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ABSTRACT 
 

Middle ear tissues, including the tympanic membrane (TM), round window 

membrane (RWM) and stapedial annular ligament (SAL), play important roles in 

acoustic transmission function in the middle ear. Changes of mechanical properties of 

ear tissues caused by diseases may induce the conductive hearing loss. It is critical to 

measure the mechanical properties of these tissues for understanding the middle ear 

transfer function and the mechanism of hearing loss. However, there are limited 

reports about mechanical properties of middle ear tissues in the literature because of 

the extreme small size and complicated geometry of these tissues. Moreover, most of 

published studies focused on mechanical properties under the static or quasi-static 

condition. As the middle ear tissues undergo vibration in the auditory frequency range, 

the dynamic properties or complex moduli of the tissues may have more realistic 

value than the static properties. The dynamic properties of middle ear tissues will 

provide the accurate data for modeling of human ear.  

In this study, the dynamic properties of human TM, RWM and SAL specimens 

harvested from cadaver temporal bones were measured in the auditory frequency 

range. The generalized linear solid model was used to describe the viscoelastic 

behaviors of these tissues. Two different approaches were used to measure ear tissues. 

The first approach of using acoustic driving was developed for membrane tissues, 

such as TM and RWM. Vibration of the membrane specimens in response to acoustic 

driving load applied to the specimen was measured by laser Doppler vibrometer over 

the frequency range of 200-8000 Hz. The dynamic experiments were then simulated 
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in finite element models by acoustic-structure coupled analysis in ANSYS. Dynamic 

properties of the TM and RWM were derived by inverse-problem solving method.  

The second approach was using dynamic mechanical analyzer based on the 

frequency-temperature superposition principle. The dynamic tests were conducted for 

the TM and SAL specimens at the frequencies from 1 Hz to 40 Hz at three different 

temperatures: 5o, 25o and 37oC. The frequency-temperature superposition principle 

was applied to expand the test frequency range to a much higher level (at least 3760 

Hz). The viscoelastic parameters and the complex moduli in the frequency domain 

were obtained and the results were comparable to the published data. The potential 

effects of the experimental condition and specimen dimension measurement on the 

results were estimated.  

The methods and results reported in this study contribute to soft tissue 

biomechanics. The complex moduli of middle ear tissues can be applied into finite 

element model of human ear to improve the model accuracy.  



 

1 

 

CHAPTER 1.  

INTRODUCTION AND BACKGOUND 

1.1 Structure and Function of Human Ear 

Human ear is the organ detecting and sensing the sound and it comprises three 

basic parts - the outer ear, middle ear, and inner ear (Figure 1.1). Each part has a 

specific function in detecting and transmitting the environmental sound into the 

brain. Sound wave enters the outer ear as the input and travels through the ear canal 

(auditory canal) to the tympanic membrane (TM). The middle ear transfers the 

acoustic pressure to the mechanical vibrations of the ossicles and cochlear fluid. The 

organ of Corti in the inner ear transmits the cochlea fluid vibration into the electric 

signal which passes through the auditory nervous and reaches the perception of 

sound in the brain.  

 

Figure 1.1 Anatomy of the human ear. (Keefe and Feeney, 2009) 
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1.1.1 Outer ear 

The outer ear is composed of two major components: the pinna (also called 

auricle) and the ear canal. The pinna is a visible part of the ear which resides outside 

of the head. The function of the pinna is collecting, amplifying the incoming sound 

and directing it into the ear canal. It also plays a role in the vertical localization of 

the sound by human ear (Middlebrooks and Green, 1991). The ear canal is a long 

and narrow tune running from the pinna to the TM, which is also known as the 

eardrum. The size and shape of the ear canal vary among individuals. The ear canal 

is approximately 2.5 cm in length and 0.7 cm in diameter (Faddis, 2008). The 

function of the ear canal is to prevent the debris coming into the sound pathway and 

to guide sound pressure propagation. The ear canal also has the function of 

amplifying the sound from canal entrance to the TM by 5 to 20 dB over the 

frequency range from about 1.5 to 6 kHz (Shaw, 1974).  

 

1.1.2 Middle ear 

The middle ear consists of the TM, ossicular chain, round window membrane 

(RWM), stapedial annular ligament (SAL), Eustachian tube, and a small (about 0.6 

ml) air-filled cavity called middle ear cavity or tympanic cavity. The major function 

of the middle ear is to transfer the acoustic pressure wave in the ear canal into the 

mechanical vibrations of the ossicular chain and ultimately transmit the vibrations 

into fluid in the cochlea. The following sections give more detailed introductions 
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about the structure and function of the ossicular chain and three middle ear soft 

tissues: TM, RWM, and SAL, which were studied in this dissertation.  

 

Ossicular chain 

The ossicular chain compromises three small bones (malleus, incus and stapes), 

two synovial joints (incudomallear joint and incudostapedial joint). It connects the 

TM at the manubrium as one end and the cochlea oval window at the footplate of 

stapes as another end. The footplate of stapes is surrounded by SAL, which seals the 

gap between the footplate of stapes and the bony wall of oval window. The ossicular 

chain is suspended by four ligaments (superior malleolar ligaments, lateral malleolar 

ligament, posterior incudal ligament and anterior malleolar ligament) in the middle 

ear cavity. There are two muscle tendons attached to the ossicular chain: the tensor 

tympani muscle tendon and stapedial muscle tendon. The tensor tympani muscle 

tendon is attached to the medial side of the malleus and innervated by the trigeminal 

nerve. The stapedial muscle tendon is attached to the posterior side of the head of 

stapes and innervated by the facial nerve. When elicited by the excessive sound in 

the ear canal, the muscles can contract to stiffen the ossicular chain and reduce the 

energy transmitted into the cochlea for protecting the inner ear (Borg and Counter, 

1989). The basic function of ossicular chain is to transmit the TM vibration into the 

stapes footplate vibration which drives the lymphatic fluid in cochlea. The ossicular 

chain acts like a lever system to amplify the sound pressure on the TM to the driving 
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force on the footplate of stapes. The lever ratio depends on the frequency and may 

vary from 1.9 to 6 (Gyo et al., 1987).  

 

Tympanic membrane (TM) 

The TM is a concave thin membrane which separates the outer ear canal and 

middle ear cavity. The diameter of the adult TM is about 8 - 10 mm and the height 

of the cone is about 2.0 mm (Wever and Lawrence, 1982). The TM is attached to the 

malleus at the manubrium. At the end of the manubrium and in the center of the TM 

is the umbo. The TM consists of two parts: the pars tensa and pars flaccida. The pars 

tensa is the major part with the tympanic annulus around the circumference and the 

malleus manubrium attached to the pars tensa, while the pars flaccida is the small 

part superior to the manubrium. The pars tensa has multi-layer structure consisting 

of the epidermal, collagen fibrous and mucosal layers from the lateral to medial side. 

The collagen fibers are organized into the matrix of ground substance primarily 

along radial and circumferential directions (Lim, 1970; 1995). The collagen fibers 

provide the major mechanical support for the TM. The epithelial layer and the 

mucosa layer are contiguous with the lining the external skin and middle ear mucosa 

respectively. The thickness of the TM is not evenly distributed through the whole 

surface and varies between 40-120 µm (Kuyper et al., 2006; Volandri et al., 2011). It 

is thicker around the boundaries of tympanic annular ligament and the manubrium, 

while thinner at the middle region between the boundaries. The TM plays an 
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important role in acoustic-mechanical transmission by converting the acoustic waves 

into vibrations of the ossicular chain. The mechanical properties of TM significantly 

affect the acoustic transfer function of middle ear.   

 

Round window membrane (RWM) 

Round window is one of the two openings into the cochlea from the middle ear. 

The RWM is the tissue which covers the round window. RWM consists of three 

layers from the middle ear to cochlear side: the outer epithelium, core of connective 

tissue layer and inner epithelium (Goycoolea and Lundman, 1997; Carpenter et al., 

1989). The core of connective tissue contains collagen fibers, fibroblast and other 

elastic fibers and provides the main structural support for RWM. Adult human 

RWM is usually thicker at the edge than at the center, and its average thickness is 

about 70 µm (Goycoolea and Lundman, 1997; Carpenter et al., 1989). RWM 

vibrates with an opposite phase to the mechanical vibrations entering the cochlea 

through the stapes at the oval window. The RWM serves as a barrier between the 

middle ear cavity and cochlea and a pressure release window for cochlea fluid. 

RWM also plays an important role in middle ear and cochlear mechanics (Paparella 

et al., 1983; Nomura, 1984; Hellstrom et al., 1997). Mechanical properties of RWM 

directly affect cochlear fluid motion and thus the movement of the basilar 

membrane.  
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Stapedial annular ligament (SAL) 

SAL lies in the gap between the stapes footplate and the margin of the oval 

window (Brunner, 1954; Bolz and Lim, 1972). The SAL provides a sealed but 

mobile boundary for the stapes and cochlea fluid vibration (Wolff and Bellucci, 

1956; Whyte et al., 2002). Histology and scanning or transmission electron 

microscopy studies on the SAL show a lattice-like structure consisting of the 

peripheral mantle of microfibrils and transverse thick fibers cross the SAL (Ohashi 

et al., 2006).  

The motion of the stapes footplate has been identified as the piston and 

hinge-like motions by von Bekesy (1960) and Gyo et al. (1987) measured on human 

temporal bone (TB). The piston-like and rotational forms of stapes motion induce 

shear deformation of the SAL and the mechanical properties of SAL directly affect 

the acoustic-mechanical transmission from the middle ear to cochlea. It is well 

known that otosclerosis of the stapes footplate and abnormal ossification of the SAL 

reduce the movement of the stapes and cause the conductive hearing loss 

(Schuknecht et al., 1985; Merchant et al., 2001). The studies on effect of middle ear 

static pressure or inner ear pressure on umbo and stapes vibration conducted by 

Murakami et al. (1997; 1998) and Gan et al. (2006a) in TB indicated that one 

mechanism behind those effects on sound transmission through the middle ear was 

due to the stiffness changes of the SAL. Researches on middle ear influence on 

otoacoustic emission by Büki et al. (1996; 2000) suggested that evoked otoacoustic 
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emission changes might be caused by an increase in the stiffness of the SAL and the 

stiffness of SAL was expected to reflect hydrostatic intracranial pressure changes as 

well. Moreover, since the transmission of sound energy from the middle ear to the 

cochlear fluid is largely dependent on the SAL mechanical behavior, the properties 

of SAL have affected the outcomes of stapedotomy or stapesplasty surgical 

approaches with different prostheses or SAL grafts (Causse et al., 1991; Lopez A, et 

al., 1992; Hüttenbrink, 2003). Therefore, understanding of the mechanical properties 

of the SAL is one of the important research subjects in middle ear biomechanics. 

 

1.1.3 Inner ear  

 The inner ear is the innermost part of the human ear, which is responsible for 

the sound detecting and balance (Torres and Giráldez. 1998). It can be divided in to 

two different sections: the cochlea and the vestibular system, which are dedicated 

for the hearing and balance, respectively. The human cochlea has a coiled and 

snail-like shape and about two and half turns. The fluid-filled inside space of the 

cochlea is divided into three channels: the scala tympani, scala media and scala 

vestibule, by two membranes: the Reissner's membrane and the basilar membrane 

(Hoffman and Bobbin, 1986). The scala tympani connects with the scala vestibuli at 

the apex of the cochlea, which is called helicotrema. There are two windows on the 

outer wall of cochlea: the oval window on the scala vestibule sealed by the stapes 

footplate and SAL, and the round window on the scala tympani covered by the 

RWM.  
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The function of the cochlea is to convert the mechanical vibration of cochlea 

fluid transmitted from the middle ear into the electrochemical nerve impulses which 

are passed on to the brain via the auditory nerve (Bess and Humes 2008). When the 

mechanical vibration of the stapes is transferred into the cochlea via the oval 

window, the vibration wave propagates through the cochlea fluid from scala 

vestibule to scala tympani. The inner hair cells of the organ of Corti on the basilar 

membrane can detect the fluid motion and generate the electrical signal to the 

auditory nerve. The hair cells at the base turn of the cochlea respond to the 

high-frequency sound, while those at the apex turn respond to the low-frequency 

sound (Schnupp et al., 2011; Olson et al., 2012).  

 

1.2 Mechanical Properties of middle ear tissues 

The middle ear has total eleven soft tissues including the TM, incudomallear 

joint, incudostapedial joint, SAL, RWM, four suspensory ligaments and two muscle 

tendons. The mechanical properties of these tissues affect the middle ear transfer 

function (Feng and Gan, 2004) and energy transmission trough the middle ear. 

Changes in the mechanical properties of these tissues caused by middle ear diseases 

may induce the conductive hearing loss. As an example, for the patients with 

otosclerosis, the extremely stiff SAL restricts the vibration of the stapes and reduces 

the hearing level significantly (Souza and Glasscock, 2004). Another example is 

otitis media, in which the negative middle ear pressure increases the stiffness of TM 

and other tissues. As a consequence, the mobility of the TM and ossicular chain 
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(Gan et al., 2011b) and the middle ear energy absorbance are reduced (Zhang and 

Gan, 2013c).   

To measure the mechanical properties of middle ear tissues is critical and have 

significant impact on the researches of middle ear biomechanics for: 1) 

understanding the basic mechanism of acoustic transfer function of middle ear and 

the conductive hearing loss induced by the mechanical changes of middle ear tissues; 

2) providing the material data for the middle ear artificial components, such as 

artificial TM, total ossicular replacement prosthesis, and partial ossicular 

replacement prosthesis, and middle ear surgical operations, such as tympanoplasty 

(Chu, and Jackler, 2003) and stapedectomy (de Souza and Glassock 2004); 3) 

providing the necessary input information for the physical model, circuit model or 

finite element (FE) model of the human ear.  

Despite the importance, there are only a few reports about the mechanical 

properties of middle ear tissues in the literature, because of their extreme small sizes 

and complicated geometry. Our research group reported experimental measurements 

and modeling analysis on the mechanical properties of stapedial muscle tendon, 

tensor tympani muscle tendon, anterior malleolar ligament and incudostapedial joint 

(Cheng and Gan, 2007, 2008a, 2008b; Zhang and Gan, 2011b). All those 

measurements were conducted by the quasi-static uniaxial tensile tests and the 

nonlinear elastic moduli of those tissues were obtained. The following paragraphs 

give the detailed introduction about the current research status and applications of 
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the mechanical properties of TM, RWM, and SAL, which were the three tissues 

measured by the dynamic tests in this study.   

The TM is the largest and most studied one among the middle ear tissues. The 

static or quasi-static mechanical properties of TM have been reported in the 

literature, but the dynamic properties of TM over the auditory frequency range are 

very limited. Mechanical properties of the human TM as Young’s modulus of 20 

MPa was first reported by von Békésy in 1960 using a bending test on a rectangular 

cadaver TM strip (von Békésy, 1960). The TM sample was assumed as a 

homogeneous and isotropic material. In 1980, Decraemer et al. (1980) performed 

uniaxial tensile tests on human TM and reported the Young’s modulus of 23 MPa at 

a relatively large strain. In 2005, Fay et al. (2005) discussed three approaches to 

derive the Young’s modulus of the TM: constitutive modeling, re-interpretation of 

published data and correlation of dynamic measurement with composite shell model. 

