
COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT SYSTEM

WITH A RELATIONAL-LIKE DATABASE MANAGEMENT SYSTEM

FOR A SCHEDULING PROBLEM

By

VINIT VERMA
l\

Bachelor of Science

St. Stephen's College

University of Delhi

Delhi, India

1984

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

July, 1987

\\-..L~;, ')
\ ('\ 11'. • .,

"s '";;~ ~
l.of\>. ~

COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT

WITH A RELATIONAL-LIKE DATABASE MANAGEMENT SYSTEM

FOR A SCHEDULING PROBLEM

Thesis Approved:

Thesis Adviser

Dean of Graduate College

ii

1282983

PREFACE

A comparative study of a hierarchical database management system, IMS

(Information Management System), and a relational-like database management

system, Model 204 was performed. The comparison of the two database

management systems was limited to data definition, data manipulation, data

independence, data protection, and storage organizations. A classroom

reservation system was the scheduling problem which provided the

comparative tool. An on-line classroom reservation system was developed

using Model 204. A brief overview of of the capabilities of the two

systems is provided under each topic, before a comparison is performed.

Initially the underlying data models have been discussed to set the ground

work ~or the following discussion.

I wish to thank my adviser, Dr. D. D. Fisher for his invaluable

guidance, and help. I am also grateful to the other committee members, Dr.

M. G. Kletke, and Dr. G. E. Hedrick for their advisement. The help of the

Assistant . Registrar, Mr. Glen Jones is appreciated for providing the

requirements for the reservation system, and giving access to the class

schedule data. Input from Ms. Beth Thorton of Sectioning was invaluable.

Special thanks go to Mr. A.F. Curtis of Administrative Systems Development

for providing the needed data, and information on IMS. I am indebted to

Mr. Michael Barton, and Ms. Betty McDaniel for the needed encouragement.

I appreciate the patience and support of my fiancee Vidhi.

iii

Chapter

I.

II.

III.

IV.

v.

VI.

VII.

TABLE OF CONTENTS

INTRODUCTION

Statement of the Problem
Literature Review
Basic Definitions ••••••
overview of Relational and Inverted List Databases
overview of Hierarchical Databases

CLASSROOM RESERVATION SYSTEM

Theoretical Background ······~············
Classroom Reservation System at OSU ••••••
Classroom Reservation System using Model 204

DATA DEFINITION

Data Definition in Model 204
Hierarchical Approach
Discussion

DATA MANIPULATION

Page

1

1
3

5
7

12

17

17
23
26

35

35
37
40

41

Data Manipulation in Model 204 ••••••••••••••••••• 41
Hierarchical Data Manipulation •••••••••••••• 47
Discussion •••••••••••••••••••••••••••••••••• 50

DATA INDEPENDENCE

Discussion

DATA PROTECTION

Data Integrity
Data Security in Model 204
Data Security in IMS
Discussion

STORAGE ORGANIZATIONS

Storage Organizations in Model 204 •••••••••••••••
Storage Organizations in IMS •••••••••••••••••
Discussion ••••••••••••.•.••••••••••••••••••••

iv

57

57

60

60
62
66
68

70

70
81
89

Chapter Page

VIII. SUMMARY AND CONCLUSIONS 91

SELECTED BIBLIOGRAPHY ••••••••••••••••.•••••••••••••••••••..••• 98

APPENDIXES • . • . . • • • • • • • • • • • • • • • • • • • . • 101

APPENDIX A - GLOSSARY OF TERMS 101

APPENDIX B - CLASS RESERVATION SYSTEM PROGRAMS ••••••••• 103

APPENDIX C - CLASS RESERVATION SYSTEM USER'S MANUAL •••• 132

v

Table

I.

II.

III.

IV.

Data Definition

Data Manipulation

Data Independence

LIST OF TABLES

Data Integrity and Security

Vi

Page

95

95

96

96

LIST OF FIGURES

Figure Page

1. A Relational Table 8

2. Hierarchic Course Database ..•••..•..••.•••••••••..•.•••••••• 13

3. A Single Database Tree ••..•.•.••••.••...........•.••••....•. 14

4. Hierarchic Sequence ...••.••.•..••...••....•..•...••...•••••• 15

5. A Database Definition in Model 204 37

6. A Simplified Database Definition in IMS 38

7. A Simplified PCB Definiton in IMS 38

8. A Field Security Scheme in Model 204 65

9. An !FAM example • . . • • • • • . . • . • • . • . • • . • . . • • . . . • • • . . • . • . • • • . 71

10. Inverted Lists . . • • . . . • • • . . • • • . . • • • • . • . • 76

11. File Load in Model 204 •.••••.••••..••••.•••..••.....•.••.••. 78

12. Indexed Sequential Access Method ••.•••...•.•.•..•••..•.•..•• 79

13. Data Administrator Data Structure types .••••.••....••.....•• 82

14. DA Segment Byte Sequence••....•••••.•.••••••..••••.••••• 85

15. HDAM Implementation • • • • • . . • . • . . . • . . • . • . . . • • • • . 87

16. Storage Organizations and Access Methods in IMS •.••..••...•• 97

17. Storage Organizations and Access Methods in Model 204 •..•••• 97

vii

CHAPTER '[

INTRODUCTION

Statement of the Problem·

A comparative study of a hierarchical database management system, IMS

(Information Management System), and a relational-like database management

system, Model 204 is presented. The comparison of the two database

management systems is limited to the following subtopics

- data definition;
- data manipulation;
- data independence;
- data protection;
- storage organizations.

The objective of the thesis is to expose the capabilities of the two

database management systems under the mentioned subtopics. It provides a

comprehensive overview of the two systems at the external/conceptual level

of the ANSI/SPARC (American National Standards Institute I Systems Planning

And Requirements Committee) model. The ANSI/SPARC model is a three tier

model with external, conceptual, and internal levels. The study is

intended to help investigators of these two products. The comparison of

the two approaches to database systems was made by applying both methods to

the same problem, namely, the implementation of a classroom reservation

system which is a subproblem of a general scheduling problem. A general

scheduling problem is concerned with the assignment of resources and

activities subject to constraints, Almond(l). The classroom reservation

system has been implemented in IMS by staff members of administrative

systems development at OSU. Inorder to be able to compare the two database

management approaches, it was necessary to develop a similar system in

Model 204. The data for the new system was abstracted from the existing

IMS database. Once a common application problem was available, a study was

performed to explore the above mentioned capabilities of the two systems.

The study initially provides an overview of the data models involved. A

description of scheduling systems, and the.on~line system developed in

Model 204 follows. The subsequent chapters discuss the data definition,

data manipulation, data independence, data protection, and storage

organization capabilities of the two systems.

The data definition comparison involves the data definition constructs

available under Model 204 and IMS. The underlying data models cause the

different data definition styles in the two systems. Under data

manipulation a comparison is made of the data manipulation capabilities of

DL/I(Data Language/One) under IMS, and user language under Model 204.

Again the constructs in both these languages reflect on the data models

they imitate. Data independence can be further segmented into physical

data · independence and logical data independence. The physical data

independence implies program immunity to changes in the storage structure,

while logical data independence implies program immunity to changes in the

data model definition. Program immunity to change implies that if the

logical/physical organization of a database is changed, then the

application programs accessing this database need not be changed. This

degree of data independence in the two classes of database management

2

systems is discussed. The data protection study involves data integrity

and data security in the two systems. The underlying storage structures

and access methods in IMS and Model 204 are discussed under the storage

organization chapter.

Literature Review

The hierarchic, inverted list, and network data models resulted after

abstractions from implemented systems. The relational model was developed

on set theory principles. Fry, Sibley (18), provide a good reference for

the evolution of database management systems. A discussion on relational

and inverted list data models is provided in Date (17). Codd (8), and Codd

(9) provide a practical foundation for the relational database theory. Codd

proposed the relational data model and provided the basic principles for

the model. Chamberlin (6), and Kirn (24) give a detailed summary of

relational databases, and several implemented systems have been discussed

by the two authors. Mcfadden, Hoffer, Jeffrey (27), and Wiederhold (35)

are a good sources of definitional terms, and keywords. The inverted list

data model has envolved after abstraction from systems which utilize the

inverted file access method. Date (17) provides a description of the basic

inverted list data model operations. Cardenas (5) provides a formal

analysis of inverted structures incorporating implementation oriented

considerations. In large highly inverted databases, the inverted directory

or index becomes a large database itself. Thus such a directory should not

be stored as a sequential file. The advantage of the multi-level inversion

approach over the single inversion level and sequential structure was shown

to increase exponentially with the degree of inversion and/or the number of

3

distinct key values of inverted access keys. The search time through the

directory was significant for large databases, and a function of complexity

of queries, data distributions, and timing and blocking specifications of

the storage devices. The hierarchic data model was also abstracted from an

implemented system, namely IMS. McGee (29) gives a detailed system level

discussion on the capabilities of IMS. Tsichritzis, Lochovsky (33) have

given a general overview of hierarchic systems, mainly concentrating on

IMS.

Literature was reviewed to come up with criteria to evaluate database

management systems. Most of the reviewed literature focussed on the

database architectural aspects, at the internal level of the ANSI/SPARC

data model. There was no evidence of comparison of implemented systems.

Most references provide an in depth discussion of specific systems.

Cardenas (4) discusses evaluation of file organization models. Performance

evaluation techniques like modelling, measuring system response time, and

overhead costs have been discussed by Christodoulakis _(7). McGee (28)

describes criteria for data model evaluation at the three levels of the

ANSI/SPARC model (i.e external, conceptual, and internal levels). Siler

(31), and Stonebraker, Woodfill, Ranstrom, Murphy, Meyer, Allman (32)

provide a good description of performance evaluation criteria. Michaels,

Mittman, Carlson (30) have compared a relational system, with a network

system, at a conceptual level. Data definition, data manipulation, and

data independence were the primarv criteria used to compare the relational

and network systems.

As a class room reservation system was used as a comparative tool, a

fair amount of review work was done in this area. Algorithms to implement

4

scheduling systems were reviewed. Lions (25) discusses the matrix

reduction method for generation of school timetables. Implemented systems,

like the Ontario school scheduling program, by Lions (26), and the class

scheduling system at Oklahoma State University were studied. Gosselin,

Truchon (19) discuss a linear programming problem of allocating classrooms

to reservation requests. Csima, Gotlieb (16), Almond (1), Barraclough (2),

Brittan, Farley (3) are the other primary references in the class

scheduling area.

Model 204 systems reference manuals were used to obtain detailed

information on the system. CCA File Manager's Guide (11) provides a

detailed description of the storage structures, and the data definition

capabilities of Model 204. CCA User language Manual (15) describes the

data manipulation capabilities of the system. The general features of

Model 204 are described in CCA Command Reference Manual (10), and CCA

System Manager's Guide (12). Data security is detailed in CCA File

Manager's Guide (11), and CCA Terminal ·user's Guide (14). IBM General

information manual (21) provides an overview of IMS. The data manipulation

capabilities of IMS are explained in the IBM Application Programming

Reference Manual (20). The data definition, and data security features for

IMS are discussed in IBM System Design Guide (22), and IBM System

Programming Reference Manual (23). McGee (29) provides a good description

of the access methods, and storage structures available in IMS.

Basic Definitions

Access Path: to a file is defined as the strategy used to address

individual records in a file (e.g indexed, sequential);

5

Attribute: a column in a relational table;

Data Definition: description of data objects;

Data independence: immunity of application programs to a change in

storage structure, or access strategy;

Data integrity: accuracy or correctness of data in a database;

Data Security: restriction of access to sensitive data;

DBMS: software that provides the interface between the database, and

the end user;

Data Sub-Language: is a combination of two subordinate languages: a data

definition language (DDL), which provides for the definition of

database objects, and a data manipulation language (DML), which

supports the processing of those objects;

Entity integrity: no attribute participating in the primary key of a

base relation is allowed to accept null values;

Foreign key: a key which matches the primary key of another relation,

or contains a null valu~;

Fourth Generation Language: an interface to an advanced application

generator (rapid application development tool);

Inverted list: a set of indexes in which a secondary key leads to a

set of primary key references;

Logical data independence: program immunity to changes in the data

model definition;

Normalization theory: mathematical theory, which governs the

conversion of relations into normal forms, to maintain data

integrity;

Physical data independence: program immunity to changes in the storage

6

structure;

Primary key: a key which uniquely identifies a tuple in a relation;

Pseudo-foreign key: a foreign key which does not necessarily match the

primary key of another relation;

Referential integrity: a foreign key can either match the primary key

of another relation, or have a null value;

Relation: a mathematical term for a table;

Secondary key: identifies tuples in a relation.

unique values;

Segment: a record in IMS;

Tuple: a row in a relational table.

It can contain non-

Overview of Relational and Inverted List Databases

Relational Databases

The term "relational" applies to the conceptual and external levels of

the ANSI/SPARC architecture model, it has nothing to do with internal data

structures of the system. A relational database is one that is perceived

by it's users as tables, and nothing but tables. It is built on the

principles of the relational data model. Such a system should have the

operations select, project, and join without requiring any pre-definition

of physical access paths to support those operations. A relation is

another term for a table. The rows in a relation are called tuples, and

the columns are called attributes. A relational table is shown in Figure

1. The table has two tuples and three attributes.

7

COURSE. ID

12296
12273

ROOM

MS 222
CLB 110

Figure 1. A Relational Table

DAY

M
F

No duplicate tuples are allowed in a relational table. The attributes

values for a specific tuple are atomic i.e. repeating groups are

disallowed. The relational table is unordered. Thus a relational database

is perceived by it's users as a collection of time varying relations. The

data manipulation language for a relational system can be classified as a

relational calculus language. A relational calculus language uses set

theory operations join, union, intersection etc, to perform data

manipulations. The select operation takes a horizontal subset uf a

relation, and the project takes a vertical subset. The join combines two

tables according to some qualifying conditions. Relational languages are

primarily set-at-a-time languages. Set processing provides loop avoidance

in application programs, which greatly enhances programmer productivity.

Most relational systems provide a fourth generation language for query

purposes.

A tuple must have a primary key, and such a key cannot have a null

value. Foreign key values in relational systems must match primary key

values (or be null). The mathematical foundations of a relational DBMS

give rise to normalization theorems which provide algorithms to detect and

remove dependencies among entries in the system. A synopsis of the normal

8

forms used to remove data dependencies follows, Date(l7). A relation is

said to be in a particular normal form if it satisfies a certain specified

set of constraints. A relation is in first normal form if it contains

atomic values only, no repeating groups are allowed. A relation is in

second normal form if and only if it is in first normal form, and every

non-key attribute is fully dependent on the primary key. If all non-key

attributes of a relation are mutually independent and fully dependent on

the primary key of the relation , then the relation is said to be in third

normal form. A relation is in Boyce/Codd normal form if and only if every

determinant is a candidate key. A relation is in fourth normal form if it

is in Boyce/Codd normal form and all multi valued dependencies in the

relation are in fact functional dependencies. Finally, a relation is in

fifth normal form if and only if every join dependency in the relation is a

consequence of the candidate keys of the relation. Logical relationships

in such systems are represented via foreign keys, and physical pointer

chains are not utilized. In a relational system positional addressing is

replaced by associative addressing. Every datum can be identified uniquely

via a relation name, primary key value and attribute name. The

relational model was developed to tackle various data dependencies existing

in systems. Codd (8), Codd (9) provide a practical foundation ·for the

relational database theory. Three primary dependencies are ordering

dependency, indexing dependency, and access path dependency. The ordering

dependency speaks of the order in which the data records are stored and

accessed. Some non-relational systems are restricted by the ordering of

data records closely associated with the hardware determined ordering of

addresses. Indexing dependence is associated with the indexes being

9

10

performance oriented components of the data representation. Indexes are

performance oriented components of data because, they exist to increase the

performance of data access, and are not originally a part of the data. The

dependency comes into the application programs which need to deal with

dynamic indexes. Finally access dependence is the tree-like pre-defined

access paths imposed on application programs in a hierarchical environment.

All three of these dependencies have been removed explicitly in the

relational data model. The requirements for a system to be called truly

relational are extremely stringent, and such a system does not exist today.

Kim (24), Date (17) provide a good overview of relational database

management systems.

Inverted List Databases

The data model for inverted list systems can be regarded as an

abstraction of the underlying inverted list storage structure and

associated operators. The inverted list model, like the hierarchical

model, explains the database concepts at the internal level of the
·.

ANSI/SPARC architecture model. The inverted list model is an abstraction

of the indexed file organization. At the external levels, inverted list

systems can have relational front-ends. Thus an inverted list database is

a system comparable to the low level component of a relational database in

which the users operate directly at the record-at-a-time level, instead of

the set level. Model 204 has an inverted list file organization but

provides set level operations. An inverted list system is similar to a

relational database in that stored tables and indexes on those tables are

visible to the user. It has a collection of tables each with it's own set

of tuples and attributes. The tuples in such a system are ordered. The

system may have a large number of search keys which may be composite. The

operators in such a system are primarily record-at-a-time. The data

manipulation operators fall under the two categories:

l) operator to obtain the address of a record;
2) operator to manipulate a record at an established address.

The operators in the first category can be further classified as:

a) direct search operators;
b) relative search operators.

The operators under category one are also termed as search/locate/find

operators. Relative search operators locate a record relative to some

established address. Established addresses are termed as "database address

areas". The retrieval operations obtain data via access paths. These

access paths for search operators need to be maintained for terms like

"first" and "next" to be meaningful in search operators. This is similar

to the n_otion of current database position in hierarchical systems. These

access paths are maintained by the total database physical ordering and
•

inverted list indexes. Let A be a database address area, T be a table for

a database, and K the search key. Some inverted list data retrieval

operators are:

locate first: locate the first record in table T and return
it's address in A;

locate next: locate the first record following the one
identified by A, and return it's address in A;

locate first with search key equal: find the first record in
table T with a search key of K, and return it's address in
A;

11

locate next with search key equal: locate the next record in
table T which follows the record at address A, and whose search
key is identical to K, and return it's address in A;

locate first with search key greater: is the same operator as
the previous operator, except the search key of the located
record should be greater than the key of the record
identified by A;

retrieve: retrieve the record identified by A;

- insert, delete and update operators.

Overview of Hierarchical Databases

Hierarchical databases were not originally constructed from an

abstract data model. The hierarchic model resulted by the process of

abstraction from implemented systems (e.g. IMS), Tsichritzis, Lochovsky

(3 3) • Hierarchic systems are an abstraction of the parent/child data

organization. A hierarchical database is formally defined as a forest of

trees called database trees, whose record occurn:nces appear as nodes. The

database trees form an ordered set consisting of multiple occurrences of a

single type of a tree. The type of a tree is analogous to a distinct

record type. A particular tree consists of a root, and an ordered set of

zero or more dependent subtrees or record types. The subtrees are defined

recursively by the same definition. Thus an entire database tree is

basically a hierarchic arrangement of various types of records. The

records can be subdivided into fields. Consider the hierarchic database

shown in Figure 2.

12

c:.oul\SE?. Ill 1'J A ME

1-1en1Nq .DESc.1<:11>!101\J

\ I !VIE h E SC.

TEl\CtfEf./,.
_____,

~ TUJ) E" /\J T

£1.lio!J>LL MA\£ MIN T.NAME

Figure 2. Hierarchic course Database

13

In Figure 2 course database has 'course' as the root record type,

with two dependent record types 'meeting' and 'description'. The 'meeting'

record type has two dependent record types 'teacher' and 'student'. The

entire database has a definite ordering (top-to-bottom, left-to-right).

The 'meeting' subtree precedes the 'descriptiOn' subtree, and the 'teacher'

subtree precedes the 'student' subtree. The entire 'meeting' subtree is

traversed before the 'description' subtree. Under one 'course' root there

can be multiple 'meeting' and 'description' subtrees, and under 'meeting'

there can exist multiple 'teacher' and 'student' subtrees. Multiple

'teacher' segments under a 'meeting' segment signifies a hypothetical case

where any one of the teachers could teach the course. The entire course

database primarily consists of a forest of these 'course' database trees.

Course, meeting, description, teacher, and student are the five distinct

record types present in the database. The course forms the root record

type, and meeting and description form the dependent record types. Course

is also termed as a parent record type for meeting and description child

record types. The entire database tree is threaded by explicit pointers

between parents and children. Figure 3 explains multiple occurrences of a

record type. The figure shows a single database tree in the course

database.

STU.ti ENT

3o bO to

THEOP.

Figure 3. A Single Database Tree

The database has a single occurrence of the root record type 'course' .

The course occurrence has an ordered subtree consisting of three

occurrences of the meeting record type, and one occurrence of the

description record type. The first meeting occurrence in turn has an

ordered set of three teacher occurrences, and: one student occurrence. All

occurrences of a specific record type which share a common parent are

termed as twins. In the previous diagram the meeting records are twins.

As was mentioned earlier the dependent record types are always ordered.

The hierarchic sequence for the given database tree is shown in Figure 4.

14

15

course: 12296
meeting: 1
teacher: charles
teacher: harris
teacher: jones
student: 30,60,10
meeting: 2

meeting: 3
description: theory

Figure 4. Hierarchic Sequence

The top-to-bottom and left-to-right ordering is evident from the

previous sequence. The database is a forest of these course trees. If

these course trees are depicted to be rooted at the system, then the entire

database can be visualized as a tree. The hierarchic sequence applies to

this entire database f.e. the database trees have a definite ordering

left-to-right. The physical database records are thought of as being

stored in this logical sequence. Referential integrity is maintained in

the hierarchic model, because a child cannot exist without a parent. If a

parent is deleted, all children are deleted automatically. A child type

can be inserted only if the corresponding parent exists. A child can have

only one parent. The data manipulation language provides operations to

manipulate trees. Some operators on trees are:

- operator to locate a speciric database tree in a forest;
- operator to process a forest of database trees in a hierarchic
sequence;
- operator to step through the subtrees in a specific database

16

tree;
- insert operator;
- delete operator.

The operations on trees process a node at a time. Thus a hierarchic system

is record-at-a-time. McFadden, Hoffer, Jeffrey (27) provide a good review

of hierarchic databases.

CHAPTER !I

CLASSROOM RESERVATION SYSTEM

Theoretical Background

A scheduling system is one that distributes a resource, into a finite

workspace, in the most efficient manner. A good example of a scheduling

system would be one that schedules teachers into a weekly timetable. A

classroom reservation system is a scheduling system in which classrooms are

allotted to room reservation requests. The class scheduling systems

reviewed primarily involved scheduling teachers and courses into a weekly

timetable. A set of course requirements was laid out and the day was

broken into a fixed number of periods. Each teacher had a fixed teaching

load. An algorithm was utilized to come up with a timetable which

schedules the teachers and courses during the week. The algorithms to do

the scheduling varied according to the timetable restrictions laid down at

various schools e.g. (double periods, specific lunch hours). Gosselin,

Truchon (19), developed an algorithm which performs a heuristic room

allocation to courses. The algorithm presumes a categorized set of

requests and a set of rooms which can satisfy each of the requested sets.

The algorithm involves a first come first serve allocation and a two

dimensional array is the primary data structure used. It results in a

schedule where rooms get alloted to specific requests. An exhaustive

search is performed and a conflict free schedule is found if one exists.

17

An explanation of the algorithm follows.

Suppose there are 5 hours in the day, 3 rooms in the category to be

considered and 6 requests to be satisfied by rooms of this category. The

columns in the matrix below represent the hours and the rows represent the

rooms. The 6 courses are to be given at hours (1,2), (1,2), (4,5), (2,3),

(4,5), (3,4). The 3 x 5 matrix is initialized to zeros. The algorithm

tries to satisfy each request starting from room 1. Once the needed hours

are found free in a certain room (row), the request number is placed in

those slots, otherwise the next room down is tried. This goes on until we

run into a request which remains unsatisfied after checking the last row.

In such a case the request prior to this one is uprooted from the matrix

and tried in the next room (row) down. The freed slot is replaced with

zeros. Now the unsatisfied request is picked up again and the whole

process is repeated until a conflict free schedule results. If finally the

first request is uprooted and no schedule results after trying all

combinations then the algorithm prints out the error message. In the above

problem the schedule matrix looks as follows after the fifth request has

been satisfied.

hour 1 2 3 4 5

room 1 1 1 0 3 3

2 2 2 0 5 5

3 0 4 4 0 0

The sixth request cannot be satisfied in any of the rooms, so request

18

five is uprooted and satisfied in a room further down. This results in the

sixth request being satisfied by room 2. The final schedule matrix is

shown below.

hour 1 2 3 4 5

room 1 1 1 0 3 3

2 2 2 6 6 0

3 0 4 4 5 5

The algorithm can be modified to catch the delinquent request. This

algorithm is being used in the timetabling system set up at University

Laval in Canada, Gosselin, Truchon(l9). In some systems faculty was

matched to courses. The instructors laid down a set of preferences in

timings and courses, and a progr,am came up with an appropriate schedule.

Other systems incorporated the student enrollment data into the timetabling

system. An interesting problem was scheduling .students to classes in a

compiled timetable. Each student selects a set of courses as his proposed

schedule. The schedule was fed into the scheduling program which verified

if it was compatible with the timetable. If a conflict results a workable

schedule was computed by the program. Each student schedule was considered

on it's own merit without reference to any other student's schedule. There

was an excessive amount of processing time spent in scheduling each

student. If the student body was large the above system proved extremely

expensive. With a large student body the time to schedule each student was

of major importance. The method used aimed at scheduling each student as

19

quickly as possible by reducing the number of schedules tried, before a

satisfactory one was found. This was achieved by categorizing the classes

so that the most difficult one to fit into occurred first in the student

schedule. For example if only one class was available then the student can

either be fitted into it or not·, so the rejection occured very early. The

program addressed another important factor, the students were evenly

distributed among different class sections, so fewer classes reach their

maximum limit, and thus the students enrolling late could be easily

enrolled.

Barraclough(2) has discussed an interesting technique in high school

timetabling. The primary resources being addressed was classes to be

taught and masters. The problem was to assign masters to certain classes.

An intelligent use of bit strings and logical operations performed the

needed operation. A master could meet a class for a single period or two

successive single periods i.e. a double period. The school time table had

pre-scheduled break timings, and a double period.could not span across a

break. The list of requirements was structured as follows: (Mi,Cj,s,d).

Master i must teach class j for s single periods and d double periods. In

order to assign these single periods it was necessary to know those periods

when master i and class j were both free, and then s of them had to be

chosen. The binary pattern formed by the logical "and" of the available

digits for master i and available digits for class j gave the common

periods available. If the available digits for master i and class j were:

20

PMi (master i) = 1 1 O 1 O O 1

PCj (class j) = o 1 o o 1 o 1

PMi & PCj = 0 1 0 0 0 0 1

The logical "and" showed that master i and class j were both available in

the second and last periods of the day. (Mi,Cj,O,d) was the general format

of a double period assignment. The request list demands master i teach

class j for d double periods. Pairs of digits that do not cross a break

must be found by referring to the pattern showing when breaks can occur.

The pattern of digits denoted by de showed where double periods could end.

The digits showing where double periods can start can be found by the

following logical operations. (Pmi & PCj & de) gives a 1 where the second

period is free. Let (PMi & PCj & de)' denote the same pattern of binary

digits but left shifted by one position. The ls now occur at positions

which could be the start of double periods. Then JPMi & PCj & de) ' & (Pmi

& PCj) gives a 1 where a double period may start. If the binary patterns

for one day were:

PMi {master i)

PCj (class j)

de (double end

PMi & PCj

PMi & PCj & de

(PMi & PCj & de)'

= 1 1 1 0 1 1 1

= 0 1 1 0 1 1 0

= 0 1 0 1 0 1 1

= 0 1 1 0 1 1 0

= 0 1 0 0 0 1 0

= 1 0 0 0 1 0 0

(PMi & PCj & de)' & (PMi & PCj)= O O O O 1 O O

21

22

Showing that a double period may start in the fifth period, but

rejecting the two consecutive periods in the second and third periods since

they cross breaks.

