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PREFACE 

This study examines the effect of receding common 

prefixes of shortest separators and thus extending the 

alphabet and compressing both the sequence set and the 

simple prefix B-tree index. The purpose of the study is to 

investigate the effect on a simple prefix B-tree of receding 

prefixes with a shorter symbol that maintains collating 

sequence order. 

I would like to thank my major adviser Dr. Michael Folk 

and the members of my committee Dr. John Chandler and Dr. 

Donald Grace for their guidance and instruction in this 

study. I am particularly indebted to Dr. Chandler for his 

friendship and advice throughout my coursework. 

In addition to the members of the committee, I would 

like to thank Dr. James van Doren for the interest he took 

in the thesis and for the encouragement he gave me as a 

student. Special thanks are due to Dr. Donald Fisher who, 

as department head, made it possible for me .to participate 

in the program and who was a continual source of 

encouragement and support. 

Lastly, I wish· to thank Leeanna Jackson who met 

numerous deadlines, always with a smile. 

iii 



Chapter 

I • 

II. 

III. 

TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

KEY COMPRESSION IN TREE INDICES. 13 

PREFIX RECODED B-TREES • . • . • 27 

Sequence Set Compression. • • • • • • • • • 34 
Alphabet Cardinality. • • • • • • • • • 34 
Index Compression • • • • • • • 35 
Minimum Storage Limit • • • • • • • • • 41 
Maximum Length of Prefixes. • • • • • • • • 41 
The Choice of Prefixes. • . • • • • • • • • 42 

IV. EMPIRICAL MEASUREMENTS OF THE EFFECT OF 
RECODING PREFIXES. • • • • • • • • • • • • • 49 

The Representational Model. • • • • • • • • 49 
Test Cases. . • • • • • • • • • • • • • 53 
The Results of Empirical Testing. • • • • • 54 

V. SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE 
RESEARCH • . • • • • • • . • • • . • • • 65 

Summary • • • . • • • • • • • • • 65 
Conclusions • • • • • . . • • • • 66 
Suggestions for Further Work. • • • • • • • 67 

SELECTED BIBLIOGRAPHY • 70 

APPENDIX. . • • . • • 72 

iv 



LIST OF TABLES 

Table Page 

I • Expected Length of Separators in the Index 
of a Simple Prefix B-tree . . . . . . . . . 30 

II. Length of Partial Separators in a Prefix 
B-tree. . . . . . . . . . . . . . . . . . . . . 31 

III. The Effect Prefix Recoding on the Base File 55 

IV. The Effect on the Sequence Set. . . . . . . 56 

v. The Effect on the Number of Separators. 57 

VI. The Effect on the Separators Generated. . . . . 58 

VII. The Effect on the First Index Level . . . . 59 

VIII. Tree Structure: the Number of Nodes 
at Each Level (Node Size=64 Bytes) • . . . . . 61 

IX. Tree Structure: the Number of Nodes 
at Each Level (Node Size=128 Bytes) . . . . . 61 

x. Tree Structure: the Number of Nodes 
at Each Level (Node Size=256 Bytes) . . . . . 62 

XI. Tree Structure: the Number of Nodes 
at Each Level (Node Size=512 Bytes) . . . . . 62 

XII. Tree Structure: the Number of Nodes 
at Each Level (Node Size=1024 Bytes). . . . . 63 

XIII. Tree Structure: the Number of Nodes 
at Each Level (Node Size=2048 Bytes). . . . . 63 

v 



LIST OF FIGURES 

Figure Page 

1. B-tree Index •••• 7 

2. B-tree Index Node • 7 

3. + B -tree Index and Sequence Set. 9 

4. A Sequence Set Node Boundary. . . . . . . . . • 21 

s. A Prefix B-tree Index Node •• . . . . . . . . • 23 

6. Hypothetical File •. • • • • • 36 

7. Symbol Requirements without Compression • • 43 

8. Symbol Requirements with co Compression • • • 44 

9. Symbol Requirements with co and con Compressed. 44 

10. Symbol Requirements for Non-adjacent Nested Groups. 45 

11. Symbol Requirements for Adjacent Nested Groups~ •• 46 

12. Index Node Structure •. • • • 50 

13. Sequence Set Node Structure • • • • • 51 

14. Internal Node Organization .• • • • • 52 

vi 



CHAPTER I 

INTRODUCTION 

The rapid increase in the size of internal memories has 

not moderated the need to discover more efficient methods of 

transferring data from external to internal memory. As 

internal memories have grown, so have the uses to which we 

put computers. Today, typical database applications are 

such that we need to access efficiently huge volumes of data 

on external storage devices. 

Information stored externally is usually organized in a 

file, a collection of records of similar structure each of 

which has a unique primary key. A file, or group of files 

making up a database, may be accessed in two ways: 

sequentially or randomly by the primary key. To access a 

file sequentially, one starts at the beginning of the file 

and accesses the records in the logical key sequence in 

which the file is organized, called the key sequence order 

of the file. Random access, also known as direct access, 

refers to the retrieval of records by key independently of 

each other. The choice between these two methods depends, 

of course, on the requirements of a particular application; 

frequently, applications will require that files may be 

1 



accessed both sequentially and 

applications that the approaches 

described in this thesis will 
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randomly. It is for these 

discussed and the method 

be of most interest. 

Applications that require either sequential access or random 

access alone are more easily and efficiently implemented by 

means other than tree structured indices. If files are only 

accessed sequentially, sequential files on tape drives will 

suffice, and if random access alone is the required means, 

then hash organized files (key-to-address transformation) 

are superior to tree indices, especially where files are 

static. Even in applications where files are dynamic, 

hashing may be chosen, at the expense of re-hashing when 

performance degrades, in preference to tree structured 

indices because retrieval from a hash file can be achieved 

in constant time as opposed to the logarithmic retrieval 

times provided by tree structued indices. A point worth 

noting here is that, when the nature of the key set is not 

known in advance, designing an efficient key-to-address 

transformation algorithm may be difficult or impossible. 

Sequential access is of course impossible in a hash 

organized file. 

Index structures in general direct the search for a 

particular record to a relatively small section of the file 

thus circumventing the need to begin a search at the 

beginning of a file. For a given file size, a logically 

small index will tend to direct the search to a relatively 

large interval in the file, while a logically large index 
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will faci~itate the direction of the search to a relatively 

small interval. For this reason, indices to large files 

tend to be large, and it may be necessary to store the index 

itself as a file on an external storage device. Tree 

structured indices--multilevel indices in which the first 

index built on a file is itself indexed by a higher level 

index, which in turn may also be indexed, and so on--evolved 

in answer to the need to index very large files using large 

indices stored on external devices. 

There are many data structures that may be used to 

implement an index: binary trees, height balanced trees, 

and tries, to name but a few~ however, the evolution of tree 

indexing structures has developed towards B-trees and the 

many varieties of this structure. Today, in the words of 

Douglas Comer, "the B-tree is, de facto, the standard 

organization for indexes in a database system" (7). 

The evolution toward B-trees with large numbers of keys 

per node and away from tree structures with nodes containing 

fewer keys (binary, AVL etc.) has been influenced by the 

nature of external storage devices used in applications that 

require random access. Disk drives are the primary device 

used in these applications though drum and, more recently, 

laser disks and bubble memory can and have been used. , The 

latter three suffer from the same disadvantages in seek time 

as disk drives, and the details will largely be ignored 

here. 

Accessing information on an external device such as a 
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disk drive is extremely slow relative to internal memory 

accessing times. Typical disk drives have access times on 

the order of milliseconds and data transfer rates of the 

order of megabytes per second. Disk drives may be divided 

into two classes: those with movable read/write heads (one 

head per surface) and those with fixed read/write heads (one 

head per track). Movable head drives are slower than fixed 

head drives, due to the additional delay, called seek time, 

of moving the head to the required track. Using either type 

of drive, the access time of external storage is a 

significant bottleneck. For large indices stored 

externally, the major measure of efficiency is the number of 

external accesses 

the chosen index 

parameters such 

required 

system, 

as node 

to complete a search. Whatever 

database designers select 

size so that the physical 

characteristics of the particular device or system are 

utilized efficiently. Node size is frequently chosen to 

match the track dimensions or, in a virtual paging system, 

to match the virtual page size. This strategy leads to a 

generally accepted measure of efficiency for tree structured 

indices: node visit cost. This measure assumes that each 

node visited represents a new random access to external 

storage and that the degree to which a particular index 

structure solves the problems of the external access 

bottleneck is given by the length of the path from root to 

leaf in a tree structured index: the shallower the tree, 

the fewer are the external accesses. The index is thus 
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deemed more efficient if the tree is shallow. 

The tree structured indices common to large database 

applications are multiway br~nching structures and can be 

divided into two classes: static directories, also known as 

index sequential structures, and uniform depth, dynamically 

restructuring trees, commonly called B-trees. These two 

classes will be discussed below. 

Static directories are created so that they are, in the 

initial state,_balanced, thus giving the desired effect of a 

uniform search length for a particular key. The weakness of 

this structure becomes apparent only in a dynamic 

environment where insertions cause performance to degrade. 

Static directories have a constant number of levels during 

the period between restructuring. Insertion into the 

underlying file create the need to insert keys in the index. 

When an index node overflows, these index insertions are not 

placed in the logical sequence of an index node but are 

chained into overflow areas. The imbalance introduced by 

insertions leads to performance degradation as well as the 

loss of collating sequence order between primary pages and 

overflow pages (loss of order may be corrected by sorting 

primary and overflow pages on insertion). Periodic 

restructuring eliminates the inefficiency introduced but the 

structure requires careful monitoring to determine when 

performance is approaching unacceptable limits. 

B-trees, and the many variants of B-trees, differ from 

the static directories discussed above in an important 
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regard: insertions and deletions result in local 

reorganization which is performed incrementally at update 

time, which maintains the structure's balance, and which can 

be achieved inexpensively and at known cost. The depth of a 

B-tree is guaranteed to be uniform, by rule 5 below, and the 

cost of updating and dynamic restructuring is at worst 

O(log n) where m is the branching factor and n the file m 

cardinality. The following is a set of rules that define 

the traditional B-tree: 

1. The root, unless it is also the only leaf node, 

will have at least two subtrees. 

