
PREFIX RECODING: A FRONT-END COMPRESSION

TECHNIQUE FOR SIMPLE PREFIX B-TREES

By

JOHN PATRICK JAGOE

Bachelor of Science

Rhodes University

Grahamstown, R.s.A.

1974

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
May, 1984

PREFIX RECODING: A FRONT-END

TECHNIQUE FOR SIMPLE PREFIX B-TREES

Thesis Approved:

ii ::1.:184161

PREFACE

This study examines the effect of receding common

prefixes of shortest separators and thus extending the

alphabet and compressing both the sequence set and the

simple prefix B-tree index. The purpose of the study is to

investigate the effect on a simple prefix B-tree of receding

prefixes with a shorter symbol that maintains collating

sequence order.

I would like to thank my major adviser Dr. Michael Folk

and the members of my committee Dr. John Chandler and Dr.

Donald Grace for their guidance and instruction in this

study. I am particularly indebted to Dr. Chandler for his

friendship and advice throughout my coursework.

In addition to the members of the committee, I would

like to thank Dr. James van Doren for the interest he took

in the thesis and for the encouragement he gave me as a

student. Special thanks are due to Dr. Donald Fisher who,

as department head, made it possible for me .to participate

in the program and who was a continual source of

encouragement and support.

Lastly, I wish· to thank Leeanna Jackson who met

numerous deadlines, always with a smile.

iii

Chapter

I •

II.

III.

TABLE OF CONTENTS

Page

INTRODUCTION 1

KEY COMPRESSION IN TREE INDICES. 13

PREFIX RECODED B-TREES • . • . • 27

Sequence Set Compression. • • • • • • • • • 34
Alphabet Cardinality. • • • • • • • • • 34
Index Compression • • • • • • • 35
Minimum Storage Limit • • • • • • • • • 41
Maximum Length of Prefixes. • • • • • • • • 41
The Choice of Prefixes. • . • • • • • • • • 42

IV. EMPIRICAL MEASUREMENTS OF THE EFFECT OF
RECODING PREFIXES. • • • • • • • • • • • • • 49

The Representational Model. • • • • • • • • 49
Test Cases. . • • • • • • • • • • • • • 53
The Results of Empirical Testing. • • • • • 54

V. SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE
RESEARCH • . • • • • • • . • • • . • • • 65

Summary • • • . • • • • • • • • • 65
Conclusions • • • • • . . • • • • 66
Suggestions for Further Work. • • • • • • • 67

SELECTED BIBLIOGRAPHY • 70

APPENDIX. . • • . • • 72

iv

LIST OF TABLES

Table Page

I • Expected Length of Separators in the Index
of a Simple Prefix B-tree 30

II. Length of Partial Separators in a Prefix
B-tree. 31

III. The Effect Prefix Recoding on the Base File 55

IV. The Effect on the Sequence Set. 56

v. The Effect on the Number of Separators. 57

VI. The Effect on the Separators Generated. 58

VII. The Effect on the First Index Level 59

VIII. Tree Structure: the Number of Nodes
at Each Level (Node Size=64 Bytes) • 61

IX. Tree Structure: the Number of Nodes
at Each Level (Node Size=128 Bytes) 61

x. Tree Structure: the Number of Nodes
at Each Level (Node Size=256 Bytes) 62

XI. Tree Structure: the Number of Nodes
at Each Level (Node Size=512 Bytes) 62

XII. Tree Structure: the Number of Nodes
at Each Level (Node Size=1024 Bytes). 63

XIII. Tree Structure: the Number of Nodes
at Each Level (Node Size=2048 Bytes). 63

v

LIST OF FIGURES

Figure Page

1. B-tree Index •••• 7

2. B-tree Index Node • 7

3. + B -tree Index and Sequence Set. 9

4. A Sequence Set Node Boundary. • 21

s. A Prefix B-tree Index Node •• • 23

6. Hypothetical File •. • • • • • 36

7. Symbol Requirements without Compression • • 43

8. Symbol Requirements with co Compression • • • 44

9. Symbol Requirements with co and con Compressed. 44

10. Symbol Requirements for Non-adjacent Nested Groups. 45

11. Symbol Requirements for Adjacent Nested Groups~ •• 46

12. Index Node Structure •. • • • 50

13. Sequence Set Node Structure • • • • • 51

14. Internal Node Organization .• • • • • 52

vi

CHAPTER I

INTRODUCTION

The rapid increase in the size of internal memories has

not moderated the need to discover more efficient methods of

transferring data from external to internal memory. As

internal memories have grown, so have the uses to which we

put computers. Today, typical database applications are

such that we need to access efficiently huge volumes of data

on external storage devices.

Information stored externally is usually organized in a

file, a collection of records of similar structure each of

which has a unique primary key. A file, or group of files

making up a database, may be accessed in two ways:

sequentially or randomly by the primary key. To access a

file sequentially, one starts at the beginning of the file

and accesses the records in the logical key sequence in

which the file is organized, called the key sequence order

of the file. Random access, also known as direct access,

refers to the retrieval of records by key independently of

each other. The choice between these two methods depends,

of course, on the requirements of a particular application;

frequently, applications will require that files may be

1

accessed both sequentially and

applications that the approaches

described in this thesis will

2

randomly. It is for these

discussed and the method

be of most interest.

Applications that require either sequential access or random

access alone are more easily and efficiently implemented by

means other than tree structured indices. If files are only

accessed sequentially, sequential files on tape drives will

suffice, and if random access alone is the required means,

then hash organized files (key-to-address transformation)

are superior to tree indices, especially where files are

static. Even in applications where files are dynamic,

hashing may be chosen, at the expense of re-hashing when

performance degrades, in preference to tree structured

indices because retrieval from a hash file can be achieved

in constant time as opposed to the logarithmic retrieval

times provided by tree structued indices. A point worth

noting here is that, when the nature of the key set is not

known in advance, designing an efficient key-to-address

transformation algorithm may be difficult or impossible.

Sequential access is of course impossible in a hash

organized file.

Index structures in general direct the search for a

particular record to a relatively small section of the file

thus circumventing the need to begin a search at the

beginning of a file. For a given file size, a logically

small index will tend to direct the search to a relatively

large interval in the file, while a logically large index

3

will faci~itate the direction of the search to a relatively

small interval. For this reason, indices to large files

tend to be large, and it may be necessary to store the index

itself as a file on an external storage device. Tree

structured indices--multilevel indices in which the first

index built on a file is itself indexed by a higher level

index, which in turn may also be indexed, and so on--evolved

in answer to the need to index very large files using large

indices stored on external devices.

There are many data structures that may be used to

implement an index: binary trees, height balanced trees,

and tries, to name but a few~ however, the evolution of tree

indexing structures has developed towards B-trees and the

many varieties of this structure. Today, in the words of

Douglas Comer, "the B-tree is, de facto, the standard

organization for indexes in a database system" (7).

The evolution toward B-trees with large numbers of keys

per node and away from tree structures with nodes containing

fewer keys (binary, AVL etc.) has been influenced by the

nature of external storage devices used in applications that

require random access. Disk drives are the primary device

used in these applications though drum and, more recently,

laser disks and bubble memory can and have been used. , The

latter three suffer from the same disadvantages in seek time

as disk drives, and the details will largely be ignored

here.

Accessing information on an external device such as a

4

disk drive is extremely slow relative to internal memory

accessing times. Typical disk drives have access times on

the order of milliseconds and data transfer rates of the

order of megabytes per second. Disk drives may be divided

into two classes: those with movable read/write heads (one

head per surface) and those with fixed read/write heads (one

head per track). Movable head drives are slower than fixed

head drives, due to the additional delay, called seek time,

of moving the head to the required track. Using either type

of drive, the access time of external storage is a

significant bottleneck. For large indices stored

externally, the major measure of efficiency is the number of

external accesses

the chosen index

parameters such

required

system,

as node

to complete a search. Whatever

database designers select

size so that the physical

characteristics of the particular device or system are

utilized efficiently. Node size is frequently chosen to

match the track dimensions or, in a virtual paging system,

to match the virtual page size. This strategy leads to a

generally accepted measure of efficiency for tree structured

indices: node visit cost. This measure assumes that each

node visited represents a new random access to external

storage and that the degree to which a particular index

structure solves the problems of the external access

bottleneck is given by the length of the path from root to

leaf in a tree structured index: the shallower the tree,

the fewer are the external accesses. The index is thus

5

deemed more efficient if the tree is shallow.

The tree structured indices common to large database

applications are multiway br~nching structures and can be

divided into two classes: static directories, also known as

index sequential structures, and uniform depth, dynamically

restructuring trees, commonly called B-trees. These two

classes will be discussed below.

Static directories are created so that they are, in the

initial state,_balanced, thus giving the desired effect of a

uniform search length for a particular key. The weakness of

this structure becomes apparent only in a dynamic

environment where insertions cause performance to degrade.

Static directories have a constant number of levels during

the period between restructuring. Insertion into the

underlying file create the need to insert keys in the index.

When an index node overflows, these index insertions are not

placed in the logical sequence of an index node but are

chained into overflow areas. The imbalance introduced by

insertions leads to performance degradation as well as the

loss of collating sequence order between primary pages and

overflow pages (loss of order may be corrected by sorting

primary and overflow pages on insertion). Periodic

restructuring eliminates the inefficiency introduced but the

structure requires careful monitoring to determine when

performance is approaching unacceptable limits.

B-trees, and the many variants of B-trees, differ from

the static directories discussed above in an important

6

regard: insertions and deletions result in local

reorganization which is performed incrementally at update

time, which maintains the structure's balance, and which can

be achieved inexpensively and at known cost. The depth of a

B-tree is guaranteed to be uniform, by rule 5 below, and the

cost of updating and dynamic restructuring is at worst

O(log n) where m is the branching factor and n the file m

cardinality. The following is a set of rules that define

the traditional B-tree:

1. The root, unless it is also the only leaf node,

will have at least two subtrees.

