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CHAPTER 1

INTRODUCTION

Modern epidemiological and medical research routinely employs generalized linear

modeling. These models can be helpful in understanding what behaviors or traits can

influence the incidence of a particular disease or characteristic. For example, logistic

regression models provide a means of relating the incidence of some trait or disease

to a set of possible predictor variables, while loglinear models help us understand

associations between a trait and predictor variables.

After building a generalized linear model(GLM), one typically wishes to estimate

particular quantities of interest such as response probabilities, odds ratios, or relative

risks. Customarily, these are reported via confidence intervals or confidence bounds

using some pre-specified level of significance for each inference. For example, using

a loglinear model, one could report 100(1 − α)% confidence intervals for each rela-

tive risk resulting from the model. Using one-at-a-time intervals is appropriate when

the investigators are not making overall conclusions about the quantities of interest.

For example, if the aforementioned loglinear model was estimated and 100(1 − α)%

confidence intervals for the relative risks were reported, conclusions about each in-

dividual relative risk could be made, but any statements comparing these relative

risks would inflate the assumed α error rate. Research on simultaneous estimation

procedures for quantities from generalized linear models has received little attention

beyond very routine treatments, such as making Bonferroni adjustments to the usual

confidence interval or constructing Scheffé intervals. However, recent advances made

in simultaneous inference for linear models may be applied in the generalized linear
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model setting. Additionally, further improvements may be made by utilizing some

unique properties of the estimated parameters from generalized linear models. I plan

to present the justification for employing these simultaneous inference methods in

the generalized linear model setting and, via simulation, compare their performance.

Thus, the objective of this study is to develop simultaneous interval based procedures

that will estimate functions of linear combinations of the parameters of a general-

ized linear model. Specifically, this includes simultaneously estimating the expected

response function, odds ratios, and relative risks from generalized linear models.

Overall, attention is focused on quantities that are estimated from a GLM, not the

estimation of the GLM itself. Obviously, the performance of any of these procedures

will be influenced by how well the model is estimated, but this dissertation will

assume the model is well estimated. Additionally, all of the procedures developed in

this paper involve constructing interval estimates. Often, procedures that account for

multiplicity employ hypothesis tests to make overall conclusions about a set of data.

It is more appropriate in the applications I will discuss to use simultaneous intervals

instead of stepwise procedures, since I wish to not only detect statistical differences

between quantities, but also to assess the practical significance of these differences.

Thus, all methods discussed are interval-based procedures.

Before presenting the details of generalized linear models, a practical example

of the implementation of a GLM may provide a frame of reference. A 2003 study

from the American Journal of Epidemiology explored the relationship between ma-

ternal stress and preterm birth [1]. Several previously identified sources of maternal

stress, such as high incidence of life events, increased anxiety, living in a dangerous

neighborhood, and increased perception of stress, were explored for any association

with preterm births. Specifically, the study focused on predicting the prevalence of

preterm birth among pregnant women aged 16 or older from two prenatal clinics in

central North Carolina. Upon admission to the study, women were asked to complete
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Table 1.1: Maternal Stress Relative Risks and 95% Confidence Intervals

Life Events Stress RR 95% CI

No Stress 1.00

Med-Low Stress 1.5 (1.0, 2.2)

Med-High Stress 1.4 (0.9, 2.1)

High Stress 1.8 (1.2, 2.7)

questionnaires in addition to completing a psychological instrument. Also, several

blood, urine, and genital tract tests were conducted in order to assess the physical

health of the candidates. In all, 2,029 women were eligible, recruited, and completed

the preliminary tests in order to participate in the study. Of these participants, 231

delivered preterm, less than 37 weeks gestation. A loglinear model was employed to

assess the relationship between the sources and levels of maternal stress and preterm

birth. As a result, the authors considered the resulting model relative risks for each

individual stress factor or level of a stress factor and its association with preterm

birth. Additionally, 95% confidence intervals were computed for each relative risk.

The relative risk will be discussed in detail later, but note that for this study each

relative risk is the risk of preterm birth for an individual with one particular maternal

stress factor relative to the risk of preterm birth for an individual with none of the

other identified sources of maternal stress present. Thus a large relative risk for a

particular source of maternal stress indicates a strong association between that stress

factor and preterm birth. In general, other quantities derived from the generalized

linear model may also be of interest. Table 1.1 contains results from the preterm

birth study discussed, though these results have been simplified from the actual im-

plemented model for ease of presentation. In particular, the relative risks for different

levels of stress due to general life events is presented. As previously discussed, note
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that the 95% confidence intervals for each relative risk presented in Table 1.1 estimate

the risk of preterm birth for each individual subject to a particular level of a maternal

stress factor (life event stress) with reference to the control (the case with no identified

source of maternal stress). For this scenario, one-at-a-time inferences are reasonable

if the researcher wishes to answer questions such as, “how does the presence of one

source of maternal stress affect the risk of preterm birth?” Note that this question is

only concerned with the presence of a particular stress factor and how it affects the

incidence of preterm births. If one wishes to make any overall conclusions comparing

how the multiple sources of maternal stress affect the risk of preterm birth, then an-

other estimation procedure that accounts for multiplicity needs to be implemented.

For instance, in the preterm birth study, the researchers reported the above relative

risks and confidence intervals, and then remarked that “(w)omen in the highest neg-

ative life events impact quartile had the highest risk (RR=1.8, 95% CI: 1.2, 2.7);

however, the middle categories did not show increasing risk with increasing measures

of stress.” This kind of conclusion is inappropriate given that the researchers only

computed one-at-a-time 95% confidence intervals for the relative risks. Therefore,

this is a case that would benefit from simultaneous inference on the relative risks.

As another example where simultaneous inference would be appropriate, consider

the case where the researcher wishes to identify the set of the sources and levels of

maternal stress that are significantly associated with preterm birth. In this case the

one-at-a-time intervals are again inappropriate. In order to make this kind of conclu-

sion, the researcher needs to determine which groups of relative risks are significantly

different from 1. If the researcher additionally wants to determine the practical sig-

nificance of the differences between the varying sources and levels of maternal stress

and the control, then confidence intervals with a multiplicity adjustment are required.

Stepwise procedures are not adequate as they only determine where statistically sig-

nificant differences exist, but do not provide a way to estimate the scale of these
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differences. Additionally, it is often desirable to make conclusions such as “if the sub-

ject has one level of a predictor variable, then he is twice as likely to have the disease

than if he has any other level of that predictor variable”. Many other examples of

similar conclusions could be given, but generally, these conclusions are comparing one

parameter to another and the desired outcome is to somehow relate these parameters.

Thus, if one wishes to make any comparisons of these parameters, it is desirable to

control the overall type I error rate by accounting for the multiplicity of inferences.

In the following chapters, I will present the motivation for simultaneous inference

of certain parameters and outline both the current methodologies and my proposed

methodologies. Additionally, the simulation results of the proposed methods are

presented and analyzed. Specifically, in chapter two, I present the generalized linear

model and the typical quantities that are estimated from the model, and discuss why

simultaneous inference of these quantities is essential in some situations. Additionally,

I review some methods for computing one-at-a-time confidence intervals on various

quantities resulting from generalized linear models. In chapter three, I outline the

current methodologies used for simultaneously estimating various functions resulting

from generalized linear models, and I propose four new methods to estimate these

parameters from GLMs. In chapter four, I summarize how I evaluated these new

methods using simulation and present the simulation results. Finally, I propose some

future research questions regarding simultaneous estimation of a GLM and present

some applications of the new methods in the concluding chapter.

5



CHAPTER 2

The GLM and Estimated Quantities

There are several generalized linear models (GLM) that permit estimates, such as

the odds ratio or relative risk, where multiplicity adjustments often seem warranted.

Some of these models include the logistic regression model, loglinear model, Poisson

regression model, and the probit or complementary log-log model. In general, a GLM

can be expressed as

Yi = g−1(x′
iβ + ǫi), i = 1, . . . , n (2.1)

or alternatively,

φi = g(E(Yi|xi)) = x′
iβ, i = 1, . . . , n (2.2)

where g links the expected response, E(Yi|xi), to φi, with xi the vector of covariates

corresponding to Yi, β the k×1 vector of regression parameters, and ǫi independently

and identically distributed random variables. In the later sections, Y = (Y1, . . . , Yn)
′

is the vector of responses and X = (x1, . . . ,xn)
′ is the full rank matrix of predictor

variables. Each GLM corresponds to a particular link function g, typically called the

canonical link when it transforms the mean to the natural parameter. In general,

the maximum likelihood estimate (MLE) of the regression parameters is denoted

β̂ = (β̂1, . . . , β̂k). The MLE is asymptotically multivariate normal with mean β and

covariance matrix

V = (X′WX)−1 (2.3)
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where W is a diagonal matrix with diagonal elements wi = (∂µi/∂φi)
2/var(Yi) for

µi = E(Yi|xi) and φi in (2.2). Thus,

β̂
·∼ Nk(β,V ). (2.4)

We can estimate the covariance matrix, V , by

V̂ = ˆcov(β̂) = (X′ŴX)−1 (2.5)

with Ŵ = W |β=β̂. Further results will require the estimated covariance of x′
iβ for a

given xi vector with k known elements. This is given by

σ̂2
GLM(xi) =

√

x′
iV̂ xi, i = 1, . . . , n. (2.6)

At times I will need to refer to a linear model in this proposal. A linear model is

generally given by

Yi = x′
iθ + ǫi, i = 1, . . . , n (2.7)

or alternatively,

E(Y ) = Xθ (2.8)

where θ is the vector of regression parameters, Y and X are as previously defined,

and ǫi ∼ iid N(0, σ2
LM). The MLEs for θ = (θ1, . . . , θk) are denoted θ̂ and

θ̂ ∼ Nk(θ, σ
2
LMF ) (2.9)

where σ2
LM is the variance of the model residuals for a linear model and F = (X′X)−1.

Whenever a linear model is referenced in this paper, the notation presented above

will be utilized.

As discussed previously, the objective of this research is not to merely estimate a

GLM, but to simultaneously estimate quantities derived from a GLM. There are many

natural quantities that can be of interest when modeling data with a GLM. These

include measures such as the expected mean response, the odds ratio, the relative
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risk, and possibly others. While the focus of this paper is on the estimation of these

quantities from GLMs, it should be mentioned that they may be estimated directly

from the data. I will first present these measures in general, and then discuss them

specifically in the context of generalized linear models.

2.1 The Expected Mean Response

The expected mean response is a generic term for either the response probability

or the mean response. Depending on the sampling distribution of the data, either one

or the other is of interest. For example, if we assume binomial sampling, the expected

mean response function is the probability of a success for a given level of the predictor

variables, or the response probability. When a Poisson sampling scheme is assumed,

the expected mean response is the average for a particular cell in the contingency

table, or the mean response.

A response probability is the proper quantity of interest if one wishes to under-

stand the probability of developing a disease or another characteristic for a given set

of predictor variables that are believed to be associated with the disease. For example,

a response probability could be used to inform a particular patient of their probability

of developing a particular disease given their history and profile. With respect to the

preterm birth example, if a doctor has a patient known to be experiencing a major

life event, such as a death in the family, then she could ascertain that patient’s risk

of preterm birth and take appropriate measures.

Conversely, the mean response might be used in a situation where a clinician has

recorded a host of risk factors for a particular disease and wishes to predict how

many of the subjects will develop the disease. This communicates how many patients

on average will or will not develop a certain characteristic. In the context of the

preterm birth example, the Poisson mean response could be used to estimate how

many subjects out of the total sample size will experience a preterm birth. The
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Poisson mean response is simply estimated directly from the frequencies given in a

contingency table when it is not estimated from a model.

In general, a one-at-a-time 100(1−α)% confidence interval for the response prob-

ability is given by

π̂i ± zα/2( ˆvar(π̂i))
1/2 (2.10)

where var(π̂i) = πi(1−πi)
mi

and ˆvar(π̂i) = π̂i(1−π̂i)
mi

. (Note that confidence intervals on

the mean response for Poisson sampling distribution models are not typically com-

puted.) This one-at-a-time confidence interval for πi is often employed to estimate an

expected mean response for binomial or multinomial sampling scenarios. If the re-

searcher simply wants to know how a particular level of the predictor variables affects

the incidence of disease, this is all that needs to be calculated. First, consider the case

where the predictor variable is categorical, as in the preterm birth example. Suppose

a clinician wishes to estimate the risk of preterm birth for a particular patient in her

clinic. Then the one-at-a-time interval would be adequate. Alternatively, consider

a scenario where a researcher wants to make some kind of overall conclusion about

the relationship between all the sources and levels of maternal stress and preterm

birth. For example, suppose the researcher wishes to compare the risk of preterm

birth for all the maternal stress factors and their levels. In order to simultaneously

estimate these differences, the researcher would need to employ some kind of proce-

dure that accounts for the multiple inferences being made. Additionally, it would be

of practical interest to identify a group of maternal stress factors and levels that are

“most associated” with preterm birth and another group of maternal stress factors

and levels that are “least associated” with preterm births. This too would necessitate

a procedure that adjusts for multiplicity while also providing interval estimates of

the response probabilities for each stress factor. Finally, consider the case where the

researcher would want to compare the probability of preterm birth for each maternal

stress factor or level with the probability of preterm birth for a control or reference
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level. In this example, the reasonable reference level would be subjects that have no

identified sources of maternal stress. Again the appropriate procedure would adjust

for multiplicity.

Now consider the case where the predictor variable is continuous. Often, with a

continuous predictor variable, a specific range of the domain is of particular interest.

For example, if we added a continuous measure of each patient’s prepregnancy body

mass index (BMI) in the preterm birth study, we might have particular interest in

BMI’s less than 19.8 (underweight), 19.8 to 26.0 (normal weight), 26.0 to 29.0 (over-

weight), and over 29.0 (obese). It may be of interest to compare the expected number

of preterm birth cases for subjects within these BMI groups within a particular ma-

ternal stress factor group. In order to make conclusions such as the obese patients

have the largest number of preterm birth cases, interval estimates need to be used

that account for the multiple inferences being made. The methods I propose will

adjust for this kind of multiplicity.

2.2 The Odds Ratio

The odds ratio is a widely used measure in epidemiological and medical applica-

tions. The odds ratio is generally defined as the ratio of the odds of a characteristic

(or disease) occurring in one group to the odds of it occurring in another group.

With reference to the preterm birth study, odds ratios could have been computed

that would estimate the relative odds of preterm birth for a particular level of a ma-

ternal stress factor to the odds for those mothers with no identifiable stress factors.

Thus, an odds ratio of 2.11 for mothers who live in a neighborhood perceived to be

dangerous, would be interpreted as: the odds of delivering a preterm infant when

living in a neighborhood that is perceived to be dangerous is 2.11 times greater than

the odds of having a preterm infant when a subject is not exposed to any identifiable

sources of maternal stress.
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Table 2.1: Sample Contingency Table

X = x1 X = x2

Y = 1 a b m1

Y = 0 c d m2

n1 n2 n

The sample odds ratio can easily be computed from the raw data and is given

by η̂ = ad
bc

for counts as given in Table 2.1 irrespective of which sampling model

(binomial, multinomial, or Poisson) is assumed for the cell counts. For large samples,

again under all sampling models, the log odds ratio, log(η̂) is asymptotically normal

with mean log(η) and estimated standard error σ̂logη̂ = ( 1
a

+ 1
b

+ 1
c

+ 1
d
)1/2. Thus, a

100(1 − α)% one-at-a-time large sample confidence interval for the log odds ratio is

given by

log(η̂) ± zα/2σ̂log(η̂). (2.11)

Exponentiating the lower and upper bounds of this interval yields confidence bounds

for the odds ratio.

It is common to see one-at-a-time confidence intervals for odds ratios reported

along with their point estimates. Suppose a researcher wants to report the estimated

odds ratio for a particular patient profile with confidence limits. For example, in

the preterm birth example, she may want to report the odds ratio of preterm birth

for those exposed to a particular maternal stress factor compared to those with no

identifiable maternal stress factors. In this case, the one-at-a-time intervals are ap-

propriate. Alternatively, consider the case where the researcher wants to identify

which, if any, of the maternal stress factors or levels of a stress factor are statistically

associated with a preterm birth or to identify a set of stress factors or level of a stress
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factor whose association with preterm birth is larger than that for no stress factors

present. The one-at-a-time intervals will not suffice for these kinds of questions as

there are multiple inferences being made. In order to control the type I error rate,

a simultaneous estimation procedure should be utilized. Additionally, the researcher

may wish to compare the odds of preterm birth for any maternal stress factor to the

odds of preterm birth for all other sources of maternal stress. In order to do this, a

multiple comparison procedure must also be utilized as the researcher actually wants

to compare the probabilities of preterm birth across all the possible sources of ma-

ternal stress. It is tempting to make overall conclusions about the odds ratios when

reporting estimated odds ratios via one-at-a-time confidence intervals. However, the

error rate associated with these overall conclusions based on multiple one-at-a-time

intervals is not controlled, or even known. In this case, a method that simultaneously

estimates the parameters is warranted.

2.3 Other Quantities

Another quantity frequently reported is the relative risk. The relative risk com-

municates the risk of developing a disease at one level of the predictor variable relative

to another level of the predictor variable. An example of a study employing relative

risks is the preterm birth study. In Table 2, the estimated relative risk would be given

by γ̂ = a/n1

b/n2
where the counts are as in Table 2.1. Suppose a researcher reports that

the estimated relative risk of preterm birth is 1.75, given the subject lives in a neigh-

borhood perceived to be dangerous. Thus the proportion of those that experience a

preterm birth among those that live in the dangerous neighborhood is estimated to

be 1.75 times the proportion of those who experience a preterm birth among those

with no identified sources of stress. Again, the log scale is often utilized and large

sample derivations show that the log of the sample relative risk, log(γ̂) is asymptoti-

cally normal with mean log(γ) and estimated standard error σ̂log(γ) = (1−π̂1

π̂1n1
+ 1−π̂2

π̂2n2
)1/2
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where π̂i for i = 1, 2 is the estimated probability of disease among those in group i

and ni is the sample size for group i = 1, 2. Thus, the 100(1−α)% confidence interval

for the log relative risk is

log(γ̂) ± zα/2σ̂log(γ̂). (2.12)

These resulting bounds may be exponentiated in order to obtain confidence limits on

the relative risk.

It is sufficient to report an estimated relative risk via a one-at-a-time confidence

interval when a researcher only needs to understand how one level of the predictor

variable affects the incidence of disease. The preterm birth study reported relative

risks and the associated confidence intervals, thus only individual inferences about

each source of maternal stress or level of a maternal stress factor relative to the

case with no source of stress can be made. However, suppose a researcher wishes to

pick out which risk factor or level of a risk factor contributes most to a disease or

condition, or obtain ranking information for the sources and levels of maternal stress

with respect to risk of disease or condition. As estimation is still also of interest,

multiplicity adjustments need to be made to the confidence intervals.

In addition to the relative risk, other quantities should be considered as well. For

example, many epidemiological researchers find the attributable proportion a useful

measure. Suppose we have a disease and several risk factors for that disease. Then

the attributable proportion would be the probability that a diseased individual in the

given risk factor has the disease because of that risk factor [2]. This is of interest

when there are multiple risk factors for a disease. Thus, this measure is of particular

interest in case-control studies where the incidence of disease is related to several

risk factors as it allows the researcher to understand how much the disease could be

reduced by eliminating a particular risk factor.

One-at-a-time confidence intervals can also be utilized to estimate the attributable

proportions. Model-based confidence interval formulas can be computed on the usual
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attributable proportion. Often transformations of the relative risk are utilized to com-

pute bounds on the attributable proportion since they can be more efficient asymptot-

ically. However, the MLE-based interval performs adequately [3] and is more easily

adjusted for simultaneous inference in the sequel. Thus, a one-at-a-time confidence

interval for the attributable proportion, denoted κ, is given by,

κ̂± zα/2 × ˆvar(κ̂)1/2 (2.13)

where zα/2 is the z critical value that gives 100(1 − α)% confidence. (Details for

computing ˆvar(κ̂) are given in [4].)

Again, this interval is all that is required in many applications. However, if the

researcher wishes to compare the attributable proportions for a group of risk factors,

an adjustment for multiplicity would be necessary. This might be necessary if, for

example, one wished to understand which risk factor should be focused on most for

prevention of the disease. Here we would want to identify the largest attributable

proportion and focus on disease prevention via reducing the effect of that risk factor.

2.4 Interval Estimation from GLMs

Though we have introduced notation for both linear models and GLMs, the rest

of this section focuses on the particular GLMs utilized to illustrate the results in this

paper. While the methods derived apply to any GLM, particular attention will be

devoted to the logistic and Poisson models due to their applicability and popularity.

2.4.1 Logistic Regression Model

The logistic regression model is widely used in epidemiological and health science

applications. The predictor variable in a logistic regression model can be either a

single variable or a vector of variables. Thus, let xi = (xi1, xi2, . . . , xik) be a vector of

predictor variables for i = 1, . . . , n where n is the total number of observations, and k
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is the number of predictor variables. Thus, xi is the ith vector of predictor variables.

Recall that for qualitative covariates, the xi’s would be defined as appropriate indi-

cator variables. For example, in the preterm birth study xi could be the maternal

stress vector of predictor variables with binary elements indicating the presence of

a particular source or level of a source of maternal stress. Thus, if the ith case is a

patient exposed only to dangerous neighborhoods as a source of maternal stress, we

would code xi = (1, 1, 0, 0, 0, . . . , 0) where the first element has a 1 for the intercept

term, the second place has a 1 to indicate the presence of stress in the form of a

dangerous neighborhood, and the other elements of the vector are 0 indicating the

patient was not exposed to the other sources of maternal stress. A logistic regression

model assumes that the probability of a success for the ith observation is π(xi) where

π(xi) = P [Yi = 1] =
ex′

iβ

1 + ex′

iβ
=

eβ1xi1+...+βkxik

1 + eβ1xi1+...+βkxik
, i = 1, . . . , n. (2.14)

The matrix X, as previously defined, contains information relating to the predicted

value, Y , for the model. Alternatively, we can express this model as

φ(xi) = logit[π(xi)] = ln[
π(xi)

1 − π(xi)
] = x′

iβ, i = 1, . . . , n. (2.15)

Now let the MLE of π(xi) be denoted π̂(xi). We will make the usual assump-

tion that the Yi random variables are independent and binomially distributed with

parameters mi (assumed known) and π(xi) given by (2.14), i = 1, . . . , n. Thus,

W = diag[miπ(xi)(1 − π(xi))], i = 1 . . . , n and the asymptotic distribution of the

MLE of β is given by (2.4). For Ŵ = diag[miπ̂(xi)(1 − π̂(xi))], i = 1, . . . , n, the

estimated covariance matrix of β̂ is given by (2.5).

When it is assumed that a logistic regression model is appropriate, the typical

quantities of interest are the coefficients of the regression model, or the log odds

ratios, βi, i = 1, . . . , k, and the response probabilities, π(xi). These quantities relate

to what was generally referred to as the expected response function. In particular, the
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expected response function for a logistic regression model is the response probability

since this model assumes binomial sampling.

When considering response probabilities for single experimental units, one-at-

a-time confidence intervals seem appropriate. (Confidence intervals provide addi-

tional information about the precision of the estimated response probability, so are

often preferable to point estimates.) An appropriate confidence interval on the

logit(π(xi)) = x′
iβ is computed by

x′
iβ̂ ± z1−α/2σ̂GLM(xi) (2.16)

where z1−α/2 is a z-percentile and σ̂GLM(xi) is given by (2.6) with Ŵ as previously

defined. Let the upper and lower limits of (2.16) be denoted by ULOGIT and LLOGIT ,

respectively. Then we can apply the anti-logit and obtain bounds on the response

probability. Thus, a 100(1 − α)% confidence interval for the response probability is

given by
(

exp(LLOGIT )

1 + exp(LLOGIT )
,

exp(ULOGIT )

1 + exp(ULOGIT )

)

. (2.17)

Another quantity of interest from a logistic regression model is the odds ratio.

One-at-a-time large sample confidence intervals can easily be constructed on the log

odds ratios, as they are linear functions of the k logistic regression coefficients, β.

Thus we may utilize the asymptotic multivariate normal distribution of the maximum

likelihood estimates of these k logistic regression coefficients, given by (2.4), to obtain

large sample confidence intervals for the appropriate odds ratios. For illustration,

suppose a particular odds ratio is given by exp(ciβ) for ci = (ci1, . . . , cik), a vector of

appropriate constants. Then a one-at-a-time large sample confidence interval for this

particular odds ratio is given by

(

exp{ciβ̂ − zα/2σ̂GLM(ci)}, exp{ciβ̂ + zα/2σ̂GLM(ci)}
)

(2.18)

where σ̂GLM(ci) is given by (2.6). Typically, in epidemiological applications, the

logistic regression model employed for computing the model-based odds ratios utilizes
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reference coding. When reference coding, as explained below, is utilized, special care

must be taken in interpreting the model-based odds ratios.

2.4.2 Reference Coding for Logistic Regression

If a logistic regression model is employed for a categorical predictor variable, the

design coding typically used necessitates that one of the levels of x be a reference level.

Then odds ratios that result from the model coefficients are observed and compared

to that reference level. Most often the reference level is a true control, but at times

the reference level is arbitrary. When the reference level is informative, we may wish

to: (1) estimate all the odds ratios relative to the reference level simultaneously,

thereby allowing the researcher to assess the practical significance of any observed

difference from the reference level while also providing the ability to evaluate which

non-reference levels are significantly greater than or less than the reference level and

(2) make comparisons for a pre-specified set of contrasts of the odds ratios. If the

reference level is arbitrary, it seems reasonable to simultaneously compute all odds

ratios or all odds ratio differences and then emulate one of the two scenarios described

above. Again, if we wish to assess the practical significance of any estimates we need

to estimate these quantities simultaneously rather than utilize a stepwise procedure.

Note that for both above cases, when there is only one categorical predictor variable x,

then all inference procedures performed on the odds ratios resulting from the logistic

regression model are equivalent to any similar analysis performed on the crude data in

contingency table format. Differences will occur in models with multiple covariates.

The standard method for computing the odds ratios resulting from a logistic

regression model using reference coding for the design matrix is to exponentiate the

appropriate linear combinations of the estimated regression coefficients. For example,

if we have a logit model such as (2.15), where there are k levels for our single predictor

variable, then we can utilize the explanatory variables x1, . . . , xk−1 with the covariate
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Table 2.2: Examples of Estimated Odds Ratios

eβ̂1 The odds comparing the first non-reference

level to the reference level

eβ̂2 The odds comparing the second non-reference

level to the reference level

...
...

eβ̂2−β̂1 The odds comparing the second non-reference

level to the first non-reference level

...
...

eβ̂k−β̂k−1 The odds comparing the kth non-reference

level to the (k − 1)th non-reference level

vector at the reference level of our predictor variable equal to 0, that is, x1 = . . . =

xk−1 = 0. Thus, x1, . . . , xk−1 would be defined as indicator variables for the k − 1

non-reference levels of our predictor variable. When this model is assumed, then

we can interpret eβ̂1 as follows: the odds that Y = 1 for the first non-reference

level is eβ̂1 times greater than that for the reference level. Table 2.2 illustrates other

estimated odds ratios and their corresponding interpretations. The estimated odds

ratios defined in Table 2.2 could then be utilized to construct confidence intervals

that would aid in interpreting the model.

2.4.3 Loglinear or Poisson Model

Another model often employed in epidemiological studies is the loglinear model.

The loglinear model relates the counts of a Poisson or multinomial distribution to a

set of covariates. It may assume the total sample size is random or fixed, depending

on whether the model assumes Poisson or multinomial sampling, respectively. For an

18



I×J contingency table let N = I×J . Note that the number of cells in a contingency

table, N , is distinct from the sample size or number of observations, denoted n,

although they can be equal. Whenever the number of observations, n, is fixed, we

have multinomial sampling for Yi, i = 1, . . . , N − 1. However, when the sample size

n is not fixed, we usually assume Poisson sampling for Yi, i = 1, . . . , N . For ease

in notation let n∗ = N − 1 for multinomial sampling and N for Poisson. Then the

loglinear model is

log(µ(xi)) = x′
iβ, i = 1, . . . , n∗ (2.19)

where E(Y ) = µ = (µ(x1), . . . , µ(xn∗))′ is the vector of expected counts of the

respective cells of the contingency table, xi is a 1×k vector of covariates as described

in (2.2), and β is a k-dimensional vector of model parameters. A loglinear model may

also be expressed as

log(µ(xi)) =
k

∑

j=1

βjxij , i = 1, . . . , n∗, (2.20)

where each xij is the covariate value corresponding to βi for the ith level of Y , i =

1, . . . , n∗, and j = 1, . . . , k. Recall the assumption that Yi is a Poisson or multinomial

random variable. Thus, the expectation of any Yi is a positive value, µ(xi) for i =

1, . . . , n∗.

The derivation of the large sample distribution of the model parameters depends

on the sampling assumptions. When n is not fixed, we assume Poisson sampling.

Then the MLE of β̂ is asymptotically normal with mean β and covariance matrix

V = (X′diag(µ)X)−1. Notice that W = diag[µ]. Thus, the estimated covariance

matrix of β̂ is given by V̂ = ˆcov(β̂) = [X′diag(µ̂)X]−1. For Poisson sampling, we

have,

β̂
·∼ N(β, (X′diag(µ)X)−1). (2.21)

Alternatively, when n, the overall sample size, is fixed we assume multinomial sam-

pling. Typically, under multinomial sampling, we have interest in cell probabilities,
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π̂ = µ̂/n. Here the π̂ are multivariate normal with mean π and covariance matrix

V = cov(β̂) = {X ′[diag(µ) − (µµ′/n)]X}−1 = {nX ′[diag(π) −ππ′]X}−1. Notice

that W = diag(µ)− (µµ′/n). Additionally, the estimated covariance matrix for the

regression parameters is given by V̂ = ˆcov(β̂) = {X ′[diag(µ̂) − (µ̂µ̂′/n)]X}−1 =

{X ′[diag(π̂)− π̂π̂′]X/n}−1 when we have one multinomial sample. Thus for multi-

nomial sampling,

β̂
·∼ N(β, (X ′[diag(µ)− (µµ′/n)]X)−1). (2.22)

Notice that the asymptotic normality of the parameters holds for both Poisson and

multinomial sampling. When Poisson sampling is assumed, the expected response

function is the mean cell count, µ. Alternatively, when multinomial sampling is

assumed, the expected response function is π. All inferences on the model parameters

or any functions of the model parameters can be made via the asymptotic distributions

previously stated. I will focus on the case where Poisson sampling is assumed as

it is the customary assumption. Additionally, when Poisson sampling is assumed,

the loglinear model is often referred to as a Poisson model. Intervals for response

probabilities from multinomial loglinear models could be formed in a manner similar

to that described for logistic regression, but this is rarely done with loglinear models.

