
UNIVERISTY OF OKLAHOMA

GRADUATE COLLEGE

Learning from Data with Uncertainty:
Robust Multiclass Kernel-Based Classifiers

and
Regressors

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

In partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

BUDI SANTOSA

Norman, Oklahoma

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215182217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UMI Number: 3170134

3170134
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

Learning from Data with Uncertainty:

Robust Multiclass Kernel-based Classifiers
and

Regressors

A Dissertation

APPROVED FOR THE

SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr Theodore B. Trafalis (Chair)

Dr Pakize Simin Pulat

Dr Randa L. Shehab

Dr Teri Reed Rhoads

Dr Michael B. Richman

Dr Tyrrel Conway

c©Copyright by Budi Santosa 2005
All Rights Reserved

Preamble

Read! In the Name of your Lord Who has created (all that exists)

He has created man from a clot (a piece of thick coagulated blood)

Read! And your Lord is the Most Generous

Who has taught (the writing) by the pen

He has taught man that which he knew not

(Al Quran, al-’Alaq 96:1-5)

Say: Though the ocean became ink for the Words of my Lord, verily the sea

would be used up before the words of my Lord were exhausted, even if we added

another ocean like it, for its aid (Al Quran, 18:109)

Allah will exalt in degree those of you who believe, and those who have been

granted knowledge (Al Quran, al-Mujaadilah 58:11)

iv

Acknowledgments

I would like to thank to God (Allah) for His power to make this research possible.

In performing this research and completing this dissertation, I received great help

from many people. I would like to express my gratitude to Dr Theodore Trafalis as

my chair advisor for his assistance, guidance, understanding and support through-

out the entire program. I also like to express my thanks to Dr T. Conway, Dr P.S.

Pulat, Dr R. Shehab, Dr M. Richman, and Dr T. Rhoads for serving as members

of the dissertation committee. I also like to express my sincere thanks and grati-

tude to Dr T. Conway for his financial support during some part of my graduate

program.

I also thank Dr Samir Alwazzi for fruitful discussions. A special debt of gratitude

and affection is extended to my mother, my parents in law and all of my family

members for their support and encouragement. Special thanks to my wife and chil-

dren for their patience, support, help and encouragement during these long and

stressful years of this program. Finally, I would like to acknowledge the support

of the National Science Foundation under NSF Grant EIA-0205628.

v

Abstract

Motivated by the presence of uncertainty in real data, in this research we investi-

gate a robust optimization approach applied to multiclass support vector machines

(SVMs)and support vector regression. Two new kernel based-methods are devel-

oped to address data with uncertainty where each data point is inside a sphere

of uncertainty. For classification problems, the models are called robust SVM (R-

SVM) and robust feasibility approach (R-FA) respectively as extensions of SVM

approach. The two models are compared in terms of robustness and generalization

error. For comparison purposes, the robust minimax probability machine (MPM)

is applied and compared with the above methods. From the empirical results,

we conclude that the R-SVM performs better than robust MPM. For regression

problems, the models are called robust support vector regression (R-SVR) and

robust feasibility approach for regression (R-FAR). The proposed robust methods

can improve the mean square error (MSE) in regression problems.

vi

Contents

Preamble iv

Acknowledgments v

Abstract vi

1 Introduction 1

1.1 Overview . 1

1.2 Research Objectives . 2

1.3 Organization of the Dissertation 4

2 Basic Concepts in Machine Learning 5

2.1 Binary Classification . 5

2.2 The Kernel Method . 6

2.3 Perceptron Algorithm . 7

2.4 Support Vector Machines . 8

3 Literature Review 13

3.1 Robust Optimization . 13

3.2 Robust SVM Classifier . 14

3.3 Robust Minimax Probability Machines (MPM) 15

3.4 Robust Classification with Interval Data 18

vii

3.5 Multi-Class Support Vector Machines 19

3.5.1 One-against-all (OAA) Method 20

3.5.2 One-against-One (OAO) Method 21

3.5.3 One Optimization Problem 22

4 Robust Kernel Feasibility-Approach and Robust SVM 24

4.1 Feasibility-Approach as An Optimization Problem 24

4.2 R-FA and R-SVM Formulation . 25

4.3 Optimization Approach for R-FA and R-SVM 27

4.4 Experiments and Results . 31

4.4.1 Experiments . 31

4.4.2 Results of AND Problem 33

4.4.3 Results of XOR Problem 34

4.5 Implementation on Real Data . 35

5 Robust Multiclass Kernel Feasibility Approach and SVM 40

5.1 Robust Multiclass Classification . 40

5.2 One-against-All (OAA) Method . 41

5.3 One-against-One (OAA) Method 42

5.4 Implementation . 45

6 Robust Kernel Feasibility-approach and SVM for Regression 49

6.1 Basic Idea . 49

6.2 Implementation . 55

7 Conclusions and Future Research 58

7.1 Conclusions . 58

7.2 Future Research . 59

A Matlab Code for Classification Problems 61

B Matlab Code for Regression Analysis 75

viii

List of Tables

4.1 AND Problem . 32

4.2 XOR Problem . 32

4.3 w and b values for R-FA on AND problem, with different uncertain-

ties η . 34

4.4 w and b values with R-SVM approach for AND problem, with dif-

ferent uncertainties η, C = 1 . 34

4.5 Alpha and b values with feasibility-approach for different η for XOR

problem . 35

4.6 Alpha and b values with SVM approach with different η for XOR

problem . 36

4.7 Percentage of average misclassified points for R-FA and R-SVM with

different η values on Iris data . 37

4.8 Percentage of average misclassified points for R-FA and R-SVM with

different η values on breast cancer data 37

4.9 Percentage of misclassified points for R-FA and R-SVM with differ-

ent η values on Tornado data . 38

4.10 Percentage of misclassified errors on three data sets for different

methods . 39

ix

5.1 Percentage of average misclassification error and computation time

(CPU time) for Robust-MFA and Robust-MSVM with different η

on Iris data . 46

5.2 Percentage of average misclassification error and computation time

(CPU time) for Robust-MFA and Robust-MSVM on Dermatology

data . 46

5.3 Percentage of average misclassification error and computation time

(CPU time) for Robust-MFA and Robust-MSVM on Balance Scale

data . 46

5.4 Percentage misclassification error and computation time (CPU time)

for Robust-MFA and Robust-MSVM on Glass data 47

5.5 Percentage misclassification error and computation time (CPU time)

for Robust-MFA and Robust-MSVM with different η values on Flow

data . 47

5.6 Percentage of average misclassification errors on four data sets for

different methods . 48

6.1 MSE of FAR for regression and SVR on Titanium Data with RBF

kernel . 54

6.2 MSE of R-SVR and R-FAR on flour price data with RBF kernel

with η varied, ε = 0.0 . 56

6.3 MSE of R-FAR and R-SVR on flour price data with RBF kernel

with ε varied . 56

6.4 MSE and computation time (CPU time) for R-FA and R-SVM with

different η values on Abalone . 56

x

List of Figures

1.1 Model development process . 3

2.1 A kernel map converts a nonlinear problem into a linear problem . 7

2.2 Geometric interpretation of Perceptron classifier 9

2.3 The idea of an optimal hyperplane for linear separable examples . 10

2.4 Increasing margin can increase the probability of correct classification 11

3.1 Geometric illustration of robust SVM using the approach in [36, 37] 15

3.2 MPM classifier for binary-class classification problem [27] 17

3.3 Robust MPM classifier for binary-class classification problem [27] . 18

3.4 Linear classifier for AND problem with interval data 19

3.5 SVM classifier for three-class classification problem 20

4.1 Finding the best classifier for data with uncertainty. The bounding

planes are moved to the boundary of the spheres to obtain maximum

margin . 26

4.2 Plot of misclassification error vs uncertainty η for R-SVM classifiers

on Tornado data . 38

6.1 ε-insensitive loss function. The points outside the shaded region are

penalized . 52

6.2 Geometric illustration of robust SVR 54

xi

6.3 Plots of the actual data and SVR results with RBF kernel 55

6.4 Plots of the actual data and FA results with RBF kernel, 57

6.5 Plots of the actual data and R-SVR results with RBF kernel on

flour price data . 57

xii

Chapter 1
Introduction

1.1 Overview

In real life, decision making problems are usually characterized by the presence

of uncertainty. Any decision made by managers, engineers and other decision

makers in any field is widely affected by the reality of uncertainty. Uncertainty

in the stock market, for instance, complicates the task of prediction of the stocks

price. Uncertainty is not a temporary deviation from well thought out long term

plans. It is a basic structural character of the technological and business fields or

environment [26]. It is very important to build a mathematical model in machine

learning that incorporates the uncertainty such that our model can imitate closely

the real problem.

Currently, incorporating uncertainty into a mathematical model formulation is

active research in the machine learning community. Lanckriet et al.[27] developed

a robust minimax probability machine (MPM) to predict the class of new obser-

vations in binary class problems. In their work, the mean and covariance matrix

of the data in each class are assumed to belong in some specified set. In [17] the

model that incorporates the uncertainty of the data is explored in a different way.

The uncertainty of the data is characterized by interval uncertainties of the data

within given hyper-rectangles. The problem then is addressed by minimizing the

1

worst-case value of a given loss function, over all possible choices of the data in the

multi-dimensional intervals. Trafalis and Alwazzi [36] proposed a robust support

vector machine (SVM) classifier that studies noisy data with bounded errors on the

linear model of SVM. Their work investigated how the stability of the solution is

affected by the noise of the data. In this research, a robust support vector machine

approach is proposed which can improve the generalization error. The motivation

is to increase the margin of separation by introducing noise. Different from the

previous work, this research emphasizes how the generalization error improves with

the data perturbation. The difference of our approach from Trafalis and Alwazzi

[36] is that in their approach, the margin of separation decreases with the increase

of the noise level and it approaches zero as the radius of the uncertainty sphere

becomes equal to the margin. In our case, the margin increasing as as the level of

uncertainty is increasing.

Street and Mangasarian [34] proved that the generalization error is improved

when the training set is learned with less accuracy. They developed a linear model

and trained it with several degrees of tolerances τ to investigate the influence of

the noise to the test generalization. Their experiments on linear systems using

nine sets of real-world data confirmed the improved generalization error.

