent checkpolnting is made in parallel with
transaction processing. The prevlious checkpointed pages are
written to disk as a temporary log while the memory copies of
the checkpointed pages are written in-place to the disk. Once
all the checkpointed pages have been written to disk, the
temporary and memory coples are released.

IBM's Office by Example (OBE) [2] uses a memory-resident
database design including data structure representation and
recovery techniques. It is assumed that every relation
participating in a transactlion ls read once at the beginning
of the transaction and, if modified, written to disk at the
end. OBE uses shadow pages in stable storage. All new
copies of modified relations are written to shadow areas on
the archive database at commit time. Transaction-oriented
checkpointing occurs continuously. The cost of flushing log
data at the end of every transaction appears to be very high. .

The hardware logging device, HALO [18], is designed to
reduce some recovery duties handled by the main processor, such
as initiating I/0 to the log disks and copying to buffers.

HALO has the internal registers and data and command paths both
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to the main CPU and to primary memory. HALO Intercepts
communications between the processor and the memory to create

a before-image and after-image log. HALO contains stable
random access memory which implles that the log buffers need
not be flushed before allowing transactions to commit. The
before-image log data 1s needed to undo aborted transactions.
Action-consistent checkpolints to the archive database occur
continuously and in parallel with transaction processing by
reading the entire main memory database and identifying
changed pages.

Hagmann [23] outllnes a method of doing recovery that
uses fuzzy dumps and log compression to provide a quick
transaction processing and rapld restart after a crash. A
memory image ls periodically written to disk while the normal
database system is running and modifying the database. There
is very little coordination between the dumper and the main
database system. The dump is inconsistent since it may
contalin partial updates from transactions. This method
provides an almost up-to-date and stable copy of the database
wlth the oldest data only a few minutes old. 1In order to
support this type of fuzzy dump, the UNDO and REDO log
information must be in physical before-image or after-image
form. Therefore, the log grows large quickly. Log compression
then is needed to keep the log short so that crash recovery
only processes a small amount of log; that is, the redo part
of aborted transactlons and the undo part of committed

transactions can be eliminated. This is performed by a
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software compressor. The logging, in this case, is done at
the page level which requires much more log data to be
manipulated than if logging were done at the record level.

Another technique that uses main memory shadow pages,
pre-committed transactions, automatic checkpointing, and a
recovery processor is given by Eich [12]. Main memory shadow
pages are used to achieve the goal of no I/0 for transaction
UNDO. Update transactions create duplicate copies of these
pages. At commit time, a commit record is written in the log
buffer. As soon as this occurs, other conflicting
transactions are allowed to progress. They use the data
in the dirty pages or, if needed, create new copies of any
modified pages. If a transaction commits, the previous
clean pages are released and the dirty pages become the new
clean ones. Undoing the effects of a transaction simply
releases the dirty pages. The automatic checkpoint is
obtained in a way that the log manager monitors the state of
the log and keeps track of it. The log state has an initial
value of 0. When the BEGIN_TRANSACTION record is written to
the log, the state value is incremented by 1. Whereas the
COMMIT_TRANSACTION and ABORT_TRANSACTION records decrement the
state value by 1. When the log manager detects a state value
of 0, a transaction-consistent checkpoint is then triggered.
The checkpointing is accomplished by a recovery processor.

It walts for the database system to become quiescent, then
it blocks out other transactions while the entire database is

written to disk.
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Lehman {281 (29] sketches a method on efflclent logging
mechanlism that uses stable random access memory and a recovery

processor. Transaction update operations are performed in a

volatile UNDO space at the record level. Wwhen a transaction
terminates normally, records in the UNDO space are moved to
the stable memory and become the REDO records. Transactions
UNDO are done by discarding its UNDO records. The recovery
manager, running on the recovery processor, organizes the
REDO log records into partition bins. A partition bin is a
unit of transfer that is larger than a typical disk page.

As partition bins become £full, they are written to the log
disk. Each partition bin also has an update count. When a
partition has accumulated a specified threshold count of log
records, it is marked to be checkpointed. 1If a partition
not having a sufficient number of updates but remaining in
the stable memory longer enough, it ls also marked to be
checkpointed because of age. Actual checkpointing is
performed by the transaction manager that runs on the main
processor. For each partition checkpoint request, the
transaction manager reads the specified partition from the
database and writes it to the checkpoint disk on a
transaction-consistent state basis. Since each partition

is checkpolnted at a time, the cost of a checkpointing is

amortized over several update transactions.