Instead, focus is usually on the estimated relative risks.

When utilizing a loglinear model the relative risk yields point estimates that are

often more applicable to clinical situations than the odds ratio; thus we consider

relative risk here. The use of the relative risk is very common in epidemiological

applications, thus discussion of the relative risk will focus on these types of scenarios.

Estimating the relative risk from a loglinear model is a particularly easy implemen-

tation since it may be shown that the estimated relative risk is simply exp(β̂1) where

β̂1 is the slope coefficient for x1, the predictor variable indicating presence of the

intervention. Other models, such as the logistic model, could be used similarly to

estimate the relative risk, although other models do not always yield simple formulas.
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Consider for instance, the case where we are estimating the relative risk from a

loglinear model. The estimated relative risks would be of the form exp(β̂j) where β̂j

is the estimated slope coefficient for the covariate xj , j = 1, . . . , k. Let ci be a vector

with the jth element equal to 1 and all other elements equal to 0. A confidence band

is formed by

(

exp{β̂j − zα/2 × σ̂GLM(cj)}, exp{β̂j + zα/2 × σ̂GLM (cj)}
)

where σ̂GLM (cj) is given by (2.6) and W for Poisson sampling is given previously in

by equation 2.21.

Other models using alternative canonical links could also be considered. For

example, other GLMs are formed by utilizing the probit link, where g = Φ−1(π(x)),

and the complementary log-log link, where g = log(−log(1 − π(x))). These both

assume a binomial sampling scenario and the usual focus is on the resulting probability

of success, π(x).
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CHAPTER 3

Inferences on Quantities Estimated from a GLM

When utilizing GLMs, several quantities may be of interest. For example, the

expected response, odds ratio, or relative risk may be estimated via the GLM. This

section focuses on the case where the expected response function is of primary concern.

All the methods discussed utilize the fact that GLMs may be expressed as

g(E(Yi|xi)) = x′
iβ (3.1)

where Yi is the response for the ith observation, xi = (xi1, . . . , xik) is the vector of

appropriate covariate values for the ith observation, β = (β1, . . . , βk) is the vector of

parameters, and g is the canonical link. (Specific assumptions and details on this

model are given in equations (2.1) and (2.2).)

3.1 Inference on the Mean Response

This section will focus on the response probability or estimated mean response,

π(xi) = E(Yi|xi), i = 1, . . . , n in a GLM assuming binomial or multinomial sampling.

Alternatively, if we assume Poisson sampling, we would have interest in the expected

cell counts, µ(xi) = E(Yi|xi), i = 1, . . . , n. This general methodology can be extended

to the Poisson sampling scheme provided our inferences are on µ(xi), rather than

π(xi). Suppose we have a covariate X with k-dimensional domain I in a GLM of

the form g(E(Y |xi)) = x′
iβ, i = 1, . . . , n. Then let X ⊂ I be a compact subset of

the domain which is of special interest. The intention of this section is to bound the

expected response function, E(Y |xi), for all xi ∈ X using confidence bounds on a
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GLM. The subset X can be a set of the domain that is of special interest or it may

be selected to answer a particular question. Discussion is restricted to the case where

there is one covariate, but the methodologies may be extended to cases with many

covariates. Even in the single covariate case, X may be a matrix if, for example, the

model employs reference coding.

3.1.1 Previous Methods

Two primary approaches for simultaneously estimating the mean response func-

tion are discussed. The first is a conventional approach utilizing bounds similar to

the well-known Scheffé bounds. The second is a modern approach utilizing solutions

referred to as tube-formulas for constructing simultaneous intervals.

Scheffé bounds are a well-known methodology in simultaneous inferences, and are

widely applied in linear models and generalized linear models. Some of the regularity

conditions necessary for applying Scheffé bounds include that the sample size is suffi-

ciently large and that the domain for the predictor variable is fixed [5]. Under these

suitable regularity conditions, the maximum likelihood estimates (MLEs) of a linear

model are multivariate normal with mean vector β and covariance matrix equal to

the inverse of the Fisher information matrix σ2
LMF where F = (X′X)−1. (See (2.8)

for details on model assumptions.) In a standard regression model, Scheffé bounds

are often utilized to obtain simultaneous intervals. These bounds are simultaneous

for all xi ∈ R
k and thus are conservative for any finite set of such comparisons. Alter-

natively, Casella and Strawderman [6] derived Scheffé-type bounds for a regression

model with restrictions assumed on the domain. These intervals are exact for this

restricted domain. The advantage of assuming these restrictions is that the usual

Scheffé bounds are conservative when the entire domain is not used. Piegorsch and

Casella [7] utilized the Casella and Strawderman (CS) method to obtain simultaneous

bounds on a logistic regression model. Specifically, they obtained Scheffé-type bounds
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on the x′
iβ in a logistic regression utilizing a restricted predictor variable domain of

rectangular form. The method originally developed by Casella and Strawderman, and

later extended by Piegorsch and Casella, is less conservative than the usual Scheffé

bounds as it restricts the predictor variable space.

It is desirable at this point to reparameterize the model so that it is in the so-called

diagonalized form (Casella and Strawderman [6]). This will simplify the calculations

used hereafter. By the Spectral Theorem for symmetric matrices [8], the matrix

F may be decomposed, given that F is symmetric. Thus, a linear model may be

diagonalized by noting that F = UDU ′ where D = diag(λi), a diagonal k × k

matrix of the ordered eigenvalues of F , and U = (u1, . . . ,uk) is the k × k matrix

of corresponding orthonormal eigenvectors. Now define Zn×k = XUD−1/2 and

ηk×1 = D1/2U ′θ where UU ′ = I since each row,ui, is orthonormal. Thus,

Zη = [XUD−1/2][D1/2U ′θ] = XUU ′θ = XIθ = Xθ

where the model may be written as Y = Zη + ǫ. Note that η̂ = D1/2U ′θ̂ is

distributed Nk(η, σ
2
LMI), given that (2.4) holds.

The authors Casella and Strawderman [6] consider bounding linear models of the

form Yi = xiθ+ǫi with the usual restrictions on ǫ (see (2.7)) and with a domain for xi

of the form Ωxi
= {xi :

∑r
j=1 x

2
ij ≥ q2

∑k
j=r+1 x

2
ij} where q is a fixed constant. When

r = 1 these regions are cone-shaped regions, and if r > 1 there is no easy visualization

of the space. Casella and Strawderman achieve exact results for bounding linear

models for domains of this general form. Alternatively, both Casella and Strawderman

[6] and Piegorsch and Casella [7] consider a more defined set of interval constraints

on X which are of the form

Rxi
= {a11 < xi1 < a12, a21 < xi2 < a22, . . . , ak1 < xik < ak2} ⊂ Ωxi

for a specified q. These intervals would be of particular interest in many experimental

settings and thus are assumed for the remainder of this section.
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The goal of the restricted-Scheffé procedure developed by Casella and Strawder-

man is to bound the regression function for all xi ∈ Ωxi
. Thus, keeping in mind the

objective of inference on E(Yi|xi) = x′
iθ, consider

S(Ωxi
) = {θ : (x′

iθ̂ − x′
iθ)

2 ≤ d2σ2
LMx

′
iF

−1xi ∀xi ∈ Ωxi
} (3.2)

where d is an arbitrary constant. Casella and Strawderman derive a procedure to

calculate the value of d that yields,

P [S(Ωxi
)] = 1 − α. (3.3)

Their derivation involves considering a domain for Z similar to Ωxi
,

Ωzi
= {zi :

r
∑

j=1

z2
ij ≥ q2

k
∑

j=r+1

z2
ij}

where q is a fixed constant. Thus, Casella and Strawderman prove that for a specified

d

P [S(Ωzi
)] = P [{η : (z′iη̂ − z′iη)2 ≤ d2σ2

LMz
′
izi ∀zi ∈ Ωzi

}] = 1 − α (3.4)

where η̂ is the MLE under spectral decomposition. Notice that the only difference

between the sets S(Ωxi
) and S(Ωzi

) is the space we are operating in. Recall the form

assumed about the domain of interest, Rxi
. This is a convex set in R

k. Thus, the

image of this set, Rzi
, will also be convex, since a linear map preserves convexity.

Note that for γ = η̂−η
σLM

, the quantity

S(Ωzi
) = {γ : (γzi)

2 ≤ d2z′izi ∀zi ∈ Ωzi
}. (3.5)

Assume this form of S(Ωzi
) henceforth. Since we have a domain of the form Ωzi

and

wish to obtain a Scheffé-type probability band, then via Theorem 1 in [6] we have

P (S(Ωzi
)) = P (χ2

k ≤ d2) + P (Er,s(b, d
2)) (3.6)

where Er,s(b, d
2) = {(χ2

r , χ
2
s) : χ2

r +χ2
s ≥ d2, (aχr +bχs)

2 ≤ d2, χ2
r ≤ q2χ2

s}, a2 +b2 = 1,

and χ2
r and χ2

s are independent chi-square random variables. Also note that q is a
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fixed constant determined by Ωzi
and b, r, and s are determined by the value of d

and the parameters of the problem. (For specific details see Casella and Strawderman

[6].) A solution for the quantity d which yields appropriate simultaneous intervals

may be found by setting the right hand side of (3.6) equal to 1 − α and solving for

d. Casella and Strawderman applied this theorem to a linear model achieving exact

results for all xi ∈ Ωxi
, thus yielding a conservative solution for all xi ∈ Rxi

⊂ Ωxi
.

The details of the derivation of the appropriate Ωzi
(and hence Ωxi

) are given by

Casella and Strawderman [6]. The resulting restricted-Scheffé intervals are of the

form Ŷ ± dσ̂(xi) where d is a critical value determined by an algorithm which is

described in Appendix C.

Piegorsch and Casella applied this procedure specifically to logistic regression.

However, it has not been applied for use in a generic GLM, and it is unclear how

these bounds will perform for other generalized linear models. Note that although

this method is still conservative, it is less conservative than the conventional Scheffé

bounds, as it is not applicable for the entire predictor variable space.

As another alternative to the Scheffé-type bounds, Sun, Loader, and McCormick

(2000) [9] (SLM) proposed a solution for simultaneously estimating the mean response

for the general class of GLMs with all xi in a compact set. This general method of

bounding a regression function, called simultaneous confidence regions (SCR), can

account for a variety of linear and nonlinear models. Specifically, the SCR bounds

can be applied when there are heteroscedastic and non-additive error terms, as is

the case for many GLMs. The SCR bounds utilize error expansions to approximate

the non-coverage probability for a GLM. They are far less conservative than Scheffé

solutions and perform exceptionally well for moderate sample sizes.

The SCR bounds are based on applying the so-called tube formula due to Naiman

[10] with various possible adjustments. The tube formula provides a lower bound for

the coverage probability of a confidence band of a regression function over a specified
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closed set. However, the tube-formula assumes the error distribution of the model is

normal. Clearly, this is not a valid assumption if we have a GLM, although it does

provide a starting point for constructing confidence bounds, as the large sample error

distribution is approximately normal. Obviously, this assumption will be problematic

for smaller sample sizes.

The basic tube-formula methodology is described by Naiman in his 1986 paper

(Naiman [10]). This paper outlines a solution for constructing simultaneous confi-

dence bands on polynomial regression models of the form

Yi =

k
∑

j=1

θjfj(xi) + ei, i = 1, . . . , n, xi ∈ I. (3.7)

Here it is assumed that I is a closed interval in R, that ei ∼ iidN(0, σ2
LM ) with σ2

LM

unknown, and that θj (j = 1, . . . , k) are unknown constants. The vector

f (xi) = (f1(xi), . . . , fk(xi))
′

maps from I to R
k. Naiman’s intent is to provide simultaneous confidence bounds

on E(Yi|xi) = θ′f (xi) for all xi ∈ I where an estimate θ̂ = (θ̂1, . . . , θ̂k)
′ is available

such that θ̂ is distributed N(θ, σ2
LMF ) with σ2

LM unknown, F known and s2
LM an

independent estimator of σ2
LM such that

νs2
LM

σ2
LM

∼ χ2
ν (ν = n− k).

In order to understand how Naiman derives these bounds, consider alternatively

another mapping, γ, from I to the unit sphere Sk−1 centered at the origin of Rk, such

that γ is piecewise differentiable and

Λ(γ) =

∫

I

||γ′(x)||∂x (3.8)

is finite. Since γ maps I to the unit sphere, Sk−1, it will be considered in place of the

primary mapping f (xi). Specifically, it is the projection of f (xi) on Sk−1. Note that

γ(x) = ‖Pf (xi)‖−1Pf (xi) for xi ∈ I where P is a k×k matrix such that F = P ′P .

The quantity Λ(γ) is called the path length, as it measures the length of the path,

γ, a continuous mapping essentially connecting the points in the image of f . The
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image of the path in Sk−1 is then denoted by Γ(γ) = {γ(x) : x ∈ I}. The goal is to

bound Γ with a tube via bounding the Λ(γ), which equivalently bounds the regression

function, f (xi), on I as they share the same domain.

Regarding the image of the path function, Γ(γ), Naiman demonstrates that

µ(Γ(γ)(g)) ≤ min(Fk−2,2[
2(g−2 − 1)

k − 2
] × Λ

2π
+

1

2
Fk−1,1[

g−2 − 1

k − 1
], 1) (3.9)

where g ∈ [0, 1] such that Γg = {u ∈ Sk−1 : cΓ(u) ≥ g} (a set of points in Sk−1 that

surround Γ) with cΓ(u) = sup{u′v : v ∈ Γ} for any u ∈ Sk−1 and µ is the uniform

measure. Naiman then applies these results to obtain confidence bands of the form

θ̂′f (xi)± d(σ̂LM)(f (xi)
′Ff (xi)). The intervals are formed utilizing the critical value

d which is determined by setting

1 −
∫ 1/d

0

min(Fk−2,2[
2(dt−2 − 1)

k − 2
× Λ

π
+

1

2
Fk−1,1[

dt−2 − 1

k − 1
], 1)fT (t)∂t (3.10)

equal to 1 − α and solving for d. Here fT (t) is the density of a random variable T

where rT 2 ∼ Fν,r.

Utilizing these tube-formula bounds, SLM form simultaneous bounds on the ex-

pected response function for a GLM. Recall that Naiman derived these bounds assum-

ing normally distributed residuals. Clearly, generalized linear models only have nor-

mally distributed residuals asymptotically. Thus, the tube-formulas were originally

applied directly via the asymptotic normality of the residuals to obtain asymptotic si-

multaneous confidence bands. Modifications were then made to the usual tube-based

bounds to improve them for small to moderate sample sizes.

The following description outlines how to apply the tube-formula bounds to GLMs.

Let the maximum likelihood estimate (MLE) of a predicted response for a GLM at

xi be denoted by Ŷi. Ultimately, the interval desired is of the form

Id(xi) = (g−1(x′
iβ̂ − dσ̂GLM(xi)), g

−1(x′
iβ̂ + dσ̂GLM(xi))) ∀xi ∈ X

where [σ̂GLM (xi)]
2 is the asymptotic variance of x′

iβ̂ and X is a particular compact
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subset of the domain. The tube formulas will enable us to find a value d such that

P [g(E(Yi|xi)) ∈ Id(xi), for all xi ∈ X] ≥ 1 − α. (3.11)

Applying the tube formula directly to solve for d, yields what SLM term a naive

SCR. We will utilize the notation dTUBE to indicate a critical value calculated in

this manner. This solution performs adequately when the asymptotic distribution

of the residuals is nearly normal. However, this method will not attain the desired

confidence level when the sample size is relatively small, as typically the residuals

are nonnormal discrete random variables for GLMs. In order to improve the small

sample performance, the authors consider some modifications to the tube-formula.

They begin by approximating the sampling distribution of the residual via con-

struction of expansions on the estimated model. This approximation of the sampling

distribution will be utilized to obtain a critical point for the confidence interval for-

mula that is adjusted with respect to the bias introduced by the MLEs. Consider the

random process Wn(xi) = g(Ŷi)−g(E(Yi|xi))
σ̂G(xi)

where xi = (xi1, . . . , xik) is the ith vector of

X = (xi, . . . ,xn)′ and [σ̂G(xi)]
2 is the asymptotic variance of g(Ŷi). This converges

in distribution to a Gaussian random field. Let W (xi) be a random variable with the

same distribution as the limiting distribution of Wn(xi). Then the bias behaves like

|Wn(xi)−W (xi)|. This equivalent expression of the bias may be bounded via inverse

Edgeworth expansions. SLM propose three corrections that can aid in correcting the

bias introduced from estimating the regression parameters in a GLM with MLEs.

These three solutions are based on the inverse Edgeworth expansion of the random

process given by,

|Wn(xi)| = |W (xi)| − p2(xi,Wn(xi)) (3.12)

where the term subtracted can be thought of as a correction for the bias of the process.

It is based on the centered moments of the process Wn(xi) denoted κi for i = 1, 2, 3, 4
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and is given by,

p2(xi, Z) = −Z{1

2
[κ2(xi) − 1 + κ2

1(xi)]

+
1

24
[κ4(xi) + 4κ1(xi)κ3(xi)](Z

2 − 3)

+
1

72
κ2

3(xi)(Z
4 − 10Z2 + 15)} = O(n−1). (3.13)

The κi’s may be computed as detailed by Hall(1992, [11]). Details are provided in

Appendix D.

The inverse Edgeworth expansions (3.13) are then also utilized to account for the

bias typically observed in the MLEs of generalized linear models. A first version of

a corrected SCR, denoted SCR1, is a solution where the bias term, p2(xi,Wn(xi)), is

bounded. First consider the supremum of the bias term, R
′

p =
sup

xi ∈ X
{p2(xi,Wn(xi))} =

Op(1/n). We want to find a positive constant R
′

p such that P [R
′

p ≤ r
′

p] = 1 − α as

n −→ ∞. Details are given in Sun, Loader, and McCormick [9] and Hall [11].

Additionally, specific calculation procedures are described in Appendix D.

These r
′

p values are then used to correct the bias in the choice of d via the tube-

formula method. Namely, our new interval is given by

(

g−1(x′
iβ̂ − dSCR1σ̂GLM (xi)), g

−1(x′
iβ̂ + dSCR1σ̂GLM (xi))

)

(3.14)

where the new critical point, dSCR1 is equal to dTUBE − |r′p| where dTUBE is the

aforementioned solution.

Another version of the corrected SCR, SCR2, considers the modified process,

W 0
n(xi) = Wn(xi)−κ1(xi)√

κ2(xi)
, such that |W 0

n(xi)| = |W (xi)|−q2(xi,W
0
n(xi)) with q2 similar

to p2. The tube formula is then applied to W 0
n(xi). Bounding this normalized process,

W 0
n(xi), further corrects the bias. Doing this results in confidence bounds on the

E(Yi|xi) which are an improvement of the tube method applied directly to Wn(xi). It

is of interest to note that this method corrects the bias via a first level approximation.

The resulting confidence region is of the form,

(

g−1(x′
iβ̂ − dSCR2σ̂GLM (xi)), g

−1(x′
iβ̂ + dSCR2σ̂GLM (xi))

)

(3.15)
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where dSCR2 is this bias-corrected solution for the critical value. Note that this is

just a critical value, like d, that is corrected for the bias. SLM term this a two-sided

corrected SCR. Recall that it utilizes the modified Gaussian process that corrects the

bias inherit in the MLE estimates and finds a critical value that adjusts for that bias.

A last solution, called the centered SCR (SCR3), begins by estimating the mean

and variance of the Gaussian process Wn(xi). These are the centered moments and

are given by κ̂1(xi) and κ̂2(xi), respectively. These essentially move and rescale the

confidence region so it is no longer biased. The tube-based critical value dTUBE is

again involved, so the final interval is

(

g−1((x′
iβ̂)∗ − dTUBEσ̂

∗
i ), g

−1((x′
iβ̂)∗ + dTUBEσ̂

∗
i )

)

(3.16)

where (x′
iβ̂)∗ = x′

iβ̂− κ̂1(xi)σ̂GLM(xi) and σ̂∗
i = σ̂GLM (xi)

√

κ̂2(xi)). These formulas

are given in Appendix D.

3.1.2 Proposed Methods

Expanding on the methodologies presented in the previous section, I have devel-

oped two new approaches for estimating a mean response function over a specified

compact set via confidence regions.

The first proposed method is based on the restricted-Scheffé bounds developed by

Casella and Strawderman and further refined by Piegorsch and Casella. In Piegorsch

and Casella [7], the authors derive and implement conservative simultaneous bounds

on the response probabilities of logistic regression models for rectangular domains.

I have generalized these bounds on the expected response function for any GLM.

Outlined below is the method by which these bounds may be computed.

For any GLM, let the anti link function be g−1 so that

E(Yi|xi) = g−1(x′
iβ), i = 1, . . . , n (3.17)

where E(Yi|xi) denotes the response probability (logistic regression) or the mean
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response (loglinear models or Poisson regression) for the specified covariate levels

given by xi (Complete model specifications are given in (2.2)). Recall that the MLE

of β, β̂, is asymptotically normal with mean β and k× k covariance matrix V where

V = (X′WX)−1 with W defined in (2.3).

Applying the restricted-Scheffé procedure of Casella and Strawderman to GLMs

yields appropriate conservative simultaneous confidence intervals for the mean re-

sponse. Casella and Strawderman assumed that the MLEs of the regression param-

eters were normally distributed with a specified mean vector and covariance matrix.

For our case we only have asymptotic normality of the MLEs and therefore, the

probability in (3.6) is not exactly 1 − α but instead converges to 1 − α as n → ∞.

We will also require a slightly different definition for S(Ωxi
) and S(Ωzi

). Recall

S(Ωxi
) = {θ : (x′

iθ̂ − x′
iθ)

2 ≤ d2σ2
LMx

′
iF

−1xi ∀xi ∈ Ωxi
} for linear models. Here

however S(Ωxi
) = {β : (x′

iβ̂ − x′
iβ)2 ≤ d2x′

iV
−1xi ∀xi ∈ Ωxi

}. Notice that the

inequalities in both sets have an upper bound given by the variance of x′
iβ̂ or x′

iθ̂,

respectively. S(Ωzi
) will have a similar definition for GLMs and the diagonalization

described in section 4.1 applies with F = V . Thus, for any S(Ωzi
) of the form (3.5)

generalized appropriately for a GLM,

P (S(Ωzi
)) → P (χ2

k ≤ d2) + P (Er,s(b, d
2)) (3.18)

as n→ ∞ where

Er,s(b, d
2) = {(χ2

r , χ
2
s) : χ2

r + χ2
s ≥ d2, (aχr + bχs)

2 ≤ d2, χ2
r ≤ q2χ2

s}, (3.19)

where a2 + b2 = 1 and χ2
r and χ2

s are independent chi-square random variables. Note

that q is a fixed constant determined by the particular Ωxi
. (Recall we will choose

the smallest Ωxi
⊃ Rxi

.) Additionally, the constants b, r, and s are determined by

the value of d and the parameters of the problem. (Details of the computation of b,

r, and s specifically for GLMs are given in Appendix C.) Notice that the coverage

probability of the set S(Ωzi
) is the sum of the usual coverage probability of the Scheffe
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set (P (χ2
p ≤ d2)) and a probability that adjusts for the restricted domain. Recall that

these bounds are derived assuming a domain of the form Ωxi
. If a set of the form Rxi

is of interest, an approximate answer may still be found as in Piegorsch and Casella.

In order to find a bound for a domain of the form Rxi
, the smallest set of the form Ωxi

is established such that Ωxi
contains Rxi

. (This procedure is detailed in Appendix

C.) We may consider sets on either the X domain, Ωxi
and Rxi

, or their equivalent

sets on the Z domain, Ωzi
and Rzi

.

Recall that the method of Casella and Strawderman provides simultaneous bounds

on a linear model for a transformed domain of the form Ωzi
, and thus equivalently

for Ωxi
. The adapted method of Piegorsch and Casella computes these bounds for

domains of the form Rxi
in logistic regression models. I propose extending these

bounds for use in any generalized linear model with a canonical link. The simultaneous

bounds may be transformed from x′
iβ, xi ∈ Rxi

, to the expected response function

via the anti-link function.

In order to apply the Casella-Strawderman results to GLMs, we must first show

that the probability of the set S(Ωxi
) converges to 1 − α.

Corollary 3.1 If β̂ is asymptotically normal with mean vector β and covariance

matrix V , then

P (S(Ωzi
)) → P (χ2

k ≤ d2) + P (Er,s(b, d
2)) as n→ ∞. (3.20)

with Er,s(b, d
2) given by (3.19) where q is determined by the particular Ωzi

considered

and appropriate constants b, r, and s.

Proof: Recall Ωzi
= {zi :

∑r
j=1 z

2
ij ≥ q2

∑k
j=r+1 z

2
ij} for a specified constant q.

Here zi is the diagonalized form of xi. Theorem 1 from Casella and Strawderman [6]

gave exact equality of the same probabilities in (3.20) under exact normality for β̂.

Consequently, under asymptotic normality we have (3.20). �
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Unfortunately (3.20) requires V known. Consider the following corollary to the

Casella and Strawderman theorem, that holds for GLMs.

Corollary 3.2 If β̂ is asymptotically normal with mean vector β and covariance

matrix V , estimated by V̂ , then for S(Ωzi
) utilizing V̂ instead of V (3.20) still

holds.

Proof: Let V̂ = (X′ŴX)−1 then since β̂
p→ β we have Ŵ = W |β=β̂

p→ W .

Thus V̂ = (X′ŴX)−1 p→ V = (X′WX)−1. Consequently the convergence in

(3.20) also holds when V is estimated by V̂ . �

Now let dCS be the value of d such that the probability on the right-hand side of

(3.20) is 1 − α. Then

P (g−1(x′
iβ̂ − |dCS|σ̂∗

i ) ≤ E(Yi|xi) ≤ g−1(x′
iβ̂ + |dCS|σ̂∗

i )) → 1 − α as n→ ∞

(3.21)

where σ̂∗
i = (x′

iV̂
−1xi)

1/2.

We have theoretically demonstrated that the restricted-Scheffé bounds of Casella

and Strawderman may be applied to GLMs, but the computational details remain un-

clear. A detailed computational algorithm to compute the restricted-Scheffé bounds

for any GLM is given in Appendix C.

As an alternative to the restricted-Scheffé bounds, we can also apply an estimate

of β, β̂∗ to the simultaneous confidence regions (SCRs) developed by SLM [9] and

the restricted-Scheffé bounds for GLMs. Recall that SLM derived four SCR bounds.

First, the tube-based bounds were applied to the maximum likelihood estimators by

appealing to their asymptotic normal distribution (dTUBE). Second, the bias was

bounded and then the tube-formula solution was applied (dSCR1). Third, the SCR

bounds were derived for a modified process which accounts for the bias in the distribu-

tion of the MLE (dSCR2). And fourth, the random process was centered and rescaled

to correct the bias before applying the tube-based bounds (centered SCR). The vari-
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ous solutions all attempt to correct the bias of the maximum likelihood estimates for

GLMs. In particular, when the sample size is small the MLEs are highly nonnormal,

and the adjustments to the tube formulas are especially helpful. I propose estimating

simultaneous SCR bounds, and restricted-Scheffé bounds, that are not based on the

MLE, but on an alternative to the MLE, the penalized maximum likelihood estima-

tor (pMLE). The pMLE is a bias-corrected estimate that is closely related to the

usual MLE. The tube-formula bounds can then be applied utilizing the pMLE esti-

mates rather than the MLEs. In particular, the naive SCR and centered SCR (SCR3)

bounds can easily be applied. The difference between the proposed method and the

methods of Sun et al. (2000) [9] is that utilizing the pMLE estimates doesn’t merely

“correct” the bias, but prevents the bias from occurring (in the first order) a priori.

No additional bias correcting procedures will be necessary since the pMLE estimate

has little bias from the start. Additionally, this method eliminates inestimable model

parameters (0 or ∞) due to zero cell counts in GLMs. This difficulty was not resolved

by the methodologies presented by SLM, and can be particularly troublesome with

small to moderate sample sizes. Also, recall that the bias corrections employed in

some of the SCR bounds were only bias-reducing asymptotically. This procedure is

bias-reducing for any sample size.

The penalized maximum likelihood estimate (pMLE) was developed by David

Firth [12] as an alternative to the MLE. Firth developed these estimators for use

in models, such as GLMs, where the typical MLE is known to be a biased estimate.

Specifically, all of the derivations depend on the model belonging to the general

exponential class. These distributions have the general form

f(t, θ) = exp{[(tθ −K(θ))]/a(φ) + c(t, φ)}, (3.22)

where when φ, the dispersion parameter, is known, this simplifies to

f(t, θ) = exp{(tθ −K(θ))}
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[13]. Although this is an unusual form for an exponential class model, it lends itself

quite well to a derivation later in the section, and this form can be shown to be

equivalent to the standard form under the correct reparameterization. The general

pMLE procedure involves penalizing the score function via the Jeffreys invariant

prior for the particular parameter of interest. This penalty yields estimates of the

regression parameters that are unbiased in the first-order. Typically, when computing

an MLE, the first derivative of the log likelihood, often called the score function, is

computed and set equal to 0, yielding the MLE as the solution. For estimating a

set of parameters θ = (θ1, . . . , θk), let the usual vector of score functions be denoted

U(θ) = (U1(θ), . . . , Uk(θ))
′. Note that Ur(θ) is the derivative of the log-likelihood

(score function) with respect to the rth parameter. Firth proposes shifting the score

function to correct the bias present in most MLE estimates for GLMs. The shift

is determined by the estimated bias, b(θ) and information matrix, i(θ). Then the

shifted or penalized score function, U∗(θ) = U(θ) − i(θ)b(θ) = (U∗
1 (θ), . . . , U∗

k (θ))′

is set equal to 0 and a penalized MLE is the solution. Thus, the pMLE, θ∗, is the

solution to U∗(θ) = 0. The details of estimating the bias are given in Firth [12],

but as previously noted, the calculations are based on utilizing a Jeffreys prior for the

parameters of interest, θ. Firth applies this estimator to the logistic regression model,

but the methodology can be applied to any exponential class model, specifically any

GLM. Firth states that for a GLM with a canonical link the modified score function

is given by

U∗
r (θ) = Ur(θ) +

1

2φ

n
∑

i=1

(

κ3i

κ2i

)

hixir, (r = 1, . . . , k), (3.23)

where Ur(θ) is the derivative of the log likelihood function for the rth parameter, n is

the number of observations Yi, φ is the dispersion parameter in (3.22), and hi is the ith

diagonal of the hat matrix (the leverage). The leverage, or the ith diagonal of the hat

matrix, is a measure of the distance between each observation, xir, and the mean, x.

