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PREFACE

Data validation comprises a set of qﬁality assurance methods
which have recently shown promise for reduéing the cost of quality
assurance. There has been considerable development of the data vali-
dation technique for the case of attributes-type data; the research
reported in this dissertation is part of an effort by the aufhor to
extend this important concept into the area of measurement-type data..

The dissertation is organized into seven chapters. in Chapter I
the history of previous data validation developments is sketched, and
data validation is compared and contrasted with certain othér quality
assurance methods.

Chapter II describes measurement-type data discrepancies and
includes a dichotomization of the data validation problem.

In Chapter III truncation in sample selection is developed as a
model .of an important type of data discrepancy, and the parameters of
the truncated normal distribution are derived.

Then in Chapters IV and V, a set of statistical tests are
reviewed and their abilities to detect truncation are analyzed. Chap-
ter IV contains a description and brief history of the development of
these tests, which fall into two basic catégories: parametric and
nonparametric. Equations for the operating characteristic curves of
the parametric tests are derived through the‘application of statisti-
cal distribution theory. In Chapter V, the technique of distribution

sampling is used to estimate the operating characteristics of the

iil



nonparametric tests.

In Chapter VI the different tests are compared on the basis of
their relative effectiveness and potential contribution to data valida-
tion. Finally, in Chapter VII, the ovéerall scope of the research is
sﬁmmarized and recommendations are made for further research on the
valida;ion_of variablesFtype data.

Many individuals have planed an instrumental role.in the effort
which is culminated in this-dissertaﬁion. First-should be mentioned
Dr. Irvin Reis,.now Head of Mechanical Engineering at Montana State
University, who inspired me by his own example and persuasion first to
choose the field of industrial engineering for a profession, then to
pursue graduate work, and finally to seek the Ph.D.

The faculty of Oklahoma State University has helped me greatly.
Special thanks are due Dr. M. Palmer Terrell, my research advisor, for
his advice regarding numerous aspects of the performance of the
research and preparation of this thesis. The other members of my dis-
sertation committee were Dr. Paul Torgersen, Dr. James Shamblin, Dr.
David Bee, Dr. G. T. Stevens, and Dean Roldio Venn. All have cheerfully
provided assistance and guidance and have contributed suggestions.
incorporated in the final version of the dissertation. Professor
Wilson Bentley has given me valuable personal and professional counsel
as well as helpful administrative support. Dr. David Weeks.stimuléted
my interest in statistics and provided me with a model of the art of
teaching that will remain long in my memory.

Financial support for two years of full time academic work was
provided by the National Aeronautics and Space Administration. The

Atomic Energy Commission, through its contract with Sandia Corporation,
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also contributed indirectly to my support as well as to the excellent
professional environment at Sandia. The vital aid derived from these.
two Federal agencies will be recalled each April as I file my income
tax return.

Drafts of the dissertation were typed by‘myrwife Kay? whose un-
flagging loyglty and ‘moral support made the whole idea feasible. The
final typing was by Mrs. Rebecca H. Ellis and the figures drawn by
Eldon Hardy, both of whom deserve credit for théir quality wérkmanship.

Finally, acknowledgement must be made to Mr. L. E. Snodgfass, who
was for five years my supervisor in the Quality Control'Systems Divi~
sion at Sandia Corporation. It was under the supervision of Mr.
Snodgrass that my initial interest in data validation developed. In
appreciation of his many personal kindnesses; his constant encourage~
ment concerning my gradyate work, and for the influence he has had,
both as friend and supervisor, on my career, this dissertqtion is
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" CHAPTER I
INTRODUCTION

" One of thé major functions of any inspection, quality control, or
quality assurance organizatio% is to ﬁrovide assurance to management
and to the customer that the firm's products are of satisfactory quali-
ty} Over the years many different approaches have been developed

toward meeting this goal. .
Historical Background

One approaéh whi¢h has recently been under study is the technique
of data validation. The major development to data has been done by
procurement agencies of the U. §. Govérnment.b The U. S. Department of
Defense established (1954) a uniform policy on quality assurance as_‘
relatéd to acceptance inspection. This policy statement enunciated
the concept of data validation by requiring that data generated by the
supplier of a productvshould be utilized to as great an extent as
feasiblebin determining the acceptability of material submitted by the
supplier. A prerequisite to this usagé of supplier data is determiniﬁg
that the data is reliable. The.various methods of establishing that
supplier déta are in fact rgliable have coﬁe'to be known as data vali-
dation fechniques.

To assist the Govefnment,representative in executing the policies

‘'set forth by the abovevInstructions,‘the_Department of Defense (1960)



published DOD Handbook H-109, a handbook of statistical procedures for
determining the validity of supplier's attributes inspection. The
authors of DOD Handbook H-109 were Harry Elner, who published (1963)
the mathematical background, and.Joseph Mandelson, who published (1964)
a non-technical discussion of the philosophy, purpose, and procedures, .
of attribute data validation.

The policy requiring independent sampling for validation was laid
out in H-109:

The requirement: that the units of the sample be seiected

at random without regard to their quality cannot be verified

by reinspecting the items drawn by the supplier. Only an in-

dependent sample selected by the consumer can authenticate

the over-all effect of the supplier's inspection in assuring

conformance of supplies with technical requirements and evalu-

ate the true quality of . the supplies offered to the consumer

for acceptance. (Department of Defense, 1960, p. 2.)
Thus, the precedent was established requiring independent samples,
though explicitly for attributes data only, which was carried over into
the initial thinking on a validation system for measurement results
(Elner and Mandelson, 1964; Berger, 1966). Some of the implications.

of this independent sample policy, as regards consumer protection and

sample size, are developed in later chapters of this paper.

Relationship of Data Validation to Other

Quality Assurance Systems

The principles of data validation should be compared with some of
the other quality assurance approaches. One such approach is product
acceptance sampling. A large number of techniques of this type have
been developed over the past four decades. The numerous techniques
available have been documented by Cowden, (1957, Ch. 30-39) and in.

other standard quallty control referenceé.



It may seem naturai to make a direct comparison between data vali;
dation sampling and product acceptance sampling, because both consist,
basically, of sample inspection by a consumer in orde; to purchase
material submitfed by a supplier. However; a fundamental difference.
exists between the two concepts that would make direct numerical com-

parisons misleading if not meaningless. In a data validation scheme

it is not the product but the;supplier's sampling and inspection capa-
‘ bility which is being scrutinized. Data validation procedures should
be expected only to tell a consumer that his supplier's inspection
results are a valid representation of thevmatérial he ié_buying. The
risks involved in a data validation program are related to the suppli~
er's sampling and inspection system, rather than to the product itself.
The consumer depends, in the framework of a data validation program,
upon his supplier to tell him if the product he submits is of satis-
factory quality. The validation program should provide an incentive
for the supplier to consistently tell the truth about the material he
is selling and should provide a means for the consumer to check to see
that the supplier is doing so. There are many forms in which this
untruth (that is, invalid data) might appear, and different approaches:
with differing types of protection may be required to cope with these.
various forﬁs,

Although it is difficult to relate the technique of .data valida-
tion to acceptance sampling inspection, a rather close relationship
does exist between data validation and the general area of supplier
quality audit systems. A number ofldifferent quality audit systems
are now operating in American industry. They have been designed

around the philosophy that for certain types of material, the customer



has a need to know, not only the quality of the actual product charac-
teristics inspected, but also the basic capability of the supplier to
maintain a satisfactory level of quality through adequate procedures,
controls, and equipment.

A brief overview of quality auditing systems 'is provided by
Hansen (1963, p. 83), who explains how the customer can ascertain that
the various components of the supplier's entire production-quality
process are adequate. A typicdl quality audit system would include
checklists and sampling procedures for reviewing such areas as: draw-
ing release, updating, and retrieval; gage control; calibration of all
inspection equipment; personnel training; and general quality control
procedures. A customer team would visit the supplier's plant armed
with such checklists and would proceed to compare the actual existing
situation with the ideals represented by the lists.

The role of quality audit systems and data validation techniques
was delineated by Whittlemore (1952) who said that while some manufac-
turers do not have the facilities nor personnel to determine whether
their products comply with technical requirements, others control their
processes carefully and test the finished product to see that it meets
required quality standards. According Eo Whittlemore:

Often the purchaser duplicates these tests, more or

less closely, for acceptance. There would be great advan-

tages, particularly in the cost of making the tests, if

the quality was determined once for both parties.... It

should be possible for the customers, or their associa-

tion to share in the management of the inspection depart-

ment and in the cost. - then they could accept the results

with confidence. -

Whereas the quality audit system is intended to verify that the

supplier has a capability to produce products of thefdesinéd quality,



the data validation system is intended to verify that the supplier has
accurately reported the true quality of his products. - Thus the two
systems tend to complement each other.

Data validation is also closely.r;lated to a set of téphniques
which have variously been called round-robin, collaborative, coopera-
tive, interlaboratory, or intercomparison testing (Nelson, 1967).
Nelson*showed»that interlaboratory programs might be instituted for a.
variety of reasons, such as to compare.variabilities or precision of
methods, to defermine,the biases betwegn methods and ascertain reasons.
for their existence, to check operators or laboratories for evaluation
of their efficiency, qualification, or certification, and others. His
article mentions, as a possible application, cooperative use by suppli-
er and purchaser to determine degree of adherence to purchase specifi-
cations. More detailled information about perfofming interlaboratory
evaluation of testing methods can be found in the article by Mandel and
Lashoff (1959) which analyzes the practical aspects of application.

The interlaboratory testing technique has been most frequently
applied in the chemical industry, but it is equally applicable in any
sltuation where measurement .results of two or more organizations must
be compared. It is a more general approach than data validationisince
it provides for various numbers .of laboratores, types of testing pro-.
cedures, and a whole hierarchy of other experimental factors. The
development of a data validation program could possibly be strengthened
by consideration of the numerous facets of interlaboratory testing

techniques, such as those summarized and documented in Nelson's article..



Scope of This Research

The research-effort~reported upon here is focused upon identifica-
tion of problems associated with the validation of supplier's varia-
bles-type inspection daté. The author will show, in the following
chapter, that data discrepancies can be divided into two mutually ex-— .
clusive classes: measurement-discrepancies and sampling discrepancies.
For the detection of measurement discrepancies it is proposed that the
method of paired comparisons be utilized on the basis of existing know-
ledge aﬁout the relative merits of paired and independent samples.

This leaves for moré intensive study the problems associated with
sampling discrepancies. The remainder of the dissertation is concerned
with the development of a specific model of sampling discrepancy:
truncation in sample selection; and with the study of a variety of.
different approaches to the truncatioﬁ_problem. By means of theoreti-
cal and empirical analysis, several two-sample statistical tests will
be compared on the basis of their power to detect truncation when it
exists. = With thiS<informati§n available, a better decision can be
made in any particular case as .to whether the truncation sampling dis-
crepanciés should be .tested for statistically; and if so, which test

offers ‘the best chance of detecting it.



CHAPTER II
DATA DISCREPANCIES- ‘
The Data Validation Principle

In a product écceptance program which utilizes data validation,
the attention of -the customer will be focused on the capability of the
supplier's quélity inspection system to accurately report the quality
of the product submitted for purchase. . While the customer. is interesgt-
ed’most of all in the quality of .the product, his-vaiidation program
will Be designed to inform him as to the quality of the data.,,He-may 
wish, for example, to utilize the quality audit, described in the
previous chapter, to establish that his suﬁplier has the_capability*to: 
accurately-ahdlconsistently,réﬁort product ‘quality. - He may also see
fit to insist on certain procedures,'contro@s, additional training of
operators; purchase. and .calibration of equipment, and -oether similar
measures to be satisfied that the supplier's quality insbection system
is adequate.

Once all such‘probléms have been resolved, the prudent customer
will still waﬁtito‘make Empiricalgverificatﬁons of .the dualiﬁy ofihis
‘supplier's data; byvinspecting material‘whihh has been'passedJaS'acqep;,
tablé,by the éu?plier's.quali;y ihspectiop gystem. . At ‘this point the
customer‘mus£~sfill maintain his fecus uﬁqgﬁthé4inspe¢tiqn systemlrgther

than the_prodnét»itself; For instance it .is entirely possible -that the



customer will find defective product in the data validatiqn'éample he
inspects. In fact, he may find enough defectiveness that he feels com~
pelled to reject the entire lot of material under question, or even to
re-evaluate the merit of,continuing-to,purchése,material from~tﬁe par-
ticular supplier. However, the quélity of the material as revealed by
the customer's inspection should be recognized as of secondéryzimpor4ww
tance.. The primary criterion will be the degree of agreement or disa;
greement between the customer's results and the supplier'sﬁresults._

A difference between supplier results and customer,resﬁlts can be
the result of any one (or possibly all) of three different causes:. In
the first place-it is possible that thére is a discfepancy in the -
customer's .inspection and validation system. While this is possible,
it will behoove the customer to go to considerable pains-te minimize
this source of difference. He will do this byvcareful esta@lishment of
the calibration standards of equipment, training of-operatofs, and by
rechecking his own results whenever a significant difference is noted. .
For the purposes of this dissertation it will be assumed that the-
customer's system may be accepted as a standard and is thus not"the_
source of any difference.

A second cause of difference may be pure randem variatien. = It is
recognized that all measured variables are subject .to a certain-amount
of~randomvvariation.“in,someginstances_thislvariation will be so slight.
~ that it -can be completely ignored. In others, it will have.to be.ex-
plicitly considered and its effect on the probability of error deter-
mined. Besides random measurement variation there is .the proeblem of.
random product variation. Within the‘same:prOdqction lot there will

usually be unit-to~unit differences in measurgble charécteristigs, and -



in many cases -the product variation allowable by the purchase specifi-
cations is.of a greater order of magnitude than the random measurement
variation allowable for the inspection and test equipment. This random
product -variation plays . a particuiarly important role when it is either
impossible or impractical for the supplier and customer to both measure
identical units of the product in the validation process. -

The final -cause of difference may‘bexactuél’discrepancy in the
supplier's data. This is, of :course, what the quality audit»progf;m
is designed to prevent, and what-the data validation program is de-
signed to detect, when it exists. There are many different ways in -
which_discrepancies in supplier data may exist, either by accident or
design.  However, it mnow will be shown that these discrepancies all

tend to fall into one of two distinctly different types. .
The Dichotomy. of -Supplier Data Discrepancies

Differences between supplier and.customer results can be attrib-
uted to one,or more ‘of three different causes, as described above.  In
this connection, one of the greatest concerns is in differentiating
pure random variation from discrepancies in the supplier data. Although
there are numerous.discrepancies which could exist in the supplier's
data, it can be seen that all -these discfepancies fall .into two mutu-— .
ally exclusive classes, namely, (1) discrepancies invthe actﬁal
measurements recorded, and (2) where supplier sampling is permitted, .
discrepancies in the sample-to-lot relationship. ~ These two types will-

be discussed in turn.
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Measurement Discrepancies

Perhaps the most common source of measurement discrepancy occur-—
ring in practice is bias. Frequently bias is assqciated-with test
equipment calibration. Bias 0ccurs-when.allvmeasurements‘made have a.
constant or systematic error component. Thus, bias can be due to ex-
cessive passage of time or usage of equipment after a proper,calibration.‘
or due fo‘an improper calibration.,-ihe importance of a well defined
and strictly enforced calibration program in preventing this type of
discrepancy cannot be overemphasized. Bias may be caused, also, by
operator error.in consistently misreading an instrument error in the
same manner, or by procedural error in applying the wrong voltage to
an instrument, missetting a constant type confrol, or oée;ating the
équipment in an unsuitable environment. . The important.thiﬂ% to recog-
nize is that each reading recorded will be offset from theﬁtrue value
by a constant amount.

Complementary to blas error is precision error, which is_a'random
component of error, the individual amounts of which cannot be predicted
either AS»to direction or magnitude. As previously mentioned, all
measurements are subject; more or less, to random variation, which is
synonymous.withbprecision-error. Although exact values of this type.
error cannot be determined; as can bias error, it is entirely .feasible.
to establish, for any given'measurement,systém, the distribution of
precision error. This is commonly done . by error—-of-measurement ‘studies,
wherein repeated measurement of calibration standards or identical
units of product are made under suitably gontrolled experimental con-

ditions. Precision error, if within the limits established by such
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érror—of—measurement-studies, cannot be considered as data discrepan-
cies. It is simply a source of random variation which must be recog-
nized and lived with by both parties. However, precision error of
greater magnitude than that established and agreed upon can be a
serious discraﬁancy.b There‘are several possible causes of excessive
precision error. The substitution, inadvertant or deliberate, of an
inferior piece of inspection equipment would generally contribute to a
loss of precision. - Poor édjustment.of equipment and poor operator
training are other common. causes.