They reported the Young’s modulus of 30 - 90 MPa for an isotropic model and 

100-400 MPa for an orthotropic model of the TM. Recently, Cheng et al. (2007) 

studied the viscoelastic properties of human TM using uniaxial tension tests and 

digital image correlation method, and reported TM Young’s modulus varying from 

0.4 - 22 MPa over the stress range from zero to 1 MPa. Huang et al. (2008) and 

Daphalapurkara et al. (2009) measured the linear viscoelastic properties of the TM 

using nanoindentation techniques. The steady-state values of the in-plane modulus 

of the TM was 17.4 MPa and 19.0 MPa for posterior and anterior portion, 

respectively, and the through-thickness or out-plane modulus was 6.0 MPa for both 
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posterior and anterior portions. There are some studies on the mechanical properties 

of animal TMs as well, such as those of cat (Buunen and Vlaming 1981; Decraemer 

et al. 1989), and gerbil (von Unge et al., 1993). All those mechanical properties 

reported in the literature were obtained under quasi-static loading conditions. The 

pioneering work on TM dynamic properties was reported by Kirkae (1960) based on 

tension test of a TM strip at 890 Hz. Since then, there was no data published on 

dynamic properties of the TM until the most recent work by Luo et al. (2009a; 

2009b). Luo et al. investigated the relaxation modulus of the human TM at high 

strain rates using a miniature split Hopkinson tension bar (SHTB). The Young’s 

modulus of 45.2 - 58.9 MPa in the radial direction and 34.1 - 56.8 MPa in the 

circumferential direction of the TM under strain rates of 150-2500 s-1 

(corresponding to the frequency range of 150 - 2500 Hz) were reported by Luo et al. 

(2009a; 2009b). However, Young’s modulus at frequency higher than 2500 Hz is 

still not available because of the limitation of SHTB. New technology needs to be 

developed to measure the dynamic properties of TM at higher frequency range.  

There is no report about the mechanical properties of human RWM yet in the 

literature. To better understand the role of RWM in normal, diseased, and implanted 

ears, the FE models of the human ear, including the middle ear cavity, RWM, and 

cochlea, in addition to the ossicles and TM, have been reported by Bohnke and 

Arnold (1999), Gan et al. (2007), and Zhang and Gan (2011a). However, the 

mechanical properties of RWM were assumed in these FE models because there 

were no mechanical properties of RWM available in the literature. Bohnke and 
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Arnold used 9.8 MPa as Young’s modulus of RWM, Gan et al. used 0.35 MPa, and 

Zhang and Gan used 0.7 MPa for RWM. Noticeable differences of the RWM elastic 

modulus were observed among these studies. Recently, it has been reported that the 

vibration transducer of middle ear implantable hearing device has been attached on 

the RWM to stimulate cochlear fluid for restoring hearing level (Colletti et al., 2005, 

2006; Tringali et al., 2009). The studies on RWM using implantable transducers 

indicate that the attachment method and the RWM mechanical properties directly 

affect the efficiency of vibration stimulation into the cochlea. The accurate 

measurement on the mechanical properties of RWM is needed for improving the FE 

modeling analysis of the human ear. 

 Mechanical properties of the SAL have only been reported once in the 

literature by Gan et al. (2011a). They measured the shear modulus of the SAL 

through the quasi-static pulling test. Their results show that the SAL has typical 

nonlinear mechanical behavior and the shear modulus varies from 3.6 to 220 kPa 

when the shear stress increases from 2 to 140 kPa. The deficiency of the dynamic 

properties of SAL affects fully understanding sound transmission from the middle 

ear to cochlea and the development of an accurate FE model of ear. Most FE models 

of the human ear, mechanical properties of the SAL were assumed through the 

cross-calibration process and a constant elastic modulus varying from 0.065 to 5.5 

MPa was used for the FE models such as published by Gan et al. (2006b; 2007) and 

Wada et al (1992). There is an urgent need to measure SAL dynamic properties 

under auditory frequency range. 
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In summary, most of the published studies focused on the mechanical properties 

of middle ear tissues under the static or quasi-static conditions. The highest 

frequency of the dynamic measurement was limited to 2500 Hz for the TM sample. 

As the ear tissues work under the auditory frequency range from 20 to 20000 Hz, it 

is more important and valuable to measure the viscoelastic or dynamic properties in 

high frequency range compared with the static properties under slow strain rate. 

Most of the published FE models of ear used the linear static elastic properties plus 

Rayleigh damping coefficient for the middle ear tissues (Zhao et al., 2009) in the 

harmonic analysis. This kind of material model may induce unreasonable high 

damping for the middle ear tissues at high frequency range (> 4000 Hz). The middle 

ear tissues are typical viscoelastic materials, whose complex modulus and damping 

vary depending on the strain rate or the frequency. The lack of the dynamic 

properties of middle ear tissues affects the accuracy of the FE model of human ear. 

The experimental measurement on the dynamic properties of middle ear soft tissues 

will have significant impact on the research of middle ear biomechanics.  

 

1.3 Objectives 

The objectives of this study include: 

1) To develop and validate new technologies and methods for expanding the 

frequency range of the dynamic tests on the middle ear tissues to a higher level 

(comparing 2500 Hz using SHTB). One major restriction for the dynamic tests 
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of ear tissues is that the standard materials testing system (MTS) or dynamic 

mechanical analyzer (DMA) cannot directly reach the test frequency to 

thousands Hz. To overcome this, two new approaches were established in this 

study. The first approach is the acoustic driving measurement using laser 

Doppler vibrometer (LDV) with the assistance of FE modeling analysis. This 

approach was employed to measure the dynamic properties of membrane tissues, 

such as TM and RWM. The second approach uses DMA based on the 

frequency-temperature superposition (FTS) principle, which can be applied to 

shift the complex modulus obtained at lower temperature to much higher 

frequency at higher temperature. The method developed in this aim can be 

applied to measure the dynamic properties of other human soft tissues and may 

have impact on the experimental biomechanics 

2) To measure the dynamic properties of normal human TM, RWM and SAL in the 

auditory frequency range using the technologies and approaches established in 

Objective 1. The major outcomes of this aim are the complex modulus and loss 

factor (damping) of these tissues in frequency domain. The results provide the 

new data for the biomechanics of middle ear and can be applied to the FE model 

of human ear for improving the accuracy of the models.   
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CHAPTER 2.  

DYNAMIC PROPERTIES OF HUMAN TYMPANIC 

MEMBRANE 

In this chapter, two different approaches were used to measure the dynamic 

properties of human TM in the auditory frequency range: 1) measurement by 

acoustic driving with the assistance of FE modeling analysis; 2) measurement by the 

DMA based on the FTS principle. The detailed descriptions about these methods 

and results are presented in the following sections.  

 

2.1 Dynamic properties measured by acoustic driving 

The content of this section has been published in International Journal of 

Experimental and Computational Biomechanics by Zhang and Gan (2010).  

Laser Doppler vibrometry has been broadly used for measuring the vibrations of 

TM in response to sound stimuli in the ear canal in cadaver ear or TB (Gan and Dai, 

et al., 2006; Dai et al., 2007). An experimental setup on a MTS for measuring the 

vibration of TM specimen using a LDV was developed in our lab. The experiment 

on the TM specimen was simulated in FE model with acoustic-structure coupled 

analysis. The generalized linear solid viscoelastic model was used as the constitutive 

law for the TM, and the dynamic properties of the TM was derived by inverse 

problem solving method.  
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2.1.1 Methods 

I. TM specimen preparation 

The TM samples were harvested from fresh or fresh frozen human TB through 

the Willed Body Program at the University of Oklahoma Health Sciences Center. 

The tympanic annulus of the TM was first separated from the bony ear canal, and 

then taken out with the malleus attached and placed in a normal saline solution (Fig. 

2.1A). A rectangular strip was cut from the posterior or anterior part of the TM. The 

specimen had the tympanic annulus intact at both top and bottom sides to maintain 

the integrity of the membrane. The specimen was treated as a flat rectangular strip 

for the experiment and the curvature of the TM was neglected in this study.  

 

Figure 2.1 (A): The TM sample with malleus and tympanic annulus attached. (B): 
The TM specimen fixed at metal mounting fixture along the longitudinal direction. 
A ruler was attached to the metal fixture at the load cell side as dimension 
measurements refer. 
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The specimen was then laid on the base of a microscope (Olympus SZX12) and 

fixed to the soft tissue mounting fixtures at both annulus sides using cyanoacrylate 

gel glue (Loctite). Two plastic adapters were attached to the metal fixtures for 

holding the specimen along the longitudinal direction and stabilizing the whole 

structure as a unit. These adapters were used to avoid any damage on the TM 

specimen during the mounting process in MTS (TestResource, MN). A laser 

reflective tape, 0.5 mm2, weighting 0.04 mg (3M Co., St. Paul, MN), was placed on 

the center of the specimen in the medial side of the TM. A ruler was attached to the 

top metal fixture or at the load cell side of the MTS for measuring dimensions. After 

the specimen was lined up with grips in MTS, the plastic adapters were removed and 

the initial state was set up as shown in Fig. 2.1B. The dimensions of the specimen 

were measured using image analysis tools (Adobe Photoshop 7.0). We completed 

the experiments on 8 specimens from 5 individual TMs (the mean age of donors was 

67.5 years old). The length, width, and thickness of TM are listed in Table 2.1.  

 

Table 2.1 The geometric dimensions and resonance frequency of the TM specimens. 

TM 
Specimen

TM 
sites 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Resonance 
frequency (Hz) 

Amplitude 
ratio R  

TM-1 P 6.0 2.0 0.10 2400 11.5 
TM-2 A 5.4 2.0 0.10 3000 18.7 
TM-3 P 4.8 2.2 0.12 4350 12.5 
TM-4 P 6.0 1.7 0.10 2850 8.4 
TM-5 A 6.4 1.7 0.10 2400 10.3 
TM-6 P 6.0 2.4 0.09 2200 9.9 
TM-7 P 6.0 2.3 0.09 2200 13.6 
TM-8 A 6.7 2.4 0.09 2050 10.4 

Notes: TM sites: P: Posterior portion of eardrum; A: Anterior portion of eardrum. 
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II. Experimental setup and protocol 

 

Figure 2.2 Schematic of experiment setup for dynamic test on TM specimens.  

 

Figure 2.2 is the schematic diagram of experimental setup with LDV to measure 

dynamic properties of the TM specimen. The MTS with the SMT1 load cell (10-N 

capacity, Interface Inc.) was used to hold the specimen, conduct preconditioning and 

adjust the initial state of the specimen. A constant pure tone sound at 80 dB SPL 

across the frequency range of 200-8000 Hz were delivered to the lateral side of the 

TM specimen at its center from a speaker connected to dynamic signal analyzer (HP 

35670A, CA) and power amplifier (2718, Brüel & Kjær, Norcross, GA). The inner 

diameter of sound delivery tube was 1 mm and the distance between the tube end 

and the specimen was set at 1 mm. A probe microphone (ER-7C, Etymotic Research, 

IL) attached on the sound delivery tube was used for monitoring the input sound 
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pressure level. The LDV (HLV-1000, Polytech PI, Tustin, CA) was used to measure 

the vibration of the TM by focusing the beam on the laser target. The velocity of the 

specimen (amplitude and phase) was acquired by the DSA and recorded on a 

personal computer (PC) for further analysis. The peak-to-peak displacement (dp-p) 

of the TM specimen was directly calculated from the voltage output of the laser 

vibrometer velocity decoder by a formula: dp-p = k (Avolt /2πf), where Avolt is 

voltage amplitude in mv, f is frequency in kHz, k is a constant related to selected 

scale and calibration factor in unit of µm/mv/s (Gan et al., 2001). 

It is well known that the stabilized state of biological soft tissue is only reached 

after preconditioning, a process that stress-strain curves are gradually stabilized 

during repeated load-unload cycles on the specimen (Fung, 1993). In this study the 

MTS machine was programmed to perform five-cycles of uniaxial preconditioning 

at stretch rate of 0.05 mm/sec and stretch ratio of 10% for each specimen. A 

threshold of 0.002 N was applied to the specimen through the load cell to set as the 

zero load or initial state. After preconditioning, 80 dB SPL acoustic load across 

200-8000 Hz was applied to the center of the TM specimen and the vibration of the 

specimen was recorded. Note that the TM specimen was maintained in its 

physiological condition by spraying saline solution to its lateral side.  

 

III. FE modeling of dynamic test 

Building the FE model of dynamic test 

Dynamic tests of TM specimens were simulated in FE models in ANSYS 
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(ANSYS Inc, Canonsburg, PA) using acoustic-structure coupled analysis as shown 

in Fig. 2.3. Figure 2.3A shows the lateral view of a TM specimen model with input 

sound pressure applied at the center of the TM (1 mm of diameter). The top and 

bottom edges were clamped while the left and right edges were free. Figure 2.3B 

shows the location of input sound source and the acoustic elements surrounding the 

TM specimen. The length, width and thickness of each FE model were based on the 

dimensions of each specimen measured during the experiments as listed in Table 

2.1.  

 

 

Figure 2.3 FE model of the experiment setup with TM specimen for 
acoustic-structure coupled analysis. (A): The lateral view of the TM specimen; (B): 
The location of input sound source and the acoustic elements surrounding the TM. 
 

Following the common rule of thumb that at least six elements per shortest 

acoustic wavelength are adopted for acoustic scattering (Ihlenbury, 1998), the 
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maximum element edge size of 0.0071 m was estimated at 8000 Hz, i.e., 1/6(c/f) 

=1/6(343m/s/8000/s) =0.0071 m, where c is the sound speed in air and f is the 

frequency. In fact, the maximum element size in the model is smaller than 0.007 m 

and the mesh is fine enough. The FE model of each specimen was meshed by 

four-node tetrahedral solid elements (Solid 185) with a total of 2,316 elements. The 

specimen was assumed as a homogenous isotropic material with the density of 1200 

kg/m3 and the Poisson’s ratio of 0.3 (Gan and Sun et al., 2006; Gan et al., 2007; 

Wang et al., 2007). The air surrounding the TM was meshed by four-node 

tetrahedral acoustic elements (Fluid 30) with a total of 173,688 elements within a 

sphere of diameter 0.2 m. The density of air was assumed as 1.21 kg/m3 and the 

boundary admittance coefficient was 0.007. To simulate the sound absorbance effect 

in the infinite open field, 3,232 two-dimensional three-node triangular elements 

(Fluid 130) were created covering the boundary surfaces of all air elements. For 2D 

acoustic elements, there was no need to add the boundary admittance coefficient.   

The surface of acoustic elements (air) next to the TM solid structure was 

defined as fluid-structural interface (FSI) where the acoustic pressure distribution 

was coupled into structural analysis as the force input in ANSYS. The TM model 

has six FSIs on all of its side surfaces.   

Sound pressure of 80 dB across the frequency range of 200-8000 Hz was 

applied at 1 mm away from the center of the TM with a circular area of diameter 1 

mm to stimulate the experiment. Vibrations of the TM induced by sound pressure 

were calculated from the FE model based on material properties assigned to the TM. 
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The modeling results were compared with the measurements from the experiments. 

The detailed calculation is described in the following two sections. 

 

Viscoelastic model of TM specimen 

The generalized linear solid model or (Machiraju, et al., 2006, Mclaughlin et al, 

2011) composed by springs and dashpots as shown in Figure 2.4 was used to 

describe the viscoelastic behavior of the TM. Based on this model, the relaxation 

modulus of the TM can be presented as: 
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where iE  (i=0,1,…., n) is the relaxation modulus of the i th spring, iτ  is the 

relaxation time of the i th dashpot. For harmonic analysis, )(tE in time domain can 

be converted into complex modulus in frequency domain as: 
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where )(' ωE is the storage modulus, )(" ωE is the loss modulus, ω is the angular 

frequency, and )(' ωE and )(" ωE  are also expressed as:  
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whereδ is the phase angle of the complex modulus, )(ωη is the loss factor, defined 

as the ratio of storage modulus to the loss storage modulus. In this study, we 
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selected three spring-dashpot elements ( 3=n , giving 7 

parameters 0E , 1E , 2E , 3E , 1τ , 2τ and 3τ ) to model the viscoelastic behavior of the TM. 