1.2 Research Objectives

Robust optimization techniques recently have attracted several researchers. The

reason is that there are some contradictions between the real-world data and the

realm of traditional deterministic mathematical programming. Therefore, combi-

nation of these two issues becomes necessary. When operation researchers try to

construct a model of a real-world system, they always find incomplete, noisy or

uncertain data. On the other hand, in the world of mathematical programming,

it is assumed that the model is deterministic, something that does not hold gen-

erally in the real world. It has been found that large error bounds arise when one

solves mean value problems [8]. In this research, a robust optimization approach

2

applied to support vector machines is investigated. The motivation is to find a

classifier that is ”immune” against data uncertainties and has good generaliza-

tion properties. Two new kernel based-methods are developed to handle the data

with uncertainty where the data is inside a sphere. The models are called robust

quadratic SVM (R-SVM) and robust feasibility-approach model (R-FA).

First, the models are developed for the binary class problem in linear cases.

Building on ideas from [36] for data with bounded errors, the new models are

built with the objective of being robust and improving the generalization error by

perturbing the data with bounded perturbations. Next, the models are extended to

nonlinear cases by utilizing the kernel method [31] and to more general multiclass

problems. Finally, the results between the two models are compared to check

which model is better in terms of robustness and generalization error. Comparison

with other robust optimization methods such as the robust minimax probability

machine is performed. The summary of model development in this research is

depicted in Figure 1.1.

Figure 1.1: Model development process

3

1.3 Organization of the Dissertation

Chapter 2 describes some important concepts in machine learning. In chapter

3, a literature review on robust optimization, robust classification methods and

multiclass SVM are provided. Chapter 4 provides mathematical formulation of

the proposed models and the algorithm to solve the models. In chapter 5, the

extension of the models into multiclass cases are described. Chapter 6 describes

the extension of the models into regression analysis. Chapter 7 concludes the

dissertation.

4

Chapter 2
Basic Concepts in Machine Learning

2.1 Binary Classification

Assume that we are given a set of training data (xi, yi), i = 1, .., � with input

data X = {x1, x2, .., x�} ⊆ �Nand corresponding outputs Y = {y1, .., y�} ⊆ {±1}�.

The goal of binary classification is to find a decision function f(x) that accurately

predicts the class of test or future data points (x, y) coming from the same distri-

bution function as that of the training data. This set of � points (xi, yi) , i = 1, .., �

usually is called the training set, where the xi correspond to the input parameters

and the yi refers to the output parameters. To solve this problem we can start

from linear decision functions. The decision function can be represented as:

g(x) := sgn(f(x)) (2.1)

with f(x) = wTx+ b,

where x, w ∈ �n and b ∈ �. The problem of learning from data can be stated as

finding a set of (w, b) such that f(xi) =< w,x > +b = yi for all i. An algorithm to

cope with such a problem is what we call the perceptron. This iterative algorithm

originally is designed to solve simple linear separable problems. A more difficult

problem arises when the data are not linearly separable. In such a case, we have

to find a nonlinear decision function to separate the data correctly. Working in the

5

feature space can simplify the classification task into a linear separation problem.

The idea is to use the kernel method that we discuss in section 2.2.

2.2 The Kernel Method

Most machine learning algorithms are developed with the assumption of linear-

ity. Then, the resulting algorithms are limited to linear discriminant functions.

Hence, if for example a certain classification problem displays a nonlinear sepa-

rating surface, algorithms such as the perceptron will not be able to account for

this nonlinear behavior. In general, complex real-world problems require more

expressive hypothesis spaces than linear functions. Kernel methods [31] offer an

alternative solution by mapping a data point x in the input space into a higher

dimensional feature space F through a feature map ϕ such that ϕ : x �→ ϕ(x).

Therefore the point x in the input space becomes ϕ(x) in the feature space.

Unfortunately, very often the function ϕ (x) is not available, can not be com-

puted, or does not even exist. However, the dot product of two vectors can be

computed, both in the input and feature space. In other words, while ϕ (x) might

not be available, the dot product < ϕ (x1), ϕ (x2) > can still be computed in

the feature space. In order to employ the kernel method, it is necessary to ex-

press the separation constraints in terms of inner products of the data vectors

xi. Consequently, the constraints describing the classification problem have to be

reformulated, such that solely dot products are used. In the new space the dot

product < . > becomes < ϕ(x), ϕ(x)′ >. A nonlinear kernel function, k(x, x′), can

be used to substitute the dot product < ϕ(x), ϕ(x)′ >. Then in the higher dimen-

sional feature space, we can construct a linear decision function that represents a

nonlinear function in the input space. Figure 2.1 describes an example of a feature

mapping from a two dimensional input space to a two dimensional feature space.

In the input space the data can not be separated linearly, but we can do so in the

feature space. Hence by mapping the data into a feature space the classification

task becomes simpler.

6

 φ

 φ
x

x

x
x

o

o

o o

(x)

(x) (x)

(x) (o) (o)

(o)

(o)

X F

 φ φ

 φ

 φ
 φ φ

 φ

Figure 2.1: A kernel map converts a nonlinear problem into a linear problem

There are three nonlinear kernel functions usually used in the SVM literature

[23]:

1. polynomial: (xTxi + 1)p,

2. radial basis function (RBF): exp(− 1
2σ2 ‖x− xi‖2),

3. tangent hyperbolic (sigmoid): tanh(βxTxi + β1), where β, β1 ∈ �

The best kernel function which one can use to substitute for the dot products

in the feature space depends on the data; usually one has to use cross-validation

methods [22] to select the best kernel function.

2.3 Perceptron Algorithm

Frank Rosenblat’s perceptron is a model aimed to solve visual perception tasks or

to perform pattern recognition tasks [25]. The perceptron is based on the steepest

descent method [1] and is used in the case of linear separability. The summary of

the perceptron algorithm is given below [33].

7

Perceptron Algorithm

argument: training sample , x = {x1, x2..xm} ⊂ X, y = {y1, ..ym} ⊂ {±1}
learning rate : η

return: weight vectors w and threshold b

function perceptron(X,Y,η)

Initialize w,b=0

Repeat

for all i from i=1..,m

Compute g(xi) = sgn((w.xi) + b)

Update w, according to

w′ = w + η
2 [yi − g(xi)]xi

b′ = b+ η
2 [yi − g(xi)]

endfor

until for all 1 ≤ i ≤ m we have g(xi) = yi

return f : x �→ (w.x) + b

end

The perceptron is iterative in the sense that small changes are made iteratively to

the weight vector in response to each given labeled example. The weight vector

(w, b) is updated on a labeled example if only the (w, b) misclassifies this example.

The geometry of the perceptron algorithm is described in Figure 2.2. It can be

generalized in the case of nonlinear separability using the concept of the kernel

function [32]. However it can not give the best decision function since it computes

local minima. An effective method that computes global optima is described in

the next section.

2.4 Support Vector Machines

A well known method in machine learning to find an optimal classifier (hyperplane)

between two sets of points is the so called SVM [39]. This method has attracted

8

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

W

w
1
x

1
+w

2
x

2
+b=0

class +1 class −1

Decision line:

Figure 2.2: Geometric interpretation of Perceptron classifier

people in the machine learning and optimization community because of its im-

pressive performance in generalization error of unseen data. In this method one

seeks the best hyperplane among many possible hyperplanes to separate two sets

of patterns. The optimal hyperplane is the one that is located mid-way between

the two classes. This hyperplane is orthogonal to the shortest line connecting

the convex hulls of the two classes. Seeking the best hyperplane is equivalent

to maximizing the margin between the two classes. If wx1 + b = +1 is on the

supporting hyperplane of class +1 (wx1 + b = +1) and wx2 + b = −1 is on

the supporting hyperplane of class −1 (wx2 + b = −1), the margin between the

two classes can be computed by computing the distance between the support-

ing hyperplanes of those classes. Specifically, the margin is computed as follows

(wx1 + b = +1) − (wx2 + b = −1) ⇒ w(x1 − x2)) = 2 ⇒
(

w
‖w‖(x1 − x2)

)
= 2

‖w‖ .

Figure 2.3 shows how SVM works in finding a classifier with maximum margin.

We need to show that maximizing the margin between the two set of points will

increase the probability of correct classification of the testing points. Generally

9

Figure 2.3: The idea of an optimal hyperplane for linear separable examples

there is an infinite number of separating hyperplanes. Suppose from this infinite

number of separating hyperplanes, we investigate two hyperplanes f1(x) and f2(x)

(see Figure 2.4). Hyperplane f1 has a larger margin than hyperplane f2. After

finding these two hyperplanes, now a new testing point with label −1 is coming

to our system. We have to classify this new point whether it is in class −1 or +1

using the hyperplanes that we obtained. Using f1, we will classify this new point

as being in class −1 which is classified correctly. Now, using f2, we will classify the

new point as being in class +1 which is incorrect. From this simple example, we

see that increasing the margin can increase the probability of correct classification.

The mathematical formulation of the SVM optimization problem for the linear

separable case is given as

min
1
2
‖w‖2 (2.2)

Subject to

yi(wxi + b) ≥ 1, i = 1, .., �.

10

Figure 2.4: Increasing margin can increase the probability of correct classification

In the case of linear non-separable problems, the formulation of the SVM opti-

mization problem is given as

min
1
2
‖w‖2 + C

�∑
i=1

ti (2.3)

Subject to

yi(wxi + b) + ti ≥ 1

ti ≥ 0, i = 1, .., �.

By this formulation one wants to maximize the margin of separation of two classes

by minimizing ‖w‖2 [23]. Other formulations based on LP are described in [4]. In

all of those formulations one needs to minimize the misclassification errors that are

described by the slack variables ti while maximizing the margin. The slack variable

ti is used to handle the case of infeasibility of hard constraints yi(wxi + b) ≥ 1

by penalizing points that do not satisfy the hard constraints. To minimize such

deviations, we penalize those through a regularization constant C. The vector w is

the normal to the separating hyperplane: wx+ b = 0. The constant b determines

its location relative to the origin.

