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PREFACE 

Data validation comprises a set of quality assurance methods 

which have recently shown promise for reducing the cost of quality 

assurance. There has been considerable development of the data vali­

dation technique for the case of attributes-type data; the research 

reported in this dissertation is part of an effort by the author to 

extend this important concept into the area of measurement-type data. 

The dissertation is organized into seven chapters. In Chapter I 

the history of previous data validation developments is sketched, and 

data validation is compared and contrasted with certain other quality 

assurance methods. 

Chapter II describes measurement-type data discrepancies and 

includes a dichotomization of the data validation problem. 

In Chapter III truncation in sample selection is developed as a 

model .of an important type of data discrepancy, and the parameters of 

the truncated normal distribution are derived. 

Then in Chapters IV and V, a set of statistical tests are 

reviewed and their abilities to detect truncation are analyzed. Chap­

ter IV contains a description and brief history of the development of 

these tests, which fall into two basic categories: parametric and 

nonparametric. Equations for the operating characteristic curves of 

the parametric tests are derived through the application of statisti­

cal distribution theory. In Chapter V, the technique of distribution 

sampling is used to estimate the operating characteristics of the 
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nonparametric tests. 

In Chapter VI the different tests are compared on the basis of 

their relative effectiveness and potential contribution to data valida­

tion. Finally, in Chapter VII, the oveirall scope of the research is 

summarized and recommendations .are made for further research on the 

validation of variables-type data. 

Many individuals have planed an instrumental role in the. effort 

which is culminated. in this· dis.sertation. First should be mentioned 

Dr. Irvin Reis, now Head of Mechanical Engineering at Montana State 

. University, who inspired me by.his own example and persuasion first to 

choose the field of industrial engineering for a profession, then to 

pursue graduate work, and finally to seek the Ph.D. · 

The faculty of Oklahoma State University has helped me greatly. 

Special thanks are due Dr. M. Palmer Terrell, my research advisor, for 

his advice regarding numerous aspects of the performance of the 

research and prep.aration of this thesis. The other members of my dis­

sertation committee were Dr, Paul Torgersen; Dr, James Shamblin, Dr. 

David Bee, Dr. G, T. Stevens, and Dean Rol'a!'O Venn. All have cheerfully 

provided assistance and guidance and have contributed suggestions 

incorporated in the final version of the dissertation. Professor 

Wilso.n Bentley has given me valuable personal and professional counsel 

as well as helpful administrative·support. Dr. David Weeks stimulated 

my interest.in statistics and provided me with a model of the art.of 

teaching that·will·remain long in my memory. 

Financial support for two years of full time academic work was 

provided by the National Aeronautics and Space Administration.· The 

Atomic Energy Commission, through its contract with Sandia Corporation, 
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also contributed indirectly to my support as well. as to the excellent 

professional environment .at Sandia. The vital aid derived from these 

two Federal agencies will be.recalled each April as I.file my income. 

tax return. 

Drafts of the dissertation were typed by my.wife Kay, wh9se un-

flagging loy2'lty and·moral support made the. whole idea feasible. The 
I,,, 

final typing was ht Mrs. Re~ecca H.· Ellis .at1d the figures.· drawn by 

Eldon Hardy, both of w:hom, deserve credit fo~ the~r quality workmanship. 

Finally; acknowl~dgem¢nt must be made to Mr. L. E. Snodgrass, who 

was for five years my supervisor in. the .Quality Contro.l Systems Divi-

sion at Sandia Corpor1:1-tion. · It was under.the supervision pf Mr. 

Snodgrass that my initial interest in data validation developed. In 

appreciation of his many ·personal· kindnesses, his cons~~mt _encourage-

ment concerning my grad9ate work; and for the influence he has had, 

both as friend and supervisor, on my career, this dissertci,tion is. 

respectfully dedicated ·to Larry Snoqgrass. 
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CHAPTER I 

INTRODUCTION 

One of the major functions of any inspection, quality control, or 

quality assurance organizatio!lo is to provide assurance to management 

and to the customer that the firm's products are of satisfactory quali­

ty. Over the years many different approaches have been developed 

toward meeting this goal •. 

Historical Background 

One approach which has recently been under study is the technique 

of data validation. The major development to data has been done by 

procurement agencies of the U. S, Government. The U. S. Department of 

Defense established (1954) a uniform policy on quality assurance as 

related to acceptance inspection. This policy statement enunciated 

the concept of data validation by requiring that data generated by the 

supplier of a product should be utilized to as great an extent as 

feasible in determining the acceptability.of material submitted by the 

supplier. A prerequisite to this usage of supplier data is determining 

that the data is reliable. The various methods of establishing that 

supplier data are in fact reliable have come to be known as data vali­

dation techniques. 

To assist the Government representative in executing the policies 

set forth by the above Instructions, .the Department of Defense (1960) 
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published DOD Handbook H-109, a handbook. of statistical procedures for 

determining the validity of supplier's attributes inspection. The 

authors of DOD Handbook H-109 were Harry Elner, who published (1963) 

the mathematical background, and Joseph Mandelson, who published (1964) 

a non-technical discussion of the philosophy, purpose, and procedures, 

of attribute data validation.· 

The policy requiring indepenq.ent saµipliµ~ for validation was laid 

out in H-109: 

The requirement: that the.untts. of the sample be selected 
at random without regard to their quality cannot be verified 
by reinspecting the items drawn by the supplier. Only an in­
dependent sample selected by the consumer can authenticate 
the over-all effect of the &\;applier's inspection in assuring 
conformance of supplies with technical.requirements arid evalu­
ate the true qµalit:y of.the supplies .offered to the consumer 
for acceptance~ (Department of Defense, : 1960, p •. 2.) · 

Thus, the precedent was established requiri:ng independent samples, 

though explicitly for attributes data only, which was carried over into 

the initial thinking on .a validation system for measurement results 

(Elner and Mandelson, 1964; Berger, 1966). Some of the implications. 

of this independent sample policy, as regards consumer protection and 

sample size, are develop.ed in later chapters of this paper, 

Relationship of.Data Validation to Other 

Quality Assurance Systems 

The principles. of data validation should be compared with some of 

the other quality assurance approaches, One such approach is product 

acceptance sampling, A large number of techniques of this type have 

been developed over the past four decades, The numerous techniques 

available have been documented by. Cowden, (1957, Ch, 30-39) and in 

other standard quality control references. 
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It: may seem natural to make a direct comparison between data vali­

dation sampling and product acceptance sampling, because both consist, 

basically, of sample inspection by a cons1,1mer in order to purchase 

mate.rial submitted by a supplier. However, a fundamental difference . 

exists between the.two concepts that would make.direct numerical com­

parisons mislea.ding if not meaningless. In a data. vali.dati.on scheme 

it is not the product but the.supplier's sampling and inspection capa­

bility which is being scrutinized. Da.ta validatio1:1, procedures should 

be expected only to tell a consumer that his supplier's inspection 

results are a valid representation of the material he is buyi:ng. The 

risks .involved in a data validation program are relatE!d ·to the suppli­

er's sampling and inspection system, rather than to the product .. itsel;f. 

The consumer depends, in the framework of a data validation program, 

upon his supplier to tell him if the product he submits is of satis~ 

factory quality. The validation program should provide an incentive 

for the supplier to consistently tell the truth about the material he 

is selling and ·. should provide a means for the consumer to. check to see 

that the supplier is doing so. There are many forms in which this 

untruth (that is, invalid data) might appear, and different . .approache.s · 

with differing types ·Of protection .may be required to cope with these_ 

various forms •. 

Although it is difficult to relate the, technique of daj:a .valicla­

tion to acceptance sampling inspection, a rathei:: close relationship 

does exi.st between data validation and the general area of supplier 

quality audit.systems. A number of different quality audit systems 

are now operating in Americ~n industry. They have be.en designed 

around the philosophy that ·for certain types. of material, the customer 
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has a need to know, not only the quality of the actual product charac-

teristics inspected, but also the basic capability of the supplier to 

maintain a satisfactory level of quality through adequate procedures, 

controls; and equipment. 

A brief overview of quality auditing systems is provided by 

Hansen (1963, p. 83), who explains how the. customer can ascertain that 

the various components of the supplier's entire production-quality 

process are adequate. A typical quality audit system would include 
f 

checklists and sampling procedures for reviewing ,s.uch areas as: draw-

ing release, updating, and retrieval; gage control; calibration of all. 

inspection equipment; personnel training; and general quality control 

procedures. A customer team would visit the supplier's plant armed 

with such checklists and would proceed to compare the actual existing 

situation with the ideals represented by the lists. 

The role of quality audit systems and data validation techniques 

was delineated by Whitt.lemore (1952) who said that while some manufac-

turers do not have .the facilities nor personnel. to determine whether 

their :products .comply with technical requirements, others control their 

processes carefully and test the finished product to see that it meets. 

required quality standards. According to Whittlemore: 

Often the purchaser duplicates these tests, more or 
less closely, for acceptance. There w0ti;ld. be great advan­
tages, particularly in the cost of making the tests, if 
the quality was determined once for both parties •••. It 
should be possible for the customers, or their associa­
tion to share in the management of the inspection depart­
ment and in the cost - then they could accept the .results 
with confidence. 

Whereas the quality audit system is intended tb verify that the 

supplier has a C'apability to produce products of the .desired quality, 



the data validation system is intended to verify that the supplier has 

accurately reported the true quality of his products. Thus the two 

systems tend to complement each other. 

5 

Data validation is also closely_related to a set of te.chniques 

which have variously been called round-robin, co_llaborative,. coopera""'. 

tive, interlaboratory, or intercomparison testing (Nelson, 1967). 

Nelson showed-that interlaboratory progrl;lms might be instituted for a. 

variety of reasons, such as to compare variabilities or precision.of 

methods, to determine_ the biases betwe~n methods and ascertain reasons. 

for their existence, to check_ operators or laboratories for evaluation 

of their efficiency, qualification, or certification, and others. His 

article mentions, as a possible application, cooperative use by suppli­

er ancl purchaser 1:'0 determine degree of adherence to purchase specifi­

cations, More detailed. information about performing inter laboratory 

evaluation of testing methods can be found in the article by Mandel and 

Lashoff (1959) which analyzes the practical aspects of application, 

The interlaboratory testing technique has been most frequently 

applied in the. chemical industry, but it is equally applicable in any 

situation where measurement .results of two or more organizations must 

be compared, It _is a more general approach than data validation since. 

it provides for various numb_ers of laboratores, types of testing pro- . 

cedures, and a whole. hierarchy of other experimental factors. The 

development of a·data validation program could possibly be strengthened 

by consideration of the numerous facets of interlaboratory testing 

techniques, such as those .summarized and documented in Nelson's article, 
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Scope of This Research 

The research .effort ·reported upon here is focused upon identifica­

tion of problems _associated with the validation of supplier's varia.,. 

bles-type inspection data.. The author will ·show, in the .following 

chapter, that data discrepancies-can be divided into two mutuiilly ex­

clusive classes: measurement discrepsncies and sampling discrepancies. 

For the detection of measurem.ent disci::epancies. it is proposed. that the 

method of paired comparisons be utilized on the .basis of existing know­

ledge about the rel~tive merits of paired a"Q.d·independent samples, 

This leaves for more intensive study the problems associated with 

sampling.discrepancies. The remainc;ler of the dissertation is concerned 

with the development of a.specific model of sampling discrepancy: 

truncation in sample. selection; and with the. study of.a variety.of. 

different approa.ches. to the truncation prob1em, By means of theoreti­

cal and.empirical analysis, several two-sample statisticijl tests will 

be compared on the basis of their power to detect t:i;-uncation when it 

exists. Wit.h thi-s · information ava:f..lable, a better decision can be 

made in any particular case as .to ·whe.ther the truncation sampling dis­

crepancies should be.tested ·for statistically; and if so, which .test. 

offers the_ best chance of detecti11g it. 



CHAPTER II 

DATA DISCREPANCIES · . 

The Data.Val:ipation Principle. 

In a product acceptance program which utilizes data validation, 

the attention of the customer will. be focused on the capability of the 

supplier's quality inspection system to accurately report the quality 

of the product submitted .for f>U+Chase. While the .customer is interesit:­

ed;;.most of all in the quality of the product, his validation program 

will be designed to inform hi?fi as to the quality of the data •. He may 

wish, for example, to utilize the quality audit, described in the. 

previous .chapter, to estp.blish that his supplier has the capability to .. 

accurately and. consistently report product quality. He .may also see 

fit to insist on certain procedures.; controls, additional training o.£ 

operators;. purchase and calib.ration of equipment, and-other similar 

measures to be satisfied that the supplier's quality inspectio11, system 

is aci~quate. 

Once all sµch problems have been resolved, the prudent custoµier 

will stil.l wari.t to .make empirical verificatii:.ons of the 4uali~y of.his 

supplier's data~ by inspecting material whith has been passed.as accep­

table by the supplier's quali,ty inspec:t:t.op. ~ystem. At ·this poi.nt the 

customer must -still maintain his focus upoff~'the inspecticm system rather 

than the product .itself. For instance it .is entirely possibl.e th:at the 
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customer will find defective product in the data_validati(?n sample he 

inspects. In fact, he may find e11ough defectiveness-that-he_feels com ... 

pelled to. reject the entire lot of mate;rialunde;r question, or even, to 

re ... evaluate the merit of continuing to purch1:1se,Jnaterial from-the par ... 

ticular supplier. Howeve_r, -the quality of the material as revealed ;by 

the- cust:omer.' s inspection should be recogniz_ed as_ of secondary _impor..;,.,'*"' 

tance.- The .primary criterion will ,be the, degree of agreemeI!,t or disa-:­

greement between the customer's results and th_e supplier's :~esults. _ 

_ A difference between supplier results_. and. custoJner results c~n be 

the result of any on~ (or possibly _all) of three different __ causes.· In 

the first -place ·it .. is ·possible that there is a discrepancy in th_e -

customer's .-inspection and_ vali_dation system. · While th_is is possible., 

it will behoove.- the cus tamer to go to_ considerable pains-· to . minimize 

this source of difference. He will_ do this by careful est,~lishment of 

the calibration standards ·of equipment., training of -operators, and by 

r~chec.king his own results whenever a significant -di:Uerence _ ,is noted. 

For the purposes of .this dissertation it will be assumed _that the-

customer I s _system may be accepted as a sta,ndard · and is thu1:1 not th~ 

source of any difference. 

A second cause of difference may be pure rando_m varia,ti,on, . It is 

recognized.· that -all measured: variables -are subject to a certain 'i;tmo_unt , 

of random varia.tioI!,. ' In _some -Jnsta11ces_ this variat;ion wil_l be so sli;ght . __ 

that it can be cqmplet:ely ignored. In others, it _will have.to be.,ex ... 

plicitly considered. and-its effect on the probability of error-deter ... 

mined. Besides random measurem_ent variation the:i;-e is .the problem of,_ 

random product variation. Within the same product.ion lot_ the:i;-e. will 

usually be unit ... to ... unit differences in measurjble character:i,sti~s; and-
~ ........ 
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in many cases -the product :variation allowable by the purchase specifi­

cations is of a greater order of magnitude than the. random measurement 

variation allowable for the inspection. and te,st equipment. This random 

product ·variation plays.· a particularly important role when it .is either 

impossible or impractical for the supplie:r and custo)ller .. to both mea_sure 

identical units of the product in the ,validation process .• · 

The final cause of difference may·be actul\ll discrepancy in the 

supplier's data. This is; of course, what. the _quality audit program 

is designed. to p:revent, and wh~t ·the. data validation program is. de­

signed to detect, when it _exists. There. are many different .ways in · 

which discrepancies in supplier data ·may exis.t, eithet'.. by accid~nt or 

design. However, it now will. be shown. that .. these discrepancies all 

tenq. to fall into o~e of two distinctly different types •. 

The Dichotomy.of-Supplier Data Discrepancies 

Dif fer_ences between .. supplier and custo)ller. results can be attrib ... 

uted to. one, or mrire ·of . three. different cat.Jses, as described· above. - In 

this· conne.ction;· one of. the greate.st cC>ncerns is. in differentiating 

pure ·random variation from discrepancies in .,the supplier data. Although , 

there are ;numerpus. discrepancies whic;.h could exist· .in the_ supplier's 

data, .it can be seen that all ·these discrepancies fall -into _two mutu- . 

ally exclu.sive classes, namely,. (1) discrepancies in the actual 

measurements recorded, arid (2) where .supplier _sampling is permitted,:­

discrepancies in the sample-.to-lot relationship. . These. two types will. ·· 

be discussed. in turn. 
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Measurement Discrepancies 

Perhaps the most common source, of measurement discrepancy occur-

ring in practice is bias. Frequently bias is associated with test 

equipment calibration. Bias occurs when. all measurements made nave a 

constant or systematic error component. Tµus, bias can be due to ex-

cessive passage .of time or usage of equipment .after a proper.calibration 

or due to an improper calibration •.. The importance of a. well defined 

and strictly enforced·calibration program in preventing this type of 

discrepancy cannot be overemphasized. Bias may be caused, also, by 

operator error.in consistently misreading an instrum~nt error in the 

same manner, or by procedural error in applying the wrong voltage to 

an instrument, missetting a constant type control, or operating the 

equipment in an unsuitaple environment •. The important thi-q.:g to recog-

nize is that each reading recorded will be offset from the. tru~ value 

by a constant amount. 