CHAPTER IV
A PROPOSED RECOVERY DESIGN
Objectives

In most modern computers, the main processor is considered
such a valuable resource that 1t should spend as little time
as possible perform activities other than normal processing.
In a high-performance database system, transaction throughput
is important, so the time required for the commit phase
should be small. This can be accomplished by using stable
random access memory. In addition, any I/0 needed should be
performed asynchronously with normal processing. This inmplies
thét log I/0 occur not only at commit time, but also thfoughout
transaction processlng. Moreover, frequent checkpoints are
necessary to speed recovery in order to reduce the amount of
log data that must be scanned. Checkpolnt policies can be
divided into two aspects: full and partial. For better
efficient checkpolnting algorithms, partial checkpointing is
performed with little interference on transaction processing.
Therefore, the use of three dlfferent processors to perform
three tasks for normal processing, logging, and checkpointing
is proposed to achieve the following requirements:

1. Reduce main CPU overhead.

2. Accomplish frequent checkpoint with little
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interference on normal processing.

3. Acquire greater throughput.
Description of Hardware Components

The proposed model (Figure 4) is composed of a main
processor, log processor, a recovery processor, stable memory,
and a set of disks. The maln processor -- an IBM 3090 model
type of CPU -- is designed for heavy transaction processing
loads which can process up to 79 millions of instructions per
second (MIPS) [7] (8]. The VAX 8820, contalning two VAX 8700
CPUs which perform as the log and recovery processing, offers
performance of 11.4 MIPS [6]. Each processor in the VAX 8820

also can initiate its own 1/0.

| CPU | (main)

| | CPU I(1log)
v
________________________ '
| | I === vV  mmmmemee mee-e-
| main memory| DBMS j<->1 log | <=--=-> ] log I<-> | |
| database | | Ibuffer| | tall] llog |
——————————————————————————————————————— ldisk|
~ (stable (stable | |
| memory) memory) - ------
| |
| v
| _______
R et | CPU |
v _______
------ (recovery)
| |
| | (checkpoint
| | disk)
|

Figure 4. The Proposed Recovery Model
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Furthermore, two to six VAXBI buses (an electronic iink
for input and output in VAX machines) are avallable on the
VAX 8820 to speed the transfer between the main memory and
secondary memory.

The recovery processor has access to the stable memory.
The stable memory, made of non-volatlile random access memory,
is divided into two parts: a log buffer, and a log tall. The
stable log buffer is used to hold transaction log records;
whereas, the stable log tall contalns units of log records.
The disks used for malntainlng recovery lnformation are
separated into two groups. One set of disks holds log
information while another set of disks holds checkpoint
information. Redundant coples of the recovery information
can be provided to further protect data on secondary
storage from a media fallure.

The three processors have loglcally different functions.
The main processor is in charge of reqular transaction
processing. The log processor manages the log information.
It collects log records and groups them into units for
transferring to the log disk. The two CPUs are required to
shared only the stable log buffer, using it as a communication
buffer along with its other uses. The recovery processor
manages checkpointing operations, archive storage, and if

necessary, restore the database in case of a system crash.

Logging

The logging procedure conslsts of three steps. Flrst,
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transactions create REDO log records. The REDO log records
are placed in the stable log buffer. Second, the log manager,
which runs on the log processor, reads the log records of
committed transactions from the stable log buffer and places
them into the stable log tall. 1In the stable log tail, log
records are grouped into pages units. Third, these page units
are written to disk when they become full.

When a transaction reaches its commit processing phase,
the main CPU places 1ts REDO log records in the stable memory
so that the transaction can commit immedlately. Once this is
done, other conflicting transactions can begin to proceed.
This is the only logging operation which involves the main CPU.

Since the REDO log records are kept in the stable memory,
the log only maintains the after images of modified data. 1If
a system fallure occurs, then committed transactions are
redone. If a transaction abnormally terminates, then undoing
the effects of the transaction simply releases the UNDO
records in main memory.

