COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT SYSTEM
WITH A RELATIONAL-LIKE DATABASE MANAGEMENT SYSTEM

FOR A SCHEDULING PROBLEM

By
VINIT XERMA
Bachelor of Science
St. Stephen's College
University of Delhi
Delhi, India

1984

Submitted to the Faculty of the Graduate College
of the QOklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1987

‘.Y\J\C\,‘Qy\ S
Ve
N3232c
. >

COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT SYSTEM&
WITH A RELATIONAL~LIKE DATABASE MANAGEMENT SYSTEM

FOR A SCHEDULING PROBLEM

Thesis Approved:

Sonald A it

Thesis AdV1ser

Nk 7 e
2. ZM%

% et 71 /\9/&/4%”%

Dean of Graduate College

ii

1282983 |

PREFACE

A comparative study of a hierarchical database management system, IMS
(Informétion Management System), and a relational-like database management
system, Model 204 was performed. The comparison of the two database
management systems was limited to data definition, daté manipulation, data
independence, data protection, and storage organizations. A classroom
reservation system was the scheduling problem which provided the
comparative tool. An on-line classroom reservation system was developed
using Model 204. A brief overview of ofbthe capabilities of the two
systems is provided under each topic, before a comparison is performed.
Initially the underlying data models have been discussed to set the ground
work for the following discussion.

I wish to thank my adviser, Dr. D. D. Fisher for his invaluable
guidance, and help. I am also grateful to the other committee members, Dr..
M. G. Kletke, and Dr. G. E. Hedrick for their advisement. The help of the
Assistant Registrar, Mr. Glen Jones is appreciated for providing the
requirements for the reservation system, and giving access to the class
schedule data. Input from Ms. Beth Thorton of Sectioning was invaluable.
Special thanks go to Mr. A.F. Curtis of Administrative Systems Development
for providing the needed data, and information on IMS. I am indebted to
Mr. Michael Barton, and Ms. Betty McDaniel for the needed encouragement.

I appreciate the ©patience and support of my fiancee Vidhi.

iii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..ceceecccccccsacs cececsttasececssesssseesens 1

Statement of the Problem ...cceeeeeccccccasseccccccas
Literature Review cecccesecccscsessccsaans e
Basic Definitions ..eeeeececccces ceecccccscs ceecccane
Overview of Relational and Inverted List Databases .
Overview of Hierarchical Databases ...ccececececceceaa. 12

<0 w e

ITI. CLASSROOM RESERVATION SYSTEM «cicceecceccecancans ceeeeeas 17

Theoretical Backgroundcceeeeeeccccscccsccaaee 17
Classroom Reservation System at OSU ..ceeeeeeeececen 23
Classroom Reservation System using Model 204 26

III. DATA DEFINITION ccceeeccccccscccccssccsssocccseaccscsassss 35
Data Definition in Model 204cccceceecscsccsssss 35
Hierarchical Approachccececececss cececesccenns 37
DiSCUSSIiON teeeeeeeceeeecesceeseccccassseocccccsaseos 40

IV. DATA MANIPULATION .ccceeccccccccscoccccasscssessssasssssas 4l
Data Manipulation in Model 204 ...cccceeeccccccscess 41
Hierarchical Data Manipulation ...cccecececcccccecsss 47
DiSCUSSIiON ceeeececcescccccscsccccccscsscssccosscscessss 50O

V. DATA INDEPENDENCE (¢ceceeececcccacens ceececcsccsssscassass BT
DiSCUSSLiON cceececccacscocsses cecssesecsscesecsccases D57

VI. DATA PROTECTION cccccocecccccccccscsccccscscscsassncssseasssss 0O
Data Integrity .eeeeeeeecceccseecccasccccccnsase eesss B0
Data Security in Model 204 D = 774
Data Security in IMS I 51
DiSCUSSIiON ceeeececcccccssccccccccscccssssssscsccccss DB

VII. STORAGE ORGANIZATIONS cceccececccccccccccccccsacccccncceas 10

Storage Organizations in Model 204 ...cececececececnsss 170

Storage Organizations in IMS ...ccceececcocccossceasseas 8l
DiSCUSSIiON cececececcccccscccscscsosssscscscosncscsncscsscssss B89

iv

Chapter Page

VIII. SUMMARY AND CONCLUSIONS .ceeerececencenacaanss cessesneas 91
SELECTED BIBLIOGRAPHY ...ccceeeeccccacann ceccecescesecascennenn 98
APPENDIKES tieeeeeeeeesoseocaseeanasonsacnaneanasasnscsncssanssoss 101
APPENDIX A - GLOSSARY OF TERMSiiiteneecancccncennn 101
APPENDIX B - CLASS RESERVATION SYSTEM PROGRAMS 103

APPENDIX C - CLASS RESERVATION SYSTEM USER'S MANUAL 132

LIST OF TABLES

Table Page
I. Data Definition Cececccccccscccccccccncocoaaaas 95
IT. Data Manipulation ...ccecececccocccccs ceeesecsscccassssass 395
IIT. Data IndependeNCe ..ceeeceeececccccaccscccscss ceceeccccctaacan 96

IV. Data Integrity and SeCurity ..cceceeececececcsccesccacannnes 96

vi

LIST OF FIGURES

Figure Page
1. A Relational TaAbhle .ieeeeeeccececcescsescscsecscsoscaoscscananas 8

2. Hierarchic Course DAtADESEe ...eeececcccecccccocccescccsnocass 13

3. A Single Database Treecee.. ceecaaae ceececssencas cecees 14
4. HierarchiC S@QUENCE .ccceeeccccccscccccsnscsnnas ceececccccns .. 15
5. A Database Definition in Model 204 ...ccceecceccas cecccceccess 37

6. A Simplified Database Definition in IMScctieeeeceeccees 38
7. A Simplified PCB Definiton in IMSceeeeeeceecececccncenss 38

8. A Field Security Scheme in Model 204 .cccceeeeccescccccacceas B5

9. An IFBM €XAMPlE tecceececccecoososososcssossscssssssscssscssaasss .. 71
10. Inverted Lists .vieeeeecen ceecscccns teeecscscsseccccscacccacna 76
11l. File Load in Model 204 cccccecseccasasescscscascana .. 178

12. Indexed Sequential Access Methodeieeiieceneececacceaeas 19

13. Data Administrator Data Structure types .ececeeceecececcccens .. 82
14. DA Segment Byte SE@QUENCE .eicececcccccccccccas seceas ceececcecsss 85
15. HDAM Implementation ...ceeeeeeceeces cececeeee ceeccccscecccnes .. 87

16. Storage Organizations and Access Methods in IMSccccceee. 97

17. Storage Organizations and Access Methods in Model 204 97

vii

CHAPTER T
INTRODUCTION
Statement of the Problem’

A comparative study of a hierarchical database management system, IMS
(Information Management System), and a relational-like database management
system, Model 204 is presented. The comparison of tﬁe two database
management systems is limited to the following subtopics -

- data definition;

- data manipulation;

- data independence;

- data protection;

- storage organizations.

The objective of the thesis is to expose the capabilities of the two
database management systems under the mentioned subtopics. It provides a
comprehensive overview of the two systems at the external/conceptual level
of the ANSI/SPARC (American National Standards Institute / Systems Planning
And Requirements Committee) model. The ANSI/SPARC model is a three tier
model with external, conceptual, and internal levels. The study is
intended tc help investigators of these two products. The comparison of
the two approaches to database systems was made by applying both methods to
the same problem, namely, the implementation of a classroom reservation

system which is a subproblem of a general scheduling problem. A general

scheduling problem is concerned with the assignment of resources and

activities subject to constraints, Almond(l). The classroom reservation
system ha§ been implemented in IMS by staff members of administrative
systems development at OSU. Inorder to be able to compare the two database
management approaches, it was necessary to develop a similar system in
Model 204. The data for the new system was abstracted from the existing
IMS database. Once a common application problem was available, a study was
performed to explore the above mentioned capabilities of the two systems.
The study initially provides an overview of the data models involved. A
description of scheduling systems, and the on-line system developed in
Model 204 follows. The subsequent chapters discuss the data definition,
data manipulation, data independence, data protection, and storage
organization capabilities of the two systems.

The data definition comparison involves the data definition constructs
available under Model 204 and IMS. The underlying data models cause the
different data definition styles in the two systems. Under data
manipulation a comparison is made of the data manipulation capabilities of
DL/I(Data Language/One) under IMS, and user language under Model 204.
Again the constructs in both these languages reflect on the data models
they imitate. Data independence can be further segmented into physical
data - independence and logical data independence. The physical data
independence implies program immunity to changes in the storage structure,
while logical data independence implies program immunity to changes in the
data model definition. Program immunity to change implies that if the
logical/physical organization of a database is changed, then the
application programs accessing this database need not be changed. This

degree of data independence in the two classes of database management

systems is discussed. The data protection study involves data integrity
and data security in the two systems. The underlying storage structures
and access methods in IMS and Model 204 are discussed under the storage

organization chapter.
Literature Review

The hierarchic, inverted 1list, and network data models resulted after
abstractions from implemented systems. The relational model was developed
on set theory principles. Fry, Sibley (18), provide a good reference for‘
the evolution of database management systems. A discussion on relational
and inverted list data models is provided in Date (17). Codd (8), and Codd
(9) provide a practical foundation for the relational database theory. Codd
proposed the relational data model and provided the basic principles for
the model. Chamberlin (6), and Kim (24) give a detailed summary of
relational databases, and several implemented systems have been discussed
by the two authors. Mcfadden, Hoffer, Jeffrey (27), and Wiederhold (35)

are a good sources of definitional terms, and keywords. The inverted list

data model has envolved after abstraction from systems which utilize the
inverted file access method. Date (17) provides a description of the basic
inverted list data model operations. Cardenas (5) provides a formal
analysis of inverted structures incorporating implementation oriented
considerations. In large highly inverted databases, the inverted directory
or index becomes a large database itself. Thus such a directory should not
be stored as a sequential file. The advantage of the multi-level inversion
approach over the single inversion level and sequential structure was shown

to increase exponentially with the degree of inversion and/or the number of

distinct key values of inverted access keys. The search time through the
directory was significant for large databases, and a function of complexity
of queries, data distributions, and timing and blocking specifications of
the storage devices. The hierarchic data model was also abstracted from an
implementéd system, namely IMS. McGee (29) gives a detailed system level
discussion on the capabilities of IMS. Tsichritzis, Lochovsky (33) have
given a general overview of hierarcpic systems, mainly concentrating on
IMS.

Literature was reviewed to come up with criteria to evaluate database
management systems. Most of the reviewed literature focussed on the
database architectural aspects, at the internal level of the ANSI/SPARC
data model. There was no evidence of comparison of implemented systems.
Most references provide an in depth discussion of specific systems.
Cardenas (4) discusses evaluation of file organization models. Performance
evaluation techniques like modelling, measuring system response time, and
overhead costs have been discussed by Christodculakis (7). McGee (28)
describes criteria for data model evaluation at the three levels of the
ANSI/SPARC model (i.e external, conceptual, and internal levels). Siler
(31), and Stonebraker, Woodfill, Ranstrom, Murphy, Meyer, Allman (32)
provide a good description of performance evaluation criteria. Michaels,
Mittman, Carlson (30) have compared a relational system, with a network
system, at a conceptual level. Data definition, data manipulation, and
data independence were the primarv criteria used to compare the relational
and network systems.

As a class room reservation system was used as a comparative tocl, a

fair amount of review work was done in this area. Algorithms to implement

scheduling systems were reviewed. Lions (25) discusses the matrix
reduction method for generation of school timetables. Implemented systems,
like the Ontario school scheduling program; by Lions (26), and the class
scheduling system at Oklahoma State University were studied. Gosselin,
Truchon (19) discuss a linear programming problem of allocating classrooms
to reservation requests. Csima, Gotlieb (16), Almond (1), Barraclough (2),
Brittan, Farley (3) are the other primary references in the class
scheduling area.

Model 204 systems reference manuals were used to obtain detailed
information on the system. CCA File Manager's Guide (1l1) provides a
detailed description of the storage structures, and the data definition
capabilities of Model 204. CCA User language ﬁanual (15) describes the
data manipulation capabilities of the system. The general features of
Model 204 are described in CCA Command Reference Manual (10), and CCA
System Manager's Guide (12). Data security is detailed in CCA File
Manager's Guide (11), and CCA Terminal User's Guide (14). IBM General
information manual (21) provides an overview of IMS. The data manipulation
capabilities of IMS are explained in the IBM Application Programming
Reference Manual (20). The data definition, and data security features for
IMS are discussed in IBM System Design Guide (22), and IBM System
Programming Reference Manual (23). McGee (29) provides a good description

of the access methods, and storage structures available in IMS.
Basic Definitions

Access Path: to a file is defined as the strategy used to address

individual records in a file (e.g indexed, sequential);

Attribute: a column in a relational table;

Data Definition: description of data objects;

Data independence: immunity of application programs to a change in
storage structure, or access strategy;

Data integrity: accuracy or correctness of data in a database;

Data Security: restriction of access to sensitive data;

DBMS: software that provides the interface Dbetween the database, and
the end user;

Data Sub-Language: is a combination of two subordinate languages: a data
definition language (DDL), which provides for the definition of
database objects, and a data manipulation language (DML), which
supports the processing of thdse objects;

Entity integrity: no attribute participating in the primary key of a
base relation is allowed to accept null values;

Foreign key: a key which matches the primary key of another relation,
or contains a null value;

Fourth Generation Language: an interface to an advanced application
generator (rapid application development tool);

Inverted list: a set of indexes in which a secondary key leads to a
set of primary key references;

Logical data independence: program immunity to changes in the data
model definition;

Normalization theory: mathematical theory, which governs the
conversion of relations into: normal forms, to maintain data
integrity;

Physical data independence: program immunity to changes in the storage

structure;

Primary key: a key which uniquely identifies a tuple in a relation;

Pseudo-foreign key: a foreign key which does not necessarily match the
primary key of another relation;

Referential integrity: a foreign key can either match the primary key
of another relation, or have a null value;

Relation: a mathematical term for a table;

Secondary key: identifies tuples in a relation. It can contain non-
unique values;

Segment: a record in IMS;

Tuple: a row in a relational table.
Overview of Relational and Inverted List Databases

Relational Databases

The term "relational" applies to the conceptual and external levels of
the ANSI/SPARC architecture model, it has nothing to do with internal data
structures of the system. A relational database is one that is perceived
by it's users as tables, and nothing but tables. It is built on the
principles of the relational data model. Such a system should have the
operations select, project, and join without requiring any pre-definition
of physical access paths to support those operations. A relation is
another term for a table. The rows in a relation are called tuples, and
the columns are called attributes. A relational table is shown in Figure

1. The table has two tuples and three attributes.

COURSE.ID ROOM DAY

12296 MS 222 M
12273 CLB 110 F

Figure 1. A Relational Table

No duplicate tuples are allowed in a relational table. The attributes
values for a specific tuple are atomic i.e. repeating groups are
disallowed. The relational table is unordered. Thus a relational database
is perceived by it's users as a collection of time varying relations. The
data manipulation language for a relational system can be classified as a
relational calculus language. A relational calculus language uses set
theory operations 3join, union, intersection etc, to perform data
manipulations. The select operation takes a horizontal subset of a
relation, and the project takes a veftical subset. The join combines two
tables according to some qualifying cbnditions. Relational languages are
primarily set-at—-a-time languages. Set processing prévidés loop avoidance
in application programs, which greatly enhances programmer productivity.
Most relational systems provide a fourth generation language for query
purposes.

A tuple must have & primary key, and such a key cannot have a null
value. Foreign key values in relational systems must match primary key
values (or be null). The mathematical foundations of a relational DBMS
give rise to normalization theorems which provide algorithms to detect and

remove dependencies among entries in the system. A synopsis of the normal

forms used to remove data dependencies follows, Date(l7). A relation is
said to be in a particular normal form if it satisfies a certain specified
set of constraints. A relation is in first normal form if it contains
atomic values only, no repeating groups are allowed. A relation is in
second normal form if and only if it is in first normal form, and every
non-key attribute is fully dependent on the primary key. If all non-key
attributes of a relation are mutually independent and fully dependent on
the primary key of the relation , then the relation is said to be in third
normal form. A relation is in Boyce/Codd normal form if and only if every
determinant is a candidate key. A relation is in fourth normal form if it
is in Boyce/Codd normal form and all multi valued dependencies in the
relation are in fact functional dependencies. Finally, a relation is in
fifth normal form if and only if every join dependency in the relation is a
consequence of the candidate keys of the relation. Logical relationships
in such systems are represented via foreign keys, and physical pointer
chains are not utilized. In a relational system positional addressing is
replaced by associative addressing. Every datum can be identified uniquely
via a relation name, primary key value , and attribute name. The
relational model was developed to tackle various data dependencies existing
in systems. Codd (8), Codd (9) provide a practical foundation -for the
relational database theory. ' Three primary dependencies are ordering
dependency, indexing dependency, and access path dependency. The ordering
dependency speaks of the order in which the data records are stored and
accessed. Some non-relational systems are restricted by the ordering of
data records closely associated with the hardware determined ordering of

addresses. Indexing dependence is associated with the indexes being

performance oriented components of the data representation. Indexes are
performance oriented components of data because, they exist to increase the
performance of data access, and are not originally a part of the data. The
dependency comes into the application programs which need to deal with
dynamic indexes. Finally access dependence is the tree-like pre-defined
access paths imposed on application programs in a hierarchical environment.
All three of these dependencies have been removed explicitly in the
relational data model. The requirements for a system to be called truly
relational are extremely stringent, and such a system does not exist today.
Kim (24), Date (17) provide a good overview of relational database

management systems.

Inverted List Databases

The data model for inverted list systems can be regarded as an
abstraction of the underlying inverted 1list storage structure and
associated operators. The inverted 1list model, lige the hierarchical
model, explains the database concepts at the internal level of the
ANSI/SPARC architecture model. The inverted list model ig an abstraction
of the indexed file organization. At the external levels, inverted list
systems can have relational front-ends. Thus an inverted list database is
a system comparable to the low level component of a relational database in
which the users operate directly at the record-at-a-time level, instead of
the set level. Model 204 has an inverted list file organization but
provides set level operations. An inverted list system is similar to a
relational database in that stored tables and indexes on those tables are

visible to the user. It has a collection of tables each with it's own set

10

of tuples and attributes. The tuples in such a system are ordered. The
system may have a large number of search keys which may be composite. The
operators in such a system are primarily record-at—-a-time. The data
manipulation operators fall under the two categories:
1) operator to obtain the address of a record;

2) operator to manipulate a record at an established address.
The operators in the first category can be further classified as:

a) direct search operators;

b) relative search operators.
The operators under category one are also termed as search/locate/find
operators. Relative search operators locate a record relative to some
established address. Established addresses are termed as "database address
areas". The retrieval operations obtain data via access paths. These
access paths for search operators need to be maintained for terms like
"first"™ and "next" to be meaningful in search operators. This is similar
to the notion of current database position in hierarchical systems. These
access paths are maintained by the total database physical ordering and

.

inverted list indexes. Let A be a database address area, T be a table for
a database, and K the search key. Some inverted 1list data retrieval
operators are:

- locate first: locate the first record in fable T and return

it's address in A;

- locate next: locate the first record following the one
identified by A, and return it's address in A;

- locate first with search key equal: find the first record in
table T with a search key of K, and return it's address in
A;

11

- locate next with search key equal: locate the next record in
table T which follows the record at address A, and whose search
key is identical to K, and return it's address in A;
- locate first with search key greater: is the same operator as
the previous operator, except the search key of the located
record should be dJgreater than the key of the record
identified by A;

- retrieve: retrieve the record identified by A;

- insert, delete and update operators.
Overview of Hierarchical Databases

Hierarchical databases were not originally constructed from an
abstract data model. The hierarchic model resulted by the process of
abstraction from implemented systems (e.g. IMS), Tsichritzis, Lochovsky
(33). Hierarchic systems are an abstraction of the parent/child data
organization. A hierarchical database is formally defined as a forest of
tr§§s called database trees, whose record occurrances appear as nodes. The
database trees form an ordered set consisting of multiple occurrences of a
single type of a tree. The type of a tree is analogous to a distinct
record type. A particular tree consists of a root, and an ordered set of
zero or more dependent subtrees or record types. The subtrees are defined
recursi&ely by the same definition. Thus an entire database tree is
basically a hierarchic arrangement of various types of records. The

records can be subdivided into fields. Consider the hierarchic database

shown in Figure 2.

12

13

C_OURSE
|eourse.s] NAME |

MEETING DEScRpTION
lTIME I BLag] RooOM I I hesc l

TEACHER CTUDENT
Tauame | oo maxc] min |

Figure 2. Hierarchic course Database

In Figure 2 course database has 'course' as the root record type,
with two dependent record types 'meeting' and 'description'. The 'meeting'
record type has two dependent record types 'teacher' and 'student'. The
entire database has a definite ordering (top-to-bottom, left-to-right).
The 'meeting' subtree precedes the 'description' subtree, and the 'teacher’
subtree precedes the 'student' subtree. The entire 'meeting' subtree is
traversed before the 'description' subtree. Under one 'course' root there
can be multiple 'meeting' and 'description' subtrees, and under 'meeting'
there can exist multiple 'teacher' and 'student' subtrees. Multiple
'teacher' segments under a 'meeting' segment signifies a hypothetical case
where any one of the teachers could teach the course. The entire course
database brimarily consists of a forest of these 'course' database trees.
Course, meeting, description, teacher, and student are the five distinct
record types present in the database. The course forms the root record
type, and meeting and description form the dependent record types. Course
is also termed as a parent record type for meeting and description child
record types. The entire database tree is threaded by explicit pointers

between parents and children. Figure 3 explains multiple occurrences of a

14

record type. The figure shows a single database tree in the course

database.

COURSE
12294 [daTapase]

MEETING DEScRIpTION
z[8:00] MmS [222 | { THEORY . |
2 qioolEs [121 | $quins

[[10:00|HEV]| 603

TEAMHER STUDENT
[TonEs] =
2| HARRIS |
L CHARLES | Figure 3. A Single Database Tree

The database has a single occurrence of the root record type 'course'.
The course occurrence has an ordered subtree consisting of three
occurrences of the meeting record type, and one occurrence of the
description record type. The first meeting occurrence in turn has an
ordered sét of three teacher occurrences, and one student occurrence. All
occurrences of a specific record type which share a common parent are
termed as twins. In the previous diagram the meeting records are twins.
As was mentioned earlier the dependent record types are always ordered.

The hierarchic sequence for the given database tree is shown in Figure 4.

course: 12296

meeting: 1
teachers: charles
teachers: harris
teachers: jones
student: 30,60,10
meeting: 2
meeting: 3
description: theory

Figure 4. Hierarchic Sequence

The top-to-bottom and léft—to—right ordering is evident from the
previous sequence. The database is a forest of these course trees. If
these course trees are depicted to be rooted at the system, then the entire
database can be visualized as a tree. The hierarchic sequence applies to
this entire database i.e. the database trees have a definite ordering
left-to-right. The physical database records are thought of as being
stored in this logical sequence. Referential integrity is maintained in
the hierarchic model, because a child cannot exist without a parent. If a
parent is deleted, all children are deleted automatically. A child type
can be inserted only if the corresponding parent exists. A child can have
only one parent. The data manipulation language provides operations to
manipulate trees. Some operators on trees are:

- operator to locate a specific database tree in a forest;
- operator to process a forest of database trees in a hierarchic

sequence;
- operator to step through the subtrees in a specific database

15

tree;
- insert operator;
- delete operator.
The operations on trees process a node at a time. Thus a hierarchic system

is record-at-a-time. McFadden, Hoffer, Jeffrey (27) provide a good review

of hierarchic databases.

16

CHAPTER I1

CLASSROOM RESERVATION SYSTEM

Theoretical Background

A scheduling system is one that distributes a resource, into a finite
workspace, in the most efficient manner. A good example of a scheduling
system would be one that schedules teachers into a weekly timetable. A
classroom reservation system is a scheduling system in which classrooms are
allotted to room reservation requests. The class scheduling systems
reviewed primarily involved scheduling teachers and courses into a weekly
timetable. A set of course requirements was laid out and the day was
broken into a fixed number of periods. Each teacher had a fixed teaching
load. An algorithm was utilized to come up with a timetable which
schedules the teachers and courses during the week. The algorithms to do
the scheduling varied according to the timetable restrictions laid down at
various schools e.g. (double periods, specific lunch hours). Gosselin,
Truchon(19), developed an algorithm which performs a heuristic room
allocation to courses. The algorithm presumes a categorized set of
requests and a set of rooms which can satisfy each of the requested sets.
The algorithm involves a first come first serve allocation and a two
dimensional array is the primary data structure used. It results in a
schedule where rooms get alloted to specific requests. An exhaustive

search is performed and a conflict free schedule is found if one exists.

17

An explanation of the algorithm follows.

Suppose there are 5 hours in the day, 3 rooms in the category to be
considered and 6 requests to be satisfied by rooms of this category. The
columns in the matrix below represent the hours and the rows represent the
rooms. The 6 courses are to be given at hours (1,2), (1,2), (4,5), (2,3),
(4,5), (3,4). The 3 x 5 matrix is initialized to zeros. The algorithm
tries to satisfy each request starting from room 1. Once the needed hours
are found free in a certain room (row), the request number is placed in
those slots, otherwise the next room down is tried. This goes on until we
run into a request which remains unsatisfied after checking the last row.
In such a case the request prior to this one is uprooted from the matrix
and tried in the next room (row) down. The freed slot is replaced with
zZeros. Now the unsa£isfied request is picked up again and the whole
process is repeated until a conflict free schedule results. If finally the
first request is uprooted and no schedule results after trying all
combinations then the algorithm prints out the error message. In the above
problem the schedule matrix looks as follows after the fifth request has

been satisfied.

hour 1 2 3 4 5
room 1 1 1 0 3 3
2 2 2 0 5 5
3 0 4 4 0 O

The sixth request cannot be satisfied in any of the rooms, so request

18

five is uprooted and satisfied in a room further down. This results in the
Sixth request being satisfied by room 2. The final schedule matrix is

shown below.

hour 1l 2 3 4 5
room 1 1 1 0o 3 3
2 2 2 6 6 0
3 0 4 4 5 5

The algorithm can be modified to catch the delinquent request. This
algorithm is being used in the timetabling system set up at University
Laval in Canada, Gosselin, Truchon(19). In some systems faculty was
matched to courses. The instructors laid down a set of preferences in
timings and courses, and a prodram came up wWith an appropriate schedule.
Other systems incorporated the student enrollment data into the timetabling
system. An interesting problem was scheduling .students to classes in a
compiled timetable. Each student selects a set of courses as his proposed
schedule. The schedule was fed into the scheduling program which verified
if it was compatible with the timetable. If a conflict results a workable
schedule was computed by the program. Each student schedule was considered
on it's own merit without reference to any other student's schedule. There
was an excessive amount of processing time spent in scheduling each
student. If the student body was large the above system proved extremely
expensive. With a large student body the time to schedule each student was

of major importance. The method used aimed at scheduling each student as

19

quickly as possible by reducing the number of schedules tried, before a
satisfactory one was found. This was achieved by categorizing the classes
so that the most difficult one to fit into occurreé first in the student
schedule. For example if only one class was available then the student can
either be fitted into it or not, so the rejection occured very early. The
program addressed another important factor, the students were evenly
distributed among different class sections, so fewer classes reach their
maximum limit, and thus the students enrolling late could be easily
enrolled.