Csima,Gotlieb (16) proposed a method of constructing school timetables

based on an iteration of boolean matrices. They utilized a three

dimensional array each node of which represented a specific teacher, class

and time. In the boolean array a value of zero implied the impossibility

of the class and teacher meeting at that time. Conversely a value of one

implied the possibility that the teacher and the class may meet at that

time. The array was initialized to ones indicating that a teacher could

meet any class at any time. But as the computation proceeded the ones were

changed to zeros according to set rules and entries in the requirements

matrix. At the end of the computation for a certain time slot it was

possible for each teacher to meet only one class and each class to meet

only one teacher. Each teacher could meet each class a number of times

preset for that teacher and class. Th§! resulting three dimensional array

was the required timetable. This method required examination of each plane
•.

section of the three dimensional array at regular intervals. A plane

section is a two dimensional array of zeros and ones belonging to a

teacher, class or time. An examination of such an array has two phases:

1) The existence of at least one possible schedule is determined

(feasibility test).

2) Any non-zero element which does not belong to some possible schedule

is changed to zero (matrix reduction).

The algorithm suggested by Csima,Gotlieb(l6) to process step 2 was of

the order 2n. Lions (25) came up with a more efficient algorithm to

effect the matrix reduction in order n2 time. The Ontario school

scheduling program was successfully implemented using the above algorithm,

Lions(26). The program handled a variety of special requirements in the

timetabling process, as opposed to the structured requirements tested by

Csima, Gotlieb(l6).

Classroom Reservation System at osu

The current classroom reservation system at Oklahoma State University

is set up on IMS. The system was studied to obtain an understanding of

classroom reservations at osu. The system provides an on-line browse

facility keying off the course identification number. Setting up the

schedule for a semester and making reservations are still a batch oriented

process.

A manual is created with thirty minute time slots for six days in the

week and for each available classroom on campus. This in effect is a

manual database maintained by the registrar's office. The registrar has

created a turnaround document which is sent to each department on campus.

A copy of the previous semester's schedule is sent with the turnaround

document. The departments come up with lists of courses they will offer

and expected room and reservation timings. Once the department's request

reaches the registrar's office, entries are made in the manual database for

each room requested. Any conflicts are· resolved at this stage by

re-adjustment requests to the departments concerned. The turnaround

23

documents are forwarded to the data entry personnel who key in the data

into the IMS database. A verification run is made and any conflicts that

may have been overlooked are resolved at this stage. once the data is

entered into the IMS database the on-line system available is able to

browse it. Any reservation request made after the initial schedule is set

up is keyed into the on-line system. The conflict reports are generated

in a batch process at the end of the day. The personnel then reconsult

their manual database and resolve the conflicts with the departments

concerned. On-line deletions do not cause any problems as they are not

involved in any conflicts. Student enrollment data is also incorporated

into this database. During pre-enrollment and enrollment each student's

enrollment request is entered into the system, so the database remains

current with the number of students enrolled for a specific course. Each

course has a pre-specified lower and upper limit for the number of students

and once these are crossed a indicator is set. The departments specify

these limits for each course. Once a semester's schedule has been

finalized by the above method it is ready to be printed.

The amount of manual effort going into the current system is evident

from the process described. The existing system is not truly on-line

because the reservation requests are not instantly verified by the computer

but instead are performed in a batch process at the end of the day. Both

the departments and the registrar's office personnel spend a lot of time

setting up the initial schedule for a semester and resolving conflicts.

The whole process is primarily manual with the computer being utilized for

data collection. The departments propose a schedule by inertia from the

previous semester's schedule. The departments on campus have an

24

understanding from prior years as to which rooms are available for

assignments. The laboratories have been pre-assigned to each department.

A room request in mid semester requires querying of the manual database.

The browse facility is minimal just keying off the course identification

number and the department name and course number. The departments on

campus do not have any on-line system to check up on room reservations.

The conflict detection system is redundant with both the personnel and the

computer performing the exercise. Two databases are being maintained

namely one in IMS and the room reservat:Lon manual. The turnaround time for

a room reservation request is very slow.

The requirements for the on-line classroom reservation system

developed on Model 204, we~e obtained from the registrar's office at osu.

The primary requirement was to get a truly on-line reservation system. The

system was expected to provide multiple views of the data. It was to

provide a list of courses meeting in a room, or courses being taught by an

instructor or department. The manual database needed to be eliminated,

therefore the conflicts had to be resolved by the reservation system. A

system was needed which would allow the departments on campus to query the

reservation system. The system was to handle two types of requests namely,

room reservations for for a full semester, and temporary room reservations.

The ad hoc room reservations needed to be dynamic, in that a classroom was

freed once the expiration date for the res.ervation was reached. A room

inventory database was needed which would house information on all

reserveable rooms on campus. This room inventory database would allow for

complex reservation requests. An example of such a request is: " provide a

list of rooms which are case studys, have at least 40 seats, are free on

25

Mondays from 9:30 to 10:30 on specific dates". The system was expected to

be user friendly, and a user's manual was needed for the reservation

system. For security reasons a complete tape backup system was also

needed.

Classroom Reservation System using Model 204

The first phase of the development of the classroom reservation system

on Model 204 involved studying the existing system, and obtaining

requirements for the new system. The second phase involved accessing the

classroom data. A copy of the IMS database was made on tape. Segments

were sequentially dumped to tape, to make a course meeting dataset and a

course description dataset. IBMs IEHMOVE utility was utilized to copy

these datasets onto disk. The schematic below outlines the subsystems of

the classroom reservation system.

c:.&.AS!.
.l'HE.bu &..E

FILE

t\oo~
INV&iNTCP.}'

FtL£

,_

'-

~

~

-
I~

C1 Et4EltAL. Vt.ER
~\lpEl v~t:R

26

The data for the classroom reservation system was stored in a class

schedule file, and a room inventory file. The class schedule file consists

of of all course meeting data, and the coom inventory file contains

27

specifications for all reserveable rooms on campus. The class reservation

system is sub-divided into four subsystems namely

general user;

super user;

room inventory;

room vacancy.

The general user's option is intended for departments on campus. It

provides extensive data retrieval functions on the class schedule database.

No updates are provided through this window. A user can retrieve

information by keying off the following fields :

a. course id number;

b. department name and course number;

c. department name;

d. building and room number;

e. instructor's name;

This option also prov~des a list of all courses offered by a

department, sorted by day of the week, and time of the day. The program
·-

function key support, and the advanced cursor sensing capabilities of Model

204 provide a user friendly interface.

The super user• s option is intended for the registrar's office. This

option provides room reservation facilities. All the data retrieval

operations mentioned above are available under this option also. Two types

of reservation request can be satisfied, namely :

room reservation for the whole semester;

ad hoc room reservation request for limited amount of

time.

A user is expected to query the room inventory database via the room

vacancy subsystem before making a room reservation for the whole semester.

The day and time conflicts for a room are resolved in the room vacancy

subsystem. The reservation system maintains unique course id numbers, and

any attempt at duplication is rejected.

An ad hoc room reservation request requires the user to input a

commencement date and an expiration date. The commencement date allows for

a proactive reservation. The expiration date allows the system to free the

room, once the expiration date is reached. This keeps the reservation

system dynamic in that rooms are freed up again on expiration. The system

checks for time, day and date conflicts for a room before allowing a

successful reservation.

number.

The deletion process keys off the course id

The room inventory option provides information on all reserveable

rooms on campus. Some rooms have been allocated to specific departments,

and these do not appear in the available pool mentioned above. The room

inventory database keeps information on the room capacity and room type.

Case study, auditorium, fixed, table and chairs, arm, bolted arm, and lab

are the valid room types. Information for any specific room, or for all

rooms in a building can be retrieved.

database, and old ones may be deleted.

New rooms can be added to the

The room vacancy option is the main component of the reservation

system. This option queries both the class schedule and the room inventory

databases. A user inputs the start date, end date, days the course will

28

meet, begin time, course end time, number of seats needed, and the type of

room needed. The room inventory database is queried to come up with a list

of rooms which match the needed type and capacity. Then the time, day and

date conflicts for each of the rooms is resolved by querying the class

schedule database. Finally a list of rooms is displayed which satisfies

the request.

The BATCH204 utility of the Model 204 file manager was executed to set

up the database files. The batch routine is included in Appendix 8. The

attributes of the class schedule file are:

file name
volume
device type
organization
record format
record length
block size
first extents

M204.ACT10820.DATA
OSU201
3380
PS
u
6184
6184
90

secondary extents: 20
creation date 86/08/03

The data definition phase involved defining the fields in the Model

204 files. Two tables were set up, namely the class schedule table, and

the room inventory table. Both were kept in first normal form (i.e all

underlying domains contain atomic values). A description of the table

attributes follows.

CLASS SCHEDULE TABLE

ATTRIBUTES

COURSE.ID (key) - course identification number

29

DEPARTMENT (key) - department name
COURSE.NO (key) - four digit course number
COURSE.TYPE - course type (Th,LAB,IS,DS)
COURSE.DESCRP
INSTRUCTOR (key)
BUILDING (key)
ROOM (key)
SECTION
COURSE.DAYS
COURSE.BEGIN
COURSE.END
FREEFORM
MIN
MAX
START (key)
EXPIRE (key)
COMMENT
NUMBER

- course title
- instructor's surname
- building code
- room number
- section number
- meeting days (MTWHFS)
- start time
- end time
- flag to indicate TBA reservation

minimum # of hours for course number ending in o
maximum # of hours for course number ending in O

- commencement date
- expiry date
- comments on the course
- index into comments

ROOM INVENTORY TABLE

ATTRIBUTES

BUILDING (key)
CAPACITY (key)
ROOM (key)
TYPE

- building code
- total number of seats
- room number
- 1 case study

2 auditorium
3 fixed
4 table & chairs
5 arm
6 bolted arm
7 lab

The key specification against the field name signifies that a hash

index is created for that attribute.

The data extraction, and the file initialization was done via the

imaging facility of user language. This facility allows an application

program to access a non-Model 204 file (i.e the IMS datasets). The

application programs, and the hierarchy chart for this abstraction process

are included in Appendix B.

In the next phase the application programs were developed to

30

constitute the four subsystems. The algorithms used in these subsystems

make use of inverted lists, and set theory operations. The order of

processing for these algorithms is polynomial., The class schedule table is

created with eight hash indexes. A query for all courses for the computer

science department is executed in the following manner. The department

code COMSC is hashed, and the secondary index entry is located. This entry

has a list of internal record numbers for all tuples which belong to the

queried department. This located set is then displayed to the user. The

hash function has a processing time of o (1), and if 'n' tuples exist in the

located set, the query takes O (n) . More complex queries are executed using

intersections, and joins on located sets. A typical query for the room

vacancy subsystem would be: " generate a list of all rooms which are free

on Monday and Wednesday, from 7:30 to 8:30, with a capacity of at least 30

seats, and are case studys". The room inventory table is queried, and two

sets are located. The first set contains all rooms with 30 or more seats,

and the second set contains all case study rooms. An intersection on these

two sets provides a set of rooms which are case studys, and have 30 or more

seats. For each of the rooms in this reduced set, the class schedule table

is queried for the vacancy at the needed time, and day. A join is

performed between the room inventory table, and the class schedule table

with day and time restrictions. Suppose MS 222 is a case study, and has 30

seats, thus it is a member of the reduced set due to the intersection. A

set is located which consists of all courses meeting in MS 222. The

timings, and meeting days for each of these courses is checked. If a

conflict results MS 222 is deleted from the set, and the next room is

verified in a similar manner. The operations just described are performed

31

in the join. As a result of the join a set of rooms is obtained which

satisfy all the request criteria. The previous example showed how the set

level algorithm executes a query. Suppose there are 'n' rooms with at

least 30 seats, and 'm' rooms which are case studys. It takes O(n) to

locate the set with capacity restrictions, and O(m) to locate the set with

room type restrictions. The intersection is O(n X m). Suppose 'P' of

these rooms satisfy the day and time restrictions. The total processing

time for the request after the final join is O(n X m X p). In the general

case, if each located set has 'n' tuples, and there exist a total of 'k'

intersections and joins for a request. The processing time is O(nk+l).

Thus querying the reservation system requires a polynomial time. The

processing time is directly dependent on the number of intersections, and

joins in the request. Insertions, and deletions require a index access and

a union or difference on a set. The index access utilizes a hash function

thus it has a constant order, and the union or difference require an

addition or re~oval of a tuple, which again takes a constant amount of

time. Thus the insertions, and deletions in the classroom reservation

system are 0(1) operations.

The application programs which form the four subsystems, and the data

abstraction programs are included in Appendix B. Appendix c has a users

manual which provides directions on how to perform reservation queries, and

updates. It provides directions on the usage of program function keys, and

a description of each of the four subsystems is provided with user

interface screens. The final section of Appendix C contains a set of test

cases which verified the system. The test cases checked both the ad hoc

reservations, and the full semester reservations. The dynamic nature of

32

the system was verified as expired requests were successfully eliminated at

system startup. All the data retrieval functions were verified with

entries in the schedule book. Additions, and deletions on the room

inventory database were successfully executed. The system correctly caught

course identification number duplications, and conflicting reservation

requests. The ten minute restriction between reservations was checked.

Both proactive, and retroactive reservations were successfully made. All

program function keys were debugged to perform correctly. A tape dump

procedure provides the needed back up for the classroom reservation system.

The extraction of data from the IMS database highlighted the external

file access and imaging facilities in Model 204. The data definition

phase brought out the tabular data format of the relational-like system.

The indexing options were invisible to the user. Redefinition was easily

performed without requiring changes in the application programs •. Coding in

user language brought forth the set-level processing capability, and

provided a good understanding of the retrieval, file maintenance, and flow

of control constructs. Studying the execution of a user language request

exposed an unexpected inefficiency. Each request is compiled and executed

at each execution, and no load modules are stored. The requirements for

the developed system were obtained from the registrar's off ice at Oklahoma

State University. Changing requirements over time, tested the data

independence capabilities of Model 204. No data integrity checks are

performed by Model 204. Integrity checks were implemented via procedural

code. No primary keys, or foreign keys are supported by Model 204. The

data security features proved to be extremely powerful. The file level,

record level, and field level security features have been used in the

33

developed system. Model 204 proved to be lacking in the storage

organization area as IFAM (Inverted File Access Method) was the only access

method available.

34

CHAPTER. III

DATA DEFINITION

Data Definition in Model 204

The data definition in Model 204 can be done via a batch job, or

interactively using user language. A Model 204 file needs to be allocated

and initialized before any file definitions can be executed. The tables

associated with a Model 204 file have been described in the storage

organizations chapter. The data in Model 204 can be visualized to be

organized in a tabular format. A record is the primary data object, and it

is divided further into data fields. A Model 204 file can have multiple

record types. The data definition discusses no physical placement or

access paths to the data. The DEFINE FIELD command is used to define the

fields in a Model 204 record. A field can be assigned the KEY attribute.

The execution of the DEFINE FIELD command with the KEY attribute, creates

an index on the mentioned field. The whole process is invisible to the

user. At any stage in the life of a database application the REDEFINE

command can be used to create indexes dynamically on existing data. The

data can be normalized before the records are defined.)7odel 204 provides

a variety of attributes which can be assigned to fields in a record.

Fields which are used frequently for retrievals should be assigned the KEY

attribute. If a field is updated heavily and is occasionally used for

retrievals, it should be defined as NON-KEY. Range retrievals can be

35

performed on a field if it is defined to have the NUMERIC-RANGE attribute.

Logical relationships can be set up between records using the INVISIBLE

attribute. The FOR-EACH-VALUE attribute allows the system to keep track of

the number of unique entries for the specified field. The updates to an

index in a Model 204 file can be deferred to a batch run if the key field

has the DEFERABLE attribute This provides efficiency and space

reductions in an on-line data entry environment, as updates to the index

are deferred to a batch execution. There are two field attributes that

control the way the value of a field occurrence is changed: UPDATE IN PLACE

and UPDATE AT END. If the UPDATE IN PLACE is specified, changing the

value of a field occurrence will not change it's position relative to other

occurrences of the same field. If UPDATE AT END is specified, a change in

the value of a field occurrence is accomplished by deleting the existing

occurrence, and adding a new one following the others. A user can secure

against unauthorized access by including the LEVEL clause in the field's

description. Field level security has negligible impact on both

performance.and_ storage usage. A field can be stored in a record in one of

the following formats: string/binary, coded/non-coded, or float. The

36

37

data definition of the class schedule database set up in Model 204 is shown

in Figure 5.

DEFINE FIELD COURSE.ID (KEY)
DEFINE FIELD DEPARTMENT (KEY)
DEFINE FIELD COURSE.NO (KEY)
DEFINE FIELD COURSE.TYPE
DEFINE FIELD COURSE.DESCRP
DEFINE FIELD INSTRUCTOR (KEY)
DEFINE FIELD BUILDING (KEY)
DEFINE FIELD ROOM (KEY)
DEFINE FIELD SECTION
DEFINE FIELD COURSE.DAYS
DEFINE FIELD COURSE.BEGIN
DEFINE FIELD COURSE.END
DEFINE FIELD FREE FORM
DEFINE FIELD MIN
DEFINE FIELD MAX
DEFINE FIELD START (KEY)
DEFINE FIELD EXPIRE (KEY)
DEFINE FIELD COMMENT
DEFINE FIELD NUMBER

Figure 5. A Database Definition in Model 204

All retrieval fields have been assigned the KEY attribute. Eight hash

indexes are dynamically Set up for this database. CCA File Manager's Guide

(11), provides detailed information on the data manipulation capabilities

of Model 204.

Hierarchical Approach

IMS has two principal data defintion constructs: DBD (Data Base

Definition), and PCB (Program Communication Block), McGee (29). Each IMS

38

database is defined by a DBD, which specifies the tree-like hierarchic

structure of the database. The tree-like structure is outlined via a

hierarchic arrangement of segments. A PCB defines a logical view of the

database. The PCB is derived from the underlying DBD. The sensitive

segments and fields are enumerated in the PCB definition. A segment is the

primary data object in IMS. A segment can be divided further into

constituent fields. Figures 6 and 7 list a simplified DBD and PCB

definition for a physical database. The definition is for the hierarchical

database introduced in Chapter 1.

DBD NAME = SCHEDULE
SEGMENT NAME = COURSE, BYTES=25
FIELD NAME = (COURSE. ID,SEQ), BYTES=5, START=l
FIELD NAME = NAME, BYTES=20, START=6
SEGMENT NAME = MEETING, PARENT=COURSE, BYTES=lO
FIELD NAME = TIME, BYTES=4, START=l
FIELD NAME = BLDG, BYTES=3, START=5
FIELD NAME = ROOM, BYTES=3, START=B
SEGMENT NAME = DESCRIPTION, PARENT=COURSE, BY'l'ES=l5
FIELD NAME = DESC, BYTES=l5, START=l
SEGMENT NAME = TEACHER, PARENT=MEETING, BYTES=lO
FIELD NAME = T.NAME, BYTES=lO, START=l
SEGMENT NAME = STUDENT, PARENT=MEETING, BYTES=6
FIELD NAME = ENROLL, BYTES=2, START=l
FIELD NAME = MAX, BYTES=2, START=3
FIELD NAME = MIN, BYTES=2, START=5

Figure 6. A Simplified Database Definition in IMS

PCB DBDNAME = SCHEDULE
SENSEG NAME = COURSE, PROCOPT = G
SENFLD NAME = COURSE. ID, START = 1
SENSEG NAME MEETING,PARENT=COURSE,PROCOPT=G,I,R,D
SENSEG NAME = TEACHER, PARENT = MEETING, PROCOPT=G

Figure 7. A Simplified PCB Definition in IMS

The DBD statement assigns a name to the DBD definition. The second

statement specifies COURSE as the root segment type, with a length of 25

bytes. Statements 3-4 define the fields which make up the course segment.

The length of the field is given in bytes and the start position within the

segment is listed. COURSE.ID is defined to be the sequence field for the

course segment. SEQ signifies that COURSE. ID values are unique, and course

trees are in an ascending COURSE. ID order in the course database.

Statement five defines the meeting segment as being a dependent of the

course segment. The definitions of fields within the segments follow.

The rest of the statements can be explained in a similar manner. The PCB

definition is a subset of the DBD. It can be derived from the underlying

DBD. Any field or segment can be omitted in the PCB definition. If a

given segment is omitted, then all dependents must be omitted too.

Segments and fields that exist in a user's view are termed as sensitive.

The PCB definition shows the course, meeting and teacher segments as being

sensitive. The user remains unaware of-the existence of the description

and student segments. The sensitive segments and sensitive fields are

specified by the SENSEG and SENFLD statements respectively. If a segment

is specified to be sensitive and no sensitive fields are defined, then all

fields default to being sensitive. The user .is unaware of the course name

field in the course segment, and all fields are sensitive by default in the

meeting and teacher segments. The PROCOPT statement specifies the

operations that can be carried out on the segment. Get, insert, replace,

and delete are the valid options. The previous definitions describe the

format of the physical database to IMS, but the file definitions need to be

performed separately.

39

Discussion

The data definition is simpler in Model 204 than in IMS. In IMS the

data is formatted in a tree-like structure. A fair amount of effort goes

into deciding the content of segments, and the hierarchical layout of

segments. In Model 204 the data is laid out in a tabular format. Once

fields are assigned to a record, the database can be defined in Model 204.

Fields can be added to a record type at any stage in the life of an

application in Model 204. Such an addition, requires a complete

redefinition in IMS. The physical database structure supports one primary

key at the root of an IMS database. Any number of key fields can be

defined for a Model 204 record. The REDEFINE command allows for dynamic

indexing after the data has been loaded. The primary data object is a

segment in IMS, and a record in Model 204. Normalization theory can be

applied before setting up a Model 204 database to maintain data integrity.

Data definition in IMS addresses both physical placement and access paths

to the data. This data dependency does not occur in data definitions under

Model 204. Logical relationships are set up vi_a pseudo foreign keys in

Model 204, and via pointer chains in IMS. Setting up of indexes and

deciding on access methods is a separate step in IMS. In Model 204 indexes

are created dynamically at the data definition phase.

40

CHAPTER IV

DATA MANIPULATION

Data Manipulation in Model 204

Model 204 provides data manipulation via two windows; namely, a host

language interface, and a fourth generation language: •user language•.

Cobol, Fortran and PL/I are the host languages which can make !FAM (

Inverted File Access Method) calls to perform data manipulations. The term

relational is applicable only at the external and conceptual levels of the

ANSI/SPARC architecture model. Interface with a user at an external level

comes via a data sublanguage. A data sublanguage is further divided into a

data manipulation language and a data definition language. In Model 204

the user language provides a relational like interface. The data can be

viewed in a tabular format. Operators process records a set-at-time as

opposed to procedurally a record-at-a-time. At the internal level Model

204 imitates the inverted list data model as the inverted file access

method is utilized. At the external level the operations provided are

closer to the relational model. The inverted list model primarily

processes information one record-at-a-time. User language has no notion of

database address areas which is a primary concept in inverted list data

manipulation. A relational data sublanguage has four primary data

manipulation operators; namely, select, update, delete and insert. Find,

change, delete and store operators of user language correspond directly to

41

the ones mentioned for the relational systems.

User language consists of statements of eight different types:
selection statements based on the values of one or

more fields, combined with a full range of boolean
facilities;

reporting statements provide facilities for simple ad
hoc requests and sophisticated multifile reports;

logical and control statements provide record set
looping, request termination, and data dependent
operations;

database maintenance statements provide a wide range
of update facilities;

online application development statements provide for
the creation, storage, modification and execution of
user language requests;

a full range of numeric and string computation functions;
full screen formatting statements;
external file access statements.

Statements of the type one through four and six will be discussed.

The others are added features provided by Model 204. User language

provides arithmetic and logical operations using constants, field values,

special temporary variables, and functional values. Variable names start

with a percent sign. More than 60 built-in functions provide facilities

for data editing and validation, character string manipulation, global

variables, and current date and time. The Fortran set of 26 mathematical

functions is also available. Function names always begin with a dollar

sign. Expressions are formed by combining constants, variables, functions

or field names. Parentheses can alter the normal sequence of operations.

Model 204 processes a user language request in two phases: compilation and

evaluation. During compilation, the text is checked for proper syntax, and

statements are translated into an internal format that Model 204 can

execute. During evaluation, certain types of user responses are entered

and the request is executed. Compilation errors must be resolved before a

request can be executed. A user has a variety of options for evaluation

42

time errors. Automatic evaluation continuation, request control, request

cancellation, and user restart are some of the valid options for an

evaluation error.

The data manipulation statements in user language fall under six

classes:

- retrieval statements;
- loop statements;
- output statements;
- file maintenance statements;
- flow of control statements;
- miscellaneous statements.

Retrieval statements in user language begin with the keyword FIND. · A

set which can be acted on by loop statements, is located. The three main

retrieval statements are

1. FIND ALL RECORDS
2. FIND ALL RECORDS FOR WHICH fieldname =

fieldname =
fieldname =

value
valuel OR value2
NOT value

fieldname = valuel AND NOT value2
fieldname = NOT valuel NOR value2

3. FIND ALL RECORDS FOR WHICH fieldname IS BEFORE value
AFTER value

The retrieval under the first choice locates all records in the

current database. In the second choice all records which satisfy the

condition of the FIND are located. The third choice illustrates range

retrievals in Model 204.

Loop statements act on a set of records located by retrieval

statements. Each record in a located set is acted on by a loop statement.

43

44

The format for a loop statement is as follows

FOR EACH RECORD IN label

Label refers to the statement label for a retrieval statement. This loop

statement shows the set-at-a-time processing capability of user language.

Looping seems to utilize the most amount of code in a procedural language,

thus this set level looping reduces the coding requirements.

Output statements are used to display results from database retrieval

operations. A selected set of output operations is

a. PRINT ALL INFORMATION;
b. PRINT fieldname;
c. PRINT COUNT IN label.

Statement a is placed in a loop statement to print all fields of the

current record in a located set. The output is in the fieldname = value

pair form. Statement b is utilized in a similar manner except that a

specific field value is output. Statement c prints the number of records

in a located set. The label refers to the retrieval statement.

File maintenance statements perform the database updates in Model 204.

The primary statements under this class are :

1. ADD fieldname = value;
2. CHANGE fieldname TO value;
3. DELETE fieldname;
4. DELETE RECORD;
5. DELETE ALL RECORDS IN label;
6. STORE RECORD

fieldname = value
fieldname = value

The ADD statement allows new fields to be added to records. This statement

can only be used within a FOR EACH RECORD loop. The CHANGE statement is

used to alter the value of a field within a record. If CHANGE is applied

to a record that does not contain the specified field, then the fieldname

and value are added to the record. The CHANGE statement can be used only

within a loop statement. The DELETE fieldname statement is also only

allowed in a FOR EACH RECORD loop. It removes a field from a record. If

the DELETE statement is applied to a record that does not contain the field

to be deleted, no action is taken on that record. The DELETE RECORD

statement deletes the current record in a FOR EACH RECORD loop. The DELETE

ALL RECORDS statement, deletes sets of records in a Model 204 file. The

STORE RECORD statement is used to add new records to a Model 204 file. The

fieldname = value pairs that constitute the new record must follow the

STORE RECORD statement.

Flow of control statements allow for conditional processing in a user

language request. A selected list of statements under this class is :

1. IF;
2. ELSE, ELSEIF;
3. JUMP TO lal;lel;
4. STOP;
s. SUBROUTINE;
6. CALL;
7. RETURN;
8. ON unit.

45

46

IF, ELSE and ELSEIF allow for condition testing. JUMP TO label is

analogous to a go to statement. STOP terminates the program execution.