The log processor collects transaction log records in the
stable log tall and organizes them into page units according
to thelr corresponding memory allocations. When the log
records £111 up a log page, the records are ready to be
written out to the log disk. The log processor initlates a
disk write request for that page. Log records in that page
unit are maintained in commit order so that they can sent to

disk in commit order.
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Checkpointing

System checkpoints are triggered at reqular time
intervals by model parameters. The recbvery processor
performs checkpolnts at each interval to obtain an up-to-
date backup copy of the database. Each database page is
augumented with a d4irty bit which is set by transaction
updates and cleared when the page has been checkpointed.
When a checkpoint begins, the checkpointing algorithm writes
a BEGIN_CHECKPOINT record in the log, and scans through the
database from the most recently checkpointed page until a
dirty page is found. After a page has been identified as
being dirty, the checkpointing algorithm sets a read lock
on the page and walts in a high prlority basis until it is
granted (if there are several read locks in a waiting list,
then the read lock issued by the checkpointing algorithm has
the highest priority among others). Wwhen the read lock on
that page is granted, the checkpointing algorithm allocates
a block of memory large enough to hold the page, copies it
into that memory, and released the read lock. Pages locks
are held just long enough to copy at memory speeds, so there
is little synchronization between the checkpointing and normal
transaction processing. A checkpoint ends after writing an
END_CHECKPOINT record in the log. Flnally, the recovery
processor records the address of the most recent checkpoint in
the archive database.

The checkpoint disk space must be large enough to hold two
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complete coples of the database: a previous copy and a current
copy. The two backup coples are written alternately. This

backup policy is a way to protect the archive database from a

media fallure.
Crash Recovery

Since the primary copy of the database is memory-
resident, a transaction can begin to run 1f the information it
needs is in main memory. Restoring the memory copy of the
database iInvolves reloading the most recent copy of the
database, then using the log -- both active and archive
portions -- to redo all transactions that completed since that
copy was taken. There ls no need to undo transactions that
were still in progress at the time of the crash, since all
updates of such transactions have been lost.

System restart proceed as follows: The recovery manager,
running on the recovery processor, loads an earlier copy of
the database back into the main memory. Next, it reads the
log backwards to the point where the last checkpoint was
taken. Then the database is rolled forward reapplying after
images for all transactions that were proceeded after that
checkpoint. Once the iInformation has been restored, regular

transaction processing begins.
Discussion of the Proposed Model

This section uses a performance model based on the model

Introduced in [1]1 [13] [33] to compare recovery methods in a
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normal database system. Performance measures of transaction
cost and throughput are derived based on estimate of CPU and
I/0 costs involved in database processing. The transaction
cost includes costs for the main CPU and any I/0 needed prior
to commit processing. The transactlon cost also includes
costs for transaction undo and logging. The throughput rate
is calculated by using the transaction cost. The checkpoint
cost also is considered when calculating the throughput rate
by reducing the main CPU processing power. The parameters and
measures used by the performance model are shown in TABLE III.

Based 6n the Reuter's information (33], CPU time for
accessing a page, Cp, and for copying a page, Cco, are taken
to be 0.8 ms. Based on Reuter's statistics (331, the I/0 time
for writing a log record is assumed to be 10 ms. The P4
parameter is estimated half duplication of the modified pages
which is required for checkpointing. Based on the information
given by Eich (13}, the probablility of update transactioné, Fu,.
1s normally 0.25 and the percent of transaction undo is 0.03.
Based on the statistics given by Agréwal and Dewitt [11,
the percent of referenced pages of update transaction is 0.5.
Based on the Reuter's information (33], the S parameter is the
average number of pages referenced per transaction. It lis
taken to be 500. The main CPU involves the amount of logging
activity is based on the slze of a log record, Sr, since the
size of a log record may influence on I/0. The Sr has a
default value of 0.25. When a group commit is used, the

number of transactions committed in a group iIs assumed to be
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5. Based on (191, the checkpolint interval, I, ls taken to be

300 seconds. Based on [22], the average tlime between system

failures T, is assumed to be 3 days.

TABLE III

PARAMETERS AND MEASURES

Cp
Cco
Clo
Pd
Fu
Pb
Pt

CPU time to access page

CPU time to copy page

I/0 time to write page
Percent of duplicate updates
Percent of update transactions
Percent of transaction undo
Percent of page updated
Number of page referenced
Size of log record

Number committed in group
Checkpoint interval
Fallures interval

—— o —————— ————— —————— ——— ——— - ————————————— ——————————————— —— —

Cost for transaction undo
Checkpoint Cost

Logging Cost

Cost of retrieval transaction
Cost of average transaction
Cost of update transaction
Throughput rate

General types of transactions are transaction reads and

writes.