Besides bias and precision errors, measurement discrepancies can
exist due to the falsification of data. " One of the most common ver-.
sions of data falsification is called "flinching' and is frequently
not at all deliberate. However it is a commonly recognized malady
among some inspectors. Flinching is the tendency to make a consistent ;
error in one direction when the result of a measurement is very close
to a specification limit. For example, an inspector faced with an
upper specification limit of 1.500 might consistently reject all units
measuring 1.510 or greater, but usually accept marginally defective
units‘measuring in the 1.500 to 1.509 range. More serious than
flinching but probably less common is deliberate falsification. An
. example would be an operator who wished to save a.great deal of time
by inspecting only a small portion of an inépection batch, and, after
detérmining the range of the data, recorded fake data on the b;lance
of the batch. Falsifiéation could also occur due to carelessness,
where an operator simply made a gross error in reading or recording a
measurement. The significant distinction between.falgt@ication and .

)

precision error is that while the latter is an inhereﬁt part ‘of a par-
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ticular inspection system and method, the former is completely avoida-

ble, by greater attention or honesty.

Sampling Discrepancies

In contrast to measﬁﬁement»discrepancy is the problem of a dis-
crepancy in the sample-to-lot relationship. An alternate descriptive
term is a biased sample. A familiar example of this type of discrepan-
cy is the basket of apples in which the top layers are composed only-
of the finest soundest fruit, while soft, rotten, green, or under-sized
apples are down at the bottom of the basket. While such an arrangement
could occur by coincidence it is more likely a deliberate attempt to
deceive those who would inspect the basket only casually. Obviously,
such a discrepancy is impossible in those cases where 1007 inspection .
and reporting of a characteristic is required. It would also be impos-
sible if the customer specifies, after the entire lot is completely
processed and presented for final inspection, which units are to be
inspected.

The general problem of bilased samples has been tacitly recognized
for a long time in the inspection and quality control profession,.as is
evidenced by the followingbquotation_from a speech‘made by C. B. Dudley,
a former president of the American Society for Testing Materilals:

...it 1s not reasonable or proper or safe to trust the

producers in anything by which the validity of the tests

might be affected. Not once but many hundred .times have

we been asked to allow the shippers or producers to send

a sample and accept the shipment on its examination. The

request was undoubtedly made in good faith and with no

other desire than to facilitate the transaction. Perhaps.

it is needless to say that our.belief in the facility with

which unintentional mistakes would be made and a sample

better than the average of the shipment be sent, has always
led us to positively refuse such requests.
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One may fead a tinge of sarcasm into this statement by Dudley, or take
it at pure face value. In either event, his message . is clear: do not
allow the supplier to perform sample iﬁspection in behalf of the cus-
tomer under any .circumstances. However, with proper safeguards and
checks, we may find alternatives to his conservative app#oach.

Some distinct types of sampling discrepancies can be labeled,

non 1 1

"salting," '"tampering,' and "truncation."  The term "salting," meaning
to enrich artificially, has its origin in connection with mining
operations where a promoter would place a very rich specimen of ore
someplace .to mislead a prospector into believing he had found a valu-
able mining site. Thus, a procedure of plécing known good material in
an. inspection sample, even though this product might be completely.
unrelated to the material which the sample purports to represent, can
be labeled;as éalting the sample.

A distinctly different but simiiar scheme is to give special
attentiop to ;he'inspectiop sample . in preparing it for inspection. ;n
;ﬁé»végéién of this deéeptioﬁ;'whiéh ié labeled here as ''tampering,”

a legitimate random sample of the lot could be selected, but the selec~-
tion made while the material was still in processing. From that point
on, the vefy best operators could be assigned to work on the sample
units; and the most careful attention to detail could be given these
units, as opposed to the balance of the lot. This would again result
in an inspectioﬁ sample whose. characteristics were better than the:lot
as a whole.

A third type of sampling discrepancy will be called "tfuncation

in sample selection' and defined as the deliberate exclusion from a.

sample, any units whose measured characteristic(s) exceeds a certain.
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value (or values). A number of different ﬁechanisms exists by which
certain units in the lot might be deliberately excluded from the in-
spection sample, and as a result of which the sample would be an
actually valid portion of the lot but yet would not be representative
in the random semse. One way to achieve this sort of deception would
Be to pre-inspect a number of units just prior to the final quality
inspection. Whenever a measurement appeared which exceeded a certain
limit it would be set aside and another unit selected to take .its
place. The process has never, to the knowledge of the writer, been
explicitly considered in the quality control literature.

| The three types of discrepancies in the sample-to-lot relation-
ship described above were referred to as deceptions. It should be
pointed out that similar discrepancy could easily exist without any ‘
intent to deceive, if the supplier was careless in the method of seleé%'
ting the inspection.sémple,_and the group which was selected nonran- |
domly happened to be. quite homogeneous within itself but not represent-
ative of the entire lot. Much emphasis in the literature of sampling
is given.to the point that great care is required to achieve a valid-
random -sample. If the effort is not exerted, then probably sampling
discrepancies will result.

To recapitulate, it is asserted that discrepancies in the supplier
data can be divided into two mutually exclusive and exhaustive cate-
gories: measurement and sample-to-lot. Examples of each of these.
categories have been cited; while other examples can easily be con-
structed, it is apparent that any discfepancy in which the measured
result of a sample is used to represent the charécteristic_of-a lot

can be placed in one category or the other.



15

Detection of Data Discrepancies

Corresponding to the dichotomy of data discrepancies is a similar
dichotomy.of the methodé,for detecting these discrepancies. We first
consider the validity of the actual recorded measurements. If the
data on specific measured units is invalid, this fact can be most .di-
rectly ascertained by repeating the measurements on the same units and
analyzing the paired differences. In contrast.to repeat measurements
would be the selection, by the customer, of an independent sample and
comparing the customer sample results with either the entirety or with
a selected sample of the supplier's data. However, the drawback of
making'an independent sample comparison to validate recorded measure-
ments is that it introduces a source of random variation which must be
tolerated and which will tend to obscure true discrepancies of this
type. The point is discussed in most statistical texts. For instance,
Hald (1952, pp. 401-405) pointed out the applicability and advantages .
of the palred-difference "Student: t" test, and again (pp. 504-507) the
advantages of the randomized complete block design in feducing the
residual or error variance for testing the significance of some.effect
of interest. Cochran and Cox (1957, pp. 31-34, 112-114) have quanti-
fied the relative efficiency of the paired and independent samples,
which are really equivalent to randomized complete block and completely.
randomized experimental designs, the blocks in this case belng specific
units of the product.

While the extensive work cited above will not be tepeated here,
it is worth emphasizing that, contrary to previous published state=-:
ments on data validation (e.g., Department of Defense, 1960; Elner and.

Mandelson, 1964) it is not necessarily advantageous for the customer
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to insist on independent samples in validation. For example, if the
customer is concerned only with discrepancies in the recorded data,
and if product variation tends to be large relative to the magnitude of
discrepancy which is of concefn, then clearly paired analysis on re~-
peat measurements would be superior to the use of independent samples.
On the other hand, certain factors tend to offset the advantage of
paired samples for validating the recorded data. 1In the first place,
the degrees of freedom for error variance is reduced by half. Further,
there may be, in some cases, a significant incremental cost in identi-
fying and re~inspecting identical units, above the cost of insgpecting
an independent random sample of equal size. However, in most practical
applications these two factors are of small effect, in comparison with
elimination of product variation, on the information obtained at a
given cost.

The detection of the biased sample, on the other hand, eannot be
made through the means of repeat measurements. If the supplier did
choose a sample in a bilased fashion, repeating measurements on Lthe same
units would ghed no light whatsoever on the relationship of these
measurements to the balance of a lot or bateh of material. Thus it is
not only advieable but mandatory that the ecustomer inspeet units other
biased sampla. A completely independent randem sample eould be gelee=
ted, recognizing that there might be some duplication of units into
both samples: Or a mutually execlusive sample could be selected; in
which no units of the supplier sample were allewed. For the purposes
of this dissertation, it is assumed that sampling does not deplete the

lot, and in this limiting case, the independent and mutually exclusive
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samples yield to the same analysis.

The customerlmay, in any given validation situation, be concerned
about ‘either biased éample discrepancy, recorded data.discrépancy, or
both. Our attention now focuses on the problem of the biased sample,

and more specifically, on truncation in sample selection.



CHAPTER III
TRUNCATION IN SAMPLE SELECTION

Truncétién in sample-seiectionvwas‘defined in the previous chap-
ter as the deliberate exclusion from the sample those units whose.
measuremenﬁ(s) exceed a certain value. Consider twé points, (a) and
~(b), on the measurement range. .Exclusion of measurements greater than
vpoint (b)‘leads to dnefsided fruncation'on the upper tail; exclusion
. of méasuremen;s less than é givén“value (a)‘leads to qne—sided trun;
cation on the lower tail. Exclusion of measurements less than (a) and
‘greater than (b) leads to two-sided truncation.

_For ong-sided truncation, the Qalue;(a) or'(b) might be any value
:within fhe possible range of measurements, depending only on the atti-
tude of the person responsible for the e#cluéibn.‘ For that matter, it
could be outside the range of the measuréments, but this is a trivial
gasé since it implies either no trugcation, o: comblete truncation and
ho resultanﬁvsample. For two-sided truncation it ié requisite that
b >xa to‘avoid the trivial case, agéin,‘of_no sample. The fractioﬁ of
the lot which lies outside the truncatiqn limits will be referred to

as the degree of truncation and denotgd by the symbol (y);.for one-
sided truncatioﬁ an& by (YZ)‘for two-sided ﬁfuncafion. This term‘is
from Hald (1952) who described‘the degreé of truﬁcation as the ﬁropor—
tion of an original population which is excluded from a truncated sub~

p0pulation.' It is noted that the degree of truncation is a factor re-

18
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lating to the lot and not the sample directly.
Truncation and Biased Samples

Three types of biased-sample mechanisms were defined in Chapter II:
salting, tampering, and truncation in sample selection. These are not
the oﬁly types of bilased samples which could be considered, but they
do give an indication of the general nature of this type of sampling
discrepancy. One distincti5n between trunca;ion‘and the other two
biasing mechanisms is the relation between the lot being presented for
acceptance and the population being sampled. Salted and tampered sam-
ples are from populations which may be quite different from the lot.
But truncated samples are clearly from the lot itself, albeit only a
segment of the lot. Ihis fact leads to a unique feature of trun§ation,
from the point of view of étatistical analysis. That is, the trunca-
ted population from which the customer's sample is drawn can be defined
entirely in terms of the.parent population and the point(s) of trunca-
tiom. -

As another distinction, it appears that truncation would be much
easlier to accomplish than the other two forms of biasing. No altéra-
tion of any unit 1s required, gs in the case of tampering; and no
separate produectlon or pfocurement is required, as in‘the case .of
salting. All that is required is an inspection and sorting operation;
thus, it would be a relatively more tempting form of deception to

practice.
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Reasons for Truncation in Sample Selection

There are several reasons why a supplier might, either at the
policy level or operating level, be motivated to truncate a lot in
connection wiﬁh selection of an acceptance sample. The most obvious
reason is that a specification limit exists which would cause any
measurements above a certain value to be classified as defective. For
instance, the supplier might have the opinion that a certain specifica~
tion 1limit is arbitrary rather than functiocnal, and that product which
measures in excess of that limit will nevertheless function properly.
If such a judgment is correct, then little would be lost by arbitrarily
ignoring units which measure greater than an arbitrary limit, as long
as this is not discovered by the customer. The supplier's reasoning
is that after the product has been sold and put to use, the product,
although nonconforming, will provide satisfaction to the customer
nevertheless, and will ﬁot contribute to loss of customer good will or
later rejection. Of course, a short-sighted supplier might choose to
truncate his sample at a specification limit without any consideration
of the conéequences in further usage of the product.

The truncation point may not be a specification limit. A certain
type of lot sampling plan requires the computation of a variables ac-
ceptance limit, e.g., accept only if x + ks < USL where k and USL are
pre-specified constants, and x and s are the sample mean and sample
standard deviation. A supplier whose product is to be purchased on the
basis of such a criterion may be able to markedly improve the chances
of lot acceptance by truncation of extremely high readings. This would
have the dual effect of reducing both x and s. Clark (1957) computed

the degree of truncation required to have the desired effect for speci-
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fied lot distribution parameters and acceptance criteria. It should
be noted that Clark was ndt advocating truncation in sample selecﬁion.
He proposed screening of the entire lot in order to alter its parame-
ters. The important distinction between lot screening)and sample

" truncation is that in the former case the units which have measurements
in excess of a certain value are removed from the lot itself, but in
the latter case they are removed only if they appear in the sample.

A third possible reason fbr truncation is the desire to establish,
for the benefit of future contracts or other applications, that the
charactéristics of a lot are of a higher quality level than they actu-
ally are. If process changes were under development which were expec~—
ted to improve the product distribution, there couid be some tendency
to attempt to provide evidence of the desired results through selective
inspection.,

Thus, it is not possible to simply look at a predetermined number
such as a specification limit, in deciding whether truncation in sample
selection is present. However, a specification limit 1s probably the

most likely truncation point.

The Normal Distributlon Model for

Truncatlon Analysis

The truncated normal distribution waé chosen as the model for this
study. Two versions of truncéted normal distributions. and thelr rela-
tionships to the parent normal distribﬁtion are 1llustrated in Figure 1
and Figure 2, One-sided truncation is shown by Figure 1. ‘It is appar-
ent that the mean i3 shifted and the standard deviation reduéed if a

normal distribution is truncated at one end., Two-sided symmetrieal
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ONE SIDED

TRUNCATION,
Y =0.20

PARn. v

£ Lb=p+s46c

Figure 1. One-sided Truncated Normal Distribution

SYMME TRICAL
TWO SIDED

TRUNCATION,
Y2=0.20

..

a=p—|.280J M Lb=,u.+l.280'

Figure 2. Symmetrical Two-sided Truncated Normal Distribution
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truncation is shown in Figure 2. The standard deviation is reduced to
a much greater relative extent (compared with one~sided truncation)
but the mean is not shifted.

The truncated normal distribution can be defined by foﬁé”parame—
ters: W, the parent population mean; 02, the parent population stan-
dard deviation, and a anﬁ b, the two points of truncation. Letting the
variable x represent a truncated normal random variable, the density

function of % is

g(x) = %ﬂ , a<x<h

=0 , elsewhere,
where L
1 %=1 )
- 1 =)
f(y) = =2e 2 O
ovZm
and

LB
F=Jf(y) dy.
&

Following notation used by Hald (1952) and elsewhere, we define for any

number @,

and

6(c) = J $(e) dt.

L8
Thus 9(e) ie the normal distribution funetion of ¢ and ¢(c) is the

ordinate of the standard nermal density funectioen of e, and

Fff
1B

8(b) = 6(a)

is the constant factor which makes g(x) a demsity fumection,
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It will be necessary in the following chapter to know the mean,
Uy s and standard deviation, OX, of the truncated normal distribution
in terms of the parameters u, o, a, and b. These parameters are now
derived for the case of general two«sided truncation and then special-
ized to the cases of symmetrical two-sided truncation and one-sided
truncation.

To derive the mean of the truncated normal distribution, we apply

the definition
by = E(x) = [ x£(x)dx
which is
Mg = Z (o) = 6(a) | o/ FF } lxem (W) /207
w { F o/ Fr ) Z go (=) f20%

This expression can be separated into two parts,

7 e s ((5pan) 2 i 2 Ms PR £ T 2 2
L@ T gy ) e G2y
M © P ovor F oovor
55 |b
e (e )2 /947
gl (EWT/20 a1
== e . + u * l
F ov2n o
5. B al D wlawi|Y2 /92
_esewfiae? o ~@0T/207
Fg

&(b) = a(a)

We now derive E(x?), and 62 follows from it.




25

b XU, 2 Il [N XU, 2
=L T [(x-w)%e” 267q7> roxpe™ 78 0 02" - 77 ax
FV2no &
=l _[Aa + B3 - ¢}
FvV2mo

Where each term denoted by A, B, C, respectively, is to be integrated.

‘_p 2
2 b . ~(x ek
A= D — (M)Z dx
@MF a
l v
- o2 v‘? X“M) (x—u) e _éﬂgl)z dx
/3wy ° °
Integrating by parts, let
LeEriy2
um‘m dvu(mjamgc ) (Qgﬁ)
o ¢ o
o oy 2
du = 4% ve e 207 (&)
o 4

Then

y L XU - XUy 2
Aw T (o [ - 1% )]’Z+fe?ﬁ#)“}

ovir ¥ O

4]

02 [ (&5 6Ga) = ASH) ob) 1/ ¥ + oF Z £(x) dx

D ga) = < 2ly 4 (b)
7

g?[ 1 +

i

]

This completes the evaluatilon of term A.
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Lox-uyo
= 2u | ? xe 750 dx ]
oV2r F &
= 2“ []J - g .w_;_i_(_al]r

2U2 - 2u0 é(b) - ¢(a)
F

This completes the evaluation of term B.