2. The order of a B-tree is said to be m, where m is

the maximum branching factor of a node. A node has at most

m subtrees.

3. All internal nodes (nodes other than the root and

leaf nodes) have at least fm/21 subtrees.

4. All internal nodes have one more subtree than

keys.

5. All leaves are on the same level (the tree grows by

splitting the root into two nodes and propagating a single

key up into the new root).

It can be seen from the definition above that the

B-tree indexing structure is the result of a trade-off.

Optimal storage utilization is traded for guaranteed

retrieval times. Nodes are allowed to remain only partly

filled (at least half full) in order that the uniform depth

characteristic may be guaranteed. Figure 1 below depicts a

simple B-tree.

I I
I I key
II __

Figure 1. B-tree Index.

I I
key 1·1
__ II

- - - - --~,------r~----~-

........... key key

Figure 2. B-tree Index Node.

7

In fact, the cost in terms of decreased storage

utilization is not, in practice, as severe as might be

expected from rule 3. Empirical studies have demonstrated

that nodes approach, on average, 70% storage utilization

after random insertions and deletions (22). In addition,

some variants of B-trees have more stringent rules for

underflows (rule 3) which require that nodes be at least 2/3

full, for example B*-trees.

Overflow conditions created by insertion into a full

node are resolved by various combinations of overflow

sharing

sibling

schemes (keys are passed to

nodes when possible) or by

8

underfull adjacent

node splitting when

necessary (a node is split into two and a key propagated up

to the next level, this process possibly cascading all the

way to the root where a split produces a new root and

increases the level of the tree by one}.

Underflow conditions created by deletion from a node

such that rule 3 is contravened are resolved by various

combinations of underflow sharing schemes (keys are passed

from adjacent sibling nodes

than sufficient keys to

when these siblings have more

remain legal) or by node

concatenation when necessary (adjacent sibling nodes are

coalesced into a single node and a key is removed from the

level above, this process possibly cascading all the way to

the root, causing the tree to shrink by a level).

These updating strategies are the basis of the

incremental, dynamic, logical reorganization that underlies

the uniform depth advantage of B-trees, the uniform node

visit cost, to use the term current in index evaluation. It

is this structure's avoidance of imbalance and thus

performance degradation which recommends it so strongly over

the static directory index.

A fact that recommends B-trees over hash indexing is

that, even in the traditional B-tree, the logical collating

sequence order of the keys is maintained albeit at the

expense of costly symmetric order traversals of the index

(full records and keys are stored in the index of a

9

traditional B-tree, unlike some of the later variants

discussed below) •

Before B-tree variants are discussed, it is necessary

to define + the terms B*-tree and B -tree. Following the

nomenclature proposed by Douglas Comer (7), the term B*-tree

will be reserved for a "B-tree in which each node is at

least 2/3 full" (instead of just 1/2 full). Again following

Comer, term + B -tree will be used to refer to the

B-tree variant in which the tree is organized in two

distinct parts: the index part, which is a B-tree of search

keys but contains no other information other than pointers,

and the sequence set, a linked list of leaves in which the

full record or the key and a pointer to the full record is

stored. + Figure 3 below depicts a B -tree.

Index Part

'-------------------------·
1====1->1====1->1====1->1====1-> ->1====1->1====1

Figure 3. B+-tree Index.

10

Noteworthy here is the fact that this sequence set is

the equivalent of the leaf level in the traditional B-tree

and that, in the + B -tree, a sequence set node split

propagates upwards only the key part of the entry. Part of

the confusion of terminology in the literature results from

the fact that trees are frequently hybrids: a particular

tree may, for + instance be both a B*-tree and a B -tree

(rule 3 defines underflow at the 2/3 full level and all full

records are stored at the leaf level, in the sequence set).

The B*-tree requirement that nodes are at least 2/3

full increases storage utilization at the expense of

slightly more complicated balance maintaining algorithms and

the associated increase in processing complexity. Overflow

sharing is required until two adjacent nodes are full: these

two nodes are then split into three nodes, each 2/3 full.

Deletions result in underflow sharing until three adjacent

siblings can be coalesced into two full nodes.

The major contribution of the + B -tree variant is

that, by maintaining a sequence set of full records and an

index of keys alone, all the full records are at the bottom

level--in the sequence set. This fact, in addition to the

customary practice of linking the sequence set with

horizontal pointers, ensures that sequential access is

trivially implemented. Not only is sequential processing

from the beginning of the underlying file easily

implemented, but also, a "next" operation after a random

11

access can be achieved in at most one additional access to

external storage (to fetch the next sequence set node in

logical collating sequence order).

Thus far, this description has been concerned with the

design of indices. Before further discussion is possible,

it is necessary to make a distinction between two broad

classes of record type: fixed length records and variable

length records. In the following discussion, a record may

mean either the full record containing all information or a

"record" from the index .point of view, a field containing

only a key and a pointer to the full record. Applications

requiring fixed length records abound: however, we shall be

concerned here with applications that necessitate the use of

variable length records and keys. More specifically, this

thesis and the B-tree variants simple prefix B-trees and

prefix B-trees deal with applications in which the search

key is a variable length word constructed from some

alphabet. The empirical studies presented in Chapter IV use

a 24,000 word dictionary of English language words.

The programs written to support this study were written

as though for a simple dictionary application: however, this

specialized type of applicaton is becoming increasingly

important with the advent of document data base retrieval

systems. These systems enable a user to access variable

length unformatted records, namely documents in a document

collection, by a variable length key, namely words from the

document which are extracted and designated as indexing

12

terms or keys based on analysis of the frequency of use in

the various documents making up the collection. The records

in the sequence set are usually made up of a key index term

and an inverted list of document numbers which identify the

documents containing the term with some required frequency.

Simple prefix B-trees and prefix B-trees were developed

by Bayer and Unternaur as a method of increasing the

efficiency of + B -trees (called by them B*-trees) in an

environment that necessitated the use of variable length

keys. This thesis will compare empirically simple prefix

B-trees and an implementation of an indexing structure that

is based on Bayer and Unterauer's prefix B-tree and on their

observations about the effect of the alphabet size on the

average expected length of separators. This investigation

is limited to the measurement of the effect of this

technique on static dense indices (packed newly recreated

dynamic B-trees and static B-trees), and in addition, to the

testing of the method on indices built on words in the

English language. These indices find important applications

in document data base retrieval systems as well as in

dictionary data bases.

CHAPTER II

KEY COMPRESSION IN TREE INDICES

Text compression is of interest beyond the area of data

base indexing: however, the ideas developed in other areas

influence the approaches taken by those interested in index

compression. There are, in the specialized field of index

key compression, some additional constraints not encountered

when one attempts to compress data, for example, to ensure

efficient transmission. These constraints arise from the

purpose of the strings we would like to compress, namely

that the meaning of the terms is derived solely by virtue of

the ability to direct a search through an index. Thus, the

properties that distinguish various areas in the collating

sequence of the underlying data base cannot be destroyed

without making the index keys worthless. On the other hand,

the keys can be transformed in any convenient way without

concern for recovery as long as this ability is not lost.

In addition

nature of

available

to the constraints indicated above, the very

index keys gives rise to opportunities not

in general text compression, namely what is

referred to as the sorting induced redundancy inherent to

indices. It is the removal of this sorting induced

13

14

redundancy that the front-end compression techniques

discussed below will attempt to achieve. This chapter will

discuss the rationale for index compression and key

compression, present a broad overview of general data

compression techniques and the applicability to the task at

hand, and then briefly describe some proposed solutions to

the problem of compressing indices.

The justification of index compression is reasonably

obvious. Very large databases require large indices to

direct the search to a relatively small areas in the data

set. Given the size of modern indices, the alternatives to

storing ilie index on external devices are few, and

therefore, a decrease in the physical size of an index while

maintaining its logical size is advantageous. Although

pointer compression is a means of contributing to this

decrease, it is key compression that concerns us here. In a

multilayered tree structured index, compression of the keys

defining the search path increases the fanout at any

particular level in the index and may reduce the number of

levels and thus the disk accesses required during traversal

of a search path. In B-trees and B-tree variants this

increased fanout is referred to as an increase in the

branching factor or the order of the B-tree.

There are various ingenious methods of compressing

textual data. Some of the general principles are discussed

here as well as the reasons why some of these schemes are

not readily applicable to the coding of keys in an index.

15

A common approach is to use bit strings of just

sufficient length to encode the required set of characters.

For example, data consisting of the decimal digits, upper

and lower

characters

saving 25%

case

may

of

alphabetic characters, and any two special

be coded in bit strings of length 6, thus

the space normally required. This seemingly

attractive approach would require, in the context of index

keys, either a decoding step for each character for each key

comparison or the adaptation of the comparison process so

that the standard unit of comparison becomes 6 bits. The

approach presented later in this thesis takes the opposite

view. The alphabet is extended so that all 8 bits are used.

This will take advantage of the savings in index space

observed by Bayer and Unterauer and discussed at the end of

this chapter.

Another standard method of compression is to recode a

substring chosen on the basis of its length and frequency in

the text and replace it with a symbol or a number that is an

index into a dictionary of compressed substrings. This is

very similar to the prefix recoding technique presented in

Chapter III. In standard text compression, substrings are

compressed throughout the entire text, whereas, with the

prefix recoding technique, only prefix frequency is used to

choose substrings for recoding and then only prefixes and

initial characters are recoded. Common prefixes of length

greater than one are recoded to save storage while all other

initial letters are recoded to maintain a key's capacity to

16

direct a search and to extend the alphabet.

Huffman coding, a minimum redundancy code for single

symbol encoding, produces variable length bit strings which

represent symbols. The idea here is that the number of bits

used to represent a symbol is inversely proportional to the

logarithm of that symbol's frequency of occurrence in the

text. Frequent symbols are given the shortest codes and

longer bit string codes are constructed for less frequent

symbols such that the short codes already assigned do not

appear as initial bit sequences in these longer bit strings.