11

To address the problem of nonlinearity that frequently occurs in real world

problems, one can utilize kernel methods. Kernel methods [31] provide an al-

ternative approach by mapping data points x in the input space into a higher

dimensional feature space F through a map ϕ such that ϕ : x �→ ϕ(x). There-

fore a point x in the input space becomes ϕ(x) in the feature space. The dual

formulation of problem (2.3) is expressed in the feature space:

min
1
2

�∑
i,j=1

yiyjαiαjk(xi, xj) −
�∑

i=1

αi (2.4)

Subject to

0 ≤ αi ≤ C, i = 1, ..�
�∑

i=1

αiyi = 0,

where k is the kernel function described in section 2.2. The formulation in (2.4) is a

linearly constrained quadratic programming. Training SVM is equivalent to solving

the above convex optimization problem. Therefore the solution of SVM is unique

(under the assumption that k is positive definite) and globally optimal, unlike other

networks’ training [23] which is equivalent to a nonconvex optimization problem

with the danger of obtaining local optima solutions. Let f(x) =
�∑

i=1
yiα

∗
i k(xi, x) +

b∗. The resulting optimal classifier is g(x) = sign(
�∑

i=1
yiα

∗
i k(x, xi)) + b∗, where

α∗
i , i = 1, .., � are the optimal solutions of problem (2.4) and b∗ is chosen so that

yif(xi) = 1 for any i with C > α∗
i > 0 [15]. The points xi for which α∗

i > 0 are

called support vectors and represent the training data points that are needed to

represent the optimal decision function. In Figure 2.3, for example, the 3 white

points represent the support vectors.

12

Chapter 3
Literature Review

3.1 Robust Optimization

The robust optimization methodology is a relatively new approach to deal with

uncertain data. More recently, the so called robust optimization techniques have

been investigated by several authors [3, 2, 10, 18, 19]. Those techniques are more

meaningful in formulations with prior bounds on the size of the uncertainties on

the data. Specifically, we consider the case where we have data with bounded

errors. The solutions coming from robust optimization models are more stable

and more appropriate for this kind of uncertainty.

Ben-Tal and Nemirovski [3] proposed the foundation of robust convex opti-

mization based on previous work in robust control. Their assumption is that the

data defining a convex optimization problem are not accurately specified, and the

only knowledge about those is that they belong to a bounded uncertainty set U .

The formulation of the resulting optimization problem is as follows

min f(x, ξ) (3.1)

Subject to

gi(x, ξ) ≤ 0

13

x ∈ �n, i = 1, .., � ∀ξ ∈ U ⊆ �n,

where f, gi are convex functions and ξ is an uncertain parameter vector.

They have shown, that when this set U is an ellipsoidal uncertainty set, then the

robust convex program corresponding to some of the most important generic con-

vex problems, such as linear programming, semi-definite programming and others,

is a convex optimization problem which can be solved by an efficient algorithm,

such as polynomial time interior point methods. More recently, Bertsimas et al.[7]

have provided robust formulations with a similar complexity as that of the original

uncertain optimization problem.

3.2 Robust SVM Classifier

In [36, 37], a robust SVM classifier development is described. This research assumes

noisy data with bounded errors on the linear programming (LP) SVM formulation.

Specifically, this approach assumes that a data point can be represented through

a sphere with a known radius. Accordingly, the supporting hyperplane resulting

from the model will be on the boundary of the sphere that contains the data

closest to the separating hyperplane (classifier) in one side and on the boundary

of the sphere from the separating hyperplane in the other side. In other words,

the training data points (represented through the centers of the corresponding

uncertainty spheres) can be modified through a new set of data points that are

obtained by shifting the points labeled as +1 along −w and the points labeled −1

along w, respectively to its boundary of uncertainty (see Figure 3.1).

The optimization problem formulation is given as

min
w,b,t

‖w‖1 + C
�∑

i=1

ti (3.2)

Subject to

yi 〈w, x̃i〉 −√
η ‖w‖ + yib+ ti ≥ 1

ti ≥ 0, i = 1..�,

14

Figure 3.1: Geometric illustration of robust SVM using the approach in [36, 37]

where
√
η is the radius and x̃i is the center of the uncertainty sphere. Setting

w =
�∑

i=1
yiαixi and linearizing the objective function, the above problem can be

formulated as follows:

min
�∑

i=1

αi + C
�∑

i=1

ti (3.3)

Subject to

√
η

√
αtk̃α− yi

�∑
i=1

yjαjk(x̃j , x̃i) − yib− ti + 1 ≤ 0

ti ≥ 0, αi ≥ 0, i = 1, .., �,

where k̃ = k̃(xi, xj) = yiyj < xi, xj >. It is shown that the resulting SVM classifier

is robust to the noise of the data [36, 37].

3.3 Robust Minimax Probability Machines (MPM)

The MPM approach was introduced by Lanckriet et al.[27]. The objective of

this approach is to solve the problem of binary classification by minimizing the

maximum probability of misclassification of the future data points. The problem

can be defined as follows. Let x and y denote random vectors with x in class one

and y in class two, with means and covariance matrices given by (x,Σx) and (y,Σy)

respectively, where x, x, y, y ∈ �n and Σx,Σy ∈ �nxn and both are symmetric

15

and positive semidefinite. Then, a hyperplane H(a, b) = {z|aT z = b}, where

a ∈ �n\{0} and b ∈ � which separates the two classes of points with maximal

probability with respect to all distributions having these mean and covariance

matrices is determined. Mathematically the resulting optimization problem can

be formulated as:

max
α,a�=0,b

α (3.4)

Subject to

inf
x∼(x,Σx)

Pr
{
aTx ≥ b

}
≥ α

inf
y∼(y,Σy)

Pr
{
aT y ≤ b

}
≥ α

After some manipulations by exploiting the powerful theorem by Popescu and

Bertsimas [28] that states that:

sup
y∼(y,Σy)

Pr {y ∈ S} =
1

1 + d2
, (3.5)

with d2 = infy∈S(y − y)Σ−1
y (y − y), the above problem can be simplified as [27]:

min
α

∥∥∥∥Σ 1
2
xa

∥∥∥∥
2
+
∥∥∥∥Σ 1

2
y a

∥∥∥∥
2

(3.6)

Subject to

aT (x− y) = 1

and setting b to the value

b∗ = aT
∗ x̄− κ∗ ‖Σxa‖ , (3.7)

where κ(α) =
√

α
1−α and a∗, κ∗ are the optimal parameters. The geometric inter-

pretation of MPM binary class classification problems is shown in Figure 3.2.

The robustness of this approach is created by giving the estimation of mean and

covariance of each class of the data. It is assumed that the mean and covariance

matrix of each class are only known within some specified set. In particular, it is

assumed that (x̄,Σx) ∈ X, where X is a subset of �n × S+
n , where S+

n is the set

16

Figure 3.2: MPM classifier for binary-class classification problem [27]

of n× n symmetric, positive semidefinite matrices. Likewise a set Y is describing

uncertainty of the mean and covariance matrix of the random variable y. The

robust version of MPM is formulated as:

max
α,a�=0,b

α (3.8)

Subject to

inf
x∼(x,Σx)

Pr
{
aTx ≥ b

}
≥ α∀(x̄,Σx) ∈ X

inf
y∼(y,Σy)

Pr
{
aT y ≤ b

}
≥ α∀(ȳ,Σy) ∈ Y

Geometric interpretation of robust MPM for a binary class classification prob-

lem is shown in Figure 3.3. In the case of nonlinear separability, the kernel method

is used by mapping all the data into a higher dimensional feature space. In the

feature space, we want to find a hyperplane H(a, b) = {ϕ(z)|aTϕ(z) = b} that

corresponds to a nonlinear decision boundary D(a, b) = {z ∈ �n|aTϕ(z) = b} in

the input space �n (a ∈ �n \{0} and b ∈ �).

17

Figure 3.3: Robust MPM classifier for binary-class classification problem [27]

3.4 Robust Classification with Interval Data

El Ghaoui et al.[17] developed a binary linear classification model to cope with the

problems where the data points are assumed to be unknown, but bounded within

given hyper-rectangles, i.e. the covariates are bounded within intervals explicitly

given for each data point separately. Let X denote a n×N matrix of N nominal

data points xi ∈ �n, with corresponding label vector y ∈ {−1,+1}N , Σ is a n×N

matrix of positive numbers, with columns σi, i = 1, .., N . The data then can be

expressed in an interval matrix model as: X(ρ) = {Z ∈ �n×N : X − ρΣ ≤ Z ≤
X + ρΣ}, where inequalities are understood componentwise. The standard error

matrix Σ reflects the amplitude of the uncertainty for every covariate.The scalar

ρ is a global measure of uncertainty. The problem then is addressed by designing

a robust classifier, wT b + b. In this setting the worst-case value of a given loss

function, over all possible choices of the data in these multi-dimensional intervals is

minimized. To measure the performance of the classifier on the uncertain training

data, the robust loss function λ, is introduced, which depends on the classifier

parameters w, b, the uncertain training set X(ρ), as well as on the label vector y.

18

�

+1

-1

x + = 0w bT

+1-1

x+

x�

xx +� �

Figure 3.4: Linear classifier for AND problem with interval data

The linear programming SVM problem formulation on Hinge loss function [17]

is given as:

λSV M (w, b) = max
Z∈X(ρ)

N∑
i=1

(1 − yi(wT zi + b))+ =
N∑

i=1

(1 − yi(wTxi + b)) + ρσT
i |w|+),

(3.9)

where Hinge loss function is defined as:

LSV M (w, b, Z, y) =
N∑

i=1

(1 − yi(wT zi + b)). (3.10)

In their paper [17], two different formulation of robust models are developed by

applying logistic regression and MPM loss functions.

Figure 3.4 depicts the classification problem with interval data for the AND

problem.