SUBROUTINE, CALL and RETURN allow for structured programming as subroutines

can be invoked to perform specific tasks. ON unit statements provide

powerful error checking in case of run time errors. The purpose of the ON

unit stat~ment is to provide the user with a means of overriding the normal

system response in case of a run time error. The three main types of ON

units are :

- ON ATTENTION;
- ON ERROR;
- ON FIND CONFLICT.

ON A~TENTION allows the programmer to specify the action to be taken

when a user presses the break/attention key during program execution. ON

ERROR allows the programmer to specify the action before Model 204 cancels

a request due to a run time error. ON FIND CONFLICT is used to resolve

record level enqueueing conflicts when more than one user is trying to

obtain update access to a specific record.

Some miscellaneous statements which perform powerful retrieval and

manipulative operations are :

1. COUNT RECORDS IN label;
2. IS PRESENT;
3. SORT RECORDS IN label BY key AND key ,
4. LIST;
5. VALUE LOOPS.

The COUNT RECORDS statement counts the number of records in a located

set. A typical use of this statement is to check if a FIND statement

resulted in an empty set or not. The IS PRESENT clause is utilized in a

FIND statement to check if a specific field is present in a record. The

SORT RECORDS statement invokes a system sort routine and the field names

for the sort need to be specified. This is a logical sort and the actual

records are not sorted. Records located via a FIND statement are placed in

a buffer and sort is applied to records in this buffer. LIST is an

extremely useful feature provided in user language. Retrieved records can

be placed on a logical list. Then retrievals and updates can be performed

on this list as opposed to the whole database. This adds efficiency, and

provides localized processing. A FOR EACH VALUE statement initiates a loop

that is executed once for each unique value of the specified field. It is

useful for counting and printing records which have a given set of values

and for detecting control breaks.

User language has various other features which do not directly fall

under data manipulation. They provide facilities for effective

input/output interfaces, external file access and application subsystem

development support. The full screen formatting and cursor sensing

capabilities of Model 204 are fairly advanced. More detailed information

on the capabilities of user language are provided in CCA User language

Manual (15).

Hierarchical Data Manipulation

IMS is a hierarchic database management system in which the data is stored

47

48

in the form of an ordered set of trees. A tree consists of a root segment,

together with a set of dependent segments. Each record is stored as a

tree. Hierarchical data manipulation consists of operators for processing

data represented in the form of trees. Hierarchic sequence in a tree

traversal is obtained by a top-to-bottom, left-to-right ordered traversal.

Each tree in the database can be regarded as a subtree of the system root.

Thus the entire hierarchic database is in effect a single tree. The notion

of hierarchic sequence applies to the entire database as well as to the

individual trees. Many IMS data manipulation operators are defined in

terms of this hierarchic sequence. An IMS database is queried via a CALL

interface called DL/I (Data Language/One). The DL/I calls are made from

application programs written in Cobol, Fortran, PL/I or 360 assembler, IBM

Application Programming Reference Manual (20). IMS does not provide a

fourth generation language. All data manipulation in IMS is done via

record level operators, and no set level operations may be performed.

Examples of some of the operators are :

- operator to locate a specific tree in the database;
- operator to move from one such tree to the next;
- operator to access segments within a record;
- operator to access segments in a hierarchic sequence
for the entire database;
- operator to insert a new segment;
~ operator to delete a specified segment.

The major DL/I operators available are

GU get unique;

- GN get next;

- GNP get next within parent;

GHU,GHN,GHNP get hold (unique/next/next within parent);

- ISRT insert;

- DLET delete;

- REPL replace.

Get unique and insert operations require segment search arguments

(SSA) to specify a hierarchic path. Delete and replace do not involve SSAs

at all.

Get unique allows for direct retrieval from a hierarchic database. It

retrieves the first segment in hierarchic sequence which satisfies the SSA.

Status indicators are set which need to be checked after each GU operation.

Get next is defined in terms of the current database position i.e. the

position last accessed by a "get" or an "insert" operation. This operator

allows for sequential retrieval, once a database position is established.

Get next within parent is defined in terms of the current database

position, as well as the current parent position. This allows for

retrieval of dependent segments under a specific parent segment.

A get hold operation establishes the current database segment being

addressed. The variations on the get hold operation allow for direct

retrieval, sequential retrieval and sequential retrieval under current

parent. Once the needed segment is obtained by a get hold operation, it

can be replaced or deleted.

The insert operation allows for a new segment to be inserted, at a

specific position in the database established by a get hold operation. The

field values for the segment to be inserted need to be maintained in a

temporary I/O buffer.

49

A segment to be deleted must be identified fir-st by a get hold

oper-ation. The delete oper-ation deletes the specified segment and all

dependent segments if they exist.

The r-eplace operator- allows for a segment update oper-ation. Again the

segment to be updated needs to be located via a get hold oper-ation. The

update oper-ation occur-s in a tempor-ary I/O buffer-.

Enhanced r-etr-ieval oper-ations can be perfor-med by utilizing command

codes. The data manipulation oper-ator-s in IMS ar-e r-ecor-d level. The

opec-ators are very closely related to the data model they aper-ate on. The

bulk of the coding in an IMS quec-y pc-ocedure is per-for-med in the host

language. DL/I does not pr-ovide variables or- conditional statements. The

vec-y basic database opec-ations can be per-for-med via DL/I calls, and any

other- pc-ocessing requir-ements are left to the host language.

Discussion

I:MS and Model 204 have completely different data manipulation

opec-ators, primarily because of the under-lying data models involved. IMS

does not have a fourth genec-ation language inter-face like Model 204. one

of the main differences is that IMS only supper-ts r-ecoc-d-at-a-time

processing, While as Model 204 allows foe- set-at-a-time pc-ocessing. The

set level processing capability of Model 204 is embedded in the user

language quec-y statements. Set pc-ocessing eliminates the need for- explicit

looping statements. Th~ DL/I calls pr-ovide for r-ecoc-d-at-a-time access,

ther-efor-e explicit looping constc-ucts pc-esent in a host language need to be

utilized. The c-etrieval opec-atoc-s in IMS quec-y an oc-dec-ed set of tc-ees in

a hier-archic sequence. Thec-e is no oc-dec-ed sequence that a user language

50

request needs to adhere to. User language itself is not a truly relational

language. The only sim~larity is the set level processing. The set

theoretic operations select, project and join are not directly supported by

user language. User language does not fall under an inverted list data

model language as it has no notion of database address areas, and the

processing is set-at-a-time. DL/I does not provide flow of control

constructs which are available in user language. Retrieval is conceptually

straight forward in user language as opposed to the tree structured access

needed in IMS. An application programmer must know the underlying tree

structure in an IMS database before a request can be coded. On the other

hand if the field names of a Model 204 record are known, a user language

request could be easily coded. The task for an application programmer is

definitely easier using a fourth generation language in Model 204. The

illustration below highlights this point.

QUERY: "get a list of all courses taught by the computer science

department".

The hierarchic database is presumed to have only one type of segment

with the cour,se id and department.

DL/I calls

GU COURSE WHERE DEPARTMENT = 'comsc'

While more COURSES do

51

print course.id
GN COURSE WHERE DEPARTMENT = 'comsc'

end while

The Model 204 database is presumed to have records with just two

fields namely, course.id and department.

user language

LABEL: FIND ALL RECORDS FOR WHICH DEPARTMENT = I comsc I

END FIND

FOR EACH RECORD IN LABEL
PRINT COURSE.ID

END FOR

The IMS retrieval has been pseudo-coded and simplified to highlight the

main points. The while loop needs to be coded explicitly .in the host

language. After each get unique or get next operation the status of the

operation needs to be checked, to verify if the search was successful or

not. The coding in user language is less taxing. The FIND operation

locates all the needed records, and the FOR EACH RECORD loop prints off the

needed course. id numbers. The set level operators are responsible for the

simplicity of user language. This example was extremely simplified as the

root segment had the needed information. If dependent segments are

involved, then coding requirements increase. The user language request on

the other hand stays the same, independent of the data format.

A user language request is executed in a two step process namely, the

compilation phase and the execution phase. In the compilation phase the

user language request is parsed for syntax errors. If errors occur, they

are flagged and the compilation is aborted. If no errors occur the

52

·-

compiler generates command tables which contain hexadecimal code. In the

execution phase this hexadecimal code is executed to perform a database

operation. An example helps clarify this compilation and execution

process. Suppose a user language FIND is to be executed to locate all

tuples with NAME=JONES. Initially the. syntax of the request is verified,

then a loop is created for each segment in the database. A segment

consists of 50,000 records. The request is executed in segments to gain

efficiency. The name JONES is hashed to obtain the correct entries in the

index for the NAME field. All this information is stored in hexadecimal

code in temporary command tables. During the execution phase this command

table code is executed. Variations to the indexing process are possible.

Instead of a hash index, a B-tree index may be used. The application

subsystem facility allows a user to save the compiled command tables, so

that each time a request is executed, only the execution phase is

triggered.

Data manipulation is performed via a host language interface in IMS.

The host language program has DL/I operators to perform database queries.

These DL/I operators are executable subroutines in the resident load module

library in IMS. Thus IMS has subroutines to perform the get unique, get

next, get next within parent and other IMS operations. While the user

program is running it issues calls to these resident action modules to

retrieve data from and update data in IMS databases. An application

program communicates with the system through a set of Program Communication

Blocks (PCBs). The PCBs .for a program are produced and stored in a library

at the time the program is defined to IMS. PCBs contain user declared

program attributes as well as parameters that are passed between the

53

program and the system during execution. Application programs invoke

system services through calls to a standard interface routine, specifying

the function to be performed, the PCB to be used to communicate the

parameters and results of the call, and additional parameters as

appropriate to the function being invoked. As a result of the call,

control goes to the interface routine and thence to various system modules

to carry out the requested function. The system places feedback

information in the designated PCB and returns control to the program. A

call statement to the interface routine has the following form (in PL/I

programs):

CALL PLITDLI (parmcount, function, pcbptr, workarea, ssal, ssa2, ..)

where :

parmcount designates the number of parameters in the call;

- function designates a character string variable that holds the name of

the function to be performed;

- pcbptr designates a pointer variable that points to a database pcb;

- ssal, ssa2, •• designate character string variables that hold Segment

Search Arguments (SSAs), that collectively designate the segment or the

segment path to be accessed;

- workarea designates an area in the program where segments and segment

54

paths are deposited and picked up by the system. A segment is designated

by specifying an SSA for each level in the record hierarchy, down to and

including the level of the segment in question.

following form:

segment-type-name * command-codes (condition)

Each SSA has the

and designates the first segment under the designated parent that is of the

specified type, and meets the specified condition. Conditions consist of

one or more logical predicates that are separated by AND and OR operators.

The system responds to a data manipulation call by performing the function

called for by placing feedback information in the PCB specified in the

call, including the following:

status code, to indicate that the function has been performed

successfully, or that it has not been performed, for a reason indicated in

the code;
·.

- level, type, and concatenated key of the segment accessed, or of the

segments that define the path accessed.

The selection power of a data manipulation language is defined as it's

ability to express a database query, whose answer is contained in the

database. Any query expressable in relational algebra or relational

calculus is expressable in user language. IMS queries are restricted by

the access path dependency. Conciseness of a data manipulation language is

defined as the lack of verbosity in the language. It provides a measure of

55

the quantity of code needed to express a query. A user language query

proves to be concise due to the presence of control and exception testing

statements, and the increased scope Of language expression.

56

CHAPTER V

DATA INDEPENDENCE

Discussion

Data independence is defined as the immunity of application programs

to change in storage structure and/or access strategy. In a data dependent

system the knowledge of the data organization and access technique is built

into the application logic and code. Data independence can be divided

further into physical and logical data independence. Physical data

independence implies program immunity to changes in the storage structure,

while logical data independence implies program immunity to changes in the

data model definition. Physical data independence allows application

programs to execute correctly after the storage has been tuned to optimize

overall performance, to take advantage of new hardware technology, and/or

to implement new standards in the storage structure. Logical data

independence allows application programs to execute correctly after the

data model has been changed in response to changing requirements. Logical

data independence can be studied under two aspects: growth, and

restructuring. Growth implies addition of another field to a record, or

addition of a new record type, or deletion of a field or record type.

Restructuring refers to a change in the database such that although the

information content of the database stays the same, the placement of

information within the database changes; i.e., allocation of fields to

57

records is altered. There may exist a need to split a record vertically,

so that commonly required fields may be stored on a faster device, and less

frequently desired ones stay on a slower one. Physical data independence

is guaranteed by the nature of the relational data model. The relational

model is at an external/conceptual level of the ANSI/SPARC database

architecture model, thus any changes at the internal level do not affect

the applications. The hierarchic and inverted list systems are data

dependent as they are at the internal level. In Model 204 inverted file

access is the only form of access method utilized. Thus, a change in

access strategy is not possible. The applications in Model 204 are

independent of the type of a file. Hashed, sorted and indexed are the file

types available. Any file type can be changed to any other without

affecting a user language program. HSAM, HI SAM, HDAM, and HI DAM are some

of the access methods available under IMS. A change in the access

mechanism does not require a change in the host language programs, provided

the logical structure of the database stays the same. Thus the pegree of

physical data independence under the two systems is identical. Degree of

data independence is an indication of the extent to which a system is data

independent.

Model 204 has a high degree of logical data independence. A field can

be added or deleted from an existing record in a Model 204 file, without

affecting existing applications. New record types may be introduced into a

file without requiring any changes in existing applications. Thus new

applications can be readily added to an existing database. Model 204 does

not perform well under the restructuring aspect of logical data

independence. A split of a record type requires the introduction of

58

for-eign keys, and thus r-equir-es modifications in application pr-ogr-ams. IMS

is logically data dependent due to the hier-ar-chic model it imitates.

Addition or- deletion of a field fr-om a segment r-equir-es a modification of

the application pr-ogr-ams, and r-e-definition of the database. Addition of a

new segment type r-equir-es the same changes too. This dependency in IMS is

called access path dependence, which occur-s due to the pr-e-defined access

paths in application pr-ogr-ams. Restr-uctur-ing in IMS r-equir-es a complete_

database r-edefinition. Thus the degr-ee of physical data independence is

similar- _under- the two systems, but Model 204 is mor-e logically data

independent.

59

CHAPTER VI

DATA PROTECTION

Data Integrity

Data integrity means the accuracy or correctness of data in a

database. Most systems today are weak in integrity checks, they only

provide concurrency control i.e. two users cannot concurrently update the

same database record, Michaels, Mittman, Carlson (30). Both Model 204 and

IMS provide this type of control. IMS provides for both referential and

entity integrity, but Model 204 proves to be lacking in this area. Most

integrity checks are done by user-written procedural code in Model 204.

There are two types of integrity rules, one pertains to primary keys,

and the other to foreign keys. The entity integrity rule states that no

attributes participating in the primary key of a base relation are allowed

to accept null values. Referential integrity states that if a base

relation R2, includes a foreign key FK, matching the primary key PK, of

some base relation Rl, then every value of FK in R2 must either be equal to

the value of PK in some tuple of Rl, or be wholly null. Let us consider

the integrity rules under the data models involved in the comparison. The

relational data model supports both the entity and referential integrity

rules stated above. The inverted list data model provides no integrity

rules. The hierarchic data model has automatic support for certain forms

of referential integrity. No child is allowed to exist without its parent.

60

61

If a parent is deleted, the system automatically deletes the (sub)tree

rooted at the parent. Similarly a child cannot be inserted unless its

parent already exists. Therefore the hierarchic data model enforces the

following rules:

- nulls not allowed;
- delete cascades;
- update cascades.

Model 204 does not support primary or foreign keys. Two records can

have the same value for the primary key. A foreign key in Model 204 may

not be wholly null, or match the primary key of another record type. There

exists no domain constraints in the data definition part of Model 204. The

notion of domains is similar to that of data types. There is no support

for range constraints either. No data type checking exists in user

language. Model 204 accepts null values for any field in a database

record. Thus Model 204 closely reflects the underlying inverted list data

model's data integrity capabilities.

IMS on the other hand supports all the integrity checks imposed by the

hierarchical data model. It supports additional constraints by means of

it's· logical database and secondary indexing capabilities. The locking

protocols to control concurrent updates in both systems are similar. A

segment can be exclusively locked in IMS, and a record can be locked in

Model 204. DL/I does not provide any locking protocol statements, but user

language under Model 204 provides the following:

- FIND AND RESERVE RECORDS;
- ON FIND CONFLICT;

62

- COMMIT;
- TRANSACTION BACKOUT.

The FIND AND RESERVE statement obtains exclusive access for a set of

database records. The ON FIND CONFLICT statement is an error check clause

to react to a condition when an application is trying to access record(s)

held by another user. The COMMIT statement completes a database update and

removes exclusive access from a set of records. The TRANSACTION BACKOUT

feature undoes any database update operation which left the database in an

erroneous state. More detailed information on data integrity checks is

provided in the CCA User language Manual (15).

Data Security in Model 204

The file manager in Model 204 is responsible for the data security of

a database. Eight basic types of Model 204 security features are : login

security, file security, group security, record security, field level

security, procedure security, subsystem sec.urity and terminal security, CCA

File Manager's Guide (11).

The login security feature limits access to the Model 204 system by

requiring a user to enter a valid password while logging on to the system.

The system manager maintains a system access table with privileges for each

user identification number. These privileges are granted once a user logs

on successfully.

File security is related to protected access to Model 204 files.

Files in Model 204 can be password protected. If a user successfully opens

a file with the correct password, then appropriate privileges pertaining to

the data and application programs, as well as a user class number that is

used with procedure security, and field level security levels, are assigned

to the user. The security level is segregated into three levels namely

public, semi-public, and private. A public file is not password protected

and default privileges are assigned to the user. A semi-public file

requires a password to grant a user the needed privileges. An incorrect

password for a semi-public file results in default privileges being

assigned to the user. A private file requires a correct password to give a

user access to the data, and application programs residing in that file.

The privileges granted to a user determines the type of operation that the

user can perform. The system manager maintains a password table, which

contains password and privilege information for files, file groups and

login accounts. A file can have several passwords defined for it, and each

password may have a different set of privileges associated with it. A user

can be assigned the privilege to override record security. Data update by

ad hoc requests or host language programs comes under file privileges. The

ability to run, view, update or delete application programs comes under

file privileges.

Group security is identical to file security except a set of Model 204

files comprise a group. If files of a group were individually defined to

the system then the user's privileges are the· intersection of the

individual privileges of each file. Only privileges that every file has

specified for it are granted. If a file of a group is accessed

individually then the group pri_vileges are imposed on the file. But if a

file is opened both as a member of a group as well as an individual file

then individual file privileges are imposed on the file. If a file is

referenced and it is concurrently a member of two groups, the user's

63

privileges are the union of the privileges associated with the groups.

Record security limits user access to individual records in a Model

204 file. Retrieval or update of protected records is limited to

privileged users. A file needs to be defined to have record security

during the file creation phase. If a file has record security active then

every record stored in the file has the user identification number appended

to it. Thus during retrievals a match with the user id and the security

key in a record allows access to the record. To allow for multiple access

to records, the user needs to explicitly append user ids which can be

granted access to the record.

Field level security protects sensitive fields in a Model 204 record.

This restricts the kinds of access to fields within a record. Field level

security is imposed on the file when it is opened for access. Field level

security comes into effect only if access to a data record has been granted

by previous file level and record level security measures. Field level

security is implemented via the following access privileges:

- select, ability to locate records with a user language
statement;
- read, ability to display field contents;
- update, ability to change the contents of a field;
- add, ability to add new occurrences Of a field.

The above access privileges are termed as user levels. The add level

can be used in the following environment: data entry clerks can add new

field occurrences or records without being able to change or even examine

them. Field levels are defined as the access privileges associated with a

field when it is defined. Levels are numbered from O to 255. Zero implies

no security and 255 implies the highest security. Fields can be assigned

levels in a hierarchical manner.

64

FIELD

course.id
course name
department
enrolled students
instructor name

FIELD LEVEL SECURITY(READ)

0
0
20
30
40

Figure 8. A Field Security Scheme in Model 204

The fields are listed in the order of increasing sensitivity.

Instructor name is the most sensitive field; course.id and course name

have no security level imposed on them. Each user has field level security

access levels associated with each file opened. These correspond to the

four field access levels: select, read, update and add. These user levels

also range from o to 255. When a user attempts to access a field in a

particular way, the system compares the user's access level with the

field's access level. If the user's access level for the desired access

type (e.g update) is greater than or equal to the field's access level,

then the particular operation is allowed. Taking the previous field level

security example, if a user has read user level set at 30, then read access

is permitted to the fields with field access levels less than or equal to

30 (i.e. the user can access the course.id, course name, department, and

enrolled student fields, but access to the instructor field is disallowed) •

The user levels reside in the password table for a file.

Procedure security is related to access to application programs. A

65

Model 204 file can contain both application programs as well as data.

Separate sections in the file are dedicated for these specific purposes.

Procedure security restricts an unauthorized user from invoking an

application program and accessing sensitive data.

An application subsystem in Model 204 refers to a group of data files

and application programs which perform related functions for a specific

application. All the previously mentioned security measures can be

assigned in a concise manner to an entire application subsystem.

Terminal security restricts access to certain user ids, files, or

groups from specific terminals. Each login id, file or group can be made

accessible from a restricted list of terminals only. Terminal security is

used with hardwired terminals only, because the node name for a terminal

remains a constant. Dial up terminals can have the node number change for

a terminal on each dialling, so terminal security is not possible for these

types of terminals.

Data Security in IMS

To protect against unauthorized use of the system, IMS provides two

types of security; basic security and security tables, McGee (29). The

basic security restricts IMS commands to the master terminal only. The

master terminal is used for monitoring of on-line execution, startup,

shutdown, and enabling and disabling of lines and terminals. Attempts to

enter such a command from a terminal other than the master terminal are

rejected. Basic security is implemented via security tables that are built

with the security maintenance utilities program. The security definitions

from these tables come into effect at startup. The master terminal can be

66

used to override these constraints. A typical entry in the security tables

has the following format:

transaction-type-code ,
command name

logical-terminal-name

This limits particular transactions or commands to particular logical

terminals. The security tables may also contain entries of the following

type:

transaction-type-code, remote-execution-id

This requires that particular transaction types originate from

particular remote executions. A different set of definitions may be

supplied for each logical terminal that is associated with a given physical

terminal, thus giving the physical terminal different security attributes,

depending on which one of it's logical terminals is enabled. The security

tables may further control terminal user access via entries of the

following form:

transaction-type-code
command name

, password

These entries require that transactions or commands of the specified

type contain a specific password, before they can be accepted by the

system, regardless of the logical terminal from which they are entered.

Data security features are enforced in IMS at the data definition phase

also. A sensitive segment is one which can be viewed by a user. These

segments, and fields which form the segments are included in the user's

view. A user of the view is not aware of any other segments or fields,

67

thus providing security to these hidden segments and fields. Sensitive

segments and sensitive fields are specified by the SENSEG and SENFLD

statements respectively. If a certain sensitive segment has no sensitive

fields defined, then by default all fields in that segment are sensitive.

The PROCOPT (processing option) entries in a SENSEG definition specify the

valid operation types. I (insert), R (:r;eplace) , D (delete) , and G (get) are the

possible PROCOPT options. A definition of a sensitive segment is given

below.

SENSEG NAME= MEETING, PROCOPT = I,R,D,G

The statement specifies that the meeting segment is in the user's

view, and insert, delete, replace and get operations may be performed

against this segment type. IMS relies on file level security on another

package RACF (Resource Allocation & Control Facility). Data entry data

bases allow data to be input via certain logical terminals only.

Discussion

The file level security features are more advanced in Model 204 than

in IMS. IMS depends on file level security on RACF (Resource Allocation &

Control Facility). The basic data object that can be protected in IMS is

segment, and for Model 204 it is a record. Field level security is

assigned to these objects when they are defined. Both systems allow for

fields to be defined as sensitive. The overhead due to security options in

both systems is heavy. In IMS each transaction on a segment is verified

with the processing options allowed for that segment type. Similarly every

record update in Model 204 is checked for field security levels. Terminal

68

security features are comparable under the two systems. Both systems

provide audit trails to detect unauthorized access. Model 204 provides

data encryption in way of the CODED field attribute. Application programs

are protected in Model 204 via the procedure security option. Application

programs in IMS are developed in a host language, thus the development

environment is responsible for their security and not IMS.

69

CHAPTER VII

STORAGE ORGANIZATIONS

Storage Organizations in Model 204

The Model 204 file system supports the following kinds of data

structures: flat structures, relations, hierarchies, and networks, CCA

File Manager's Guide (11). No physical linkage is used between data items,

and the relationships are maintained at a logical level by the use of value

indexes. The primary access technique utilized in Model 204 is inverted

list. A field is the smallest data item possible in Model 204. A

collection of fields forms a record. A file is defined as an arbitrary

collection of records. Each field has a name and a value, and the various

data manipulations are performed on these field name = value pairs. These

fields can be assigned certain pre-defined attributes that define indexing

options, and internal storage structure formats. Model 204 allows a

maximum of 4000 different field names in a single file. The records are

variable length, with no limit to the number of fields in a record. The

record does not have a pre-defined format, and any number of fields can

appear any number of times. Each Model 204 record is assigned an internal

record number, which is used by the system to build index entries for the

record. A file can contain records with varied formats. 16.7 million

records is the maximum limit for a Model 204 file. These files can be

logically linked via field values. Any number of files can be logically

70

·.

linked in such a manner. One Model 204 job can access a maximum of 32,767

files. Due to the logical nature of the relational data model the files

and records have a flexible format. A new field can be added to an

existing record even though it was not previously defined. The file

supports additions of completely new types of records. New logical

relationships can. be developed among fields, records or files, without

modification to the underlying structure. The flexible nature of this data

model can be contrasted with the data dependent hierarchical data model.

The records in Figure 9 help in explaining the inverted list format of a

Model 204 file.

INTERNAL RECORD
NUMBER

0
l
2
3
4

DEPT
DEPT
DEPT
ROOM
ROOM
ROOM

COURSE. ID DEPT.

12296 CO MSC
12325 COM SC
29132 MATH
31298 ECEN
32915 MATH

INVERTED LIST

= CO MSC O,l
= MATH 2,4
= ECEN 3
= MS 212 0,4
= MS 121 1
= ES 212 3

Figure 9. An IFAM example

ROOM INSTRUCTOR

MS 212 RAY,HOLMES
MS 121 BATES

JONES
ES 212 JAMES
MS 212 JOHN

The example shows five records and their index entries. There· are

multiple occurrences of a field in a record(e.g. record O instructor

71

field), and a record may have a missing field value (e.g. record 2 room

field). When a Model 204 file is created certain fields can be assigned

the KEY attribute, so that they can be indexed. Each index entry contains

one field name = value pair, and a list of records in which the pair

oc"Curs. When a KEY field is defined, it's internal record number is noted

in the index. To retrieve all MATH department courses which meet in MS 212

a search of the file index is performed. MATH appears in records 2 and 4,

and MS 212 appears in records O and 4. Model 204 then compares the two

lists and pulls out record 4 which satisfies the request criteria. Fields

are given the NON-KEY attribute in case keyed access is not needed. This

saves index space. But if a retrieval performs a search by one of these

NON-KEY fields, the performance greatly reduces as a sequential search of

the database is performed. This feature of allowing a NON-KEY field to

query the database may result in highly inefficient application programs.

In a hierarchical database like IMS each key field has to be explicitly

stated, and access paths pre-defined, so this performance deterioration can

never occur.

A Model 204 database consists of one or more physical datasets. These

datasets consist of fixed length records called pages. A Model 204 file is

divided into 5 tables or sections.

l) FCT - File Control Table keeps track of the file parameters, file

definition names of all datasets on the field, and other control

information. The FCT is of a fixed size; usually it is fairly small in

comparison to the rest of the file.

2) TABLE A - is a dictionary of the field names and coded field values in

the file •. It is further divided into sections for field names, values of

72

FEW-VALUED fields, and MANY-VALUED fields. The field name section should

be as small as possible to aid efficient access. Table A is fairly small

as compared to the other tables.