Barraclough(2) has discussed an interesting technique in high school
timetabling. The primary resources being addressed was classes to be
taught and masters. The problem was to assign masters to.certain classes.
An intelligent use of bit strings and logical operations performed the
needed operation. A master could meet a class for a single period or two
successive single periods i.e. a double period. The school time table had
pre-scheduled break timings, and a double period could not span across a
break. The list of requirements was structured as follows: (Mi,Cj,s,d).
Master i must teach class j for s single periods and d double periods. 1In
order to assign these single periods it was necessary to know those periods
when master i and class j were both free, and then s of them had to be
chosen. The binary pattern formed by the logical "and" of the available
digits for master i and available digits for class j gave the common

periods available. If the available digits for master i and class j were:

20

1101001

PMi (master i)

1}

PCj (class j) 0100101

PMi & PCj

0100001

The logical "and" showed that master i and class j were both available in
the second and last periods of the day. (Mi,C3j,0,d) was the general format
of a double period assignment. The request lis;'demands master i teach
class j for 4 double periods. Pairs of digits that do not cross a break
must be found by referring to the pattern showing when breaks can occur.
The pattern of digits denoted by de showed where QOuble periods could end.
The digits showing where double periods can start can be found by the
following logical operations. (Pmi & PCj & de) gives a 1 where the second
period is free. Let (PMi & PCj & de)' denote the same pattern of binary
digits but left shifted by one position. The 1ls now occur at positions
which could be the start of double periods. Then (PMi & PCj & de) ' & (Pmi
& PC3j) gives a 1 where a double period may start. If the binary patterns

for one day were:

PMi (master i) =1110111
PCj (class j) =0110110
de (double end) =0101011
PMi & PCj =0110110
PMi & PCj & de =0100010
(PMi & PCj & de)' =1000100

(PMi & PCj & de)' & (PMi & PCj)=

(@]
(@]
o
(@]
[
(@]
(@]

21

Showing that a double period may start in the fifth period, but
rejecting the two consecutive periods in the second and third periods since
they cross breaks.

Csima,Gotlieb(16) proposed a method of constructing school timetables
based on an iteration of boolean matrices. They utilized a three
dimensional array each node of which represented a specific teacher, class
and time. In the boolean array a value of zero implied the impossibility
of the class and teacher meeting at that time. Conversely a value of one
implied the possibility that the teacher and the class may meet at that
time. The érray was initialized to ones indicating that a teacher could
meet any class at any time. But as the.computatién proceeded the ones were
changed to zeros according to set rules and entries in the requirements
matrix. At the end of the computation for a certain time slot it was
possible for each teacher to meet only one class and each class to meet
only one teacher. Each teacher could meet each class a number of times
preset for that teacher and class. The resulting three dimensional array
was the required timetable. This method required examination of each plane
section of the three dimensional array at regular intervals. A plane
section is a two dimensional array of 2zeros and ones belonging to a

teacher, class or time. An examination of such an array has two phases:

1) The existence of at least one possible schedule is determined

(feasibility test).

2) Any non-zero element which does not belong to some possible schedule

is changed to zero (matrix reduction).

22

The algorithm suggested by Csima,Gotlieb(l6) to process step 2 was of
the order 20. Lions(25) came up with a more efficient algorithm to

effect the matrix reduction in order n2

time. The Ontario school
scheduling program was successfully implemented using the above algorithm,
Lions(26). The program handled a variety of special requirements in the

timetabling process, as opposed to the structured requirements tested by

Csima, Gotlieb(1l6).
Cléssroom Reservation System at OSU

The current classroom reservation system at Oklahoma State University
is set up on IMS. The system was studied to obtain an understanding of
classroom reservations at OSU. The system provides an on-line browse
facility keying off the course identification number. Setting up the
schedule for a semester and making reservations are still a batch oriented
process.

A manual is created with thirty minute time slots for sixX days in the
week and for each available classroom on campus. This in effect is a
manual database maintained by the registrar's office. The registrar has
created a turnaround document which is sent to each department on campus.
A copy of the previous semester's schedule is sent with the turnaround
document. The departments come up with lists of courses they will offer
and expected room and reservation timings. Once the department's request
reaches the registrar's office, entries are made in the manual database for
each room requested. Any conflicts are' resolved at this stage by

re-adjustment requests to the departments concerned. The turnaround

23

documents are forwarded to the data entry personnel who key in the data
into the IMS database. -A verification run is made and any conflicts that
may have been overlooked are resolved at this stage. Once the data is
entered into the IMS database the on-line system available is able to
browse it. Any reservation request made after the initial schedule is set
up is keyed into the on-line system. The conflict reports are generated
in a batch process at the end of the day. The personnel then reconsult
their manual database and resolve the conflicts with the departments
concerned. On-line deletions do not cause any problems as they are not
involved in any conflicts. Student enrollment data is also incorporated
into this database. During pre-—enrollment and enrollment each student's
en?ollment request is entered into the system, so the database remains
current with the number of students enrolled for a specific course. Each
course has a pre-specified lower and upper limit for the number of students
and once these are crossed a indicator is set. The departments specify
these limits for each course. Once a semester's schedule has Dbeen
finalized by the above method it is ready to Dbe printed.

The amount of manual effort going into the current system is evident
from the process described. The existing system is not truly on-line
because the reservation requests are not instantly verified by the computer
but instead are performed in a batch process at the end of the day. Both
the departments and the registrar's office personnel spend a lot of time
setting up the initial schedule for a semester and resolving conflicts.
The whole process is primarily manual with the computer being utilized for
data collection. The departments propose a schedule by inertia from the

previous semester's schedule. The departments on campus have an

24

understanding from prior years as to which rooms are available for
assignments. The laboratories have beén pre—-assigned to each department.
A room request in mid semester requirgs querying of the manual database.
The browse facility is minimal just keying off the course identification
number and the department name and course number. The departments on
campus do not have any on-line system to check up on room reservations.
The conflict detection system is redundant with both the personnel and the
computer performing the exercise. Two databases are being maintained
namely one in IMS and the room reservation manual. The turnaround time for
a room reservation request is very slow.

The requirements for the on-line classroom reservation system
developed on Model 204, were obtained from the registrar's office at 0OSU.
The primary requirement was to get a truly on-line reservation system. The
system was expected to provide multiple views of the data. It was to
provide a list of courses meeting in a room, or courses being taught by an
instructor or department. The manual database needed to be eliminated,
therefore the conflicts had to be resolved by the reservation system. 2
system was needed which would allow the departments on campus to query the
reservation system. The system was to handle two types of requests namely,
room reservations for for a full semester, and temporary room reservations.
The ad hoc room reservations needed to be dynamic, in that a classroom was
freed once the expiration date for the reservation was reached. A room
inventory database was needed which would house information on all
reserveable rooms on campus. This room inventory database would allow for
complex reservation requests. An example of such a request is: " provide a

list of rooms which are case studys, have at least 40 seats, are free on

25

Mondays from 9:30 to 10:30 on specific dates". The system was expected to
be user friendly, and a user's manual was needed for the reservation
system. For security reasons a complete tape backup system was also

needed.
Classroom Reservation System using Model 204

The first phase of the development of the classroom reservation system
on Model 204 involved studying the existing system, and obtaining
requirements for the new system. The second phase invol&ed accessing the
classroom data. A copy of the IMS database was made on tape. Segments
were sequentially dumped to tape, to make a course meeting dataset and a
course description dataset. IBMs IEHMOVE utility was utilized to copy
these datasets onto disk. The schematic below outlines the subsystems of

the classroom reservation system.

CLASS l—— GENMERAL VSER
SCHEDBVLE 3&:?‘5%’. VSERA
FiILE
RooM Vﬁtm*ﬂf,y
ROOM
mvENTORy
FILE “ Ro0M ls»-,wﬁesﬂoay

The data for the classroom reservation system was stored in a class
schecdule file, and a room inventory file. The class schedule file consists

of of all course meeting data, and the room inventory file contains

26

specifications for all reserveable rooms on campus. The class reservation
system is sub-divided into four subsystems namely :

- general user;

- super user;

- room inventory;

- room vacancy.

The general user's option is intended for departments on campus. It
provides extensive data retrieval functions on the class schedule database.
No updates are provided through this window. A user can retrieve
information by keying off the following fields :

a. course id number;

b. department name and course number;
C. department name;

d. building and room number;

e. instructor's name;

This option also provides a 1list of all courses offered by a
department, sorted by day of the week, and time of the day. The program
function key support, and the advaiced cursor sensing capabilities of Model
204 provide a user friendly interface.

The super user's option is intended for the registrar's office. This
option provides room reservation facilities. All the data retrieval
operations mentioned above are available under this option also. TwoO types

of reservation request can be satisfied, namely :

- room reservation for the whole semester;

— ad hoc room reservation request for limited amount of

27

time.

A user is expected to query the room inventory database via the room
vacancy subsystem before making a room reservation for the whole semester.
The day and time conflicts for a room are resolved in the room vacancy
subsystem. The reservation system maintains unique course id numbers, and
any attempt at duplication is rejected.

An ad hoc room reservation request requires the user to input &
commencement date and an expiration date. The commencement date allows for
a proactive reservation. The expiration date allows the system to free the
room, once the expiration date is reached. This keeps the reservation
system dynamic in that rooms are freed up again on expiration. The system
checks for time, day and date conflicts for a room before allowing a
successful reservation. The deletion process keys off the course id
number.

The room inventory option provides information on all reserveable
rooms on campus. Some rooms have been allocated to specific departments,
and these do not appear in the available pool mentioned above. The room
inventory database keeps information on the room capacity and room type.
Case study, auditorium, fixed, table and chairs, arm, bolted arm, and lab
are the valid room types. Information for any specific room, or for all
rooms in & building can be retrieved. New rooms can be added to the
database, and o0ld ones may be deleted.

The room vacancy option is the main component of the reservation
system. This option queries both the class schedule and the room inventory

databases. A user inputs the start date, end date, days the course will

28

meet, begin time, course end time, number of seats needed, and the type of
room needed. The room inventory database is queried to come up with a list
of rooms which match the needed type and capacity. Then the time, day and
date conflicts for each of the rooms is resolved by querying the class
schedule database. Finally a list of rooms is displayed which satisfies
the request.

The BATCH204 utility of the Model 204 file manager was executed to set
up the database files. The batch routine is included in Appendix B. The

attributes of the class schedule file are:

file name : M204.ACT10820.DATA
volume ¢ 0SU201

device type : 3380

organization : PS

record format : U

record length : 6184

block size : 6184

first extents : 90

secondary extents: 20

creation date : 86/08/03

The data definition phase involved defining the fields in the Model
204 fileé. Two tables were set up, namely the class schedule table, and
the room inventory table. Both were kept in first normal form (i.e all
underlying domains contain atomic values). A description of the table

attributes follows.

CLASS SCHEDULE TABLE
ATTRIBUTES

COURSE.ID (key) - course identification number

29

DEPARTMENT (key)
COURSE.NO (key)
COURSE.TYPE
COURSE .DESCRP
INSTRUCTOR (key)
BUILDING (key)

department name

four digit course number
course type (Th,LAB,IS,DS)
course title

instructor's surname
building code

|

ROOM (key) - room number

SECTION - section number

COURSE.DAYS - meeting days (MTWHFS)

COURSE.BEGIN - start time

COURSE.END - end time

FREEFORM - flag to indicate TBA reservation

MIN - minimum # of hours for course number ending in O
MAX - maximum # of hours for course number ending in O
START (key) - commencement date

EXPIRE (key) - expiry date

COMMENT - comments on the course

NUMBER - index into comments

ROOM INVENTORY TABLE
ATTRIBUTES

BUILDING (key) building code
CAPACITY (key) = total number of seats
ROOM (key) room number

TYPE - case study
auditorium

fixed

table & chairs
arm

bolted arm

lab

SN0 0 s WN

The key specification against the field name signifies that a hash
index is created for that attribute.

The data extraction, and the file initialization was done via the
imaging facility of user language. This facility allows an application
program to access a non-Model 204 file (i.e the IMS datasets). The
application programs, and the hierarchy chart for this abstraction process
are included in Appendix B.

In the next phase the application programs were developed to

30

constitute»the four subsystems. The algorithms used in these subsystems
make use of inverted lists, and set theory operations. The order of
processing for these algorithms is polynomial. The class schedule table is
created with eight hash indexes. A query for all courses for the computer
science department is executed in the following manner. The department
code COMSC is hashed, and the secondary index entry is located. This entry
has a 1list of internal record numbers for all tuples which belong to the
queried department. This located set is then displayed to the user. The
hash function has a processing time of 0(1l), and if 'n' tuples exist in the
located set, the query takes O(n). More complex queries are executed using
intersections, and joins on located sets. A typical query for the room
vacancy subsystem would be: " generate a list of all rooms which are free
on Monday and Wednesday, from 7:30 to 8:30, with a capacity of at least 30
seats, and are case studys". The room inventory table is queried, and two
sets are located. The first set contains all rooms with 30 or more seats,
and the second set contains all case'study rooms. An intersection on these
two sets provides a set of rooms which are case studys, and have 30 or more
seats. For each of the rooms in this reduced set, the class schedule table
is queried for the vacancy at the needed time, and day. A join 1is
performed between the room inventory table, and the class schedule table
with day and time restrictions. Suppose MS 222 is a case study, and has 30
seats, thus it is a member of the reduced set due to the intersection. A
set is located which consists of all courses meeting in MS 222. The
timings, and meeting days for each of these courses is checked. If a
conflict results MS 222 is deleted from the set, and the next room is

verified in a similar manner. The operations just described are performed

31

in the join. As a result of the join a set of rooms is obtained which
satisfy all the request criteria. The previous example showed how the set
level algorithm executes a query. Suppose there are 'n' rooms with at
least 30 seats, and 'm' rooms which are case studys. It takes 0O(n) to
locate the set with capacity restrictions, and O(m) to locate the set with
room type restrictions. The intersection is O(n X m). Suppose 'p' of
these rooms satisfy the day and time restrictions. The total processing
time for the request after the final join is O(n X m X p). In the general
case, if each located set has 'n' tuples, and there exist a total.of k!
intersections and joins for a request. The processing time is O(nk+l).
Thus querying the reservation system requires a polynomial time. The
processing time is directly dependent on the number of intersections, and
joins in the request. Insertions, and deletions require a index access and
a union or difference on a set. The index access utilizes a hash function
thus it has a constant order, and the union or difference require an
addition or removal of a tuple, which again takes a constant amount of
time. Thus the insertions, and deletions in the classroom reservation
system are 0O(l) operations.

The application programs which form the four subsystems, and the data
abstraction programs are included in Appendix B. Appendix C has a users
manual which provides directions on how to perform reservation queries, and
updates. It provides directions on the usage of program function keys, and
a description of each of the four subsystems is provided with user
interface screens. The final section of Appendix C contains a set of test
cases which verified the system. The test cases checked both the ad hoc

reservations, and the full semester reservations. The dynamic nature of

32

the system was verified as expired requests were successfully eliminated at
system startup. All the data retrieval functions were verified with
enqtries in the schedule book. Additions, and deletions on the room
inventory database were successfully executed. The system correctly caught
course identification number duplications, and conflicting reservation
requests. The ten minute restriction between reservations was checked.
Both proactive, and retroactive reservations were successfully made. All
program function keys were debugged to perform correctly. A tape dump
procedure provides the needed back up for the classroom reservation system.

The extraction of data from the IMS database highlighted the external
file access and imaging facilities in Model 204. The data definition
phase 5rougnt out the tabular data format of the relational-like system.
The indexing options were invisible to the user. Redefinition was easily
performed without requiring changes in the application programs.. Coding in
user language brought forth the set-level processing capability, and
‘provided a good understanding of the retrieval, file maintenance, and flow
of control constructs. Studying the execution of a user language request
exposed an unexpected inefficiency. Each request is compiled and executed
at each execution, and no load modules are stored. The requirements‘ for
the developed system were obtained from the registrar's office at Oklahoma
State University. Changing requirements over time, tested the data
independence capabilities of Model ‘204. No data integrity checks are
performed by Model 204. Integrity checks were implemented via procedural
code. No primary keys, or foreign keys are supported by Model 204. The
data security features proved to be extremely powerful. The file level,

record level, and field level security features have been used in the

33

developed system. Model 204 proved to be lacking in the storage
organization area as IFAM (Inverted File Access Method) was the only access

method available.

34

CHAPTER III

DATA DEFINITION

Data Definition in Model 204

The data definition in Model 204 can be done via a batch job, or
interactively using user language. A Model 204 file needs to be allocated
and initialized before any file definitions can be executed. The tables
associated with a Model 204 file have been described in the storage
organizations chapter. The data in Model 204 can be visualized to be
organized in a tabular format. A record is the primary data object, and it
is divided further into data fields. A Model 204 file can have multiple
record types. The data definition discusses no physical placement or
access paths to the data. The DEFINE FIELD command is used to define the
fields in a Model 204 record. A field can be assigned the KEY attribute.
The execution of the DEFINE FIELD command with the KEY attribute, creates
an index on the mentioned field. The whole process is invisible to the
user. At any stage in the life of a database application the REDEFINE
command can be used to create indexes dynamically on existing data. The
data can be normalized before the records are defined. i“odel 204 provides
a variety of attributes which can be assigned to fields in a record.
Fields which are used frequently for retrievals should be assigned the KEY
attribute. If a field is updated heavily and is occasionally used for

retrievals, it should be defined as NON-KEY. Range retrievals can be

35

performed on a field if it is defined to have the NUMERIC-RANGE attribute.
Logical relationships can be set up between records using the INVISIBLE
attribute. The FOR-EACH-VALUE attribute allows the system to keep track of
the number of unique entries for the specified field. The updates to an
index in a Model 204 file can be deferred to a batch run if the key field
has the DEFERABLE attribute . This provides efficiency and space
reductions in an on-line data entry environment, as updates to the index
are deferred to a batch execution. There are two field attributes that
control the way the value of a field occurrence is changed: UPDATE IN PLACE
and UPDATE AT END. If the UPDATE IN PLACE is specified, changing the
value of a field occurrence will not change it's position relative to other
occurrences of the same field. If UPDATE AT END is specified, a change in
the value of a field occurrence is accomplished by deleting the existing
occurrence, and adding a new one following the others. A user can secure
against unauthorized access by including the LEVEL clause in the field's
description. Field 1level security has negligible impact on both
performance.and.storage usage. A field can be stored in a record in one of

the following formats: string/binary, coded/non-coded, or float. The

36

data definition of the class schedule database set up in Model 204 is shown

in Figure 5.

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

Figure

All retrieval fields have been assigned the KEY attribute.

indexes are dynamically set up for this database.

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

COURSE.ID (KEY)
DEPARTMENT (KEY)
COURSE.NO (KEY)
COURSE.TYPE
COURSE.DESCRP
INSTRUCTOR (KEY)
BUILDING (KEY)
ROOM (KEY)
SECTION
COURSE.DAYS
COURSE.BEGIN
COURSE.END
FREEFORM

MIN

MAX

START (KEY)
EXPIRE (KEY)
COMMENT

NUMBER

5. A Database Definition in Model 204

Eight hash

CCA File Manager's Guide

(11), provides detailed information on the data manipulation capabilities

of Model 204.

Hierarchical Approach

IMS has two principal data defintion constructs:

Definition), and PCB (Program Communication Block), McGee (29).

DBD (Data Base

Each IMS

37

database is defined by a DBD, which specifies the tree-like hierarchic
structure of the database. The tree-like structure is outlined via a
hierarchic arrangement of segments. A PCB defines a logical view of the
database. The PCB is derived from the underlying DBD. The sensitive
segments and fields are enumerated in the PCB definition. A segment is the
primary data object in IMS. A segment can be divided further into
constituent fields. Figures 6 and 7 list a simplified DBD and PCB
definition for a physical database. The definition is for the hierarchical

database introduced in Chapter 1.

DBD NAME = SCHEDULE

SEGMENT NAME = COURSE, BYTES=25

FIELD NAME = (COURSE.ID,SEQ), BYTES=5, START=1
FIELD NAME = NAME, BYTES=20, START=6

SEGMENT NAME = MEETING, PARENT=COURSE, BYTES=10
FIELD NAME = TIME, BYTES=4, START=1

FIELD NAME = BLDG, BYTES=3, START=5

FIELD NAME = ROOM, BYTES=3, START=8

SEGMENT NAME = DESCRIPTION, PARENT=COURSE, BYTES=15
FIELD NAME = DESC, BYTES=15, START=1

SEGMENT NAME = TEACHER, PARENT=MEETING, BYTES=10
FIELD NAME = T.NAME, BYTES=10, START=1

SEGMENT NAME = STUDENT, PARENT=MEETING, BYTES=6
FIELD NAME = ENROLL, BYTES=2, START=1

FIELD NAME = MAX, BYTES=2, START=3

FIELD NAME = MIN, BYTES=2, START=5

Figure 6. A Simplified Database Definition in IMS

PCB DBDNAME = SCHEDULE

SENSEG NAME = COURSE, PROCCPT = G

SENFLD NAME COURSE.ID, START =1

SENSEG NAME MEETING, PARENT=COURSE, PROCOPT=G,I,R,D
SENSEG NAME TEACHER, PARENT = MEETING, PROCOPT=G

Figure 7. A Simplified PCB Definition in IMS

The DBD statement assigns a name to the DBD definition. The second

statement specifies COURSE as the root segment type, with a length of 25
bytes. Statements 3-4 define the fields which make up the course segment.
The length of the field is given in bytes and the start position within the
segment is listed. COURSE.ID is defined to be the sequence field for the
course segment. SEQ signifies that COURSE.ID values are unique, and coumrse
trees are in an ascending COURSE.ID order in the course database.
Statement five defines the meeting segment as being a dependent of the
course segment. The definitions of fields within the segments follow.
The rest of the statements can be explained in a similar manner. The PCB
definition is a subset of the DBD. It can be derived from the underlying
DBD. Any field or segment can be omitted in the PCB definition. If a
given segment is omitted, then all dependents must be omitted too.
Segments and fields that exist in a user's view are termed as sensitive.
The PCB definition shows the course, meeting and teacher segments as being
sensitive. The user remains unaware of the existence of the description
and student segments. The sensitive segments and sensitive fields are
specified by the SENSEG and SENFLD statements respectively. If a segment
is specified to be sensitive and no sensitive fields are defined, then all
fields default to beipg sensitive. The user is unaware of the course name
field in the course segment, and all fields are sensitive by default in the
meeting and teacher segments. The PROCOPT statement specifies the
operations that can be carried out on the segment. Get, insert, replace,
and delete are the valid options. The previous definitions describe the
format of the physical database to IMS, but the file definitions need to be

performed separately.

39

Discussion

The data definition is simpler in Model 204 than in IMS. 1In IMS the
data is formatted in a tree-like structure. A fair amount of effort goes
into deciding the content of segments, and the hierarchical layout of
segments. In Model 204 the data is laid out in a tabular format. Once
fields are assigned to a record, the database can be defined in Model 204.
Fields can be added to a record type at any stage in the life of an
application in Model 204. Such an addition, requires a complete
redefinition in IMS. The physical database structure supports one primary
key at the root of an IMS database. Any number of key fields can be
defined for a Model 204 record. The REDEFINE command allows for dynamic
indexing after the data has been loaded. The primary data object is a
segment in IMS, and a record in Model 204. Normalization theory can be
applied before setting up a Model 204 database to maintain data integrity.
Data definition in IMS addresses both physical placement and access paths
to the data. This data dependency does not occur in data definitions under
Model 204. Logical relationships are set up v;a pseudo foreign keys in
Model 204, and via pointer chains in IMS. Setting up of indexes and
deciding on access methods is a separate step in IMS. In Model 204 indexes

are created dynamically at the data definition phase.

40

CHAPTER 1V

DATA MANIPULATION

Data Manipulation in Model 204

Model 204 provides data manipulation via two windows; namely, a host
language interface, and a fourth generation language: 'user language'.
Cobol, Fortran and PL/I are the host languages which can make IFAM (
Inverted File Access Method) calls to perform data manipulations. The term
relational is applicable only at the external and conceptual levels of the
ANSI/SPARC architecture model. Interface with a user at an external level
comes via a data sublanguage. A data sublanguage is further divided into a
data manipulation language and a data definition language. In Model 204
the user language provides a relational like interface. The data can be
viewed in a tabular format. Operators process records a set—-at-time as
opposed to procedurally a record-at-a-time. At the internal level Model
204 imitates the inverted list data model as the inverted file access
method is utilized. At the external level the operations provided are
closer to the relational model. The inverted 1list model primarily
processes information one record-at-a-time. User language has no notion of
database address areas which is a primary concept in inverted list data
manipulation. A relational data sublanguage has four primary data
manipulation operators; namely, select, update, delete and insert. Find,

change, delete and store operators of user language correspond directly to

41

the ones mentioned for the relational systems.
User language consists of statements of eight different types:

- selection statements based on the values of one or

more fields, combined with a full range of boolean

facilities;

- reporting statements provide facilities for simple ad

hoc requests and sophisticated multifile reports;

- logical and control statements provide record set

looping, request termination, and data dependent

operations;

- database maintenance statements provide a wide range

of update facilities;

- online application development statements provide for

the creation, storage, modification and execution of

user language requests;

- a full range of numeric and string computation functions;

- full screen formatting statements;

- external file access statements.

Statements of the type one through four and six will be discussed.

The others are added features provided by Model 204. User language
provides arithmetic and logical operations using constants, field values,
special temporary variables, and functional values. Variable names start
with a percent sign. More than 60 built-in functions provide facilities
for data editing and validation, character string manipulation, global
variables, and current date and time. The Fortran set of 26 mathematical
functions is also available. Function names always begin with a dollar
sign. Expressions are formed by combining constants, variables, functions
or field names. Parentheses can alter the normal sequence of operations.
Model 204 processes a user language request in two phases: compilation and
evaluation. During compilation, the text is checked for proper syntax, and
statements are translated into an internal format that Model 204 can
execute. During evaluation, certain types of user responses are entered

and the request is executed. Compilation errors must be resolved before a

request can be executed. A user has a variety of options for evaluation

42

time errors. Automatic evaluation continuation, request control, request
cancellation, and user restart are some of the wvalid options for an
evaluation error.

The data manipulation statements in user language fall under six

classes:

- retrieval statements;

- loop statements;

- output statements;

- file maintenance statements;
- flow of control statements;
- miscellaneous statements.

Retrieval statements in user language begin with the keyword FIND. A
set which can be acted on by loop statements, is located. The three main

retrieval statements are :

1. FIND ALL RECORDS)
2. FIND ALL RECORDS FOR WHICH fieldname = value
fieldname = valuel OR value2
fieldname NOT value
fieldname = valuel AND NOT value2
fieldname = NOT valuel NOR value2
3. FIND ALL RECORDS FOR WHICH fieldname IS BEFORE value
AFTER value

The retrieval under the first choice locates all records in the
current database. In the second choice all records which satisfy the
condition of the FIND are located. The third choice illustrates range
retrievals in Model 204.

Loop statements act on a set of records located by retrieval

statements. Each record in a located set»is acted on by a loop statement.

43

The format for a loop statement is as follows :

FOR EACH RECORD IN label
Label‘refers to the statement label for a retrieval statement. This loop
statement shows the set—-at-a-time processing capability of user language.
Looping seems to utilize the most amount of code in a procedural language,
thus this set level 1looping reduces the coding requirements.
Output statements are used to display results from database retrieval

operations. A selected set of output operations is H

a. PRINT ALL INFORMATION;
b. PRINT fieldname;
c. PRINT COUNT IN label.

Statement a is placed in a loop statement to print all fields of the
current record in a located set. The output is in the fieldname = value
pair form. Statement b is utilized in a similar manner except that a
specific field value is output. Statement c prints the number of records
in a located set. The 1label refers to the retrieval statement.

File maintenance statements perform the database updates in Model 204.

The primary statements under this class are :

1. ADD fieldname = value;

2. CHANGE fieldname TO value;
3. DELETE fieldname;

4. DELETE RECORD;

5. DELETE ALL RECORDS IN label;
6. STORE RECORD

44

fieldname = value
fieldname = value

The ADD statement allows new fields to be added to records. This statement
can only be used within & FOR EACH RECORD loop. The CHANGE statement is
used to alter the value of a field within a record. If CHANGE is applied
to a record that does not contain the specified field, then the fieldname
and value are added to the record. The CHANGE statement can be used only
within a loop statement. The DELETE fieldname statement is also only
allowed in a FOR EACH RECORD loop. It removes a field from a record. If
the DELETE statement is applied to a record that does not contain the field
to be deleted, no action is taken on that record. The DELETE RECORD
statement deletes the current record in a FOR EACH RECORD loop. The DELETE
ALL RECORDS statement, deletes sets of records in & Model 204 file. The
STORE RECORD statement is used to add new records to a Model 204 file. The
fieldname = value pairs that constitute the new record must follow the
STORE RECORD statement.

