INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND ASWAD, ZEIAD ABDUL-RAZZAK

.

OPTIMIZATION TECHNIQUES FOR A MULTI-DIMENSIONAL DRILLING MODEL

.

 The University of Oklahoma
 PH.D.
 1980

 University
 Microfilms

 International
 300 N. Zeeb Road, Ann Arbor, MI 48106
 18 Bedford Row, London WCIR 4EJ, England

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \checkmark .

1.	Glossy photographs
2.	Colored illustrations
3.	Photographs with dark background
4.	Illustrations are poor copy
5.	^p rint shows through as there is text on both sides of page
5.	Indistinct, broken or small print on several pages throughout
7.	Tightly bound copy with print lost in spine
8.	Computer printout pages with indistinct print
9.	Page(s) lacking when material received, and not available from school or author
10.	Page(s) seem to be missing in numbering only as text follows
11.	Poor carbon copy
12.	Not original copy, several pages with blurred type
13.	Appendix pages are poor copy
14.	Original copy with light type
15.	Curling and wrinkled pages
16.	Other

Iniversity Microfilms Iternational

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

OPTIMIZATION TECHNIQUES FOR A MULTI-DIMENSIONAL DRILLING MODEL

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

.

BY

ZEIAD A. R. ASWAD Norman, Oklahoma

OPTIMIZATION TECHNIQUES FOR A MULTI-DIMENSIONAL

DRILLING MODEL

DISSERTATION COMMITTEE:

A. A. Aly, Co-chairman Dr. rn Dr. Menzie, chairman Ε. D/. Co A Dr H Dr Ør. R. K'na IQ.

ACKNOWLEDGEMENTS

In the name of Allah, the Compassionate, the Merciful. The author is entirely grateful to Dr. D. E. Menzie, Professor of Petroleum Engineering, and to Dr. A. Aly, Associate Professor of Industrial Engineering, for their careful review, helpful guidance, continuous encouragement, and for generously giving their knowledge and time throughout this work as chairman and co-chairman of the author's Graduate Committee.

The author wishes to express his sincere appreciation to Dr. R. M. Knapp, Associate Professor and chairman of the Department of Petroleum Engineering; Dr. H. B. Crichlow, Associate Professor of Petroleum Engineering; and Dr. A. Hayatdavoudi, Associate Professor of Geological Engineering, for their review of this work, for their guidance, and encouragements.

The author gratefully acknowledges The Ministry of Higher Education and Scientific Research, Baghdad, Iraq for their financial support.

The author is entirely grateful to Charles D. Kenrick, senior product evaluation engineer in Security Division Co., for his helpfulness in obtaining the field data.

The author wishes to express his love to his wife,

iii

Asmaa, his son Baker and his daughter Alaa, for their patience, understanding, and devotion.

The author is deeply indebted to his mother and father for their inspiration, encouragement, and the many sacrifices during the course of study.

TABLE OF CONTENTS

_

.

ACKNOWLEDGEMENTS iii LIST OF TABLES viii LIST OF ILLUSTRATIONS viii ABSTRACT ix CHAPTER ix 1. INTRODUCTION 1 2. LITERATURE REVIEW 2 Drilling Fluid 3 Hydraulics 7 Bit-Type 10 Weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 25 Introduction 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 30 Tooth-Wear Limitation 31 A Search Method 43		Paq	ge
LIST OF TABLES vii LIST OF ILLUSTRATIONS viii ABSTRACT ix CHAPTER i 1. INTRODUCTION 1 2. LITERATURE REVIEW 2 Drilling Fluid 3 Hydraulics 7 Bit-Type 10 Weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 25 Model Development 25 Model Development 30 Tooth-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Antone Method 44	ACKNO	NLEDGEMENTS	Li
LIST OF ILLUSTRATIONS viii ABSTRACT ix CHAPTER ix 1. INTRODUCTION 1 2. LITERATURE REVIEW 2 Drilling Fluid 3 Hydraulics 7 Bit-Type 10 Weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Introduction 43 A Search Method 44	LIST (OF TABLES	ίi
ABSTRACT ix CHAPTER 1 1. INTRODUCTION 1 2. LITERATURE REVIEW 2 Drilling Fluid 3 Hydraulics 7 Bit-Type 10 Weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 25 Introduction 25 Model Development 30 Tooth-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 A Search Method 44	LIST (OF ILLUSTRATIONS	Li
CHAPTER 1. INTRODUCTION 1. INTRODUCTION 1 2. LITERATURE REVIEW 1 3. A DRILLING MODEL USED BY INDUSTRY 1 3. A DRILLING MODEL USED BY INDUSTRY 1 5. Introduction 1 5 1 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	ABSTR	ACT	Lx
1. INTRODUCTION 1 2. LITERATURE REVIEW 2 Drilling Fluid 3 Hydraulics 7 Bit-Type 10 weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 16 4. AN OPTIMIZATION DRILLING MODEL 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Basic Concepts 43 A Search Method 44	CHAPT	ER	
2. LITERATURE REVIEW	1.	INTRODUCTION	l
Drilling Fluid 3 Hydraulics 7 Bit-Type 10 Weight-RPM 11 3. A DRILLING MODEL USED BY INDUSTRY 15 Introduction 15 Galle and Woods Model 16 4. AN OPTIMIZATION DRILLING MODEL 25 Introduction 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Introduction 43 A Search Method 44	2.	LITERATURE REVIEW	2
 3. A DRILLING MODEL USED BY INDUSTRY		Drilling Fluid	3 7 L0 L1
Introduction 15 Galle and Woods Model 16 4. AN OPTIMIZATION DRILLING MODEL 25 Introduction 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Introduction 43 A Search Method 44	3.	A DRILLING MODEL USED BY INDUSTRY	L5
 4. AN OPTIMIZATION DRILLING MODEL		Introduction	L5 L6
Introduction 25 Model Development 25 Bearing-Wear Limitation 30 Tooth-Wear Limitation 37 5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Introduction 43 Basic Concepts 43 A Search Method 44	4.	AN OPTIMIZATION DRILLING MODEL	25
5. DESCRIPTION OF THE OPTIMIZATION PROCEDURE 43 Introduction 43 Basic Concepts 43 A Search Method 44		Introduction	25 25 30 37
Introduction	5.	DESCRIPTION OF THE OPTIMIZATION PROCEDURE 4	ŧ3
		Introduction	13 13 14

б.	APPLICATIONS OF THE OPTIMIZATION MODEL	47
	Introduction	47 50
	(Optimized)	54
7.	SENSITIVITY ANALYSIS OF THE MODEL	64
	Introduction	64
	Penetration Rate and Drilling Cost	64
	Penetration Rate and Drilling Cost	70
	and Drilling Cost	72
	Effect of Rotary Speed on the Penetration Rate and Drilling Cost	74
	Effect of Jet-Nozzle Diameter on the Penetration Rate and Drilling Cost	76
	Comparison of the Hooke and Jeeves Search Method with Other Optimization Methods	79
8.	SUMMARY, CONCLUSIONS, AND FUTURE-WORK	83
	Summary	83 84 85
NOMENO	CLATURE	87
BIBLIC	DGRAPHY	89
APPENI	DIX:	
	 A. Example of Galle and Woods Technique B. Determination of the Constants 	9 <u>4</u> 101
	Jeeves Using Fibonacci Line-Search D. Tables Listing	113 117

LIST OF TABLES

.

.

.

Table		Page
3-1	Required Input Data	24
6-1	Well # 1 (Field Data)	5I
6-2	Well # 1 (Formation and Bit Types)	52
6-3	Well # 1 (Required Input-Data)	55
6-4	Well # 1 (Optimized Well)	56
6-5	Well # 1 (Comparison)	60
7-1	Effect of Changing the Number of Jet-Nozzles	
, -	of the Bit	78
7-2	Comparison Table for Run # 1	80.
7-3	Effect of Changing the Starting Points	82

LIST OF ILLUSTRATIONS

•

Figur	e	Page
5-1	Illustration of the Method of Hooke and Jeeves .	46
6-1	Optimum Time for Bit Run # 1	62
6-2	Optimum Time for Bit Run # 2	63
7-1	Density vs Drilling Rate and Cost	66
7-2	Differential Pressure vs Drilling Rate and Cost.	67
7-3	Viscosity vs Drilling Rate and Cost	69
7-4	Flow Rate vs Drilling Rate and Cost	71
7-5	Weight on Bit vs Drilling Rate and Cost	73
7-6	Rotary Speed vs Drilling Rate and Cost	75
7-7	Nozzle Diameter vs Drilling Rate and Cost	77

ABSTRACT

A new non-linear, unconstrained, mathematical model for the drilling process has been developed. The number of parameters to optimize are six, namely, the weight on bit, the rotary speed, the drilling fluid volumetric flow rate, the jet nozzle diameter, and the drilling fluid density and viscosity.

The method of Hooke and Jeeves using Fibonacci line search has been used to solve the non-linear, multi-variable, unconstrained, objective function. A comparison between the Hooke and Jeeves searching method and other optimization techniques, such as discrete Hooke and Jeeves and Rosenbrock methods is given. Also the effects of changing one decision variable on the drilling cost are studied for all the six variables.

It is concluded that the new developed drilling model gives better results than the Galle and Woods model. Therefore, the drilling companies could save thousands of dollars on one well and perhaps millions on one field. The optimum solution, using the accelerated Hooke and Jeeves search method, is more economical and realistic than solutions produced by other optimization techniques.

ix

CHAPTER 1

INTRODUCTION

There are several factors which relate directly and indirectly to the drilling rate and cost. Some of these parameters can be altered and some others cannot. The alterable factors that may be controlled are: drilling fluid properties, hydraulics, bit type and size, weight on bit, and rotary speed. The unalterable factors are: weather and location, rig flexibility, bottom hole temperature, roundtrip time, rock properties, depth, formation to be drilled, characteristic hole problems, and crew efficiency.

Drilling optimization is the technique which is used to minimize the cost of drilling. In past studies, only two variables were considered in developing the mathematical models. These variables are weight on bit and rotary speed. Other factors were considered to be well chosen.

In this work, other factors like drilling fluid properties, hydraulics, bit type and size, formation to be drilled, and differential pressure between drilling fluid column pressure and formation pore pressure are considered in the development of the new mathematical drilling model.

CHAPTER 2

LITERATURE REVIEW

In 1969, Lummus [31] outlined all the factors to be considered in drilling optimization. He classified the drilling variables as alterable or unalterable. The alterable variables are:

- Drilling fluid: (a) drilling fluid weight,
 (b) solids content, (c) viscosity, (d) fluid
 loss, (e) drilling fluid type
- 2. Hydraulics: (a) pump pressure, (b) jet velocity,
 - (c) circulating rate, and (d) annular velocity
- 3. Bit type
- 4. Weight on-bit
- 5. Rotary speed

The unalterable variables are:

- 1. Weather
- 2. Location
- 3. Rig conditions
- 4. Corrosive bore-hole gases
- 5. Bottom-hole temperature
- 6. Round-trip time
- 7. .Rock properties

- 8. Characteristic hole problems
- 9. Water available
- 10. Formation to be drilled
- 11. Crew efficiency
- 12. Depth

In considering which variables to choose for mathematical optimization, Lummus said that experience and research suggest six variables: four alterable and two unalterable. These are:

- 1. Drilling fluid
- 2. Hydraulics
- 3. Bit type and size
- 4. Weight on bit-rotary speed
- 5. Formation to be drilled
- 6. Depth

Each of the above variables have been studied extensively in the field and in the laboratory.

Drilling Fluid:

The properties of the circulating fluid that have been found to affect drilling rate are as follows:

Drilling Fluid Weight:

It has been shown [41] that drilling rate decreases as the drilling fluid pressure increases, and that the decrease is actually more correctly attributed to the excess of the hydrostatic pressure over the formation pressure [13]. The reason for the decrease is thought to be due to the fact that compression of the rock makes it harder for the bit to break up the rock. In order to keep the penetration rate at a ressonable level, the pressure and hence, the drilling fluid weight, should be kept as low as possible while allowing for the highest formation pressure to be encountered.

Solid Content:

Eckel [15] pointed out both solids type and amount affect viscosity and reduce drilling rate. He stated that solids content does not independently affect drilling rate. Excluding pure water, the best drilling fluid is a nondispersed fluid having a total clay-solid content of no more than 4% and having drilled solids to bentonite ratio of less than 2:1. Laboratory drilling tests [31, 34] showed that the particle size, as well as total colloidal size, has an important effect on drilling efficiency.

Lummus [32] stated that air or gas is a higher penetration rate drilling fluid than water or oil. He showed that as the percentage of clay increases, the penetration rate is reduced. This effect is not totally dependent upon the total solid content of the water, due to the nature of the particle size distribution of the solids making up the drilling fluid. It was found that colloidal size particles which are less than $l\mu$ in size, have 12 times more effect on drilling rate than particles coarser than $l\mu$.

Drilling Fluid Viscosity:

Moore [35] pointed out that an increased drilling fluid viscosity results in slower rate of penetration. In the case of normal drilling fluids, the solids content and viscosity are strongly interdependent and hence, it might be thought that the viscosity was not an independent parameter. Also high viscosity could be achieved by using viscous glycerine. He suggested that the high viscosity resulted in lower fluid velocity in the vicinity of the cuttings at the bottom of the hole and hence, the cuttings are not removed efficiently.

Eckel [15] studied the effect of viscosity on drilling rate using several fluids and found that the drilling rate decreases as the kinematic viscosity of the fluid increases.

Eckel [16] showed that in order to minimize the reduction in the drilling rate, the viscosity should be raised by increasing the yield point (Y_p) to plastic viscosity (P_v) ratio. His work illustrates the effect of shear rate on viscosity for different drilling fluids all with the same apparent viscosity; the high shear-rate viscosity reduces drilling rate.

Murphy [38] also showed the effect of viscosity on drilling rate. He indicated that when the viscosity exceeds 40 centipoise, an additional increase will have very little effect on drilling rate.

Fluid Loss:

Drillers noted that drilling rates were decreased when the filtration rates were decreased. Moore [36] stated that this reduction in drilling rate was due more because of the materials added to reduce filtration rate than because of the filteration rate reduction.

When low solids drilling fluids were introduced it was not uncommon to have an API filtration rate of 10 cubic centimeters and a high initial loss of fluid, called spurt loss. The spurt loss was simply the loss of fluid necessary to form a filter cake of solids. As a result, drilling rates with the low solids drilling fluid with an API water loss of 10 cubic centimeters may be substantially higher than a higher solids drilling fluid having an API water loss of 20 cubic centimeters.

Oil Content:

Moore [35] said that shale drills much more quickly when oil is added to the drilling fluid. This effect probably results from the oil preventing "balling-up" of the bit. The economic advantage of adding oil is not always clear. The loss rate must be strictly controlled. Otherwise, the cost of the oil used may well be higher than the cost of saving it.

Murphy [38] explained the change in drilling rate to additional amounts of cil to a drilling fluid system. The drilling rate increases as the oil percentage increases. The reason for this increase has been assumed to be better bit cleaning while drilling shales. Murphy said that the amount of oil required for a particular drilling fluid system will vary widely; he suggested that a maximum of 3% oil will give best results.

Hydraulics:

The circulating medium does not destroy rock, it clears away the rock destroyed by the bit. In accomplishing this, its functions are: (1) to remove the cuttings from the bottom of the hole rapidly to prevent recuttings, (2) to clean the cutters so that the teeth are free to penetrate the rock, and (3) to carry the cuttings away from the bit so as not to interfere with bit life [47]. Consequently, there is a critical hydraulic horsepower for each weight on bit in a specific formation which provides adequate bottom-hole scavaging for maximum efficiency [47]. Speer [47] concluded that penetration rate under any specific condition varies linearly with pump hydraulic horsepower. Cleaning of the hole is primarily a function of circulating volume. An understanding of annular rising velocity, total circulating rate, and nozzle fluid velocity is needed to know the cleaning action.

Bit hydraulic horsepower is a function of the circulation rate and the pressure drop across the bit which is proportional to the nozzle fluid velocity. Circulation rate

must be considered as the upward fluid velocity has to exceed the cutting's slip velocity so that the cuttings are removed from the hole [24].

Edwards [17] mentioned that hydraulics programs are designed for a given rig to give maximum bit horsepower or impact force with the available pump input horsepower at maximum surface pressure. The thought is that since actual requirements are unknown, the more horsepower the better. Edwards concluded that at low weight, the penetration rate is the same for all horsepower levels. At the lowest level, bit balling is evident as weight is increased. The intermediate level allows the drilling rate to increase with higher weights and the high level of hydraulics to a still higher weight.

In their works, Eckel [15] and Walker [49], studied the combined effect of viscosity and hydraulics. They found that the Reynold's number controlled the combined effect of fluid properties and hydraulics on rate of penetration. For many tests they found that any change that increased the Reynold's number caused a corresponding increase in the drilling rate. Eckel [16] suggested that, rate of penetration—other conditions being constant, can be described as an exponential function of a Reynold's number.

Walker [49] pointed out that the viscosity is calculated at the shear rate which is directly related to the fluid velocity through the nozzle and inversely related to

the nozzle diameter.

Murphy [38] presented two approaches to optimize hydraulic conditions. One method is to provide maximum hydraulic horsepower at the bit. The basis for this is that maximum hydraulic horsepower will produce maximum work and do a better cleaning. The other approach is to maximize cross flow which is the product of flow rate and nozzle velocity.

Lummus [31] mentioned that optimum hydraulics is the proper balance of the hydraulic elements that will adequately clean the bit and bore hole with minimum horsepower. The elements are flow rate, pump pressure, the flow rate-pump horsepower relationship, and the drilling fluid. These elements have to work in the proper ratios to achieve optimum hydraulics.

Lummus said that a successful hydraulics programs can be prepared by first considering two factors: bit cleaning and hole cleaning. Adequate jet velocity and fluid impact toward the formation are required for bit cleaning. The most important aspect of hole cleaning is having a mud with sufficient yield value to lift cuttings from the hole. An adequate annular velocity depends upon hole size and the yield value of the mud system. These values should be adjusted together to keep: (a) the yields value as low as possible to facilitate settling of small cuttings in the surface pits, (b) annular velocity and cutting transport rate reasonably close in value, and (c) annular flow pattern neither in extreme turbulence nor in total plug flow.

Bit Type:

The bit selection is, naturally, very important and depends mainly on the degree of hardness of the formation being drilled and the mode of failure of the rock formation.

Type of bit refers to: (1) number and length of teeth; (2) number of cutter elements; and (3) circulation pattern (jet or regular bit). Selection of tooth style depends primarily on the type of formation to be penetrated. It has been shown that the three-cone is the best overall choice of bit type [47].

The jet-bit drilling rate is used as the unit of formation hardness. Speer [47] concluded that: (1) jet bits perform appreciably better than regular bits in very hard formations; (2) little advantage is obtained with jet bits in the medium-hard formations; and (3) the jet bit's advantages increases with softness of formations from medium hard to the very soft. A comprehensive bit-correlation chart, continually updated to include new bits is the starting point in selecting the proper bits for drilling a well.

Lummus [31, 32] said it is also important for the engineer to have both qualitative and quantitative descriptions of bit wear from at least two nearby control wells in order to do a good job of selecting bits for the proposed well.

Weight-RPM:

The effects of weight and speed have been extensively investigated but it would appear from the variety of expressions that have been suggested that the process involved is complicated and requires careful analysis.