An inverse-problem solving approach was used in which the 7 parameters are 

adjusted to allow FE modeling results to agree with the experimental measurements 

on both the resonance frequency and displacement peak amplitude. The 7 

parameters were then substituted into Eq. (2.3) and Eq. (2.4) to determine the 

complex modulus as a function of frequency.  

σ

σ

0E

1E 2E nE

1τ 2τ nτ

 

Figure 2.4 Generalized linear solid model for viscoelastic soft tissue.  

 

Vibration analysis 

Classic vibration theory (Szilard, 1974) of the thin membrane was used to 

analyze the motion of the TM. Forced vibration of the TM induced by acoustic load 

or input sound pressure is governed by: 

2
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where ∗E is the complex modulus which can be expressed as a real part and an 

imaginary part, 2∇ is the Laplacian operator, w is the transverse displacement or 

flexibility, m is the mass per unit area, P is the pressure applied onto the TM, h is 

the thickness of TM, and α is a coefficient related to the TM dimension. For 

harmonic vibration, sound pressure P and displacement w can be expressed in a 

Cartesian coordinate system as 

tiePtPP ϖ
0)( == , )()()(),,( δϖ −Φ== tieyxWtyxww              (2.7)             

where x and y are the coordinates, respectively, )(xW and )(yΦ must satisfy the 

fixed boundary condition of the TM and δ is the phase angle between the pressure 

and displacement. Substitute Eqs. (2.2 - 2.4) and Eq. (2.7) into Eq. (2.6), and the 

problem can be converted into a Bessel-type differential equation. Using Bessel 

functions, the first order (1,0) resonance frequency nω has an expression of  
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                          (2.8)             

where β is a coefficient related to the TM dimension and Poisson’s ratio. Eq. (2.8) 

shows that the first order resonance frequency of the TM nω is proportional to the 

square root of its storage modulus 'E . This provides the theoretical proof that the 

mechanical properties of the RWM can be determined by measuring the vibration 

resonance.  

Under the first mode, the central (when r=0) displacement amplitude of the 

TM, ),,0(0 tww ϕ= , resolved from Eq. (2.6) can be expressed as  
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Displacement amplification ratio R defined as the displacement at resonance 

frequency (when ω = nω ) over the displacement at static state (when ω =0) is then 

expressed as:  
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Equations (2.8), (2.10), and (2.12) show that the resonance frequency nω , 

displacement amplitude at static state (approximately using the amplitude at 200 Hz) 

)0(0w , and displacement amplification ratio R are all related to 

frequency-dependent storage modulus 'E and the loss factor η of the TM, and 

finally determined by the viscoelastic parameters, 0E , 1E , 2E , 3E , 1τ , 2τ and 3τ . 

However, it was still very difficult to derive a theoretical solution. Thus, the FE 

modeling and inverse-problem solving method were used to determine these 

parameters and the complex modulus *E . 

 

Inverse-problem solving method 
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The inverse-problem solving approach was used to determine the viscoelastic 

parameters, 0E , 1E , 2E , 3E , 1τ , 2τ and 3τ , and finally to obtain the complex modulus 

of the TM. The FE model of each TM sample was used to verify these parameters as 

well as the complex modulus by comparing the FE model-derived 

displacement-frequency curve with the experimental measurement curve. Fig. 2.5 

shows the schematic flowchart for the inverse-problem solving method. Briefly, the 

optimization process includes four steps: 1) the initial values of viscoelastic 

parameters were given as: MPaE 400 = , MPaE 101 = , MPaE 42 = , MPaE 13 = , 

s5
1 102 −×=τ , s4

2 102 −×=τ  and s3
3 102 −×=τ ; 2) The storage modulus 

)(' ωE calculated by Eq. (2.3) and loss factor )(ωη  by Eq. (2.5) were input into the 

FE model; 3) Harmonic analysis of the FE model was then conducted from 200 to 

8000 Hz with an interval of 50 Hz. Vibrations of the central node of the TM induced 

by sound pressure of 80 dB SPL were calculated from the FE model; 4) The 

model-derived displacement-frequency curve was compared with the experimental 

curve for each sample. The correlation coefficient between the two sets of data was 

calculated. If the coefficient met the set value, the process was ended and the 

viscoelastic parameters were determined. If the correlation coefficient did not meet 

the set value, the viscoelastic parameters were adjusted based on Eqs. (2.3 - 2.5), 

(2.8), (2.10), and (2.12), and the iteration process was repeated from step 2). 

Through this process, the values of viscoelastic parameters were optimized and 

determined. Finally, they were substituted into Eqs. (2.3 - 2.5) to obtain the complex 

modulus and loss factor of the RWM as functions of frequency.  
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Figure 2.5 Schematic flowchart of the inverse-problem solving method to determine 
the complex modulus of TM sample. 

 

It is noted that the complex modulus calculated from the model is sensitive to 

the geometry of TM specimen (coefficient a ) or indirectly to the resonance 

frequency nω  as shown in Eq. (2.9). To assess the influence of geometry variation 

in experiments on complex modulus ( 'E and "E ), we employed the classic shell plate 

vibration theory (Szilard, 1974). The relationship between the geometry coefficient 

a and the thickness of TM sample h can be expressed as 2/3ha ∝ and the storage 

modulus as )/1( 2/3' hE ∝ . The thickness of TM measured using image analysis 

method had a resolution level of 10 µm. Thus, for a TM sample with measured 

thickness of 100 µm, the real thickness could be 90 or 110 µm. The model-derived 
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storage modulus 'E value would have a variation range of ±15% of calculated value. 

Similarly, the variation range for loss modulus "E would be ±15% of calculated 

value.  

 

2.1.2 Results 

I. Validation of the method  

To verify the inverse-problem solving method through the experimental 

measurement and the FE modeling, we used the silicone rubber film (SKU 

87315K61, McMaster-Carr, CA), a standard material, to perform the dynamic 

experiment and FE modeling first. The length, width and thickness of the silicone 

film were prepared at 6, 2 and 0.127 mm, respectively, which were similar to the 

TM specimen. The experimental procedure was the same as that for the TM 

specimen with 80 dB sound pressure input across 100-4000 Hz. The FE model of 

the silicone film sample was created based on its dimensions.  
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Figure 2.6 Vibration amplitude of silicone rubber film in frequency domain 
obtained by dynamic experiment (solid line) and FE modeling (dash line).  
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Considering there is no published viscoelastic properties of this specific 

material over frequency range of 0-4000 Hz, the silicone film sample was conducted 

the quasi-static tensile and stress relaxation tests in the MTS (TestResources, MN). 

The quasi-static elastic modulus was obtained as 2.8 MPa from tensile testing at 

strain rate of 0.0033 s-1. The relaxation modulus range was 2.8 - 3.1 MPa obtained 

from relaxation testing at the initial strain rate of 25 s-1 and relaxation time of 100 s. 

The dynamic test was then conducted on the silicone film sample. Figure 2.6 shows 

the vibration amplitude curves of the silicone film measured from experiment (solid 

line) and calculated from the FE model (dash line). As can be seen in this figure, the 

displacement amplitude reaches the peak at 875 Hz or resonance frequency with the 

amplitude ratio R of 34.2 for both experiment and FE model. The material 

parameters of the silicone film were determined as: 0E =2.63 MPa, 1E =0.275 

MPa, 2E =0.11 MPa, 3E =0.075 MPa, 1τ =1.0E-5s, 2τ =1.0E-4s and 3τ =1.0E-3s. Thus, 

the relaxation modulus )(tE  in MPa was obtained from Eq. (2.1):  

001.0/0001.0/00001.0/ 075.011.0275.063.2)( ttt eeetE −−− +++=                     (2.13) 

The storage modulus 'E was 2.63-2.82 MPa across the frequency up to 4000 Hz, 

which is within the range of 2.8 – 3.1 MPa obtained from the stress-relaxation test. 

The static Young’s modulus was then calculated as 2.63 MPa which is very close to 

2.80 MPa measured from the tensile test. This indicates that the inverse-problem 

solving method by optimizing 7 parameters with experimental measurements is a 

feasible approach to determine the material properties.  
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II. Dynamic properties of the TM 

Dynamic experiments were conducted on eight TM specimens with the length 

ranging from 4.8 mm to 6.7 mm with a mean of 5.91 mm. The width ranging from 

1.7 mm to 2.4 mm with a mean of 2.09 mm; and the mean thickness of 0.1 mm as 

listed in Table. 2.1, Figure 2.7 shows the displacement amplitude-frequency curves 

of eight TM specimens recorded from experiments. The displacement amplitudes of 

TM specimens at low frequency (under 1500 Hz) are about 0.02 - 0.03 µm with a 

few spikes. Each TM specimen shows the peak amplitude at resonance frequency 

between 2000 Hz and 3000 Hz except specimen TM-3 with a resonance frequency 

of 4350 Hz. Specimen TM-3 also shows small amplitude compared with other 

specimens. The resonance frequency and amplitude ratio R of each TM specimen 

are listed in Table 1. TM-3 had the smallest length and largest thickness among all 

specimens, and thus resulted in the highest resonance frequency and smallest 

displacement. The amplitude ratio R of specimen is between 8.4 and 18.7 with a 

mean of 11.91. Note that some small peaks shown in Fig. 2.6 were not included.  

1000 100000.00

0.05

0.10

0.15

0.20
TM-1
TM-2
TM-3
TM-4

TM-5
TM-6

TM-8
TM-7

Frequency (Hz)

Vi
br

at
io

n 
am

pl
itu

de
 ( µ

m
)

 
Figure 2.7 Vibration amplitude measured from experiments on eight TM specimens 
over frequency range of 200-8000 Hz. 
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Eight FE models were created to simulate the dynamic experiments of the TM 

specimens. As an example, Fig. 2.8 shows the results from two specimens: the 

vibration amplitude-frequency curves derived from FE modeling, as well as the 

experimental measurements. Fig. 2.8A is obtained from specimen TM-1 and Fig. 

2.8B from TM-2. The FE modeling results matched well with the experimental data 

across the frequency range of 200-8000 Hz, particularly at the resonance frequency. 

Some small peaks at lower frequency were not considered during modeling. 
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Figure 2.8 The FE modeling results obtained from two TM models in comparison 
with the experimental curves. (A): Specimen TM-1; (B): Specimen TM-2. 
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Table 2.2 The viscoelastic parameters of TM specimens obtained in acoustic 
driving. 

TM 
Specimen

0E  
(MPa) 

1E

(MPa) 
2E

(MPa) 
3E

(MPa) 
1τ

(s) 
2τ  

(s) 
3τ

(s) 
TM-1  49.0 12.0 3.00 1.00 2.0E-5 2.0E-4 2.0E-3 
TM-2  60.0 10.0 2.00 1.00 2.0E-5 2.0E-4 2.0E-3 
TM-3  65.2 11.8 3.80 1.20 2.2E-5 2.2E-4 2.2E-3 
TM-4  61.8 17.5 5.00 1.20 3.5E-5 3.5E-4 3.5E-3 
TM-5  46.0 12.0 4.80 1.50 2.5E-5 2.5E-4 2.5E-3 
TM-6 39.0 10.2 4.16 1.04 3.0E-5 3.0E-4 3.0E-3 
TM-7 41.2 9.20 3.05 1.00 2.0E-5 2.0E-4 2.0E-3 
TM-8 60.6 15.4 5.60 1.45 3.2E-5 3.2E-4 3.2E-4 

 

The seven parameters of generalized linear solid model for each TM specimen 

obtained by inverse –problem solving method are listed in Table 2. There are some 

differences between individual specimens for each parameter which reflect the 

individual variation between the TM samples and experimental set up. Based on 

these parameters, the storage modulus 'E , loss modulus "E and loss factorη  were 

calculated and displayed in Fig. 2.9 across the frequency range of 200 Hz to 8000 

Hz. Figure 2.9A shows that the storage modulus increases with frequency and the 

largest storage modulus is 66.50 MPa at 200 Hz and 81.20 MPa at 8000 Hz. The 

smallest storage modulus is 40.50 MPa at 200 Hz and 51.30MPa at 8000 Hz. Loss 

modulus is shown in Fig. 2.9B. The largest loss modulus is 2.87 MPa at 200 Hz and 

7.81 MPa at 8000 Hz and the smallest is 1.07 MPa at 200 Hz and 5.21 MPa at 8000 

Hz. Loss modulus has a peak value between 4000-6000 Hz. The loss modulus of 

each TM specimen is much smaller than the storage modulus, which indicates that 

the TM may mainly show elastic properties. Fig. 2.9C shows the loss factor across 

the frequency range of 200-8000 Hz obtained from 8 TM specimens. Change of loss 
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factor with frequency is similar to that of loss modulus: increasing rapidly at 

frequency below 4000 Hz, and then reaching the maximum value around 4000-6000 

Hz. 
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Figure 2.9 Complex modulus for eight TM specimens over the frequency range of 
200-8000 Hz. (A): The storage modulus; (B): The Loss modulus; (C): Loss factor. 
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2.1.3 Discussion 

I. Comparison with published results 

Most published Young’s moduli of the human TM are obtained from static or 

quasi-static tests. There are very few results of dynamic tests on the TM over 

auditory frequency range reported in the literature. Recently, Luo et al. published the 

relaxation moduli of the human TM specimens along the radial and circumferential 

directions for normal and diseased tissues using the miniature SHTB (2009a; 2009b). 

The high strain rate was reached at 150-2500 s-1, corresponding to 150-2500 Hz in 

frequency. Figure 2.10 shows comparisons of the storage modulus (Fig. 2.10A) and 

loss modulus (Fig. 2.10B) of the present results (thick solid lines with square solid 

symbols) with Luo’s data (dash lines with solid circular symbols for radial direction 

and thin solid lines with open triangular symbols for circumferential direction). The 

results are presented as mean values with standard derivations (S.D.). In both the 

present study and Luo et al.’s (2009b), the TM specimens were normal tissue and 

assumed as a homogeneous material. In the present study, the mean storage modulus 

of eight TM specimens is 54.34 MPa at 200 Hz and 65.54 MPa at 8000 Hz with a 

S.D. about 10 MPa at 200 Hz and 12 MPa at 8000 Hz. The mean loss modulus "E is 

1.92 MPa at 200 Hz and 6.12 MPa at 8000 Hz with a S.D. of 0.70 MPa at 200 Hz 

and 1.06 MPa at 8000 Hz. Luo et al. (2009b) reported 0E =41.52 MPa, 1E = 25.44 

MPa and 1τ =50.7 µs for radial direction and 0E =30.04 MPa, 1E = 69.08 MPa and 

1τ =25.3 µs for circumferential direction. The standard derivation of their results was 
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25% of the mean value. Compared with Luo et al.’s data which are limited below 

2500 Hz, the storage moduli 'E obtained from this study are generally consistent 

with their results (Fig. 2.10A). The storage modulus from this study overlapped with 

the modulus along radial direction measured by Luo et al. (2009b). The values of 

loss modulus obtained from this study are consistent with Luo (2009b) data at 

500<f Hz (Fig. 2.10B). As frequency increases over 500 Hz, the loss modulus is 

not increasing as much as observed from Luo et al.’s data. It is speculated that 

viscous effect of the TM specimen in Luo et al.’s experiments may be higher than 

the tissues used for the present study.  