Flow of control statements allow for conditional processing in a user

language request. A selected list of statements under this class is :

l. IF;

2. ELSE, ELSEIF;
3. JUMP TO label;
4. STOP;

5. SUBROUTINE;

6. CALL;

7. RETURN;

8. ON unit.

45

IF, ELSE and ELSEIF allow for condition testing. JUMP TO label is
analogous to a go to statement. STOP terminates the program execution.
SUBROUTINE, CALL and RETURN allow for structured programming as supbroutines
can be invoked to perform spedific ta;ks. ON unit statements provide
powerful error checking in case of run time errors. The purpose of the ON
unit statement is to provide the user with a means of overriding the normal
system response in case of a run time error. The three main types of ON

units are :

- ON ATTENTION;
- ON ERROR;
- ON FIND CONFLICT.

ON ATTENTION allows the programmer to specify the action to be taken
when a user presses the break/attention key during program execution. ON
ERROR allows the programmer to specify the action before Model 204 cancels
a request due to a run time error. ON FIND CONFLICT is used to resolve
record level enqueueing conflicts when more than one user is trying to
obtain update'access to a specific record.

Some miscellaneous statements which perform powerful retrieval and

manipulative operations are :

1. COUNT RECORDS IN label;

2. IS PRESENT;

3. SORT RECORDS IN label BY key AND key;
4. LIST;

5. VALUE LOOPS.

46

The COUNT RECORDS statement counts the number of records in a located
set. A typical use of this statement is to check if a FIND statement
resulted in an empty set or not. The IS PRESENT clause is utilized in a
FIND statement to check if a specific field is present in a record. The
SORT RECORDS statement invokes a system sort routine and the field names
for the sort need to be specified. This is a logical sort and the actual
records are not sorted. Records located via a FIND statement are placed in
a buffer and sort is applied to records in this buffer. LIST is an
extremely useful feature provided in user language. Retrieved records can
be placed on a logical list. Then retrievals and updates can be performed
on this list as épposed to the whole database. This adds efficiency, and
provides localized processing. A FOR EACH VALUE statement initiates a ioop
that is executed once for each unique value of the specified field. It is
useful for counting and printing records which have a given set of values
and for détecting control breaks.

User language has various other features which do not directly fall
under Aata manipulation. They provide facilities for effective
input/output interfaces, external file access and application subsystem
development support. The full screen formatting and cursor sensing
capabilities of Model 204 are fairly advanced. More detailed information

on the capabilities of user language are provided in CCA User language

Manual (15).
Hierarchical Data Manipulation

IMS is a hierarchic database management system in which the data is stored

47

in the form of an ordered set of trees. A tree consists of a root segment,
together with a set of dependent segments. Each record is stored as a
tree. Hierarchical data manipulation consists of operators for processing
data represented in the form of trees. Hierarchic sequence in a tree
traversal is obtained by a top-to-bottom, left-to-right ordered traversal.
Each tree in the database can be regarded as a subtree of the system root.
Thus the entire hierarchic database is in effect a single tree. The notion
of hierarchic sequence applies to the entire database as well as to the
individual trees. Many IMS data manipulation operators are defined in
terms of this hierarchic sequence. An IMS database is queried via a CALL
interface called DL/I (Data Language/One). The DL/I calls are made from
application programs written in Cobol, Fortran, PL/I or 360 assembler, IBM
Application Programming Reference Manual (20). IMS does not provide a
fourth genefation language. All data manipulation in IMS is done via
record level operators, and no set level operations may be performed.
Examples of some of the operators are :

- operator to locate a specific tree in the database;

- operator to move from one such tree to the next;

- operator to access segments within a record;

- operator to access segments in a hierarchic sequence

for the entire database;

operator to insert a new segment;
operator to delete a specified segment.

The major DL/I operators available are :

- GU get unique;
- GN get next;

~ GNP get next within parent;

48

GHU,GHN,GHNP get hold (unique/next/next within parent);

ISRT insert;

DLET delete;

REPL replace.

Get unique and insert operations require segment search arguments
(SSA) to specify a hierarchic path. Delete and replace do not involve SSAs
at all.

Get unique allows for direct retrieval from a hierarcﬁic database. It
retrieves the first segment in hierarchic sequence which satisfies the SSA.
Status indicators are set which need to be checked after each GU operation.

Get next is defined in terms of the current database position i.e. the
position last accessed by a "get" or an "insert" operation. This operator
allows for sequential retrieval, once a database position is established.

Get next within parent is defined in terms of the current database
position, as well as the currenﬁ parent position. This allows for
retrieval of dependent segments under a specific parent segment.

A get hold operation establishes the current database segment being
addressed. The variations on the get hold operation allow for direct
retrieval, sequential retrieval and sequential retrieval under current
parent. Once the needed segment is obtained by a get hold operation, it
can be replaced or deleted.

The insert operation allows for a new segment to be inserted, at a
specific position in the database established by a get hold operation. The
field values for the segment to be inserted need to be maintained in a

temporary I/0O buffer.

49

A segment to be deleted must be identified first by a get hold
operation. The delete operation deletes the specified segment and all
dependent segments if they exist.

The replace operator allows for a segment update operation. Again the
segment to be updated needs to be located via a get hold operation. The
update operation occurs in a temporary I/0 buffer.

Enhanced retrieval operations can be performed by utilizing command
codes. The data manipulation operators in IMS are record level. The
operators are very closely related to the data model they operate on. The
bulk of the coding in an IMS query procedure is performed in the host
language. DL/I does not provide variables or conditional statements. The
very basic database operations can be performed via DL/I calls, and any

other processing requirements are left to the host language.
Discussion

iMS and Model 204 have completely different data manipulation
operators, primarily because of the underlying data models involved. IMS
does not have a fourth generation language interface like Model 204. One
of the main differences is that IMS only supports record-at-a-time
processing, while as Model 204 allows for set-at-a-time processing. The
set level processing capability of Model 204 is embedded in the user
language query statements. Set processing eliminates the need for explicit
looping statements. The DL/I calls provide for record-at-a-time access,
therefore explicit looping constructs present in a host language need to ke
utilized. The retrieval operators in IMS query an ordered set of trees in

a hierarchic sequence. There is no ordered sequence that a user language

50

request needs to adhere to. User language itself is not a truly relational
language. The only similarity is the set level processing. The set
theoretic operations select, project and join are not directly suppofted by
user language. User language does not fall under an inverted list data
model language as it has no notion of database address areas, and the
processing is set-at-a-time. DL/I does not provide flow of control
constructs which are available in user language. Retrieval is conceptually
straight forward in user language as opposed to the tree structured access
needed in IMS. An application programmer must know the underlying tree
structure in an IMS database before a request can be coded. On the other
hand if the field names of a Model 204 record are known, a user language
request could be easily coded. The task for an application programmer is
definitely easier using a fourth generation language in Model 204. The

illustration below highlights this point.

QUERY: "get a 1list of all courses taught by the computer science

department".

The hierarchic database is presumed to have only one type of segment

with the course id and department.

DL/I calls
GU COURSE WHERE DEPARTMENT = 'comsc'

while more COURSES do

51

print course.id
GN COURSE WHERE DEPARTMENT = 'comsc'

end while

The Model 204 database is presumed to have records with just two

fields namely, course.id and department.

user language

LABEL: FIND ALL RECORDS FOR WHICH DEPARTMENT = 'comsc'
END FIND

FOR EACH RECORD IN LABEL
PRINT COURSE.ID
END FOR
The IMS retrieval has been pseudo-coded and simplified to highlight the
main points. The while loop needs to be coded explicitly .in the host
language. After each get unique or get next operation the status of the
operation needs to be checked, to verify if the search was successful or
not. The coding in user language is less taxing. The FIND operation
locates all the needed records, and the FOR EACH RECORD loop prints off the
needed course.id numbers. The set level operators are responsible for the
simplicity of user language. This example was extremely simplified as the
root segment had the needed information. If dependent segments are
involved, then éoding requirements increase. The user language reqﬁest on
the other hand stays the same, independent of the data format.
A user language request is executed in a two step process namely, the
compilation phase and the execution phase. 1In the compilation phase the
user language request is parsed for syntax errors. If errors occur, they

are flagged and the compilation is aborted. If no errors occur the

52

compiler generates command tables which contain hexadecimal code. In the
execution phase this hexadecimal code is executed to perform a database
operation. An example helps clarify this compilation and execution
process. Suppose a user language FIND is to be executed to locate all
tuples with NAME=JONES. 1Initially the syntax of the request is verified,
then a loop is created for each segment in the database. A segment
consists of 50,000 records. The request is executed in segments to gain
efficiency. The name JONES is hashed to obtain the correct entries in the
index for the NAME field. All this information is stored in hexadecimal
code in temporary command tables. During the execution phase this command
table code is executed. Variations to the indexing process are possible.
Instead of a hash index, a B-tree index may be used. The application
subsystem facility allows a user to save the compiled command tables, so
that each time a request is executed, only the eXxXecution phase is
triggered.

Data manipulation is performed via a host language interface in IMS.
The hosﬁ language program has DL/I operators to perform database queries.
These DL/I operators are executable subroutines in the resident load module
library in IMS. Thus IMS has subroutines to perform the get unique, get
next, get next within parent and other IMS operations. While the user
program is running it issues calls to these resident action modules to
retrieve data from and update data in IMS databases. An application
program communicates with the system through a set of Program Communication
Blocks (PCBs). The PCBs for a program are produced and stored in a library
at the time the program is defined to IMS. PCBs contain user declared

program attributes as well as parameters that are passed between the

53

program and the system during execution. Application programs invoke
system services through calls to a standard interface routine, specifying
the function to be performed, the PCB to be used to communicate the
parameters and results of the call, and additional parameters as
appropriate to the function being invoked. As a result of the call,
control goes to the interface routine and thence to various system modules
to carry out the requested function. The system places feedback
information in the designated PCB and returns control to the program. A
call statement to the interface routine has the following form (in PL/I

programs) :
CALL PLITDLI (parmcount, function, pcbptr, workarea, ssal, ssa2,..)

where :

- parmcount designates the number of parameters in the «call;

- function designates a character string variable that holds the name of

the function to be performed;
- pcbptr designates a pointer variable that points to a database pcb;
- ssal, ssaz,.. designate character string variables that hold Segment
Search Arguments (SSAs), that collectively designate the segment or the

segment path to be accessed;

- workarea designates an area in the program where segments and segment

54

paths are deposited and picked up by the system. A segment is designated
by specifying an SSA for each level in the record hierarchy, down to and
including the 1level of the segment in question. Each SSA has the

following form:

segment-type-name x command-codes (condition)

and designates the first segment under the designated parent that is of the
specified type, and meets the specified condition. Conditions consist of
one or more logical predicates that are separated by AND and OR cperators.
The system responds to a data manipulation call by performing the function
called for by placing feedback information in the PCB specified in the

call, including the following:

- status code, to indicate that the function has been performed
successfully, or that it has not been performed, for a reason indicated in

the code;

- level, type, and concatenated key of the segment accessed, or of the
segments that define the path accessed.

The selection power of a data manipulation language is defined as it's
ability to express a database query, whose answer is contained in the
database. Any query expressable in relational algebra or relational
calculus is expressable in user language. IMS queries are restricted by
the access path dependency. Conciseness of a data manipulation language is

defined as the lack of verbosity in the language. 1t provides a measure of

55

the quantity of code needed to express a query. A user language query
proves to be concise due to the presence of control and exception testing

statements, and the increased scope of language expression.

56

CHAPTER V

DATA INDEPENDENCE

Discussion

Data independence is defined as the immunity of application programs
to change in storage structure and/or access strategy. In a data dependent
system the knowledge of the data organization and access technique is built
into the application logic and code. Data independence can be divided
further into physical and logical data independence. Physical data
independence implies program immunity to changes in the storage structure,
while logical data independence implies program immunity to changes in the
data model definition. Physical data independence allows application
programs to execute correctly after the storage has been tuned to optimize
overall performance, to take advantage of new hardware technology, and/or
to implement new standards in the storage structure. Logical data
independence allows application programs to execute correctly after the
data model has been changed in response to changing requirements. Logical
data independence can be studied under two aspects: dgrowth, and
restructuring. Growth implies addition of another field to a record, or
addition of a new record type, or deletion of a field or record type.
Restructuring refers to a change in the database such that although the
information content of the database stays the same, the placement of

information within the database changes; i.e., allocation of fields to

57

records is altered. There may exist a need to split a record vertically,
so that commonly required fields may be stored on a faster device, and less
frequently desired ones stay on a slower one. Physical data independence
is guaranteed by the nature of the relational data model. The relational
model is at an external/conceptual level of the ANSI/SPARC database
architecture model, thus any changes at the internal level do not affect
the applications. The hierarchic and inverted list systems are data
dependent as they are at the internal level. In Model 204 inverted file
access is the only form of access method utilized. Thus, a&a change in
access strategy is not possible. The applications in Model 204 are
independent of the type of a file. Hashed, sorted and indexed are the file
types available. Any file type can be changed to any other without
affecting a user language program. HSAM, HISAM, HDAM, and HIDAM are some
of the access methods available under IMS. A change in the access
mechanism does not require a change in the host language programs, provided
the logical structure of the database stays the same. Thus the degree of
physical data independence under the two systems is identical. Degree of
data independence is an indication of the extent to which a system is data
independent.

Model 204 has a high degree of logical data independence. A field can
be added or deleted from an existing record in a Model 204 file, without
affecting existing applications. New record types may be introduced into a
file without requiring any changes in existing applications. Thus new
applications can be readily added to an existing database. Model 204 does
not perform well under the restructuring aspect of logical data

independence. A split of a record type requires the introduction of

58

foreign keys, and thus requires modifications in application programs. IMS
is logically data dependent due to the hierarchic model it imitates.
Addition or deletion of a field from a segment requires a modification of
the application programs, and re-definition of the database. Addition of a

new segment type requires the same changes too. This dependency in IMS is

called access path dependence, which occurs due to the pre-defined access

59

paths in application programs. Restructuring in IMS requires a complete

database redefinition. Thus the degree of physical data independence is
similar under the two systems, but Model 204 is more logically data

independent.

CHAPTER VI
DATA PROTECTION
Data Integrity

Data integrity means the accuracy or correctness of data in a
database._ Most systems today are weak in integrity checks, they only
provide concurrency control i.e. two users cannot concurrently update the
same database record, Michaels, Mittman, Carlson (30). Both Model 204 and
IMS provide this type of control. 1IMS provides for both referential and
entity integrity, but Model 204>proves to be lacking in this area. Most
integrity checks are done by user-written procedural code in Model 204.

There are two types of integrity rules, one pertains to primary keys,
and the other to foreign keys. The entity integrity rule states that no
attributes participating in the primary key of a base relation are allowed
to accept null values. Referential integrity states that if a base
relation R2, includes a foreign key FK, matching the primary key PK, of
some base relation R1l, then every value of FK in R2 must either be equal to
the value of PK in some tuple of R1l, or be wholly null. Let us consider
the integrity rules under the data models involved in the comparison. The
relational data model supports both the entity and referential integrity
rules stated above. The inverted list data model provides no integrity
rules. The hierarchic data model has automatic support for certain forms

of referential integrity. No child is allowed to exist without its parent.

60

If a parent is deleted, the system automatically deletes the (sub)tree
rooted at the parent. Similarly a child cannot be inserted unless its
parent already exists. Therefore the hierarchic data model enforces the

following rules:

- nulls not allowed;
- delete cascades;
- update cascades.

Model 204 does not support primary or foreign keys. Two records can
have the same value for the primary key. A foreign key in Model 204 may
not be wholly null, or match the primary key of another record type. There
exists no domain constraints in the data definition part of Model 204. The
notion of domains is similar to that of data types. There is no support
for range constraints either. No data type checking exists in user
language. Model 204 accepts null values for any field in a database
record. Thus Model 204 closely reflects the underlying inverted list data
model's data integrity capabilities.

IMS on the other hand supports all the integrity checks imposed by the
hierarchical data model. It supports additional constraints by means of
it's logical database and secondary indexing capabilities. The locking
protocols to control concurrent updates in both systems are similar. A
segment can be exclusively locked in IMS, and a record can be locked in
Model 204. DL/I does not provide any locking protocol statements, but user
language under Model 204 provides the following:

- FIND AND RESERVE RECORDS;
- ON FIND CONFLICT;

61

- COMMIT;
— TRANSACTION BACKOUT.

The FIND AND RESERVE statement obtains exclusive access for a set of
database records. The ON FIND CONFLICT statement is an error check clause
to r;act to a condition when an application is trying to access record(s)
held by another user. The COMMIT statement completes a database update and
removes exclusive access from a set of records. The TRANSACTION BACKOUT
feature undoes any database update operation which left the database in an

erroneous state. More detailed information on data integrity checks is

provided in the CCA User language Manual (15).
Data Security in Model 204

The file manager in Model 204 is responsible for the data security of
a database. Eight basic types of Model 204 security features are : 1login
security, file security, group security, record security, field level
security,proceduresecurity,subsystemsecurityand£erminalsecurity,CCA
File Manager's Guide (11).

The login security feature limits access to the Model 204 system by
requiring a user to enter a valid password while logging on to the system.
The system manager maintains a system access table with privileges for each
user identification number. These privileges are granted once a user logs
on successfully.

File security is related to protected access to Model 204 files.
Files in Model 204 can be password protected. If a user successfully opens
a file with the correct password, then appropriate privileges pertaining to

the data and application programs, as well as a user class number that is

62

used with procedure security, and field level security levels, are assigned
to the user. The security level is segregated into three levels namely
public, semi-public, and private. A public file is not password protected
and default privileges are assigned to the user. A semi-public file
requires a password to grant a user the needed privileges. An incorrect
password for & semi-public file results in default privileges being
assigned to the user. A private file requires a correct password to give a
user access to the data, and application programs residing in that file.
The privileges granted to a user determines the type of operation that the
user can perform. The system manager maintains a password table, which
contains password and privilege information for files, file groups and
login accounts. A file can have several passwords defined for it, and each
password may have a different set of privileges associated with it. A user
can be assigned the privilege to override record security. Data update by
ad hoc requests or host language programs comes under file privileges. The
ability to run, view, update or delete application programs comes under
file privileges.

Group security is identical to file security except a set of Model 204
files comprise a group. If files of a group were individually defined to
the system then the user's privileges are the intersection of the
individual privileges of each file. Only privileges that every file has
specified for it are dgranted. If a file of a group is accessed
individually then the group privileges are imposed on the file. But if a
file is opened both as a member of a group as well as an individual file
then individual file privileges are imposed on the file. If a file is

referenced and it is concurrently a member of two groups, the user's

63

privileges are the union of the privileges associated with the groups.

Record security limits user access to individual records in a Model
204 file. Retrieval or update of protected records is 1limited to
privileged users. A file needs to be defined to have record security
during the file creation phase. If a file has record security active then
every record stored in the file has the user identificatiop number appended
to it. Thus during retrievals a match with the user id and the security
key in a record allows access to the record. To allow for multiple access
to records, the user needs to explicitly append user ids which can be
granted access to the record.

Field level security protects sensitive fields in a Model 204 record.
This restricts the kinds of access to fields within a record. Field level
security is imposed on.the file when it is opened for access. Field level
security comes into effect only if access to a data record has been granted
by previous file level and record level security measures. Field level
security is implemented via the following access privileges:

- select, ability to locate records with a user language
statement;

- read, ability to display field contents;

- update, ability to change the qontents of a field;

- add, ability to add new occurrences of a field.

The above access privileges are termed as user levels. The add level
can be used in the following environment: data entry clerks can add new
field occurrences or records without being able to change or even examine
them. Field levels are defined as the access privileges associated with a
field when it is defined. Levels are numbered from O to 255. Zero implies

no security and 255 implies the highest security. Fields can be assigned

levels in a hierarchical manner.

64

FIELD FIELD LEVEL SECURITY (READ)
course.id . 0
course name 0
department 20
enrolled students 30
instructor name 40

Figure 8. A Field Security Scheme in Model 204

The fields are 1listed in the order of increasing sensitivity.
Instructor name is the most sensitive field; course.id and course.name
have no security level imposed on them. Each user has field level security
access levels associated with each file opened. These correspond to the
four field access levels: select, read, update and add. These user levels
also range from O to 255. When a user attempts to access a field in a
particular way, the system compares the user's access level with the
field's access level. If the user's access level for the desired access
type (e.g update) is greater than or equal to the field's access level,
then the particular operation is allowed. Taking the previous field level
security example, if a user has read user level set at 30, then read access
is permitted to the fields with field access levels less than or equal to
30 (i.e. the user can access the course.id, course name, department, and
enrolled student fields, but access to the instructor field is disallowed).
The user levels reside in the password table for a file.

Procedure security is related to access to application programs. A

65

Model 204 file can contain both application programs as well as data.
Separate sections in the file are dedicated for these specific purposes.
Procedure security restricts an unauthorized user from invoking an
application program and accessing sensitive data.

An application subsystem in Model 204 refers to a group of data files
and application programs which perform related functions for a specific
application. All the previously mentioned security measures can be
assigned in a concise manner to an entire application subsystem.

Terminal security restricts access to certain user ids, files, or
groups from specific terminals. Each login id, file or group can be made
accessible from a restricted list of terminals only. Terminal security is
used with hardwired terminals only, because the ncde name for a terminal
remains a constant. Dial up terminals can have the node number change for
a terminal on each dialling, so terminal security is not possible for these

types of terminals.
Data Security in IMS

To protect against unauthorized use of the system, IMS provides two
types of security; basic security and security tables, McGee (29). The
basic security restricts IMS commands to the master terminal only. The
master terminal is used for monitoring of on-line execution, startup,
shutdown, and enabling and disabling of lines and terminals. Attempts to
enter such a command from & terminal other than the master terminal are
rejected. Basic security is implemented via security tables that are built
with the security maintenance utilities program. The security definitions

from these tables come into effect at startup. The master terminal can be

66

used to override these constraints. A typical entry in the security tables
has the following format:
transaction—tYpe—code ’ logical-terminal-name
command name
This limits particular transactions or commands to particular logical

terminals. The security tables may also contain entries of the following

type:
transaction-type-code, remote-execution-id

This requires that particular transaction types originate from
particular remote executions. A different set of definitions may be
supplied for eaeh logical terminal that is associated with a given physical
terminal, thus giving the physical terminal different security attributes,
depending on which one of it's logical terminals is enabled. The security
tables may further control terminal user access via entries of the
following form:

transaction-type-code , password
command name

These entries require that transactions or commands of the specified
type contain a specific password, before they can be accepted by the
system, regardless of the logical terminal from which they are entered.
Data security features are enforced in IMS at the data definition phase
also. A sensitive segment is one which can be viewed by a user. These
segments, and fields which form the segments are included in the user's

view. A user of the view is not aware of any other segments or fields,

67

thus providing security to these hidden segments and fields. Sensitive
segments and sensitive fields are specified by the SENSEG and SENFLD
statements respectively. If a certain sensitive segment has no sensitive
fields defined, then by default all fields in that segment are sensitive.
The PROCOPT (processing option) entries in a SENSEG definition specify the
valid operation types. I(insert), R(replace), D(delete), andAG(get) are the
possible PROCOPT options. A definition of a sensitive segment is given

below.
SENSEG NAME = MEETING, PROCOPT = I,R,D,G

The statement specifies that the meeting segment is in the user's
view, and insert, delete, replace and get operations may be performed
against this segment typé. IMS relies on file level security on another
package RACF (Resource Allocation & Control Facility). Data entry data

bases allow data to be input via certain 1logical terminals only.
Discussion

The file level security features are more advanced in Model 204 than
in IMS. IMS depends on file level security on RACF (Resource Allocation &
Control Facility). The basic data object that can be protected in IMS is
segment, and for Model 204 it is a record. Field level security is
assigned to these objects when they are defined. Both systems allow for
fields to be defined as sensitive. The overhead due to security options in
both systems is heavy. In IMS each transaction on a segment is verified
with the processing gptions allowed for that segment type. Similarly every

record update in Model 204 is checked for field security levels. Terminal

68

security features are comparable under the two systems. Both systems
provide audit trails to detect unauthorized access. Model 204 provides
data encryption in way of the CODED field attribute. Application programs
are protected in Model 204 via the procedure security option. Application
programs in IMS are developed in a host language, thus the development

environment is responsible for their security and not IMS.

69

CHAPTER VII
STORAGE ORGANIZATIONS
Storage Organizations in Model 204

The Model 204 file system supports the following kinds of data
structures: flat structures, relations, hierarchies, and networks, CCA
File Manager's Guide (11). No physical linkage is used between data items,
and the relationships are maintained at a logical level by the use of value
indexes. The primary access technique utilized in Model 204 is inverted
list. A field is the smallest data item possible in Model 204. A
collection of fields forms a record. A file is defined as an arbitrary
collection of records. Each field has a name and a value, and the various
data manipulations are performed on these field name = value pairs. These
fields can be assigned certain pre-defined attributes that define indexing
options, and internal storage structure formats. Model 204 allows a
maximum of 4000 different field names in a single file. The records are
variable length, with no limit to the number of fields in a record. The
record does not have a pre-defined format, and any number of fields can
appear any number of times. Each Model 204 record is assigned an internal
record number, which is used by the system to build index entries for the
record. A file can contain records with varied formats. 16.7 million
records is the maximum limit for a Model 204 file. These files can be

logically linked via field values. Any number of files can be logically

70

linked in such a manner. One Model 204 job can access a maximum of 32,767
files. Due to the logical nature of the relational data model the files
and records have a flexible format. A new field can be added to an
existing record even though it was not previously defined. The file
supports additions of completely new types of records. New logical
relationships can be developed among fields, records or files, without
modification to the underlying structure. The flexible nature of this data
model can be contrasted with the data dependent hierarchical data model.
The records in Figure 9 help in explaining the inverted list format of a

Model 204 file.

INTERNAL RECORD COURSE.ID DEPT. ROOM INSTRUCTOR
NUMBER
0 12296 comMsc MS 212 RAY,HOLMES
1 12325 COMSC MS 121 BATES
2 29132 MATH JONES
3 31298 ECEN ES 212 JAMES
4 32915 MATH MsS 212 JOHN

INVERTED LIST

DEPT = COMSC 0,1
DEPT = MATH 2,4
DEPT = ECEN 3
ROOM = Ms 212 0,4
ROOM = MS 121 1
ROOM = ES 212 3

Figure 9. An IFAM example

The example shows five records and their index entries. There' are

multiple occurrences of a field in a record(e.g. record 0 instructor

71

field), and a record may have a missing field value (e.g. record 2 room
field). When a Model 204 file is created certain fields can be assigned
the KEY attribute, so that they can be indexed. Each index entry contains
one field name = value pair, and a list of records in which the pair
octurs. When a KEY field is defined, it's internal record number is noted
in the index. To retrieve all MATH department courses which meet in MS 212
a search of the file index is performed. MATH appears in records 2 and 4,
and MS 212 appears in records 0 and 4. Model 204 then compares the two
lists and pulls out record 4 which satisfies the request criteria. Fields
are given the NON-KEY attribute in case keyed access is not needed. This
saves index space. But if a retrieval performs a search by one of these
NON-KEY fields, the performénce greatly reduces as a sequential search of
the database is performed. This feature of allowing a NON-KEY field to
query the database may result in highly inefficient application programs.
In a hierarchical database like IMS each key field has to be explicitly
stated, and access paths pre-defined, so this performance deterioration can
never occur.

A Model 204 database consists of one or more physical datasets. These
datasets consist of fixed length records called pages. A Model 204 file is
divided into 5 tables or sections.

1) FCT - File Control Table keeps track of the file parameters, file
definition names of all datasets on the field, and other control
information. The FCT is of a fixed size; usually it is fairly small in
comparison to the rest of the file.