Complementary to b:las error is precision error, which is a random 

component of error, the individual amounts of which c~nnot be predicted 

either as to direction or magnitude. As previously mentioned, all· .. 

measurements are subject, more o:r;- less, to .random variation, which is 

synonymous with precision error. Although exact values of this type 

error cannot be determined, as can bias error, it is entirely feasi,ble .. 

to establish, for any given measurement system, the distribution of 

precision ert'lor. This is commonly done.by error-of-measurement ·studies, 

wherein repeated measurement of calibratio~ standards or ident.ical 

units of product are made under suitably controlled experimental con-

ditions. Precision error, if within the li'!llits established by such 
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error-of-emeasurement studies, cannot be considered as data discrepan-

cies.- It is simply a source of random variation which must be recog-

nized and lived with by both parties. However, precision error of 

greater magnitude than that established and agreed upon can be a 

serious discr~pancy. There are several possible causes of exces~ive 

precision error •. The substitut:i;on, inadvertant or deliberate, of an 

inferior piece of inspection equipment would·generally contribute to~ 

loss of precision.· Poor adjustl'(l,ent of equipment and poor operator : 

training are other conunon.causes. 

Besides bias and precision errors, measurement discrepancies can 

exist due to the falsificat:lon of data. ·· One of the most conunon ver-

sions. of data falsification is called "flinchi11.g" and . is frequently . 

not at all deliberat.e. However it is a conunonly recognized malady 

among some inspectors. Flinching is the. tendency: to make a consistent 

error in one direction when the.result of .a measurement .is very close 

to a specification limit. For example, an inspector faced with an 

upper specification limit of 1.500 might consistently reject all units 

measuring 1.51() or greater·, but us't.!,ally accept marginally defective 

uni ts measuring in the. 1. 500 to .1. 509 range. More serious than 

flinching but probably · less conunon is deliber.ate falsification. An 

example would be an .operator .who wished to save a.great deal of time 

by inspecting only a small portion of an inspection batch, and, after 

·determining the range of the data, recorded fake data on the balance 

of the batch. Falsification could.also occur due to carelessness, 

where an operator simply·:made a gross error in.reading or recording a 

measurement. The significant distinction between fals,f!,ication and. 
:' r . 

precision error is that while the latter is an inherent pai:t of a par-



12 

ticular inspection-system and method, the former is co111pletely avoida-

ble, by greater attention or honesty •. 

Sampling Discrepancies 

.. 
In contrast to meas,irem.ent discrepancy is the _problem of_ a dis-

crepancy in .the sample-to-lot ·relations.hip. An alternate descripti_ve 

te.rm iS: a biased . sample. A familiar. example of this_ type of discrepan"." 

cy is the basket of apples in which_ the -top iayers are . composed only .. 

of the finest so_undest fruit,. while soft, rotten, ·green, or under-1:lized 

apples are down at the bottom of the basket. While. such an arrangement 

could occur by coinci_dence it .is more likely _a deliberate attempt to . 

deceive those who would inspect the basket only casually. Obviously, 

such a discrepancy is impossible in those cases where .100% _inspection 

and_ reporting of a characteristic is required. It .would also be impos"".' 

sible if the customer specifies, after the entire lot is completely 

processed and presented for final inspection, which units are to be 

inspected. 

The gener.al problem of-piased samples has been tacitly recognized 

for a long time in the inspection and quality con.trol profession,, as -is. 

evidenced. by the following quotation from a spe~ch made by C; B. Dudley, 

a former president .. of the American Soc;1.ety for Testing Mat_erials: 

••• it is not· reasonable or proper or safe to .· trust the . 
producers in anything by which the. val:l,dity of the tests 
might .be affected. Not once but many hund:red times have 
we · been asked · _to allow the shippers or , producers to · send 
a sample and accept the shipment on.its e:x;amination. The 
req.uest was. undoubtedly made in good faith and with no 
other desil'.e than to faciiitate the tra;nsaction. :Perhaps .. 
it is _needless .to say that our .. belief in the facility with. 
wnich ·unintentional mistakes would·be ma.de-and a sample 
better than the average of the shipment be.sent, has always 
led us.to ·positively refuse such requests. 
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One may read a tinge of sarcasm into this statement by Dudley, or take 

it .at pure face value. In either event, his message.is clear: do not 

allow the. supplier to perform sample inspection in behalf of the cus­

tomer under_ any:circumstances. However, with proper safeguards anq. 

checks, we may find alternatives to his conservative appro~ch. 

Some distinct types of sampling discrepancies can be labeled, 

"salting," "tampering," and "t.runcation." · The term "saltin~," meaning 

to enrich artificially, has its origin in connection with mining 

operations where a promoter would place a very rich specimen of ore 

someplace . to misiead a prospector into believing he ha_d found a valu~ 

able mining s:Lte. Thus, a procedure of placing known_ good material in 

an inspection sample, even though this product might· be completely._ 

unrelated to the material which the sample purports to represent, can 

be labeled as salting the sample. 

A distinctly different but similar scheme is to give special_ 

attention to the inspection .sample.in preparing it for inspection. In 

one.version of this deception, which is labeled here as "tampering," 

a legitimate random sample of the lo_t could be selected, but the _selec­

tion made while the material was still in processing. From that poin.t 

on; the very best.operators could-be assigned to work on the sample 

units; and the most. careful attention to detail could be.given the~e 

units, as opposed to the balance of the lot. This would again result 

in an inspection sample whose, chara_cteristics were better than the iot 

as a whole. 

A third type of sampling discrepancy will be called !'truncation 

in sample selection" and . defined as the·. deliberate exclusion from a. 

sample, .any units whose measured characteristic (s) exce~ds .a certain. 
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value (or values). A number of different mechanisms exists by which 

certain units in the lot might.be deliberately excluded from the in'"'.' 

spection sample, and as a result of which the sample would be an 

actually valid portion of the lot but yet would not be. representative 

in the random sense. One way to achieve this sort .of deception wou.ld 

be to pre-inspect a number. of units just prior to the final quality 

inspection. When.ever. a measurement appeared which exceeded a certain 

limit it would be set as.ide and another unit selected to. take· ,its. 

place. The process .has never, to the knowledge of the writer, been 

explicitly considered in the quality ccmtrol literature •. 

The three types of .discrepancies in the sample~to-lot relation-

ship described above were referred to as deceptions. It s:hould be 

pointed out that similar discrepancy could easily exist without any 
) 

intent to deceive, if the supplier was careless in the method of selec;r· 

ting the inspection sample, and the group which was selected nonran-

domly happened to be.quite homogeneous within itself but not represent-

ative of the entire.lot. Much emphasis.in the literature of sampling 

is given- to the point that great care is required to achieve a valid·. 

random samp(li'e. If. the effort is not exerted, then probably sampling 

discrepancies will .result. 

To recapitulate, it is asserted that discrepancies in the supplier 

data can be divided into ,two mutually exclusive· and exhaustive cate-

gories: measurement and' sample-to-.lot. Examples of each of these . 

categories have been cited; while other examples can easily be.con-

structed, it is apparent th.at any d·is.crepancy in which the measured 

result of a sample is _used to represent the characteristic of a lot 

can be placed in one category or the other. 
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Detection of Data Discrepancies 

Corresponding to the dichotomy of data discrepancies. is a similar 

dichotomy.of the methods.for detecting these discrepancies. We first 

consider the validity of the actual recorded measurements •.. If th.e 

data on sp.ecific measured units. is invalid; this fact can be most di­

rectly. ascertained by repeating th.e measurements on the E!lame units and 

analyzing the paired differences.. In contrast to repeat. measurements 

would-be the selection, by the.customer, of an independent sample and 

comparing the customer sample results with either the entirety or with 

a selected sample of the supplier's data. However, the drawback of 

making an independent sample comparison.to validate recorded measure­

ments is that it introduces a source -of random variation which must be 

tolerated and which will tend to obscure true discrepancies of this 

type. The point is discussed in most statistical texts. For instance, 

Hald (1952, pp. 401-405) pointed out the applicability and advantages 

of the paired-difference "Student·, t" test, and again (pp. 504-507) the 

advantages of the .randomized complete block design in reducing the 

residual or error variance for·testing the significance of some effect 

of interest.. Cochran .and Cox (1957, pp. 31-34, 112-114) have quanti­

fied the relative efficiency of the paired.and independent samples, 

which are really equivalent to .randomized complet.e block and· completely .. 

randomized experimental designs, the blocks in' this case being specific 

units o( the product. 

While the extensive work cited above will not be t-~peated here, 

it is worth emphasizing that, contrary to previous published state-. 

ments on data validation (e.g~, Department of Defense, 1960; Elner and. 

Mandelson, 1964) it is no't' neceuarily advantageous for the customer 
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to insist on independent samples in validation. For example, if the 

customer is concerned only with discrepancies in the recorded data, 

and if product variation tends to be large relative to the magnitude of 

discrepancy which is of concern, then clearly paired analysis on re-

peat measurements would be superior to the use of independent samples. 

On the other hand, certain factors tend to offset the advantage of 

paired samples for validating the recorded data. In the first place, 

the degrees of freedom for error variance is reduced by half. Further, 

there may be, in some cases, a significant incremental cost in identi-

fying and re-inspecting identical units, above the cost of inspecting 

an independent random sample of equal she. However, in most pr.actical 

applications these two factors are of small effect, in comparison with 

elimination of product variation, on the information obtained at a 

given cost, 

'l:he dete1ction of the biMed sample~ on the other handt ,9,a1:1n,<;;j; be 

ffietde throu;h the means of repeat measurements. If the supplier did 

both samples. Or a. mutually exclusive st:tmple could be selected, in 

which no uni ts of the supplier sample were allowed, For the p1.rrposes 
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samples yield to the same analysis. 

The customer may, in any given validation situation, be concerned 

about·either biased sample discrepancy, recorded data discrepancy, or 

both. Our attention now focuses on the problem of the biased sample, 

and more specifically, on truncation in sample selection. 



CHAPTER III 

TRUNCATION IN SAMPLE SELECTION 

Truncation in sample selection was defined in the previous chap­

ter as the deliberate exclusion from the sample those units whose. 

measurement(s) exceed a certain value. Consider two points, (a) and 

(b), on the measurement range. Exclusion of measurements greater than 

point (b) leads to one-sided truncation on the upper tail; exclusion 

of measurements less than a given.val1.1e (a) leads to one-sided trun­

cation on the lower tail. Exclusion of measurements less than (a) and 

greater than (b) leads to two-sided truncation. 

For one-sided truncation, the value (a) or (b) might be any value 

within the possible range of measurements, depending only on the atti­

tude of the person responsible for the exclusion, For that matter, it 

could be outside the range of the measurements, but this is a trivial 

case since it implies either no truncation, or complete truncation and 

no resultant. sample. For two-sided truncation it is requisite that · 

b > a to avoid the trivial case, again, of no sample. The fraction of 

the lot which lies outside the truncation limits will be referred to 

as the degree of truncation and denoted by the symbol (y), for one­

sided truncation and by (:Y.2) for two-sided truncation, This term is 

· from llald (1952) wh<:> described the degree of truncation as the propor­

tion of an original population which is excluded from a truncated sub­

population, It is noted that the degree of truncation is a factor re-

18 
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lating to the lot and not the sample directly. 

Truncation and Biased Samples 

Three types ·Of biased'"".sample mechanisms were defined in Chapter II: 

salting, tampering, and truncation in·sample selection. These are not 

the only types of biased samples which could be considered, but they 

do give an indication of th~ general nature of this type of sampling 

discrepancy. One distinction between trunca~ion and the other two 

biasing mechanisms ia ·the relation between the lot being presented for 

acceptance and the population being sampled.· Salted and tamper~d sam­

ples are from populations which may.be quite different from the lot, 

But truncated s~mples are cl~arly from the .lot itself, albeit only a 

segment of the. lot. This fact leads to a unique feature of truncation, 

from the point of view of statistical analysis, That is, the trunca­

ted population from which the customer's sample is drawn can be defined 

entirely in terms of the parent population and the point(s) of trunca­

tion. · 

As another distinction, it appears that truncation would be much 

easi~r. to accomplish than the other two forms of biasing, No altera­

tion of any unit is required, as in the. case of tampering;·and no 

separate production or procurement :l.s required, as in the cae1e of 

salting. All that is .required is an inspection and sorting operation; 

thus, it would·pe a relatively more tempting form of deception to 

practice, 



20 

Reasons for Truncation in Sample Selection 

There are several reasons why a supplier might, either at the 

policy level or operating level, be-motivated to truncate a lot in 

connection with selection of an acceptance sample. The most obvious 

reason is that a specification limit exists which would cause any 

measurements above a certain value to be classified as defective. For 

instance, the supplier might have the opinion that a certain specifica-

tion limit is arbitrary rather than functional, and that product which 

measures in excess of that limit will nevertheless function properly. 

If such a judgment is correct, then little would be lost by arbitrarily 

ignoring units which measure greater than an arbitrary limit, as long 

as this is not discovered by the customer. The supplier's reasoning 

is that after the product has been sold and put to use, the product, 

although nonconforming, will provide satisfaction to the customer 

nevertheless, and will not contribute to loss of customer good will or 

later rejection. Of course, a short-sighted supplier might choose to 

truncate his sample at a specifi~ation limit without any consideration 

of the consequences in further usage of the product. 

The truncation point may not be a specification limit. A certain 

type of lot sampling plan requires the computation of a variables ac-

-ceptance limit, e.g., accept only if x +ks~ USL where k and USL are 

pre-specified constants, and x ands are the sample mean and sample 

standard deviation. A supplier whose product is to be purchased on the 

basis of such a criterion may be able to markedly improve the chances 

of lot acceptance by truncation of extremely high readings. This would 

have the dual effect of reducing both x ands, Clark (1957) computed 

the degree of truncation required to have the desired effect for speci-
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fied lot distribution parameters and acceptance criteria. It should 

be noted that Clark was not advocating truncation in sample selection. 

He proposed screening of the entire lot in order to alter its parame­

ters. The important distinction between lot screening and sample 

truncation is that in the former case the units which have measurements 

in excess of a certain value are removed from the lot itself, but in 

the latter case they are removed only if they appear in the sample. 

A third possible reason for truncation is the desire to establish, 

for the benefit of future contracts or other applications, that the 

characteristics of a lot are of a higher quality l~vel than they actu­

ally are. If process changes were under development which were expec­

ted to improve the product distribution, there could be some tendency 

to attempt to provide evidence of the desired results through selective 

inspection, 

Thus, it is not possible to simply look at a predetermined number 

such as a specification limit, in deciding whether truncation in sample 

selection ie present, However, a specification limit is probably the 

most likely truncation point, 

The Normal Distribution Model for 

Truncation Analysis 

The truncated normal distribution was chosen as the model for this 

study. Two versions of truncated normal distributions and their rela= 

tionships to the parent normal distribution are illustrated in Figure 1 

and Figure 2, One-sided truncation is shown by Figure 1, It is appar­

ent that the mean is shifted and the standard deviation reduced if a 

normal distribution is truncated at one end, Two-aided symmetrical 



ONE SIDED 
TRUNCATION, 
Y =0.20 

Figure 1. One-sided Truncated Normal Distribution 

SYMMETRICAL 
TWO SIDED 
TRUNCATION, 

Y.2= 0.20 

·~--
µ- Lb=µ-+ 1.28 er 
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figure 2. Symmetrical Two-sided Truncated Normal Distribution 
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truncation is shown in Figure 2. The standard deviation is reduced to 

a much greater relative extent (compared with one-sided truncation) 

but the mean is not shifted. 

The truncated normal distribution can be defined by four para.me-

ters: µ, the parent population mean; a2 , the parent population stan-

dard deviation, and a and b, the two points of truncation. Letting the 

variable x :represent a truncated normal random variable, the density 

function of xis 

g(x) a !lzL a< x < b 
F 

f(y) 

1 ~-w 2 
ei .• A----a e - TC;-) . 

crffi 

b 
Jl' o:>I ! f {y) dy. 

a 

t\ 
•Ca)= I ~Ct) dt, 
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It will be necessary in the following chapter to know the mean, 

µx, and standard deviation, oxj of the truncated normal distribution 

in terms of the parametersµ, o, a, and b. These parameters are now 

derived for the case of general two-sided truncation and then special-

ized to the cases of symmetrical two-sided truncation and one-sided 

truncation. 

To derive the mean of the truncated normal distribution, we apply 

the definition 

00 

µx ~ E(x) = J xf(x)dx 
-oo 

which is 

b 
µx = J {[ ~(b) - ~(a) ] 

a 

e { F al-2~ }~l ~ x~~(x~µ)2 /2a2dx. 
,fi 

This expreM1cn1 cllln be sl'apara.ted into two parts j 

.bx-•, _-(x-11) 2/2a2 b -(x-,,)2/202 of. (ncr!;'-)e · d:x 11 f e "" . · dx 
\Jx "' ~'Fff•c·····-·· F ~If# -- -+ . r i:L--ii ov271 

+ \J '1 

, .• +µ 

'"(. --2) .... 1 b ·x--.2e" .. = ~~(K-tJ~_:JL) .~.·x··. 
Il; x . ... ,-----·-·· J. "' u ~-a 

Fv'2rrY 

(3--1) 
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= 1 
b 1 x-:J.! 2: l x-µ, 2 -1- x-µ 2 
J [(. )2 --2(~) 2 - ...... (~, 2 - -2(--cr)] 

x-µ e . · · + xµe ' -J.l e dx 
F1!z.rrcr a 

== 1 [ A + B c ] 

Where each term denoted by A, B, C, respectively, is to be integrated. 

l(x-µ~2 
a2 b x-1,J 2 - 2 7? ·. 