Bielstein and Cannon [5] were among the early investigators and they noted that drilling rate appeared to vary approximately linearly with weight and somewhat less than linearly with rotary speed.

Moore [35] suggested an analytical method for finding the optimum weight and speed. He suggested that the drilling rate is directly proportional to the weight on bit and to the rotary speed. Bit life limited by tooth wear was considered but no formula was given so that optimization under this limiting condition was not considered. He suggested that the bearing life is inversely proportional to the weight on bit and the rotary speed.

All the early investigations showed that the drilling rate is related to the weight on bit and the rotary speed through a special function. Maurer [33] suggested that the function is equal to the rotary speed times the square of the weight on bit with the instantaneous removal of all the cuttings. Also, the drilling rate is inversely proportional to the square of the hole diameter and the square of the formation drillability strength. In this way Maurer related penetration rate to weight per inch of bit diameter and made the formation drillability constant independent of bit size.

Outmans [42] derived a drilling rate equation which described the rate in terms of weight, rotary speed and hydraulic horsepower at the bit. The resulting equation contains several unknown constants which have to be estimated from previous experience for wells drilled in the same area. The simplifications that arise when weight or rotary speed is the only variable give a general insight into field results. He pointed out the danger in examining one variable at a time as appears to have been done by most experimentalists.

Cunningham [11] noted that, even when a homogeneous formation was being drilled, the proportionality constant of the drilling rate equation appeared to vary with the age of the bit.

Galle and Woods [21] introduced the concept of bit dullness. They said that the drilling rate is proportional to the weight on bit-rotary speed and inversely proportional to the bit tooth dullness. They also mentioned that the dullness rate is proportional to the weight-rotary speed and to the percentage wear in the tooth of the bit. Finally, they developed the bearing rate equation which is a function of the weight on bit and the rotary speed along with the fluid condition. They made the following assumptions: (1) diamond bits are excluded from their analysis, (2) bit

life is limited by bearing failure or tooth wear or a combination of these factors, (3) circulating hydraulics are adequate and do not limit drilling rate, (4) the drilling rate is a function of only bit weight, rotary speed and degree of tooth dullness, and (5) within the range of rotary speed specified there are no restrictions brought about a primemover performance.

Edwards [17] gave another expression for the drilling rate in any interval. He related the drilling rate is related to: the drillability constant which is determined by the formation bit type and mud properties, the weight on bit, the rotary speed and inversely related to the rate function of tooth height. The rate of tooth wear suggested by Edwards is a function of weight, rotary speed, and bit condition.

In 1972, Wilson and Bentsen [55] investigated various optimization procedures which could be used, in conjunction with the selected mathematical model, to achieve the reduction of the drilling cost of a well. They restricted the number of parameters to be optimized to the weight on bit and the rotary speed. Other factors, such as mud properties and bit type, were assumed to have been properly selected. Within these limits, they developed three methods of varying complexity. The first method seeks to minimize the cost per foot drilled during a bit run. The second method minimizes the cost of a selected interval, and the third method minimizes the cost over a series of intervals.

Reed [44] used a Monte Carlo approach for variable weight on bit-rotary speed optimal drilling problems to get the least cost per foot. He concluded that variable weightspeed optimization offers very little advantage over the simpler constant weight-speed.

Cunningham [12] suggested an empirical equation for the drilling rate. He included in his equation the effect of the drilling strength of the formation and the differential pressure between the drilling fluid and formation pressure at the bit on the drilling rate along with the effect of weight on bit and rotary speed.

CHAPTER 3

A DRILLING MODEL USED BY INDUSTRY

3.1 Introduction

There are several drilling models which have been developed during the past twenty years. The Galle and Woods [21] model has been considered the best available model by the industry. Most drilling companies use this model to optimize their drilling programs.

The main disadvantage of this model is that the drilling rate is a function of bit weight, rotary speed and bit condition only. The differential pressure at the bit, fluid properties and circulating are all assumed adequate and do not limit the drilling rate. Another disadvantage of the Galle and Woods model is that diamond bits are excluded from their analysis.

The aim of this chapter is to show the development of the Galle and Woods model and how to use it to optimize the drilling operations. In the later chapters the development of a new mathematical drilling model, the procedures to optimize drilling operations and the comparisons with the Galle and Woods model will be shown.

Galle and Woods [21, 22] gave the following basic equations:

Drilling rate:

$$\frac{dF}{dT} = C_{f_ap} \frac{W^k N}{f_ap}$$
(3-1)

Rate of tooth drilling:

$$\frac{dD}{dT} = \left(\frac{1}{A_{f}}\right) \frac{R}{am}$$
(3-2)

Rate of bearing wear:

$$\frac{dB}{dT} = \frac{N}{SL}$$
(3-3)

where,

F = distance drilled by bit, ft T = rotating time, hours $C_f = f$ rmation drillability factor W = bit weight, 1000 lb H = bit or hole diameter, inches \overline{W} = equivalent 7.875" bit weight = $\frac{7.875 W}{H}$ K = weight exponent N = rotary speed, rpm D = normalized tooth wear a = 0.928125 D² + 6.0 D + 1 I.0 for flat-crested wear P = $\begin{cases} 1.0 \text{ for flat-crested wear} \\ 0.5 \text{ for self-sharpening wear} \\ 0.0 \text{ for button bits} \end{cases}$ A_r = formation abrasiveness factor

- S = drilling fluid factor
- L = function which relates bit weight to the rate
 of bearing wear

$$= 21340./(1 + 0.03 \overline{w})^{3.23}$$

 $B_v =$ fraction of total life expended

The form of the functions in (3-1) is such that the drilling rate increases as higher weights and rotary speeds are applied, and decreases as the bit dulls. The drilling rate is also proportional to the formation drillability parameter C_{f} which includes the effects of bit type, hydraulics, drilling fluids and the formation. Formations of a very soft nature, for which the penetration rate is not a linear function of weight, are covered, to a certain extent, by the use of the exponent k. The value of 0.6 for k was found to be the best compromise in these cases [24].

From (3-2), the rate of dulling increases as higher weights and rotary speeds are applied. The rate of dulling decreases as the dullness increases. This happens because of the conical shape of the bit tooth results in a larger area being available as the tooth wears. As in the drilling rate equation, where C_f was affected by down-hole conditions, A_f in this equation includes the effect of bit type, hydraulics, drilling fluid and formation and will be altered if any of these factors are adjusted.

From (3-3), the rate of bearing wear decreases as greater weight or speed is used. Again it should be noted that the parameter S is a function of the bit type, mud and hydraulics, and will change if the hole conditions or bit type are altered. In the case of sealed-bearing type of bit the parameter for a particular bit type should always be the same. In practice, however, some variation may be expected because the bit action, and hence the forces on the bearing is affected by down-hole conditions.

> Galle and Woods also defined several functions: $U = 714.19 \int_{0}^{D} a \ dD$ (3-4)

$$V = 714.19 \int_{0}^{D} a^{\frac{1}{2}} dD$$
 (3-5)

$$a = 0.928125 D^2 + 6.0 D + 1.0$$
 (3-6)

 $R = N + 0.00004348 N^3$ (3-7)

$$m = 1359.1 - 714.19 \log \overline{w}$$
 (3-8)

For calculation purposes, all functions of bit-weight are normalized to a 7 7/8 inch bit size by:

$$\bar{w} = \frac{7.875 W}{H}$$
 (3-9)

$$\bar{m} = \frac{m}{714.19}$$
 (3-10)

L = tabluated function of
$$\overline{w}$$

= 21340./(1 + 0.03 \overline{w})^{3.23}

Solving (3-1) and (3-2) for time and equating:

$$dT = \frac{a^{P}}{C_{f} W^{k} N} dF$$
$$dT = A_{f} \frac{am}{R} dD$$

and $\frac{dF}{dD} = \frac{C_f A_f W^k Nm}{R} a^{(1-p)}$

By normalizing for 7 7/8 inch bit size and solving for F:

$$F = \frac{C_{f}A_{f}(\bar{w})^{k}N\bar{m}}{R} \left(714.19 \int_{0}^{D} a^{(1-p)} dD \right)$$

By setting the portion in brackets equal to Z (which will be a function that relates tooth dullness D to tooth life as a function of tooth wear type P, the equation for footage becomes

$$\overline{F} = \frac{C_{f}}{R} \frac{A_{f}(\overline{w})^{k} N \overline{m}}{R} Z \qquad (3-11)$$

Since Z is a function of a and P, Z will vary as P varies:

$$2 = \begin{cases} 714.19 \int_{0}^{D} dD = 714.19D, \text{ when } P = 1.0\\ 714.19 \int_{0}^{D} a^{\frac{1}{2}} dD = V, \text{ when } P = 0.5\\ 714.19 \int_{0}^{D} a dD = U, \text{ when } P = 0.0 \end{cases}$$

From (3-2) by normalizing to 7 7/8 inch bit size and solving for T:

$$T = A_{f} \frac{\overline{m}U}{R}$$
(3-12)

Also, rotating time, T, can be described as a function of bearing wear from equation (3-3):

$$T = \frac{SLB}{N}$$
(3-13)

Equations (3-11), (3-12), and (3-13) can then be rearranged to solve for the three formation parameters which control bit life:

Drillability Factor

$$D_{f} = C_{f} A_{f} = \frac{FR}{\overline{m}(\overline{w})^{k}NZ}$$
(3-14)

Abrasiveness Factor

$$A_{f} = \frac{TR}{\bar{m}U}$$
(3-15)

Bearing Wear Factor

$$B_{f} = S = \frac{TN}{B_{x}L}$$
(3-16)

When the rotary speed function, N, is being replaced by a function N^r , where r describes the effect of rotary speed on penetration rate.

Thus, (3-14) will be:

$$D_{f} = C_{f} A_{f} = \frac{FR}{\bar{m}(\bar{w})^{k}(N^{r})Z}$$
(3-17)

where, Z relates bit tooth dullness to bit tooth life

and is a function of $a^{(1-P)}$

The basic cost equation is given by:

$$Cost/Foot = \frac{C_{B} + C_{R} (T_{t} + T)}{F}$$
(3-18)

where,

Since the basic cost equation is primarily a dT/dF function, equations (3-15), (3-16), and (3-17) relating the function of weight, speed and bit condition to formation factors are rewritten so as to allow time and footage to be calculated by:

$$T = A_{f} U m/R$$
 (3-19)

$$T = B_f B_x L/N$$
 (3-20)

$$F = D_{f} Z_{W}^{k} N^{r} \overline{m}/R \qquad (3-21)$$

It is now possible to expand the cost equation to show cost/foot in terms of all variables by:

$$\operatorname{cost/foot} = \frac{C_{B} + C_{R} (T_{t} + A_{f} U\overline{m}/R)}{D_{f} Z(\overline{w})^{k} (N^{r})\overline{m}/R}$$
(3-22)

3.2.1 Calculation Procedure (Tooth Type Bits)

Using (3-22), it is possible to calculate a cost per foot for a given weight and speed, providing values can be

determined for the various functions. Of the many functions, several have known values for a given well. Therefore, in the cost equation, only the parameters, U, Z, \overline{m} , R \overline{w} and N are not known.

Since \overline{m} and R are functions of weight and speed respectively, it follows that if U and Z can be determined, a cost/foot for any weight-speed combination can be calculated. A value for U can be found from (3-19) and (3-20).

 $U = B_{x} B_{f} L R/A_{f} \overline{m} N \qquad (3-23)$

U can be determined for a given weight-speed combination by assuming a value for B_x (bearing wear), along with values of B_f and A_f from previous drilling data. Since U and Z are both functions of tooth dullness D, once U has been calculated, the corresponding Z can be determined.

Once U and Z have been established for a given weight-speed combination, the calculation of the related cost/foot is simply one of arithmetic. By repeating this calculation for a series of weight-speed combinations, a cost grid can be developed. The weight-speed combination which corresponds to the lowest cost/food is the optimum weight and speed for the interval in question.

3.2.2 Calculation Procedure (Insert-Type Bits)

For tungsten carbide insert-type bits, a somewhat different situation exists. Since the tungsten carbide inserts do not wear appreciably, the tooth dullness factor, D, remains constant, and bit life is determined only by bearing life. This eliminates U and Z in the equation and the cost per foot formula becomes:

$$Cost/foot = \frac{C_{B} + C_{R} (T_{t} + B_{f} L B_{x}/N)}{C_{f} \vec{w}^{k} N^{r} B_{f} L B_{x}}$$
(3-24)

Since insert bits do not experience noticeable tooth wear, and, therefore are never pulled for tooth wear, (3-24) can be solved for any pre-selected value of bearing wear on which it might be desired to pull the bit. The procedure for determining the optimum weight-speed is the same as with tooth type bits, i.e., solving (3-24) for a range of weights and speeds.

Tables 1-6 in Appendix D simplify calculations necessary to compute equations (3-15), (3-16), (3-17), (3-22), and (3-24).

The first step in determining an optimum speed schedule is to develop required input data. Table (3-1) illustrates the input data that is required to complete the calculation. Basically, the data can be split into two separate categories, namely operational information and formation parameters.

Table 3-1

REQUIRED INPUT DATA

Optimized Drilling Program

Operational Information

Bit Cost	C _B	\$/Bit
Rig Cost	C _R	\$/Hour
Trip Time Factor	t	Hours/Foot
Bit Size	đ	Inches
Minimum Bit Weight	W _{min}	Pounds
Maximum Bit Weight	Wmax	Pounds
Minimum Rotary Speed	N _{min}	RPM
Maximum Rotary Speed	Nmax	RPM

Drilling Parameters

Formation Abrasiveness	Af
Formation Drillability	$^{\rm D}{ m f}$
Bearing Wear Factor	^B f
Tooth Wear Factor	P
Weight Exponent	K
Speed Exponent	r

.
CHAPTER 4

AN OPTIMIZATION DRILLING MODEL

4.1 Introduction

In past researches, only two variables were considered in developing optimization models. These variables are weight on bit and rotary speed. Other factors were considered to be well chosen. One of these models was presented by Galle and Woods [21].

In addition to the weight on bit and rotary speed, other factors like mud properties (i.e., density and viscosity), hydraulics, bit type and size, formation to be drilled, and differential pressure are included in the new drilling model. These variables make the model more practical and realistic. Development of this drilling model will be shown in this chapter, which consists of two cases. The first case is the bearing-wear limited and the other one is the tooth-wear limited.

4.2 Model Development

The mathematical drilling model is a series of interrelated equations which accept relevant drilling variables and realistically predict, among other factors, drilling rate and cost.

The model referred to in this work consists basically of three relations:

- 1. Rate of penetration equation,
- 2. Rate of dulling equation, and
- 3. Bearing life equation.

Rate of penetration is determined by:

- 1. Weight on bit
- 2. Rotary speed
- 3. Bit type and size
- 4. Nozzles size and number
- 5. Drilling mud density
- 6. Drilling mud viscosity
- 7. Volumetric flow rate
- 8. Depth
- 9. Formation drillability
- Tooth dullness, which varies during the bit run and has its own equation.

• The drilling rate equation presented by Young [54] is:

$$\frac{\mathrm{dF}}{\mathrm{dT}} = \frac{\mathrm{C}_{\mathrm{f}} \, \mathrm{W} \, \mathrm{N}^{2}}{(1 + \mathrm{C}_{2}\mathrm{D})} \tag{4-1}$$

In order to derive the drilling rate equation the following parameters are defined:

q = volumetric flow rate, gallon/min

$$\rho$$
 = drilling fluid density, lb/gal.
 d_n = jet-nozzle diameter, inch
 μ = drilling fluid viscosity, C.p.
 P_m = drilling fluid pressure, psi
 P_f = formation pressure, psi
 ΔP = differential pressure, 10^3 psi
 $= P_m - P_f$
 $= 0.052(\rho)(depth) = P$

$$= 0.052(p)(depth) - P_f$$
 (4-2)

Reynold's number
$$(R_e) = \frac{k \alpha \rho}{d_n \mu}$$
 (4-3)

(i) For bit with one Jet-nozzle;

$$R_e = 379.11 \frac{q\rho}{d_n \mu}$$
 (4-4)

(ii) For bit with two-equal jet nozzle;

$$R_{e} = 189.56 \frac{q_{p}}{d_{n}\mu}$$
 (4-5)

$$R_e = 126.37 \frac{q\rho}{d_n \mu}$$
 (4-6)

(iv) For bit with three-unequal size jet nozzles;

$$R_{e} = 379.11 \frac{q}{(d_{n1} + d_{n2} + d_{n3})}$$
(4-6a)

The differential pressure at the bit AP is inversely proportional to the drilling rate [11, 12, 13]. The combined effect of drilling fluid properties and hydraulics relate to the drilling rate through a Reynold's number function [15, 16, 49]. By including the effects of differential pressure, drilling fluid properties, and hydraulics into (4-1), the new drilling rate equation is:

$$\frac{\mathrm{dF}}{\mathrm{dT}} = \frac{C_{\mathrm{f}} W^{\mathrm{Y}N^{\mathrm{Z}}}}{(1+C_{\mathrm{f}}D)} \cdot \frac{1}{(1+\Delta p^{\mathrm{X}})} \cdot \log \frac{\mathrm{K}\mathrm{d}p}{\mathrm{d}_{\mathrm{n}}\mu}$$
(4-7)

The rate of dulling is determined by:

- (a) Weight on bit
- (b) Rotary speed
- (c) Bit size and type
- (d) Formation abrasiveness
- (e) Tooth dullness

Galle and Woods [21] represented the tooth-wear rate by (3-2) which is:

$$\frac{dD}{dT} = \frac{1}{A_f} \cdot \frac{R}{am}$$

where a, R, and m were defined by (3-6), (3-7), and (3-8), respectively.

The bearing life equation includes the following variables:

- (a) Bit weight
- (b) Rotary speed
- (c) Bearing-wear constant, which varies with the drilling fluid composition, solids content, and bit size and type.

Young [54] gave the bearing-wear rate equation which is:

$$\frac{\mathrm{dB}}{\mathrm{dT}} = \frac{\mathrm{N} \ \mathrm{W}^{\mathrm{Cn}}}{\mathrm{b}} \tag{4-8}$$

where:

B = Bearing-wear fraction of the bit cn = weight exponent in the bearing-wear equation b = bearing-wear constant

The cost per foot for a single bit run is given by the following equation:

$$CPF = \frac{C_{B} + C_{R} (T_{t} + T_{c} + T)}{F}$$
(4-9)

where:

$$C_B = bit cost, \$$$

 $C_R = rig cost, \$/hr$
 $T_t = trip time, hr$
 $T_c = connection time, hr$
 $T = rotating time, hr$
 $F = feet drilled, ft$

The optimization problem consists of finding the values of the variables that are corresponding to a minimum value for CPF subject to the three constraints. Thus, the problem will be:

> Minimize CPF (\$/ft) Subject to:

$$\frac{dF}{dT} = \frac{C_f W^Y N^Z}{(1+C_2 D)} \cdot \frac{1}{(1+\Delta p^X)} \cdot \log \left(\frac{kq_\rho}{d_n \mu}\right)$$
$$\frac{dD}{dT} = \frac{1}{A_f} \left(\frac{R}{am}\right)$$

$$\frac{\mathrm{dB}}{\mathrm{dT}} = \frac{\mathrm{N} \mathrm{W}^{\mathrm{Cn}}}{\mathrm{b}}$$

At the initial condition (T = 0); tooth-dullness D = 0.0 and bearing-wear B = 0.0 When the drilling time T = T, two cases are considered;

- 1. Bearing-wear limited; where the bearing completely damaged B = 1.0 and the tooth dullness D < 1.0
- 2. Tooth-wear limited; where the teeth are completely damaged D = 1.0 and the bearing-wear B < 1.0

In order to find the value of the drilling time, T, and the total footage, F, in the cost per foot equation (4-9), the previous three differential equations should be integrated and solved simultaneously. Two cases will be considered which are: bearing-wear limited and tooth-wear limited.