1
b - (XTUy2
C =t f u?e 755) dx
ov2n ¥ @ ‘
2b 2
= uef £(x) dx =
a

This completes the evaluation of term C.

Combining these three terms we have

a=u
(0'

Y ey (RSH by -
o T 4 L o, 00 - 6)

E(x%) = o?[1 +
7 )

2 2y o 2
Now since o0,°= E(x ) My

and py? = y2e 2uo 2B) “¢(§) +[o 2B) = ¢(a) 42

¥ F ?

it follows with some algebralc simplification that

@) ¢(a) ~Ee®)  9(b) - ¢(a)
0,2 = 02 {1 + - [ 12} (3-2)
- 0(b) - ¢(a) ¢(b) = ¢(a)

There are two spacial cases of the truncated normal distribution con-
sidered in more detail herein. In one case, where a = - «, we have
one-gided truncation on the upper tail. In the other case, whare a

g = Jy=b, we have symmetrical two-sided truncatiom.

In the case of one-sided truncation on the upper tail, we have,



27

for a = -», ¢(a) = ¢(a) = 0 and thus, from equation (3-1)

¢ (b)

He = B = 0 =l (3_3)

* 2(b) .
and likewise

b-H
(== ¢(b) ¢(b)
2 . .2 - o] - 2 -

In the case of symmetrical two-sided truncation, we have

a=u= (b~u) = 2y -b

a=-u=uu-=>

¢(a) = ¢(b)

¢(a) =1 - o(b)
When these equations are substituted into equation (3~1) we find

Hg = U |
and from equation (3-2),

. [ER) - &) o)
A T T IO
b=
. 2(==) ¢(b)
22 {1 = ==t
206(b) = 1
2 {1 _____.__T_" AL | (3-5)
o 6(b) = = : ]

where ¢ xzz is used to emphasize the faet that truncation in this case
is symmetrical and two-sided.

The £inal constant associated with the truncated normal distribu=
tion is the degree of truncation, which was defined as the fraction of
the parent pepulation excluded by the truncatien precess. Letting y

represent degree of truncatien it is eclear that in general
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vy =90(a) +1 - 8(b)
while for one-sided truncation on the upper tail,

y=1- o(b) (3-6)
and for two~sided symmetrical truncation,

Y2 =1=3() +1 - (M) =2 - 26(b) (3-7)

The mean and variance uy and dx2 for a truncated normal distribu-
tion can be standardized by considering their relationship with the
parent population and their parameters u and o2, Thus for the case of

one-gided truncation on the upper tail we define

and

Then 1f v = 0, u = y,, o2 = éxz, and the standardized parameters ) and
6 equal O and 1, respectively. This is depicted in Table I, which
shows that as vy approéches 1, or complete truncation, uy, approaches
=, and 6 approaches 0.

For the case of symmetriecal two=sided truncation, we define

k2 = B2B

o= Koy
and

o2 = JH2.

The relatlonships for this ecase are depleted in Table II. It is noted
that )\ is constant at 0 regardless of the value of ¥, but that 62

decregses from 1 to 0 as y inereases from 0 to 1.
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TABLE I
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TDegree of Truncation ' Mean V.arianéev ' Srtahdaz;d. }
Truncation Poin; ' Deviation
; - - h‘e. : ffg*'
0.0010 | 3.09023 ;6¢663370?»‘ 0.9895767 0.994774
0.0050 2.57583 -0.014533 0.962354 0.980997
0.0100 2.32635 ' =0.026922 0.936646 0.967805
0.0200 2.05375 ~0.049406 0.896092 0.946621
0.0400 1.75069 -0.089763 0.834795 0.913671
0.0500 1.64485 -0.108564 0.809641 0.899801
0.0600 1.55477 -0.126728 0.786907 0.887078
0.0800 1.40507 -0.161596 0.746834 0.864195
~ 0.1000 1.28155 ~0.195000 0.712073 © 0.843844
0.1500 1.03643 ~0.274305 0.640459 0.800287
0.2000 0.84162 -0.349949 0.583011 0.763551
0.2500 0.67449' ~0.423700 0.534697 0.731230
0.3000 ‘o.sé&&o ~0.496706 06492§io 0.702004
0.3500 0.38532 -0.569851 0;455€9§ 0.675052
0. 4000 0.25335 -0.643904 0.422254 0.649811
0.4500 0.12566 -0.719636 0.391694 0.625855
0.5000 0. 00000 -0.797884 0.363381 0.602811
0.5500 -0.12566 -0.879579 0.336869 0.580404
0.6000 -0.25335 -0.965851 0.311831" 0.558418
o.esoo» ~0.38532 ~1.058255 0.287863 0.536529
1.0000 ~o - 0 0
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TABLE II1
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Degree of

Truncation Tr;ggizion Mean. Variance : g::?:iign
Y2 ko .A 02 /7§EF
0.00100 3.29050 0 0.98830 0.99413
0.00500 2.80700 0 0.95621 0.97786
0.01000 2.57580 0 0.92475 0.96164
0.02000 2.32630 0 0.87345 0.93459
0.04000 2.05370 0 0.79282 0.89041
0.04000 1.96000 0 0.75886 0.87113
0.06000 1.88070 0 0.72768 0.85304
0.08000 1.75100 0 0.67218 0.81986
0.10000 1.64480 0 0.62299 0.78930
0.15000 1.44050 0 0.52102 0.72182
0.20000 1.28160 0 0.43774 0.66162
0.25000 1.15050 0 0.36860 0.60713
0.30000 1.03640 0 0.30955 0.55638
0.35000 é.93460 0 0.25875 0.50867
0.40000 0.84160 0 0.21460 0.46325
0.45000 0.75530 0 0.17612 0.41967
0.50000 0.67450 0 0.14267 0.37771
0.55000 0.59790 0 0.11358 0.33701
0.60000 0.52440 0 0.08833 10.29720
0.65000 0.45390 0 0.06677 0.25840
1.00000 10.00000 0 0 0
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It should béinoted that the degree of truncation, y, is the frac-
tion of a lot which is excluded from the chance of being selected as
part of a random sample. Thus the sample which is inspected is.actually
a random sample from.the_truncation distribution. This is the basis
for the expression, truncation in sample selection, to indicate  the
type of sampling discrepancy being considered. = In the context of this
dissertation the degree of truncation is identically equal to the frac--
tion of a lot excluded from the chance of being part of a sample by
truncation in sample selection.

There are two main reasons for the choice of the normal distribu-
tion to study the effect of truncation. First, the normal distribu~
tion approximates many of -the actual distributions of measured cha;acf
teristics in manufacturing. Also, Iin a number of cases, appropriate
transformations can be utilized to achieve normality in analyzing non-.
normal product distributions. The second reason for its choice is the
great extent to which statistical test poﬁer curves have been developed
in terms of the normal distribution. Thus the use of the normal model
provides a bench mark or frame of reference for comparing tests to a
common criteria, even if it is known that given product distributions
are not trﬁly normal. Similarly, it provides for a common basis for
comparing>tests, such as the F and U tests, which are derived on the
assumption of normality, with others, such as the exceedance, maximum
difference, and rank-sum tests (all described in the following chapter)

which are distribution-free.
Statistical Inference on the Truncated Normal Distribution

An early study of the properties of the truficated normal &istribu~
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tion was by Stevens (1937) who treated the case where the points of.
truncation are known and the number of individuals of a sample in the
truncated portion is also known. (This is somefimes referred to as a
censored distribution inasmuch as the number of observations but not
the values in the truncated portion is known,) Stevens derived the
likelihood function, the maximum likelihood estimates of u and 0%, and
the variance-covariance matrix of -these estimators. Cohen (1950)
extended these results to cover other special cases of parent popular
tion parameter estimation, all with truncation points known. (Cohen
also cited the work of several other researchers not mentioned here.)
Hald (1952) discussed the probléms associated with estimating the
three parameters u, 02, and b, of the one-sided truncated normal distri-
bution, observing that "estimation of these parameters...ls very
laborious." He pointed out (p. 146) that the point of truncation of an
observed distribution could be graphically estimated by plottiﬁg the
cumulative distribution on normal probabiiity paper and estimating the
point on the abscissa to which the estimated line is asymptotlc. He
stated '"in order to determine a truncation less than 10~20%, the number
of observations must be very large, as otherwise, for small values of
x, the deviation of the fractiles from the straight line will fall
within the permissable limits of random variation." Hald was discuss-
ing one-sample inference. The results of the research reported herein
corroborates his coneclusion for the two-sample case.

A procedure for estimation of a& truneation point where the parent
distribution is completely specifled was developed by Robson and Whit-
loek (1964), who derived approximate point and interval estimates for

the one-sample case. They used the largest and second largest order
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statistics to esfimate the point of truncation on the upper end of the
distribution. Their results would hold equally for the case of trunca-
tion on the lower end of the distribution, using the smallest order
statistics. The approximate 100(1 - a)7% upper confidence limit on the
truncation point is

@) *+ @D &) - X@-1))
where the subscript (n) is used to represent the.largest order statis-
tic, and (n-l) the next largest.

This estimate is an exact limit only for the case of the uniform
distribution, but is claimed to be "approximately' valid in genéral.
The procedure is applicable only to the one-sample case.

The primary liﬁitation on the method of Robson and Whitlock is
that the parameters u and o® of the parent distribution must be known
in order to make an inference about the truncation point. But in the
case of truncation in sample selection it is generally not known even
that truncation exists and although there may be a good guess as to
the point of truncation this too must frequently be considered as un-
known. |

Of more importance however, than estimating the truncation point
is testing the hypothesis that truncation exists, which is discussed

in the following chapter.



CHAPTER 1V
STATISTICAL TESTS FOR TRUNCATION

It has been shown that one form of data discrepancy in.supplier
inspection data is sample biasing, and Ehat truncation in sample selec-
tion 1s a reasonably logical and simple way in which samﬁle biasing
could be effected. Now it must be recognized that severial alternatives
are open to a customer in protecting himself against such a discrepancy.
One form of protection would be to simply not allow supplier sampling
at all, either by requiring 100% supplier inspection or by the customer
performiﬁg thevsampling inépection himself. Another approach to pro-
tection would be to deal only with suppliers whose reputation for con-
gsistent high quality and integrity were unquestioned, and thus could be
always trusfed‘to select samples in a scrupulously random manner. Or,
asvprevioﬁslynsuggested, the customer could assume responsibility for
selection of the supplier sample.

In any of the‘above situations the customer's data validation
program can be restricted solely to the analysis of ﬁeasurement dig-
crepancies. However, there may well be situatlions where a customer is
presented with thé results of a supplier's sample and must make a de-
termination of whether the sample is random or not. In such situations
a comparison of the results of the supplier sample and an independent

sample drawn by the customer can be performed.

34
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Several possible statistical tests which could be used to make
such a comparison will be discussed in this and the following chapter.
These are not all the tests which might be used for such a purpose.

From the large number available several were selected on the basis of
their degree bf acceptance as tests 'in similar situations. Others were
chosen because it appeared on the surface that they might exhibit desir-
able properties.

For each of the tests discussed, a brief‘historical summary is pre=-
sented, followed by the method of computing the test statistic, and then
the derivation or a discussion of the operating characteristic function
and significance probability of the test.

The significance probability, that is, the probabllity of reject-
ing a null hypothesis when it is true, is denoted by the symbol a. It
is also called the probability of Type I error. For all tests dis-~
cussed herein, the source of derivation of the significance probability
is cited and selected values are presented in the charts. Where it is.
appropriate, a derivation of the significance probability is.presented.

Of all the aspects of the tests which might be considered, the
one which is of the greatest importance in this analysis is the opera-
ting characteristic function of the test against the truncation alter-
native. The operating characteristilc function has been defined (e.g.,
Cowden, 1957) as the "mathematical expression which states the proba-
bility of accepting a lot as a function of the fraction defective in
the lot." 1In applications described herein it is the probability of
deciding there is no truncatibn in sample selection by the supplier as
a function of the actual degree of truncation. In general it states

the probability of accepting a null hypothesis as a functilon of a spe-
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cific alternative hypothesis. Commonly called the "0.C. curve" it is
the complement of the power function, which states the probability of
rejecting a null hypothesis. Thus the 0.C. curve is the ''power curve

turned upside down.'

The symbol B represents the probability of accept-
ing a null hypothesis and the expression B( ) means the probabiiity of
accepting a null hypothesis given the condition expressed inside the
parentheses. The use of both 0.C. curves and power curves is commonj
the former are used in this study to be consistent with prevalent
quality control practice, where characteristics of sampling plans are
generally described in part by displaying their 0.C. curves,

For each 0.C. curve the degree of truncation is the independent
variable and the probability of accepting '"mo truncation' is the depen-

dent variable, while the significance probability and the size of boﬁh

supplier sample and customer sample are constants.
The U Test for One-~Sided Truncation

One of the most common statistical hypothesis tests is the U test,
which 1s the optimum test for the difference between two means when
the distributions are normal and the variances are known. This test
is also referred to by some as the normal test. Tﬁe agsumption that the
variances ‘be known 1s somewhat restrictive if small samples are involved.
But 1if sample size is of the order of 30 or above it has been stated
(e.g., Hald, p. 389) that there is little practical difference between
the U test and the comparable Student's test, which is the optimum test

1f the distributions have equal but unknown variances.
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The U statistic for the two-sample case is the difference between
the two sample means, divided by;the standard error of the difference.

That is,

where
y is the mean of the supplier sample

x is the mean of the customer sample

2

0% is the population variance

m is the number of observations in the supplier sample

n is the number of observations in the customer sample.

In the derivation of the 0.C. curve for the U test of truncation,
we make use of two theorems, stated here without proof, which are both
standard results in statistics. The first is the Central Limit Theorem,

a version of which states that if X1s X9, «-s, X, are stochastically

n

independent random variables with mean p, and variance 0X2 then

n .
W= Zi=lxi/n tends to become normally distributed with mean p, and
variance cxz/n as n approaches «, The second is the addition theorem

for normally distributed variables which states that 1f vy, vy, ..., v, =
are étochastically independent normally distributed random variables,

2

with means uj, W9, ..., and variances 01 0 2 2

27s wees0 % the function

W=alvl +3.2V2 +...+anvn

will also be normally distributed with mean
'uw=alul+a2u2+...+anun
and variance

2 = 2 2 2. 2 2 2
OW ay g1 + a2 02 + an On .
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An approximate distribution of X, the mean of the customer sample,
is now derived. It is specified that the supplier selects a random
sample of size n from a truncated normal distribution, with parameters

2, dnd truncation point b on the upper tail. Then from the results

Hy ©
in the previous chapter oh the truncated normal distribution, it is
seen that the mean and variance of the population being‘sampled by the

supplier are

$(k)

Ux=u‘0®(k)
and
2 L o2 _p 9(k) _ 9(k)y2
o2 =0?[ 1~k S (¢(k7) ]
where |
k = E:E

From thé Cenfral Limit Theorem cited above it is seen that X is approxi-
mately hormally distributed with mean p, and variance ze/n. The error
of the approximation involved here is an increasing function of the
degree o6f truncation and a decreasing function of sample size. (The
magnitudé of this error has been examined by means of an empirical dis-
tribution sampling study, the results of which are presented in Appendix
B.)

The cuétomér selects his sample of size m from the untruncated

parent population and the observations in the sample are designated

Y1s Y» +bes Y- By the addition theorem for the normal distribution,
letting él % %, a2“=‘%,d... , and Vy = ¥1s Vg = Vs cee 5 WE find that

1 m

w== iZl y; =79 Each y observation is randomly selected from a nor-
m i= :

2

mal distribution with parameters mean u and variance o¢. Thus, y has a
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normal distribution with mean

and variance

_ 0%

m

21 2
05 =20

m

2
w29

1 2 1 2 .
+.520 +"'+ﬁ‘20 =

These results are exact, as opposed to the approximate results for the
supplier sample mean.

Calling upon the addition theorem again, we see that the differ-
ence between sample means,

w=y-X (4-1)

has a normal distribution with mean

By = (1) =g+ GDug =1 - uy (4-2)
and variance

e 2 2.2 2.2 o2 ox2

oy~ = ()%05” + (-1)%0z"° = =t 3 (4-3)

Given this normally distributed random variable w, a new random
variable can be derived by subtracting u, from w and dividing this

difference by oy. Let this randoﬁ variable be Z. Then

g = ¥y (4=4)
Ow
and by the addition theorem we find

= (YY) - pHwy - Bw _ My _
My = B - EGED =65 "o = 0

w1 A4 it
0z? = VAR(—-") = VAR(g) + VAR(m.

2ot + G20 = 1
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Z is thus normally distributed with mean 0 and variance 1. Substitut-—

ing into equation (4-4) the results of (4-1), (4«2;, and (4-3) we have

y-x; = (u-ux) , . (4-5)
JZ s

If the null hypothesis of no truncation is true, i.e. y=0, then M=l

02=0X2, and the above equation reduces to
y-% _ §-%

Z = = . » (4-6)
‘/’_24.23_ o -
m n oY mm

It is noted that all elements on the right hand side of this expression

are computed from the samples or are known constants. Thus we always
can compute this wvalue, whether or not the null hypothesis is true.