This eliminates the need for bit string demarcation. Not

only does the variable length of bit strings produce

problems in the context of index key comparison, but also,

the assignment of codes does not maintain collating sequence

order between keys.

Numerical encoding compresses text by using a symbol's

position (p.)
l.

in a dictionary of symbols and the total

number of symbols in the dictionary (B) in conjunction with

some unit of grouping (N) to compress N symbols by creating

a unique number from the following expression:

* N-1 * N-2 * Pl B +P2 B + ••• +PN-l B+PN

The original text can then be recreated because B and N

are known, P can be derived, and the dictionary used to

expand the compressed text. This method does preserve

collating sequence order, but is not applicable to keys of

variable length unless N is chosen equal to the maximum key

17

length or, in the case where rear end compression has

already been performed, equal to the maximum length of the

shortest separator. This restriction introduces difficulty.

While it is easy to establish the maximum length key or

shortest separator length when an index is created, there is

no way of knowing how this maximum will change as insertions

are made in the database. The savings achieved would vary

with the amount by which the average key or separator is

shorter than the maximum key or separator. This technique

is interesting, but not the subject of this study.

The last standard data compression technique discussed

here is that of squeezing out long sequences of identical

characters such as leading or trailing blanks. This

technique is obviously of little value to index compression

where these long sequences do not typically occur.

The problem of compressing indices has been approached

in various ways. The temptation to compress keys is

frequently resisted in environments where keys are of fixed

length since compression techniques frequently yield

variable length compressed keys (not the case for numerical

en?oding) which necessitates additional administrative space

either in the form of intra-node pointers

indicating the starting position of keys or a length field

attached to each key. Another objection to compression is

that variable length keys cannot be searched efficiently

within a node (15). The second objection is just not valid

since using intra-node pointers permits intra-node searching

in the node,

18

in time of O(log n) by means of a traditional binary search

with an extra level of indirection via the intra-node

pointers. The first

under consideration

already of variable

objection is moot in the applications

here since compressing keys that are

length does not add to the cost of

intra-node operations nor to the intra-node storage

requirements: intra-node pointers are already required.

There are several approaches to the compression of

indices: binary compression (22), prefix B-trees (3),

simple prefix B-trees (3), and a front-end compression

technique developed by Clarke et al (5 and 6). These

approaches are discussed below.

The technique of binary compression of index keys

produces a binary tree of variable search path length (22).

The creation of the binary compressed index is achieved by

virtue of the placement of a pair of index keys in two index

positions based on the most significant single bit

difference. The position of the difference bit and either a

pointer to another position in the index or a data address

are retained in the index. The fact that the nodes, being

binary, are not easily tied to the read capacity of an

external device makes this type of index an unlikely design

choice for applications with very large indices stored

externally. In addition, the indexing technique does not

necessarily produce a uniform length search path. Although

this can be forced during the initial building of the index,

the tree may become unbalanced during insertion or deletion,

thus making it subject

undesirable possibility.

19

to performance degradation, an

The ability to access the sequence

set sequentially can only be obtained by creating the index

pointers as offsets into a list of sequence set pointers.

This addition represents additional index overhead.

The remaining techniques are termed character

compression. These methods take advantage of two aspects of

indices, namely that the sorted order of an index of keys

ensures that the set has inherent to it some degree of

prefix redundancy and that the least significant bits of a

pair of keys are not needed in the determination of a search

path (the first difference bit or character suffices).

These approaches have led to what is termed front-end

compression in the case of prefix redundancy and rear-end

compression in the case of least significant character

truncation. Of course, the degree of sorting induced prefix

redundancy depends heavily on the size of the alphabet

making up the keys relative to the size of the index.

Considering the two extremes makes this observation

intuitive. Given an alphabet of 26 characters and a file of

26 keys, it is possible, though not inevitable, to have no

prefix redundancy at all. Given an alphabet of 1 character

and a file of any length, it is inevitable that there is

total prefix redunancy. This idea is important to the

method tested in this thesis and will be discussed further

in the next chapter.

There is an important difference between front and

20

rear-end compression. Since, in + the B -tree variant,

the index serves only to guide a search of the sequence set

where all full records are stored (or pointers to full

records), keys in the index may be altered at will as long

as their ability to direct the search is maintained. This

assertion is not true of pure B-trees where the search may

terminate above the leaf level and alteration of a key would

create ambiguity as to whether a key existed, because full

records are stored in the index. The truncation of least

significant characters may be performed . +
~n a B -tree

application without concern for key reconstruction.

However, if we compress a prefix, we must either be able to

reconstruct it or have replaced it with a symbol that

assumes the prefix's function of maintaining collating

sequence order. The methods discussed here are based on the

ability to reconstruct the prefix or construe its value from

adjacent keys. The method that is proposed in this thesis

is based on the replacement of a prefix by a shorter symbol

that assumes the function of the prefix. The weakness of

the prefix reconstruction approach is that the complexity of

index operations is greatly increased; the cost of the

replacement technique is that the replacement byte is

required and that less storage is saved.

Three approaches to index compression will now be

discussed: simple prefix B-trees, prefix B-trees (3) 1 and

an unnamed character compression technique developed at IBM

by Clarke et al (5 and 6) and discussed by Chang (4) and

Wagner

to here

(22) • For convenience,

as the Clarke method.

21

this method will be referred

The order of this discussion

is based on the following. Simple prefix B-trees produce

rear-end compression and are of proven value. The other two

methods, prefix B-trees and the Clarke method, compress both

front and rear portions of a key and overlap conceptually to

such a degree that the adjacent discussion simplifies the

explanation.

A simple prefix B-tree is a B+-tree in which the

variable length, shortest separator between two keys

bridging a node boundary at the sequence set level is

propagated up into the index thus saving space in the index

and decreasing the number of disk accesses.

For example, a node division at the sequence set level

may appear as shown in figure 4.

concur condemn

Figure 4. A Seqence Set Node Boundary

In this case, the shortest separator needed to guide a

search in the immediately preceding level is the unique

prefix of the second key, cond • The rear end compression

of "emn" saves space. There may be many possible separators

22

of optimal length: there are certainly many of less than

optimal length (conde would function as well as cond).

However, since the object is to save storage, Bayer and

Unterauer (3) define the selection of a shortest separator

as follows:

Let x and y be any two keys such that
x<y. Then there is a unique prefix y of y
such that (a) y is a separator between x and
y, and (b) no other separator between x and y
is shorter than y (p.l2).

It should be noted that the separator may be either

less than or equal to the collating sequence value of y and

that it is always greater than x by virtue of y being

greater than x. Equal key values are not permitted (or

useful) in an index. The search algorithm for a simple

prefix B-tree is based on this relationship between

separator and pairs of index keys used to generate the

separator: in the event that a search key is equal to a

separator over the entire length of a separator, the search

path associated with that separator is taken. It should

also be noted that, in a multilevel index structure,

rear-end compression only takes place with the initial

creation of index keys. Further rear-end compression at

higher index levels would create search path ambiguity.

Bayer and Unterauer (3) found the following by

experimentally comparing simple prefix B-trees with

B+-trees (called B*-trees in the article):

23

1. Time complexity - index operations ¥equired time almost
identical to the same operations in B -trees.

2. External disk accesses {1) no decrease in trees of
fewer than 200 nodes. {2) 20-25% decrease in trees with
between 200 and 400 nodes {p. 24).

A prefix B-tree takes the idea a step further and

stores only once, in the index nodes or preceding parts of

the subtree, the common prefix of the shortest separators,

thus further reducing the storage requirements and external

accesses {reducing the height of the index).

For example, if at some level of the index all the

shortest separators in a node share the common prefix con ,

the keys may be stored as shown in figure 5.

d fi tarn voy j

Figure 5· A Prefix B-tree Index Node

The compression is achieved by avoiding multiple storage of

the common prefix con •

The common prefix can be reconstructed either from the

node itself or from the node and the node's ancestors. An

alternative here that saves multiple reconstruction of index

keys, one

search, is

characters

search. It

compression

for

to

from

is

are

24

each key comparison during an intra-node

adjust the search key by deleting prefix

the search key prior to an intra-node

worth noting that savings from front-end

likely to be greater at lower levels in the

index. This increased

the fact that adjacent

compression is likely by virtue of

index keys at the lower levels are

certain to be closer together in terms of collating sequence

distance than are index keys at higher levels in the tree.

In other words, keys nearer the root direct the search to

wider and more distant parts of the sequence set, and the

search is narrowed as we drop down from level to level.

Unlike rear-end compression where a one time truncation take

place and then saves space at all levels of the index,

front-end compression is most effective at the lower levels

and then less effective with each higher level, if it takes

place at all (the least likely place for keys to share a

common prefix is at the root level).

This type of key compression does increase the

branching factor and decrease the size of the index:

however, these advantages are achieved at the cost of

greatly increased time needed for index operations. This is

partly due to the cost of reconstructing keys during a

search, but also due to the necessity of reconstructing and

recompressing keys during a page split and even during the

insertion of a new key in a node with sufficient space.

There is also a potential instability: if a new key is

25

inserted, either at the logical beginning or end of a node

and if this insertion changes the common prefix of that

node, then the compressed keys have to be expanded and the

possibility exists that the expanded keys cannot be handled

by a simple page split. While it is true that the

compression prior to the insertion would have to have been

very significant, this potential for instability exists and

makes questionable the idea that dynamic node restructuring

takes place in order of log n where m is the branching m
factor and n the index size. In addition to these above

mentioned drawbacks, Bayer and Unterauer (3) have

established experimentally that prefix B-trees reduce

external accesses very little relative to simple prefix

B-trees (a 2% decrease) and that normal indexing operation

require 50-100% more time.