4.3 Bearing-Wear Limitation

The life of the bit in this case is limited by the bearing failure. Let B be the independent variable in place of t. Then, two cases will be studied, these are: <u>4.3.1</u> A case where the variables N, W, p, q and μ are not constant over the entire bit run:

For n bearing-wear increments, the constants values of the rotary speed, weight on bit, mud density, flow rate, From (4-8),

$$B = \frac{NW^{Cn}}{b} T$$

or

$$T = \frac{bB}{NW^{Cn}}$$

The total time per bit run, T, for n bearing-wear increments is:

$$T = \sum_{i=1}^{n} b \frac{\Delta B_{i}}{N_{i+1} W_{i+1}^{Cn}}$$
 (4-10)

where;

$$\Delta B$$
 = change in bit bearing-wear
 $\Delta B_i = B_{i+1} - B_i, B_1 = 0.0 \text{ and } B_{n+1} = 1.0 \text{ for } i=1,$
...., n.

From (3-2), (3-6), (3-10) and (4-8);

$$(0.928125 D^2 + 6.0 D + 1.0) dD = \left(\frac{1}{714.19}\right) \cdot \frac{1}{A_f} \cdot \frac{R}{m} \cdot \frac{b}{NW^{CD}} dB$$

Integrate the above equation;

$$0.309375 \text{ } \text{D}^{3} + 3\text{D}^{2} + \text{D} = \frac{\text{R}}{714.19 \text{ } \text{A}_{\text{f}} \overline{\text{m}}} \left(\frac{\text{b}}{\text{NW}^{\text{cn}}}\right) \text{B}$$
(4-11)

Let
$$G = \frac{A_{fm}}{R}'$$
 and $E = \frac{bB}{714.19 \text{ GNW}^{cn}}$

Therefore (4-11) can be written as,

$$0.309375 D^3 + 3D^2 + D = E$$
 (4-12)

and at (i + 1) increment;

$$D_{i+1} = \frac{E_{i+1}}{0.309375D_{i+1}^2 + 3D_{i+1} + 1.0}$$
(4-13)

Equation (4-13) can be solved by trial and error to get the value of the tooth dullness D_{i+1} , which is correspondent to the value of E_{i+1} (for i = 1, 2, ..., n). Where;

$$D_{1} = 0$$

$$D_{n+1} = D_{f} = D \text{ when } B = 1.0$$

$$E_{i+1} = \frac{b B_{i+1}}{714.19 G_{i+1} N_{i+1} W_{i+1}^{Cn}} \qquad (4-14)$$

$$E_{1} = 0, \text{ since } B_{1} = 0$$

$$G_{i+1} = \frac{A_{f} \overline{m}_{i+1}}{R_{i+1}}$$

$$\overline{m}_{i+1} = \frac{1}{714.19} (1359.1 - 714.19 \log \overline{w}_{i+1})$$

$$\overline{w}_{i+1} = \frac{7.875 W_{i+1}}{H}$$

$$R_{i+1} = N_{i+1} + 4.348 \times 10^{-5} N_{i+1}^{3}$$

Now two cases will be studied which are:

First: When Tooth-Wear Constant,
$$C_2 \neq 0.0$$

From (4-7), (3-2) and (3-10),

$$dF = \frac{C_{f} W^{Y} N^{Z}}{(1+C_{2}D)(1+\Delta p^{X})} \cdot \log \left(\frac{kq_{\rho}}{d_{n}\mu}\right) \frac{A_{f} \tilde{m}}{R} (714.19 \text{ a } dB)$$
(4-15)

For simplicity let:

$$(1) \quad M = C_{f} W^{Y} N^{Z} \qquad (4-16)$$

$$M_{i} = M(W_{i}, N_{i})$$

(2)
$$Q = \log \left(\frac{kq\rho}{d_n\mu}\right)$$
 (4-17)

$$Q_{i} = Q(q_{i}, \rho_{i}, \mu_{i})$$

$$(3) \quad \nabla = \frac{1}{1 + \Delta p^{X}}$$

$$V_{i} = V(\rho_{i})$$

$$(4-18)$$

$$(4) \quad G = \frac{A_f \tilde{m}}{R} \tag{4-19}$$

$$G_{i} = G(W_{i}, N_{i})$$

Substitute (4-16, 17, 18, 19) in (4-15);

$$dF = (714.19) GMQV \frac{a}{1+C_2D} dD$$
 (4-20)

and from (3-6), then

$$dF = 714.19 \ GMQV \left(\frac{0.928125 \ D^2 + 6.0 \ D + 1.0}{1 + C_2 D}\right) \ dD \qquad (4-21)$$

Integrating (4-21) between two incremental tooth dullness, F = 714.19 GMQV $\left\{ 0.928125 \left[\frac{(1+C_2D_{i+1})^2}{2 C_2^3} - \frac{2 (1+C_2D_{i+1})}{C_2^3} + \frac{1}{C_2^3} \right] - 0.928125 \left[\frac{(1+C_2D_{i+1})^2}{2 C_2^3} - \frac{2 (1+C_2D_{i})}{C_2^3} \right] \right\}$

$$+ \frac{1}{c_{2}^{3}} \ln (1+C_{2}D_{i}) + 6.0 \left[\frac{D_{i+1}}{C_{2}} - \frac{1}{c_{2}^{2}} \ln (1+C_{2}D_{i+1}) - 6.0 \left[\frac{D_{i}}{C_{2}} - \frac{1}{c_{2}^{2}} \ln (1+C_{2}D_{i}) \right] + \frac{1}{C_{2}} \ln (1+C_{2}D_{i+1}) - \frac{1}{C_{2}} \ln (1+C_{2}D_{i}) + \frac{1}{C_{2}} \ln (1+C_{2}D_{i+1}) - \frac{1}{C_{2}} \ln (1+C_{2}D_{i}) + \frac{1}{C_{2}} \ln (1$$

l

For n bearing-wear increments the total footage will be:

$$F = 714.19 \sum_{i=1}^{n} G_{i+1} M_{i+1} Q_{i+1} V_{i+1} \left\{ 0.928125 \left[\frac{1}{C_{2}^{3}} \ln \left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}} \right) + \left(\frac{\left(\frac{1+C_{2}D_{i+1}}{2} \right)^{2} - \left(\frac{1+C_{2}D_{i}}{2} \right)^{2}}{2 C_{2}^{3}} \right) - \left(\frac{2\left(1+C_{2}D_{i+1} \right) - 2\left(1+C_{2}D_{i} \right)}{C_{2}^{3}} \right) \right] + 6.0 \left[\left(\frac{D_{i+1}-D_{i}}{C_{2}} \right) - \frac{1}{C_{2}^{2}} \cdot \ln \left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}} \right) \right] + \frac{1}{C_{2}} \cdot \ln \left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}} \right) \right] + (4-23)$$

Equation (4-23) is the general form of the total footage, F, for bearing-wear limited case when $C_2 \neq 0.0$ and the variables N, W, q, ρ , and μ are changing with time.

Second: When Tooth-Wear Constant, $C_2 = 0.0$

This is a case that implies that the initial drilling rate (new-bit) is equal to the final drilling rate (used bit). This can usually happen for insert bits and diamond bits.

> From Eq. (4-7), (4-16), (4-17), and (4-18), $dF = MQV \left(\frac{1}{1+C_2D}\right) dT$.

For
$$C_2 = 0$$

 $dF = MQV dT$ (4-24)
From (3-2) and (3-10), then
 $dT = 714.19 \text{ Ga} dD$ (4-25)
Substitute (4-25) into (4-24)
 $dF = GMQV (714.19 \text{ a} dD)$ (4-26)
Integrating (4-26)
 $E = 714.19 \text{ GMOV} (0.309375D^3 + 3D^2 + D)^{D}i+1$ (4-27)

$$F = 714.19 \text{ GM}_{\text{V}} \left(0.309375\text{D}^3 + 3\text{D}^2 + \text{D} \right)_{\text{D}_{1}}^{\text{D}_{1}+1} \quad (4-27)$$

For n bearing-wear increments; the total footage will be: $F = 714.19 \sum_{i=1}^{n} G_{i+1} M_{i+1} Q_{i+1} V_{i+1} \left[0.309375 (D_{i+1}^{3} - D_{i}^{3}) + 3 (D_{i+1}^{2} - D_{i}^{2}) + \Delta D_{i} \right]$ (4-28)

4.3.2 A case when all the six variables (N, W, q, ρ , $d_n \&$ <u> μ </u>) are held constant over the entire bit run:

For a constant variable (4-10) is written as

$$T = \frac{b}{NW^{CR}} \sum_{i=1}^{n} \Delta B_{i}$$

but $\sum_{i=1}^{n} \Delta B_{i} = B_{f} = 1.0$ for bearing-wear limited and for variables are held constant.

Thus;

$$T = \frac{b}{NW^{CR}}$$
(4-29)

From (4-13),

$$D_{f} = \frac{E_{f}}{0.309375 D_{f}^{2} + 3D_{f} + 1.0}$$
(4-30)

Where;

$$D_{f} = D (B = 1.0)$$

$$D_{f} = \frac{b B_{f}}{714.19 \text{ GNW}^{cn}} = \frac{b}{714.19 \text{ GNW}^{cn}}$$
(4-31)

Therefore;

.

$$E_{f} = \frac{T}{714.19G}$$
 (4-32)

Two cases will be studied which are:

<u>First</u>: When Tooth-Wear Constant, $C_2 \neq 0.0$ From (4-21),

$$dF = 714.19 \text{ GMQV} \left(\frac{0.928125D^2 + 6.0D + 1.0}{1 + C_2 D} \right) \quad dD$$

Integrate the above equation for D from 0.0 to D_{f} . The total footage will be:

$$F = 714.19 \text{ GMQV} \left\{ 0.928125 \left[\left(\frac{1+C_2 D_f}{2 c_2^3} \right)^2 - \frac{2(1+C_2 D_f)}{c_2^3} + \frac{1}{c_2^3} \right]^{1/2} \right. \\ \left. \left(\frac{1+C_2 D_f}{2 c_2} \right) + \frac{3}{2 c_2^3} \right] + 6.0 \left[\left(\frac{D_f}{C_2} - \frac{1}{c_2^2} \ln(1+C_2 D_f) \right) \right] \\ \left. \frac{1}{C_2} \ln(1+C_2 D_f) \right\}$$

$$\left. \left. \frac{1}{C_2} \ln(1+C_2 D_f) \right\} \right\}$$

$$(4-33)$$

<u>Second</u>: When Tooth-Wear Constant, $C_2 = 0.0$ From (4-7), (4-16), (4-17); $dF = MQV (\frac{1}{1+C_2D}) dT$ For $C_2 = 0.0$ dF = MQV dTFrom (3-2) and (3-10), then dF = GMQV (714.19a) dDbut a = 0.928125 D^2 + 6D+1.0 Integrating for D from 0.0 to D_f . Therefore the total footage, F is:

$$F = 714.19 \text{ GMQV} (0.309375 D_f^3 + 3D_f^2 + D_f)$$
 (4-34)

4.4 Tooth-Wear Limitation

The life of the bit in this case is limited by the tooth-wearing failure. Let D be the independent variable in place of t. Two cases will be studied, these are: 4.4.1 A case where the variables N, W, ρ , q, and μ are not constant over the entire bit run:

For n tooth-wear increments, the constant value of the rotary speed, weight on bit, mid density, flow rate, and mud viscosity during the i <u>th</u> increment are N_i , W_i , ρ_i , q_i , and μ_i , respectively.

> From (3-2), (3-6), and (3.10), (0.928125 D^2 + 6.0D + 1.0) $dD = \frac{1}{714.19G} dT$

Integrating the above equation; T = 714.19 G $(0.309375 D^3 + 3.0D + D)^{D_{i+1}} D_{i}$ At i <u>th</u> increment, where i = 1, . . . , n; T_{i+1} = 714.19 G_{i+1} $[0.309375 (D_{i+1}^3 - D_i^3) + 3.0 (D_{i+1}^2 - D_i^2) + (D_{i+1} - D_i)]$ + $(D_{i+1} - D_i)$ (4-35) For n tooth-wear increments, the total rotating time

is;

$$T = \sum_{i=1}^{n} T_{i+1} = 714.19 \sum_{i=1}^{n} G_{i+1} \left[0.309375 (D_{i+1}^{3} - D_{i}^{3}) + 3.0 (D_{i+1}^{2} - D_{i}^{2}) + \Delta D_{i} \right]$$
(4-36)

where;

$$D_{1} = 0$$

$$D_{n+1} = D_{f} = 1.0$$

$$T_{1} = 0$$
Integrating (4-8)
$$B_{i+1} = \frac{N_{i+1}W_{i+1}^{Cn}}{b} T_{i+1} \qquad (4-37)$$

where;

$$B_1 = 0$$

 $B_{n+1} = B_f = B (D = 1.0)$

Therefore;

Final bearing-wear
$$(B_{f}) = \frac{1}{b} \sum_{i=1}^{n} N_{i+1} W_{i+1}^{cn} T_{i+1}$$
 (4-38)

Two cases will be studied which are: <u>First</u>: When Tooth-Wear Constant, $C_2 \neq 0.0$ The total footage is the same as in Section 4.3 (i.e., bearing-wear limitation case), which is given by:

$$F = 714.19 \sum_{i=1}^{n} G_{i+1} M_{i+1} Q_{i+1} V_{i+1} \begin{cases} 0.928125 \\ 0.928125 \end{cases} \\ \left[\frac{1}{C_{2}^{3}} \ln \left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}} \right) + \left(\frac{(1+C_{2}D_{i+1})^{2} - (1+C_{2}D_{i})^{2}}{2 C_{2}^{3}} \right) \right]$$

$$-\left(\frac{2(1+C_{2}D_{i+1}) - 2(1+C_{2}D_{i})}{C_{2}^{3}}\right)^{+} 6.0 \left[\frac{\Delta D_{i}}{C_{2}} - \frac{1}{C_{2}^{2}}\ln\left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}}\right)\right] + \frac{1}{C_{2}}\ln\left(\frac{1+C_{2}D_{i+1}}{1+C_{2}D_{i}}\right)\right]$$
(4-39)

<u>Second</u>: When Tooth-Wear Constant, $C_2 = 0.0$ When $C_2 = 0.0$, the total footage, F, is the same as in Section 4.3 (i.e.: bearing-wear limitation case), which is given by:

$$F = 714.19 \sum_{i=1}^{n} G_{i+1} M_{i+1} Q_{i+1} V_{i+1} \left[0.309375 (D_{i+1}^{3}) - D_{i}^{3} + 3.0 (D_{i+1}^{2} - D_{i}^{2}) + \Delta D_{i} \right]$$
(4-40)

4.4.2 A case when all the six variables (N, W,
$$\rho$$
, q, d_n & μ)
are held constant over the entire bit run:
From (4-36),

$$T = 714.19G \sum_{i=1}^{n} \left[0.309375 (D_{i+1}^3 - D_i^3) + 3.0 (D_{i+1}^2 - D_i^2) + \Delta D_i \right]$$
(4-41)

but for constant variables over the entire bit run;

$$\sum_{i=1}^{n} \Delta D_{i} = D_{f} = 1.0$$

$$\sum_{i=1}^{n} D_{i+1}^{2} - D_{i}^{2} = D_{f} = 1.0$$

$$\sum_{i=1}^{n} D_{i+1}^{3} - D_{i}^{3} = D_{f} = 1.0$$

Thus; the final (total) rotating time, T is:

$$T = 3077.71 G$$
(4-42)
From (4-38), the final (total) bearing-wear,
$$B_{f} \text{ is:}$$
$$B_{f} = \frac{1}{b} (NW^{Cn})T$$
(4-43)

Two cases will be studied which are:

First: When Tooth Wear Constant, $C_2 \neq 0.0$ From (4-21), dF = GMQV 714.19 ($\frac{0.928125 \text{ D}^2 + 6.0 \text{ D} + 1.0}{1 + C_2 \text{ D}}$) dD

Integrating the above equation between D = 0.0 to D_f in the same way as in Section 4.3. Therefore;

$$F = 714.19 \text{ GMQV} \left\{ \begin{array}{l} 0.928125 \left[\left(\frac{1+C_2D_f}{2C_2^3} \right)^2 - 2 \left(\frac{1+C_2D_f}{C_2^3} \right) \right] \\ + \frac{1}{C_2^3} \ln \left(1+C_2D_f \right) + \frac{3.0}{2C_2^3} \right] + 6.0 \left[\frac{D_f}{C_2} - \frac{1}{C_2^2} \ln \left(1+C_2D_f \right) \right] \\ + \frac{1}{C_2} \ln \left(1+C_2D_f \right) \right\} \right\}$$

$$D_{f} = 1.0 \text{ for tooth-wear limited case. Therefore;}$$

$$F = 714.19 \text{ GMQV} \left\{ 0.928125 \left[\left(\frac{1+C_{2}}{2C_{2}^{3}} \right)^{2} - 2 \left(\frac{1+C_{2}}{C_{2}^{3}} \right)^{2} + \frac{1}{C_{2}^{3}} \right] \right\}$$

$$\ln (1+C_{2}) + \frac{3.0}{2C_{2}^{3}} + 6.0 \left[\frac{1}{C_{2}} - \frac{1}{C_{2}^{2}} \ln (1+C_{2}) \right]$$

$$+ \frac{1}{C_{2}} \ln (1+C_{2}) \left\{ 1 + \frac{1}{C_{2}} + \frac{1}{C_{2}}$$

<u>Second</u>: When Tooth-Wear Constant, $C_2 = 0.0$ From (4-21) for $C_2 = 0.0$, dF = 714.19 GMQV (0.928125 D^2 + 6.0 D + 1.0) dD Integrating the above equation for D from 0.0 to D_f ;

 $F = 714.19 \text{ GMQV} (0.309375 \text{ } \text{D}_{\text{f}}^3 + \text{D}_{\text{f}}^2 + \text{D}_{\text{f}})$ $D_{\text{f}} = 1.0 \text{ for tooth-wear limited case. Therefore;}$ $F = 3078 \text{ GMQV} \qquad (4-45)$

Now the optimization problem consists of finding the values of the variables that are corresponding to a minimum value for CPF without constraints. Thus, the problem will be:

Minimize CPF =
$$\frac{C_B + C_R (T_t + T_c + T)}{F}$$

Where the variables T and F can be represented by different equations as follows:

For Bearing-wear limitation:

(i) the six parameters are not constant;

T is given by (4-36)F is given by (4-39) when $C_2 \neq 0.0$ F is given by (4-40) when $C_2 = 0.0$ (ii) the six parameters are held constant;

T is given by (4-42)

- F is given by (4-44) when $C_2 \neq 0.0$
- F is given by (4-45) when $C_2 = 0.0$

CHAPTER 5

DESCRIPTION OF THE OPTIMIZATION PROCEDURE

5.1 Introduction

There are several techniques available which can be used to find the optimum solution for a certain non-linear problems. The techniques are dependent on the type of the problem itself, the number of decision variables, the degree of complexity of the objective function, and whether the problem is constrained or unconstrained.