A = -- J ( a ) e · dx 
alr.;F a 

1111 

Integrating by parts, let 

du•~ 
a 

Then 

l 1,X'"'},!) 2 
dv • (~..Y.) e .. 1''- a · (.9!.) 

a 
... l. cx~.1,1)2 

v • "'" T a. (l) 
Cl 

l lX-1::\,> 2 b .1,x01+) 2 
a... 2' 0 · ] I + I e - 2' · dx} 

a 

(b .. µ> c· > Q'. ~ b __ ] 

Thie eomplote@ tha QValu~tion of tarm A. 

b ... ~lcx""µ)2 
B e11 __ !}I _, I xe 2 er dx 

e v'2'IT F ll 
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= 2µ [µ _ 0 Hb) - Ha))r 
F 

= 2µ2 - 2µcr 1 (b) - <P (a) 
F 

completes the evaluation of 

1 b 
µ2 

- 2 (~,:.!!.) 2 
c = f e 2 cr 

crili F a 

term B. 

dx 

This completes the evaluation of term C, 

Combining these three terms we have 

E(x2 ) 

Now since ox2m E(x2) - 11x2 

and l.lx2. µ2- 2µcr Hb) -Ha) 
F 

+[a p(b) - p(a) ]2 

F 

it follows with some alg,abraic simplification that 
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' 

(a-µ) ~(a) -Eb;B)Hb) ¢Cb) - Ha) 
a 2 • cr 2 {l + 0 [ ] 2} (3-2) 
x ~(b) - ~(a) - ~(b) - ~(a) 

There are two sp~cb.l c,s,s of the truncated t)orma.1 distribution con-

sidered in more detail herein, In one case, where a• - ~, we have 

one~eided truncation on t~e upper tail, In the other case~ where a 

a • 2µ-b, we have symmetrical two ... s:Lded t:runcatic:m., 

In the case of one .. !ilided truncation on the upper t:a::t.l, we hi;iva, 



for a = - 00 , cf>(a) = q>(a) = 0 and thus, from equation (3-1) 

µx = µ - a ~(b) 
q> (b) . 

and likewise 

(b""'M) Hb) Hb) 
ox2 ... cr2 {1 - _o __ 4>_(b_) __ - [ 4>(b) ]2} 

In the case of symmetrical two-sided truncation, we have 

a ... µ - (b-µ) • 2µ -b 

a· - µ = µ ·- b 

Ha) = $Cb) 

Ha)= 1 - 4>(b) 

When these equations are substituted into equation (3-1) we find 

and from equation (3-2}, 

[ c.i:.;.e.> - CJ?.;!:.)' l [ Hb) l 
0 x2 2 111 02 { l - ~(b) - 1 + t(b) . ~ Q} 

2 ch-µ> $ Cb) 
• a2 { l - a } 

M(b) - l 

(b-µ) ~ (b) 
m a2 { 1 - a } 

~(b) - l · 
2 
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(3-3) 

(3-4) 

(3-5) 

where a x22 is used to emphasize the fact that truncation in this case 

ie symmetrical and two-sided. 

The final constant associated with the truncated normal diatribu• 

tion ia the degree of truncation, which was defined as the fraction of 

thia parent population excluded by t~e truncation process. Letting 'V 

represent desree of truncation it is clia,u· that in general 
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y =¢(a)+ 1 - ¢(b) 

while for one-sided truncation on the upper tail, 

y = 1 - ¢(b) (3-6) 

and for two-sided symmetrical truncation, 

y2 = 1 - ¢(b) + 1 - t(b) = 2 - 2¢(b) (3-7) 

The mean and variance µx and ax2 for a truncated normal distribu-

tion can be standardized by considering their relationship with the 

parent population and their parametersµ and o2 • Thus for the case of 

one-sided truncation on the upper tail we define 

.!\ind 

k"' b-µ 
(j 

Then if y l:i O, \.i - µ'.it, cr 2 :i ox2 , and the standardhed par.~nneuu A ·and 

El equal O and l, respectively, Thia is depicted in Table I, which 

For the case of symmetrical two-sided truncation; we define 

l·"' - b-.µ ~~ :::.! ~--.. 
(;)' 

A I:; JL:ll;K 
Gi 
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TABLE l 

PA~ETERS, ONE-SIOED TRUNCATED NORMAL DISTRIBUTION 

Degree of Truncation Mean Variance Standard 
Truncation Point Deviation 

y k " e re-

0.0010 3.09023 .... o ;:66r3's 'io · .. · 0.989576 0.994774 

0.0050 2.57583 -0.014533 0.962354 0.980997 

0.0100 2.32635 · -0.026922 0.936646 0.967805 

0.0200 2.05375 -0.049406 0.896092 0.946621 

0.0400 1. 75069 -0.089763 0.834795 0.913671 

0.0500 1.64485 -0.108564 0.809641 0.899801 

0.0600 1.55477 -0.126728 0.786907 0.887078 

0.0800 1.40507 -0.161596 0.746834 0.864195 

0.1000 1. 28155 -0.195000 0.712073 0.843844 

O.:(;SOO 1.03643 -0.274305 0.640459 0.800287 

o. 2000 · 0.84162 -o. 349,949- 0~583011 o. 763551 

0.2500 0.67449 -0.423700 0.534697 o. 73123.0 

0.3000 0.52440 -0.496706 0.492810 0.702004 

0.3500 0.38532. -0. 569851 0.45569'q 0.675052 

0.4000 0.25335 -0. 643904 0.422254 0.649811 

0.4500 0.12566 -o. 71963-6 0.391694 0.625855 

0.5000 0.00000 -0. 797884 0.363381 0.602811 

0.5500 -0.12566 -0.879579 0.336869 0.580404 

0.6000 -0.25335 -0. 965851 0.311831 0.558418 

0.6500 -0.38532 -1. 058255 0.287863 0.536529 

1.0000 -co -co 0 0 
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TABLE II 

PARAMETERS, TWO-SIDED TRUNCATED NORMAL DISTRIBUTION 

Degree of Truncation Mean Variance Standard 
Truncation Point· Deviation 

Y2 k2 A e2. rei 

0.00100 3.29050 0 0.98830 0.994!3 

0.00500 2.80700 0 0.95621 0.97786 

0.01000 2.57580 0 0.92475 o. 9616.4 

0.02000 2.32630 0 0.87345 0.93459 

0.04060 2.05370 0 0.79282 0.89041 

0.04000 1.96000 0 0,75886 0.87113 

0.06000 1.88070 0 0.72768 0.85304 

0.08000 :i_.75100 0 0.67218 0.81986 

0.10000 1.64480 0 0.62299 0.78930 

0.15000 1.44050 0 0.52102 0.72182 

0.20000 1.28160 0 0.43774 0.66162 

0.25000 1,15050 0 0.36860 0.60713 

0.30000 1.03640 0 0.30955 0.55638 

0.35000 Q.93460 0 0.25875 0.50867 

0.40000 ().84160 0 0.21460 0.46325 

0.45000 0.75530 0 0.17612 0.41967 

0.50000 0.67450 0 0.14267 0.37771 

0.55000 0.59790 0 Q.11358 0.33701 

0.60000 0.52440 0 0.08833 0.29720 

0.65000 0.45390 0 o. 06677 0.25840 

1.00000 10.00000 0 0 0 
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It should be noted that the degree of truncation, y, is the frac­

tion of a lot which is excluded from the chance of being selected as 

part of a.random sample. Thus the sample which is inspected is,actually 

a random sample from the truncation distribution. This is the basis 

for the expression, truncation in sample selection, to indicate the 

type of sampling discrepancy being considered, In the context of this 

dissertation the degree of truncation is identically equal to the frac­

tion of a lot excluded from the chance of being part of a sample by 

truncation in sample selection. 

There are two main reasons for the choice of the normal distribu­

tion to. study the effect of truncation, First, the normal distribu- . 

tion approximates many.of the actual distributions of measured charac-: 

teristics in manufacturing. Also, in a number of cases, appropriate 

transformations can be utilized to achieve normality in analyzing non­

normal product distributions. The second reason for its choice is the 

great extent to which statistical test power curves have been developed 

in terms of the normal distribution, Thus the use of the normal model 

provides a bench mark or frame of reference for comparing tests to a 

common criteria, even if it is known that given product distributions 

are not truly normal, · Similarly, it provides for a common basis for 
comparing tests, such as the F and U tests, which are derived on the 

assumption of normality, with others, such as the exceeda.nce, maximum 

difference, and rank-sum tests (all described in the following chapter) 

which are distribution-free. 

Statistical .Inference on the T:r.1..mcated Normal Dist.ribution 

An early study of the properties of the truncated normal dist:dbu- · 
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tion was by Stevens (1937) who treated the case where the points of. 

truncation are known and the number of individuals of a sample in the 

truncated portion is also known. (This is sometimes referred to as a 

censored distribution inasmuch as the number of observations but not 

the values in the truncated portion is known.) Stevens _derived the 

likelihood function, the maximum likelihood estimates -of µ and cr2, and 

the variance-covariance matrix of-these estimators. Cohen (1950) 

extended these .results to cover other special cases of parent popula~ 

tion parameter estimation, all with truncation points known, (Cohen 

also cited the work of several other researchers not mentioned here.) 

Hald (1952) discussed the problems associated with estimating the 

three parametersµ, cr 2 , and b, of the one-sided truncated normal q.istri­

bution, observing that "estimation of these parameters ••• is very 

laborious." He pointed out (p. 146) that the point of truncation of an 

observed distribution-could be graphically estimated by plotting the 

cumulative distribution on normal probability paper and estimating the 

point on the abscissa to which the estimated line is asymptotic. He 

stated "in order to determine a truncation less than 10-20%, the number 

of observations must be very large. ae otherwise, for small values of 

x, the d.eviation of the fractiles from the straight line will fall 

within the permiesable 1:Lm:f.ts of random variation." · Hald was discuss­

ing one-sample .inference. · The :results of the re sear.ch reported herein 

corroborates his conclue:Lon for the two-sample case, 

A procedure for estimation of a truncation point where the parent 

distr:1.but::Lon i9 completely specif:Led Wlll!I developed by Robson and Whit: .. 

lock (1964) 9 who derived approximate point and interval HtimatH fcl't 

the one-sample case, They used the largest and second.li11,rgest order 
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statistics to estimate the point of truncation on the upper end of the 

distribution. Their results would hold equally for the case of trunca-

tion on the lower end of the distributiqn, using the smallest order 

statistics. The approximate 100(1 - a)% upper confidence limit on the 

truncation point is 

where the subscript (n) is used to represent th.e largest order statis-

tic, and (n-1) the next largest. 

This estimate is an exact limit only for the case of the uniform 

distribution, but is claimed to be "approximately" valid in general. 

The procedure is applicable only to the one-sample case. 

The primary limitation on the method of Robson and Whitlock is 

that the parameters µ and cr 2 of the parent distribution must be known. 

in order to make an inf er.ence about the truncation point. But in the 

case of truncation in sample selection it is generally not known even 

that truncation exists and although there may be a good guess as to 

the point of truncation this too must frequently be considered as un-

known. 

Of more importance however, than estimating the truncation point 

is testing the hypothesis .that truncation exists, which is discussed 

in the following chapter. 



CHAPTER IV 

STATISTICAL TESTS FOR TRUNCATION 

It ha.s been shown that one .form of data discrepancy in supplier 

inspection data is sample biasing, and that truncation in sample selec­

tion is a reasonably logical and simple way in which sample biasing 

could be effected. Now it must be recognized that several alternatives 

are open to a customer in protecting himself against such a discrepancy. 

One form of protection would be to simply not allow supplier sampling 

at all, either by requiring 100% supplier inspection or by the customer 

performing the sampling inspection himself, Another approach to pro­

tection would be to deal only with suppliers whose reputation for con­

sistent high quality and integrity were unquestioned, and thus could be 

always trusted to select samples in a scrupulously random manner, Or, 

as previously suggested, the. customer could assume responsibility for 

selection of the supplier sample, 

In any of the .above situations the customer's data validation 

program can be restricted solely to the analysis of measur!;:\ment dis­

crepancies. However, there may well be situations where a customer is 

presented with the results of a supplier's sample and must make a de­

termination of whether the sample is random or not. In such situations 

a comparison of the results of the supplier sample and an independent 

sample drawn by the .customer can be performed. 

34 
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Several possible statistical tests which could be used to make 

such a comparison will be discussed in this and the following chapter. 

These are not all the tests which might be used for such a purpose. 

From the large number available several were selected on the basis of 

their degree of acceptance as tests in similar situations. Others were 

chosen because it appeared on the surface that they might exhibit desir­

able properties. 

For each of the tests discussed, a brief historical summary is pre-. 

sented, followed by the method of computing the test statistic, and then 

the derivation or a discussion of the operating characteristic function 

and significance probability of the test. 

The significance probability, that is, the probability of reject­

ing a null hypothesis when it is true, is denoted by the symbol a. It 

is also called the probability of Type I error, For all tests dis­

cussed herein, the source of derivation of the significance probability 

is cited and selected values are presented in the charts. Where it is 

appropriate, a derivation of the significance probability is presented. 

Of all the aspects of the tests which might be considered, the 

one which is of the greatest importance in this analysis is the opera­

ting characteristic function of the test against the truncation alter­

native. The operating characteristic function has been defined (e.g., 

Cowden, 1957) as the "mathematical expression which states the proba­

bility of accepting a lot as a function of the fraction defective in 

the lot." In applications described herein it is the probability.of 

deciding there is no truncation in sample selection by the supplier as 

a function of the actual degree of truncation. In general it states 

the probability of accepting a null hypothesis as a functioµ.of a spe-
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cific alternative hypothesis. Commonly called the "O •. C. curve" it is 

the complement of the power function, which states the probability of 

rejecting a null hypothesis. Thus the O.C. curve is the "power curve 

turned upside down."- The symbol S represents the probability of accept­

ing a null hypothesis and the expression S() means the probability of_ 

accepting a null hypothesis given the condition expressed inside _the 

parentheses. The use of both o.c. curves and power curves is _common; 

the former are used in this study to be consistent with prevalent 

quality control practice, where characteristics of sampling plans are -

generally desqribed in part by displaying their O.C. curves, 

For _each o.c. curve the degree of truncation is the independent 

variable and the probability of accepting "no truncation" is the depen­

dent variable, while _the significance probability and the size _of both' 

supplier sample an.cl: custome-r sample are constants. _ 

The U Test for One-Sided Truncation 

One of the most common stati,stical hypothesis tests is the U .test,_ 

which is the optimum test for the difference between two means when 

the .distributions are normal and the variances are known. This test 

is also referred to by.some as the_ norm~! test. The assumption that ·th~ 

variances ·be known is somewhat restrictive if small samples are involved. 

But if sample size is of the order of 30 or above it has been stated 

(l:\.g~, H~ld, p. 389) that there is little practical difference between 

the U test and the comparable Student's test, which is the optimum test 

if the distributions have equal but unknown variances, 



37 

The U statistic for the two-sample case is the difference between 

the two sample means, divided 'qy ::the standard error of the difference. 

That is, 

- -y - x 
u = ~==== 

/_cr2 +~ 
n m 

where 

-y is the mean of the supplier sample 

xis the mean of the customer sample 

cr2 is the population variance 

m is the number of observations in the supplier sample 

n is the number of observations in the customer sample. 

In the derivation of the O.C. curve for the U test of truncation, 

we make use of two theorems, stated here without proof, which are both 

standard result$ in statistics. The first is the Centr.i9,l Limit Theorem, 

a version of which states that if x1 , x2 , •.• , Xn are stochastically 

independent random variables with mean µx and variance crx2 then 

n 
w = Ei=lx1/n tends to become normally distributed. with mean µx and 

variance crx2/n as n approaches co, The second is the addition theorem 

for normally distributed variables which states that if v1 , v2 , ••• , vn · 

are stochastically independent normally distributed random variables, 

will also be normally distributed with mean 

and variance 
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-An approximate distribution of x, the mean of the customer sample, 

is now derived. It is specified that the suppli~r selects a random 

sample of size n from a truncated normal distributi9n, with parameters 

µ, cr 2 , and truncation point b on the upper tail. Then from the results 

in the ptevious chapter oft the truncated normal distribution, it is 

seen that the mean and variance of the population being sampled by the 

supplier are 

and 

where 

k = b-µ 
cr 

From the Central Lirnit Theorem cited above it is seen that xis approxi-

mately normally distributed with mean µx and variance crx2 /n. The error 

of the approximation involved here is an increasing function of the 

degree of truncation and a decreasing function of sample size. (The 

magnitud~ of this error, has been examined by means of an empirical dis-

tribution sampling study, the results of which are presented in Appendix 

B.) 

The customer selects his sample of size m from the untruncated 

parent population and the observations in the sample are designated 

Yi, y2 , .•. , Ym· By the addition theorem for the normal distribution, 

- 1 1 letting a1 - ~' a 2. = ~' ••• , and v1 = y1 , v2 = y2 , ... , we find that 

1 m 
w =; i~l yi = y. Each y observation is randomly selected from a nor-

mal distribution with parameters meanµ and variance cr 2 , Thus, y has a 
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normal distribution with mean 

1 1 
].l y = iiiJ.l + iiil1 + . . . 

and variance 

These results are exact, as opposed to the approximate results for the 

supplier sample mean. 