The compression method termed here the Clarke method is

very similar to Bayer and Unterauer's prefix B-tree in terms

of its goals, that is front-end compression of sorting

induced redundancy and rear-end truncation of characters

that are functionally redundant for search path definition.

Compressed keys are generated by comparing adjacent index

keys. Characters preceding the first difference byte of the

larger key are not stored but are later construed from the

preceding keys using two count fields kept with each

compressed key: the length of the compressed key and the

length of the prefix that was compressed. The underlying

idea is very close to that of the prefix B-tree; the

26

realization differs in an important respect: an intra node

search must

for

node

large

could

take place sequentially, an expensive operation

numbers of keys. Recall that the prefix B-tree

be

pointers once

scanned using a binary search via intra-node

the compressed prefix was removed from the

The Clarke method has some advantages over search key.

prefix B-trees in that the operation for inserting a key

requires only a local update of the preceding and succeeding

keys. The cost of serial intra-node searching can be

reduced by creating, internal to the node, a two or more

level index , which in turn will make the compression rules,

search, and splitting algorithms more complex. The

performance of the Clarke method is unknown~ however, based

on the rules of compression, it appears that more storage is

saved than prefix B-trees save (a prefix does not have to be

common to all keys, just to adjacent keys) but that this

savings is achieved at the expense of much greater

intra-node traversal time and at the expense of the count

fields required for each key (if both numbers stored in the

count fields are less than 16, both may be represented in 8

bits).

CHAPTER III

PREFIX RECODED B-TREES

The two front-end compression techniques described in

chapter II rely on the reconstruction of the prefix to

define the search path. In an attempt to avoid the

additional time complexity involved in these approaches,

prefix receded B-trees are proposed here. This method will

trade some of the storage that could be saved by either the

prefix B-tree or the Clarke approach for greatly decreased

time complexity during indexing operations. It will avoid

the necessity to reconstruct keys by replacing compressed

prefixes and all initial characters with symbols that

maintain collating sequence order. Part of the motivation

for this approach is Bayer and Unterauer's (3) observations

{analytically arrived at and experimentally confirmed) about

the effect of the alphabet cardinality on separator size in

a randomly generated key set.

Bayer and Unterauer's analysis summarized here is only

an approximate analysis. Their purpose is to arrive at a

means of obtaining a theoretical approximation of a siinple

prefix B-tree, an index having the least significant

characters truncated. The results are only vaguely related

27

28

to what is attempted here: the recoding of prefixes as a

means of saving storage. The expected length of their

shortest separator is somewhat related to prefix recoding.

Although their purpose is not to suggest the extension of

the cardinality of the alphabet, the results they present

suggest that such an extension would save much storage.

Several points with respect to their analysis should be

noted here. The analysis assumes fixed length keys. The

authors see no reason why variable length keys should

produce significantly different results: however, since

prefix recoding is a strategy proposed to deal with variable

length keys, it should be borne in mind that Bayer and

Unterauer's assumption may make a significant difference.

For this reason, their analysis is presented ·here only as a

recommendation of recoding and not as a theoretical

underpinning of the method. In addition to key length,

Bayer and Unterauer assume that the keys are randomly

distributed over the possible maximum cardinality of the

file (given by ak where a is the alphabet and k the

fixed length of keys). In the English language, however,

keys tend to cluster in certain areas. For example in the

dictionary used as a key set to test prefix recoding, 950 of

the 24,000 words start with the prefix co • There are 676

possible 2 letter combinations for an alphabet of 26 letters

(26 2). The fact that 4% of the keys fall into 1 of 676

slots (0.0015%) illustrates this clustering. The greater

the degree of this clustering, the greater is the chance

29

that longer separators will be needed for a given alphabet.

But in addition to this observation, it seems that the

longer the generated separators are, the more room there is

for prefix compression.

The drawback to the theoretical approach to this

problem is that it is impossible to draw general conclusions

unless one assumes that the key set is of a random nature.

Index terms extracted from a natural language are unlikely

to be random and thus the closest we can come to predicting

the results of this type of compression is to make

preliminary measurements of a particular key set. An

analysis of the key set used for this study indicated that

of there were 703 variable length combinations with a

maximum length of 2. This number was determined as follows:

1. There are no duplicate keys.

2. There are 26 letters in the alphabet (26 2=676}

3. There are keys with a trailing blank
(giving 26 additional possibilities.

4. The string 'bb' was allowed
(1 additional possibility}.

By scanning the actual key set it was found that 19,543

of the 24,000 keys (81.43%} were in 98 of the 703 slots

(13.94%}. This fact seems to indicate that there is

considerable clustering in the key set and that recoding

common prefixes may be profitable. It should be noted that,

when Bayer and Unterauer extend the cardinality of the

alphabet, this extension takes effect over the entire key,

30

whereas prefix receded B-trees extend the cardinality of the

alphabet used to code prefixes and initial characters but

leave the remaining characters in a key consisting of the

original alphabet (having cardinality of 26).

Tables I and II below summarize Bayer and Unterauer's

observations.

TABLE I

EXPECTED LENGTH OF SEPARATORS IN THE INDEX OF A
SIMPLE PREFIX B-TREE*

n

a

26 2.483 3.104 3.842 4.615

256 1. 774 1.976 2.517 2.936

* a=alphabet cardinality; n=file cardinality

Source: R. Bayer and K. Unterauer, "Prefix B-Trees,"
ACM Trans. on Database Syst. Vol. 2,

No. 1, March, 1977.

The average length of separators determined

experimentally was 0.35 lower than the theoretical

results above.

31

TABLE II

LENGTH OF PARTIAL SEPARATORS IN A PREFIX B-TREE

n

k 103 104 105 106

10 1. 73 1.80 1.91 1.80
100 2.48 2.35 2.54 2.69 a=26
100 2.48 3.10 3. 09 3.32

10 1. 77 1. 23 1. 55 1.60
100 1. 77 1.98 1. 77 1.97 a=256
1000 1. 77 1.98 2.52 2.19

Before discussing prefix recoded B-trees and comparing

these with prefix B-trees and the Clarke method, it should

be noted that all three methods will employ rear-end

compression, a proven method of index compression and the

subject of Bayer and Unterauer's compression technique:

simple prefix B-trees.

Prefix recoding will attempt a slightly less ambitious

compression of the sorting induced redundant prefixes

inherent in indices. Each initial letter will be replaced

by a new ASCII character and, where it is found to produce

nearly maximum saving, not only the initial character but

also an entire prefix {of variable length) will be replaced

by one of the 255 ASCII characters. Using 255 of the

symbols provided by 8 bits is, in a sense, an extension of

32

the alphabet, although the extension is restricted to the

initial parts of index keys. This fact and the fact that

rear-end compression truncates all characters after the

first difference character motivates the proposal for prefix

recoded B-trees made here.

The details of this proposal and of the "storage versus

intra-node operation efficiency" trade-off are as follows.

The 26 letters of the alphabet are usually stored one

character per byte {upper case letters can be converted to

lower case since storing words in alphabetic order requires

that upper and lower case letters be interspersed). This

usage, of course, is wasteful since it takes only 5 bits to

code 32 and thus 26 patterns. We can make use of the

additional bits by defining a 255 letter alphabet {one

pattern being reserved as an end-of-word delimiter) which is

used to represent words by replacing common prefixes in the

sequence set with patterns that are chosen so as to maintain

collating sequence order and compress prefixes. The

approach is to choose the prefixes for compression so that

the storage saved is maximized of nearly maximized. This

prefix recoding appears to have considerable advantage over

the original method of front-end compression proposed by

Bayer and Unterauer with respect to computational complexity

during index operations such as inserting and deleting.

1~ereas Bayer and Unterauer propose a compression technique

that requires dynamic updating during these operations the

technique prop0sed here requires a once-only analysis and

receding of the

index for static

33

sequence set prior to building the packed

trees as well as the relatively much

simpler task of converting each search key to the new scheme

and decoding entries in the sequence set for display. This

advantage is achieved at the expense of the additional

character that replaces the prefix during receding and of

limited compression (the number of prefixes that can be

compressed

alphabet).

is limited by the cardinality of the new

However, prefix receding takes place in the

sequence set and the savings in storage is felt at this

level, as opposed to the prefix B-tree approach where full

keys are stored at the sequence-set level. This extra

savings at the sequence set will provide some small

additional savings but is not exected to be significant

where the node size is large and the number of index keys

per node is high.

As was outlined in the previous chapter, the Clarke

method enjoys the advantage of greater prefix compression

than the prefix B-tree (due to the fact that prefixes do not

have to be common to a large number of keys before these

prefixes are compressed), but this additional compression is

achieved at the expense of requiring a sequential intra-node

search during index operations or a complex and expensive

intra-node structure consisting of multiple levels. Prefix

receding will allow efficient intra-node operations

(log2 m where m is the branching factor of a node)

while achieving compression that, although not as great as

34

the Clarke method, is expected to be significant in terms of

index size reduction and decrease in node visit cost. The

optimization of performance within a node is said by Lomet

(13) to be important, especially in a multi-user environment

where the release of a node may be awaited by a second

process.

The effect of prefix receding has three different

aspects. These are discussed in increasing order of

expected importance below.

Sequence Set Compression

There will be a decrease in the size of the sequence

set due to prefix compression at this level. This decrease

may not be enough to save even one node at the lowest index

level (the level above the sequence set) when nodes are

large and relatively many keys per node are stored, but as

node size decreases, and thus the number of keys stored in a

node decreases, the effect may become significant.

Alphabet Cardinality

By increasing the cardinality of the alphabet, the

method will decrease the size of shortest separators. A

simple illustration is as follows: if every possible key

exists in a file of keys where the alphabet size is three,

35

then there are only three shortest separators of length one.

Given the fixed maximum key length, increasing the alphabet

size to 10 creates many more possible keys, but, if the

original keyset can somehow be translated into the new

alphabet, there would then be 10 shortest separators of

length one, thus reducing the average shortest separator

length. A similar assertion can be made for the increase in

the number of shortest separators of length two and greater.