Therefore, we redesignate it as U. Let

U= =X (4=7)
5 / mi+n
mn

and note that U is a sample statistic, whose distribution is that of Z
if HO is true, and whose distribution remains to be found if H0 is not
true. We must now find this distribution.

Whereas the above derivation of the significance probability is
presented in various forms in the literature, the following derivation
of the 0.C. curve is believed to be original with the writer. Let Zg
be a point on the unit normal distribution such that Pr(U > Za) = a.
Then‘the value o is the significance probability of the test and the
region on the real line which satisfies the inequality [U > Z ] is

called the critical region.
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The variable U is distributed normal, zero mean, unit variance,
only if v = 0. If y >0 the expecte& value of v = y-X will be greater
than zero since U > Uy, and its variance will be less than one, since
cxz < 02, Thus the effect of truncation on the upper tail is to shift
the distribution of the test statistic U to tﬁe'rightﬁaﬁd‘totnarrow
slightly the spread of the distribution; To derive the 0.C. curve for
the test, we need only to find the probability that the computed value

U will fall outside the critical region, for any specified value y,, of

o :
(Hy is accepted if U is in (H, is rejected if U is in this
this region) : region)

A, y=20
Distribution of U

if Hy is true — Type I Error: o

B' Y=Yo
Distribution of U Hx > M
if H) is true »
o, <O
Type II Error: B(yy) j:::x(
o z, U Scale

o

Figure 3. Type I and Type II Ertors of U Test

Yy greater than zero. These relationships among oy Zy, v, and B(y,) are
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depicted in Figure’3. In part A the condition which leads ‘to Type I
error with probabiiity a is depicted: Y is equal to zero, and the dis-
tribution of U is centered at zero. In part B;'y takes on some posi-
tive value y,, which causes the distribution of U to shift to the right
and to become somewhat more narrowly dispersed. Type II error has
probability B of'occﬁrring.

The 0.C. function of the U test is

B(vg) = Pr( U < Z, | v = v,)
since the null hypothesis is accepted, regardless of the actual value
of vy, whenever U < Za' To find B(y,) it is necessary Eo find the
distribution of U given y,. Although the truncation will actually re-
duce the spread of the distribution of U this is not taken into account
by the computation of U in which only the values x and y are computed

2

from the sample. The variance is still assumed to be o“. Thus the

expected value of the computed U statistic, is again by the addition

theorem
e p Y~ Xy o _M-ux - (w-ux)/o _ A (4
Hu E(‘/m+n ) /mq;ﬁ /m+n /mﬁl_ (4-8)
oV —mw oV —mw T —mE

and the variance is

oy = VAR(—l-———-U-:/-%q_—n-i ) = VAR[—-—-—-—-G/:LEE ) - oﬁ @]
mn

R T

1 - 1 -
= S, VAR(Y) + Toom VAR(X)
o ) o )

1 0—2 . 1 O.XZ !

= e ittt ) it

0-2 (m+n m 0-2 ('[IH“H) n
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2 2 2
S” 4 Sx- l.+.9§_ b o
- n 2 9n n+ (0x5/0“)m _ n + 6m (4-9)
- o min ~ mhn = + : -
o (—mﬁ) - m n n+mnm

Therefore the random variable U is distributed normally with mean and
variance as indicated in equations (4-8) and (4-9).

To convert this result into the desired probability statement we
recall that for a given vaiue of v,

B =Pr(U < Za)'
The inequality is unaffected by subtracting and dividing by constants.

S0

N U= uuy _ Zyg = Uy
B= Pr ( ou S o )

The left hand side of this imequality now meets the requirements of the
Z random variable, normal with zero mean and unit variance. This gives

B = Pr(Z < Eg__:;lﬂi)
%u

Now from the definition of the cumulative normal distribution function
of a fixed value v,

v 1
Pr (Z < = — dt = ¢
r (Z g v) _i o e (v)

So it follows that

u

B = a(v) (4-10)

where
Zg = My
O'U.
The expressions (4~8) and (4-9) developed for , and o, can now be sub-
gtituted into the equafion for v.

n + o6m
mtn .

R S (-1

mn
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In the case where m = n equation (4-11) can be simplified further to

, /m0+ )

A

v=(Z, - 5
/%% m

S S A w12
7 1+6

To compute the 0.C. curve for fhe U test, either expression (4-11)
or (4-12) for v can be solved by specifying a, m, n, and y. Then the
cumulative unit normal distribution function ¢(v) can be found by the
use of available tables (or series approximations, in the case of
digital computer analysis). This result, by equation (4-10), is the:
desired probability. | o

To illustrate the computation of one point on the 0.C. curve of
‘the U test, consider a case where both the suﬁplier and customer in-
spect samples of size 49. The customer's sample is drawn at random
from a population with normal distribution, u = 100, ¢ = 20. The sup-
plier's sample is drawn from a truncated portion of the same distribu-
tion, with exclusion of any units measuring above the truncation point

b = 135.  Then

kﬂb_u=135"100=0.675
) 20 »

and from Table I it is seen that y = 0.25, X = 0.4237, and 6 = 0}5347.

Let the test be performed at o = 0.05. Applying equation (4-12) gives

v e (1.645 = 0.4237 / /43 ) 2

— = =(),509
9 1+ 0.5347 '

and from a standard table of the cumulative normal distribution,

B = 6(~0.509) = 0,277
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In Figure 4 a family of 0.C. curves for the U test for one-sided
truncation is presented, with the degree of truncation as the independ-
ent variable and the probability of acceptance as the dependent varia-
ble. This set of curves holds for the case of a = 0.05 and equal sam-
ple sizes varying between 9 and 100,

To put these results in perspective, it is qseful to compare this
0.C. curve of the U test for truncation>With a somewhat similar U test
for the difference between two means. Assume a situation in which
measurements from a production process are normally distributed with
mean of 100, standard deviation of 10, and upper Specification limit
exactly 30 above the mean, at 130, A controlled process operating in
this manner will produce 0,00135 fraction defective.

Designate the test for a difference between two means as case (a)
and the test for truncation as case (b). In case (a) assume that the
population mean shifts upward, increasing the fraction defective pro-
duced, but that a bias in a supplier's measurement system offsets
exactly this shift in the mean. 1In case (b) assume that a shift occurs
but that truncation in sample selection results in supplier samples
which indicate no defectiveness. 1In either case, a customer sample
will probably contain defective units if the shift is at all large,
though it is not the purpose‘of the customer's inspection in this
analysis to find defectives, per se. Rather, we assume in case (a)
the customer is interested in testing for measurement bias by inspecting
an independent random sample; while in case (b) he is interested in
testing for truncation in sample selection by inspecting an independent

random sample. Assume equal samples of size 49.
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Consider case (a), with points on the 0.C. curve which would re-
sult in 0.005, .01, and .05 fraction defective, denoted by p. An
increase in the fraction defective fr§m p = 0.00135 to p = 0.005 is
equivalent to a decrease in the distance between the mean and the upper
specification limit from 30 to 2.5760, or a shift upwards by 0.424lo.
Similarly an increase to p = 0.0l is equivalent to a shift of (3-2.326)
= .61l40 and an increase to p = 0.05 is equivalent to a shift of
(3 - 1.645) = 1.3550. The equation for thé 0.C. curvé of a U test for‘

a shift in the mean is

$
B(8) = Pr( z2 <2, - )
mn
mn
8
= o(z, - )

where

§ = (uy =ug)/o

The equation is derived, e.g. by Bowker and Lieberman (1959, p. 164~
165). Applying this equatioﬁ to the above shifts of § = ,424, .614

and 1,355, with o - 05, Zy = 1.645, and m = n = 49, gives the follow-

ing:
For p = .005
. 424
B (8 % ,424) = ¢[1.645 - ~55 ] = 9(~0.4536) = 0.324
V2401
For p = .01

B (5 = .614) = ©[1.645 = (.614) 07%9 - &(=1,3941) = 0.081
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For p = .05
B(1.355) = 6[1.645 - (L.355) (71)] = 9(5.0618) = 0.00
2

Now consider case (b) in which the U test is used to detect truncation.

With o = .05, n = m = 49, the equation for the 0.C. curve is

BlY = vg) = 0{[Z4 - Oo) (DY 2}
/2 1+ 0,

which was solved in the earlier part of this chapter for y.= 0.25,

The 0.C. curves of these two tests are plotted to the same scale
in Figure 5, which cleafly indicates the greater power of a U test for
bias, when both are plotted as a function of the fractlon of the lot
being sampled which is outside the specification limit.

There is a great difference between the two tests when compared on
this basis. Two explanations are offered. First consider the physical
differences between the two discrepancies in the data. The bias effects
all observations in the supplier sample by the amount equal to the
bias. But the truncation in sample selectlon affects only tﬁose obser-

vations which actually fall above the specification limit. For example,
iif y = 0.10 this amounts to only 10%Z of the observations.

Second, consider the actual average shift in the mean of the sup=
plier sample., In the case of a bias which results in 0.05 fraction
defective, the shift in the mean is 1.3550. But when truncation 1n
sample selectlon results in 0.05 fraction defective in the lot yet no
defective in the sample, the difference in the true mean of the popula~
tion being sampled and the population submitted to the customer is
only .1086c. In summary, for comparable differences between means, the

two tests actually perform very comparably, but & much larger fraction
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defective can be concealed with resulting difference in the means by
truncation than by measurement bias.

The results of the above analysis should not be over-generalized,
It does show the difficulty of deteéting truncation but does not indi-
cate the differences among the different possibleitests for truncation, .
which is a more important concern here, and will be dealt with in

Chapter VI.
The F Test for Two-sided Truncation

The optimum test for the equality of two varilances when the popu-
lations are normally distributed is the F test. It is‘not necessary
that the means be either known or equal.

The ¥ statistic is computed from the samples by taking the ratio

of the two variances,

2
Fn-§¥-£-
Sx
where
m
s.?2 =1 3 (y,-§)?
Y el fep F
and
s2al 1 Gim
X pel] 4=1 T

It can be shown (e.g. Bowker and Lieberman, 1959, p. 87) that the

variable v2 formed by the ratio

2).2
S:Z /e . o2

(4=12)
82 cxgz



51

is distributed as an F random variable with degrees of freedom m-1,
n-1. The degrees of freedom constitute the parameters of the F distri-
bution.

This statement assumes that the distribution of x is normal with

2

variance oy,“. While it is true that the variance of the truncated

2
population is 0o

s, X 18 not normally distributed. Thus the 0.C. curve
derived are only approximate.

The decision rule in applying the F test to thisbproblem is to
reject the null hypothesis of no truncation 1f F > Fu, m-1, n-1 where

F 1 1s the point on the F distribution with m~l, n-1 degrees

o, n~1, m-
of fre?dom such that Pr(Fy p.1, m-1 < F) = . (In subsequent devel-
opment the appropriate degrees of freedom will be implied rather than
explicitly written.)

The null hypothesis Will be accepted 1f

S 2
Ll 2Py
2
Sx
Therefore the probability of accepting Hy: y2 = 0 as a function of the

true value y2q 1is
g 2
B(y2) = Pr (?:?E s B, | v2 = v2) (4=13)

In equation (4=12) it was stated that the ratio

has an I distribution. This holds true whether or not ¢, 2w g2,
Therefore the next step is to multiply both sides of the inequality in

2
equation (4=13) by %%g-—f giving
€2
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2/.2 L2
B = Pr( Exgiﬁ-_g- s Fy X2 (4-14)
SX /sz o)

and the left hand side of the inequality is an F random variable. 1In

Chapter III the ratio 02 was defined to be

o2

82 =
2

GXZ

and a table of 62 as a function of Y2 was presented as Table II.
Substituting these relationships on both sides of the inequality

of equation (4-14) gives

B(y2) = Pr(F < F, * 82)
which can be solved for a given value of o, y2, n, and m by reference
to appropriate tables of the F distribution. A family of 0.C. curves
so computed is presented in Figure 6. An example of the computation
forn=m= 49, o = 0,05, and y2 = 0.25 is

B(.25) = Pr (F < 1.63 * 0.3686)

i
A

Pr (F g 0.601)

4

0.044,

80 far as 1is known by the writer, thé above derivation and 0.C.
curves for the F test for two-sided truncation have not been previously
developed. However, it should be pointed out that 0.C. curves for this
test can be obtained by reference to the article by Ferris, et al
(1946). 1In their paper, B was graphed as a function of VEE, where
V82 denotes the ratlo of the larger standard deviation over the smaller
one. The parameter /82 can be related to the degree of truncation y2

gince both are functions of ki



PROBABILITY B OF ACCEPTING Ho

1.0 ' TWO SIDED TRUNCATION

Pr{F=K)
HQ:'YZ’-'O Ha- ya=Y20
a .05

.
A

T~
_ \\ \\

o .05 10  I5 20 25 30 35 .40
~ y 2, FRACTION OF LOT EXCLUDED BY TWO SIDED TRUNCATION

N

100

AN
~~

Figure 6. 0.C. Curves of F Test for Two-Sided Truncation

€g



54

v 82 =_q_.. = 1
G __ko(k)
x e 3 (k)-1/2

and
k
y2 = 1- ﬁ ¢ (u) du = 2 - 20(k)
The Ferris 0.C, curves were presented for a = ,05 only, and include
28 sample size combinations ranging from n =r4,.m = 4 ton = 100,
m = 100, with equal sample sizes, 2:1 size ratios and 3:1 size
ratios. Also, Bowker and Lieberman (1959, p.‘l9l) have presented a

comparable chart for o = ,01.

The X° Test for Twow-slded Truncation

The x? test would be applicable to the detection of two-sided
truncation if the population variance were known. Inasmuch as the
variance is assumed known in applying the U test, it would not seem
unreasonable to make the same assumption in the case of two-sided trun-
cation. But, in the two-sided case, if varilance i1s known, then there
1s no need té draw a customer sample in order to test for supplier sam-
ple truncation. For this reason, the ¥? is not éxplicitly treated here
since attentilon 1s focused on two-sample tests. The development of the
O.C, curves would be along lines very similar to those of the F test,
and it would be, of course, a more powerful test as well as a more

economical one.
Nonparametric Tests

Three nonparametric tests are studied in this investigetion. They
are selected from a large number of possible nonparametric tests on the

basils of publisghed evidence regarding their relative power characteris=-



55

tics for the standard alternate hypotheses, and on the basis of the
appropriateness of their method of computation. For example, two com-
mon nonparametric tests are the median test and the runs test. Both
are omitted from this investigation because several authors (e.g.
Siegel, 1956) have indlcated their power to be lower than competing
tests described here. Some relatively powerful tests, such as Walsh's
test and Fisher's randomization test are excluded because the complex-
ity of computing these tests would rule them out as tests easy to learn
and apply in fleld operations.

The three tests studled are the Kolmogorov-Smirnov test, also re-
ferred to in this thasils as the maximum differance testvsince it 18
based on the maximum difference in the empirical distribution functions
of two samples; the Mann-Whitney test, referred to as the rank-sum testj
and the Wilks-Rosenbaum or exceedance test. Of the three tesgts men-
tioﬁed, the first two are well described and tabled in moet standard
references on nonparametric statistics. Because the exceedance test 1s

less known, it is described in more detaill herein.
The Maximum Difference Test

The maximum difference two-sample test was first proposed by
Smirnov, (1939), who extended a one-sample test previously developed by
Kolmogorov, thug giving rise to the more common name, the Kolmogorov-
Smirnov test. The formula for the significance probabilities developed
by Smirnov was actually an asymptotic or limit formula. Massey, (1951)
developed a computation formula for obtaining the small-sample exact
significance probabilities. Hodges; (1957), published findings on the

degree of error of the Smirnov formula for small samples, as well as
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several alternative approaches, both exact and approximate, for calcu-
lating the significance probability.  Each of these sources contains
tables of significance probabilities, as does Siegel's book (1956).

The term maximum difference relates to the method of performing
the‘test. For each sample, the empirical distribution function is-
formed, and thén the range of the variable is searched for the maximum
difference between the two functions. This 1s the value of the test
statistic.

To apply the maximum difference test to the hypothesis F(x) = G(y),
define the empirical distribution function of one sample, of size m, to

be the step function
k
Gm(v) & '1;‘

where k is the number of observations not greater than v, and v 1s any
particular value of y. Likewise for the other sample, of size n, the
empirical distribution function is Fn(v). Now define
D=max | Fyv) = Gp(v)|
all v
for a two-gsided test, the alternate hypothésis being HA: F(x) # G(y).
‘Define

s

DT e ma% (Fo(v) = G ()

all v
for a one-sided test, the alternate hypothesis being Hp: F(x) > G(y).
Thus the test is actually a test on the equality of two population cumu~
lative distribution functions, and it has Ehe property that it can, in
theory, be used to detect any type difference whatsoever between the
two distributions, e.g., central tendency, dispersion, or shape. As a

practical matter, of course, its ability to detect differences is de-
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pendent on sample sizes.