Calling upon the addition theorem again, we see that the differ-

ence between sample means, 

w = y - x 

has a normal distribution with mean 

and variance 
02 . 0 2 

=-+·~ m n 

(4-1) 

(4-2) 

(4-3) 

Given this normally distributed random variable w, a new random 

variable can be derived by subtracting J.lw from wand dividing this 

difference by Ow· Let this random variable be Z. then 

(4-'"4) 

and by the addition theorem we find 

µ = E(~) - E(Hli) = Hli - .HllL = O Z ow ow Ow ow 

az2 = vARt~~w) = VAR(;w) + VAR(~:) 
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Z is thus normally distributed with mean O and varj~nc~ 1. Substitut­

ing into equation (4-4) the results of (4-1), (4-.2{, and (4-3) we have 

z = 
(y-x) - (µ-µx) 

/~2 + cr~2 
(4-5) 

If the null hypothesis of no truncation is true, i.e. y=O, then µ=µx, 

cr2=crx2 , and the above equation reduces to 

- - - -y - x z = ---:::::;::::=~ = 
/cr2 cr2 (Jii'+n. 

I in + n cr/' 'nm 

y - x 
(4-6) 

It is noted that all elements on the right hand side of this expression 

are computed from the samples or are known constants. Thus we always 

can compute this value, whether or not the null hypothesis is true. 

Therefore, we redesignate it as U. Let 

u = y - x 

crhi 

(4-7) 

and note that U is a sample statistic, whose distribution is that of Z 

if H0 is true, .and whose distribution remains to be found if H0 is not 

true. We must now find this distributi.on. 

Whereas the above derivation of the significance probability is 

presented in various forms in the literature, the following derivation 

of the O.C. curve is believed to be original with the writer. Let Z&, 

be a point on the unit normal distribution such that Pr.(U > Za,) = a.. 

Then the value a. is the significance probability of the test and the 

region on the real line which satisfies the inequality [U > Za,] is 

called the critical region. 
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The variable U is distributed normal, zero mean, unit variance, 

only if y = O. If y >O.the expected value of v = y-x will be greater 

than zero sinceµ> JJx, and its variance will be less than one, since 

crx2 < cr 2 • Thus the effect of truncation on the upper tail is to shift 

the distribution of th.e test statistic U to the right ·.arid· to ·narrow 

slightly the spread of the distribution. To derive the o:c. curve for 

the test, we need only to find the probability.that the computed value 

U will. fall outside the critical region, for any specified value y0 , of 

(H0 is accepted if U is in 
this region) 

Distribution ofµ 
if H0 is true+ 

Distribution of U 
if HA is true+ 

Type II Error: S(y0 ) 

0 

(H0 is rejected if U is in this 
region) 

A. y = 0 

Type I Error: a. 

B. Y = Y0 

U Scalia 

Figure 3, Type I and Type II Errors of U Test 

y greater than zero~ These relationships among a.:; Za.r y, and S(y0 ) are 
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depicted in Figure 3. In part A the condition which leads to Type I 

error with probability a is depicted: y is equal to zero, and the dis-

tribution of U is centered at zero. In part B, y takes on some posi-

tive value y0 , which causes the distribution of U to shift to the right 

and to become somewhat more narrowly dispersed. Type II error has 

probability S of occurring. 

The O.C. function of the U test is 

since the null hypothesis is accepted, regardless of the actual value 

of y, whenever U ..$ Za. To find B(y0 ) it is necessary to find the 

distribution of U given y0 • Although the truncation will actually re-

duce the spread of the distribution of U this is not taken irito account 

by the computation of U in which only the values x and y are computed 

from the sample. The variance is still assumed to be a2 • Thus the 

expected value of the computed U statistic, is again by the addition 

theorem 

µ-µx 

aim!~ 
(4-8) 

and the variance is 

VAR( y - x) VAR[ 
1 

(y) 
1 

(x) J au = = a/m+n - a/m+n aim: mn mn 

1 
VAR(y) 

1 
VAR(x) = 

2(m+n) 
+ 2 (m+n) 

a mn a mn 

1 a2 1 a 2 i 

= ·- .~ 
a2(m~) m a2(~) n 
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a2 a 2 1 a 2 
-+~ - + ::t.:-

(i:Jx2/a2)m = m n m a n n + n + am (4-9) = 
0 2 (m~) 

= m+n = 
nin m+n n+m 

Therefore the random variable U is distributed normally with mean and 

variance as indicated in equations (4-8) and (4-9). 

To convert this result into the desired probability statement _we 

recall that for a given value of .y, 

13 = Pr(U .S Za.). 

The inequality is una'ffected l>y subtracting and dividing by constants. 

So 

. U - µy Za - µµ 
13·= Pr ( au ~ cru ) 

The left hand side of this inequality now meets the. requirements of the 

Z random variable, normal with zero mean and un_it variance. This gives 

13 = Pr (Z ~ Za. - µu) 
au 

Now from the definition of the cumulative normal distribution ;function 

of a fixed value v, 
v 1 -t2/2 

Pr (Z < v) = ! - e dt = ~ (v) 
"." -oo v"2'JT 

So it follows that 

a·= Hv) (4-10) 

where 

v = 

The expressions (4-8) and (4-9) developed for µu and au can now be sub­

stituted into the equation for v. 

v = (Za. __ >i._) I /n + am 
~ m+n-
nin 

(4-11) 



I 

\! 44 

In the case where m = n equation (4-11) can be simplified further to 

(4-12) 

To compute the O.C. curve for the U test, either expression (4-11) 

or (4-12) for v can be solved by specifying a., m, n, and y. Then the 

cumulative unit normal distribution function ifl(v) can be found by the 

use of available tables (or series approximations, in the case of 

digital computer analysis). This result, by equation (4-10), is the. 

desired probability. 

To illustrate the computation of one point on the O.C. curve of 

·the U test, consider a case where both the supplier and customer in-

spect samples of size 49. The customer's sample is drawn at random 

from a population with. normal distribution, µ = 100, o = 20: The sup-

plier's sample is drawn from a truncated portion of the same distribu-

tion, with exclusion of any units measuring above the truncation point 

b = 135 .. Then 

k ... b - µ = 135 - 100 = o, 6 7 5 
a 20 

and from Table I it is seen that y = 0.25, >.. = 0,4237, a.nc;j. e = 0.5347, 

Let the test: be performed at a= 0.05. Applying equation (4-12) gives 

v • (1.645 - o.4237 I ff> /. 2 • -0.509 
49 1 + 0,5347 

and from a standard table of the cumulative normal distribution, 

a· t(-o.so9). 0.211 
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In Figure 4 a family of O.C. curves for the U test for one-sided 

truncation is presented, with the degree of truncation as the independ­

ent variable and the probability of acceptance as the dependent varia­

ble. This set of curves holds for the case of a= 0.05 and equal sam­

ple sizes varying between 9 and 100. 

To put these results in perspective, it is useful to compare this 

O.C. curve of the U test for truncation with a somewhat similar U test 

for the difference between two means. Assume a situation in which 

measurements from a production process are normally distributed with 

mean of 100, standard deviation of 10, and upper specification limit. 

exactly 3cr above the mean, at 130. A controlled process operating in 

this manner will produce 0.00135 fraction defective. 

Designate the test for a difference between .two means as case (a) 

and the test for truncation as case (b). In case (a) assume that the 

population mean shifts upward, increasing the fraction defective pro­

duced, but that a .bias in a supplier's measurement system offsets 

exactly this shift in the mean. In case (b) assume that a shift occurs 

but that truncation in sample selection results in supplier samples 

which indicate no defectiveness, In either case, a customer sample 

will probably contain defective units if the shift is at all large, 

though it is not the purpose of the customer's inspection in this 

analysis to find defectives, per se. Rather, we assume in case (a) 

the customer is interested in testing for measurement bias by inspecting 

an independent random sample; while in case (b) he is interested in 

testing for truncation in sample selection by inspecting an independent 

random sample. Assume equal samples of size 49. 
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Consider case (a), with points on the O.C. curve which would re-

sult in 0.005, .01, and .05 fraction defective, denoted by p. An 

increase in the fraction defective from p = 0.00135 top= 0.005 is 

equivalent to a decrease in the distance between the mean and the upper 

specification limit from 3cr to 2.576cr, or a shift upwards by 0.424lcr. 

Similarly an increase top= 0.01 is equivalent to a shift of (3-2.326) 

= .614cr and an increase top= 0.05 is equivalent to a shift of 

(3 - 1.645) = l,355a. The equation for the O.C. curv, of a U test for 

a shift in the mean is 

0 
S(o) = Pr( Z < Za ---) /m+n 

mn 

0 
= 41 (Z - /m+n) Cl. 

mn 

where 

The equation is derived, e.g. by Bowker and Lieberman (1959, p, 164-

165), Apply:1.ng this equation to the above shifts of o = .424, ;614 

and 1. 355, wi t1'. a • , 05, Za = L 645, and m • n • 49, gives the follow-

ing: 

For p = ,005 

a (o .. 

For p • .01 

,424) • w[l.645 - .424 
/98 

12401 
] = ~(-0,4536) = 0.324 

a co .. ,614) • 41[1.645 - (.614) elf · tI>(-1.3941) • 0.001 



For p = .05 

S (1. 355) = <Ii[l.645 - (1.355) (-2)] = <Ii(5.0618) = 0.00 
h 
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Now consider case (b) in which the U test is used to detect truncation. 

With a.= .05, n = m = 49, the equation for the O.C. curve is 

S(y = y0 ) = iP{(Za. - (A 0 ) (.2.)J/ 2 } 
/2 1 + 80 

which was solved in the earlier part of this chapter for y = 0.25. 

The O.C. curves of these two tests are plotted to the same scale 

in Figure 5, which clearly indicates the greater power of a U test for 

bias, when both are plotted as a function of the fraction of the lot 

being sampled which is outside the specification limit. 

There is a great difference between the two tests when compared on 

this basis. Two explanations are offered. First consider the physical 

differences between the two discrepancies in the data. The bias effects 

all observations in the supplier sample by the amount equal to the 

bias. But the truncation in sample selection affects only those obser-

vations which actually fall above the specification limit, For example, 

if y = 0.10 this amounts to only 10% of the observations. 

Second, consider the actual average shift in .the mean of the sup-

plier sample. In the case of a bias which results in 0,05 fraction 

defective, the shift in the mean .is 1,3550. But when truncation in 

sample selection results in 0.05 fraction defective in the lot yet no 

defective in the sample, the difference in the true mean of the popula-

tion being sampled and the population submitted to the customer is 

only ,10860. In summary, for comparable differences between means, the 

two tests actually perform very comparably, but a much larger fraction 
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defective can be concealed with resulting difference in the means by 

truncation than by measurement bias. 

The results of the above analysis should not be over-generalized. 

It does show the difficulty of detecting truncation but does not indi-

cate the differences among the different possible tests for truncation, 

which is a more important concern here, and will be dealt with in 

Chapter VI. 

The F Test for Two-sided Truncation 

The optimum test for the equality of two variances when the popu-

lations are normally distributed is the F test. It is not necessary 

that the means be either known or equal. 

The F statistic is computed from the samples by taking the ratio 

of the two variances, 

where 

and 

F ""!i_ 
s 2 

x 

s 2 • ..J:_ 
y m-1 

1 s 2 111--

x n-1 

It can be 

m 
(yi-y)2 I 

i•l 

n 
E (xi-x)2 

i=l 

shown (e.g. Bowker 

variable v2 formed by the ratio 

and Lieberman, 1959, p, 87) that the 

(4-12) 
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is distributed as an F random variable with degrees of freedom m-1, 

n-1. The degrees of freedom constitute the parameters of the F distri-

but ion. 

This statement assumes that the distribution of xis normal with 

i 2 var ance ox2 • While it is true that the variance of the truncated 

population is ox22 , xis not normally distributed. Thus the O.C. curve 

derived are only approximate, 

The decision rule in applying the F test to this problem is to 

reject the null hypothesis of no truncation if F > Fa, m-l, n-l where 

Fa, n-l, m-l is the point on the F distribution with m-1, n-1 degrees 

of freedom such that Pr(Fo,., n-1, m-1 < F) • a. (In subsequent devel-
\ 

opment the appropriate degrees of freedom will be implied rather than 

explicitly written,) 

The null hypothesis will be accepted if 

s 2 , 
::i_ .::, Fa • 
s 2 
x 

Therefore the probability of accepting H0 : y2 • 0 as a function of the 

true value y20 is 

(4-13) . 

In equation (4-12) it was stated that the ratio 

S/·/r,2 
s 2/ a '1 x x2 

has an F distribution. This holds true whether or not ax2 2 • a2 • 

Therefore the next step is 

) l/a2 
equation (4-13 by ~l/ 

O'x2 

to multiply both sides of the inequality in 

giving 
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(4-.14) 

and the left hand side of the inequality is an F random variable. In 

Chapter III the ratio 92 was defined to be 
a2 

82 = --
2 

0 x2 

and a table of 82 as a function of y2 was presented as Table II. 

Substituting these relationships on both sides of the inequality 

of equation (4-14) gives 

S(y2) = Pr(F .~ Fct • 82) 

which can be solved for a given value of a, y2, n, and m by reference 

to appropriate tables of the F distribution. A family of O,C, curves 

so computed is presented in Figure 6. An example of the computation 

for n = m = 49, a= 0.05, and y2 = 0,25 is 

8(,25) = Pr (F < 1.63·• 0,3686) 

= Pr (F S 0.601) 

"" 0. 044, 

So far as is known by the writer, the above derivation and o.c. 

curves for the F test for two-sided truncation have not been previously 

developed. However, it should be pointed out that O,C, curves for this 

test can be obtained by reference to the article by Ferris, et al 

(1946), In their paper, a was graphed as a function of vii', where 

v'92 denotes the rl:l.'cio of the larger standard deviation over the smaller 

one. The pBramete:r le! can be related to the degree of truncation y2 

since both Qre functions of k: 
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and 
k 

1 
I k<j> (k) 
v'l"'."'. <P(k)-1/2 

y2 = 1- f ¢ (u) du= 2 - 2<P(k) 
-k 

The Ferris o.c. curves were presented for a= .05 only, and include 

28 sample size combinations ranging fro'm n =. 4 ~. m = .4 to n = 100,, 

m = 100, with equal sample sizes, 2: 1 size ratio:s and 3: 1 size 

ratios. Also, Bowker and Lieberman (1959, p. 19::L) have presented a 

comparable chart for a= .01. 

The x2 Test for Two,~sided Truncation 

The x2 test would be applicable to the detection of two-sided 

truncation if the population variance were known, Inasmuch as the 
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variance is assumed known in applying the ·u test, it would not seem 

unreasonable to make the same assumption in the case of two-sided trun-

cation. But, in the two-sided case, if variance is known, then there 

is no need to dra.w a customer sample in order to test for supplier sam­

ple truncation. For this reason, the x2 is not explicitly treated here 

since attention is focused on two-sample tests, The development of the 

O,C, curves would be along lines very similar to those of the F test, 

and it would be, of course, a more powerful test as well as a more 

economical one, 

Nonparametric Tests 

Three nonp~rametric tests are studied in this investigation, They 

are selected from a large number of possible nonparametric tests on the 

basis of published evidence regarding their relat:Lv·e power characteris-
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tics for the standard alternate hypotheses, and on the basis of the 

· appropriateness of their method of computation. For example, two com-

mon nonparametric tests are the median test and the runs test.· Both 

are omitted from this investigation because several authors (e.g. 

Siegel, 1956) have indicated their power to be lower than competing 

tests described here. Some relatively powerful tests, such as Walsh's 

test and Fisher's randomization test are excluded because the complex-. . 

ity of computing these tests ·would rule them out as tests easy to learn 

and apply in field operations, 

The three tests studied are the Kolmogorov-Smirnov test, also re-

ferred to in this thesis as the maximum difference test since it is 

based on the maximum difference in the empirical distr.ibution functions 

of two samples; the Mann-Whitney test, referred to as the rank-sum test} 

and the Wilks-Rosenbaum or exceedance test, Of the three tests men­

tioned, the first two are well described and tabled in most standard 

references on nonparametric statistics. Because the exceedance test is 

less known, it is described in more detail herein, 

The Maximum Difference Test 

The maximum difference two-sample test was first proposed by 

Smirnov, (1939), who extended a one-sample test previously developed by 

Kolmogorov, thus giving rise to the more common name, the Kolmogorov-

Smirnov test. The formula for the significance probabilities developed 

by Smirnov was actually an asymptotic or limit formula, Massey, (1951) 

developed a computation formula for obtaining the small-sample exact 

significance probabilities. Hodges, (1957), published findings on the 

degree of error of the Smirnov formula for small samples, as well as 
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several alternative approaches, both exact and approximate, for calcu-

lating the significance probability. Each of these sources contains 

tables of significance probabilities, as does Siegel's book (1956). 

The term maximum difference relates to the method of performing 

the test. For each sample, the empirical distribution function is 

formed, and then the range of the variable is searched for the maximum 

difference between the two functions. This is the.value of the test 

statistic, 

To apply the maximum difference test to the hypothesis F(x) ~ G(y), 

define the empirical distribution function of one sample, of size m, to 

be the step function 

k ... -
m 

where k is the number of observations not greater than v, and vis any 

particular value of y. Likewise for the other sample, of size n, the 

empirical distribution function is Fn(v), Now define 

D ~ max I Fn(v) - Gm(v) I 
all v 

for a two-sided test, the alternate hypothesis being HA: F(x) ~ G(y), 

·nefine 

n+ = max (Fn(v) - Gm (v)) 
all v 

for a one-Bided test, the alternate hypothesis being HA: F(x) > G(y), 

Thus the test is actually a test on the equality of two population cumu-

lative distribution functions, and it has the property that it can, in 

theory, be used to detect any type difference whatsoever between the 

two distributions, e.g., central tendency, dispersion, or shape. As a 

practical matter, of course, its ability to detect differences is de-
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pendent on sample sizes. 