2) TABLE A - is a dictionary of the field names and coded field values in

the file. .It is further divided into sections for field names, values of

72

FEW-VALUED fields, and MANY-VALUED fields. The field name section should
be as small as possible to aid efficient access. Table A is fairly small
as compared to the other tables.

3) TABLE B - contains the retrievable data in a Model 204 file. This is
the largest section of the file. Records in Table B are stored in internal
file segments to minimize storage and optimize retrieval.
4) TABLE C and TABLE D - make up the indexing structure necessary for key
retrieval of records. There is an entry in Table C for every field name =
value pair that occurs in the file for fields defined as key. If the
field name = value pair is not unique in the file, Table C contains a
pointer to an entry in Table D. Table C is a hashed file divided into
entries of 7 bytes each. As mentioned earlier it stores index information
for a KEY field. A chain of entries is stored in Table C for each value
stored in a KEY field. The head of each chain is called a "property
entry". The property chain identifies-the field name = value pair that is
indexed by other entries in the chain. .An entry is placed in the chain for
each segment of the containing records that have the .field name = value
pair in the property. Table D contains lists of Table B record numbers for
all of the KEY field name = value pairs that occur more than once in the
file. It also contains user language procedures, a procedure dictionary
(used to store procedure name and procedure classes).

There is some free space available to the file on unassigned pages in
the free space pool. A KEY field has an index in Tables C and D, while the
data records reside in Table B. The KEY fields allow for quick index based
retrieval, but insert, delete or update operation is slowed down as indexes

have to be updated. These operations on an ordinary NON-KEY field require

73

very little processing time as records in Table B only need to be
manipulated. A search on a NON-KEY field involves a sequential search of
Table B records. The sequential search costs can be reduced in cases where
both KEY and NON-KEY fields are specified in retrieval conditions. In this
case, Model 204 diminishes the number of records to be searched directly by
performing the indexed selection first. Records that are eliminated, based
on KEY conditions, are not searched sequentially. The Model 204 file
system provides an extremely powerful operation to redefine a field as KEY,
' after the file has been pre-defined and loaded with this field as NON-KEY.
The setting up of indexes and pointers is done dynamically and is invisible
to the user. Sufficient space should be left in Table C for this

inversion. The Table C size is computed using the following formula:

CSIZE = 1.2 * (14#*Vy) + 7(N+1) (Vp + Vp)

Usable Page Size

Vuy = total number of fieldname = value pairs that usually appear in
only one record in the file (e.g. course.id).

Vn = total number of fieldname = value pairs that usually appear in
more than one record in the file (e.g. course.name).

Vr = total number of extra entries required for all numeric range

retrieval fields.
Vu and Vp apply to fields with key or numegic range attributes.
This is a productivity booster for an application programmer in Model
204; In a hierarchical system such a field attribute change would require
a complete redefinition for access by the new key.
A field can have a NUMERIC RANGE attribute so retrievals for field
values numerically equal to, less than, or greater than, or in between

certain values can be performed. The INVISIBLE attribute allows the user

74

to store logical relationships between physical records. A set of physical
records can be retrieved by an INVISIBLE attribute field. Under normal
circumstances, the storing and updating of logical records in a Model 204
file is done at one time i.e Tables A,B,C,D are changed simultaneously.
When there is a high volume of updates, efficiency and space reductions can
be gained by deferring the updates to the index (Tables C and D). The
deferred update feature is provided via the DEFERRED attribute for a field.
The CODED attribute can be used to save space. When a value that has the
CODED attribute is defined, the character string is stored in Table A (the
internal file directory), and a four byte value code pointing to that
character string is stored in a logical record in Table B. Space is saved
when there are several records that contain the same value. The string is
stored only once in Table A, and the four byte code is stored in each of

the several records in Table B. The coding and decoding of these values

may slow down updates and retrievals at the cost of saved space. Field

75

value encoding is entirely transparent to the user. Data is returned.

exactly as it was entered, and codes are system generated. As Table B
contains the data records, a file structure may be imposed on this Table.
Entry ordered, reuse-direct-file-space, sorted and hashed files can be
used to store Table B records. Model 204 primarily utilizes the inverted
file access method. Figure 10 exXplains this inverted list format. A
primary index on course.id is referenced by two secondary indexes on
department and room. A -1 in the pointer field signifies the end of a
pointer chain. Files such as our inverted indices, in which a secondary
key leads to a set of one or more primary keys, are called inverted lists.

The inverted aspect comes in when a secondary key works its way back to a

76

primary key. After the primary key is located, the primary key index helps

locate the physical record.

'SECoNDARy INDEX By LinkeED List oF
DEPARTMENT o (2296 - PRIMARY KEY
O] comsc) I 219132 z, REFERENCES
V] EcenN 4 Z1 12325 -
3] 325 -1
21 MaTH 41 31298 -
SECoNDARY (NDEX By
RooM :
f 31293 -l
1] Ms 121 |2
21 12325 -1
2| Ms 221091 5| 3215 -

Figure 10. Inverted Lists

Entry ordered files store records in a chronological order in Table B.
These files provide inverted list capabilities. When a record in an entry
ordered file 1is deleted, the internal record number is not used. New
records are always appended to the end of Table B. This mode, called
append only is the least expensive for updates. However Table B gets
filled up even though space has been released by record deletions. When

the reuse option is specified, then the entry order of records is

disrupted. Such files are called reuse-direct-file-space files. There are
two append modes in such files namely reuse-first mode and append-first
mode. In the feuse-first mode Table B record numbers freed by deletions
are reused for additions whenever possible. This mode optimizes Table B
space utilization at the expense of update time. In the append-first mode
records are appended to the end of Table B, as long as there is space
available. Record numbers are reused only when there is no space left at
the end of the file. In a sorted Model 204 file a particular field is
designated as a sort key, and logical records are stored in Table B in a
sorted order by key. A sort key can be alphabetic, thus it provides a
convenient method of doing alphabetic ranging on a single key without doing
an actual search. fhis sorted organization of Table B is similar to ISAM
(Indexed Sequential Access Method) with master and overflow areas. The
logical records of a sorted file are stored on the pages of Table B. The
pages in a sorted file are grouped by the range of the key values. A sort
group consists of a fixed number of pages of master area in which the
records are stored in strict order, and a fixed number of pages of overflow
area to accommodate overflow records from the master area. A number of
extra overflow areas are also reserved at the beginning of Table B. A
sorted file needs to be loaded with pre-sorted input so that the records
will be stored sequentially on the master area pages. For example, a file
with each master area occupying two pages, each overflow area occupying one
page, and three extra overflow areas at the beginning of Table B, after the

initial load is shown in Figure 11.

77

78

AcCTg B0 CH
EMPTY EMPTY EMPTY EMPTY AEROS BeT
AGEC gusAb
TpAGEQ P&Cﬁ/j‘_____i"ff_l/ pPAGES PAGE 4 PﬂqE‘S
N— Nee— ——————
EXTRA OVELFLOW AREA oveRELow FIRST MASTER AREA
AREA
CHENG ECoN
F_MPTy SHEM EbVC
L coMSc ECEN
PAGE L PAGE. F PAGeEE
SEconD R%VERFLOW SECOND MASTER AREA
A

F

igure 11.

File Lcad

in Model 204

In the figure above the first sort group (pages 3 through 5) contains

all records with the sort key from ACCTG to BUSAD. A new record insertion

is first attempted in the master area. If it cannot be inserted in the
proper order, it will be stored instead on a page of that sort group's
overflow area.
full, the record is said to "spill" to a previous or extra overflow area.
Indexed sequential access is a term used to describe situations in which a
user wants both sequential access to records in order by key and indexed

access to the same records.

ISAM can be provided by the B+ tree data

structure.

If all of the pages of this preferred overflow area are .

l INDEX SET
CeyUNDER INDEX)

R N

i e w —

TRACK INBEX

‘ssQUENLE SET

<
DATA-RECORD g

‘ LC\/LV LC7L2.' cyL 3 ('C]LN
3

e e e CyuINDER DVERFLOW
AREAS

Figure 12. Indexed Segquential Access Method

A B+ tree consists of an index set providing the indexed access, and a
sequence set for the sequential access. All the data records are stored in
the sequence set. Insertions and deletions of records are handled by
splitting, concatenating, and re-distributing blocks in the sequence set.
The index set which is a B tree is used as a locater for the blocks in the
sequence set. When read in a logical order, block after block, the
sequence set lists all of the records in order by key. The index set can
be viewed as a cylinder index, with pointers to all cylinders used to store
an indexed sequential file. The sequence set can be viewed as a linked
l1ist of cylinders. A certain portion of each cylinder is dedicated as a
track index. This index locates the track in a cylinder on which a record
is stored. Each cylinder has its overflow area whicﬁ is primarily a linked
list. There are various optional independent overflow areas present too.

The tracks are filled to a maximum of 80% when the file is initially

79

loaded. This allows for later insertions. If a track gets filled up then
the overflow area is utilized. Each track has a pointer to the overflow
area. If a cylinder gets filled up then either the file needs to be
reorganized or the optional independent overflow area needs to be utilized.

In a Model 204 hash key file, a particular key is cnésen as a hash
key, and logical records are randomly placed in Table B according to their
hash key values. As Model 204 hashes directly to the Table B records ,
this reduces disk I/0. Hash key files are recommended for query operations
where a single primary key performs the retrievals. EXtra space in Table B
is needed to accommodate the large number of bucket slots. Hash key files
are thus suited for applications which retrieve and process records one at
a time. Model 204 typically requires two disk transfers to accomplish
this: one to index in Table C, and one to the logical record in Table B.
Using hash files eliminates the the disk access for the index entry. When
a record is stored in-a hash ﬁéy file, it is stored on an apparently random
page in Table B; the page number is governed by the record's hash key.
Records which collide to the same page number will be stored in a
progressive overflow manner.in Table B.

Model 204 gives the file manager an option of storing data in a single
physical file, in multiple files or in a file group. Several logical files
can be incorporated into a single physical file, because multiple logical
record types are supported in each physical file. This saves disk accesses
as explicit file cross referencing is avoided. Data redundancy is reduced
by combining logical files. The smaller indexes reduce disk storage
overhead. Separate logical files have their advantages too. If the

on-line storage is limited, some unnecessary files can be left off-line.

80

Heavily manipulated data can be targeted for checkpointing and backup.
Separate logical files make controlled access to déta easier to implement.
A group is a collection of physically distinct files, which appears to the
user as a single logical entity. Thus advantages of both the previous file
types are incorporated into a group. File grouping is ideal for daté aging
applications. Each member file forms a replacable aging unit. Data

sharing is facilitated by a file belonging to multiple file dJgroups.
Storage Organizations in IMS

IMS provides two distinct classes of data structures: DA class, which
are seen by the data administrator; and the AP class, which are seen by the
application programmer, McGee (29). The DA class is primarily hierarchic,
but with provisions for interconnection of hierarchies into networks to
reduce redundancy. This class is designed for efficient storage and
retrieval of data. The AP class is strictly Hierarchic, and is a subset of
the DA class. This class provides a simplified view of the data,
appropriate for application development. The AP structures can be defined
in terms of DA structures, and all operations performed on the AP class are

automatically mapped to the underlying DA class. The DA data structure

class, and the the implementation of DA structures will be described.

81

| bata Base Gqroup |

—7 N\

]
INDEX PhysicaL LogicAL LogieaL
DATA DATA- DATA- RELATIONSH)
BASE BASE B AsSE P
\i . RECORD j
| seaMenT |
4
L FiIELb]

Figure 13. Data Administrator Data Structure Types

Figure 13 illustrated the various DA data structure types, and the way
in which the structures are composed of other structures. A segment is the
basic structure in the DA class. It is primarily a string of bytes.
Segments can either be fixed or variable length, and can comprise of one or
more fields. A field is a string of bytes within a segment. An example of
a segment with associated fields would be a course segment with fields
describing the course number, course name and course départment. One of
these fields may designate the segment sequence field, or key. A record is
a single rooted tree of segments that is produced from it's record type in
accordance with the following rules:

~ The root segment type produces a single segment cf that type;

- Each dependent (child) segment type produces zero Or more

segments of that type (twins) under each instance of it's

parent segment type. The twins are sequenced by a key, 1if

the child segment type has a key.

The root segment represents a major application entity type, and the

dependant segment types represent hierarchically subordinate entity types,

82

or collection of attributes that occur optionally or with variable
frequency. Concatenated keys are used to identify a segment uniquely
within a database record. A concatenated key 1is constructed by
concatenation of key values along the tree access path to that segment. A
physical database is a set of records of a single type. The sequence of
records in a database is determined by the method used to implement it.
The various methods to implement physical databases will be described in
detail later. To reduce redundancy in physical databases the logical
relationship structure type is utilized. It permits shared access to
stored data. Many-to-many relationships are supported between entity
types. These relationships can be both unidirectional and
bidirectional. The application programmer's view is limited to hierarchic
records, and virtual hierarchic structures are defined in terms of physical
databases and logical relationships. Thesé virtual structures are named as
logical databases. They are a logical view of the stored database, and
segments of these logical databases are materialized from underlying
physical databases. A logical database definition is the same as view
definitions in a relational system. The index database construct is
provided for fast direct access to physical databases. The index database
structure is composed of primary index and secondary index databases.
Primary index databases provide direct access to record root segments. The
index database record contains a key and a pointer to the indexed root
segment. Secondary index databases provide fast direct access to a segment
within a physical or logical database, by means of data within the segment,
or some dependent segment. The segment to be accessed is called the target

segment, and the search field is termed as the source segment. At most,

83

one primary index database, and any number of secondary index databases may

be associated with a given physical database. All physical databases

connected by logical relationships, together with their associated index

databases, form the database group.

IMS has four access methods to implement the previous data
structures:

SAM (Sequential Access Method);

ISAM (Indexed Sequential Access Method);
VSAM (Virtual Storage Access Method);
0OSAM (Overflow Sequential Access Method).

OSAM is utilized to supplement ISAM. IN OSAM records may be accessed
sequentially or directly by relative byte number. Both fixed length
unblocked and blocked records can be stored and accessed from a disk. The
storage organizations in IMS use physical pointers. A physical pointer
contains a four byte number, which is the relative number of a byte in an
access method dataset. A physical pointer points to a dataset record or a
byte sequence therein by specifying the relative byte number of the first
byte of the record or sequence. The physical databases can pbe implemented
by one of the following methods:

- HSAM (Hierarchical Sequential Access Method);

- HISAM (Hierarchical Indexed Sequential Access Method);

- HDAM (Hierarchical Direct Access Method);

- HIDAM (Hierarchical Indexed Direct Access Method);

- GSAM (Generalized Sequential Access Method);

- DEDB (Data Entry Data Base);

- MSDB (Main Storage Data Base).

Each access method has different performance and storage

characteristics, and the user is given a choice to select an appropriate

method for implementation of a specific database. In all implementations a

84

85

segment is broken up into two parts: (1) a prefix part that contains a
segment code and other implementation related information; and (2) the data

part that contains the DA segment byte segquence.

lﬂEanl DATA \ Lpgenxl N\ l

oS STORAGE -
ConNTIGUOLS

SEPARATE STORALE

Figure 14. DA Segment Byte Sequence

The prefix and data parts are stored contiguously, unless the length
of a wvariable 1length segment increases Dbeyond the space originally
allocated. 1In that event, the data part is stored separately, and linked
to the prefix part by a physical pointer.

In HSAM, a physical database is implemented as a single SAM dataset
with fixed length unblocked records. The segments of each logical database
record are stored in hierarchic sequence in one or more consecutive
physical database records. Thus the hierarchic sequence is represéented by
physical contiguity. The only operations that can be performed on an HSAM
database are ISRT (Insert) (allowed only when a database is being built),
and GU,GN,GNP (only for an existing database). Updating in a HSAM database
is done by reading an existing version of a database and writing a new one.
It is evident HSAM does not support direct access operations.

HISAM provides indexed access to root segments, and seqguential access

from roots to dependent segments. HISAM can be implemented via two
methods: VSAM or ISAM/OSAM. The two implementation techniques are
similar. The index for the roots is implemented via an ISAM dataset, and
successive dependent segments are in an OSAM dataset for the ISAM/OSAM
case. In the VSAM implementation the root index is in the way of a KSDS
(Key Sequenced Data Set), and the dependent segments reside in an ESDS
(Entry Sequenced Data Set). HISAM permits both sequential and direct
access by root segment key. The implementation is efficient if the
frequency of insertions and deletions is low. The use of OSAM/ESDS for
overflow dependent segments permits variable length records, and physical
partitioning of high wusage and 1low usage data within a record.

Both HDAM and HIDAM use physical pointers to link segments. The
pointers are of two types:

- Hierarchic pointers, each segment points to the next in
sequence, to link all database segments in a hierarchic
sequence. Both forward and backward pointers are allowed;

- Child-twin pointers, each parent points to it's first
child of each type, and each child points to it's next twin.
Again backward and forward pointers are allowed.

One or both type of pointers may be used to implement a record in a HD
database. Hierarchic pointers provide access to a record in hierarchic
sequence, and child-twin pointers provide access to any segment within a
record.

HDAM provides hash access to the roots, and pointers from the roots to
the dependent segments. Thus only direct access of roots is supported ,
and not sequential access. The primary and secondary datasets in HDAM can

be implemented as ESDS or OSAM datasets. The primary dataset is

partitioned into a root-addressable area, and an overflow area. Root

86

segments are stored by a hash function in the root-addressable area, and
the dependent segments are stored in one or more secondary datasets.
Collisions in the root-addressable area are handled by chaining of roots
which hash to the same address. HDAM is useful in a heavy insert/delete

environment, and it provides fast direct access via root keys.

EShs/osAM
RosT
ADD RESSABLE T
AREA -
T PRtMAky BATASET
L{\
OVERFLOW) ESDS /08 AM

AREA /
i

sequbhgy DATASET

Figure 15. HDAM Implementation

In HIDAM there exists an indexed access to the roots (primary
dataset), and pointer access to dependent segments (secondary dataset).
The index to the roots in the primary dataset is provided via a VSAM
dataset. The VSAM dataset records have pointers to the roots in the
primary ESDS, which in turn have pcinters to dependent segments in
secondary ESLS. HIDAM is useful in heavy segment insertion/deletion

environment, and when both sequential and direct access to the roots is

87

necessary.

GSAM (Generalized Sequential Access Method) can be implemented with
SAM datasets or with VSAM entry sequenced datasets. These are primarily
used to implement root only databases with fixed length root segments.
GSAM is structured to support data exchange between application programs,
and other user programs which access SAM or entry sequenced VSAM files.

DEDBs (Data Entry Data Bases) are built for specialized applications
in which a large number of key driven terminals enter data for later
processing by batch programs. A record in this implementation is limited
to a single root type, and a single dependent segment type. A root segment
identifies a terminal, and dependents represent entries from that segment.
DEDB utilizes VSAM and it is a slight modification of HDAM. Roots are
hashed and dependents are chained via pointers. Dependent segments are
sequenced by time of entry. Thﬁs the last segment inserted is the first
one on the chain from the root.

MSDB (Main Storage Data Base) is intended for those databases with
very high access to roots and which can be held in main storage. A
record is restricted to a single root segment type of fixed length. The
root segments can be keyed via two methods. The first method is the normal
one where a key is stored with the root. In the second method a 1:1
correspondence ié set up between the logical terminals and the associated
root segments. The first method is appropriate when many terminals need to
access the same set of roots. The second method is suited in an
environment where each terminal requires dedicated storage e.g. teller
records. An in depth discussion of IMS storage structures is provided in

McGee (29).

88

Discussion

The physical storage structures in IMS are far more advanced than
those in Model 204. At the internal level Model 204 imitates the inverted
list data model. The data is presented in an indexed format. In IMS the
under-1lying data sfructure is tree-like. Entry ordered,
reuse—-direct-file-space, sorted and hashed files are the secondary file
types supported by Model 204. The primary access method in Model 204 is
IFAM, while as IMS utilizes either HSAM, HISAM, HDAM, HIDAM, GSAM, DEDB or
MSDB. Due to the variety of access methods available under IMS customized
applications can be developed. If an application desires heavy
insertions/deletions then HDAM may be used, or if the frequency of
insertions/deletions is low then HISAM may be used. If an application has
a high rate of updates and and requires both seqﬁential and direct access
to root segments then HIDAM may be used. DEDB react to specific data entry
terminals. Hashed and sorted access is the only variation provided in
Model 204. The access method is generalized for all application types.
>Model 204 is said to be relational because the user has no notion of the
underlying storage structure. At the external and conceptual level data
may be viewed in a tabular format. The data definition phase requires the
keys to be defined so that the field indexes may be set up. After the data
definition phase no mention is made of indexes. This leads to possible
inefficient retrievals. An application programmer may be retrieving data

via a non-indexed field. Such a situation will not arise in IMS, as access

89

is provided in a limited manner via root segments, which are indexed. At
the physical level Model 204 imitates the inverted list data model. This
model is relational, because the term relational'applies only at the
external and conceptual levels and not at the internal 1level. The
applications developed in IMS are extremely data dependent. Once a
physical database has been set up with the hierarchic tree structure, it
needs redefinition to make any changes. The data definition language in
Model 204 provides the REDEFINE command to set up separate indexes on
existing data. This is a useful feature as user requirements change with
time, and data may need to be keyed via a new field. The REDEFINE command
sets up a new index based on the mentioned key field. The whole process
remains transparent to the user. Such a change would require a
redefinition of the physical database in IMS. Both Model 204 and IMS
support logical relationships. The INVISIBLE attribute in Model 204 allows
logical relationships between physical records. The ﬁata,Base Group in IMS

can directly support logical relationships.

90

CHAPTER VIII
SUMMARY AND CONCLUSIONS

An on-line classroom reservation system was developed on Model 204.
The system utilizes an algorithm which uses set theory operations to make
room reservations. The algorithm has a polynomial processing order. It
takes o(nk*t1) to process a request, where 'n' is the total number of
tuples in each of the located sets in the query, and 'k' is the total
number of intersections and joins. Model 204 does not directly relate to
any specific data model. At the physical level it has an inverted file
access method, thus it is assumed to be an inverted list database. But at
the conceptual and external levels it imitates the relational data model.
In Model 204 data manipulation is set-at-a-time similar to relational
systems, and no inverted list data manipulation operators are provided.
The requirements for a system to be called 'truly relational' are extremely
stringent, and such a system does not exist today. Model 204 is termed
relational-like because it deviates from the data model. The attributes
and tuples are ordered in a Model 204 file. A field can have multiple
values in a record. Primary keys, foreign keys, and the associated entity
and referential integrity rules are not supported. User language does not
directly provide the select, project and join operators. In spite of these
drawbacks Model 204 provides a relational interface to the user. The data

definition is simpler in Model 204 than in IMS. 1In IMS the data is set up

91

in a tree structured format, and a fair amount of work goes into deciding
the content of segments, and the hierarchical layout of segments. In Model
204 the data is set up in a tabular format, which is conceptuéily simpler.
A physical dafabase in IMS supports only one primary key at the root. Any
number of key fields may be defined for a Model 204 record. The data
definition in IMS addresses both physical placement and access paths to the
data. This data dependency does not occur in data definitions under Model
204.

IMS and Model 204 have completely different data manipulation
operators, primarily because of the underlying data models involved. IMS
does not have a fourth generation language interface like Model 204. One
of the main differences is that IMS supports record-at-a-time proéessing,
and Model 204 allows for set-at-a-time processing. The retrieval
operations in IMS query an ordered set of trees in a hierarchic sequence.
There is no ordered sequence that a user language request needs to adhere
to. DL/I does not provide flow of control constructs which are available
in user language. The set-level looping in user language provides loop
avoidance, thus making the application programmer's task easier.

Physical data independence is guaranteed Dby the nature of the
relational data model. The relational model is at the external/conceptual
level of the ANSI/SPARC database architecture model, thus any changes at
the internal level do not affect the applications. The hierarchic systems
are data dependent as they are at the internal level of the ANSI/SPARC
model. A change in the access mechanisms do not require major changes in
application programs under IMS or Model 204. Thus the degree of physical

data independence under the two systems is identical. Model 204 has a high

92

degree of logical data independence. A field can be added or deleted from
an existing record in a Model 204 file, without affecting existing
application programs. New record types may also be introduced without
requiring any modifications. IMS is data dependent as additions or
deletions of fields from segments require modification of application
programs, and a re—-definition of the database. This dependency is called
access path dependence in IMS, and it occurs due to the pre-defined access
paths in application programs. IMS provides for both referential and
entity integrity, but Model 204 proves to be lacking in this area. Most
integrity checks are done by user written procedural code in Model 204.
Entity and referential integrity checks are not provided by Model 204 as it
does not support primary and foreign keys. File level security features
are more advanced in Model 204 as compared to IMS. 1IMS depends on file
level security on another package RACF.

The physical storage structures in IMS are far more advanced than
those in Model 204. The primary access method in Model 204 is IFAM, while
as IMS utilizes HSAM, HISAM, HDAM, HIDAM, GSAM, DEDB and MSDB. Due to the
variety of access methods available under IMS, customized applications can
be developed. Applications in Model 204 may perform inefficient retrievals
as data may be accessed via a non-indexed field. Such a situation will not
arise in IMS as access is provided in a limited manner via root segments,
which are indexed. The applications developed in IMS are highly data
dependent as compared to those in Model 204.

Both Model 204 and IMS provide host language interfaces. Model 204
provides an added ¢apability in way of a fourth generation language, user

language. The development time for an application is reduced under Model

93

204. IMS may finally provide better run time performance because
applications can be customized, and efficient access paths to the tree
structured-data reduce the retrieval costs. The customized system may not
readily accept other app;ications. The logical data structures in IMS are
biased towards some applications and against others, because they closely
reflect the physical data structure. The logical data structures in IMS
applicatiqn programs (e.g PL/I structures) closely reflects the tree-like
IMS database organization. A tree-like data structure is biased towards
applications which require only one primary key field. A table supports
applications with any number of key attributes. The tables I through IV
and Figures 16 and 17 summarize the comparative»study of the two database
systems.

This study exposed the data definition, data manipulation, data
independence, storage organization, and data protection capabilities of IMS
and Model 204. The classroom reservatioq system developed in Model 204 not
only provided a common application problem for the study, it also made
available a reservation system which can be used by the registrar's office,
and all departments at Oklahoma State University. Future work in this area
can involve studying the involved systems at an internal level of the
ANSI/SPARC data model. The database architectures involved can be
compared, and a set of benchmarks can be generated to compare the internal

levels of IMS and Model 204.

94

TABLE I

DATA DEFINITION

95

IMS MODEL 204
Data formats tree-like tabular
Primary data object segment record
Dynamic indexing not available available

Logical relationship

pointer chains

pseudo foreign keys

TABLE II

DATA MANIPULATION

IMS MODEL 204
Host language
interface available available
Fourth generation
language not available available

Query processing
Database ordering

Flow of control
constructs

Selection power of DML

non-keyed, non-indexed
access

Database query

record-at-a-time

hierarchic

sequence

not available

low

not possible

execution

set-at-a-time

unordered

available

high

possible

compilation &
execution

TABLE III

DATA INDEPENDENCE

96

IMS MODEL 204

Degree of physical

data independence high high
Degree of logical

data independence

(growth) low high
Degree of logical

data independence

(restructuring) low low

TABLE IV
DATA INTEGRITY AND SECURITY
IMS MODEL 204

Concurrency control available available
Exclusive access segment record
Primary keys available not available
Foreign keys available not available
Entity integrity

checks available not available
Referential integrity

checks available not aviilable
Concurrency control

statements in DML not available available
Audit trail available available
File level security low high

97

PH YSt1CAL STORAQE ORGANIZATISN

GsSAM DEDD MsSDB HS

Csm/ysar) - (vse) 0/57 \ / \
Hsar RISAM = HDAM DAN,
CSAM) cvsAM/rsm (v.snm/) ET/MM)l

Figure 16. Storage Organizations and Access Methods in IMS

| DaTABRSE oRgAMIZATON]

IFAM
Q:SAM)

Figure 17. Storage Organizations and Access Methods in Model 204

10.

11.

12.

13.