The one~sided version of the maximum difference test is appropri-
ate for detection of one-sided truncation. For detecting two-sided
symmetrical truncation the two-sided maximum difference would seem to
be the logical choice, but in actuality either of the two alternative
one-sided tests would give about the same risks. In Chapter IV the 0.C.
curves of the maximum difference test against the truncation alterna-
tive are estimated by means of a distribution sampling experiment. In
the experiment, the two-sided test is used against two-sided truncation

and the one-sided test against one-sided truncation.
The Rank~Sum Test

The rank-sum test wae originally developed by Wilcoxon, (1954),
for the case of equal sample sizes. It was studied in greater detaill
by Mann and Whitney, (1949), who extended it to the case of unegqual
sample sizes. It is now frequently referred to as the Mann-Whitney
test., 8ilegel, (1956), called it "one of the most powerful of the non-
parametric tests for location." Thus it is a reasonable candidate test
for the detection of one=sided truncation, which does affeect location.
Siegel's book contains tables of significance probabilities and alse
paper show the mathematieal basis of computing the test statistiec and
derive ite probability function and associated critiecal values.

There are several alternaté‘méthods of ecomputing the rank-sum
gtatistic for two independent samples. A straightforward method which
illustrates the name rank sum, follows: Combine the observations from

both samples into a single group, maintaining sample identity within
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the group. Assign ranks to all observations in the combined group.
Rank the lowest valued reading as "1", the next lowest '"2", and so on.
Then sum the ranks assigned to the customer sample. (The choice of the
customer sample is arbitrary, but the computational and test procedure
would have to be altered if the test statistic were based upon the
supplier sample instead.) Call this sum of all the ranks of the cus-
tomer sample IR,. Next, compute the product of the two sample sizes,
nm, and the product %(n+l)a Finally, letting RS represent .the rank sum
statistic,

m
RS = nm + Z(n+l) - IR
2(_ ) i=] ¢l

If the suspected truncatilon is on the upper tail this method will re~-
gult in an RS value which can be compared with the critical value of
Table J or K of Siegel's book to determine ite significance. If trun~
cation were suspected on the lower tall of the customer sample the same
result could be obtained by computing IR, in the opposite direction,
i.e., assigning the rank "1l" to the largest observation in the combined
sample, the rank "2" to the next largest observation, until the entire

sample was acecounted for.
The Exceedance Test

The exceedance test is one which is not discussed much, if at‘all,
in texts on statistical methods. However, it has a falrly long history
of development, dating back at least to 1942, Although there exist
many versions of exceedance-~type tests they all can be related to the
simple idea of counting the number of obserﬁations in one sample which

‘exceed, (in either a positive or negative direction) a specified ranked
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observation in the other sample. In this paper we consider only ex-
ceedance based upon the largest (or smallest) order statistic.

To define the exceedance statistic, we specify that from a contin-
uous distribution f(x), a first sample, of size n is drawn and the ob-
servations K]y +ess Xp are ranked in their order of magnitude. Let x(l)
denote the smallest observation and X(n) the largest observation in the
sample of size n. . In a second sample, Yy eves Yo of size m, the ob-
servations yy drawn from the same distribution, there will be A obser-
vations smaller than x(l), and B observatibns'greater than x(n), Then
there will be Ey = (A+B) observations outside the extreme order statis-
tics of the first sample, where E3 may be 0, 1, 2, ..., or m, The ran-
dom vériables A and B, are defined as the one-sided exceedances of the
second sample.

For the purposes of date validation 1t is assumed that the direc-
tion of sample truncation is known in advance where a one-gided test is

appropriate. Therefore the random variable of interest is E;, where
Ey = A

if truncation at the lower end of the sample 1s to be tested, and
Ey =B

if truncation at the upper end of the sample is to be tested.

The exceadance statistic 1ls actually a specialization of both the
rank sum and maximum difference statistics. Whereas the maximum differ-
ence statistic is found by ekamining the difference between empirical
distribution functions across the entire range of the two variables and

picking the maximum, the exceedance statistic 1s a simple function of
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the difference between the two distribution functions at a specified
end-point. Thus it can be considered a specialization of the maximum
difference statistic: Whereas the rank sum statistic is computed by
counting, e.g., the number of y's greater than each x, a comparabie
exceedance statistic is computed by counting the number of y's greater
than the largest x observation. Thus the one~sided exceedance is also
a specialization of the rank sum statistic.

The mathematical basis of the exceedance test was laid by Wilks
(1942) in a classic paper on statistical tolerance limits. Wilks de-
rived general probability formulas for the one~-sided and two~sided
tests; however, he presented his results as a means for estimating pop~
ulation quantiles and not as a method for testing hypotheses. Gumbel
and von Schelling (1950) extended Wilks' work by computing the moments
and the cumulative probability function of the number of exceedances on
the largest order statistics. They also derived large~sample approxi-
maﬁi@n formulas,

Rosenbaum proposed (1953) that the two-sided exceedance-be utilized
a8 g nonpavametric test for disperaion, and (1954) that the one-gided
exceedancs be used for a nonparametric test of loecation. He presented
tables of eritical values at the nominal 52 and 1% level for both tests
for sampl@ gizes threugh 50,

Epstein (1954) presented limited tables of the distribution of the
one~sided exceedance; he exploited the symmetrical properties of the
distribution in order to achleve great brevity in the tables. His
tables are for equél sample sizes only, extending through size 20, and

provide the probabilities of exceedances for all order statistics.
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There are a number of adaptations of the basic test. For example,
Tukey proposed (1959) a modification of the exceedance test to increasev
its power and simplicity of use as a quick~test on location only. His
procedure requires that one sample contain the highest value, the other
the lowest value. If this requirement is met then an exceedance is
computed from each sample, and the two are summed to obtain the test
statistic. He found that the numbers 7, 10, and 13 provided roughly
5%, 1%, and 0.17 significance levels for two-slded location tests

regardless of sample size so long as they were within a ratlo of 4:3 in

relative size., Other adaptations and developmentes of the exceedance
test were reported by Rosenbaum (1965) who also reported the results of
random sampling experiments which compared the power of the varilous
vergions with each other and with other types of tests, The results of
these experimente are cited in Chapter V.

The probability functlon of the statistic which Wilks (1942) da~
rived using the multinomial distribution law, is as follows: Let c be
a specific value of the random variable E and m and n be as previously

defined. Then for the one-sided exceedance, Eq,

M) (m = c +n = 1)
(m = c)! (m+ n)!

Pr(El w o) om

For the two-sided exceedance, Ey,

(m)(n = V(e + Dni(an+m=~c = 2)]
Pr(Ey = c) = & CEIDINCE L

The numerical evaluation of these formulas ig somewhat tedious,
requlring the use of tables of factorial logarithms, or analogous. func-
tions if a computer program is utilized. But the function can also be

computed recursively, as will now be shown.
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Consider first the one-sided exceedance. As stated previously, it
is assumed that if a one~sided exceedance test‘is to be applied, the
choice of upper or lower tail can be specified in advance. Under the
null hypothesis, the probabilities are identical regardless of the
choice of tail. Choosing the upper tail arbitrarily, rank the (m + n)
observations into a single group, preserving only the sample source
designations x and y. Based upon the hypothesis that both samples are
from the same distribution, all (n ; my possible arrangements are
equally likely. The probability that the exceedance equals zero is.
identical to the probability that the largest observatlon is an x,
which must be equal to the'ratio of x's to the combined sample size.

Let L represent the largest observation in the combined sample. Then,

Pr(E1 = 0) = Pr(L = x) = E%E (4=15)

The probability that the exceedance equals one 1s identical to the
probability that the largest observation is y and the next largest is x.
Each conditional probability is simply the relative size of the speci-

fied sample to the combined sample given the prior condition.

Pr(El =1) =Pr(L =y, L-1 = x) = Pr(L = y)'Pr(L-1 = x|L = y)
_om n . n m - - . m.
e ey gl vy L LA
Since Pr(L = x) equals Pr(E; = 0) this reduces to Pr(El = 0) +$'l .
nTm-

The probability that the exceedance equals two is identical to the
probability that the largest and next largest observations are y, and

the third largest is x.

Pr(E; = 2) =Pr(L =y, L-1 =y, L-2 = x)
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= , wm=l o
m+n m+n-1 m+n~2

n , _m . m-l
m+n min-l  min-2

Pr(g; = 1) mﬁ;fz (4-16)

By mathematical induction we extend this recursive relationship to the

general term. By means identical to that for P(Ej = 1) and Pr(E; = 2)

we see that

Pr(E; = k) =Pr(L=y, L=l =y, ..., L=(k~1) =y, L~k = %)
= (m) (m~1) ... (m=(k-1))(n) (4-17)
(m+n) (m+n~1) ... (m+n-(k~1)) (m+n-k)

and

Pr(E] = k+l1)

Pr(l=y, L-1 =y, «v. 4 L=(k=1) = y, L-k=y, L-(k+l)

, = x)
| m(m-1) ... (m~(k~1)) (m~k) (n)
(m+n) (m+n-1) ... (m+n—-(k-1)) (mtn-k) (m+n- (k+1)) (4~18)

Comparing factors in equations (4-~17) and (4~18) we see that

-k
Pr(By = ktl) = Pr(E, = k) * —Bf (4=19)
1 1 b (k+1)
Equation (4~19) gives a recursive equation for the general term. The

inductive proof is completed by showing that equation (4-19) holds for

the case k = 1., Substituting k¥ = 1 into equation.(4~l9) glves

Pr(Ey = 2) = Pr(E; = 1) ':ﬁﬁﬁ%z

which was the result derived above as equation (4~16). Now equations

(4-15) and (4-19) provide a straightforward method of computing the
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probability function of the one-sided exceedance.

A similar recursive formula for the two-sided exceedance can be
derived by applying the same logic. 1In this case it is necessary to
count the number of y's which are larger than X(L) to obtain E,. Let

S represent the smallest observation in the combined sample. Then,

Pr(E2 = 0) = Pr(S =%, L = x)
= Pr(S = x) Pr(L = x|s = x)
n{n-1)

(4-20)

(mn) (rn-1)

The event E, = 1 can occur in two equally likely ways, i.e.,

s=y, S+l = x, ..., L = x
and
S=%, vo., L=l=x, L=y
Thus,
Pr(Bp = 1) = 2 * Pr(S =1y, 54l = x, L = x)

=9 . mn (n~1)
(m+n) (min-1) (m+n-2)

)

2 Pr(Ez o= 0)
The event Ejy = 2 can occur in 3 equally likely ways, i.e.,

S’X,..o,L“2=’X,L'—1=y,L=y
Say,S‘Fl“Xg...gLf‘l“X,L-‘ﬂy

§ =y, S+l =y, S+2 = x, .,., L = x

Since the probabilities of all of these ways are additive,
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3. mn (m-1) (n-1)

Pr (Ez = 2) ‘
(m+n) (m+n-1) (m+n-2) (m+n-3)

- . _3_ . m_l -
Pr(fy = 1) 5 ' === (4-21)

In general, there are (k+l) equally likely events for which E; = k.
One of these k configurations is now stated, and the probability fac-

tors appear in the_same order as the configuration.
S$=x, L=y, L-l=y, ..., Lw(k=-1l) = y, L=k = x

n m m-l1 ... m-(k=1) , n-1 (4-22)
n+m ntm-1 n-m-2 n+m~-k n-+m= (k+1)

Inasmuch as all k+l events are equally likely, the probability is

nem:+m-l o m=(k=-l) * n

(4-23)
n+m ¢ ntm-1 * n+m-2...0+m-k * odm~(k+1)

Pr(E, = k) = (k+l)

There are (k+2) equally likely events yielding E, = k+l, a representa-

tive one being
S=k, L=y, L=l =y, ..., L=(k~l) = y; L=k = y, L=(k+l) = x
and it thus follows that

Pr(E2 = kdl)
(4-24)

= (k+2) ncm* (1) (m-(k-1)) (m-1)* n
‘ (n#m) (ntm-1) (n+m=-2) ... (ohm-k) (n+m=(k+1)) (n+m~(k+2))

Now by comparing the factors on the right hand sides of equations

(4-23) and (4-24) we see that
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Pr(Ey = k+l) = Pr(Ey = k) - Ei% . n+mfz§+2) , (4-25)

The inductive proof is completed by showing that (4-25) holds for the

case k = 1.,

Pr(E, = 1 + 1) = =2 . _mk
2 1+l mbn-(k+2)

m-1
min—-3

-3,
2

which agrees with equation 4-21, Thus the equation is shown to hold in
general.

Inasmuch as no tables of the exact significance probabilities of
the E; test are:available for the case where n > 20, a table is present-
ed in Appendix D wﬁiéh has both El»and E, tabulated for sélected equal
sample sizes, fromn = 2 to n = 100, All those values of &hich have

significance probabilities between 0.10 and 0.0l are tabulated.
Analysis of the Nonparametric Tests

Of those tests described in this chapter, 0.C. curves were derived
for only two: the U test and the F test. However, the 0.C. curves for
the RS, MD, and E tests are of considerable interest in their own right
and for comparison'with the above derived resulté.' The empirical esti-

mation of these 0.C. curves is the subject of the next chapter.



CHAPTER V
OPERATING CHARACTERISTIC CURVES FOR THE NONPARAMETRIC TESTS

0f those tests presented in the previous chapter, three are non-
parametric: the E test, the MD test, and the RS test. Nonparametric
tests as a class have certain features in common, The most important,
from which the name is derived, i1s that the hypotheses under test are
not on specific parameters of é distribution but rather on the distriw
bution itself., Another label often applled to this type of tést is
"distribution~free". That is, no assumptions need be made about the
form of the distribution being sampled in order to compute the signifi-~
cance probability of the test., In applications such as the ' one being
studied here, this distribution-~free property has a‘definite‘appeai,‘
because it is likely that the normal'assumptibn.will not hold. 1In
some- cases, npnparamétric‘tests also have an .advantage in simplicity
of computation. This is particularly true of the exceedance tests,
The particular aspect of nonparametric tests which concerns us here is

their respective 0.C, curve analysis.
Relative Merits of Sampling Experiments.

The literature of studies of 0.C. curves (or equivalently, power)
of nonparametric tests indicates tWO:basically different approaches
in developing results. One approach is characterized by the work of

Lehman (1953) who formulated alternative hypotheses which were

67
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”tailoreé" to the structure of the test, and made simplifying assump=
tions so that general analytic expressions. could be derived, This pro=
cedure was foliowed in the previbus chapter for the U and F tests,
Lehman's work has been extended by Gibbons (1964) who also ﬁrovided a
good summary of related developments.,

The other approach is to construct a descriptive model of an
actual gituation of concern for which no mathematical method of anal-
ysis is available, and then to make empirical estimates of the desired
function, by tabulating the results of repeated trials of sampling
experiments.

The analytical methods have,traditionally been favored for their
rigor and generality of application. But this approach also has its
limitations, as pointed out by .Hammersly and Handscomb (1964), who
emphagized this point: that one of the main strengths of theoretical
mathematics is its concern with abstraction and generality, in that
oné can write symbolié expressions.or formal equations which abstract
the essence of a problem and reveal 1ts underlying structure. However,
this same strength carries with it an inherent weakness: the more genw-
eral and formal its language,; the less 1s mathematical theory ready to
provide a numerical solution in a specific application,

The limitations of mathematical analysis have lead some research-
ers to exploit the\eﬁpirical ﬁechnique of distribution sampling. A
number of such studies have been reported. Dixon and Teichroew (1953)
determined for various sample sizes, such as n=m = 5, 10, 20;
m=5,n=10; m = 10, n = 20; and others, the powers of the Wilcoxon
ranksum test and the Komogorov-~Smirnov maximum difference tests against

normal shift alternatives. A normal shift alternative is of the form
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Hytug # up
where uy and 'y are the means of two normally distributed populations
with common variaﬁce 02, The significance levels considered were
a = 0.01, 0.05, and 0.10. They also made experiments with alternative
hypotheses for which variances as well as means were unequal. The num-
ber of trials, i.e., palrs of samples, on which their estimates were
based was 150, and in some cases 100.

Epstein (1955) compared the power of the runs test, the exceedance
test, a truncated variation of the maximum difference test, and the
rank sum test against the normal shift alternative. The significance
level was maintained at 0.05. The resuits were based on 200 trials,
for sample size 10 only.

An empirical analysis of the probabilities of all rankings of the
order statistics of two-sample tests was rgported by Teichroew (1955)
for very small sample sizes up to and including n = 3, m = 4. The
normal shift alternative was considered. Since all possible rankings
were presented, no spe¢ific tests or significance levels were considered
for the reader could choose any rank-order test and significance level
he wished and anélyze it for the sample sizes given. The results were
based upon 1,000 trials in some cases and 2,000 trials in others.