The difference of loss modulus measured in this study from that reported by 

Luo et al. may be related to individual variation of the human TM specimens and 

different experimental setups. In Luo et al.’s study, the preconditioning process was 

completed using the incident and reflected elastic waves generated by SHTB. In the 

present study, a standard and accurately controlled preconditioning for soft tissues 

(Fung, 1993) was conducted. The measurement of resonance frequency and 

amplitude using acoustic load is sensitive to additional mass on the specimen, such 

as the saline solution which added to the TM. In Luo et al.’s study, the saline 

solution was sprayed directly to the TM specimen and the measurement was 

completed within a few seconds, thus more water was maintained on the TM than 

that in this study. The physiological condition of the tissue during experiment 

influences the viscous properties of soft tissue. This may explain the difference of 

loss modulus between this study and Luo et al.’s results. In our experiments, the 
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initial tension set on the specimen and the sound pressure level applied over the 

frequency range of 200-8000 Hz may have some effects on the results of 

viscoelastic modulus, in particular, the loss modulus. However, further study of the 

effect of those parameters on measurement and modeling results is necessary.  
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Figure 2.10 Comparison of the storage modulus (A) and loss modulus (B) obtained 
from the present study (thick solid line) with Luo et al.’s results (2009b) in radial 
direction (dash line) and circumferential direction (thin solid line).  



 

37 

 

One of the advantages of the method developed in this study comparing with 

previous published works is that the dynamic measurement of ear soft tissue can be 

archived much higher frequencies by using acoustic load stimulation. The resonance 

analysis can provide accurate mechanical properties of the structure or material over 

a broad range of frequency. However a disadvantage of this study is that mechanical 

properties of the specimen depend on both the experimental measurements and FE 

modeling analysis.  

 

II. Relaxation modulus in time-domain 

In addition to viscoelastic modulus derived in frequency domain, we used the 

parameters listed in Table 2 to calculate the relaxation modulus in time domain 

using Eq. (2.1). Figure 2.11 shows the mean relaxation modulus from the present 

study (thick solid lines with square solid symbols) compared with that of Luo et al.’s 

measurements in radial and circumferential directions. The mean initial modulus (at 

time t=0) observed from eight TM specimens in present study is 70.21 MPa, larger 

than 67 MPa, along the radial direction and smaller than 99.12 MPa, along the 

circumferential direction reported by Luo et al.’s (2009b). The mean static modulus 

(at time tending to ∞) is 54.76 MPa from the present study which is larger than the 

results obtained by Luo et al. in both radial and circumferential directions. It took 

about 0.1 ms to reach the stabilized state for the TM specimens in this study and 

about 0.2 ms for radial specimens and 0.12 ms for circumferential specimens in Luo 

et al.’s study. The results indicate that the TM specimens in this study reach their 
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stable state more quickly comparing with that in Luo et al.’s study. This is consistent 

with the results that the specimens in Luo et al’s study had more viscous effects.  
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Figure 2.11 Comparison of mean relaxation modulus in time domain obtained in 
this study (thick solid line) with the results reported by Luo et al.’ s (2009b). 

 

2.2 Dynamic properties measured by DMA 

The content of this section has been published in Ann. Biomed. Engi. by Zhang 

and Gan (2013a).  

DMA is widely used to measure the complex modulus of materials in the 

frequency domain. However, the current commercial DMA has limited higher 

frequency access which cannot reach the human auditory frequency range. An 

approach called FTS principle using the DMA may be a possible method for 
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measuring the TM dynamic properties over the auditory frequency range. The FTS 

is an empirical method used to expand the effective frequency scale for viscoelastic 

measurements on polymers and fibrous composites (Ferry, 1980; Nielsen and 

Landel, 1994). The basic theory of FTS considers the viscoelastic behavior of some 

materials as a function of two principle variables: frequency and temperature. The 

effect of temperature changes on the viscoelastic properties of the material is 

equivalent to that of frequency changing (Ferry, 1980).  

The FTS was originally developed for amorphous polymers and is applicable to 

a variety of polymer systems (Radebaugh and Simonelli, 1983; Tajvidi et al., 2005). 

Recently, researchers have applied the FTS principle to biological tissues. Peters et 

al. (1997) measured the shear modulus, loss factor and relaxation modulus of bovine 

brain tissues at 7 - 37oC over the frequency range of 0.16 to 16 Hz and extrapolated 

the dynamic shear modulus for much higher frequencies (up to 1.6 MHz). Chan 

(2001) measured the viscoelastic properties of the vocal-fold tissue at 5 - 37oC over 

the frequency range of 0.01 to 15 Hz and expanded the equivalent frequency up to 

about 500 Hz using FTS.  

In this study, the dynamic properties of human TM were measured using a 

DMA based on the FTS principle. The test was conducted at the frequency range 

from 1 Hz to 40 Hz at three different temperatures: 5o, 25o and 37oC. The FTS 

principle was applied to extend the testing frequency range to a much higher level 

(at least 3800 Hz). The generalized linear solid model was used as the constitutive 

law for the TM, and the complex modulus of the TM was obtained. The methods 
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and data reported here contribute to the biomechanics of the middle ear and improve 

the accuracy of FE model for the human ear. 

 

2.2.1 Methods 

I. TM specimen preparation 

A total of 11 TM specimens from six individual donors (five female and one 

male, age ranged from 64 to 74 with a mean value of 68.8) were employed in this 

study. A similar process was conducted to prepare the rectangular TM samples, as 

described in Section 2.1.1. The TM sample was cut from the posterior or anterior 

portion of the TM (Fig. 2.1). The length (gap between two fixture adapters) and 

width of the specimen were measured and listed in Table 2.3. The length of all 11 

TM samples ranges from 5.6 to 7.6 mm with a mean of 6.5 mm and S.D. of 0.7 mm. 

The width ranges from 1.7 to 2.5 mm with a mean of 2.1 mm and S.D. of 0.3 mm. 

The side image of the specimen was also taken by the CCD camera to measure the 

thickness of the specimen. The thickness of all samples was measured around 0.06 

mm at the central (middle) region of the sample with a resolution of 0.01 mm. 

Kuyper et al. (2006) reported that the thickness of human TM was not uniform and 

the mean thickness of 0.04 - 0.12 mm was observed in the central region between 

the umbo and annulus from three TM specimens. In this study, the non-uniformity 

of the thickness was not taken into account and the thickness of central region of the 

sample was used.  
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Table 2.3 The dimensions of striped human TM samples used in DMA 
measurement (number unit in mm).   

Sample TM 
-1 

TM 
-2 

TM
-3 

TM
-4 

TM 
-5 

TM 
-6 

TM 
-7 

TM
-8 

TM 
-9 

TM 
-10 

TM 
-11 

Mean 
±S.D. 

Length 7.6 7.4 6.0 5.6 6.4 7.0 7.1 7.4 5.6 6.0 5.6 6.5±0.7 
Width 2.1 2.5 2.4 2.2 2.0 1.8 1.7 1.8 2.1 2.3 2.2 2.1±0.3 

 

II. Viscoelastic model of TM specimen 

As the first step to study the dynamic properties of TM using FTS, the sample 

was considered as an isotropic and homogeneous material in this study. The 

generalized linear solid model was used in this study. The relaxation modulus and 

the complex modulus of the TM are represented by Eqs. (2.1 – 2.5) in Section 2.1.1. 

In this study, we selected two spring-dashpot elements ( 2=n , giving 5 

parameters 0E , 1E , 2E , 1τ ,and 2τ ) to represent the viscoelastic behavior of the TM. 

The five parameters will be determined by fitting the generalized linear solid model 

with the master curve of the complex modulus obtained through the FTS.  

 

III. Dynamic test on TM specimen 

In this study, the complex modulus including the storage modulus and the loss 

modulus of the human TM specimen at three temperatures (5o, 25o, and 37oC) were 

measured in the DMA (Bose ElectroForce 3200, Eden Prairie, MN). The TM sample 

was placed inside the temperature-control chamber in the DMA. A thermocouple 

was placed at 2 cm behind the sample to measure the temperature in the chamber. 

There was a negative feedback circuit to control temperature stably. The precision of 
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temperature controlling was ±1oC. In the temperature range of 5 - 37oC, there is no 

phase change (freezing) of fluid in tissue cells, and there is no denature of proteins. 

Thus, the structure of the soft tissue in this temperature range should not change 

(Peter et al., 1997; Chan, 2001). The temperature of 37oC was chosen as the 

reference temperature. The TM samples were subjected to the sinusoidal vibrations 

with small amplitudes at different frequencies. At each frequency f , the 

displacement d and force F were recorded as the function of time t :  

ftiedd π2
0=                                                      (2.14) 

)2(
0

δπ += ftieFF                                                    (2.15) 

where 0σ  and 0E  were stress and strain amplitude, respectively. The complex 

modulus at this frequency f was calculated as:  

ld
whF

E
E

0

0

0

0* ==
σ                                                 (2.16) 

δcos*' EE =                                                      (2.17) 

δsin*" EE =                                                     (2.18) 

where w , h , and l were the width, thickness and length of the TM specimen, 

respectively. The test protocol for each TM specimen is described below.  

 

Preconditioning test 

In this study the DMA was programmed to perform five cycles of uniaxial 

preconditioning at a frequency of 0.1 Hz and stretch displacement of 1.0 mm for 

each specimen before the dynamic test. For all TM samples, their stress-stretch 
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curves were almost identical after 5 loading-unloading cycles, which indicated the 

mechanical properties of TM were stabilized.  

 

Dynamic test 

After preconditioning, the dynamic test was conducted at 5o, 25o, and 37oC in 

sequence. At each temperature, the TM sample was tested at 1, 2, 5, 10, 20, and 40 

Hz with the displacement amplitude of 0.2 mm. The sample took a rest for at least 2 

minutes for recovering after each run. Note that the sample was kept in 

physiological moisture by adding saline solution onto its surface between each test. 

To keep sample in the same moisture condition, the accurate amount of saline 

solution was controlled by a syringe.  

 

IV. Frequency-temperature superposition (FTS) principle 

The FTS principle was first reported in the 1950s (Ferry, 1950; Williams et al., 

1955), and has become a useful extrapolation technique as applied to polymers, 

plastics, and composites. The later theories of FTS address a simple relationship 

between the temperature and frequency (or time) effects on the molecular behaviors 

of polymers and thus the viscoelastic properties of these materials (Ferry, 1980). The 

curves of the complex modulus *E obtained at a relatively low temperature T can be 

shifted along the frequency axis by a shift factor Tα  to a higher temperature T0 

(served as reference temperature). This concept can be expressed by the equation:  

)/,(),( *
0

*
TfTEfTE α=                                            (2.19) 
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where f is the frequency. The shift factor Tα  quantifies the temperature’s effect 

on the material’s complex modulus. It is temperature-dependent and needs to obey 

the Arrhenius equation (Radebaugh and Simonelli, 1983):  

)11(ln
0TTR

Ea
T −=α                                                (2.20) 

where T and T0 are the absolute temperature in Kelvin, aE is the activation energy 

for the material, and R is the universal gas constant equal to 8.314 J/mol.K.  

Another widely used empirical equation for the FTS principle is the WLF 

equation, which was first introduced by Williams, Landel and Ferry (1955): 

g

g
T TTc

TTc
−+

−
=

2

1 )(
logα                                                (2.21) 

where 1c  and 2c  are empirical constants and gT  is the glass transition 

temperature. The glass temperature is the temperature below which the polymer 

chain backbone configuration rearrangement stops (Nielsen and Landel, 1994). 

Combining the Eqs. (2.20) and (2.21) presents the relation between the activation 

energy aE , 1c  and 2c :  

2
2

2
21 )(303.2 ga TTcTcRcE −+=                                    (2.22)      

The following procedure for the FTS principle was used to determine the 

dynamic properties of the TM samples at the higher frequencies: 1) the complex 

moduli (storage modulus 'E and loss modulus "E ) obtained at three different 

temperatures (5o, 25o, and 37oC) were plotted together as functions of the frequency 

in logarithmic scale; 2) the complex modulus curves at the lower temperatures were 

shifted horizontally to the higher frequencies; 3) when the curves were adjacent to 
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each other, the commonly called “master curve” at the reference temperature (37oC) 

was formed to predict the complex modulus at the higher frequency range; 4) the 

shift factor αT and the activation energy aE were calculated from Eqs. (2.19) and 

(2.20). Moreover, there are three requirements for the FTS principle to hold (Ward, 

1971): perfect matching of the curve shapes at adjacent regions, same shift factor 

value for all viscoelastic parameters, and the shift factor obeying the Arrhenius 

equation or the WLF equation. In this study, these requirements were checked and 

satisfied.  

 

2.2.2 Results 

Dynamic experiments were conducted on 11 TM specimens, and the storage 

modulus 'E and the loss modulus "E of these specimens were obtained over 1 to 40 

Hz. Figure 2.12 shows the typical complex modulus-frequency curves at the 

different temperatures (5o, 25o and 37oC) obtained from two TM specimens (TM-1 

and TM-4). Both the storage modulus and the loss modulus increased with the 

frequency increasing or temperature decreasing. Larger slopes were found at the 

lower frequency range for the loss modulus. Other TM samples had the complex 

modulus-frequency curves similar to that shown in Fig. 2.12. The inter-subject 

difference of the 'E  and "E  curves was observed due to the variation between the 

TM specimens and the possible error of the experimental measurements.  
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Table 2.4 The shift factors, activation energies Ea, and maximum frequency of 
human TM samples. (Ea unit in kJ/mol, frequency unit in Hz) 

 TM 
-1 

TM 
-2 

TM 
-3 

TM 
-4 

TM 
-5 

TM 
-6 

TM 
-7 

TM 
-8 

TM 
-9 

TM 
-10 

TM 
-11 

Mean 
±S.D. 

α25  6.7 6.0 5.4 5.0 5.0 7.2 5.5 5.8 4.8 7.0 6.4 5.9±0.8 
α5  153 126 108 98 90 196 118 137 95 191 165 134±38 

lnα25 1.90 1.79 1.69 1.61 1.61 1.97 1.70 1.76 1.57 1.95 1.86 1.76±0.14 
lnα5 5.03 4.84 4.68 4.58 4.50 5.28 4.77 4.92 4.55 5.25 5.11 4.86±0.28 
Ea  113.6 109.0 105.2 102.6 101.0119.1 107.0 110.4 101.7118.3 114.9 109.3±6.5 

Max. 
fre 6120 5040 4320 3920 3600 7840 4720 5480 3800 7640 6600 5371±1506
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Figure 2.12 The complex modulus obtained at the different temperatures (5oC, 25oC 
and 37oC) from two TM samples: (A) sample TM-1 and (B) sample TM-4. 
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Figure 2.13 The master curves of the complex modulus at 37oC obtained from two 
TM sample: (A) sample TM-1 and (B) sample TM-4. 

 

Following the procedure described in Section-IV of Methods, the complex 

modulus curves at the lower temperatures were shifted and the master curves created. 

Figure 2.13 shows the master curves of the complex modulus at the reference 

temperature 37oC for specimens TM-1 and TM-4. The complex modulus-frequency 

curves are generally well matched at the adjacent regions after the horizontal shifts. 
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Thus, the first requirement of the FTS principle is satisfied. The horizontal shift 

factors are the same for the storage modulus and loss modulus in each specimen, 

which meets the second requirement of the FTS principle. For specimen TM-1, the 

storage modulus is 16.5 MPa at 1 Hz and increases to 31.2 MPa at 6120 Hz, while 

the loss modulus is 0.25 MPa at 1 Hz and 4.7 MPa at 6120 Hz. For specimen TM-4, 

the storage modulus is 15.8 MPa at 1 Hz and increases to 28.3 MPa at 3920 Hz, 

while the loss modulus is 0.45 MPa at 1 Hz and 3.7 MPa at 3920 Hz. The shift 

factors and maximum frequency of the master curves for all 11 TM specimens are 

listed in Table 2.4. The mean value of the shift factors from 25o to 37oC is 5.9±0.8. 