Most of the time the transactions are reads.

The

transaction cost is calculated based on the frequency of

retrievals and updates:

Ct =Cr * (1 - Fu) + Cu * Fu.
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In turn, the cost of retrieval transactions is based on
the number of pages referenced:

Cr = 8 * Cp.

The cost updating a transaction includes the number of
pages to be read, the cost for logging the updates of the
transaction and the cost for transaction undo:

Cu =8 *Cp +Cl + Pb * Cb;

where, Cb iIs the cost for rolling back the transaction in
case of an lsolated transaction failure, and Pb 1is the
probability of such an event. Backout cost, Cb, is based on
that no 1/0 is required and only a memory copy 1s needed:

Cb = Sr * (8 * pPt) * Cco.

Computing the cost to perform logging has several
different aspects. 1If speclial logging hardware is used, there
is no impact on transaction processing so that Cl is taken to
be 0. Without logging hardware, the calculations must considex
writing one BEGIN_TRANSACTION and one END_TRANSACTION record
per update transaction and, for each page being modified, a
before_image and an after_lmage are needed. If a group
commit is used, then log records are grouped together untlil a
log page becomes full thus amortizing the 1/0 time over all
update transactions in the gioup:

Cl =8r * (2 * g * pt + 2) * (Cco + Clo).

If an immediate commit is used, then each transaction
flushes its log records before completing; thus, partial pages
may be written:

Cl = (Sr * (2*S*Pt + 2) * Cco) + (| Sr * (2*S*Pt + 2)]* cio).
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Anothér calculation for Cl is based on that some stable
memory 1s used. No I/0 is needed before transaction
commit:
Cl = Sr * (2*s*Pt + 2) * Cco.
The transaction cost is modified when a group commit is
used. Since there are n transactions committed in a group,

the value of Ct becomes:

n
ct = (2: i *¥cCct) / n.
i=0

The transaction throughput is obtained by reducing any
checkpointing overhead provided by the main CPU. The Cc
value 1is computed by using the Ct value obtained, determining
the number of transctions processed between checkpoints, and
then the number of updates pages:

Cc = (I * Fu * 8 * pt * Pd * Cco) / Ct.

If checkpolinting ls performed by a separate processor,
then there is no influence on the normal transaction
processing so that Cc 1s assumed to be 0. The checkpoint
cost is then used to determine the throughput rate:

Rt = (T * (1 - Cc/I) + Cc/2) / Ct / I.

This throughput rate is based on the assumptlion that the
final crash occurs in the middle of a checkpoint interval.

Using this performance model, the throughput rate of
varlious recovery techniques for memory-resident databases

is shown in TABLE 1IV.



TABLE IV

THROUGHPUT RATE

Recovery Techniques Throughput (transactions/sec)
INS Fast Path s T
OBE 1.67

Dewitt 1.3

HALO 2,34

Hagmann 2.35

Eich 1.75

Lehman 2.27

Chang 2.42

The results based on throughput rate show several
aspects which can affect the performance of transaction
processing. Flrst, the nonstable classes of recovery
techniques give lower degree of throughput rate than the
stable classes of recovery techniques. This is because,
without stable memory, transaction commit processing cannot
begin untll all log I/0 has been performed successfully.
This I/0 overhead directly affects response time. With
enough stable memory to contain the log buffer, once log
records have been written to the buffer commit processing
can occur. Therefore, the use of stable memory eliminates
the impact that logging I/0 has on transaction performance.

Second, transaction throughput is sensitive to the impact
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of main CPU overhead for loggling. If a logglng device is
used to perform the main CPU logging function, then the use

of this hardware eliminates the main CPU overhead for logging.
Third, another impact on the throughput rate is
checkpoint overhead. The use of a separate checkpoint
processoxr can eliminate the main CPU for checkpointing which
implies that the main CPU processing speeds increase. These
factors show the avallability of stable memory and special
logging and checkpointing hardware are the crucial recovery
factors impacting transaction throughput. Judging from
these results, the proposed recovery algorithm gives a
greater performance on transaction processing than prior

recovery algorithms.