Van der Laan and Oosterhoff (1965) compared the Wilcoxon rank-sum
test with two specialized rank order tests for samples of size six on
norﬁal shift alternatives. The significaﬁce level was o = 0.0i and
results were based upon 2,000 trials for eacﬁ of twelve specific shift
alternatives. Also in 1965, Rosenbaum»compared several differenf ver-
sions of the one-sided and two-sided exceedance test for normal shift

alternatives, sample sizes n = m = 10, and nominal significance levels
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- of 0.05 based upon 100 trials.

For this dissertation, a distribution sampling experiment is con-

ducted to estimate the power of the rank-sum, exceedance, and maximum

difference tests, as a function of the alternatives of one-sided and

symmetrical two-sided truncation, ahd is discussed in greater detail

following the general description of the distribution sampling tech-

nique.

General Description of the Distribution

Sampling Technique

The sampling method for evaluating the distribution of a.two-

sample test statistic can be described in general terms as follows:

(a)

(b)

(c)

Perform a large number, (NT), of trials, each trial
consisting of two samples (of size NS each), one from
the density function f£(y) and the other from the density
function g(x), where £(y) and g(x) define the two pop-
ulations under comparison. The two populations are
simulated by the use of random number generators.

For each pair of samples, compute the test statistic
S(xil,..., XyNgs Yils+++s Ying) for i =1, ... NT
Rank the NT values of the statistic. The number of
distinct values will in the case of some statistics be
limited by the sample size NS (e.g., MD, E) and in the
case of others by the number of trials NT, (e.g., RS
for large samples). The number of trials will be the

limit whenever the sample space is larger than NT.
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(d) Let the set of numbers Cgs» K=1, 2...N8 or K = 1, 2,
...NT, represent the ranked set of distinct values of

S(x,y), and for any number Cg, compute

where NL is the number of trials for which the statis-

tic S(x,y) is less than or equal to CK'
When ﬁ(C) is an empirical distribution function -of the test statis-

tic S(x,y) and NT becomes large, this empirical function will tend to

approximately equal the true distribution function. Thils 1s a conse-

quence of the law of large numbers, which can be used to show that

M = [F(0)] = F(O)
where F(C) is the true distribution function of C.

The distribution sampling technique is applied to the development
of approximate 0.C. curves of a test for truncation by making one run
for each desired value Yo of the truncation parameter y, each run con-
sisting of NT trials. Each trial is a single computation of the test
statistic for the specified alternative, each run yields an approximate
distribution of the test statistic for that alternative, and each set
of runs for a given sample size gives a family of sampling distribu-
tions from which a family of 0.C. curves is derived. Each curve is-
developed by varying vy and holding C fixed at a certain value. To make
one trial requires 2 x NS random nuﬁﬁers to be chosen, stored, and ana-~
lyzed. Each run requires a sum of NT trials for identical value of all

parameters. For .each 0.C. curve a sequence of approximately six to

eight runs is required, varying the truncation parameter y from zero up
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to a value such that é(y) < .10. Thus a typical 0.C. curve is con-
structed from 500 x 8 = 4,000 trials, which for samples of 25, repre-
sent 200,000 individual random numbers, not including those in the
truncated portion of the simulated supplier sample, which are rejected.
The probability of acceptance, B, for y = 0 is simply the comple-
ment of the significénce level o and fof all thé statistics under study,
was computed analytically.. By selecting a particula: gample size and
value of o, the critical point C, on the distribution of the test sta-

tistic is determined. That is Cy is determined by the relationship
a = Pr(s >‘Ca‘ y = 0)

in the case of an upper ope~sidéd rejection region and
a = Pr(s > | Ca' l y = 0)

for a two-sided rejection region. For nonparametric tests, C, can

o
take on only certain discrete values, due to the finite sample space of
the test statistic. A conventional practice is to select critical val-
ues which closely correspond to nominal & such as 0.10, 0.05, and 0.01.

With the appropriate value of C, determined analytically, B is es-

timated empirically by the equation

~

B(yo) = F(Cy | ¥ = vo)
The Sampling Experiment Details

The computer program for this experiment was written in the
FORTRAN language. This program was developed to integrate the above

factors, generate the required pseudo-random numbers, and tabulate and
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print out the empirical distribution function and variables identifica-
tion for each run.

The variables for each run which were specified on a control card
were the number of trials, the sample size, and the truncation point.
The choice between one-sided and two-sided truncation wasvmade by
changing a FORTRAN statement in the NORM subroutine. Figure 7 illus~
trates the flow chart of the program and a complete listing appears as
Appendix A. |

The populations from which the sample data were obtained were the
normaliy distributed population with u = 0, 0 = 1 for £(y), and a trun-
cated derivative of this population for g(x). The truncated function
was derived from the parent by simply discarding each deviate which
exceeded the point of truncation and drawing an additional deviate,
repeating this process until the required sample size was attained.

The.ran&om number generator used in this program was written in
the COMPASS language by S; Bell, formerly a Sandié Corporation statis-
tician, for the Sandia CDC 3600 computer system, under the code name
ANRV, which stands for "A Normal Random Variate." Bell used a "mixed
congruential technique" of generating a series of pseudo~random normal
deviates. This method was reported by Marsaglia, et. al, (1964) who
indicated it had been found to be somewhat faster than other normal
deviate generators of comparable quality. It has been programmed into
a number of different computer systems.

The statistical characteristics qf the pseudo-random member series
generated by this "ANRV" subroutine were studied extensively by Bell
and Holdridge (1967). They applied four different statistical tests to

a large number of different sequences, varying in length from 50 to
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100,000. The tests were the frequency? serial, runs above and below
the mean, and runs up and down. The report by Bell and Holdridge des-
cribes the nature and outcome of these stétistical tests of randomness
in considerable detail. ' The key conclusion of the study was that no
evidence of any signifiéant departure from randomness was revealed.

The fact that the extensive analysis they performed failed to indicate
non-randomness gives a measure of confidence in using the generator in
a sampling experiment.

A value of each of the following variables was specified for each
run: sample size NS, number of trials NT, truncation point k, one- or
two-sided truncation. In then deriving 0.C. curves from sampling dis~
tributions, appropriate critical values C, were chosen. Each of these

variables is now discussed.

Sample Sizes

For this study, equal samples of size 9, 16, ..., 100 were used.
The use of equal sample sizes was based on the fact that in most cases
equal sample sizes provide the most efficient uée of the data, and also
to minimize computér storage problems. The choice of squares was to
provide a fairly uniform increase in power as a function of sample size
increase. It was found that the 0.C. curves would be more nearly
equally spaced on the sample size scale, éince the standard error of
estimate of most statistics is a linear function of the square root of
sample size., It is not advocated that only squares should be considered
when selecting sample sizes. On the contrary, interpolation in a graph
of a family of 0.C. curves should be made when one wishes to analyze

the 0.C. curve for a sample size other than those presented. Such an



76

interpdlation is a straightforward procedure,

Number of Trials

An optimum choice of the number of trials, i.e., run length, in-
volves a trade-off of increased precision of results on the one hand
and increased computer time on the other hand. Reported sampling ex-
periments show wide variance on this‘poinf. Van der Laan and Ooster~
hoff (1965) ran 2,000 trials for each combination of variables. But
Rosenbaum (1965) used only 100 trials per combination. Probably each
of these extremes could be justified on the basis of different points
of emphasis in the respective experiments.

In this experiment the number of trials for each combination of
the independent variables was set at 500 for sample sizes 49 and small~
er, and at 200 for sample sizes of 64 or larger. There were two con-
siderations in reducing the run length from 500 to 200 trials for the
relatively large (64, 81, 100) sample siées. First, the computer time
increased markedly as sample size increased, due mainly to the great
number of sorting steps required to rank a large number of numbers.
Thus, the run lengths were reduced to help equalize the relative costs
of investigation for different sample sizes. The other reason, is that
as sample size increases, the 0.C. curve bécomes steeper, and thus a
less precise estimate of the value of B as a function of vy is required
in order to have a satisfactory indication of the relationship. This

point is discussed in greater detail in Appendix C.

Truncation Points

The alternative programmed into each simulation run was that a
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specified fraction of the parent distribution was excluded by trunca-
tion, from appearing in one of the samples. Both truncation on the
upper tail and symmetrical truncation on both tails were studied. The
actual truncation poinﬁs programmed varied from 6ne.situation to anoth-
er: the criteria used were that the points should be close enough to
each other to provide a fairly clear idea of inflection points in the
resulting 0.C. curves, and that the degrée of truncation should extend
over a great enough range to bring the probability<of acceptance down
to approximatel& 0.10 for a specified ﬁriticai value. The further lim-
itation of a 60% degree of truncation was imposed. After some initial
experimentation, increments of .05 were used for successive runs, with
additional runs in individual cases where a finer increment was re-
quired to adequately estimate a given 0.C. curve. Only degrees of
truncation through 40% are presented in the 0.C. curves, Figures 8
through 15; since it is doubtful that higher degrees would have practi-

cal relevance.

Significance Probabilities

The method of distribution sampling estimates the entire distribu-
tion function of the test statistic for each set of conditions; thus
it is possible to consider any significance probability within the lim-
itation of the discrete probability range of the tests. In the presen-
tation of results, however, the significance probability range was re-
stricted approximately to the interval between 0.03 and 0.15. In the
case of actual application of the analyzed test to a data validation
problem it is felt that practical considerations would force the user

to choose a significance probability somewhere in the 0.05 to 0.10



100

D 0] 00)
@) O O

PROBABILITY B8 OF ACCEPTING Hq . |
N . . ¢
©) .

ONE-SIDED TRUNCATION
P (E <2) |
‘ Ho: Yy =0

HA: Y:yg 7
a(n=m=9) =.103
a(n=m=lOO)=.l_33'

1\

~__

\

T, : . .30 .35
v, FRACTION OF LOT EXCLUDED BY TRUNCATION

Figure 8. 0.C. Curves of Exceedance Test,'El € 2, for One-Sided Truncation

40

8L



79

range. Because of the discreteness problem it is not generally possi-
ble to choose an exact predetermined significance level for any given
sample size. For the exceedance test, which appears to be most appli-~
cable to the detection of truncation, several possible acceptance num=~
bers are analyzed for each sample size herein; for the other tests,
only a representative set of acceptance numbers, one pér each sample

size, is presented. .
0.C. Curves for Tests of One~Sided Truncation

The operating characteristic curves portrayed in Flgure 8 are for
the E; test with an acceptance number of two; that is, one would accept
the null hypothesis of no truncation if two or fewer observations in
the customer sample exceed the largest observation in the supplier
sample.

The exceedance test significance probability is surprisingly in-
sensitive to sample size. It is noted that all the curves in Figure 8
are for the same acceptance number; although sample size varies from 9
to 100 the significance probability varies only from 0.103 at n =m = 9
to 0.133 at n = m = 100. This property of the exceedance test makes it
feasible to.hold the acceptance number constant for a given chart. In
examining Figure 8 it is seen that in order to have approximately a 10%
chance both Type I and Type II error, detection of truncation of degree
.10 fequires samples of about size 40, and detection of truncation of
degree 0.05 requires samples of about size 90.

When the acceptance number is increased from two to three, the
average significance probability is reduced from .118 to .051, and the

corresponding 0.C. curves all have higher Type II error probability.
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This is portrayed in Figure 9. Now, in this case it requires samples
of about 60 to detect 10% truncation with error probability of .10, and
over 100 to detect 5% truncation.

In Figure 10 a set of 0.C. curves of the maximum difference (Kol~
mogorov~Smirnov) tést is displayed. The significance probabilities
range from 0.12 for samples of size 9 to 0.04 for samples of size 100.

The acceptance numbers portrayéd vary from (K = 3) for (n = 9) to
K = i7) for (n = 100). The acceptance numbers as displayed tend to
force the significance probability lower as sample size gets larger.
Thus the 0.C. curves all tend to cross, as the larger sample sizes have
greater discfiminating power and also smaller significance probabili~-
ties. Upon examining the curves it is seen that, for instance, sample
size 100 acceptance number 17 would provide Type I error probability
of 0.04 and Type II error probability about 0.10 for degree of trunca-
tion 0.20.

The rank-sum (Mann-Whitney) test for one-sided truncation is ex-
hibited in Figure 11. The rank sum statistic has a discrete probabili-
ty function as do the two previoﬁs tests; however, the sample space is
much larger for the rank-sum test and therefore a.pre—specified signifi-
cance level can usually be obtained. Thus all the curves in Figure 11

have a significance probability of almost exactly 0.05.
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0.C. Curves for Tests of Two-sided Truncation

The 0.C. curves for tests of two-sided truncation are displayed in
Figures 12 through 15. The first three figures are for tHe two-gided
exceedance test, acceptance numbers three, four, and five, respective-
ly. These figures ére self-explanatory, subject to the same interpre-
tation as was offered Figures 8 and 9 previously. The reason three
figures, rather than two, are presented for the exceedance test, is
that possible values of the two-sided exceedance statistic are somewhat
more densely spaced than in fhe one-sided case, and it was felt desira-
ble for this particular test to present full results in the range of
interest of significance probability. With the three figures we have
full coverage of possible significance probabilities between 0.06 and
0.147, and partial coverage from 0.025 to 0.06 and from 0.147 to 0.185.

The two-~sided maximum difference test is displayed in Figure 12.
It should be noted that the maximum difference test, while theoretically
admissible, is exceptionally poor in detecting two-sided truncatiom.

It would exhibit much the samé weakness in any case where it was ap-
plied to distfibutions with equal average values and unequal degrees of
variation. As for truncation, symmetrical two-sided truncation doubles
the degree of truncation without increasing the amount of difference in
the cumtlative distribution at either end. Thus, such a data discrep-
ancy requires essentially dﬁuble the degree of truncation in the two-
sided case to have the same probability of detéction as thg one-sided
test would give to one-sided truncation. Figure lzvéhows that the 0.C.
curves are quire flat, cgmpared to those for other tests portrayed in

this chapter and the previous chapter. For samples of size 9, 16, and
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25, the 0.C. curves are almost insensitive to truncation of degree less
than 0.40 and only samples of size 100 achieve a probability of Type II
error as low as 0.10 for any degree of truncation displayed on the

figure.



CHAPTER VI
COMPARISON OF THE TESTS FOR TRUNCATION

The operating characteristic curves ha%e now been presented for
all tests of truncation studied in this dissertation. It is appropri-
ate to compare these tests on the basls of the ease of applying them
in operational situations, and upon their relative effectiveness in

detecting truncation when it exists.
Ease of Application

The relative ease of application of the testé depends in some part
on the method of computation utilized. If a validating organization
is set up in such a way as.to routinely prepare computer input forms
for analysis, then there is probably not a great deal of différence
among the tests. Given the same sample size, they will all require
about the same amount of work in preparing input forms, and the compu~
ter time required for all computations will be slight, compared to the
input preparation work. However, much of the time validation will be
performed by a roving field inspector who visits various supplier
plants and performs inspections and analyses manually. In such cire
cumstances the training time required for the inspector, who is gen—
erally not statistically sophisticated, and the time required to per-
form the tests, become important factors.

Of all the tests considered, the simplest to apply manually is
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Certainly the exceedance test., This test requires only that the
largest observation in the supplier sample be identified, and then a
count made of the number of customer observations exceeding it (for the
case of a onevsided test on the upper tall,) The most difficult to
apply is the rankesum test, Ranking a large group of numbers 1s a te-
dious procedure done manually., Midway between the exceédance and the
rank-sum tests In ease of application are the parametric U and F tests
and the maximum difference test. Both these types of tests can be
performed by straightforward application of the test statistic fore
mulas, or by a "grouped data' method which will materially reduce the
computation time required for manual analysis, Detalls concerning this
method can be found, e.g., in Bowker and Lieberman, (1959, pp. 4+10)
for computation of sample mean and standérd deviation, and in Berger
(1966, pp. 7«8) for computation of the maximum difference: Experimen~
tal application of the tests by data reduction clerks and college stu-
dents, however, indicate that even with the time saved by grouping data,
the latter tests are still considerably more timesconsuming than the

exceedance test.
Relative Power

By reference to the 0,C. curves presented in Chapters IV and V
a number of comparisons of thé power of the different tests can be
made. One basis for comparison is to select certain probabilities of
Type I and Type II errors, and then fin& the degree of truncation for
which the different tests will detect with the given probabilities.
For example, in Figure 16, the fopr different tests for one-sided

truncation are displayed, with sample size 49 and alpha of 0.05. The
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superiority of the exceedance test in this case is clear., For
B = 0.10, the exceedane test will detect truncation of degree 0.12,
whereas the maximum difference test will detect truncation of degree
0.26, the nérmal test degree 0,30 and the rankesum test degree 0,35.
Similar comparisons éan be made for other degrees‘of truncation and
acceptance probabilities. Viewing Figure 16 as a whole, the conclusion
is that there is not . a great deal of difference among the latter three
tests, but that there is considerable difference between them as a
group and the exceedance test.