Index Compression

Common prefixes are compressed in the index. For

example, since the prefix con is common in the sequence

set, it is reasonable to expect it to be more frequently

encountered in the index than a prefix occuring less

frequently in the sequence set. Hence, the compression of

con in the sequence set saves storage in the index.

There follows a discussion of how prefixes are chosen

for compression. Common prefixes occur where the keys in a

set are relatively long and relatively close in terms of

collating

follows.

and the

maximum

sequence distance. What we mean by this is as

Given the length of the largest word in a key set

cardinality of the alphabet making up the keys, the

number of keys (called slots here) in a hypothetical

file is given by the following formula.

n

maximum=

i=0

i a (l)

36

In the above formula, a represents the alphabet

cardinality and n the length of the largest word. Keys are

unique and so the closest the keys can be in terms of

collating sequence distance is that the keys occupy two

adjacent slots in the hypothetical file. Figure 6 below is

used as a simple example. The underscore character '

represents a blank.

a l - case a a .-
abb 2 abc case

ace case 4 b

bac 3 bb case

CCC

Figure 6. Hypothetical File.

37

Consider figure 6 above for purposes of illustration.

The alphabet consists of three characters (a,b, and c) and

the maximum key length is three. The adjacent pairs of keys

exhibit one of the following characteristics:

1. The two keys have in common all characters except

that the second key has an additional character that is the

lowest character in the alphabet (aa_ and aaa, b_ and ba).

2. The two keys are of the maximum length and differ

only in that the second key has a least significant

character that is greater by one than the least significant

character of the first key (abb and abc, ebb and cbc).

3. The two keys have in common all characters up to

some point between the first and the last character, after

which the first key has the highest character in the

alphabet in all subsequent positions and the second key has

blanks in all positions following the difference.

4. The first key is the highest possible key in the

subset defined by

is the lowest key

character higher by

the initial character and the second key

possible in the subset defined by the

one than the initial character of the

first key. (ace and b , bee and c __).

From the above description it can be seen that, in case

1, there is room for some prefix compression, the degree of·

which depends on how many characters the keys share in

common. In case 2, there is room for much compression: all

but the least significant character is a candidate for

compression. Case 3 provides some room for compression.

38

The extent of this compression depends on how many

characters are common to both keys. Case 4 provides no room

for compression: the shortest separator will be of length 1

(the initial character of the second key). However, after

extending the alphabet, the number of times this case occurs

in the hypothetical file is increased. It should be noted

that this case occurs infrequently: as many times as there

are characters in the alphabet.

In this thesis, prefixes are chosen so as to save

storage. An attempt is made, within two arbitrarily set

maximization of storage

attempt to spread the new

limits,

saved.

to closely approximate

Another approach is to

symbols as evenly as possible over the sequence set, so that

groups of words sharing a common receded prefix are of

nearly equal size. This would avoid the possibility that a

receding symbol is used on a prefix that is long, but common

to few words and thus susceptable to being 'buried' in the

middle of a sequence set node and not participate in

decreasing the size

alternative is not

parameters that is

prefixes considered

of shortest separators. This second

considered here although one of the

arbitrarily set (the length of the

for compression) has the effect of

influencing how evenly the new symbols will be spread.

When we consider real key sets, especially if these

consist of index keys from a natural language like English,

the number of slots defined by the alphabet and maximum word

length is far greater than the number actually filled by

39

existing keys. Also, the keys are not randomly interspersed

among the slots, but, to some extent, tend to cluster. It

is in the areas where clustering occurs that prefix

compression by receding will be most beneficial.

There are two dimensions that affect the amount of

storage saved by prefix compression. The first is the

number of occurrences of a particular prefix. The second is

the length of that prefix.

In this

considered.

characters

single-byte

one byte

thesis, prefixes of variable length are

The shortest prefixes considered are two

long. Since the two byte prefix is replaced by a

ASCII symbol, the saving of storage is exactly

per occurrence of the prefix in the sequence set

per occurrence in the index. The and, likewise, one byte

storage saved by prefixes of greater length--three and four

character prefixes--is given by the following formula:

Storage saved = (len * num) - num (2)

(where len is the prefix length and num is the number of

occurrences of the prefix). Since, by definition, a

sequence of keys having in common an n character prefix have

in common an n-1 character prefix, we can speak of prefix

groups, candidates for compression, as being contained

within

con

and

other prefix groups.

is contained in the group

cont are contaned in

For example, the prefix group

co • Both the groups cons

con which is of course

40

contained in the group co • This nesting introduces some

complexity in the choice of prefixes for compression. To

consider all possibilities--prefix groups ranging from

groups of length two to groups equal in length to the

largest key as well as all possibilities for number of

occurrences, ranging from a pair of keys sharing a common

prefix to the largest group of two character prefixes--is

impossible f.or a large sequence set on the equipment

available for this study and within reasonable time

constraints. For these reasons, two arbitrarily set limits

(described below) constrain the choice of prefix groups for

compression.

It should be borne in mind that there are only 255

symbols available in the present proposal. Also, most

prefixes chosen for compression require the use of two of

these new symbols. If we choose the group co for

compression we need three symbols as opposed to the single

symbol previously used to encode the letter c . These

symbols are used as follows:

1. a symbol to encode all initial c's preceding co
2. a symbol to encode all prefix co 's
3. a symbol to encode all initial C's following co

There are exceptions to this "two extra symbol" ruler

these will be discussed later.

The arbitrarily set limits are as follows.

41

Minimum Storage Limit

A minimum is set on the storage saved by any prefix

group under consideration. This limit gives prefix groups

of length. greater than two the opportunity to compete by

virtue of the greater compression offered. It should be

noted, however, that combinations of nested prefix groups

are only c9nsidered after this pruning of less profitable

possibilities and it cannot be claimed that the method will

produce an optimum saving, though it is thought that the

procedure produces a good solution.

Maximum Length of Prefixes

A maximum is set on the length of prefixes that are

considered. This limit restricts the depth to which prefix

groups are allowed to 'be nested, but not the number of

groups that can exist at any particular depth. This maximum

is set as a means of controlling the complexity of

considering all possible combinations of nested prefixes.

Since the decision to include a candidate nested group in a

combination is a "yes-no" decision, it is obvious that the

number of combinations in a nested group is 2j where j

is the number of groups nested within the two character

prefix group. In the sequence set used in this study the

groups contained within co numbered 17 when the first

42

arbitrary limit was set at 90 bytes saved (arrived at by

trial and error) and the second to four characters.

Considering the resulting 131,072 (2 17) . poss1ble

combinations of nested prefixes within this one group is a

task that approaches the limits of reasonableness.

The Choice of Prefixes

Step 1

A key is read and the two, three,and four character

prefix is extracted and stored for comparison with later

keys.

Step 2

Subsequent keys are read and a count kept for the

number of occurrences of common prefixes of lengths two,

three, and four.

Step 3

When a prefix group changes--the new prefix replaces

the stored prefix for later comparison and the number of

bytes saved by the just completed group is calculated. If

the bytes saved exceeds the first arbitrarily set limit

discussed above, then the prefix and some administrative

43

information is stored for later consideration. If the just

completed group is a two character prefix, a check is made

to see whether the group contained nested groups. In the

event that this is so, all of the mutually exclusive

combinations are generated and the best (most storage saved)

combination for each possible number of symbols required is

retained. Combinations of prefixes may require from two

symbols in the simplest case to twice the number of groups

nested within the two character prefix (described below).

Most prefixes considered for compression require two symbols

in addition to the symbol already used to encode the initial

characters.

This requiremen~ can be seen in figures 7 through 9:

first word last word
in c in c

~----------------~--~~---~~-----------------~ 1 symbol used to
encode initial symbol c •

Figure 7. Symbol Requirements Without Compression.
Total symbols used: 1

44

first word first word last word last word
in c in co in co in c
l __________ l ________________________ r-___________ 1

1 symbol for
initial
character c

1 symbol replaces
prefix co

1 symbol for
initial character

first
word
in c

Figure 8. Symbol Requirements with
Total symbols used:

first first last
word word word
in co in con in con

I - I I r-

co Compressed.
3

last
word
in co

I

1 symbol 1 symbol 1 symbol 1 symbol 1 symbol

last
word
in c

I

for
initial co before con co after c after
char.

-
c con con co -

Figure 9. Symbol Requirements with co and con
Compressed.

Total symbols used: 5

It can be seen that, in the examples, each additional

prefix, whether it is nested at a deeper level or at the

same level, requires two additional symbols. This is not

always the case. Consider figures 10 and 11:

45

first wrd first wrd last wrd first wrd last wrd last wrd
of co of con of con of cor of cor of co
1 ________ 1 _________________ 1 __________ 1 I

1 symbol 1 symbol
for co for con
before con

1 symbol
for co

between con
and cor

1 symbol
for cor

1 symbol for
co after cor

Figure 10. Symbol Requirements for the Non-adjacent Nested
Groups.

Total symbols used: 5.

Here each nested prefix group requires an additional

two symbols, but in the example below, the nested groups

com and con are adjacent in the sense that no symbol is

required to represent co between these two groups because

no slot exists over that section that does not fall within

either com or con This fact is obvious when we

consider that the prefix groups are of the same length and

the least significant character of the second (n) is greater

by 1 in terms of collating sequence distance than the least

significant character (m) in the preceding group com •

first first last word last last
word word in com & word word
in co in com first in con in con in co
1 _________ 1 ___________ 1 ______________ 1 _________ 1--

1 symbol 1 symbol for 1 symbol for
for co com con
before com

1 symbol
for co
after-com

46

Figure 11. Symbol Requirements for Adjacent Nested Groups.
Total symbols: 4

In the above figure, only one extra symbol is required

to add con to the nested group co and com • This

reduced requirement is taken into consideration in the

evaluation of combinations of nested prefixes.