The mean value of the shift factors from 5oC to 37oC is 134.2±37.7. The maximum 

frequency ranges were from 3800 to 7840 Hz with a mean value of 5371±1506 Hz.  

The temperature dependence of the shift factor was tested by fitting 

experimental data into the Arrhenius equation (Eq.(2.20)). The activation energy of 

the TM samples is calculated as the ratio between TR αln⋅  and )11(
0TT

− . As an 

example, Fig. 2.14 shows the natural logarithmic shift factor Tαln -temperature 

curves obtained from specimens TM-1 and TM-4. The relation between the shift 

factors and the temperature are well matched with the Arrhenius equation (the value 

of coefficient of determination r2 was 0.997 for TM-1 and 0.999 for TM-4). The 

values of r2 for all TM samples are not less than 0.997, thus the third requirement of 

the FTS principle was satisfied. The activation energy was obtained as 113.6 kJ/mol 

for TM-1 and 102.6 kJ/mol for TM-4. Table 2.4 lists the activation energy of all TM 
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samples, which ranges from 101.0 to 118.3 kJ/mol with a mean value of 109.3±6.5 

kJ/mol.  
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Figure 2.14 The fitting of Arrhenius equation (solid lines) to the experimental 

natural logarithmic shift factor Tαln -absolute temperature (in Kelvin degree) 

curves obtained from samples TM-1 and TM-4.  

 

Figure 2.15 shows the master curves of the complex modulus for all 11 TM 

samples. The complex modulus generally increases with the frequency increasing 

except the loss modulus of some specimens decreases a little between 40 to 500 Hz. 

The storage modulus ranges from 10.3 to 20.9 MPa at 1 Hz. The loss modulus 

ranges from 0.18 to 0.45 MPa at 1 Hz. The maximum frequency of the master 

curves for the 11 TM samples was different and ranged from 3800 to 7840 Hz as 

listed in Table 2.4.  
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Figure 2.15 The master curves of the storage modulus and the loss modulus at 37oC 
from all 11 TM samples and the mean master curves of the storage modulus and the 
loss modulus.  

 

The mean complex modulus was calculated over the common frequency range 

for the 11 samples (1-3800 Hz). The mean master curves of the storage modulus E’ 

and the loss modulus E” with S.D. in Fig. 2.15 were also plotted to 3800 Hz. Figure 

2.15 also shows the mean master curves of the storage modulus E’ and the loss 

modulus E” with S.D., which were plotted up to 3800 Hz. The mean storage 

modulus was 15.1±3.0 MPa at 1 Hz and 27.6±5.1 MPa at 3800 Hz. The mean loss 

modulus was 0.28±0.1 MPa at 1 Hz and 4.1 ±1.2 MPa at 3800 Hz. The slope of the 

master curves of the loss modulus decreased to almost zero at 20-100 Hz and then 

increased at 300 Hz. The larger slope was observed at frequencies below 10 Hz and 

between 1000-3800 Hz as opposed to other frequency ranges. The change of the 
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slope at certain frequencies relates to the two parameters of relaxation time 

1τ and 2τ .   
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Figure 2.16 The theoretical fitting of generalized linear solid model to the 
experimental complex modulus for (A): sample TM-7 and (B) the mean 
experimental complex modulus. 
 

The generalized linear solid model was used to describe the viscoelastic 

behavior of the TM samples. As the storage modulus has all five viscoelastic 
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parameters ( 0E , 1E , 2E , 1τ , and 2τ ) while the loss modulus only has four of them, the 

experimental data of the storage modulus were first used to fit the theoretical storage 

modulus-frequency relation (Eq.(2.3)) to determine the five parameters. The 

theoretical loss modulus was then calculated from Eq. (2.4) by substituting the 

values of the parameters, and the results were compared with the experimental data. 

As an example, the five parameters for TM-7 were determined as 0E =11.9 MPa, 

1E =7.0 MPa, 2E =9.6 MPa, 1τ =3.85 ms and 2τ =84.3 µs. Figure 2.16A shows the 

storage modulus of specimen TM-7 derived from the generalized linear solid model 

in comparison with the experimental results. Table 2.5 lists the viscoelastic 

parameters determined from all 11 TM samples with the mean values and S.D. The 

mean experimental complex modulus curves shown in Figure 2.15 were also fitted 

by the generalized linear solid model with the five parameters determined as 

0E =15.2 MPa, 1E =6.3 MPa, 2E =7.9 MPa, 1τ =5.14 ms and 2τ =78.6 µs. The 

results are shown in Fig. 2.16B where the theoretical complex modulus curves were 

compared with the mean experimental data.    

 
Table 2.5 The viscoelastic parameters of TM samples obtained in DMA.(E0, E1, and 
E2 unit in MPa). 

 TM 
-1 

TM 
-2 

TM 
-3 

TM 
-4 

TM 
-5 

TM 
-6 

TM 
-7 

TM 
-8 

TM 
-9 

TM 
-10 

TM 
-11 

Mean 
±S.D. 

E0  17.7 15.0 13.6 16.7 14.0 17.0 11.9 13.3 21.6 14.8 10.8 15.1±3.0 
E1  6.3 5.2 4.1 5.1 5.4 9.6 7.0 6.4 8.6 6.1 5.8 6.3±1.6 
E2  9.1 5.7 4.4 7.3 11.5 12.0 9.6 9.1 11.8 4.7 5.6 8.3±2.9 
τ1 

(ms) 
3.66 6.37 7.36 7.53 9.47 3.98 3.85 6.36 5.95 4.59 3.83 5.72±1.91

τ2 

(µs) 
41.7 104.5 152.4 99.8 83.7 47.4 84.3 54.7 74.5 67.3 126.6 85.1±33.9
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2.2.3 Discussion 

I. Comparison with published data 

To date, the published mechanical properties of the human TM were obtained 

mostly from the static or quasi-static test. In this study, the complex moduli of the 

human TM samples were obtained over the frequency range of 1 to 3800 Hz. The 

storage modulus obtained at the low frequencies, such as 1 Hz, can be considered 

comparable to the elastic modulus obtained from the quasi-static test. The mean 

storage modulus of the 11 TM samples at 1 Hz was 15.1±3.0 MPa from this study. 

This value is close to or in the range of that reported in the literature: 20 MPa 

reported by von Békésy (1960), 23 MPa by Decraemer et al. (1980), 0.4 - 22 MPa 

by Cheng et al. (2007), and 17.4 MPa for the posterior portion and 19.0 MPa for the 

anterior portion reported by Huang et al. (2008). Aernouts et al. (2012) recently 

reported the Young’s modulus of the human TM from three samples as 2.1, 2.3 and 

4.4 MPa, respectively. The storage modulus at 1 Hz obtained in this study is about 5 

times larger than the value reported by Aernouts et al. Fay et al. (2005) reported the 

Young’s modulus of 30-90 MPa for an isotropic model and 100-400 MPa for an 

orthotropic model of the human TM, which are much larger than the values reported 

in this study.   

Kirikae (1960) measured the Young’s modulus of the human TM sample at a 

single frequency of 890 Hz and reported the value of 40 MPa. In this study, the 

mean storage modulus at 890 Hz was 22.6±3.9 MPa, which is about half of the value 

reported by Kirikae. To our best knowledge, there are two other dynamic tests of the 
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human TM over the auditory frequency range reported in the literature by Luo et al. 

(2009) and Zhang and Gan (2010). Figure 2.17 shows the comparisons of the 

storage modulus and loss modulus obtained in this study (solid lines with square 

symbols) with Luo et al.’s data (solid lines with triangles) and Zhang and Gan’s data 

(solid line with circles). The results are presented as the mean values with S.D. The 

TM specimens were normal tissues and assumed as a homogeneous material in all 

three studies. The common frequency range over 200 Hz in this study was chosen to 

compare the results from the published studies.  
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Figure 2.17 Comparison of the storage modulus and the loss modulus obtained from 
this study to the published data by Luo et al. (2009b) and Zhang and Gan (2010).   

 

As shown in Fig. 2.17, the mean storage modulus of the 11 TM samples 

obtained from this study is lower than that from the other two studies, particularly as 
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being lower than Zhang and Gan’s results. The loss modulus shows the different 

results, and the curve obtained from this study is very close to that of Zhang and 

Gan’s data over the entire frequency range but lower than that from Luo et al.’s 

study above 400 Hz. The slopes of the storage modulus-frequency curves from the 

three studies are close to each other over 200-3800 Hz range. However, the slope of 

the loss modulus-frequency curve in this study is smaller than that in the two 

published studies. The rationale for the difference in the slope of loss modulus is 

still not very clear. One possible cause for the difference between this study and the 

published studies is the different test temperatures. As shown in Fig. 2.12, the loss 

modulus has a larger slope at a lower temperature.  

The difference of this study from the published studies is probably caused by: 1) 

the individual variation of the human TM specimens. The human TM samples in the 

different studies were obtained from donors with different ages, genders and health 

conditions. The TM samples from the different portions or fiber directions of the 

TM might have created different mechanical properties. In this study, the TM 

sample strip was cut along the superior-inferior direction. 2) The physiological 

condition or moisture level of the TM sample. In this study, we tried to keep the 

moisture levels to be consistent for all TM samples as we did in the studies using the 

acoustic driving and laser measurement and that used by Luo et al. in the split 

Hopkinson tension bar test 18. However, it is not easy to control the moisture level 

to be similar in different experimental setups. 3) The testing temperature. The 

temperature had obvious effect on the mechanical properties of the TM as shown in 
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this study. The complex modulus was obtained at the reference temperature of 37oC 

in this study, while the experiments were conducted at room temperature in other 

studies. The storage modulus at 37oC is about 15% lower than that at 25oC. 4) Other 

differences in experimental methods between this study and the published studies.   

The human TM is a multi-layer membrane consisting of the epidermal, collagen 

fibrous and mucosal layers from the lateral to medial side. The collagen fibers are 

organized into the matrix of ground substance primarily along the radial and 

circumferential directions (Lim, 1995). The radial fibers are thicker and stronger 

than the circumferential fibers. The arrangement of collagen fibers in two layers 

with different directions makes the TM inhomogeneous and orthotropic. In this 

study, as the first step in measuring the dynamic properties of the human TM was to 

use the DMA, the TM was assumed as a homogeneous, isotropic and linear 

viscoelastic material. This simplification makes the results reported here different 

from the actual mechanical properties of either the radial or the circumferential 

fibers in the TM.  

In this study, the TM sample was cut along the superior-inferior axis, which 

included both the radial and circumferential fibers. The longitudinal axis of the TM 

sample strip was along neither the radial nor the circumferential direction of the TM, 

but more closely to the circumferential direction. The circular fibers provide less 

stiffness than the radial fibers as reported by Fay et al. (2005). Moreover, the 

pre-stress existing in the intact TM was released when the sample was cut and the 

stiffness of the TM sample was reduced. Thus, the storage modulus of the TM 
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reported in this study was lower than that of the intact TM as estimated by Fay et al.  

 

 

II. Feasibility of FTS on ear soft tissues 

The results obtained in this study show that the complex modulus-frequency 

curves of the human TM samples satisfy all three requirements commented by Ward 

(1971). Thus, the FTS principle is feasible to measure the dynamic properties of the 

TM at higher auditory frequencies. This method also has the potential to test other 

middle ear soft tissues, such as the SAL and the RWM. These soft tissues are mainly 

composed by collagen fibers and can be considered as homogenous materials as 

well.  

Compared to published dynamic testing methods, the advantages of the method 

developed in this study includes: 1) measurement in the frequency domain with no 

need of conversion from the time domain or the help of FE analysis; 2) no limitation 

on the tissue sample shape and geometry, unlike the acoustic driving method (Zhang 

and Gan, 2010) which is only applicable to a thin membrane; 3) the ability to reach 

higher frequency levels (higher than 3800 Hz) compared to the method using the 

Hopkinson tension bar.  

 

III. Application of the complex modulus and future studies 

The complex modulus of the human TM obtained in this study can be applied 

into the FE model of the human ear and help improve the accuracy of the model. In 



 

58 

 

almost all published FE models of the human middle ear, a Rayleigh type damping 

was applied for the soft tissues including the TM (Zhao et al., 2009). As an example, 

a value of 0.000075 was used for the β coefficient of Rayleigh damping in Gan et 

al.’s FE models (Gan et al., 2004; 2007). A constant elastic modulus and Rayleigh 

type damping in the FE models make the loss modulus or damping of the TM 

proportional to the frequency, which makes the damping too high at the higher 

frequencies (Fig. 2.18A). Recently, Zhang and Gan (2011a) reported a FE model of 

the human ear with viscoelastic properties for the middle ear soft tissues. The 

damping or loss modulus was not proportional to the frequency but calculated by 

equations such as Eqs. (2.4) and (2.5) in this study. The damping reaches its 

maximum value around 4-6 kHz and then decreases (Fig. 2.18B). The application of 

the viscoelastic properties for the middle ear soft tissues has improved the results at 

the higher frequencies as shown in Zhang and Gan’s model when compared with the 

previous model (Gan et al., 2007). 
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Figure 2.18 (A): Damping of the TM calculated using Rayleigh type coefficient 
with β=0.000075; (B) damping of the TM calculated from the linear viscoelastic 
model determined from the dynamic test in this study.   
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Future studies will be conducted to measure the dynamic properties of TM 

samples in diseased conditions, such as otitis media, which is the most common 

middle ear disease in children, and to measure the dynamic properties of other ear 

tissues. The relationship between the macro mechanical properties of the human TM 

sample and the micro fibrous structure will also be studied through experiments or 

the FE modeling analysis.   

 

2.3 Conclusion 

In this study, two new approaches were developed to measure the dynamic 

properties of human TM specimens in auditory frequency range. In the first 

approach using acoustic driving, the vibrations of the TM specimen in response to 

acoustic stimuli applied to the center of the TM specimen were measured by LDV 

over the frequency range of 200-8000 Hz. The dynamic experiments on TM 

specimens were simulated in FE models for acoustic-structure coupled analysis in 

ANSYS. Both the experimental and FE modeling methods were first validated using 

a standard silicone-film material. A good agreement between the experimental 

measurements and FE modeling was observed in all TM specimens. The dynamic 

properties of the TM were derived by inverse-problem solving method and 

presented as complex modulus in frequency-domain and the relaxation modulus in 

time-domain. In the second approach using DMA based on the FTS principle, the 

dynamic tests were conducted at frequencies from 1 Hz to 40 Hz at three different 

temperatures: 5o, 25o and 37oC. The FTS principle was applied to expand the 
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frequency range to a much higher level (at least 3,800 Hz). The feasibility of the 

FTS principle was assessed and verified. The viscoelastic parameters were 

determined by fitting the model to the experimental results. The results obtained 

from this study were compared with the data reported by Luo et al (2009b), using a 

SHTB. A general consistency between these three techniques was demonstrated 

with some differences, particularly, in loss modulus variation at higher frequencies. 

The dynamic properties of the human TM obtained in this study provide a better 

description of the damping behavior of ear tissues, which can be applied into the FE 

model of the human ear to replace the Rayleigh type damping. The data reported 

here contribute to the biomechanics of the middle ear and improve the accuracy of 

the FE model for the human ear. 
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CHAPTER 3.  

DYNAMIC PROPERTIES OF HUMAN ROUND WINDOW 

MEMBRANE 

The contents of this chapter have been published in Medical Engineering & 

Physics by Zhang and Gan (2013b). In this chapter, the dynamic properties of 

human RWM were measured using the experimental set up with acoustic driving 

and LDV.  The complex modulus of RWM was finally determined by the 

inverse-problem solving method the assistance of FE modeling analysis.  