(See McCullough and Nelder [13] for an explicit definition.) Additionally, κti is the
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tth (t = 2, 3) cumulant, or tth central moment, of Yi, i = 1, . . . , n. The cumulants may

be calculated using the cumulant generating function Ki(s) = log(Mi(s)) where Mi(s)

is the moment generating function for the distribution of the dependent variable, Yi.

Each cumulant is found by taking the derivative of Ki(s) with respect to s and then

letting s = 0. For example, κ2i = K
(2)
i (0) where K

(2)
i (s) is the second derivative

of the cumulant generating function. Note that the third cumulant, κ3i, estimates

the bias. Justification for this formula is outlined by McCullough and Nelder (1989)

[13] in section 15 of Generalized Linear Models. Specifically, assume a binomial logit

model has a response variable Yi ∼ BIN(mi, πi), i = 1, . . . , n where mi, i = 1, . . . , n

are assumed known and the Yi variables are independent. Notice that in this scenario

k = n. Thus, the moment generating function is given by Mi(s) = (πie
s +(1−πi))

mi.

Moreover, the cumulant generating function would be Ki(s) = milog(πie
s +(1−πi)).

Thus, the first, second, and third derivatives of the cumulant generating function are

given by

K ′
i(s) =

miπie
s

πies + (1 − πi)
,

K
(2)
i (s) =

miπie
s

πies + (1 − πi)
− miπ

2
i e

2s

(πies + (1 − πi))2
,

and

K
(3)
i (s) =

miπie
s

πies + (1 − πi)
− 3miπ

2
i e

2s

(πies + (1 − πi))2
+

miπ
3
i e

3s

(πies + (1 − πi))3
,

respectively. Consequently, the second and third cumulants are κ2i = miπi(1 − πi)

and κ3i = miπi(1 − πi)(1 − 2πi). Additionally, the likelihood function is given by

L(πi) = πyi

i (1 − πi)
mi−yi, i = 1, . . . , n. Thus, the usual score function, the first

derivative of the log likelihood is given by Ur(π) =
∑n

i=1(yi −miπi)xir, r = 1, . . . , n.
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Therefore, the penalized score function is

U∗
r (π) =

n
∑

i=1

(yi −miπi)xir +
1

2φ

n
∑

i=1

(1 − 2πi)hixir, r = 1, . . . , n. (3.24)

In the case of a single binomial trial, the dispersion parameter is φ = 1/1 = 1

(McCullough and Nelder (1989) [13]). Thus, (3.24) simplifies to,

U∗
r (π) =

n
∑

i=1

{(yi +
hi

2
) − (hi +mi)πi}xir

for r = 1, . . . , n.

Note that in models with no bias present in the MLE, such as a simple linear

regression model, the score function will not be penalized as the third cumulant will

be zero.

Now we may apply the tube-formula confidence bounds to the penalized MLEs,

rather than the MLEs. All calculations will follow the previous SCR interval descrip-

tions since the information matrix of the pMLEs is the usual information matrix of

the MLEs (See Firth (1993) [12]). Consequently no alteration of the methodology is

necessary. We are simply replacing β̂ with the pMLE of β̂, β̂∗. We do not need to

consider the first two SCR methods as they were adjusting for the bias. Rather, we

will simply consider the critical value dTUBE applied to the pMLE β̂∗. Additionally,

the centered SCR could be applied with possible improvement as this interval is re-

centered and re-scaled. The CS bounds can also be calculated utilizing β̂∗ instead of

β̂. We refer to this as the pCS bounds in the sequel. No other modifications will be

necessary.

We will refer to our SCR bounds utilizing the pMLEs as bias prevented SCRs, or

pSCRs. The first of these is given by

(g−1(x′
iβ̂

∗ − dTUBEσ̂(xi)), g
−1(x′

iβ̂
∗ + dTUBEσ̂(xi))), i = 1, . . . , n (3.25)

where β∗ is a penalized maximum likelihood estimate, σ̂(xi) is given by (2.6), and

dTUBE is obtained as described in section 3.1.1. The Casella-Strawderman results
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could also be applied to an interval of the form (3.25) with dTUBE replaced by dCS,

where dCS is obtained as described in section 3.1.1. Finally, the centered SCR may

be utilized to yield the second pSCR. This interval is of the form

(

g−1((x′
iβ̂)∗ − dpSCR2), g

−1((x′
iβ̂)∗ + dpSCR2)

)

, i = 1, . . . , n (3.26)

for (x′
iβ̂)∗ = x′

iβ̂
∗− κ̂∗1(xi)

√

x′
iV̂ xi and dpSCR2 = dTUBE

√

x′
iV̂ xiκ̂∗2(xi) where κ̂∗1(xi)

and κ̂∗2(xi) are now based on the estimator β̂∗. The formulas for these moments of

the Gaussian field are given in Appendix D.

Since β̂∗ attempts to eliminate the bias, it is reasonable to expect that the con-

fidence regions based on this estimator will attain the desired level of confidence for

smaller sample sizes than the SCR bounds of SLM. The pSCR bounds for moderate

to large samples should be very similar to SLM’s corrected and centered SCR bounds.

3.2 Bounds for Simultaneously Estimating Functions of Model

Parameters

Often an estimate of something other than the expected response, whether a

probability or a mean, is desired. In previous sections, quantities such as the odds

ratio, relative risk, and attributable proportion were discussed. Odds ratios or relative

risks have immediate clinical application and are often easier for non-statisticians to

understand than expected responses. As discussed previously, all of these quantities

may be estimated directly from the data. However, it is preferable at times to estimate

these quantities via generalized linear models. Specifically, these quantities may all

be expressed as functions of the parameters of GLMs. Consequently, it is possible

to utilize all of the methodologies discussed in section 3.1 to simultaneously estimate

quantities such as the odds ratio or relative risk. In this section I propose methods

that utilize these simultaneous bounds for GLMs to estimate quantities such as odds

ratios, thereby accounting for multiplicity of inference. Since the odds ratio, relative
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risk, and attributable proportion were described previously, I will not review these

quantities. Rather we begin by reviewing some relevant methods for simultaneous

estimation.

3.2.1 Previous Methods

When quantities such as the odds ratios or relative risks are of interest, we are

often utilizing discrete random variables to predict a binary response variable. While

it is possible to have continuous predictors and compute quantities such as the odds

ratio, the use and application of the odds ratio in these situations is less obvious and

the need for multiplicity is less apparent. Consequently, attention will first focus on

the case of categorical predictors.

Researchers have previously explored simultaneous estimation of various sets of

the parameters. For example, in 1996, McCann and Edwards [14] proposed a proce-

dure to simultaneously estimate p contrasts of k unknown parameters. This method

utilizes Naiman’s Inequality, discussed previously, to obtain conservative simultaneous

confidence regions for the p contrasts of interest. These new bounds outperform the

existing competing conservative bounds for many scenarios. However, the McCann-

Edwards (ME) method applied only to linear models in general. I propose adapting

the SCR and related bounds from section 3.1 to simultaneously bound p contrasts of

k unknown parameters from generalized linear models in an analogous manner. First,

I will review the ME method for linear models, and then detail the proposed method

for GLMs.

Assume we have a regression model of the form,

Y = X′θ

where Y is a n × 1 vector of responses, X is a k × n matrix of predictor variables,

and θ is a k × 1 vector of regression parameters as described by (2.7). Assume that
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the MLE for θ, θ̂, is asymptotically multivariate normal with mean θ and covariance

matrix σ2
LMF with F assumed known and full rank. Also assume that an estimate

for σ2
LM exists and is given by σ̂2

LM where σ̂2
LM is independent of θ̂ and is such that

νσ̂2
LM

σ2
LM

∼ χ2
ν . Thus, we have k unknown parameters to estimate via the usual MLE,

θ̂ = (θ̂1, θ̂2, . . . , θ̂k). Now suppose p linear combinations of the regression parameters

are of interest. Let C be a p × k matrix of constants such that Cθ is a vector of

these linear combinations of θ. Now, given the distributional assumptions on θ̂, Cθ̂

is multivariate normal with mean Cθ and covariance matrix σ2
LMCFC

′. Thus, if a

single contrast is given by c′jθ where C = (c1, . . . , cp)
′ and each c′j = (cj1, . . . , cjk),

then we can form exact simultaneous interval estimates for each contrast via the

following formula:

c′j θ̂ ± dσ̂j, j = 1, . . . , p (3.27)

where σ̂j = σ̂LM (c′jFcj)
1/2 and d is a p-dimensional multivariate t quantile with ν

degrees of freedom and correlation matrix R, with R the correlation matrix corre-

sponding to CFC′. The path length inequality proposed by McCann and Edwards

provides a conservative solution for d that outperforms the existing conservative so-

lutions in many cases. Note that their solution only provides conservative intervals,

as obtaining the multivariate-t quantile providing an exact interval is generally an

intractable problem. The following theorem given by McCann and Edwards (1996)

in [14] details this solution.

Theorem 3.1 Let T have a p-dimensional multivariate-t distribution with degrees of

freedom ν and underlying correlation matrix R of rank r. The probability

P (|Tj| ≤ d, j = 1, . . . , p)

is bounded below by the expression

1 −
∫

1/d

0

min(Fr−2,2[(s((dt)−2 − 1))/(r − 2)] × (Λ/π) + Fr−1,1[((dt)−2 − 1)/(r − 1)], 1)fT (t)dt,
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with

Λ =

p−1
∑

j=1

cos−1(|rj,j+1|),

where Fm,n is the distribution function of an F random variable with m and n degrees

of freedom and fT is the density function of a random variable T such that rT 2 ∼ Fν,r.

If d is such that the foregoing expression is at least 1 − α, then the intervals (3.27)

will be conservative simultaneous (1 − α)100% confidence intervals.

This inequality determines a value of d that depends on the correlation struc-

ture R and the path length Λ. The path length also depends on the ordering of

the indices 1, 2, . . . , p and yields the smallest value of d for the optimum ordering.

ME recommend estimating the optimum ordering via the nearest neighbor algorithm

(Townsend, 1987) as no exact solution exists and this method often provides the

optimum ordering. It is noted that as the path length function approaches either in-

finity or zero the value of d becomes (rFα,r,ν)
1/2 (Scheffé’s critical value) or tα/2,ν (the

one-at-a-time critical value), respectively. Simulations show that when the degrees

of freedom are low and the number of comparisons are high, the ME method out-

performs other existing conservative solutions. Note that the ME method has simply

applied Naiman’s inequality to an interval and parameterization carefully chosen to

contain the quantities of interest.

However, the ME method is only strictly valid for linear models. I propose adapt-

ing the SCR bounds and their counterparts for generalized linear models in an anal-

ogous manner in order to make simultaneous inference on linear combinations of the

parameters from GLMs, such as odds ratios or relative risks.

3.2.2 Proposed Methods

In order to estimate the linear combinations of the GLM parameters, I propose

applying the SCR and PC methodologies in a fashion similar to the ME bounds.

Recall that the only requirement for applying the SCR-type bounds is normality of the
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regression parameter estimates, which is true asymptotically for GLMs. Application

of these bounds to various quantities of interest are outlined in detail below.

3.2.2.1 A General Set of Comparisons of the Model Parameters

Consider the general setup and estimators for GLMs presented in Chapter 2.

In section 3.1 the SCR bands were applied to GLMs to estimate the expected re-

sponse function simultaneously over a closed set χ. Now these bounds, along with

the pSCR, CS, and pCS bounds, may be applied to simultaneously estimate a set of

p linear combinations of the regression parameters from a GLM. These linear combi-

nations will each be of the form c′jβ where cj is a k × 1 vector for j = 1, . . . , p. Let

C = (c1, . . . , cp)
′ be a p×k matrix. Thus Cβ is a vector of the p linear combinations

of interest. Utilizing the SCR methodologies, we have that the expected response

function is simultaneously estimated by bounds with at least 100(1 − α)% coverage

∀xi ∈ X. As the results detailed in section 3.1 can be applied to simultaneously esti-

mate the expected response function, they can be applied to X to obtain simultaneous

intervals on g−1(c′jβ) provided cj ∈ X for j = 1, . . . , p. This interval may then be

transformed to obtain simultaneous bounds on the c′jβ via the link g. Generally, the

bounds will be of the form

c′jβ̂ ± d× σ̂GLM (cj), j = 1, . . . , p (3.28)

where σ̂GLM (cj) is given by (2.6). The following theorems detail the use of the

aforementioned critical values to obtain 100(1 − α)% coverage for a fixed set of p

linear combinations of the parameters. Note that we will have eight possible solutions

for confidence bands on a fixed set of p linear combinations of the parameters since

the usual CS, the pCS, the four SCR, and the two pSCR intervals may all be applied.

Recall the domains, denoted Rxi
, presented in section 3.1 pertaining to the CS

method for linear models. Let R∗
xi

be the smallest hyper-rectangle of the CS form
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that contains the cj , ∀ j = 1, . . . , p. A set of this form will be utilized in the

following theorem.

Theorem 3.2 Under the GLM setting described in (2.1), the asymptotic simultane-

ous coverage probability of the bands (3.28) has a lower bound of 1 − α for d = dCS

when dCS is computed for Rxi
= R∗

xi
. The same holds for the bands (3.28) when

β̂ = β̂∗, the pMLE of β.

Proof: Note that this result holds for any xi ∈ Ωxi
and that Ωxi

⊃ Rxi
= R∗

xi
where

the vectors cj = (cj1, . . . , cjp), j = 1, . . . , p, are embedded in the hyper-rectangle

R∗
xi

. Thus cj , j = 1, . . . , p is contained in Ωxi
and consequently, utilizing d = dCS

in (3.28) guarantees at least 100(1 − α)% simultaneous coverage asymptotically for

the p intervals of interest. Also note that the limiting distributions of β̂∗ and β̂ are

identical. Thus the asymptotic coverage of the bands (3.28) based on β̂∗ is the same

as those based on β̂. �

Now let X∗ be the smallest compact subset of the domain where cj ∈ X∗, ∀ j =

1, . . . , p.

Theorem 3.3 Under the GLM setting described in (2.1), the asymptotic simultane-

ous coverage probability of the bands (3.28) has a lower bound of 1−α for d = dTUBE,

d = dSCR1 and d = dSCR2 where these critical values are computed for X = X∗. For

β̂ = β̂∗, the pMLE of β, the same holds for d = dTUBE.

Proof: Note that this result holds for any xi ∈ X = X∗. The vectors cj = (cj1, . . . , cjk),

j = 1, . . . , p, are embedded in the set X∗. Thus, cj ∈ X = X∗ ∀j and consequently,

utilizing d = dTUBE, d = dSCR1 or dSCR2 in (3.28) guarantees at least 100(1 − α)%

simultaneous coverage asymptotically for the intervals. Moreover, since the limiting

distributions of β̂∗ and β̂ are identical, then the asymptotic coverage of the bands

(3.28) based on β̂∗ is the same as those based on β̂. �
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Theorem 3.4 Under the GLM setting described in (2.1), the asymptotic simultane-

ous coverage probability of the band

c′jβ̂ − κ̂1(ci)σ̂GLM (ci) ± dTUBEσ̂GLM (ci)
√

κ̂2(ci) (3.29)

where σ̂GLM (c′j) is given by (2.6), has a lower bound of 1 − α with κ̂1(cj) and κ̂2(cj)

defined as stated in section 3.1 and X = X∗. The same holds for β̂ = β̂∗, the pMLE

of β with κ̂1(cj) and κ̂2(cj) defined appropriately for β̂∗ and X again equal to X∗.

Proof: Note that this result holds for any xi ∈ X∗. The vectors cj = (cj1, . . . , cjk),

j = 1, . . . , p, are embedded in the set X∗. Thus, cj ∈ X = X∗ ∀j and consequently

the intervals in (3.29) utilizing β̂, the usual MLE for β, guarantee at least 100(1−α)%

simultaneous coverage asymptotically for the intervals. Since the limiting distribu-

tions of β̂∗ and β̂ are identical, then the asymptotic coverage of the bands (3.28)

based on β̂∗ is the same as those based on β̂. �

3.2.2.2 Illustrations of Simultaneous Procedures for Particular Scenarios

The simultaneous procedures for estimating any specified combination of the

model parameters from a GLM include the following: SCR (all four forms), PC

(restricted-Scheffé), pPC (pMLE restricted-Scheffé), and both pSCR bounds. The

relevant bounding procedures will be demonstrated for the odds ratio, relative risk,

and attributable proportion, but note that other quantities of interest could also be

estimated.

Since we have assumed the model estimated is a GLM, it is possible to apply any

of the proposed eight confidence bounds to the general expected response function.

Following the procedure described in section 3.1, one could find the bounds for any

GLM on a restricted domain and then apply the link function. For example, a GLM

is generally given by

g(E(Yi|xi)) = x′
iβ, i = 1, . . . , n.
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We will outline the procedure for some common link functions, log and logit. Note

that it is possible to simultaneously estimate any specified set of linear combination

of the regression parameters for a specified GLM using any of the eight methods

described in previously in this chapter.

As an example, recall the preterm birth study discussed in Chapter 1. This

study employed a loglinear model where the reference level was the case with no

apparent source of maternal stress. Recall the model was given by (2.14), thus let

β = (β0, β1, . . . , βk) be the (k + 1) × 1 parameter vector, for this example k =

3. In this study, the relative risks for each level of the source of maternal stress

compared back to the cases with no identified maternal stress factor were of primary

interest and, as discussed previously, the overall conclusions made in the study merits

simultaneous estimation of these relative risks. We focused specifically on the variable

indicating “Life Event” stress (see Table 1.1). This factor had four overall levels

for the independent variable indicating the presence of any “Life Event” maternal

stress. To utilize the procedure outlined in section 3.2.2.1, we need to define the

matrix C3×4 = (c1, . . . , c3)
′. Specifically, let cj = (cj1, cj2, . . . , cj4), where cj,i = 0 for

i 6= j + 1 and cj,j+1 = 1, i = 1, . . . , 4; j = 1, . . . , 3. Since βj is the log of the relative

risk for the jth level of the independent variable, then Cβ = (β1, β2, β3)
′, is the vector

of log relative risks for “Life Event” stress in the preterm birth study. The C matrix

that yields Cβ equal to the log relative risks for other reference-coded Poisson models

would be defined similarly. Notice that in our example X will be the three dimensional

subspace where x1 = 0 and
∑4

i=2 xi ≤ 1. (Note that cj, j = 1, . . . , 3, is contained in

this X.)

Asymptotic simultaneous 100(1 − α)% confidence bands for the log relative risks

of interest in the preterm birth study can now be formed by utilizing (3.28) or (3.29)

with an appropriate critical value and β̂ or β̂∗ as warranted. To obtain asymptotic

simultaneous confidence bands on the relative risks, the bands on the log relative risks
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would be exponentiated. These intervals will allow us to make overall conclusions with

a specified asymptotic error rate.

Alternatively, now suppose relative risks are of interest using a slightly different

model. Specifically, model-based relative risks can be estimated utilizing a Poisson

regression on a proportion. Thus, assume a simple model of the form,

log(π(xi)) = β0 + x′
iβ = x∗′

i β
∗

for i = 1, . . . , n where β∗
(k+1)×1 = (β0, β1, . . . , βk)

′ and x∗
i = (1, xi1, . . . , xik)

′ is a

predictor vector of dimension k + 1. Then the relative risk is easily estimated by

exponentiating any one of the regression parameters, eβi (i = 1, . . . , k). Thus, in

order to estimate the ith relative risk, let the matrix C be defined as described in

5.2.1 with each cij = 0 when i 6= j + 1 and cj,j+1 = 1, i = 1, . . . , k + 1; j = 1, . . . , p.

Again we can obtain asymptotic simultaneous 100(1 − α)% confidence bands for the

relative risks by utilizing (2.12) or (3.29) with an appropriate critical value and β̂

or β̂∗ as warranted. Here X would be similar to that for the skin cancer study. To

complete the calculations, the resulting bounds would be exponentiated, as they were

for the odds ratio calculations.

Once relative risks are estimated from a Poisson regression model, it may be help-

ful to additionally estimate the attributable proportions. Recall that the point esti-

mate of a relative risk is given by γi = exp(c′jβ) for j = 1, . . . , p. As the attributable

proportion is a one-to-one increasing function of the relative risk, the following holds,

κi = 1 − 1
γi

= γi−1
γi

, i = 1, . . . , n where κ is the attributable proportion and γ is the

relative risk. Suppose the relative risk interval has lower and upper limits denoted

LRR and URR, respectively. Then the limits on the attributable proportion are given

by
(

LRR − 1

LRR

,
URR − 1

URR

)

. (3.30)

If (LRR, URR) were obtained with simultaneous coverage for a specified set, then the
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same simultaneous coverage properties will hold for the equivalent set of attributable

proportions.

Note that all the previous examples assumed the estimated quantities should refer

back to the reference level. However, this general methodology can be extended to

make other kinds of comparisons between the estimated quantities. For example, if

we consider a logistic model with reference coding, we could consider an alternative

set of odds ratios for joint estimation. Recall that every eβi is the odds ratio for

the ith level compared to the reference level (or control). Alternatively, suppose it

was of interest to estimate the odds ratio comparing the first nonreference level of

the covariate to every other nonreference level. Then these odds ratios could be

estimated via eβ1−βj for j = 2, . . . , k. Thus, the contrast matrix, C, would have rows

that appear something like,

cj = (0, 1, 0, . . . , 0,−1, 0, . . . , 0).

Then via (3.28) or (3.29) we could estimate the log odds ratios simultaneously for an

appropriate d and β̂ or β̂∗ as warranted. Simply exponentiating the results would

give simultaneous bands for this particular set of odds ratios.
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CHAPTER 4

Simulations

In order to evaluate the performance of the proposed restricted Scheffé bounds,

pMLE Scheffé bounds, and the pMLE SCR bounds, I conducted Monte Carlo simula-

tions. I ran two main simulation studies; simulations for the simultaneous estimation

of the expected response function and simulations for the simultaneous estimation of

a linear function of the regression parameters which easily gives simultaneous inter-

vals on the odds ratios, relative risks, or attributable proportions via transformation.

Some recommendations are provided on the choice of intervals for various scenarios.

Additionally, an example of this kind of transformation is given in section 5.2.

4.1 Expected Response Function Simulations

These simulations assume only one predictor variable so that the vector of pa-

rameter estimates is of the general form β = (β0, β1)
′. The estimated coverage, or

alternatively, the estimated error was recorded for each scenario simulated. I sim-

ulated scenarios for various values of the parameter β, the sample size, n, and the

predictor variable, x. Simulations focused on the most commonly utilized GLMs,

logistic regression and Poisson models, although other models could be investigated.

Simulations included the following scenarios. Regression parameters as follows: (1)

β = (−1,−0.5), (2) β = (0, 1), (3) β = (2, 4), and (4) β = (−0.5,−1). The sample

sizes were n=10, 25, and 50. The domain, X, for both logit and Poisson models is con-

tinuous. For the logit model, I generated points equally spaced over wide and narrow

intervals. First appropriate values of π were chosen that would determine either a wide
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or narrow range for the domain. For a wide domain πL=0.1 and πU=0.9 and for a nar-

row domain πL=0.25 and πU=0.75. The X interval endpoints were then determined

by inverting the GLM so that x = (logit(π)−β0)/β1 where β0 and β1 are the parame-

ters. Thus, for the logit model, xL = (logit(πL)−β0)/β1 and xU = (logit(πU)−β0)/β1

are the endpoints of the domain. Then let x1 = xL and xn = xU and let the remaining

points be equally spaced between x1 and xn. Thus, X = (x1, x2, . . . , xn) is a vector

of a countable set of points contained in X = {x : xL ≤ x ≤ xU}. In order to simulate

the response, a set of Yi, i = 1, . . . , n response variables was generated in the following

manner. First, we generated Uniform(0,1) random variables, Ui, i = 1, . . . , n. Then

we let the response variable Yi be 1 if Ui < π(xi) and 0 otherwise when generat-

ing data for a logit model. Note that π(xi) = 1
1+eβ0+β1xi

for i = 1, . . . , n. For the

Poisson model, I generated a set of uniform random variables for the X values. The

wide domain was distributed Uniform(0,1), while the narrow domain was distributed

Uniform(0,0.5). To generate the response variable for a Poisson regression model,

Yi is a Poisson random variable generated to have mean µ(xi) = eβ0+β1xi for each

i = 1, . . . , n. For both models, I then used this set of Yi values and the X ∈ X

data set to compute the estimated parameter values and estimated covariance ma-

trix. These were also utilized to obtain the equations for the bounds over X for each

method evaluated. Note that we are not generating binomial, multinomial or Poisson

random variables and fitting the model to the generated observations. Rather, we

are assuming the model holds exactly. For situations where the logistic and Poisson

models do not work well, these methods could perform quite poorly. For each sample

I will note whether the estimated bounds cover the true response function X, a finite

set contained in X. I will then estimate the simultaneous coverage with the empirical

coverage of my simulated samples.

Additionally, in order to determine the number of simulated samples required to

estimate the error to within ±0.005 we calculated a lower bound on the number of
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simulations. If we are willing to tolerate 5% type I error (α = 0.05), a lower bound on

the number of simulations may be determined via [(0.05)(0.95)/ρ]1/2 < 0.005 where ρ

is the number of simulations [7]. This yields ρ > 1900. Thus we ran 5000 simulations

to reduce error.

4.1.1 Expected Response Function Simulation Results

The most significant distinction among all the competing intervals with regard to

the empirical confidence level, was the estimator used, MLE or pMLE. See Figure

4.1 for a plot comparing two MLE intervals to two pMLE intervals. Generally, the
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Figure 4.1: MLE and PMLE SCR Intervals with wide range

pMLE based intervals achieved the desired level of confidence at all sample sizes.

In contrast, the MLE based intervals as a group only reached the desired level of

confidence for some cases of n=25 or 50. Clearly, the ability of the pMLE intervals

to achieve the desired level of α at any sample size is an improvement over any of the

usual MLE intervals. Though we see this improvement in the reliability of the pMLE
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based intervals, the pMLE based intervals are extremely conservative, particularly at

small sample sizes. Again, see Figure 4.1 for an example. This could be due to the

computation of the biasing constant used to shift the likelihood equations for solving

for the pMLE. At the larger sample sizes the pMLE bias adjustment is more precise

while at small sample sizes this adjustment is more conservative.

Recall that we applied the pMLE estimator to the restricted-Scheffé, naive SCR,

and SCR3 intervals. Interestingly, the reshifted and rescaled SCR interval (SCR3)

does not perform as well as the naive tube-based SCR interval or any of the other

intervals. See Figure 4.2 for an example. Similar behavior was observed to Figure

4.2 for other parameter sets. Clearly, when using a bias-preventing estimator, trying

Logit Model (W) with B=(-1, 0.5)
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Figure 4.2: pMLE Intervals Logit-Wide Range B=1

to correct the remaining bias is not helpful, and in fact is often detrimental. Though

the pMLE SCR3 intervals are not usually a good idea as an alternative to any MLE

based intervals, the other pMLE intervals (restricted-Scheffé and naive SCR) perform

far better than the MLE intervals in all cases. See both Figure 4.1 and Figure 4.2 for
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examples.

As the sample size increases to moderately large sizes (n=25, 50 or 100), the

MLE based intervals as a whole do reach the desired level of confidence and the

pMLE based estimators’s empirical confidence level decreases to a level much closer

to the intended level of confidence (see Figure 4.1), and in many cases the pMLE

based intervals (either PC or naive SCR) are actually less conservative than the usual

MLE based intervals. While the pMLE based intervals were intended to address poor

coverage at small sample sizes, these intervals also appear to improve the conservative

nature of the usual MLE based intervals at the moderate sample sizes. Thus, at these

moderate to large sample sizes the pMLE based intervals still attain the desired level

of confidence but, in general, do not over-reach the desired confidence level as the

usual MLE based intervals often do.

Note that so far I have presented only one parameter case for the logit model.

Recall that I investigated four sets of parameters for the logit model and three sets

of parameters for the Poisson model. The plots comparing the two superior pMLE

intervals to the corresponding MLE intervals are displayed in Figures 4.3 to 4.15 in

this section. Generally, for the logit model simulations, we see very similar behavior to

the plots analyzed previously. However, for some choices of the regression parameters,

a sample size of 100 was required to achieve the desired confidence level with the naive

tube MLE interval. See Figures 4.3 to 4.5.

In regard to the domain used in the estimation of the interval, when a wide domain

was assumed for estimation of the GLM, the MLE based intervals needed larger

sample sizes to attain the desired level of confidence than when the domain width

was narrow. This held for the logit model in particular (see Figure 4.3). However,

this trend did not translate to the pMLE based intervals in general, where the domain

of interest really only affected how conservative the intervals were.

The choice of the four parameter sets did not change the overall trends observed

53



Logit Model (W) with B=(0, 1)
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Figure 4.3: MLE and PMLE SCR Intervals with wide range

Logit Model (W) with B=(-0.5, -0.25)
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Figure 4.4: MLE and PMLE SCR Intervals with wide range
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Logit Model (W) with B=(2, 4)
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Figure 4.5: MLE and PMLE SCR Intervals with wide range

Logit Model (N) with B=(-1, 0.5)
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Figure 4.6: MLE and PMLE SCR Intervals with narrow range
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Logit Model (N) with B=(0, 1)
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Figure 4.7: MLE and PMLE SCR Intervals with narrow range

Logit Model (N) with B=(-0.5, -0.25)
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Figure 4.8: MLE and PMLE SCR Intervals with narrow range
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Logit Model (N) with B=(2, 4)
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Figure 4.9: MLE and PMLE SCR Intervals with narrow range

Poisson Model (W) with B=(-1, 0.5)
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Figure 4.10: MLE and PMLE SCR Intervals with narrow range
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Poisson Model (W) with B=(0, 1)
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Figure 4.11: MLE and PMLE SCR Intervals with narrow range

Poisson Model (W) with B=(-0.5, -0.25)
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Figure 4.12: MLE and PMLE SCR Intervals with narrow range
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Poisson Model (N) with B=(-1, 0.5)
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Figure 4.13: MLE and PMLE SCR Intervals with narrow range

Poisson Model (N) with B=(0, 1)
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Figure 4.14: MLE and PMLE SCR Intervals with narrow range
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Poisson Model (N) with B=(-0.5, -0.25)
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Figure 4.15: MLE and PMLE SCR Intervals with narrow range

for the competing intervals significantly. In contrast, the choice of the link function

did. The logistic models were in general less conservative than the Poisson models

(compare Figures 4.1 and 4.10). The performance of the MLE and competing pMLE

intervals was most distinct when investigating the logistic regression model. Con-

versely, the Poisson model empirical confidence levels did not vary greatly across the

sample sizes when the pMLE based intervals were utilized. Even the MLE based

intervals were conservative at times for this link function and attained the desired

level of confidence even at the smallest sample sizes for many cases (see Figure 4.10

as an example). Thus, many of the comments made about the logistic regression

models do not apply when considering Poisson regression models. In general, little

distinction can be made among the competing intervals. At times, the MLE based

intervals appear to be a little less conservative than the pMLE based intervals, but

often that difference in negligable. I believe that the conservative nature of all the

methods for estimating the mean response of a Poisson model needs to be addressed.
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This conservative behavior may be due to the tendency of Poisson regression mod-

els to overestimate the variance of the regression parameters (see [15] and [16]).