The basic concepts of the non-linear programming techniques and the descriptions of the search methods with the emphasis on the Hooke and Jeeves method will be seen in this chapter.

5.2 Basic Concepts

Basically an optimization problem consists of: (1) a decision variables which are the actual field variables to be optimized, (2) an objective function which is a mathematical function involving the decision variable, and (3) a set of constraints which can be represented as an equation or inequalities.

For a non-linear problem, the objective function is a non-linear function of the decision variables and the constraints could be linear or non-linear equations and inequalities. A general example of non-linear problem is:

Optimize f(X)

Subject to

 $H_{j}(X) = 0 \qquad j = 1, 2, ..., M$ $G_{k}(X) \leq 0 \qquad k = 1, 2, ..., \overline{M}$ $X = (x_{1}, x_{2}, ..., x_{n})$

Where f, G, . . . , $G_{\overline{M}}$, H_1 , . . . H_M are functions defined on E^n , X is a subset of E^n . A feasible solution to the nonlinear problem is the solution vector X which satisfies all sets of the constraints. The local optimum solution is one which yields to a local minimum (or maximum) value for f (X) and the global optimum solution is the best optimizing solution.

5.3 A Search Method

The mathematical drilling model which has been developed in Chapter 4 is a non-linear programming problem due to the non-linearity of the objective function. The decision variables are: the rotary speed N, weight on bit W, drilling fluid density ρ , volumetric flow rate q, jet nozzle diameter d_n , and fluid viscosity μ . The problem will be to minimize the drilling cost (CPF in \$/foot) or to maximize the total footage drilled by the bit F.

The unconstrained optimization techniques using derivatives have been eliminated from this study due to the complexity in deriving the gradient and the Hessian matrix of the objective function.

The method of Hooke and Jeeves [9] has been modified to accommodate an acceleration technique using a Fibonacci line search and have been selected for solving the unconstrained multidimensional non-linear drilling model.

The Fibonacci search algorithm is very effective in dealing with univariate non-linear functions that are assumed to be unimodal. Generally, the univariate search methods can be used in multi-variable optimization through successive perturbations of each decision variable. For an N-variables optimization problem, the procedure is to fix N-1 variables at a selective value, and search over the Nth decision variable a maximizing (or minimizing) solution is found with respect to that one variable. The procedure is then repeated by choosing one of the original fixed N-1 variables as a decision variable and finding a new optimal solution. The procedure is repeated until no change in any variable will bring about an improvement in the current value of the objective function. The Fibonacci line search method has been explained in Appendix C.

The Hooke-Jeeves method performs two types of search. The first is an exploratory search which serves to establish a direction of improvement, and the second is a pattern search which extracts the current solution vector to another point in the solution space. Figure (5-1) shows the first two iterations of Hooke and Jeeves method. By knowing the starting point X_1 ,

the exploratory search along the coordinate directions produces the point X_2 . Then the pattern search along the direction (X_2-X_1) produces the point Y. From point Y exploratory search starting again along the coordinate directions which produce point X_3 . The next pattern search is along the direction (X_3-X_2) , yielding Y', thus the process is repeated. The coordinate directions are designated by $d_1, d_2 \ldots, d_n$, where n is the number of decision variables. Therefore, we have six coordinate directions $(d_1 \ldots d_6)$ according to the mathematical drilling model. The algorithm of the method Hooke and Jeeves using line search is presented in Appendix C.

Figure (5-1). Illustration of the Method of Hooke and Jeeves.

CHAPTER 6

APPLICATIONS OF THE OPTIMIZATION MODEL

6.1 Introduction

Mainly, this optimization technique has been designed to be applicable in the oil fields. To verify the applicability of this technique, a set of bit records for different wells in different locations has been provided by the "Security Division-Dresser Industries, Inc." These data are given in Appendix D [Table (D-12)].

Well number 1, which was drilled in Caddo County, Oklahoma, has been chosen to verify the results of this research. All the required information are plainly shown in the Security bit record [Table (D-12)]. The depth of this well is 10,050 feet, which took eleven bit runs to reach.

The types of formations which are encountered during the drilling operations are: soft, medium, hard, and extra hard. The rock bits are classified in the light of the formation's type to be drilled. Table (D-7) shows all the bits types, which are recommended for the corresponding formation type, according to Security company classification.

Table (D-8) explains the Security rock bit comparison chart. This chart is used to find the Hughes, Reed, or Smith

rock bits, which are equivalent to the Security rock bits for the different types of formation.

The two major bits classifications are the steel milled tooth rock bits and the tungsten carbide insert bits. Each of these classifications contains several types of rock bits according to the type of formation.

Table (D-9) shows the price of the rock bits, which is released by the Security company, effective May 1, 1979. The price (in U.S. dollars) depends on the type and the size of the bit itself.

In this section, the optimization is performed for well number 1.

The specification of the mud pump, which is given in the Security bit record, is used to find the volumetric flow rate of the drilling fluid (q in gallon/minute). These specifications are: the linear size D, the pump speed N, and the mud pressure. The type of the pump is a duplex one, National of model K-380. Tables (D-10) and (D-11) show the specification of four manufacturer pumps companies. The maximum discharge pressure, the stroke length S, the input horsepower required, and the maximum pump speed can all be determined through tables (D-10) and (D-11) according to the type of the pump. The volumetric flow rate of the drilling fluid in gallon/minute can be calculated through the following equation:

 $q = 0.00679 \text{ SN} (2D)^2 e$ (6-1)

where;

- q = Volumetric flow rate, gal/min
- S = Stroke length, inch
- N = Pump speed, spm
- D = Linear size, inch
- e = Volumetric efficiency (commonly taken as 90% for power or 85% for steam pump)

From (6-1) the mud pump, which is used for well no. 1, is operated at volumetric flow rate q = 269 gal/min, while the maximum flow rate attainable from this pump is 362 gal/ min.

The drilling cost in dollars per foot can be calculated using (4-9). The cost of the bit C_B can be determined from Table (D-9), while the rig cost C_R can be determined by knowing the daily renting cost of the rig. This daily renting cost is changing with depth, location, contractor company, and the rig facilities required. The approximate daily cost of the rig is reported by the contractor is:

For rig of 7,000 ft depth = 3,600 \$/day

For rig of 10,000 ft depth = 4,000 \$/day

For rig of 15,000 ft depth = 4,600 \$/day

For well no. 1, the rig cost will be 191.667 \$/hr. The connection time T_C is usually about 5-8 minute/connection. The average connection length is about 90 feet. Finally the trip time T_+ is about 1.5 hours/1,000 feet depth.

6.2 Analysis of Drilling Condition in Practice

Well No. 1 drilled in Caddo County, Oklahoma, is selected to do all the analysis on. All the required information are given in Security bit record [Table (D-12)].

Table (6-1) shows the bit size and type, the footage drilled and time required, the weight on bit, the rotary speed, the mud properties (density and viscosity), the volumetric flow rate, the bit cost, the rig cost, the trip and connection time, and finally the drilling cost for the eleven bit runs (intervals). Usually, the drilling companies use the Galle and Woods model to find the best value for the drilling parameters. As mentioned before, this model considers only the weight on bit and the rotary speed. Therefore, the values of weight on bit W and rotary speed N shown in Table (6-1) are considered to be the best values to give the maximum penetration rate or the minimum drilling cost according to Galle and Woods model.

The type of the bit is selected according to the type of the formation to be drilled. Table (6-2) shows the type of the formation which has been drilled at each interval by the corresponding bit.

The driller kept the same flow rate value of 269 gal/ min throughout all the runs. This is his best guess for the necessary flow rate which can clean the bit and the formation beneath it and can also carry out the cuttings up to the surface.

.

.

i

.

•

Well #1 (Field Data)

400 10	bit Sfze, inch	Bİ L Typu	de an _l	12" 12" Jn2	ize "dirj	Inte From	ro To	ĥi	7, hru	W 1000 II.	1 Esm 51	y gal∕⊮án	} 16/9a1	μ c.r.	bul T	1 ca 1/2	milition 19 G	С _В \$	Ը _µ \$/հւ	T _T lirg	T _C hrs	CPF \$/ft	R	Drilling Cost Per Bit Run \$
1	12%	OSC JA	12	12	12	94	1040	946	10	20	120	269	8.11	1.0	2	2	1	1071	191.667	1.56	1.25	3.73	94.6	3,528.88
2	7 1/6	X IV	10	10	10	1040	2692	1652	285	35	-	•	•	-	3	2	1	661		4.04	1.24	4.55	51.9	7,516.60
3	-	•	10	10	10	2692	3376	684	16	-	-	•	9.1	10	-	٠	-	661		5.06	4.06	8.01	42.7	5,478.04
	•	322	9	9	10	1176	56 11	2255	96.25	•	54	•	•	-	2	Sr	•	1845		8,45	6.78	10.29	21.4	23,201.95
5	• .	83	11	11		56 11	7129	1698	114	•	*	•	9.2	-	6	•	1	-		10.99	8,82	16.19	24.8	27,490.62
6	•	111			•	7329	7921	592	54.75	•	٠	•	9.3	-	8	SE	0 1/8	•		11.88	9.53	27.77	10,8	16,439.84
1	-	J44	•	-	•	7921	8458	537	56	37.5	-	•	•	•	7	•	1	•	•	12.69	10.18	11.59	9.5	5,101.60
8	•	-	-	-	-	8458	9261	823	90.5	•	•	•	•	11	B	•	0 1/8	•		13.92	11.17	29.16	9.1	23,998.68
9	•	£4	•		-	9281	9397	116	54.25	-	-	•	•	•	5	•	1	•	•	14.10	11.31	147.53	2.1	17,111.48
10	-	J44	-	-	•	9 197	9717	120	52.25	•	-	-	10	15	0	•	1	•	•	14.50	11.70	52.00	6.1	16,896.00
11	-	J55H	-	•	-	9717	10,005	288	56	4u	50	•	9.0	•	1	•	1	-		15.01	12.04	61.68	5.1	17,761.84

.

.

.

.

Total drilling 164,532 cost of well []

•

.

.

.

и Ч

Та	b]	.e	6-	2
----	----	----	----	---

Well No. 1; Formation and Bit Types

Run No.	Interval ft	Bit Type	Formation Type	Company
1	1,040	OSC-3A (Milled Tooth) Standard	Soft formation	Hughes
2	2,692	X 3A (Milled Tooth) Sealed bearing	"	11
3	3,376	X 3A (Milled Tooth) Sealed bearing	11	11
4	5,631	J-22 (Insert) Friction-bearing	Medium-soft formation	••
5	7,329	F-3 (Insert) Friction-bearing	n	Smith
6	7,921	J-33 (Insert) Friction-bearing	U	11
7	8,458	J-44 (Insert) Friction-bearing	Medium formation	11
8	9,281	J-44 (Insert) Friction-bearing	H	11
9	9,397	F-4 (Insert) Friction-bearing	u	81
10	9,717	J-44 (Insert) Friction-bearing	"	
11	10,005	J-55R (Insert) Friction-bearing	U	11

The pressure gradient for an Oklahoma formation is about 0.433 psi/ft. Usually, the drillers use water, which has a density of 8.33 lb/gal, as drilling fluid for the shallow zones. As the depth of the formation increases, the density of the drilling fluid is increased in order to control the down hole formation pressure. From Table (6-1) the density has been increased from fresh water of 8.33 lb/gal for bit runs one and two, to a dense mud of more than 9.0 lb/gal for bit runs 3 through 11.

The trip time and connection time increased as the depth of the formation drilled increases.

The drilling cost in dollars per foot has been calculated for each interval using equation (4-9). These are the best drilling costs the driller can get according to Galle and Woods model in addition to crew experience and efficiency.

The drilling data that are given in Table (6-1) can be used to find the corresponding constants which are used to solve the new non-linear drilling model. Appendix B shows the mathematical procedures to calculate these constants. In the next section the effect of using the optimization algorithm on the drilling parameters of the new model will be given. Also the difference in the drilling rate and drilling cost will be considered.

6.3 Analysis of Drilling Condition in Practice (Optimized)

The method of Hooke and Jeeves using Fibonacci linesearch has been used to find the optimum solution for the newly developed non-linear mathematical drilling model which has been derived in Chapter 4. The best combination of the six decision variables leads to the maximum penetration rate and then to the minimum drilling cost.

Table (6-3) shows the necessary input data, which are required to perform the optimization procedure, for the eleven bit runs of well number one. Determination of the constants given in Table (6-3) are explained in Appendix B. Table (6-4) shows all the results of the optimum solution for the eleven bit runs.

The values of the rotary speed N from the optimum solution are higher than the values used in the field by the Security company for the eleven bit runs. This increase in the rotary speed helps the bit to drill faster and gives a higher penetration rate especially in the soft and medium soft formations. However, there are some factors which limit the values of the rotary speed such as: the failure that occurs in the bit (either in the teeth or in the bearing), the other six decision variables, and the size of the rotary table to offer such a speed. The values of the rotary speed from the optimum solution are within the practical and reasonable limits.

The weight on bit should be enough to break down the formation. A very high weight on the bit may cause an early

Table 6-3

.

.

Well #1 (Required Input Data)

Run No .	Bit Size	віt Туре	* b	* °2	* Z	A Y	A A _f	* °,	Depth ft	TT hrs	TC hrs	CR \$/hr	СВ \$
)	124	05C3N	429,325	1.412	0.587	0.906	7.772	0.087	1,040	1.56	1,25	191,667	1,071
2	7 7/8	X 3A	2,832,619	1.34	0.696	1.259	26.794	0.0059	2,692	4.04	3.24		661
3	10	XJV	1,590,242	1.58	0.549	1.182	15.042	0.0147	3,376	5.06	4,06	•1	
4	"	J22	1,076,209	1.47	0.692	1.277	52.045	0.0043	5,631	8.45	6.78	40	1,845
5	**	FJ	1,274,679	2.27	0.646	1.466	10.621	0.0034	7,329	10.99	8.82	н	**
6		J 3 3	1,224,362	2.148	0.640	1.388	3.039	0.0038	7,921	11.80	9.53	65	11
7	н	J44	1,388,860	1.263	0.736	1.166	4.329	0.0031	8,458	12.69	10.18	41	u
8		J44	1,244,498	1.088	0.731	1.040	5.485	0.0049	9,281	13.92	11.17	••	
9	**	F4	1,345,459	1.067	0,703	0.956	7.569	0.0014	9,397	14.10	11.31	11	ų
10	**	344	1,295,057	0	0,718	0.947	9,747	0.0023	9,717	14.58	11.70	••	"
н	**	J558	1,862,301	1.020	0.78	0.911	113.3	0.0017	10,005	15.01	12.04	"	11

*Determination of these constants are well explained in Appendix B.

÷

Table 6-4

Well #1 (Optimized)

Rus No.	BIL Slze	Off Type	н	10001P M	y yat/min	p tb/gat	р с.р.	dn <mark>1</mark>	, <u>1/3</u>	di j		ondition B _f	С _р \$	6 ₈ \$/80	1 lirs	f fL	CPF \$/11	R ft/hr	Ortiling Eost Per Bit Run \$
L	124	05C JA	124.65	50	150	8,34	1.00	8	8	Ħ	0.411	1.0	1071	191.667	9.742	2 3 3 9. 14	1.406	240.11	1405.76
2	1 1/8	X 3A	200	50	350	8,34	00.1	Ð	8	B	1.00	0.766	66)	•	JO.711	3443.13	2.30/	112.02	3012.82
J		X3A	148,113	50	350	9,00	10.0	8	8	8	0,946	1.00	661	191.667	30, 368	1650.26	4.987	54.34	3411.11
4	•	322	132.97	50	360	9.00	10.0	8	8	8	0.347	1.00	1845	٠	22.891	1362.31	6.718	59.51	15149.09
5	•	ы	104.97	50	350	9.0	10.0	8	8	ų	0.889	1.00		•	34,346	1328.50	9.201	38,60	16623.30
6	•	J JJ	58	42.5	255	9.0	10,0	9	9	9	1.00	0.50/1	W	٠	38.633	590.160	22.626	15.28	13394.59
7	•	J44	70.5	50	290.5	9.0	14.5	8	8	8	1.0	0.6691		•	31.726	441.51	27,8/8	13.92	14970.49
8	•	J44	90.5	50	297.5	9.0	20.0	8	8	8	1.0	0.7216	•	•	28.072	447.977	26.864	15.958	22109.07
9	-	F4	90.48	50	297.47	9.0	20.0	8	8	8	1.0	0.9210	-		38.737	112.550	125.63	2.91	14573.00
10	•	J44	195	45	350	14.5	19.5	8	8	8	1.0	0.10	۹	•	22.014	2502.326	4.4364	113.67	1419.65
11	•	J55R	200.0	48.61	350.0	10	15.0	8	8	8	0.392	1.00	•	•	27.476	220.637	55,725	8.03	16040.80

.

.

.

.

Total drilling cost of well #1

.

.

121,918

•

failure of the bit, while a low weight on the bit may cause the bit to drill in the same vicinity without any progress down hole. The values of the weight on bit W from the optimum solution for the eleven bit runs are higher than the values used in the field by Security company (from 35,000 to 50,000 lb) in order to get better penetration rate. But these values are within the practical average range, which are attainable in the field.

The optimum solution gave a higher value for the weight on bit and rotary speed than those used by Security company, and leads to a faster penetration of the formation to be drilled. Therefore, a sufficient volumetric flow rate of the drilling fluid is required in order to clean the bit teeth and cones along with the formation underneath and also to carry out the cuttings which have been generated. For these reasons, the values of q are increased in the optimum solution (from 269 to 300 gal/min). These values should not be higher than the maximum rate attainable from the pump which depends on the type and size of the pump used in the field during the drilling operation.

There is a small difference in the drilling fluid properties (i.e., density ρ and viscosity μ) between those obtained from the optimum solution and those which have been already used by Security company for all the eleven bit runs.

Selecting the proper type of bit will improve the penetration rate. For all the eleven intervals, the bits are

chosen to have a three jet nozzle. The jet flow from these nozzles is very helpful in the drilling operation. According to the new drilling model, the optimization technique decreases the size of these nozzles in order to help improve the penetration rate by cleaning the bit teeth and exerting a high pressure flow jet of the drilling fluid onto the formation under action. Practically, the size of the jet nozzles are controlled by the contractor limits. A jet nozzle size equal to 8/32" is the smallest size that can be used in the field in order to avoid plugging the nozzle by the drilling fluid additives and solids content. Also the optimum solution shows that a bit with three equal jet nozzles will give better results.

Failure of bits to do their jobs is either due to tooth dullness or due to bearing wear, whichever takes place first. Table (6-4) shows that either the final bearing wear parameter B_f or the final tooth dullness D_f is equal to unity. If the parameter $B_f = 1.0$, this means that the bearing of the bit is completely damaged and if the parameter $D_f = 1.0$ which means that the teeth of the bit are worn out.

The total footage F which is drilled by one bit and the total time required to drill it have been computed and tabulated in Table (6-4). These F and T values are corresponding to the optimum solution (i.e., best combination of the six decision variables) which lead to the best penetration rate and then to the best drilling cost. For the first

interval the solution of the new model shows that one bit is more than enough to drill the footage of this interval drilled by the Security company. This is true also for intervals two and three. But for interval four (and some others) the optimum solution shows that the footage drilled by one bit is not enough for this interval. Thus, another bit should be run to complete the remaining footage. These two cases are shown in the comparison Table (6-5).