2. The order of a B-tree is said to be m, where m is 

the maximum branching factor of a node. A node has at most 

m subtrees. 

3. All internal nodes (nodes other than the root and 

leaf nodes) have at least fm/21 subtrees. 

4. All internal nodes have one more subtree than 

keys. 

5. All leaves are on the same level (the tree grows by 

splitting the root into two nodes and propagating a single 

key up into the new root). 

It can be seen from the definition above that the 

B-tree indexing structure is the result of a trade-off. 

Optimal storage utilization is traded for guaranteed 

retrieval times. Nodes are allowed to remain only partly 

filled (at least half full) in order that the uniform depth 

characteristic may be guaranteed. Figure 1 below depicts a 



simple B-tree. 

I I 
I I key 
II __ 

Figure 1. B-tree Index. 

I I 
key 1·1 
__ II 

- - - - --~,------r~----~-

........... key key 

---------

Figure 2. B-tree Index Node. 
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In fact, the cost in terms of decreased storage 

utilization is not, in practice, as severe as might be 

expected from rule 3. Empirical studies have demonstrated 

that nodes approach, on average, 70% storage utilization 

after random insertions and deletions (22). In addition, 

some variants of B-trees have more stringent rules for 

underflows (rule 3) which require that nodes be at least 2/3 

full, for example B*-trees. 

Overflow conditions created by insertion into a full 

node are resolved by various combinations of overflow 



sharing 

sibling 

schemes (keys are passed to 

nodes when possible) or by 
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underfull adjacent 

node splitting when 

necessary (a node is split into two and a key propagated up 

to the next level, this process possibly cascading all the 

way to the root where a split produces a new root and 

increases the level of the tree by one}. 

Underflow conditions created by deletion from a node 

such that rule 3 is contravened are resolved by various 

combinations of underflow sharing schemes (keys are passed 

from adjacent sibling nodes 

than sufficient keys to 

when these siblings have more 

remain legal) or by node 

concatenation when necessary (adjacent sibling nodes are 

coalesced into a single node and a key is removed from the 

level above, this process possibly cascading all the way to 

the root, causing the tree to shrink by a level). 

These updating strategies are the basis of the 

incremental, dynamic, logical reorganization that underlies 

the uniform depth advantage of B-trees, the uniform node 

visit cost, to use the term current in index evaluation. It 

is this structure's avoidance of imbalance and thus 

performance degradation which recommends it so strongly over 

the static directory index. 

A fact that recommends B-trees over hash indexing is 

that, even in the traditional B-tree, the logical collating 

sequence order of the keys is maintained albeit at the 

expense of costly symmetric order traversals of the index 

(full records and keys are stored in the index of a 
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traditional B-tree, unlike some of the later variants 

discussed below) • 

Before B-tree variants are discussed, it is necessary 

to define + the terms B*-tree and B -tree. Following the 

nomenclature proposed by Douglas Comer (7), the term B*-tree 

will be reserved for a "B-tree in which each node is at 

least 2/3 full" (instead of just 1/2 full). Again following 

Comer, term + B -tree will be used to refer to the 

B-tree variant in which the tree is organized in two 

distinct parts: the index part, which is a B-tree of search 

keys but contains no other information other than pointers, 

and the sequence set, a linked list of leaves in which the 

full record or the key and a pointer to the full record is 

stored. + Figure 3 below depicts a B -tree. 

Index Part 

'-------------------------· ......... . 
1====1->1====1->1====1->1====1-> ........... ->1====1->1====1 

Figure 3. B+-tree Index. 
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Noteworthy here is the fact that this sequence set is 

the equivalent of the leaf level in the traditional B-tree 

and that, in the + B -tree, a sequence set node split 

propagates upwards only the key part of the entry. Part of 

the confusion of terminology in the literature results from 

the fact that trees are frequently hybrids: a particular 

tree may, for + instance be both a B*-tree and a B -tree 

(rule 3 defines underflow at the 2/3 full level and all full 

records are stored at the leaf level, in the sequence set). 

The B*-tree requirement that nodes are at least 2/3 

full increases storage utilization at the expense of 

slightly more complicated balance maintaining algorithms and 

the associated increase in processing complexity. Overflow 

sharing is required until two adjacent nodes are full: these 

two nodes are then split into three nodes, each 2/3 full. 

Deletions result in underflow sharing until three adjacent 

siblings can be coalesced into two full nodes. 

The major contribution of the + B -tree variant is 

that, by maintaining a sequence set of full records and an 

index of keys alone, all the full records are at the bottom 

level--in the sequence set. This fact, in addition to the 

customary practice of linking the sequence set with 

horizontal pointers, ensures that sequential access is 

trivially implemented. Not only is sequential processing 

from the beginning of the underlying file easily 

implemented, but also, a "next" operation after a random 
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access can be achieved in at most one additional access to 

external storage (to fetch the next sequence set node in 

logical collating sequence order). 

Thus far, this description has been concerned with the 

design of indices. Before further discussion is possible, 

it is necessary to make a distinction between two broad 

classes of record type: fixed length records and variable 

length records. In the following discussion, a record may 

mean either the full record containing all information or a 

"record" from the index .point of view, a field containing 

only a key and a pointer to the full record. Applications 

requiring fixed length records abound: however, we shall be 

concerned here with applications that necessitate the use of 

variable length records and keys. More specifically, this 

thesis and the B-tree variants simple prefix B-trees and 

prefix B-trees deal with applications in which the search 

key is a variable length word constructed from some 

alphabet. The empirical studies presented in Chapter IV use 

a 24,000 word dictionary of English language words. 

The programs written to support this study were written 

as though for a simple dictionary application: however, this 

specialized type of applicaton is becoming increasingly 

important with the advent of document data base retrieval 

systems. These systems enable a user to access variable 

length unformatted records, namely documents in a document 

collection, by a variable length key, namely words from the 

document which are extracted and designated as indexing 
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terms or keys based on analysis of the frequency of use in 

the various documents making up the collection. The records 

in the sequence set are usually made up of a key index term 

and an inverted list of document numbers which identify the 

documents containing the term with some required frequency. 

Simple prefix B-trees and prefix B-trees were developed 

by Bayer and Unternaur as a method of increasing the 

efficiency of + B -trees (called by them B*-trees) in an 

environment that necessitated the use of variable length 

keys. This thesis will compare empirically simple prefix 

B-trees and an implementation of an indexing structure that 

is based on Bayer and Unterauer's prefix B-tree and on their 

observations about the effect of the alphabet size on the 

average expected length of separators. This investigation 

is limited to the measurement of the effect of this 

technique on static dense indices (packed newly recreated 

dynamic B-trees and static B-trees), and in addition, to the 

testing of the method on indices built on words in the 

English language. These indices find important applications 

in document data base retrieval systems as well as in 

dictionary data bases. 



CHAPTER II 

KEY COMPRESSION IN TREE INDICES 

Text compression is of interest beyond the area of data 

base indexing: however, the ideas developed in other areas 

influence the approaches taken by those interested in index 

compression. There are, in the specialized field of index 

key compression, some additional constraints not encountered 

when one attempts to compress data, for example, to ensure 

efficient transmission. These constraints arise from the 

purpose of the strings we would like to compress, namely 

that the meaning of the terms is derived solely by virtue of 

the ability to direct a search through an index. Thus, the 

properties that distinguish various areas in the collating 

sequence of the underlying data base cannot be destroyed 

without making the index keys worthless. On the other hand, 

the keys can be transformed in any convenient way without 

concern for recovery as long as this ability is not lost. 

In addition 

nature of 

available 

to the constraints indicated above, the very 

index keys gives rise to opportunities not 

in general text compression, namely what is 

referred to as the sorting induced redundancy inherent to 

indices. It is the removal of this sorting induced 

13 
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redundancy that the front-end compression techniques 

discussed below will attempt to achieve. This chapter will 

discuss the rationale for index compression and key 

compression, present a broad overview of general data 

compression techniques and the applicability to the task at 

hand, and then briefly describe some proposed solutions to 

the problem of compressing indices. 

The justification of index compression is reasonably 

obvious. Very large databases require large indices to 

direct the search to a relatively small areas in the data 

set. Given the size of modern indices, the alternatives to 

storing ilie index on external devices are few, and 

therefore, a decrease in the physical size of an index while 

maintaining its logical size is advantageous. Although 

pointer compression is a means of contributing to this 

decrease, it is key compression that concerns us here. In a 

multilayered tree structured index, compression of the keys 

defining the search path increases the fanout at any 

particular level in the index and may reduce the number of 

levels and thus the disk accesses required during traversal 

of a search path. In B-trees and B-tree variants this 

increased fanout is referred to as an increase in the 

branching factor or the order of the B-tree. 

There are various ingenious methods of compressing 

textual data. Some of the general principles are discussed 

here as well as the reasons why some of these schemes are 

not readily applicable to the coding of keys in an index. 
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A common approach is to use bit strings of just 

sufficient length to encode the required set of characters. 

For example, data consisting of the decimal digits, upper 

and lower 

characters 

saving 25% 

case 

may 

of 

alphabetic characters, and any two special 

be coded in bit strings of length 6, thus 

the space normally required. This seemingly 

attractive approach would require, in the context of index 

keys, either a decoding step for each character for each key 

comparison or the adaptation of the comparison process so 

that the standard unit of comparison becomes 6 bits. The 

approach presented later in this thesis takes the opposite 

view. The alphabet is extended so that all 8 bits are used. 

This will take advantage of the savings in index space 

observed by Bayer and Unterauer and discussed at the end of 

this chapter. 