3) TABLE B - contains the retrievable data in a Model 204 file. This is

the largest section of the file. Records in Table B are stored in internal

file segments to minimize storage and optimize retrieval.

4) TABLE c and TABLE D - make up the indexing structure necessary for key

retrieval of records. There is an entry in Table c for every field name =

value pair that occurs in the file for fields defined as key. If the

field name = value pair is not unique in the file, Table c contains a

pointer to an entry in Table D. Table c is a hashed file divided into

entries of 7 bytes each. As mentioned earlier it stores index information

for a KEY field. A chain of entries is stored in Table c for each value

stored in a KEY field. The head of each chain is called a "property

entry". The property chain identifies-the field name = value pair that is

indexed by other entries in the chain. An entry is placed in the chain for

each segment of the containing records that have the .field name = value

pair in the property. Table D contains lists of Table B record numbers for

all of the KEY field name = value pairs that occur more than once in the

file. It also contains user language procedures, a procedure dictionary

(used to store procedure name and procedure classes) .

There is some free space available to the file on unassigned pages in

the free space pool. A KEY field has an index in Tables c and D, while the

data records reside in Table B. The KEY fields allow for quick index based

retrieval, but insert, delete or update operation is slowed down as indexes

have to be updated. These operations on an ordinary NON-KEY field require

73

very little processing time as records in Table B only need to be

manipulated. A search on a NON-KEY field involves a sequential search of

Table B records. The sequential search costs can be reduced in cases where

both KEY and NON-KEY fields are specified in retrieval conditions. In this

case, Model 204 diminishes the number ·of records to be searched directly by

performing the indexed selection first. Records that are eliminated, based

on KEY conditions, are not searched sequentially. The Model 204 file

system provides an extremely powerful operation to redefine a field as KEY,

after the file has been pre-defined and loaded with this field as NON-KEY.

The setting up of indexes and pointers is done dynamically and is invisible

to the user. Sufficient space should be left in Table C for this

inversion. The Table C size is computed using the following formula:

CSIZE = 1.2 * (14*Vu) + 7(N+l) (Vn + Vr)

Usable Page Size

Vu = total number of fieldname = value pairs that usually appear in
only one record in the file (e.g. course.id~.

Vn = total number of fieldname = value pairs that usually appear in
more than one record in the file (e.g. course.name).

Vr = total number of extra entries required for all numeric range
retrieval fields.

Vu and Vn apply to fields with key or numeric range attributes.

This is a productivity booster for an application programmer in Model

204. In a hierarchical system such a field attribute change would require

a complete redefinition for access by the new key.

A field can have a NUMERIC RANGE attribute so retrievals for field

values numerically equal to, less than, or greater than, or in between

certain values can be performed. The INVISIBLE attribute allows the user

74

to stot:"e logical t:"elationships between physical t:"ecot:"ds. A set of physical

t:"ecot:"ds can be t:"ett:"ieved by an INVISIBLE attt:"ibute field. Undet:" not:"mal

cit:"cumstances, the stot:"ing and updating of logical t:"ecords in a Model 204

file is done at one time i.e Tables A,B,C,D at:"e changed simultaneously.

When there is a high volume of updates, efficiency and space t:"eductions can

be gained by deferring the updates to the index (Tables C and D) . The

deferred update featut:"e is provided via the DEFERRED attribute fat:" a field.

The CODED attribute can be used to save space. When a value that has the

CODED attribute is defined, the character string is stored in Table A (the

internal file dit:"ectory) , and a four byte value code pointing to that

character string is stored in a logical t:"ecord in Table B. Space is saved

when thet:"e are several records that contain the same value. The stt:"ing is

stored only once in Table A, and the four byte code is stot:"ed in each of

the several records in Table B. The coding and decoding of these values

may slow down updates and retrievals at the cost of saved space. Field·

75

value encoding is entirely transparent to the user. Data is returned.

exactly as it was entered, and codes are system generated. As Table B

contains the data records, a file structure may be imposed on this Table.

Entry ordered, reuse-direct-file-space, sorted and hashed files can be

used to store Table B records. Model 204 primarily utilizes the inverted

file access method. Figure 10 explains this inverted list format. A

primary index on course. id is referenced by two secondary indexes on

department and room. A -1 in the pointer field signifies the end of a

pointer chain. Files such as our inverted indices, in which a secondary

key leads to a set of one or more primary keys, are called inverted lists.

The inverted aspect comes in when a secondary key works its way back to a

primary key. After the primary key is located, the primary key index helps

locate the physical record.

'St;C.oNDAI<!)' lNlJ EX t3y
tEpARTMENT

0 CoM~C.

Ee.EN

MAIH

SE'ONJlAl!y f\..ll)EX By

s<.oor-1
Es 212

M$ r21

.2. MS. 212

0

Lt·

1

1

2

0

0

3

4·

0

2.

3

I Ll4b.

2~13.2

12:3.2S"

o.2'11S-

3U~8

(Z2 9 {:,

'312Cj5

12.325""

32"115"

Figure 10. Inverted Lists

L1N1<.Eb l1sr OF

2

3

-I

-I

,.,

3

-1

-I

-q
.

PRtMl'\Jl.Y KEY

RefERENCcs

Entry ordered files store records in a chronological order in Table B.

These files provide inverted list capabilities. When a record in an entry

ordered file is deleted, the inter.-nal record number is not used. New

records are always appended to the end of Table B. This mode, called

append only is the least expensive for updates. However Table B gets

filled up even though space has been released by record deletions. When

the reuse option is specified, then the entry order of records is

76

disrupted. Such files are called reuse-direct-file-space files. There are

two append modes in such files namely reuse-first mode and append-first

mode. In the reuse-first mode Table B record numbers freed by deletions

are reused for additions whenever possible. This mode optimizes Table B

space utilization at the expense of update time. In the append-first mode

records are appended to the end of Table B, as long as there is space

available. Record numbers are reused only when there is no space left at

the end of the file. In a sorted Model 204 file a particular field is

designated as a sort key, and logical records are stored in Table B in a

sorted order by key. A sort key can be alphabetic, thus it provides a

convenient method of doing alphabetic ranging on a single key without doing

an actual search. This sorted organization of Table B is similar to ISAM

(Indexed Sequential Access Method) with master and overflow areas. The

logical records of a sorted file are stored on the pages of Table B. The

pages in a sorted file are grouped by the range of the key values. A sort

group consists of a fixed number of pages of master area in which the

records are stored in strict order, and a fixed number of pages of overflow

area to accommodate overflow records from the master area. A number of

extra overflow areas are also reserved at the beginning of Table B. A

sorted file needs to be loaded with pre-sorted input so that the records

will be stored sequentially on the master area pages. For example, a file

with each master area occupying two pages, each overflow area occupying one

page, and three extra overflow areas at the beginning of Table B, after the

initial load is shown in Figure 11.

77

BEJIEMpTy I
·p.i,.9EO p1'-C.1E1 pAqE2
.....__~-~--~~ J

EY.TRPt OVE~fLo W ARE1'

pAqE3
~~--..r---)

FIP.$T
OVERFLOW

ARE.(\

C. MEN g
CHEM
c.a MSc..

pAC,E. 7-

ECON

E.~V(_

E:CEN

pt'rgE 8'.

S£'<oN.b Mftf.TEJ;<. A:R.i:.A

Figure 11. File Lo~~ in Model 204

In the figure above the first sort group (pages 3 through 5) contains

all records with the sort key from ACCTG to BUSAD. A new record insertion

is first attempted in the master area. If it cannot be inserted in the

proper order, it will be stored instead on a page of that sort group's

overflow area. If all of the pages of this preferred overflow area are

full, the record is said to "spill" to a previous or extra overflow area.

Indexed sequential access is a term used to describe situations in which a

user wants bot~ sequential access to records in order by key and indexed

access to the same records. ISAM can be provided by the B+ tree data

str:ucture.

78

79

l INDE,X SET

J

Figure 12. Indexed Sequential Access Method

A B+ tree consists of an index set providing the indexed access, and a

sequence set for the sequential access. All the data records are stored in

the sequence set. Insertions and deletions of records are handled by

splitting, concatenating, and re-distributing blocks in the sequence set.

The index set which is a B tree is used as a locater for the blocks in the

sequence set. When read in a logical order, block after block, the

sequence set lists all of the records in order by key. The index set can

be viewed as a cylinder index, with pointers to all cylinders used to store

an indexed sequential file. The sequence set can be viewed as a linked

list of cylinders. A certain portion of each cylinder is dedicated as a

track index. This index locates the track in a cylinder on which a record

is stored. Each cylinder has its overflm-J area which is primarily a linked

list. There are various optional independent overflow areas present too.

The tracks are filled to a maximum of 80% when the file is initially

loaded. This allows for later insertions. If a track gets filled up then

the overflow area is utilized. Each track has a pointer to the overflow

area. If a cylinder gets filled up then either the file needs to be

reorganized or the optional independent overflow area needs to be utilized.

In a Model 204 hash key file, a particular key is chosen as a hash

key, and logical records are randomly placed in Table 8 according to their

hash key values. As Model 204 hashes directly to the Table 8 records

this reduces disk I/O. Hash key files are recommended for query operations

where a single primary key performs the retrievals. Extra space in Table B

is needed to accommodate the large number of bucket slots. Hash key files

are thus suited for applications which retrieve and process records one at

a time. Model 204 typically requires two disk transfers to accomplish

this: one to index in Table C, and one to the logical record in Table 8.

Using hash files eliminates the the disk access for the index entry. When

a record is stored in a hash key file, it is stored on an apparently random

page in Table B; the page number is governed by the record's hash key.

Records which collide to the same page number will be stored in a

progressive overflow manner in Table 8.

Mode~ 204 gives the file manager an option of storing data in a single

physical file, in multiple files or in a file group. Several logical files

can be incorporated into a single physical file, because multiple logical

record types are supported in each physical file. This saves disk accesses

as explicit file cross referencing is avoided. Data redundancy is reduced

by combining logical files. The smaller indexes reduce disk storage

overhead. Separate logical files have their advantages too. If the

on-line storage is limited, some unnecessary files can be left off-line.

80

Heavily manipulated data can be targeted for checkpointing and backup.

Separate logical files make controlled access to data easier to implement.

A group is a collection of physically distinct files, which appears to the

user as a single logical entity. Thus advantages of both the previous file

types are incorporated into a group. File grouping is ideal for data aging

applications. Each member file forms a replacable aging unit. Data

sharing is facilitated by a file belonging to multiple file groups.

Storage Organizations in IMS

IMS provides two distinct classes of data structures: DA class, which

are seen by the data administrator; and the AP class, which are seen by the

application programmer, McGee (29). The DA class is primarily hierarchic,

but with provisions for interconnection of hierarchies into networks to

reduce redundancy. This class is designed for efficient storage and

retrieval of data. The AP class is strictly hierarchic, and is a subset of

the DA class. This class provides a simplified view of the data,

appropriate for application development. The AP structures can be defined

in terms of DA structures, and all operation9 performed on the AP class are

automatically mapped to the underlying DA class~ The DA data structure

class, and the the implementation of DA structures will be described.

81

p ,.ys1<...1,L.
MT!r
s>rsi:

\

FIC;Lb.

log1U1L

~ElAT10NsH'1p

Figure 13. Data Administrator Data structure Types

Figure 13 illustrated the various DA data structure types, and the way

in which the structures are composed of other structures. A segment is the

basic structure in the DA class. It is primarily a string of bytes.

Segments can either be fixed or variable length, and can comprise of one or

more fields. A field is a string of bytes within a segment. An example of

a segment with associated fields would be a course segment with fields

describing the course number, course name and course department. One of

these fields may designate the segment sequence field, or key. A record is

a single rooted tree of segments that is produced from it's record type in

accordance with the following rules:

The root segment type produces a single segment of that type;
Each dependent (child) segment type produces zero or more

segments of that type (twins) under each instance of it's
parent segment type. The twins are sequenced by a key, if
the child segment type has a key.

The root segment represents a major application entity type, and the

dependent segment types represent hierarchically subordinate entity types,

82

or collection of attributes that occur optionally or with variable

frequency. Concatenated keys are used to identify a segment uniquely

within a database record. A concatenated key is constructed by

concatenation of key values along the tree access path to that segment. A

physical database is a set of records of a single type. The sequence of

records in a database is determined by the method used to implement it.

The various methods to implement physical databases will be described in

detail later. To reduce redundancy in physical databases the logical

relationship structure type is utilized. It permits shared access to

stored data. Many-to-many relationships are supported between entity

types. These relationships can be both unidirectional and

bidirectional. The application programmer's view is limited to hierarchic

records, and virtual hierarchic structures are defined in terms of physical

databases and logical relationships. These virtual structures are named as

logical databases. They are a logical view of the stored database, and

segmeats of these logical databases are materialized from underlying

physical databases. A logical database definition is the same as view

definitions in a relational system. The index database construct is

provided for fast direct access to physical databases. The index database

structure is composed of primary index and secondary index databases.

Primary index databases provide direct access to record root segments. The

index database record contains a key and a pointer to the indexed root

segment. Secondary index databases provide fast direct access to a segment

within a physical or logical database, by means of data within the segment,

or some dependent segment. The segment to be accessed is called the target

segment, and the search field is termed as the source segment. At most,

83

one primary index database, and any number of secondary index databases may

be associated with a given physical database. All physical databases

connected by logical relationships, together with their associated index

databases, form the database group.

IMS has four access methods to implement the previous data
structures:

- SAM (Sequential Access Method);
- ISAM (Indexed Sequential Access Method);
- VSAM (Virtual Storage Access Method);
- OSAM (Overflow Sequential Access Method).

OSAM is utilized to supplement ISAM. IN OSAM records may be accessed

sequentially or directly by relative byte number. Both fixed length

unblocked and blocked records can be stored and accessed from a disk. The

storage organizations in IMS use physical pointers. A physical pointer

contains a four byte number, which is the relative number of a byte in an

access method dataset. A physical pointer points to a dataset record or a

byte sequence therein by specifying the relative byte number of the first

byte of the record or sequence. The physical databases can be implemented

by one of the following methods:

- HSAM (Hierarchical Sequential Access Method);
- HISAM (Hierarchical Indexed Sequential Access Method);
- HDAM (Hierarchical Direct Access Method);
- HIDAM (Hierarchical Indexed Direct Access Method);
- GSAM (Generalized Sequential Access Method);
- _DEDE (Data Entry Data Base);
- MSDB (Main Storage Data Base).

Each access method has different performance and storage

characteristics, and the user is given a choice to select an appropriate

method for implementation of a specific database. In all implementations a

84

85

segment is broken up into two parts: (1) a prefix part that contains a

segment code and other implementation related information; and (2) the data

part that contains the DA segment byte sequence.

!Pl(EF1)(. I DATA-
"

I PRE.Fl)(I

.bATA

Figure 14. DA Segment Byte Sequence

The prefix and data parts are stored contiguously, unless the length

of a variable length segment increases beyond the space originally

allocated. In that event, the data part is stored separately, and linked

to the prefix part by a physical pointer.

In HSAM, a physical database is implemented as a single SAM dataset

with fixed length unblocked records. The segments of each logical database

record are stored in hierarchic sequence in one or more consecutive

physical database records. Thus the hierarchic sequence is represented by

physical contiguity. The only operations that can be performed on an HSAM

database are ISRT (Insert) (allowed only when a database is being built),

and GU ,GN ,GNP (only for an existing database). Updating in a HSAM database

is done by reading an existing version of a database and writing a new one.

It is evident HSAM does not support direct access operations.

HI SAM provides indexed access to root segments, and sequential access

from roots to dependent segments. HISAM can be implemented via two

methods: VSAM or ISAM/OSAM. The two implementation techniques are

similar. The index for the roots is implemented via an ISAM dataset, and

successive dependent segments are in an OSAM dataset for the ISAM/OSAM

case. In the VSAM implementation the root index is in the way of a KSDS

(Key Sequenced Data Set), and the dependent segments reside in an ESDS

(Entry Sequenced Data Set). HISAM permits both sequential and direct

access by root segment key. The implementation is efficient if the

frequency of insertions and deletions is low. The use of OSAM/ESDS for

overflow dependent segments permits variable length records, and physical

partitioning of high usage and low usage data within a record.

Both HDAM and HIDAM use physical pointers to link segments. The

pointers are of two types:

Hierarchic pointers, each segment points to the next in
sequence, to link all database segments in a hierarchic
sequence. Both forward and backward pointers are allowed;

Child-twin pointers, each parent points to it's first
child of each type, and each child points to it's next twin.
Again backward and forward pointers are allowed.

one or both type of pointers may be used to implement a record in a HD

database. Hierarchic pointers provide access to a record in hierarchic

sequence, and child-twin pointers provide access to any segment within a

record.

HDAM provides hash access to the roots, and pointers from the roots to

the dependent segments. ~hus only direct access of roots is supported ,

and not sequential access. The primary and secondary datasets in HDAM can

be implemented as ESDS or OSAM datasets. The primary dataset is

partitioned into a root-addressable area, and an overflow area. Root

86

87

segments are stored by a hash function in the root-addressable area, and

the dependent segments are stored in one or more secondary datasets.

Collisions in the root-addressable area are handled by chaining of roots

which hash to the same address. HDAM is useful in a heavy insert/delete

environment, and it provides fast direct access via root keys.

"' - - - -- - -
oJ,, ,,
\

E5h.S/osAM

} PR1MAR7 bAT'6.&T

'

j
I

Figure 15. HDAM Implementation

In HIDAM there exists an indexed access to the roots (primary

dataset), and pointer access to dependent segments (secondary dataset).

The index to the roots in the primary dataset is provided via a VSAM

dataset. The VSAM dataset records have pointers to the roots in the

primary ESDS, which in turn have pointers to dependent segments in

secondary ESDS. HIDll.M is useful in heavy segment insertion/deletion

environment, and when both sequential and direct access to the roots is

necessary.

GSAM (Generalized Sequential Access Method) can be implemented with

SAM datasets or with VSAM entry sequenced datasets. These are primarily

used to implement root only databases with fixed length root segments.

GSAM is structured to support data exchange between application programs,

and other user programs which access SAM or entry sequenced VSAM files.

DEDBs (Data Entry Data Bases) are built for specialized applications

in which a large number of key driven terminals enter data for later

processing by batch programs. A record in this implementation is limited

to a single root type, and a single dependent segment type. A root segment

identifies a terminal, and dependents represent entries from that segment.

DEDB utilizes VSAM and it is a slight modification of HDAM. Roots are

hashed and dependents are chained via pointers. Dependent segments are

sequenced by time of entry. Thus the last segment inserted is the first

one on the chain from the root.

MSDB (Main Storage Data Base) is intended for those databases with

very high access to roots and which can be held in main storage. A

record is restricted to a single root segment type of fixed length. The

root segments can be keyed via two methods. The first method is the normal

one where a key is stored with the root. In the second method a 1:1

correspondence is set up between the logical terminals and the associated

root segments. The first method is appropriate when many terminals need to

access the same set of roots. The second method is suited in an

environment where each terminal requires dedicated storage e.g. teller

records. An in depth discussion of IMS storage structures is provided in

McGee (29).

88

-,

Discussion

The physical storage structures in IMS are far more advanced than

those in Model 204. At the internal level Model 204 imitates the inverted

list data model. The data is presented in an indexed format. In IMS the

under-lying data structure is tree-.like. Entry ordered,

reuse-direct-file-space, sorted and hashed files are the secondary file

types supported by Model 204. The primary access method in Model 204 is

!FAM, while as IMS utilizes either HSAM, HISAM, HDAM, HIDAM, GSAM, DEDB or

MSDB. Due to the variety of access methods available under IMS customized

applications can be developed. If an application desires heavy

insertions/deletions then HDAM may be used, or if the frequency of

insertions/deletions is low then HISAM may be used. If an application has

a high rate of updates and and requires both sequential and direct access

to root segments then HIDAM may be used. DEDB react to specific data entry

terminals. Hashed and sorted access is the only variation provided in

Model 204. The access method is generalized for all application types.

Model 204 is said to be relational because the user has no notion of the

underlying storage structure. At the external and conceptual level data

may be viewed in a tabular format. The data definition phase requires the

keys to be defined so that the field indexes may be set up. After the data

definition phase no mention is made of indexes. This leads to possible

inefficient retrievals. An application programmer may be retrieving data

via a non-indexed field. Such a situation will not arise in IMS, as access

89

is provided in a limited manner via root segments, which are indexed. At

the physical level Model 204 imitates the inverted list data model. This

model is relational~ because the term relational applies only at the

external and conceptual levels and not at the internal level. The

applications developed in IMS are extremely data dependent. Once a

physical database has been set up with the hierarchic tree structure, it

needs redefinition to make any changes. The data definition language in

Model 204 provides the REDEFINE command to set up separate indexes on

existing data. This is a useful feature as user requirements change with

time, and data may need to be keyed via a new field. The REDEFINE command

sets up a new index based on the mentioned key field. The whole process

remains transparent to the user. such a change would require a

redefinition of the physical database in IMS. Both Model 204 and IMS

support logical relationships. The INVISIBLE attribute in Model 204 allows

logical relationships between physical records. The Data Base Group in IMS

can directly support logical relationships.

90

CHAPTER VIII

SUMMARY AND CONCLUSIONS

An on-line classroom reservation system was developed on Model 204.

The system utilizes an algorithm which uses set theory operations to make

room reservations. The algorithm has a polynomial processing order. It

takes O(nk+l) to process a request, where 'n' is the total number of

tuples in each of the located sets in the query, and 'k' is the total

number of intersections and joins. Model 204 does not directly relate to

any specific data model. At the physical level it has an inverted file

access method, thus it is assumed to be an inverted list database. But at

the conceptual and external levels it imitates the relational data model.

In Model 204 data manipulation is set-at-a-time similar to relational

systems, and no inverted list data manipulation operators are provided.

The requirements for a system to be called 'truly relational' are extremely

stringent, and such a system does not exist today. Model 204 is termed

relational-like because it deviates from the data model. The attributes

and tuples are ordered in a Model 204 file. A field can have multiple

values in a record. Primary keys, foreign keys, and the associated entity

and referential integrity rules are not supported. User language does not

directly provide the select, project and join operators. In spite of these

drawbacks Model 204 provides a relational interface to the user. The data

definition is simpler in Model 204 than in IMS. In IMS the data is set up

91

in a tree structured format, and a fair amount of work goes into deciding

the content of segments, and the hierarchical layout of segments. In Model

204 the data is set up in a tabular format, which is conceptually simpler.

A physical database in IMS supports only one primary key at the root. Any

number of key fields may be defined for a Model 204 record. The data

definition in IMS addresses both physical placement and access paths to the

data. This data dependency does not occur in data definitions under Model

204.

IMS and Model 204 have completely different data manipulation

operators, primarily because of the underlying data models involved. IMS

does not have a fourth generation language interface like Model 204. One

of the main differences is that IMS supports record-at-a-time processing,

and Model 204 allows for set-at-a-time processing. The retrieval

operations in IMS query an ordered set of trees in a hierarchic sequence.

There is no ordered sequence that a user language request needs to adhere

to. DL/I does not provide flow of control constructs which are available

in user language. The set-level looping in user language provides loop

avoidance, thus making the application programmer's task easier.

Physical data independence is guaranteed by the nature of the

relational data model. The relational model is at the external/conceptual

level of the ANSI/SPARC database architecture model, thus any changes at

the internal level do not affect the applications. The hierarchic systems

are data dependent as they are at the internal level of the ANSI/SPARC

model. A change in the access mechanisms do not require major changes in

application programs under IMS or Model 204. Thus the degree of physical

data independence under the two systems is identical. Model 204 has a high

92

degree of logical data independence. A field can be added or deleted from

an existing record in a Model 204 file, without affecting existing

application programs. New record types may also be introduced without

requiring any modifications. IMS is data dependent as additions or

deletions of fields from segments require modification of application

programs, and a re-definition of the database. This dependency is called

access path dependence in IMS, and it occurs due to the pre-defined access

paths in application programs. IMS provides for both referential and

entity integrity, but Model 204 proves to be lacking in this area. Most

integrity checks are done by user written procedural code in Model 204.

Entity and referential integrity checks are not provided by Model 204 as it

does not support primary and foreign keys. File level security features

are more advanced in Model 204 as compared to IMS. IMS depends on file

level security on another package RACF.

The physical storage structures in IMS are far more advanced than

those in Model 204. The primary access method in Model 204 is IFAM, while

as IMS utilizes HSAM, HI SAM, HDAM, HIDAM, GSAM, DEDE and MSDB. Due to the

variety of access methods available under IMS, customized applications can

be developed. Applications in Model 204 may perform inefficient retrievals

as data may be accessed via a non-indexed field. Such a situation will not

arise in IMS as access is provided in a limited manner via root segments,

which are indexed. The applications developed in IMS are highly data

dependent as compared to those in Model 204.

Both Model 204 and IMS provide host language interfaces. Model 204

provides an added capability in way of a fourth generation language, user

language. The development time for an application is reduced under Model

93

204. IMS may finally provide better run time performance because

applications can be customized, and efficient access paths to the tree

structured-data reduce the retrieval costs. The customized system may not

readily accept other applications. The logical data structures in IMS are

biased towards some applications and against others, because they closely

reflect the physical data structure. The logical data structures in IMS

application programs (e.g PL/I structures) closely reflects the tree-like

IMS database organization. A tree-like data structure is biased towards

applications which require only one primary key field. A table supports

applications with any number of key attributes. The tables I through IV

and Figures 16 and 17 summarize the comparative study of the two database

systems.

This study exposed the data definition, data manipulation, data

independence, storage organization, and data protection capabilities of IMS

and Model 204. The classroom reservation system developed in Model 204 not

only provided a common application problem for the study, it also made

available a reservation system which can be used by the registrar's office,

and all departments at Oklahoma State University. Future work in this area

can involve studying the involved systems at an internal level of the

ANSI/SPARC data model. The database architectures involved can be

compared, and a set of benchmarks can be generated to compare the internal

levels of IMS and Model 204.

94

Data for-mats

Pr-imar:y data object

Dynamic indexing

Logical r:elationship

Host language
inter-face

Four-th gener:ation
language

. Quer:y pr:ocessing

Database or:dering

Flow of contr:ol
constructs

Selection power of DML

non-keyed, non-indexed
access

Database query

TABLE I

DATA DEFINITION

IMS

tr:ee-like

segment

not available

pointer: chains

TABLE II

DATA MANIPULATION

IMS

available

not available

recor:d-at-a-time

hierarchic
sequence

not available

low

not possible

execution

MODEL 204

tabular:

r:ecor:d

available

pseudo f or:eign keys

MODEL 204

available

available

set-at-a-time

unorder:ed

available

high

possible

compilation &
execution

95

96

TABLE III

DATA INDEPENDENCE

IMS MODEL 204

Degree of physical
data independence high high

Degree of logical
data independence
(growth) low high

Degree of logical
data independence
(restructuring) low low

TABLE IV

DATA INTEGRITY AND SECURITY

IMS MODEL 204

Concurrency control available available

Exclusive access segment record

Primary keys available not available

Foreign keys available not available

Entity integrity
checks available not available

Referential integrity
checks available not av;ilable

Concurrency control
statements in DML not available available

Audit trail available available

File level security low high

HI!.~M Ii DAM
(v.SAM/ry.r-y ('v.SAM/)

os"M o.sAM

Figure 16. Storage Organizations and Access Methods in IMS

97

HTDAfVI

\ V.Sl\M)

Figure 17. Storage Organizations and Access Methods in Model 204

SELECTED BIBLIOGRAPHY

1. Almond, Mary. An algorithm for constructing university timetables.
Comput. J. 8, l(January 1966), 331-340.

2. Barraclough, Elizabeth D. The application of a digital computer to
the construction of timetables. Comput. J. 8, l(April 1965),
136-164.