CHAPTER V
SUMMARY, CONCLUSIONS AND FUTURE WORK
Summary

In a high-performance memory-resident database system,
transaction throughput rate is important. Such a system needs
an efficient logging mechanism that can assimilate log records
as fast as possible. 1It needs efficlent checkpoint operations
that can produce a reliable backup database and at the same
time with little impact on normal processing. Finally, the
recovery algorithm should not burden the main processor and
affect transaction performance.

The new design for a recovery algorithm meets these three
criteria. With the use of stable memory and a log processor,
the logging mechanism cannot inhibit the performance of
the system. Checkpointing operations are performed by a
recovery processor, so very little synchronization is needed
between the checkpointing processor and the main processor.
With the ease of the tasks for logging and checkpointing, the
main processor can work solely on transaction processing.
After a crash, information requested by transactions are
recovered first so that transactions processing can begin.

Partial memory recovery also in beneficlal in the
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event of a failure. When part of the main memory fails, the
information in that part of memory is lost. Some existing
recovery methods would have to recover the entire database.

In the case of a partial memory loss with this proposal, only
the lost portion of the database can be restored once the
required information has been filtered out from the checkpoint

copy and the log.
Conclusions and Future Work

Recovery techniques are used to ensure that any erroneous
database state due to transactlion, system, or media fallure
can be repaired to restore the database into a usable state
from which normal processing can resume. Such techniques
are used widely in disk-based database systems. However,
some problems which exist in traditional database systems
may not appear in a memory-resident database environment.

The major pioblem of memory-resident databases deals with
the volatility of main memory. This problem has been
recognized and several new techniques for memory-resident
database recovery have been proposed. Along with the useful
ideas that have beeﬁ generated so far, there are still
several aspects of memory-resident database recovery that
need better, more efficient algorithms.

This paper proposes a recovery technique for a
memory-resident database system. A performance model for
comparing different recovery techniques with respect to thelr

impact on overall system performance is given. It shows that
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some key parameters can influence database performance, and
that the proposed recovery design meets these requirements
better th;n previous methods. The performance model, however,
is not intended to yleld exact performance predictions in
terms of throughput, rather it is intended to show three keys
parameters -- stable memory, separate logging and
checkpointing hardware -- influencing database performance
most significantly. 1In order to approach an exact model,
one must include many details about the implementation of
the recovery algorithm and other components of the database
management system it has to cooperate with. Simulation or
improving the precision of the model is needed to determine
how the various logging, checkpointing hardware and recovery
operations interact when all three operations are running

in separate processors. This 1s an area for future work.



(1]

(2]

[31

(4]

(51

[6]

(71

(81
(91

(101

(111

(12]

SELECTED BIBLIOGRAPHY

Agrawal, R. and Dewitt, D. J. "Integrated Concurrency
Control and Recovery Mechanisms: Design and Performance
Evaluation," ACM Trans. on Database Sys., 10, 4,

(Dec. 1985), 529-564.

Ammann, A., Hanrahan, M. and Krishnamurthy, 'R. "Design of a
Memory Resident DBMS," Proc. IEEE COMPCON, San
Francisco, (Feb. 1985).

Bernstein, P. A. and Moodman, N. "Timestamp-based
Algorithms for Concurrency Control in Distributed
Database Systems," Proc. 6th International Conference on
Very Large Database, (Oct. 1980).

Borland International Inc. 4585 Scotts Vvalley Dr., Scotts
Valley, CA 95066.

Computerworld, "Data Dlspersal Starts as Trickle,"
(March 14, 1988), sl-s12.

Computerworld, "VAXs Tuned for Mainframe Challenge,"
(March 14, 1988), 1.

ComputerwWorld, "IBM Propels DB2 into Database Top Spot,"
(April 25, 1988).

ComputerwWorld, "Amdahl Tops IBM MIPS," (May 9, 1988), 1.

Date, C. J. An Introduction to Database Systems 4th ed.
Addison-Wesley Publishing Company, 1986.

Dewitt D. J., Kate, R. H., Olken, F., Shapiro, L.,
Stonebraker, M. and Wood, D. "Implementation Techniques
for Main Memory Database Systems," ACM, (1984).

Dolan, K. A. and Kroenke, D. M. Database Processing:
fundamentals, design, implementations , 3rd ed.
SRA,1988.