The optimum solution of the six decision variables lead to a better penetration rate R. It is clearly shown in Table (6-5) that R from the optimum solution is much better than R which was reached by the Security company. Since the drilling cost CPF is inversely proportional to the drilling rate R, therefore, the drilling cost will decrease noticeably. The last column of Table (6-5) shows the percentage improvement in the drilling cost after using the optimization technique to control the drilling parameters.

The total drilling cost of well number one as drilled by the Security company is equal to 164,532 dollars, while the total drilling cost of the same well after using the optimization technique is equal to 121,918 dollars. Thus, this new model helps in saving about 42,614 dollars just in one well. Therefore, the next wells to drill in the same area where well No. 1 has been drilled should be optimized by this technique for a greater saving. The method will be then applied for other wells and fields in different areas.

Table 6-5

Well #1 (Comparison)

• - • • •			Opt Int red-Het }													Un-Optimized Well									
Run No.	Bit Sfze	Bit Type	N, rpa	Inoniř M	gal/min	P 16/yal	μ ε.p.	an <mark>dn</mark>	, ⁹ , ⁵ , 1/35	dn <u>3</u>	f leel	f hrs	60F \$//L	n In M	10, <u>17</u>	ya1/mfn	16/ga i	с.р.	đe j	dn ₂	dn3	F (L	T hes	(1) 1/11	Improvement In CPF
I	125	OSC 3A	170.65	50	350	8.34	1.00	8	8	8	2319.14	9.142	1.465	120	20	269	8.33	1.0	15	15	12	945	10	3.73	60.19
2	7 //8	X 3A	200.0	-	•	8.34	1.00	8	8	8	341). []	30.711	2.30/	•	35	•	•	1.0	10	10	10	1652	28.5	4.55	49.30
3	•	17	148.113	•	•	9.00	£0.0	8	8	8	1550.26	30.368	4.987	•	•	•	9.1	10	10	10	10	684	16	8.01	37.74
4	•	J22	132.97	•	-	•	-	8	8	8	1 362. 31	22.891	6.718	54	•	•	•	•	9	9	10	2255	96.25	10.29	34.71
5	•	Ð	104.97	•	•	•	-	8	8	8	1178.50	34.346	9.201	·	•	•	9.2	•	п	11	11	1698	114	16.19	0.17
6	•	J13	58	42.5	255	•	10. 0	9	•	9	592.41	38.633	22.549	•	•	•	9.3	•	•	•	-	592	59.75	27.77	18.80
1	-	J44	70.5	50	290.5	-	14.5	8	8	0	441.51	31.726	27.8/8	•	37.5	•	•	٠	•	•		537	56	31.59	11.15
8	•	J44	90.5	•	297.5	•	20.0	8	8	8	447	28.0/2	26.9Z	1 •	•	-	•	Ð	•	•	•	82)	90.5	29.16	7.67
9	•	14	90,48	•	297.5	•	20.0	8	8	6	112.30	38.737	125.912	1.	•	•	•	-	•	•	•	116	54.25	147.53	14.65
10	٠	J44	195.0	45.0	350.0	14.5	19.50	8	8	8	2502.32	22.01	4.436	•	•	-	10	15	•	٠	•	320	52.25	52.8	91.59
	•	JSSR	200.0	48.61	350.0	10	15.0	8	8	B	220.637	27.416	55.725	50	40	•	9.8	•	•	•	•	288	56	61.6B	9,65

.

.
Figure (6-1) shows the optimum time T* to pull the bit out of the hole for bit run number one. As shown in Table (6-4) the bearing of the bit is completely worn out while about half of the bit teeth are damaged at the optimum time. Figure (6-2) shows the optimum time T* for bit run number two at which the bit teeth are completely worn out and about 75 percent of the bit bearing is damaged. The optimum time T* yields a maximum footage drilled by the bit and a minimum cost of drilling. These figures can be repeated for the other nine bit runs, which show the footage drilled by each bit and the drilling cost when the bits are to be pulled out of the hole before reaching the optimum time.

Figure 6-2 Optimum Time for Bit Run #2

CHAPTER 7

SENSITIVITY ANALYSIS OF THE MODEL

7.1 Introduction

All the sensitivity analysis shown in this chapter have been done for bit run number one of well number one. These analysis will be the same for the rest of the ten bit runs of well number one. The effect of changing one of the six decision variables on the penetration rate and the drilling cost will be studied in this chapter. These effects are: the effect of the drilling fluid properties, the effect of the drilling fluid volumetric flow rate, the effect of the weight on bit, the effect of the rotary speed, and the effect of the jet-nozzle diameter. Also the comparison between the Hooke and Jeeves search technique and other optimization techniques will be presented.

7.2 Effect of Drilling Fluid Properties on Penetration Rate and Drilling Cost

The drilling fluid density has a direct effect on the rate of penetration. The best rate of penetration can be attained by using air which has a low density. Drilling with water gives better penetration rate than drilling with mud.

The drilling fluid density is related to the penetration rate mainly through the effect of the differential pressure which is the difference between the mud column pressure and the formation pressure. As the differential pressure positively increases the penetration rate decreases. The penetration rate increases if the formation pressure is greater than the fluid column pressure. One must make sure not to let the formation pressure become greater than the fluid column pressure in order to avoid a possible blowout. So the least we can do, is to equalize the column pressure with the formation pressure (i.e., zero differential pressure) so that we could get the best drilling rate. Figure (7-1) shows the effect of the increase in the drilling fluid density from fresh water of 8.34 lb/gal to a dense mud of about 15 lb/gal, on the penetration rate and the effect of the increase in density on the drilling cost while all the other decision variables are kept constant for run number 1. These data agree with Eckel [15] and Kock [28].

Figures (7-2) shows the effect of a positive increase in the differential pressure on the penetration rate and the drilling cost for run number one. It is clear that the drilling rate drops sharply as the fluid density increases or when the differential pressure increases positively. This inverse relation between the differential pressure and the drilling rate has been mentioned and discussed very well by many authors [8, 12, 13, 15, & 41]. On the other hand, the

Density vs Drilling Rate and Cost

Figure 7-2

drilling cost in \$/ft increases as the drilling fluid density increases or when the differential pressure increases positively. This cost-pressure relation is shown in Figure (7-2).

The fluid viscosity has an inverse effect on the penetration rate. As the viscosity of the drilling fluid increases from fresh water to a viscous of drilling mud, the rate of penetration drops quickly. This relation between the viscosity and the drilling rate agrees with the work of Eckel [15], Lummus [31], Walker [49] and Kock [28]. The effect of viscosity on the penetration rate and drilling cost is shown in Figures (7-3).

Figure 7-3

Fluid Viscosity, c.p.

7.3 Effect of the Volumetric Flow Rate on the Penetration Rate and the Drilling Cost

The volumetric flow rate of the drilling fluid is related to the penetration rate through the Reynold's number equation. This relation is a reflection of the relation between the drilling rate and the hydraulics. As the flow rate increases, the penetration rate increases. This increase in the penetration rate is due to good and rapid cleaning of the formation beneath the rock bit and also to good cleaning and lubrication of the bit's teeth and cones. Good and rapid cleaning of the formation prevents the accumulation of the cuttings beneath the bit's teeth and also prevents the process of drilling and grinding these cuttings again and again.

In the oil fields, drillers choices are determined by the type of pumps available to them. Accordingly, the drillers cannot raise the volumetric flow rate above the maximum flow rate of the pump used. This maximum value depends on the size and type of the pump. Figure (7-4) shows the effect of the increase in the volumetric flow rate on the penetration rate and the drilling cost. It is clear, therefore, that the drilling cost (\$/ft) drops as the flow rate increases. The flow rate—penetration rate and the flow rate —drilling cost relationships agree with the work of Eckel [16], Murphy [38] and Eckel [15].

Flow Rate vs Drilling Rate and Cost

Flow Rate, gal/min

7.4 Effect of Weight-on-Bit on the Penetration Rate and the Drilling Cost

Figure (7-5) shows the effect of increasing the bit weight on the penetration rate and the drilling cost while keeping all the other variables unchanged. These relationships agree with that of Edwards [17], Speer [47] and Feenstra [19]. If weight on bit is increased, drilling rate increases until a rate is reached at which hydraulics are not sufficient to remove generated cuttings. This point is referred to as the "flounder" or "ball-up" point. Further weight increases may actually result in a reduction in drilling rate.

At low bit weight, the cost per foot decreases until some minimum value is reached. More weight increases drives costs up. This minimum value is dependent on the nature of formation drilled, and the values of the other decision variables. There is a combination of weight on bit and all the other decision variables that yields a lower cost than any other combination which is the optimum solution for the non-linear programming.

Weight on Bit vs Drilling Rate and Cost

7.5 Effect of Rotary Speed on the Penetration Rate and the Drilling Cost

Figure (7-6) shows the effect of the increase in the rotary speed on the penetration rate and the drilling cost per foot while keeping all the other decision variables unchanged. These effects agree with results in [17, 19, 47]. If the rotary speed is increased, the drilling rate increases. The response of drilling rate to the increase in rotary speed is less than linear as shown in Figure (7-6). This response will vary according to formation type.

At low rotary speed, the cost per foot decreases until some minimum value is reached. Further rotary speed increases cause costs to go up. This minimum value is dependent on the type of formation drilled, and the values of other decision variables. There is a combination of rotary speed and all the other decision variables that yields a lower cost than any other combination which is the optimum solution for the non-linear programming.

Figure 7-6

7.6 Effect of Jet-Nozzle Diameter on the Penetration Rate and the Drilling Cost

Figure (7-7) shows the effect of the increase in the size of the jet-nozzle diameter on the penetration rate and the drilling cost. This relation agrees with Eckel [16]. In this study, a bit with three equal jet-nozzles have been used. If the jet-nozzle diameter is increased, the drilling rate decreases. On the other hand, if the jet nozzle diameter is increased, the drilling cost increases. The jet flow of the drilling fluid through the bit jet-nozzles, is very helpful in the drilling process due to jet pressure exerted into the formation, and to the jet flow which clean and carry the cuttings away as soon as they were generated.

The effect of changing the number of jet-nozzles of the bit on the drilling cost and rate is considered in this section together with the effect of unequal size jet-nozzles. Table (7-1) shows all above mentioned effects for run number one. The improvement in the drilling cost increases as the number of the jet-nozzles decreases. Thus, the best drilling cost one could get is through the use of a bit with one jet-nozzle which is case (5) in Table (7-1).

Table (7-1)

.

Effect of Changing the Number of Jet-Nozzles of the Bit

		Run #1	Jet-No	ozzles Size,	1/32	Footage	Drilling				
			dn ₁ dn ₂		dn3	ft	Rate ft/hr	CPF \$/ft	<pre>% Change in CPF over case (1)</pre>		
Case	(1):	3-Equal Jet Nozzles Re = 126.371 q p dn µ	8	8	8	2339.14	240.11	1.486	_		
Case	(2); Re =	3-Unequal Jet Nozzles 379.11 $q\rho$ $\mu(dn_1+dn_2+dn_3)$	8	9	8	2332.3	239.41	1.491	0.335*		
Case	(3).:	2-Equal Jet Nozzles Re = 189.56 <u>q</u> p dn µ	8	8	-	2405.94	246.97	1.445	2.759**		
Case	(4):	2-Unequal Jet Nozzles Re = 379.11 $q \rho$ $(dn_1+dn_2)\mu$	8	9	-	2387.0	245.03	1.457	1.952**		
Case	(5):	One Jet Nozzle Re = 379.11 <u>q</u> p dn µ	8	-		2520.1	258.68	1.380	7.133**		

* disimprovement in CPF.
** improvement in CPF.

7.7 Comparison of the Hooke and Jeeves Search Method with Other Optimization Methods

The comparison in this section is between the method of Hooke and Jeeves using Fibonacci line search and the following two methods:

1. Hooke and Jeeves [9, 23] method which is usually used to find the optimum solution for a multi-variable, unconstrained non-linear function without using derivatives.

2. The Rosenbrock method [9, 46] which is usually used to find the optimum solution for a multi-variable, unconstrained non-linear function without using derivatives.

In the previous two methods, the procedure assumes a unimodal function; therefore, several sets of starting values for the independent variables should be used if it is known that more than one minimum (maximum) exists or if the shape of the surface is unknown.

In evaluating most of the non-linear optimization techniques available, it would be hard to say which is better than the other. There are several factors which should be taken into account while evaluating each technique. These factors are: the objective function, the initial values, the number of function evaluations required to reach the optimum solution, the CPU time on computer, and finally the optimum solution of the problem itself. Table (7-2) shows the difference in the optimum solution which is reached by the three different techniques, and also shows how much improvement in

Table (7--2)

Comparison Table for Run No. 1

.

Optimization Nutes

•

٠

.

.

.

•

Stersting Polnts							Hethud	Hethud "Sacurity CPF = 3.73 \$/f% (from table 6-8). "Same termination factor for all the three methods. "Same initial step size for each of the decision variables.															
n N	103.1P M	r Ib/gəl	q yə)/nin	dn ₁ Inch	in, 1/3 ang Inch	drij Inch	μ c.y.		N rpu	10 ₃ 1P M	r Ib/gal	gal)min	dn ₁ Inch	dn ₂ Inch	dn ₃ Inch	<u></u> р с.р.	F IL	1 hrs	0 ₁	CPF \$/Ft	8 of Function Evaluations	Computer Time, Sec.	XImprovement cosi/ft Over Security CPF
53.0	37.5	9.0	250.0	11	11	н	1.0	Posenbrock Kethud	\$3.05	37.7	8.99	250.2	11			6.99	3121.17	34.962	. 351	2.663	10	0:07.35	28.606
								Plsciete Ikoke and Jeeves Hethod	71.19	57.29	8.314	269,76	8	8	8	5.019	2505,487	13.904	. 376	1.706	1007	0; (4.8)	54.26
								Hatlind of Hooke and Jeeves Using Fibonacci Line Search	124.65	50.0	8.34	350. 0	8	8	8	1.0	2319,14	9.742	0.411	1.406	81	24;29.37	60.016

.

cost/foot we can get by switching from the Rosenbrock or Hooke and Jeeves methods to the method of Hooke and Jeeves using Fibonacci line search. Usually, the search method is faster and more effective than the discrete method, due to its ability to change the search directions faster.

Since the method of Hooke and Jeeves using Fibonacci line search gives better drilling cost results compared with the other two methods, it has been selected as the solution procedure to solve the non-linear mathematical drilling model.

Table (7-3) shows the effect of changing the starting points for run number one. The starting points have direct effect on arriving to an optimum solution, on the required computer time, and on the number of function evaluations. For the Rosenbrock and discrete Hooke and Jeeves methods (if the starting points are chosen far away from the optimum solution, such as the sets No. one and three in Table (7-3), a longer computer time would be required to reach a solution, which is actually not the optimum solution). For the method of Hooke and Jeeves, using Fibonacci line search, the optimum solution has been reached through different starting points, but with varying computer time. For the starting points #2, which is close to optimum, the optimum solution could be reached in the shortest possible computer time.

Table (7-3)

-

Effect of Changing the Starting Points

Starting Points Sets No.	Optimization Method	N rpm	W 10 ³ 16	₽ 1b/ga1	9 ga]/min	3-equal <u>size nozzies</u> ^{dn} inch	յր c.p.	الل F c.p. ft I		^D f	CPF \$/ft	No. of Function Evaluations	Computer Time Required
(1)													
N=53 ₩=37 5	Rosenbrock	53.05	37.7	8.99	250.2	11	6.99	3121.17	34.96	.351	2.663	70	07.35
$\rho = 9$	Discrete	71,19	59.29	8.34	269.76	8	5.019	2505.48	13.904	. 326	1.706	1007	14.83
dn=.344 ₽ =7.0	Search II & J	124.64	50.0	8.34	350.0	8	1.0	2339.14	9.742	.411	1.486	84	24:29.32
(2)													
N=120 W=20	Rosenbrock	120,20	20.20	8.34	269.20	12	.99	3453.8	39.343	.606	2.649	80	8.01
P = 8.34	Discrete	126.1	28.80	8.340	277.8	9	. 120	2378.577	22.028	0.482	2.452	463	14.06
dn=.375 ∦=1.0	Search H & J	126.43	50.0	8.34	350.0	8	1.00	2320.98	9.604	.414	1.487	49	8:59.67
(3)													
N=160 W=40	Rosenbrock	160.12	40.20	12.99	200.20	14	4.99	1281.73	10.52	.508	2.829	80	0:7.91
P ≈13 o=200	Discrete	163.399	43.799	11.279	217.19	13	3.279	1410.69	9.064	.500	2.372	1008	19.91
dn=.75 H=5.0	Search H & J	126.43	50.0	8.34	350.0	8	1.0	2320.99	9.604	.414	1.487	98	7:35.64

.

CHAPTER 8

SUMMARY, CONCLUSIONS, AND FUTURE WORK

8.1 Summary

The drilling models developed in the past years by so many drilling experts are restricted by different limits and assumptions. They related the penetration rate only to the weight on bit and rotary speed assuming that all the other factors are well chosen. This is the main reason for the development of a new mathematical non-linear drilling model which includes the effect of six variables on the penetration rate and, then, on the drilling cost. Beside the weight on bit and rotary speed, the other four variables are: the drilling fluid density, the drilling fluid viscosity, the drilling fluid rate, and the jet-nozzle diameter.

Many optimization techniques have been tested in order to find the best solution for the drilling model (i.e., the best combination of the six decision variables to give maximum penetration rate or minimum drilling cost). Among these optimization techniques, the method of Hooke and Jeeves using Fibonacci line search gives the best solution for the nonlinear drilling model.

8.2 Conclusions

1. For the first time a new drilling mathematical model has been developed that reflects the effect of the following variables: weight on bit, rotary speed, bit type and size, drilling fluid properties, hydraulics, differential pressure at the bit nozzles, formation to be drilled, round trip time, and connection time on the drilling rate and, then, on the drilling cost.

2. From a practical viewpoint there are several restrictions which limit the feasible region of the objective function, such as the maximum rotary speed obtained from the draw-work, the maximum weight exerted on the bit, the maximum volumetric flow rate attained from the pump, and the sizes of the drilling bit jet nozzles.

3. With the above mentioned restrictions, the optimum solution to the non-linear multi-variable drilling cost function (i.e., minimizing the drilling cost in \$/ft) using the Hooke and Jeeves search method, is more economical and realistic than solutions offered by other optimization techniques.

4. The main application of this new technique of optimization is mainly in the oil and gas fields. After drilling the first test well in a certain area of the oil or gas field, the next wells to be drilled in the same area should be optimized in order to get the minimum drilling cost.

5. The drilling companies could save thousands of dollars on one well and perhaps millions on one field.

6. Basically, the new mathematical drilling model consists of two cases: the first is the case when the decision variables change with time, and the second is the case when all the decision variables are held constant over the entire bit run.

7. Uusally, there is a lack of field data available for the case when the decision variables varied with time. Therefore, there is a need for field data which gives the number of increments for each bit run, the values of the decision variables for each increment, the change in the bit teeth and bearing at each increment, and finally the total footage drilled and time required for each increment.