3. Brittan, J.N.G., Farley, F.J.M. College timetable construction by
computer. Comput. J. 14, 4(November 1971), 361-365.

4. Cardenas, A.F. Evaluation and selection of file organization model
and system. Commun. ACM 16, 9(Sept 1973), 540-548.

5. Cardenas, A.F. Performance analysis of inverted database structures
Commun. ACM 18, 5(May 1975), 253-263.

6. Chamberlin, Donald D. Relational data-base management systems.
computing surveys 8, l(March 1976), 43-66.

7. Christodoulakis, s. Implications on certain assumptions in database
performance evaluation. ACM TODS 9, 2(June 1984), 163-186.

8. Codd, E.F. A relational model for large shared data banks. Commun.
ACM 13, 6(June 1970), 377-387.

9. Codd, E.F. Relational database: a practical foundation for
productivity. Commun. ACM 25, 2(February 1982), 109-117.

10. Computer corporation of America. Model 204 DBMS reference series,
Command reference manual, release 8.1, September 1985.

11. Computer Corporation of America. Model 204 DBMS reference series,
File Manager's Guide, release 8.1, September 1985.

12. Computer corporation of America. Model 204 DBMS reference series,
System Manager's Guide, release 7.1, April 1985.

13. Computer Corporation of America. Model 204 DBMS reference series,
System messages manual, release 8.1, September 1985.

14. Computer corporation of America. Model 204 DBMS reference series,
Terminal user's guide, release 7.1, April 1985.

15. Computer Corporation of America. Model 204 DBMS reference series,
User language manual, release 8.1, September 1985.

16. Csima, J., Gotlieb, c.c. Tests on a computer method for
constructing school timetables. Commun. ACM 7, 3(March 1964),
160-163.

17. Date, C.J. An introduction to database systems. Reading,
Massachusetts: Addison Wesley Publishing Company, Vol 1, 4th
edition, April 1986.

18. Fry, James P., Sibley, E.H. Evolution of data-base management
systems • Computing Surveys 8, l(March 1976), 7-42.

19. Gosselin, Karl., Truchon, Michel. Allocation of classrooms by
linear programming. J. Opl Res. Soc. 37, 6(June 1986), 561-569.

20. IBM, information management system I virtual storage (IMS I VS),
Application programming reference manual, SH20-9026-2,1975.

21. IBM, information management system I virtual storage (IMS I VS),
General information manual, GH20-1260-3,1975.

22. IBM, information management system I virtual storage (IMS I VS),
system/application design guide, SH20-9025-2,1975.

23. IBM, information management system I virtual storage (IMS I VS),
System programming reference manual, SH20-9027-2,1975.

24. Kim, Won. Relational database systems. Computing surveys 11,
~(September 1979), 185-211.

25. Lions, John. Matrix reduction using the Hungarian method for the
generation of school timetables. Commun. ACM 9, 5(May 1966),
349-354.

26. Lions. John. The Ontario school scheduling program. Comput. J. 10
,2(August 1967), 14-21.

27. McFadden, Fred R., Hoffer, Jeffrey A. Database Management.
California: The Benjamin/Cummings Publishing Co., 1985.

28. McGee, William c. On user criteria for data model evaluation. ACM
TODS 1, 4(Dec 1976), 370-387.

29. McGee, w.c. The information management system IMS/VS. IBM systems
journal 16, 2 (1977), 84-168.

30. Michaels, Ann s., Mittman, Benjamin., Carlson, Robert c. A
comparison of relational and CODASYL approaches to database
management. Computing Surveys 8, l(March 1976), 124 - 151.

99

31. Siler, K.F. A stochastic evaluation model for database organization
in data retrieval systems. Commun. ACM 19, 2(Feb. 1976), 84-95.

32. Stonebraker, M., Woodfill, J., Ranstrom, J., Murphy, M., Meyer, M.,
Allman, E. Performance enhancements to a relational database
system. ACM TODS 8, 2(June 1983), 167-185.

33. Tsichritzis, D.C., Lochovsky, F.H. Hierarchical database management
- a survey. Computing surveys 8, l(March 1976), 104 - 123.

34. University Computer Center (Oklahoma State University), User manual
Third edition, November 1985.

35. Wiederhold, Gia. Database design. New York: McGraw Hill Book Co.
Inc., 1977.

100

APPENDIX A

GLOSSARY OF TERMS

ANSI/SPARC

AP
DA
DBD
DEDB
DL/I
DLET
ESDS
FCT
GHN
GHNP
GHU
GN
GNP
GSAM
GU
HD
HDAM
HIDAM
HI SAM
HS
HSAM
IFAM
IMS
ISAM
ISRT
KSDS
MODEL 204
MSDB
OSAM
PCB

PF
RACF
RDFS
REPL
SAM
SSA
TABLE A
TABLE B
TABLE c
TABLE D
USER
LANGUAGE
VSAM

American National Standards Institute I Systems Planning
and Requirements Committee
Application Programmer: a data structure class in IMS
Data Administrator: a data structure class in IMS
Data Base Definition: a definitional construct in IMS
Data Entry Data Base
Data Language I One: host language interface calls in IMS
Delete: DL/I operator
Entry Sequenced Data Set for VSAM
File Control Table: a file section in a Model 204 file
Get Hold Next: DL/I operator
Get Hold Next within Parent: DL/I operator
Get Hold Unique: DL/I operator
Get Next: DL/I operator
Get Next within Parent: DL/I operator
Generalized Sequential Access Method
Get Unique: DL/I operator
Hierarchical Direct
Hierarchical Direct Access Method
Hierarchical Indexed Direct Access Method
Hierarchical Indexed Sequential Access Method
Hierarchical Sequential
Hierarchical Sequential Access Method
Inverted File Access Method
Information Management System: vendor IBM
Indexed Sequential Access Method
Insert: DL/I operator
Key Sequenced Data Set for VSAM
Relational D~tabase: vendor Computer Corp. of America
Main Storage Data Base
overflow Sequential Access Method
Program Communication Block: a definitional construct in
IMS
Program Function
Resource Allocation and Control Facility
Reuse Direct File Space: a file type in Model 204
Replace: DL/I operator
Sequential Access Method
Segment search Argument
Dictionary of field names in a Model 204 file
Data section of a Model 204 file
Indexing section of a Model 204 file
Indexing section of a Model 204 file

Fourth Generation Language in Model 204
Virtual Storage Access Method

102

APPENDIX B

CLASS RESERVATION SYSTEM PROGRAMS

DATA ABSTRACTION

The class room reservation system database was set up using a tape dump of
an IMS course database. The tape consists of a hierarchical sequence of
segments. The tape dataset attributes are:

DSN = (RECFM=VB, LRECL=l004, BLKSIZE=8000, DEN=3),
VOL=SER=T6363

The tape was copied onto a two disk datasets to perform the abstraction.
The two disk datasets are: ul0820a.class.data; ul0820a.descrp.data. The
hierarchy chart lists the procedure calls for the abstraction process.

\. ~)

LA)

LB)

\A)

VI 0 8 .2.oA , C. l.Jl)S<; ..bATA­

t} 1 ~K.

SE fupD!rTI\-

SETvL•<S

l
SEilJe.Sc.R.

1
HRS

u10820A-.f>~<1~,.D11rPr

~151<.

104

The pcb definitions for the course and meeting segments of the IMS
database are:

COURSE
12 crsid
12 crskey.

16 crssem.
20 year
20 semester

16 crsname.
20 dept
20 course-number
20 type-crs

88 theory

picture x(5).

picture xx.
picture x.

picture x(5).
picture x(4).
picture x.

value 'l'
88 discussion value '2'
88 independent-study value '3'
88 lab value '4'

20 sec picture x(3).
12 filler picture x(50) •

. MEETING
12 seq
12 meeting-time-place

16 meeting-time
20 days

24 mon
24 tue
24 wed
24 thr
24 fri
24 sat

20 begin-time
24 b-hr
24 b-min

20 end-time
24 e-hr
24 e-min

picture x(3).

picture x.
picture x.
picture x.
picture x.
picture x.
picture x.

picture x (2) •
picture x (2) •

picture x (2) •
picture x (2) •

16 meeting-time-free-form
20 indicator

redefines meeting-time.

20 meeting-time-ff
16 meeting-place

20 bldg
20 room

12 instructor
12 filler

picture x.
picture

picture
picture
picture
picture

x(l3).

x (4) •
x (4) •

x (12) •
x (50) .

105

VIEWl.

RooM,
ATTR.rt3v1es

\

106

//U10320A JOB (10820,204·!0-FILl!),VINIT,TIME:(0,40),
II MSGCLASS:X,MSGLEYEL=l2,0),CLASS=A,NOTIFY:•
/•PASSWORD '?'~'?'"'
// EXEC BATCH204

II•·· II• PURPOSE - THIS BATCH ROUTINE WAS USED TD BUILD THE CLASS SCHEDULE
/I• DATABASE FILE. THE FILE WAS INITIALLY ALLOCATED WITH
//• THE NAME M204.ACT10820.DATA. THE BATCH204 PROGRAM IS
II• exe:cureo TO SET UP THE FILE ANO DEFINE THE FIELDS.

//••··· //DATA DD DSN:M204.ACT10820.DATA,OISP:SHR /ICCAIN DD •
PAGESZ : 6134
CREATE FILE DATA
PARAMETER ASTRPPG : 384,ATRPG : 1,
PARAMETER FYf'PG = 1,MYFPG : 1,BRECPPG .; 47
PARAM!TER llSIZ! : 51,BRESERYI! : 100
PARAMETER ,f'OPT:itX'OI' ,FILl!DRG~x·o4•
PARAMETl!R PDSTRPPG:2S&,POSIZl!:3
PARAMl!TER CSIZI! : S,DSIZI! : 30
END
OPEN DATA
INITIALIZE
DEFINE COURSE. IO (KEV)
DEFINE DEPARTMENT (KEV)
DEFINE· COURSE.NO (KEYi
DEF I NI! COURSE.TYPE
DEFINI! COURSl!.Dl!SCRP
DEFINE INSTRUCTOR (KEYi
OE~INE BUILDING (KEYi
DEFINE ROOM (KEYi
Dl!FINE SECTION
DEFINE COURSE.DAYS
DEFINI! COURS9.!l!GIN
DEFINE COURSl!.!ND
DE~INE FRE~FDRM
Dl!fl'INE MIN
D!FINI! MAX
DEFINE START (KEV)
DEFINE EXPIRE (KEYi
DEFINE COMMENT
DEFINE NUMBl!R
CLOSE DATA
EDJ
I•
II

//U10120A JOB (10120,M24-TO·TAPE),VIN[,T[Ml!::r(0,40J,USER:•,
// MSGCLASS::rX,MSGLEVl!L:(1, I) ,CLASS:A,NOTlFY:a•
/•PASSWORD ~~.,.
/•JOllPARM ROQM:E

II•••·· II• PURPOSI! - THIS PROC!DURE IS USl!D TO BACKUP THI! CLASS
II• SCHEDULE DATABASE ONTD TAPE. THE TAPE NUMBER
//• AND THI! LAlll!L NUMlll!R ON THI! TAP! Nl!ED TO 91
II• FILLED UP.

//••··· /•MESSAGE PL!ASE MOUNT Txxxxx
//STl!P1 !XIC M204FLOD,R!GION=3000K
//DATA DD DSN=M204.ACT10820.DATA,OISP:SHR
//DUMPDATA OD DSN:M204.DUMP.DATA,UNIT:TAPI!,
II VDL:a(PRIVATl!,RETA[N,, ,SER=(T1xxxxJJ,
II DISP•(N•W,KEIP,OELITEI,
I/ LAlll!L •inc
llCCAIN DD •
PAGl!SZ :i 1114
OPEN DATA
DUMP TO DUMPDATA
CLDSI! DATA
EDJ
//STl!P2 EXl!C PRTLllS,YOL•Txxxxx
II

llU10&2DA JDS (10120,0UM·PM•2040l,YINl,TIME•(0,40I,
/I MSGCLASS:X,MSGLl!Vl!L:(t, l},CLASS:A,NOTIFV••,USER:•
/•PASSWORD ~'?~~
/•.JOllPARM ROOM:!
/•MESSAGE PLEASE MOUNT TXXXXX··N~P

!/•••·· II• PURPDSE - THIS PROCEDURE IS USID TD RESTDRE THE CLASS
//• SCHl!DULI! DATABASE FROM TAP!. THE TAPI! NUMSl!R
//• AND THI! LASIL NUM98R ON THI! TAPI! Nl!ED TO !!
II• FILLED UP.
II• m204.act10820.data needs to be allocated witn
II• the s•m• attributes as those in chapter 2 of
II• tne thesis prior to running this job.

//••··· //STEPT EXEC M204~LOD,Rl!GION::r3000K
//DATA DD DSN:M204.ACT10320.0ATA,DISP::rSHR
//DUMPOATA DD DSN•M204.DUMP.DATA,UNIT::rTAPE,
II YOL:(PRIYATE,R!TAIN,, ,SER:(Txxxxx)J,DISP•(Nl!W,Kl!EP),LAllEL=xx
//CCAIN DO •
PAGISZ : 8114
CREATE ,ILE DATA
END
DPEN DATA
INITIALIZE
RESTORe 121 ,ROM DUM~OATA
CLOSI! DATA
EDJ
I•
II

..••.•...•.....•......•••..•...•...•.••.•...••..•••.•.•••...•......
• FILENAME CLASS- THIS SSTS UP success1ve CALLS ~OR THE MAIN DRIY!R

00000100
00000200
00000300
00000400

00000500
00000600
00000700

00010900

00011270
00011270
00011300

107

• THE USER CAN QUIT THE PRIMARY MENU BY PRESSING TH! ATTENTION KEV

INCLUDE MAIN

• FILENAME MAlN
AUTHOR - VINIT VERMA
CREATED 11-29·5&

• THIS PROC!OURE IS A DRIVER FOR THE CLASS SCHEDULE SYSTEM
• THE PROGRAM SENSES THE MENU SELECTION ANO APPROPRIATELY
• CALLS THE YIEW1 I, YIEW12, ROOM.ATTRIBUTES OR ROOM.QUERY
• PROGRAMS. THE PAI KEY IS NOT DEACTIVAT!D FOR PROGRAMMING
• PURPOSES. THE LOG OUT PROCEDURE ALLOWS A USER TO EXIT
• MODEL 204. -

•····•······•·•····•··•·•··•····•····•··••·•····•·•••••·•••·•••··•••
RESIT MSGCTL
OPENC DATA
R!S!T MSGCTL
UTASLE LSTSL
UTABL! LOTSL
UTASL! LVTBL
UTABLE LNTBL

BEGIN

MENU MAIN

x '02.

x '01.
5000
1200
200
100

TITLE ' OSU CLASS SCHEDULE SYSTEM ' AT 21
SKIP 4 LINE
PROMPT GENERAL USER {DEPARTM9NTS)• AT 15
SKIP 1 LINE
PROMPT SUPER USER (REGISTRAR)' AT 15
SKIP 1 LINE
PROMPT ROOM INVENTORY OATASASB' AT 15
SKIP I LINE
PROMPf ROOM VACANCY' AT 15
SKIP 1 LINE
PROMPT EXIT' AT 15
ENO M!NU
120. READ M!NU MAIN
130. IF $SITGI 'SILECTION'.~MAIN•SELECTIONI THEN STOP
!ND

• MAKI A CHOICE DEPENDING ON TH! SELECTION

IF SILECTION:1,VI!Wt1
I~ S!L!CTIQN:2,VI!W12
I~ S!L!CTION:3,ROOM.ATTR19UTES
l~ S!LECTION:4,ROOM.OU!RY
I~ SEL!CTIQN:S,LDG_OUT

• ~IL!NAME VI!W11
AUTHOR- VINIT VIRMA
CREAT!D 10•23-81

PURPOS! - THIS PROC&OUR! PROVIDES TH! GENERAL US!R'S
OPTION ~OR THE OIPARTMENTS. NO UPDATES CAN I!

* P!R~ORM!D VIA THIS PROCEDUR!. ONLY DATA
* RETRIEVAL OPERATIONS MAY 91 PERFORMED.
• TH! QUERY ~I!LDS AR!

.COURS!. ID
Dl~ARTM!NT ANO COURSE NUM98R
OIPARTM•NT
BUILDING ANO ROOM
INSTRUCTOR'S NAMI

* THE ~l~ES INCLUD!D SY THIS PROC!DURC AR!

Vl!W2.S • TH! US!R [NTBR~AC! SCREEN
YI!W2 - TH! DATA DISPLAY PROC!DUR!

RESIT MSGCTL : x•o2·
0 DATA

BEGIN

THE INO!X ARRAY IS SET U~ TO DO THI SCROLLING
•••*••••••x•
%1NDIX IS STRING LIN 1 ARRAV(200J
~SCAN IS ~IXED
%COUNT IS FIXIO

THI SCREEN DE~INITIDN

IN SCHED INCLUDE VIEW2.S
IN DATA INCLUDE DEPT

SET UP THE ON CON~LICT CONDITION

ON ~IND CDN~LlCT

~CLASS,MISSAGB
JUMP TO START

ENO DN

'*** 'LEASE TRY LATER••••

108

DEACTIVATE THE CN ATTENTION KEY

······•···················•···•·····••••••·•··••·•••••·•••••·•·
ON ATTENTION

%CLASS:MESSAGE
JUMP TO START

ENO ON

'*** ATTENTION KEY DEACTIVATED ***'

THIS IS THE STARTING POINT FOR THE PROGRAM

START: READ SCREEN CLASS

%CLASS:M!SSACE : '

VERIFY THE PFKEY VALUES

IF i.CLASS:PFK!Y /: 3 ANO %CLASS:PFKEV /: S AND %CLASS:PFKEY /: 6 ANO
'CLASS:PFKEY /: 7 AND %CLASS:PFKEV /: 5 AND %CLASS:PFKEV /: 9 THEN

%CLASS:M!SSAGE
JUMP TO START

END IF

'*** PF' WITH %CLASS:PFKEY WITH ' IS NOT ACTIVE'

CH!CK FOR THE PFJ EXIT KEY

IF %CLASS:PFKEY : 3 THEN

JUMP TO FINISH

END IF

CH!CK FOR THE PF9 OEPARTM!NT QUERY KEY

IF %CLASS:PFKEY : 9 THEN

CALL DEPT
JUMP TO START

!NO IF

CH!CK FOR TH! PF6 R!FR!SH K!Y

PR!PAR! SCRE!N CLASS
JUMP TO START

!NO IF

CHECK FOR THE PFS R!FRESH K!Y

I~ ~CLASS:PFK!Y = S THEN

CL!AR LIST SCROLL

•....•.••.•....•.•..•.••..•..••.....•...••.....•...••..•.....•...•..•
CHECK IF TH! QUERY IS KEYING D~F TH! COURSE NAM! AND NUMBER

••••··•·•····•··•·•···•••···•·••·••············•····•··•·······•··•·
IF ~CLASS: IT!MID : 3 THEN

NUMBER: IN DATA FD D!PARTM!NT : %CLASS:D!PARTMENT ANO •
COURSE.NO : %CLASS:COURSE.NO AND COMMENT IS NOT PRESENT

!ND FIND

CT.NUMBER: COUNT R!CDROS IN NUMB!R

IF COUNT I~ CT.NUMBER !Q 0 THEN

PR!PAR! SCREEN CLASS
~CLASS:MESSAG! : '*** NO MATCH
JUMP TO START

!NO IF
PLAC! RECORDS IN NUMBER ON LIST SCROLL

CH!CK IF TH! QUERY IS KEYING OFF TH! COURSE ID NUM!ER

!LSEIF %CLASS:lT!MID : 1 TH!N

NUM9!R1: IN DATA FD COURSE. ID : %CLASS:COURS!.ID
!ND FINO

CT.NUMB!R1: COUNT R!CDRDS lN NUMB!Rt

IF COUNT IN CT.NUMBER1 !Q 0 TH!N

PR!PAR! SCR!!N CLASS
~CLASS:M!SSAG! : '••• NO MATCH

109

JUMP TO START

ENO I~

PLACE RECORDS IN NUMllR1 ON LIST SCROLL

..................•...••....••......•...•.....•...•...•.•.•.•..••....
CHECK IF THE QUERY IS KEYING OFF FOR A CERTAIN DEPARTMENT

·····•·•·······•···•··•••·······••··•••····••··•··•···•·•·•·••··••··
ELSEIF ~CLASS:ITEMID : 2 THEN

NUMBER2: IN DATA FD DEPARTMENT "4CLASS:DEPARTMENT AND •
COMMENT IS NOT PRESENT

END fl'INO

CT.NUMBIR2: COUNT RECORDS IN NUMBER2

I~ COUNT IN CT.NUMBER2 EQ 0 THEN

PREPARE SCR!EN CLASS
~CLASS:MESSAGI = '*** NO MATCH ***'
JUMP TO START

END IF

PLACI RECORDS IN NUM91R2 ON LIST SCROLL

CHECK lF TKI QUIRY IS KEYINC OFF FOR A CIRTAIN ROOM

!LSE Cl' "4CLASS: I Tl!MI D :; 5 THl!N

NUM91R3: IN DATA FD ROOM : ~CLASS: ROOM AND BUILDING ~ "4CLASS:BUILDING
ENO l"IND

CT. NUMSl!R3: COUNT R!CDRDS IN NUMBER3

IF COUNT IN CT.NUMBER3 EQ 0 THEN

PREPARI! SCREEN CLASS
'tCLASS:Ml!SSACE : '••• NO MATCH cae•
JUMP TO START

END IF

PLACE Rl!CDRDS IN NUM81!R3 ON LIST SCROLL

CHl!CK II" THI! OUl!RV IS Kl!YING Ol"F FOR AN INSTRUCTOR

ELSEII" %CLASS:ITEMID ' S THEN

NUMSl!R•: IN DATA l"D INSTRUCTOR : %CLASS: INSTRUCTOR
l!ND l"IND

CT.NUMBER•: COUNT Rl!CORDS IN NUM81!R4

II" COUNT IN CT.NUMSER4 1!0 0 THIN

PREPARB SCREEN CLASS
%CLASS:M•SSAGI! a '*** NO MATCH •••'
JUMP TD START

END II"

PLACE RECORDS IN NUMBER4 ON LIST SCROLL

END II"

%COUNT ' O

ERR: CDUNT RECORDS DN LIST SCROLL

IF COUNT IN ERR GT 200 THIN
~CLASS:Ml!SSAGI! : '*** OYl!R 200 Rl!COROS TO SCROLL ***'
JUM~ TO START

END II"

l"DR !ACH RECORD ON LIST SCROLL

%COUNT : %COUNT + 1
~IND!X(%CDUNT) ' SCURR!C

!ND FOR

SIT UP THI! CATENATl!D SCAN POINTl!R

'ZSCAN :t I

%DEPARTMl!NT : %CLASS:Ol!PARTMINT
'9CQURSE.ND : ~CLASS:COURSl.ND

PRIPARI! SCRllN CLASS

CALL DISPLAY

JUM~ TO START

~CLASS":D&PARTMINT : ~DIPARTMINT
Y.CLASS:CDURSE.NO : %COU"Sl.NO

110

ENO IF

CHECK FOR THE PF8 SCROLL FORWARD KEV

IF ~CLASS:PFKEV : 8 THEN

%SCAN : %SCAN + 1
IF ~SCAN LE ~COUNT THEN

~DEPARTMENT : %CLASS:D!PARTMENT
~COURSE.NO : %CLASS:COURSE.NO

PREPARE SCREEN CLASS

CALL DISPLAY
ELSI!

%CLASS:Dl!PARTMENT : %DEPARTMENT
%CLASS:COURSE.NO %COURSl!.NO

'·CLASS:MESSAGE: '*•*LAST Rl!CORD ***'
%SCAN : %SCAN ~ I

ENO IF
.JUMP TO START

ENO IF

CHECK FDR THE PF7 SCROLL FORWARD K!Y

IF ~CLASS:Pll'KEY : 7 THEN

~SCAN : %SCAN • 1
IF %SCAN GE 1 THEN

%DEPARTMENT : 1-CLASS:OEPARTMENT
%COURSE.NO : %CLASS:COURS!.NO

PREPARE SCREEN CLASS

CALL DISPLAY
ELSE

1.CLASS:OEPARTMENT : ~DEPARTMENT

%CLASSoCOURSE.NO ' %COURSl!.NO

~CLASS:MESSAG! : '*** FIRST RECORD ***'
~SCAN : %SCAN + 1

l!ND 111'
JUMP TO START

END IF
FlNISHo PRl!PARI! SCREEN CLASS

COMMIT

* INCLUDE TH& SCROLL.LIST FILS

IN SCHED INCLUOI! VIEW2

l!NO
0 SCHl!O
R&Sl!T MSGCTL : x·ot•

.................•••.......•.•.••...........................•....
fl' I Ll!NAMI! YI l!W2. S

AUtHOR • VIN!T V!RMA
CRl!ATl!D • 10•23•51

• PURl'OSe - THIS PROCEDURe P~OVIDl!S THI! USER INT!Rfl'ACe SCRl!EN
* fl'OR THI! GEN!RAL USER'S OPTION. THIS PROC!DURI! IS INYOK!D
*IV TH! Yl!W11 PROGRAM.

SCRl!!N CLASS
TITLI ··--·-·····-·-···· Oklanoma State University Class Schedule
MAX PP'KBV 12
PROMPT MBSSAGI! AT 40 DIP'AULT ' •
PROMPT 'id number : • AT 2 INPUT COURSE. ID L!N B ITl!MID 1 •
PROMPT • instruc'tar : • AT 2!5 INl'UT INSTRUCTOR LEN 13 ITl!MID s
PROMl'T •aays : • AT 53 INPUT COURSl.DAVS Ll!N 6 •
PROMl'T 'min:' AT ea INPUT MIN Ll!N 2
PROMl'T 'dapartmen't : I AT 2 INPUT Dl!PARTMINT LEN 6 lTl!MID 2
PROMPT 'building : • AT 25 INPUT BUILDING LEN 5 ITBMID 4
PROMPT •start : • AT 53 INPUT COURSl.IU!GIN Ll!N 4 -
PROMPT •max:• AT sa INPUT MAX LEN 2
PROMl'T 'course number : ' AT 2 INPUT COURSE.ND L!N 5 ITl!MID 3
PROMPT •room : • AT" 2'5 INPUT ROOM LEN 5 ITEMID 5 •
PRDMl'T 'end AT 53 INPUT CDURSl!.!ND LIN 4
PROMPT •type : • AT 2 INPUT COURSI!. TYPE LEN 2
PROMPT 'sect i an : • AT 25 INPUT Sl!CTION LEN 3 •
PROMPT ·nours : • AT 53 INPUT COURSE.HOURS L!N 2
PRDML9T 'title : ' AT 2 INPUT COURSE.Ol!SCRP LEN 22
PROMPT •unaacided nour : • AT 45 INPUT fl'Rl!BF'QRM Ll!N 14
PROMPT 'baginlyy·mm·dd):' AT 19 INPUT START L!N &
PROML9T •axpirylyy-mlft•dd):. AT 4!5 INPUT l!XPIRI! L!N a
PROMPT •comment:. AT 2 INPUT COMMl!NT1 Ll!N 10
PROMPT AT 2 INPUT CDMMl!NT2 LEN SO
PROML9T AT 2 INPUT COMMINT3 L!N IO
PROMPT AT 2 INPUT COMMENT• Ll!N 80
PROMPT AT 2 INPUT COMMINTS L!N 10
PROMPT AT 2 INPUT COMMINTI Ll!N 80
PROMPT AT 2 INPUT COMMl!NT7 Ll!N &O
PROML9T AT 2 INPUT COMMl!NTS L!N 10
PROMPT AT 2 INPUT CDMMENT9 LEN SO
PROMPT AT 2 INPUT COMMl!NT10 L!N SO

111

?ROM?T AT 2 INPUT COMMENT 1 1 LEN 60
PROMPT AT INPUT COMMENT12 LEN 60
PROMPT AT INPUT COMMENT13 L eN 60
PROMPT AT INPUT COMMENT14 LEN 60
PROMPT 'pfJ exit pfS rafresh pf= - 6 clear pf-7 < - pf-8 - >

pf9 dept. CIU9ry
DEFAULT CURSOR COURSE. I 0
eND SCREEN

* FILENAME DEPT
AUTHOR - VINIT VERMA
CREATED 01·10·!7

* PURPOSE
t THIS SUBROUTINE LISTS ALL COURSES WITH MEETING TIMES FOR A SPECIFIC
* DEPARTMENT. THE LIST IS SORTED BY DAY OF THE WEEK AND TIME OF THE
* DAV. THE YI!W1 I PROGRAM INVOKES THEIS SUBROUTINE.