The one-sided version of the maximum difference test is appropri­

ate for detection of one-sided truncation. For detecting two-sided 

symmetrical truncation the two~sided maximum difference would seem to 

be the logical choice, but in actuality either of the two alternative 

one-sided tests would give about the same risks. In Chapter IV the O.C. 

curves of the maximum difference test against the truncation alterna­

tive are estimated by means of a distribution sampling experiment. In 

the experiment, the two-sided test is used against two-sided truncation 

and the one-sided test against one-sided truncation, 

'rhe Rank-Sum Test 

The rank-sum test was originally developed by Wilcoxon~ (1954)~ 

for the case of equal sample sizes, It was studied in greater detail 

by Mann l!lnd Whitney, (1949), who exunded it to the case of unequal 

~ampl~ si~es, It i~ now frequ~ntly referred to al!l the Mann-Whitn~y 

tHt, ~ieiel, (1956), called it: "one of the most powerful of the non= 

parametri,c t!Ki@U for loclittion, 11 'l'hue it is • :reaeol."tabl• candidat• t•st 

fo:t:' the di3t:•ctfon of ona-sidmd truncation, which doa!ll affact locaUofl, 

Si•a•l's baak contains t•bla9 af si~nificanca prab•bilities and also 

r•fa:rs to othet'; mor• extiBnilliv• tabl~s, Marm and Whit:n@y in thdr 1949 

papt!.n:' !i!how th• mathamatica1 basis of computin; the t:eet sttttistic al."td 

dm:rive its probability :function litnd associated c:dt:ical values, 

'l'h11are are severd alt•rnate methods of computing the rank-sum 

statistic fo:r two indeptintd•nt s•mplas. IA straightforward method which 

illustrat•s the name r~nk s~m; follows: Combine the observations from 

both Hmpl•s into a dngl• group~ maintaining 91unpla identity within 
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the group. Assign ranks to all .observations in the combined group. 

Rank the lowest valued reading as 111 11 , the next lowest "2", and so on. 

Then sum the ranks assigned to the Gustomer sample. (The choice of the 

customer sample is arbitrary, but. the computational and test procedure 

would have to be altered if the test statistic were based upon the 

supplier sample instead.) Call this sum of.all the ranks of the cus-

tamer sample I:Rc. Next, compute the product of th_e twQ sample sizes, 

n 
nm, and the product 2(n+l), Finally, letting RS represent .the rank Sl.lm 

statistic, 
m 

RS= nm+ .!l(n+l) - ER 
2 . · i•l ci 

If the suspected truncation is on the upper tail this method will re­

sult in an RS value which can be compared with the critical value of 

Table J or K of Siegel's book to determine its significance. If trun-

cation were suspected on the lower tail of the customer sample the same 

result could be obtained by computing ERc in the opposite direction, 

i.e. , assigning the :rank "1" to the largest observation in the combined 

sample, the rank 11 211 to the next largest observation, until the entire 

sample was a~counted for. 

The Exceedance Test 

The exceedance test is one which is not discussed much; if at all, 

in texts on statistiGal methods. However, it has a fairly long history 

of development, dating back at _least 1;:o 1942. Although there exist 

many versions of exceedance-type tests they all can be :related to the. 

simple idea of counting the number of observations in one sample which 

exceed, (in either a positive or negative direction) a specified ranked 
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ceedance based upon the largest (or smallest) order statistic; 
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To define .the exceedance statistic, we specify .that from a contin­

uous distribution f(x), a first sample, of size n is drawn and the ob­

servations x1 , .•• , Xn are ranked intheir order of magnitude. Let x(l) 

denote the smallest observation and x(n) the largest observation in the 

sample of size n, In a seconcj. sample, y1 ••. , Ym, of size m, the ob­

servations Yi drawn from the same distribution, there will be A obser­

vations smaller than x(l)' and B observations greater than x(n)• Then 

there will be E2 • (A+B) observations outside the extreme order statis­

tics of the first sample, where E2 may be O, 1, 2, ••• , or m, The ran­

dom v·ariables A and B, are defined as the one-sided exceedances of the . 

second sample. 

For the purposes of data validation it is assumed that the direc­

tion of sample truncation is known in advance where a one-sided test is 

appropriate. Therefore the random variable of interest is E1 , where 

if truncation at the lower end of the sample is to be tested, and 

if truncation at the upper end of the sample is to be tested. 

The exceedance statistic is actually a specialization of both the 

rank sum and maximum difference statistics. Whereas the maximum differ-. 

ence statistic is found by examining the difference between empirical 

distribution functions across the entire range of the two variables and 

picking the maximum, the exceedance statistic is a simple function of 
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the difference between the two distribution functions at a specified 

end-point. Thus it can be considered a specialization of the maximum 

difference statistic. Whereas the rank sum statistic is computed by 

counting, e.g., the number of y's greater than each x, a comparable 

exceedance statistic is computed by counting the number of y's greater 

than the largest x observation. Thus the one~sided exceedance is also 

a specialization of the rank sum statistic. 

The mathematical basis of the exceedance test was laid by Wilks 

(1942) in a classic paper on statistical tolerance limits. Wilks de­

rived general probability formulas for the one-sided and two-sided 

tests; howev'er, he pr·esented his results as a means for estimating pop­

ulation quantiles and not as a method for testing hypotheses. Gumbel 

and von Schelling (1950) extended Wilks' work by computing the moments 

and the cumulative probability function of the number of exceedances on 

the largest order statistics. They also derived large-sample approxi­

mation formulas, 

Rosenbaum propoHd (1953) that th.e two-sided exceeds.nee be utilized 

as a nonparametric test for dispersion, and (1954) that the one-aided 

exceedance b~ used for a nonparame·tr:i:c test:· c,.f. ,location, He preaented 

tables of critical values a:t:· the, ,nomitu1.l 5% and 1% level for both tests 

for oample miz~a through 50. 

l!:psUin (1954) pre,uui.ted limited tables of the distribution of the 

one-sided exceedance; he exploited the symmetrical properties of the 

distribution in ot·der to achieve great brevity in the tables. His 

tables are for equal sample sizes only, extending through size 20, and 

provide the probabilities of exceedances for all order statistics. 
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There are a number of adaptations of the basic test. For example, 

Tukey proposed (1959) a modification of the exceedance test to increase 

its power and simplicity of use as a quick-test on location only. His 

procedure requires that one sample contain the highest value, the other 

the lowest value. If this requirement is met then an exceedance is 

computed from each sample, and the two are summed to obtain the test 

statistic, He found that the numbers 7, 10, and 13 provided roughly 

5%, 1%, and 0.1% significance levels for two-sided location tests 

regardless of sample size so long as th~y were within a ratio of 4:3 in 

relative size, Other adaptations and developments of the exceedance 

test were reported by Rosenbaum (1965) who also reported the results of 

random sampling expe:dmente which comps.red the power of the various 

v·ereions with each other and with other types of tests, The results of 

these experiments ar~ cited in Chapter V, 

The probability function of the statistic which Wilks (1942) de· 

rived using the multinomial distribution law~ i.s as follows: Let c be 

a specific value of the random variable E and m and n be as previously 

defined. Then for the one-sided exceedance, E1, 

Pr(E1 m c) .. ~nl~mll~m - c + n - lll 
(m-c)I (m+n)I 

For the two-sided exceeds.nee, E2, 

Pr(E2 ... c) .., (n)(n - lHc + llnl ~n + m - c - 2)1 
(m - c) I (m + n) I 

The numerical evaluation of these formulas is somewhat tedious, 

requiring the use of tables of factorial logarithms, or analogous func-

tions if .a computer program is utilized. But the function can also be 

computed recursively, as will now be shown, 
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Consider first the one-sided exceedance. As stated previously, it 

is assumed that if a one-sided exceedance test is to be applied, the 

choice of upper or lower tail can be specified in advance. Under the 

null hypothesis, the probabilities are identical regardless of the 

choice of tail, Choosing the .upper tail arbitrarily, rank the (m + n) 

observations into a single group, preserving only the sample source 

designations x and y. Based upon the hypothesis that both samples are 

from the same distribution, all (n ! m) possible arrangements .are 

equally likely. The probability that the exceedance equals zero is. 

identical to the probability that the largest observation is an x, 

which must be equal to the ratio of x's to the combined sample size, 

Let L represent the largest observation in the combined sample, Then, 

Pr(E1 = 0) = Pr(L • x) = n 
m+n 

(4-15) 

The probability that the exceedance equals one is identical to the 

probability that the largest observation is y and the next largest is x, 

Each conditional probability is simply the relative size of the speci-

f ied sample to . the combin.ed sample given the prior condition. 

Pr(E1 = 1) = Pr(L = y, L-1 = x) = Pr(L = y)'Pr(L-1 = xlt = y) 

=~ 
n+m 

n 
n+m-1 

n 
n+m 

m = Pr(L = x) ' m . 
n+m-1 n+m-1 

Since Pr(L = x) equals Pr(E1 = 0) this reduces to Pr(E1 = 0) • m 
n+m'71 

The probability that the exceedance equals two is identical to the 

probability that the largest and next largest observations are y, and 

the third largest is x. 

Pr(E1 = 2) = Pr(L = y, L-1 = y, L-2 = x) 
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m m-1 n 
= m+n • m+ii-1 · m+n-2 

= _!!..._ • m m-1 
m+n m+n-1 m+n-2 

= Pr(E1 = 1)" m-l 
m+n-2 

(4-16) 

By mathematical induction we extend this recursive relationship to the 

gen~ral term. By means identical to that for P(E1 = 1) and Pr(E1 = 2) 

we see that 

Pr(E1 • k) = Pr(L = y, L-1 • y, ... , L-(k-1) • y, L-k = x) 

=~--<m_)_(m_-_1_)~~<-m_-_(k~--l)_)_(n_).,...... __ ~ 
(m+n)(m+n-1) (m+n-(k-l))(m+n-k) 

(4-17) 

and 

Pr(E1 = k+l) = Pr(L=y, L-1 = y, ••• , L-(k-1) = y, L-k=y, L-(k+l) 

= x) 

m(m-1) .•• (m-(k-l))(m-k)(n) 
= ----~--------------------------------( m +n) ( m +n - l) ••• ( m +n - ( k -1)) ( m +n -k) ( m +n - ( k + 1)) (4-18) 

Comparing factors in equations (4-17) and (4-18) we see that 

m-k Pr(E1 • k+l) • Pr(E1 • k) • (4-19) 
m+n-(k+l) 

Equation (4-19) giv·es a recursive equation for the general term. The 

inductive proof is completed by showing that equation (4-19) holds for 

the case k • 1, Substituting k • 1 into equation (4-19) gives 

Pr(E1 • 2) • Pr(E1 = 1) • m~l 
m+n-2 

which was the result derived above as equation (4-16). Now equations 

(4-15) and (4-19) provide a straightforward method of computing the. 



probability function of the one-sided exceedance. 

A similar recursive formula for the two-sided exceedance can be 

derived by applying the same logic. In thi~ case it is necessary to 

count the number of y's which are larger than x(~) to obtain E2 . Let 

S represent the smallest observation in the combined sample. Then, 

Pr(E2 = 0) = Pr(S = x, L = x) 

= Pr(S = x) Pr(L =xis= x) 
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n(n-1) = --........ -"---- (4-20) 
( m +n) ( m +n - 1) 

The event E2 = 1 can occur in two equally likely ways, i.e., 

and 

Thus, 

S = y, S+l = x, .•• , L = x 

S = x, ,,,, L - 1 = x, L = y 

Pr(E2 = 1) = 2 • Pr(S = y, S+l = x, L = x) 

. = 2 • mn(n-1) 
(m+n)(m+n-l)(m+n-2) 

= 2 • Pr(Ez = 0) 

The event E2 = 2 can occur in 3 equally likely ways, i.e., 

S = x, .•• , L-2 = x, L-1 = y, L = y 

S = y, S+l = x, ,,,, L-1 = x, L = y 

S = y, S+l = y, S+2 = x, ••• t L = x 

Since the probabilities of all of these ways are additive, 
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Pr(E2 = 2) = 3 • mn(m-l)(n-1) 
(m+n) (m+n-1) (}n+n-2) (m+n-3) 

= Pr(E = 1)• l' m-l 
2 2 m+n-3 (4-21) 

In general, there are (k+l) equally likely events for which E2 = k. 

One of these k configurations is now stated, and the probability fac-

tors appear in the same order as the configuration. 

S = x, L = y, L-1 = y, •.• , L-(k-1) = y, L-k = x 

n m m-1 
n+m n+m-1 n-m-2 

m-(k-1) . 
n+m-k 

n-1 
n+m-(k+l) 

(4-22) 

Inasmuch as all k+l events are equally likely, the probability is 

n • m • m-1 ••• m-(k-1) • n 
Pr(E2 = k) = (k+l) -----------------­

n+m · n+m-1 • n+m-2,,.n+m-k · n+m-(k+l) 
(4-2 3) 

There are (k+2) equally likely events yielding E2 = k+l, a representa-

tive one being 

S = k, L = y, L-1 = y, ... , L-(k-1) 111 y, L-k = y, L-(k+l) = x 

and it thus follows that 

Pr(E2 = k+l) 
(4-24) 

= (k+2) n · m • (m-1) • • • (m-(k-1)) (m-1) · n 
(n+m)(n+m-l)(n+m-2) ,,, (n+m-k)(n+m-(k+l))(n+m-(k+2)) 

Now by comparing the factors on the right hand sides of equations 

(4-23) and (4-24) we see that 
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Pr(E2 = k+l) = Pr(E2 = k) • k+2 • m~k 
k+l n+m-(k+2) 

(4-25) 

The inductive proof is completed by showing that (4-25) holds for the 

case k = 1. 

= l + 1) = 1+,2,c • m-k 
·1+1 m+n-(k+2) 

3 = - • 
2 

m-1 
m+n-3 

which agrees with equation 4-·21. Thus the equation is shown to hold in 

general. 

Inasmuch as no tables of the exact significance probabilities of 

the E1 test are.available for the case where n ~ 20, a table is present-

ed in Appendix D which has both E1 and E2 tabulated for selected e.qual 

sample sizes, from n = 2 ton= 100. All those value13 of which have 

significance probabili;ies between 0.10 and 0.01 are tabulated. 

Analysis of the Nonparametric Tests 

Of those tests descr.ibed in this chapter, o.c .. curves were derived 

for only two: the U test and the F test. However, the O.C. curves for 

the RS, MD, and E tests are of considerable interest in th~ir own right 

and for comparison with the above derived results.· The empirical e~ti-

mation of these O.C. curves is the ~ubject of the next chapter. 



CHAPTER V 

OPERATING CHARACTERISTIC CURVES FOR THE NONPARAMETRIC TESTS 

Of those tests presented in the previous chapter, three are non­

'Parametric: the Etest~ the.MD test;, and the RS test. Nonparamet;ric 

tests as a class have .certain features in common, The most impo;tant; 

from which the na~e is derived; is that the hypotheses under test are 

not on specific parameters of a distribu·tion but rather on the dist.ri ... 

bution itse.lf. Anothe:i:: label 9ften applied to this type of test is 

"distribution ... free", Th•t is,, no assumptions need be made about the 

form of the distribution being sampled in.order to compute the signifi~ 

cance probability of the test. In applications such as the· one·being 

studied. hei::e;. this distr:Lbut;l.on•free, property. has a. de.finite· appeal,. 

because it is likely that the normal assumption will not hold •. In 

some· cases., n~:mpara~etric test;s aleo have· an .adva-qtage in simplicity 

of computation. This is particularly true of the exceedance tests; 

The particular aspect of :nonpa;-a~etric test;s which concerns us he-re is. 

their respective o.c, curve analysis. 

Relative Merits of Samplipg Experi~ents, 

The literature c;,f studies of o.c. curves (or equivalently, power) 

of nonparame~ric te.sts i~dicates two· basically different: approaches 

in developing result.s. , One approach is characterized by . the work, of · 

Lehman .. (1953) who fo;-mulated alternative hypc;>theses which were 
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"tailored" to the structure of tl).e test, and made simplifying assump ... 

tions so that.general analytic. expressions coulcj. be derived, This pro ... 

cedure was fc;,llowed in the previous chapter for the U and F tests. 

Lehman's work has been extended br Gibbonf! (1964) who also provided a 

good summary of related developments, 

The other ~pproach is to construct a descriptive model of an 

actual situation of.concern for wh~ch no mathematical method of anal~ 

ysis is available, and then to ~ake empirical estimates 9f the desired 

function,.· by tabulating the results of repeated trials. of sampling 

experiments •. 

The analytical methods have traditionally been favored for their 

rigor and generality of application •. But this approach also has its 

limitations~ as pointed c;,ut by.Hammersly and Handscomb (1964), who 

emphasized this point: that one of the .main strengths of theoretical 

mathematics is its conc~rn with abstraction and generality, in that 

one can write symbolic expressions.or formal equations which abstract· 

the essence of a problem and ~eveal its underlying struqture~ However, 

this same strength carries with it an inherent we~kness: the more gen~ 

eral and formal its language; the less is math~matical theory ready to 

provide a nu~eric~l solution in.a specific application, 

The limitations of .mathematical analysis have lead some research~ 

ers to e~ploit the ,empirical techt1,ique of di~tribution sampling. A 

number of such studies have been reporteq i. Dixon and Teichroew (1953) 

dete.rmined for various sample sizes, such as n = m = 5, 10, 20; 

m = 5; n = 10; m = 10, n = 20; and <;>thers, the.powers of the Wilcoxon 

ranksum test and·the Komogorov-Smirnov maximum difference tests against 

normal shift alternatives. A normal shift alternative is of the form 
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where µland· µz are the means of two normally distributed populations 

with common variance cr 2 • The significance levels considered were 
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a= 0.01, 0.05, and 0.10. They also made experiments with alternative 

hypotheses for which variances as well as means were unequal. The num­

ber of trials, i.e., pairs of samples, on which their estimates were 

based was 150, and in s:ome cases 100. 