The three tests for two-sided truncation are displayed in Figure
17, for the sample size 49 and significance probability 0.05, The most
striking point of interest in this diagram is the extreme relative
weakness of the maximum difference test. Even with truncation of
degree 0.40 there is a 0.50 probability of accepting the hypothesis of
no truncation. However both the other tests clearly wauld have zero.
probability of acceptance in such a case, Thus it can be seen that the
maximum difference test, while comparable at least. to the normal and
rank-sum tests for one-sided truncation, is completely unsuitable for -
detection of two-sided truncation.

In comparing the F test and the exceedance test, little difference
is noted between the fwo for truncétion of -less than about 0.08.
As truncation incréases beyond this level, the relative advantage of
the exceedance test increases, and whereas the exceedance test will
detect truncation of degree 0.16 with 0,10 probability of Type II
error, the F test is indicated to have about 0,22 probability of Type
II error, and in order for the Type II error probability to be reduced

to 0.10, the degree of truncation would have to be about 0.22.
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For truncation of degree zero to about 0.06, there is a slight ad«
vantage to the F test. However, the relative difference, when compared
with inherent sampling errors for the estimation of the curve for the
exceedance test, and approximation errors for the derivation of the
F test, is so slight as to be completely negligible from a practical
standpoint.

Figures 16 and 17 are representative of a whole set of comparisons
which can be derived from the figures of Chapters IV and V. All
these comparisons will provide evidence of the consistently higher

power of the exceedance tests when compared to others studied.



CHAPTER VII
SUMMARY AND CONCLUSIONS
Summaty

The problems associated with date valldation are directly related
to the data discrepancies which cen be postulated to occur in supplier
data. It 1s customary for suppliers to do sampling inspection in gen=
erating variables«type data. In such situations, the discrepancies
which may occur are divided into two mutually exclusive classes, viz:
(1) measurement and (2) sampling.

Associated with this dichotomy of data discrepancies is a similar
one between basic approaches of data analysils: palred samples and in-
dependent samples. For detection of measurement discrepancies, either
repeat measurement of units previously inspected by the supplier,
followed by paired-sample analysis: or independent sample analysis can
be used by the customer. But for detecting sampling discrepaneies, one
ly independent samples can be used.

Reference has been made to a portion of the large‘body of liter-
ature on experimental design which indicates the relative merits of
independent and paired-—sample analysis for measurement discrepancies.,

Little has been published about the properties of statistical tests
for sampling discrepancies. Therefore the major.portion of this re-

search is devoted to (1) the construction of a mathematical model of a
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certain type of sampling discrepancy, which is referred to as. trun-~
cation in sample selection; and (2) to the development of the operating
characteristic curvés of several different statistical tests for
truncation. Two of the 0.C, curves are derived analytically, the
others are estimated by the technique of distribution sampling. Com~

parisons among the different tests are made.
Conclusions

Several conclusions follow from this research, The first cone
clusion is that independént samples are not well suited to the overall
solution to the data validation problem, This conclusion contradicts
previously published doctrine on validation of attributes data which
indicates that only by the use of independent samples can the customer
make a fair appraisal of the supplier results. This contradiction is
explained by the fact that previous research did not explicitly récoga
nize the dichotomy of data discrepancies. Nor was there any actual
knowledge of the magnitude of the problem of detecting sampling dis~
crepancies by purely statistical means.

It ie concluded.that where circumstances dictate that sampling
discrepancies are not a concern of the customer (e.g. 100% supplier
inspection; customer selection of supplier sample) data validation
can be accomplished efficiently, economically, and with a significant
reduction in the size of the customer sample as compared to convention-
al acceptance sampling procedures.

It is concluded that, of fhose tests for truncation which have
been studied, the exceedahce test is the best. This was found to be

true for both one-sided and two-sided truncation.
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A general conclusion can be made about sampling discrepancies,

If a supplier should feel inclined to report on the quality of his lot
by the use of a biased sample, then truncation in sample selection

is a particularly effective way for him to do so, for two reasons.
First, it is quite simple to implement, in comparison with some other
possible methods. Secondly, it is extremely difficult to detect by
purely statistical means. The basis for the latter statement is the
set of 0.C. curves presented in Chapters IV and V which indicate that
for moderate amounts of truncation, in the order of fiﬁe to ten
percent, relatively lafge samples, in the order of 81 to 100 for both
the supplier and customer would be required to have probability of
both .Type I and Type II errors in the order of 0.05 or less. This
should be recognized as larger than most conventional acceptance
samples, and thus relatively unattractive,

In view of the difficulty of statistical detection of truncation
with small samfles, there 1s only one .possible legitimate argument for
the use of small, independent sampleé in.a data validation program.
This is thé psychological effect such sampling may have on suppliers.
They can be informed by the customer's quality organization that they
are being monitored for sampling discrepancies., Such independent
samples could be drawn on random odcasions,‘and could be integrated
into a data validation program for measurement discrepancies without
either a great deal of cost or of significance attached to thevresults.

The important conclusion from comparison of the 0.C. curves for
all tests studied, is tha; the exceedance test in both its versions
is the best for detecting the two versions of.truncatﬂon'considered

here, This further suggests that the exceedance~type tesﬁs which have
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been developed may deserve more attention than they have received up to

this time from statisticians and quality control personnel,
Recommendations for Further Research

Validation of measurement~type data is a quality control tech-
nique about which very little research has been conducted, >It appears -
that fruitful research could be pursued along several lines.

The use of equal sample sizes in this regearch is a valid means
for establishing the relative power of the different tests. However,
in actual practice a customer may have a supplier sample of a certain
gize which he wishes to validate for sampling discrepancies. He needs
to know the éample size required to detect a certain amount of trune
cation., Thus the,research_cén be extended by establishing 0.C.
functions for various sample size combinations.

Only one form of sampling discrepancy has been considered here,
Explicit analysis of other forms of sampling discrepancies such as salte
ing and témpering, and the methods required to detect them, should be
made. |

This research has established that the exceedance test is more
powerful than the normal.test for detecting onewsided truncation.
However, it ‘is well known that the normal test is optimum for detecting
a shift in the mean. Thus there is some combination of shift and
truncation for which both tests would have equal power. An investi-
gation of this "indifference peint' could yield interesting results.

Finally, this is, to the best of the author's knowledge, the first
time that the exclusive use-of indepéndent samples for data validation

has been questioned. Thus it appears that similar research for the
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case of attributes data could be performed to determine if
these procedures could be improved by catreful study of paired sample

analysis of attribute-type inspection data.
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All nonparametric test 0.C. curves presented in this dissertation
were estimated by means of the distribution sémpling program described
in Chapter V and listed here. The program consists of ‘a main program,
STASIM (an acronym for STAtistical $IMulation), and subroutines SIFT
(a catchword for a rank-ordering routine), NORM, (for NORMal distribu-
tion generator), and XBASD (an acronym for X-Bar And Standard Devia-
tion).

The main program STASIM provides for all input and output, controls
the use of the normal variate generator, and computes the valuesg of all
tﬁe tests statistics under study. The choice of one-sided or two-sided
truncation and one-sided and two-silded tests is controlled by changing
appropriate statements in the main program. The determination 6f run
length, test statistic sample size, truncation point, is made through
input data cards.

The subroutine SIFT is used at several points to rank a set of ob-
servation in numerical order. . The normal random variates are generated
by the use of a library function, ANRV, described in éLapter V. This
function is part of the NORM subroutine which controls the mean, vari-
ance, and truncation point of the distributions being sampled. = The

XBASD subroutine is used to compute the mean and standard dewviation of

the sampling distribution of the MD and E tests.
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PROGRAM STASIM

TYPE INTEGER CUM N

DIMENSION W{2001+X(100)+Y(100) s XANDY{200) «KTSUMY (200 )+

1KDIF(200) +PARM(6) » ISUMC 10031« ICTE100)sCUMI100) s
2+KUM{100)FL10)
3KTSUMX{2Q0) s JSUM(100) « CUMP (1007

DIMENSION MWUIS003) + IROGISC0) » ITSUMIS00) + ICUMF(S00) «
1ACUMF {500)

DIMENSION AMW{S00)

READ JOB TITLE

READtS.2) F
2 FORMAT(10A8)

PRINT J08B TITLE

WRITE(S.1) F

1 FORMAT{(1CA8 /)
PARM(1)=0,
PARM(2) =04
PARM(413=0.
PARM(S)=0.
PARM{6)=10

READ NS¢ NTe AND PARAMETERS

NS IS saMPLE SI1ZE
NT 15 NUMBER OF TRIALS

4 READ (54555) NSas NTs PARMC3)
555 FORMAT (212+ F10240)

TEST NS = 9939

IF (NS-9999) 6+ 3¢ 6
3 CALL EXIT

PRINT TITLEs NSe NT

6 WRITE (6+81)

81 FORMAT (1HC)
WRITE (6+48) NTeNS

8 FORMAT(1HG» 10Xs I3+2X ¢ 7HTRIALSe1Xs
11 IHSAMPLE SIZEs 1Xs14)
N = NS

C
[
(o

Nnoo

[eNaNs) OO0 . HO00

o0

INTTIALIZE VARIABLES

JZERO = O
DC 189 J = 1N
189 ICTtJy = J
DO 193 MAXDIF = 1N
ISUM(MAXDIF) = ©
193 CUMIMAXDIF) = Q
KZERO = O
DO 194 KONT
JSUM T { KONT §
194 KUMIKONT) =
MZERO = O

Q W
QO -
r4

PRINT MODEL AND PARAMETERS

11 WRITE(6416) PARM();.PARM(Z)‘PARM(3).pARM(R)

16 FORMAT (10X+ 13HNORMAL s MUI =+F6e242Xs 1 2HTRUNCATED A
LSHSIGMA +2X +SHMUZ2 =+F6e242X 4 1ZHTRUNCATED AT+FEe2¢2X)

REPEAT THE BASIC SIMULATION THRU STe 500 NT TIMES
DO S0C 1I=1eNT

DRAW RANDOM SAMPLE FROM F OF X

15 CALL NORM (NS+PARM(1)sPARM(2) 4X)

DRAW RANDOM SAMPLE FROM G OF Y

CALL NORM (NS+PARM(3) +PARM(4)+vY)

RANK~ORDER THE SAMPLE DATA

25 M=NS
MS=2%NS
DO 30 I=1«NS
M=M+1
W(ly=X(1)
wWMy=Y (1)

30 CONTINUE
CALL SIFT (NSsX)
CALL. SIFT (NSeY)
CALL SIFT (MSeW)
N = NS
M = NS

L[0T
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OO0

X 1S THE VECTOR ON WHICH TRUNCATION OCCURS
Y1) ! SMALLEST TO LARGEST I1=1+M
X{Jy < SMALLEST TO LARGEST J = 1sN

COUNT NUMBER OF EXCEEDANCES

KONT = O
DO 701 I=1.M
IFLY(I) = X(N)) T70147Cle702

702 KONT = KONT +1
701 CONTINUE

ACCUMULATE RANK=~SUM

MWT IS NON-SUBSCRIPTED EGUIV @F Mw
MWT = O
DO 620 I= 1N
DO 620 J= 1M
IF(Y(J)I=X{1}) 610+¢610:¢620
610 MWT = MWT + 1
620 CONTINUE
AMW(II)= MWT
J=1
D=w(1)
DO 107 1=2.MS
IF(D-W(1))105+110+110
105 XANDY(J)=D
D=w(1}
JEd+1
110 ED=w(1)
107 CONTINUE

COMPUTE MAXIMUM DIFFERENCE BETWEEN CUMULATIVES

XANDY { J) =ED

KCX=1

KCY=1

KTX=0

KTY=0

DO 142 1=1+J
112 IF(XANDY{1)~Y(KCY}}120¢115+120
115 KCY=KCY+1

KTY=KTY+1

GO TO 112
120 KTSUMY (1) =KTY
125 IF{XANDY (1)=X(KCX)1135+130¢135
130 KCX=KCX+1

KTX=KTX+1

Oan

o000

135

141

143
142

145
150

199

GO TO 125

KTSUMX( -} =KTX

IF (KTSUMX{L)~=KTSUMY (1)) GO TO 143
KDIF(11=0 '
GO TO 142

KDIF(1)=KTSUMX{ 1)=-KTSUMY (1)
CONT INUE

DUM = KDIF(1)

DO 150 1=2.+J

IFIDUM-KDIF (1)) 14541454150
DUM=KDIF (1)

CONT INUE

MAXDIF =DUM

IF{MAXDIF) GO TC 199

MZERO = MZERQ +1

CONTINUE

ISUMIMAXDIF) = ISUM(MAXDIF)+1
IF(KONT)1333+1333+1335

1333 KZERO = KZERO + 1
1334 GO TO 500
1335 JSUM(KONT) = JUSUM(KONT) +
END OF MAEN SIMULATION -DO- LOOP
500 CONTINUE
CLASSIFY AND RANK ALL RANK-SUMS
CALL SIFT(NT¢AMW)
DO 4005 K1l=1NT
4008 MWIKI)= AMW(KI)
J=1
ID=MW( 1)
DO 401 I= 2NT
IF{ID~MW(I)} 40244034403
402 IROG(JUI=1ID
ID= MW(I)
J=J+1
403 JD=MW(I)
401 CONTINUE
NOW HAVE DISTINCT MW VALUES. BUILD UP FREQUENCY COUNT
IROG(J)Y = JD
ICX=1
DO 406 T = 1aJ
ITX = O
409 IF({IROG(I}~-MWC(ICX)) 407+ 408+ 407
408 ICX = ICX +1

ITX = ITX +1

80T
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407
406
NOw

416G

411

PR

4165

417

420
418
419
416

421

302
303
304
308

GO TG 409~
ITSUM( ) =
CONT INUE
HAVE CELLS IROG(1) WITH FREG
ICUMF (1) =1TSUM(1) ’
DO 410 I=2.J

1TX

ITSUML(T)

ICUMF(I)=ICUMF(f=1)+ 1TSUM(I)
ANT = NT

DO 411 I=1+J

ACUMF (1) = ICUMF (1)

CUMP (1) = ACUMF (I)/ANT

INT RANK-SUM RESULTS

WRITE (6+4165) J

FORMAT (1HO«IOHTHERE ARE +I3« 20H DISTINCT RAN
1K SUMS)

RJ = U

R = RJ/720.

LOG = INT(R)

RLOG = LOG

LAG = 1

LEG = 20

IF(LOG~0) 41644164417

DO 418 L= 1.L0G

WRITE(6+4302) (IROGIIY
WRITE(6+303) (ITSUM(T Y
WRITE(G«304)CICUMF(])

1=LAGLEG)
I=LAG.LEG)
1=LAGsLEG)

LAG = 1+ L*20

IF{LOG-L) 419+ 419 420
LEG = 20 * (L+1)

CONT INUE

IF(J=20%L0G) 42144214416
LEG = J

I1=LAGLEG)
I=LAG+LEG)
I1=LAGILEG)

WRITE(6+302)(IROG( 1)y
WRITE(S6.3C33{ITSUMT) s
WRITE(SH«3G4)(ICUMF (T
CONT INUE

FORMAT ( 1HO « 1 SHRANKSUM VALUE « 2015
FORMAT(1H s I1SHFREQUENCY « 20150
FORMAT ( I1H +15HCUM FREQUENCY s 2015)
FORMAT(1H +1SHCUM PROBs FNe ¢« 20(1XsF443))

C

C CUMULATE RESULTS FOR EXCEEDANCE AND MAXIMUM DIFFERENCE

[of

201

1338

[}
C COMPUTE MEAN
C

[

CuM(1l) = ISUM(1) +MZERO -
DO 201 MAXDIF = 2+« N
CuM (MAXDIF) =

KUM(1) = KZERO + Jsum(l)
DO 1338 KONT = 2N
KUM{KONT) =

CALL XBASD(Ns

CUM(MAXDIF~1)+1SUM(MAXDIF)

KUM(KONT=1) +JSUM(KONT)
AND STD DEV FOR EXCEEDANCE AND MAXIMUM DIF

NT s JSUM + WBAR ¢+ RMR )

CALL XBASD(N, NT¢ISUMIXBARIRMS)

C PRINT RESULTS FOR EXCEEDANCE AND MAXDIF

291
2915
232
2928
293
294
295
296

WRITE (6+291)
WRITE(6+2915)

JZERO S (ICT (U e J=1eN)

WRITE(6:292) KZERC+ (JSUM(KONT? s KONT =1 +N?