A sandwich estimator of the variance should be studied to potentially correct this

problem [17]. A sandwich variance estimator, along with generalized estimating

equations (GEE’s) for estimating the model parameters, can correct a misspecified

variance function for Poisson models. The sandwich estimator is a robust variance

estimator that consistently estimates the true variance when the parametric model

fails to hold. Since the parameters estimated from GEE’s have asymptotic normality

when utilizing the sandwiched covariance matrix, we may directly apply the usual

MLE based interval methods.

Though the MLE intervals are not of primary concern, it should be noted that

among the MLE methods, as expected, the Scheffé is the most conservative of all. Yet

little distinction can be made among the other methods except that the SCR3 intervals

tend to not reach the desired level of confidence as quickly as the other SCR intervals.

See Appendix A for examples. However, these trends do not translate to the intervals

utilizing the pMLE estimator since: 1) not all SCR intervals are employed using this

estimator and thus cannot be compared, and 2) the bias-preventing estimate does

drastically change the behavior of each interval overall.

4.2 Functions of the Parameters Simulations

In order to estimate the error associated with the confidence regions for estimating

the set of regression parameters, and hence, odds ratios, relative risks or attributable

proportions, I will again assume only one predictor variable. In general, the single

predictor variable is assumed to be categorical. However, using reference cell coding

for one categorical predictor entails utilizing several binary predictor variables. This

will be taken into account in the simulations. When evaluating the odds ratio we

also need to consider what type of multiple comparisons could be of interest. I will
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consider only contrasts corresponding to comparisons with a control. For example,

comparisons with a control would require simultaneously estimating the odds ratio for

each nonreference level with the reference level from a logistic regression model when

reference cell coding is utilized. This entails simultaneously estimating all slope pa-

rameters. Recall that the control is the reference level, thus if we have k+1 regression

parameters, there will be k comparisons or k odds ratios to be simultaneously esti-

mated. Thus we are simultaneously estimating eβi for every i = 1, . . . , k. Similarly,

the relative risks for each level of a predictor variable with reference to the control

could be investigated for a Poisson regression model. The attributable proportion

also could be observed for both a Poisson regression model and a logistic regression

model. These too are one-to-one functions of the k slope parameters.

We investigated both logistic and Poisson regression models for evaluating the

limits on the estimated odds ratios, relative risks, or attributable proportions. In this

scenario the generation of the X data set and Yi, i = 1, . . . , n was identical to that

described in section 4.1. However, in this case we evaluated the estimated coverage of

the simultaneous confidence bounds for the discrete set of interest only. This coverage

was estimated in an analogous manner to that for the expected response. Namely, the

data were generated, the model was estimated, and finally the intervals for the slope

parameters were constructed. Each time the interval captured the true parameter

value, a success was recorded and the number of captures out of all k comparisons

was recorded. This was repeated 5000 times and the average empirical confidence

level was recorded. For the purpose of the simulations, I considered k = 4, where k

is the number of estimated parameters (slope parameters in this special case). The

sample sizes considered are n=50, 100, 200, and 300 and α = 0.05. Also, as in 4.1, I

recorded the empirical confidence level for each method considered.

At times, the estimated covariance matrix was near-singular. This means that the

covariance matrix was estimated to be a quantity such that when the calculations for
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computing the inverse of the matrix were begun, an error occurs in the LU factor-

ization. An error is returned in this case by the Fortran compiler. Additionally, the

model is ill-fitting if the response vector is either all 1’s or all 0’s. Thus, cases where

the response vector is all 0 or 1 or the covariance matrix is singular or near-singular

were recorded and data were regenerated. When n=50, there were 252 cases that

were thrown out and the data regenerated. When n=100, 200, or 300, no cases of

near-singular matrices or all 0’s or 1’s response vectors occurred.

4.2.1 Functions of the Parameters Simulation Results

As with the intervals on the mean response, performance of the intervals on the

parameters was most affected by the estimator utilized, MLE or pMLE. In general,

when the pMLE estimator was used for any interval method, the desired level of

confidence was reached at any sample size (see Figure 4.16 or Figure 4.17).

Logit Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure 4.16: MLE and PMLE SCR Intervals for the Parameters

In contrast, the MLE based intervals did not in general attain the desired confi-
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Poisson Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure 4.17: MLE and PMLE SCR Intervals for the Parameters

dence level until either n = 200 or n = 300 for most cases studied. At the smallest

sample size (n = 50), the pMLE based interval attained the desired level of confidence

and was not overly conservative (see Figure 4.16 or Figure 4.17). As the sample size

increased, the pMLE based interval’s empirical confidence level slowly approaches the

desired confidence level, just as we saw with the mean response simulations. At the

largest sample size simulated (n = 300), the pMLE based interval had an empirical

confidence level between the various MLE intervals. In general, only the MLE Scheffé

and PC intervals are more conservative than the two pMLE intervals, while all the

MLE SCR intervals are a little less conservative. Thus, whether a practitioner utilizes

the MLE or pMLE based intervals makes little difference at these larger sample sizes.
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CHAPTER 5

CONCLUSIONS

5.1 Application of Proposed Methods

Using practical examples with emphasis placed on implementation of the proce-

dures and the interpretation of the results, I will now illustrate how to utilize the

proposed intervals. One example focuses on estimating the mean response of a GLM

while the other utilizes a GLM with reference coded binary predictors to estimate a

set of odds ratios.

5.1.1 Diabetes among Pima Women

Diabetes is a common disease among females of the Pima culture in Arizona. A

study was conducted to better understand the incidence of diabetes in the population

of Pima women [18]. One explanatory variable that is believed to be associated

with diabetes in young Pima women, age 24 and younger, is the plasma glucose

concentration. The glucose concentration was measured with an oral glucose tolerance

test on the 51 Pima women aged 24 or younger. A binary variable indicates presence

of diabetes in the young women (0=no diabetes and 1=diabetes), thus a simple

logistic regression model is reasonable. Table 5.1 contains the estimated probability

of diabetes for women with high glucose readings (140 and above). Individual 95%

confidence intervals were calculated for each proportion as well as naive tube or SCR1

intervals with the restriction that the glucose was greater than 140. Note that each

proportion in Table 5.1 uses the notation πglucoselevel with the estimated proportion

giving the probability of diabetes for an individual Pima women with that glucose
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Table 5.1: Intervals for Proportion of Pima Women with Diabetes

Point Estimate 95% MLE Individual 95% pMLE SCR1 Simultaneous

for π Confidence Intervals for π Confidence Intervals for π

π̂140=0.268 (0.109,0.523) (0.101,0.561)

π̂142=0.297 (0.120,0.567) (0.108,0.598)

π̂143=0.312 (0.125,0.589) (0.111,0.616)

π̂148=0.391 (0.155,0.693) (0.128,0.703)

π̂151=0.443 (0.175,0.748) (0.140,0.750)

π̂154=0.495 (0.197,0.796) (0.151,0.792)

π̂177=0.831 (0.417,0.971) (0.259,0.962)

π̂188=0.914 (0.540,0.990) (0.322,0.984)

π̂199=0.958 (0.658,0.996) (0.391,0.994)

level. A discussion of the results follows the presented interval estimates in Table 5.1.

First note that, as expected, the individual confidence intervals are narrower than

the simultaneous intervals. Thus, using the individual confidence intervals, it will

be easier to reject certain proportions as the true value. Note that the proportion

estimates given in Table 5.1 are from the pMLE estimated model. The MLE model

was logit(π̂) = −10.840 + 0.0703X while the pMLE model was logit(π̂) = −10.826 +

0.0701X. The change in the length and center of the intervals could lead to very

different conclusions given certain research questions.

5.1.2 Depression in Adolescents

A study was conducted on the classification of depression (high or low) among

adolescents between the ages of 12 to 18 with either learning disabilities (LD) or

with serious emotional disturbances (SED) [19]. Six risk factors for high levels of
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depression were considered (as a combination of the age (12-14,15-16,17-18) factor

and group (LD and SED) factor). Thus, there were a total of 6 levels for a single

categorical predictor variable. In the text, Epidemiological Research Methods [19],

it is suggested that a logistic regression model is appropriate for these data. The esti-

mated odds ratios are provided to ascertain any differences in the level of depression

for the different groups. Simultaneous estimation of the odds ratio from the logistic

regression model should be considered here since it is reasonable to make conclusions

about the group with the highest or lowest odds of high levels of depression. As

suggested in the text [19], the group with the lowest risk of high levels of depression

(17-18,SED) was the referent or control category. The reference coding takes this

into account so that every log odds ratio refers back to that baseline category. The

estimated log odds ratios for the 5 estimated slope coefficients are given in table 5.2.

Note that βage,condition and θage,condition refer to the parameter or odds ratio respec-

tively for an adolescent of a particular age group and condition. Additionally, Table

5.2 contains the estimated model odds ratios comparing the odds of high levels of

depression for each risk category with reference to the 17-18,SED category and the

individual and restricted-Scheffé or PC simultaneous intervals. All point estimates

utilize the pMLE estimated model. Note that the 95% individual confidence inter-

vals demonstrated an odds ratio significantly different than 1 for the case where the

adolescent was age 12-14 and learning disabled. Once simultaneous adjustments are

made, the significant association no longer exists. This would be an example of a

case where the one-at-a-time intervals and simultaneous intervals would contradict

and care should be taken about which methodology is appropriate. For instance, in

order to say that the odds of high levels of depression is highest among the group aged

12 to 14 and with serious emotional disorders, simultaneous intervals would need to

be computed. Clearly, that conclusion should not be made for this study since that

is not supported via the simultaneous intervals.
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Table 5.2: Intervals for Odds Ratio for Depression in Adolescents

Point Estimate 95% MLE Individual 95% pMLE PC Simultaneous

for Odds Ratio Confidence Interval for θ Confidence Interval for θ

θ̂12−14,LD=1.939 (0.812,4.627) (0.384,8.926)

θ̂12−14,SED=4.683 (1.642,13.383) (0.671,29.874)

θ̂15−16,LD=1.616 (0.651,4.102) (0.300,8.053)

θ̂15−16,SED=1.458 (0.520,4.088) (0.222,9.189)

θ̂17−18,LD=1.844 (0.696,4.884) (0.307,10.381)

β̂17−18,SED=1.00

5.2 Overall Conclusions

The proposed pMLE based intervals, including the pScheffé, pMLE restricted-

Scheffé, and pSCR1 intervals, did improve small sample estimation over the usual

MLE based intervals. As demonstrated, the usual MLE based intervals often could not

attain the desired level of confidence for what was considered a small sample size for

the varying models. In contrast, the pMLE did attain the desired level of confidence.

However, the penalty with using the pMLE based intervals is that these intervals

are very conservative at these small sample sizes. As the sample size increases to

moderate levels, the distinction between the MLE and pMLE based intervals lessens,

but the pMLE intervals, as a whole, tend to be less conservative than the MLE based

intervals.

5.2.1 Recommendations for Estimating the Mean Response

When selecting an interval method for a set of comparisons, attention should

be paid to what the set of predictor variables are. For instance, when there are
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many comparisons and interest is focused on the entire estimation space, the Scheffé

intervals would ensure the desired level of confidence. However, if a restricted interval

of the predictor variable is of interest or a finite number of discrete points embedded

in a continuous domain is of interest, then the restricted-Scheffé or one of the SCR

methods, respectively, is most advantageous.

In summary, recommendations are to use pMLE intervals for all small to moderate

sample sizes. Specifically, the pMLE SCR1 intervals were the least conservative of

all the pMLE based intervals and are thus the best choice. However, for ease of

computation, the restricted-Scheffé pMLE intervals are a good second choice with

far more computational ease. Then, for moderate and larger sample sizes, the pMLE

based intervals are again recommendeded, though the behavior of these intervals have

not been studied for any sample size greater than 50. Again, the SCR1 pMLE interval

is the overall best choice. Though even less distinction may be made between the

pMLE intervals at the larger sample sizes.

5.2.2 Recommendations for Estimating the Parameters

Overall, for small to moderate sample sizes, the SCR1 pMLE attains the desired

level of confidence while not being as conservative as the PC pMLE interval. Thus,

for most cases where the sample size is greater than 50, I recommend utilizing a naive

tube critical point with the pMLE estimators. For sample sizes smaller than 50,

the cautious choice would be the PC pMLE interval. This is a slightly conservative

interval, yet it attains the desired level of confidence, unlike any other competing

interval. I would not recommend using the MLE based intervals at smaller sample

sizes. If the sample size is moderate to large (n=200 or 300) there is little observed

difference between the pMLE and MLE intervals and thus, for convenience, the MLE

intervals may justifiably be utilized.
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5.3 Future Research

There are many avenues to explore in the future that are related to this research

topic. Some of these include performing in-depth simulations of these methods for

more complex GLMs. Namely, if a GLM has a predictor matrix, given by X, that

is a mix of categorical and continuous predictors, then nothing is known about how

the aforementioned simultaneous procedures would behave. There are a host of other

issues to explore as well when we have a predictor matrix such as X. For instance,

what multiple comparison techniques are applicable, what should we compare, and

how do we adjust for the other variables in the model? Additionally, for the sin-

gle predictor variable case, other configurations of the contrast matrix C should be

considered. For example, these other forms of C could be utilized to assess how the

methods perform for all-pairwise types of comparisons. Also, GLMs with interaction

and quadratic terms need to be explored. This entails describing what the odds ratios

and relative risks are for the interaction and quadratic terms as well as evaluating

and determining the appropriate simultaneous estimation techniques for these more

complex models. Other estimation methods for the Poisson models should also be

explored. As demonstrated in the simulation studies, the Poisson models may have

over-estimated the standard errors associated with the parameters. Thus, sandwich

variance estimators via generalized estimating equations as described in section 4.1.1

would be a reasonable solution to this problem. Finally, pMLE based parameter

estimates for improving GLM estimation should be explored, particularly in cases

where the sample size is typically quite small. For example, a natural application is

dose-response models. These models typically have 10 or less replications per dose

and there are frequent problems with bias in the parameters estimates. Additionally,

when at least one dose has either all success’s or all failure’s for the response variable,

the usual MLE estimates fail. The pMLE estimates would be a reasonable solution to

this problem and some simulation studies to assess the accuracy of these estimators
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would be beneficial.
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APPENDIX A

FIGURES

Logit Model (W) with B=(-1, 0.5)
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Figure A.1: MLE Intervals Logit-Wide Range B=1
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Logit Model (W) with B=(0, 1)
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Figure A.2: MLE Intervals Logit-Wide Range B=2

Logit Model (W) with B=(2, 4)
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Figure A.3: MLE Intervals Logit-Wide Range B=3
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Logit Model (W) with B=(-0.25, -0.5)
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Figure A.4: MLE Intervals Logit-Wide Range B=4

Logit Model (N) with B=(-1, 0.5)
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Figure A.5: MLE Intervals Logit-Narrow Range B=1
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Logit Model (N) with B=(0, 1)
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Figure A.6: MLE Intervals Logit-Narrow Range B=2

Logit Model (N) with B=(2, 4)
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Figure A.7: MLE Intervals Logit-Narrow Range B=3
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Logit Model (N) with B=(-0.25, -0.5)
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Figure A.8: MLE Intervals Logit-Narrow Range B=4

Poisson Model (W) with B=(-1, 0.5)
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Figure A.9: MLE Intervals Poisson-Wide Range B=1
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Poisson Model (W) with B=(0, 1)
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Figure A.10: MLE Intervals Poisson-Wide Range B=2

Poisson Model (W) with B=(-0.25,-0.5)
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Figure A.11: MLE Intervals Poisson-Wide Range B=3
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Poisson Model (N) with B=(-1, 0.5)
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Figure A.12: MLE Intervals Poisson-Narrow Range B=1

Poisson Model (N) with B=(0, 1)
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Figure A.13: MLE Intervals Poisson-Narrow Range B=2
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Poisson Model (N) with B=(-0.25,-0.5)
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Figure A.14: MLE Intervals Poisson-Narrow Range B=3

Logit Model (W) with B=(0, 1)
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Figure A.15: pMLE Intervals Logit-Wide Range B=2
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Logit Model (W) with B=(2, 4)
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Figure A.16: pMLE Intervals Logit-Wide Range B=3

Logit Model (W) with B=(-0.25, -0.5)
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Figure A.17: pMLE Intervals Logit-Wide Range B=4
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Logit Model (N) with B=(-1, 0.5)
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Figure A.18: pMLE Intervals Logit-Narrow Range B=1
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Logit Model (N) with B=(0, 1)
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Figure A.19: pMLE Intervals Logit-Narrow Range B=2

Logit Model (N) with B=(2, 4)
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Figure A.20: pMLE Intervals Logit-Narrow Range B=3
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Logit Model (N) with B=(-0.25, -0.5)
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Figure A.21: pMLE Intervals Logit-Narrow Range B=4

Poisson Model (W) with B=(-1, 0.5)
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Figure A.22: pMLE Intervals Poisson-Wide Range B=1
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Poisson Model (W) with B=(0, 1)
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Figure A.23: pMLE Intervals Poisson-Wide Range B=2

Poisson Model (W) with B=(-0.25,-0.5)
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Figure A.24: pMLE Intervals Poisson-Wide Range B=3
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Poisson Model (N) with B=(-1, 0.5)
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Figure A.25: pMLE Intervals Poisson-Narrow Range B=1

Poisson Model (N) with B=(0, 1)
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Figure A.26: pMLE Intervals Poisson-Narrow Range B=2
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Poisson Model (N) with B=(-0.25,-0.5)
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Figure A.27: pMLE Intervals Poisson-Narrow Range B=3

MLE: Logit Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure A.28: MLE Intervals for the Parameters - Logit
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MLE: Poisson Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure A.29: MLE Intervals for the Parameters - Poisson

pMLE: Logit Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure A.30: pMLE Intervals for the Parameters - Logit
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pMLE: Poisson Model with B=(-1, 0.5, -0.25, -0.5, 0.25)
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Figure A.31: pMLE Intervals for the Parameters - Poisson
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APPENDIX B

Moments of Binomial and Poisson Random Variables

The moments of the binomial and poisson random variables are utilized in the SCR

methodology. The following lays out the derivation of these as used in the coding for

calculating the various SCR critical values. Both derivations calculate the generalized

linear model moment, b(θ) based on the exponential class form exp{yθ− b(θ)+ a(y)}

as in [13].

B.1 The Binomial Random Variable

If Y ∼ BIN(n,π), then the likelihood is given by,

(

n

π

)

π
∑

y(1 − π)n−
∑

y = exp{
∑

y(logπ − log(1 − π)) + nlog(1 − π) + log

(

n

π

)

}

. Thus, b(π) = −nlog(1−π) where π = eη

1+eeta for η = θ given that the logit or log is a

canonical link. Then, if we reparameterize b(π) in terms of θ, then b(θ) = nlog(1+eθ).

Then the moments of the binomial random variable are given by the derivatives of

b(θ). The first moment is:

µθ = b′(θ) =
neθ

1 + eθ
=

n π
1−π

1 + π
1−π

= nπ.

The second moment is

σ2
θ = b′′(θ) =

neθ

(1 + eθ)2
.

The third moment is

b3(θ) =
neθ(1 − eθ)

(1 + eθ)3
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and the fourth moment is

b4(θ) = neθ(1 − eθ)
−3eθ

(1 + eθ)4
+
eθ − 2eθ

(1 + eθ)3
==

eθ − 4e2θ + e3θ

(1 + eθ)4
.

B.2 The Poisson Random Variable

When Y ∼ POI(µ), then the likelihood is given by,

enµµ
∑

y

y!
= exp{−log(y!) +

∑

ylogµ− µ}.

Thus, b(µ) = µ and given that θ = logµ, then b(θ) = eθ. Then the derivatives are all

given by

b′(θ) = b′′(θ) = b3(θ) = b4(θ) = eθ.
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APPENDIX C

Restricted-Scheffé Methodology

The following algorithm is adapted from both Casella and Strawderman (1980)

and Piegorsch and Casella (1988) for any GLM. Suppose we have interest in con-

strained regions of the form Rxi
= {a11 ≤ x1 ≤ a12, a21 ≤ x2 ≤ a22, . . . , ak1 ≤ xk ≤

ak2} where the ami (m = 1, . . . , K and i = 1, 2) are specified. Generally, this algorithm

finds a set of vertices that are of the form Ωxi
= {x :

∑r
m=1 x

2
m ≥ q2

∑K+1
m=r+1 z

2
m} that

contain the true set of vertices for the estimation space of interest. This subset, ΩR
xi

,

is the Ωxi
that most closely matches Rx and on which we will base the critical point

for the Scheffé-based intervals. The algorithm, closely following the one outlined by

Piegorsch and Casella [7], is as follows:

1) Find the 2k vertices of the hyper-rectangle defined by Rxi
. These are denoted

vj = {vmj}k
m=1 where each vmj = (aml, am′l) for j = 1, . . . , 2k, m = 1, . . . , k,

m′ = 1, . . . , k, and l = 1, . . . , K. Note that when estimating the mean response

all v0j = 1 while estimating the vector of the regression coefficients all v0j = 0.

2) Compute the diagonalized vertices, ψj = D−1/2U ′vj = {ψMj}k+1
M=1 where j =

1, . . . , 2k ranges the dimension of the k-dimensional real set, R
k. The M th

element of this vector can be written as ψMj = λ
−1/2
M

∑K+1
L=1 uLMvL−1,j where

λM is the M th diagonal of the eigenvalue matrix D, uLM is in the Lth and M th

row and column of the eigenvector matrix U , and M = 1, . . . , k. At this step,

we have the diagonalized vertices that need to be matched as closely as possible

to vertices of sets of the form of Ωzi
.
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3) In order to find the set of vertices that are the closest match to Rz, compute the

minimum and maximum among the diagonalized vertices zmax
M = max|ψMj |

and

zmin
M =











0 if minj{ψMj} < 0 < maxj{ψMj}

minj{|ψMj |} otherwise

This summarizes the vertices by recovering the maximum and minimum.

4) Calculate the following quantity,

Q2
r =

r
∑

M=1

(zmin
M )2/

k+1
∑

M=r+1

(zmax
M )2

for each r = 1, . . . , k. These values are informative about Rxi
. For example,

if Q2
r = 0, the set Ωxi

does not contain the image of Rxi
. Whenever, Q2

r > 0,

the set Ωxi
does contains the image of Rxi

and Q2
r ≥ d2 for any r = 1, . . . , k.

Thus, this step finds the sets which contain the Rz set so now all that needs to

be done is to pick out the set most resembling Rz.

5) Now each d2
r is estimated. If Q2

r = 0, then d2
r = χ2

k+1,α which is the typical value

using the Scheffé bounds. This reflects that fact that if a region of Rxi
is not

restricted then the typical Scheffé bounds are the most appropriate. Whenever

Q2
r > 0, then Q2

r is the largest d2 that allows Ωzi
to contain Rz. In this case, let

B2 = (1+Q2
r)

−1. This may be considered a measure of the size of the constraint

region. Then the value of d2
r can be given by a table [6] or found by computer.

Specifically, this value is found by finding the solution to the following equality:

P (Er,s(b, d
2) + P (Es,r(a, d

2) = P (aχr + bχs)
2 ≤ d2) − P (χ2

p ≤ d2)

where Er,s(b, d
2) and Es,r(a, d

2) are as defined previously. This is a very tedious

calculation and requires a computer to provide a solution.

6) Finally, let d2
S =

min
r {d2

r}. This is the value that bounds the GLM when applied

to the formula. Alternatively, one may choose, in step 5) the small of all Q2
r
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which also yields the smallest d2.

x′β̂ ± |dS|(x′F−1x)1/2 ∀x ∈ Rxi

When the domain of interest for the predictor variable is continuous this algorithm

may be followed explicitely for any set of restrictions given by Rx. However, when

estimating linear combinations of the parameters, a slight change must be made. Now

the limits on the domain are not given by Rx but are rectangular regions defined by

the ci’s. For example, when considering the simultaneous estimation of the vector of

parameters (β1, . . . , βk), our contrast matrix is a sequence of 0’s and 1’s as described

in chapter 3. Since we are trying to estimate the actual βi’s (i=1,...,k) instead ofX
′

β,

we need to capture the rectangular region defined by all the 0’s and 1’s. The easiest

way to do this is to shift that rectangular region. For example, in two dimensions,

we are trying to capture a rectangular region with the vertices (0,0), (1,0), (0,1), and

(1,1). Simply shift this rectangle to have the vertices (1,1), (1,2), (2,1), and (2,2)

so that the quadric form Ωxi
contains the rectangle. This concept may be extended

to higher dimensions so that a hyper-rectangle is defined in k dimensions and the

calculation of the quantity Q2
r is given by (C).
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APPENDIX D

SCR Methodology

The SCR1 solution utilized the ”tube” formula proposed recently by Naiman [10].

Assume there are d points in n-dimensional Euclidean space of interest. If these points

are connected they form a curve. Tube formulas compute the volume of a tube of

radius r about this curve. Tube-based intervals utilize the following solution for d,

the critical value, when k = 1 (k=dimension)

α ≈ κ0

π
exp(−d2/2) + δ ∗ (1 − Φ(d))

where κ0 is the volume of the region defined by the points and δ is the Euler-Poincare

characteristic of the region.

Then for k > 1

α ≈ κ0δ(
k+1
2

)

π
k+1

2

(1 − Fk+1,ν(
d2

k + 1
))

+
ζ0δ(

k
2
)

2π
k+1

2

(1 − Fk,ν(
d2

k
))

+
(κ2 + ζ1 +m0)δ(

k−1
2

)

2π
k+1

2

(1 − Fk−1,ν(
d2

k − 1
))

where κ0 is the volume of the region defined by the points, ζ0 is the surface area of

this region, κ2 is the curvature of the region, ζ1 is the curvature of the boundary of

this region, and m0 is the rotation angle. The naive or SCR1 solution directly utilizes

these formulas.

The SCR3 solution utilized the bias correction of the Gaussian random field,
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Wn(x), via the equality

|Wn(x)| = |W(x)| − p2(x,Wn(x)). (D.1)

The biasing constant is given by

p2(x, z) = − z{1

2
[κ2(x) − 1 + κ2

1(x)]

+
1

24
[κ4(x) + 4κ1(x)κ3(x)](z2 − 3)

1

72
κ2

3(x)(z4 − 10z2 + 15) = O(
1

n
)

The moments of Wn(x) are given by the following,

κ1(x) = E[Wn(x)] = µ
′

n(x)

κ2(x) = E[Wn(x) − E[Wn(x)]]2

= 1 +
1

2
C1 −

1

2
C2 − 3C3 +

1

2
C4

+ C6 −
1

2
C7 +

7

4
C8

κ3(x) = E[Wn(x) − E[Wn(x)]]3

κ4(x) = E[Wn(x) − E[Wn(x)]]4 − 3κ2
2(x)

= −9C3 = 3C6 + 6C8 + 3C9.