Another standard method of compression is to recode a 

substring chosen on the basis of its length and frequency in 

the text and replace it with a symbol or a number that is an 

index into a dictionary of compressed substrings. This is 

very similar to the prefix recoding technique presented in 

Chapter III. In standard text compression, substrings are 

compressed throughout the entire text, whereas, with the 

prefix recoding technique, only prefix frequency is used to 

choose substrings for recoding and then only prefixes and 

initial characters are recoded. Common prefixes of length 

greater than one are recoded to save storage while all other 

initial letters are recoded to maintain a key's capacity to 
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direct a search and to extend the alphabet. 

Huffman coding, a minimum redundancy code for single 

symbol encoding, produces variable length bit strings which 

represent symbols. The idea here is that the number of bits 

used to represent a symbol is inversely proportional to the 

logarithm of that symbol's frequency of occurrence in the 

text. Frequent symbols are given the shortest codes and 

longer bit string codes are constructed for less frequent 

symbols such that the short codes already assigned do not 

appear as initial bit sequences in these longer bit strings. 

This eliminates the need for bit string demarcation. Not 

only does the variable length of bit strings produce 

problems in the context of index key comparison, but also, 

the assignment of codes does not maintain collating sequence 

order between keys. 

Numerical encoding compresses text by using a symbol's 

position ( p. ) 
l. 

in a dictionary of symbols and the total 

number of symbols in the dictionary (B) in conjunction with 

some unit of grouping (N) to compress N symbols by creating 

a unique number from the following expression: 

* N-1 * N-2 * Pl B +P2 B + ••• +PN-l B+PN 

The original text can then be recreated because B and N 

are known, P can be derived, and the dictionary used to 

expand the compressed text. This method does preserve 

collating sequence order, but is not applicable to keys of 

variable length unless N is chosen equal to the maximum key 
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length or, in the case where rear end compression has 

already been performed, equal to the maximum length of the 

shortest separator. This restriction introduces difficulty. 

While it is easy to establish the maximum length key or 

shortest separator length when an index is created, there is 

no way of knowing how this maximum will change as insertions 

are made in the database. The savings achieved would vary 

with the amount by which the average key or separator is 

shorter than the maximum key or separator. This technique 

is interesting, but not the subject of this study. 

The last standard data compression technique discussed 

here is that of squeezing out long sequences of identical 

characters such as leading or trailing blanks. This 

technique is obviously of little value to index compression 

where these long sequences do not typically occur. 

The problem of compressing indices has been approached 

in various ways. The temptation to compress keys is 

frequently resisted in environments where keys are of fixed 

length since compression techniques frequently yield 

variable length compressed keys (not the case for numerical 

en?oding) which necessitates additional administrative space 

either in the form of intra-node pointers 

indicating the starting position of keys or a length field 

attached to each key. Another objection to compression is 

that variable length keys cannot be searched efficiently 

within a node (15). The second objection is just not valid 

since using intra-node pointers permits intra-node searching 

in the node, 
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in time of O(log n) by means of a traditional binary search 

with an extra level of indirection via the intra-node 

pointers. The first 

under consideration 

already of variable 

objection is moot in the applications 

here since compressing keys that are 

length does not add to the cost of 

intra-node operations nor to the intra-node storage 

requirements: intra-node pointers are already required. 

There are several approaches to the compression of 

indices: binary compression (22), prefix B-trees (3), 

simple prefix B-trees (3), and a front-end compression 

technique developed by Clarke et al (5 and 6). These 

approaches are discussed below. 

The technique of binary compression of index keys 

produces a binary tree of variable search path length (22). 

The creation of the binary compressed index is achieved by 

virtue of the placement of a pair of index keys in two index 

positions based on the most significant single bit 

difference. The position of the difference bit and either a 

pointer to another position in the index or a data address 

are retained in the index. The fact that the nodes, being 

binary, are not easily tied to the read capacity of an 

external device makes this type of index an unlikely design 

choice for applications with very large indices stored 

externally. In addition, the indexing technique does not 

necessarily produce a uniform length search path. Although 

this can be forced during the initial building of the index, 

the tree may become unbalanced during insertion or deletion, 



thus making it subject 

undesirable possibility. 
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to performance degradation, an 

The ability to access the sequence 

set sequentially can only be obtained by creating the index 

pointers as offsets into a list of sequence set pointers. 

This addition represents additional index overhead. 

The remaining techniques are termed character 

compression. These methods take advantage of two aspects of 

indices, namely that the sorted order of an index of keys 

ensures that the set has inherent to it some degree of 

prefix redundancy and that the least significant bits of a 

pair of keys are not needed in the determination of a search 

path (the first difference bit or character suffices). 

These approaches have led to what is termed front-end 

compression in the case of prefix redundancy and rear-end 

compression in the case of least significant character 

truncation. Of course, the degree of sorting induced prefix 

redundancy depends heavily on the size of the alphabet 

making up the keys relative to the size of the index. 

Considering the two extremes makes this observation 

intuitive. Given an alphabet of 26 characters and a file of 

26 keys, it is possible, though not inevitable, to have no 

prefix redundancy at all. Given an alphabet of 1 character 

and a file of any length, it is inevitable that there is 

total prefix redunancy. This idea is important to the 

method tested in this thesis and will be discussed further 

in the next chapter. 

There is an important difference between front and 
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rear-end compression. Since, in + the B -tree variant, 

the index serves only to guide a search of the sequence set 

where all full records are stored (or pointers to full 

records), keys in the index may be altered at will as long 

as their ability to direct the search is maintained. This 

assertion is not true of pure B-trees where the search may 

terminate above the leaf level and alteration of a key would 

create ambiguity as to whether a key existed, because full 

records are stored in the index. The truncation of least 

significant characters may be performed . + 
~n a B -tree 

application without concern for key reconstruction. 

However, if we compress a prefix, we must either be able to 

reconstruct it or have replaced it with a symbol that 

assumes the prefix's function of maintaining collating 

sequence order. The methods discussed here are based on the 

ability to reconstruct the prefix or construe its value from 

adjacent keys. The method that is proposed in this thesis 

is based on the replacement of a prefix by a shorter symbol 

that assumes the function of the prefix. The weakness of 

the prefix reconstruction approach is that the complexity of 

index operations is greatly increased; the cost of the 

replacement technique is that the replacement byte is 

required and that less storage is saved. 

Three approaches to index compression will now be 

discussed: simple prefix B-trees, prefix B-trees ( 3 ) 1 and 

an unnamed character compression technique developed at IBM 

by Clarke et al ( 5 and 6) and discussed by Chang (4) and 



Wagner 

to here 

( 22) • For convenience, 

as the Clarke method. 
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this method will be referred 

The order of this discussion 

is based on the following. Simple prefix B-trees produce 

rear-end compression and are of proven value. The other two 

methods, prefix B-trees and the Clarke method, compress both 

front and rear portions of a key and overlap conceptually to 

such a degree that the adjacent discussion simplifies the 

explanation. 

A simple prefix B-tree is a B+-tree in which the 

variable length, shortest separator between two keys 

bridging a node boundary at the sequence set level is 

propagated up into the index thus saving space in the index 

and decreasing the number of disk accesses. 

For example, a node division at the sequence set level 

may appear as shown in figure 4. 

concur condemn 

Figure 4. A Seqence Set Node Boundary 

In this case, the shortest separator needed to guide a 

search in the immediately preceding level is the unique 

prefix of the second key, cond • The rear end compression 

of "emn" saves space. There may be many possible separators 
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of optimal length: there are certainly many of less than 

optimal length ( conde would function as well as cond ). 

However, since the object is to save storage, Bayer and 

Unterauer (3) define the selection of a shortest separator 

as follows: 

Let x and y be any two keys such that 
x<y. Then there is a unique prefix y of y 
such that (a) y is a separator between x and 
y, and (b) no other separator between x and y 
is shorter than y (p.l2). 

It should be noted that the separator may be either 

less than or equal to the collating sequence value of y and 

that it is always greater than x by virtue of y being 

greater than x. Equal key values are not permitted (or 

useful) in an index. The search algorithm for a simple 

prefix B-tree is based on this relationship between 

separator and pairs of index keys used to generate the 

separator: in the event that a search key is equal to a 

separator over the entire length of a separator, the search 

path associated with that separator is taken. It should 

also be noted that, in a multilevel index structure, 

rear-end compression only takes place with the initial 

creation of index keys. Further rear-end compression at 

higher index levels would create search path ambiguity. 

Bayer and Unterauer (3) found the following by 

experimentally comparing simple prefix B-trees with 

B+-trees (called B*-trees in the article): 



23 

1. Time complexity - index operations ¥equired time almost 
identical to the same operations in B -trees. 

2. External disk accesses {1) no decrease in trees of 
fewer than 200 nodes. {2) 20-25% decrease in trees with 
between 200 and 400 nodes {p. 24). 

A prefix B-tree takes the idea a step further and 

stores only once, in the index nodes or preceding parts of 

the subtree, the common prefix of the shortest separators, 

thus further reducing the storage requirements and external 

accesses {reducing the height of the index). 

For example, if at some level of the index all the 

shortest separators in a node share the common prefix con , 

the keys may be stored as shown in figure 5. 

d fi tarn voy j 

Figure 5· A Prefix B-tree Index Node 

The compression is achieved by avoiding multiple storage of 

the common prefix con • 

The common prefix can be reconstructed either from the 

node itself or from the node and the node's ancestors. An 

alternative here that saves multiple reconstruction of index 
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each key comparison during an intra-node 

adjust the search key by deleting prefix 

the search key prior to an intra-node 

worth noting that savings from front-end 

likely to be greater at lower levels in the 

index. This increased 

the fact that adjacent 

compression is likely by virtue of 

index keys at the lower levels are 

certain to be closer together in terms of collating sequence 

distance than are index keys at higher levels in the tree. 

In other words, keys nearer the root direct the search to 

wider and more distant parts of the sequence set, and the 

search is narrowed as we drop down from level to level. 

Unlike rear-end compression where a one time truncation take 

place and then saves space at all levels of the index, 

front-end compression is most effective at the lower levels 

and then less effective with each higher level, if it takes 

place at all (the least likely place for keys to share a 

common prefix is at the root level). 