WRITE(6+296) RMR
WRITE(64293)
WRITE(6+2925)
WRITE(6+294)

WRITE

WBAR

MZERO . { ISUMIMAXDIF )«
(52295) MZERO (CUMIM) M= aN)

KZERC+ (KUM{IKONT ) + KONT=1 4N}

MAXDIF=14N)

WRITE(6+296) XBARs RMS

FORMAT ( 1HO» 1 2HARGUMENT «2614)
FORMAT(117X+16H MEAN STDDEV )
FORMAT(1H +12HEXCEEDANCES +2614)
FORMAT (1H )

FORMAT (1H +12HCUM EXCEED 12614)
FORMAT(1H +12HMAXDIFF R W2614)
FORMAT(1H +12HCUM MAXDIF +2614)

FORMATC 1H44+ 117X+ 2F 742}
GO TO 4
END

60T
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SUBROUTINE SIFT (N«XY

DIMENSION X{(40)

" M=N

M=M/2

IF(M) 34243
RETURN
KaN=-M

J=1

I=0

L=1+M

IF (XEI)=X{(L)Y)I 7746
A=X(1)
XEIy=X{L)
X{L)y=A

I=1-M

IF(I1 74745
J=J+1
IF{U=KY44441
END

SUBROUT INE NORM({NsXsYsS)

N
X
Y
S

1s
1s
IS

s

NUMBER OF VARIATES RETURNED

MEAN OF DISTRIBUTIONs NORMALLY ZERO
TRUNCATION CONSTANT ON UPPER TAIL

THE VECTOR OF RANDOM VARIATES SELECTED

STD DEV IS FIXED AT ONE

DIMENSION S(20)
DO 10 I=1aN
T = ANRVI(O) + X

IF(T=Y) 10:+949
Sy

ANY VALUE OF T WHICH

= T

RETURN
END

IS LESS THAN Y SHOULD BE ACCEPTED

[eNaNe]

SUBROUT INE XBASD(Ns

DIMENSION 1(50)
S=040
S2=040
DO 5 K=1sN
D=k
F=1(K)
S=S+F*D
S2=S24F ¥D*D
A= NT
X=S/A -
R=SQRTF(S2/A~X#%2)
RETURN
END

NTsleXeR)

0TI
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In Chapter IV the distribution of X was taken to be approximately
normal with mean p, and variance 0X2/n. According to the Cenfral Limit
Theorem this result holds exactly as n + «», But it is generally felt
to hold for relatively small sample sizes, as well. An empirical study
was performed to determine how good the approximation really is. For
this study, samples of size n = 2, 5, 10, 25, and 50, are considered
along with degrees of trumcation y = .05, .10, .20, .40, .60. For each
combination of sample size and degree of truncation, 1,000 trials are
performed. Then the mean, varilance, coefficlent of skewness, and coef~
ficient of kurtosls, are computed, according to equations presented
below.v

Duncan (l§59, ﬁp. 496—501) discusses the computation of moments of
a frequency distributién and explaing that the coefficlents of skewness
and kurtosis are zero for a normal distribution. Further details con=
cerning computation and interpretation of skewness and kurtosis coef-
ficlents are ajailablé in Duncan's book. (Duncan uses the symbol yj
for CS as defined heréin; énd_yz for CK.) |

Let vy be the jth‘moment of the frequency distribution of x's about
zero. In our case, the freqﬁency diétribution consists of 1,000 x's.,

So, letting N = 1,000,

100
'V. =

N
i iEI (xi) /1000

The first moment of the frequency distribution about zero is the mean of
the frequency distribution, which should be, with 1,000 trials, a good
estimate of the population mean. Letting the " over a parameter denote

a sample estimate of the parameter,
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1000_
Hg = 'Zl xi/lOOO.

The second moment about the mean is the variance,

o 2= 99,
i=1

SN2 = - 2
b4 = i~ pi) /1000 = Vo = V1

The third moment about the mean is a measure of skewness, but a more
common measure is the third moment divided by 03, Let CS denote the

coefficient of skewness. Then
CSi-c w (VB bl 3V2V1 o 2Vlz) / (6’322)3/2

Finally, let the coefficient of kurtosis be denoted by CK. Then

ék§ = [y ~ 4v3vl_+6v2v12 = 3vy") / (832)23 - 3.0

If the Central Limit Theorem held exactly then the following would be
the result:
E(fly, = u) =0
¥
5.2 2
Bl6 /(@x /u)] = 1
E(C8g) = O
B(CK,) = 0

The results of the sampling experiment showed that for moderate
amounts of truneation im the order of 0.10 or less, samples of two or
more gave a good approximation to the expacted normal distribution. As
the degree of truncation increased; so also did the required sample
size.

The mean and standard deviation were consisténtly very close to
thelr expected values, within the limits of sémpling variation. The

results for €S and CK are presented in Table III and Table IV. Both



.10
.20
.40

.60

TABLE III

SKEWNESS OF EMPIRICAL DISTRIBUTION OF X

5 10 25 50
-.2846  -.1617  =.1070 . 0454 ~.0179
~.3219  -.2372  =-.2322 ~.1069 ~.0839
-.5720  -.3488  -.0939 -.1743 -.1531
-.5953 ~-.3807 -.2497 -.2905 -.1713
-.6629 -.5430 -~ 2459 ~,2820 ~.1987

TABLE IV
KURTOSIS OF EMPIRICAL DISTRIBUTION OF ¥

2 5 10 25 50
.0851  ~-.0994 ,2318 .1828 -.0925
. .0111  ~-,0031 0713 ~.2105 .0550
.4b17 .1008  -.1481  -.0746 .0128
. 3549 L0151 -.1430 . 2507 .0773
. 3968 0569 -.1204 0767

114



115

these measures should approach zero as sample size increases. In exam—
ining the tables it is seen that this is in fact the case.

It is difficult to say just what sample size is required for the
normal approximation to be sufficilently valid since the degree of accu-
racy required will vary from one application to another. However, from
examining the tables, a sample size of 10 appears to be adequate, inas-
much as very little improvement 1s noted for larger samples.

Another form of analysis was performed by using the Kolmogorov-
Smirnov goodness-of-fit test, and éomparing the simulated empirical dis=-
tributions with normal distributions having thevmaan and variance which
are predicted by the Central Limit Theorem.

The mechanics and rationale of the test are described by Siégel
(1956, pp, 47~52). The results are portrayed in Table V. This shows
that, as sample silze incrpases, the one-sample maximum difference
statistic, MD,, decreases but does nﬁt approach zeﬁo.' Actuélly, the
expected value cf MD, is 1/VN 1f the empirical and theoretical distribu-
tions are identical, where N 1s the number of trials in the experiment.
Thus the expected value of MD, is E(MD,) = 1//10600 = 031,

For samples of ten or better, all the values of MD, range from
0.015 to 0.038, while for samples of two and five there are several
values larger than 0.05.

The two different methods of analysis tend to support the conclu-
sion that for samples of ten or greater the Central Limit Theorem can

be safely applied.



116

TABLE V

MAXIMUM DIFFERENCE BETWEEN EMPIRICAL AND THEORETICAL

CUMULATIVE DISTRIBUTION FUNCTIONS OF X

n> 2 5 10 25 50
y

¥

.05 .020 .026 .03l 017 .038
.10 .015 .070 .026 .016 .018
.20 .056 .038 .020 026 021
.40 051 .039 .036 034 033
.60 055 .052 .029 015 021
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In this experiment the primary goal was to generate 0.C. curves
which would have sufficient precision that they could be used to com-
pare different tests and to choose appropriate sample sizes. Thé ade-
qua;y of precision of the 0.C. curves for their intended purpose is
established by two different methods.

One method is to compare 0.C. curves estimated sgparately to check
on the degree of agreement. Some typical results are summarized in
Table VI.. and plotted in Figure 18. These are the results of three
separate sequences on the one-sided exceedance statistic equal samples
of size 25. The acceptance number chosen for the comparison is E; = 3.
0f these three 0.C. curves compared, two are programmed on equal incre-
ments of the truncation point k, while the third is incremented on the
degree of truncation parameter y. This is the reason for the differ-
ence in the point locations in the horizontal direction.

In inspecting Figure 18, it is seen that the three curves are in
relatively close agreement. The largest discrepancy is about a 0.06
difference in é of the two extreme curves which occurs at approximately
vy = 0.07 and v = 0.115. Then at v = 0.23 there is a O,QS difference.

The three curves all converge at the end points (y = 0, B8 = 0.945) and

(y = 0.40, B = 0). By coincidence they are also equal at the point

It
[

(v 0.26).

0.16, 8
Since four times as many trials per point, {(or NT = 2000) would be
required to reduce sampling error by 507, and since the agreement exhib-
ited in Figure 18 is sufficient for evaluation purposes, it is conclud-
ed that NT = 500 is an adequate number of trials.

Another method of evaluating the precision of results is to estab-

lish a confidence band about the estimated 0.C. curve, by use of a



COMPARISON OF THREE 0.C. CURVE SAMPLING .

E; < 3, NT =500, NS = 25. a = 0.055

TABLE VI

SEQUENCES.
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Run Sequence A

k X N B
3.0 .001 471 .942
2.0 .0228 - 455 .910
1.75 .04 429 .858
1.5 . 0668 348 .696
1.25 .1056 255 .510
1.0 .1587 138 .276
0.75 .2266 30 .060
0.5 .3085 10 .002
0.25 4013 1 .002

Run Sequence B
3.0 .001 477 . 954
2.0 .0228 458 916
1.75 .04 436 .872
1.50 . 0668 378 .756
1.25 .1056 248 496
1.00 .1587 1139 .278
0.75 .2266 53 .106
0.50 . 3085 3 .006
0.0 .50 0 ,000

Run Sequence C
2,326 .01 471 942
1.645 .05 421 842
1.282 .10 295 .590
1.036 .15 157 314
0.8416 .20 75 .150
0.6745 .25 29 .058
0.5244 .30 11 .022
0.2530 40 1 .002




PROBABILITY 8 OF ACCEPTING Hq

o))
o

D
o

n
o

ONE SIDED TRUNCATION
}*o:),==()
RUN SEQUENCE A HaA:7=70
- =.045
RUN SEQUENCE B a=.04
n=m=49
RUN SEQUENCE C E,S 3

1 1

I

.05

10

A5 20 .25 30 35

Y , FRACTION OF LOT EXCLUDED BY TRUNCKHON'

Figure 18. Comparison of Three 0.C. Curve Sampling Sequencés
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normal approximation to the binomial distributiom.

The confidence band was coﬁputed for three example 0.C. curves:
for NS = 25, NT = 1000, (Figure 19), for NS = 25, NT = 500, (Figure 20),
and for NS = 100, NT = 200, (Figure 21).

It is known that the standard deviation of a binomial random vari-

able with parameter p is

On the assumption that the binomial random variable B is normglly dis-

tributed about its sample average B with standard deviation

oe =/ BE=B)

8 NT

the following 95% confidence band results:

Pr(B1 < B < 62) = ,95

where

- 1.9604

w?>

Bl'—'
and

B, = B + 1.960,

Comparison of Figures 20 and 21 shows the logical justification
for reducing the number of trials as sample size becomes larger. . Be-
cause the curve in Figure 21 is so much steeper, the actual area en-
closed in the 95% confidence band on is smaller than in Figure 20, al-
though the ordinates of the confidence band are larger due to the
smaller number of trials.

These confidence bands are only approximate, and are somewhat

wider than the true bands would be, for the following reasons. There



PROBABILITY B8 OF ACCEPTING H,

100

@
O

)]
O

D
O

n
O

Pr(E < 3)
n=m=25 7l
NT =500

UPPER 95% CONFIDENCE LIMIT ON. 3

ESTIMATED. VALUE OF B

LOWER 95% CONFIDENCE LIMIT ON B

|

1 . "
05 10 15 20 25 .30 .35 40

Y, .FRACTION OF LOT EXCLUDED BY TRUNCATION

Figure 21. Confidence Band for 500 Trials, Sample Size of 25
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PROBABILITY B OF ACCEPTING Ho

T T ! T T T T
Pr(E{ < 3)
n=mz=1{00 N
NT = 200
80 ' .
~UPPER 95% CONFIDENCE LIMIT ON B ]
60k -
B ESTIMATED VALUE OF B N
40k -
-LOWER 95% CONFIDENCE LIMIT ON B
20} .
0 i ] 1 ! ] A - |
0 05 10 15 20 25 30 35 40

Y. FRACTION OF LOT EXCLUDED BY TRUNCATION

Figur-e'ZO_. Confidence Band for 200 Trials, Sample Size of 100

XA



PROBABILITY B OF ACCEPTING Ho

1.OOf

00}
o

0))
@)

n
O

D
Q

R ™ e = " T T N

P(E < 3)
n=m=25
NT = 1000

]

I

_ | 1 4 ’ i
05 10 - 15 ’ 20 25 30 .35
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Figure 19. Confidence Band for lOOO'Trials,'Sample Size of 25
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is no sampling variation at the point y = 0 since o is known exactly at
this point. Knowledge of this point also assists in fitting the cufve
through the next two or three points, and thus tends to minimize the
sampling error near y = 0. The conclusion from the interpretation of
these figures is that the precision of the 0.C. curves is édequate for

the purposes of this study.
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The significance pfobabilities associated with the exceedance test
are presented here. Frequently used sample sizes between 2 and 100 are
included, and all sample sizes considered in this dissertation are in-
cluded., The tables include all critical vaiues requiréd in order to
bracket the range of significance probabilities from 0.01 to 0.10.

In Table VII the significance probabilities for the E, test are
tabulated, Thesge results are based on the equations 4=15 and 4-19. In
Table VIII the significance probabilities for the E, test are presented,

based upon equations 4=20 and 4<25.



TABLE VII
SIGNIFICANCE PROBABILITIES, ONE-SIDED EXCEEDANCE TEST

a=Pr(E > k | F(x) = G()

n ket 1 2 3 § 5 6

2 .16667 :

4 ,21429 .07143 .01428 o

G ,22727 .09091 .03030 .00758

8 .10000 .03846 .01282 .00350

g .10294 .04118 .01471 . 00452

10 .10526 .04334 .01625 .00542

12 .10870 .04658 ,01863 . 00686

14 L11111 . 04889 .02037 .00797

16 . .11290 .05061 .02169 . 00884

18 . .131429 .05194 .02273 .00953

20 .11538 .05301 .02356 .01001

22 . .11628 .05389 .02425 .01057 L00445
25 .11735 .05493 .02508 .01114 00481
30 .11864 .05620 .02610 .01186 L00527
35 .11956 .05711 .02682 .01238 .00561
36 .11972 .05726 .02694 .01247 L 00567
40 .12025 .05778 .02737 .01277 . 00587
45 ‘ .12079 .05831 .02780 .01308 . 00607
49 : .12113 . .05865 .02808 .01328 L 00621
50 - .12121 .05873 .02814 .01333 L 00624
55 .12155 .05907 .02842 .01353 .00637
60 .12184 .05936 . 02866 .01370 L0064
64 .12204 .05956 .02882 .01382 .00657
65 .12209 .05960 .02886 .01385 . 00659
70 .12230 .05981 .02903 .01398 . 00667
75 . .12248 .05999 .02917 .01408 .00675
80 .12264 . 06015 .02930 .01418 .00681
81 .12267 : .06018 .02933 .01420 .00683
90 .12290 .06041 .02952 .01434 . 00692
100 .12311 . 06062 .02969 .01446 .00701

8C1



TABLE VIII

'SIGNIFICANCE PROBABILITIES, TWO - SIDED EXCEEDANCE TEST

o = Pr(E2 >k | F(x) = G(y))

.03243.

n k> 1 2 3 4 5 6 7 8
2 . .50000 0 .
4 . 24286 .07143 0
6 .27273 .12121 . 04004 .00758
8 .14102 .05944 . .02028 .00505
9 .14706 .06561 . 02489 .00761
10 .15170 .07043 02864 .00988
12 .15839 .07748 .03432 .01360 .00471
14 .16296 . 08237 .03841 01643 .00638
16 .16629 .08596 .04146 .01863 .00775
18 .16883 .08871 . 04384 .02038 .00888 .
20 .17082 .09088 L04574 .02180 . 00982
22 .17243 .09264 .04729 ,02297 .01062 00467
25 .17434 .09473 .04914 .02446G .01161 .00529
30 .17662 .09725 .05139 .02616 .01284 . 00609
35 .17824 . 09904 .05300 .02742 .01375 . 00669
36 .17851 .09933 .05327 .02764% .01391 .00679
40 .17943 .10036 .05420 .02833 01444 .00716
45 .18035 .10139 .05513 .02913 .01499 .00753
49 .18095 .10205 - .05574 .029€1 .01534 .00777
50 .18109 .10220 .05587 .02972 .01543 .00783
55 .18168 .10286 .05648 .030:1 .01579 .00808
60 .18218 .10342 .05699 .030n2 .01609 . 00829
64 .18252 .10379 .05733 .03030 .01630 . 00844
65 .18260 .10388 .05741 03037 .01635 .00847
70 .18295 .10428 .05778 .03127 .01658 .00863
75 .18326 .10462 .05810 .03152 -.01677 .00876
80 .18353 .10492. .05837 .03175 .01694 .00888
81 .18358 .10498 .05842 .03179 .01697 .00890
90 .18398 .10542 .05883 .03213 .01722 .00908
100 .10582 .05920 .01745 ©.00924
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