The Ci’s (i = 1, . . . , 9) utilized in the above calculations are given in the following

equations. Note that the quantities, bj ’s, are based on the distribution of the response

variable and the estimated parameters. Thus, they depend on whether the usual

MLE estimators or alternative pMLE estimators are used. See Appendix B for the

description of the bj ’s.
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C1 =
1

n3

∑

i

∑

j

b
(3)
i b

(3)
j 〈s(x),ui〉〈s(x),uj〉〈ui,uj〉2 (D.2)

C2 =
1

n2

∑

i

b
(4)
i b

(3)
j 〈s(x),ui〉2〈ui,uj〉 (D.3)

C3 =
1

n3

∑

i

∑

j

b
(3)
i b

(3)
j 〈s(x),ui〉2〈s(x),uj〉2〈ui,uj〉 (D.4)

C4 =
1

n3

∑

i

∑

j

b
(3)
i b

(3)
j 〈s(x),ui〉2〈uj,uj〉〈ui,uj〉 (D.5)

C5 = C1 (D.6)

C6 =
1

n2

∑

i

b
(4)
i 〈s(x),ui〉4 (D.7)

C7 =
1

n3

∑

i

∑

j

b
(3)
i b

(3)
j 〈s(x),ui〉〈s(x),uj〉3〈ui,ui〉 (D.8)

C8 =
1

n3

∑

i

∑

j

b
(3)
i b

(3)
j 〈s(x),ui〉3〈s(x),uj〉3 (D.9)

C9 =
1

n2

∑

i

[b
(2)
i ]2〈s(x),ui〉4. (D.10)
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APPENDIX E

Fortran Code: Piegorsch-Casella PMLE for the Mean Response

USE MSIMSL

INTEGER PINT,REPS

DOUBLE PRECISION P,R

PARAMETER(PINT=2,REPS=5000, LDA=PINT, LDEVEC=PINT,LDAINV=PINT)

DOUBLE PRECISION RANGEX(2),VER(PINT,2**(PINT-1)),

DVER(PINT,2**(PINT-1)),ZMAX(2**(PINT-1)),ZMIN(2**(PINT-1))

DOUBLE PRECISION S,A2, B2 ,Q2,C, Dp,Z(2),ECL(REPS),

ECL2(REPS),N,MEANECL,MEANECL2,LEFT,RIGHT,MUTEMP

DOUBLE PRECISION BETAP(2),XMAT(:,:),LINEAR(:),LINEARP,U(:),

MU(:),MUHAT(:),FACT

REAL MEANTEMP

INTEGER PTEMP(:),DONE,ITER,Y2(:)

ALLOCATABLE XMAT,LINEAR,U,MU,MUHAT,PTEMP,Y2

INTEGER L,RT,ISEED,STEP,NINT,CONF,CONF2,ITER2

DOUBLE PRECISION ERS

DOUBLE PRECISION CHIP

DOUBLE PRECISION BETAF(PINT),DELTAF(PINT),LOGLIK,LOGLIKOLD,

DET1,DET2,FISH(PINT,PINT)

DOUBLE PRECISION USTAR(PINT),LOGLIK1,LOGLIK2,FACU(PINT,PINT),

MX,BIAS(PINT),MEANBIAS(PINT)

COMMON S, R, P, A2, B2, C
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INTEGER IRULE,K,I,J,RINT,IPVT(PINT)

DOUBLE PRECISION LOW(2),UP(2),ERRABS,ERREL,TEMP,COVLIN,TEMP2(2),XSUM

DOUBLE PRECISION ERSRESULT1,ERSRESULT2,ERSTEMP,CHIPTEMP,FX,FX1,C0,C1,C2

DOUBLE PRECISION ERREST,CHIPRESULT1

DOUBLE PRECISION CHIPRESULT2

EXTERNAL ERS, CHIP

PARAMETER(Delta=1.0D-3,Epsilon=1.0D-6,Max=1000,Small=1.0D-6)

DOUBLE PRECISION EPS,MUL(2)

PARAMETER (EPS=1.0D-2, ICEN=0, IFIX=0, IFRQ=0, ILT=0, INIT=0,INTCEP=1)

DOUBLE PRECISION CASE(:,:), COEF(:,:),COV(:,:),H2(:,:)

DOUBLE PRECISION H3(:,:),HAT(:,:),WGT(:,:)

DOUBLE PRECISION X(:,:), RESULTS(7),INTER,VTEMP(PINT,PINT),X2(:,:)

DOUBLE PRECISION F(PINT,PINT),D(LDA),UMAT(LDEVEC,PINT),

D2(PINT,PINT),D3(PINT,PINT)

ALLOCATABLE CASE,COEF,COV,X,X2,H2,H3,HAT,WGT

OPEN (UNIT=8, FILE=’C:/Results/pc results/Dferror.txt’)

OPEN (UNIT=9, FILE=’C:/Results/pc results/RESULTS.txt’)

OPEN (UNIT=10, FILE=’C:/Results/pc results/RELERR.txt’)

OPEN (UNIT=11, FILE=’C:/Results/pc results/ECL.txt’)

OPEN (UNIT=12, FILE=’C:/Results/pc results/DATA.txt’)

! DEFINE R, S, AND P AND INTEGER VERSIONS FOR LATER

P=2.0D0

R=1.0D0

S=P-R

RINT=INT(R)
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ISEED=34271

CALL RNSET(ISEED)

C10=P*DFIN(9.5D-1,P,1.0D6)

! LOOP FOR MODEL TYPE 1=LOGIT, 2=POISSON, 3=PROBIT

DO 2 B=1,2

IF (B.EQ.1) THEN

MODEL=3

ELSEIF (B.EQ.2) THEN

MODEL=0

ELSEIF (B.EQ.3) THEN

MODEL=4

ENDIF

! LOOP FOR BETA PARAMETERS 1=(-1,.5), 2=(0,1), 3=(2,4),

4=(-.25,-.5)

DO 3 H=1,4

IF (H.EQ.1) THEN

BETAP(1)=-1.0D0

BETAP(2)=5.0D-1

ELSEIF (H.EQ.2) THEN

BETAP(1)=0.0D0

BETAP(2)=1.0D0

ELSEIF (H.EQ.3) THEN

BETAP(1)=2.0D0

BETAP(2)=4.0D0

ELSEIF (H.EQ.4) THEN

BETAP(1)=-2.5D-1

BETAP(2)=-5.0D-1
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ENDIF

! LOOP FOR N (N=10,25,50,100,200)

DO 4 W=1,3

IF (W.EQ.1) THEN

N=1.0D1

ELSEIF (W.EQ.2) THEN

N=2.5D1

ELSEIF (W.EQ.3) THEN

N=5.0D1

ELSEIF (W.EQ.4) THEN

N=1.0D2

ELSEIF (W.EQ.5) THEN

N=2.0D2

ENDIF

NINT=INT(N)

LDCASE=NINT

LDCOEF=PINT

LDCOV=PINT

LDX=NINT

NCOL=PINT+1

NOBS=NINT

ALLOCATE (Y2(NINT),CASE(LDCASE,5),COEF(LDCOEF,4),

COV(LDCOV,4),X(LDX,NCOL))

ALLOCATE (XMAT(NINT,2),LINEAR(NINT),PTEMP(NINT),

U(NINT),MU(NINT),MUHAT(NINT))

ALLOCATE (X2(LDX,NCOL),H2(PINT,NINT),H3(NINT,PINT),

HAT(NINT,NINT),WGT(NINT,NINT))
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! LOOP FOR RESTRICTED DOMAIN TYPES 1=UNRESTRICTED, 2=WIDE,

3=NARROW

DO 5 G=2,3

IF (G.EQ.1) THEN

MUL(1)=1.0D-4

MUL(2)=1.0D0-1.0D-4

ELSEIF (G.EQ.2) THEN

MUL(1)=1.0D-1

MUL(2)=9.0D-1

ELSEIF (G.EQ.3) THEN

MUL(1)=2.5D-1

MUL(2)=7.5D-1

ENDIF

IF (MODEL.EQ.3) THEN

RANGEX=(DLOG(MUL/(1-MUL))-BETAP(1))/BETAP(2)

ELSEIF (MODEL.EQ.0) THEN

RANGEX(2)=0.0D0

RANGEX(1)=1.0D0

ELSEIF (MODEL.EQ.4) THEN

K=1

DO WHILE (K.LE.2)

RANGEX(K)=(DNORDF(MUL(K))-BETAP(1))/BETAP(2)

K=K+1

ENDDO

ENDIF

! LOOP FOR DOMAIN TYPES 1=EQUALLY SPACED, 2=ONE CLUSTER

DO 6 E=1,1
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ECL=0.0D0

ECL2=0.0D0

MEANBIAS=0.0D0

DO 7 A=1,REPS

BETAF=0.0D0

IF (E.EQ.1) THEN

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

K=1

EQSPACE:DO WHILE (K.LT.N)

INTER=(RANGEX(2)-RANGEX(1))/(N-1)

X(K,1)=RANGEX(1)+INTER*(K-1)+1.0D-8

X(K+1,1)=RANGEX(1)+INTER*K+1.0D-8

K=K+1

ENDDO EQSPACE

ELSEIF (MODEL.EQ.0) THEN

IF (G.EQ.2) THEN

CALL DRNUN(NINT,X(:,1))

ELSEIF (G.EQ.3) THEN

CALL DRNUN(NINT,U)

X(:,1)=5.0D-1*U

ENDIF

ENDIF

ELSEIF (E.EQ.2) THEN

NCLUS=NINT*0.2

! GENERATE N-NUM CLUSTER EQUALLY SPACED PTS

CALL DRNUN(NINT-NCLUS,U(1:NINT-NCLUS))

MUHAT(1:NINT-NCLUS)=MUL(1)+U(1:NINT-NCLUS)*
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(MUL(2)-MUL(1))

! GENEATE A POINT IN THE RANGE TO CLUSTER PTS ABOUT

UTEMP=DRNUNF()

MUTEMP=MUL(1)+UTEMP*(MUL(2)-MUL(1))

CALL DRNUN(NCLUS,U(1:NCLUS))

! CLUSTER ABOUT POINT WITH WIDTH=0.2

MUHAT(NINT-NCLUS+1:NINT)=(MUTEMP-1.0D-1)+

U(1:NCLUS)*2.0D-1

! FIX IF CLUSTERED POINTS FALL OUTSIDE RANGE OF X

DO 8 Y=1,NCLUS

IF ((MUHAT(NINT-NCLUS+Y).LT.MUL(1))) THEN

MUHAT(NINT-NCLUS+Y)=MUL(1)

ELSEIF (MUHAT(NINT-NCLUS+Y).GT.MUL(2)) THEN

MUHAT(NINT-NCLUS+Y)=MUL(2)

ENDIF

8 CONTINUE

IF (MODEL.EQ.3) THEN

X(:,1)=(DLOG(MUHAT/(1.0D0-MUHAT)+Small)-

BETAP(1))/BETAP(2)

ELSEIF (MODEL.EQ.0) THEN

X(:,1)=(DLOG(MUHAT+Small)-BETAP(1))/BETAP(2)

ELSEIF (MODEL.EQ.4) THEN

K=1

DO WHILE (K.LE.2)

RANGEX(K)=(DNORDF(MUL(K))-BETAP(1))

/BETAP(2)

K=K+1
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ENDDO

ENDIF

ENDIF

XMAT(:,1)=1.0D0

XMAT(:,2)=X(:,1)

!NOTE: TEMP VALUE FOR LINEAR - LATER WILL BE

USING EST BETAS!!!

LINEAR=MATMUL(XMAT,BETAP)

! SIMULATE Y NOW ! SIMULATE UNIFORM(0,1) RV’S

CALL DRNUN(NINT,U)

! SIMULATE RESPONSE Y

DO 10 I=1,NINT

IF (MODEL.EQ.3) THEN

MU(I)=DEXP(LINEAR(I))/(1+DEXP(LINEAR(I)))

ELSEIF (MODEL.EQ.0) THEN

MU(I)=DEXP(LINEAR(I))

ELSEIF (MODEL.EQ.4) THEN

MU(I)=DNORDF(LINEAR(I))

ENDIF

! THE 3RD COLUMN OF X IS Y

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

IF (U(I).LT.MU(I)) THEN

X(I,3)=1.0D0

ELSE

X(I,3)=0.0D0

ENDIF

ELSE
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RANGEX(1)=DMIN1(X(I,1),RANGEX(1))

RANGEX(2)=DMAX1(X(I,1),RANGEX(2))

MEANTEMP=REAL(MU(I))

CALL RNPOI(NINT,MEANTEMP,PTEMP)

X(I,3)=DBLE(PTEMP(I))

ENDIF

10 CONTINUE

!PMLE CALCULATIONS START HERE

IF (MODEL.EQ.3) THEN

X(:,2)=1.0D0

ELSEIF (MODEL.EQ.0) THEN

X(:,2)=MU

ENDIF

WGT=0.0D0

LOGLIK1=0.0D0

LOGLIK2=0.0D0

MUSUM1=0.0D0

MUSUM2=0.0D0

XSUM=SUM(X(:,3))/N

Y2=INT(X(:,3))

IF (MODEL.EQ.3) THEN

BETAF(1)=DLOG((XSUM)/((1.0D0-XSUM+Small))+Small)

ELSEIF (MODEL.EQ.0) THEN

BETAF(1)=DLOG(XSUM+Small)

ENDIF

BETAF(2)=0.0D0

LINEAR=MATMUL(XMAT,BETAF)
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DO 55 I=1,NINT

IF (MODEL.EQ.3) THEN

MUHAT(I)=DEXP(LINEAR(I))/(1+DEXP(LINEAR(I)))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF

ELSEIF (MODEL.EQ.0) THEN

MUHAT(I)=DEXP(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I))

IF (Y2(I).GT.169) THEN

Y2(I)=169

ENDIF

FACT=DFAC(Y2(I))

LOGLIK1=LOGLIK1-MUHAT(I)+X(I,3)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

ELSEIF (MODEL.EQ.4) THEN

MUHAT(I)=DNORDF(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

ENDIF

55 CONTINUE

LOGLIK=LOGLIK1+LOGLIK2

IPRINT=0

TEMP3=0
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H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL DLFTSF (PINT,FISH , LDA, FACU, LDA, IPVT)

! Compute the determinant

CALL DLFDSF (PINT, FACU, LDA, IPVT, DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)

ITER=0

LOGLIKOLD=0.0D0

ITER=0

DO WHILE (ITER.LT.25)

ITER=ITER+1

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL DLINRG(PINT,FISH,LDA,F,LDAINV)

H3=MATMUL(TRANSPOSE(H2),F)

HAT=MATMUL(H3,H2)

DO 66 O=1,NINT

IF (MODEL.EQ.3) THEN

X2(O,3)=X(O,3)-MUHAT(O)+HAT(O,O)*

(5.0D-1-MUHAT(O))

ELSEIF (MODEL.EQ.0) THEN

X2(O,3)=X(O,3)-MUHAT(O)+HAT(O,O)/2.0D0

ENDIF

66 CONTINUE

USTAR=MATMUL(TRANSPOSE(XMAT),X2(:,3))

DELTAF=MATMUL(F,USTAR)

MX=DMAX1(DABS(DELTAF(1)),DABS(DELTAF(2)))/10
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IF (MX.GT.1.0D0) THEN

DELTAF=DELTAF/MX

ENDIF

BETAF=BETAF+DELTAF

LINEAR=MATMUL(XMAT,BETAF)

LOGLIKOLD=LOGLIK

! DO HALF-STEPS

DONE=0

ITER2=0

DO WHILE (DONE.EQ.0)

ITER2=ITER2+1

IF (MODEL.EQ.3) THEN

DO 65 I=1,NINT

MUHAT(I)=1.0D0/(1.0D0+DEXP(-LINEAR(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF

65 CONTINUE

ELSEIF (MODEL.EQ.0) THEN

!FACT=DFAC(Y2(I))

DO 67 I=1,NINT

MUHAT(I)=DEXP(LINEAR(I))

LOGLIK1=LOGLIK1-MUHAT(I)+X(I,3)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

111



67 CONTINUE

ENDIF

LOGLIK=LOGLIK1+LOGLIK2

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,XMAT)

CALL DLFTSF (PINT,FISH , LDA, FACU, LDA, IPVT)

! Compute the determinant

CALL DLFDSF (PINT, FACU, LDA, IPVT, DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)

IF ((LOGLIK.GT.LOGLIKOLD).OR.(ITER2.EQ.5)) THEN

DONE=1

!ITER=30

ELSE

BETAF=BETAF-DELTAF*2.0D0**(-I)

ENDIF

ENDDO

IF (SUM(DABS(DELTAF)).LT.1.0D-4) THEN

ITER=250

ENDIF

ENDDO

LINEAR=MATMUL(XMAT,BETAF)

BIAS=BETAF-BETAP

!ENDDO

! RETRIVE VERTICES FROM RECTANGULAR RESTRICTIONS ON X

VER(1,:)=1.0D0

L=1

DO 11 I=2,PINT
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STEP=2**(PINT-I)

DO 12 J=1,L,2*STEP

VER(I,J:STEP+J-1)=RANGEX(1)

VER(I,STEP+J:2*STEP+J-1)=RANGEX(2)

12 CONTINUE

L=L+STEP

! CALCULATE Q2 FROM P.867-868 OF CS ! FIRST CALCULATE

DIAGONALIZED VERTICES

CALL DEVCSF (PINT, FISH, LDA, D, UMAT, LDEVEC)

DO 16 K=1,PINT

DO 17 L=1,PINT

IF (K.EQ.L) THEN

D2(K,L)=D(K)**5.0D-1

ELSE

D2(K,L)=0.0D0

ENDIF

17 CONTINUE

16 CONTINUE

CALL DLINRG(PINT,D2,LDA,D3,LDAINV)

VTEMP=MATMUL(D3,TRANSPOSE(UMAT))

DVER=MATMUL(VTEMP,VER)

IF (PINT.EQ.2) THEN

ZMAX(2)=DVER(2,2)

ZMIN(1)=DVER(2,1)

IF ((ZMAX(2).GT.0.0D0).AND.(ZMIN(1).LT.0.0D0))

THEN

ZMIN(1)=0.0D0
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ELSE

ZMIN(1)=DMIN1(DABS(DVER(1,1)),

DABS(DVER(1,2)),DABS(DVER(2,1)),

DABS(DVER(2,2)))

ENDIF

ZMAX(2)=DMAX1(DABS(DVER(1,1)),

DABS(DVER(1,2)),DABS(DVER(2,1)),

DABS(DVER(2,2)))

ELSE

DO 13 K=1,(2**(PINT-1)-1)

Z(I-1)=DVER(I-1,K)

Z(I)=DVER(I,K)

ZMAX(K)=(DMAX1(Z(I-1),Z(I)))

TEMP=(DMIN1(Z(I-1),Z(I)))

IF ((TEMP.LT.0.0D0).AND.

(ZMAX(K).GT.0.0D0)) THEN

ZMIN(K)=0.0D0

ELSE

ZMIN(K)=DABS(TEMP)

ENDIF

ZMAX(K)=DMAX1(DABS(ZMAX(K)),

DABS(Z(I)))

13 CONTINUE

ENDIF

11 CONTINUE

RT=1

Q2=0.0D0
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DO WHILE (RT.LT.(2**(PINT-1)))

Q2TEMP=SUM(ZMIN(1:RT)**2.0D0)/

SUM(ZMAX(RT+1:2**(PINT-1))**2.0D0)

IF (Q2TEMP.EQ.0.0D0) THEN

RT=RT+1

Q2=Q2TEMP

RT=2**(PINT-1)

ENDIF

ENDDO

B2=(1.0D0+Q2)**(-1.0D0)

A2=1-B2

! STARTING VALUES FOR THE SECANT METHOD

C0=1.96D0**2.0D0

C1=C10

! DEFINE UPPER AND LOWER LIMITS FOR ERS INTEGRAL

LOW(1)=C0

LOW(2)=C1

! BE CAREFUL WHEN B2=0

IF (B2.GT.1.0D-6) THEN

UP(1)=(C0)/(B2)

UP(2)=(C1)/(B2)

ELSE

UP(1)=9.99D9

UP(2)=9.99D9

END IF

C=DSQRT(C0)

ERRABS=1.0d-6
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ERREL=1.0d-6

IRULE=2

! Call 1st ERS integral

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(1),1,ERRABS,ERREL,

ERSRESULT1,ERREST)

ELSE IF (B2.EQ.1.0D0) THEN

ERSRESULT1=0.0D0

ELSE

CALL DQDAG(ERS,LOW(1),UP(1),ERRABS,ERREL,

IRULE,ERSRESULT1,ERREST)

END IF

! Call 2nd ERS integral

C=DSQRT(C1)

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(2),1,ERRABS,ERREL,

ERSRESULT2,ERREST)

ELSE IF (B2.EQ.1.0D0) THEN

ERSRESULT2=0.0D0

ELSE

CALL DQDAG(ERS,LOW(2),UP(2),ERRABS,ERREL,

IRULE,ERSRESULT2,ERREST)

END IF

! SET LIMITS FOR CHIP INTEGRAL

LOW(1)=0.0D0

LOW(2)=0.0D0

UP(1)=C0
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UP(2)=C1

! Call the 1st chi square (p) integral

CALL DQDAG(CHIP,LOW(1),UP(1),ERRABS,ERREL,

IRULE,CHIPRESULT1,ERREST)

! Call the 2nd chi square (p) integral

CALL DQDAG(CHIP,LOW(2),UP(2),ERRABS,ERREL,

IRULE,CHIPRESULT2,ERREST)

! COMPUTE FIRST TWO VALUES OF THE FUNCTION F - SHOULD HAVE 0.95

BETWEEN THESE

FX=ERSRESULT1+CHIPRESULT1

FX1=ERSRESULT2+CHIPRESULT2

! K COUNTS HOW MANY ITERATIONS

K=0

AbsErr=1.0d0

! BEGIN LOOP TO OPTIMIZE F FOR C2 UNTIL ABSERR < EPS

SECANTLOOP: DO WHILE ((K.LT.Max).AND.

(AbsErr.GT.Epsilon))

! CALCULATES NEW ITERATION OF C

Df=(FX1-FX)/(C1-C0)

IF (Df.EQ.0) THEN

WRITE (8,*) Df

ELSE

! CALCULATES NEW ITERATION OF C

Dp=(FX1-9.5D-1)/Df

C2=(C1-Dp)**1.0D0

ENDIF

! CALCULATE NEW FX FOR C2
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LOW(1)=C2

IF (B2.NE.0.0D0) THEN

UP(1)=(C2)/(B2)

ENDIF

ERRABS=1.0d-6

ERREL=1.0d-6

IRULE=2

! Call ERS integral

C=DSQRT(C2)

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(1),1,ERRABS,

ERREL,ERSTEMP,ERREST)

ELSEIF (B2.EQ.1.0D0) THEN

ERSTEMP=0.0D0

ELSE

CALL DQDAG(ERS,LOW(1),UP(1),ERRABS,

ERREL,IRULE,ERSTEMP,ERREST)

ENDIF

LOW(1)=0.0D0

UP(1)=C2

! Call the chi square (p) integral

CALL DQDAG(CHIP,LOW(1),UP(1),ERRABS,

ERREL,IRULE,CHIPTEMP,ERREST)

! CALCULATES THE NEW F VALUE (SOMEWHERE BETWEEN FX AND FX1)

TEMP=ERSTEMP+CHIPTEMP

! CALCULATE THE ERRORS

AbsErr=DABS(TEMP-9.5D-1)
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RelErr=DABS(Dp)/(DABS(C2)+Small)

! RECORDS SMALL RELERR

IF (RelErr.GT.Delta) THEN

WRITE(10,*) K,RelErr

ENDIF

! IF TEMP < 0.95 THEN OVERESTIMATED C2

IF (TEMP.LT.9.5D-1) THEN

C0=C2

FX=TEMP

ELSE

! IF TEMP >= 0.95 THEN C2 UNDERESTIMATED

C1=C2

FX1=TEMP

ENDIF

K=K+1

ENDDO SECANTLOOP

CONF=0

CONF2=0

DO 60 I=1,NINT

LINEARP=DDOT(PINT,XMAT(I,:),1,BETAP,1)

TEMP2=MATMUL(XMAT(I,:),F)

COVLIN=DDOT(PINT,TEMP2,1,XMAT(I,:),1)

+F(2,2)*XMAT(I,2)**2.0D0)

! RECORD WHEN BOUNDS ARE ESTIMATED CORRECTLY

LEFT=(LINEAR(I)-LINEARP)**2.0D0

RIGHT=C2*((COVLIN))

IF (LEFT.LE.RIGHT) THEN
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CONF=CONF+1

ENDIF

LEFT=(LINEAR(I)-LINEARP)**2.0D0

RIGHT=C10*((COVLIN))

IF (LEFT.LE.RIGHT) THEN

CONF2=CONF2+1

ENDIF

60 CONTINUE

ECL(A)=DBLE(CONF)/N

ECL2(A)=DBLE(CONF2)/N

MEANECL=SUM(ECL)/REPS

MEANECL2=SUM(ECL2)/REPS

MEANBIAS=(MEANBIAS+BIAS)/REPS

RESULTS(1)=MODEL

RESULTS(2)=H

RESULTS(3)=NINT

RESULTS(4)=G

RESULTS(5)=E

RESULTS(6)=MEANECL

RESULTS(7)=MEANECL2

7 CONTINUE

WRITE(11,*) MEANECL,MEANECL2,MEANBIAS

WRITE(9,*) RESULTS

6 CONTINUE

5 CONTINUE

DEALLOCATE (Y2,CASE,COEF,COV,X)
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DEALLOCATE (XMAT,LINEAR,U,MU,MUHAT,PTEMP)

DEALLOCATE (X2,H2,H3,HAT,WGT)

4 CONTINUE

3 CONTINUE

2 CONTINUE

STOP

END

! Now start defining the functions ! used in the above main

program ! Define the ERS function

DOUBLE PRECISION FUNCTION ERS(T)

DOUBLE PRECISION PART1, PART2, PART3, DFD, DFN

COMMON S,R,P,A2,B2,C

DOUBLE PRECISION T,S,R,P,A2,B2,C, TEMP, TEMP2, TEMP3, TEMP4,TEMP5,TEMP6

DOUBLE PRECISION DGAMMA, DFDF

!

DFD=S

DFN=R

TEMP4=C*(T-C**2.0D0)**5.0D-1

TEMP5=DSQRT(A2)*DSQRT(B2)*T

TEMP6=A2*T-C**2.0D0

PART1=DFDF((S/R)*((TEMP4-TEMP5)/TEMP6)**2.d0,DFN,DFD)

PART2=T**((P/2.d0)-1.d0)

TEMP=P/2.0D0

TEMP2=2.0D0**TEMP

TEMP3=DGAMMA(TEMP)*TEMP2
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PART3=DEXP(-T/2.d0)/TEMP3

ERS=PART1*(PART2*PART3)

RETURN

END

! Define the chi-square function

DOUBLE PRECISION FUNCTION CHIP(T)

DOUBLE PRECISION PART1, PART2, PART3

COMMON S,R,P,A2,B2,C

DOUBLE PRECISION T,S,R,P

DOUBLE PRECISION DGAMMA

PART1=T**((P/2.d0)-1.d0)

PART2=DEXP(-T/2.d0)

PART3=DGAMMA(P/2.d0)*2.d0**(P/2.d0)

CHIP=(PART1*PART2)/(PART3)

RETURN

END
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APPENDIX F

Fortran Code: SCR PMLE for the Mean Response

USE MSIMSL

INTEGER N,P,M,INCX,LDA,LDR,LDAINV,VER,REPS

DOUBLE PRECISION Small

PARAMETER(N=100,P=2,M=41,REPS=5000,LDA=P,LDR=P,LDFAC=P,

LDAINV=P,Small=1.0D-6)

REAL MEANTEMP

DOUBLE PRECISION B2(N),B3(N),B4(N),B(P,P),A(P,P)

DOUBLE PRECISION AINV(P,P),LO(N),HI(N)

DOUBLE PRECISION SU(N,N),S(P,N),UI(P,N),U(N,N),K1,UITEMP(P)

DOUBLE PRECISION CRIT,C(9),KAP(5,N),KAQ(5,N),MAX_P2(N)

DOUBLE PRECISION BT(P,P),TEMP2(P),TEMP3,TEMP4,BTINV(P,P)

DOUBLE PRECISION P2,Q2,F,P3,N2,XMAT(N,P),INFO(P,P)

DOUBLE PRECISION UCRIT(N),K0,CRITLO,CRITHI,FX,FX1,ALPHA,MAX,ABSERR

DOUBLE PRECISION DF,DP,TEMPFX,LINEAR(N),LINEARP(N),VAR(N),MU(N),K3,TOL

DOUBLE PRECISION XLO,XHI,YLO,YHI,PI,X1,X2,Y1,Y2,XT,YT,CRITHI0

DOUBLE PRECISION FIRST(P),SECOND(P),DIF(P),NORMDIF,T(P,M),INTER,RESULTS(6)

DOUBLE PRECISION SUM1,SUM2,MEAN1,MEAN2,NORMC,UNIF(N),RANGEX(2),

ECL(REPS),MEANECL

EXTERNAL P2,Q2,F

INTEGER I,J,K,V,IRANK,CONF,PTEMP(N)

LOGICAL PIVOT
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DOUBLE PRECISION H2(P,N),H3(N,P),HAT(N,N)

INTEGER ITER,ITER2,YF(N)

DOUBLE PRECISION X(N,P),XF(N,P),WGT(N,N)

DOUBLE PRECISION BETAP(P),MUL(2),MUHAT(N),UTEMP,MUTEMP,FACT

DOUBLE PRECISION BETAF(P),LOGLIK1,LOGLIK2,MUSUM1,MUSUM2,XSUM

DOUBLE PRECISION FISH(P,P),USTAR(P),DELTAF(P),FCOV(P,P)

DOUBLE PRECISION MX,LOGLIK,LOGLIKOLD,LEFT,RIGHT

INTEGER COUNT,NCLUS

COMMON KAP,KAQ,P3,N2,C,C2

OPEN (UNIT=9, FILE=’C:/Results/RESULTS_SCR100_bothmean.txt’)

OPEN (UNIT=10, FILE=’C:/Results/ECL100_bothmean.txt’)

MAX=500

EPSILON=1.0D-6

ALPHA=5.0D-2

PI=3.1415926535897932D0

P3=DBLE(P)

N2=DBLE(N)

K0=0.0D0

RINT=INT(R)

CALL RNSET(34271)

COUNT=0

! THIS IS SCHEFFE SOLUTION

CRITHI0=(P3*DFIN(9.5D-1,P3,1.0D6))

! LOOP FOR MODEL TYPE 1=LOGIT, 2=POISSON, 3=PROBIT

DO 2 Z=1,2
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IF (Z.EQ.1) THEN

MODEL=3

ELSEIF (Z.EQ.2) THEN

MODEL=0

ELSEIF (Z.EQ.3) THEN

MODEL=4

ENDIF

! LOOP FOR BETA PARAMETERS 1=(-1,.5), 2=(0,1), 3=(2,4),

4=(-.25,-.5)

DO 3 H=1,4

IF (H.EQ.1) THEN

BETAP(1)=-1.0D0

BETAP(2)=5.0D-1

ELSEIF (H.EQ.2) THEN

BETAP(1)=0.0D0

BETAP(2)=1.0D0

ELSEIF (H.EQ.3) THEN

BETAP(1)=2.0D0

BETAP(2)=4.0D0

ELSEIF (H.EQ.4) THEN

BETAP(1)=-2.5D-1

BETAP(2)=-5.0D-1

ENDIF

! LOOP FOR RESTRICTED DOMAIN TYPES 1=UNRESTRICTED, 2=WIDE,

3=NARROW

DO 5 G=2,3

IF (G.EQ.1) THEN

125



MUL(1)=1.0D-8

MUL(2)=1.0D0-1.0D-8

ELSEIF (G.EQ.2) THEN

MUL(1)=1.0D-1

MUL(2)=9.0D-1

ELSEIF (G.EQ.3) THEN

MUL(1)=2.5D-1

MUL(2)=7.5D-1

ENDIF

IF (MODEL.EQ.3) THEN

RANGEX=(DLOG(MUL/(1-MUL))

-BETAP(1))/BETAP(2)

ELSEIF (MODEL.EQ.0) THEN

RANGEX(2)=0.0D0

RANGEX(1)=1.0D0

ELSEIF (MODEL.EQ.4) THEN

K=1

DO WHILE (K.LE.2)

RANGEX(K)=(DNORDF(MUL(K))

-BETAP(1))/BETAP(2)

K=K+1

ENDDO

ENDIF

! LOOP FOR DOMAIN TYPES 1=EQUALLY SPACED, 2=ONE CLUSTER

DO 6 D=1,1

ECL=0.0D0
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DO 7 R=1,4

VER=R

! COUNTS EACH COMBINATION OF SIMULATION SPECS (THERE ARE

3*4*2*3=72 COMBINATIONS)

DO 8 L=1,REPS

DONE=0

CONF=0

DO WHILE (DONE.EQ.0)

CALL RNSET(0)

IF (D.EQ.1) THEN

! GENERATE EQUALLY SPACED X’S

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

K=1

EQSPACE:DO WHILE (K.LT.N)

INTER=(RANGEX(2)-RANGEX(1))/(N-1)

X(K,1)=RANGEX(1)+INTER*(K-1)+1.0D-8

X(K+1,1)=RANGEX(1)+INTER*K+1.0D-8

K=K+1

ENDDO EQSPACE

ELSEIF (MODEL.EQ.0) THEN

IF (G.EQ.2) THEN

CALL DRNUN(N,X(:,1))

ELSEIF (G.EQ.3) THEN

CALL DRNUN(N,UNIF)