3.5 Multi-Class Support Vector Machines

Originally SVMs were designed for binary classification. However, how to extend

the SVM model effectively to multiclass classification is still an on-going research

issue [24]. Currently, there two main approaches for multi class SVM. One is

19

by constructing and combining several binary classifiers. The other one is by

directly considering all the data into a single optimization formulation. The first

approach where several binary classifiers are constructed and combined includes

two methods: One-against-all (OAA), and One-against-one (OAO) [24]. Some

research utilizing the second approach is proposed by Vapnik [40], Weston and

Watkins [41], Bredensteiner and Bennet [11], Crammer and Singer [14].

3.5.1 One-against-all (OAA) Method

By this method, for k-class classification problems, we construct k classifiers where

k is the number of classes. Let’s call our classifier ρ. In this method, ρi is trained

with all of the examples in the ith class with positive labels +1) and all other

examples with negative labels (-1).

�1=(w1-w2)Tx+(b1-b2)=0

(w1-w2)Tx+(b1 - b2)=+1

(w1-w2)Tx+(b1- b2)=-1�
2

�
3

2

1

3

Figure 3.5: SVM classifier for three-class classification problem

In a three-class classification problem as shown in Figure 3.5, for example,

when we train ρ1, all points in class 1 are labeled with +1 and the other points

from class 2 and 3 are labeled with -1. Likewise, when we train ρ2 all points in

class 2 we label with +1 and all other points from class 1 and 3 are labeled with

-1. We do this for all i = 1, 2, 3. Given � training data (x1, y1), .., (x�, y�) where

xi ∈ Rn, i = 1, 2, .., � and yi ∈ S = {1, .., k} is the class of xi, the ith classifier

20

solves the following optimization problem [24]

min
wi,bi,tij

1
2
(wi)Twi + C

�∑
j=1

tij (3.11)

Subject to

wiϕ(xj) + bi ≥ 1 − tij, if yj = i

wiϕ(xj) + bi ≤ −1 + tij, if yj �= i

tj ≥ 0, j = 1, .., �, i = 1, .., k

After solving (3.11), there are k decision functions w1ϕ(x)+b1, w2ϕ(x)+b2, .., wkϕ(x)+

bk. Then, the class of point x is determined by the largest value of the decision

function:

j = class of x = arg max
i=1,..,k

wiϕ(x) + bi, where j ∈ S (3.12)

Practically, we solve the dual problem of (3.11) as in (2.4) whose number of

variables is the same as the number of data in the problem. Hence k l-variable

quadratic programming problems are solved.

3.5.2 One-against-One (OAO) Method

This method constructs k(k − 1)/2 classifiers where each one is trained on data

from two classes. For example, if we have a three-class classification problem we

have to construct 3 classifiers: ρ12, ρ13 and ρ23. When we train ρ12, all points from

class 1 are labeled with +1 and all points from class 2 are labeled with −1. The

same approach is applied when we train ρ13 and ρ23. For training data from ith

and j th classes, we solve the following binary classification problem [24]:

min
wij ,bij ,tij

1
2
(wij)Twij + C

∑
r

tijr (3.13)

Subject to

wijϕ(xr) + bij ≥ 1 − tijr , if yr = i

wijϕ(xr) + bij ≤ −1 + tijr , if yr = j

tijr ≥ 0,

21

where r is referring to the data point index for each class. After all classifiers

k(k−1)/2 are constructed, there are different methods for doing the future testing.

One strategy is max-vote. Based on this strategy, for classifier ρij, if the sign of

a new point x is in the ith class, then the vote for the ith class is added by one.

Otherwise, the vote for the j th class is increased by one. We repeat this step for

all classifiers. Then, we predict x as being in the class with the largest vote. In

the case where two classes have identical votes, we select the one with the smallest

index. Practically, we solve the dual problem of (3.13) as in (2.4) whose number

of variables is the same as the number of data in the two classes. Hence if on

the average, each class has l/k data points, we have to solve k(k − 1)/2 quadratic

programming problems where each of them has 2l/k variables.

3.5.3 One Optimization Problem

The second approach of multiclass SVM is the one that considers all the data

in one optimization problem. Weston and Watkins [41] proposed the following

problem formulation to solve multiclass-SVM:

min
1
2

k∑
m=1

wT
mwm + C

�∑
i=1

�∑
m�=yi

tmi (3.14)

Subject to

wT
yi
xi + byi ≥ wT

mxi + bm + 2 − tmi

tmi ≥ 0, i = 1.., � m ∈ {1, .., k}\yi

This gives the decision function:

f(x) = arg max
k

[wT
i x+ bi], i = 1, .., k (3.15)

After some manipulations, we have the following dual problem to solve:

max 2
∑
i,m

αm
i +

∑
i,j,m

[−1
2
yiyj + αm

i α
yi
j − 1

2
αm

i α
m
j](xi, xj) (3.16)

Subject to
�∑

i=1

αn
i =

�∑
i=1

cni Ai, n = 1, .., k

22

0 ≤ αm
i ≤ C, i = 1, ..�

�∑
i=1

αyi
i = 0

i = 1.., � m ∈ {1, .., k}\yi,

where Ai =
k∑

i=1
αm

i and cni =

⎧⎪⎨
⎪⎩

1 if yi = n

0 if yi �= n

This gives the decision function:

f(x) = arg max
n

[
∑

i:yi=n

(cni Ai − αn
i)(xT

i x) + bn] (3.17)

As usual the inner products (xT
i x) in (3.17) and (3.16) can be replaced by the

kernel k(xi, xj).

In a different way, Bredensteiner and Bennet[11] proposed multicategory clas-

sifiers using SVMs. Two new hybrid approaches, k-Robust Linear Programming

(k-RLP) and multi category-SVM (M-SVM), are developed as a combination of

Multicategory Discrimination Method(M-RLP) as described in detail in [5, 6] and

SVM. M-RLP constructs a piecewise-linear discriminant for a k-class problem us-

ing a single linear program. k-RLP uses one-against all method to construct k

RLP-classifiers. Like in Robust Linear Programming (RLP) [5, 6], M-RLP does

not include any terms for maximizing the margin and it does not directly permit

the use of generalized inner products or kernels to allow extension to the nonlinear

case. M-SVM is developed by adding regularization terms to M-RLP.

In [14], Crammer and Singer proposed a direct method for training multiclass

classifiers. By using the dual of the optimization problem, kernels are incorporated

with a compact set of constraints and decompose the dual problem into a set of

multiple optimization problems of reduced size. An efficient fixed-point algorithm

for solving the reduced optimization problems is described and its convergence is

proved.

23

Chapter 4
Robust Kernel Feasibility-Approach

and Robust SVM

4.1 Feasibility-Approach as An Optimization Problem

In this chapter and the next two chapters, we develop our models. We begin with

the robust feasibility approach (R-FA) for binary classification problems.Then, this

is followed by robust support vector machine (R-SVM). In the next chapter, we

extend our models to multiclass classification problems. The next step is extending

our models for function approximation or regression problems.

As the SVM algorithm, the feasibility-approach algorithm can be formulated

through an optimization problem. Our motivation comes from the following ar-

gument. Suppose that we have a set of � samples {x1, x2, .., x�} and we want a

weight vector w and a bias b that satisfies yi(wxi + b) ≥ 1 for all i = 1, .., �. This

feasibility problem can be expressed as an LP problem [13] by introducing an ar-

tificial variable t ≥ 0 and solving the following

min t (4.1)

Subject to

24

yi(wTxi + b) + t ≥ 1, i = 1, .., �

t ≥ 0,

where w ∈ �n and b and t are scalar variables. If the optimal value t̂ = 0, then

the samples are linearly separable and we have a solution. If t̂ > 0, there is no

separating hyperplane and we have a proof that the samples are non-separable.

By minimizing the slack variable t we can decide if the separation is feasible. In

contrast to the SVM approach, we keep the same slack variable t constant over the

separation constraints. As shown in Figure 2.3, here we minimize the deviation of

points from the supporting hyperplanes wx+ b = ±1.

4.2 R-FA and R-SVM Formulation

Now consider that our data are perturbed. Instead of having the input data point

xi we have xi = x̃i +ui where ui is a bounded perturbation with ||ui|| ≤ √
η where

η is a positive number, and x̃i is the center of the uncertainty sphere where our

data point is located. Therefore, the constraints in (4.1) become

yi(< w,xi > +b) + t ≥ 1 ⇔ (4.2)

yi(< w, x̃i > + < w,ui > +b) + t ≥ 1, i = 1, .., �

t ≥ 0

Our concern is the problem of classification with respect to two classes. In order

to have the best separating hyperplane we try to minimize the dot product of w

and ui in one side of the separating hyperplane (class -1) and maximize the dot

product of w and ui in the other side (class 1) subject to ||ui|| ≤ √
η. By this logic

we are trying to maximize the distance between the classifier to both points on

different sides (see Figure) 4.1.

Therefore, we have to solve the following problem

max < w,ui > (4.3)

Subject to ||ui|| ≤ √
η

25

Figure 4.1: Finding the best classifier for data with uncertainty. The bounding planes

are moved to the boundary of the spheres to obtain maximum margin

Using Cauchy’s Schwarz inequality (| < w,u > | ≤ ‖w‖ . ‖u‖ ⇒ −‖w‖ . ‖u‖ ≤<
w,u >≤ ‖w‖ . ‖u‖), the maximum of < w,ui > is equal to ‖w‖ . ‖u‖. Hence,

referring to (4.3) the maximum of the dot product of < w,ui > will be
√
η ‖w‖.

By substituting this maximum value in (4.2), we have

min t (4.4)

Subject to
√
η ‖w‖ − wx̃i − b+ t ≥ 1, for yi = −1

√
η ‖w‖ + wx̃i + b+ t ≥ 1, for yi = +1

t ≥ 0, i = 1, .., �

If we map the data from the input space to the feature space F ,we can represent

w in the space F as

w =
�∑

i=1

αiϕ(x̃i) (4.5)

By substituting w with the above representation and substituting < ϕ(x̃), ϕ(x̃)′ >

with k(x̃, x̃′), we have the following R-FA formulation:

min t (4.6)

26

Subject to
√
η
√
αTKα−Kiα− b+ t ≥ 1, for yi = −1

√
η
√
αTKα+Kiα+ b+ t ≥ 1, for yi = +1

t ≥ 0, i = 1, .., �,

where Ki is the 1x� vector corresponding to the ith line of the kernel matrix K.