Epstein (1955) compared the power of the runs test, the exceedance 

test, a truncated variation of the maximum difference test, and the 

rank sum test against the normal shift alternative. The significance 

level was maintained at 0.05. The results were based on 200 trials, 

for sample size 10 only. 

An empirical analysis of the probabilities of all rankings of the 

order statistics of two-sample tests was reported by Teichroew (1955) 

for very small sample sizes up to and including n = 3, m = 4, The 

normal shift alternative was considered, Since all possible rankings 

were presented, no specific tests or significance levels were considered 

for the reader could choose any rank-order test and significance level 

he wished and analyze it for the sample sizes given, The results were 

based upon 1,000 trials in some cases and 2,000 trials in others. 

Van der Laan and Oosterhof£ (1965) compared the Wilcoxon rank-sum 

test with two specialized rank order tests for samples of size six on 

normal shift alternatives. The significance level was a= 0.01 and 

results were based upon 2,000 trials for each of twelve specific shift 

alternatives. Also in 1965, Rosenbaum compared several different ver­

sions of the one-sided and two-sided exceedance test for normal shift 

alternatives, sample sizes n = m = 10, and nominal significance levels 
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of 0.05 based upon 100 trials. 

For this dissertation, a distribution sampling experiment is con­

ducted to estimate the power of the rank-sum, exceedance, and maximum 

difference tests, as a function of the alternatives of·one-sided and 

symmetrical two-sided truncation, snd is discussed in greater detail 

following the general description of the distr~bution sampling tech­

nique. 

General Description of the Distribution 

Sampling Technique 

The sampling method for evaluating the distribution of a.two­

sample test statistic can be described in general terms as follows: 

(a) Perform a large number, (NT), of trials, each trial 

consisting of two samples (of size NS each); one from 

the density function f(y) and the other from the density 

function g (x), where f (y) and g (x) define the two po.p­

ulations under comparison. The two populations are 

simulated by the use of· .·random number generators, 

(b) For each pair of samples, compute the test statistic 

S(xil' • • •' xiNS' Yu,•••' Yil')"S) for i = 1, • • • NT 

(c) Rank the NT values of the statistic. The number of 

distinct values will in the case of some statistics be 

limited by the sample size NS (e.g., MD, E) and in the 

case of others by the number of trials NT, (e.g., RS 

for large samples). The number of trials will be the 

limit whenever the sample space is larger than NT. 



(d) Let the set of numbers CK, K = 1, 2 ••. NS or K = 1, 2, 

••• NT, represent the ranked set of distinct values of 

S(x,y), and for any number CK, compute 

F(CK) = NL 
NT 

where NL is the number of trials for which the statis-

tic S(x,y) is less than or equal to CK. 
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When F(C) is an empirical distribution function of the test statis-

tic S(x,y) and NT becomes large, this empirical function will tend to 

approximately equal the true distribution function. This is a conse-

quence of the law of large numbers, which can be used to show that 

lim " 
NT + 00 [F(C)] = F(C) 

where F(C) is the true distribution function of C. 

The .Q.istribution sampling technique is applied to the development 

of approximate O.C. curves of a test for truncation by making one run 

for each desired value y0 of the truncation parameter y, each run con-

sisting of NT trials. Each trial is a single computation of the tefot 

statistic for the specified alternative, each run yields an approximate 

distribution of the test statistic for that alternative, and each set 

of runs for a given sample size gives a family of sampling distribu-

tions from which a family of O.C. curves is derived. Each curve is· 

developed by varying y and holding C fixed at a certain value. To make 

one trial requires 2 x NS random numbers to be chosen, stored, and ana~ 

lyzed. Each run requires a sum of NT trials for identical value of all 

parameters. For.each O.C. curve a sequence of approximately six to 

eight runs is required, varying the truncation parameter y from zero up 
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A 

to a value such that 8(y) < .10. Thus a typical O.C. curve is con-

structed from 500 x 8 = 4,000 trials, which for samples of 25, repre-

sent 200,000 individual random numbers, not including those in the 

truncated portion of the simulated supplier sample, which ~;e rejected. 

The probability pf ~cceptance, S, for y = 0 is simply.the cotllple­

ment of the significance level a and for all the statistics ~nder study, 

was computed analytically, By selecting a particular sample size and 

value of a, the critical point Ca on the distribution of the test sta­

tistic is determined, Tp~t is Ca is determined by the relationship 

a = Pr (S >. Ca I y = 0) 

in the case of an upper one-sided rejection region and 

a= Pr(S > I Cal I Y = 0) 

for a two-sided rejection region. For nonparametric tests, Ca can 

take on only certain discrete values, due to the finite sample space of 

the test statistic. A co~ventional practice is .to select critical val-

ues which closely correspond to nominal a su~h as 0.10, 0.05, and 0.01. 

With the appropriate value of Ca determined analytically, 8 is es-

timated empirically by the equation 

A A 

8(y0 ) = F(Ca Y = Yo) 

The Sampling Experiment Details 

The computer program for this experiment was written in the 

FORTRAN language. This program was developed to ip.tegrate the above 

factors, generate the required pseudo-random numbers, and tabulate and· 
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print out the empirical distribution function and variables identifica­

tion for each run. 

The variables for each run whi-ch were specified on a control card 

were the number of trials, the sample size, and the truncation point. 

The choice between one-sided and two-sided truncation was made by 

changing a FORTRAN statement in the NORM subroutine. Figure 7 illus­

trates the flow chart of the program and a complete listing appears as 

Appendix A. 

The populations from which the sample data were obtained were the 

normally distributed population withµ= O, a= 1 for f(y), and a trun­

cated derivative of this population for g(x). The truncated function 

was derived from the parent by simply discarding each deviate which 

exceeded the point of truncation and drawing an additional deviate, 

repeating this process until the required sample size was attained. 

The random number generator used in this program was written in 

the COMPASS language by S, Bell, formerly a Sandia Corporation statis­

tician, for the Sandia CDC 3600 computer system, under the code name 

ANRV, which stands for "A Normal Random Variate." Bell used a "mixed 

congruential technique" of generating a series of pseudo-random normal 

deviates. This method was reported by Marsaglia, et. al, (1964) who 

indicated it had been found to be somewhat faster than other normal 

deviate generators of comparable quality. It has been programmed into 

a number of different computer systems. 

The statistical characteristics of the pseudo-random member series 

generated by this "ANRV" subroutine were studied extensively by Bell 

and Holdridge (1967). They applied four different statistical tests to 

a large number of different sequences, varying in length from 50 to 
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100,000. The tests were the frequency, serial, runs above and below 

the mean, and runs up and down. The report by Bell and Holdridge des-

cribes the nature and outcome of these statistical tests of randomness 

in considerable detail, The key conclusion of the study was that no 

' ., 
evidence of any significant departure from randomness was revealed. 

The fact that the extensive analysis they performed failed to indicate 

non-randomness gives a measure of confidence in using the generator in 

a sampling experiment. 

A value of each of the following variables wa.s specified for each 

run: sample size NS, number of trials NT, truncation point k, one- or 

two-sided truncation. In then deriving O.C. curves from sampling dis-

tributions, appropriate critical values C0 were chosen. Each of these 

variables is now discussed. 

Sample Sizes 

For this study, equal samples of size 9, 16, ..• , 100 were used. 

The use of equal sample sizes was based on the fact that in most cases 

equal sainple sizes provide the most efficient use of the data, and also 

to minimize computer storage problems. The choice of squares was to 

provide a fairly uniform increase in power as a function of sample size 

increase. It was found that the O.C. curves would be more nearly 

equally spaced on the sample size scale, since the standard error of 

estimate of most statistics is a linear function of the square root of 

sample size. It is not advocated that only squares should be considered 

when selecting sample sizes. On the contrary, interpolation in a graph 

of a family of O.C. curves should be made when one wishes to analyze 

the O.C. curve for a sample size other than those presented. Such an 



interpolation is a straightforward procedure, 

Number of Trials 

An optimum choice of the number. of trials, i.e. , run length, in­

volves a trade-off of increased precision of results on the one hand 

and increased computer time on the other hand. Reported sampling ex­

periments show .. wide variance on this point. Van der Laan and Ooster­

hoff (1965) ran 2 ,_000 trials for each combination of variables. But 

Ros.enbaum (1965) used only 100 trials. per combination. Probably each 

of these extremes could be justified on the basis of different points 

of emphasis in the respective experiments. 
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In this experiment the number of trials for each combination of 

the independent variables was set at 500 for sample sizes 49 and small­

er, and at 200 for sample sizes of 64 or larger. There were two con­

siderations in reducing the run length from 500 to 200 trials for the 

relatively large (64·, 81, 100) sample sizes. first, the computer time 

increased markedly as sample size increased- due mainly to the great 

number of sorting steps required to rank a large number of numbers. 

Thus, the run lengths were reduced to help equalize the relative costs 

of investigation for different sample sizes •. The other reason, is that 

as sample size increases, the o.c. curve becomes steeper, and thus a 

less precise estimate of the value of a as a function of y is required 

in order to have a satisfactory indication of the relationship. This 

point is discussed in greater detail in Appendix C. 

Truncation Points 

The alternative programmed into each simulation run was that a 
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specified fraction of the parent distribution was excluded by trunca­

tion, from appearing in one of the samples. Both truncation on the 

upper tail and symmetrical truncation on both tails were studied. The 

actual truncation points programmed varied from one.situation to anoth­

er: the criteria used were that the points should be close enough to 

each other to provide a fairly clear idea of inflection points in the 

resulting O.C. curves, and that the degree of truncation should extend 

over a great enough range to bring the probability·of acceptance down 

to approximately 0,10 for a specified critical value. The further lim­

itation of a 60% degree of truncation was imposed, After some initial 

experimentation, increments of ,05 were used for successive runs, with 

additional runs in individual cases where a finer increment was re­

quired to adequately estimate a given O.C. curve. Only degrees of 

truncation through 40% are presented in the O.C. curves, Figures 8 

through 15, since it is doubtful that higher degrees would have practi­

cal relevance. 

Significance Probabilities 

The method of distribution sampling estimates the entire distribu­

tion function of the test statistic for each set of conditions; thus 

it is possible to consider any significance probability within the lim­

itation of the discrete probability range of the tests. In the presen­

tation of results, however, the significance probability range was re~ 

stricted approximately to the interval between 0.03 and 0.15. In the 

case of actual application of the analyzed test to a data validation 

problem it is felt that practical considerations would force the user 

to choose a significance probability somewhere in the 0.05 to 0.10 
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range. Because of the discreteness problem it is not generally possi­

ble to choose an exact predetermined significance level for any given 

sample size. For the ex~eedance test, which appears to be most appli­

cable to .the detection of truncation, several possible acceptance num­

bers are analyzed for each sample size herein; for the other tests, 

only a representative set of acceptance number~.one per each sample 

size, is presented. 

o.c. Curves for Tests of One-Sided Truncation 

The operating characteristic curves portrayed in Figure 8 are for 

the E1 test with an acceptance number of two; that is, one would accept 

the null hypothesis of no truncation if two or fewer observations in 

the customer sample exceed the largest observation in the supplier 

sample. 

The exceedance test significance probability is surprisingly in­

sensitive to sample size. It is noted that all the curves in Figure 8 

are for the same acceptance number; although sample size varies from 9 

to 100 the significance probability varies only from 0.103 at n = m = 9 

to 0.133 at n = m = 100. This property of the exceedance test makes it 

feasible to hold the acceptance number constant for a given chart. In 

examining Figure 8 it is seen that in order to have approximately a 10% 

chance both Type I and Type II error, detection of truncation of degree 

.10 requires samples of about size 40, and detection of truncation of 

degree 0.05 requires samples of about.size 90. 

When the acceptance number is increased from two to three, the 

average significance probability is reduced from .118 to .051, and the 

corresponding O.C. curves all have higher Type II error probability. 
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This is portrayed in Figure 9. Now, in this case it requires samples 

of about 60 to detect 10% truncation with error probability of .10, and 

over 100 to detect 5% truncation. 

In Figure 10 a set of O.C. curves of the maximum difference (Kol­

mogorov-Smirnov) test is displayed. The significance probabilities 

range from 0.12 for samples of size 9 to 0.04 for samples of size 100. 

The acceptance numbers portr~yed vary from (K • 3) for (n • 9) to 

(K = 17) for (n • 100). The acceptance numbers as displayed tend to 

force the significance probability lower as sample size gets larger. 

Thus the O.C. curves all tend to cross, as the larger sample sizes have 

greater discriminating power and also smaller significance probabili­

ties. Upon examining the curves it is seen that, for instance, sample 

size 100 acceptance number 17 would provide Type I error probability 

of 0.04 and Type II error probability about 0.10 for degree of trunca­

tion 0.20. 

The rank-sum (Mann-Whitney) test for one-sided truncation is ex­

hibited in Figure 11. The rank sum statistic has a discrete probabili­

ty function as do the two previous tests; however, the sample space is 

much larger for the rank-sum test and therefore a pre-specified signifi­

cance level can usually be obtained. Thus all the curves in Figure 11 

have a significance probability of almost exactly 0.05. 
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O.C. Curves for Tests of Two-sided Truncation 

The O, C, curves for tests of two-sided truncation are dis.played in 

Figures 12 through 15, The first three.figures are for the two-sided 

exceedance test, acceptance numbers three, four, and five, respective­

ly. These figures are self-explanatory, subject to the same interpre­

tation as was offered Figures 8 and 9 previously. The reason three 

figures, rather than two, are presented for the exceedance test, is 

that possible values of the two-sided exceedance statistic are somewhat 

more densely spaced than in the one-sided case, and it was felt desira­

ble for this particular test to present full results in the range of 

interest of significance probability. With the three figures we have 

full coverage of possible significance probabilities between 0.06 and 

0.147, and partial coverage from 0.025 to 0.06 and from 0.147 to 0.185. 

The two-sided maximum difference test is displayed in Figure 12. 

It should be noted that the maximum difference test, while theoretically 

admissible, is exceptionally poor in detecting two-sided truncation, 

It would exhibit much the same weakness in any case where it was ap­

plied to distributions with equal average values and unequal degrees of 

variation. As for truncation, symmetrical two-sided truncation doubles 

the degree of truncation without increasing the amount of difference in 

the cumulative distribution at either end. Thus, such a data discrep­

ancy requires essentially double the degree of truncation in the two­

sided case to have the same probability of detection as the one-sided 

test would give to one-sided truncation. Figure 12 shows that the O,C. 

curves are quire flat, c~mpared to those for other tests portrayed in 

this chapter and the previous chapter. For samples of size 9, 16, and 
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25, the O.C. curves are almost insensitive to truncation of degree less 

than 0.40 and only samples of size 100 achieve a probability of Type II 

error as low as 0.10 for any degree of truncation displayed on the 

figure. 



CHAPTER VI 

COMPARISON OF THE TESTS FOR TRUNCATION 

The operating characteristic curves have now been presented for 

all tests of truncation studied in this dissertation, It is appropri ... 

ate to compare these tests on the basis of the ease of applying them 

in operational situations, and upon their relative effectiveness in 

' detecting truncation when it exists. 

Ease o~ App~icat:Lon 

The relative ease of application of the tests depends in some part 

on the method of computation utilized. If a validating organization 

is set up in such a way as to routinely prepare computer input forms 

for analysis, then there is probably not a great·deal of difference 

among the tests. Given the same sample size, they will all require 

about the same amount of work in preparing input forms, and the compu..­

ter time required for all computations will be slight, compared to the 

input preparation work. However, much of the time validation will be 

performed by a roving field inspector who visits various supplier 

plants and performs inspections and analyses manually. In such cir­

cumstances the training time required for the inspector, who is gen­

erally not statistically sophisticated, and the time required to per..­

form the tests, become important factors. 

Of all the tests considered, the simplest to apply manually is 
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certainly the exceedance test. This test requires only that the 

largest observation in the supplier sample be identified, and then a 

count made of the number of customer observations exceeding it (for the 

case of a one•sided test on the upper tail,) The·most difficult to 

apply is the rank .. sum test. Ranking a large group of numbers is ate­

dious procedure done manually. Midway between the exceedance and the 

rank-sum tests in ease of application are the,parai;netric U and Ji' tests 

and the maximum difference test. Both these types of tests can be 

performed by straightforward applicatio~ of the test statistic for• 

mulas, or by a "grouped data 11 method which will materially reduce the 

computation time required for manual analysis. Details concerning this 

method can be found, e.g., in Bowker and Lieberm~n, (1959, pp. 4.10) 

for computation of sample mean and standard deviation, and in Berger 

(1966, pp. 7-8) for computation of the maximum difference, Experimen­

tal application of the tests by data reduction clerks and college stu..-. 

dents, however, indicate that even with the time saved by grouping data, 

the latter tests are still considerably more time~onsuming than the. 

exceedance test. 