DEPT: SUBRDUT IN!

A: IN DATA FD DEPARTMENT EQ %CLASS:OEPARTMl!NT ~ND COURSE.DAYS IS
PRESENT

END FIND

CT. A: COUNT Rl!CORDS IN A

Ill' COUNT IN CT.A EO '0' THEN

%CLASS:Ml!SSAGE : NO MATCH
Rl!TURN

!!NO I Ill'
~DAYS IS STRING LEN 2 ARRAY(&)

* INITIALIZE THI! DAYS ARRAY

%DAYS(1) 'M'
"l.DAVS(2) 'T'
%0AYS(3) ·w•
'Y.DAYS{4) 'H'

%DAVS(S) •••
%DAVS(6) 'S'

'·' : 0 S!:T HEADER 1 'COURSI!. ID' AT 3 WITH 'DAY' AT 15 WITH 'Bl!GIN' AT 22 WITH •
'END' AT 30 WITH 'TITLI!' AT 40

NP
AGAIN: 'Y.l :; %1 + 1

IP' %1 l!Q ''1' THl!N

JUMP TO P'INITO

END IP'

CLl!AR LIST P

PLACE Rl!CORDS IN A ON LIST P

S: SORT RECORDS ON P SY COURSl!.Sl!CIN

P'R IN S
%X 'SINDEX(CDU•SE.DAVS,%DAV5(%1))

IP' 1.X /: 0 THl!N

PRINT COURSl!.ID AT 3 WITH %DAYS(%Il AT 15 WITH eouRSl!.Bl!GIN AT 22 •
COURSl!.l!ND AT 30 WITH COURSE.Dl!SCRP AT 40

END I fl'

END l"OR

JUMl9 TD AGAIN

FINITO:

Rl!TURN
l!ND SUBROUTINE DEPT

* fl'ILENAMI! Vll!W2

•.
* PURPDSI!

AUTHOR • VINIT VERMA
CRl!ATl!D 10·23·46

• THIS SUBROUTINE sers UP THI! SCRl!l!N VA~IASL!S TO Bl! OISPLAYl!O.
• THIS ROUTINE IS CALLEO l!ACH TIME FOR A SCROLL fl'UNCTIQN. ONCI! A
• RECORD HAS Bl!l!N IOENTIP'IED IN THI! OATABASI! THIS SUBROUTINI!
• INITIALIZl!S THI! SCREEN VARIABLES. BOTH THI! VIEW11 ANO Vll!W12
• PROCl!DURl!S INVOKE THIS SUSROUTINI!.

DISPLAY: SUSROUTINI!

NEXT.RECORD: %Sl!ARCH : %tNOl!X(%SCAN) + 1

LOCATE: IN DATA fl'D POINTS 'Y.INOl!X('Y.SCANJ AND NOT 'Y.Sl!ARCH
ENO fl'IND

112

FR IN LOCATE

~CLASS:START : START
%CLASS:EXPIRE = EXPIRE
%CLASS:CDURSE. ID : COURSE.ID
~CLASS: INSTRUCTOR: INSTRUCTOR
%CLASS:COURSE.DAYS : COURSE.DAYS
"l.CLASS:COURSE.B!CIN = COURSE.BEGIN
~CLASS:COURSE.ENO = COURSE.END
~CLASS:OEPARTMENT : DEPARTMENT
~CLASS:SECTION : SECTION
~CLASS:CDURSE.TYPE : COURSE.TYPE
'-CLASS:COURSE.ND : COURSE.NO
~CLASS:RODM : ROOM
~CLASS:BUILDINC : BUILDING
"l.CLASS:CDURSE.DESCRP : CDURSE.DESCRP
%CLASS' COURSE. HOURS ' SSUBSTR (COURSE. NO, 4, 1)
%CLASS:FREl~ORM : FRl!EFORM
'9CL.ASS:MIN MIN
"l.CLASS:MAK : MAX

COM1: IN DATA FD COMMENT IS PRl!S!NT AND DEPARTME"NT : %CLASS:Dl!PARTMl!NT
ANO COURSE.ND = 1.CLASS:COURS!.NO ANO NUMBER : '010'

END FIND
FR IN CQM1
%CLASS:CDMMENT1 : COMMENT
END FOR
COM2: IN DATA FD COMMENT IS PRESINT AND DEPARTMENT : %CLASS:DEPARTMINT

ANO COURSE.NO : %CLASS:CDURSE.NO AND NUMBER : '020'
END FIND
FR IN CQM2
%CLASS:CQMMENT2 : COMMINT
END FOR
COM3: IN DATA FD COMMENT IS PRESENT AND DEPARTMENT : %CLASS:DIPARTMENT

AND COURSE.NO : %CLASS:CQURSE.NO AND NUMSSR : '030'
IND l'IND
FR IN COM3
%CLASS:COMMINT3 : COMMENT
END FOR
CQM4: IN DATA FD COMMENT IS PRESINT AND DEPARTM&NT : %CLASS:DEPARTMINT

ANO COURS!.NO : %CLASS: COURSE.NO AND NUMBER : '040'
END FINO
FR IN COM4
'-CLASS:COMMENT4 : COMM!NT
END FOR
COMS: IN DATA l"D COMMENT IS ~RESENT AND DEPARTMENT : %CLASS:D!PARTM!NT

AND COURSE.NO : %CLASS:CDURSl.NO AND NUMBER : ·oso•
. !ND !"IND

l'R IN COMS
iCLASS:CQMMSNTS : COMMENT
!NO FOR
CDMS: IN DATA l"D COMM!NT IS PRES!NT AND DEPARTMENT : %CLASS:D!PARTMINT

AND COURSE.NO : %CLASS:COURSl.NO AND NUMBER : '010'
!ND FINO
l"R IN COMI
%CLASS:COMMINTI : COMMENT
!NO FOR
COM7: IN DATA l"O COMMeNT IS PRISENT AND DEPARTMENT : %CLASS: DEPARTMENT

ANO COURSE.NO : %CLASS:COURSE.NO AND NUMBER : '070'
END l'INO
l'R IN COM7
%CLASS,COMMINT7 ' COMMINT
l!!ND P'DR
COM8: IN DATA FD COMMINT IS PRISINT AND OIPARTMINT ' %CLASS:OIPARTM!NT

AND COURSE.NO = XCLASS:CQURSE.NO AND NUMBl!!R = •oao•
END P'IND
l"R IN COMS
~CLASS:COMMl!NT& : COMMENT
!ND FDR
CDM9: IN DATA l"D COMMENT IS PRESENT ANO DEPARTMENT : %CLASS:OEPARTM!NT

AND COURSE.NO : XCLASS:CDURSE.NO AND NUMBER : '090'
END FIND
l"R IN COM9
icLASS:COMMl!NT9 : COMMENT
END l'OR
CDM10: IN DATA l'D COMMENT IS PRESENT ANO DEPARTMENT: %CLASS:OIPARTMINT

AND COURSE.NO : %CLASS:CDURSK.ND AND NUMBER : '100'
ENO P'IND
P'R IN c·aM10
%CLASS:COMMENT10 : COMMl!NT
!ND FOR
CDM11: IN DATA FD COMMENT IS PRESENT AND DEPARTMENT: %CLASS:Dl!PARTMENT

ANO COURSE.ND : XCLASS:COURSE.NO AND NUMBER : '110'
IND FINO
FR IN COM11
%CLASS:CDMMENT11 : COMMENT
!ND FOR
CDM12: IN DATA l'D CDMMINT IS PRESENT ANO Ol!PARTMl!NT: %CLASS:DEPARTMeNT

AND COURSE.ND : ~CLASS:CDURSl!!.ND AND NUMBER : '120'
e:ND l'INO
l'R IN CDM12
~CLASS:CDMMENT12 : COMMENT
l!NO FOR
CDM13: IN DATA l"D COMM&HT IS PRESENT AND DIPARTMl!NT: XCLASS:DEPARTMENT

ANO COURSE.NO : XCLASS:COURSE.NO AND NUMBER : '130'
ENO ll'IND
P'R IN CDM13
Y.CLASS:CDMMl!NT13 : COMMENT
ENO P'OR
COM14: IN DATA P'D COMMINT IS PRESENT AND DEPARTMl!NT: %CLASS:OEPARTMINT

AND COURSE.ND = %CLASS:COURSl!.ND AND NUMBER ~ '140'
l!ND P'IND
11'R IN COM14
~CLASS:COMMINT14 : COMMENT

113

END FOR

ENO !l'OR
RETURN
ENO SUBROUTINE DISPLAY

* FILENAME YIEW12
AUTHOR- VINIT VERMA
CREATED 11-07-56

* PURPOSE - THIS PROCEDURE PROVIDES THE SUPER US!R'S
* OPTION FDR THE DEPARTMENTS UPOATl!S ARE ALLOWED TO BE
* PERFORMED VIA THIS PROCEDURE. THE QUERY FIELDS FOR THE
* RETRIEVAL OPERATIONS ARE

COURSE. IO
DEPARTMl!NT AND COURSE NUMBER
DEPARTMENT
BUILDING AND ROOM
INSTRUCTOR'S NAM!

* THE PFT KEY PERFORMS THE RESERVE OPERATION, AND THE
* PF2 KEY THE DELETE. UNIOUE COURSE.IO NUM!ERS ARE
* MAINTAINeO FOR THE R!S!RVE OPTION. THE OEL!T!
* KEYS O!l'F TM! COURSE. ID NUM!!R.

* THE !l'ILES INCLUDED BY THIS PROCEDURE ARE

VIEWl.S - THE USER INTERFACE SCREEN
VIEW2 • TH! DATA DISPLAY PROCEDURE

R!S!T MSGCTL = x·o2·
0 DATA

Bl!G l N

INVOKE THE EXPIR! ROUTIN! TO DO THE GARBAGE COLLECTION

CALL EXP!RE
"'.INDEX rs STRING LEN 7 ARRAY{200)
%SCAN IS FIXED
%COUNT IS FIXED

TH! SCR!!N O!P'INITIDN

IN SCH!O INCLUDI! VI!W1 .S

•·····•·····•··•·····•·•·•·•·••······•·••····•···••·•••· * CLl!AR UP THI! M!SSAG! INCASE EXPIR! O!L!T!D RECORDS •..•...•••••.•.•••••.•.•..••..••.....••••...•.•.......•.
'9CLASS:Ml!SSAG! : • •

S!T UP TH! ON CONFLICT CONDITION

ON FINO CDNP'LICT

'tCLASS:Mll!SSAG! 11 '*** PL!ASI! TRY. LAT!R ••••
JUMP TO START

!NO ON

OEACTIVAT! TH! ON ATTENTION K!V

ON ATT!NTlON

'-CLASS:M!SSAC!
JUMP TO START

!NO ON

'*** ATTENTlON KEY D!ACTIVAT!O ***'

THIS IS TH! STARTING POINT FOR THE PROGRAM

START: Rl!AD SCA!!N CLASS

%CLASS:M!SSAC! : •

V!RIFY TH! PFK!Y VALUl!S

IF %CLASS:PP'K!Y /: 1 ANO %CLASS:PP'K!V /: 2 ANO %CLASS:PFK!Y /: l AND -
AND %CLASS:PP'K!V /: 5 ANO %CLASS:PP'K!V /: 7 -
ANO :c1.ASS:PFK!Y /= a AND %CLASS:PP'K!Y /: a TH!N

%CLASS:Ml!SSAG! : '*** Pl"' WITH \CLASS:Pl"K!Y WITH
JUMP TD START

!NO II"

CHECK ~DR TH! PFI RES!RY! KEY

II" Y.CLASS:PP'K!Y : I TH!N

CALL R!S!RVI!

IS NOT ACTIVE'

114

JUMP r·o START

ENO Ill'

CHECK FDR THE PF2 DELETE KEY

IF ~CLASS:PFKEY 2 2 THEN

CALL DELETE
JUMP TO START

END I pr

CHECK FDR THE Pll'3 EXIT KEY

IF ~CLASS:PFKEY : 3 THEN

JUMP TO FINISH

END IF

CHECK FOR THE pprg REFRESH KEY

IF ~CLASS:PFK!Y : 6 THEN

PREPARE SCR!EN CLASS
JUMP TO START

!ND IP

CHICK ll'OR THE PFS REFRESH KEV

Ill' %CLASS:PFKEY : 5 THEN

CLEAR LIST SCROLL

··•·· CHICK IF THI QUERY IS KIYING Oll'F THE COURSE NAME AND NUMBER ...•.•.....•.•.•..•.......
IF ~CLASS:ITEMID : 3 THEN

NUMBER: IN DATA 11'0 DEPARTMENT icLASS:OIPARTMENT AND •
COURSE.NO : ~CLASS:CDURSl.NQ AND COMMENT IS NOT PRIS&NT

END PINO

CT.NUMSIR: COUNT RECORDS IN NUMal!R

IJI' COUNT IN CT NUMBER EO 0 THEN

PREPARE SCREEN CLASS
%CLASS:MESSACE 2 "*•• NO MATCH ••••
JUMP TO START

l!NO [fl'

PLACE RECORDS IN NUMBIR DN LIST SCROLL

CHICK IP THI OU!RY IS K!VING OPP THI CDURS! ID NUMBER•..................................•......................•.
ELS!Ifl' ~CLASS:ITl!M[D : I THEN

NUM9ER1: IN DATA f'D COURSE. IO : ~CLASS:COURSI!. 10
END ll'IND

CT. NUMlll!R 1: COUNT RECORDS IN NUMB-ER I

Ill' COUNT IN CT.NUMISERI 1!0 0 THEN

PR!PARE SCR!!N CLASS
icLASS:MESSAGI! : "*** ND MATCH ***~
JUMP TO START

!NO IJI'

PLACE RECORDS IN NUMISERI ON LIST SCROLL

CHECK IF THI OUl!RY IS KEYING OJl'JI' Jl'OR A CERTAIN DEPARTMENT

·······································~····························
l!LSEIF ~CLASS:ITSMID : 2 THl!N

NUM81!R2: IN DATA Jl'D DEPARTMENT XCLASS:OEPARTMl!NT AND •
COMMENT rs NOT PRESENT

END P'lND

CT.NUM91!R2: COUNT RECORDS IN NUM91!R2

IF COUNT IN CT.NUM81!R2 l!O 0 THEN

PREPARE SCRl!!N CLASS
%CLASS:Ml!SSAGI! : '*** ND MATCH
JUMP TD START

115

END IF

PLAC! RECORDS IN NUMBER2 ON LIST SCROLL

CHECK I, THE QU!RY IS KEYING OF, FOR A CERTAIN ROOM

•••******•··
ELSElF "<.CLASS: ITEMIO : S TH!N

NUM8ER3: IN DATA FD ROOM : %CLASS: ROOM ANO BUILDING
END FlNO

CT.NUMBER3: COUNT RECORDS IN NUMB!R3

IF COUNT lN CT.NUMBER3 EO 0 THEN

PREPARE SCREIN CLASS
~CLASS:MISSAGE : '*** NO MATCH ***'
JUMP TO START

END IF

PLACE RECORDS IN NUMBER3 ON LIST SCROLL

%CLASS:SUILDING

CHECK IF TH! QUERY IS KEYING D~F FOR AN tNSTRUCTOR

ELSEIF ~CLASS:ITEMID : 6 THEN

NUMIER4: IN DATA FD INSTRUCTOR ~%CLASS: INSTRUCTOR
END FIND

CT.NUMBER4: COUNT R!CDRDS IN NUMBIR4

IF COUNT IN CT.NUMl!R4 10 0 THIN

PREPARE SCREEN CLASS
~CLASS:MESSAGB : '*** ND MATCH ***'
JUMP TO START

l!ND IF

PLACE RECORDS IN NUMBER• ON LIST SCROLL

END IF

ERR: COUNT RICOROS ON LIST SCROLL

I~ COUNT IN l!RR GT 200 THIN

~CLASS:MISSAGI s '••• OYIR 200 RECORDS TO SCROLL •••'
JUMP TD START

l!ND IF
~COUNT s 0

~QR EACH RICORD ON LIST SCROLL

XCOUNT : %COUNT + 1
%1ND!X(%CDUNT) • SCURR!C

!ND l'DR

S!T U~ TH! CAT!NATBD SCAN ~OINT!R .•.•.•..•••.•..•.••••.•...............................•..•.•...•..•
iscAN s 1

ioePARTM!NT = %CLASS:Dl!PARTMINT
%CDURS!.ND • %CLASS:CDURS!.ND

PR!PAR! SCR!!N CLASS

CALL DISPLAY

JUMP TD START

!ND II'

%CLASS:DIPARTM&NT : '-DIPARTMENT
%CLASS:CDURSE.ND ' %CDURS!.NO

.............................•.........•.............•.•......
CHECK ~OR THE P~I SCROLL FORWARD KIY

I~ tCLASS:P~KEV = a THIN

%SCAN : %SCAN + 1
I~ XSCAN LI! %COUNT THEN

%Dl!PARTMINT : ~CLASS:O!PARTMINT
%COURSE.NO : Y.CLASS:COURSE.NO

PR!~AR! SCR!!N CLASS

CALL DISPLAY
!LSI!

1.CLASS:D!PARTMINT I ~DEPARTMINT
%CLASS:COURS!.ND %COURS!.ND

~CLASS:MISSAG!= '••• LAST RICORD ••••
~SCAN : \SCAN • 1

116

ENO IF
JUMP TO START

ENO l F

CHECK FOR THE PF7 SCROLL FORWARD KEV

IF %CLASS:PFKEY : 7 THEN

ZSCAN : %SCAN - 1
IF ~SCAN GE I THEN

~DEPARTMENT :: ~CLASS:OEPARTMENT
%COURSE.NO = %CLASS:CDURSE.NO

PR!PARI! SCRl!EN CLASS

%CLASS:OEPARTMENT = %DEPARTMENT
ZCLASS:COURSE.NO = %COURSE.NO

CALL DISPLAY
!LS!

%CLASS:MESSAGE :: '*** FIRST RECORD•••'
%SCAN : %SCAN + 1

END IF
JUMP TO START

ENO IF
FINISH: PREPARE SCREEN CLASS

COMMIT

* INCLUDE TH! SCROLL.LIST FILE

IN SCHED INCLUDE VIl!W2

* SUSROUTINI! R!SERV!

RES!RYE: SUBROUTINE

• CHl!CK trOR A UNIOUI! COURS! ID!NTIFICATION ~UM!ER

UNIQU!:: IN DATA FD CDURSl!.IO:: %CLASS:COURSE.IO
END ll'IND

CT.UNIOUI!: COUNT Rl!CORDS IN UNIOUI!

IP' COUNT IN CT.UNlQUI! /: 'O' THl!N

ZCLASS:Ml!SSAGE DUPLICATE CDURSI! IO ***'
R!!TURN

!!ND IF

* CH!CK CONFLICTS ONLY IF ROOM BUILDING DAYS BEGIN AND !ND ARI
* FILL!D UP BY TH! USl!R ON THI! SCR!!N
**

IF %CLASS:BUILDINC /: •• AND Y.CLASS:~ODM /: •• AND •
~CLASS:CDURSl!.DAYS /: •• AND %CLASS:COURS!.a!GIN /: '' AND •
~CLASS:COURS!.l!ND /s '' THEN

* LOCAT! ALL TH! R!COROS FOR THIS ~QOM

ROOM: IN DATA FD ROOM : %CLASS:ROOM ANO BUILDING : ~CLASS:BUILDING AND •
COURS!.DAYS IS PR!S!NT

!!NO !"IND

* Sl!T TEMPORARY VARIABLES TD DAY 81!GIN AND !NO TIMES

Y.OAVS : '"l.CLASS:COURS!.DAYS
1.!l!GIN : %CLASS:COURSl!.S!GIN
Y.!NDS : '"l.CLASS;COURS!.ENO

• SUSTRACT TEN MINUT!S FROM THI! START TIMI! TO CIVI! A 1~ MIN OV!RLAP •....••••......•...•...•.•......•...•.....•..••...•.•.............•
"•HRS : SSUSSTR(%Sl!GIN, 1, 2)
%MINS : $SU8STR(%1!NOS,3,2)

%TOTAL IS STRING DP 5
%/l'ILL: '0000'

* SUBTRACT T!N MINUTES FROM TH! START TIME TO GIY! A 10 MIN OYl!RLAP

'r.HRS : $SUSSTR('ZBEGIN, 1,2)
%MINS : SSUSST~(Y.B!GIN,l,2)

'"I.TOTAL
~TOTAL
'"I.TOTAL
%TOTAL

,,.HRS * 60
%TOTAL + '"I.MINS
1.TOTAL • 10
%TOTAL I ISO

%1 : SINO!Xl''.TOTAL,'. 'l
'>:.HRS: SSU!STR(,-.TOTAL,1,,-.I - 1)

117

'-MINS : SSUBSTR('ZTOTAL,~I)
Y.MINS = SRDUND(Y.MINS • 60.0,0)
'ZBEGIN : %HRS WITH %MINS

%LEN ' $LEN(r.aecIN)
'ZLEN : 4 - 'ZLEN
%FILL : $SUISTR(%FILL,1,%LEN}
'ZBEGIN : ~FILL WITH %BEGIN

* SET THE CONFLICT FLAG TO LOW

%CONFLICT :i 0

• SET RePeAT EQUAL TO THE LENGTH OF THE DAY STRING

%REPEAT : SLEN(~DAYS)

'ZDAV t : 'ZOAVS

.....................•.........••........•.........•...........••.•
• MAIN ,OR LOOP WHICH CHECK !ACH COURSE MEETING IN THE NEEDED ROOM•..............•...•.•.•.•..•......•.•.•...•...•..•....
FDR EACH RECORD IN ROOM

'ZDAVS : XDAVI

....•.•......•...•...
* LOOP TD CHECK EACH DAY IN TH! DAYS FIELD

FOR 'ZLDOP ,ROM 1 TO %REPEAT

Y.W!!K • SSUBSTR(~DAYS, 1, 1)
~DAYS = SSUISTR(~DAYS,21
%PReSENT ' SINDEX(COURSe.DAVS,%WEeK)

* If' TH& DAY IS PRES!NT IN TH! SEARCHED RICORD TH&N CH!CK TH& TIM&

IF %PReseNT /: 0 THEN

* CHBCK TH& VARIOUS CDMllNATION Of' POSSISLB CDNP'LICTS ...•............•...........................•..•.•.........•....•.•

IF 'X.BBGIN GT CDURS!.l!GIN ANO \B!GIN LT COURS!.!ND TH!N
•PRINT 'f'IRST IN l!TW8!N CDNP'LICT'
°'CONFLICT = 1
!ND IF

IF XENOS CT CDURSE.IEGIN AND %eNDS LT CDURSe.END THeN
*P~INT 'LAST IN IBTW!&N CONFLICT'
XCDNnICT • 1
END IF

IF xaeGIN EO COURSE.BEGIN OR iaEGIN eo COURSE.END THEN
•~RINT 'fl'IRST !OUAL CDN~LICT'
%CONfl'LICT = I
!NO IP'

IF XENOS Eo CDURS!.leGIN DR XENOS Bo COURSE.eND THEN
•PRINT 'LAST BOUAL CONFLICT'
'X.CONfl'L I·CT ii 1
!ND IF

IF xaeGIN LT CDURSe.IEGiN AND ieNDS GT COURSE.ENO THeN
•PRINT 'TH! BIG SPAN CONP'LICT'
%CONP'LICT = I
IND IF

······································~···························· • IP' TH&R& EXISTS A CDNP'LICT THBN SIT A MBSSAG! ANO R!TURN•..•...•....•.•..••.....•.................•..........

......•...•...•..•......•.••..••..••.•.•.•••••.•.••••.••••.••...•.•
* If' TH!RI IS A CDNP'LICT TH8N CHICK TH! START AND !XPIRE DAT&S
* ON TH! CURR!NT RICORD. IP' THB START ON THe SCR!!N IS AP'TSR TH&
• !XPIRE Of' TH& CURR!NT RECORD, OR I~ THe &XPIRe ON THB SCRISN (5
• IE~ORE THe START ON THe CUA~ENT RECORD THEN THIRB IS ND CONFLICT.

························•········•·•··•····························
(, "'CONP'LICT ii '1' TH8N

IP' EX~IRE NE '' AND START NE THIN

I~ icLASS:STAAT GT EXPIRe OR ~CLASS:EX~IRe LT START THSN

NO CDN,LICT THEN

ELSE

118

%CLASS:M!SSAGE
RETURN

'••• CONFLICT! ***'

ENO IF

ELSE
%C:LASS:MESSAGE
RETURN

'*** CONFLIC:T2 ***'

ENO IF

ENO IF
END IF

END FOR

END FOR

END IF

* STORI! THE ORDINARY R!CORD IN FILE DATA

IN DATA STORE RECORD

START : %CLASS:START
EXPIRE : %CLASS:!XPIRE
COURSE. ID = ~CLASS:CDURSE.ID
COURSE.NO : %CLASS:C:DURS!.NO
O!PARTMENT : %CLASS:DEPARTMENT
COURSE.TYPE : %CLASS:COURS!.TVP!
SECTION : %CLASS:SECTION
COURS!.OAYS : %CLASS:COURSE.OAYS
CDURS!.!ECIN : %C:LASS:COURS!.~EGIN
C:OURS!.END : ~CLASS:CDURS!.END
!UILDING : %CLASS:BUILOINC
INSTRUCTOR : %CLASS: INSTRUCTOR
C:OURS!.OESCRP = %CLASS:COURSE.DESCRP
MIN : %CLASS:MIN
MAX : %CLASS:MAX
ROOM : %CLASS:RDOM
FREEFORM %CLASS:FREEFORM

END S TORI!

* STOR! TH! CDMMl!NT Rl!CDRD IN FILI! DATA ONLY IF THERE IS ON!

NONI!: IN DATA FD Dl!PARTMl!NT = '-CLASS:OEPARTMll!NT ANO •
COURSl!.NO : %CLASS:COURSE.NO ANO COMMl!NT IS PR!Sl!NT

END !l'IND

CT. NONI!: COUNT Rl!CORDS IN NONI!

IF COUNT IN CT.NONE 1!0 0 THl!N

IF %CLASS:CDMMl!NT1 /: '' THEN

IN DATA STORI! Rl!CORD

Ol!~ARTMl!NT = %CLASS:Ol!PARTMl!NT
COURSl!.NO : %CLASS:COURSl!.NO
NUMBER : '010'
COMMl!NT : Y.CLASS:COMMl!NT1

END STORI!

END IF
IF %CLASS:COMMl!NT2 /: •• THl!N

IN DATA STORE Rl!CORD

Dl!~ARTMl!NT : %CLASS:Ol!PARTMl!NT
COURSl!.NO : %CLASS:CDURSl!.ND
NUMl!!ll!R : '020'
COMMl!NT : Y.CLASS:COMMENT2

END STORI!

ENO t F
IF %CLASS:COMMl!NT3 /: '' THl!N

IN DATA STORE RECORD

Ol!PARTMl!NT : %CLASS:DEPARTMl!NT
COURSE.NO = %CLASS:CDURSE.ND
NUMl!ll!R : '030'
COMMl!NT : %CLASS:COMMl!NT3

END STORI!