Note that we reorder the rows of the matrix K based on the label. It is important

to note that most of the time we do not need to know explicitly the map ϕ. The

important idea is that we can replace < ϕ(x), ϕ(x)′ > with any suitable kernel

k(x, x′).

Combining the constraints which include uncertainty term as in the feasibility-

approach in the SVM model (2.3), we have the following R-SVM formulation:

min
1
2
αTKα+ C

�∑
i=1

ti (4.7)

Subject to
√
η
√
αTKα−Kiα− b+ ti ≥ 1, for yi = −1

√
η
√
αTKα+Kiα+ b+ ti ≥ 1, for yi = +1

ti ≥ 0

By the margin(η), we define the margin of separation when the level of uncertainty

is η. Then

margin(η) =
(1 + ‖w‖√η − b) − (−1 − b+

√
(η) ‖w‖)

‖w‖ (4.8)

=
2 + 2

√
η ‖w‖

‖w‖ =
2

‖w‖ + 2
√
η = margin(0) + 2

√
η.

Note that the margin of separation is increasing. In the case of robust optimization

formulation [36], margin(η) = margin(0)-2
√
η.

4.3 Optimization Approach for R-FA and R-SVM

The formulation in equation (4.6) is obviously a nonlinear programming problem.

This problem is in the class of nonlinear constrained optimization problems. In

27

constrained optimization, the general aim is to transform the problem into an

easier subproblem that can then be solved and used as the basis of an iterative

process. The general form of a constrained optimization problem is

min f(x) (4.9)

Subject to

gi(x) = 0, i = 1, ..,me

gi(x) ≤ 0, i = me + 1, ..,m

xl ≤ x ≤ xu,

where at least one of the constraints is nonlinear. A characteristic of a large class

of early methods is the conversion of the constrained problem to an equivalent un-

constrained problem or into a problem with simple constraints. Basically, there are

two alternative approaches. The first is called the penalty or the exterior penalty

function method, in which a penalty term is added to the objective function for any

violation of the constraints. This method generates a sequence of infeasible points,

hence its name, whose limit is an optimal point to the original problem. The sec-

ond method is called the barrier or interior penalty function method, in which a

barrier term that prevents the points generated deviating from the feasible region

is added to the objective function. This method generates a sequence of feasible

points, whose limit is an optimal point to the original problem [1]. These methods

are now considered relatively inefficient and have been replaced by methods that

have focused on the solution of the Karush-Kuhn-Tucker (KKT) equations. The

KKT equations are necessary conditions for optimality for a constrained optimiza-

tion problem. Referring to the general problem in (4.9), KKT equations can be

stated as

∇f(x∗) +
m∑

i=1

λ∗i∇gi(x∗) = 0 (4.10)

λ∗i∇gi(x∗) = 0, i = 1, ..,me

28

λ∗i ≥ 0, i = me + 1, ..,m.

The solution of the KKT equations forms the basis to many nonlinear pro-

gramming algorithms. These algorithms attempt to compute the Lagrange multi-

pliers directly. One of the algorithms is Sequential Quadratic Programming (SQP)

method. SQP belongs to the most powerful nonlinear programming algorithms we

know today for solving differentiable nonlinear programming problems of the form

(4.9). In this section we will describe the basic ideas of the SQP method for solving

nonlinearly constrained optimization problems. In SQP, we solve QP subproblems

sequentially to find the optimal solution for the original problem. SQP employs

Newton’s method (or quasi-Newton methods) to directly solve the KKT condition

for the original problem. As a result, the accompanying subproblem turns out to

be the minimization of quadratic function to the Lagrangian function optimized

over a linear approximation to the constraints. The Lagrangian function is given

as

L(x, λ) = f(x) +
m∑

i=1

λigi(x) (4.11)

This method closely mimics Newton’s method for constrained optimization as

in the case of unconstrained optimization. At each major iteration, we solve a

quadratic programming subproblem. The solution obtained from solving this sub-

problems then is used to form a new iterate. The QP subproblem of (4.11) is given

as

min
1
2
dTHkd+ ∇f(xk)T d (4.12)

∇gi(xk)Td+ gi(xk) = 0, i = 1, ..,me

∇gi(xk)Td+ gi(xk) ≤ 0, i = me + 1, ..,m.

In this subproblem formulation we are linearizing the nonlinear constraints. The

term Hk in the formulation is a positive definite approximation of the Hessian

matrix of the Lagrangian function (4.11), the vector d is the direction of descent

and the variable we are trying to compute. This formulation can be solved using

29

any QP algorithm by using a starting point xk = x0. This solution is then used to

form the next iterate

xk+1 = xk + αkdk

The step length αk is determined using an appropriate line search technique so that

a sufficient decrease of a merit function(ψ) is obtained. At each major iteration,

a positive definite Hessian matrix is calculated using the BFGS method [29]. The

updating rule is given as follows

Hk+1 = Hk +
qkq

T
k

qT
k sk

− HT
k Hk

sT
kHksk

, (4.13)

where

sk = xk + 1 − xk, qk = ∇f(xk+1) +
m∑

i=1

λ∗i∇gi(xk+1) −
(
∇f(xk) +

m∑
i=1

λ∗i∇gi(xk)

)
.

Powell [29] suggests to keep the Hessian matrix H positive definite. To do this

we have to maintain qT
k sk positive and initialize H with a positive definite matrix.

The step length parameter αk is required to form a new iterate xk+1 to enforce

the iterates of the SQP algorithm eventually to get closer to x∗, when starting

from arbitrary initial values. The standard way to ensure that a reduction in ψ

indicates progress is to construct ψ such that the solutions of 4.9 are unconstrained

minimizers of ψ. This brings us to the idea of penalty functions. Another attribute

of the merit function is that it should lead the iterates of the algorithm and provide

a measure of progress by means of exhibiting a descent. In this implementation

the merit function proposed by Han [21] and Powell [29] is used. The steplength

αk should satisfy at least a sufficient decrease of a merit function given by

ψ(x) = f(x) +
me∑
i=1

rigi(x) +
m∑

i=me+1

ri max[0, gi(x)], (4.14)

where x is function of α.

30

Powell [29] recommends setting the penalty parameter

ri = (rk+1)i = max
i

{
λi,

1
2
((rk)i + λi)

}
, i = 1, ..,m. (4.15)

In this implementation, the initial penalty parameter ri is set to:

ri =
|∇f(x)|
|∇g(x)| . (4.16)

This ensures that constraints with smaller gradients provide large contributions to

the penalty parameter that would be the case for active constraints at the solution

point. A further discussion on the implementation of SQP for solving nonlinear

programming can be found in [20].

4.4 Experiments and Results

4.4.1 Experiments

In this study, some experiments were done for the AND and Exclusive OR (XOR)

problems. Both R-SVM and R-FA were implemented on AND and Exclusive OR

(XOR) problems. These experiments were to investigate how is the behavior of

misclassification error with respect to the values of η, the feasibility-approach can

still separate the data correctly by applying different level of uncertainty η. The

AND problem is a two-class classification problem where two sets of points can

be separated linearly (see Table 4.1). Because of this linearity, a kernelization is

not necessary. To judge the performance of the kernel feasibility-approach, SVM

as formulated in (2.2) was investigated. The SVM formulation is modified by

replacing w with w =
�∑

i=1
αiϕ(xi) to handle the case of nonlinearity in the case of

the XOR problem (see Table 4.2).

The XOR problem can be viewed as a special case of a more general problem

where we want to find a nonlinear classifier that classifies two sets of data points.

Different from the AND problem, the XOR problem is nonlinear separable. Be-

cause of the nonlinearity of the XOR problem, a mapping of the original data

31

Table 4.1: AND Problem

x1 x2 y

1 1 1

-1 1 -1

1 -1 -1

-1 -1 -1

Table 4.2: XOR Problem

x1 x2 y

1 1 -1

-1 1 1

1 -1 1

-1 -1 -1

into a higher dimensional feature space through a kernel mapping is necessary in

order to simplify the classification task by finding a linear classifier in the feature

space. We use a polynomial kernel function with degree 2 which is formulated as

K(xi, xi) = (xix
′
i +1)2 [23]. By this kernel function, we can compute the matrix K

with dimension � by �, where � is the number of data points. For example K(1, 1),

using the data in Table 4.1, can be computed as follows:

x1 = (1, 1)

x1x
′
1 = [1 1] [1 1]′ = 2

(x1x
′
1 + 1)2 = 9

32

With the same procedure for all xi, we obtain matrix K as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.17)

4.4.2 Results of AND Problem

Using the data in Table 4.1, for the feasibility approach, we have the following

optimization problem for the AND problem.

min t (4.18)

Subject to
√
η
√

(w2
1 +w2

2) + w1 + w2 + b+ t ≥ 1
√
η
√

(w2
1 +w2

2) + w1 − w2 − b+ t ≥ 1
√
η
√

(w2
1 +w2

2) − w1 + w2 − b+ t ≥ 1
√
η
√

(w2
1 +w2

2) + w1 + w2 − b+ t ≥ 1

t ≥ 0

The corresponding SVM optimization problem is:

min
1
2
wTw +C

�∑
i=1

ti (4.19)

Subject to
√
η
√
w1

2 + w2
2 + w1 + w2 + b+ ti ≥ 1

√
η
√
w1

2 + w2
2 + w1 − w2 − b+ ti ≥ 1

√
η
√
w1

2 + w2
2 − w1 + w2 − b+ ti ≥ 1

√
η
√
w1

2 + w2
2) + w1 + w2 − b+ ti ≥ 1

ti ≥ 0

The results of experiments on AND problem using R-FA and R-SVM are shown in

Tables 4.3 and 4.4. The results show that R-FA and R-SVM robust to the change

33

of the level of uncertainty η. By changing the vlue of η both classifiers still classify

the points correctly.