X(:,1)=5.0D-1*UNIF

ENDIF

ENDIF
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ELSEIF (D.EQ.2) THEN

NCLUS=N*2.0D-1

! GENERATE N-NUM CLUSTER EQUALLY SPACED PTS

CALL DRNUN(N-NCLUS,UNIF(1:N-NCLUS))

MUHAT(1:N-NCLUS)=MUL(1)+UNIF(1:N-NCLUS)

*(MUL(2)-MUL(1))

! GENEATE A POINT IN THE RANGE TO CLUSTER PTS ABOUT

UTEMP=DRNUNF()

MUTEMP=MUL(1)+UTEMP*(MUL(2)-MUL(1))

CALL DRNUN(NCLUS,UNIF(1:NCLUS))

! CLUSTER ABOUT POINT WITH WIDTH=0.2

MUHAT(N-NCLUS+1:N)=(MUTEMP-1.0D-1)+

UNIF(1:NCLUS)*

2.0D-1

! FIX IF CLUSTERED POINTS FALL OUTSIDE RANGE OF X

DO 9 J=1,NCLUS

IF ((MUHAT(N-NCLUS+J).LT.MUL(1))) THEN

MUHAT(N-NCLUS+J)=MUL(1)

ELSEIF (MUHAT(N-NCLUS+J).GT.MUL(2)) THEN

MUHAT(N-NCLUS+J)=MUL(2)

ENDIF

9 CONTINUE

IF (MODEL.EQ.3) THEN

X(:,1)=(DLOG(MUHAT/(1.0D0-MUHAT)+Small)-

BETAP(1))/BETAP(2)

ELSEIF (MODEL.EQ.0) THEN

X(:,1)=(DLOG(MUHAT+Small)-BETAP(1))/BETAP(2)
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ELSEIF (MODEL.EQ.4) THEN

K=1

DO WHILE (K.LE.N)

X(K,1)=(DNORDF(MUL(K))-BETAP(1))/BETAP(2)

K=K+1

ENDDO

ENDIF

ENDIF

XMAT(:,1)=1.0D0

XMAT(:,2)=X(:,1)

LINEARP=MATMUL(XMAT,BETAP)

! SIMULATE Y NOW

! SIMULATE UNIFORM(0,1) RV’S

CALL DRNUN(N,UNIF)

! SIMULATE RESPONSE Y

DO 10 I=1,N

IF (MODEL.EQ.3) THEN

MU(I)=DEXP(LINEARP(I))/

(1+DEXP(LINEARP(I)))

ELSEIF (MODEL.EQ.0) THEN

MU(I)=DEXP(LINEARP(I))

ELSEIF (MODEL.EQ.4) THEN

MU(K)=DNORDF(LINEARP(I))

ENDIF

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

IF (UNIF(I).LT.MU(I)) THEN

X(I,3)=1.0D0
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ELSE

X(I,3)=0.0D0

ENDIF

ELSE

RANGEX(1)=DMIN1(X(I,1),RANGEX(1))

RANGEX(2)=DMAX1(X(I,1),RANGEX(2))

! IF (UNIF(I).LT.MU(I)) THEN

MEANTEMP=REAL(MU(I))

CALL RNPOI(N,MEANTEMP,PTEMP)

X(I,3)=DBLE(PTEMP(I))

ENDIF

10 CONTINUE

!PMLE CALCULATIONS START HERE

IF (MODEL.EQ.3) THEN

X(:,2)=1.0D0

ELSEIF (MODEL.EQ.0) THEN

X(:,2)=MU

ENDIF

WGT=0.0D0

LOGLIK1=0.0D0

LOGLIK2=0.0D0

MUSUM1=0.0D0

MUSUM2=0.0D0

XSUM=SUM(X(:,3))/N

YF=INT(X(:,3))

IF (MODEL.EQ.3) THEN
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BETAF(1)=DLOG((XSUM)/

((1.0D0-XSUM+Small))+Small)

ELSEIF (MODEL.EQ.0) THEN

BETAF(1)=DLOG(XSUM+Small)

ENDIF

BETAF(2)=0.0D0

LINEAR=MATMUL(XMAT,BETAF)

DO 55 I=1,N

IF (MODEL.EQ.3) THEN

MUHAT(I)=DEXP(LINEAR(I))/

(1+DEXP(LINEAR(I)))

IF (MUHAT(I).LT.1.0D-5) THEN

MUHAT(I)=1.0D-5

ENDIF

WGT(I,I)=DSQRT(MUHAT(I)*

(1.0D0-MUHAT(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG

(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+

(DLOG(1-MUHAT(I)+Small))

ENDIF

ELSEIF (MODEL.EQ.0) THEN

MUHAT(I)=DEXP(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I))

IF (YF(I).GT.169) THEN
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YF(I)=169

ENDIF

FACT=DFAC(YF(I))

LOGLIK1=LOGLIK1-MUHAT(I)+X(I,3)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

ELSEIF (MODEL.EQ.4) THEN

MUHAT(I)=DNORDF(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I)*

(1.0D0-MUHAT(I)))

ENDIF

55 CONTINUE

LOGLIK=LOGLIK1+LOGLIK2

IPRINT=0

TEMP3=0

ITER=0

LOGLIKOLD=0.0D0

ITER=0

DO WHILE (ITER.LT.25)

ITER=ITER+1

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL DLINRG(P,FISH,LDA,FCOV,LDAINV)

H3=MATMUL(TRANSPOSE(2),FCOV)

HAT=MATMUL(H3,H2)

DO 66 O=1,N

IF (MODEL.EQ.3) THEN
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XF(O,3)=X(O,3)-MUHAT(O)+HAT(O,O)*(5.0D-1-MUHAT(O))

ELSEIF (MODEL.EQ.0) THEN

XF(O,3)=X(O,3)-MUHAT(O)+HAT(O,O)/2.0D0

ENDIF

66 CONTINUE

USTAR=MATMUL(TRANSPOSE(XMAT),XF(:,3))

DELTAF=MATMUL(FCOV,USTAR)

MX=DMAX1(DABS(DELTAF(1)),DABS(DELTAF(2)))/10

IF (MX.GT.1.0D0) THEN

DELTAF=DELTAF/MX

ENDIF

BETAF=BETAF+DELTAF

LINEAR=MATMUL(XMAT,BETAF)

LOGLIKOLD=LOGLIK

! DO HALF-STEPS

DONE=0

ITER2=0

DO WHILE (DONE.EQ.0)

ITER2=ITER2+1

IF (MODEL.EQ.3) THEN

DO 65 I=1,N

MUHAT(I)=1.0D0/(1.0D0+

DEXP(-LINEAR(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+

(DLOG(MUHAT(I)+Small))

ELSE
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LOGLIK2=LOGLIK2+

(DLOG(1-MUHAT(I)+Small))

ENDIF

65 CONTINUE

ELSEIF (MODEL.EQ.0) THEN

!FACT=DFAC(Y2(I))

DO 67 I=1,N

MUHAT(I)=DEXP(LINEAR(I))

LOGLIK1=LOGLIK1-MUHAT(I)+

X(I,3)*DLOG(MUHAT(I)+Small)-

DLOG(FACT)

LOGLIK2=0.0D0

67 CONTINUE

ENDIF

LOGLIK=LOGLIK1+LOGLIK2

IF ((LOGLIK.GT.LOGLIKOLD).OR.

(ITER2.EQ.5)) THEN

DONE=1

!ITER=30

ELSE

BETAF=BETAF-DELTAF*2.0D0**(-I)

ENDIF

ENDDO

IF (SUM(DABS(DELTAF)).LT.1.0D-4) THEN

ITER=250

ENDIF

ENDDO
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LINEAR=MATMUL(XMAT,BETAF)

CALL DLINRG(P,FCOV,LDA,INFO,LDAINV)

! COMPUTE SCALED INFO P.433

A=INFO/N2

! COMPUTE A INVERSE

CALL DLINRG(P,A,LDA,AINV,LDAINV)

IF (IERCD().EQ.0) THEN

DONE=1

ENDIF

ENDIF

ENDDO

TOL=100*DMACH(4)

PIVOT=.FALSE.

! COMPUTE CHOLESKY DECOMP OF INFORMATION SCALED ! THIS SOLUTION

GIVES B’B=A

CALL DCHFAC(P,A,LDA,TOL,IRANK,B,LDR)

BT=TRANSPOSE(B)

! COMPUTES BT_INV

CALL DLINRG(P,BT,LDA,BTINV,LDAINV)

! START CALCULATION OF S(X) FOR ALL V=1,N ! NOTE THAT THERE IS A

UNIQUE S(X) FOR EACH UNIQUE X ! CALCULATE S(X) FROM P.435 CALL IT

S ! COMPUTE UI FROM P.437

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

B2=N2*(DEXP(LINEAR))/((1.0D0+
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DEXP(LINEAR))**2.0D0)

B3=N2*(DEXP(LINEAR)*(1.0D0-DEXP(LINEAR)))/

(1.0D0+DEXP(LINEAR))**3.0D0

B4=N2*((DEXP(LINEAR)-4.0D0*

DEXP(2.0D0*LINEAR)+DEXP(3.0D0*LINEAR)))/

((1.0D0+DEXP(LINEAR))**4.0D0)

ELSEIF (MODEL.EQ.0) THEN

B2=DEXP(LINEAR)

B3=B2

B4=B2

ENDIF

DO 13 V=1,N

! MUST DIVIDE UI BY N GIVEN HOW DATA IS ENTERED FOR CTGLM

SUBROUTINE!!!!!!

TEMP2=MATMUL(BTINV,XMAT(V,:))

CALL DVCAL (P,1/N2,TEMP2,1,UI(:,V),1)

TEMP2=MATMUL(AINV,XMAT(V,:))

TEMP3=DDOT(P,XMAT(V,:), 1, TEMP2, 1)

TEMP4=1/DSQRT(TEMP3)

! THIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR I

CALL DVCAL (P, TEMP4, UI(:,V), 1, S(:,V), 1)

13 CONTINUE

DO 30 I=1,N

DO 31 J=1,N

U(I,J)=DDOT(P,UI(:,I),1,UI(:,J),1)

! DOT PRODUCT OF S(X) AND UI
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SU(I,J)=DDOT(P,S(:,I),1,UI(:,J),1)

31 CONTINUE

30 CONTINUE

DO 14 V=1,N

! NOTE THAT VAR(X’BLINEAR)=X*VAR(BETA)*X’ ! FORMULA FROM AGRESTI

P. 172

TEMP2=MATMUL(XMAT(V,:),FCOV)

VAR(V)=DDOT(P,TEMP2,1,XMAT(V,:),1)

! SET K1 AND K3 TO 0 (SO IT DOESN’T BUILD ON PAST VALUES)

K1=0.0D0

K3=0.0D0

! INITIALIZE C VECTOR

C=0.0D0

DO 20 I=1,N

! C CALCS P.437

C(2)=C(2)+(B4(I)*(SU(V,I)**2.0D0)

*U(I,I))

C(6)=C(6)+(B4(I)*(SU(V,I)**4.0D0))

C(9)=C(9)+((B2(I)**2.0D0)*SU(V,I)**4.0D0)

! SEE P 436

K1=K1+(B3(I)*((SU(V,I)**3.0D0)-

SU(V,I)*U(I,I)))

K3=K3+(B3(I)*(SU(V,I)**3.0D0))

DO 32 J=1,N

C(1)=C(1)+(B3(I)*B3(J)*SU(V,I)*

SU(V,J)*U(I,J)**2.0D0)
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C(3)=C(3)+(B3(I)*B3(J)*(SU(V,I)

**2.0D0)*(SU(V,J)**2.0D0)*U(I,J))

C(4)=C(4)+(B3(I)*B3(J)*U(I,J)*

(SU(V,I)**2.0D0)*U(I,J)*U(J,J))

C(7)=C(7)+(B3(I)*B3(J)*SU(V,I)*

(SU(V,J)**3.0D0)*U(I,I))

C(8)=C(8)+(B3(I)*B3(J)*(SU(V,I)

**3.0D0)*(SU(V,J)**3.0D0))

32 CONTINUE

20 CONTINUE

C(1)=C(1)/(N2**3.0D0)

C(2)=C(2)/(N2**2.0D0)

C(3)=C(3)/(N2**3.0D0)

C(4)=C(4)/(N2**3.0D0)

C(5)=C(1)

C(6)=C(6)/(N2**2.0D0)

C(7)=C(7)/(N2**3.0D0)

C(8)=C(8)/(N2**3.0D0)

C(9)=C(9)/(N2**2.0D0)

K1=K1/(2.0D0*(N2**1.5D0))

K3=K3/(N2**1.5D0)

! CONSTANTS USED IN P(X,Z) COMPUTATION P.437

KAP(1,V)=K1

TEMP3=C(1)-C(2)+C(4)-C(7)

KAP(2,V)=1.0D0+5.0D-1*TEMP3-3.0D0*C(3)

+C(6)+1.75D0*C(8)

KAP(3,V)=K3
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KAP(4,V)=-9.0D0*C(3)+3.0D0*C(6)+6.0D0*

C(8)+3.0D0*C(9)

! CONSTANTS USED IN Q(X,U) COMPUTATIONS P.438

KAQ(2,V)=C(3)-1.5D0*C(8)-C(5)-C(4)+

5.0D-1*C(7)+C(6)-C(2)

KAQ(3,V)=KAP(3,V)

KAQ(4,V)=-3.0D0*C(3)-6.0D0*C(4)-6.0D0*

C(5)+3.0D0*C(6)+3.0D0*C(7)-3.0D0*C(8)+3.0D0*C(9)

14 CONTINUE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

THIS SECTION NOW STARTS NAIMAN CRITICAL VALUE CALCS ! CREATE

MATRIX T THAT CONTAINS DOMAIN PARTITIONED LIKE ON P.441

T(1,:)=1.0D0

DO 50 I=2,P

K=1

GETT:DO WHILE ((K.LE.M).AND.(I.GT.1))

INTER=(RANGEX(2)-RANGEX(1))/(M-1)

T(I,K)=RANGEX(1)+INTER*(K-1)

T(I,K+1)=RANGEX(1)+INTER*K

K=K+1

ENDDO GETT

50 CONTINUE

K0=0.0D0

DO 40 K=1,(M-1)

! APPROXIMATE THE MANIFOLD VOLUME (K0) LIKE ON P.441 ! COMPUTE

S(T(K))

UITEMP=MATMUL(BTINV,T(:,K))
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! CALL DLINRG(P,A,LDA,AINV,LDAINV)

TEMP2=MATMUL(AINV,T(:,K))

TEMP3=DDOT(P,T(:,K), 1, TEMP2, 1)

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (P, TEMP4, UITEMP, 1, SECOND, 1)

! COMPUTE S(T(K+1))

UITEMP=MATMUL(BTINV,T(:,K+1))

! CALL DLINRG(P,A,LDA,AINV,LDAINV)

TEMP2=MATMUL(AINV,T(:,K+1))

TEMP3=DDOT(P,T(:,K+1), 1, TEMP2, 1)

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (P, TEMP4, UITEMP, 1, FIRST, 1)

! COMPUTE DIFFERENCE OF S(T(K))-S(T(K+1))

DIF=FIRST-SECOND

INCX=1

! GET THE NORM OF THE DIFF

NORMDIF=DNRM2(P,DIF,INCX)

! ADD TO PREVIOUS NORMS TO APPROXIMATE K0

K0=K0+NORMDIF

40 CONTINUE

! CONTINUE CALC CRIT HERE ! GET S(A) TO SEE IF S(A)=S(B) FOR

INTERVAL [A,B] ! T(:,1) CONTAINS POINT A

CRITHI=CRITHI0

CRITLO=1.96D0**2.0D0

UITEMP=MATMUL(BTINV,T(:,1))

TEMP2=MATMUL(AINV,T(:,1))
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TEMP3=DDOT(P,T(:,1), 1, TEMP2, 1)

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (P, TEMP4, UITEMP, 1, FIRST, 1)

! GET S(B) ! T(:,M) CONTAINS POINT B

UITEMP=MATMUL(BTINV,T(:,M))

TEMP2=MATMUL(AINV,T(:,M))

TEMP3=DDOT(P,T(:,M), 1, TEMP2, 1)

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (P, TEMP4, UITEMP, 1, SECOND, 1)

! COMPUTE DIFFERENCE OF S(A)-S(B) AND THEN TAKE NORM ! IF NORM=0

THEN S(A)=S(B)

DIF=FIRST-SECOND

INCX=1

NORMDIF=DNRM2(P,DIF,INCX)

IF (NORMDIF.EQ.0) THEN

E=0.0D0

ELSE

E=1.0D0

ENDIF

! STARTING VALUES FOR SECANT METHOD ! SEE P.438 FOR FORMULA FOR

FX

NORMC=1-DNORDF(CRITLO)

FX=K0/(PI)*DEXP(-(CRITLO**2.0D0)/2.0D0)+

2.0D0*E*NORMC-ALPHA

NORMC=1-DNORDF(CRITHI)

FX1=K0/(PI)*DEXP(-(CRITHI**2.0D0)/2.0D0)+
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2.0D0*E*NORMC-ALPHA

K=1

ABSERR=1.0D0

SECANT: DO WHILE ((K.LT.MAX).AND.

(ABSERR.GT.EPSILON))

DF=(FX1-FX)/(CRITHI-CRITLO+Small)

DP=(FX1)/(DF+Small)

CRIT=CRITHI-DP

NORMC=1-DNORDF(CRIT)

TEMPFX=K0/(PI)*DEXP(-(CRIT**2.0D0)/2.0D0)+

2.0D0*E*NORMC-ALPHA

ABSERR=DABS(TEMPFX)

IF (TEMPFX.LT.0) THEN

CRITHI=CRIT

FX1=TEMPFX

ELSE

CRITLO=CRIT

FX=TEMPFX

ENDIF

K=K+1

ENDDO SECANT

IF (CRIT.GT.CRITHI0) THEN

CRIT=CRITHI0

ENDIF

SUM1=0.0D0

SUM2=0.0D0

MEAN1=0.0D0
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MEAN2=0.0D0

DO 60 V=1,N

! CALCULATE CI FOR ETA=X’BETA THEN TRANSFORM TO GET CI ON MEAN

RESP ! CONSTRUCT CI’S HERE (RECALL 4 SCB CI’S)

IF (VER.EQ.1) THEN

! BASIC SCR (N IS NUMBER OF POINTS IN X TO MAKE PREDICTIONS

FOR-NEVER MIND FOR NOW!)

LO(V)=LINEAR(V)-DSQRT(CRIT)*DSQRT(VAR(V))

HI(V)=LINEAR(V)+DSQRT(CRIT)*DSQRT(VAR(V))

LEFT=(LINEAR(V)-LINEARP(V))**2.0D0

RIGHT=(CRIT**2.0D0)*VAR(V)

!IF ((LINEARP(V).GE.LO(V)).AND.(LINEARP(V).

LE.HI(V))) THEN

IF (LEFT.LE.RIGHT) THEN

CONF=CONF+1

ENDIF

! CENTERED SCR SEE P.637 OF SUN(2001)

ELSEIF (VER.EQ.2) THEN

LO(V)=LINEAR(V)-KAP(1,V)*DSQRT(VAR(V))-(

CRIT)*DSQRT(VAR(V))*DSQRT(KAP(2,V))

HI(V)=LINEAR(V)-KAP(1,V)*DSQRT(VAR(V))+

(CRIT)*DSQRT(VAR(V))*DSQRT(KAP(2,V))

SUM1=SUM1+KAP(1,V)

SUM2=SUM2+KAP(2,V)

IF ((LINEARP(V).GE.LO(V)).AND.(LINEARP(V)

.LE.HI(V))) THEN

CONF=CONF+1
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ENDIF

ELSEIF (VER.EQ.3) THEN

! CORRECTED 2 SCR

!U=SOLVE Q2 FOR U: |u|+q2=c

XLO=1.0D-2

XHI=2.0D0*CRIT

YLO=Q2(XLO)-CRIT

YHI=Q2(XHI)-CRIT

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=1.0D0

COUNT=1

SECANTLOOP: DO WHILE ((ABSERR.GT.EPSILON)

.AND.(COUNT.LT.25))

XT = X2 - ((X2-X1)*Y2)/(Y2-Y1+Small)

YT = Q2(XT) - CRIT

IF (YT*YLO>0) THEN

XLO = XT

YLO = YT

ELSE

XHI = XT

YHI = YT

ENDIF

X1=XLO

X2=XHI
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Y1=YLO

Y2=YHI

ABSERR=DABS(YT)

COUNT=COUNT+1

ENDDO SECANTLOOP

UCRIT(V)=Q2(XT)

LO(V)=LINEAR(V)-UCRIT(V)*DSQRT(VAR(V))

HI(V)=LINEAR(V)+UCRIT(V)*DSQRT(VAR(V))

SUM1=SUM1+UCRIT(V)

IF ((LINEARP(V).GE.LO(V)).AND.

(LINEARP(V).LE.HI(V))) THEN

CONF=CONF+1

ENDIF

ELSEIF (VER.EQ.4) THEN

! CORRECTED SCR ! GET MAX OF P2 BY SECANT METHOD

XLO=1.0D-2

XHI=2.0D0*CRIT

YLO=P2(XLO)

YHI=P2(XHI)

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=1.0D0

K=1

SECANTLOOP2: DO WHILE ((K.LT.MAX).AND.

(ABSERR.GT.EPSILON))
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XT = X2 - ((X2-X1)*Y2)/(Y2-Y1+Small)

YT = P2(XT)

IF (YT*YLO>0) THEN

XLO = XT

XLO = YT

ELSE

XHI = XT

YHI = YT

ENDIF

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=DABS(YT)

K=K+1

ENDDO SECANTLOOP2

MAX_P2(V) = DABS(P2(XT))

UCRIT(V)=CRIT-MAX_P2(V)

! NOW USE SECANT METHOD AGAIN TO FIND CRIT FOR EQ.41 P. 440

CRITLO=1.96D0

! THIS IS SCHEFFE SOLUTION

CRITHI=CRITHI0

NORMC=1-DNORDF(CRITLO-MAX_P2(V))

FX=K0/(2.0D0*PI)*DEXP(-((CRITLO-MAX_P2(V))

**2.0D0)/2.0D0)+E*NORMC-ALPHA

NORMC=1-DNORDF(CRITHI-MAX_P2(V))

FX1=K0/(2.0D0*PI)*DEXP(-((CRITHI-MAX_P2(V))
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**2.0D0)/2.0D0)+E*NORMC-ALPHA

K=1

ABSERR=1.0D0

SECANT2: DO WHILE ((K.LT.MAX).AND.

(ABSERR.GT.EPSILON))

DF=(FX1-FX)/(CRITHI-CRITLO+Small)

DP=(FX1)/(DF+Small)

!NOTE: THIS IS AUCRIT REALLY

CRIT=CRITHI-DP

NORMC=1-DNORDF(CRIT-MAX_P2(V))

TEMPFX=K0/(2.0D0*PI)*DEXP(-((CRIT-

MAX_P2(V))**2.0D0)/2.0D0)+E*NORMC-ALPHA

ABSERR=DABS(TEMPFX)

IF (TEMPFX.LT.0) THEN

CRITHI=CRIT

FX1=TEMPFX

ELSE

CRITLO=CRIT

FX=TEMPFX

ENDIF

K=K+1

ENDDO SECANT2

LO(V)=LINEAR(V)-UCRIT(V)*DSQRT(VAR(V))

HI(V)=LINEAR(V)+UCRIT(V)*DSQRT(VAR(V))

SUM2=SUM2+MAX_P2(V)

IF ((LINEARP(V).GE.LO(V)).AND.

(LINEARP(V).LE.HI(V))) THEN
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CONF=CONF+1

ENDIF

ENDIF

60 CONTINUE

ECL(L)=CONF/N2

8 CONTINUE

MEANECL=SUM(ECL)/DBLE(REPS)

RESULTS(1)=MODEL

RESULTS(2)=H

RESULTS(3)=G

RESULTS(4)=N

RESULTS(5)=MEANECL

RESULTS(6)=VER

WRITE(9,*) RESULTS

WRITE(10,*) MEANECL

7 CONTINUE

6 CONTINUE

5 CONTINUE

3 CONTINUE

2 CONTINUE

END
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DOUBLE PRECISION FUNCTION P2(U)

DOUBLE PRECISION U,KAP(5),KAQ(5),C(9),C2,N2,P3,

PART1,PART2,PART3

COMMON KAP,KAQ,P3,N2,C,C2

PART1=KAP(2)-1.0D0+KAP(1)**2.0D0

PART2=(KAP(4)+4.0D0*KAP(1)*KAP(3))*(U**2.0D0-3.0D0)

PART3=KAP(3)*(U**4.0D0-1.0D1*U**2.0D0+1.5D1)

P2=U*(3.6D1*PART1+3.0D0*PART2+PART3)/7.2D1

RETURN

END

DOUBLE PRECISION FUNCTION Q2(U)

DOUBLE PRECISION U,KAQ(5),KAP(5),P3,N2,C2,C(9),

PART1,PART2

COMMON KAP,KAQ,P3,N2,C,C2

PART1=U*U-3.0D0

PART2=(U*U-1.0D1)*U*U+1.5D1

Q2=-U*(3.6D1*KAQ(2) + 3.0D0*KAQ(4)*PART1 + KAP(3)

**2.0D0*PART2)/7.2D1

RETURN

END
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APPENDIX G

Fortran Code: Piegorsch-Casella PMLE for the Parameters

USE MSIMSL

INTEGER PINT,REPS,KINT,LDA,LDEVEC,LDAINV

DOUBLE PRECISION P,R

PARAMETER(PINT=5,NINT=300,REPS=5000, KINT=PINT-1,

LDA=PINT, LDEVEC=PINT,LDAINV=PINT)

DOUBLE PRECISION RANGEX(2),RX(2),VER(2**(PINT-1),PINT),

DVER(PINT,2**(PINT-1)),ZMAX(PINT),ZMIN(PINT)

DOUBLE PRECISION S,A2, B2 ,Q2,C, Dp,Z(2),ECL(REPS),

ECL2(REPS),N,MEANECL,MEANECL2,LEFT,RIGHT

DOUBLE PRECISION BETAP(PINT),XMAT(NINT,PINT),CMAT(KINT,PINT),

LINEAR(NINT),LINEARP(NINT),MU(NINT)

DOUBLE PRECISION VTEMP(PINT,PINT),LINEARCP(KINT),

LINEARC(KINT),UNIF(NINT)

DOUBLE PRECISION RESULTS(6),D(PINT),D2(PINT,PINT),D3(PINT,PINT),

F(PINT,PINT),UMAT(PINT,PINT)

REAL MEANTEMP,PS

INTEGER PTEMP(KINT),DONE,TEMPX(NINT)

INTEGER L,ISEED,NINT,CONF,CONF2

DOUBLE PRECISION ERS

DOUBLE PRECISION CHIP

COMMON S, R, P, A2, B2, C
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INTEGER IRULE,K,I,J,RINT

DOUBLE PRECISION LOW(2),UP(2),ERRABS,ERREL,TEMP,COVLIN,TEMP2(PINT)

DOUBLE PRECISION ERSRESULT1,ERSRESULT2,ERSTEMP,CHIPTEMP,FX,FX1,C0,C1,C2

DOUBLE PRECISION ERREST,CHIPRESULT1,ZMAXTEMP,CRIT

DOUBLE PRECISION CHIPRESULT2

EXTERNAL ERS, CHIP

PARAMETER(Delta=1.0D-3,Epsilon=1.0D-6,Max=1000,Small=1.0D-10)

INTEGER IPVT(PINT),COUNT2

DOUBLE PRECISION H2(PINT,NINT),H3(NINT,PINT),HAT(NINT,NINT)

INTEGER COUNT,ITER,ITER2,YF(NINT),ICODE

DOUBLE PRECISION X(NINT,PINT+1),X2(NINT,PINT+1),WGT(NINT,NINT)

DOUBLE PRECISION MUHAT(NINT),FACT

DOUBLE PRECISION BETAF(PINT),LOGLIK1,LOGLIK2,MUSUM1,MUSUM2,XSUM

DOUBLE PRECISION FISH(PINT,PINT),FACU(PINT,PINT),DET1,DET2,

USTAR(PINT),DELTAF(PINT)

DOUBLE PRECISION MX,LOGLIK,LOGLIKOLD,C10

OPEN (UNIT=8, FILE=’C:/Results/CMAT RESULTS/DferrorPMLE300.txt’)

OPEN (UNIT=9, FILE=’C:/Results/CMAT RESULTS/RESULTS_PCPMLE300.txt’)

OPEN (UNIT=10, FILE=’C:/Results/CMAT RESULTS/RELERR.txt’)

OPEN (UNIT=11, FILE=’C:/Results/CMAT RESULTS/ECL_PCPMLE300.txt’)

OPEN (UNIT=12, FILE=’C:/Results/CMAT RESULTS/DATA.txt’)
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! DEFINE R, S, AND P AND INTEGER VERSIONS FOR LATER

P=DBLE(PINT)

R=DBLE(KINT)

N=DBLE(NINT)

S=P-R

RINT=INT(R)

ISEED=3427

CALL RNSET(ISEED)

C10=P*DFIN(9.5D-1,P,1.0D6)

! LOOP FOR MODEL TYPE 1=LOGIT, 2=POISSON, 3=PROBIT

DO 2 B=1,2

IF (B.EQ.1) THEN

MODEL=3

ELSEIF (B.EQ.2) THEN

MODEL=0

ELSEIF (B.EQ.3) THEN

MODEL=4

ENDIF

! LOOP FOR BETA PARAMETERS 1=(-1,.5), 2=(0,1), 3=(2,4),

4=(-.25,-.5)

DO 3 H=1,2

IF (H.EQ.1) THEN

BETAP(1)=-1.0D0

BETAP(2)=5.0D-1

BETAP(3)=-2.5D-1
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BETAP(4)=-5.0D-1

BETAP(5)=2.5D-1

ELSEIF (H.EQ.2) THEN

BETAP(1)=1.0D0

BETAP(2)=2.0D0

BETAP(3)=4.0D0

BETAP(4)=2.0D0

BETAP(5)=4.0D0

ELSEIF (H.EQ.3) THEN

BETAP(1)=-1.0D0

BETAP(2)=2.0D0

BETAP(3)=4.0D0

BETAP(4)=2.0D0

BETAP(5)=4.0D0

ENDIF

! LOOP FOR DOMAIN TYPES 1=EQUALLY SPACED, 2=ONE CLUSTER

DO 6 E=1,1

DO 7 A=1,REPS

DONE=0

CONF=0

CONF2=0

88 CONTINUE

! GENERATE X’S - THESE ARE BINOMIAL RV’S

DONE=1

RANGEX(1)=DRNUNF()