 

3.1 Methods 

3.1.1 RWM specimen preparation 

Eight RWM samples from fresh human cadaver TB (three left and five right) 

obtained through the Willed Body Program at the University of Oklahoma Health 

Sciences Center were used for this study. All donors had no history of ear diseases 

associated with the RWM and the average age of the donors was 70 (ranging from 

59 to 82, 5 males and 3 females). To maintain soft tissue compliance and hydration 

within five days before the experiment, the bones were immersed in a 0.9% saline 

solution mixed with providine (i.e., 15% amount of providine in saline solution) at 5 

oC until use. The TB was cut into a block (2×2×2 cm3) containing the middle ear 

cavity and cochlea. The middle ear cavity was then opened and the TM with malleus 

attached was carefully removed under microscope (Olympus SZX12). Incus and 

stapes remained intact in the specimen block, and the round window niche was 
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identified as well as the RWM (Fig. 3.1A). The cochlea was then removed and 

RWM was exposed from both the middle ear and cochlear sides. The specimen was 

examined under microscope to verify that the RWM was not damaged during the 

preparation. Subsequently, we place microbeads (30 µm in diameter, Mo-Sci Corp, 

Rolla, MO) onto the center of the cochlear side of RWM as the laser reflecting target. 

The mass of each bead is about 3.96×10-5 mg. Such a small mass should not affect 

the measurement. Figure 3.1B shows a RWM specimen image obtained by a CCD 

camera in this study. The RWM was in an elliptical shape with the short axis (a) and 

long axis (b). Table 3.1 lists the dimensions of (a) and (b) measured from each 

specimen using the image analysis tools (Adobe Photoshop 7.0) with the average 

long axis of 2.08 mm and short axis of 1.81 mm. 

 

   
Figure 3.1 (A): The RWM specimen with the incus and stapes harvested from a 
human TB. (B): Enlarged RWM specimen image with 1mm reference bar. (a) is the 
short axis of RWM, and (b) is the long axis of RWM. 
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Table 3.1 The dimensions, resonance frequency nf  and vibration amplification ratio 

R of RWM specimens. 
RWM 
Specimen 

RWM 
-1 

RWM 
-2 

RWM 
-3 

RWM 
-4 

RWM
-5 

RWM
-6 

RWM 
-7 

RWM 
-8 

Mean 
±S.D 

a (mm) 1.92 1.78 1.88 1.68 1.74 1.82 1.86 1.76 1.81±0.08
b (mm) 2.18 2.06 2.08 1.88 2.00 2.06 2.12 1.98 2.05±0.09

nf (Hz) 1500 1665 1888 2132 1892 1886 1687 1896 1818±193

R 4.08 2.98 3.51 5.66 3.81 2.88 3.18 3.37 3.68±0.89

 

3.1.2 Experimental setup 

The experimental setup was similar to that used to measure the dynamic 

properties of human TM by acoustic driving, which was described in Chapter 2, 

Section 2.1.1. Figure 3.2 is the schematic diagram of the experimental setup. Briefly, 

the RWM specimen with the bony wall was fixed in a micro-manupulator and 

placed on a vibration isolation table. 80 dB SPL pure tones across the frequency 

range of 200-8000 Hz were delivered to the middle ear side of the RWM by a sound 

delivery tube (inner diameter 1 mm) connected to the speaker. The sound signals 

were generated by the dynamic signal analyzer (DSA, HP 35670A, CA) and 

amplified by the power amplifier (B & K 2718, Norcross, GA). The distance 

between the tube end and the surface of RWM was set at 1 mm. A probe 

microphone (ER-7C, Etymotic Research, IL) attached to the sound delivery tube 

was used for monitoring the input sound pressure level. Because the round window 

niche formed a semi-closed chamber for sound approaching to the RWM and the 

distance between the sound delivery tube end and the RWM was small, the sound 

pressure was reasonably considered as evenly distributed onto the RWM surface. 
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The laser beam was focused on the microbeads, and the vibration at the center of 

RWM was acquired by DSA and recorded on a computer for further analysis. The 

vibration amplitude of the RWM was directly calculated from the voltage output of 

the laser vibrometer velocity decoder.  

 

 

Figure 3.2 The schematic of the experiment setup for the dynamic test on the RWM 
specimen. 

 

Because of the extremely small size and fixed bony boundary of the RWM 

specimen, it was impossible to carry out a standard preconditioning procedure in a 

mechanical testing system. Harmonic 80 dB SPL sound stimuli were actually 

applied to the sample during each measurement and could serve as preconditioning. 

To doubly ensure the preconditioning and stabilization of the mechanical properties 

of RWM samples, cyclic hydraulic pressure was loaded and unloaded onto the 

specimen surface by using saline solution in a 1 cc syringe. The peak pressure was 
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estimated around 10 Pa. The movement of RWM was observed under a surgical 

microscope. This process was repeated for 5 cycles to reach the stabilized state for 

the specimen. After preconditioning, an 80 dB SPL acoustic load across 200-8000 

Hz was applied on the specimen, and the vibration was recorded. Note that the 

RWM specimen was maintained in moist conditions by spraying saline solution onto 

the middle ear side surface.  

 

3.1.3 FE modeling Analysis 

Dynamic tests of the RWM specimens were simulated as FE models in ANSYS 

(ANSYS Inc, Canonsburg, PA). Using the same FE model-based inverse-problem 

solving method, which is described in Chapter 2, Section 2.1.1, the dynamic 

properties of RWM was determined. The FE model analysis was also used to 

estimate the effects of specimen geometry and experimental conditions on the 

results of the RWM dynamic property measurement.  

RWM in a normal ear is a thin, semitransparent and nearly circular membrane 

with a diameter of about 1.8 mm. The average thickness of a normal adult RWM 

was reported as 70 µm by Goycoolea et al. (1997) and Sahni et al. (1987). The 

smallest thickness of 56 µm at the RWM center was reported by Nomura (1984). In 

this study, each RWM specimen was modeled as an elliptical membrane with 

uniform thickness of 70 µm. The short axis a and long axis b were based on our real 

measurements listed in Table 3.1. Eight FE models of RWM samples were built, and 

Fig. 3.3A shows the plane view of one RWM model while Fig. 3.3B shows the 
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transverse view with sound pressure applied on the middle ear side of the RWM. 

The reflective microbeads attached on RWM for laser measurement were not 

simulated in FE model. The beads should not affect the RWM vibration due to the 

small size and mass (3.96×10-5 mg per bead, estimated as 0.0163% of the average 

mass of RWM specimen).  

 

 
Figure 3.3 The FE model of the dynamic experiment on the RWM specimen 
(RWM-1). (A) The plane view of the RWM model from the middle ear side. The 
edge was fully clamped. (B) The side view of the RWM model with sound pressure 
applied onto the RWM from cochlear side. 

 

The model was meshed by 5892 hexahedral elements (element type Solid 185), 

and convergence analysis showed this element number was adequate to reach 

accurate results. Density of the RWM was assumed as 1200 kg/m3, the same as that 

of TM. 80 dB SPL across the frequency range of 200-8000 Hz was applied onto the 

medial side of the RWM, similar to the experiment. The edge of the RWM was set 

as fully clamped without free displacement based on the observation on histology 
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sections in the literature (To´th et al., 2006; Li et al., 2007).  

The RWM sample was considered as an isotropic and homogeneous material in 

this study. The generalized linear solid model was used in this study. The relaxation 

modulus and the complex modulus of the TM are represented by Eqs. (2.1 - 2.5) in 

Section 2.1.1. In this study, we selected one spring-dashpot elements ( 1=n , giving 

3 parameters 0E , 1E ,and 1τ ) to represent the viscoelastic behavior of the RWM. 

These parameters will be determined by the inverse-problem solving method. The 

detailed process was described in Chapter 2, Section 2.1.1.  

 

3.2 Results 
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Figure 3.4 The vibration amplitude-frequency curves measured from the dynamic 
experiments on eight RWM specimens. 
 

Figure 3.4 shows the displacement amplitude-frequency curves of eight RWM 

specimens recorded from experimental measurements. Each specimen has a 
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prominent displacement peak between 1500 and 2100 Hz. The displacement at low 

frequency (below 500 Hz) has a range between 34 and 68 nm. The resonance 

frequency πω 2/nnf = and amplification ratio R of each RWM specimen are listed 

in Table 1. The mean resonance frequency was 1818 ±193 Hz. The amplification 

ratio R was ranged between 2.88 and 5.66 with a mean value of 3.68±0.89.  
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Figure 3.5 The FE modeling results (dash line) obtained from two RWM models in 
comparison with the corresponding experimental curves (solid line). (A) Specimen 
RWM-4; (B) Specimen RWM-8. 
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FE models were created to simulate the dynamic experiments of RWM 

specimens. As an example, Fig. 3.5 shows the results from two specimens: the 

vibration amplitude-frequency curves derived from the FE modeling (dash lines) and 

the experimental measurements (solid lines). Figure 3.5A was obtained from 

specimen RWM-4 with a resonance frequency of 2132 Hz from experiment and 

2150 Hz from FE model. Figure 3.5B was obtained from specimen RWM-8 with a 

resonance frequency of 1896 Hz from experiment and 1900 Hz from FE model. In 

general, the FE modeling results agreed well with the experimental data over the 

entire frequency range, particularly near the resonance frequency. Some very small 

peaks at a lower frequency (for example, at 1 kHz of RWM-4) were not considered 

as the primary resonance peak. The curves from the FE model were obtained under 

ideal conditions and had no such artificial peaks. The potential resources of these 

peaks may come from the sound distortion or the experimental setup.  

 

Table 3.2 The viscoelastic parameters of RWM specimens by the inverse-problem 
solving method. .(E0 and E1 unit in MPa, τ1 unit in µs). 
 RWM-1 RWM-2 RWM-3 RWM-4 RWM-5 RWM-6 RWM-7 RWM-8 

0E   1.92 1.78 1.88 1.68 1.74 1.82 1.86 1.76 
1E   2.18 2.06 2.08 1.88 2.00 2.06 2.12 1.98 

1τ   4.08 2.98 3.51 5.66 3.81 2.88 3.18 3.37 

   

Three parameters 0E , 1E , and 1τ for each RWM specimen obtained through the 

inverse-problem solving with the FE model are listed in Table 3.2. The value of 0E  

ranged from 1.86 to 2.80 MPa, 1E  ranged from 1.38 to 2.70 MPa, while 1τ ranged 

from 27 to 36 µs. There are some differences between the specimens for each 
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parameter, which may be caused by individual variations between RWM specimens 

(physiological conditions, geometric dimensions) and the variations between 

experimental setups.  
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Figure 3.6 The complex modulus determined from the FE modeling analysis for 
eight RWM specimens over the frequency range of 200-8000 Hz. (A) Storage 
modulus; (B) Loss modulus; (C) Loss factor.   
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Based on the parameters listed in table 3.2, the storage modulus 'E , loss 

modulus "E , and loss factorη  of all eight specimens were calculated and displayed 

in Fig. 3.6 across the frequency range of 200 to 8000 Hz. Figure 3.6A shows that the 

storage modulus increased with frequency for all specimens. The largest storage 

modulus values were 2.80 MPa at 200 Hz, and 4.68 MPa at 8000 Hz (RWM-3), and 

the smallest storage modulus values were 1.86 MPa at 200 Hz, and 3.35 MPa at 

8000 Hz (RWM-2). As shown in Fig. 3.6B, the loss modulus increased with the 

increase of frequency and reached its maximum values around 4500-6000 Hz before 

decreasing. The largest loss modulus was 0.117 MPa at 200 Hz (RWM-6), and 1.24 

MPa at 8000 Hz (RWM-3). The smallest loss modulus was 0.047 MPa at 200 Hz 

and 0.659 MPa at 8000 Hz (RWM-4). Figure 3.6C shows the loss factor obtained 

from the eight specimens. The change of the loss factor with frequency was similar 

to that of the loss modulus: increasing rapidly at frequencies below 4000 Hz, and 

then reaching the maximum values at around 4500-6000 Hz. 

Mean values of the complex modulus and the loss factor with S.D. obtained 

from the eight specimens are shown in Fig. 3.7. Figure 3.7A shows the mean storage 

modulus was 2.32 ±0.29 MPa at 200 Hz and 3.83±0.52 MPa at 8000 Hz. The 

storage modulus increased slowly below 1000 Hz and increased rapidly over 1000 

Hz. Figure 3.7B shows that the mean loss modulus was 0.085 ±0.022 MPa at 200 Hz 

and 0.925±0.192 MPa at 8000 Hz. The maximum loss modulus was 1.038±0.225 

MPa at 5000 Hz. The loss modulus is much smaller than the storage modulus. As 

shown in Fig. 3.7C, the mean loss factor was 0.037 ±0.009 at 200 Hz and 
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0.240±0.023 at 8000 Hz. The maximum loss factor was 0.323±0.051 at 3500 Hz.  
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Figure 3.7 The mean complex modulus of the eight RWM specimens with standard 
deviations (S.D.). (A) Storage modulus; (B) Loss modulus; (C) Loss factor. 
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Figure 3.8 The relaxation modulus in the time domain obtained from the complex 
modulus in frequency domain. (A) Individual relaxation modulus-relaxation time 
curves for the eight RWM specimens. (B) Mean relaxation modulus-relaxation time 
curve with S.D. for the eight RWM specimens. 

 

In addition to complex modulus in frequency domain, we used the parameters 

listed in Table 3.2 to calculate the relaxation modulus in time domain for RWM 

specimens using Eq. (2.1). Figure 3.8A shows the relaxation modulus of eight 

specimens. The initial modulus (at time t=0) ranged from 3.80 to 5.50 MPa, and the 

static modulus (at time t=∞) ranged from 1.86 to 2.80 MPa. As shown in this figure, 
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RWM specimens reached the relaxation state at 200 µs. Figure 3.8B shows the mean 

relaxation modulus changing with time. The mean initial modulus was 4.40±0.63 

MPa, and the mean static modulus was 2.32±0.29 MPa. 

 

3.3 Discussion 

3.3.1 Effect of specimen shape and thickness variation on results 

In this study, the RWM was simulated as a flat membrane structure in the FE 

model as the first step. However, the real human RWM has a slight convexity 

towards the cochlea (Carpenter et al., 1989; Goycoolea and Lundman, 1997). To 

estimate the effect of that assumption on results, a FE model with a curved surface 

was created based on specimen RWM-6. The dimensions of sample RWM-6 were 

close to the mean values of all specimens. A curvature was chosen as 0.1 mm-1 

based on the published image observations (To´th et al., 2006; Li et al., 2007). The 

viscoelastic parameters 0E , 1E and 1τ derived from the model with a curved surface 

were 2.31 MPa, 2.40 MPa, and 36 µs, respectively. These values are slightly smaller 

than that derived from the model with a flat surface (See Table 3.2). The assumption 

of a flat RWM did not affect the results significantly.       

FE model of the RWM was created using the actual long axis and short axis 

measured from each specimen (Table 3.1). However, the thickness of 70 µm was 

used for all RWM specimens based on published data (Goycoolea and Lundman, 

1997). The real thickness of RWM specimen varies with the samples, which may 

affect the complex modulus derived from the FE model. To assess the effect of 
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thickness variation on complex modulus of RWM, the FE models with different 

thicknesses were created based on specimen RWM-6. The thickness was changed 

from 70 µm (named as control) to 60 and 80 µm, and the other parameters were 

maintained as the same as the control (specimen RWM-6). The parameters 0E , 1E and 

1τ derived from the models with different thicknesses are listed in the first three rows 

of Table 3.3. The storage modulus and loss modulus from these models are shown in 

Fig. 3.9. These results show that the complex modulus values obtained from the 

model may change up to 38% compared with control results when RWM thickness 

changed 14% from the control value.  
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Figure 3.9 The effect of the specimen thickness variations on the complex modulus 
determined from the FE modeling analysis for the specimen RWM-6. 