Table 4.3: w and b values for R-FA on AND problem, with different uncertainties η

η

Variable 0.0 0.1 0.5 0.6 1.1 1.2

w1 1 0.6910 0.5000 0.4772 0.4027 0.3950

w2 1 0.6910 0.5000 0.4772 0.4027 0.3950

b -1 -0.6910 -0.5000 -0.4772 -0.4027 -0.3881

t 0 0 0 0 0 0

result(ŷ) correct correct correct correct correct correct

Table 4.4: w and b values with R-SVM approach for AND problem, with different un-

certainties η, C = 1

η

variable 0.0 0.1 0.5 0.6 1.1 1.2

w1 1 0.6910 0.5000 0.4772 0.4027 0.3923

w2 1 0.6910 0.5000 0.4772 0.4027 0.3923

b -1 -0.6910 -0.5000 -0.4772 -0.4027 -0.3923

margin 0.7071 1.0233 1.4142 1.4817 1.7559 1.8026

result(ŷ) correct correct correct correct correct correct

4.4.3 Results of XOR Problem

Using the data in Table 4.2, we have the following feasibility-approach optimization

problem for XOR problem.

min t (4.20)

Subject to

(
√
η
√

(9α2
1 + 9α2

2 + 9α2
3 + 9α2

4 + 2α1α2 + 2α1α3 + 2α1α4 +

34

2α2α3 + 2α2α4 + 2α3α4) − 9α1 − α2 − α3 − α4 − b+ t ≥ 1

(
√
η
√

(9α2
1 + 9α2

2 + 9α2
3 + 9α2

4 + 2α1α2 + 2α1α3 + 2α1α4 +

2α2α3 + 2α2α4 + 2α3α4) + α1 + 9α2 + α3 + α4 + b+ t ≥ 1

(
√
η
√

(9α2
1 + 9α2

2 + 9α2
3 + 9α2

4 + 2α1α2 + 2α1α3 + 2α1α4 +

2α2α3 + 2α2α4 + 2α3α4) + α1 + α2 + 9α3 + α4 + b+ t ≥ 1

(
√
η
√

(9α2
1 + 9α2

2 + 9α2
3 + 9α2

4 + 2α1α2 + 2α1α3 + 2α1α4 +

2α2α3 + 2α2α4 + 2α3α4) − α1 − α2 − α3 − 9α4 − b+ t ≥ 1

t ≥ 0

The solutions of solving problem (4.20) with some different η values are shown in

Table 4.5. Table 4.6 shows the results of running SVM for the same problem with

different uncertainty values.

Table 4.5: Alpha and b values with feasibility-approach for different η for XOR problem

η

Variable 0.0 0.1 0.5 2 2.8 2.9

α1 -0.125 -0.125 -0.125 0.125 -0.1142 - 0.1130

α2 0.125 0.125 0.125 0.125 0.1142 0.1130

α3 0.125 0.125 0.125 0.125 0.1142 0.1130

α4 -0.125 -0.125 -0.125 0.125 -0.1142 -0.1130

b 0 0 0 0 0 0

result(ŷ) correct correct correct correct correct correct

4.5 Implementation on Real Data

For the implementation, the Iris data, breast bancer data [4], and tornado data [38]

were used. Iris data is a well known data set in machine learning which consists

of 150 data points. There are three classes in this data set. A subset of data

were taken from the Iris data that contain only two classes. Then, twenty different

35

Table 4.6: Alpha and b values with SVM approach with different η for XOR problem

η

Variable 0.0 .1 1 2 2.1

α1 -0.125 -0.1022 -0.0732 -0.0625 -0.0617

α2 0.125 0.1022 0.0732 0.0625 0.0617

α3 0.125 0.1022 0.0732 0.0625 0.0617

α4 -0.125 -0.1022 -0.0732 0.0625 -0.0617

b 0 0 0 0 0

margin 1.4142 1.7304 2.4142 2.8284 2.8634

result(ŷ) correct correct correct correct correct

samples for training and testing were withdrawn from this subset. There were

50 data points in each training set and 50 data points in each testing set. The

second experiments were done on breast cancer data with 683 data points and

9 attributes. This breast cancer databases was obtained from the University of

Wisconsin Hospitals, Madison. There are two labels indicating the type of cancer.

For the experiment, first, R-SVM and R-FA were trained with the whole training

set which contains 410 data points and tested on the rest of 273 data points.

The third data set was a tornado data set. The data set is the outputs from

WSR-88D radar. The lables of the data are tornado and non-tornado. The data

consist of 23 attributes. There are 749 data points for the training set that was

selected randomly and 18,202 data point for the testing set. The experiments were

done by varying the degree of uncertainty η to investigate how the generalization

error changes with increasing uncertainty. The experiments were done both for

the feasibility-approach and SVM with RBF kernel with spread 1. To solve the

resulting nonlinear optimization problems, computer codes written in MATLAB

using SNOPT solver which is embedded in the TOMLAB software package, were

used. SNOPT employs a sparse SQP algorithm with limited-memory quasi-Newton

approximations to the Hessian of Lagrangian. An augmented Lagrangian merit

36

function provides convergence from an arbitrary point [20]. The results of the

experiments are presented in Tables 4.7, 4.8 and 4.9. For comparisons the Minimax

Probability Machine (MPM) and robust MPM are run on the same data set.

Table 4.7: Percentage of average misclassified points for R-FA and R-SVM with different

η values on Iris data, training=50 points, testing=50 points, polynomial, d=2, C=100

η

Method 0.0 0.01 0.05 0.5 1 2

R-SVM 5.1 5.1 5.5 5.5 5.6 5.6

R-FA 6.9 7.0 7.0 8.6 8.7 10.7

Table 4.8: Percentage of average misclassified points for R-FA and R-SVM with different

η values on Breast Cancer data, training=410, testing=273, linear,C=10

η

Method 0.0 0.0001 0.001 0.01

Robust-SVM 3.19 3.15 3.10 4.82

R-FA 56.74 56.74 56.74 57.49

From Tables 4.7, 4.8 and 4.9, which show the impact of applying uncertainty

on the generalization error, we can make some conclusions. First, by applying

uncertainty η, the generalization error can be improved for some data. On a specific

optimal value of uncertainty level η, the generalization reaches the minimum value.

This can be seen from the plot of misclassification error versus η value on Tornado

data in Figure 4.2. Second, R-SVM is better than R-FA in terms of generalization

errors. In Table 4.10, we compare the results of R-SVM and R-FA and robust

MPM. From the table we observe that R-SVM is better than robust-MPM for

the three data sets: Iris, breast cancer and tornado. The slight difference value

37

Table 4.9: Percentage of misclassified points for R-FA and R-SVM with different η values

on Tornado data, training=749 points, testing=18,202 points, polynomial, d=2, C=100

η

Method 0.0 0.1 0.5 1 1.5 2 2.5 3

Robust-SVM 1.21 1.8 3.9 1.0 1.3 0.9 2.7 27.6

Robust-FA 5.34 83.75 22.30 14.89 2.05 91.03 88.58 1.97

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

η

m
is

cl
as

si
fic

at
io

n
er

ro
r

Figure 4.2: Plot of misclassification error vs uncertainty η for R-SVM classifiers on Tor-

nado data

38

Table 4.10: Percentage of misclassified errors on three data sets for different methods

Method

Data FA SVM MPM Robust Robust Robust

FA SVM MPM

Iris 6.9 5.1 11.0 7.0 5.1 8.7

Breast Cancer 56.74 3.19 3.0 56.74 3.10 3.6

Tornado 5.34 1.6 1.2 1.9 0.9 1.1

of misclassification errors between regular SVM and R-SVM results is meaningful

especially when the testing size is large. As an example let’s take the case of

tornado prediction problem. When we decrease the misclassification error from

0.016 to 0.009, it means that we decrease the rate of predicting incorrectly by

0.007. If we have 18,202 observations in the testing set, this number is equivalent

with 127 observations. This value is a significant improvement in the case of

tornado prediction.

39

Chapter 5
Robust Multiclass Kernel Feasibility

Approach and SVM

5.1 Robust Multiclass Classification

In the previous chapter, we have discussed the case of binary classification where

the set of labels y = {y1, .., ym} ⊆ {±1}. In this chapter, the discussion will be

extended to the cases where the set of labels y = {y1, .., ym} ⊆ {1, .., k}. Currently

there are two main approaches to extend the binary into a multiclass classification.

One is by constructing and combining several binary classifiers while the other is

by directly considering all data in one optimization formulation [24]. In the case of

multiclass SVMs, the idea of casting a multiclass problem as a single constrained

optimization problem with a quadratic objective function was proposed by Weston

and Watkins [41], and Bredensteiner and Bennet [11]. However, the size of the re-

sulting optimization problems devised in the above papers is typically large and

complex [14]. Hereby, we adopt the first approach where we construct and com-

bine several binary classifiers [40, 24]. In this approach there are two procedures:

One-against-all (OAA) and One-against-one (OAO) [24]. In the next sections we

40

develop robust multiclass classifiers based on these two procedures.

5.2 One-against-All (OAA) Method

As explained in section 3.5.1, by the OAA method, for k-class classification prob-

lems, we construct k classifiers where k is the number of classes. Now suppose

we are given m training data (x1, y1), .., (xm, ym) where xi ∈ Rn, i = 1, 2..,m and

yi ∈ S = {1, .., k} is the class of xi. Then the ith classifier solves the following

robust feasibility-approach optimization problem [24]

min ti (5.1)

Subject to
√
η||wi|| + wiϕ(x̃j) + bi + ti ≥ 1, if yj = i

√
η||wi|| − wiϕ(x̃j) − bi + ti ≥ 1, if yj �= i

ti ≥ 0.

After solving (5.1), there are k decision functionsw1ϕ(x)+b1, w2ϕ(x)+b2...wkϕ(x)+

bk. Then, the class of point x is determined by the largest value of the decision

function:

j = class of x = arg max
i=1,..,k

wiϕ(x) + bi, where j ∈ S = {1, .., k} (5.2)

The following example is an illustration of how this method works.

Example 1

Suppose we have a three-class problem. After all 3 classifiers are constructed, new

four points (x1, x2, x3, x4) are coming for testing. The prediction values of each

classifier are given in the following matrix. Each column of the matrix represents

41

the prediction values for each classifier.