8. The bit records data offered by the Security company, are for the case where the decision variables are held constant.

9. For run number one (the formation is soft), it was found that the second case of optimization (i.e., when the decision variables are held constant over the entire bit run) offered very little advantage over the first case of optimization (i.e., when the decision variables are varying with time). Therefore, for bit run No. 1, it is preferable to hold all the decision variables unchanged over the entire bit run.

8.3 Future Work

It is recommended that a drilling company should perform certain tests which are necessary for the optimization

procedure during the drilling operations, from which the rotary speed exponent Z, the weight exponent Y, and other constants (as shown in Appendix B) can be determined.

It is also recommended for future work that experimental work, using a simulated drilling rig, should be conducted in order to study the effect of some additional controllable variables (such as the down-hole temperature and the hole problems) on the drilling rate and drilling cost. The change in the down-hole temperature, expecially in geothermal wells, has a direct effect on the drilling fluid properties (such as density, viscosity, and gel-strength) and on the drilling bit and pipes. Therefore, the temperature of the well relates to the drilling rate and drilling cost.

Nomenclature

•

n = increments number per bit run, i = 1, . . . , n $P_m = drilling fluid pressure, psi$ = $0.052 \times \text{depth} \times \text{density}$ P_f = formation pressure, psi $Q = Log \left(\frac{kq\rho}{dnu}\right)$ q = volumetric flow rate, gallon/min R = rotary speed function = N + 0.00004348 $R_e = Reynold's number, fraction = kq_p / dn_\mu$ T = rotating time for the bit, hrs T_{c} = connection time, hrs $T_{+} = trip time, hrs$ $v = 714.19 \int^{D} f a dD$ $V = \frac{1}{1 + \Delta p^{X}}$ $W = weight on bit, 10^3 lb$ \overline{w} = equivalent 7 7/8 inch bit weight = 7.875 W/H x = differential pressure exponent y = weight exponent in the drilling rate equation z = speed exponent in the drilling rate equation Latine Letters $\Delta p = differential pressure, 10³ psi$ ρ = drilling fluid density, lb/gal μ = drilling fluid viscosity, c.p. ζ = length of uncertainty \in = step size

BIBLIOGRAPHY

- *(1) Allen, J. H. "How to Relate Bit Weight and Rotary Speed to Bit Hydraulic Horsepower," Drilling-DCW, 53, May, (1975).
- *(2) Allen, J. H. "Determining Parameters that Affect Rate of Penetration," Oil and Gas J., 94, Oct. 3, (1977).
 - (3) Allen, J. H. "Computer Optimizes Operations," Oil and Gas J., 128, Oct. 10, (1977).
 - (4) Bentsen, R. G. and Wilson, D. C. "Optimization Techniques for Weight-on-Bit and Rotary Speed Part II. Multi-Internal Optimization," JCP, 91, Jan.-March, (1977).
- *(5) Bielstein, W. J. and Cannon, G. E. "Factors Affecting the Rate of Penetration of Rock Bits," A.P.I. Drilling and Production Practice, 17, 61, (1950).
- *(6) Billington, S. A. and Blenkarn, K. A. "Constant Rotary Speed and Variable Weight for Reducing Drilling Cost," A.P.I. Drilling and Production Practice, <u>29</u>, 52, (1962).
 - (7) Bobo, R. A. "Simplified Rig-Hydraulic Analysis," Oil and Gas J., <u>61</u>, No. 23, 160, (1953).
 - (8) Boone, D. E. "Use of Drilling Data to Cut Costs," Petroleum Engineer, 70, September, (1976).
 - (9) Bazaraa, M. S. and Shetty, C. M. "Non-Linear Programming," John Wiley and Sons, Inc., (1979).
- (10) Crowley, M. "Procedure Updates Drilling Hydraulics," Oil and Gas J., 59, Feb. 16, (1976).
- *(11) Cunningham, R. A. "Laboratory Study of the Effect of Rotary Speed on Rock-bit Performance," Oil and Gas J., 53, No. 28, 91, (1960).
- *(12) Cunningham, R. A. "An Empirical Approach for Relating Drilling Parameters," JPT, 987, July, (1978).

- *(13) Cunningham, R. A. and Eenink, J. G. "Laboratory Study of the Effect of Overburden, Formation and Mud Column Pressures on Drilling Rate of Permeable Formations," Trans. A. I. M. E., 216, 9, (1959).
 - (14) Dougherty, E. L. "Application of Optimized Methods to Oil Field Problems: Proved, Probable, Possible," SPE #3978, (1972).
- *(15) Eckel, J. R. "Microbit Studies of the Effect of Fluid Properties and Hydraulics on Drilling Rate," SPE #1520, (1966).
- *(16) Eckel, J. R. "How Mud and Hydraulics Affect Drill Rate," Oil and Gas J., 69, June 17, (1968).
- *(17) Edwards, J. H. "Engineering Design of Drilling Operations," A.P.I. Drilling and Production Practice, <u>31</u>, 39, (1964).
 - (18) Estes, J. C. "Pilot-Scale Drilling-Research Efforts Can Aid in Mud Design," Oil and Gas J., 136, Nov. 21, (1977).
- *(19) Feenstra, R. and Van Leeuwen, J. J. M. "Full-Scale Experiments on Jets in Impermeable Rock Drilling," SPE #694, (1963).
 - (20) Fletcher, R., and M. J. D. Powell. "A Rapidly Convergent Desent Method for Minimization," Computer J., <u>6</u>, 163-168, (1963).
- *(21) Galle, E. M. and Woods, H. B. "How to Calculate Bit Weight and Rotary Speed for Lowest Cost Drilling," Oil and Gas J., 58, No. 46, 167, (1960).
- *(22) Galle, E. M. and Woods, H. B. "Best Constant Weight and Rotary Speed for Rock Bits," A.P.I. Drilling and Production Practice, 30, 48, (1963).
- *(23) Hooke, R. and T. A. Jeeves. "Direct Search Solution of Numerical and Statistical Problems," J. Assoc. Comp. Mach., <u>8</u>, 212-229, (1961).
- *(24) Hopkin, E. A. "Factors Affecting Cuttings Removal During Rotary Drilling," J.P.T., 19, 807, (1967).
 - (25) Jackson, R. A. "Cost/Foot: Key to Economic Selection of Rock Bits," World Oil, 83, June, (1972).

- (26) Kennedy, J. L. "Computer Drilling System Can Provide Optimization Rig Control," Oil and Gas J., 61, May 10, (1971).
- *(27) King, G. R. "Effect of Fluid Environment on Rock-Bit Bearing Performance," Oil and Gas J., <u>57</u>, No. 47, 166, (1959).
- *(28) Koch, W. M. "Effect of Mud on Drilling Cost/Ft at Depth," Petroleum Engineer, 66, March (1966).
 - (29) Kuester, J. L. and Mize, J. H. "Optimization Techniques with Fortran," McGraw-Hill Book Co., (1973).
 - (30) Leaman, J. M. "A Simple Way to Optimize," Machine Design, 204, March 21, (1974).
- *(31) Lummus, J. L. "Factors to be Considered in Drilling Optimization," SPE #2744 (1970).
- *(32) Lummus, J. L. "Optimized Drilling in the '70s, Reprinted from Petroleum Engineer, Compliments of Smith Tool.
- *(33) Maurer, W. C. "The Perfect-Cleaning Theory of Rotary Drilling," Trans. A.I.M.E., <u>225</u>, 1270, (1962).
- *(34) McDaniel, K. W. and Lummus, J. J. "Here's How to Apply Optimized Drilling Techniques," Oil and Gas J., 57, June 14, (1971).
- *(35) Moore, P. L. "Five Factors that Affect Drilling Rate," Oil and Gas J., 56, No. 40, 142, (1958).
 - (36) Moore, P. L. "Drilling Practice Manual," Petroleum Publishing Co., Tulsa, OK, (1974).
 - (37) Murphy, D. "Selecting the Right Rotary Bit is the Place to Start Cutting Costs," Oil and Gas J., 88, Feb., (1969).
- *(38) Murphy, D. "What Factors Affect Drilling Rate," Oil and Gas J., 74, Feb. 17, (1969).
 - (39) Murphy D. "Lowest Cost-Per-Foot is Aim of OWN," Oil and Gas Journal, 110, March 3, (1969).
 - (40) Murphy, D. "Here are Field Tips for Cutting Drilling Costs," Oil and Gas J., 150, March 24, (1969).
- *(41) Murray, A. S. and Cunningham, R. A. "The Effect of Mud Column Pressure on Drilling Rates," Trans. A.I.M.E., <u>204</u>, 196, (1955).

- *(42) Outmans, H. D. "The Effect of Some Drilling Variables on the Instaneous Rate of Penetration," Trans A.I.M.E., 219, 137, (1960).
 - (43) Phillips, D. T., Ravindran, A. and Solberg, J. J. "Operations Research: Principles and Practice," John Wiley & Sons, Inc., (1976).
- *(44) Reed, R. L. "A Monte Carlo Approach to Optimal Drilling," Society of Petroleum Engineers Journal, 423, Oct., (1972).
 - (45) Reid, C. A. "Maximum Drilling Rate with Good Hole Conditions," A.P.I. Drilling and Production Practice, <u>33</u>, 109, (1966).
- *(46) Rosenbrock, H. H. "An Automatic Method for Finding the Greatest or Least Value of a Function," Computer J., <u>3</u>, 175-184, (1960).
- *(47) Speer, J. W. "A Method for Determining Optimum Drilling Techniques," A.P.I. Drilling and Production Practice, <u>25</u>, 130, (1958).
 - (48) Somerton, W. H. and El-Hadidi, S. "Well Logging Predict Aid Computers," Oil and Gas J., 78, Nov. 23, (1970).
- *(49) Walker, R. E. "Drilling Rate Index Specifics Optimum Cleaning," Oil and Gas J., 59, August 30, (1976).
 - (50) Walker, R. E. "Operating Window Outlive Drilling-Mud Optimization Limits," Oil and Gas J., 59, August 9, (1976).
 - (51) Walker, R. E. "Cleaning Bits Key to High Penetration Rates," Oil and Gas Journal, 139, August 16, (1976).
 - (52) Wheeler, R. "Operator Views Practical Side of Optimized Drilling," Petroleum Engineer, 45, Sept., (1971).
 - (53) White, D. L. "Putting Available Know-How to Use Can Cut Drilling Costs," Oil and Gas J., 103, Sept. 5, (1977).
 - (54) Williams, D. G. "Increased Energy to Softer Formation Bits Speeds Drilling," Petroleum Engineer, 22, Jan., (1978).
- *(55) Wilson, D. C. and Bentsen, R. G. "Optimization Techniques for Minimizing Drilling Costs," SPE #3983, (1972).

- (56) Woods, H. B. "Parameters of Drilling Engineering Systems," Drilling Contractor, 40, March-April, (1969).
- *(57) Young, F. S. "Computarized Drilling Control," Trans. A.I.M.E., <u>246</u>, 483, (1969).

.

•

•

APPENDIX A

.

EXAMPLE ON GALLE AND WOODS TECHNIQUE

.

•

Using the information shown in Table (D-1), determine the best constant weight and rotary speed.

.

<u>Step 1</u>: From the bit record determine the formation factors using the equations (example shown for bit 9).

1. Formation Abrasiveness:
$$A_f = FR/\overline{m}U$$
 (A-1)
T = rotating hours = 12.7
N = rotary speed = 140
R = from Table (D-3) = 259
 \overline{w} = weight on bit = 45 (1000 lbs.)
 \overline{m} = from Table (D-4) = .249
D = 4/8
U = from Table (D-2) = 920
 $A_f = (12.7)(259) \div (.249 \times 563)$
 $A_f = 14.4$

2. Drillability:
$$D_f = FR/\bar{m}(\bar{w})^k (N^r) Z$$
 (A-2)
F = bit footage = 368
R = from Table (D-3) = 259
 \bar{m} = from Table (D-4) = 0.249
 \bar{w} = bit weight = 45(100 lbs.)
K = weight exponent = 1.0
 \bar{w}^k = from Table (D-5) = 45
N = rotary speed = 140
r = speed exponent = 0.6
N^r = from Table (D-6) = 19.4
Z = from Table (D-2) = 563
(for p = 0.5 - self-sharpening tooth wear)

 $D_f = (368 \times 259) \div (.249 \times 45 \times 19.4 \times 563)$ $D_f = 0.779$

3. Bearing Factor:
$$B_f = TN/B_xL$$
 (A-3)
 $T = rotating time = 12.7$
 $N = rotary speed = 140$
 $B_x = bearing condition = .75$
 $L = from Table (D-4) = 1288$
 $B_f = (12.7 \times 140) \div (.75 \times 1288)$
 $B_f = 1.84$

Formation Factors

Bit No.	A _f		BE
9	14.4	.779	1.84
10	12.2	.617	1.97
11	13.6	.611	2.03
12	15.0	.599	1.91
13	14.3	.665	1.83
Average fo	or interval		
	13.9	0.654	1.92

.
Step 2: Develop input data for cost/foot equation.

с _в	= bit cost = \$210
c_{R}	= rig cost = \$100/hour
^T t	<pre>= trip time (based on average for interval) = 4.7 hrs</pre>
A _f	= abrasiveness factor = 13.9
D _f	= drillability factor = 0.654
B _f	= bearing factor = 1.92
P	= tooth wear factor = 0.5 (self-sharpening)
K	= weight exponent = 1.0
r	= speed exponent = 0.6
w max	= maximum weight = 70 (1000 lbs.)
Wmin	= minimum weight = 0
N max	= maximum speed = 175 rpm
N _{min}	= minimum speed = 100 rpm

Step 3: Determine optimum weight-speed

For the weight and speed limitations given, an applicable grid might be N- 100, 125, 150, 175 and W- 40, 50, 60, 70. Therefore, a total of sixteen calculations will be made. This is accomplished using the equation (example for \bar{W} - 40 and N- 100):

$$cost/foot = \frac{C_{B} + C_{R}(T_{t} + A_{f} u \overline{m}/R)}{D_{f} Z(\overline{w})^{K}(N^{T})\overline{m}/R} = \frac{C_{B} + C_{R}(T_{t} + T)}{F}$$
(A-4)

$$CB = \$210 \text{ (given)}$$

$$CR = \$100/\text{hour (given)}$$

$$T_{t} = 4.75 \text{ hours (given)}$$

To solve the equation, it is first necessary to determine if the bit life is dependent on tooth wear or bearing wear. This is done by assuming bearing wear at 100% and solving for U (tooth dullness factor) using the equation:

 $U = B_x B_f LR/A_f \overline{m} N$ (from equations 3-15 & 3-16) (A-5) where;

 $\begin{array}{l} B_{\rm x} \ - \ {\rm bearing\ wear\ =\ 1.0} \\ B_{\rm f} \ - \ {\rm bearing\ factor\ =\ 1.92} \\ {\rm L} \ - \ {\rm from\ Table\ (D-4)\ =\ 1578\ (for\ \bar{w}\ =\ 40)} \\ {\rm R} \ - \ {\rm from\ Table\ (D-3)\ =\ 143\ (for\ N\ =\ 100)} \\ {\rm A_{\rm f}} \ - \ {\rm abrasiveness\ =\ 13.9} \\ \bar{{\rm m}} \ - \ {\rm from\ Table\ (D-4)\ =\ 0.300\ (for\ \bar{w}\ =\ 40)} \\ {\rm N} \ - \ {\rm rotary\ speed\ =\ 100} \\ {\rm U} \ =\ (1.0\ x\ 1.92\ x\ 1578\ x\ 143)\ \div\ (13.9\ x\ .300\ x\ 100)} \\ {\rm U} \ =\ 1039 \end{array}$

When bearings are worn, the tooth will be 54% gone $\left[\text{from Table (D-2)} \right]$.

Since U is less than 3078 (for D = 1.0), we know that at 40,000 lbs. and 100 RPM the bearings will wear out before the teeth. It is now possible to calculate the estimated rotating hours T for this weight speed combination using the formula:

$$T = A_{f} \frac{Um}{R}$$
 (A-6)

Where,

$$A_{f} = 13.9$$

$$U = 1039$$

$$\overline{m} = 0.300$$

$$R = 143$$
Thus, T = (13.9 x 1039 x .300 ÷ (143))
$$= 30.3 \text{ rotating hours.}$$

Estimated footage can also be calculated for this weight and speed using the formula:

$$F_{f} = \frac{D_{f} Z \overline{w}^{K} N^{T} \overline{m}}{R}$$
(A-7)

where

$$D_{f} = 0.654$$

 $Z = 620$ from Table (D-2) for 0.54 tooth wear
 $\overline{w}^{k} = 40$ from Table (D-5) for $\overline{w} = 40$
 $N^{r} = 15.9$ from Table (D-6) for N = 100
 $\overline{m} = 0.300$ from Table (D-4) for $\overline{w} = 40$
R = 143 from Table (D-3) for N = 100

Thus;

$$F = (0.654 \times 620 \times 40 \times 15.9 \times 0.30) \div (143)$$

= 541 feet

Based on the mathematical model presented, it has been determined that in the interval in question, for a weight of 40,000 lbs. and a rotary speed of 100 RPM, a bit should theoretically drill 541 feet in 30.3 hours. At this point, the bit condition should show the bearings 100 percent worn, and the tooth structure 54 percent gone.

.

Cost/foot for this interval can be calculated by the formula:

$$cost/foot = \frac{C_B + C_R (T_t + T)}{F}$$

Thus,

cost/ foot =
$$\frac{210 + 100(4.75 + 30.3)}{541}$$

= 6.87 \$/foot

Repeating this calculation for the other 15 combinations of weight and speed, the following cost grid is determined:

		peed			
Bit Weight		100	125	150	175
40,000	cost/ft T F	6.83 30.3 541	6.53 24.2 476	6.32 20.2 428	6.23 17.3 388
50,000	cost/ft T F	5.94 20.4 459	5.78 16.3 401	5.67 13.6 361	5.68 11.7 327
60,000	cost/ft T F	5.65 14.2 373	5.62 11.4 325	5.60 9.50 292	5.65 8.1 265
70,000	cost/ft T F	6.06 10.0 278	6.12 8.0 243	6.25 6.7 217	6.38 5.7 197
Base	d on this gri	d, the opti	mum or bes	t weight/s	peed
would be:	Bit we	ight = 60	,000 lbs.		
			0		

Rotary speed = 150 RPM

APPENDIX B

DETERMINATION OF THE CONSTANTS

.

(1) Bearing-wear constant (b):

This constant is varied with the drilling fluid properties composition, solids content, and bit size and type. It can be calculated from the following equation:

$$b = \underbrace{N W^{Cn} T}_{B_{f}}$$
(B-1)

where,

T = total rotating time for the bit, hrs. B_f = final bearing-wear for the bit N = rotary speed, rpm w = weight on bit, 10^3 lb cn = bit weight exponent

(2) Tooth-wear constant (C₂):

This constant has historical value and is used to show the magnitude of the penetration rate reduction due to bittooth wear. A soft formation bit has higher value than hard formation bits due to a decrease in scraping action as the tooth dulls. The crushing action of the bit is not effected that much, so, a hard-formation bit would have a low value of C_2 , which can be calculated from the following equation for a homogenous formation:

$$C_2 = \frac{R_0 - R_f}{R_f D_f}$$
(B-2)

where,

(3) Rotary Speed Exponent (Z):

This is the rotary speed exponent in the drilling rate equation. From previous laboratory and field tests, it was found that Z is always<1.0, and is approximately equaled to 0.6 for very soft formation and about 0.85 for harder formations. It can be determined from the following equation:

$$Z = \frac{\log (R_1/R_2)}{\log (N_1/N_2)}$$
(B-3)

where;

(4) Weight exponent (Y):

This is the weight exponent in the drilling rate equation. It can be determined in the same way as Z was determined, but in this case the weight on bit is varied while all the other variables are held constant.

$$Y = \frac{\log (R_1/R_2)}{\log (W_1/W_2)}$$
(B-4)

where;

 W_1 , W_2 = weight on bit at constant N, ρ , q, d_n and μ , 10³ lbs.