The choice among combinations of nested groups is made

as follows .• The single group yielding the largest marginal

saving in storage is chosen as the initial position

(marginal savings being defined here as the number of bytes

saved per additional symbol used). This possibility is

saved for comparison with other prefix groups outside the

nested group being processed. All of the other

possibilities are adjusted to reflect the marginal savings

in relation to this first choice. Recall that much pruning

has already been done; only the best combination requiring n

symbols is considered here, all others having been

47

eliminated earlier by virtue of their inferiority relative

to this best choice for numbers of symbols required. After

the adjustment of marginal savings, negative marginal

savings are discarded and the best choice is retained for

comparison with other groups outside the nested group. This

new combination is marked as being mutually exclusive with

the first group retained for later comparison. The

remaining combinations are adjusted for comparison with this

second retained possible combination and the process

continues with ever decreasing marginal savngs until a point

is reached where the marginal savings does not exceed the

first arbitrarily set limit. At this point the process

stops since there will · be other groups preferable to any

further combination or the arbitrary limit will be lowered,

to yield in the next run further possibilities during the

above discussed process (evaluation of nested combinations)

and during the overall process (the evaluation of prefixes

in general, simple and nested).

Step 4

The final step in the process of choosing prefixes is

taken when the entire sequence set has been used to generate

all of the simple candidate prefixes and all of the mutually

exclusive nested combinations subject to the two arbitrarily

set limits. The last step requires only that the best

prefixes or groups of nested prefixes are chosen based on

48

the number of bytes saved per symbol required. During this

step, the move from initial choices within mutually

exclusive groups to subsequent positions .within the current

group is made based on a comparison of the benefits of the

move relative to other possibilities, provided either by

simple groups or other nested groups.

After the prefixes are chosen for compression, the

relatively simple task of translating the sequence set

remains. This translation is achieved during a single pass

over the set. The prefixes chosen for compression and all

initial characters are replaced by one of the 255 ASCII

symbols provided by 8 bits (recall that one pattern is

reserved for an end-of-word delimiter). After this encoding

process, packed prefix recoded B-trees can be created and a

table of symbols for prefixes and initial characters created

for use during indexing operations.

CHAPTER IV

EMPIRICAL MEASUREMENTS OF THE EFFECT OF

RECODING PREFIXES

The Representational Model

Two types of trees were created and compared in this

study: simple prefix B-trees and prefix receded B-trees.

For the purpose of comparison, various node sizes of

identical structure were created and the trees built. There

follows here, first, a description of the tree structure and

then a description of the sequence set node structure and

index node structure.

Both types of tree are implemented as + B -tree

structures: the full records are kept at the sequence set

level and compressed keys are propagated up into the index,

rear-end compressed shortest separators in the case of the

simple prefix B-tree and prefix receded shortest separators

in the case of prefix receded B-trees. The sequence set is

a doubly linked list of nodes which facilitates traversal of

the keyset in both directions, in sequential order or the

reverse, after either an initial probe to the beginning of

the file or a random access probe to any point in the file.

49

50

The node size of the index is the same as the node size

at the sequence set level and the physical structure is

identical; however, the logical structure differs slightly.

All nodes are implemented as an n byte buffer (n ranges from

64 bytes to 2048 bytes for the test cases) which is declared

such that it can contain either n 8-bit characters or n/2

16-bit integers. (The buffer is declared to be a union of

character and integer types in C, the language of

implementation here). ·

The above physical node structure is used logically to

implement the sequence-set and index nodes in slightly

different ways. As can be seen in figures 12 and 13, six

bytes at the right-hand edge are used for administration.

0 1 n/2 halfwords

---I # I node type I inter-node·
I I of I I
I I keys I flag I pointer
I I I I - ---0 2 n bytes

Figure 12. Index Node Structure.

In the index, this space is used for three 16-bit

fields: a count of the number of keys in the node, a flag

which is set to negative two if the node is the root and

51

negative one if the node is an internal index node, and the

additional inter-node pointer required in the index (there

is one more inter-node pointer than keys in an index node).

In a sequence set node, the three 16-bit fields are

used as follows: a count of the number of keys in the node

and two link fields used to link each node to the logically

preceding and succeeding sequence set nodes, thus

facilitating sequential traversal in either direction.

0 1 n/2 halfwords

I # left right
I I of
I I keys link link
I I
0 2 n bytes

Figure 13. Sequence Set Node Structure.

Full keys are stored in the sequence set and shortest

separators are stored in the index in exactly the same

manner. The space in the node is used as follows. The keys

are stored at the low subscript end of the node in the order

of arrival: a key's physical position does not define its

logical position in the sequence of keys within a node. In

addition, there are no spaces between keys--these are packed

together and, in the event of a deletion, all keys

52

physically higher are shifted down. Beginning at the other

end of the node, starting from a point just below the six

byte administration fields, a vector of pointer pairs is

maintained and allowed to grow down toward the unordered key

locations. A pair of pointers consists of an inter-node

pointer which points to an index node in the following index

level or to the sequence set and an intra-node pointer which

points to the starting position of the key associated with

the pointer pair. This organization can be seen in figure

14. It is the physical positioning of the pointer pairs

that facilitates the inorder accessing of keys within a

node: the intra-node pointer of the pair located immediately

below the administration fields points to the lowest key in

the node: the intra-node pointer below that gives the

location of the next key in order, and so on.

I intra-node pointers
I

1---------~-----------

lv I lv
I 1 ••• 1 1 ••••••••• 1
I 'I 1· I I
variable-length pointer
keys or pair
separators stored for next
physically unordered lowest

key

I admin
I I I

pointer ·--
pair
for lowest
key

Figure 14. Internal Node Organization.

53

B-tree nodes are subject to some _rule that defines an

underflow condition (for example, nodes are not allowed to

be less than half full). In the case of variable length

keys, such a rule may be defined based either on the number

of keys, or, more likely, on the number of bytes used. For

the purpose of measuring storage utilization in this study,

this underflow rule is ignored. Nodes are packed with as

much information as possible as an index level is built and

the fact that a final node on any particular level may

violate this rule is ignored. If the trees built here were

going to be used as an index, it might then be necessary to

underflow share keys so that all nodes obeyed whatever

underflow rule was defined.

Test Cases

A total · o£ twelve trees was built for the purpose of

comparing simple prefix B-trees and prefix receded B-trees.

For both of these tree types, trees of six different node

sizes were generated. The node sizes chosen were 64 bytes,

128 bytes, 256 bytes, 512 bytes, 1024 bytes, and 2048 bytes.

It was decided not to take this progression to smaller node

sizes because nodes might then not be sufficiently large to

contain a very large single key and because the range at the

low end was considered to cover adequately all reasonable

choices of node size. At the high end, the node size of

2048 bytes produces

node, the root.

54

a B-tree index consisting of a single

This fact made it obvious that

considerations of larger

would yield no further

nodes for the keyset under study

information other than that these

node-sizes would also require a single node B-tree index

consisting of a partially filled root node.

Results of Empirical Testing

Twelve trees, six node sizes for each tree type, were

generated from two base files (one containing the full words

and the other containing the same words with common prefixes

receded) to produce the results presented in this section as

empirical evidence of the effect of receding prefixes. The

24,000 words used in the base file came from the UNIX

dictionary facility.

Prefix Compression and the Effect on the Base File

Common prefixes in the

identified and evaluated as

original UNIX words file were

described in Chapter III. A

table of the prefixes chosen for compression is given in

Appendix A. The base file used to generate the six

bench-work simple prefix trees was processed and the

designated prefixes receded and compressed. The results of

this compression are given in Table III below. The figures

represent the compression achieved in the creation of the

55

unstructured receded base file. Later tables will give

figures which represent the savings once the information is

loaded into sequence set nodes.

TABLE III

THE EFFECT OF PREFIX RECODING ON THE BASE FILE
(UNIX WORDS FILE CONTAINS 24,000 WORDS)

WORDS FILE (BYTES) RECODED riLE (BYTES) % COMPRESSED

196,476 174,319 11.28

The Effect on the Sequence Set

The base files discussed above were loaded into

sequence set records as . the first step in the creation of

the two types of tree. Trees for each of the node sizes

were generated and the sequence set files measured to

determine the effect of prefix compression on the sequence

set. It should be noted that these files contain all of the

administrative information (count fields, pointers, and

links) associated with nodes at this level. Table IV below

gives the space requirements for the sequence sets of the

different trees.

56

TABLE IV

THE EFFECT ON THE SEQUENCE SET

NODE SIMPLE PREFIX PREFIX RECODED I % COMPRESSED
SIZE B-TREE {BYTES) B-TREE {BYTES) I

I

64 299,520 269,888 9.89
128 269,440 244,096 9.41
256 256,512 232,960 9.18
512 250,880 227,840 9.18

1024 248,832 226,304 9.05
2048 249,856 227,328 9.02
2048 246,856 227,328 9. 02

From the above table, it is evident that the decrease

in the sequence set is, in all test cases, between 9% and

10%. The significance of this decrease becomes apparent

when we consider that the decrease in size means that more

records are packed into a prefix recoded B-tree node of

given size, thus requiring fewer sequence set nodes and thus

fewer separators in the index. The separators.themselves

are compressed and the compounded effect of fewer, shorter

separators can be seen in subsequent tables.

The Effect on the Separators Generated

The effect on the separators generated by creation of

the sequence set is evident in the tables below. Table V

57

gives the effect on the number of separators generated. It

should be recalled that a separator is generated between

every pair of nodes at the sequence set lev~l. There is

thus one fewer separator at all levels of the index than the

number of nodes in the sequence set.