14.

SELECTED BIBLIOGRAPHY
Almond, Mary. An algorithm for constructing university timetables.
Comput. J. 8, l(January 1966), 331-340.
Barraclough, Elizapeth D. The application of a digital computer to
the construction of timetables. Comput. J. 8, 1(April 1965),

136-164.

Brittan, J.N.G., Farley, F.J.M. College timetable construction by
computer. Comput. J. 14, 4(November 1971), 361-365.

Cardenas, A.F. Evaluation and selection of file organization model
and system. Commun. ACM 16, 9(Sept 1973), 540-548.

Cardenas, A.F. Performance analysis of inverted database structures
Commun. ACM 18, 5(May 1975), 253-263.

Chamberlin, Donald D. Relational data-base management systems.
Computing Surveys 8, l(March 1976), 43-66.

Christodoulakis, S. Implications on certain assumptions in database
performance evaluation. ACM TODS 9, 2(June 1984), 163-186.

Codd, E.F. A relational model for large shared data banks. Commun.
ACM 13, 6(June 1970), 377-387.

Codd, E.F. Relational database: a practical foundation for
productivity. Commun. ACM 25, 2(February 1982), 109-117.

Computer Corporation of America. Model 204 DBMS reference series,
Command reference manual, release 8.1, September 1985.

Computer Corporation of America. Model 204 DBMS reference series,
File Manager's Guide, release 8.1, September 1985.

Computer Corporation of America. Model 204 DBMS reference series,
System Manager's Guide, release 7.1, April 1985.

Computer Corporation of America. Model 204 DBMS referance series,
System messages manual, release 8.1, September 1985.

Computer Corporation of America. Model 204 DBMS reference series,
Terminal user's guide, release 7.1, April 1985.

98

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Computer Corporation of America. Model 204 DBMS reference series,
User language manual, release 8.1, September 1985.

Csima, J., Gotlieb, C.C. Tests on a computer method for
constructing school timetables. Commun. ACM 7, 3(March 1964),
160-163.

Date, C.J. An introduction to database systems. Reading,
Massachusetts: Addison Wesley Publishing Company, Vol 1, 4th
edition, April 1986.

Fry, James P., Sibley, E.H. Evolution of data-base management
systems . Computing Surveys 8, l(March 1976), 7-42.

Gosselin, Karl., Truchon, Michel. Allocation of classrooms by
linear programming. J. Opl Res. Soc. 37, 6(June 1986), 561-569.

IBM, information management system / virtual storage (IMS / VS),
Application programming reference manual, SH20-9026-2,1S975.

IBM, information management system / virtual storage (IMS / VS),
General information manual, GH20-1260-3,1975.

IBM, information management system / virtual storage (IMS / VS),
System/application design guide, SH20-9025-2,1975.

IBM, information management system / virtual storage (IMS / VS),
System programming reference manual, SH20-9027-2,1975.

Kim, Won. Relational database systems. Computing surveys 11,
3(September 1979), 185-211.

Lions, John. Matrix reduction using the Hungarian method for the
generation of school timetables. Commun. ACM 9, 5(May 1966),
349-354.

Lions. John. The Ontario school scheduling program. Comput. J. 10

,2 (August 1967), 1l4-21.

McFadden, Fred R., Hoffer, Jeffrey A. Database Management.
California: The Benjamin/Cummings Publishing Co., 1985.

McGee, William C. On user criteria for data model evaluation. ACM
TODS 1, 4(Dec 1976), 370-387.

McGee, W.C. The information management system IMS/VS. IBM systems
journal 16, 2 (1977), 84-168. -

Michaels, Ann S., Mittman, Benjamin., Carlson, Robert C. A
comparison of relational and CODASYL approaches to database
management. Computing Surveys 8, l(March 1976), 124 - 151.

99

31.

- 32.

33.

34.

35.

Siler, K.F. A stochastic evaluation model for database organization
in data retrieval systems. Commun. ACM 19, 2(Feb. 1976), 84-95.

Stonebraker, M., Woodfill, J., Ranstrom, J., Murphy, M., Meyer, M.,
Allman, E. Performance enhancements to a relational database
system. ACM TODS 8, 2(June 1983), 167-185.

Tsichritzis, D.C., Lochovsky, F.H. Hierarchical database management
- a survey. Computing Surveys 8, l(March 1976), 104 - 123.

University Computer Center (Oklahoma State University), User manual
Third edition, November 1985.

Wiederhold, Gio. Database design. New York: McGraw Hill Book Co.
Inc., 1977.

100

APPENDIX A

GLOSSARY OF TERMS

102

ANSI/SPARC American National Standards Institute / Systems Planning
and Requirements Committee

AP Application Programmer: a data structure class in IMS

DA Data Administrator: a data structure class in IMS

DBD Data Base Definition: a definitional construct in IMS

DEDB Data Entry Data Base

DL/I Data Language / One: host language interface calls in IMS

DLET Delete: DL/I operator

ESDS Entry Sequenced Data Set for VSAM

FCT File Control Table: a file section in a Model 204 file

GHN Get Hold Next: DL/I operator

GHNP Get Hold Next within Parent: DL/I operator

GHU Get Hold Unique: DL/I operator

GN Get Next: DL/I operator

GNP Get Next within Parent: DL/I operator

GSAM Generalized Sequential Access Method

GU Get Unique: DL/I operator

HD Hierarchical Direct

HDAM Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

HISAM Hierarchical Indexed Sequential Access Method

HS Hierarchical Sequential

HSAM Hierarchical Sequential Access Method

IFAM Inverted File Access Method

IMS Information Management System: vendor IBM

ISAM Indexed Sequential Access Method

ISRT Insert: DL/I operator

KSDS Key Sequenced Data Set for VSAM

MODEL 204 Relational Database: vendor Computer Corp. of America

MSDB Main Storage Data Base

0osaM Overflow Sequential Access Method

PCB Program Communication Block: a definitional construct in
IMS

PF Program Function

RACF Resource Allocation and Control Facility

RDFS Reuse Direct File Space: a file type in Model 204

REPL Replace: DL/I operator

SAM Sequential Access Method

SSA Segment Search Argument

TABLE A Dictionary of field names in a Model 204 file
TABLE B Data section of a Model 204 file

TABLE C Indexing section of a Model 204 file
TABLE D Indexing section of a Model 204 file
USER

LANGUAGE Fourth Generation Language in Model 204
VSAM Virtual Storage Access Method

APPENDIX B

CLASS RESERVATION SYSTEM PROGRAMS

104

DATA ABSTRACTION

The class room reservation system database was set up using a tape dump of
an IMS course database. The tape consists of a hierarchical sequence of
segments. The tape dataset attributes are:

DSN = (RECFM=VB, LRECL=1004, BLKSIZE=8000, DEN=3),
VOL=SER=T6363

The tape was copied onto a two disk datasets to perform the abstraction.
The two disk datasets are: ulo820a.class.data; ulog820a.descrp.data. The
hierarchy chart lists the procedure calls for the abstraction process.

TApPE
T6363

A s /

108 204, CLASS DATA- V108 20A-DESCRD . DATA-
Disk DISK

\}) SeTuppaTA

€)) SETuﬁ’HooP.S

\4
3) SETDESCR,

\A) HRS

Huewlcuy CHART

The pcb definitions for the course and meeting segments of the IMS

database are:

COURSE
12
12

12

.MEETING
12
12

crsid picture x(5).
crskey.
16 crssem.
20 year picture xx.
20 semester picture X.
16 crsname.
20 dept picture x(5).
20 course-number picture x(4).
20 type-crs picture x.
88 theory value '1l’
88 discussion value '2'
88 independent-study value '3
. 88 lab value '4'
20 sec picture x(3).
filler picture x(50).

seq picture
meeting-time-place
16 meeting-time
20 days
24 mon picture
24 tue picture
24 wed picture
24 thr picture
24 fri picture
24 sat picture
20 begin-time
24 b-hr picture
24 b-min picture
20 end-time
24 e-hr picture
24 e-min picture

16 meeting-time-free-form redefines

20 indicator
20 meeting-time-ff

16 meeting-place

12 instructor
12 filler

20 bldg
20 room

picture
picture
picture x(12).
picture x(50).

x(3).

X.
Xe
X.
Xe.
X.
X.

x(2).
x(2).

x(2).
x(2).
meeting-time.

picture X.
picture x(13).

X (4).
x(4).

105

106

CLASS
MAN\
. QUER
) VIEW] - Roo™M , Roo M. QUERY
\\ - ATTRIBUTES
viEW2.S VIEW VIEWLS VIEWZ DISPLAY KE’]

Key KeYyl

H\ERARCM)' CHART

//Uu10820A JOB (10820,204-BD-FILE),VINIT,TIME=(0,30]),

/7 MSGCLASS:=X MSGLEVEL=(2,0),CLASS=A,NOT[FYzx
/*PASSWORD 2?7727
/7 EXEC BATCH204

/)t s st AR EFATITIET I TR LTI R T IXEIIIETXTTTNII RS S FXTETTTFTERRTIRTRC TR

//= PURPOSE - THIS BATCH ROUTINE WAS USED TO BUILD THE CLASS SCHEDULE

/1= DATABASE FILE. THE FILE WAS INITIALLY ALLOCATED WITH
/1= THE NAME M204 . ACT10820.DATA. THE BATCH204 PROGRAM IS
/7= EXECUTED TO SET UP THE FILE AND DEFINE THE FIELDS.

/X E R E T E R AT A I X EEEE IR T I A EE R EEEXETCEFEXEXIIETIEXREAXETITIETEALAERT
//DATA DD DSN:=M204.ACT10820.0DATA,DISP=SHR

//GCAIN DD =

PAGESZ = 6184

CREATE FILE DATA

PARAMETER ASTRPPG = 384 ATRPG = 1, -
PARAMETER FVFPG = 1,MVFPG = 1,BRECPPG -z 47
PARAMETER BSIZE : 51,BRESERVE = 100

PARAMETER FOPT:=X'08‘,FILEORG:X'04"*
PARAMETER PDSTRPPG2255,PDSI1ZE:3
PARAMETER CSIZE = S,0SIZE = 30
END

OPEN DATA

INITIALIZE

DEFINE COURSE . ID (KEY)
BEFINE DEPARTMENT (KEY)
DEFINE- COURSE.NQ {KEY)
DEFINE COURSE.TYPE

DEFINE COURSE.DESCRP

DEFINE INSTRUCTBR (KEY)
DEFINE BUILDING (KEY)

DEFINE ROOM (KEY)

DEFINE SECTION

DEFINE COURSE.DAYS

DEFINE COURSE .BEGIN

DEFINE COURSE.END

DEFINE FREEFORM

DEFINE MIN

DEFINE MaX

DEFINE START {KEY)

DEFINE EXPIRE (KEY])

DEFINE COMMENT

DEFINE NUMBER

CLOSE DATA

€04

/=

/7

//U10820A J0B (10820,M24-TO-TAPE]),VINI,TIME=(0,30),USER=x,

/7 MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A NOTIFYzx

/*PASSWORD 777

/*JOBPARM ROOM:zE

AR R R R R R s R Y P S S F)
//* PURPOSE - THIS PROCEDURE IS USED TO BACKUP THE CLASS

//= SCHEDULE DATABASE ONTO TAPE. THE TAPE NUMBER
/7% AND THE LABEL NUMBER ON THE TAPE NEED TO BE
/= FILLED upP.

L T PP
/*MESSAGE PLEASE MOUNT TxxxXX

//STEP1 EXEC M204FLOD,REGION:=3000K

//DATA DD DSN:M204 . ACT10820.DATA,DISP=SHR

//0UMPDATA 0D DSN3M204.DUMP .DATA,UNIT:TAPE,

// YOL:(PRIVATE,RETAIN,, , SER:z (T Ixxxx)),

/7 D1SP: (NEW, KEEP DELETE),

12 LABEL 3xx

//CCAIN DO =

PAGESZ = 6184

OPEN DATA

DUMP TO DUMPDATA

CLOSE DATA

EQJ

/;srzpz EXEC PRTLBS, VOL 2 TxxXXX

/

//ut10820A JO8 (10820,0UM-PM-2040),VINI,TIME=(0,480]),

/7 MSGCLASS:X MSGLEVEL:(1,1),CLASS:A,NOTIFYss K USER:z=*
/*PASSWORD 7777

/*JO0BPARM ROOM:E

/=MESSAGE PLEASE MOUNT TXXXXX--NFP

R i L T T Y T T

//* PURPOSE - THIS PROCEDURE IS USED TO RESTORE THE CLASS

/7= SCHEDULE DATABASE FROM TAPE. THE TAPE NUMBER
/7% AND THE LABEL NUMS8ER ON THE TAPE NEED TO BE
//= FILLED UuP.

//= m204.act10820.data needs to be allocated with
/= the same attributes as those in chaptaer 2 of
//= the thaesis prior to running this job.

AL E R S F R R R R R R R X PSS S P S
//STEP1 EXEC M204FLOD,REGION:3000K

//DATA 00 DSNiM204.ACT10820.0ATA,DISP:SHR

//DUMPDATA DO DSN=M204.DUMP.DATA,UNIT:TAPE,

// YOL:(PRIVATE,RETAIN,, ,SERz(Txxxxx)),DISPz{NEW, KEEP), LABEL zxx
//CCAIN DO =

PAGESZ = 6184

CREATE FILE DATA

END

OPEN DATA

INITIALIZE

RESTORE 128 FRGM DUMPDATA

CLOSE DATA

E0J

/=

/7

LR R R R e P

= FILENAME CLASS- THIS SETS UP SUCCESSIYE CALLS FOR THE MAIN DRIVER

00000100
00000200
00000300
00000400

00000500
00000600
00000700

000103900

00011270
00011270
00011300

107

108

* THE USER CAN QUIT THE PRIMARY MENU BY PRESSING THE ATTENTION KEY
R R R T S
INCLUBE MAIN

2 X XTI EIIII LI I E I E IR I I LIS TR E AT AT S XTI ST RL T I AN T L ELTTXIXTTTET XL X
* FILENAME MAIN

= AUTHGR - VINIT VERMA
= CREATED 11-29-88

= THIS PROCEODURE IS A ORIVER FOR THE CLASS SCHEDULE SYSTEM

* THE PROGRAM SENSES THE MENU SELECTION AND APPROPRIATELY

= CALLS THE VIEW!!, VIEW12, ROOM.ATTRIBUTES GOR ROOM.QUERY

= PROGRAMS . THE PA1 KEY [S NOT DEACTIVATED FOR PROGRAMMING

* PURPGOSES. THE LOG_OUT PROCEDURE ALLOWS A USER TO EXIT

= MODEL 204.
R R R]

RESET MSGCTL = X’'02°
OPENC DATA

RESET MSGCTL = X‘01°’

UTABLE LSTBL = 5000

UTABLE LOQTBL = 1200

UTABLE LVYTBL = 200

UTABLE LNTBL = 100

BEGIN

L I R i e I x

MENU MAIN
TITLE ° OSU CLASS SCHEDULE SYSTEM ‘ AT 21
SKIP 4 LINE

PROMPT GENERAL USER (DEPARTMENTS)’ AT 1S
SKIP 1 LINE

PROMPT SUPER USER (REGISTRAR)‘ AT 1S
SKIP 1 LINE

PROMPT * ROOM INVENTORY DATABASE' AT 1S
SKIP 1 LINE

PROMPT ROOM VACANCY'’ AT 1S

SKIP 1t LINE

PROMPT * EXIT* AT 158

END MENU

120. READ MENU MAIN
130. IF S$SSETG{’'SELECTION’,%MAIN:SELECTION) THEN STOP
END

R R E T
* MAKE A CHOICE DEPENDING ON THE SELECTION

R R T R]

IF SELECTION=1,VIEWI1

IF SELECTION=2,VIEW12

IF SELECTION=3,RO00M.ATTRIBUTES
IF SELECTION=4,RO0M.QUERY

IF SELECTION=S,LO0G_oOuUT

R

= FILENAME VIEW!1

= AUTHOR- VINIT VERMA
* CREATED 10-23-88

* PURPOSE - THIS PROCEDURE PROVIDES THE GENERAL USER’S

*+ OPTION FOR THE DEPARTMENTS. NO UPDATES CAN BE

* PERFORMED VIA THIS PROCEDURE. ONLY DATA

* RETRIEVAL OPERATIONS MAY BE PERFORMED.

= THE QUERY FIELDS ARE -

=

* . COURSE.ID

= DEPARTMENT AND COURSE NUMBER

* OEPARTMENT

= BUILDING AND ROOM

= INSTRUCTOR’S NAME

=

*+ THE FILES INCLUDED B8Y THIS PROCEOURE ARE

*

= YIEW2.S - THE USER INTERFACE SCREEN

* VIEW2 - THE DATA DISPLAY PROCEDURE

=
R R R S

RESET MSGCTL = X‘02°
Q DATA

BEGIN

P R
= THE [NDEX ARRAY [S SET UP TO DQ THE SCROLLING

T T E AT AT I I E R L E NI A I A E AT IS XX I I XIS TTXTTTLETTTETTXE

%INDEX IS STRING LEN 7 ARRAY(200)
%SCAN IS FIXED
%COUNT [S FIXED

LR R R R R R R R R L]
* THE SCREEN OEFINITION

F XX I I I I XTI T I IR I RIS I TN EF LS I LT T T XTSI EETTIXSXTRS

IN SCHED INCLUDE VIEW2.S
IN DATA INCLUDE DEPT

LR R s R e R L

= SET UP THE ON CONFLICT CONDITION
R TN R R R P T

ON FIND CONFLICT

%“CLASS :MESSAGE = ‘*xsx PLEASE TRY LATER =xx’
JUMP TO START

END ON
R P T]

= DEACTIVATE THE ON ATTENTION KEY

T ETIET IR LTI LI ISI IR EEEEEE T T T A IE I T T F LRI X T I TINLEXTXITIEE XTI TLXELT
ON ATTENTION

%“CLASS:MESSAGE = ‘==z ATTENTION KEY DEACTIVATED #*=xx°
JUMP TO START

END ON

START: READ SCREEN CLASS

%CLASS:MESSAGE = '

T T T I F T E LTI XTI I TS E XTI E XTI ESTXEXIEKTIRE XL ET TR
* VERIFY THE PFKEY VALUES

R R T]

IF %CLASS:PFKEY /= 3 AND %“CLASS:PFKEY /= S AND %CLASS:PFKEY /: 6 AND
%CLASS:PFKEY /= 7 AND %“CLASS:PFKEY /= 8 AND %CLASS:PFKEY /= 3 THEN

%CLASS:MESSAGE = '*xx PF’ WITH %“CLASS:PFKEY WITH * IS NOT ACTIVE"'
JUMP TO START
ENO [F

)
* CHECK FOR THE PF3 EXIT KEY
I XTI EI I I I I I IS I I I I T EE T I F AT EE T T TSI T E AT XXX F LS XX S XX LS LXXEXSTTXEX
IF %“CLASS:PFKEY = 3 THEN

JUMP TO FINISH
END IF
e e e)

= CHECK FOR THE PF9 DEPARTMENT OQUERY KEY

R e)
IF %CLASS:PFKEY = 9 THEN

CALL DEPT
JUMP TG START

END IF

E T R F P R T
= CHECK FOR THE PF6 REFRESH KEY
R R T TS

IF %ZCLASS:PFKEY = 6 THEN

PREPARE SCREEN CLASS
JUMP TGO START

ENO IF
R R R R
* CHECK FOR THE PFS REFRESH KEY

R e e R S
IF %CLASS:PFKEY = S THEN
CLEAR LIST SCROLL
P R R
x CHECK IF THE QUERY IS KEYING OFF THE COURSE NAME AND NUMBER
T I P R P
IF %“CLASS:ITEMID = 3 THEN
NUMBER: IN DATA FD DEPARTMENT : %CLASS:DEPARTMENT AND -
COURSE . NO = %CLASS:COURSE.NO AND COMMENT IS NOT PRESENT

END FINOD
CT.NUMBER: COUNT RECORDOS IN NUMBER
IF COUNT IN CT.NUMBER EQ O THEN

PREPARE SCREEN CLASS

%CLASS:MESSAGE = ‘xxx NO MATCH =*=z'

JUMP TQ START

END IF
PLACE RECORDS IN NUMBER ON LIST SCROLL

T R R R P R R R R R R E R RS
= CHECK IF THE QUERY IS KEYING OFF THE COURSE ID NUMBER
R R R S
ELSEIF “CLASS:ITEMID = 1 THEN

NUMBERI: IN DATA FD COURSE.ID : %CLASS:COURSE.ID

END FIND

CT.NUMBERIT: COUNT RECORDS IN NUMBER!1

IF COUNT [N CT.NUMBER! EQ O THEN

PREPARE SCREEN CLASS
XCLASS:MESSAGE = ‘=xsx NO MATCH ===

109

110

JUMP TO START
END IF
PLACE RECOROS IN NUMBER! ON LIST SCROLL
T TR EETTIEILIIEELLETTEEAASTIIEITEIERELINTIRTLERIINCETIRTIIXNITIERLRILD]
= CHECK I[F THE QUERY [S KEYING OFF FOR A CERTAIN DEPARTMENT
TR E I XTI AT IRATAITIEEFTEIIEIIEIEASXAILEANITXIIX AT ILIFASTTTIERRAIL DA
ELSEIF %CLASS:ITEMID = 2 THEN
NUMBER2: I[N DATA FD DEPARTMENT : %CLASS:DEPARTMENT ANOD -
COMMENT IS NOT PRESENT
END FIND
CT.NUMBER2: COUNT RECORDS IN NUMBER2
IF COUNT IN CT.NUMBER2 EQ O THEN
PREPARE SCREEN CLASS
%CLASS:MESSAGE = ’'xx% NO MATCH =xx’
JUMP TGO START
END IF
PLACE RECORDS IN NUMBER2 ON LIST SCROLL
R IR SR T E TR LTI ERCE T EEEFF AR S X SR EK I AR AT A RK RS RT T L SR EXTATXAIXTALLTRT
* CHECK IF THE QUERY IS KEYING OFF FOR A CERTAIN ROOM
R TR I E I IIETEETIITFEIIAT AL TSI LTI R RS RS ENAX XTI ESTTRXL BT LR T KRS
ELSEIF %CLASS:ITEMID = S THEN
NUMBER3: IN DATA FD ROOM : %CLASS:ROOM AND BUILDING : %CLASS:BUILDING
ENO FIND
CT.NUMBER3: COUNT RECORDOS [N NUMBER3
IF COUNT IN CT.NUMBER3 EQ O THEN
PREPARE SCREEN CLASS
%“CLASS :MESSAGE = ‘zxz NO MATCH =xx’
JUMP TO START
END IF
PLACE RECORDS IN NUMBER3 ON LIST SCROLL
I I I I NI I I I I ooy
= CHECK IF THE QUERY [S KEYING OFF FOR AN INSTRUCTOR
I L T I I ooy
ELSEIF %CLASS:ITEMID = B8 THEN
NUMBER&: IN DATA FD INSTRUCTOR = %CLASS:INSTRUCTOR
ENO FINO
CT.NUMBER4: COUNT RECORDS IN NUMBERS
IF COUNT IN CT.NUMBER4 EQ O THEN
PREPARE SCREEN CLASS
%CLASS:MESSAGE z ‘xxx NO MATCH =x=x'
JUMP TO START
ENOD [F
PLACE RECORDS IN NUMBER4 OGN LIST SCROLL
END IF
%COUNT = O
ERR: COUNT RECORDS OGN LIST SCROLL

IF COUNT IN ERR GT 200 THEN

%“CLASS:MESSAGE = ‘=sxx QVER 200 RECORDS TO SCROLL ===’
JUMP TO START
END IF

FOR EACH RECORD ON LIST SCROLL

%COUNT = %COUNT + 1
%“INDEX(%COUNT) = SCURREC

ENO FOR

I XTI XTI E XTI I I T E I TSI F RIS I T EF L TR I XA I AT EFTIT T TR ERTRT ISR IRTE®
= SET UP THE CATENATEQ SCAN POINTER
L R T]

%“SCAN = 1

%“DEPARTMENT = %“CLASS:DEPARTMENT
%“COURSE.NO : %CLASS:COURSE.NO

PREPARE SCREEN CLASS

%CLASS:DEPARTMENT =: %DEPARTMENT
%CLASS:COURSE.NO = %COURSE.NO

CALL DISPLAY

JUMP TO START

END IF

R R R IS R Y
= CHECK FOR THE PF8 SCROLL FORWARD KEY

T I I FIIIII I I A E AT E I I I E I I ETFT XTI TSI XTEFCLTTTE XX IR T EXTL X T

IF “CLASS:PFKEY : 8 THEN

%SCAN = %SCAN + 1
IF %SCAN LE %COUNT THEN

%“DEPARTMENT = %CLASS:DEPARTMENT
“COURSE.NQ = %CLASS:COURSE.NO

PREPARE SCREEN CLASS

%CLASS:DEPARTMENT = %DEPARTMENT
%CLASS:COURSE.NC = %COURSE.NO

CALL DISPLAY

ELSE
%CLASS:MESSAGE= ‘==z LAST RECORD ==z~
%SCAN = %4SCAN - 1

END IF

JUMP TO START

END IF
R P T]
* CHECK FOR THE PF7 SCROLL FORWARD KEY

P]
IF %ACLASS:PFKEY = 7 THEN

%SCAN = %SCAN - 1
IF %SCAN GE 1| THEN

%DEPARTMENT = %CLASS:DEPARTMENT
%COURSE.NQ = %CLASS:COURSE.NO

PREPARE SCREEN CLASS

%CLASS:DEPARTMENT = %DEPARTMENT
%CLASS:COURSE.NGC = %COURSE.NO

CALL DISPLAY

ELSE
%“CLASS:MESSAGE = ‘sxxx FIRST RECORD =x=xx’
“SCAN = %SCAN + 1

END IF

JUMP TO START

END IF
FINISH: PREPARE SCREEN CLASS
COMMIT

EE

* [NCLUDE THE SCROLL.LIST FILE

P

IN SCHED INCLUDE VIEW2

END
0 SCHED
RESET MSGCTL X001’

R

= FILENAME VIEW2.S

* AUTHOR - VINIT VERMA

= CREATED - 10-23-86
* PURPOSE - THIS PROCEDURE PROVIDES THE USER INTERFACE SCREEN

* FOR THE GENERAL USER’S OPTION. THIS PROCEDURE IS INVOKED

= BY THE VIEW11 PROGRAM.