This type of key compression does increase the 

branching factor and decrease the size of the index: 

however, these advantages are achieved at the cost of 

greatly increased time needed for index operations. This is 

partly due to the cost of reconstructing keys during a 

search, but also due to the necessity of reconstructing and 

recompressing keys during a page split and even during the 

insertion of a new key in a node with sufficient space. 

There is also a potential instability: if a new key is 
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inserted, either at the logical beginning or end of a node 

and if this insertion changes the common prefix of that 

node, then the compressed keys have to be expanded and the 

possibility exists that the expanded keys cannot be handled 

by a simple page split. While it is true that the 

compression prior to the insertion would have to have been 

very significant, this potential for instability exists and 

makes questionable the idea that dynamic node restructuring 

takes place in order of log n where m is the branching m 
factor and n the index size. In addition to these above 

mentioned drawbacks, Bayer and Unterauer ( 3 ) have 

established experimentally that prefix B-trees reduce 

external accesses very little relative to simple prefix 

B-trees (a 2% decrease) and that normal indexing operation 

require 50-100% more time. 

The compression method termed here the Clarke method is 

very similar to Bayer and Unterauer's prefix B-tree in terms 

of its goals, that is front-end compression of sorting 

induced redundancy and rear-end truncation of characters 

that are functionally redundant for search path definition. 

Compressed keys are generated by comparing adjacent index 

keys. Characters preceding the first difference byte of the 

larger key are not stored but are later construed from the 

preceding keys using two count fields kept with each 

compressed key: the length of the compressed key and the 

length of the prefix that was compressed. The underlying 

idea is very close to that of the prefix B-tree; the 
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realization differs in an important respect: an intra node 

search must 

for 

node 

large 

could 

take place sequentially, an expensive operation 

numbers of keys. Recall that the prefix B-tree 

be 

pointers once 

scanned using a binary search via intra-node 

the compressed prefix was removed from the 

The Clarke method has some advantages over search key. 

prefix B-trees in that the operation for inserting a key 

requires only a local update of the preceding and succeeding 

keys. The cost of serial intra-node searching can be 

reduced by creating, internal to the node, a two or more 

level index , which in turn will make the compression rules, 

search, and splitting algorithms more complex. The 

performance of the Clarke method is unknown~ however, based 

on the rules of compression, it appears that more storage is 

saved than prefix B-trees save (a prefix does not have to be 

common to all keys, just to adjacent keys) but that this 

savings is achieved at the expense of much greater 

intra-node traversal time and at the expense of the count 

fields required for each key (if both numbers stored in the 

count fields are less than 16, both may be represented in 8 

bits). 



CHAPTER III 

PREFIX RECODED B-TREES 

The two front-end compression techniques described in 

chapter II rely on the reconstruction of the prefix to 

define the search path. In an attempt to avoid the 

additional time complexity involved in these approaches, 

prefix receded B-trees are proposed here. This method will 

trade some of the storage that could be saved by either the 

prefix B-tree or the Clarke approach for greatly decreased 

time complexity during indexing operations. It will avoid 

the necessity to reconstruct keys by replacing compressed 

prefixes and all initial characters with symbols that 

maintain collating sequence order. Part of the motivation 

for this approach is Bayer and Unterauer's (3) observations 

{analytically arrived at and experimentally confirmed) about 

the effect of the alphabet cardinality on separator size in 

a randomly generated key set. 

Bayer and Unterauer's analysis summarized here is only 

an approximate analysis. Their purpose is to arrive at a 

means of obtaining a theoretical approximation of a siinple 

prefix B-tree, an index having the least significant 

characters truncated. The results are only vaguely related 

27 
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to what is attempted here: the recoding of prefixes as a 

means of saving storage. The expected length of their 

shortest separator is somewhat related to prefix recoding. 

Although their purpose is not to suggest the extension of 

the cardinality of the alphabet, the results they present 

suggest that such an extension would save much storage. 

Several points with respect to their analysis should be 

noted here. The analysis assumes fixed length keys. The 

authors see no reason why variable length keys should 

produce significantly different results: however, since 

prefix recoding is a strategy proposed to deal with variable 

length keys, it should be borne in mind that Bayer and 

Unterauer's assumption may make a significant difference. 

For this reason, their analysis is presented ·here only as a 

recommendation of recoding and not as a theoretical 

underpinning of the method. In addition to key length, 

Bayer and Unterauer assume that the keys are randomly 

distributed over the possible maximum cardinality of the 

file (given by ak where a is the alphabet and k the 

fixed length of keys). In the English language, however, 

keys tend to cluster in certain areas. For example in the 

dictionary used as a key set to test prefix recoding, 950 of 

the 24,000 words start with the prefix co • There are 676 

possible 2 letter combinations for an alphabet of 26 letters 

(26 2 ). The fact that 4% of the keys fall into 1 of 676 

slots (0.0015%) illustrates this clustering. The greater 

the degree of this clustering, the greater is the chance 
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that longer separators will be needed for a given alphabet. 

But in addition to this observation, it seems that the 

longer the generated separators are, the more room there is 

for prefix compression. 

The drawback to the theoretical approach to this 

problem is that it is impossible to draw general conclusions 

unless one assumes that the key set is of a random nature. 

Index terms extracted from a natural language are unlikely 

to be random and thus the closest we can come to predicting 

the results of this type of compression is to make 

preliminary measurements of a particular key set. An 

analysis of the key set used for this study indicated that 

of there were 703 variable length combinations with a 

maximum length of 2. This number was determined as follows: 

1. There are no duplicate keys. 

2. There are 26 letters in the alphabet (26 2=676} 

3. There are keys with a trailing blank 
(giving 26 additional possibilities. 

4. The string 'bb' was allowed 
(1 additional possibility}. 

By scanning the actual key set it was found that 19,543 

of the 24,000 keys (81.43%} were in 98 of the 703 slots 

(13.94%}. This fact seems to indicate that there is 

considerable clustering in the key set and that recoding 

common prefixes may be profitable. It should be noted that, 

when Bayer and Unterauer extend the cardinality of the 

alphabet, this extension takes effect over the entire key, 
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whereas prefix receded B-trees extend the cardinality of the 

alphabet used to code prefixes and initial characters but 

leave the remaining characters in a key consisting of the 

original alphabet (having cardinality of 26). 

Tables I and II below summarize Bayer and Unterauer's 

observations. 

TABLE I 

EXPECTED LENGTH OF SEPARATORS IN THE INDEX OF A 
SIMPLE PREFIX B-TREE* 

n 

a 

26 2.483 3.104 3.842 4.615 

256 1. 774 1.976 2.517 2.936 

* a=alphabet cardinality; n=file cardinality 

Source: R. Bayer and K. Unterauer, "Prefix B-Trees," 
ACM Trans. on Database Syst. Vol. 2, 

No. 1, March, 1977. 

The average length of separators determined 

experimentally was 0.35 lower than the theoretical 

results above. 
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TABLE II 

LENGTH OF PARTIAL SEPARATORS IN A PREFIX B-TREE 

n 

k 103 104 105 106 

10 1. 73 1.80 1.91 1.80 
100 2.48 2.35 2.54 2.69 a=26 
100 2.48 3.10 3. 09 3.32 

10 1. 77 1. 23 1. 55 1.60 
100 1. 77 1.98 1. 77 1.97 a=256 
1000 1. 77 1.98 2.52 2.19 

Before discussing prefix recoded B-trees and comparing 

these with prefix B-trees and the Clarke method, it should 

be noted that all three methods will employ rear-end 

compression, a proven method of index compression and the 

subject of Bayer and Unterauer's compression technique: 

simple prefix B-trees. 

Prefix recoding will attempt a slightly less ambitious 

compression of the sorting induced redundant prefixes 

inherent in indices. Each initial letter will be replaced 

by a new ASCII character and, where it is found to produce 

nearly maximum saving, not only the initial character but 

also an entire prefix {of variable length) will be replaced 

by one of the 255 ASCII characters. Using 255 of the 

symbols provided by 8 bits is, in a sense, an extension of 
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the alphabet, although the extension is restricted to the 

initial parts of index keys. This fact and the fact that 

rear-end compression truncates all characters after the 

first difference character motivates the proposal for prefix 

recoded B-trees made here. 

The details of this proposal and of the "storage versus 

intra-node operation efficiency" trade-off are as follows. 

The 26 letters of the alphabet are usually stored one 

character per byte {upper case letters can be converted to 

lower case since storing words in alphabetic order requires 

that upper and lower case letters be interspersed). This 

usage, of course, is wasteful since it takes only 5 bits to 

code 32 and thus 26 patterns. We can make use of the 

additional bits by defining a 255 letter alphabet {one 

pattern being reserved as an end-of-word delimiter) which is 

used to represent words by replacing common prefixes in the 

sequence set with patterns that are chosen so as to maintain 

collating sequence order and compress prefixes. The 

approach is to choose the prefixes for compression so that 

the storage saved is maximized of nearly maximized. This 

prefix recoding appears to have considerable advantage over 

the original method of front-end compression proposed by 

Bayer and Unterauer with respect to computational complexity 

during index operations such as inserting and deleting. 

1~ereas Bayer and Unterauer propose a compression technique 

that requires dynamic updating during these operations the 

technique prop0sed here requires a once-only analysis and 
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sequence set prior to building the packed 

trees as well as the relatively much 

simpler task of converting each search key to the new scheme 

and decoding entries in the sequence set for display. This 

advantage is achieved at the expense of the additional 

character that replaces the prefix during receding and of 

limited compression (the number of prefixes that can be 

compressed 

alphabet). 

is limited by the cardinality of the new 

However, prefix receding takes place in the 

sequence set and the savings in storage is felt at this 

level, as opposed to the prefix B-tree approach where full 

keys are stored at the sequence-set level. This extra 

savings at the sequence set will provide some small 

additional savings but is not exected to be significant 

where the node size is large and the number of index keys 

per node is high. 