ENO IF
IF %CLASS:COMMl!NT4 /: '' THEN

IN DATA STORE Rl!CORO

Ol!PARTMl!NT : %CLASS:OEPARTMl!NT
COURSl!.NO = %CLASS:COURSl!.NO
NUMSl!R : '040'
COMMl!NT = ~CLASS:COMMl!NT4

ENO STORE

119

ENO IF
IF %CLASS:COMMENTS /: '' THEN

IN DATA STORE Rl!CORD

DEPARTMENT : %CLASS:DEPARTMENT
COURSE.NO : %CLASS:COURS!.NO
NUMBER : '050'
COMMENT : %CLASS:CCMMENTS

ENO STORE

END IF
IF %CLASS:COMMENT6 /: " THEN

IN DATA STORE R!CORD

DEPARTMENT : %CLASS:OEPARTMl!NT
COURSl!.NO : %CLASS:COURSE.NO
NUMISER : '060'
COMMENT : %CLASS:COMMENT6

END STORE

END IF
IF %CLASS:CDMMENT7 /: '' THl!N

IN DATA STORI! Rl!CDRO

DEPARTMENT : %CLASS:OEPARTMl!NT
COURSE.ND : %CLASS:CDURSE.NO
NUMl!!R : '070'
CDMM!NT : %CLASS:COMM!NT7

END STORE

!NO IP:
IF %CLASS: COMMl!NTa I: '' THEN

IN DATA STOR! Rl!CORD

DEPARTMENT : %CLASS:Ol!PARTM!NT
COURSE.NO : Y.CLASS:CDURSl!.ND
NUMISl!R Ji • oao.
COMMENT : %CLASS:COMMl!NTS

!ND S TO.RI!

l!NO I~

IF %CLASS:CDMMl!NT9 /:; '• TH!N

IN DATA STORE RECORD

D!PARTMl!NT :; %CLASS:Dl!PARTMl!'NT
COURSE.NO : tCLASS:CDURSl!.ND
NUMISl!R : •ogo•
CDMM!NT : %CLASS:CDMMl!NT9

ENO STORI!

l!ND If'
If' %CLASS:CDMMl!NT10 /: '' TH!N

IN DATA STORE RECORD

O!~ARTMl!NT : tCLASS:Ol!PARTMl!NT
COURSE.NO : Y.CLASS:CDURSl!.NO
NUMISl!R : '100'
COMMENT : %CLASS:COMMl!NTtO

ENO STORE

!NO If'
If' %CLASS:CDMM!NT11 /: '' THEN

IN DATA STORI! ~!'CORO

Dl!PARTMl!NT : %CLASS:D!PARTMl!NT
COURSE.ND : %CLASS:CDURSl!.NO
NUMIS!R : ' 1 1 0'
COMMl!NT : tCLASS:CQMMENTll

END STORE

END If'
If' %CLASS:CDMMl!NT12 /: '' TH!N

IN DATA STOR! RECORD

D!PARTMl!NT :; '·CLASS: a·EPARTMl!NT
COURSE.NO : %CLASS:COURS!.NO
NUMBER : ' T 20'
COMMENT : XCLASS:COMMl!NT12

l!l:NO STDR.!

!ND If'
If' ,..CL.ASS: COMMl!NT 13 /: '' THI!~

IN DATA STORE R!CORD

O!PARTM!NT: %CLASS:Ol!~ARTM!NT

COURSE.ND : %CLASS:COURS!.NO
NUMBER : '130'
COMMENT : %CLASS:COMM!NT13

120

END STORE

END IF
IF icLASS: COMMENT t 4 /: •' THEN

IN DATA STORE RECORD

DEPARTMENT : XCLASS:DEPARTMl!!!NT
COURSE.NO : r.cLASS:COURSE.NO
NUMBl!!!R : '140'
COMMBNT : '9CLASS:CDMMl!NT14

END STORE

END IF
~CLASS:MESSAGE

!LSE
ROOM RESl!!!RVED ••'

~CLASS:Ml!!SSAGI! COMMENT FOR COURSE NO. EXISTS •••'
END iF
COMMIT
END SUBROUTINE RESERVE

* SUBRDUTlNB DELETE

DELl!!!TE: SUB ROUT I NIE

COURSE: [N DATA FD COURSE. [0 : '>:.CLASS: COURSE. ID
ENO FIND

CT. CDURSI!: COUNT RECORDS IN COURS!

IF COUNT IN CT.COURSE l!!!O 0 THl!!!N

1-CLASS:ME:SSACI!
Rl!TURN

l!ND Ifl'

* OELETI! THE MAIN Rl!!!CORD

FR IN COURSE

~Dl!!!PT : Dl!!!PARTMl!!NT
lr.NO ' CDURSl!.NO
Dl!LETI! Rl!CORD

COMMIT
l!ND fl'OR

NO MATCH

.................•.....•.••.••.•.•..••••...•..•.....••..•••.•.•...
*CHECK IF ANQTH!R COURSl!.ID HAS THI!! SAMI! CQMM8NT RECORD •..........•...............•.......•...•..••......................
INO: IN OATA P'D DIPARTMl!NT : ~DEPT ANO CDURS!.NQ : iNO •

AND COURSE.ID IS PRISl!NT
END FIND

CT. I NO: COUNT RECORDS IN I NO

[pr COUNT IN CT.IND eo 0 THEN

OIT: IN DATA P'O DIPARTMINT
COMMINT IS PRESENT

!ND FIND

FR IN Ol!T

Dl!Ll!TE Rl!CDRD

"END FDR
END IF

%Dl!PT AND COURSE.NO

%CLA5S:MISSAGE COURSE Dl!LIT!D ***'
COMMIT

l!ND SUBROUTINE Dl!Ll!TI!

* SUBROUTINE EXPIRE

%NO ANO •

..............••...•.....••...•.•.................•.........•.....
l!XPIRI!: SUBROUTINE

REMDVI!: IN DATA P'O !XPIRI IS PRISBNT
!ND FIND

FR IN REMOVI!

• OELl!T! ALL Rl!CORDS ~DR WHICH TH! IXPIRY DAT! 15 L.B. TODAYS DATE

IP' !XPIRI LT SDAT! THIN
%CLASS,COURSl!.ID ' COURSE.ID
CALL Dl!Ll!TI!

!NO IP'

!NO P'OR

IND SUBROUTINE l!XP[RE
aND
0 SCHl!D

121

RESET MSGCTL : x·o1·

* FILENAMI! VIEW1 .S
AUTHOR - YINIT VERMA
CREATED - t0-23-a&

• PURPOSE - THIS PROCEDURE PROVIDES THE USER INTER~ACE SCREEN
• FDR THE SUPER USER'S OPTION. TH(S PROCEDURE IS INVOKED
* BY THE YIEW12 PROGRAM.

SCREEN CLASS
TITLE ·----------------- Dk1ahoma State University Class Schedule
MAX PFKEY 12
PROMPT Ml!SSAGI! AT 40 DEFAULT • '
PROMPT 'id number : ' AT 2 INPUT COURSE. ID LEN S ITEMID 1 •
PROMPT 'instructor : ' AT 25 INPUT INSTRUCTOR LEN 1.3 ITl!MtO B
PROMPT 'days : • AT 53 INPUT COURSE. DAYS LEN 6 -
PROMPT 'min:. AT &a INPUT MIN Ll!N 2
PROMPT 'department :• AT 2 INPUT DEPARTMENT LEN 6 tTEMIO 2
PROMPT 'building : ' AT 25 INPUT BUILDING L!N S ITEMID 4
PROMPT 'start : • AT 53 INPUT COURSE.BEGIN Ll!N 4 -
PROMPT •ma>e:. AT sa INPUT MAX LEN 2
PROMPT •course number : • AT 2 INPUT COURSE.ND LEN S ITEMID 3
PROMPT •room :• AT 25 INPUT ROOM LENS ITEMID S -
PROMPT 'end AT 53 INPUT COURSE.IND LEN 4
PROMPT 'type : • AT 2 INPUT COURSE. TYPE LEN 2
PROMPT 'section ;~ AT 25 INPUT SBCTION LEN 3 -
PROMPT 'hours : • AT 53 INPUT COURSE.HOURS LEN 2
PROMPT 'title :' AT 2 INPUT COURSE.D!SCRP LEN 22
PROMPT 'undecided hour :• AT 45 INPUT ~RE!FORM LEN 14
PROMPT 'begin(yy-mm-dd):' AT 19 INPUT START LEN 8
PROMPT •expiry(yy-mm·dd):' AT 45 INPUT EXPIRE LEN I
PROMPT 'comment:• AT 2 INPUT COMMENT1 LIN SO
PROMPT AT 2 INPUT COMMENT2 LEN 80
PROMPT AT 2 INPUT COMMENTJ LEN 60
PROMPT AT 2 INPUT COMMENT4 L!N 60
PROMPT AT 2 INPUT COMMENTS L!N 60
PROMPT AT 2 INPUT COMMENTS LEN 10
PROMPT AT 2 INPUT COMMENT7 LEN 60
PROMPT AT 2 INPUT COMMENT! LEN 60
PROMPT AT 2 INPUT CDMMENT9 LEN 60
PROMPT AT 2 INPUT CQMM8NTIO LEN 50
PROMPT AT 2 INPUT COMMENTl 1 LEN 60
PROMPT AT 2 INPUT COMMENT12 LIN 60
PROMPT AT 2 INPUT COMMBNT13 LEN &O
PROMPT AT 2 INPUT CQMMBNTl4 LEN SO
IN SCHBQ I KBY 1
ae~AULT CURSOR COURSE.IQ
ENO SCRBEN

a l'ILE.NAM! KEYi
PROMPT 'pf·l reserve pf-2 dal•t• pf3 exit pfS refresh pf•I clear pf·7<-­

pfl -->'
aaC•***~**************************
* FILENAMB • ROOM.ATTRIBUTES

• PURPOSE ..

AUTHOR • VINIT V&RMA
CRl!ATl!D 11 - 17• as

* THIS PRO~l!DURI MANIPULATES THI ROOM tNVINTORY DATABASI! IN FILI! SCHl!D.
* TH! PROC!DURI Pl!RFQRMS Rl!TRil!VALS VIA THI! BUILDING AND ROOM FIILDS,
• ANO ALSO JUST IY TH! BUILDING FIBLD. THI! D•Ll!TI KEYS OF~ THB
• OUILDING AND ROOM FIBLDS. THIS PRQCBDURe INYOKBS THB OISPLAY
• SUBROUTINE TO INITIALIZK THK SCRBIN VARIASLIS .

.•..•.•.•..•....••...•.....•.•.....•...•.....•...••.••..••.•..••......•.
OBG!N

..........................•..............•....••.•..••.•
THI! INDEX ARRAY IS Sl!T UP TD 00 THI SCROLLING ...•....•..•.•

~INOEX IS STRING LIN 7 ARRAY(ZOJ
'UCAN IS F IXEO
~COUNT IS •IXBD

THI! SCRe!N DEFINITION

SCRBBN ROUTS
TITLB 'Oklahom• Sta~e University Room Invantary Database• AT ts
MAX1 PP'K!Y 12
PROMPT M&SSAGI! AT 40 O!l'AULT
SKIP I LINI!
PROMPT 'building:• AT 2 INPUT BUILDING LEN 4
PROMPT 'roam AT 2 INPUT ROOM Ll!N 4
PROMPT •type AT 2 INPUT TVPe: LEN 1
PROMPT •cap•c;ty:. AT 2 INPUT CAPACITY Ll!N 3
SKIP 1 LINe:
PROMPT '1
PROMPT • 2
PROMPT '3
PROMPT '4
PROMPT 'S
PROMPT '6
PROMPT '7
SKIP 7 LIN&
I Ke:V 1

case study' AT 40
auaitoriuN' AT 40
fixed' AT 40
table & cna;rs• AT 40
arm• AT 40
bolted arm• AT 40
lab' AT 40

DE,AULT CURSOR IUILDING
e:ND SCREBN

Sl!T UP THE ON CON,LICT CONDITION

122

ON FIND CONFLICT

~ROUTE:MESSAGE
JUMP TO START

END ON

'*** PL!AS! TRY LATER ***'

• DEACTIVATE THE ON ATTENTION KEY

••·•·••••••••·•·•·•·•·········•··•••••··•··•·•······••·•·•·•·••
ON ATTENTION

~ROUT~:M~SSAGE
JUMP TO START

'*** ATTENTION KEY DEACTIVATED ***'

!ND ON

• - - - .. - - - - - - .. - - - .. - .. - - - - - - - - .. - *
THIS IS THE STARTING POINT ... ------.... -.............. -........... -.. -.... -.. -.... ---.... -........ ----...... -...... --.

START: READ SCREEN ROUT!

~ROUTE:M!SSAGE : •

················~······························· VERIFY THI PFKIV VALUES•.•...•.............•....•.....••.....•
IF ~ROUTE:PFKEY /: 1 AND %ROUT!:PFKEY /: 2 ANO %ROUTE:PFKEV /: 3 •

AND %RDUT!:PFKEY /: S AND iROUT!:PFK!Y /• 8 AND ~RQUTE:PFKEY /: 7 ~
AND ~ROUT!:PFKEY /: I TH!N

~ROUT!:MISSAG! : '*** PF" WITH %ROUT!:PFKSY WITH • IS NOT ACTIVE•
JUMP TO START

END IF

IF ~RDUTS:PFK!Y : 1 TH!N

CALL SAVI
JUMP TD START

END IF

CHICK FOR TH! PF2 O!L!T! K~Y

IF XRDUTB:PFKIY : 2 THEN

CALL D!L!TI
JUMP TO START

!NO IF

JUM~ TO FINISH

!NO IF

CH!CK FOR TH! ~Fl CL!AR K!Y••....•......•....................•.•..•..............
IF %ROUT!:PFK!Y 1 I THEN

PR!PAR! SCR!!N ROUTE
JUM~ TO START

~NO IF ...•..•.......•••.•...•....................•••.....••....•...•.•.....
~HICK FOR TH! PFS REFRESH KEY •.•..•...•.....•••..•.....•.........•............•..••...............

IF %ROUTl:PFKIY 1 S THEN

CLEAR LIST SCROLL

IF ~ROUTl:ROW • 5 THIN

NUMBIR: FD BUILDING
IND FIND

~ROUT!:IUILDlNG AND ROOM

CT.NUMS!R: COUNT RECORDS IN NUM91R

IF COUNT IN CT.NUM92R !O 0 THIN

PR!PAR! SCR!IN ROUT!
~RDUTl:M!SSAGE • '*** NO MATCH *** '
JUMP TD START

!NO IF
IF COUNT IN CT.NUMB!R GE 20 THIN

PR!~AR! SCR!IN ROUTE

1.RDUTB:RODM.

~RDUT!:MISSAGI TDD MANY ENTRIES TO SCROLL ••'
JUM~ TO START

123

END IF

PLACE RECORDS IN NUMBER ON LlST SCROLL

ELSE

IF %ROUTE: ROW = 4 THEN

NUMBERI: FD l!!IUILDING
END FIND

%ROUTE,9UILOING

CT.NUMB!R1: COUNT RECORDS IN NUM91R1

IF COUNT IN CT.NUMBER1 EQ 0 THEN

PREPARE SCREEN ROUTE
~RDUTE:M!SSAGE = "••• ND MATCH *** •
JUMP TO START

END IF
IF COUNT IN CT.NUMBIR1 GI 20 THIN

PREPARE SCR~EN ROUTE
~RQUTE:MISSAGE : '*** TOO MANY ENTRIIS TD SCROLL •••
JUMP TO START

!ND IF

PLAC! RECORDS IN NUM8ER1 ON LIST SCROLL

!NO I~

END I~

%COUNT :1 0

FOR EACH RECORD ON LIST SCROLL

%COUNT ' %COUNT + I
%1NOEX(%COUNT) • SCURR!C

ENO FOR

SIT UP THE CAT!NATED SCAN POINTER

%.SCAN : 1

CALL DISPLAY
.JUMP TO START

!ND I~

.........•...•.....................••.•..•.••.....•.••....•••.
CHICK FDR THI P~a SCROLL FORWARD K&V •......•.................................•..•.......•.•...•...

IF %RQUTl!:PFKEY : a THIN

%SCAN I %SCAN + I
IF %SCAN LI ~COUNT THIN

CALL DISPLAY
!LS!

XROUTl:MISSAGI= LAST RECORD ***'
~SCAN = %SCAH - 1

END IP'
JUM~ TD START

END II' ...••..•......••..•...••..........•....•.....................•
* CHICK FOR THI P~7 SCROLL FORWARD KIV•.••..•......•.....•••.....•.......•.....•...
tF ~RQUTl:PFKIY : 7 THIN

~SCAN : %SCAN - 1
II' %SCAN G! I TH!N

CALL DISPLAY
!LS!

1.ROUTl:MESSAGI : '*** FIRST RICORD ***'
%SCAN ' %SCAN + 1

END I~

JUMP TO START

!ND II"
FINISH: PRl~ARI SCRllN ROUTE

COMMIT

INCLUD! THE DISPLAY ~IL!

INCLUDE DISPLAY

SUIRDUTINI SAVI

SAYE: SUBROUTINE

LOG: lN SCHBD FD IUlLDING : %ROUTl!:9UlLDtNG AND ROOM 1 %ROUTl:RODM
l!ND FINO

CT.LOG: COUNT RICDRDS IN LOG

(P' COUNT IN CT.LOG NI 0 THIN

124

FR IN LOG
CHANGE TYPE TO %ROUTE: TYPE
CHANGE CAPACITY TC %ROUTE:CAPACITV

END FOR
%ROUTE:MESSACE : '** ENTRY CHANGED **'
ELSE

STORE RECORD

9UILOINC : %ROUTE:BUILDING
ROOM : %ROUTE:RDDM
TYPE = %ROUTE:TYPE
CAPACITY : Y.ROUTE:CAPACITY

END STORE
%ROUTE:MESSAGE : '** ENTRY STORED **'
END IF
ENO SUBROUTINE SAVE

SUBROUTINE DELETE

DELETI!: SUBRDUT I NE

DEL: IN SCHED FD BUILDlNG : %ROUT!:BUILDING ANO ROOM
END FIND

CT. DEL: COUNT RECORDS IN DEL

IP' COUNT IN CT.DEL EO 0 THl!N
tROUTE:MESSAGE: '**ND MATCH••'

Rl!TURN
END IF

P'R IN DEL

O!:LETE RECORD

END l"OR

%ROUTE:Ml!SSAGE : '** ENTRY DELl!TEO ••'

RETURN
END SUSROUTIN! Dl!LETI!
END

• P'lll!NAME Kl!!Y2

%ROUTE:RODM

PROMPT 'pf3 exit pf5 refresh pf·& clear pf·7 scroll back
'pf& • scroll bacM•

···············•••********************************••····················
* P'IL!NAMI!· DISPLAY

* PRUPOSE •

AUTHOR • YINIT VERMA
CR!:AT!:D 11 ·9·86

* THIS SUBROUTIN! SETS UP TH! SCR!:!:N VARIASL!:S TO 8!: DISPLAY!:D.
* THIS ROUTIN!: tS CALLED !:ACH TIM! P'OR A SCROLL FUNCTION.
* TH!: ROOM.ATTRIBUTES PROGRAM tNVOK!S THIS SUSROUTINI!•.••.......•.....•.•...•..•....•.••...•.•••.•...•.•.•.••....•.•.••
DISPLAY: SUBROUTINI!

N!XT.Rl!CORD: 7.Sl!ARCH:: Y.IND!X(~SCANJ +I

LDCATI!: P'D POINTS %1NOEX(7.SCAN) AND NOT ~Sl!ARCH
END P'INO

P'R IN LOCATI!
7.ROUT!::SUILOING :: BUILDING
%RDUTE:RODM : ROOM
%ROUTl!:TVPI! : TYPI!
XROUTl!:CAPACITV :: CAPACITY

ENO f'OR

RETURN
END SUSROUTINI! DISPLAY

* f'ILl!NAMI! • ROOM.QU!RY

• PURP'OSI! -

AUTHOR • VINIT Vl!RMA
CRl!ATl!D 11-09•56

r THlS PROCl!DURI! QUERIES DATA IN THI! ROOM INVENTORY ANO CLASS SCHl!OULI!
• DATASASl!S. THI! ROUTINE Pl!RP'ORMS CATA RETRIEVAL P'UNCTIDNS ONLY.
* TKe US!R IS !XPl!CTl!D TO Sl!Ll!CT ONI! OP' TH! ROOMS DISPLAYl!O
* VIA THI! QUERY OPTION. IF NO ROOMS MATCH THE Rl!QUEST
• CRITl!RIA A NO MATCH Ml!SSACI! IS DISPLAYED. NOTE SOMI!
• ROOMS ON CAMPUS ARE ASSIGNED TO DEPARTMENTS, AND THEY
• 00 NOT OCCUR IN THE AVAlLABL! POOL OF R!SERV!A!LE
.a ROOMS
!l!Gt N

%CAPACITY IS P'IX!D
%LIMIT IS l"IXl!D

THE SCR!!N DEl"INITION

SCRl!!N QUl!RY

125

TITLE •Oklahoma State University Room
MAX PFKEV 1 2
PROMPT MESSAGE AT 40 OE~AULT
PROMPT 'start(yy-mm•dd) : • AT
PROMPT 'exp;re(yy·mm·dd): • AT
PROMPT 'days AT
PROMPT 'begin time AT
PROMPT •end time AT 2
PROMPT ·capacity AT 2
PROMPT 'room type AT 2
SKIP 4 LINES
PROMPT '1 case study' AT 25
PROMPT '2 auditorium' AT 25
PROMPT '3 fixed' AT 25

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

PROMPT '4 tabla I cha;rs• AT 25
PROMPT ·s ar"m' AT 25
PROMPT '& bolted arm• AT 25
PROMPT '7 lab' AT 25
SKIP 2 LINES
PROMPT PFS • OUl!RY
Dl!~AULT CURSOR START.DATE
END SCREEN

Inventory Database•

START.DAT! LEN &
EXPIRI! LEN &
DAYS LEN 6
START LEN 4
Tl!RMINATE Ll!N 4
CAPACITY LEN 3
TVPI! LEN 1

PF3 • !XtT•

SET UP THE ON CONFLICT CONDITION

ON FlNO CONFLICT

~OUERV:MESSAG! : '*** PL!AS& TRY LAT!R ***'
JUMP TC START

END ON

D!ACTIYATE TH! ON ATTENTION KEV

ON ATTENTION

%OUERY:M!SSAG! : '*** ATT!NTION KEY DEACTIYAT!D •••'
JUMP TO START

END ON . -----.. ----------.. ---.. -----.. ----.. --.. ----------.. ----------.
THIS IS THE STARTING POINT *

·-----·------·------·--·-····---- .. -----·-·-------··--··-··
START: RBAO SCR!BN OU!RV

%OU!RY:M!SSACE = '

YIRll'V THK ~l'KIV YALU!S

AT IS

IF 1.0U!RY:Pfl'KEV /= s ANO ~OU!RV:Pfl'KIV /2 3 ANO iou!RV:Pl'K!V /= • TH!N

%OU!RY:MESSACE
JUMP TO START

!ND II'

'••• PF' WITH %OU!RY:PFK!V WITH ' IS NOT ACTIV!'

CHECK l'DR TH! Pl'3 EXIT KEY

II' %OU!RY:Pl'KEY = 3 THEN

JUM~ TD fl'INISH

!ND IP

.....••...............•..........•................••.....•........•..
CH&CK FOR THI PFI CL!AR K!V•...•.......•...•...................•..•.........•••.........

[F ~OUIRV:PFKEV : 6 TH!N

PREPARE SCRl!N QUERY
JUMP TO START

!ND II'

CHICK FOR TH! PFS R!FR!SH KEV

IF 1.0U!RY:PFK!Y : 5 THIN
CALL GET.ROOM
JUMP TD START

END II'
FINISH: PREPARE SCRB!N OU!RV

SUIRDUTIN& GET.ROOM

G!T.ROOM: SUBROUTIN!

• GET ALL ROOMS WHICH MATCH TH! ROOMS SP!CIFICS

UNIO: IN SCHID FIND ALL RECORDS FOR WHICH TVP! : V.OUSRY:TVP!
IND l'IND

CLl!!AR LIST ~

126

FOR EACH RECORD IN UNIQ

~CAPACITY = CAPACITY
~LIMIT z %OUERY:CAPACITV

IF %CAPACITY GE ~LIMIT THEN
PLAC! RECORD ON LIST P

ENO IF

END FOR

CT.UNIO: COUNT RICORDS ON LIST P

IF COUNT IN CT.UNIQ : •o• THIN

%OUERY:MESSAGE
RETURN

END IP'

'*** NO ROOM WITH SUCH ATTRIBUTES ••'

• S!T TEMPORARY VARIABLES TO DAY BEGIN AND !ND TIMES

%DAYS ' %QUERY:DAYS
%BEGIN : %OUERV:START
%ENDS ' %OU!RY:TERMINAT!

• SUBTRACT TIN MINUT!S FROM TH! START TIME TO GIV! A 10 MIN OVERLAP

%HRS :1 SSUllSTRl~lll!GIN, 1.21
%MINS ' $SU8STR(%!NOS,3,2)

%TOTAL IS STRING OP S
%~ILL• •oooo•

.............•...........••.•.•.•......•...•.....••.•....••........
* SUSTRACT TEN MINUTES FROM THI! START TIM! TO GIY& A 10 MlN OVERLAP•.•......•............•...•.••......•...•..
%HRS ' SSU8STR(%8EGIN,1,2)
%MINS ' $SU8STR(%8EGIN,3,2J

%TOTAL
%TOTAL
%TOTAL
%TOTAL

:i %.HRS • 150
%TOTAL + 'ZMINS
%TOTAL ~ to
%TOTAL I 60

%I 'SIND!X(%TDTAL,'. ')
%HRS ' SSUBSTR(%TOTAL,1,%I - I)
%MINS 'SSU8STR(%TOTAL,%II
'ZMINS : SRDUND(~MINS • 60.0,0)
%8!GIN ' %HRS WITH %MINS

%LEN • SLEN(%BEGINJ
~LEN :s 4 ~ 'ZLEN
%~ILL ' SSU8STR(%PILL, 1,%LENI
'ZBEGIN : %FILL WITH ~B!GIN

• seT ~!PSAT !OUAL TD TH! L!NGTH OF TH• DAY STRING .•.......•..•....•....•.....•.•.•...•.........•.....•...•..........
%REP!AT • SLEN(XDAYSJ

%DAY 1 ' %DAYS

FOR !ACH R!CORD ON LIST P

···•··•·········· • SET THE CONFLICT FLAG TD LOW

%CDNPLICT ' O

iPReSeNT.ROOM : ROOM
'ZPRIS!NT.SLDG :s BUILDING

* PR!S!NT ROOM BEING RSF!RRID

ROOM: IN DATA FO ROOM eo 'ZPRESINT.ROOM ANO 8U1LDING eo ~PRESENT.BLDG
AND CDURS!.DAYS IS PR!S!NT

ENO P'IND

FOR EACH RECORD IN ROOM

'ZDAVS : 'ZDAV1

* LOOP TO CHECK EACH DAV IN TH! DAYS P'teLD

~OR %LOOP ~ROM 1 TD %REP!AT

l:WEEK ' SSU8STR(%DAYS, 1, 1 I
'ZDAVS : SSUISTR(~DAVS,ZI

%PR!S!NT : SINDEX{CDURSE.DAVS,'ZW!!KJ

127

..•
* l~ THE DAY IS PR&SENT IN THE SEARCHED RECORD THEN CHECK THE TIME •....•...•.•.••......•.•.....•.•••••..••..•..•..••..•..••...••••..•
IF %PRESENT /: 0 THEN

.•..•......•.•.•.••..••••..••..•......•..••.•..••••.•...•.••..•.•••
* CHECK THE VARIOUS COMBINATION OF POSSIBLE CONFLICTS ..•.............•
IF %BEGIN GT COURSE.BEGIN ANO ~BEGIN LT COURSE.END THEN
•PRINT 'FIRST IN B!TW!EN CONFLICT'
icoNFLICT : I
END IF

lF %ENDS GT CDURS!.BEGIN AND ~ENOS LT COURSE.ENO THEN
•PRINT 'LAST IN B!TWE!N CON~LICT'
~CONFLICT : 1
END IF

IF %BEGIN EO COURSE.BEGIN DR %BEGIN eo COURSE.ENO THEN
•PRINT ·~tRST EQUAL CONFLICT'
%CONP'L I CT : 1
END IF

I~ %ENDS eo COURSE.BEGIN OR %!NOS eo COURSE.ENO THEN
*PRINT 'LAST EQUAL CONFLICT'
'-CONFLICT : 1
l!NO IF

IP' '-BEGIN LT COURSl!.BEGIN ANO XENDS GT COURSE.END THEN
•PRINT 'THE BIG SPAN CONFLICT'
%CONP'LICT : 1
END IF

··~·•****
* IF TH!RE EXISTS A CONFLICT THEN SET A MESSAGI! AND RETURN

························*··
IF %CONP'L1CT : 'I' THIN

.•........•.................•...................•...•...••..•.•...•
* IP' THERI IS A CDNP'LICT THEN CHICK THI START AND EXPIRE OATIS
* ON THI! CURRl!NT RECORD. IP' THE START ON THI SCRl!!N IS AP'TER THI!
• !XPIRI! OF THI! CURRl!NT RECORD, OR IF THI l!XPIRI! ON THI! SCRBEN IS
* BEFORI! THI! START ON THE CURRENT RICORD THEN THl!RI! IS NO CONP'LICT.