 

Human RWM is thicker at the edge and thinner toward the center (Goycoolea 

and Lundman, 1997; To´th et al., 2006; Li et al., 2007). The uneven thickness 
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distribution may also affect the resonance frequency and vibration mode of the 

RWM. To estimate this effect on the complex modulus, a FE model with thickness 

of 80 µm at the edge and 60 µm at the center was created based on specimen 

RWM-6. The parameters, 0E , 1E and 1τ were determined as 2.25 MPa, 2.34 MPa, 

and 35 µs, respectively. The storage modulus was about 10% smaller than that 

derived from the FE model with uniform thickness of 70 µm. 

 

3.3.2 Effect of experimental conditions on results 

In all experiments, the sound pressure (80 dB SPL) was delivered at 1 mm away 

from the RWM through the tube with inner diameter of 1 mm. In modeling analysis, 

we assumed that the sound pressure was uniformly applied on the RWM surface 

because of the round window niche making a semi-closed chamber around the 

RWM. To estimate the effect of uneven sound pressure applied on the specimen for 

calculation results of the complex modulus, we modified the distribution of sound 

pressure on RWM with pressure at the edge lower than that at the center. The sound 

pressure distribution at 1 mm away from the sound source was calculated following 

the procedure described in Chapter 2, Section 2.1.1.  

Briefly, an open air field with diameter of 0.2 m was built surrounding a circular 

plate with a diameter of 2 mm (simulating the RWM) and the sound delivery tube 

had diameter of 1 mm. The acoustic-structure interface was defined on the boundary 

between the air and the plate. The pressure distribution on the plate was first 

obtained through the acoustic-structure coupled analysis and then applied into the 
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FE model of the RWM. The sound pressure at the center of a circular area (1 mm 

diameter) was 80 dB SPL and gradually reduced to 75 dB at the edge. The 

calculated complex modulus parameters 0E , 1E and 1τ  of specimen RWM-6 from 

the FE model were 2.46 MPa, 2.70 MPa and 35 µs, respectively, as listed in Table 

3.3 (fourth row). These values are very close to those determined from the control 

model listed in the first row of Table 3.3. Thus, the acoustic load variation caused by 

the sound delivering tube may not have a noticeable effect on the results.  

 

Table 3.3 List of the viscoelastic parameters of a RWM specimen (RWM-6) 
determined under various changes in specimen geometry, sound pressure 
distribution and moisture (fluid) level.  

RWM model 0E (MPa) 1E (MPa) 1τ (µs) 

Control (RWM-6) 2.51 2.63 36 
Thickness-60 µm 3.42 3.41 38 
Thickness-80 µm 1.88 2.11 34 
Uneven acoustic load 2.46 2.70 35 
Fluid-5 µm 2.61 2.93 34.5 
Fluid-10 µm 2.74 3.18 33 

 

Another variation of the experiment conditions is the moisture content of the 

specimen during the experiment. It was reported that the moisture or hydration level 

may affect mechanical properties of the soft tissues and fibrous composites (Fraga et 

al., 2003; Johnson et al., 2010). The low moisture content or dehydration makes the 

tissue stiffer. The human RWM is a soft tissue with collagen fibers as the main 

supporting structure. The mechanical properties of the RWM specimen are naturally 

affected by moisture content. To maintain the specimen in an ideal physiological 
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condition, a saline solution was sprayed onto the specimen during the experiment. 

The amounts of saline and measurement time were controlled to ensure the results 

being consistent. In this study, the dynamic measurement was started 30 seconds 

after the saline was added onto the specimen. Each run of the measurement was 

finished within 6 seconds for frequency sweeping between 200 to 8000 Hz. The 

moisture content of the RWM specimen is not anticipated to have noticeable 

changes in such a short period of time.    

Another potential effect of the moisture content on the measurement is the 

additional mass probably added to the specimen since the resonance frequency is 

sensitive to mass. To assess the effect of fluid mass on measurement, a water layer 

with thickness of 5 µm or 10 µm was added to the FE model in the middle ear side 

of the RWM. The complex modulus parameters 0E , 1E and 1τ of specimen RWM-6 

were determined and listed in the last two rows of Table 3.3. Figure 3.10 shows the 

storage modulus and loss modulus variations in response to water layer thickness or 

moisture content. These results show that additional water layer thickness affected 

the storage modulus up to 13% and the loss modulus up to 28%. The water layer 

affected the loss modulus more than the storage modulus and affected the storage 

modulus at higher frequencies more than that at lower frequencies. The results 

suggest that, if there was additional fluid on the RWM surface and it was not taken 

into account in FE model, the complex modulus obtained by the inverse-problem 

solving method should be smaller than the real values. In this study, the moisture 

content of the RWM specimens were maintained by spraying of saline solution on 



 

79 

 

the specimen, and the specimen was checked under the microscope before 

measurement to verify there was not much additional fluid on specimen surface. 

Although the fluid layer thickness could not be measured precisely, we estimated 

that the fluid layer in this study was less than 10 µm and that this thickness would 

not affect the RWM storage modulus measurement more than 13%.  
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Figure 3.10 The complex modulus determined from the FE modeling analysis for 
specimen RWM-6 with different fluid layers added. 

 

In this study, the displacement was obtained from the center point of the RWM 

sample in the experimental measurement. The information from the displacement at 

the center of the membrane is enough to obtain the mechanical properties of the 

RWM with the help of the FE model. However, the complex vibration modes do 

exist in the RWM sample as well as in the FE model. We are unable to measure the 

modes of the RWM in this study, but the FE model can be used to analyze the 
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complex patterns of the RWM. In this study, the primary displacement peak 

presented at (0, 0) mode (at the lowest resonance frequency) of the RWM. The 

displacement curves were not used to characterize these complex mode patterns, 

which is far beyond the scope of this study. 

 

3.3.3 Contribution of this study and future work 

Dynamic properties of the human RWM over the auditory frequency range were 

measured for the first time in this study. The results reported here added new 

knowledge to the biomechanics of human ear and can be applied into the FE 

modeling of middle ear transfer function as well as cochlea mechanics. In published 

FE models, a relatively large range of static elastic moduli from 0.35 to 9.8 MPa 

were assigned to RWM (Bohnke and Arnold, 1999; Gan et al., 2007; Zhang and Gan, 

2011a). In this study, the mean static modulus was measured as 2.32 MPa, which 

was in the range chosen by these published FE models. Moreover, the stapes 

footplate displacement at high frequency (above 5000 Hz) derived from Gan et al.’s 

model is lower than the experimental value measured in the human temporal bones. 

Application of the frequency-dependent modulus obtained in this study into the FE 

model of human ear may enhance the model accuracy for prediction of middle ear 

function.  

Future studies on the mechanical properties of RWM and their applications may 

be expanded in three directions:  

1) Dynamic properties of the RWM in pathological ears, such as otitis media. 
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Otitis media may significantly change the thickness (Sahni et al., 1987) and 

permeability (Ikeda and Morizono, 1988) of the RWM. The morphological 

variations may also change the mechanical properties of the RWM. To understand 

the relationship between the morphology of the RWM and its physical and 

mechanical properties in diseased ears will assist clinical diagnosis and drug 

treatment of otitis media induced mixed hearing loss.  

2) Application of dynamic properties of the RWM into FE model of the human 

ear. As one of two windows connecting the middle ear and cochlea, RWM plays an 

important role in the interaction between the cochlea and middle ear, particularly 

when fluid is filled in the middle ear cavity (i.e., otitis media).  

3) Coupling between RWM and the implantable transducer for design and 

function evaluation of implantable hearing devices. The FE model of the human ear 

will be used to optimize the coupling location and method based on mechanical 

properties of the RWM.  

 

3.4 Conclusion 
 

In this study, an experimental setup to measure the dynamic properties of the 

human RWM specimens was developed. Vibrations of the RWM in response to 

acoustic driving were measured by laser Doppler vibrometry over the auditory 

frequency range of 200-8000 Hz. The dynamic experiments on RWM specimens 

were simulated in FE models, and generally good agreements between the 
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experimental measurements and FE modeling were observed in all RWM specimens. 

Dynamic properties of the RWM were derived by the inverse-problem solving 

method and presented as the complex modulus in frequency-domain and relaxation 

modulus in time-domain. The mean value of the storage modulus of eight RWM 

specimens was 2.32 ±0.29 MPa at 200 Hz and 3.83±0.52 MPa at 8000 Hz, while the 

mean loss modulus was 0.085 ±0.022 MPa at 200 Hz and 0.925±0.192 MPa at 8000 

Hz. The effects of the specimen thickness variation and experimental conditions, 

including the sound pressure distribution and the moisture of the specimen, on the 

complex modulus measurements were discussed using the FE modeling analysis. 

The dynamic properties of the RWM reported in this study provide new knowledge 

on the RWM and middle ear and cochlea mechanics.  
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CHAPTER 4.  

DYNAMIC PROPERTIES OF HUMAN STAPEDIAL 

ANNULAR LIGAMENT 

In this chapter, the dynamic properties of human SAL were measured using 

DMA based on the FTS principle, following the same approach used to measure the 

dynamic properties of human TM which was described in Chapter 2 Section 2.2.  

 

4.4 Methods 

4.4.1 SAL specimen preparation 

Seven fresh human temporal bones obtained through the Willed Body Program 

at the University of Oklahoma Health Sciences Center were used for this study. The 

average age of donors was 68.8 (ranging from 64 to 75 years, three male and four 

female). The preparation of the SAL sample was similar to that reported in Gan et al., 

(2011a), which measured the mechanical properties of SAL under static conditions. 

Briefly, The TB was immersed in 0.9% saline solution mixed with 15% providine at 

5oC before the experiment to maintain SAL compliance and hydration. The TB was 

checked under the microscope for not having any abnormality before experiments. 

After opening the tegmen and removing the TM together with the malleus and incus, 

the TB was cut into a nearly 2 cm×2 cm×1.5 cm cube to expose the stapes with 

attached SAL and surrounding bony wall. The scala vestibuli wall near the oval 

window was open to release cochlear pressure and saline solution was added beneath 

the stapes footplate to maintain the physiological condition for the tissue.  
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Figure 4.1 (A) The schematic of the experiment setup for the dynamic test of the 
SAL specimen in DMA. (B) The enlarged image for the fixation of stapes head to 
the mounting fixture. The SAL was hiding behind the bony structures.   
 

Fig. 4.1A shows the schematic of the experimental setup for the dynamic tests 

of the SAL specimens. The bony part of the whole SAL sample block was fixed on a 

X-Y translational stage, which was placed in the temperature chamber of DMA 

(ElectroForce 3200, Bose, Eden Prairie, MN). The SAL sample was aligned in DMA 

by adjusting the X-Y translational stage and Z-translational column under 

microscope. A titanium partial ossicular-replacement prosthesis (PORP, Gyrus ENT, 

LLC, Memphis, TN) was used as a mounting fixture as shown in Fig. 4.1B. The 

stapes head was mounted to the metal cap of the PORP with a tiny drop of 

cyanoacrylate gel glue. Care was taken not to allow the glue to reach the SAL.  

 

4.4.2 Measurement of SAL specimen dimensions 

The dimensions of SAL specimens used in this study were measured following 

the method which was reported in Gan et al. (2011a). As the SAL specimens were 
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hiding between the stapes footplate and the cochlea bony wall, they were not visible 

during the tests. Their dimensions were measured after the dynamic test, when the 

stapes footplate was pulled out from the oval window. The still images of the stapes 

and oval window were captured using a digital CCD camera. Figure 4.2A shows the 

measurements of stapes footplate length L1 and width L2, and Fig. 4.2B shows the 

oval window length L3 and width L4. The length or width difference between the 

stapes footplate and oval window, L3-L1 and L4-L2, were calculated and the 

average value was used for the SAL thickness T, with the assumption that the SAL 

thickness were uniformly distributed along the perimeter of the footplate. The SAL 

height, which was considered to be the same as the stapes footplate height h was 

measured from the captured image of the specimen as shown in Fig. 4.2C. The 

perimeter of the SAL inner rim or footplate perimeter C was calculated from the 

transferred binary image of the stapes footplate. Table 4.1 lists the dimensions of 

SAL specimens (N=7) with the mean and standard deviation (S.D).  

 
Figure 4.2 Images of the stapes footplate (A) and oval window (B) and stapes (C) 
obtained after experiments on one TB specimen for measuring the dimensions of 
SAL.  
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Table 4.1 The dimensions of human SAL samples (unit in mm).  
SAL specimens  SAL-1 SAL-2 SAL-3 SAL-4 SAL-5 SAL-6 SAL-7 Mean±S.D. 
FP length L1  2.90 2.82 2.78 2.58 2.32 2.68 2.12 2.60±0.28 
FP width L2  1.20 1.22 1.18 1.14 1.08 1.12 1.04 1.14±0.07 
OW length L3  3.12 3.00 2.96 2.76 2.54 2.84 2.30 2.79±0.29 
OW width L4  1.32 1.36 1.30 1.28 1.24 1.24 1.18 1.27±0.06 
Thickness T  0.09 0.08 0.08 0.08 0.10 0.07 0.08 0.08±0.01 
Height h  0.29 0.26 0.27 0.24 0.23 0.25 0.20 0.25±0.03 
Perimeter C  8.56 7.86 7.74 8.32 7.26 8.04 7.06 7.83±0.54 

Note: FP denotes stapes footplate; OW denotes oval window. 

 

4.4.3 Viscoelastic model of SAL specimen 

The SAL specimens underwent the shear stress and strain during the tests, as 

analyzed in Gan et al. (2011a). The shear stress τ and shear strain γ can be 

calculated by:  

CheFChFt fti //)( )2(
0

δπτ +==                                         (4.1) 

TedTdt fti //)( 2
0

πγ ==                                             (4.2) 

where t is time, f is the frequency, δ is the phase difference between the force and 

displacement, 0F and 0d are the force amplitude and displacement amplitude, 

respectively. The storage shear modulus 'G and loss shear modulus "G of the SAL 

are then calculated by:  

Td
ChFG

0

0* =                                                       (4.3) 

δcos*' GG =                                                       (4.4) 

δsin*" GG =                                                       (4.5) 
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In this study, SAL was considered as an isotropic and homogeneous material 

and the generalized linear solid model was used. The complex shear modulus can be 

expressed as:  

∑
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Two spring-dashpot elements ( 2=n , giving 5 parameters 0G , 1G , 2G , 1τ ,and 2τ ) 

were selected to represent the viscoelastic behavior of SAL. Five parameters were 

determined though the theoretical fitting with the experimental data for each SAL 

specimen.  

 

4.4.4 Dynamic test on TM specimen 

Preconditioning test 

The preconditioning tests were conducted in the DMA first to stabilize the 

mechanical properties of SAL specimens. Five cycles uniaxial vibration was 

performed at a frequency of 0.1 Hz and displacement amplitude of 0.1 mm for each 

specimen before the dynamic test.  

 

Dynamic test 

The general process of the dynamic test was the same as that in the dynamic 

tests on TM specimens. Briefly, after preconditioning, the dynamic test was 
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conducted at 5o, 25o, and 37oC in sequence. At each temperature, the TM sample 

was tested at 1, 2, 5, 10, 20, and 40 Hz with the displacement amplitude of 0.1 mm. 

The SAL specimen took a rest for at least 2 minutes for recovering after each run. 

Note that the SAL sample was kept in physiological moisture by adding saline 

solution through the opened hole on cochlea wall. To keep sample in the same 

moisture condition, the accurate amount of saline solution was controlled by a 

syringe.  