As was outlined in the previous chapter, the Clarke 

method enjoys the advantage of greater prefix compression 

than the prefix B-tree (due to the fact that prefixes do not 

have to be common to a large number of keys before these 

prefixes are compressed), but this additional compression is 

achieved at the expense of requiring a sequential intra-node 

search during index operations or a complex and expensive 

intra-node structure consisting of multiple levels. Prefix 

receding will allow efficient intra-node operations 

(log2 m where m is the branching factor of a node) 

while achieving compression that, although not as great as 
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the Clarke method, is expected to be significant in terms of 

index size reduction and decrease in node visit cost. The 

optimization of performance within a node is said by Lomet 

(13) to be important, especially in a multi-user environment 

where the release of a node may be awaited by a second 

process. 

The effect of prefix receding has three different 

aspects. These are discussed in increasing order of 

expected importance below. 

Sequence Set Compression 

There will be a decrease in the size of the sequence 

set due to prefix compression at this level. This decrease 

may not be enough to save even one node at the lowest index 

level (the level above the sequence set) when nodes are 

large and relatively many keys per node are stored, but as 

node size decreases, and thus the number of keys stored in a 

node decreases, the effect may become significant. 

Alphabet Cardinality 

By increasing the cardinality of the alphabet, the 

method will decrease the size of shortest separators. A 

simple illustration is as follows: if every possible key 

exists in a file of keys where the alphabet size is three, 
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then there are only three shortest separators of length one. 

Given the fixed maximum key length, increasing the alphabet 

size to 10 creates many more possible keys, but, if the 

original keyset can somehow be translated into the new 

alphabet, there would then be 10 shortest separators of 

length one, thus reducing the average shortest separator 

length. A similar assertion can be made for the increase in 

the number of shortest separators of length two and greater. 

Index Compression 

Common prefixes are compressed in the index. For 

example, since the prefix con is common in the sequence 

set, it is reasonable to expect it to be more frequently 

encountered in the index than a prefix occuring less 

frequently in the sequence set. Hence, the compression of 

con in the sequence set saves storage in the index. 

There follows a discussion of how prefixes are chosen 

for compression. Common prefixes occur where the keys in a 

set are relatively long and relatively close in terms of 

collating 

follows. 

and the 

maximum 

sequence distance. What we mean by this is as 

Given the length of the largest word in a key set 

cardinality of the alphabet making up the keys, the 

number of keys (called slots here) in a hypothetical 

file is given by the following formula. 
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In the above formula, a represents the alphabet 

cardinality and n the length of the largest word. Keys are 

unique and so the closest the keys can be in terms of 

collating sequence distance is that the keys occupy two 

adjacent slots in the hypothetical file. Figure 6 below is 

used as a simple example. The underscore character ' 

represents a blank. 

a l - case a a .-
abb 2 abc case 

ace case 4 b 

bac 3 bb case 

CCC 

Figure 6. Hypothetical File. 
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Consider figure 6 above for purposes of illustration. 

The alphabet consists of three characters (a,b, and c) and 

the maximum key length is three. The adjacent pairs of keys 

exhibit one of the following characteristics: 

1. The two keys have in common all characters except 

that the second key has an additional character that is the 

lowest character in the alphabet (aa_ and aaa, b_ and ba). 

2. The two keys are of the maximum length and differ 

only in that the second key has a least significant 

character that is greater by one than the least significant 

character of the first key (abb and abc, ebb and cbc). 

3. The two keys have in common all characters up to 

some point between the first and the last character, after 

which the first key has the highest character in the 

alphabet in all subsequent positions and the second key has 

blanks in all positions following the difference. 

4. The first key is the highest possible key in the 

subset defined by 

is the lowest key 

character higher by 

the initial character and the second key 

possible in the subset defined by the 

one than the initial character of the 

first key. (ace and b , bee and c __ ). 

From the above description it can be seen that, in case 

1, there is room for some prefix compression, the degree of· 

which depends on how many characters the keys share in 

common. In case 2, there is room for much compression: all 

but the least significant character is a candidate for 

compression. Case 3 provides some room for compression. 
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The extent of this compression depends on how many 

characters are common to both keys. Case 4 provides no room 

for compression: the shortest separator will be of length 1 

(the initial character of the second key). However, after 

extending the alphabet, the number of times this case occurs 

in the hypothetical file is increased. It should be noted 

that this case occurs infrequently: as many times as there 

are characters in the alphabet. 

In this thesis, prefixes are chosen so as to save 

storage. An attempt is made, within two arbitrarily set 

maximization of storage 

attempt to spread the new 

limits, 

saved. 

to closely approximate 

Another approach is to 

symbols as evenly as possible over the sequence set, so that 

groups of words sharing a common receded prefix are of 

nearly equal size. This would avoid the possibility that a 

receding symbol is used on a prefix that is long, but common 

to few words and thus susceptable to being 'buried' in the 

middle of a sequence set node and not participate in 

decreasing the size 

alternative is not 

parameters that is 

prefixes considered 

of shortest separators. This second 

considered here although one of the 

arbitrarily set (the length of the 

for compression) has the effect of 

influencing how evenly the new symbols will be spread. 

When we consider real key sets, especially if these 

consist of index keys from a natural language like English, 

the number of slots defined by the alphabet and maximum word 

length is far greater than the number actually filled by 
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existing keys. Also, the keys are not randomly interspersed 

among the slots, but, to some extent, tend to cluster. It 

is in the areas where clustering occurs that prefix 

compression by receding will be most beneficial. 

There are two dimensions that affect the amount of 

storage saved by prefix compression. The first is the 

number of occurrences of a particular prefix. The second is 

the length of that prefix. 

In this 

considered. 

characters 

single-byte 

one byte 

thesis, prefixes of variable length are 

The shortest prefixes considered are two 

long. Since the two byte prefix is replaced by a 

ASCII symbol, the saving of storage is exactly 

per occurrence of the prefix in the sequence set 

per occurrence in the index. The and, likewise, one byte 

storage saved by prefixes of greater length--three and four 

character prefixes--is given by the following formula: 

Storage saved = (len * num) - num ( 2 ) 

(where len is the prefix length and num is the number of 

occurrences of the prefix). Since, by definition, a 

sequence of keys having in common an n character prefix have 

in common an n-1 character prefix, we can speak of prefix 

groups, candidates for compression, as being contained 

within 

con 

and 

other prefix groups. 

is contained in the group 

cont are contaned in 

For example, the prefix group 

co • Both the groups cons 

con which is of course 
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contained in the group co • This nesting introduces some 

complexity in the choice of prefixes for compression. To 

consider all possibilities--prefix groups ranging from 

groups of length two to groups equal in length to the 

largest key as well as all possibilities for number of 

occurrences, ranging from a pair of keys sharing a common 

prefix to the largest group of two character prefixes--is 

impossible f.or a large sequence set on the equipment 

available for this study and within reasonable time 

constraints. For these reasons, two arbitrarily set limits 

(described below) constrain the choice of prefix groups for 

compression. 

It should be borne in mind that there are only 255 

symbols available in the present proposal. Also, most 

prefixes chosen for compression require the use of two of 

these new symbols. If we choose the group co for 

compression we need three symbols as opposed to the single 

symbol previously used to encode the letter c . These 

symbols are used as follows: 

1. a symbol to encode all initial c's preceding co 
2. a symbol to encode all prefix co 's 
3. a symbol to encode all initial C's following co 

There are exceptions to this "two extra symbol" ruler 

these will be discussed later. 

The arbitrarily set limits are as follows. 
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Minimum Storage Limit 

A minimum is set on the storage saved by any prefix 

group under consideration. This limit gives prefix groups 

of length. greater than two the opportunity to compete by 

virtue of the greater compression offered. It should be 

noted, however, that combinations of nested prefix groups 

are only c9nsidered after this pruning of less profitable 

possibilities and it cannot be claimed that the method will 

produce an optimum saving, though it is thought that the 

procedure produces a good solution. 

Maximum Length of Prefixes 

A maximum is set on the length of prefixes that are 

considered. This limit restricts the depth to which prefix 

groups are allowed to 'be nested, but not the number of 

groups that can exist at any particular depth. This maximum 

is set as a means of controlling the complexity of 

considering all possible combinations of nested prefixes. 

Since the decision to include a candidate nested group in a 

combination is a "yes-no" decision, it is obvious that the 

number of combinations in a nested group is 2j where j 

is the number of groups nested within the two character 

prefix group. In the sequence set used in this study the 

groups contained within co numbered 17 when the first 
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arbitrary limit was set at 90 bytes saved (arrived at by 

trial and error) and the second to four characters. 

Considering the resulting 131,072 (2 17) . poss1ble 

combinations of nested prefixes within this one group is a 

task that approaches the limits of reasonableness. 

The Choice of Prefixes 

Step 1 

A key is read and the two, three,and four character 

prefix is extracted and stored for comparison with later 

keys. 

Step 2 

Subsequent keys are read and a count kept for the 

number of occurrences of common prefixes of lengths two, 

three, and four. 

Step 3 

When a prefix group changes--the new prefix replaces 

the stored prefix for later comparison and the number of 

bytes saved by the just completed group is calculated. If 

the bytes saved exceeds the first arbitrarily set limit 

discussed above, then the prefix and some administrative 
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information is stored for later consideration. If the just 

completed group is a two character prefix, a check is made 

to see whether the group contained nested groups. In the 

event that this is so, all of the mutually exclusive 

combinations are generated and the best (most storage saved) 

combination for each possible number of symbols required is 

retained. Combinations of prefixes may require from two 

symbols in the simplest case to twice the number of groups 

nested within the two character prefix (described below). 

Most prefixes considered for compression require two symbols 

in addition to the symbol already used to encode the initial 

characters. 