TABLE V

THE EFFECT ON THE NUMBER OF SEPARATORS GENERATED

NODE I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE I% CHANGE
I I I

64 4,678 4,215 9.99
128 2,103 1,905 9.42
256 1, 000 908 9.20
512 488 443 9.22

1024 241 219 9.13
2048 120 109 9.17

Table VI below gives the compounded effect of recoded

prefixes. The figures represent the savings for the

unformatted shortest separator and prefix recoded separator

sets: the separators are measured before insertion into

index nodes and thus the figures overstate the savings in

the index.

58

TABLE VI

THE EFFECT ON THE SEPARATORS GENERATED

NODE I SIMPLE PREFIX B-TREES !PREFIX RECODED B-TREES I %
SIZE I (BYTES) I (BYTES) !CHANGE

I I I

64 30,026 22,982 23.46
128 13,456 10,316 23.23
256 6,328 4,973 21.41
512 3,123 2,378 23.86

1024 1,529 1,192 22.04
2048 757 607 19.81

Table VII below gives a more realistic idea of the

savings in the index at the first level. The figures give

the compression of the formatted separators at the first

level: all of the administrative overhead (count fields,

flags, and pointers) are taken. into account. Table VI above

may be viewed as an upper bound on the savings possible in

each test case.

59

TABLE VII

THE EFFECT ON THE FIRST INDEX LEVEL

NODE I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE I %

I (BYTES) I (BYTES) I CHANGE
I I I

64 48,960 40,320 17.65
128 22,016 18,176 17.44
256 10,752 8,960 16.67
512 6,144 5,632 8.33

1024 5,120 5,120 0.00
2048 6,144 6,144 0.00

A fact worth noting that is not evident from the above

table is that at the larger node sizes, 1024 bytes for

instance, the saving in storage is concealed by the fact

that the same number of nodes are required to contain the

index at this level (see the following table giving node

numbers). Within the larger nodes, there is a significant

difference in the storage available for subsequent

insertions. In the case of the 1024 byte node size, at the

first level in the index, there are 1,002 bytes available

for future insertion in the prefix receded tree compared

with only 572 bytes in the simple prefix B-tree. This

additional space means that the prefix receded tree, while

it requires the same index storage in the current state, can

withstand far more insertions without requiring more storage

60

for this level (without splitting). It is thus not true to

say that there is no advantage to recoding prefixes for this

node size with this key set. The above discussion is

applicable to the information given for larger node sizes in

the following section.

The Effect on Tree Structure

Tables VIII through

tree structures generated

XIII

by

give

ilie

information about the

six test cases. The

figures represent the numbers of nodes at the various levels

in the trees. The number of separators propagated to the

next higher level can be calculated since, if at level k

there are n nodes, there must be n-1 separators propagated

up to level k+l. Some of these will, in turn, be propagated

to higher .levels if these levels exist.

LEVEL

5
4
3
2
1
0

TABLE VIII

TREE STRUCTURE: THE NUMBER OF NODES AT
EACH LEVEL (NODE SIZE = 64 BYTES)

!SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE
I I

1 (ROOT) 1 (ROOT)
4 3

22 16
128 97
764 629

4679 4216

61

I% CHANGE
I

25.0
27.3
24.2
17.7
9.9

Again the compounded effect (fewer, shorter separators)

is evident at the higher index levels.

TABLE IX

TREE STRUCTURE: THE NUMBER OF NODES AT
EACH LEVEL (NODE SIZE = 128 BYTES)

T
LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE
___ I I I ___ _

4
3
2
1
0

1 (ROOT)
2

15
171

2104

1 (ROOT)
11

141
1906

26.7
17.5
9.4

LEVEL

3
2
1
0

TABLE X

TREE STRUCTURE: THE NUMBER OF NODES AT
EACH LEVEL (NODE SIZE = 256 BYTES)

I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE
I I

1 (ROOT) 1 (ROOT)
2 2

41 34
. 1001 909

TABLE XI

TREE STRUCTURE: THE NUMBER OF NODES AT
EACH LEVEL (NODE SIZE = 512 BYTES)

62

I% CHANGE
I

17.1
9.2

LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE
___ I I I ___ _

2
1
0

1 (ROOT
10

489

1 (ROOT)
9

444
10.0
9.2

TABLE XII

TREE STRUCTURE: THE NUMBER OF NODES AT
EACH LEVEL (NODE SIZE = 1024)

63

LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE
___ I I I ___ _

2
1
0

1 (ROOT
3

242

1 (ROOT)
3

220

TABLE XIII

TREE STRUCTURE: THE NUMBER OF NODES
EACH LEVEL (NODESIZE = 2048)

9.1

LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE
___ I I I __

1
0

1 (ROOT)
121

1 (ROOT)
110 9.1

It can be seen that the savings in the number of index

nodes is negligible for the trees built with the two largest

node sizes. However, it should be noted that the benefits

of prefix compression are concealed by the node size and

shallowness of the index. If the tree were to grow with

64

insertion the positive effects would become evident, as

these effects are in the deeper trees. It is also worth

noting that the prefix recoded trees are more resilient to

splitting on insertion by virtue of the fact that, though

the node count is not significantly less, the nodes contain

fewer keys.

The results of the tests indicate that the effect of

prefix recoding is beneficial for the base file tested.

This observation is only an indication that the same may be

true of other bases. The extent to which we can extrapolate

from the results presented here depends upon the extent to

which any other base is similar in terms of prefix

clustering or sorting induced prefix

uncertain that this method would be

redundancy. It is

as useful for bases

consisting of

often than

language.

random keys where clustering might occur less

it does in keys extracted from a natural

CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR

FURTHER WORK

Prefix

efficiency of

keys. The

Summary

recoding is an approach to improving the

an index to a large file of variable length

method approaches front-end compression by

replacing

all the

the common prefixes at the sequence set level and

initial characters with symbols that maintain

collating sequence order by assuming the function of the

prefixes compressed. The method does not achieve as much

might be expected from the other key compression as

front-end key

II. However,

compression techniques discussed in Chapter

the method proposed here has the advantage

that indexing operations can be performed at very. little

cost during the time that the index is in use. It is true,

of course, that the process of choosing prefixes can be a

very expensive operation: however, this process is done

off-line and thus does not adversely affect indexing

efficiency. In addition, the expensive recoding process

requires a once only analysis for each recoding. Subsequent

65

66

recodings are only necessary if the system is subject to

significant insertion or deletion and then only if these

operations significantly change the nature of the key set.

During indexing operations the technique requires only an

inexpensive translation, a table look up, when the search

key is entered and when keys are displayed. The avoidance

of the computational complexity inherent in both the Clarke

and the prefix B-tree approaches is a factor that strongly

recommends prefix recoding over these other techniques. A

comparison of the three techniques in terms of storage

efficiency would be interesting.

Conclusions

It was hoped that this study would demonstrate

significant improvements in node visit cost for the prefix

recoded B-tree. This improvement is not evident from the

results in Chapter IV. However, it is clear that, if the

nodes in the test cases are subject to identical insertion,

the keys inserted into the prefix recoded tree being

recoded, the simple prefix B-tree will require additional

storage at all levels before the same additional storage is

required by the prefix recoded tree. This additional

storage required will, eventually in both trees, cascade up

to the root and increase the number of levels. However,

this increase will occur in the simple prefix B-tree before

it occurs in the prefix recoded tree. This fact is evident

67

from the fact that there are always, in all test cases,

either fewer

the

are

prefix

clearly

nodes

receded

less

at a particular level, or more space in

B-tree nodes. The prefix receded trees

likely

average prefix receding

to split on insertion, and on the

can be expected to reduce the node

visit cost where the receding produces significant

compression of the base file.

The application of prefix receding depends on the base

file considered for receding. It is apparent that the

degree of success depends on the degree of prefix clustering

in a file. An initial analysis of prefix redundancy in a

sorted file is a relatively easy and inexpensive task, and

decisions pertaining to receding ought to be preceded by

such an analysis.

Suggestions for Further Work

Several interesting questions were raised by this

study. These are discussed below.

The test cases for this study examined the two types of

tree in a static environment. Although many applications

such as dictionary or document database systems require only

minimal insertion and deletion, it would be interesting to

measure the

environment.

effect

Dynamic

of prefix receding in a dynamic

test cases could be run. These tests

would involve building trees by repeated insertion and then

subjecting the trees to random insertion and deletion. An

68

extension of this investigation might entail designing

efficient methods to evaluate the effect of insertion and

deletion on the keyset so that recoding during periodic

backups might be achieved easily.

Another interesting direction of investigation is that

of testing the effect of B-tree compaction on prefix recoded

B-trees. This compaction would involve the rearrangement of

separators in nodes at all levels such that the nodes

nearest

fanout.

from what

call

the root had increased and perhaps near maximal

This compaction would change the shape of the trees

Rosenberg and Snyder (17) call scrawny to what

bushy. The effect would be to make the trees' they

node-visit cost miminal. A comparison of the two types of

tree in this state would yield valuable information about

the potential of prefix recoding for decreasing node-visit

cost. This information is especially interesting for data

bases in a relatively static environment: bushy trees are

sensitive to insertion and split relatively soon on

insertion.

The focus of this study has been on the effect of

prefix compression. There is much work to be done on the

methods of choosing prefixes. No attempt was made to choose

an optimal prefix set, and the effect of prefix recoding may

be enhanced by the design of an optimal algorithm for the

choice of prefixes. In addition, it might be interesting to

know what effect evenly ~istributing symbols over the keyset

would have on the average length of shortest separators.

69

Lastly, numerical encoding is a technique suggested by

Hahn (9) for general text compression applications. It

appears that this technique may find useful application in

the compression of fixed length keys in indices. The

technique maintains collating sequence order and produces

fixed length compressed keys. An investigation of this

technique in the database environment would be worthwhile.

A SELECTED BIBLIOGRAPHY

(1) Aho, A. Hopcroft, J., and Ullman, J. The Design and
Analysis of Computer Algorithms , Reading,
Massachusetts: Addison-Wesley Publishing Company,
1974.