Relative Power 

By reference to the 0,C, curves presented in Chapters IV and V 

a number of comparisons of the power of the different tests can be 

made. One b~sis for comparison is to select certain probabilities of 

Type I and Type II errors, and then find the degree of truncation for 

which the different tests will detect with the given probabilities, 

For example, in Figure 16, the four different tests for one-sided 

truncation are displayed, with sample size 49 and alpha of Q.05. The 
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superiority of the exceedartce test in this case is clear. For 

S ~ 0.10, the exceedane test will detect t;uncation of degree 0.12, 

whereas the maximum difference test will detect tr~ncation of degree 

0.26, the normal test degree 0,30 and the rank...sum test degree 0,35. 

Similar comparisons can be made for other. degrees of truncation and 

acceptance probabilities. Viewing Figure 16 as a whole, the conclusion 

is that there is not:a great <iea,1 of difference among the latter three 

tests, but tha,t there is considerable difference between them. as a 

group and the exceedance test. 

The three tests for two-sided truncation are displayed in Figure 

17, for the sample size 49 and significance probability 0.05, The most 

striking point of interest in this diagram is the extreme relative 

weakness of the maximum difference test. Even with truncation of 

degree 0.40 there is a 0,50 probability of accepting the hypothesis of 

no truncation. However both the other tests clearly would have zer.o. 

probability of acceptance in such a case, Thus it can be seen that the 

maximum difference test, while comparable at le~st to the normal and 

rank-sum tests for one~sided truncation, is completely unsuitable for 

detection of two-sided truncation, 

In comparing the F test an;d the exceedance test, little difference 

is noted between the two for truncation of less than about 0.08. 

As truncation increases beyond. thb level,, the relative advantage of 

the.exceedance test increases, and whereas the exceedance test will 

detect truncation of degree 0,16 with 0,10 pr9bability of Type II 

error, the F test is indicated to have about 0.22 probability of Type 

II error, and i~ order for the Type II error probability to be reduced 

to 0,10, the degree of truncation would have to be·about 0.22. 
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For trunca~ion of degree zero to about 0.06, there is a slight ad~ 

vantage to the F test. However, the relative difference~ when compared 

with inherent samp~ing errors,for the estimation of the curve for the 

exceedance test, and approximation e;rrors for the derivation of the 

F test, is so slight a~.to be.completely negligible from a practical 

standpoint. 

Figures 16 and 17 are representative of a whole set of comparisons 

which can be derived from the figures of Chapters IV and V. All 

these comparisons.will provide evidence of the consistently higher 

power of the exceedance tests when compared to others studied. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Summary 

The problems associated with data validation are directly related 

to the data discrepancies which can be postulated to occur in supplier 

data, It is customary for suppliers to do sampling inspection in gen..­

erat:ing variables,,type data, In such situations, the discrepancies 

which may occur are divided into two mutually exclusive classes, viz: 

(1) measurement and (2) sampling, 

Associated with this dichotomy of data discrepancies is a similar 

one between basic approaches of data analysis: paired samples and in­

dependent samples. For detection of measurement discrepancies, either 

repeat measurement of units previously inspected by the supplier, 

followed by paired-sample analysis; or independent sample analysis can 

be used by the customer. But for detecting sampling discrepancies, on ... 

ly independent samples can be used. 

Reference has been made to a portion of the large body of liter~ 

ature on experimental design which indicates the relative merits of 

independent and paired,·sarnple analysis for measurement discrepancies. 

Little has been published about the properties of statistical tests 

for sampling discrepancies. Therefore the major portion of this re­

search is devoted to (1) the construction of a mathematical model of a 
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certain type of sampling discrepancy, which is referred to as trun­

cation in sample selection; and (2) to the development of the operating 

characteristic curves of several different statistical tests for 

truncation. Two of the 0,C, curves are derived analytically, the 

others are estimated by the technique of distribution sampling, Com ... 

parisons among the different tests are made. 

Conclusions 

Several conclusions follow from this research. The first con~ 

clusion is that independent samples are not well suited to the overall 

solution to the data validation problem. This conclusion contradicts 

previously published doctrine on validation of attributes data which 

indicates that _only by the use of independent samples can the customer 

make a fair appraisal of the supplier results. This contradiction is 

explained by the fact that previous research did not explicitly recog~ 

nize the dichotomy of data discrepancies. Nor was there any actual 

knowledge of the magnitude of the problem of detecting sampling dis~ 

crepancies by purely statistical means. 

It is concluded that where circumstances dictate that sampling 

discrepancies are not a concern of the customer (e.g. 100% supplier 

inspection; customer selection of supplier sample) data validation 

can be accomplished efficiently, economically, and with a significant 

reduction in the size of the customer sample as compared to convention­

al acceptance sampling procedures. 

It is concluded that, of those tests for truncation which have 

been studied, the exceedance test is the best. This was found to be 

true for both one-sided and two-sided truncation. 
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A general conclusion can be made about sampling discrepancies. 

If a supplier should feel inclined.to report on the quality of his lot 

by the use of a biased sample, then truncation in sample selection 

is a particularly effective way for him to do so, for two reasons. 

First, it is quite simple to implement, in comparison with some other 

possible methods. Secondly, it is. extremely difficult to detect by 

"purely statistical means. The basis.for the latter state~ent is the 

set of o.c. curves presented in Chapters IV and V which indicate that 

for moderate amounts of truncation, in the order of five to ten 

percent, relatively large samples, in the order of 81 to 100 for both 

the supplier and customer would be required to have probability of 

both,Type I and Type II errors.in the order of 0.05 or less, This 

should be recognized as larger than most conventional acceptance 

samples, and thus relatively unattrac~ive. 

In view of the difficulty of statistical detection of truncation 

with small samples, there is only one possible legitimate argument for 

the use of small, independent sa~ples in:a data validation program. 

This is the psychological effect such sampling may have on suppliers. 

They can be informed by the customer's quality organization that they 

are being monitored for sampling discrepancies, Such independent 

samples could be drawn on random occasions, and could be integrated 

into a data validation program for measurem.ent discrepancies without 

either a great deal of cost or of significance ~ttached to the results. 

Tµe important conclusion from comparison of the o.c. curves.for 

all tests studied, is that the exceedance test in both its versions 

is the.best for detecting the two versions of.truncation considered 

here, This further suggests .that the exceedance-type tests which have 
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been developed may deserve more attention than th~y have received, up to 

this time from statisticians and quality control personnel. 

Recommendations for Further Research 

Validation of measurement-type data is a quality control tech­

nique a~out which very.little research has been conducted, It appears 

that .fruitful research ,could· be pursued alotig several lines. 

The use of equal sampie sizes:in th~s re~ea;ch is.a valid means 

for establishing the. relat:1,ve powe; of·the different tests. However, 

in actual practice a customer may have a supplier sample of a certain 

size which __ he wishes to val:f,date -for sampling discrepancies. He needs 

to know the sample size required to detect a certain amount of tru~~ 

cation. Thus the.research can be extended by establishing o.c. 

functions for various sample size combinations. 

Only-one form of sampling discrepancy has been considered here. 

Explicit analysis of oth~r forms of sampling discrepancies such as salt~ 

ing and tampering, and the methods required to de~ect them, should be 

made. 

Th~s research has established that the exceedance test is more 

powerful thim the normal-. test for· detecting one~ided truncation. 

However, it is well known that the.normal test is op:t:imum for detecting 

a sh:J.ft in the.mean. Thus thei;-e is some combinatiot;1 of shift and 

truncation for whi_ch both tests would have equal power. An investi­

gation of this "indifference pointP could yield interesting results. 

Finally, this is, to tqe best of the author's knowledge, the .first 

time that the exclusive use- _of independent samples for data validation 

has been-questioned. Thus it appears that_similar research for the 



case of at~ributes data could be performed to determine if 

these procedures could be improved by careful study of .paired sample 

analysis of attribute-type inspection data. 
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All nonparametric test O.C. curves presented in this dissertation 

were estimated by means of the distribution sampling program described 

in Chapter V and listed here. The program consists of a main program, 

STASIM (an acronym for STAtistical SIMulation), and subroutines SIFT 
' - -

(a catchword for a rank-ordering routine), NORM, (for ~al distribu­

tion generator), and, XBASD.(an acronym for !""!ar And §..tandard l?_evia-

tion). 

The main program STASIM provides for all input and output, controls 

the use of the normal variate generator, and computes the values of all 

the tests statistics under study. The choice of one-sided or two-sided 

truncation and one-sided and two-sided tests is controlled by changing 

appropriate statements in the: :main program. The determination of run 

length, test statistic sample size, truncation point, is made through 

input dat.a. cards. 

The subroutine SIFT is used at several points to rank a set of ob-

servation in numerical order. The normal random variates are generated 

by the use of a library function, ANRV, described in Chapter V. This 

function is part of the NORM subroutine which controls the mean, vari-

ance, and truncation point of the distributions being sampled .. The 

XBASD subroutine is used to compute the mean and standard deviation of 

the sampling distribution of the MD and E tests. 



c 
c 

c 

PROGRAM STASIM 

TYPE INTEGER CUM 
DI MENS ION Ill 1200 I ,XI l 00 I ,YI 100 >, XANDY-1200) ,KTSUMYC200 )-1 

!KDIF< 200 > ,PARM( 61, !SUMI 100), ICT I 100 > ,CUM{ 100 >, 
2•KUMC100),FC10) 
3KTSUMX ( 200 l , .JSUM ( l 00 > , CUMP ! 100 I 

DIMENSION Mllll500l•IP.ClGl500), JTSUMl500) ,JCUMF!5001 • 
IACUMF1500) 

DIMENSION AMl!/1500> 

C READ .JOB TITLE 
c 

c 

READ(5-,2) F 
2 FORMAT( !OA8) 

C PRINT .JOB TITLE 
c 

c 

illR !TE! 6-, 1 > F 
FORMAT! !OAB //) 
PARMCl)=O, 
PARM!21=0, 
PARMC4)=0• 
PARMC5J=0• 
PARM!6J=l0• 

C READ NS, NT, AND PARAMETERS 
c 
C NS IS SAMPLE SIZE 
C NT IS NUMBER OF TRIALS 

c 

4 READ (5,555> NS, NT, PARMt3) 
555 FORMAT (212• FtQ.O) 

C TEST NS= 9999 
c 

c 

IF lNS-9999) 6, 3, 6 
3 CALL EXIT 

C PRINT TITLE, NS, NT 
c 

6 II/RITE (6,81 I 
81 FORMAT (!HO) 

WRITE (6,8> NT•NS 
8 FORMAT<lHV,lOX, I3,2X,7HTRJAL5~1X, 

lllHSAMPLE SIZE, IX,14) 
N = NS 

c 
C INITIALIZE VARIABLES 
c 

c 

.JZERO = 0 
DO 189 .J = 1,N 

189 !CTI.JI = .J 
DO 193 MAXDIF ~ I,N 
ISUMIMAXDIF> = 0 

193 CUMIMAXDIF> = 0 
KZERO = 0 
DO 194 KONT 1,- N 
.JSUM- ( KONT ) . = 0 

194 KUMCKONT) : 0 
MZERO = 0 

C PRINT MODEL AND PARAMETERS 
c 

c 

11 11/R I TEI 6, 16} PARM< I> ,PARM 12 I ,PARM I 3) ,PARM!4 > 
16 FORMATIIOX,!3HNORMAL, MUI =,F6,2,2X,12HTRUNCATED A 

l5HSIGMA,2X,5HMU2 =,F6,2,2X,12HTRUNCATED AT,F6,2,2X) 

C. REPEAT THE BASIC SIMULATION THRUST, 500 NT TIMES 
c 

DO 500 1-1=1,NT 
c 
C ORAi!/ RANDOM SAMPLE FROM F OF X 
c 

15 CALL NORM !NS,PARM!l>•PARM<2),X) 
c 
C DRAill RANDOM SAMPLE FROM G OF Y 
c 

CALL NORM (NS,PARM<3>,PARMl4),Y> 
c 
C RANK-ORDER THE SAMPLE DATA 
c 

25 M=NS 
MS=2*NS 
DO 30 I=! ,NS 
M=M+l 
1111 l>=X<H 
11/(M)=Y( I) 

30 CONTINUE 
CALL SIFT 
CALL SIFT 
CALL SIFT 
N = NS 
M = NS 

CNS,X> 
tNS,.Y> 

CMStW> 

·J-' 
0 
-...] 



C XIS THE VECTOR ON WHICH TRUNCATION OCCURS 
C Y(I) I SMALLEST TO LARGEST !=!,M-
C X<J> J_ SMALLEST TO LARGEST J = l ,N 
c 
C COUNT NUMBER OF EXCEEDANCES 
c 

c 

KONT = 0 
DO 701 I=l ,M 
!F(Y( I) - X(N)) 701,701,702 

702 KONT = KONT +I 
701 CONTINUE 

C ACCUMULATE RANK-SUM 
c 
c 

c-

MWT IS NON-SUBSCRIPTED EQUIV OF MW 
MWT = 0 
DO 620 I= !,N 
DO 620 J= l•M 
IF(Y(Jl-X< I l) 610,610•620 

610 MWT = MWT + I 
620 CONTINUE 

AMiii ( I l l : MW T 
J=l 
D=W( l) 

DO 107 !=2,MS. 
IF(D-W( 1))105,110,110 

!05 XANDY(J)•D 
D=III< I) 
.J=.J+l 

110 ED=W< I l 
!07 CONTINUE 

c COMPUTE MAXIMUM DIFFERENCE BETWEEN CUMULATIVES 
c 

XANDY(J)=ED 
KCX=l 
KCY=l 
KTX=O 
KTY=O 
DO 142 I :J, J 

112 IF< XANDY < I l -Y < KCY l l 120 • I 15, I 20 
115 KCY=KCY+ I 

KTY:KTY+I 
GO TO 112 

120 KTSUMY( ll=KTY 
125 IFlXANDYl I )-X<KCX>) 135, !30, 135 
130 KCX=KCX+I 

KTX=KTX+I 

GO TO 125 
135 KTSUMX ( I l =KT)( 

1-F <KTSUMX< L)-KTSUMY( Ill GO TO 143 
141 KDIF(ll=O 

GO TO 142 
143 KD!F( ! l =KTSUMX< l )-KTSUMY( l l 
142 CONTINUE 

OUM= KDIF(I) 
DO 150 1=2,J 
IF(DUM-KDIF< Ill 145,145,150 

145 DUM=KD!Flll 
150 CONTINUE 

MAXDIFrOUM 
IF<MAXDIFl GO TO 199 
MZERO = MZERO +! 

199 CONTINUE 
ISUM<MAXOIFl = ISUM(MAXO!F)+l 
IF(KONTll333,!333,1335 

!333 KZERO = KZERO + 1 
1334 GO TO 500 
1335 JSUM < KONT l = 'JSUM < KONT l + I 

c 
C END OF MAI-N SIMULATION -DO- LOOP 
c 

500 CONTINUE 
c 
C CLASSIFY AND RANK ALL RANK-SUMS 
c 

CALL SIFT!NTtAMWl 
DO 4005 Kl=l,NT 

4005 MW(KIJ= AMW(KI> 
J= 1 
ID=MW( I> 
DO 401 I= 2,NT 
IF l ID-MW< Ill 402 ,403, 403 

402 IROG(.Jl=ID 
ID= MW! I l 
.J=.J+I 

403 .JD=MW! I) 
401 CONTINUE 

C NOW HAVE DISTINCT MW VALUES. BUILD UP FREQUENCY COUNT 
IROG<.J> = JD 
ICX=l 
DO 406 I = l ,.J 
!TX= 0 

409 !Fl!ROG<l>-MW<ICX>l 407, 408• 407 
408 ICX = ICX +I 

!TX = !TX +I 

I-' 
0 
CX) 



60 T0·409-
407 lTSUMlll = ITX 
406 CONTINUE 

C NOii/ HAVE CELLS IROGI l l WITH FREQ• ITSUMI I> 
ICUMFI l->=ITSU~I 1 > 
DO 410 1=2,J 

410 ICUMFC I l=ICUMF( 1-1 l+ ITSUM( I> 
ANT= NT 
DO 411 I= 1 • J 
ACUMFC I) = ICUMFlll 

411 CUMPl!l = ACUMF(ll/ANT 
c 
C PRINT RANK-SUM RESULTS 
c 

WRITE 16,4165> J 
4165 FORMAT <lHO•lOHTHERE ARE ,13• 

I K SU,'IS > 
RJ = J 
R = RJ/200 
LOG= JNTIR) 
RLOG = LOG 
LAG = 1 
LEG= 20 
IFILOG-Ol 416,416,417 

20H DI ST INCT RAN 

417 DO 418 L= l•LOG 
IIIRITE16,302l<IROG1ll• l=LAG,LEG> 
!IIR!TE16,303l I ITSUM< I>, l=LAG,LEG> 
IIIRITEl6,304l<ICUMFC!l• l=LAG,LEG> 
LAG= I+ L*20 
IF<LOG-Ll 419, 419, 420 