RANGEX(2)=DRNUNF()

X=0.0D0
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XMAT=0.0D0

PS=5.0D-1

CALL RNBIN (NINT, KINT, PS, TEMPX)

DO 33 Q=1,NINT

IF (TEMPX(Q).EQ.0) THEN

X(Q,1)=1.0D0

XMAT(Q,2)=1.0D0

ELSEIF (TEMPX(Q).EQ.1) THEN

X(Q,2)=1.0D0

XMAT(Q,3)=1.0D0

ELSEIF (TEMPX(Q).EQ.2) THEN

X(Q,3)=1.0D0

XMAT(Q,4)=1.0D0

ELSEIF (TEMPX(Q).EQ.3) THEN

X(Q,4)=1.0D0

XMAT(Q,5)=1.0D0

ENDIF

33 CONTINUE

DO 34 Q=2,PINT

IF (SUM(XMAT(:,Q)).EQ.0) THEN

GOTO 88

ENDIF

34 CONTINUE

XMAT(:,1)=1.0D0

! CRATE C MATRIX

DO 11 K=1,PINT-1
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DO 12 W=1,KINT

IF (W.EQ.K) THEN

CMAT(W,K+1)=1.0D0

ELSE

CMAT(W,K+1)=0.0D0

ENDIF

12 CONTINUE

11 CONTINUE

CMAT(:,1)=0.0D0

LINEARP=MATMUL(XMAT,BETAP)

LINEARCP=MATMUL(CMAT,BETAP)

! SIMULATE Y NOW

! SIMULATE UNIFORM (0,1) RV’S

CALL DRNUN(NINT,UNIF)

! SIMULATE RESPONSE Y

DO 10 I=1,NINT

IF (MODEL.EQ.3) THEN

MU(I)=DEXP(LINEARP(I))/

(1+DEXP(LINEARP(I)))

ELSEIF (MODEL.EQ.0) THEN

MU(I)=DEXP(LINEARP(I))

ELSEIF (MODEL.EQ.4) THEN

MU(I)=DNORDF(LINEARP(I))

ENDIF

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

IF (UNIF(I).LT.MU(I)) THEN

X(I,PINT+1)=1.0D0
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ELSE

X(I,PINT+1)=0.0D0

ENDIF

ELSE

RANGEX(1)=DMIN1(X(I,1),RANGEX(1))

RANGEX(2)=DMAX1(X(I,1),RANGEX(2))

!IF (UNIF(I).LT.MU(I)) THEN

MEANTEMP=REAL(MU(I))

CALL RNPOI(NINT,MEANTEMP,PTEMP)

X(I,PINT+1)=DBLE(PTEMP(I))

ENDIF

10 CONTINUE

!PMLE CALCULATIONS START HERE

IF (MODEL.EQ.3) THEN

X(:,PINT)=1.0D0

ELSEIF (MODEL.EQ.0) THEN

X(:,PINT)=MU

ENDIF

WGT=0.0D0

LOGLIK1=0.0D0

LOGLIK2=0.0D0

MUSUM1=0.0D0

MUSUM2=0.0D0

XSUM=SUM(X(:,PINT+1))/N

YF=INT(X(:,PINT+1))
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BETAF=0.0D0

IF (MODEL.EQ.3) THEN

BETAF(1)=DLOG((XSUM)/((1.0D0-XSUM+Small))+Small)

ELSEIF (MODEL.EQ.0) THEN

BETAF(1)=DLOG(XSUM+Small)

ENDIF

BETAF(2)=0.0D0

LINEAR=MATMUL(XMAT,BETAF)

DO 55 I=1,NINT

IF (MODEL.EQ.3) THEN

MUHAT(I)=DEXP(LINEAR(I))/(1+DEXP(LINEAR(I)))

IF (MUHAT(I).LT.1.0D-4) THEN

MUHAT(I)=1.0D-4

ENDIF

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

IF (X(I,PINT+1).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF

ELSEIF (MODEL.EQ.0) THEN

MUHAT(I)=DEXP(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I))

IF (YF(I).GT.169) THEN

YF(I)=169

ENDIF

FACT=DFAC(YF(I))
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LOGLIK1=LOGLIK1-MUHAT(I)+X(I,PINT+1)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

ELSEIF (MODEL.EQ.4) THEN

MUHAT(I)=DNORDF(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

ENDIF

55 CONTINUE

LOGLIK=LOGLIK1+LOGLIK2

TEMP3=0

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL ERSET(0,0,0)

CALL DLFTSF (PINT,FISH , LDA, FACU, LDA, IPVT)

! Compute the determinant

CALL DLFDSF (PINT, FACU, LDA, IPVT, DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)

ITER=0

LOGLIKOLD=0.0D0

ITER=0

DO WHILE (ITER.LT.25)

ITER=ITER+1

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))
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CALL ERSET(0,0,0)

CALL DLINRG(PINT,FISH,LDA,F,LDAINV)

ICODE=IERCD()

IF ((ICODE.EQ.1).OR.(ICODE.EQ.2)) THEN

COUNT2=COUNT2+1

WRITE(8,*) ICODE,L,H,R,COUNT2

GOTO 88

ENDIF

H3=MATMUL(TRANSPOSE(H2),F)

HAT=MATMUL(H3,H2)

LINEAR=MATMUL(XMAT,BETAF)

DO 66 O=1,NINT

IF (MODEL.EQ.3) THEN

MUHAT(0)=1.0D0/(1.0D0+DEXP(-LINEAR(0)))

X2(O,PINT+1)=X(O,PINT+1)-MUHAT(O)+HAT(O,O)*(5.0D-1-MUHAT(O))

ELSEIF (MODEL.EQ.0) THEN

MUHAT(O)=DEXP(LINEAR(O))

X2(O,PINT+1)=X(O,PINT+1)-MUHAT(O)+HAT(O,O)/2.0D0

ENDIF

66 CONTINUE

USTAR=MATMUL(TRANSPOSE(XMAT),X2(:,PINT+1))

DELTAF=MATMUL(F,USTAR)

MX=DMAX1(DABS(DELTAF(1)),DABS(DELTAF(2)))/10

IF (MX.GT.1.0D0) THEN

DELTAF=DELTAF/MX

ENDIF
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BETAF=BETAF+DELTAF

LOGLIKOLD=LOGLIK

! DO HALF-STEPS

DONE=0

ITER2=0

LINEAR=MATMUL(XMAT,BETAF)

DO WHILE (DONE.EQ.0)

ITER2=ITER2+1

IF (MODEL.EQ.3) THEN

DO 65 I=1,NINT

MUHAT(I)=1.0D0/(1.0D0+DEXP(-LINEAR(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF

65 CONTINUE

ELSEIF (MODEL.EQ.0) THEN

DO 67 I=1,NINT

MUHAT(I)=DEXP(LINEAR(I))

LOGLIK1=LOGLIK1-MUHAT(I)+

X(I,PINT+1)*DLOG(MUHAT(I)+Small)-

DLOG(FACT)

LOGLIK2=0.0D0

67 CONTINUE

ENDIF
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LOGLIK=LOGLIK1+LOGLIK2

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,XMAT)

CALL DLFTSF (PINT,FISH , LDA, FACU,LDA, IPVT)

! Compute the determinant

CALL DLFDSF (PINT, FACU, LDA, IPVT,DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)

IF ((LOGLIK.GT.LOGLIKOLD).OR.

(ITER2.EQ.5)) THEN

DONE=1

ELSE

BETAF=BETAF-DELTAF*2.0D0**(-I)

ENDIF

ENDDO

IF (SUM(DABS(DELTAF)).LT.1.0D-2) THEN

ITER=2.5D5

ENDIF

ENDDO

LINEAR=MATMUL(XMAT,BETAF)

LINEARC=MATMUL(CMAT,BETAF)

iF (DONE.EQ.1) THEN

CALL DLINRG(PINT,FISH,LDA,F,LDAINV)

ENDIF
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IF (IERCD().NE.0) THEN

DONE=1

ENDIF

! CALCULATE Q2 FROM P.867-868 OF CS ! FIRST CALCULATE

DIAGONALIZED VERTICES

CALL DEVCSF (PINT, F, LDA, D, UMAT, LDEVEC)

DO 16 K=1,PINT

DO 17 L=1,PINT

IF (K.EQ.L) THEN

D2(K,L)=D(K)

ELSE

D2(K,L)=0.0D0

ENDIF

17 CONTINUE

16 CONTINUE

RX(1)=1.0D0

RX(2)=2.0D0

COUNT=1

DO 98 I=1,2

DO 97 J=1,2

DO 96 K=1,2

DO 95 L=1,2

VER(COUNT,2)=RX(I)

VER(COUNT,3)=RX(J)

VER(COUNT,4)=RX(K)
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VER(COUNT,5)=RX(L)

COUNT=COUNT+1

95 CONTINUE

96 CONTINUE

97 CONTINUE

98 CONTINUE

CALL DLINRG(PINT,D2**5.0-1,LDA,D3,LDAINV)

VTEMP=MATMUL(D3,TRANSPOSE(UMAT))

DVER=MATMUL(VTEMP,TRANSPOSE(VER))

DO 25 K=1,PINT

ZMAXTEMP=-1.0D10

DO 13 I=1,2**KINT-1

Z(1)=DVER(K,I)

Z(2)=DVER(K,I+1)

ZMAXTEMP=(DMAX1(Z(1),Z(2),ZMAXTEMP))

TEMP=(DMIN1(Z(1),Z(2),ZMAXTEMP))

IF ((TEMP.LT.0.0D0).AND.(ZMAXTEMP.GT.0.0D0)) THEN

ZMIN(K)=0.0D0

ELSE

ZMIN(K)=DMIN1(DABS(Z(1)),DABS(Z(2)),DABS(ZMAXTEMP))

ENDIF

ZMAX(K)=DMAX1(DABS(Z(1)),DABS(Z(2)),DABS(ZMAXTEMP))

13 CONTINUE

25 CONTINUE

CRIT=1.0D10
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DO 26 K=1,KINT

Q2=SUM((ZMIN(1:K)+1.0D0)**2.0D0)/SUM((ZMAX(K+1:PINT)-5.0D-1)**2.0D0)

B2=(1.0D0+Q2)**(-1.0D0)

A2=1-B2

! STARTING VALUES FOR THE SECANT METHOD

C0=1.96D0**2.0D0

C1=C10

! DEFINE UPPER AND LOWER LIMITS FOR ERS INTEGRAL

LOW(1)=C0

LOW(2)=C1

! BE CAREFUL WHEN B2=0

IF (B2.GT.1.0D-6) THEN

UP(1)=(C0)/(B2)

UP(2)=(C1)/(B2)

ELSE

UP(1)=9.99D9

UP(2)=9.99D10

END IF

C=DSQRT(C0)

ERRABS=1.0d-6

ERREL=1.0d-6

IRULE=2

! Call 1st ERS integral

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(1),1,ERRABS,ERREL,ERSRESULT1,ERREST)
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ELSE IF (B2.EQ.1.0D0) THEN

ERSRESULT1=0.0D0

ELSE

CALL DQDAG(ERS,LOW(1),UP(1)+Small,ERRABS,ERREL,IRULE,ERSRESULT1,ERREST)

END IF

! Call 2nd ERS integral

C=DSQRT(C1)

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(2),1,

ERRABS,ERREL,ERSRESULT2,ERREST)

ELSE IF (B2.EQ.1.0D0) THEN

ERSRESULT2=0.0D0

ELSE

CALL DQDAG(ERS,LOW(2),UP(2)+Small,ERRABS,ERREL,IRULE,ERSRESULT2,ERREST)

END IF

! SET LIMITS FOR CHIP INTEGRAL

LOW(1)=0.0D0

LOW(2)=0.0D0

UP(1)=C0

UP(2)=C1

! Call the 1st chi square (p) integral

CALL DQDAG(CHIP,LOW(1),UP(1),ERRABS,

ERREL,IRULE,CHIPRESULT1,ERREST)

! Call the 2nd chi square (p) integral

CALL DQDAG(CHIP,LOW(2),UP(2),ERRABS,

ERREL,IRULE,CHIPRESULT2,ERREST)

! COMPUTE FIRST TWO VALUES OF THE FUNCTION F - SHOULD HAVE 0.95
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BETWEEN THESE

FX=ERSRESULT1+CHIPRESULT1

FX1=ERSRESULT2+CHIPRESULT2

! K COUNTS HOW MANY ITERATIONS

L=0

AbsErr=1.0d0

! BEGIN LOOP TO OPTIMIZE F FOR C2 UNTIL ABSERR < EPS

SECANTLOOP: DO WHILE ((L.LT.Max).AND.(AbsErr.GT.Epsilon))

! CALCULATES NEW ITERATION OF C

Df=(FX1-FX)/(C1-C0)

IF (Df.EQ.0) THEN

WRITE (8,*) Df

ELSE

! CALCULATES NEW ITERATION OF C

Dp=(FX1-9.5D-1)/Df

C2=(C1-Dp)**1.0D0

ENDIF

! CALCULATE NEW FX FOR C2

LOW(1)=C2

IF (B2.NE.0.0D0) THEN

UP(1)=(C2)/(B2)

ENDIF

ERRABS=1.0d-6

ERREL=1.0d-6

IRULE=2

! Call ERS integral
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C=DSQRT(C2)

IF (B2.EQ.0.0D0) THEN

CALL DQDAGI(ERS,LOW(1),1,ERRABS,

ERREL,ERSTEMP,ERREST)

ELSEIF (B2.EQ.1.0D0) THEN

ERSTEMP=0.0D0

ELSE

CALL DQDAG(ERS,LOW(1),UP(1),ERRABS,ERREL,IRULE,ERSTEMP,ERREST)

ENDIF

LOW(1)=0.0D0

UP(1)=C2

! Call the chi square (p) integral

CALL DQDAG(CHIP,LOW(1),UP(1),ERRABS,ERREL,IRULE,CHIPTEMP,ERREST)

! CALCULATES THE NEW F VALUE (SOMEWHERE BETWEEN FX AND FX1)

TEMP=ERSTEMP+CHIPTEMP

! CALCULATE THE ERRORS

AbsErr=DABS(TEMP-9.5D-1)

RelErr=DABS(Dp)/(DABS(C2)+Small)

! RECORDS SMALL RELERR

IF (RelErr.GT.Delta) THEN

WRITE(10,*) L,RelErr

ENDIF

! IF TEMP < 0.95 THEN OVERESTIMATED C2

IF (TEMP.LT.9.5D-1) THEN

C0=C2

FX=TEMP

ELSE
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! IF TEMP >= 0.95 THEN C2 UNDERESTIMATED

C1=C2

FX1=TEMP

ENDIF

L=L+1

ENDDO SECANTLOOP

26 CONTINUE

CONF=0

CONF2=0

DO 60 I=1,KINT

TEMP2=MATMUL(CMAT(I,:),F)

COVLIN=DDOT(PINT,TEMP2,1,CMAT(I,:),1)

! RECORD WHEN BOUNDS ARE ESTIMATED CORRECTLY

LEFT=(LINEARC(I)-LINEARCP(I))**2.0D0

RIGHT=CRIT*COVLIN

IF (LEFT.LE.RIGHT) THEN

CONF=CONF+1

ENDIF

LEFT=(LINEARC(I)-LINEARCP(I))**2.0D0

RIGHT=C10*COVLIN

IF (LEFT.LE.RIGHT) THEN

CONF2=CONF2+1

ENDIF

60 CONTINUE

K=DBLE(KINT)

ECL(A)=DBLE(CONF)/K

168



ECL2(A)=DBLE(CONF2)/K

MEANECL=SUM(ECL)/REPS

MEANECL2=SUM(ECL2)/REPS

RESULTS(1)=MODEL

RESULTS(2)=H

RESULTS(3)=NINT

RESULTS(4)=E

RESULTS(5)=MEANECL

RESULTS(6)=MEANECL2

7 CONTINUE

WRITE(11,*) MEANECL,MEANECL2

WRITE(9,*) C2,RESULTS

6 CONTINUE

5 CONTINUE

4 CONTINUE

3 CONTINUE

2 CONTINUE

STOP

END

! Now start defining the functions ! used in the above main

program ! Define the ERS function

DOUBLE PRECISION FUNCTION ERS(T)

DOUBLE PRECISION PART1, PART2, PART3, DFD, DFN

COMMON S,R,P,A2,B2,C

DOUBLE PRECISION T,S,R,P,A2,B2,C, TEMP, TEMP2, TEMP3, TEMP4,TEMP5,TEMP6
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DOUBLE PRECISION DGAMMA, DFDF

!

DFD=S

DFN=R

TEMP4=C*(T-C**2.0D0)**5.0D-1

TEMP5=DSQRT(A2)*DSQRT(B2)*T

TEMP6=A2*T-C**2.0D0

PART1=DFDF((S/R)*((TEMP4-TEMP5)/TEMP6)**2.d0,DFN,DFD)

PART2=T**((P/2.d0)-1.d0)

TEMP=P/2.0D0

TEMP2=2.0D0**TEMP

TEMP3=DGAMMA(TEMP)*TEMP2

PART3=DEXP(-T/2.d0)/TEMP3

ERS=PART1*(PART2*PART3)

RETURN

END

! Define the chi-square function

DOUBLE PRECISION FUNCTION CHIP(T)

DOUBLE PRECISION PART1, PART2, PART3

COMMON S,R,P,A2,B2,C

DOUBLE PRECISION T,S,R,P

DOUBLE PRECISION DGAMMA
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PART1=T**((P/2.d0)-1.d0)

PART2=DEXP(-T/2.d0)

PART3=DGAMMA(P/2.d0)*2.d0**(P/2.d0)

CHIP=(PART1*PART2)/(PART3)

RETURN

END

171



APPENDIX H

Fortran Code: SCR PMLE for the Parameters

USE MSIMSL

INTEGER N,P,M,INCX,LDA,LDR,LDAINV,VER,REPS,NCOMP,MAXK

DOUBLE PRECISION Small

PARAMETER(N=200,P=5,REPS=5000,NCOMP=P-1,M=NCOMP*(NCOMP+1)-1,

Small=1.0D-10,MAXK=100,LDA=P,LDR=P,LDFAC=P,LDAINV=P)

REAL MEANTEMP,PS

DOUBLE PRECISION B2(NCOMP),B3(NCOMP),B4(NCOMP),B(NCOMP,NCOMP),

A(NCOMP,NCOMP)

DOUBLE PRECISION AINV(NCOMP,NCOMP),LO(NCOMP),HI(NCOMP),

CMAT(NCOMP,P),XMAT(N,P)

DOUBLE PRECISION SU(NCOMP,NCOMP),S(P,NCOMP),UI(P,NCOMP),

U(NCOMP,NCOMP),K1,UITEMP(NCOMP)

DOUBLE PRECISION CRIT,C(9),KAP(5,NCOMP),KAQ(5,NCOMP),MAX_P2(NCOMP)

DOUBLE PRECISION BT(NCOMP,NCOMP),TEMP2(NCOMP),TEMP3,TEMP4,

TEMP5(NCOMP)

DOUBLE PRECISION TEMP6(NCOMP),K2VEC(NCOMP),BTINV(NCOMP,NCOMP)

DOUBLE PRECISION P2,Q2,F,P3,N2

DOUBLE PRECISION UCRIT(NCOMP),K0,CRITLO,CRITHI,FX,FX1,ALPHA,

MAX,ABSERR,KSI2VEC(NCOMP)

DOUBLE PRECISION KSI,UIT(NCOMP,M**(NCOMP-2)),ST(NCOMP,M**(NCOMP-2)),

K2(10),K2MEAN
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DOUBLE PRECISION STEMP1(NCOMP),STEMP2(NCOMP),STEMP3(NCOMP),KSI2,

KSI2MEAN

DOUBLE PRECISION DF,DP,TEMPFX,LINEAR(N),LINEARP(N),VAR(NCOMP),K3,TOL,C10

DOUBLE PRECISION XLO,XHI,YLO,YHI,PI,X1,X2,Y1,Y2,XT,YT,LINEARC(NCOMP),

TEMPT(NCOMP,M**NCOMP)

DOUBLE PRECISION FIRST(NCOMP),SECOND(NCOMP),DIF(NCOMP),NORMDIF,T(NCOMP,

M**NCOMP),INTER,RESULTS(6)

DOUBLE PRECISION SUM1,SUM2,MEAN1,MEAN2,UNIF(N),RANGEX(2),ECL(REPS),MEANECL

DOUBLE PRECISION PART1,PART2,PART3,PART4,PART5,PART6,GRAD(NCOMP,M**NCOMP),M0

DOUBLE PRECISION CROSS(2,3),CROSSDOT,NORM1,NORM2,COSTH,THETA

DOUBLE PRECISION GRADIENT1(NCOMP),GRADIENT2(NCOMP),LINEARCP(NCOMP)

EXTERNAL P2,Q2,F

INTEGER I,J,K,IRANK,CONF,PTEMP(NCOMP),IPVT(P),COUNT2,LOOP

DOUBLE PRECISION H2(P,N),H3(N,P),HAT(N,N)

DOUBLE PRECISION MU(N),V

INTEGER COUNT,TEMPX(N),ITER,ITER2,YF(N),ICODE

DOUBLE PRECISION COV2(NCOMP,NCOMP),X(N,P+1),XF(N,P+1),WGT(N,N)

DOUBLE PRECISION BETAP(P),MUHAT(N),FACT

DOUBLE PRECISION BETAF(P),LOGLIK1,LOGLIK2,MUSUM1,MUSUM2,XSUM

DOUBLE PRECISION FISH(P,P),FACU(P,P),DET1,DET2,USTAR(P),DELTAF(P),FCOV(P,P)

DOUBLE PRECISION MX,LOGLIK,LOGLIKOLD,GG,HH

COMMON KAP,KAQ,P3,N2,C,C2,LOOP

OPEN (UNIT=8, FILE=’C:/Results/ERRORS.txt’)

OPEN (UNIT=9, FILE=’C:/Results/RESULTS.txt’)
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OPEN (UNIT=10, FILE=’C:/Results/ECL.txt’)

MAX=500

EPSILON=1.0D-6

ALPHA=5.0D-2

PI=3.1415926535897932D0

P3=DBLE(P)

N2=DBLE(N)

K0=0.0D0

RINT=INT(R)

CALL RNSET(34271)

COUNT=0

! THIS IS SCHEFFE SOLUTION

C10=(P3*DFIN(9.5D-1,P3,1.0D6))

! LOOP FOR MODEL TYPE 1=LOGIT, 2=POISSON, 3=PROBIT

DO 2 Z=1,2

IF (Z.EQ.1) THEN

MODEL=3

ELSEIF (Z.EQ.2) THEN

MODEL=0

ELSEIF (Z.EQ.3) THEN

MODEL=4

ENDIF

! LOOP FOR BETA PARAMETERS

DO 3 H=1,2
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IF (H.EQ.1) THEN

BETAP(1)=-1.0D0

BETAP(2)=5.0D-1

BETAP(3)=-2.5D-1

BETAP(4)=-5.0D-1

BETAP(5)=2.5D-1

ELSEIF (H.EQ.2) THEN

BETAP(1)=1.0D0

BETAP(2)=2.0D0

BETAP(3)=4.0D0

BETAP(4)=2.0D0

BETAP(5)=4.0D0

ELSEIF (H.EQ.3) THEN

BETAP(1)=-1.0D0

BETAP(2)=2.0D0

BETAP(3)=4.0D0

BETAP(4)=2.0D0

BETAP(5)=4.0D0

ENDIF

! LOOP FOR RESTRICTED DOMAIN TYPES 1=UNRESTRICTED, 2=WIDE,

3=NARROW

! LOOP FOR DOMAIN TYPES 1=EQUALLY SPACED, 2=ONE CLUSTER

DO 7 R=1,4

VER=R

COUNT2=0
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! COUNTS EACH COMBINATION OF SIMULATION SPECS

DO 8 L=1,REPS

DONE=0

CONF=0

88 CONTINUE

! ! GENERATE X’S

DONE=1

RANGEX(1)=DRNUNF()

RANGEX(2)=DRNUNF()

X=0.0D0

XMAT=0.0D0

PS=5.0D-1

CALL RNBIN (N, NCOMP, PS, TEMPX)

DO 33 Q=1,N

IF (TEMPX(Q).EQ.0) THEN

X(Q,1)=1.0D0

XMAT(Q,2)=1.0D0

ELSEIF (TEMPX(Q).EQ.1) THEN

X(Q,2)=1.0D0

XMAT(Q,3)=1.0D0

ELSEIF (TEMPX(Q).EQ.2) THEN

X(Q,3)=1.0D0

XMAT(Q,4)=1.0D0

ELSEIF (TEMPX(Q).EQ.3) THEN

X(Q,4)=1.0D0

XMAT(Q,5)=1.0D0
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ENDIF

33 CONTINUE

DO 34 Q=2,P

IF (SUM(XMAT(:,Q)).EQ.0) THEN

GOTO 88

ENDIF

34 CONTINUE

XMAT(:,1)=1.0D0

! CREATE C MATRIX

DO 11 K=1,P-1

DO 12 W=1,NCOMP

IF (W.EQ.K) THEN

CMAT(W,K+1)=1.0D0

ELSE

CMAT(W,K+1)=0.0D0

ENDIF

12 CONTINUE

11 CONTINUE

CMAT(:,1)=0.0D0

LINEARP=MATMUL(XMAT,BETAP)

LINEARCP=MATMUL(CMAT,BETAP)

! SIMULATE Y NOW

! SIMULATE UNIFORM(0,1) RV’S

CALL DRNUN(N,UNIF)

! SIMULATE RESPONSE Y

DO 10 I=1,N
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IF (MODEL.EQ.3) THEN

MU(I)=DEXP(LINEARP(I))/(1+DEXP(LINEARP(I)))

ELSEIF (MODEL.EQ.0) THEN

MU(I)=DEXP(LINEARP(I))

ELSEIF (MODEL.EQ.4) THEN

MU(I)=DNORDF(LINEARP(I))

ENDIF

IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

IF (UNIF(I).LT.MU(I)) THEN

X(I,P+1)=1.0D0

ELSE

X(I,P+1)=0.0D0

ENDIF

ELSE

RANGEX(1)=DMIN1(X(I,1),RANGEX(1))

RANGEX(2)=DMAX1(X(I,1),RANGEX(2))

MEANTEMP=REAL(MU(I))

CALL RNPOI(N,MEANTEMP,PTEMP)

X(I,P+1)=DBLE(PTEMP(I))

ENDIF

10 CONTINUE

!PMLE CALCULATIONS START HERE

IF (MODEL.EQ.3) THEN

X(:,P)=1.0D0

ELSEIF (MODEL.EQ.0) THEN

X(:,P)=MU
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ENDIF

WGT=0.0D0

LOGLIK1=0.0D0

LOGLIK2=0.0D0

MUSUM1=0.0D0

MUSUM2=0.0D0

XSUM=SUM(X(:,P+1))/N

YF=INT(X(:,P+1))

BETAF=0.0D0

IF (MODEL.EQ.3) THEN

BETAF(1)=DLOG((XSUM)/((1.0D0-XSUM+Small))+Small)

ELSEIF (MODEL.EQ.0) THEN

BETAF(1)=DLOG(XSUM+Small)

ENDIF

BETAF(2)=0.0D0

LINEAR=MATMUL(XMAT,BETAF)

DO 55 I=1,N

IF (MODEL.EQ.3) THEN

MUHAT(I)=DEXP(LINEAR(I))/

(1+DEXP(LINEAR(I)))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

IF (X(I,3).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF
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ELSEIF (MODEL.EQ.0) THEN

MUHAT(I)=DEXP(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I))

IF (YF(I).GT.169) THEN

YF(I)=169

ENDIF

FACT=DFAC(YF(I))

LOGLIK1=LOGLIK1-MUHAT(I)+X(I,P+1)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

ELSEIF (MODEL.EQ.4) THEN

MUHAT(I)=DNORDF(LINEAR(I))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

ENDIF

55 CONTINUE

LOGLIK=LOGLIK1+LOGLIK2

TEMP3=0

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL ERSET(0,0,0)

CALL DLFTSF (P,FISH , LDA, FACU, LDA, IPVT)

! Compute the determinant

CALL DLFDSF (P, FACU, LDA, IPVT, DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)
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ITER=0

LOGLIKOLD=0.0D0

ITER=0

DO WHILE (ITER.LT.25)

ITER=ITER+1

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,TRANSPOSE(H2))

CALL DLINRG(P,FISH,LDA,FCOV,LDAINV)

ICODE=IERCD()

IF ((ICODE.EQ.1).OR.(ICODE.EQ.2)) THEN

COUNT2=COUNT2+1

WRITE(8,*) ICODE,L,H,R,COUNT2

GOTO 88

ENDIF

H3=MATMUL(TRANSPOSE(H2),FCOV)

HAT=MATMUL(H3,H2)

LINEAR=MATMUL(XMAT,BETAF)

DO 66 O=1,N

IF (MODEL.EQ.3) THEN

MUHAT(0)=1.0D0/(1.0D0+DEXP(-LINEAR(0)))

XF(O,P+1)=X(O,P+1)-MUHAT(O)+HAT(O,O)*(5.0D-1+(1.0D0-MUHAT(O)))

ELSEIF (MODEL.EQ.0) THEN

MUHAT(O)=DEXP(LINEAR(O))

XF(O,P+1)=X(O,P+1)-MUHAT(O)+HAT(O,O)*5.0D-1

ENDIF

66 CONTINUE

USTAR=MATMUL(TRANSPOSE(XMAT),XF(:,P+1))
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DELTAF=MATMUL(FCOV,USTAR)

MX=DMAX1(DABS(DELTAF(1)),DABS(DELTAF(2)))/10.0D0

IF (MX.GT.1.0D0) THEN

DELTAF=DELTAF/MX

ENDIF

BETAF=BETAF+DELTAF

LOGLIKOLD=LOGLIK

! DO HALF-STEPS

DONE=0

ITER2=0

LINEAR=MATMUL(XMAT,BETAF)

DO WHILE (DONE.EQ.0)

ITER2=ITER2+1

IF (MODEL.EQ.3) THEN

DO 65 I=1,N

MUHAT(I)=1.0D0/(1.0D0+DEXP(-LINEAR(I)))

WGT(I,I)=DSQRT(MUHAT(I)*(1.0D0-MUHAT(I)))

IF (X(I,P+1).EQ.1.0D0) THEN

LOGLIK1=LOGLIK1+(DLOG(MUHAT(I)+Small))

ELSE

LOGLIK2=LOGLIK2+(DLOG(1-MUHAT(I)+Small))

ENDIF

65 CONTINUE

ELSEIF (MODEL.EQ.0) THEN

DO 67 I=1,N

MUHAT(I)=DEXP(LINEAR(I))
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WGT(I,I)=DSQRT(MUHAT(I))

LOGLIK1=LOGLIK1-MUHAT(I)+X(I,P+1)*

DLOG(MUHAT(I)+Small)-DLOG(FACT)

LOGLIK2=0.0D0

67 CONTINUE

ENDIF

LOGLIK=LOGLIK1+LOGLIK2

H2=MATMUL(TRANSPOSE(XMAT),WGT)

FISH=MATMUL(H2,XMAT)

CALL DLFTSF (P,FISH , LDA, FACU, LDA, IPVT)

! Compute the determinant

CALL DLFDSF (P, FACU, LDA, IPVT, DET1, DET2)

LOGLIK=LOGLIK+5.0D-1*(DET1*1.0D1**DET2)

IF ((LOGLIK.GT.LOGLIKOLD).OR.(ITER2.EQ.5)) THEN

DONE=1

ELSE

BETAF=BETAF-DELTAF*2.0D0**(-I)

ENDIF

ENDDO

IF (SUM(DABS(DELTAF)).LT.1.0D-2) THEN

ITER=2.5D5

ENDIF

ENDDO

LINEAR=MATMUL(XMAT,BETAF)
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CALL DLINRG(P,FISH,P,FCOV,P)

! THIS IS COV MAT OF BETAS (COV2)

COV2=FCOV(2:P,2:P)

! COMPUTE INFORMATION MATRIX P.432 ! FIRST COMPUTE

LINEAR=X’BETAHAT

LINEARC=MATMUL(CMAT,BETAF)

! COMPUTE SCALED INFO P.433

! COMPUTE A INVERSE

AINV=COV2*N2

CALL DLINRG(NCOMP,AINV,NCOMP,A,NCOMP)

! COMPUTE CHOLESKY DECOMP OF INFORMATION SCALED ! THIS SOLUTION

GIVES B’B=A

TOL=100*DMACH(4)

CALL DCHFAC(NCOMP,A,NCOMP,TOL,IRANK,B,NCOMP)

BT=TRANSPOSE(B)

! COMPUTES BT_INV

CALL DLINRG(NCOMP,BT,NCOMP,BTINV,NCOMP)

! START CALCULATION OF S(X) FOR ALL V=1,N ! NOTE THAT THERE IS A

UNIQUE S(X) FOR EACH UNIQUE X ! CALCULATE S(X) FROM P.435 CALL IT

S ! COMPUTE UI FROM P.437
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IF ((MODEL.EQ.3).OR.(MODEL.EQ.4)) THEN

B2=N2*(DEXP(LINEARC))/((1.0D0+DEXP(LINEARC))**2.0D0)

B3=N2*(DEXP(LINEARC)*(1.0D0-DEXP(LINEARC)))/

(1.0D0+DEXP(LINEARC))**3.0D0

B4=N2*((DEXP(LINEARC)-4.0D0*DEXP(2.0D0*LINEARC)

+DEXP(3.0D0*LINEARC)))/((1.0D0+DEXP(LINEARC))**4.0D0)

ELSEIF (MODEL.EQ.0) THEN

B2=DEXP(LINEARC)

B3=B2

B4=B2

ENDIF

DO 13 V=1,NCOMP

! MUST DIVIDE UI BY N GIVEN HOW DATA IS ENTERED FOR CALCULATION OF

BETAS!!!!!