This requiremen~ can be seen in figures 7 through 9: 

first word last word 
in c in c 

~----------------~--~~---~~-----------------~ 1 symbol used to 
encode initial symbol c • 

Figure 7. Symbol Requirements Without Compression. 
Total symbols used: 1 
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first word first word last word last word 
in c in co in co in c 
l __________ l ________________________ r-___________ 1 

1 symbol for 
initial 
character c 

1 symbol replaces 
prefix co 

1 symbol for 
initial character 

first 
word 
in c 

Figure 8. Symbol Requirements with 
Total symbols used: 

first first last 
word word word 
in co in con in con 

I - I I r-

co Compressed. 
3 

last 
word 
in co 

I 

1 symbol 1 symbol 1 symbol 1 symbol 1 symbol 

last 
word 
in c 

I 

for 
initial co before con co after c after 
char. 

-
c con con co -

Figure 9. Symbol Requirements with co and con 
Compressed. 

Total symbols used: 5 

It can be seen that, in the examples, each additional 

prefix, whether it is nested at a deeper level or at the 

same level, requires two additional symbols. This is not 

always the case. Consider figures 10 and 11: 
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first wrd first wrd last wrd first wrd last wrd last wrd 
of co of con of con of cor of cor of co 
1 ________ 1 _________________ 1 __________ 1 I 

1 symbol 1 symbol 
for co for con 
before con 

1 symbol 
for co 

between con 
and cor 

1 symbol 
for cor 

1 symbol for 
co after cor 

Figure 10. Symbol Requirements for the Non-adjacent Nested 
Groups. 

Total symbols used: 5. 

Here each nested prefix group requires an additional 

two symbols, but in the example below, the nested groups 

com and con are adjacent in the sense that no symbol is 

required to represent co between these two groups because 

no slot exists over that section that does not fall within 

either com or con This fact is obvious when we 

consider that the prefix groups are of the same length and 

the least significant character of the second (n) is greater 

by 1 in terms of collating sequence distance than the least 

significant character (m) in the preceding group com • 



first first last word last last 
word word in com & word word 
in co in com first in con in con in co 
1 _________ 1 ___________ 1 ______________ 1 _________ 1--

1 symbol 1 symbol for 1 symbol for 
for co com con 
before com 

1 symbol 
for co 
after-com 
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Figure 11. Symbol Requirements for Adjacent Nested Groups. 
Total symbols: 4 

In the above figure, only one extra symbol is required 

to add con to the nested group co and com • This 

reduced requirement is taken into consideration in the 

evaluation of combinations of nested prefixes. 

The choice among combinations of nested groups is made 

as follows .• The single group yielding the largest marginal 

saving in storage is chosen as the initial position 

(marginal savings being defined here as the number of bytes 

saved per additional symbol used). This possibility is 

saved for comparison with other prefix groups outside the 

nested group being processed. All of the other 

possibilities are adjusted to reflect the marginal savings 

in relation to this first choice. Recall that much pruning 

has already been done; only the best combination requiring n 

symbols is considered here, all others having been 
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eliminated earlier by virtue of their inferiority relative 

to this best choice for numbers of symbols required. After 

the adjustment of marginal savings, negative marginal 

savings are discarded and the best choice is retained for 

comparison with other groups outside the nested group. This 

new combination is marked as being mutually exclusive with 

the first group retained for later comparison. The 

remaining combinations are adjusted for comparison with this 

second retained possible combination and the process 

continues with ever decreasing marginal savngs until a point 

is reached where the marginal savings does not exceed the 

first arbitrarily set limit. At this point the process 

stops since there will · be other groups preferable to any 

further combination or the arbitrary limit will be lowered, 

to yield in the next run further possibilities during the 

above discussed process (evaluation of nested combinations) 

and during the overall process (the evaluation of prefixes 

in general, simple and nested). 

Step 4 

The final step in the process of choosing prefixes is 

taken when the entire sequence set has been used to generate 

all of the simple candidate prefixes and all of the mutually 

exclusive nested combinations subject to the two arbitrarily 

set limits. The last step requires only that the best 

prefixes or groups of nested prefixes are chosen based on 
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the number of bytes saved per symbol required. During this 

step, the move from initial choices within mutually 

exclusive groups to subsequent positions .within the current 

group is made based on a comparison of the benefits of the 

move relative to other possibilities, provided either by 

simple groups or other nested groups. 

After the prefixes are chosen for compression, the 

relatively simple task of translating the sequence set 

remains. This translation is achieved during a single pass 

over the set. The prefixes chosen for compression and all 

initial characters are replaced by one of the 255 ASCII 

symbols provided by 8 bits (recall that one pattern is 

reserved for an end-of-word delimiter). After this encoding 

process, packed prefix recoded B-trees can be created and a 

table of symbols for prefixes and initial characters created 

for use during indexing operations. 



CHAPTER IV 

EMPIRICAL MEASUREMENTS OF THE EFFECT OF 

RECODING PREFIXES 

The Representational Model 

Two types of trees were created and compared in this 

study: simple prefix B-trees and prefix receded B-trees. 

For the purpose of comparison, various node sizes of 

identical structure were created and the trees built. There 

follows here, first, a description of the tree structure and 

then a description of the sequence set node structure and 

index node structure. 

Both types of tree are implemented as + B -tree 

structures: the full records are kept at the sequence set 

level and compressed keys are propagated up into the index, 

rear-end compressed shortest separators in the case of the 

simple prefix B-tree and prefix receded shortest separators 

in the case of prefix receded B-trees. The sequence set is 

a doubly linked list of nodes which facilitates traversal of 

the keyset in both directions, in sequential order or the 

reverse, after either an initial probe to the beginning of 

the file or a random access probe to any point in the file. 

49 
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The node size of the index is the same as the node size 

at the sequence set level and the physical structure is 

identical; however, the logical structure differs slightly. 

All nodes are implemented as an n byte buffer (n ranges from 

64 bytes to 2048 bytes for the test cases) which is declared 

such that it can contain either n 8-bit characters or n/2 

16-bit integers. (The buffer is declared to be a union of 

character and integer types in C, the language of 

implementation here). · 

The above physical node structure is used logically to 

implement the sequence-set and index nodes in slightly 

different ways. As can be seen in figures 12 and 13, six 

bytes at the right-hand edge are used for administration. 

0 1 n/2 halfwords 

---I # I node type I inter-node· 
I I ........ of I I 
I I keys I flag I pointer 
I I I I - ---0 2 n bytes 

Figure 12. Index Node Structure. 

In the index, this space is used for three 16-bit 

fields: a count of the number of keys in the node, a flag 

which is set to negative two if the node is the root and 
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negative one if the node is an internal index node, and the 

additional inter-node pointer required in the index (there 

is one more inter-node pointer than keys in an index node). 

In a sequence set node, the three 16-bit fields are 

used as follows: a count of the number of keys in the node 

and two link fields used to link each node to the logically 

preceding and succeeding sequence set nodes, thus 

facilitating sequential traversal in either direction. 

0 1 n/2 halfwords 

I # left right 
I I . . . . . . . . . . . . . of 
I I keys link link 
I I 
0 2 n bytes 

Figure 13. Sequence Set Node Structure. 

Full keys are stored in the sequence set and shortest 

separators are stored in the index in exactly the same 

manner. The space in the node is used as follows. The keys 

are stored at the low subscript end of the node in the order 

of arrival: a key's physical position does not define its 

logical position in the sequence of keys within a node. In 

addition, there are no spaces between keys--these are packed 

together and, in the event of a deletion, all keys 
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physically higher are shifted down. Beginning at the other 

end of the node, starting from a point just below the six 

byte administration fields, a vector of pointer pairs is 

maintained and allowed to grow down toward the unordered key 

locations. A pair of pointers consists of an inter-node 

pointer which points to an index node in the following index 

level or to the sequence set and an intra-node pointer which 

points to the starting position of the key associated with 

the pointer pair. This organization can be seen in figure 

14. It is the physical positioning of the pointer pairs 

that facilitates the inorder accessing of keys within a 

node: the intra-node pointer of the pair located immediately 

below the administration fields points to the lowest key in 

the node: the intra-node pointer below that gives the 

location of the next key in order, and so on. 

I intra-node pointers 
I 

1---------~-----------

lv I lv 
I 1 ••• 1 1 ••••••••• 1 
I 'I 1· I I 
variable-length pointer 
keys or pair 
separators stored for next 
physically unordered lowest 

key 

I admin 
I I I 

pointer ·--
pair 
for lowest 
key 

Figure 14. Internal Node Organization. 
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B-tree nodes are subject to some _rule that defines an 

underflow condition (for example, nodes are not allowed to 

be less than half full). In the case of variable length 

keys, such a rule may be defined based either on the number 

of keys, or, more likely, on the number of bytes used. For 

the purpose of measuring storage utilization in this study, 

this underflow rule is ignored. Nodes are packed with as 

much information as possible as an index level is built and 

the fact that a final node on any particular level may 

violate this rule is ignored. If the trees built here were 

going to be used as an index, it might then be necessary to 

underflow share keys so that all nodes obeyed whatever 

underflow rule was defined. 

Test Cases 

A total · o£ twelve trees was built for the purpose of 

comparing simple prefix B-trees and prefix receded B-trees. 

For both of these tree types, trees of six different node 

sizes were generated. The node sizes chosen were 64 bytes, 

128 bytes, 256 bytes, 512 bytes, 1024 bytes, and 2048 bytes. 

It was decided not to take this progression to smaller node 

sizes because nodes might then not be sufficiently large to 

contain a very large single key and because the range at the 

low end was considered to cover adequately all reasonable 

choices of node size. At the high end, the node size of 
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node, the root. 
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a B-tree index consisting of a single 

This fact made it obvious that 

considerations of larger 

would yield no further 

nodes for the keyset under study 

information other than that these 

node-sizes would also require a single node B-tree index 

consisting of a partially filled root node. 

Results of Empirical Testing 

Twelve trees, six node sizes for each tree type, were 

generated from two base files (one containing the full words 

and the other containing the same words with common prefixes 

receded) to produce the results presented in this section as 

empirical evidence of the effect of receding prefixes. The 

24,000 words used in the base file came from the UNIX 

dictionary facility. 