420 LEG= 20 * IL+!> 
418 CONTINUE 
419 IFIJ-20*L0Gl 421,421,416 
416 LEG= J 

WRITE16,302lCIROG<I>, I=LAG,LEGl 
WR I TE I 6, 303 l I ITSUM I I l • I =LAG•LEGl 
WRITE(6,304l<ICUMF<ll• l=LAG,LEGI 

421 CONTINUE 
302 FORMATC1H0,15HRANKSUM VALUE 
303 FORMATllH ,15HFREQUENCY 

. 304 FORMATIIH ,15HCUM FREQUENCY 
305 FORMATllH ,15HCUM PROBo FNo 

• 2015) 
• 2015) 
• 20151 
, 201IX,F4o31 l 

c 
C CUMULATE RESULTS FOR EXCEEOANCE ANO MAXIMUM DIFFERENCE 
c 

c 

CUMI 1 l = lSUMI 1 l +MZERO 
00 201 MAXOIF = 2• N 

201 CUM CMAXOJ"Fl = CUM(MAXOJF-1 l+lSUMIMAXOlF) 
KUMCll = KZERO + JSUM<ll 
DO 1338 KONT = 2,N 

1338 KUMCKONTI = KUMCKONT-1) +JSUMIKONTl 

C COMPUTE MEAN AND STD DEV FOR EXCEEDANCE AND MAXIMUM DIF 
c 

c 

CALL XBASDCN, NT,JSUM,WBAR,RMRl 
CALL XBASDIN, NT,JSUM,XBAR,RMSl 

C PRINT RESULTS FQR EXCEEDANCE ANO MAXDIF 
c 

WRITE 16,2911 JZERO,<ICTCJl,J=l,Nl 
IIIR1TE<6,2915l 
WR ITEi 6,292 l KZERO, C JSUM <KONT I ,KONT= l ,Nl 
WRITEC6,296l WBAR, RMR 
WRITEl6,293l KZERO,IKUM(KONTl,KONT=I,Nl 
WRITEl6,2925l 
WRITE16,294l MZERO,< ISUMIMAXDIFl, MAXDIF=l,Nl 
WRITE < 6, 295 l MZERO, I CUM <M > ,M= 1 ,NI 
WRITE<6,296l XBAR• RMS 

291 FORMATl1H0,12HARGUMENT ,26141 
2915 FORMAT<ll7X,16H MEAN STDDEV l 

292 FORMAT(lH ,12HEXCEcDANCES ,26141 
2925 FORMAT< lH I 

293 FORMATllH ,12HCUM EXCEED ,26141 
294 FORMAT<lH ,12HMAXD1FF 
295 FORMAT<lH ,12HCUM MAXDIF 
296 FORMATl1H+,117X,2F7o2> 

GO TO 4 
END 

,2614) 
•2614) 

1--' 
0 

'° 



c 
c 
c 

c 
c 
c 

c 

SUE'ROUTINE SIFT (N,Xt 
DIMENSION X(40) 
M=N 
M=M/2 
fF C M-) 3, 2, 3 

2 RETURN 
3 K=N-M 

J= 1 

4 l=J 

5 L=l+M 
IF CXC I )-XCLl J7,7,6 

6 A=X( I l 
X< I J=XCLl 
XCLJ=A 
1=1-M 
IF(IJ7,7,5 

7 J=J+ I 
I F C J-K l 4 , 4 , I 
END 

SUBROUTINE NORMCN,X,Y,Sl 

C N IS NUMBER OF VARIATES RETURNED 
C X IS MEAN OF DISTRIBUTION, NORMALLY ZERO 
C Y IS TRUNC A Tl ON CONS T_ANT ON UPPER TA IL 
C S IS THE VECTOR OF RANDOM VARIATES SELECTED 
C STD DEV IS FIXED AT ONE 

DIMENSION SC20l 
DO IO I= 1 ,N 

9 T = ANRV(O) + X 
IFCT-Yl 10,9,9 

I J SC I l = T 
C ANY VALUE OF T WH-ICH IS LE-SS THAN Y SHOULD BE ACCEPTED 

RETURN 
END 

c 
c 
c 

c 
SUBROUTINE XBAS~CN, NT,l,X,R) 

DIMENSION IC50l 
S=O,O 
S2=0,0 
DO 5 K=l,N 
D=K 
F= I CK> 
S=S+F·~D 

5 S2=S2+F*D*D 
A= NT 

X"'S/A 
R:SQRTFCS2/A-X**2l 
RETURN 
END 

f-' 
f-' 
0 
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In Chapter IV the distribution of x was taken to be approximately 

normal with mean µx arid variance ax2 /n. According to the Central Limit 

Theorem this result holds exactly as n + 00 • But it is generally felt 

to hold for relatively small sample sizes, as well. An empirical study 

was performed to determine how good the approximation really is. For 

this study, samples of size n = .2, 5, 10, 25, and 50, are considered 

along with degrees of truncation y = .05, .10, .20, .40, .60. For each 

combination of sample size and degree of truncation, 1,000 trials are 

performed. Then the mean, variance, coefficient of skewness, and coef-

ficient of kurtosis, are computed, according to equations presented 

below. 

Duncan (1959, pp. 496-501) discusses the computaticm of moments of 

a frequency distribution and explains that the coefficients of skewness 

and kurtosis are zero for a normal distribution. ]l'urther details con-

cerning computat.ion and interpretation of skewness and kurtosis coef-

ficients are availab17 in Duncan's book, (Duncan uses the symbol Yl 

for CS as defined herein~ and y2 for CK,) 

Le.t vj be the jth moment of the frequency distribution of x's about 

zero, In our case, the frequen~y distribution consists of 1,000 i's, 

So, lettipg N = 1,000, 

1000 j 
l: , (x1) /1000 

i=l 

The first moment of the freqt,1ency distribution about zero is the mean of 

the frequency distribution~ which should be, with 1,000 trials, a good 

estimate of the population mean. Letting t~e A over a parameter denote 

a sample estimate of the parameter, 
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The second moment about the mean is the variance, 

The third moment about the mean is a measure of skewness, but a more 

common measure is the third moment divided by o3. Let CS denote the 

·co·eff±cien:t of skewness. Then 

Finally, let tpe coefficient of kurtosis be denoted by CK, Then 

If the Central Limit Theorem held exactly then the following would be 

the result: 

E (Ox ... µ) • 0 

![8~2/(a 2/n)] • l x x 
,··A 

E(CS,t) 5li O 

The results of the sampling experi~ent showed that for moderate 

amounts of truncation in the order of 0,10 or less, samples of two or 

more gave a good approximation to the expected normal distribution. As 

the degree of truncation increased, so also did the required sample 

The mean and standard deviation were consistently very close to 

their expected values, within the limits of sampling variation. The 

results for CS and CK are presented in Table III and Table IV, Both 
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TABLE III 

SKEWNESS OF EMPIRICAL DISTRIBUTION OF x . 

n-+ 2 5 10 25 50 
y 
+ 

.05 -.2846 .,..1617 -.1070 .0454 -.0179 

.10 -. 321.9 -.2372 -.2322 -.1069 -.0839 

.20 -.5720 -.3488 -.0939 -.1743 -.1531 

.40 -.5953 -.3807 -.2497 -.2905 -.1713 

.60 -.6629 -.5430 ..:.2459 -.2820 -.1987 

TABLE IV 

KURTOSIS OF EMPIRICAL D!STRIBUTION OF x 

n-+ 2 5 10 25 50 
y 
+ 

,05 .0851 -.0~~4 .2318 .1828 -.0925 

.10 .0111 -.oo!u .0713 -.21()5 .0550 
,: 

,20 .4b11 .10~8 -.1481 -.0.746 .0128 
(· 

.40 .3549 .01~1 -.1430 ,2507 .0773 

,60 • J968 .1112 .0569 ... 1204 .0767 
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these measures should approach zero as sample size increases, In exam­

ining the tables.it is seen that this is in fact the case. 

It is difficult to say just what sample size is required for the 

normal approximation to be sufficiently valid since the degree of accu­

racy required will vary from one application to another. However, from 

examining the tables, a sample size of 10 appears to be adequate, inas­

much as very little improvement is noted for larger samples, 

Another form.of analysis was performed by using the Kolmogorov­

Smirnov goodness-of-fit test, and comparing the simulated empirical dis­

tributions with normal distributions having the mea~ and variance which 

are predicted by the Central Limit Theorem, 

The mechanics and ·rationale of the teat are described by Siegel 

(1956, pp. 47-52). The results are portrayed in Table v. Thia shows 

that, as aample· aize increases, the one-sample maximum difference 

statistic, MD0 , decreases but does not approach zero,· Actually, the 

expected value of MD0 is 1/IN if the empirical and theoretical distribu­

tions are identical, where N is the number of trials in the experiment. 

Thus the expected value of MD0 is E(MD0 ) • l/{1000 • ,031, 

For samples of ten or better, all the values of MD0 range from 

0,015 to 0,038, while for samples of two and five there are several 

values larger than 0.05, 

The two different methods of analysis tend to support the conclu­

sion that for samples of ten or greater the central Limit Theorem can 

be safely applied. 
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TABLE V 

MAXIMUM DIFFERENCE BETWEEN EMPIRICAL AND THEORETICAL. 

CUMULATIVE DISTRIBUTION FUNCTIONS OF x 

n:+ 2 5 10 25 50 
y --·--
+ 

.05 .020 .026 .031 .017 .038 

.10 .015 .070 .026 .016 .018 

.20 .056 .038 .020 .026 .021 

.40 .051 .039 ,036 .034 .033 

.60 .055 .052 .029 .015 .021 
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In this experiment the primary goal was to generate O.C. curves 

which would have sufficient precision that they could be used to com-

pare different tests and to choose appropriate sample sizes. The ade-

quacy of precision of the O.C. curves for their intended purpose is 

established by two different methods. 

One method is to compare O.C. curves estimated separately to check 

on the degree of agreement. Some typical results are summarized in 

Table VL and plotted in Figure 18. These are the results of three 

separate sequences on the one~sided exceedance statistic equal samples 

of size 2·5. The acceptance number chosen for the comparison is E1 = 3. 

Of these three O.C. curves compared, two are programmed on equal incre-

ments of the truncation point k, while the third is incremented on the 

degree of truncation parameter y. This is the reason for the differ-

ence in the point locations in the horizontal direction. 

In inspecting Figure 18, it is seen that the three curves are in 

relatively close agreement. The largest discrepancy is about a 0.06 
,._ 

difference in S of the two extreme curves which occurs at approximately 

y = 0.07 and y = 0.115. Then at y 0.23 there is a 0.05 difference. 

The three curves all converge at the end points (y 0, S = 0.945) and 

(y = 0.40, S = 0). By coincidence they are also equal at the point 

(y = 0.16, S = 0.26). 

Since four times as many trials per point, (or NT= 2000) would be 

required to reduce sampling error by 50%, and since the agreement exhib-

ited in Figure 18 is sufficient for evaluation purposes, it is conclud-

ed that NT= 500 is an adequate number of trials. 

Another method of evaluating the precision of results is to estab-

lish a confidence band about the estimated O.C. curve, by use of a 
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TABLE VI 

COMPARISON OF THREE O.C. CURVE SAMPLING. 

SEQUENCES 

E1 ,: 3, NT= 500, NS= 25. a= 0.055 

Run Sequence A 

" 
k J_ NL. _s_· 

3.0 .001 471 .942 
2.0 .0228 455 .910 
1. 75 .04 429 .858 
1.5 .0668 348 .696 
1.25 .1056 255 .510 
1.0 .1587 138 .276 
0.75 .2266 30 .060 
o.s I 3085 . 10 .002 ·. 
0.25 ,4013 1 .002 

:kun Sequence B 

3.0. .001 477 ,954 
2.0 • 0228. 458 I 916' 
1. 75 ,• 04 436 .872 

. 1.50 .0668 378 .756 
1.25 .• 1056 248 ,49~ 
1.00 ,1587 i 139 ,278 
0.75 ,2266 53 .106 
a.so ,3085 3 .006 
o.o .so 0 ,000 

Run Sequence C 

2,326 .01 471 .942 
1.645 ,OS . 421 ,842 
1.282 ,10. 295 ,590 
1.036 ,15 157 ,314 
0.8416 ,20 75 ,150 
0.6745 I 2,5 29 · ,058 
0.5244 .30 11 ,022 
0.2530 .40 1 ,002 
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normal approximation to the binomial distribution. 

The confidence band was computed for three example O.C. curves: 

for NS= 25, NT= 1000, (Figure 19), for NS= 25, NT= 500, (Figure 20), 

and for NS"" 100, NT= 200, (Figure 21), 

It is known that the standard deviation of a binomial random vari-

able with parameter pis 

" On the assumption that the binomial random variable 8 is normally dis-

" tributed about its sample average 8 with standard deviation 

0 ,. = /sc1-s> 
13 NT 

the following 95% confidence band results: 

where 

and 

" 
82 = 8 + l.96os 

Comparison of Figures 20 and 21 shows the logical justification 

for reducing the number of trials as sample size becomes larger. Be-

cause the curve in Figure 21 is so much steeper, the actual area en-

closed in the 95% confidence band on is smaller than in Figure 20, al-

though the ordinates of the confidence band are larger due to the 

smaller number of trials. 

These confidence bands are only approximate, and are somewhat 

wider than the true bands would be, for the following reasons. There 
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is no sampling variation at the pointy= 0 since a is known exactly at 

this point. Knowledge of this point also assists in fitting the curve 

through the next two or three points, and thus tends to minimize the 

sampling error near y = O. The conclusion from the interpretation of 

these figures is that the precision of the O.C. curves is adequate for 

the purposes of this study. 
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The significance probabilities associated with the exceedance test 

are presented here. Frequently used sample sizes between 2 and 100 are 

included, and all sample sizes considered in this dissertation are in­

cluded. The tables include all critical values required in order to 

bracket the range of significance probabilities from 0.01 to 0,10. 

In Table VII the significance probabilities for the E1 test are 

tabulated, These results are based on the equations 4-15 and 4-19. In 

Table VIII the significance probabilities for the E2 test are presented, 

based upon equ3tions 4=20 and 4-25, 



TABLE VII 

SIGNIFICANCE PROBABILITIES, ONE-SIDED EXCEEDANCE TEST 

a= Pr(E1 > k I F(x) = G(y)) 

------
n k+ 
l 

1 2 3 4 5 6 
=·~----"··· 

2 .16667 
I, .21429 . 07143 .01428 0 
6 . 22727 .09091 .03030 .00758 
8 .10000 .03846 .01282 .00350 
9 .10294 .04118 .01471 .00452 

10 .10526 .04334 .01625 .00542 
J2 .10870 . .04658 .01863 . 00686 
14 .11111 .04889 . 02037 .00797 
16 .11290 .05061 .02169 . 00881; 
18 .11429 .0.5194 .02273 .00953 
20 .11538 .05301 .02356 .01001 
22 .11628 .05389 .02425 .01057 .00445 
25 .11735 .05493 .02508 . 011111 • (){)/;81 

30 .11864 .05620 .02610 . 01186 .0052'i 
35 .11956 .05711 .02682 .01238 .00561 
36 .11972 .05726 .02694 .01247 .00567 
40 .12025 .05778 .02737 .01277 .00587 
45 .12079 .05831 .02780 .01308 .00607 
49 .12113 .. 05865 .02808 .01328 .00621 
50 .12121 .05873 .02814 . 01333 ,00624 
55 .12155 .05907 .02842 ~ 01353 .00637 
60 .12184 .05936 .02866 .01370 .ooc4.9 
64 .12204 .05956 .02882 . 01382 ,00657 
65 .12209 .05960 .02886 .01385 .00659 
70 .12230 .05981 .02903 .01398 .00667 
75 .12248 .05999 .02917 . 01408 .00675 
80 .12264 .06015 .02930 .01418 .00681 
81 .12267 .06018 .02933 .01420 .00683 
90 .12290 .06041 .02952 .01434 .00692 

100 .12311 .06062 .02969 .01446 .00701 
1-' 
N 
():) 



TABLE VIII 

SIGNIFICANCE PROBABILITIES, TWO - SIDED EXCEEDANCE TEST 

a= Pr(E2 > k I F(x) = G(y)) 

n k-+ 1 + . 2 3 4 5 6 7 8 

2 .50000 0 
4 .24286 .07143 0 
,6 .27273 .12121 .04004 .00758 
8 .14102 .05944 .02028 .00505 
9 .14706 .06561 .02489 .00761 

10 .15170 .07043 .02864 .00988 
12 .15839 .07748 .03432 .01360 .00471 
14 .16296 .08237 .03841 .01643 .00638 
16 .16629 .08596 .04146 .01863 .00775 
18 .16883 .08871 .04384 .02038 .00888. 
20 .17082 .09088 .04574 .02180 .00982 
n .17243 .09264 .04729 .02297 .01062 .00467 
25 .17434 . .09473 .04914 .Q2440 • 01161 .00529 
30 .17662 .09725 .05139 .02616 .01284 .00609 
35 .17824 .09904 .05300 .02742 .01375 .00669 
36 .17851 .09933 .05327 . 0276,~ .0),391 .00679 
40 .17943 .10036 .05420 .02833 .01444 .00716 
45 .18035 .10139 .05513 .02913 .01499 .00753 
49 .18095 .10205 .• 05574 ;029El .01534 .00777 
50 .18109 .10220 .05587 .029i2 • 0.1543 .00783 
55 .18168 .10286 .05648 .030::1 .01579 .00808 
60 .18218 .10342 .05699 .030,,2 .01609 .00829 
64 .18252 .10379 .05733 .03010 .01630 .00844 
65 .18260 .10388 .05741 .o3on • 0,1635 .00847 
70 .18295 .10428 .05778 .. 03127 .01658 .00863 
75 .18326 .10462 .05810 .03152 .01677 .00876 
80 .18353 .• 10492· .05837 • 03175 .01694 .00888 
81 .18358 .10498 .05842 .03179 .01697 .00890 
90 .18398 .10542 .05883 .03213 .01722 .0!)908 

100 .10582 .05920 .03243. .01745 .00924 I-' 
N 
l..O 

~ .... ~- .... , » . 
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