Eich, M. H. "Main Memory Database Recovery," Proc. ACM-
IEEE Fall Joint Computer Conference, (1986). '

47



(13}

(141

[(15]

(161

(171

[181]

(191

(20]

[211

(221

(23]

[24]

[25]

48

Eich, M. H. "A Classification and Comparison of Main
Memory Database Recovery Techniques," Proc. 3rd
International Conference on Data Engineering, Los
Angeles, CA, (Feb. 1987), 332-339.

Elhardt, K. and Bayer, R. "A Database Cache for High
Performance and Fast Restart in Database Systems," ACM
Trans. on Database Sys., 9, 4, (Dec. 1984), 503-525.

Garcia-Molina, H., Lipton, R. J. amd Valdes, J. "A
Massive Memory Machine," IEEE Trans. on Computers,
C-33, 5, (May 1984), 391-399.

Garcia-Molina, H. and Salem, K. "Checkpointing Memory-
Resident Databases," Princeton University Computer
Scliences Department Technical Report, December, 1987.

Garcia-Molina, H. and Salem, K. "Crash Recovery for
Memory-Resident Databases," Princeton University
Computer Sciences Department Technical Report,
November, 1987.

Garcia-Molina, H. and Salem, K. "Crash Recovery Mechanisms
for Main Storage Database Systems," Princeton
University Computer Sciences Department Tech. Rep.
April, 198s. .

Gray, J. "Notes on Data Base Operating Systems," in
Operating Systems: an Advanced Course, G. Seegmuller,
Springer-verlag, (1978), 393-481.

Gray, J. "The Transaction Concept:virtues and limitations,"
Proc. 7th International Conference on Very Large
Databases, (Sep. 1981).

Gray, J., McJdones, P., Blasgen, M. Lindsay, B. Lorlie, R.,
Price, T., Putzolu, F. and Traiger, I. "The Recovery
Manager of the System R Database Manager," Computing
Surveys, 13, 2, (June 1981), 223-242.

Haerder, T. and Reuter, A. "Principles of Transaction-
oriented Database Recovery," Computing Surveys, 15,
4, (Dec. 1983), 287-317.

Hagmann, R. "A Crash Recovery Scheme for a Memory-
Resldent Database System," IEEE Trans. on Computers,
Cc-35, 9, (sep. 1986), 839-843.

IBM, IMS/VS Version 1 FastPath Feature General
Information Manual, GH20-9069-2, April 1978.

IBM World Trade Systems Centers, IMS Version 1 Release
1.5 FastPath Feature Description and Design Guide,
G320-5775, 1979.



(261

(271

(28]

(291

(301

{311

(321

(331

[34]

{35]

49

IBM Corp. 01d orchard RA., Armonk, NY 10504,
IBM's 0S8/2 Extended Edition.

Lampson, B. and Sturgls, H. "Crash Recovery in a Distributed
Data Storage System," XEROX Research Report,

Lehman, T. J. "Design and Performance Evaluatlion of a
Main Memory Relational Database System," CS Tech. Rep.
#656, Computer Sciences Department, Unlversity of
Wisconsin, Madison, WI, Aug. 1986.

Lehman, T. J. and Carey, M. J. "Query Processing in Mailn
Memory Database management Systems," Proc. of the ACM-
SIGMOD International Conference on Management of Data,
(May 1986).

Lindsay, B., Selingexr, P., Galtleri, C., Gray, J., Lorie,
R., Price, T., Putzolu, F., Traiger, I. and Wade, B.
"Notes on Distributed Databases," IBM Research Rep. RJ
2571, San Jose, CA, 1979.

Lorie, R. A. "Physical Integrity in a Large Segmented
Database," ACM Trans. on Database Sys., 2, 1,
(March 1977), 91-104.

Pu, C. "On-the-£fly, incremental, Consistent Reading of Entire
Databases," Proc. International Conference on Very
Large Databases, Stockholm, (1985), 369-375.

Reutexr, A. "Performance Analysis of Recovery Techniques,"
ACM Trans. on Database Sys., 9, 4, (Dec. 1984),
526-559.

Reuter, A. "A Fast Transaction-orliented logging Scheme
for UNDO Recovery," IEEE Trans. on Software Engineering,
SE-6, 4, (July 1980), 348-356.

Verhofstad, J. 8. M. "Recovery Techniques for Database
Systems," Computing Surveys, 10, 2, (June 1978),
168-195.



APPENDICES

50



APPENDIX A

SINGLE-USER MAIN MEMORY DATABASES
AND THEIR RECOVERY

POLICIES

51



| PRODUCT

Acius Inc.