Prefix Compression and the Effect on the Base File 

Common prefixes in the 

identified and evaluated as 

original UNIX words file were 

described in Chapter III. A 

table of the prefixes chosen for compression is given in 

Appendix A. The base file used to generate the six 

bench-work simple prefix trees was processed and the 

designated prefixes receded and compressed. The results of 

this compression are given in Table III below. The figures 

represent the compression achieved in the creation of the 
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unstructured receded base file. Later tables will give 

figures which represent the savings once the information is 

loaded into sequence set nodes. 

TABLE III 

THE EFFECT OF PREFIX RECODING ON THE BASE FILE 
(UNIX WORDS FILE CONTAINS 24,000 WORDS) 

WORDS FILE (BYTES) RECODED riLE (BYTES) % COMPRESSED 

196,476 174,319 11.28 

The Effect on the Sequence Set 

The base files discussed above were loaded into 

sequence set records as . the first step in the creation of 

the two types of tree. Trees for each of the node sizes 

were generated and the sequence set files measured to 

determine the effect of prefix compression on the sequence 

set. It should be noted that these files contain all of the 

administrative information (count fields, pointers, and 

links) associated with nodes at this level. Table IV below 

gives the space requirements for the sequence sets of the 

different trees. 
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TABLE IV 

THE EFFECT ON THE SEQUENCE SET 

NODE SIMPLE PREFIX PREFIX RECODED I % COMPRESSED 
SIZE B-TREE {BYTES) B-TREE {BYTES) I 

I 

64 299,520 269,888 9.89 
128 269,440 244,096 9.41 
256 256,512 232,960 9.18 
512 250,880 227,840 9.18 

1024 248,832 226,304 9.05 
2048 249,856 227,328 9.02 
2048 246,856 227,328 9. 02 

From the above table, it is evident that the decrease 

in the sequence set is, in all test cases, between 9% and 

10%. The significance of this decrease becomes apparent 

when we consider that the decrease in size means that more 

records are packed into a prefix recoded B-tree node of 

given size, thus requiring fewer sequence set nodes and thus 

fewer separators in the index. The separators.themselves 

are compressed and the compounded effect of fewer, shorter 

separators can be seen in subsequent tables. 

The Effect on the Separators Generated 

The effect on the separators generated by creation of 

the sequence set is evident in the tables below. Table V 
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gives the effect on the number of separators generated. It 

should be recalled that a separator is generated between 

every pair of nodes at the sequence set lev~l. There is 

thus one fewer separator at all levels of the index than the 

number of nodes in the sequence set. 

TABLE V 

THE EFFECT ON THE NUMBER OF SEPARATORS GENERATED 

NODE I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE I% CHANGE 
I I I 

64 4,678 4,215 9.99 
128 2,103 1,905 9.42 
256 1, 000 908 9.20 
512 488 443 9.22 

1024 241 219 9.13 
2048 120 109 9.17 

Table VI below gives the compounded effect of recoded 

prefixes. The figures represent the savings for the 

unformatted shortest separator and prefix recoded separator 

sets: the separators are measured before insertion into 

index nodes and thus the figures overstate the savings in 

the index. 
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TABLE VI 

THE EFFECT ON THE SEPARATORS GENERATED 

NODE I SIMPLE PREFIX B-TREES !PREFIX RECODED B-TREES I % 
SIZE I (BYTES) I (BYTES) !CHANGE 

I I I 

64 30,026 22,982 23.46 
128 13,456 10,316 23.23 
256 6,328 4,973 21.41 
512 3,123 2,378 23.86 

1024 1,529 1,192 22.04 
2048 757 607 19.81 

Table VII below gives a more realistic idea of the 

savings in the index at the first level. The figures give 

the compression of the formatted separators at the first 

level: all of the administrative overhead (count fields, 

flags, and pointers) are taken. into account. Table VI above 

may be viewed as an upper bound on the savings possible in 

each test case. 
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TABLE VII 

THE EFFECT ON THE FIRST INDEX LEVEL 

NODE I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE I % 

I (BYTES) I (BYTES) I CHANGE 
I I I 

64 48,960 40,320 17.65 
128 22,016 18,176 17.44 
256 10,752 8,960 16.67 
512 6,144 5,632 8.33 

1024 5,120 5,120 0.00 
2048 6,144 6,144 0.00 

A fact worth noting that is not evident from the above 

table is that at the larger node sizes, 1024 bytes for 

instance, the saving in storage is concealed by the fact 

that the same number of nodes are required to contain the 

index at this level (see the following table giving node 

numbers). Within the larger nodes, there is a significant 

difference in the storage available for subsequent 

insertions. In the case of the 1024 byte node size, at the 

first level in the index, there are 1,002 bytes available 

for future insertion in the prefix receded tree compared 

with only 572 bytes in the simple prefix B-tree. This 

additional space means that the prefix receded tree, while 

it requires the same index storage in the current state, can 

withstand far more insertions without requiring more storage 
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for this level (without splitting). It is thus not true to 

say that there is no advantage to recoding prefixes for this 

node size with this key set. The above discussion is 

applicable to the information given for larger node sizes in 

the following section. 

The Effect on Tree Structure 

Tables VIII through 

tree structures generated 

XIII 

by 

give 

ilie 

information about the 

six test cases. The 

figures represent the numbers of nodes at the various levels 

in the trees. The number of separators propagated to the 

next higher level can be calculated since, if at level k 

there are n nodes, there must be n-1 separators propagated 

up to level k+l. Some of these will, in turn, be propagated 

to higher .levels if these levels exist. 



LEVEL 

5 
4 
3 
2 
1 
0 

TABLE VIII 

TREE STRUCTURE: THE NUMBER OF NODES AT 
EACH LEVEL (NODE SIZE = 64 BYTES) 

!SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE 
I I 

1 (ROOT) 1 (ROOT) 
4 3 

22 16 
128 97 
764 629 

4679 4216 
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I% CHANGE 
I 

25.0 
27.3 
24.2 
17.7 
9.9 

Again the compounded effect (fewer, shorter separators) 

is evident at the higher index levels. 

TABLE IX 

TREE STRUCTURE: THE NUMBER OF NODES AT 
EACH LEVEL (NODE SIZE = 128 BYTES) 

T 
LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE 
___ I I I ___ _ 

4 
3 
2 
1 
0 

1 (ROOT) 
2 

15 
171 

2104 

1 (ROOT) 
11 

141 
1906 

26.7 
17.5 
9.4 



LEVEL 

3 
2 
1 
0 

TABLE X 

TREE STRUCTURE: THE NUMBER OF NODES AT 
EACH LEVEL (NODE SIZE = 256 BYTES) 

I SIMPLE PREFIX B-TREE I PREFIX RECODED B-TREE 
I I 

1 (ROOT) 1 (ROOT) 
2 2 

41 34 
. 1001 909 

TABLE XI 

TREE STRUCTURE: THE NUMBER OF NODES AT 
EACH LEVEL (NODE SIZE = 512 BYTES) 

62 

I% CHANGE 
I 

17.1 
9.2 

LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE 
___ I I I ___ _ 

2 
1 
0 

1 (ROOT 
10 

489 

1 (ROOT) 
9 

444 
10.0 
9.2 



TABLE XII 

TREE STRUCTURE: THE NUMBER OF NODES AT 
EACH LEVEL (NODE SIZE = 1024) 
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LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE 
___ I I I ___ _ 

2 
1 
0 

1 (ROOT 
3 

242 

1 (ROOT) 
3 

220 

TABLE XIII 

TREE STRUCTURE: THE NUMBER OF NODES 
EACH LEVEL (NODESIZE = 2048) 

9.1 

LEVEL !SIMPLE PREFIX B-TREE !PREFIX RECODED B-TREE I% CHANGE 
___ I I I __ 

1 
0 

1 (ROOT) 
121 

1 (ROOT) 
110 9.1 

It can be seen that the savings in the number of index 

nodes is negligible for the trees built with the two largest 

node sizes. However, it should be noted that the benefits 

of prefix compression are concealed by the node size and 

shallowness of the index. If the tree were to grow with 
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insertion the positive effects would become evident, as 

these effects are in the deeper trees. It is also worth 

noting that the prefix recoded trees are more resilient to 

splitting on insertion by virtue of the fact that, though 

the node count is not significantly less, the nodes contain 

fewer keys. 

The results of the tests indicate that the effect of 

prefix recoding is beneficial for the base file tested. 

This observation is only an indication that the same may be 

true of other bases. The extent to which we can extrapolate 

from the results presented here depends upon the extent to 

which any other base is similar in terms of prefix 

clustering or sorting induced prefix 

uncertain that this method would be 

redundancy. It is 

as useful for bases 

consisting of 

often than 

language. 

random keys where clustering might occur less 

it does in keys extracted from a natural 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR 

FURTHER WORK 

Prefix 

efficiency of 

keys. The 

Summary 

recoding is an approach to improving the 

an index to a large file of variable length 

method approaches front-end compression by 

replacing 

all the 

the common prefixes at the sequence set level and 

initial characters with symbols that maintain 

collating sequence order by assuming the function of the 

prefixes compressed. The method does not achieve as much 

might be expected from the other key compression as 

front-end key 

II. However, 

compression techniques discussed in Chapter 

the method proposed here has the advantage 

that indexing operations can be performed at very. little 

cost during the time that the index is in use. It is true, 

of course, that the process of choosing prefixes can be a 

very expensive operation: however, this process is done 

off-line and thus does not adversely affect indexing 

efficiency. In addition, the expensive recoding process 

requires a once only analysis for each recoding. Subsequent 
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recodings are only necessary if the system is subject to 

significant insertion or deletion and then only if these 

operations significantly change the nature of the key set. 

During indexing operations the technique requires only an 

inexpensive translation, a table look up, when the search 

key is entered and when keys are displayed. The avoidance 

of the computational complexity inherent in both the Clarke 

and the prefix B-tree approaches is a factor that strongly 

recommends prefix recoding over these other techniques. A 

comparison of the three techniques in terms of storage 

efficiency would be interesting. 