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

18.5965 14.7108 −33.3073

−12.3010 4.6637 7.6373

−9.4610 8.4008 1.0602

−20.0123 2.6552 17.3571

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The maximum value of ŷ for each data point are:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

18.5965

7.6373

8.4008

17.3571

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Then, based on these maximum ŷ values, the classes for these four new points

respectively are 1, 3, 2, and 3. For robust multiclass SVM(R-MSVM), we use

exactly the same procedure as explained above. The difference is that in R-MSVM,

for the ith R-SVM classifier, we solve the following problem:

min
wi,bi,ti

1
2
(wi)Twi + C

�∑
j=1

tij (5.3)

Subject to
√
η||wi|| + wiϕ(x̃j) + bi ≥ 1 − tij , if yj = i

−√
η||wi|| + wiϕ(x̃j) + bi ≤ −1 + tij , if yj �= i

tj ≥ 0, j = 1, .., �

5.3 One-against-One (OAA) Method

As explained in section 3.5.2, this method constructs k(k − 1)/2 classifiers where

each one is trained on data from two classes. For training data from ith and

j th classes, we solve the following robust feasibility-approach binary classification

42

problem [24]:

min ti (5.4)

Subject to
√
η||wij || + wijϕ(x̃r) + bij + tij ≥ 1, if yr = i

√
η||wij || − wijϕ(x̃r) − bij + tij ≥ 1, if yr = j

tij ≥ 0

After all classifiers k(k − 1)/2 are constructed, there are different methods for

doing the future testing. One strategy is max-vote. Based on this strategy, for

classifier ρij if a new point x is in ith class,then the vote for the ith class is added

by one. Otherwise, the vote for j th is increased by one. We repeat this step for

all classifiers. Then, we predict x is in the class with the largest vote. In the case

where two classes have identical votes, we select the one with the smaller index.

To illustrate this method an example is given below.

Example 2

We are applying this method on the same problem as in example 1. After con-

structing all classifiers, we obtain ŷ from classifier ρ12 as

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.4244

−3.8363

−3.4960

−5.2525

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Then the vote is given as :

class 1 class 2 class 3

1 0 0

0 1 0

0 1 0

0 1 0

43

The ŷ from classifier ρ13 is

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−6.7500

−0.8855

2.7612

−7.5913

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

After considering classifier ρ12and ρ13 the vote becomes:

class 1 class 2 class 3

1 0 1

0 1 1

1 1 0

0 1 1

ŷ from classifier ρ13 is

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−24.2676

1.4833

−3.6762

7.3307

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

After considering classifier ρ12, ρ13 and ρ23the vote becomes:

class 1 class 2 class 3

1 0 2

0 2 1

1 1 1

0 2 1

Then, based on these ŷ values, the classes for these four new points respectively are

3, 2, 1 and 2. For the R-MSVM we use exactly the same procedure as explained

above. The difference is that in R-MSVM, for each pair of classes, we solve the

following robust binary classification problem:

min
wij ,bij ,tij

1
2
(wij)Twij + C

∑
r

tijr (5.5)

44

Subject to
√
η||wij || + wijϕ(x̃r) + bij + tijr ≥ 1, if yr = i

√
η||wij || − wijϕ(x̃r) − bij + tijr ≥ 1, if yr = j

tijr ≥ 0

5.4 Implementation

In this section, we apply the robust feasibility-approach for multiclass (R-MFA)

and robust multiclass SVM (R-MSVM) on data sets where we introduce uncer-

tainties and using the two aforementioned procedures: One-against-One and One-

against-All. The Iris data with three classes, Balance Scale data with three classes,

Dermatology data with six classes and Glass data with six classes [9] and phase-

flow data with three classes [35] are used . The data sets are split into two sets:

training set and testing set. For the Iris data, the training size is 100 data and the

testing size is 50 data. Twenty different training and testing samples are chosen

randomly from the data set. The Balance Scale data consists of 625 data. For

the Balance Scale and Dermatology data, the ratio of training size and the testing

size is 70:30. There are six different training and testing samples that are selected

randomly. For flow phase data, there are four training and testing samples. The

experiments are done by using an RBF kernel with σ = 1 and C = 1. The results

of the experiments are presented in Tables 5.1, 5.2, 5.3, 5.4 and 5.5. For compar-

ison purposes, the multiclass Minimax Probability Machine (MMPM) and robust

MMPM [30] are run on the same data sets.

From Tables 5.1, 5.2, 5.3, 5.4 and 5.5, we see that the computation times of R-

MSVM using OAO are lower than those given by R-MSVM using OAA. In the case

that OAA and OAO have the same misclassification error, we can use computation

time as a second criterion to choose the best approach. We observe from Table

45

Table 5.1: Percentage of average misclassification error and computation time for Robust-

MFA and Robust-MSVM with different η values with OAA and OAO approach on Iris

data, polynomial, d=2, C=100

η

Approach Method 0.0 0.01 0.1 1 2

OAA R-MFA 6.1(0.6) 6.1(0.8) 6.1(0.9) 6.3(0.9) 13.9(0.9)

R-MSVM 5.1(2.4) 4.8(3.8) 4.8(5.2) 6.2(68.8) 6.2(67.4)

OAO R-MFA 6.3(0.4) 6.3(0.4) 6.3(0.5) 6.7(0.5) 11.0(0.5)

R-MSVM 5.1(2.8) 5.2(3.8) 4.5(2.4) 6.2(2.1) 6.2(1.6)

Table 5.2: Percentage of average misclassification error and computation time for Robust-

MFA and Robust-MSVM with different η values with OAA and OAO approach on Der-

matology data

η

Approach Method 0.0 0.001 0.01 0.1 1

OAA R-MFA 3.5(83.3) 3.5(115.2) 3.5(101.8) 3.5(109.9) 3.9(4.8)

R-MSVM 3.1(787.6) 2.7(68.8) 3.1(63.7) 3.3(64.6) 3.5(66.2)

OAO R-MFA 3.7(8.3) 3.7(8.7) 3.7(8.0) 3.7(8.3) 3.9(1.7)

R-MSVM 3.5(122.2) 3.1(9.8) 3.5(9.5) 3.7(9.0) 3.7(8.0)

Table 5.3: Percentage of average misclassification error and computation time for Robust-

MFA and Robust-MSVM with different η values with OAA and OAO approach on Balance

Scale data

η

Approach Method 0.0 0.1 0.5 1

OAA R-MFA 0.0(30.9) 0.0(69.1) 0.0(65.4) 0.0(4.6)

R-MSVM 0.0(22.6) 0.2(126) 0.2(176.5) 0.2(207.4)

OAO R-MFA 0.0(24.3) 0.0(50.1) 0.0(45.2) 2.6(3.5)

R-MSVM 0.0(14.6) 0.0(38.7) 0.0(65.6) 0.0(58.5)

46

Table 5.4: Percentage of average misclassification error and computation time for Robust-

MFA and Robust-MSVM with different η values with OAA and OAO approach on Glass

data

η

Approach Method 0.0 0.1 0.5 1

OAA R-MFA 42.8(169.3) 41.6(194.6) 42.2(136.9) 43.4(173.9)

R-MSVM 34.4(110.6) 41.3(88.0) 35.9(107.1) 40.6(103.7)

OAO R-MFA 37.8(24.7) 37.8(20.6) 36.3(6.8) 40.6(4.1)

R-MSVM 45.0(37.4) 42.8(25.8) 43.1(32.9) 44.4(27.8)

Table 5.5: Percentage of average misclassification error and computation time for Robust-

MFA and Robust-MSVM with different η values with OAA and OAO approach on Phase

Flow data
η

Approach Method 0.0 0.005 0.01 0.05 0.1

OAA R-MFA 2.41(6) 2.41(28.35) 2.41(27.4) 2.41(32.58) 2.41(33.38)

R-MSVM 2.41(58.68) 2.75(30.00) 1.60(25.83) 2.41(39.3) 2.41(35.2)

OAO R-MFA 4.59(3.28) 4.59(7) 4.59(6.68) 4.59(7.10) 4.59(6.38)

R-MSVM 3.32(22.75) 2.75(38.58) 1.60(24.9) 2.41(24.85) 2.41(27.43)

47

Table 5.6: Percentage of average misclassification errors on four data sets for different

methods
Method

Data MFA MSVM MMPM R-MFA R-MSVM R-MMPM

OAA Iris 6.1 5.1 3.5 6.1 4.8 6.9

Dermatology 3.5 3.1 6.1 3.5 2.7 2.6

Balance Scale 0.0 0.0 6.7 2.6 0.2 23.2

Glass 42.8 34.4 40.6 41.6 35.9 41.6

Flow phase 2.41 2.41 4.24 2.41 1.60 4.01

OAO Iris 6.3 5.1 3.5 6.3 4.5 10.0

Dermatology 3.7 3.5 11.9 3.7 3.1 3.3

Balance Scale 0.0 0.0 3.6 0.0 0.0 7.9

Glass 37.8 45.0 40.9 36.3 42.8 39.4

Flow phase 4.59 3.32 5.38 4.59 1.60 5.16

5.6 that for Iris, Dermatology and Phase Flow, R-MSVM is giving the minimum

misclassification error. This value is better than that given by regular MSVM. For

Balance Scale the R-MSVM performs the same as regular MSVM. For Glass data,

the uncertainty causes the R-MSVM performs worse than the regular MSVM. We

also investigate that R-MSVM outperforms R-MMPM for all data sets.

48

Chapter 6
Robust Kernel Feasibility-approach

and SVM for Regression

6.1 Basic Idea

By the introduction of Vapnik’s ε-insensitive loss function, SVM has been gener-

alized for function approximation or regression [31]. Established on the unique

theory of Structural Risk Minimization principle to estimate a function by min-

imizing an upper bound of the generalization error, SVM is shown to be very

resistant to the over-fitting problem, eventually achieving high generalization per-

formance. Suppose we have been given � training data, (xi, yi), i = 1, .., � with

input data x = {x1, x2.., x�} ⊆ �Nand corresponding outputs y = {y1, .., y�} ⊆ �.