(408)252-4444
|
|

AD & P Analysis, |Ultra-base

Design & Program- |
ming (703)790-9433|
|

Advanced Business
Microsystems Inc.
(415)689-4515

Data ace

Advanced Data Aladin
Institute Inc.

(916)381-8334

Ashton-Tate Corp. |ID
(213)329-8000
Dbase IV

— . — e ———— — — S G- . — — apu W e w——

|BACK AND RECOVERY

__l __________________________
|4th Dimension/|User implemented
14-D runtime

|
|
|
INot provided
|

Backup, restore partial,
entire database

Import,export,restart

base III Plus|None

|

|Full transactlion processes,.
lrollback,rollforward

|

|

Blyth Software Inc|Omnis III Plus|None
(415)571-0222 | |

IOmnis Quartz |None

N |

| |
Borland IReflex IMedia recovery
Internatinal Inc. | |
(800)543-7543 IParadox 2.0 ITable recovery
| |
|Paradox 386 |Table recovery
| |
v | |
Brock Software

IBrock Key- |Rebuild function, floppy backup
Products Inc. {stroke rela- |
(815)459-4210 Itional DB |

| ' |
[
Polse DMS-Plus|None

Campus America
Inc.(615)523-9506

Century Analysis
Inc.(415)680-7800

CFMS

|
|
|
|
|
i Event rollback
|

|

|
Chang Laboratories|IC.A.T.
(800)972-8800 |

|

|
|
|
|
|
|
|None
|

|



COMPANY |PRODUCT
__________________ ' ———— - - ——— - -
Conceptual Soft- |Prodas
ware.(713)667-4222|

i

|
Condor Computer |Condox 3

Corp.(313)971-8880|release 2.20
| 4
|
Dataease |Dataease
International Inc.|
(203)374-8000 |
|
|
Empress Software
Inc.(416)922-1743

|Empress with
Im-builder

|

1st Desk Systems |l1lstFile
(800)522-2286 |

lI1stFile 4.0
|

|1stTeam

|

|
Fox Software Inc. |Foxbase+
(419)874-0162 ]
General Data Sys. |IGDX
(215)985-1780
IBM contact local |0S/2EE
sales offlice
Infocom Inc. Cornerstone

(617)576-1851

Informix Software
Inc.(415)322-4100

Informix SQL

Informix 4GL

J
<4

Macon Systems Inc.
(719)520-1555

| BACKUP AND RECOVERY
= e

|Backup copies of files
|

Automatic audit trails

Import,export;backup,

|
|
|
|
|
|
|
lrestore of database
|

|

|

ITransaction logging,warm
lrestart, backup recovery
|

|

|None

|

|None

|

IFile copy

|

|

INone

|

|

|

IRollforward,rollback,
|warm start

|

|

|Full,selected backup;
lrestore to state of last
|backup;load,unload table
|loutput;warm restart;
lcommit,rollback functions
|

|

| Backup,restore

Transaction logs
Transaction logs

Internal backup, damaged
file recovery



MDBS Inc.
(800)344-5832

Microrim Inc.
(206)885-2000

Nantucket Corp.
(213)390-7923
Novell 1Inc.
(512)346-8380
Odesta Corp.
(800)323-5423
Oracle Corp.

(800)345-DBMS

Prime Computer

Inc.(617)655-8000

Progress Software
Corp.(714)969-2431

Provue Develop-
ment(714)969-2431

Relational Techno-|Ingres
logy(800)4-INGRES

e e e e e L A ——

|PRODUCT | BACKUP AND RECOVERY
== | ===
IKnowledgeman/2 |Not provided

| |

| |

| |

lrevert to previous save
|
Double HelixII|Same as Helix VMX
|
|
IRollforward,rollback
|recovery
|
|
IPrime Infor- |On-line transaction
Imation llogging,rollforward,
| |tape or disk backup.
| |
IPrime Oracle |Rollback after image
| | journaling;dynamic or
Istatic creation at Al
Ifiles; import,export
|
|

Oracle

IR:base ILoad,unload,reload,verify
| lintegrity of database

| -

| |

IClipper IFile copy

| |

| McMax IBackup, restore programs
| Ivia programming language
|

| |

| XQL |Proprietary

| |

| |

| |

|Helix VMX ILogging,autosave, save as
|

|

|

|

|

|

|

|

|

Progress ICrash-proof database
lengine,before image
|£1ling,rollforward, backup
|