Conclusions 

It was hoped that this study would demonstrate 

significant improvements in node visit cost for the prefix 

recoded B-tree. This improvement is not evident from the 

results in Chapter IV. However, it is clear that, if the 

nodes in the test cases are subject to identical insertion, 

the keys inserted into the prefix recoded tree being 

recoded, the simple prefix B-tree will require additional 

storage at all levels before the same additional storage is 

required by the prefix recoded tree. This additional 

storage required will, eventually in both trees, cascade up 

to the root and increase the number of levels. However, 

this increase will occur in the simple prefix B-tree before 

it occurs in the prefix recoded tree. This fact is evident 
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from the fact that there are always, in all test cases, 

either fewer 

the 

are 

prefix 

clearly 

nodes 

receded 

less 

at a particular level, or more space in 

B-tree nodes. The prefix receded trees 

likely 

average prefix receding 

to split on insertion, and on the 

can be expected to reduce the node 

visit cost where the receding produces significant 

compression of the base file. 

The application of prefix receding depends on the base 

file considered for receding. It is apparent that the 

degree of success depends on the degree of prefix clustering 

in a file. An initial analysis of prefix redundancy in a 

sorted file is a relatively easy and inexpensive task, and 

decisions pertaining to receding ought to be preceded by 

such an analysis. 

Suggestions for Further Work 

Several interesting questions were raised by this 

study. These are discussed below. 

The test cases for this study examined the two types of 

tree in a static environment. Although many applications 

such as dictionary or document database systems require only 

minimal insertion and deletion, it would be interesting to 

measure the 

environment. 

effect 

Dynamic 

of prefix receding in a dynamic 

test cases could be run. These tests 

would involve building trees by repeated insertion and then 

subjecting the trees to random insertion and deletion. An 
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extension of this investigation might entail designing 

efficient methods to evaluate the effect of insertion and 

deletion on the keyset so that recoding during periodic 

backups might be achieved easily. 

Another interesting direction of investigation is that 

of testing the effect of B-tree compaction on prefix recoded 

B-trees. This compaction would involve the rearrangement of 

separators in nodes at all levels such that the nodes 

nearest 

fanout. 

from what 

call 

the root had increased and perhaps near maximal 

This compaction would change the shape of the trees 

Rosenberg and Snyder (17) call scrawny to what 

bushy. The effect would be to make the trees' they 

node-visit cost miminal. A comparison of the two types of 

tree in this state would yield valuable information about 

the potential of prefix recoding for decreasing node-visit 

cost. This information is especially interesting for data 

bases in a relatively static environment: bushy trees are 

sensitive to insertion and split relatively soon on 

insertion. 

The focus of this study has been on the effect of 

prefix compression. There is much work to be done on the 

methods of choosing prefixes. No attempt was made to choose 

an optimal prefix set, and the effect of prefix recoding may 

be enhanced by the design of an optimal algorithm for the 

choice of prefixes. In addition, it might be interesting to 

know what effect evenly ~istributing symbols over the keyset 

would have on the average length of shortest separators. 
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Lastly, numerical encoding is a technique suggested by 

Hahn (9) for general text compression applications. It 

appears that this technique may find useful application in 

the compression of fixed length keys in indices. The 

technique maintains collating sequence order and produces 

fixed length compressed keys. An investigation of this 

technique in the database environment would be worthwhile. 
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APPENDIX 

THE PREFIXES COMPRESSED FOR THE TEST CASES 

PREFIXES SINGLE CHARACTERS STARTWORD END WORD 
COMPRESSED RECODED 

a 1 8 

ab 9 118 

ac 119 238 

ad 239 362 

a 363 518 

a1 519 729 

am 730 830 

an 831 1056 

a 1057 1057 

ap 1058 1158 

a 1159 1166 

ar 1167 1343 

as 1344 1467 

at 1468 1532 

au 1533 1614 

a 1615 1684 

b 1685 1686 

ba 1687 2006 
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b 0 0 

be 2007 2318 

b 2319 2320 

bi 2321 2453 

b 0 0 

b1 2454 2590 

b 2591 2591 

bo 2592 2811 

b 2812 2812 

br 2813 3062 

b 3063 3064 

bu 3065 3262 

b 3263 3282 

c 3283 3284 

ca 3285 3749 

c 3750 3751 

ce 3752 3837 

c 0 0 

ch 3838 4162 

c 4163 4230 

c1 4231 4384 

c 0 0 

co 4385 4495 

col 4496 4569 

com 4570 4723 

con 4724 5069 

co 5070 5334 
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c 5335 5335 

cr 5336 5540 

c 0 0 

cu 5541 5648 

c 5649 5682 

d 5683 5687 

da 5688 5808 

d 5809 5809 

de 5810 6290 

d 6291 6292 

di 6293 6587 

d 6588 6590 

do 6591 6769 

d 0 0 

dr 6770 6869 

d 0 0 

du 6870 6959 

d 6960 6986 

e 6987 7161 

e1 7162 7268 

em 7269 7359 

en 7360 7455 

e 7456 7733 

ex 7734 7963 

e 7964 7977 

f 7978 7979 

fa 7980 8121 
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f 8122 8124 

fe 8125 8228 

f 0 0 

fi 8229 8381 

f 8382 8382 

f1 8383 8539 

f 8540 8541 

fo 8542 8715 

f 8716 8716 

fr 8717 8871 

f 8872 8872 

fu 8873 8945 

f 0 0 

g 8946 8947 

ga 8948 9116 

g 0 0 

ge 9117 9224 

g 9225 9234 

gi 9235 9305 

g 0 0 

g1 9306 9393. 

g 9394 9406 

go 9497 9509 

g 9510 9510 

gr 9511 9709 

g 9710 9710 

gu 9711 9801 
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g 9802 9817 

h 9818 9819 

ha 9820 10093 

h 0 0 

he 10094 10335 

h 0 0 

hi 10336 10442 

h 0 0 

ho 10443 10681 

h 10682 10682 

hu 10863 10775 

h 10776 10781 

hydr 10782 10811 

h 10812 10847 

i 10848 10939 

im 10940 11086 

in 11087 11717 

i 11718 11732 

ir 11733 11796 

i 11797 11859 

j 11860 11861 

ja 11862 11931 

j 11932 12001 

jo 12002 12078 

j 12079 12079 

ju 12080 12156 

j 0 0 
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k 12157 12278 

ki 12279 12348 

k 12349 12448 

1 12449 12451 

1a 12452 12662 

1 0 0 

le 12663 12828 

1 0 0 

li 12829 13014 

1 13015 13015 

lo 13016 13174 

1 13175 13176 

1u 13177 13269 

1 13270 13289 

m 13290 13291 

rna 13292 13757 

m 13758 13759 

me 13760 13818 

m 0 0 

me 13819 14049 

m 0 0 

mi 14050 14265 

m 14266 14266 

mo 14267 14523 

m 14524 14527 

mu 14528 14654 
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m 14655 14686 

n 14687 14688 

na 14689 14774 

n 14775 14781 

ne 14782 14925 

n 14926 14927 

ni 14928 15009 

n 15010 15011 

no 15012 15133 

n 15134 15193 

0 15194 15498 

or 15499 15582 

0 15583 15673 

p 15674 15675 

pa 15676 16027 

p 16028 16028 

pe 16029 16323 

p 16324 16325 

ph 16326 16414 

pi 16415 16565 

p 0 0 

p1 16566 16702 

p 16703 16705 

po 16706 16957 

p 16958 16979 

pre 16980 17108 

p 0 0 
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pri 17109 17154 

p 0 0 

pro 17155 17367 

p 17368 17410 

pu 17411 17521 

p 17522 17545 

q 17546 17549 

qu 17550 17673 

r 17674 17676 

ra 17677 17845 

r 17846 17846 

re 17847 18306 

r 18307 18337 

ri 18338 18429 

r 0 0 

ro 18430 18582 

r 18583 18584 

ru 18585 18670 

r 18671 18675 

s 18676 18677 

sa 18678 18931 

s 0 0 

sc 18932 19139 

s 19140 19140 

se 19141 19395 

s 19396 19396 

sh 19397 19638 
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si 19639 19817 

s 19818 19866 

s1 19867 19959 

s 19960 20001 

sn 20002 20065 

so 20066 20251 

sp 20252 20469 

s 20470 20506 

st 20507 20914 

su 20915 21147 

s 21148 21301 

.t 21302 21303 

ta 21304 21469. 

t 0 0 

te 21470 21666 

t 0 0 

th 21667 21864 

ti 21865 21953 

t 21954 21954 

to 21955 22104 

t 0 0 

tra 22105 22237 

t 22238 22272 

tri 22273 22351 

t 22352 22410 

tu 22411 22494 

t 22495 22558 
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u 22559 22744 

v 22745 22746 

va 22747 22829 

v 0 0 

ve 22830 22952 

v 0 0 

vi 22953 23084 

v 23085 23147 

w 23148 23149 

wa 23150 23331 

w 0 0 

we 23332 23421 

w 0 0 

wh 23422 23534 

wi 23535 23681 

w 0 0 

wo 23f?82 23777 

w 23778 23821 

X 23822 23833 

y 23834 23938 

z 23939 23992 



f 

VITA 

John Patrick Jagoe 

Candidate for the Degree of 

Master of Science 

Thesis: PREFIX RECODING: A FRONT-END COMPRESSION 
TECHNIQUE FOR SIMPLE PREFIX B-TREES 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in the Transvaal, Republic of 
South Africa, May 6, 1952, the son of Charles 
Malcolm Jagoe and Elizabeth Barbara Jardine. 

Education: Graduated from Selborne College, East 
London, Republic of South Africa in December, 
1969: received Bachelor of Arts degree in 
Economics and Political Philosophy from Rhodes 
University, Grahamstown, Republic of South 
Africa in December 1974: completed requirements 
for the Master of Science degree at Oklahoma 
State University, Stillwater, Oklahoma in 
May, 1984. 

Professional Experience: Lecturer, Oklahoma State 
University, Computing and Information Sciences 
Department, 1982-1984. 