*

R T]

SCREEN CLASS
TITLE *
MAX PFKEY 12

PROMPT MESSAGE AT 40 DEFAULT *

PROMPT 'id number :* AT 2 INPUT COURSE.ID LEN 6 ITEMIOD 1 -
PROMPT ‘instructor :* AT 25 INPUT INSTRUCTOR LEN 13 ITEMID & -
PROMPT ‘days 1’ AT 53 INPUT COURSE.DAYS LEN 6§ -

PROMPT ‘min:’ AT 68 INPUT MIN LEN 2

PROMPT ‘daepartment :* AT 2 INPUT DEPARTMENT LEN 6 ITEMID 2 -
PROMPT ‘building :* AT 25 INPUT BUILOING LEN S ITEMID 4 -
PROMPT ‘start :' AT 53 INPUT COURSE.BEGIN LEN & -

PROMPT 'max:‘ AT 68 INPUT MAX LEN 2
PROMPT ‘course number :’' AT 2 INPUT COURSE.NO LEN S ITEMID 3 -

PROMPT ‘room :* AT 2SS INPUT ROOM LEN S ITEMID S -
PROMPT ‘and :’ AT 83 INPUT COURSE.END LEN 4

PROMPT ‘type :* AT 2 INPUT COURSE.TYPE LEN 2 -
PROMPT ‘sectiaon :’ AT 25 INPUT SECTION LEN 3 -

PROMPT ‘hours :‘° AT S3 INPUT COURSE.HOURS LEN 2

PROMPT ‘title :’ AT 2 INPUT COURSE.DESCRP LEN 22 -
PROMPT ‘undecided hour :* AT 45 INPUT FREEFORM LEN 14

PROMPT ‘begin(yy-mm-dd):’ AT 13 INPUT START LEN 8 -
PROMPT 'expiry(yy-mm-dd):’ AT 4% INPUT EXPIRE LEN 38

PROMPT ‘commant:’ AT 2 INPUT COMMENT! LEN 680
PROMPT * AT 2 INPUT COMMENT2 LEN 60
PROMPT ‘ AT 2 INPUT COMMENT3I LEN 60
PROMPT * AT 2 INPUT COMMENT4 LEN 60
PROMPT ‘ AT 2 INPUT COMMENTS LEN 60
PROMPT ' * AT 2 INPUT COMMENTS LEN 60
PROMPT * AT 2 INPUT COMMENT?7 LEN 60
PROMPT - * AT 2 INPUT COMMENTS LEN 8O
PROMPT * AT 2 INPUT COMMENTS LEN 60
PROMPT ‘ AT 2 INPUT COMMENTI1O LEN 60

Oklahoma State University Class Schedule

111

112

PROMPT ‘ AT 2 INPUT COMMENTI!1 LEN 60
PROMPT ° AT 2 INPUT COMMENT!2 LEN 60
PROMPT * AT 2 INPUT COMMENTI13 LEN 60
PROMPT ‘ AT 2 INPUT COMMENTI4 LEN 60

PROMPT ‘pf3 exit pfS refresh pf-6 clear pf-7 <- pf-8 ->
pf3 dept. query

DEFAULT CURSOR COURSE.ID

END SCREEN

R R R P R T P ey
= FILENAME DOEPT

= AUTHOGR - VINIT VERMA

= CREATED ©01-10-87

* PURPOSE

* THIS SUBROUTINE LISTS ALL COURSES WITH MEETING TIMES FOR A SPECIFIC
* DEPARTMENT. THE LIST IS SORTEO BY DAY OF THE WEEK AND TIME OF THE
= DAY. THE VIEWI11 PROGRAM INVOKES THEIS SUBROUTINE.

x

=

=

R S X
DEPT: SUBROUTINE
A: IN DATA FD DEPARTMENT EQ %CLASS:DEPARTMENT AND COURSE.DAYS IS
PRESENT
END FINO
CT.A: COUNT RECDRDS IN A
IF COUNT IN CT.A EQ 'O’ THEN

%CLASS:MESSAGE = '*x NO MATCH =x=°
RETURN

ENOD IF
%DAYS IS STRING LEN 2 ARRAY(S)

= INITIALIZE THE DAYS ARRAY

%DAYS(1) = ‘M’
%DAYS(2) = 'T'
%DAYS(3) = ‘W’
%DAYS(4) = ‘H’
%DAYS(S) = ‘F*
%0AYS(8) = 'S’

%I = 0
SET HEAOER 1 °‘COURSE.ID’ AT 3 WITH ‘DAY’ AT 1S WITH °‘BEGIN’ AT 22 WITH -

‘ENO’ AT 30 WITH ‘TITLE® AT 40
NP
AGAIN: %I 3z %I + 1

IF %I EQ 7’ THEN
JUuMP TG FINITO

END IF
CLEAR LIST P
PLACE RECORDS IN A ON LIST P
S: SORT RECORDS ON P BY COURSE.BEGIN

FR IN S
%X = SINDEX(COURSE.DAYS,%DAYS(%I))

IF %X /= O THEN

PRINT COURSE.ID AT 3 WITH %DAYS(%I) AT 1S WITH COURSE.BEGIN AT 22 -
COURSE.END AT 30 WITH COURSE.DESCRP AT 40

END IF

END FQOR

JUMP TO AGAIN
FINITO:

RETURN
ENO SUBROUTINE DEPT

E EEE FE R R R R R
= FILENAME VIEW2

b AUTHOR - VINIT VERMA
* CREATED 10-23-88

* PURPOSE

* THIS SUBROUTINE SETS UP THE SCREEN VARIABLES TO BE DISPLAYED.
* THIS ROUTINE [S CALLED EACH TIME FOR A SCROLL FUNCTION. ONCE A
* RECORD HAS BEEN IDENTIFIED IN THE DATABASE THIS SUBROUTINE

* INITIALIZES THE SCREEN VARIABLES. BOTH THE VIEWI1 ANO VIEW!2
* PROCEDURES [NVOKE THIS SUBROUTINE.

= .

=

=

P R R S S
DISPLAY: SUBROUTINE
NEXT.RECORD: %SEARCH = %INDEX(%SCAN) + 1

LOCATE: IN DATA FD POINTS %INDEX(%SCAN) AND NOT %SEARCH
ENO FIND

FR IN LOCATE

%“CLASS:START = START
%“CLASS:EXPIRE = EXPI
%“CLASS:COURSE.ID = C
%CLASS:INSTRUCTOR =
%CLASS:COURSE.DAYS =
%“CLASS:COURSE.BEGIN
%“CLASS:COURSE.END =
“CLASS:DEPARTMENT =
%CLASS:SECTION : SEC
%CLASS:COURSE.TYPE =

%CLASS5:COURSE.NO = C
“CLASS:RQOOM = ROOM
%CLASS:BUILDING = BU

%CLASS:COURSE .DESCRP
%CLASS:CQURSE.HOURS
%“CLASS:FREEFORM = FR
%CLASS:MIN = MIN
%CLASS:MAX = MAX

COM?!: IN DATA FD COMMENT IS
AND COURSE.NQ = %CLASS:

END FIND

FR IN COM1

%“CLASS:COMMENT! = COMMENT

END FOR

€oM2: [N DATA FD COMMENT IS
AND COURSE.NQ = %CLASS:

END FIND

FR IN COM2

%“CLASS:COMMENT2 = COMMENT

END FOR

COM3: IN DATA FD COMMENT IS
AND COURSE.NOC = %CLASS:

END FIND

FR IN COM3

%CLASS :COMMENT3 = COMMENT

END FOR

COM4: IN DATA FD COMMENT IS
AND COURSE.NO = %CLASS:

END FIND

FR IN COM4

%CLASS:COMMENT4 = COMMENT

END FOR

COMS: I[N DATA FD COMMENT IS
AND COURSE.NO = %CLASS:

" END FIND

FR IN COMS

%CLASS : COMMENTS = COMMENT

END FOR

COMS: [N DATA FD COMMENT IS
AND COURSE.NQ = %CLASS:

END FIND

FR IN COMS

%CLASS : COMMENTS = COMMENT

END FOR

COM7: IN DATA FO COMMENT IS
ANDO COURSE.NO = %CLASS:

END FINO

FR IN COMT

%CLASS:COMMENT?7 = COMMENT

END FOR

COM8: IN DATA FD COMMENT IS
AND COURSE.NG = %CLASS:

ENO FIND

FR IN COMS

%“CLASS:COMMENTS = COMMENT

END FOR

COMS: IN DATA FD COMMENT IS
AND CDURSE.ND = %CLASS:

END FIND

FR IN COMS

%“CLASS:COMMENTS = COMMENT

END FOR

COM10: IN DATA FD COMMENT IS PRESENT AND DEPARTMENT= %CLASS:

AND COURSE.NG : %CLASS:
ENO FIND
FR IN COM10O
%CLASS:COMMENTIO = COMMENT
END FOR

COM11: I[N DATA FO COMMENT IS PRESENT AND DEPARTMENT= %CLASS:

AND COURSE.NO = %CLASS:
END FINO
FR IN COMt1
ACLASS :COMMENT11! = COMMENT
END FOR

COM12: IN DATA FD COMMENT [S PRESENT AND DEPARTMENT: %CLASS:

AND COURSE.NOQ = %CLASS:
END FMIND
FR IN COM12
%“CLASS:COMMENT12 = CODMMENT
ENO FOR

CaOM13: IN DATA FD COMMENT IS PRESENT AND DEPARTMENT: %CLASS:

AND COURSE.NO = %CLASS:
ENO FIND
FR IN COM13
%CLASS:COMMENT13 = COMMENT
ENO FOR

COM14: IN DATA FD COMMENT IS PRESENT AND OEPARTMENT: %CLASS:

AND COURSE.NG = %CLASS:
END FINO
FR IN COM14
RWCLASS:COMMENT 14 = COMMENT

RE

OURSE.ID
INSTRUCTOR
COURSE . DAYS

= COURSE.BEGIN
COURSE.END
DEPARTMENT
TION
COURSE . TYPE
OURSE.NO

ILDING
= COURSE.DESCRP

s $SUBSTR(COURSE.NO,3,1

EEFORM

PRESENT AND DEPARTMENT
COURSE.NGC AND NUMBER =

PRESENT AND DEPARTMENT
COURSE.NO AND NUMBER =

PRESENT AND DEPARTMENT
COURSE.NQO AND NUMBER =

PRESENT AND DEPARTMENT
COURSE.NQO AND NUMBER =

PRESENT ANDO DEPARTMENT
COURSE.NQO AND NUMBER =

PRESENT ANO DEPARTMENT
COURSE.NO AND NUMBER =

PRESENT AND DEPARTMENT
COURSE.NQO AND NUMBER =

PRESENT ANO DEPARTMENT
COURSE.NO AND NUMBER =

PRESENT ANO OEPARTMENT

COURSE.NO AND NUMBER =

COURSE.NGC AND NUMBER =

COURSE.NO ANO NUMBER =

COURSE.NO AND NUMBER =

COURSE.NO AND NUMBER =

COURSE.NO AND NUMBER =

)

= %CLASS:

‘o107

= %CLASS:

‘o020’

= %CLASS:

‘030

: %CLASS:

‘040’

3 %CLASS:

‘oso’

= %CLASS:

‘080

= %CLASS:

‘o070’

3 %CLASS:

‘080’

:= %CLASS:

‘080"

‘100"

‘110

‘120°

‘130

‘140

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

DEPARTMENT

113

END FOR

END FOR
RETURN
END SUBROUTINE DISPLAY

L R R T T Y
FILENAME VIEW12

AUTHOR- VINIT VERMA

CREATED 11-07-886
PURPOSE - THIS PROCEDURE PROVIDES THE SUPER USER'S
OPTION FOR THE OEPARTMENTS. UPDATES ARE ALLOWED TO BE
PERFORMED VIA THIS PROCEDURE. THE QUERY FIELDS FOR THE
RETRIEVAL OPERATIONS ARE -

COURSE. ID

DEPARTMENT AND COURSE NUMBER
DEPARTMENT

BUILDING AND ROOM
INSTRUCTOR'’S NAME

THE PF1 KEY PERFORMS THE RESERVE OPERATION, AND THE
PF2 KEY THE DELETE. UNIQUE COURSE.ID NUMBERS ARE
MAINTAINED FOR THE RESERVE OPTION. THE DELETE

KEYS OFF THE COURSE.ID NUMBER.

THE FILES INCLUDED BY THIS PROCEDURE ARE

VIEW!1.S - THE USER INTERFACE SCREEN
VIEW2 - THE DATA DISPLAY PROCEDURE

I I N N R A R R R SR N SRR

=
R R R R
RESET MSGCTL = X‘02°

0 DATA

P T

* INVOKE THE EXPIRE ROUTINE TO DO THE GARBAGE COLLECTION

R R R e R I TR]

CALL EXPIRE

%INDEX [S STRING LEN 7 ARRAY(200)
%SCAN IS FIXED

%COUNT IS FIXED

R T]

= THE SCREEN DEFINITION
R R S T

IN SCHED INCLUDE VIEW!.S
PR R R s

* CLEAR UP THE MESSAGE INCASE EXPIRE DELETED RECORDS
L R P R)

%CLASS :MESSAGE = * *
R R E)

= SET UP THE ON CONFLICT CONDITION
LR TR]

ON FIND CONFLICT

%CLASS :MESSAGE 3 ‘sxx PLEASE TRY LATER =xxx’
JUMP TO START

ENO ON
LR E P P s
* DEACTIVATE THE ON ATTENTION KEY
P P

ON ATTENTION

%CLASS:MESSAGE = ‘sxx ATTENTION KEY DEACTIVATED =x*x°’
JUMP TO START

END ON

x THIS IS THE STARTING POINT FOR THE PROGRAM

£eeena

START: READ SCREEN CLASS
%CLASS :MESSAGE = * *

PR R R Y

= VERIFY THE PFKEY VALUES

R R S

[F %CLASS:PFKEY /= 1 AND %CLASS:PFKEY /:z 2 AND %CLASS:PFKEY /= 3 AND -
AND %“CLASS:PFKEY /= S AND %CLASS:PFKEY /z 7 -
AND “CLASS:PFKEY /= 8 AND %CLASS:PFKEY /: 6 THEN

%“CLASS:MESSAGE = ‘*=xx PF’' WITH %CLASS:PFKEY WITH IS NOT ACTIVE®
JUMP TO START
END IF

R R S)
= CHECK FOR THE PF1 RESERVE KEY
IR AN X IS AT IS X A I X I XA I AN A A S I E R TSR E AN I T LI TARIIC TN TIE T AR

IF %CLASS:PFKEY = 1| THEN

CALL RESERVE

114

JUMP TO START
END IF
R R T T]
A CHECK FOR THE PF2 DELETE KEY
R P ST R]
IF %CLASS:PFKEY = 2 THEN

CALL DELETE
JUMP TO START

ENOD IF
R T]
= CHECK FOR THE PF3 EXIT KEY
R I T)

IF %“CLASS:PFKEY = 3 THEN

JUMP TO FINISH

END IF
R R T Y
= CHECK FOR THE PFE REFRESH KEY

R R S T Y
IF %CLASS:PFKEY = 6 THEN

PREPARE SCREEN CLASS
JUMP TO START

END IF
R L R P)
= CHECK FOR THE PFS REFRESH KEY

L e S Y
IF %“CLASS:PFKEY 3= 5 THEN

CLEAR LIST SCROLL
R R T)

x CHECK IF THE QUERY IS KEYING OFF THE COURSE NAME AND NUMBER

T R
IF %CLASS:I[TEMID = 3 THEN
NUMBER: IN DATA FO DEPARTMENT = %CLASS:DEPARTMENT AND -
COURSE.NQO = %CLASS:COURSE.NQG ANDO COMMENT IS NQT PRESENT

END FIND
CT.NUMBER: COUNT RECORDS IN NUMBER
IF COUNT IN CT.NUMBER EQ O THEN

PREPARE SCREEN CLASS

%“CLASS:MESSAGE = ‘=xx NQ MATCH ==xx’

JUMP TO START

END IF
PLACE RECOROS IN NUMBER ON LIST SCROLL

IR E R E R R R E R R S E R S R R R R R R RS R R R R R R]
= CHECK IF THE QUERY IS KEYING OFF THE COURSE ID NUMBER
B R EEEAREARAETEEEEEA X IXFIRIANEAEIARR SIS ERETR IR AIEALTRXEET
ELSEIF %CLASS:ITEMID = 1 THEN
NUMBER!1: IN DATA FD COURSE.IO =: %CLASS:COURSE.ID
END FIND
CT.NUMBER1: COUNT RECOROS I[N NUMBER1
[F COUNT IN CT.NUMBER! EQ O THEN

PREPARE SCREEN CLASS

%CLASS :MESSAGE = ‘ssx NO MATCH xxx’

JUMP TO START
END IF
PLACE RECORDS IN NUMBER! ON LIST SCROLL
P
* CHECK IF THE QUERY IS KEYING OFF FOR A CERTAIN DEPARTMENT
P
ELSEIF %CLASS:ITEMID = 2 THEN
NUMBER2: IN OATA FD DEPARTMENT : %CLASS:DEPARTMENT AND -

COMMENT IS NOT PRESENT

END FIND
CT.NUMBER2: COUNT RECORDS IN NUMSBER2 .
IF COUNT IN CT.NUMBER2 EQ O THEN

PREPARE SCREEN CLASS

%“CLASS:MESSAGE = ‘xxx NO MATCH =zxx’
JUMP TO START

115

END IF
PLACE RECORDS IN NUMBER2 ON LIST SCROLL
R s P T RS T R ¥
x CHECK IF THE QUERY IS KEYING OFF FOR A CERTAIN ROGM
R R L T T I T
ELSEIF %CLASS:ITEMIO = S THEN
NUMBER3: IN DATA FD ROOM = %CLASS:ROOM AND BUILDING = %CLASS:BUILDING
END FIND
CT.NUMBER3: COUNT RECORDS [N NUMBERZ
IF COUNT I[N CT.NUMBER2 EQ O THEN
PREPARE SCREEN CLASS
%“CLASS:MESSAGE = ‘*xx NO MATCH =sx°'
JUMP TO START
END I[F
PLACE RECORDS IN NUMBER3I ON LIST SCROLL
IR I XA X EE XTI F R I FXFE X I XX R I KT IR S X E R KX EF X EF X E X KT E XL EA XS RFETRTL RS
* CHECK IF THE QUERY IS KEYING OFF FOR AN INSTRUCTOR
I L X I X E L PR L A E X A AR R I F IR LS TR F XL X F T X T T X T LR XA TR XLXXTIXXXTET LR X
ELSEIF 7%ZCLASS:ITEMID = & THEN
NUMBER4: IN DATA FD INSTRUCTOR = %CLASS:INSTRUCTGR
END FIND
CT.NUMBER4: COUNT RECQORDS IN NUMBER4
TF COUNT IN CT.NUMBER3 EQ O THEN
PREPARE SCREEN CLASS
%CLASS:MESSAGE = '+*xx NO MATCH ==xx°
JUMP TO START
END [F
PLACE RECORDS IN NUMBER4 ON LIST SCROLL
END IF
ERR: COUNT RECORDS ON LIST SCROLL
IF COUNT IN ERR GT 200 THEN

%CLASS:MESSAGE : ‘===z QVER 200 RECORDS TO SCROLL *xx~
JUMP TO START

END [F
%COQUNT = O

FOR EACH RECORD ON LIST SCROLL

%COUNT = %COUNT + 1
%INDEX(%COUNT) = SCURREC

END FOR
R R P e]
* SET UP THE CATENATED SCAN PQINTER

R R R R

“SCAN = 1

%“DEPARTMENT = %CLASS:DEPARTMENT
%COURSE.NO = %CLASS:COURSE.NO

PREPARE SCREEN CLASS

ACLASS:DEPARTMENT = %DEPARTMENT
%CLASS :COURSE.NO : %COURSE.NO

CALL DISPLAY

JUMP TO START

END I[F
R L]
* CHECK FOR THE PF8 SCROLL FORWARD KEY

R R R R S L]

I® %ZCLASS:PFKEY = &8 THEN

%SCAN = %SCAN + 1
IF %SCAN LE %CQUNT THEN

%DEPARTMENT = %CLASS:DEPARTMENT
%COQURSE.NO : %CLASS:COURSE.NO

PREPARE SCREEN CLASS

%CLASS:DEPARTMENT =z %DEPARTMENT
%CLASS:COURSE.NQ = %COURSE.NOQ

CALL DISPLAY

ELSE
“CLASS:MESSAGE=: ‘=sx LAST RECQRD =z=s°
%SCAN = %SCAN - 1

116

END IF

JUMP TO START

END IF

L R R TR]
* CHECK FOR THE PF7 SCROLL FORWARD KEY

T R Y
IF %CLASS:PFKEY = 7 THEN

%ZSCAN = %SCAN - 1
IF %SCAN GE 1 THEN

XDEPARTMENT = %CLASS:DEPARTMENT
%COURSE.NG = %CLASS:COURSE.NO

PREPARE SCREEN CLASS

%CLASS:DEPARTMENT = %DEPARTMENT
%CLASS:COURSE.NO = %COURSE.NO

CALL DISPLAY

ELSE
%CLASS:MESSAGE = ‘=rxx FIRST RECORD *:sx°
%SCAN = %SCAN + 1

END IF

JUMP TO START

END IF
FINISH: PREPARE SCREEN CLASS

COMMIT
R SRR]
* INCLUOE THE SCROLL.LIST FILE
R R e]
IN SCHED INCLUDE VIEW2

R s

* SUBROUTINE RESERVE
R T]

RESERVE: SUBROUTINE

T)

* CHECK FOR A UNIQUE COURSE [DENTIFICATION NUMBER
EE R R)

UNIQUE: I[N DATA FD COURSE.ID = %CLASS:COURSE.ID
END FIND

CT.UNIQUE: COUNT RECORDS IN UNIQUE
IF COUNT IN CT.UNIQUE /= ‘O’ THEN

%CLASS:MESSAGE = ‘x*¥x DUPLICATE COURSE ID =*=s°
RETURN

END IF

R R R R RS
* CHECK CONFLICTS ONLY IF ROOM BUILDING DAYS BEGIN AND END ARE

* FILLED UP BY THE USER ON THE SCREEN
R R R

IF %CLASS:BUILDING /= ‘° AND %CLASS:ROOM /= ‘'’ AND -
%CLASS:COURSE.DAYS /= ‘’ AND %CLASS:COURSE . BEGIN /= '’ AND -
%CLASS:COURSE.END /3 ‘'’ THEN

R s R R e

= LOCATE ALL THE RECORDS FOR THIS ROOM
R TR R R R E R E R R E R R R R T]

ROOM: IN DATA FD ROOM = %CLASS:ROOM AND BUILDING = %CLASS:BUILDING
COURSE.DAYS IS PRESENT
END FIND

R R R R T

* SET TEMPORARY VARIABLES TO DAY BEGIN AND ENO TIMES

Ry R R e R e T

%DAYS = %CLASS:COURSE.DAYS
%BEGIN = %CLASS:COURSE.BEGIN
%ENDS = %CLASS:COURSE.END

I R e
* SUBTRACT TEN MINUTES FROM THE START TIME TO GIVE A 10 MIN OVERLAP

T R T R T F]

%HRS = SSUBSTR(%BEGIN,1,2)
%MINS = S$SUBSTR(%ENDS,3,2)

%TOTAL IS STRING OP S
%FILL: '0000°

IS XA TR T XTI T TR E A E I A A F S AT T T E AR AR IR XX ER XX ELEXIETTEETLTXTITEEXTREE K

* SUBTRACT TEN MINUTES FROM THE START TIME TO GIVE A 10 MIN OVERLAP

P e e,

%HRS = $SUBSTR(%BEGIN,1,2)
%MINS = SSUBSTR(Z%BEGIN,3,2)

%TOTAL = %HRS = 6O

%TOTAL = %TOTAL + %MINS .
%TOTAL = %TOTAL - 10

%»TOTAL = %TOTAL / 60

%1 : SINDEX(%TOTAL,'."’)
AHRS = $SUBSTR(%TOTAL,!,%I - 1)

AND

117

%MINS = SSUBSTR(%ZTOTAL,%I)
%MINS = SROUND(%MINS = 60.0,0)
%BEGIN = %HRS WITH %“MINS

%LEN = SLEN(%BEGIN)
%LEN = 4 - %LEN

%FILL = $SUBSTR(%FILL,1,%LEN)
%BEGIN = %FILL WITH %BEGIN

R R R R

* SET THE CONFLICT FLAG TO LOW
P R s

%CONFLICT = O

R R R R R R T S 2

* SET REPEAT EQUAL TO THE LENGTH OF THE DAY STRING
R SR

%REPEAT = SLEN(%DAYS)
%“0AY1! = %DAYS

R P R R)

= MAIN FOR LOOP WHICH CHECK EACH COURSE MEETING IN THE NEEDED ROOM
LR R R O P R T P

FOR EACH RECORD IN ROOM
%DAYS = %DAY1

R e

* LOOP TO CHECK EACH DAY IN THE DAYS FIELD
IR I X I A I T E LI AT T EE T A I E X E T EEE T A E ST X E AT X T E T XSS ACE XXX L TLLTEXXT LT

FOR %LOOP FROM 1| TO %REPEAT

%WEEK = $SUBSTR(%DAYS,1,1)
%DAYS = S$SSUBSTR(%DAYS,2)
%PRESENT : SINDEX(COURSE.DAYS, “WEEK)

R R R

= [F THE DAY IS PRESENT IN THE SEARCHED RECORD THEN CHECK THE TIME
e R

IF %PRESENT /= O THEN

R R R e

* CHECK THE VARIOUS COMBINATION OF POSSIBLE CONFLICTS
R R S R L

IF %BEGIN GT COURSE.BEGIN ANO %BEGIN LT COURSE.END THEN
*PRINT ‘FIRST IN BETWEEN CONFLICT’

%CONFLICT = 1

END IF

IF %ENDS GT COURSE.BEGIN AND %ENDS LT COURSE.END THEN
*PRINT ‘LAST IN BETWEEN CONFLICT’

%CONFLICT = 1

ENOD IF

IF %BEGIN EQ COURSE .BEGIN OR %BEGIN EQ COURSE.END THEN
*PRINT ‘FIRST EQUAL CONFLICT®

%CONFLICT = 1

END IF

IF %ENDS EQ COURSE.BEGIN OR %ZENDS EQ COURSE.END THEN
=PRINT ’LAST EQUAL CONFLICT’

%CONFLICT = 1

END IF

IF %BEGIN LT COURSE.BEGIN AND %ENDS GT COURSE.END THEN
=PRINT ‘THE BIG SPAN CONFLICT’

%CONFLICT = 1

END IF

R s R S

= [F THERE EXISTS A CONFLICT THEN SET A MESSAGE AND RETURN
R e R T

e P
= [F THERE [S A CONFLICT THEN CHECK THE START AND EXPIRE DATES
* ON THE CURRENT RECORD. IF THE START ON THE SCREEN IS AFTER THE
* EXPIRE OF THE CURRENT RECORD, OR IF THE EXPIRE ON THE SCREEN IS
*= BEFORE THE START ON THE CURIENT RECORD THEN THERE IS NO CONFLICT.
R R
IF %CONFLICT = ‘1°‘ THEN
IF EXPIRE NE ‘' AND START NE °‘' THEN X
IF %CLASS:START GT EXPIRE OR %CLASS:EXPIRE LT START THEN
= NO CONFLICT THEN

ELSE

118

EL

END
END
END
END
END
END
rxx
= S

Txx

IN

END

119

%CLASS:MESSAGE = ‘x=z CONFLICT! =zx=°
RETURN

END I[F
SE
%CLASS:MESSAGE = ‘==z CONFLICT2 =x=x=~
RETURN
IF
IF
IF
FOR
FOR
IF
R]
TOREZ THE ORDINARY RECORD IN FILE DATA

T R P R E P]

DATA STORE RECORD

START = %CLASS:START

EXPIRE %CLASS:EXPIRE

COURSE.ID = %CLASS:COURSE.ID
COURSE.NO = %CLASS:COURSE.NO
OEPARTMENT = %CLASS:DEPARTMENT
COURSE.TYPE = %CLASS:COURSE.TYPE
SECTION = %CLASS:SECTION
COURSE.DAYS = %CLASS:COURSE.DAYS
COURSE .BEGIN = %CLASS:COURSE.BEGIN
COURSE.END = LASS:COURSE.END
BUILDING = %CLASS:BUILDING
INSTRUCTOR = %CLASS:INSTRUCTOR
COURSE.DESCRP : %CLASS:COURSE.DESCRP
MIN %CLASS:MIN

Max %CLASS :MAX

ROOM = %CLASS :ROOM

FREEFORM = %CLASS:FREEFORM

STORE

R L
* STOREZE THE COMMENT RECORD IN FILE DATA ONLY IF THERE IS ONE
P R R R R s L

NONE: IN DATA FD DEPARTMENT = %CLASS:DEPARTMENT AND -

END

COURSE.NO = %CLASS:COURSE.NO AND COMMENT IS PRESENT
FIND

CT.NONE: COUNT RECORDS IN NONE

IF COUNT IN CT.NONE EQ O THEN

IF %CLASS:COMMENT1 /= *‘‘ THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT
COURSE .NO : %CLASS:COURSE.NO
NUMBER ‘010°

COMMENT = %CLASS:COMMENTI1

ENG STORE

END

1F

IF %CLASS:COMMENT2 /= '’ THEN

IN DATA STORE RECOROD

DEPARTMENT = %CLASS:ODEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘020°

COMMENT = %CLASS:COMMENT2

END STORE

END

1F

IF %CLASS:COMMENT3 /=2 '’ THEN

IN DATA STORE RECORD

DEPARTMENT : %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘030"