Overvue Hard-disk backup

|Checkpoint, journaling,
| lrollback,rollforward
| |
| |



COMPANY

Rim Technology
(206)451-8144

| PRODUCT

IRTI Rim
|
i
|

Smith, Abbott& Co.|Autopro

(301)561-8411

Software AG of
North America
(703)860-5050

|
|
|
| Adabas
|
|
|
|

The Software Groupl|Enable

(518)877-8600

Sybase Inc.
(415)548-4500

Unify Corp.
(916)920-5553

Wordperfect Corp.

(801)227-500

Sybase System

ataserver

Accell IDS

Unify rela-
tional DBMS

|

|

|

|

|

|

|

|

|

|

|

ID

l .
|Datatoolset
|

|

|

|

|

|

|

|

|

[
|Dataperfect
|
|
|

|Audlt tralls, change
Ilogging
|

|

|save, restore; walk

| forward, backup functlions
|

|

|

lautomatic database
Ibackup,restore

|

|

IPhysical logging;multiple
Idatabase support;control-
Ilable guaranteed recovery
|time;log recovery;bulk
lcopy program;journaling;
|table generator;monitor-
ling tools;resource
Icontrol;maintenance tool;
Iconsistency checker

!

|Same as Sybase System

|

ISame as Sybase System

|

|

|Transaction logging,
Idatabase backup,
lrollforward recovery

|
|Same as Accell IDS

Regenerates indexes,
file copy
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Abort. To terminate a transactlon abnormally.
AFIM. After image.
After image(AFIM). The new value of the updated item.
Atomic. An adjective describing the actions of a transaction
that elther are reflected in the database or nothing are
happened.
Audit trall. See log.
BFIM. Before image.
Before image(BFIM). The previous value of the updafed item.
Checkpoint(n.). A backup copy of the database.
Checkpoint(v.). Write the database to the backup disk.

Commit. A transaction which reaches normal termination never
to be undone.

Dirty page. A page which is modified by a transaction that has
not been committed yet.

bump(n. oxr v.). See checkpoint.

Durable. An adjective describing the results of a committed
transaction which must survive any malfunctions.

Full-checkpoint. The entire database which is written to disk.

Fuzzy dump(n.). A backup copy of the database which contains
partial updates from transactions.

Fuzzy dump(v.). Copy the database 1in parallel with normal
processing.

Global REDO. An opetation for restoring the state of the
database after it is physically destroyed.

Global UNDO. A procedure for removing the effects of any
interrupted transactions from a system failure.

Group commit. Transactions whose records are contained on a
log page which is not flushed to disk until it is full.

HALO. HArdware LOgging. A device used to perform logging
functions.

Immediate commit. A transaction whose log records are flushed
to the log before completing.
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IMS. Information Management System. A transaction processing-
oriented communications processor and DBMS developed by IBM.

Journal. See log.

Log. A logical flle which contalins information about active
transactions. )

Log compression. A process for a log which filters out any
committed or aborted items since the latest checkpoint.

Partial-checkpoint. The portion of the database that have been

updated recorded on a secondary device since the last
checkpoint.

Partlial REDO. A procedure for restoring the results of any
completed transaction which may not yet reflected in the
database after a system fallure.

RDS. Research Data System. An external system of System R
which supports the relational data model and the relational
language SQL.

REDO. An operatlion for repeating the actions of a completed
transaction from a system crash.

REDO-information. See after image.

RSS. Research Storage System. An internal system of System R
which provides data access method.

Safe. A non-volatile memory used to protect the contents of
the cache against loss.

Shadow page. An old page which is the shadow for the new one.
Stability. Non-volatility.

Stable log buffer. A stabe memory which keeps REDO log
records.

Stable log tail. A stable storage where log records are
grouped according to their correspoinding partition.

Stable memory. Non-volatile RAM.
Transaction. A sequence of actions.

Transaction UNDO. A procedure for recovery after a transaction
failure.

UNDO. An operation for removing all effects of an incomplete
transaction from a system failure.



UNDO-information. See before image.

Update-in-place. A performace which writes pages to the same
block. ’

WAL. Write ahead log.

Write-ahead log(WAL). A log protocol which requires UNDO-
information be flushed to the log before each update.
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