(2) Bayer, R., and McCreight, E. "Organization and
Maintenance of Large Ordered Indices". Acta
Informatica , Vol. 1, (1972), pp. 173-189-.---

(3) Bayer, R., and Unterauer, K. "Prefix B-trees". ACM
Transactions on Database Systems , Vol. 2 (March,
1977), pp. 11-16.

(4) Chang, H. K. "Compressed Indexing Method". IBM
Technical Disclosure Bulletin • Vol. 11, No. 11,
(April, 1969), p. 1400.

(5) Clark, w. A. IV, Davies, c. T., Salmond, K. A., and
Stafford, T. s. "High-Level Index-Factoring
System". United States Patent Number 3,646,524
(February 29, 1972).

(6) Clark, w. A., Salmond, K. A., and Stafford, T. s.,
"Methods and Means for Generating Compressed
Keys". United States Patent Number 3,593,309
(January 2, 1969).

(7) Comer, D. "The Ubiquitous B-tree". Computing
Surveys , Vol. 11, No. 2 (June, 1979), pp.
121-137.

(8) Feng, A. L. "A Study of Two Computing Index
Mechanisms: Prefix B+-Tree and Trie Structures".
(Unpublished M.S. Thesis, Oklahoma State
University, 1982).

(9) Hahn, Bruce "A New Technique for Compression and
Storage of Data". Communications of the ACM ,
Vol. 17, No. 8, (August, 1974), pp. 434-436.

(10) Held, G., and Stonebraker, M. "B-trees Re-examined".
Communications of the ACM , Vol. 21 (February
1 9 7 8) 1 PP o 13 9-14 3 'o

70

(11) Huffman, D. A., "A Method for the Construction of
Minimum Redundancy Codes". IRE 40 (September,
1952), P• 1098.

71

(12) Knuth, D. E. The Art of Computer Programming Vol. 3:
Sorting and Searching. Reading Massachusetts:
Addison Wesley Publishing Company, 1973.

(13) Lomet, D. B. "Multi-Table Search for B-Tree Files".
IBM Technical Disclosure Bulletin , Vol. 22, No.
6, (November, 1979), pp. 2565-2570.

(14) Marroin, B. A. and deMaine, P. A. D. "Automatic Data
Compression". Communications of the ACM , Vol.
10, No. 11, (March 1967), pp. 711-715.

(15) Maruyama, K. and Smiths. "Analysis of Design
Alternatives for Virtual Memory Indexes".
Communications of the ACM , Vol. 20, No. 4,
(April, 1977), pp. 245-254.

(16) Mattson, R., Gecsei, J. Stutz, D., and Traiger, I.
"Evaluation Techniques for Storage Hierarchies".
IBM Systems Journal , Vol. 9, No. 2, (1970), pp.
78-117.

(17) Rosenberg, A., and Snyder, L. "Time- and
Space-Optimality in B-trees". ACM Transactions
on Database Systems , Vol. 6, No. 1 (March,
1981), pp. 174-193.

(18) Rubin, R., "Experiments in Text File Compression".
Communications of the ACM , Vol. 19, No. 11
(November, 1976), pp. 617-623.

(19) Salton, G., and McGill, M. J., Introduction to Modern
Information Retrieval New York: r>1cGraw Hill
Book Company, 1983.

(20) Saltern, G. Automatic Information Retrieval . New
York: McGraw-Hill Book Company, 1968.

(21) Snyderman, M., and Hunt, B. "The Myriad Virtues of
Text Compaction". Datamation Vol. 16, No. 12
(December, 1970), pp. 36-40.

(22) Wagner, R. A., "Indexing Design Consideration". IBM
Systems Journal , Vol. 12, No. 4 (1973), pp.
351-367.

(23) + Webster, R. E. "B -tree". (unpublished M.S.
report, Oklahoma state University, 1980).

APPENDIX

THE PREFIXES COMPRESSED FOR THE TEST CASES

PREFIXES SINGLE CHARACTERS STARTWORD END WORD
COMPRESSED RECODED

a 1 8

ab 9 118

ac 119 238

ad 239 362

a 363 518

a1 519 729

am 730 830

an 831 1056

a 1057 1057

ap 1058 1158

a 1159 1166

ar 1167 1343

as 1344 1467

at 1468 1532

au 1533 1614

a 1615 1684

b 1685 1686

ba 1687 2006

72

73

b 0 0

be 2007 2318

b 2319 2320

bi 2321 2453

b 0 0

b1 2454 2590

b 2591 2591

bo 2592 2811

b 2812 2812

br 2813 3062

b 3063 3064

bu 3065 3262

b 3263 3282

c 3283 3284

ca 3285 3749

c 3750 3751

ce 3752 3837

c 0 0

ch 3838 4162

c 4163 4230

c1 4231 4384

c 0 0

co 4385 4495

col 4496 4569

com 4570 4723

con 4724 5069

co 5070 5334

74

c 5335 5335

cr 5336 5540

c 0 0

cu 5541 5648

c 5649 5682

d 5683 5687

da 5688 5808

d 5809 5809

de 5810 6290

d 6291 6292

di 6293 6587

d 6588 6590

do 6591 6769

d 0 0

dr 6770 6869

d 0 0

du 6870 6959

d 6960 6986

e 6987 7161

e1 7162 7268

em 7269 7359

en 7360 7455

e 7456 7733

ex 7734 7963

e 7964 7977

f 7978 7979

fa 7980 8121

75

f 8122 8124

fe 8125 8228

f 0 0

fi 8229 8381

f 8382 8382

f1 8383 8539

f 8540 8541

fo 8542 8715

f 8716 8716

fr 8717 8871

f 8872 8872

fu 8873 8945

f 0 0

g 8946 8947

ga 8948 9116

g 0 0

ge 9117 9224

g 9225 9234

gi 9235 9305

g 0 0

g1 9306 9393.

g 9394 9406

go 9497 9509

g 9510 9510

gr 9511 9709

g 9710 9710

gu 9711 9801

76

g 9802 9817

h 9818 9819

ha 9820 10093

h 0 0

he 10094 10335

h 0 0

hi 10336 10442

h 0 0

ho 10443 10681

h 10682 10682

hu 10863 10775

h 10776 10781

hydr 10782 10811

h 10812 10847

i 10848 10939

im 10940 11086

in 11087 11717

i 11718 11732

ir 11733 11796

i 11797 11859

j 11860 11861

ja 11862 11931

j 11932 12001

jo 12002 12078

j 12079 12079

ju 12080 12156

j 0 0

77

k 12157 12278

ki 12279 12348

k 12349 12448

1 12449 12451

1a 12452 12662

1 0 0

le 12663 12828

1 0 0

li 12829 13014

1 13015 13015

lo 13016 13174

1 13175 13176

1u 13177 13269

1 13270 13289

m 13290 13291

rna 13292 13757

m 13758 13759

me 13760 13818

m 0 0

me 13819 14049

m 0 0

mi 14050 14265

m 14266 14266

mo 14267 14523

m 14524 14527

mu 14528 14654

78

m 14655 14686

n 14687 14688

na 14689 14774

n 14775 14781

ne 14782 14925

n 14926 14927

ni 14928 15009

n 15010 15011

no 15012 15133

n 15134 15193

0 15194 15498

or 15499 15582

0 15583 15673

p 15674 15675

pa 15676 16027

p 16028 16028

pe 16029 16323

p 16324 16325

ph 16326 16414

pi 16415 16565

p 0 0

p1 16566 16702

p 16703 16705

po 16706 16957

p 16958 16979

pre 16980 17108

p 0 0

79

pri 17109 17154

p 0 0

pro 17155 17367

p 17368 17410

pu 17411 17521

p 17522 17545

q 17546 17549

qu 17550 17673

r 17674 17676

ra 17677 17845

r 17846 17846

re 17847 18306

r 18307 18337

ri 18338 18429

r 0 0

ro 18430 18582

r 18583 18584

ru 18585 18670

r 18671 18675

s 18676 18677

sa 18678 18931

s 0 0

sc 18932 19139

s 19140 19140

se 19141 19395

s 19396 19396

sh 19397 19638

80

si 19639 19817

s 19818 19866

s1 19867 19959

s 19960 20001

sn 20002 20065

so 20066 20251

sp 20252 20469

s 20470 20506

st 20507 20914

su 20915 21147

s 21148 21301

.t 21302 21303

ta 21304 21469.

t 0 0

te 21470 21666

t 0 0

th 21667 21864

ti 21865 21953

t 21954 21954

to 21955 22104

t 0 0

tra 22105 22237

t 22238 22272

tri 22273 22351

t 22352 22410

tu 22411 22494

t 22495 22558

81

u 22559 22744

v 22745 22746

va 22747 22829

v 0 0

ve 22830 22952

v 0 0

vi 22953 23084

v 23085 23147

w 23148 23149

wa 23150 23331

w 0 0

we 23332 23421

w 0 0

wh 23422 23534

wi 23535 23681

w 0 0

wo 23f?82 23777

w 23778 23821

X 23822 23833

y 23834 23938

z 23939 23992

f

VITA

John Patrick Jagoe

Candidate for the Degree of

Master of Science

Thesis: PREFIX RECODING: A FRONT-END COMPRESSION
TECHNIQUE FOR SIMPLE PREFIX B-TREES

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in the Transvaal, Republic of
South Africa, May 6, 1952, the son of Charles
Malcolm Jagoe and Elizabeth Barbara Jardine.

Education: Graduated from Selborne College, East
London, Republic of South Africa in December,
1969: received Bachelor of Arts degree in
Economics and Political Philosophy from Rhodes
University, Grahamstown, Republic of South
Africa in December 1974: completed requirements
for the Master of Science degree at Oklahoma
State University, Stillwater, Oklahoma in
May, 1984.

Professional Experience: Lecturer, Oklahoma State
University, Computing and Information Sciences
Department, 1982-1984.