COMMENT = %CLASS:COMMENT3

ENO STORE

END

IF

IF %CLASS:COMMENTA& /z ‘'’ THEN

IN 0OATA STORE RECORD

DEPARTMENT =: %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NQ
NUMBER = ‘040°

COMMENT : %CLASS:COMMENTA

ENO STORE

120

END IF
IF %“CLASS:COMMENTS /= ‘'’ THEN

IN DATA STORE RECORD
DEPARTMENT = %CLASS:DEPARTMENT
COURSE.ND = %CLASS:COURSE.NO
NUMBER = ‘050"
COMMENT = %CLASS:COMMENTS
END STORE

END IF
IF %“CLASS:COMMENT6 /= ‘'’ THEN

IN DATA STORE RECORD
DEPARTMENT = %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘060"
COMMENT = %CLASS:COMMENTS
END STORE

END IF
IF %“CLASS:COMMENT?7 /= '’ THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT

COURSE.NO = CLASS:COQURSE.NO
NUMBER = °070°
COMMENT = %CLASS:COMMENT7Y
END STORE
END IF

IF %“CLASS:COMMENTS /= '‘ THEN
IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER =z ‘080°

COMMENT = %CLASS:COMMENTS

END STORE

END IF N
IF %CLASS:COMMENTY /z *'* THEN

IN DATA STORE RECORD

DEPARTMENT = %XCLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NG
NUMBER = ’0390°

COMMENT = %CLASS:COMMENTI

ENDO STORE

END IF
IF %“CLASS:COMMENTI1O /= *’ THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:ODEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘100°

COMMENT = %CLASS:COMMENTI!O

END STORE

END IF
IF %ZCLASS:COMMENTI11 /= ‘' THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT
COURSE.ND = %CLASS:COURSE.NO
NUMBER z ‘110°

COMMENT : %CLASS:COMMENTI1 1

END STORE

END IF
IF %“CLASS:COMMENT12 /= ‘' THEN

IN DATA STORE RECORD

OEPARTMENT = %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘120’

COMMENT = %CLASS:COMMENTI2

END STORE

END IF
[F %“CLASS:COMMENTI3 /= *‘ THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT
COURSE . NG = %“CLASS:COURSE.NG
NUMBER = ‘130°

COMMENT = %CLASS:COMMENT13

END STORE

END IF
IF %“CLASS:COMMENT14 /= ' THEN

IN DATA STORE RECORD

DEPARTMENT = %CLASS:DEPARTMENT
COURSE.NO = %CLASS:COURSE.NO
NUMBER = ‘140"

COMMENT : %CLASS:COMMENT14

END STORE

END [F -
%CLASS:MESSAGE = ‘=*z ROOM RESERVED ==’

ELSE

%CLASS:MESSAGE = ’** COMMENT FOR COURSE NO. EXISTS =xx-

END IF

COMMIT

END SUBROUTINE RESERVE

F XTI E I I IE I I I I LTI IS I T I IT 2 I I I FE X EXRE L ETEE XTI E AT LEE XTSI XXX TE X

* SUBROUTINE OELETE

ExrtEzzsazzessaTessriEszesssecrsiEttiTaaEtiTeissffrissscreserie
DELETE: SUBROUTINE

CQURSE: IN DATA FD COURSE.IO = %CLASS:COURSE.ID
END FIND

CT.COURSE: CDUNT RECORDS [N COURSE
IF COUNT IN CT.COURSE EQ O THEN

%CLASS:MESSAGE 3 ‘"txx NO MATCH ==zxz°’
RETURN

END IF

R P)

* DELETE THE MAIN RECORD
R P I T e T)

FR IN COURSE

%DEPT : DEPARTMENT
%“NO = COURSE.NO
DELETE RECORD
coMMIT
END FOR

X RIS L IR AT EE A E A A I A A IR AL I A I AR S TR L E LT LRI EXEFILTNLLETEERSE

* CHECK IF ANOTHER COURSE.ID HAS THE SAME COMMENT RECORD
XTI AT I IR A E KA A F T A IR A A E B L XX F XTI ERIXILRARI XXX RXREER

IND: [N DATA FD DEPARTMENT = %DEPT AND CODURSE.NO = %NOC -
AND COURSE.ID IS PRESENT

ENO FINO

CT.IND: COUNT RECOROS IN IND

IF COUNT IN CT.INO EQO O THEN

DET: IN DATA FO DEPARTMENT = %OEPT AND COURSE.NO = %NO AND -
COMMENT IS PRESENT

ENDO FINOD

FR IN DET

CELETE RECORO

END FOR
END IF

%CLASS:MESSAGE = ‘zx* COURSE OCELETED xxx’

COMMI T
END SUBROUTINE DELETE

R P P e)

* SUBROQUTINE EXP(RE
EE R e e a2)

EXPIRE: SUBROUTINE

REMOVE: IN DATA FD EXPIRE [S PRESENT
END FIND

FR IN REMOVE

R TR
= DELETE ALL RECORDS FOR WHICH THE EXPIRY DATE IS L.E. TODAYS DATE

EE L R R R R

IF EXPIRE LT SDATE THEN
%CLASS :COURSE.ID = COURSE.ID
CALL DELETE

END IF

END FOR
ENQO SUBRQUTINE EXPIRE

END
9 SCHED

121

R e R R R

* FILENAME VIEW!.S

* AUTHOR - VINIT VERMA
CREATED - 10-23-86
PURPOSE - THIS PROCEDURE PROVIDES THE USER INTERFACE SCREEN

FOR THE SUPER USER'S OPTION. THIS PROCEDURE IS INVOKED

z
z
x
* BY THE VIEW!12 PROGRAM.
x
x

R R R R]

SCREEN CLASS

TITLE ’-=---ececccancnann Ok lahoma State University Class Schedule

MAX PFKEY 12
PROMPT MESSAGE AT 40 DEFAULT * *

PROMPT ’'id number :* AT 2 INPUT COURSE.ID LEN 6 ITEMID 1
PROMPT ’instructor :’ AT 25 INPUT INSTRUCTOR LEN 13 ITEMID 6
PROMPT ‘days :’ AT 53 INPUT COURSE.DAYS LEN 6 -

PROMPT 'min:‘* AT 68 [NPUT MIN LEN 2

PROMPT ‘daepartment :’ AT 2 INPUT DEPARTMENT LEN 6 ITEMID 2
PROMPT ‘building :* AT 28 INPUT BUILOING LEN S5 [TEMID 4 -
PROMPT ‘start :‘° AT 53 INPUT COURSE.BEGIN LEN &4 -

PROMPT ‘max:‘’ AT 68 INPUT MAX LEN 2

PROMPT ‘course number :’ AT 2 INPUT COURSE.NO LEN S ITEMID 3
PROMPT ‘room :* AT 25 INPUT ROOM LEN 5 ITEMID S -
PROMPT 'and :’ AT S3 INPUT COURSE.END LEN &

PROMPT ‘type :* AT 2 INPUT COURSE.TYPE LEN 2 -
PROMPT ’'section :! AT 2S5 INPUT SECTION LEN 3 -

PROMPT ‘hours :’ AT 53 INPUT COURSE.HQURS LEN 2

PROMPT ‘title i’ AT 2 INPUT COURSE.DESCRP LEN 22 -
PROMPT 'undecided hour :* AT 45 INPUT FREEFORM LEN 143
PROMPT ‘begin(yy-mm-dd):* AT 19 INPUT START LEN 8 -

PROMPT ’‘expiry(yy-mm-dd):* AT 45 INPUT EXPIRE LEN 8

PROMPT ‘commaent:’ AT 2 INPUT COMMENT! LEN 6O

PROMPT * AT 2 INPUT COMMENT2 LEN 60

PROMPT * AT 2 INPUT COMMENT3 LEN 60

PROMPT ‘ AT 2 INPUT COMMENT4 LEN 60

PROMPT ‘ AT 2 INPUT COMMENTS LEN 60

PROMPT * AT 2 INPUT COMMENTS LEN 60

PROMPT * AT 2 INPUT COMMENTT LEN 60O

PROMPT * AT 2 INPUT COMMENTS LEN 60

PROMPT * AT 2 INPUT COMMENTS9 LEN 60

PROMPT ‘ AT 2 INPUT COMMENTI1O LEN 60O

PROMPT * AT 2 INPUT COMMENTI11 LEN 60

PROMPT ‘ AT 2 INPUT COMMENT12 LEN 60

PROMPT * AT 2 INPUT COMMENTI13 LEN 6O

PROMPT * AT 2 INPUT COMMENT14 LEN 60O

IN SCHED I KEY1
DEFAULT CURSOR COURSE.ID
ENO SCREEN

* FILENAME KEY1

PROMPT ‘pf-1 raeserve pf-2 delete pf3 aexit pfS raefraesh pf-6 clear pF-7<~--

pfs -->"'

P R

FILENAME - ROOM.ATTRIBUTES

AUTHOR - VINIT VERMA
CREATED 11-17-86

PURPOSE -

THIS PROCEDURE MANIPULATES THE ROOM INVENTORY DATABASE IN FILE SCHED.

AND ALSO JUST BY THE BUILDING FIELD. THE DELETE KEYS QFF THE
BUILDING AND ROOM FIELDS. THIS PROCEDURE INVOKES THE DISPLAY

SUBROUTINE TO INITIALIZE THE SCREEN VARIABLES.

*
x
x
*
x
* THE PROCEDURE PERFORMS RETRIEVALS VIA THE BUILDING ANO ROOM FIELDS,
x
*
=
S
=

R R R e R e e s]

BEGIN

P R R e R R R R

* THE INDEX ARRAY IS SET UP TO DO THE SCROLLING
R R s

%INDEX IS STRING LEN 7 ARRAY(20])
%“SCAN IS FIXED
%COUNT IS FIXED

I E XTI T AT TRICTL IR ILERE T

* THE SCREEN DEFINITION *
I XTI T X EETIIITTILEEXEXTRLELRSS

SCREEN ROUTE

TITLE ‘Oklahoma State University Room Inventory Database’
MAX: PFKEY 12

PROMPT MESSAGE AT 40 DEFAULT *

SKIP 1 LINE

PROMPT ‘building:’ AT 2 INPUT BUILOING LEN 4
PROMPT ‘room :* AT 2 INPUT ROOM LEN &
PROMPT ‘type :’ AT 2 INPUT TYPE LEN 1
PROMPT ‘capacity:’ AT 2 INPUT CAPACITY LEN 3
SKIP 1 LINE

PROMPT ‘1 - casa@ study’ AT 40

PROMPT ‘2 - auditorium’ AT 40

PROMPT 3 - fixed’ AT 40

PROMPT '4 - table & chairs’ AT 430

PROMPT ‘S - arm’ AT 40

PROMPT ‘6 - bolted arm‘’ AT 40

PROMPT '7 - lab’ AT 40

SKIP 7 LINE

I KEY1

DEFAULT CURSOR BUILDING

END SCREEN

AT

PR R R R R R R)

i SET UP THE ON CONFLICT CONDITION

122

R]

QN FIND CONFLICT

“ROUTE:MESSAGE = ’‘xxx PLEASE TRY LATER =xxz°

JUMP TO START
END ON
R T P
= DEACTIVATE THE ON ATTENTION KEY

s P P P
ON ATTENTION

%ROUTE:MESSAGE = ‘*x= ATTENTION KEY DEACTIVATED =xx=sx’
JUMP TO START

END ON

= THIS IS THE STARTING POINT *

START: READ SCREEN ROUTE
“ROUTE:MESSAGE = ' *

XTI I T T LIS A AL E AT I I TR I I IS IR EEXE LR TR XS

= VERIFY THE PFKEY VALUES
R E R E AR K E I T AL IR F AR T LT TR TXIXREREREEIRTERET

IF %ROUTE:PFKEY /= 1 AND %ROUTE:PFKEY /:z 2 AND %ROUTE:PFKEY /= 3 -
ANO 7%ROUTE:PFKEY /= 5 AND %RGOGUTE:PFKEY /: 8 AND %ROUTE:PFKEY /= 7 -
AND %ROUTE:PFKEY /= 8 THEN

%ROUTE:MESSAGE = ‘xxx PF’ WITH XROUTE:PFKEY WITH °* IS NOT ACTIVE”®
JUMP TO START
END IF

I L E LI It E XA E R A T IR A R T A SN AR E A A A R E RIS XA AKX EE XX XXX XMTTRE K

= CHECK FOR THE PF1 SAVE KEY
R T

IF %YROUTE:PFKEY = 1 THEN

CALL SAVE

JUMP TO START
END IF .
I SR)
* CHECK FOR THE PF2 DELETE KEY

R R R R]
IF %ROUTE:PFKEY : 2 THEN

CALL DELETE
JUMP TO START

END IF
PR e s
* CHECK FOR THE PF3 EXIT KEY

I EE LR LI E T I T I LIRS I LTI T E T ET TR TS TR C ST AT IRI TR I ST XS SLTTTITIXXTLAS T
IF %ROUTE:PFKEY = I THEN

JUMP TQ FINISH
END IF
R R e R e R R R
b CHECK FOR THE PFS8 CLEAR KEY
R T)

IF %XROUTE:PFKEY 3 6 THEN

PREPARE SCREEN ROUTE
JUMP TQ START

END IF

R R R
= CHECK FOR THE PFS REFRESH KEY

R P R S R P Ty
I XROUTE:PFKEY : § THEN

CLEAR LIST SCROLL

IF %ROUTE:ROW z 5 THEN

NUMBER: FD BUILDING = %ROUTE:BUILDING AND ROOM = %“ROUTE:ROOM_
END FIND

CT.NUMSER: COUNT RECORDS IN NUMBER

IF COUNT [N CT.NUMBER EQ O THEN
PREPARE SCREEN ROUTE
%ROUTE:MESSAGE = “*xx NG MATCH xxz
JUMP TQ START

END IF
IF COUNT IN CT.NUMBER GE 20 THEN

PREPARE SCREEN ROUTE
“ROUTE:MESSAGE = ‘=xxx TOO MANY ENTRIES TO SCROLL ==
JUMP TQ START

123

END IF
PLACE RECOROS IN NUMBER ON LIST SCROLL
ELSE

IF %ROUTE:ROW = 4 THEN

NUMBER1!1: FD BUILDING = %ROUTE:BUILDING
END FIND

CT.NUMBER!: COUNT RECORDS I[N NUMBER1
IF COUNT IN CT.NUMBER! EQ O THEN

PREPARE SCREEN ROUTE
%ROUTE:MESSAGE = ‘*x* NO MATCH *xx *
JUMP TO START

END IF
IF COUNT IN CT.NUMBER! GE 20 THEN

PREPARE SCREEN ROUTE
%ROUTE:MESSAGE = ‘s*xx TOO MANY ENTRIES TO SCROLL =*=x°’
JUMP TO START

END IF
PLACE RECORDS IN NUMBER! ON LIST SCROLL

ENO IF
END IF

%COUNT = O
FOR EACH RECORD ON LIST SCROLL

%COUNT = %COUNT + 1
%INDEX(%COUNT) 2 S$SCURREC

ENO FOR

 E E E E E E E E E E EE E E T
* SET UP THE CATENATED SCAN POINTER

I I TR AT I T T E T TR T T E IS LT ELXTLSTLTREXTERETXES

%SCAN = 1

CALL DISPLAY
JUMP TO START

END IF

e R
* CHECK FOR THE PF8 SCROLL FORWARO KEY
EE EE EE E E EE EE E E E E E E E E E IR]

IF %ZROUTE:PFKEY = 8 THEN

%SCAN : %SCAN + 1

IF %“SCAN LE %COUNT THEN

CALL DISPLAY

ELSE
%ROUTE:MESSAGE: ‘=xx LAST RECORD =*=x’
%SCAN z %SCAN - 1

END IF

JUMP TO START

ENOD IF

IR E R L E R A XIS EE AR T LI EE I T LI AL LTRSS XXX T EXAREXLXE K
* CHECK FOR THE PF7 SCROLL FORWARD KEY

R R R e e

IF XROUTE:PFKEY = 7 THEN

%SCAN 2z %SCAN - 1

IF %SCAN GE 1 THEN

CALL DISPLAY

ELSE
%ROUTE:MESSAGE = ‘=xxs FIRST RECORD =*x=xx'
%SCAN = %SCAN + 1

END IF

JUMP TO START

END IF
FINISH: PREPARE SCREEN ROUTE
COMMIT

P PR L]

* INCLUDE THE DISPLAY FILE

P s s R R

INCLUDE DISPLAY
P R R e L

= SUBROUTINE SAVE

P e R L]

SAVE: SUBROUTINE

LOG: IN SCHEO FO BUILDING = %ROUTE:BUILDING AND ROOM : %ROUTE:ROOM

END FINOD
CT.LOG: COUNT RECORDS [N LOG

IF COUNT IN CT.LOG NE O THEN

124

FR IN LOG
CHANGE TYPE TGO %ROUTE:TYPE
CHANGE CAPACITY TO %“ROUTE:CAPACITY

ENO FOR
%ROUTE:MESSAGE = ‘x** ENTRY CHANGED ==’
ELSE

STORE RECORO

BUILDING = %ROUTE:BUILDING
ROOM = %ROUTE:ROOM
TYPE = %ROUTE:TYPE
CAPACITY = %ROUTE:CAPACITY

END STORE
%ROUTE:MESSAGE = ‘=x ENTRY STORED =x*
END IF
END SUBROUTINE SAVE
IR E R R R R R R R R R E R E R E R R R R R R R R R R R R R R R R S
* SUBROUTINE DELETE
I E R R R R R R RS R R R R R R R R R A E R R R R R FE RS SR E R R & 2

OELETE: SUBROUTINE

OEL: IN SCHED FD BUILDING = %ROUTE:BUILDING AND ROOM : %ROUTE:ROOM
END FIND

CT.DEBL: COUNT RECORDS IN DEL

IF COUNT IN CT.DEL EQ O THEN

%ROUTE:MESSAGE = ‘*x NO MATCH =x'
RETURN
END IF
FR IN OEL

DELETE RECORD

END FOR

%ROUTE:MESSAGE : ‘== ENTRY DELETED s=x’
RETURN

END SUBROUTINE OELETE

END

* FILENAME KEY2
PROMPT ’'pf3 exit pfS refrash pf-8 clear pf-7 scroll back
‘pf8 - scroll back’
I E R R R R R R R R R E R R R R R R R R R R R R S R R R R R R R R E R R R R
FILENAME- DISPLAY
AUTHOR - VINIT VERMA
CREATED 11-9-86

=
=

x

=+ PRUPOSE -
* THIS SUBROUTINE SETS UP THE SCREEN VARIABLES TO BE DISPLAYED.

*= THIS ROUTINE [S CALLED EACH TIME FOR A SCROLL FUNCTIGON.

* THE ROOM.ATTRIBUTES PROGRAM INVOKES THIS SUBROUTINE.
LR R S R R

DISPLAY: SUBROUTINE

NEXT.RECORD: %SEARCH = %INDEX(XSCAN) + 1

LOCATE: FD POINTS XINDEX(%SCAN) AND NOT %SEARCH
END FIND

FR IN LOCATE
%ROUTE:BUILDING = BUILDING
%ROUTE:ROOM = ROOM
%ROUTE:TYPE = TYPE
%ROUTE:CAPACITY = CAPACITY
ENO FOR

RETURN
END SUBROUTINE DISPLAY

I XA E AR I I I I I E A LRI E T A AR L E I XS E S BT E XX E AT LT XXX TS CTEEXLXLTILTLRE X
* FILENAME - ROOM.QUERY

* AUTHOR - VINIT VERMA

* CREATED 11-09-86

* PURPOSE -

= THIS PROCEDURE QUERIES DATA IN THE ROOM INVENTORY AND CLASS SCHEDULE

* DATABASES. THE ROUTINE PERFORMS DATA RETRIEVAL FUNCTIONS ONLY.

* THE USER IS EXPECTED TO SELECT ONE OF THE ROOMS OISPLAYED

= VIA THE QUERY OPTION. IF NO ROOMS MATCH THE REQUEST

« CRITERIA A NO MATCH MESSAGE IS DISPLAYED. NOTE SOME

* ROOMS ON CAMPUS ARE ASSIGNED TO DEPARTMENTS, AND THEY

« DO NOT OCCUR IN THE AVAILABLE POOL OF RESERVEABLE
= ROOMS.
s

R R R e R R R
BEGIN

%CAPACITY IS FIXED
“ULIMIT IS FIXED

TXEITTTIILXTTXTIITXRLLTXXARTLRES

* THE SCREEN DEFINITION L]
R P E R Y

SCREEN QUERY

125

TITLE ‘Oklahoma State University Room Ilnventory Database’ AT 15
Max PFKEY 12

PROMPT MESSAGE AT 40 DEFAULT
PROMPT ‘start(yy-mm-dd) :' AT

INPUT START.DATE LEN 8

2
PROMPT ‘expirelyy-mm-dd): AT 2 INPUT EXPIRE LEN 8
PROMPT ‘days AT 2 INPUT DAYS LEN §
PROMPT 'begin time AT 2 INPUT START LEN 4
PROMPT ‘end tima 1’ AT 2 INPUT TERMINATE LEN &
PROMPT ‘capacity AT 2 INPUT CAPACITY LEN 3
PROMPT ‘room type ;' AT 2 INPUT TYPE LEN 1

SKIP 4 LINES

PROMPT '1 - case study’ AT 25
PROMPT ’'2 - auditerium’ AT 25
PROMPT ‘3 - fixed’ AT 25

PROMPT ‘4 - table & chairs’ AT 25
PROMPT 'S - arm’ AT 2S5 -
PROMPT ‘6 - baolted arm’ AT 28
PRQMPT ‘7 - lap’ AT 25

SKIP 2 LINES

PROMPT - PFS - QUERY PF3 - EXIT’
DEFAULT CURSOR START.DATE

END SCREEN

R R R T

* SET UP THE ON CONFLICT CONDITION
R]

OGN FIND CONFLICT

%QUERY :MESSAGE = ’'sxx PLEASE TRY LATER xxx’
JUMP TO START

END ON
R R R T T

= DEACTIVATE THE ON ATTENTION KEY
PR R S

ON ATTENTION

%“QUERY :MESSAGE = ‘*=x ATTENTION KEY ODEACTIVATED =xxx~
JUMP TO START

END ON

LR R R R =
x THIS IS THE STARTING POINT *
R I R R “s-ex

START: READ SCREEN OQUERY
%QUERY:MESSAGE = * ' -
R R TS S]
* VERIFY THE PFKEY VALUES
R R P S P Y
IF %QUERY:PFKEY /= S AND %QUERY:PFKEY /= 3 AND %QUERY:PFKEY /z 6 THEN
%“QUERY:MESSAGE = ’'=xx PF’ WITH %QUERY:PFKEY WITH - IS NOT ACTIVE’
JUMP TO START
END IF
R R R s]
= CHECK FOR THE PF3 EXIT KEY
R R R s]
IF %QUERY:PFKEY = 3 THEN
JUMP TO FINISH
END IF
R T e]
= CHECK FOR THE PF6 CLEAR KEY
R R R

IF %QUERY:PFKEY = & THEN

PREPARE SCREEN OQUERY
JUMP TO START

END IF
T P T)
® CHECK FOR THE PFS REFRESH KEY

I XTI I T I IS R I LT T I I T EE T TR L E IR L T A EE TR E LTI E XX L FIXEXTIL LTRSS X

IF %QUERY:PFKEY = 5 THEN
CALL GET.ROOM
JUMP TO START
END IF
FINISH: PREPARE SCREEN QUERY
S e R R T R
* SUBROGUTINE GET.ROGM

T I TR I I TP I SIS I IR T I E LTI F NI AT LT L T E LA TR T A XTI FRASAEX ISR TS TITLEXT

GET.ROOM: SUBROUTINE
R R R)

* GET ALL ROOMS WHICH MATCH THE ROOMS SPECIFICS

IR III I I IN IR I I C I RIS XTI LT II T I AT IR ITTESARETAXEIRAITTL XK

UNIQ: IN SCHED FIND ALL RECORDS FOR WHICH TYPE = %QUERY:TYPE
END FIND

CLEAR LIST P

126

FOR EACH RECORD IN UNIQ

“CAPACITY = CAPACITY
%LIMIT = %QUERY:CAPACITY

IF %CAPACITY GE %LIMIT THEN
PLACE RECORD ON LIST P
END IF
END FOR . -
CT.UNIQ: COUNT RECORDS ON LIST P
IF COUNT IN CT.UNIQ = ‘O’ THEN

%QUERY:MESSAGE = '=*x NO ROOM WITH SUCH ATTRIBUTES =%’
RETURN

END IF
T I E I I T IR I I IS AT T I T FE T T XTI E E AT AN E LT E T XX T AT XL LT XX CXXTTTTLTEE S

= SET TEMPORARY YARIABLES TO DAY BEGIN AND ENO TIMES

R R L)

- %DAYS = %QUERY:DAYS

%BEGIN = %QUERY:START
“ENDS = UERY: TERMINATE

EE R R P R R T RS Y Y
£ SUBTRACT TEN MINUTES FROM THE START TIME TQ GIVE A 10 MIN OVERLAP

R ST S 2

%HRS = SSUBSTRI(%BEGIN,1,2)
%MINS = $SUBSTR{%ENDS,3,2)
%TOTAL IS STRING DP S
%FILL= ‘0000°

I I I LT X F I E N E I LIS I TS T I I E LS E R A EE R A C LT LT L XXX AL RN EELLEAXT L KX X

* SUBTRACT TEN MINUTES FROM THME START TIME TO GIYE A 10 MIN OVERLAP
R R e R

“HRS = SSUBSTR(%BEGIN,1,2)
%“MINS = SSUBSTR(%BEGIN,3,2)

%TOTAL = %HRS = 60

%TOTAL TOTAL + %MINS -
%TATAL %»TQTAL - 10O

%TQTAL = %“TOTAL / 6O

%1 s SINDEX(%TOTAL,’.’)