 R_1 , R_2 = drilling rates, ft/hr at W_1 and W_2 respectivel

(5) Weight exponent in bearing-wear equation (cn):

This weight exponent, cn, relates bearing wear rate to bit weight, and has determined experimentally. A value of 1.5 was observed for common drilling fluids [57].

(6) Differential-pressure exponent (X):

This exponent, X, relates the drilling rate to the pressure differential at the bit. Experimental work [11, 12, 13] showed that X = 0.75.

(7) Formation abrasiveness parameter (A_f) :

 A_f is decreased with increase of formation abrasiveness. A_f can be determined from the following equation:

$$\frac{dD}{dT} = \frac{(R)}{A_{f}} = \frac{R}{714.19 A_{f}} = \frac{R}{714.19 A_{f}}$$

$$\int_{0}^{D_{f}} 714.19 a dD = \int_{0}^{T} \frac{R}{A_{f}} dT$$

$$U = \int_{0}^{D_{f}} 714.19 a dD \quad \text{(by definition)}$$

$$U = \frac{R}{A_{f}} T$$

Thus;

$$A_{f} = \underbrace{RT}_{um}$$
(B-5)

where;

$$U = \int_{0}^{D_{f}} 714.19 \text{ a } dD = 714.19 \ (0.309375 \ D_{f}^{3} + 3D_{f}^{2} + D_{f}) \qquad (B-6)$$

$$a = 0.928125 \ D^{2} + 6.0 \ D + 1.0$$

$$R = N + 0.0000438 \ N^{3}$$

$$\overline{m} = \frac{1}{714.19} \ (1359.1 - 714.19 \ \log \ \overline{w})$$

$$\overline{w} = \frac{7.875 \ w}{H}$$

$$H = \text{hole or bit size, inch}$$

$$T = \text{total rotating time per bit}$$

$$U = \text{can be determined by using Table (D-2), which is the solution to (B-6).}$$

(8) Formation drillability factor (C_f):

This factor reflects a formation's relative resistance to the drilling. Hard formations have low drillabilities, and soft formations (shales) have high values of C_f . This factor is constant, which would not change the calculated optimum variables under consideration.

Formation drillability factor is calculated from the drilling rate equation as following:

$$C_{f} = \frac{F(1 + C_{2} D_{f})(1 + \Delta P^{X})}{T(W^{Y})(N^{Z}) \log(\frac{kq\rho}{C_{n}\mu})}$$
(B-7)

where;

.

•

F:	is the total footage drilled by the bit, ft.
т:	is the total time needed to drill F, hrs.
D _f :	is the final tooth dullness of the bit.
∆p:	is the differential pressure, 1000 psi.
W:	weight on bit, 1000 lb.
N:	rotary speed, rpm
वः	volumetric flow rate, gal/min.
ρ:	drilling fluid density, lb/gal.
μ:	drilling fluid viscosity, c.p.
d _n :	jet-nozzle diameter, inch
K: '	Reynold's number constant.

.

.

Determination of the Constants for Well #1

The field data which is presented in Security bit record [Table(E-12)] can be used to calculate the necessary constants for the optimization technique.

(1) Bearing-wear constant (b):

Run No.	Bit Size inch	Bit Type	W Wt. on bit 1000 lb	N RPM	F Feet	T hours	^B f	$b = \frac{NW^{Cn}T}{B_{f}}$
1	1.2 ¹ / ₄	OSC-3A	20	120	946	10	0.25	429,325
2	7 7/8	ХЗА	35	u	1652	28.5	0.25	2,832,619
3	48	*1	33	u	684	16.0	0.25	1,590,242
4.		J22	u	54	2255	96.25	1.0	1,076,209
5	4	F-3		0	1698	114	1.0	1,274,679
6	**	J-33	u	0	592	54.75	0.50	1,244,362
7		J-44	37.5	11	537	56	11	1,388,860
8		11		46	823	90.5		2,244,498
9	43	F-4	11		116	54.25	19	1,345,459
10	81	J-44		11	320	52.25	11	1,295,857
11	u	J-55R	48	50	288	56.0	n	1,862,301

Bearing-Wear Constant

•

Table	B-2
-------	-----

Tooth-wear Constant

Run No.	Bit Size	Bit Type	R _f ft/hr	R _o ft/hr	D _f	$C_2 = \frac{R_0 - R_f}{R_f D_f}$
1	12½	OSC3A	94.6	128.0	.25	1.412
2	7 7/8	X3A	57.9	87.0	.375	1.340
3	17	77	42.7	68.0	.375	1.580
4	11	J22	23.4	32.0	.25	1.470
5	IF	F3	14.8	40.0	.750	2.270
6	12	J33	10.8	34.0	1.0	2.148
7	11	J44	9.5	20.0	.875	1.263
8	12	13	9.1	19.0	1.0	1.088
9	11	F4	2.1	3.50	.625	1.067
10	19	J44	6.1	6.10	0	0
11	"	J55R	5.1	5.75	.125	1.020

(3) Rotary-Speed Exponent (2):

```
Table B-3
```

Rotary-Speed Exp

Run No.	Bit Size	Bit Type	N ₁ rpm	R _l ft/hr	N2 rpm	R2 ft/hr	$z = \frac{\log (R_1/R_2)}{\log (N_1/N_2)}$
1	12½	OSC3A	120	94.6	100	85	0.587
2	7 7/8	ХЗА	n	57.9	17	51	0.696
3	18	X3A	"	42.7	17	38	0.549
4	18	J22	18	23.4	17	28	0.692
5	12	F3	54	14.8	70	17.5	0.646
6	11	J33	11	10.8	12	12.75	0.640
7	18	J44	11	9.5	17	11.50	0.736
8	11	J44	**	9.1	11	11.0	0.731
9	18	F-4	12	2.1	π	2.52	0.703
10	11	J44	17	6.1	n	7.35	0.718
11	11	J-55R	50	5.1	75	7.0	0.780

(4) Weight Exponent (Y):

•

Run No.	Bit Size	Bit Type	^W 1 1000 lb	R ₁ ft/hr	W2 1000 1b	R ₂ ft/hr	$Y = \frac{\log (R_1/R_2)}{\log (W_1/W_2)}$
1	12 ¹ 4	OSC 3A	20	94.6	25	115.8	0.906
2	7 7/8	ХЗА	35	57.9	40	68.5	1.259
3	11	ХЗА		42.7	"	50	1.182
4	T#	J22	"	23.4	87	27.75	1.277
5	0	F3	39	14.8	"	18	1.466
6	u	J-33		10.8	11	13	1.388
7	11	J-44	37.5	9.5	45	11.75	1.166
8	11	J-44	11	9.1	n	11.0	1.040
9	**	F'4	n	2.1	**	2.5	0.956
10	n	J-44	н	6.1	н	7.25	0.947
11		J-55R	48	5,1	60	6.25	0.911

Table B-4

Weight Exponent

110

(5) Formation Abrasiveness (A_f) :

.

Тa	\mathbf{p}_1	le	B-	5
----	----------------	----	----	---

	Formation Abrasiveness										
Run NO.	Bit Size	Bit Type	N rpm	R	w 10001b	₩ 10001b	īn	T hrs	D _f	U	$A_{f} = \frac{RT}{U\tilde{m}}$
1	12 ¹ 4	OSC3A	120	195	20	12.857	. 794	10	.25	316	7.772
2	7 7/8	X3A	11		35	35	.357	28.5	.375	581	26.794
3	16	11	11				11	16	88	50	15.042
4	()	J22	54	61	19	•1	11	96.25	.25	316	52.045
5	11	FЗ			"	"	11	114	.750	1834	10.621
6	31	J33		u	н		11	54.75	1.0	3078	3.039
7	10	J44			37.5	37.5	.327	56	.875	2413	4.329
8	11	н	11		н		н	90.5	1.0	3078	5.485
9		F4			u		н	54.25	.625	1337	7.569
10	11	J44		••			11	52.25	0	1.0	9747
11		J55R	50	55	48	48	.221	56	.125	123	113.3

ν.

Table (B-6)

(6) Formation Drillability Factor (C_f) :

Formation Drillability Factor

Run No.	Bit Size	Bit Type	F ft	T hrs	с ₂	^D f	W 1000 <u>15</u>	Y	N rjan	Z	1000ps i	q gal/min	ڑ 16/ga1	ж с.р.	$\frac{dn_1}{d_1} \frac{1/32"}{d_2} \frac{d_3}{d_3}$	C _f (Eq. 8-7)
1	124	OSC3A	946	10	1.412	.25	20	0.906	120	0.587	0	269	8.33	1	12 12 12	0.087
2	7 7/8	X-3A	1652	28.5	1.340	. 375	35	1.259	u	0.696	0	**	64	1	10 10 10	0.0059
3	0		684	16	1.580	.375	••	1.182	"	0.549	.136	ti	9.1	10	9910	0.0147
4	н	J22	2255	96.25	1.470	.25	41	1.277	54	0.692	.226	64		10	11 11 11	0.0043
5	4	F3	1698	114	2.27	. 750		1.466	*	0.646	. 333		9.2	10		0.0034
6	tı	J33	592	54.75	2.148	1.0	11	1.388	u	.640	.401	n	9.3	10	48	0.0038
1	н	J44	537	56	1.263	.875	37.5	1.166	w	.736	.428			10		0.0031
ប	H	6	823	90.5	1.088	1.0	0	1.040	u	.731	.470	"		13	45	0.0049
9	0	F4 -	116	54.25	1.067	.625		0.956		.703	.470	"		13		0.0014
10	n	J44	320	52.25	0	0	4	0.947	"	.718	.845	u	10	15	11	0.0023
11	н	J55R	288	56	1.020	. 125	48	0.911	50	. 780	. 766		9.8	15	ı	0.0017

APPENDIX C

•

•

ALGORITHM FOR THE METHOD OF HOOKE AND JEEVES USING FIBONACCI LINE SEARCH

.

(C-1) Fibonacci-Search Algorithm

The following algorithm is an outline of the Fibonacci method for minimizing a strictly quasiconvex function over the interval $[a_1, b_1]$. In the algorithm, ζ is the length of uncertainty, ε is step size, and n is the number of observations (such that $F_n > \frac{b_1 - a_1}{1}$).

(C-2) Hooke and Jeeves Algorithm

APPENDIX D

.

•

.

TABLES LISTING

Table	D-1
-------	-----

.

Approximate Values of K and r

Formation Hardness Bity Types	Weight Exponent k	Speed Exponent r
Soft:		
S-3, S-4 (or equivalent)	0.95	0.7
Medium:		
M4N, M4L (or equivalent)	1.00	0.6
Hard:		
H7, H7U (or equivalent)	1.05	0.5

.

D Versus U and Z

		Z whe	n P =	
D			0.5	1.0
1/8	123	123	105	89
2/8	316	316	236	179
3/8	581	581	389	268
4/8	920	920	563	357
5/8	1337	1337	756	446
6/8	1834	1834	967	536
7/8	2413	2413	1194	625
8/8	3078	3078	1437	714

Table D-3

N Versus R

N	R	<u>N</u>	<u></u> R	<u>N</u>	R	<u>N</u>	<u></u>	N	<u> </u>
10	10	50	[.] 55	90	122	130	226	190	488
15	15	55	62	95	132	135	242	200	548
20	20	60	69	100	143	140	259	225	720
25	26	65	7 7	105	155	145	278	250	929
30	31	70	85	110	168	150	297	275	1179
35	37	75	93	115	181	160	338	300	1474
40	43	80	102	120	195	170	384	350	2214
45	49	85	112	125	210	180	434	400	3183

 \bar{w} versus \bar{m} and L

.

.

Ŵ	m	L	Ŵ	m	L	V	Ā	m	<u>L</u>
15	.726	6240	37	.334	1800	5	59	.132	766
16	.698	5840	38	.323	1725	6	50	.124	739
17	.672	5440	39	.311	1650	e	51	.117	714
18	.647	5080	40	.300	1578	e	52	.110	689
19	.624	4750	41	.290	1515	6	53	.103	665
20	.601	4439	42	.279	1460	e	54	.096	642
21	.580	4170	43	.269	1400	e	55	.090	620
22	.560	3920	44	.259	1340	e	56	.083	599
23	.541	3680	45	.249	1288	e	57	.076	578
24	.522	3470	46	.240	1240	6	58	.070	558
25	.505	3270	47	.230	1195	e	59	.064	538
26	.488	3080	48	.221	1150	7	70	.057	520
27	.471	2910	49	.212	1105	7	71	.051	502
28	.455	2770	50	.204	1063	7	2	.045	484
29	.440	2 6 30	51	.195	1025	7	73	.039	467
30	.425	2496	52	.186	988	7	4	.033	450
31	.411	2370	53	.178	953	7	75	.027	434
32	.397	2260	54	.170	918	7	6	.022	418
33	.384	2160	55	.162	884	7	7	.016	403
34	.371	2060	56	.154	853	7	8	.010	38 8
35	.358	1963	57	.147	823	7	9	.005	373
36	.346	1880	58	.139	794				

.

•

Table	D-5
-------	-----

 \overline{W} Versus \overline{W}^k

				k		•		
0.60	0.70	0.50	0.90	0.95	1.00	1.05	1.10	1.20
4.0	5.0	6.3	7.9	8.9	10.0	11.12	12. ó	15.8
4.4	5.7	7.3	9.4	10.3	12.0	13.6	15.4	19.8
4.4	6.3	8.2	10.8	12.2	14.0	16.0	18.2	23.7
5.3	7.0	9.2	12.2	• 13.8	16.0	18.4	21.1	27.9
5.7	7.6	10.1	13.5	15.6	18.0	20.8	24.1	32.1
6.0	8.1	11.1	14.8	17.2	20.0	23. Z	27.0	36.4
6.4	8.7	11.9	16.2	18.9	22.0	25.6	Z9. 9	40.8
6.7	9.2	12.7	17.4	Z O. 5	Z4.O	28.2	33.0	45.2
7.1	9.6	13.6	18.8	22.1	Z5.0	30.7	36.0	50.0
7.4	10.3	14.4	2 0. 0	23.7	28.0.	33. Ì	39.1	· 54.6
7.7	10.8	15.2	21.3	25.3	30.0	35.7	42.1	59.2
8.0	11.3	16.0	22.6	27.0	32.0	38.1	45. Z	64.1
8.3	11.8	16.8	23.9	28.5	34.0	40.6	48.5	68.8
8.6	12.3	17.5	25.1	30.0	36.0	43. Z	51.6	73.9
8.9	12.8	18.4	26.5	31.7	38.0	45.9	54.7	78.7
9.2	13.Z	19.1	27.6	33.2	40.0	48.1	58.0	83.9
9.4	13.6	19.9	28.9	34.3	42.0	50.3	61.1	88.5
9.7	14.1	20.6	30.0	36.3	44.0	53.5	54.1	93.8
10:0	14.6	21.5	31.3	38.0	46.0	. 55.7	67.Z	98.3
10. Z	15.0	22. 1	32.5	39.4	48.0	58.1	70.4	104
10.4	15.5	22.9	33.9	41.1	50.0	61.0	74.0	109
10.7	15.9	23.6	35.0	42.8	52.0	63.6	87.2	115
11.0	16.3	24.3	36.1	44.1	54.0	66.0	80.5	120
11.2	16.7	25.1	37.5	45.9	56.0	68.4	83 . 9	125
11.4	17.2	25.7	38.8	47.4	58.0 .	70.9	87.0	131
11.7	17.6	26.5	39.9	48.9	60.0	73.6	90. Z	136
11.9	18.0	27. Z	41.0	50.4	62.0	76.Z	93.8	141
12.1	18.4	27.8	42.2	51.9	64.0	78.7	96.5	147
12.4	18.3	Z8.5	43.4	53.4	66.0	81.4	100	153
12.6	19.2	29.2	44.7	54.9	68.0	84.0	104	159
12.8	19.6	29.9	45.9	56.5	70.0	86.5	107	165
13.0	19.9	30.7	46.9	58.0	72.0	88.9	111	170
13.2	20.3	31.3	48.1	59.6	74.0	91.7	115	176
13.4	20.7	32.0	49.2	61.1	76.0	94.2	118	181
13.7	Z1.1	32.7	50.4	62.6	78.0	96.9	121	187

<u>N Versus Nr</u>

					r				
N	0.4	0.45	0.5	0.55	0.60	0.65	0.7	0.75	0.8
20	3.31	3.85	4.47	5.19	6.03	7.01	8.14	9.45	11.0
25	3.62	4.26	5.00	5.88	· 6.90	8.12	9.52	10.6	13.2
30	3.90	4.62	5.48	6.49	7.70	9.12	10.8	12.8	15.2
35	4.15	4.95	5.92	7.08	8.43	10.1	12.0	14.4	17. Z
40	4.37	5.26	6.32	7.61	9.15	11.0	13.2	15.9	19.1
45	4.58	5.55	6.70	8.10	9.60	11.8	14.4	17.4	21.0
50	4.78	5.81	7.07	8.60	10.5	12.7	15.5	18.8	22.9
55	4.96	6.07	7.41	9.08	11.1	13.5	16.5	20.2	24.6
60	5.14	6.31	7.74	9.51	11.6	14.3	17.5	21.6	26.5
65	5.31	6.54	8.06	9.92	12.2.,	15.1	18.6	. 22. 9	28.2
70	5.47	6.77	8.37	10.3	12.8	15.8	19.6	24.2	29.9
75	5.63	6.98	8.68	10.8	13.4	16.5	20.5	25.5	31.6
80	5.77	7.18	8.94	11.1	13.9	17.3	21.5	26.8	33.3
85	5.91	7.39	9.22	11.5	14.4	18.0	22.4	Ż8.0	35.0
90	6.05	7.58	9.49	11.9	14.9	18.7	23.3	29.2	36.6
95	6.18	7.77	9.74	12.2	15.4	19.3	24.2	30.4	38.1
100	6.31	7.94	10.0	12.6	15.9	20.0	25. Z	31.6	39.8
105	6.43	8.11	10.Z	12.9	16.3	20.6	26.0	32.8	41.3
110	6.55	8.29	10.5	13.3	16.8	Z1. Z	Z6.9	34.0	42.9
115	6.67	8.46	10.7	13.6	17.2	21.8	27.7	35.1	44.5
120	6.79	8.62	10.9	13.9	17.7	22 . 5	28.5	36.3	46.1
125	6.90	8.79	11,2	14. Z	18:1	23.1	29.4	37.4	47.6
130	7.01	8.94	11.4	14.5	18.6	23.7	30.Z	38.5	49.1
135	7.11	9.09	11.6	14.8	19.0	24.2	31.0	39.6	50.6
140	7.22	9.24	11.8	15.1	19.4	24.8	31.8	40.7	52.1
145	7.32	9.39	12.0	15.4	19.8	25.4	32.5	41.8	53.6
150	7.42	9.53	12.2	15.7	20.2	26.0	33.3	42.9	55.1
155	7.52	9.67	12.4	16.0	20.6	26.5	34.1	44.0	56.6
160	7.61	9.81	12.6	16.3	21.0	27.1	34.9	45.0	58.0
165	7.71	9.95	12.8	16.6	21.4	27.6	35.7	46.0	59.5
170	7.80	10.1	13.0	16.8	21.8	28.2	•36.4	47.0	60.9
175	7.89	10.2	13.2	17.1	22.2	28.7	37.1	48.0	62.3
120	7.98	10.4	13.4	17.4	22.6	29.2	37.8	49.0	63.7
185	8.08	10.5	13.6	17.6	22.9	29.8	38.6	50.0	65.1
130	8.18	10.6	13.8	17.9	23.3	30.3	39.4	51.0	66.5