 

4.5 Results 

Dynamic experiments were conducted on seven SAL specimens. The storage 

shear modulus 'G and the loss shear modulus "G of these specimens were obtained 

over 1 to 40 Hz. Figure 4.3 shows the typical complex shear modulus-frequency 

curves at the three different temperatures (5o, 25o and 37oC) obtained from two SAL 

specimens (SAL-1 and SAL-6). The storage shear modulus increased with the 

frequency increasing or temperature decreasing. However, the loss shear modulus 

decreased above 20 Hz at 5oC. Larger slopes were found at the lower frequency 

range and lower temperatures for the loss modulus. Other SAL specimens had the 

similar complex shear modulus-frequency curves to that shown in Fig. 4.3, with 

some individual variations. 
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Figure 4.3 The complex shear modulus-frequency curves obtained at 5oC, 25oC and 
37oC from two SAL specimens: (A) SAL-1 and (B) SAL-6. 
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Figure 4.4 The master curves of the complex shear modulus at 37oC obtained from 
two SAL sample: (A) sample SAL-1 and (B) sample SAL-6. 

 

Following the procedure described in Chapter 2, Section 2.2, the complex shear 

modulus curves at the lower temperatures were shifted and the master curves were 

created. Figure 4.4 shows the master curves of the complex shear modulus at the 

reference temperature 37oC for specimens SAL-1 and SAL-6. The same horizontal 

shift factors were used for the storage modulus and loss modulus in each specimen, 
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which meets the second requirement of the FTS principle. The complex shear 

modulus-frequency curves are generally well matched at the adjacent regions after 

the horizontal shifts. For specimen SAL-1, the storage shear modulus is 25.8 kPa at 

1 Hz and increases to 62.1 kPa at 4160 Hz, while the loss shear modulus is 0.8 kPa 

at 1 Hz and 7.1 kPa at 4160 Hz. For specimen SAL-6, the storage shear modulus is 

27.0 kPa at 1 Hz and increases to 65.5 kPa at 3760 Hz, while the loss shear modulus 

is 1.2 kPa at 1 Hz and 7.0 kPa at 3760 Hz. The shift factors and maximum frequency 

of the master curves for all seven SAL specimens are listed in Table 4.2. The mean 

value of the shift factors from 25o to 37oC (α25) is 7.9±1.4. The mean value of the 

shift factors from 5oC to 37oC (α5) is 123.3±24.4. The maximum frequency ranges 

were from 3760 to 6560 Hz with a mean value of 4931±975 Hz. 

The temperature dependence of the shift factor was tested by fitting 

experimental data into the Arrhenius equation (Eq.(2.20)). The activation energy of 

the TM samples is calculated as the ratio between TR αln⋅  and )11(
0TT

− . The 

relation between the shift factors and the temperature are well matched with the 

Arrhenius equation. The values of r2 for all TM samples are not less than 0.984. The 

activation energies of all SAL specimens were obtained and listed in table 4.2, 

which range from 100.3 to 111.7 kJ/mol with a mean value of 105.8±4.0 kJ/mol. 
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Table 4.2 The shift factors, activation energies, and maximum frequency of human 
SAL specimens. (Ea unit in kJ/mol, frequency unit in Hz) 
 SAL-1 SAL -2 SAL -3 SAL -4 SAL -5 SAL -6 SAL -7 Mean±S.D. 
α25  7.0 6.7 8.5 8.1 7.9 10.6 6.8 7.9±1.4 
α5  104 94.0 142 119 132 164 108 123.3±24.4 
lnα25  1.94 1.90 2.14 2.09 2.07 2.36 1.92 2.06±0.16 
lnα5 4.64 4.54 4.96 4.78 4.88 5.10 4.68 4.80±0.20 
Ea  102.5 100.3 109.3 105.2 107.7 111.7 103.6 105.8±4.0 
Max. 
freq  

4160 3760 5680 4760 5280 6560 4320 4931±975 

 

The results obtained here show that the complex shear modulus-frequency 

curves of the human SAL specimens satisfied all three requirements for the FTS 

principle. Thus, the FTS principle is feasible to measure the dynamic properties of 

the SAL at the auditory frequency range. 

Figure 4.5 shows the master curves of the complex shear modulus for all seven 

SAL specimens. The complex shear modulus generally increases with the frequency 

increasing except the loss shear modulus decreases a little between 60 to 200 Hz and 

above 3000 Hz. The storage shear modulus ranges from 23.8 to 41 kPa at 1 Hz. The 

loss shear modulus ranges from 0.18 to 0.45 MPa at 1 Hz.  

The mean complex shear modulus was calculated over the common frequency 

range for the seven SAL samples (1-3760 Hz) and the mean master curves of the 

storage shear modulus G’ and the loss shear modulus G” with S.D. were plotted up 

to 3760 Hz in Fig. 4.5. The mean storage shear modulus was 31.7 kPa at 1 Hz and 

61.9 kPa at 3760 Hz. The mean loss shear modulus was 1.1 kPa at 1 Hz and 6.5 kPa 

at 3760 Hz.  
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Figure 4.5 The master curves of the storage modulus and the loss modulus at 37oC 
from seven SAL samples and the mean master curves of the storage modulus and the 
loss modulus. 

 

Table 4.3 The viscoelastic parameters of human SAL samples. 
Specimen SAL-1 SAL -2 SAL -3 SAL -4 SAL -5 SAL -6 SAL -7 Mean±S.D. 
G0 (kPa) 27.6 26.0 26.7 36.4 33.8 28.1 42.6 31.6±6.2 
G1 (kPa) 15.2 16.7 9.4 13.1 17.7 21.8 16.4 15.8±3.9 
G2 (kPa) 19.0 17.0 10.5 19.0 17.2 18.4 17.3 16.9±3.0 
τ1 (ms) 13.4 10.1 8.7 12.3 5.6 6.0 8.2 9.2±3.0 
τ2 (µs) 174 181 100 134 92.8 69.7 64.5 117±47 

 

The generalized linear solid model was used to describe the viscoelastic 

behavior of the SAL specimens. The experimental data of the storage shear modulus 

were used to fit the theoretical storage modulus-frequency relation (Eq.(4.6)) to 

determine the five parameters ( 0G , 1G , 2G , 1τ , and 2τ ). The theoretical loss shear 

modulus was then calculated by substituting the values of the parameters into Eq. 

(4.7), and the results were compared with the experimental data. As an example, the 



 

94 

 

five parameters for SAL-1 were determined as 0G =27.6 kPa, 1G =15.2 kPa, 

2G =19.0 kPa, 1τ =13.4 ms and 2τ =174 µs, while for SAL-6, the five parameters 

were determined as 0G =28.1 kPa, 1G =21.8 kPa, 2G =18.4 kPa, 1τ =6.0 ms and 

2τ =69.7 µs. Table 2.5 lists the viscoelastic parameters determined from all seven 

SAL specimens with the mean values and S.D. Figure 4.6A shows the complex 

shear modulus of specimen SAL-1 derived from the generalized linear solid model 

in comparison with the experimental results and Fig. 4.6B shows that complex shear 

modulus curves for specimen SAL-6. The mean experimental complex modulus 

curves shown in Fig. 4.5 were also fitted by the generalized linear solid model with 

the five parameters determined as 0G =31.8 kPa, 1G =15.4 kPa, 2G =16.0 kPa, 

1τ =8.9 ms and 2τ =121 µs. The results are shown in Fig. 4.6C where the theoretical 

complex modulus curves were compared with the mean experimental data.   
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Figure 4.6 The theoretical fitting of generalized linear solid model to the 
experimental complex modulus for (A): sample TM-7 and (B) the mean 
experimental complex modulus. 
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4.6 Discussion 

To date, there is no report about the dynamic properties of human SAL in the 

literature. The results reported in this study fill the gap in the biomechanics of 

middle ear tissues. However, the mechanical properties of human SAL under 

quasi-static conditions have been studied by Gan et al. (2011a) using pulling tests in 

MTS. Their study demonstrates that the human SAL is a typical viscoelastic 

material with hysteresis, and stress relaxation function. The human SAL shows 

nonlinear stress-strain relationship and the shear modulus changes from 3.6 to 220 

kPa when the shear stress increases from 2 to 140 kPa. In this study, the complex 

shear modulus of the SAL specimens was obtained over the frequency range from 1 

to 3760 Hz. The storage shear modulus at 1 Hz can be considered comparable to the 

shear modulus obtained from the quasi-static tests. The mean storage shear modulus 

of seven SAL specimens at 1 Hz was 31.7 kPa obtained from this study, which was 

among the range from 3.6 to 220 kPa, which was reported by Gan et al. As the SAL 

is a nonlinear material, whose shear modulus varies with the stress or strain level 

changing, we further compared the results from two studies at the same strain. 

Displacement amplitude of 0.1 mm was used in the dynamic tests of this study. Thus, 

the maximum shear strain is about 1.25 calculated by Eq. (4.2) with the thickness of 

0.08 mm. Gan et al. reported the mean shear stress at 17.5 kPa, and mean shear 

modulus at 35.2 kPa when the shear strain was1.25. The value of 35.2 kPa was close 

to the result (31.7 kPa) reported in this study. The difference between the results 
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from two studies may be probably caused either the individual variation of the 

human SAL specimens or the different experiment setup and testing conditions.  

The complex shear modulus 'G and "G  of the human SAL obtained in this 

study can be converted into the complex modulus 'E and "E  and applied into the 

FE model of the human ear. There is very simple relation between the shear 

modulus and elastic modulus, which is expressed by the equation 

'' )1(2 GE ν+=    "" )1(2 GE ν+=                                     (4.9) 

where ν is the Poisson’s ratio of SAL. The value of 0.3 was widely used for ν in 

the published FE models of ear (Gan et al., 2004, 2007; Zhao et al., 2009) and it is 

adopted in this study. Thus, the mean storage modulus 'E was 82.4 kPa at 1 Hz and 

160.9 kPa at 3760 Hz. The mean loss modulus "E was 2.86 kPa at 1 Hz and 16.9 

kPa at 3760 Hz. Similar as discussed in Chapter 2, Section 2.2.3, the application of 

the complex modulus of the SAL into the FE model of ear can avoid Rayleigh type 

damping, which may cause too high damping at higher frequencies, and help 

improve the accuracy of the model.  

In most published FE model of human ear (Gan et al., 2004, 2007; Wada, et al., 

1992; Zhao et al., 2009), the constant elastic modulus was used for the SAL and the 

large variations existed for the values from 0.065 to 5.5 MPa. In this study, the 

storage modulus 'E ranged from 82.4 kPa to 160.9 kPa depending on the frequency. 

These values are in the range of the published data. In the recent FE model of ear 

reported by Zhang and Gan (2011a), frequency-dependent complex modulus was 

used for the middle tissues including SAL. The values of 2.0 MPa, 10.8 MPa and 25 
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µs were used for the viscoelastic parameters 0E , 1E , and 1τ , respectively. The 

complex modulus 'E and "E used in the model were much larger than those 

obtained in this study. The difference may be caused by the inaccurate 

reconstruction of the SAL geometry in those FE models.  

  

4.7 Conclusion 

This is the first study to report the dynamic properties of the human SAL 

specimens in the auditory frequency range (up to 3760 Hz). The dynamic tests were 

conducted at frequencies from 1 Hz to 40 Hz at three different temperatures: 5o, 25o 

and 37oC. The frequency- temperature superposition (FTS) was applied to expand 

the frequency range to a higher level. The generalized linear solid model was used to 

describe the viscoelastic behavior of the SAL samples. The storage shear modulus 

G’ and the loss shear modulus G” in the frequency domain was obtained from the 

seven SAL specimens. The mean storage shear modulus was 31.7 kPa at 1 Hz and 

61.9 kPa at 3760 Hz. The mean loss shear modulus was 1.1 kPa at 1 Hz and 6.5 kPa 

at 3760 Hz. The data reported here contribute to the biomechanics of the middle ear 

tissues and may help improve the accuracy of the FE model for the human ear. 
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CHAPTER 5.  

SUMMARY AND FUTURE STUDY 

5.1 Summary 

In this study, two new methods were developed to measure the dynamic 

properties of human middle ear soft tissues including TM, RWM and SAL in 

auditory frequency range. In the first method, the vibrations of the specimen in 

response to acoustic stimuli were measured by LDV over the frequency range of 

200-8000 Hz. The dynamic experiments were simulated in FE models for 

acoustic-structure coupled analysis in ANSYS. The dynamic properties of the 

membrane specimens (TM and RWM) were derived by the inverse-problem solving 

method. In the second method using DMA based on the FTS principle, the dynamic 

tests were conducted for the TM and SAL specimens at the frequencies from 1 Hz to 

40 Hz at three different temperatures: 5o, 25o and 37oC. The FTS principle was 

applied to expand the frequency range to higher frequencies. The dynamic properties 

of TM specimens were measured by both methods, which were presented in Chapter 

2. The dynamic properties of RWM specimens were measured by first method using 

acoustic driving, which were presented in Chapter 3. The dynamic properties of 

SAL specimens were measured by the second method using DMA, which were 

presented in Chapter 4. The approach using acoustic driving and LDV can reach 

higher frequency compared with the second approach using DMA. However, it is 

only applicable for the membrane tissues like TM and RWM. The approach using 
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DMA is a direct measurement in frequency domain and does not need the assistance 

of FE modeling analysis and the inverse-problem solving method. . The 

experimental methods developed in this study may be used to measure other human 

soft tissues and have a impact on the experimental biomechanics. 

The generalized linear solid model was used to describe the viscoelastic 

behaviors of these middle ear tissues. The complex modulus of TM, RWM, and 

SAL were obtained in the auditory frequency range (at least 3760 Hz) as the results. 

The results reported in this study add the data to research of middle ear 

biomechanics. The complex modulus and the loss factor obtained in the dynamic 

tests can be applied into the FE model of human ear instead of the classic elastic 

modulus and Rayleigh type damping and help to improve the accuracy of the FE 

model.  

 

5.2 Future Study 

 Future studies on the mechanical properties of middle ear soft tissues and their 

applications may include:  

1) To measure the dynamic properties of middle ear soft tissues in diseased 

conditions, such as otitis media, which is one of the most common middle ear 

diseases in children. Otitis media may significantly change the thickness of the TM 

and RWM. The morphological variations may also change their mechanical 

properties. To study the relationship between the morphological and mechanical 

changes in the diseased ears may help understand the mechanism of hearing loss 
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induced by otitis media.  

2) To measure the dynamic properties of other middle ear tissues, such as IS 

joint, suspensory ligaments and muscle tendons, using the methods developed in this 

study.  

3) To apply the dynamic properties of middle ear tissues into the FE model of 

the human ear. The application of the frequency dependent complex modulus may 

improve the accuracy of the FE model, especially at high frequency range.  

4) To develop a nonlinear viscoelastic model for the middle ear soft tissues. It 

was reported that middle ear soft tissues show typical nonlinear behavior (Cheng et 

al., 2007; Cheng and Gan, 2007, 2008a, 2008b; Gan et al., 2011a; Zhang and Gan, 

2011b). The nonlinear model is necessary in the analysis of the middle ear response 

under large static load (middle ear pressure) or dynamic load (blast wave). A 

nonlinear viscoelastic model will be developed and its parameters will be 

determined based on the experimental data.  
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APPENDIX 

LIST OF ABBREVIATIONS 

dB     Decibel (acoustic) 

DMA    Dynamic mechanical analyzer 

FE     Finite element 

FTS     Frequency-temperature superposition 

LDV    Laser Doppler vibrometer 

MTS    Mechanical testing system 

RWM    Round window membrane 

SAL    Stapedial annular ligament 

SHTB    Split Hopkinson tension bar  

SPL     Sound pressure level 

TB     Temporal bone 

TM     Tympanic membrane 
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