%HRS = SSUBSTR(%TOTAL,1,%I - 1)
%MINS = SSUBSTR{%ZTQTAL,%I)
%MINS = SROUNO(XMINS * 60.0,0)
%BEGIN = %HRS WITH %MINS

%LEN = SLEN{%BEGIN)

%LEN = 4 - %LEN

%FILL = SSUBSTR{%ZFILL,1,%LEN)
%BEGIN = %FILL WITH %BEGIN

EE R R R R e R s]

* SET REPEAT EQUAL TC THE LENGTH OF THE 0AY STRING
LR e]

%REPEAT = SLEN(%DAYS]

%BAY1 = %DAYS

FOR EACH RECQRO ON LIST P

I I I XTI I E A E IR LRI I E TSI L E XL T E XS A A EFE ST T ETIXLTTECXLTTXTC IR KX
= SET THE CONFLICT FLAG TO LOW

R R L R e
%CONFLICT = O

%PRESENT .ROOM : ROGM
%PRESENT .BLDG : SUILDING

I E T T E I TS TSI E IS X I E S TS SIS FETFEE TSR L FE XTI REXF XTI XXE T LS L TR T

= PRESENT ROOM BEING REFERRED
I IIEIIE I I IR E I I IS IS IS T T E LI F S XL IS I XTI XX S XX LA EEEXSTXXEETTELT

ROOM: IN DATA FD ROOM EQ %PRESENT.ROOM AND BUILDING EQ %PRESENT.BLDG
ANDO COURSE. DAYS IS PRESENT
END FIND

FOR EACH RECORD IN ROOM

%DAYS = %DAY?Y

2T I I T I I I XA T I IR R T X I E T IR EIFLEF TR TRE R T TTTX TR E XX NS AXLITXSRTLLREXR
= LOOP TO CHECK EACH 0AY IN THE DAYS FIELD

E IR I IR T IETI I A T AR I I A I EE AT X I AR SR E X E XX FEE SRS XTI TTXXLTT XXX
FOR %LOOP FRQOM 1t TO %“REPEAT

UWEEK : SSUBSTR{%DAYS,1.,1)

%DAYS : $SUBSTR([%DAYS,2)
%PRESENT = SINDEX(COURSE.DAYS, “WEEK)

127

R R R R R R

* [F THE DAY IS PRESENT IN THE SEARCHED RECORD THEN CHECK THE TIME
LR R R P R Y

IF %PRESENT /= O THEN

R T]

* CHECK THE VARIOUS COMBINATION OF POSSIBLE CONFLICTS
EE R R R S R P)

IF %BEGIN GT COURSE.BEGIN AND %BEGIN LT COURSE.END THEN
*PRINT °*FIRST IN BETWEEN CONFLICT®

%CONFLICT = 1

END IF

IF %ENDS GT COURSE.BEGIN AND %ENDS LT COURSE.END THEN
*PRINT ‘LAST IN BETWEEN CONFLICT”’

4CONFLICT = 1

END IF

IF %BEGIN EQ COURSE.BEGIN OR %BEGIN EQ COURSE.END THEN
*PRINT °“FIRST EQUAL CONFLICT’

%CONFLICT = 1

END IF

IF %ENDS EQ COURSE.BEGIN OR %ENDS EQ COURSE.END THEN
*PRINT °LAST EQUAL CONFLICT’

%CONFLICT = 1

END IF

IF %BEGIN LT COURSE.BEGIN AND %ENDS GT COURSE.END THEN
*PRINT ‘THE BIG SPAN CONFLICT’

%CONFLICT = 1

END IF

P E s T)
* [F THERE EXISTS A CONFLICT THEN SET A MESSAGE AND RETURN

R R PP, T

IF %CONFLICT = “1‘ THEN

R P T e
* [F THERE IS A CONFLICT THEN CHECK THE START AND EXPIRE DATES

* ON THE CURRENT RECORD. IF THE START ON THE SCREEN IS AFTER THE

= EXPIRE OF THE CURRENT RECORD, OR IF THE EXPIRE ON THE SCREEN IS

* BEFORE THE START ON THE CURRENT RECORD THEN THERE IS NO CONFLICT.
EE R P T T

IF EXPIRE NE '‘ AND START NE ‘’ THEN
IF %QUERY:START.DATE GT EXPIRE OR %QUERY:EXPIRE LT START THEN

* NGO CONFLICT THEN
%CONFLICT = O

ELSE
JUMP TO OUTER
END IF

ELSE
JUMP TO OUTER

END IF

END IF
END IF

END FOR

END FOR

QUTER: [F %CONFLICT = ‘1’ THEN
REMOVE RECORD FROM LIST P
END IF

END FOR

CT.P: COUNT RECORDS ON LIST P

IF COUNT IN CT.P EQ O THEN
%QUERY:MESSAGE = ‘*x NGO FREE ROOM ==z’
ELSE
FOR EACH RECORD ON LIST P
PRINT BUILDING AT 20 WITH ROOM AT 2S5 WITH CAPACITY AT 33
END FOR
END IF

ENO SUBROUTINE GET.ROOM
END

R R P Y
= FILENAME SETUPOATA IN TEMP

* AUTHOR- VINIT VERMA
CREATED 10-20-86
PURPOSE - THIS PROCEDURE ABSTRACTS DATA FROM THE COURSE
DATABASE. THE IMAGING FACILITY IS USED. THE FIELDS THAT
ARE STORED IN A RECORD ARE:

DEPARTMENT
COURSE.NO
COURSE.ID

Ed
M
x
=
*
* COURSE RECORD
=
M
=
x
* COURSE.TYPE

128

SECTION
COQURSE.DAYS
CQURSE.BEGIN
COURSE . END
BUILDING
ROOM
INSTRUCTOR

RN NN

COMMENT RECORD

DEPARTMENT
COURSE . NO
NUMBER
COMMENT

U108204.CLASS .0ATA

RN

ALLOQCATE INDATA WITH OLDO SEQUENTIAL DSNAME:=U10820A.CLASS.DATA

BEGIN
IMAGE COURSE
NAME [S STRING LEN 8
COURSE.ID IS STRING LEN §
SKIP 3 POGSITIONS
DEPARTMENT [S STRING LEN S
COURSE .NO [S STRING LEN &
COURSE.TYPE IS STRING LEN 1
SECTION IS STRING LEN 3
SKIP S1 POSITIONS
IMAGE MEETING
NAME1 [S STRING LEN 8
SKIP 3 POSITIGNS
COURSE.DAYS [S STRING LEN 6
COURSE .BEGIN [S STRING LEN 4
COURSE.END IS STRING LEN &
BUILDING IS STRING LEN 4
ROOM IS STRING LEN 4
INSTRUCTOGR IS STRING LEN 12
SKIP 35 POSITIONS
IMAGE COMMENT
SKIP 8 POSITIONS
NUMBER IS STRING LEN 3
COMMENTS IS STRING LEN 77
END IMAGE

QPEN DATASET INDATA FOR INPUT

IF SSTATUS EQ 1 THEN
JUMP TG DONE

ELSEIF S$STATUS EQ 2 THEN
PRINT ‘OPEN ERROR: ‘ WITH SERRMSG
sTOP

ENO IF

READ: READ COURSE FROM INDATA

IF $STATUS EOQ 1 THEN
JUMP TO DONE
ELSEIF $STATUS EQ 2 THEN
PRINT ‘READ ERROR: ‘ WITH S$SERRMSG

STQP
ENO IF
IF %XCOURSE:NAME EQ ‘COURSE’ THEN
%DEPARTMENT = %COURSE:DEPARTMENT

%COURSE . NO %COURSE:COURSE.NO
%COURSE. ID %COQURSE:COURSE.ID
%SECTION = %COURSE:SECTION
%COURSE.TYPE = %COURSE:COURSE.TYPE

IF %COURSE.TYPE = ‘1’ THEN
%COURSE.TYPE = 'TH’
ELSEIF %COURSE.TYPE = ‘2° THEN

%COURSE.TYPE = ‘DS’
ELSEIF %COURSE.TYPE 3
%COURSE.TYPE = 'IS"’
ELS®IF %COURSE.TYPE =
%COURSE.TYPE =
END IF

ELSEIF %COURSE:NAME EOQ ‘MEETING’ THEN
IDENTIFY IMAGE MEETING

IN CATA STORE RECORD
DEPARTMENT = XDEPARTMENT
COURSE.NO = %COURSE.NO
COURSE.ID = %COURSE.ID
CQURSE.TYPE = %“COURSE.TYPE
SECTION = %SECTION
COURSE.DAYS : %MEETING:COQURSE.DAYS
COURSE .BEGIN = *MEETING:COURSE.BEGIN
COURSEZ . END = %MEETING: COURSE.END
BUILDING = Y%MEETING:BUILDING
RQOM = %AMEETING:ROOM
INSTRUCTOR = %MEETING: INSTRUCTOR
END STORE

ELSEIF %COURSE:NAME EQ ‘COMMENT’ THEN
IOENTIFY IMAGE COMMENT

IN DATA STORE RECORD

DEPARTMENT = %DEPARTMENT

COURSE . NG := %COURSE.NO

NUMBER : %COMMENT:NUMBER

COMMENT = %COMMENT:COMMENTS

THE EXTERNAL FILE ACCESSED BY THIS PROCEDURE

1s:

I E XTI E I EIE I EIF AR E TR I T R XX F TR S L XX R XX T TIXE TR LERLBLERT X

129

END STORE
END IF
JUMP TO READ
DONE: PRINT ‘NORMAL TERMINATION'
CLOSE DATASET [NDATA
END
FREE INDATA

R R R P P Y
* FILENAME SETUPHOURS I[N TEMP
* AUTHOR- VINIT VERMA

x CREATED 10-20-86

* PURPOSE - THIS PROCEDURE ABSTRACTS DATA FROM THE COURSE
* DATABASE. THE IMAGING FACILITY IS USED. THE FIELDS THAT
* ARE STORED IN A RECORD ARE:

x

* COURSE RECORD

x

= MIN

* MAX

=

=

* THE EXTERNAL FILE ACCESSED BY THIS PROCEDURE IS:

=

= U10820A.CLASS.DATA

*

B T s

ALLOCATE INDATA WITH OLD SEQUENTIAL DSNAME:=U10820A.CLASS.DATA

BEGIN

IMAGE CODURSE
NAME IS STRING LEN 8
COURSE.ID IS STRING LEN S
SKIP 3 POSITIONS
DEPARTMENT IS STRING LEN S
COURSE.NO IS STRING LEN &
COURSE . TYPE IS STRING LEN 1
SECTION IS STRING LEN 3
SKIP S1 POSITIONS

IMAGE HOURS
NAME1 IS STRING LEN 8
SKIP 1 POSITIONS
MIN IS PACKED LEN 2
MAX IS PACKED LEN 2

END [MAGE

OPEN OATASET INDATA FOR INPUT

IF $SSTATUS EQ 1 THEN
JUMP TO DONE

ELSEIF $STATUS EQ 2 THEN
PRINT °‘OPEN ERROR: ' WITH SERRMSG
sSTOP

END IF

READ: READ COURSE FROM INDATA

IF $STATUS EQ 1 THEN
JUMP TG DONE
ELSEIF $STATUS EQ 2 THEN
PRINT 'READ ERROR: ° WITH SERRMSG

sToP
END IF
IF %COURSE:NAME EQ ‘COURSE’ THEN
%COURSE.NO = $SSUBSTR(%COURSE:COURSE.NO,4,1)

%COURSE : %COURSE:COURSE.ID

ELSEIF %“COURSE:NAME EQ ‘ENRLINFO’ AND %COURSE.NO EQ ‘O’ THEN

IDENTIFY IMAGE HOURS
A: IN DATA FD COURSE.ID 2 %COURSE
END FIND
FR IN A
ADD MIN = %HOURS:MIN
ADD MAX : %HOURS:MAX
END FOR
END IF
JumMP TO READ
DONE: PRINT ‘NORMAL TERMINATION’
CLOSE DATASET INODATA
END
FREE INDATA

R R R s R S E
FILENAME SETDESCR IN TEMP
AUTHOR=- VINIT VERMA
CREATED 10-20-86
PURPOSE - THIS PROCEDURE ABSTRACTS OATA FROM THE COURSE
DATABASE. THE IMAGING FACILITY IS USED. THE FIELDS THAT
ARE STORED IN A RECORODO ARE:

COURSE RECGORO

COURSE.DESCRP

THE EXTERNAL FILE ACCESSED BY THIS PROCEDURE IS:

=
*
x
x
=
*
x
=
=
x
x
x
x
=
= U10820A.DESCRP.DATA
=

3

R S R T

ALLOCATE INDATA! WITH OLD SEQUENTIAL DSNAME:=U10820A.DESCRP.DATA

BEGIN
IMAGE COURSE
SKIP 11 POSITIGONS
DEPARTMENT IS STRING LEN S
COURSE.NO IS STRING LEN &
COURSE.DESCRP IS STRING LEN 22
END [MAGE

130

OPEN DATASET INDATAt FOR INPUT
IF §STATUS EQ 1 THEN

JUMP TO DONE
ELSEIF $STATUS EQ 2 THEN

PRINT ‘OPEN ERROR: ‘' WITH SERRMSG

sSToP

END IF
READ: READ COURSE FROM INDATA1

IF $STATUS EQ 1 THEN
JUMP TO DONE
ELSEIF SSTATUS EQ 2 THEN
PRINT ‘READ ERROR: * WITH SERRMSG
sSTOP
END IF
MATCH: IN DATA FD DEPARTMENT = %COURSE:DEPARTMENT ANO -
COURSE.NO = %COURSE:COURSE.NO
END FIND

FR I[N MATCH
ADD COURSE.DESCRP : %COURSE:COURSE.DESCRP
END FOR

JUMP TO READ

DONE: PRINT ‘NORMAL TERMINATION’
CLOSE OATASET INDATA!

END

FREE INDATA1

PP IEXAITIL I I I I I LT E TS LTI IETIITEEEEIEARFEXERETRIREXZR T BN

= FILENAME HRS IN TEMP

* ’ AUTHOR- VINIT VERMA

= CREATED 10-20-86
* PURPOSE - THIS PROCEDURE CHANGES THE CODE FOR THURSDAY
* IN THE COURSE.DAYS FIELD TO °“H‘.

.

=

.

R R R T)

BEGIN

A: IN DATA FD COURSE.DAYS IS PRESENT
END FINOD

FR IN A

%X = $SUBSTR(COURSE.DAYS,4,1)

IF %X = ‘T* THEN

%Y = SSUBSTR(COURSE.DAYS,1,3) WITH ‘H’ WITH $SUBSTR(COURSE.DAYS,S)

CHANGE COURSE.DAYS TO %Y
END IF

END FOR

END

131

APPENDIX C

CLASS RESERVATICON SYSTEM USER'S MANUAL

TABLE OF CONTENTS

Chapter Page
I. Logging onto the class room reservation system ...ccceeeee 134
II. Program funCtiON KEYS cccececececccccccccsccccccsccccsccssccscses 135
III. Primary OPtiONS MENU .ccececececccecccsccccsoasocccacceasccenss 135
IV. Data retrievalS .cceccececececececeecccscsccccsccccascsccscsoscoscscccccscse 139
V. ReESEIrVALIONS ccieeceeececceccnccsccacacsccccccscancssscccssns 139
VI. DeletiONS ceeeeececcccecceccccccscsccscccncccscscssscscscsssscscs 141
VII. Room inventory databasSe .eeeeececccccccccccascsccccssscacscs 142
VII. ROOM VACANCY ceececcccsccscsoscsssscccsccoscccsssssccsccsscssscescs 143
VIII. Logging Off the SYStEeM .ceeecceccccccscccccscsscsscccscncccesse 144
IX. TeST CASES teceeeeceeeescecoaceccosceacccsasccnssnsocsncsonss 144

134

Logging onto the class room reservation system

A user can access the class room reservation system via an IBM 3270
terminal which is hooked onto the network in a bisynchronous mode. The
system can also be accessed via the asynchronous network, but this is not
advisable due to the lower baud rate.

The following set of instructions allow a user to access the class
room reservation system. The prompts in caps are from the computer, and
the lower case prompts are the user's response.

The following initial prompt appears on a terminal which is ready for
access -

OKLAHOMA STATE UNIVERSITY COMPUTER CENTER
ENTER APPLICATION NAME

m204

86.365 DEC 31 12.45.05 PAGE 1
logon (your user id)

**xx M204.0353:PASSWORD .
(your password)

xxx M204.0353: Ul0820A ‘U10820A LOGIN 86 DEC 31 12.46
open sched

*xx M204.0620: FILE SCHED OPENED
xxx M204.1203: SCHED WAS LAST UPDATED ON 86.364 DEC 30 22.58.26

include class

At this stage the primary options menu for the class room reservation

system will be displayed.

135

Program function keys (PF keys)

The program function keys perform various user interface functions.
The functions assigned to the keys are listed below. To access a program
function key, press the ALT key and simultaneously press the number of the

needed function key.

pfl - reserve a room

pf2 - delete a room reservation
pf3 - exit to primary options menu
pf5 - data retrieval

pf6 - clear screen

pf7 - scroll back one entry

pf8 - scroll forward one entry

pf9 - department query

Primary options menu

Once the user has successfully opened the SCHED file and included the

class program, the following primary options menu 1is displayed.

general users (departments)
super user (registrar)

room inventory database
room vacancy

exit

[S 1 SN VI W o

To make a selection, the user needs to move the cursor to the desired
option number and then press the enter key. Each of the options on the

primary menu are described below.

option 1

This option provides data retrieval functions only, no database
updates can be performed via this window. Data retrievals are performed on
the class schedule data base. The departments on campus can utilize this
option to check up the status of room reservations. The user interface

screen for this option is displayed below.

id number : instructor: days: min:
department : building : start: max:
course number: room : end :
type : section : hours:
title : . undecided hours:
begin(yy-mm-dd) : expiry (yy-mm-dd) :

comment:

pf3 exit pfS5 refresh pf6 clear pf7 -- pf8 -- pf9 dept. query

The prompts on the screen correspond directly to the entries in the

136

class schedule book.

id number -
department -
course number -
type -
title -
instructor -
building -
room -
section -
days -

start -

end -
hours -
min -
max -
undecided hour
begin (yy-mm-dd)
expiry (yy-mm-dd) -
comment -

option 2

137

course identification number
department code

four digit course number

TH/LAB/IS/DS

course description

instructor's name

building code

room number in the building

course section

days of the week the course is offered
(MTWHFS)

commencement time for the course

(army time)

course end time (army time)

credit hours for the course

minimum # of hrs. for course ending in O
maximum # of hrs. for course ending in O
for TBA meeting

date of commencement of course

date of termination of course

comments on the course

This option is meant for the registrar's office. A user can perform

data retrievals and room reservations via this window. The user interface

screen for this option is identical to the option 1 screen except two extra

pf keys are provided.

room reservation.

Pfl for reserving a room, and pf2 for deleting a

option 3

The room inventary database keeps information on the rooms on campus.
The database stores the room type and capacity for each room. A menu
provides options to add or delete rooms. Information for a specific room
can be pulled up. Information from this database is utilized to perform ad

hoc reservations.
option 4

The room vacancy option provides advanced data retrieval operations
from the class schedule, énd room inventory databases. A user can input
the start date, end date, days the course will meet, begin time, course end
time, number of seats needed and the type of room needed. The program will
query the room inventory database for the rooms which match the type and
capacity of the réquest. Once a list of all such rooms is obtained, the
class schedule database is queried for time and date conflicts. Finally
the program comes up with a set of rooms on campus which will satisfy the

request.
option 5

This option allows the user to exit form the class room reservation

system.

138

139

Data retrievals

The pf5 key needs to be pressed to invoke any data retrieval function.
The cursor should be kept on the field for which the retrieval is to be
performed. A list of the retrieval fields for the different options on the

primary menu follows -

- options 1 and 2 of the primary menu
1. course id number
2. department and course number
3. department name
4. building and room number
5. instructor's name

- an option to query the database for all courses offered by a department,
sorted by day of the week, and time of the day.

- option 3 of the primary menu

1. building
2. building and room

- option 4 of primary menu

All prompt fields under this option need to be filled out before a

data retrieval may be executed.

Reservations

This option allows a user to make a room reservation. The reservation

request are categorized as follows -

a. room reservation for the full semester

b. ad hoc room reservation with commencement and expiry

140

date.

The course id number is the primary key for the class schedule
database. Every room reservation request has to maintain the primary key
uniqueness constraint. Duplicate -course id numbers are rejected by the

system.

a. room reservation for the full semester

This type of a reservation request requires the user to utilize the
data retrieval functions. The user should have the following information

before making such a reservation -

- course id number

- department

- course number

- type

- title

- instructor

- section

- days of the week for meeting

- start time

- end time

- undecided hour if TBA type

- minimum credits for course number ending in zero
- maximum credits for course number ending in zero
- comments

The objective is to come up with a suitable room for the above course.
The room vacancy program needs to be executed to come up with a set of
eligible rooms. The user can choose one of the rooms on the list. Once

the building and room numbers are available the reservation can be made.

Enter the information for the prompted fields and press the pfl key. An

'tentry stored' message signals a successful reservation.

b. room reservation for an ad hoc request

Again the user needs to have all the previously mentioned information
ready, except the building and room numbers. This reservation requires the
user to input the start date and expiry date. Again prior to making the
reservation the room vacancy program needs to be executed to come up with a
list of eligible rooms. Besides checking for the time conflicts the room
vacancy program also checks the date conflicts. Once the building and room
number is available the reservation can be made. Enter the prompted
information and press the pfl key. An 'entry stored' message signals a
successful reservation. This request is dynamic iﬁ nature. Each time the
reservation system is invoked, all reservations which have an expiry date
less than the system date are purged. Thus the rooms are dynamically freed

for ad hoc requests.

Deletions

To delete a certain room reservation, the user needs to enter the
course id number and press the pf2 key. If the needed id number is
located, a deletion is performed, otherwise a 'no match' message is

displayed.

141

Room inventory database

The room inventory database houses information on the available rooms

.

on campus. The user interface screen for the database is described below.

- OSU Room Inventory Database ———=——===——=————————=-

building:

room :

type :

capacity:
1 - case study
2 - auditorium
3 - fixed
4 - table & chairs
5 - arm
6 - bolted arm
7 - lab

pfl reserve pf2 delete pf3 exit pf5 refresh pf6 clear pf7 -- pf8

The database search key is building and room. If the building and
room entries are filled up on the screen and the pf5 key is pressed, then
the type and capacity for the room will be displayed. Information about
all rooms in a specific building may be obtained by entering the building
code and pressing the pf5 key. The needed information is put on a
scrollable 1list, and the pf7 and §f8 keys provide the needed scroll
functions. To save an entry in the database, enter the information for the
four prompts on the screen and press the pfl key. If an entry with the
same building and room codes exists, it will be updated with the current

type and capacity, otherwise a new database record is stored. An 'entry

142

143

stored' message will be displayed to signal a successful insertion. To
delete a information for a specific room, enter the building code and the
room number and préss the pf2 key. If a match is found, then the record is
deleted, otherwise a 'no match' message is displayed. The pf6 key may be

used to clear the screen input fields at any stage.

Room vacancy

This program queries the class schedule database and the room
inventory database, to come up with a list of rooms which satisfy certain
time and date constraints. The user interface screen for this option

looks as follows -

-— OSU Room Inventory Database -———=—-————-———-———e—e—o

start (yy-mm-dd)
expire (yy-mm-dd)

days :

begin time s

end time :

capacity :

room type :
1l - case study
2 - auditorium
3 - fixed
4 - table & chairs
5 - arm
6 - bolted arm
7 - lab

pf5 query pf3 exit

Each of the prompted fields are explained below.

start - date of commencement of the request
expire - expiry date for the request

pf5 key.

request.

days

begin time

end time
capacity
room type

144

- days of the week for reservation
starting time for the request

- ending time for the request
seating capacity for the request
one of the 7 codes from above

The user needs to input all the prompted fields, and then press the

The program comes up with a list of rooms which will satisfy the

If no rooms exist which can satisfy the request, then a message

to that effect is displayed. The pf3 key gets the user back to the primary

options menu.

Logging off the system

To log off the system the user needs to place the cursor on option §

of the primary options menu and press the enter key.

Test cases

1) Test cases for query fields

a.
b.
c.
d.
e.

retrieval
retrieval
retrieval
retrieval
retrieval

via
via
via
via
via

course id number - 12296

department and course number - comsc 4113
department - comsc

building and room - ms 222

instructor's name - smith

2) (N.B. The conflict verification is activated if the building, room,
start,end and days fields are filled in)

To test the reservation routine complete information about room
MS 222 was obtained using the data retrieval functions. The busy
hours for the room are listed below.

1)
M
MWF 1030 - 1120

1230 - 1320
1530 - 1620

145

MWF 0930 - 1020
T 0900 - 1015
T 1030 - 1145
M 1900 - 2200

(N.B. The reservation routine subtracts 10 minutes from the incoming
start time for the needed overlap between_meetings)

a. full semester reservation

course id : 99999 instructor: john days : MH
department: comsc building : ms start : 1045
course # : 1111 room s 222 end : 1200
type : th section : 001 hours : 1
title : basic

comment: $5.00 charge for micro computer usage
press the pfl key to make the reservation

response: conflict (1045 - 10 = 1035 falls between a course meeting)
(start time falls between a course meeting time)

b. all entries stay the same except start time: 0800
end time : 1000

response: conflict (1000 falls between a course meeting)
(end time falls between a course meeting time)

c. all entries stay the same except start time: 0940
end time : 0900
response: conflict (0940 - 10 = 0930 is the start time for existing
course) (start time equal to the commencement time for
exXisting course)

d. all entries stay the same except start time: 0800
end time : 1030
response: conflict (1030 is the start time for an existing course)
(end time equal to the commencement time for existing course)

e. all entries stay the same except start time: 0800
end time : 1300
response: conflict (a course meets between 0800 and 1300)
(start and end time span the meeting time of a course)

f. all entries stay the same except start time: 0700
end time : 0800
response: room reserved

g. clear the screen using the pf6 key, and recall the entry for
course id number: 99999

3)

146

press the pf2 key to delete the course

try to refresh the screen for course id number: 993999

response: no match

ad hoc reservation request for temporary room assignment

query the room inventory database for building: MS
room : 310
response: type : case study

capacity: 63

query the class schedule database via the general user's option
for the meetings in MS 310.

TH
TH
MW
MWF
M

W
MWF
TH
MWF
MWH
MWF

MWF
MWF,
TH
TH
MWF
T

1230
1400
0830
1430
1830
1830
1230
0730
0730
1530
0930
1330
1130
1430
1030

0930

1030
1830

The scroll key should be used.

- 1345
- 1515
~ 0920
- 1520
- 2120
- 2120
- 1320
- 0845
- 0820
- 1620
- 1020
- 1420
- 1220
- 1520
- 1145
- 1020
- 1120
- 2120

enter the room vacancy option to check up on an empty slot

start : 87-07-01
expire : 87-07-01
days : MH

begin ¢ 0600

end : 0700
capacity: 30

type : 1

press the pf5 key.
response: a list of rooms which are available at the needed time,days

and date is displayed.

MS 310 is a valid choice. Now a

reservation can be made via the super user's option.

147

4) ad hoc reservation request for temporary assignment, with expiry
date active for the automatic purge process.

a.
course id : 99999 instructor: john days : MH
department: comsc building : ms start : 0700
course # : 1111 room : 222 end : 0800
type : th section : 001 . hours : 1
title : basic begin : 87-0l1l-aa expire: 87-01-bb

‘ (yy-mm-ad) (yy-mm-dd)

aa - today's day - 2
bb - today's day - 1
(e.g if the date today is 86-12-31 then
aa - 28 ’
bb - 29)
comment: $5.00 charge for micro computer usage

press the pfl key to reserve the room.
response: the room is reserved

b. press the pf6 clear key, and recall the room reservation for
course id number: 99999

c. return to the primary options menu
d. re-enter the super user's option. recall the entry for course
id number: 99999
response: no match. The automatic delete process checked the
expiry date for the request and purged it.

5) check the start date logic for proactive reservations

a. select the super user's option and make the following reservation

course id : 99999 instructor: john days : MH
department: comsc building : ms start : 0600
course # : 1111 room : 310 end : 0700
type : th section : 001 hours : 1
title : basic begin : 87-07-04 expire: 87-07-06
(yy-mm-dd) (yy-mm-dd)

comment: $5.00 charge for micro computer usage

b. select the room vacancy option

start : 87-07-05
expire : 87-07-07
days : MH

begin : 0600

end : 0700

148

30
1

capacity
type

press the pf5 key to come up with a set of available rooms
response: MS 310 is not in the list.

C. keep all entries the same except start: 87-07-03
end : 87-07-04

response: MS 310 is not in the 1list.

d. keep all entries the same except start: 87-07-03
end : 87-07-08

response: MS 310 is not in the list.

e. keep all entries the same except start: 87-07-01
end : 87-07-03

response: MS 310 is a valid choice.

f. select the super user's option. Check out the reserve logic
by trying to reserve a through e above for course id: 79999
response: only choice e will end up in a valid reservation.

(comment for 79999 and 99999 are identical message
will be diéplayed, and the entry will be reserved)

g. delete course id: 99999 and course id: 79999

2

Vinit Verma

VITA

Candidate for the Degree of

Master of Science

Thesis:A COMPARATIVE STUDY OF A HIERARCHICAL DATABASE MANAGEMENT SYSTEM
WITH RELATIONAL-LIKE DATABASE MANAGEMENT SYSTEM FOR A
SCHEDULING PROBLEM

Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Lucknow, India, October 30, 1962, the son
of Dr. Indrapal Singh Verma.

Education: Graduated from Mayo College, Ajmer (India), in May
1981; received Bachelor of Science Degree in
Mathematics, Physics and Chemistry from University
of Delhi in May 1984; completed requirements for the
Master of Science Degree at Oklahoma State University
in July 1987.

Professional ExXperience: Research Assistant, and Applications
Programmer, Department of Grants Contracts and Financial
Administration, Oklahoma State University, January,

1985, to April, 1987; member Association of Computing
Machinery, New York.