·····················-···
I~ EXPIRE NE '' AND START NE •• THEN

IP %OUERY:STAAT.DAT~ GT EXPIRE DR %OUERY:BXPIRE LT START THEN

NCI CDN.f'LICT THEN
%CONfl'LICT • O

ELSI!

JUMP TD OUTl!R

END IP

ELSI!

END IP

ENO IP
END II"

JUMP TO OUTIR

l!NO P'DR
l!ND FDR
OUTl!R: I~ %CDNHICT ' 'I' THEN

Rl!MDVI! RICORD P'ROM LIST P
ENO IP

ENO ~OR

CT.P: COUNT Rl!COROS ON LIST P

IP' COUNT IN CT.P 1!0 0 THEN
~OUl!RY:MESSAG! : •aa ND FRIE ROOM ••'

!LSI!
FOR EACH Rl!CORD ON LIST P

PR[NT BUILDING AT 20 WITH ROOM AT 25 WITH CAPAClTY AT 33
l!NO ,.OR
ENO I~

END SUBROUTINE GET.ROOM
BNO

a FILl!NAMI! SITUPDATA IN TEMP
AUTHOR• VINIT Yl!RMA
CRl!ATID 10•20•1&

• PURPOSI! • THIS PROCl!DURI! ABSTRACTS DATA P~OM THE COURSI!
• DATABASI!. THI! IMAGING .. ACILITY IS usao. THI! PIELOS THAT
* ARI! STO~ID IN A RICORD ARE:

• COURSE Rl!CORD

Ol!PARTMe:NT
COURSl!.NO
COURSl!.IO
COURSl!.TYPI!

128

SECTION
COURSE.DAYS
C:OURSE. BEGIN
COURSE.END
BUILDING
ROOM
INSTRUCTOR

COMMENT RECORD

DEPARTMENT
COURSE.NO
NUMSER
COMMENT

• THE EXT!RNAL FILE ACCESSED BY THIS PROCEDURE IS:

u1oa20A.CLASS.OATA

ALLOCATI! INDATA WITH OLD SEQUENTIAL OSNAM!~u1oa20A.CLASS.OATA

BEGIN
IMAGE COURSE

NAME IS STRING LEN S
COURSE.ID IS STRING LEN 5
SKIP 3 POSITIONS
O!PARTMENT IS STRING L!N S
COURS!.NO IS STRING LEN 4
COURSE.TYPE IS STRlNG Ll!N 1
SECTION IS STRING LEN 3
SKIP S1 POSITIONS

IMAGE Ml!l!TING
NAMl!!I IS STRING Ll!N a
SKIP 3 POSITIONS
COURSl!.OAYS rs STRING LEN 5
CDURS!.Bl!GIN rs STRlNG Ll!N 4
COURSE.END IS STRING Ll!N 4
BUILDING IS STRING Ll!N 4
ROOM IS STRING Ll!N 4
INSTRUCTOR rs STRING Ll!N 12
SKIP 35 POSITIONS

IMAGE COMMl!NT
SKIP a POSITIONS
NUMBER IS STRING LEN 3
COMMENTS IS STRING LEN 77
!ND IMAGI!

DPl!N DATASl!T INDATA ,..OR INPUT
IF $STATUS EO 1 THl!'N

JUMP TO DONI!
l!LSl!IF $STATUS l!O 2 THl!N

PRINT 'DPl!N l!RROR: ' WITH S!:RRMSG
STOP

!NO I~
Rl!AD: Rl!AO COURSE FROM INDATA

IF $STATUS EO 1 THl!N
JUMP TO DON!

!LSl!IF $STATUS 1!0 2 THl!N
PRINT 'R!AD !RRDR: ' WITH Sl!RRMSG
STOP

!NO IF
I~ ~COU~Sl!:NAMI! EO ·cou~se:· THl!N

~DEPARTMENT : %COURSl!:Ol!PARTMl!NT
1.COURSl!.NO : XCOURSl!:CDURSl!.ND
%COURSE. IO : ZCOURSl!:CDURSl!.10
%Sl!CTION : %COURSl!:Sl!CTIDN
%CDURSl!.TVPI!: %CDURSl!:COURSl!.TVPI!

IF ZCOURS!.TYPI! : '1' THEN
%CDURSI!. TYP! : •TH•

ELSl!IF %COURSI!. TYPE : '2' THl!N
%COURSE.TYPE = ·os·

ELSl!IF %COURSE.TYPE '3' THEN
%COURSl!.TYP! 'IS'

ELSl!IF XCOURSl!.TYPI! '4' THEN
%COURSE. TYPI! : 'LI'

ENO IF

!LSl!I,.. Y.CDURSl!:NAM! 1!0 'Ml!'l!TING' THEN

IDENTIFY IMAGE Ml!l!TING

IN DATA STORI! Rl!CORO
Ol!PARTMl!NT : %Ol!PARTMl!NT
COURSE.ND : %COURSl!.NO
COURSI!. ID : ~COURSE. ID
COURSl!.TYPI! : %COURSl!.TVP!
SECTION : %SECTION
COURSE.DAYS : %Ml!l!TING:COURS!.DAYS
COURSl!.S!GIN : %Ml!!TINC:COURS!.S!GIN
COURS!.!ND : %Ml!ETING:COURS!.END
BUILDING : %ME!TING:SUILOING
ROOM : %Ml!!TING:ROQM
INSTRUCTOR : %M!ETINC:INSTRUCTOR

!ND ST'ORI!

!LSl!IF %COURSl!:NAMI! EQ 'CCMM!NT' TH!N
IDl!NTI~Y !MAGI! COMM!NT
IN DATA STOR! R!CDRO
O!~ARTM!NT : %DEPARTMENT
CDURSl!.ND : %COURSE.NO
NUM9!R : %COMMENT:NUM!ER
COMMENT : ~COMMl!NT:COMMl!NTS

129

END STORE
END IF

JUMP TO R!AD
DONE: ~RINT 'NORMAL T!RMINATIDN'
CLOSE DATASET INOATA
END
FREE INDATA

• FILENAME SETUPHOURS IN TEMP
AUTHOR· YINIT VERMA
CREATED 10·20•86

• PURPOSE • THIS PROCEDURE ABSTRACTS DATA FROM THE COURSE
* DATABASE. THE IMAGING FACILITY rs USED. THE FIELDS THAT
* ARE STDR!O IN A RECORD ARE:

* COURSE RECORD

MIN
MAX

• THE EXTERNAL ~ILE ACCESSED av THIS PROCEDURE IS:

U10&20A.CLASS.DATA

ALLOCATE INOATA WITH OLD SEQUENTIAL DSNAME:U10120A.CLASS.DATA
BEGIN
IMAGE COURSE

NAM! IS STRING LEN a
COURSE.10 IS STRING LEN 5
SKIP 3 POSITIONS
DEPARTMENT IS STRING LIN S
COURSE.NO IS STRING LIN 4
COUASE.TYP! IS STRING ~EN 1
SECTION IS STRING LEN 3
S~IP 51 POSITIONS

lMAGE HOURS
NAME1 IS STRING LEN a
SKIP 1 POSITIONS
MIN IS PACK!O LEN 2
MAX IS PACK!D LEN 2

END IMAGE

OP!N DATAS!T INDATA ~DR INPUT
IF SSTATUS !O 1 TH!N

JUMP TO DONE
!LS!!~ SSTATUS !~ 2 THEN

PRINT 'OP!N !RRDR: ' WITH S!RRMSG
STOP

!ND I~
READ: READ COURSE ~ROM INDATA

l~ SSTATUS !Q 1 THIN
JUMP Ta DON!

!LS!l~ SSTATUS EQ 2 THEN
PRINT 'R!AD !RROR: ' WITH l!RRMSG
STOP

!ND l~
l~ %CDURS!:NAM! EQ 'CDURS!' TH!N

%COURSE.NO • SSUBSTR(%COURSE:CDURS!.N0,4, 1)
%CDURS! • %CDURS!:CDURS!.!D

!LS!!P %COURS!:NAME !Q '!NRLINPO' AND %CDURSB.NO IQ '0' THEN
IDeNTl~Y IMAG• HOURS
A: IN DATA ~O COURSE.ID • %CDURSI
!ND ~IND
~R IN A

ADD MIN : tHDURS:MIN
ADD MAX ~ ~HOURS:MAX

!ND FOR
END !~

JUMP TO READ
DON!: PRINT 'NORMAL TERMINATION'
CLOS! DATASET INDATA
END
~R!E lNDATA

• FIL!NAME S&TDISCR IN TBMP
AUTHOR• VlNIT VERMA
CR!AT!D 10•20·11

• PURPOSE • THIS PROC&DURE ABSTRACTS DATA FROM TH! COURSE
• DATABASE. TH! IMAGING FACILITY IS USED. TH! FI!LDS THAT

ARE STOR!D IN A RECORD AR!:

• COURSE R!CDRO

COURSE.D5SCRP

• THE !XT!RNAL FIL! ACC!SSED BY THIS PROC!OURE IS:

U10120A.D!SCRP.DATA

ALLOCATE INDATAI WITH OLD S&OU!NTIAL 0SNAM!~Ut0&20A.D!SCRP.OATA
9!GIN
!MAG! CDURS!

SKIP 11 POSITIONS
DEPARTMENT IS STRING LIN 5
COURSE.NO IS STRING LIN 4
COURS!.DESCRP ts STRING L&N 22

END IMAGE

130

OPEN DATASET INDATA1 FOR INPUT
IF $STATUS EO I THEN

JUMP TO DONE
ELSl!IF $STATUS EO 2 THEN

PR I NT 'OPEN ERROR: ' WI TH SERR.MSC
STOP

END IF
READ: READ COURSE FROM INDATAT

IF SSTATUS EO 1 THEN
JUMP TO DONE

ELSEIF $STATUS EQ 2 THEN
PR [NT 'READ ERROR: ' WI TH SERR.MSG
STOP

ENO I fl'
MATCH: IN DATA FD D!PARTMl!NT : %COURSl!:OEPARTMENT AND •

COURS!.NO : %COURS!:CDURSE.NO
END FINO

FR IN MATCH
ADD CCURSE.OESCRP
END FOR

%COURSE:COURSE.OESCRP

JUMP TO R!AD
DONE: PRINT 'NORMAL TERMINATION'
CLOS! DATASET INDATAI
•ND
FRI!! INOATA1

* FILENAMI! HRS IN TEMP
AUTHOR· VINIT Vl!RMA
CR!ATEO 10·20·36

* PURPOSE • THIS PROCEDURE CHANCES THE CODI! FOR THURSDAY
* IN TH! COURS!.OAVS FIELD TD 'H'.

!EGIN
A: IN DATA FD CDURSI!. DAYS IS PRl!Sl!NT
!ND f'IND
FR IN A
%X : $SUBSTR(COURS!.OAYS,4,1)
Ill' ~x : ·r· THEN
%Y : SSUSSTR(COURS!.OAVS, 1,3} WlTH 'H' WITH SSUSSTR(COURS!.OAVS,5}
CHANG! COURSE.DAYS TO ~y
!ND I JI'
ENO FOR
END

131

·.

APPENDIX C

CLASS RESERVATION SYSTEM USER'S MANUAL

TABLE OF CONTENTS

Chapter Page

I. Logging onto the class room reservation system 134

II. Program function keys •.•••••••.....•.....•......•......•. 135

III. Primary options menu ..••••••••....•.•..•.....•.....•.••.. 135

IV. Data retrievals 139

v. Reservations • . . . • . . • . • • . • • • . • • • • . . • • • . . • • . . . • . 139

VI. Deletions . . • • • . • • • . . • • • • . . • • • • • • . . 141

VII. Room inventory database•.•.•..•........•...•.•••••. 142

VI I. Room vacancy • • . • • . • • • . • • • • • • . • . • • . . • • . • • • • • • • . 143

VIII. Logging off the system................................... 144

IX. Test cases . . . • . . . • • • . . . • • • • • • • • • . . • • • . . • • . • • • • . . • . • 144

133

Logging onto the class room reservation system

A user can access the class room reservation system via an IBM 3270

terminal which is hooked onto the network in a bisynchronous mode. The

system can also be accessed via the asynchronous network, but this is not

advisable due to the lower baud rate.

The following set of instructions allow a user to access the class

room reservation system. The prompts in caps are from the computer, and

the lower case prompts are the user's response.

The following initial prompt appears on a terminal which is ready for

access -

OKLAHOMA STATE UNIVERSITY COMPUTER CENTER
ENTER APPLICATION NAME
m204

86.365 DEC 31
logon (your user id)

*** M204.0353:PASSWORD
(your password)

*** M204.0353:
open sched

Ul0820A

12.45.05

·u10920A

*** M204.0620: FILE SCHED OPENED

LOGIN 86

*** M204.1203: SCHED WAS LAST UPDATED ON 86.364

include class

PAGE l

DEC 31 12.46

DEC 30 22.58.26

At this stage the primary options menu for the class room reservation

system will be displayed.

134

Program function keys (PF keys)

The program function keys perform various user interface functions.

The functions assigned to the keys are listed below. To access a program

function key, press the ALT key and simultaneously press the number of the

needed function key.

pfl -

pf 2 -

pf3 -

pf5 -

pf 6 -

pf7 -

pf8 -

pf9 -

Primary options menu

reserve a room

delete a room reservation

exit to primary options menu

data retrieval

clear screen

scroll back one entry

scroll forward one entry

department query

Once the user has successfully opened the SCHED file and included the

class program, the following primary options menu is displayed.

135

--------- Oklahoma State University Class Schedule System -------------

l general users (departments)
2 super user (registrar)
3 room inventory database
4 room vacancy
5 exit

To make a selection, the user needs to move the cursor to the desired

option number and then press the enter key~ Each of the options on the

primary menu are described below.

option l

This option provides data retrieval functions only, no database

updates can be performed via this window. Data retrievals are performed on

the class schedule data base. The departments on campus can utilize this

option to check up the status of room reservations. The user interface

screen for this option is dispiayed below.

------ Oklahoma State University Class Schedule system -------------

id number
department
course number:
type
title

comment:

instructor:
building
room
section

begin(yy-mm-dd):

pf3 exit pf5 refresh pf 6 clear pf7

days:
start:
end
hours:

min:
max:

undecided hours:
expiry(yy-mm-dd):

pf8 -- pf9 dept. query

The prompts on the screen correspond directly to the entries in the

136

class schedule book.

id number
department
course number
type
title
instructor
building
room
section
days

start

end
hours
min
max
undecided hour
begin(yy-mm-dd) -
expiry(yy-mm-dd)­
comment

option 2

course identification number
department code
four digit course number
TH/LAB/IS/OS
course description
instructor's name
building code
room number in the building
course section
days of the week the course is offered
(MTWHFS)
commencement time for the course
(army time)
course end time (army time)
credit hours for the course
minimum # of hrs. for course ending in o
maximum # of hrs. for course ending in O
for TBA meeting
date of commencement of course
date of termination of course
comments on the course

This option is meant for the registrar's office. A user can perform

data retrievals and room reservations via this window. The user interface

screen for this option is identical to the option l screen except two extra

pf keys are provided. Pfl for reserving a room, and pf2 for deleting a

room reservation.

137

option 3

The room inventory database keeps information on the rooms on campus.

The database stores the room type and capacity for each room. A menu

provides options to add or delete rooms. Information for a specific room

can be pulled up. Information from this database is utilized to perform ad

hoc reservations.

option 4

The room vacancy option provides advanced data retrieval operations

from the class schedule, and room inventory databases. A user can input

the start date, end date, days the course will meet, begin time, course end

time, number of seats needed and the type of room needed. The program will

query the room inventory database for the rooms which match the type and

capacity of the request. Once a list of all such rooms is obtained, the

class schedule database is queried for time and date conflicts. Finally

the program comes up with a set of rooms on campus which will satisfy the

request.

option 5

This option allows the user to exit form the class room reservation

system.

138

Data retrievals

The pf5 key needs to be pressed to invoke any data retrieval function.

The cursor should be kept on the field for which the retrieval is to be

performed. A list of the retrieval fields for the different options on the

primary menu follows -

- options 1 and 2 of the primary menu

1. course id number
2. department and course number
3. department name
4. building and room number
5. instructor's name

- an option to query the database for all courses offered by a department,
sorted by day of the week, and time of the day.

- option 3 of the primary menu

1. building
2. building and room

- option 4 of primary menu

All prompt fields under this option need to be filled out before a

data retrieval may be executed.

Reservations

This option allows a user to make a room reservation. The reservation

request are categorized as follows -

a. room reservation for the full semester

b. ad hoc room reservation with commencement and expiry

139

date.

The course id number is the primary key for the class schedule

database. Every room reservation request has to maintain the primary key

uniqueness constraint. Duplicate ·course id numbers are rejected by the

system.

a. room reservation for the full semester

This type of a reservation request requires the user to utilize the

data retrieval functions. The user should have the following information

before making such a reservation -

- course id number
- department
- course number
- type
- title
- instructor
- section
- days of the week for meeting
- start time
- end time
- undecided hour if TBA type

minimum credits for course number ending in zero
maximum credits for course number ending in zero

- comments

The objective is to come up with a suitable room for the above course.

The room vacancy program needs to be executed to come up with a set of

eligible rooms. The user can choose one of the rooms on the list. Once

the building and room numbers are available the reservation can be made.

Enter the information for the prompted fields and press the pfl key. An

140

•entry stored' message signals a successful reservation.

_b. room reservation for an ad hoc request

Again the user needs to have all the previously mentioned information

ready, except the building and room numbers. This reservation requires the

user to input the start date and expiry date. Again prior to making the

reservation the room vacancy program needs to be executed to come up with a

list of eligible rooms. Besides checking for the time conflicts the room

vacancy program also checks the date conflicts. Once the building and room

number is available the reservation can be made. Enter the prompted

information and press the pfl key. An •entry stored' message signals a

successful reservation. This request is dynamic in nature. Each time the

reservation system is invoked, all reservations which have an expiry date

less than the system date are purged. Thus the rooms are dynamically freed

for ad hoc requests.

Deletions

To delete a certain room reservation, the user needs to enter the

course id number and press the pf2 key. If the needed id number is

located, a deletion is performed, otherwise a •no match' message is

displayed.

141

Room inventory database

The room inventory database houses information on the available rooms

on campus. The user interface screen for the database is described below.

-------------------- osu Room Inventory Database

building:
room
type
capacity:

1 - case study
2 - auditorium
3 - fixed
4 - table & chairs
5 - arm
6 - bolted arm
7 - lab

pfl reserve pf2 delete pf3 exit pf5 refresh pf6 clear pf7 pfB

The database search key is building and room. If the building and

room entries are filled up on the screen and the pf5 key is pressed, then

the type and capacity for the room will be displayed. Information about

all rooms in a specific building may be obtained by entering the building

code and pressing the pf5 key. The needed information is put on a

scrollable list, and the pf7 and pfS keys provide the needed scroll

functions. To save an entry in the database, enter the information for the

four prompts on the screen and press the pfl key. If an entry with the

same building and room codes exists, it will be updated with the current

type and capacity, otherwise a new database record is stored. An 'entry

142

stored' message will be displayed to signal a successful insertion. To

delete a information for a specific room, enter the building code and the

room number and press the pf2 key. If a match is found, then the record is

deleted, otherwise a 'no match' message is displayed. The pf6 key may be

used to clear the screen input fields at any stage.

Room vacancy

This program queries the class schedule database and the room

inventory database, to come up with a list of rooms which satisfy certain

time and date constraints. The user interface screen for this option

looks as follows -

-------------------- osu Room Inventory Database ----------------------

start (yy-mm-dd) :
expire (yy-mm-dd):
days
begin time
end time
capacity
room type

pf5 query

1 - case study
2 - auditorium
3 - fixed
4 - table & chairs
5 - arm
6 - bolted arm
7 - lab

pf3 exit

Each of the prompted fields are explained below.

start
expire

- date of commencement of the request
expiry date for the request

143

days - days of the week for reservation
begin time - starting time for the request
end time - ending time for the request
capacity - seating capacity for the request
room type - one of the 7 codes from above

The user needs to input all the prompted fields, and then press the

pf5 key. The program comes up with a list of rooms which will satisfy the

request. If no rooms exist which can satisfy the request, then a message

to that effect is displayed. The pf3 key gets the user back to the primary

options menu.

Logging off the system

To log off the system the user needs to place the cursor on option 5

of the primary options menu and press the enter key.

Test cases

1) Test cases for query fields

a. retrieval via course id number - 12296
b. retrieval via department and course number - comsc 4113
c. retrieval Via department - comsc
d. retrieval via building and room - ms 222
e. retrieval Via instructor's name - smith

2) (N.B. The conflict verification is activated if the building, room,
start,end and days fields are filled in)

~o test the reservation routine complete information about room
MS 222 was obtained using the data retrieval functions. The busy
hours for the room are listed below.

w
M
MWF

1230 - 1320
1530 - 1620
1030 - 1120

144

MWF
T
T
M

0930 - 1020
0900 - 1015
1030 - 1145
1900 - 2200

(N.B. The reservation routine subtracts 10 minutes from the incoming
start time for the needed overlap between meetings)

a. full semester reservation

course id : 99999 instructor: john days MH
department: comsc building ms start 1045
course # 1111 room 222 end 1200
type th section 001 hours 1
title basic

comment: $5.00 charge for micro computer usage

press the pf l key to make the reservation

response: conflict (1045 - 10 = 1035 falls between a course meeting)
(start time falls between a course meeting time)

b. all entries stay the same except start time: 0800
end time : 1000

response: conflict (1000 falls between a course meeting)
(end time falls between a course meeting time)

c. all entries stay the same except start time: 0940
end time 0900

response: conflict (0940 - 10 = 0930 is the start time for existing
course) (start time equal to the commencement time for
existing course)

d. all entries stay the same except start time: 0800
end time : 1030

response: conflict (1030 is the start time for an existing course)
(end time equal to the commencement time for existing course)

e. all entries stay the same except start time: 0800
end time 1300

response: conflict (a course meets between 0800 and 1300)
(start and end time span the meeting time of a course)

f. all entries stay the same except start time: 0700
end time 0800

response: room reserved

g. clear the screen using the pf6 key, and recall the entry for
course id number: 99999

145

h. press the pf2 key to delete the course

i. try to refresh the screen for course id number: 99999
response: no match

3) ad hoc reservation request for temporary room assignment

a. query the room inventory database for building: MS
room 310

response: type case study
capacity: 63

b. query the class schedule database via the general user's option
for the meetings in MS 310. The scroll key should be used.

TH 1230 - 1345
TH 1400 - 1515
MW 0830 - 0920
MWF 1430 - 1520
M 1830 - 2120
w 1830 - 2120
MWF 1230 - 1320
TH 0730 - 0845
MWF 0730 - 0820
MWH 1530 - 1620
MWF 0930 - 1020
MWF 1330 - 1420
MWF 1130 - 1220
MWF 1430 - 1520
TH 1030 - 1145
TH 0930 - 1020
MWF 1030 - 1120
T 1830 - 2120

c. enter the room vacancy option to check up on an empty slot

start 87-07-01
expire 87-07-01
days MH
begin 0600
end 0700
capacity: 30
type l

press the pf5 key.
response: a list of rooms which are available at the needed time,days

and date is displayed. MS 310 is a valid choice. Now a
reservation can be made via the super user's option.

146

4) ad hoc reservation. request for temporary assignment, with expiry
date active for the automatic purge process.

a.
course id : 99999
department: comsc
course # 1111
type th
title basic

instructor: john days
building ms start
room 222 end
section 001 hours
begin : 87-01-aa expire:
(yy-mm-dd)
aa - today's day - 2
bb - today's day - 1

MH
0700
0800
1

87-01-bb
(yy-mm-dd)

(e.g if the date today is 86-12-31 then
aa - 28
bb - 29)

comment: $5.00 charge for micro computer usage

press the pfl key to reserve the room.

response: the room is reserved

b. press the pf6 clear key, and recall the room reservation for
course id number: 99999

c. return to the primary options menu

d. re-enter the super user's option. recall the entry for course
id number: ~9999
response: no match. The automatic delete process checked the

expiry date for the request and purged it.

5) check the start date logic for proactive reservations

a. select the ~uper user's option and make the following reservation

cour:;e id 99999 instructor: john days MH
department: comsc building ms start 0600
course # 1111 room 310 end 0700
type th section 001 hours l
title basic begin : 87-07-04 expire: 87-07-06

(yy-mm-dd) (yy-mm-dd)
comment: $5.00 charge for micro computer usage

b. select the room vacancy option

start 87-07-05
expire 87-07-07
days MH
begin 0600
end 0700

147

capacity 30
type 1

press the pf5 key to come up with a set of available rooms

response: MS 310 is not in the list.

c. keep all entries the same except

response: MS 310 is not in the list.

d. keep all entries the same except

response: MS 310 is not in the list.

e. keep all entries the same except

response: MS 310 is a valid choice.

start: 87-07-03
end 87-07-04

start: 87-07-03
end 87-07-08

start: 87-07-01
end 87-07-03

f. select the super user's option. Check out the reserve logic
by trying to reserve a through e above for course id: 79999
response: only choice e will end up in a valid reservation.

(comment for 79999 and 99999 are identical message
will be displayed, and the entry will be reserved)

g. delete course id: 99999 and course id: 79999

148

VITA

Vinit Verma

candidate for the Degree of

Master of Science

Thesis:A COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT SYSTEM
WITH RELATIONAL-LIKE DATABASE MANAGEMENT SYSTEM FOR A
SCHEDULING PROBLEM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Lucknow, India, October 30, 1962, the son
of Dr. Indrapal Singh Verma.

Education: Graduated from Mayo College, Ajmer (India), in May
1981; received Bachelor of Science Degree in
Mathematics, Physics and Chemistry from University
of Delhi in May 1984; completed requirements for the
Master of Science Degree at Oklahoma State University
in July 1987.

Professional Experience: Research Assistant, and Applications
Programmer, Department of Grants Contracts and Financial
Administration, Oklahoma State University, January,
1985, to April, 1987; member Association of Computing
Machinery, New York.