TEMP2=MATMUL(BTINV,CMAT(V,2:P))

CALL DVCAL (P,1/N2,TEMP2,1,UI(:,V),1)

TEMP2=MATMUL(AINV,CMAT(V,2:P))

TEMP3=DDOT(P,CMAT(V,2:P), 1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

! THIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR

I

CALL DVCAL (P, TEMP4, UI(:,V), 1, S(:,V), 1)
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13 CONTINUE

DO 30 I=1,NCOMP

DO 31 J=1,NCOMP

U(I,J)=DDOT(P,UI(:,I),1,UI(:,J),1)

! DOT PRODUCT OF S(X) AND UI

SU(I,J)=DDOT(P,S(:,I),1,UI(:,J),1)

31 CONTINUE

30 CONTINUE

DO 14 V=1,NCOMP

! NOTE THAT VAR(X’BLINEAR)=X*VAR(BETA)*X’ ! FORMULA FROM AGRESTI

P. 172

VAR(V)=FCOV(V,V)

! SET K1 AND K3 TO 0 (SO IT DOESN’T BUILD ON PAST VALUES)

K1=0.0D0

K3=0.0D0

! INITIALIZE C VECTOR

C=0.0D0

DO 20 I=1,NCOMP

! C CALCS P.437

C(2)=C(2)+(B4(I)*(SU(V,I)**2.0D0)*U(I,I))

C(6)=C(6)+(B4(I)*(SU(V,I)**4.0D0))

C(9)=C(9)+((B2(I)**2.0D0)*SU(V,I)**4.0D0)

! SEE P 436

K1=K1+(B3(I)*((SU(V,I)**3.0D0)-SU(V,I)*U(I,I)))
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K3=K3+(B3(I)*(SU(V,I)**3.0D0))

DO 32 J=1,N

C(1)=C(1)+(B3(I)*B3(J)*SU(V,I)*SU(V,J)*

U(I,J)**2.0D0)

C(3)=C(3)+(B3(I)*B3(J)*(SU(V,I)**2.0D0)*

(SU(V,J)**2.0D0)*U(I,J))

C(4)=C(4)+(B3(I)*B3(J)*U(I,J)*(SU(V,I)**2.0D0)

*U(I,J)*U(J,J))

C(7)=C(7)+(B3(I)*B3(J)*SU(V,I)*(SU(V,J)

**3.0D0)*U(I,I))

C(8)=C(8)+(B3(I)*B3(J)*(SU(V,I)**3.0D0)*

(SU(V,J)**3.0D0))

32 CONTINUE

20 CONTINUE

! FINISH CALCULATION OF C CONSTANTS FOR EDGEWORTH EXPANSIONS

C(1)=C(1)/(N2**3.0D0)

C(2)=C(2)/(N2**2.0D0)

C(3)=C(3)/(N2**3.0D0)

C(4)=C(4)/(N2**3.0D0)

C(5)=C(1)

C(6)=C(6)/(N2**2.0D0)

C(7)=C(7)/(N2**3.0D0)

C(8)=C(8)/(N2**3.0D0)

C(9)=C(9)/(N2**2.0D0)

K1=K1/(2.0D0*(N2**1.5D0))

187



K3=K3/(N2**1.5D0)

! CONSTANTS USED IN P(X,Z) COMPUTATION P.437

KAP(1,V)=K1

TEMP3=C(1)-C(2)+C(4)-C(7)

KAP(2,V)=1.0D0+5.0D-1*TEMP3-3.0D0*C(3)+C(6)

+1.75D0*C(8)

KAP(3,V)=K3

KAP(4,V)=-9.0D0*C(3)+3.0D0*C(6)+6.0D0*C(8)

+3.0D0*C(9)

! CONSTANTS USED IN Q(X,U) COMPUTATIONS P.438

KAQ(2,V)=C(3)-1.5D0*C(8)-C(5)-C(4)+5.0D-1*

C(7)+C(6)-C(2)

KAQ(3,V)=KAP(3,V)

KAQ(4,V)=-3.0D0*C(3)-6.0D0*C(4)-6.0D0*C(5)

+3.0D0*C(6)+3.0D0*C(7)-3.0D0*C(8)+3.0D0*C(9)

14 CONTINUE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

THIS SECTION NOW STARTS NAIMAN CRITICAL VALUE CALCS ! CREATE

MATRIX T THAT CONTAINS DOMAIN PARTITIONED LIKE ON P.441

!T(1,:)=0.0D0

K=1

INTER=1.0D0/(M-1.0D0)

COUNT=1

IF (P.EQ.5) THEN
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DO 51 J=1,M

DO 53 K=1,M

DO 54 Q=1,M

DO 56 O=1,M

TEMPT(1,COUNT)=INTER*(J-1)

TEMPT(2,COUNT)=INTER*(K-1)

TEMPT(3,COUNT)=INTER*(Q-1)

TEMPT(4,COUNT)=INTER*(O-1)

COUNT=COUNT+1

56 CONTINUE

54 CONTINUE

53 CONTINUE

51 CONTINUE

ENDIF

COUNT=0

DO 50 I=1,M**NCOMP

SUMCOL=(SUM(TEMPT(:,I)))

IF (SUMCOL.EQ.1) THEN

COUNT=COUNT+1

T(:,COUNT)=TEMPT(:,I)

ENDIF

SUMCOL=0.0D0

50 CONTINUE

K0=0.0D0

KSI=0.0D0
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DO 40 K=1,(COUNT-1)

! APPROXIMATE THE MANIFOLD VOLUME (K0) LIKE ON P.441 ! COMPUTE

S(T(K))

UITEMP=MATMUL(BTINV,T(:,K))

TEMP2=MATMUL(AINV,T(:,K))

TEMP3=DDOT(NCOMP,T(:,K), 1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (NCOMP, TEMP4, UITEMP, 1, SECOND, 1)

! COMPUTE S(T(K+1))

UITEMP=MATMUL(BTINV,T(:,K+1))

TEMP2=MATMUL(AINV,T(:,K+1))

TEMP3=DDOT(NCOMP,T(:,K+1), 1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (NCOMP, TEMP4, UITEMP, 1, FIRST, 1)

! COMPUTE DIFFERENCE OF S(T(K))-S(T(K+1))

DIF=FIRST-SECOND

INCX=1

! GET THE NORM OF THE DIFF

NORMDIF=DNRM2(NCOMP,DIF,INCX)

! ADD TO PREVIOUS NORMS TO APPROXIMATE K0

K0=K0+NORMDIF
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40 CONTINUE

! APPROXIMATE THE MANIFOLD SURFACE AREA (KSI)

! TO DO THIS WE CALC VOLUME ON D-1 DIMENSIONS

DO 42 Q=1,NCOMP

DO 41 J=1,(COUNT-1)

TEMPT(:,J)=T(:,J)

TEMPT(:,J+1)=T(:,J+1)

TEMPT(Q,J)=0.0D0

TEMPT(Q,J+1)=0.0D0

UITEMP=MATMUL(BTINV,TEMPT(:,J))

! CALL DLINRG(P,A,LDA,AINV,LDAINV)

TEMP2=MATMUL(AINV,TEMPT(:,J))

TEMP3=DDOT(NCOMP,TEMPT(:,J),1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (NCOMP, TEMP4, UITEMP,1, SECOND, 1)

! COMPUTE S(T(K+1))

UITEMP=MATMUL(BTINV,TEMPT(:,J+1))

! CALL DLINRG(P,A,LDA,AINV,LDAINV)

TEMP2=MATMUL(AINV,TEMPT(:,J+1))

TEMP3=DDOT(NCOMP,TEMPT(:,J+1), 1,TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF
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TEMP4=1/DSQRT(TEMP3)

CALL DVCAL (NCOMP, TEMP4, UITEMP,1, FIRST, 1)

! COMPUTE DIFFERENCE OF S(T(K))-S(T(K+1))

DIF=FIRST-SECOND

INCX=1

! GET THE NORM OF THE DIFF

NORMDIF=DNRM2(NCOMP,DIF,INCX)

! ADD TO PREVIOUS NORMS TO APPROXIMATE K0

KSI=KSI+NORMDIF

41 CONTINUE

42 CONTINUE

! CALCULATE CURVATURE FOR (NCOMP) CHOOSE (NCOMP-3) 3 TUPLES AND

TAKE THE MEAN

DO 76 V=1,(COUNT-1)

! MUST DIVIDE UI BY N GIVEN HOW DATA IS ENTERED FOR CTGLM

SUBROUTINE!!!!!!

DO 99 J=1,P-2

DO 98 K=J+1,P

DO 97 I=0,P-J

GG=J

HH=K

TEMPT(:,V)=T(:,V)

TEMPT(GG,V)=0.0D0

TEMPT(HH,V)=0.0D0

TEMPT(:,V+1)=T(:,V+1)

TEMPT(GG+I,V+1)=0.0D0
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TEMPT(HH+I,V+1)=0.0D0

TEMP2=MATMUL(BTINV,TEMPT(:,V))

CALL DVCAL (NCOMP,1/N2,TEMP2,1,UIT(:,V),1)

TEMP2=MATMUL(AINV,TEMPT(:,V))

TEMP3=DDOT(NCOMP,TEMPT(:,V),1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

! THIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR

I

CALL DVCAL (NCOMP, TEMP4, UIT(:,V),1, ST(:,V), 1)

TEMP2=MATMUL(BTINV,TEMPT(:,V+1))

CALL DVCAL (NCOMP,1/N2,TEMP2,1,UIT(:,V+1),1)

TEMP2=MATMUL(AINV,TEMPT(:,V+1))

TEMP3=DDOT(NCOMP,TEMPT(:,V+1), 1,TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

! HIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR

I

CALL DVCAL (NCOMP, TEMP4,UIT(:,V+1), 1, ST(:,V+1), 1)

CALL DVCAL(NCOMP,2.0D0,ST(:,V),1,TEMP5,1)

TEMP6=ST(:,V+1)-TEMP5+ST(:,V-1)

CALL DVCAL(NCOMP,INTER**2.0D0,TEMP6,1,K2VEC,1)

K2(V)=DNRM2(NCOMP,K2VEC,INCX)
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97 CONTINUE

98 CONTINUE

99 CONTINUE

76 CONTINUE

K2MEAN=SUM(K2)

! CALCULATE CURVATURE FOR (NCOMP) CHOOSE(NCOMP-3) 3 TUPLES AND TAKE THE MEAN

IF (P.EQ.5) THEN

DO 47 I=2,P

DO 49 J=2,P

DO 46 K=2,P

DO 48 V=1,(COUNT-1)

STEMP1=ST(:,V+1)

STEMP1(I)=0.0D0

STEMP2=ST(:,V)

STEMP2(J)=0.0D0

STEMP3=ST(:,V-1)

STEMP3(K)=0.0D0

CALL DVCAL(NCOMP,2.0D0,STEMP2,1,TEMP5,1)

TEMP6=STEMP1-TEMP5+STEMP3

CALL DVCAL(NCOMP,INTER**2.0D0,TEMP6,1,KSI2VEC,1)

KSI2=KSI2+DNRM2(NCOMP,KSI2VEC,INCX)

48 CONTINUE

46 CONTINUE

49 CONTINUE

47 CONTINUE

ENDIF
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KSI2MEAN=KSI2/4.0D0

! CALC ROTATION ANGLE HERE ! ASSUMES ANGLE BETWEEN ALL POSSIBLE

TWO SIDES MEETING

M0=0.0D0

INTER=1.0D0/(DBLE(P)-1.0D0)

DO 81 J=1,NCOMP-1

DO 82 K=1,2

DO 80 V=1,100,99

IF (K.EQ.1) THEN

TEMPT(:,V)=T(:,V)-INTER

TEMPT(J,V)=0.0D0

ELSE

TEMPT(:,V)=T(:,V)-INTER

TEMPT(J+1,V)=0.0D0

ENDIF

TEMP2=MATMUL(BTINV,TEMPT(:,V))

CALL DVCAL (NCOMP,1/N2,TEMP2,1,UIT(:,V),1)

TEMP2=MATMUL(AINV,TEMPT(:,V))

TEMP3=DDOT(NCOMP,TEMPT(:,V), 1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

! THIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR

I

CALL DVCAL (NCOMP, TEMP4, UIT(:,V), 1, ST(:,V), 1)
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IF (K.EQ.1) THEN

TEMPT(:,V+1)=T(:,V+1)+INTER

TEMPT(J,V+1)=0.0D0

ELSE

TEMPT(:,V+1)=T(:,V+1)+INTER

TEMPT(J+1,V+1)=0.0D0

ENDIF

TEMP2=MATMUL(BTINV,TEMPT(:,V+1))

CALL DVCAL (NCOMP,1/N2,TEMP2,1,UIT(:,V+1),1)

TEMP2=MATMUL(AINV,TEMPT(:,V+1))

TEMP3=DDOT(NCOMP,TEMPT(:,V+1), 1, TEMP2, 1)

IF (TEMP3.LT.1.0D-5) THEN

TEMP3=1.0D-5

ENDIF

TEMP4=1/DSQRT(TEMP3)

! THIS MULTIPLIES A SCALAR (TEMP4) BY VECTOR (UI) TO GET S(X) FOR

I

CALL DVCAL (NCOMP, TEMP4, UIT(:,V+1), 1, ST(:,V+1), 1)

GRAD(:,V)=ST(:,V+1)-ST(:,V)

IF (V.EQ.1) THEN

CALL DVCAL(NCOMP,INTER,GRAD(:,V),1,GRADIENT1,1)

ELSE

CALL DVCAL(NCOMP,INTER,GRAD(:,V),1,GRADIENT2,1)
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ENDIF

80 CONTINUE

! NOW CHOOSE THREE POINTS WITHIN EACH SURFACE DEFINED BY THE

GRADIENT SO THAT ! WE CAN COMPUTE THE NORMAL VECTORS FOR EACH

SURFACE ! THEN THE CROSS PRODUCT OF (B-A)X(C-A) GIVES ME THE

NORMAL VECTOR (COMPUTE A NORMAL ! VECTOR FOR EACH SURFACE) THEN

USE COS(THETA) TO GET THETA

! COMPUTE NORMAL VECTORWS TO EACH SURFACE

GRAD1 AND GRAD2

! NOW CALCULATE THE ROTATION ANGLE BETWEEN EACH OF THE 4 CHOOSE 2

=6 FACES\

IF (J.EQ.1) THEN

CROSS(K,1)=GRADIENT1(4)*GRADIENT2(3)-

GRADIENT1(3)*GRADIENT2(4)

CROSS(K,2)=GRADIENT1(4)*GRADIENT2(2)-

GRADIENT1(2)*GRADIENT2(4)

CROSS(K,3)=GRADIENT1(3)*GRADIENT2(2)-

GRADIENT1(2)*GRADIENT2(3)

ELSEIF (J.EQ.2) THEN

CROSS(K,1)=GRADIENT1(4)*GRADIENT2(3)-

GRADIENT1(3)*GRADIENT2(4)

CROSS(K,2)=GRADIENT1(4)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(4)
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CROSS(K,3)=GRADIENT1(3)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(3)

ELSEIF (J.EQ.3) THEN

CROSS(K,1)=GRADIENT1(4)*GRADIENT2(2)-

GRADIENT1(2)*GRADIENT2(4)

CROSS(K,2)=GRADIENT1(4)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(4)

CROSS(K,3)=GRADIENT1(2)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(2)

ELSEIF (J.EQ.4) THEN

CROSS(K,1)=GRADIENT1(3)*GRADIENT2(2)-

GRADIENT1(2)*GRADIENT2(3)

CROSS(K,2)=GRADIENT1(3)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(3)

CROSS(K,3)=GRADIENT1(2)*GRADIENT2(1)-

GRADIENT1(1)*GRADIENT2(2)

ENDIF

82 CONTINUE

CROSSDOT=DDOT(3,CROSS(1,:),1,CROSS(2,:),1)

NORM1=DNRM2(3,CROSS(1,:),INCX)

NORM2=DNRM2(3,CROSS(2,:),INCX)

COSTH=CROSSDOT/(NORM1*NORM2+Small)

THETA=DACOS(COSTH)

M0=M0+THETA

81 CONTINUE
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! NOW GET CONSTANT USING IDENDITY FROM SU(2000)

CRITLO=1.96D0

CRITHI=DSQRT(C10)

! STARTING VALUES FOR SECANT METHOD

PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))/

(PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF(CRITLO**2.0D0/(DBLE(NCOMP)

+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))

PART4=1.0D0-DFDF(CRITLO**2.0D0/

DBLE(NCOMP),DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA(

(DBLE(NCOMP)-1.0D0)/2.0D0))/

(2.0D0*PI*PI**((DBLE(NCOMP)-1.0D0)/2.0D0))

PART6=1.0D0-DFDF(CRITLO**2.0D0/(DBLE

(NCOMP)-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

FX=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))

/(PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF(CRITHI**2.0D0/(DBLE(NCOMP)

+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))
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PART4=1.0D0-DFDF(CRITHI**2.0D0/DBLE(NCOMP),

DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA(

(DBLE(NCOMP)-1.0D0)/2.0D0))/(2.0D0*PI*PI**

((DBLE(NCOMP)-1.0D0)/2.0D0))

PART6=1.0D0-DFDF(CRITHI**2.0D0/(DBLE(NCOMP)

-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

FX1=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

K=1

ABSERR=1.0D0

SECANT: DO WHILE ((K.LT.MAXK).AND.(ABSERR.GT.EPSILON))

DF=(FX1-FX)/(CRITHI-CRITLO+Small)

DP=(FX1)/(DF+Small)

CRIT=CRITHI-DP

PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))

/(PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF(CRIT**2.0D0/(DBLE(NCOMP)

+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))

PART4=1.0D0-DFDF(CRIT**2.0D0/DBLE(NCOMP),

DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA((

DBLE(NCOMP)-1.0D0)/2.0D0))/(2.0D0*PI*PI**

((DBLE(NCOMP)-1.0D0)/2.0D0))
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PART6=1.0D0-DFDF(CRIT**2.0D0/(DBLE(NCOMP)

-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

TEMPFX=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

ABSERR=DABS(TEMPFX)

IF (TEMPFX.LT.0) THEN

CRITHI=CRIT

FX1=TEMPFX

ELSE

CRITLO=CRIT

FX=TEMPFX

ENDIF

K=K+1

ENDDO SECANT

SUM1=0.0D0

SUM2=0.0D0

MEAN1=0.0D0

MEAN2=0.0D0

DO 60 V=1,NCOMP

! CALCULATE CI FOR ETA=X’BETA THEN TRANSFORM TO GET CI ON MEAN

RESP
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! CONSTRUCT CI’S HERE (RECALL 4 SCB CI’S)

IF (VER.EQ.1) THEN

! BASIC SCR (N IS NUMBER OF POINTS IN X TO MAKE PREDICTIONS

FOR-NEVER MIND FOR NOW!)

LO(V)=LINEARC(V)-(CRIT)*DSQRT(VAR(V))

HI(V)=LINEARC(V)+(CRIT)*DSQRT(VAR(V))

IF ((LINEARCP(V).GE.LO(V)).AND.

(LINEARCP(V).LE.HI(V))) THEN

CONF=CONF+1

ENDIF

! CENTERED SCR SEE P.637 OF SUN(2001)

ELSEIF (VER.EQ.2) THEN

IF (KAP(2,V).LT.1.0D-5) THEN

KAP(2,V)=1.0D-5

ENDIF

LO(V)=LINEARC(V)-KAP(1,V)*DSQRT(VAR(V))

-(CRIT)*DSQRT(VAR(V))*DSQRT(KAP(2,V))

HI(V)=LINEARC(V)-KAP(1,V)*DSQRT(VAR(V))

+(CRIT)*DSQRT(VAR(V))*DSQRT(KAP(2,V))

SUM1=SUM1+KAP(1,V)

SUM2=SUM2+KAP(2,V)

IF ((LINEARCP(V).GE.LO(V)).AND.

(LINEARCP(V).LE.HI(V))) THEN

CONF=CONF+1

ENDIF
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ELSEIF (VER.EQ.3) THEN

! CORRECTED 2 SCR

!U=SOLVE Q2 FOR U: |u|+q2=c

XLO=0.0D0

XHI=1.4D0

!LOOP=V

YLO=Q2(XLO,V)

YHI=Q2(XHI,V)

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=1.0D0

COUNT=1

SECANTLOOP: DO WHILE ((ABSERR.GT.EPSILON)

.AND.(COUNT.LT.250))

XT = X2 - ((X2-X1)*Y2)/(Y2-Y1+Small)

YT = Q2(XT,V) - CRIT

IF (YT*YLO>0) THEN

XLO = XT

YLO = YT

ELSE

XHI = XT

YHI = YT

ENDIF

X1=XLO

X2=XHI
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Y1=YLO

Y2=YHI

ABSERR=DABS(YT)

COUNT=COUNT+1

ENDDO SECANTLOOP

UCRIT(V)=Q2(XT,V)-CRIT

IF (DABS(UCRIT(V)).LT.1.0D-4) THEN

UCRIT(V)=1.0D-4

ENDIF

LO(V)=LINEARC(V)-(DABS(UCRIT(V)))*DSQRT(VAR(V))

HI(V)=LINEARC(V)+(DABS(UCRIT(V)))*DSQRT(VAR(V))

SUM1=SUM1+UCRIT(V)

IF ((LINEARCP(V).GE.LO(V)).AND.

(LINEARCP(V).LE.HI(V))) THEN

CONF=CONF+1

ENDIF

ELSEIF (VER.EQ.4) THEN

! CORRECTED SCR ! GET MAX OF P2 BY SECANT METHOD

XLO=1.0D-2

XHI=2.0D0*CRIT

YLO=P2(XLO,V)

YHI=P2(XHI,V)

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=1.0D0
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K=1

LOOP=V

SECANTLOOP2: DO WHILE ((K.LT.MAX).

AND.(ABSERR.GT.EPSILON))

XT = X2 - ((X2-X1)*Y2)/(Y2-Y1+Small)

YT = P2(XT,V)

IF (YT*YLO>0) THEN

XLO = XT

YLO = YT

ELSE

XHI = XT

YHI = YT

ENDIF

X1=XLO

X2=XHI

Y1=YLO

Y2=YHI

ABSERR=DABS(YT)

K=K+1

ENDDO SECANTLOOP2

MAX_P2(V) = DABS(P2(XT,V))

UCRIT(V)=CRIT-MAX_P2(V)

! NOW USE SECANT METHOD AGAIN TO FIND CRIT FOR EQ.41 P. 440

CRITLO=1.96D0

! THIS IS SCHEFFE SOLUTION

CRITHI=DSQRT(C10)

! STARTING VALUES FOR SECANT METHOD
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PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))/

(PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF((CRITLO-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))

PART4=1.0D0-DFDF((CRITLO-MAX_P2(V))**2.0D0/

DBLE(NCOMP),DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA(

(DBLE(NCOMP)-1.0D0)/2.0D0))/(2.0D0*PI*

PI**((DBLE(NCOMP)-1.0D0)/2.0D0))

PART6=1.0D0-DFDF((CRITLO-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

FX=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))/

(PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF((CRITHI-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))

PART4=1.0D0-DFDF((CRITHI-MAX_P2(V))**2.0D0/

DBLE(NCOMP),DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA(

(DBLE(NCOMP)-1.0D0)/2.0D0))/(2.0D0*PI*

PI**((DBLE(NCOMP)-1.0D0)/2.0D0))

PART6=1.0D0-DFDF((CRITHI-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

206



FX1=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

K=1

ABSERR=1.0D0

SECANT2: DO WHILE ((K.LT.MAXK).AND.(ABSERR.GT.EPSILON))

DF=(FX1-FX)/(CRITHI-CRITLO+Small)

DP=(FX1)/(DF+Small)

CRIT=CRITHI-DP

PART1=(K0*DGAMMA((DBLE(NCOMP)+1.0D0)/2.0D0))/(

PI**((DBLE(NCOMP)+1.0D0)/2.0D0))

PART2=1.0D0-DFDF((CRIT-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)+1.0D0),DBLE(NCOMP+1),DBLE(N-P))

PART3=(KSI*DGAMMA(DBLE(NCOMP)/2.0D0))/

(2.0D0*PI**(DBLE(NCOMP)/2.0D0))

PART4=1.0D0-DFDF((CRIT-MAX_P2(V))**2.0D0/

DBLE(NCOMP),DBLE(NCOMP),DBLE(N-P))

PART5=((K2MEAN+KSI2MEAN+M0)*DGAMMA(

(DBLE(NCOMP)-1.0D0)/2.0D0))/(2.0D0*PI*

PI**((DBLE(NCOMP)-1.0D0)/2.0D0))

PART6=1.0D0-DFDF((CRIT-MAX_P2(V))**2.0D0/

(DBLE(NCOMP)-1.0D0),DBLE(NCOMP-1),DBLE(N-P))

TEMPFX=PART1*PART2+PART3*PART4+PART5*PART6-ALPHA

ABSERR=DABS(TEMPFX)

IF (TEMPFX.LT.0) THEN

CRITHI=CRIT

FX1=TEMPFX

ELSE
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CRITLO=CRIT

FX=TEMPFX

ENDIF

K=K+1

ENDDO SECANT2

IF (CRIT.LT.1.0D-5) THEN

CRIT=1.0D-5

ENDIF

LO(V)=LINEARC(V)-(CRIT)*DSQRT(VAR(V))

HI(V)=LINEARC(V)+(CRIT)*DSQRT(VAR(V))

SUM2=SUM2+MAX_P2(V)

IF ((LINEARCP(V).GE.LO(V)).AND.(LINEARCP(V)

.LE.HI(V))) THEN

CONF=CONF+1

ENDIF

ENDIF

60 CONTINUE

ECL(L)=DBLE(CONF)/DBLE(NCOMP)

8 CONTINUE

MEANECL=SUM(ECL)/DBLE(REPS)

RESULTS(1)=MODEL

RESULTS(2)=H

RESULTS(4)=N

RESULTS(5)=MEANECL

RESULTS(6)=VER

WRITE(9,*) RESULTS
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WRITE(10,*) MEANECL

CALL ERSET(0,2,2)

7 CONTINUE

3 CONTINUE

2 CONTINUE

END

DOUBLE PRECISION FUNCTION P2(U,V)

DOUBLE PRECISION U,KAP(5,4),KAQ(5,4),C(9),C2,N2,P3,

PART1,PART2,PART3,V

INTEGER LOOP

COMMON KAP,KAQ,P3,N2,C,C2,LOOP

PART1=KAP(2,V)-1.0D0+KAP(1,V)**2.0D0

PART2=(KAP(4,V)+4.0D0*KAP(1,V)*KAP(V,3))*(U**2.0D0-3.0D0)

PART3=KAP(3,V)*(U**4.0D0-1.0D1*U**2.0D0+1.5D1)

P2=U*(3.6D1*PART1+3.0D0*PART2+PART3)/7.2D1

RETURN

END

DOUBLE PRECISION FUNCTION Q2(U,V)

DOUBLE PRECISION U,KAQ(5,4),KAP(5,4),P3,N2,C2,C(9),
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PART1,PART2,V

INTEGER LOOP

COMMON KAP,KAQ,P3,N2,C,C2,LOOP

PART1=U*U-3.0D0

PART2=(U*U-1.0D1)*U*U+1.5D1

Q2=-U*(3.6D1*KAQ(2,V) + 3.0D0*KAQ(4,V)*PART1 +

KAP(3,V)**2.0D0*PART2)/7.2D1

RETURN

END
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