•

Formation and Bit Classifications

			*STEED TOOTH	BITS		CUTTING	ACTION
ROCH BIT CLASSIFICATION	BIT TYPE	FORMATION	CUTTING STRUCTURE	OFFSET & PIN ANGLE	BEARING SIZE & CONE SHELL THICKNESS	Chipping Crushing	Gouging Scraping
	839 (937) 1937)	Soff ((maijoni)) naving - low, compressive, sicenets and high dillability, fort shele, clays, rad beat, tait, soft imestone, unconstitute formations, etc.)	Wastpistad and intercontraction design	designed for twitting, tearing,	QTHEFAIID", Unstitut er Bastringe, thinner cons insil to successford		
asginu zól	54 B4T S4TG 56	Batt: 10: Missium tarmitians 68 Foll" Interpristig with the for Alfantist intern, unconsolidated, or sandy thates, rad bod, sall, anhydrile, soft ilmestone, etc.)	for efficient cleaning and lais iteal on bottom resulting in fail genetration rates.	gouging ection and fast pena- tration in talt formations,	longar leath that result in faster penetration rates.		
Nedlum Hard Topinalion	M4N M4NG M4L M4LO	eitaium taimedium faidi (for Mailon) (therder shales, sandy shales, shales alternating with streaks of sand and limestone, etc.)	Mediamiangin Training die Gliting Transitation Trainin omitialian Transitation and Trainisme Training Some types with removals and interruptions for lass steel on bottom and faster penetration rates.	41.621UM7 อากังไร้สกิจรุยาก-ธกรีเพื for combined teraping-gouging action and chipping-crushing action.	Méðlum Billin ja Sna Sohly Ingilg (distriktiffati) Angun Nasvy weights with madium langth teeth.		
Tainaitan Tainaitah	H7 H7G H7T H7TG H7U H7UG H7SG HCG	negionintarg anjarise (c nalo) Iprmation (high compressive strangth fock, dolomite, hard limetone, hard slaty shale, etc.)	SABITT: SILOBY, TENIN, TENEN SABITT: SILOBY, TENIN, TENEN with: maximum: feililintes, is YIJIREye.	ATUerroiting TIDIT EKIBELAAT cuining stubr with H& TAL ping on hid lormition fi tor- millions with high compressive strength.	ALBIGGTBEEFINGTANGTUNICHO COM shells, for neavy wights, nec essary to overcome harder for- mations.		
۰.			CARBIDETINSEF	T-BITS.			
Assel Mintedite	584 886 588	Soft, unconsolidated, fow compressive strength, high drillability, clays, shales, saits, etc. of considerable interval,	Sofi Insert: Maximum exten- sion of tooth shaped inserts.	Soft insert provides scraping- crushing action,	Soft Insert type provides Intrner shall section and small- er bearing.	Primarily 9 scraping-v minimal ch crushing re ment.	ouging, vith a lipping, quire-
CHANNING	M84 M88 M89T	Softer segment of hard forma- tions (lime, dolomite, end hard sandy shale)	Medium Interli Medium ex-	Medium insert-stlaht scraptog	Medium Insert type provides	Mostly chi gouging wi some crush scilan,	pping, th ling
Ala IOM Flord	M89	Medium segment of hard for- mations (chert, granite, basail, quartailic formations)	tension of wedge Shaped In- sert.	with crushing action.	strangth, a O	Primerily c with some action.	rushing scraping
LAVENTO AFRITAMONY MITTO	H88 (199 H100	Hardest of hard abrasive for- mations (quartetie and hard quartetie sands)	Hard Inserts Minimum exten- sion, Conical shaped inserts with maximum strength.	Hard Insertcrushing action.	Hard Insert type provides large bearings with thick shell section,	Crushing as fracturing action only	nd .
				*			

123

Security Rock Bit Comparison Chart

	(*******		<i>.</i>				SFC	UNITY			<u> </u>			IIUG	HES			- T			- ñi	EED							MITH			
ľ	Ciassilication		Tipes (1)	Standard (2)	reauge insen (3)	Dunero (r)	Sealers (5)	Bearing (6)	Finding Calings	Findion Real	(1) Dispusiv	- International Action	T Gamman (3)	(A)	Gauge (5)	Scaled B	Gauge (7)	ricion III	Same (2)	ambe insert (3)	(a) acanng	Gauge (5)	Bearing (6)	Finance (7)	Financia (1)	(2) admen	To Insert (3)	(4)	Gauge (5) Seaved R.	Bearing (6)	Gauge (7)	SEC
1	MILLEU	12	535 53	531		5335 533 -		<u>5335f</u>		535.HI 53.JO	OSC-3A OSC-3			XJA XJ		13		<u>Y11</u> Y12	¥121		<u>511</u> 512		_F11 _F12		<u>- DS</u> D1	DIT		<u>SOS</u> SD1				Ë
	SOFT	3	<u>\$</u> 4	<u>\$41</u>		\$44		<u>544F</u>		US/	OSC-IG OSC	CIC	000	xio	XDG	34		Ŷij	<u> 7131</u>		513	<u>\$13</u> G	FIA		OG K2	DGT	OGH K2U	SOG	SDGH			עבן
2	MILLEO	┟╴	MAN	┨		M440		HA44NE		<u>DSS</u>	uwv/		007	XV	SOV			¥21		¥216	<u>\$21</u>	5216	F21		VI		VIH					ノ
1	100111	3	ur-	f		ļ			<u> </u>		<u>0₩4</u>		201		ļ		·[¥35					- 533		175-		VII	50-	SVI			\square
	MEDIUN	Ĵ	Mal	-		MAAL		M441.F		DM/ DMM	UWC			XC				¥23		¥23G	523	523G			12		1211	ŠĪ2	<u></u>			2
		4										-																				1 X
Ĵ	MILLEU	Ļ	117	1117		H77				ļ	W/		W07	XI.	X07	37		<u>V31</u>		Y316	531	<u>\$316</u>		F310	14		LAH	SL4	SLAH			$ \Omega $
I I	HARD	5			1175G		11775		}		<u>W/II-2</u>				{		 	Y32 V31		<u>YJZG</u>												
		Ĩ		<u> </u>		H177C		HTTCF			WR	_	WOR	XWR		38	308	¥34		¥34G	\$34	\$34G	F34	F34G	WC		WCH	SWC	SWCH	FWC		Π
5	INSERT	fī					584		584F						}		122					<u> </u>		F52/					215		12	-
	SOFT	2					586		586F								133				•	553		E£52 F537					3.15		F3	
		J			58		580		SBBF	0566														E£233								l X
		1		{											ł		}	1						F547 EP54								ž
6	INSERT	Ī							M84F				741		X44		जग				_			11-93					4JS		147	3
	MEDIUN	2			M8	- * *** *	M88		M88F/						X55R		J <u>55</u> ñ					562		F62/					47.55		- <u>F45</u> F47	Ř
	•	3							M89F				A55		X55		J55					<u>563</u>		F63/					5,15		F5	2
		4		1										<u>}</u>				•				<u>\$64</u>		F64/					57.JS		F57	S
7	INSERT	tī								[]							1177							11:04								O
	HARD	2			118		1108		HBOF				A88	[RG7X		J88			¥72		\$72		F72/ FP72					6JS		F6	Z
		3															 	•		¥73		573		F737					7js		F?	Ω
		1			119		1199		H99F		81				RGIX		991			¥74		874		1747 FP74	·•	:			â.is		F8	E
8	INSERI	1																														
	EXTRA HARD	2			0111		11100		11100F						ñ <u>ő</u> 26×					¥83.		385		F837					935-		F9-	러
		Ŧ										•												<u>FP83</u>								-

NOTE: Bit classifications are general and are to be used only as simple publies. At bit types will init effectively informations other than those specified. This chart shows the relation who between the specific bit types

.

.

٠

124

٠

Price List Rock Bits

		NON-S	EALED	SEALED E	BEARING	SEALED . BEAL	IOURNAL	DEVIATION CONTROL		
BIT SIZE RANGE	STANDARD SIZES	Jet or Regular	Gauge Protection (G or SG)	Jet Circulation	Gauge Protection (G or SG)	Jet Circulation	Gauge Projection (G or SG)	Non- Casled	Sealed	
41/2 - 47/4	4%	371.00		}	1	525.00				
5% - 6%	5%, 6, 6%, 6%	463.00	533.00	1		679.00				
6% - 6%	6%. 6%	504.00	580.00	1		700.00		1 1		
6% - 7%	7%	577.00	664.00	661.00	760.00	705.00	825.00	750.00	1,050.00	
8% — 9	8%. 8%. 8%	632.00	735.00	754.00	867.00	806.00	945.00	835.00	1.130.00	
9% 9%	9%. 9%	753.00	875.00	901.00	1,045.00	1.067.00	1.245.00	1.085.00		
10% - 11	107.11	918.00	1	1.102.00	i	1,260.00	1.475.00	1		
12 - 12%	12%	1,071.00	1,250.00	1,262.00	1,460.00	1.497.00	1.750.00	1,520.00	1.860.00	
13% - 15	1312, 13%, 14%	1,845.00				i i				
17% - 18%	17%	3.033.00	3,468.00	3,640.00						

STEEL MILLED TOOTH BITS

TUNGSTEN CARBIDE INSERT BITS

				054150	DEVIATION CONTROL				
BIT SIZE RANGE	STANDARD SIZES*	ROLLER BEARING	ROLLER BEARING	JOURNAL BEARING	Sealect Roller Bearing	Sealed Journal Bearing			
41/2 - 41/4	47.		<u> </u>	1.880.00	1	<u> </u>			
5% 6%	5%, 6, 6%, 6%	1.671.00	1,840.00	2.090.00					
6% 6%	6%.6%	1,760.00	1.940.00	2.300.00	1				
7% - 7%	7%	1.845.00	2,030.00	2.555.00	2.588.00	•			
8% — 9	Sh. 8%. 8%	2.080.00	2.335.00	2.955.00	3.076.00				
9% - 9%	9%, 9%	2,345.00	2,974.00	3,775.00					
10% - 11	10%, 11	2.696.00	3.308.00	4,415.00					
12 - 12%	12%	3.522.00	4.572.00	5,720.00)	6.000.00			
13% - 15	135. 143	5.800.00	6,875.00	9.075.00	1				
17%	17%	8.000.00	9.560.00	11.840.00					

"NON-STANDARD BITS ARE PRICED 25% ABOVE STANDARD BITS IN THE SAME SIZE RANGE.

PRICING POLICY

- These prices apply to the United States (excluding Alaska) and direct export shipments from the United States and United Kingdom. Prices for Alaska. Canada and purchases from local stock in International areas are published separately and are available on request.
- 2. All sales are subject to Standard Terms of Sale and Rental for Security Rock Bits and Drilling Tools.
- 3. Domestic prices are F.O.B. Dallas. Texas (see opposite page for weights and rates).
- 4. Export prices are F.A.S. Houston, Texas or United Kingdom port and include packaging for export shipment.
- 5. Terms of payment are net 30 days, from date of invoice.
 - 5. Any tax or levy imposed by city, county, state or other Governmental bodies, is added to prices quoted.
 - 7. Prices are subject to change without notice.

•

TABLE D-10

MANUFACTURER	MODEL	STROKE	INPUT	PUMP	20MP MAXIMUM DISCHARGE PRESSURE (psi) USING LINER SIZE SHOWN														
		JENGTH (in.)	H.P. REQ'D.	H.P. SPEED REQ'D. (SPM)	6''	6.%"	5·%"	5-%"	6"	6.%"	6.%"	6.%"	7"	7.%"	7.%"	7.%"	8''		
	C-150-B	12	220	70	1205	1085	985	895	820	750	690	640	695	550					
NATIONAL	K-380	14	380	70	2100	1876	1675	1620	1370	1266	1146	1055	970	900	835		1		
NATIONAL	H-1250	16	1250	65					4135	3765	3445	3165	2915	2700	2505	2335			
τ	N-1100	16	1100	65					3640	3305	3025	2785	2665	2376					
	12 PLO	12	100	70	640	485	440	400	365										
	214 P	14	350	70	1700	1625	1375	1250	1140	1050	960	890	820	765			1		
OILWELL	816-P	16	700	65			2735		2235		1876	1725	1593	1478		1280	1197		
	218-P	18	500	65	2040				1370		1155	1065	985	915					
	GXN	14	500	70	2435		1974		1633		1377	1271	1177	1094					
GARDNER	GXP	16	700	70	3060		2470		2040		1712	1678	1460	1357		1171			
DENVER	GXR	18	1000	60					3113	2815	2578	2373	2194	2035	1903	1172			
	GXH	18	1260	60					3942		3281	3035	2793	2680	2400	2232			
	D-300	14	300	70	1430	1280	1182	1060	966	886	815	754	698	650	602				
ENECO	D-375	14	376	70	1777	1600	1415	1318	1156	1104	1018	939	871	810	744		1		
EMSLU	D-1000	18	1000	60				3480	3163	2871	2635	2418	2229	2068	1917	1782	1669		
	D-1250	18	1250	60					4144	3768	3432	3141	2891	2667	2471				

OPERATING DATA FOR DUPLEX PUMPS

TABLE D-11

OPERATING DATA FOR TRIPLEX PUMPS

MANUFACTURER	MODEL	STROKE	INPUT	MAX	MAXIMUM DISCHARGE PRESSURE (pil) USING LINER SIZE SHOWN																
		LENGTH	H.P.	SPEED				2.44							<i>a</i>						~.
		<u>(in.)</u>	HEUD.	(SPM)		3.2	3.6	3.8		4.%		4.8	<u> </u>	5-X	<u>0.71</u>	0.3		0.4	0.7	0.8	
	8P-60	8.%	800	175					5005	4505	4020	3605	3265	2950	2690	2460	2260				1
NATIONAL	10 P-130	10	1300	150									6245	4765	4335	3965	3645				1
	12P-160	12	1600	125								1			6335	4860	4485	4130	3820	3540	3295
	560 PT	8	660	175					3780		2990		2420		2000	1830	1680		1430		
OILWELL	1400 PT	10	1400	150									6000		4714		3960		3300		1 1
	1700 PT	12	1700	150	i								5000		4714		3960		3300		(
	PY-1	7	500	160							3150		2650		2110		1770		1610		1300
GARDNER	PJ-8	8	275	175	3118	2657	2290		1753		1386		1122			l i					i 1
DENVER	PA-B	Ð	310	175					2000		1650					i					1
	PZ-9	9	1000	147							5340		4330		3570	I	3000				i I
	F-350	7	350	175	4800	4100	3535	3080	2705	2390	2135										
EMSCO	F-760	8	750	176					5075	4485	4000	3690	3230	2035	2675	2450	2250				1 1
	F-1300	12	1300	120									6460	4950	4516	4128	3791	3494	3260	2997	2789
	F-1000	12	1600	120											5558	6078	4665	4299	4012	<u> 3688</u>	3423
	T-380	12	380	70									1406	1269	1146	1042	955	874	803	741	687
IDECO	T-440	12	440	65					2960		2260		1785	1600	1445	1300	1190	1090	1000	926	663

.

۰ **۱**

TABLE D-12

•

ı

ļ

1

.

BIT RECORD FOR WELL # 1

Isca 70 Up come.		0111	56.37	2.8.1				644	-2400/			<u> </u>									
1stel		<u> </u>	<u>ZZ</u>	<u>Ni </u>	<u> </u>		<u> </u>	2	X				1	<u> </u>							
Ancrion J Mery M. X D Buy	ATER SCARCE	REMARKS	Eiching-		181	21	RY BL												•	-	
				33	1	8	20	1	3		<u>;</u>		<u> </u>	<u> </u>	<u> </u>				_		
22	10 H 2	Э́т.	コン		NO WW	33	3		1	<u> </u>	<u> </u>			+			-	-	-+		
Fi à			S MI	<u> </u>		20		G	- <u>v</u> ;- V		$\frac{1}{1}$	Ī		; i	1		÷		$-\dot{1}$	+	
22	JA I	22					1			- <u>-</u>		<u> </u>	÷	<u> </u>	1					<u> </u>	
$\left[\right] \right)$		1	1	<u>51 i</u>	ia S	17	1	S	ŝ			<u> </u>	<u>.</u>	+						-+	
20 V	20	птиєв РУур	404		13.70	1	7	12/2	12												
ë - ë	14	1015	5	RZ	40 10	1	or.	53	Ŗ,	i			Ĩ	1					1	!	-1;
5 5 7	<u>6</u> 5	18 0	<u>نځ</u>	21	13.			1:5	2			1	1	1				1	1		
HLEN		M I		<u>7.1</u>	202	3	5	9	Jul .				1	1							
× ×	12 1	Q	200	12	1	1	1	11	ij	i	1		<u>+</u>						 	<u> </u>	-
*** × *	X		552	12 Jul	41	1	· 1		1				i	I		Í		1	1	1	7
2	TYPE:	PUMP	1200	600	11	i		L	١			ļ					1		i		
		ARM	202	20/1	11)))	1	1	20								- <u> </u> 			1	1
	¥	T 000	2000	Q' A	11	K.	1	1	3/8								- :		İ	1	4
L'al	大信	L H	12	2 4		12 12	1	ia	Ta		<u>†</u> †		•	<u> </u>			- + i		1	+	
		SHUC	2000	23	177	, 9 3	32	214	160	<u> </u>				+-					-	+	
Durkwork Anutrik Anutrik			200	4 X	727	325	20	5	20			+						<u> </u> 		$\frac{1}{1}$	
			6 2	68	2 5	in s	2 2	6)	25		<u> </u>			1					1	<u> </u>	,
4	ddo 100	DEPTH OUT	1640	563	1.231	8548	1957	6126	16,005									·			N 11-111
	L)H	22 n	20	<u> 2</u> .	= 1	1 1	1.	,	1	1	1 1		Ì	1		1		1	1	i	
) **	5 N	2 2	221	1	1 1	1	١	\mathbf{x}	I		Ţ	1			Ī		1			
		북분 -	2 2	20-1	34	111	11	١	ιİ.								ļ				- 11
sc Ast	т ^{вив} 9 /	SERIAL NO	DL. 446	DM356	103KE 631	332	dig.	144	420									•••			1.1-1 101 1. 1M
N. N. N. N. N. N. N. N. N. N. N. N. N. N	kla	TYPE	05C3AJ X3A		133	Hur -	1	1115	J52L												011-111
	0	91ZE				118	22	N.	2%							Ī					TFR
CO CO	57A1	22		これて		1.3	90	2	1	1			_;							1	

•

128