By support vector regression, one wants to find a function f(x) that has at most

ε deviation from the actual target yi for all training data. Suppose we have the

49

following function as a regressor:

f(x) = wTϕ(x) + b, (6.1)

where ϕ(x) denotes a point in the high dimensional feature space F which is the

mapping of a point x in the input space. The coefficients w and b are estimated

by minimizing the regular risk function defined in equation (6.2).

min
1
2
‖w‖2 + C

1
�

�∑
i=1

Lε(yi, f(xi)) (6.2)

Subject to

yi − wϕ(xi) − b ≤ ε

wϕ(xi) − yi + b ≤ ε, i = 1, .., �,

where

Lε(yi, f(xi)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|yi − f(xi)| − ε|yi − f(xi)| ≥ ε

0, otherwise
(6.3)

The term ‖w‖2 is called the regularization term. Minimizing ‖w‖2 will make

a function as flat as possible, thus playing the role of controlling the function

capacity. The second term is the empirical error measured by the ε-insensitive

loss function. Using the idea of ε-insensitive loss function [39], one should seek to

minimize the norm of w in order to accomplish good generalization properties for

the regressor f . Therefore, we have to solve the following optimization problem in

the primal weight space:

min
1
2
‖w‖2 (6.4)

50

Subject to

yi − wϕ(xi) − b ≤ ε

wϕ(xi) − yi + b ≤ ε, i = 1, .., �

(6.5)

We assume that there is a function f that approximates all pairs (xi, yi) with

precision ε. In this case, we assume that the problem is feasible. In the case

of infeasibility, where some points might deviate from f ± ε, one can introduce

slack variables t, t∗ to cope with infeasible constraints of the optimization problem.

Then, the above problem can be formalized as [39]:

min
1
2
‖w‖2 + C

�∑
i=1

(ti + t∗i) (6.6)

Subject to

yi − wTϕ(xi) − b− ti ≤ ε, i = 1, .., �

wϕ(xi) − yi + b− t∗i ≤ ε, i = 1, .., �

ti, t
∗
i ≥ 0,

The constant C > 0 determines the trade off between the flatness of function f

and the amount up to which deviations larger than ε are tolerated. Any deviation

more than ε will be penalized with C. Figure 6.1 depicts the situation graphically.

Only the points outside the shaded region contribute to the cost insofar, as the

deviations are penalized in a linear fashion. In Support vector Regression (SVR),

ε is equivalent to the approximation accuracy placed on the training data points.

51

A small ε corresponds to a large slack variable t(∗)i and high approximation ac-

curacy. On the contrary, a large ε corresponds to a small slack variable t(∗)i and

low approximation accuracy. According to equation (6.6), a large slack variable

will make the empirical error having a large impact relatively to the regularized

term. In SVR, support vectors are the training data points lying on or outside the

ε-bound of the decision function. Therefore, the number of support vectors de-

creases as ε increases. Finally, by introducing Lagrange multipliers and exploiting

the optimality constraints, the decision function is explicitly given as:

f(x) =
�∑

i=1

(αi − α∗
i)K(xi, x) + b, (6.7)

where K(xi, x) is defined through the kernel function k.

t
t

Figure 6.1: ε-insensitive loss function. The points outside the shaded region are penalized

Now, consider that our data are perturbed. Instead of having the input data

point xi we have xi = x̃i + ui where ui is a bounded perturbation with ||ui|| ≤ √
η

where η is a positive number, and x̃i is the center of the uncertainty sphere where

our data point is located. Therefore, equation (6.6) becomes

52

min
1
2
‖w‖2 + C

�∑
i=1

(ti + t∗i) (6.8)

Subject to

yi− < w, x̃i > − < w,ui > −b− ti ≤ ε, i = 1, ..,m

< w, x̃i > + < w,ui > −yi + b− t∗i ≤ ε, i = 1, ..,m

ti, t
∗
i ≥ 0

∀ui ⊆ �d, such that||ui|| ≤ √
η.

By substituting w with Kiα, and the term < w,u > with its maximum value,

√
η
√
αTKα, we obtain a robust support vector regression (R-SVR) formulation

as:

min
1
2
αTKα+ C

�∑
i=1

(ti + t∗i) (6.9)

Subject to

yi −Kiα−√
η
√
αTKα− b− ti ≤ ε, i = 1, ..,m

Kiα+
√
η
√
αTKα− yi + b− t∗i ≤ ε, i = 1, ..,m

ti, t
∗
i ≥ 0

∀ui ⊆ �d, such that ||ui|| ≤ √
η.

The geometric illustration of robust SVR is given in Figure 6.2. Following the

above SVR formulation, the regression model for the robust feasibility approach

(R-FAR) is formulated as

min t (6.10)

53

�

�

Y

X

Figure 6.2: Geometric illustration of robust SVR

Subject to

yi −Kiα−√
η
√
αTKα− b− t ≤ ε, i = 1, ..,m

Kiα+
√
η
√
αTKα− yi + b− t ≤ ε, i = 1, ..,m

t ≥ 0

∀ui ⊆ �d, such that ||ui|| ≤ √
η.

Figure 6.3 and 6.4 illustrates the performance of SVR and FA on Titanium

data [16]. Table 6.1 shows the mean squared error (MSE) of FAR and SVR for

different σ and C on Titanium data.

Table 6.1: MSE of FAR for regression and SVR on Titanium Data with RBF kernel

Method MSE

FA, σ=1 4.44e-031

FA, σ=10 3.59e-027

SVR,σ=1,C=1 0.0048

SVR,σ=1,C=10 1.38e-004

54

— : actual data, + : σ = 1, C = 1, ◦ : σ = 1, C = 10

Figure 6.3: Plots of the actual data and SVR results with RBF kernel

6.2 Implementation

In this implementation R-SVR and R-FAR are applied in time series Flour price

data [12] and Abalone data [9]. Tables 6.2 and 6.4 show the performance of SVR

and FAR with uncertainty on Flour price data and Abalone data. As shown

in those tables, applying uncertainty can reduce the MSE of SVR significantly.

This does not occur for FAR. Table 6.3 indicates that varying ε can improve the

performance of SVR. Figure 6.5 shows the plots of actual and predicted values on

Flour price data.

55

Table 6.2: MSE of R-SVR and R-FAR on flour price data with RBF kernel with η varied,

ε = 0.0

η

Method 0.0 0.00001 0.0001 0.001 0.01

R-FAR, σ=10 279.18 8125 10822 235130 731690

R-SVR, C=1000, σ=10 265.79 164.32 121.89 46.33 381.35

Table 6.3: MSE of R-FAR and R-SVR on flour price data with RBF kernel with ε varied

ε

Method 0 1 3 5 10

R-FAR,σ=10,η=0.0 279.18 279.18 279.18 279.18 98.03

R-SVR,C=1000,σ=10,η=0.001 46.33 45.77 41.0366 47.90 98.90

Table 6.4: MSE and computation time (CPU time) for R-FA and R-SVM with different

η values on Abalone, training=750 points, testing=250 points, ε = 0.0

η

Method 0.0 0.001 0.01 0.1 1

R-FAR 41.95(663.0) 16.76(517.4) 443.86(831.1) 32.17(814.5) 72(4205.5)

R-SVR 7.76(193.15) 29.54(32.03) 21.52(28.16) 7.56(30.56) 32.83(44.14)

56

-*- : actual data, -+- : σ = 1, -◦- : σ = 10

Figure 6.4: Plots of the actual data and FA results with RBF kernel,

— :actual data, -+- : η = 0, -◦- : η = 0.001

Figure 6.5: Plots of the actual data and R-SVR results with RBF kernel on flour price

data

57

Chapter 7
Conclusions and Future Research

7.1 Conclusions

In this work, motivated by the presence of uncertainty in real data, robust classi-

fiers (R-SVM, R-MSVM, R-FA and R-MFA) and regressors (R-SVR and R-FAR)

have been developed. The impact of uncertainty on the data to the generaliza-

tion error was investigated for binary classification, multiclass classification and

regression problems. For classification, the computational results indicated that

robust SVM (R-SVM and R-MSVM) performs better than regular SVM for both

binary and multiclass classification problems. Robust SVM approach was better

than robust feasibilty (R-FA and R-MFA) in terms of generalization error. For

regression problems, robust SVR (R-SVR) improved the performance of regular

SVR. R-SVR outperforms robust feasibility approach for regression (R-FAR).

58

7.2 Future Research

Preliminary experimentations demonstrated that robust classifiers possess a promis-

ing potential for generalization. Extending the techniques developed in the disser-

tation will address problems in a more realistic sense. Future research might focus

on:

1. Different types of uncertainty such as in the case where the data are inside

a box of uncertainty. We can adopt a similar way like in [17] to determine

the uncertainty. Specifically, if X denote a n × N matrix of N nominal

data points xi ∈ �n, with corresponding label vector y ∈ {−1,+1}N , Σ

is a n × N matrix of positive numbers, with columns σi, i = 1, .., N , then

the data with uncertainty can be expressed in an interval matrix model as:

X(ρ) = {Z ∈ �n×N : X − ρΣ ≤ Z ≤ X + ρΣ},

2. Each data point has a different level of uncertainty. This means that each

data point has different level of uncertainty ui. In this research we assume

each data point has the same level of uncertainty u.

3. Each attribute has a different level of uncertainty. This means that for every

data point, the orientation of the uncertainty could be different for each

attribute or dimension. In this research we assume that the orientation of

the uncertainty is the same for each attribute or dimension.

4. Using L1 norm to develop a robust support vector machine as an alternative

to the L2 norm.

59

5. Investigate a theoritical error bound for the generalization error in the clas-

sification and regression case for the R-SVM approach.

6. Investigate computational methods for large scale problems following the

R-SVM optimization model.

60

Appendix A
Matlab Code for Classification
Problems

61

The flowchart for classification code

62

function [alpha,b]=tomtrainperc(x,y,ker,par,eta);
%This code is to compute alpha and b with SNOPT
% SNOPT is nonlinear solver embedded in TOMLAB
% This is a comewrcial software package
%for Feasibility Approach
%R(1) ... R(m) : represents alpha
% R(m+1) : represents b
% input : x - training sample
% y - training label, should have the same number
% of rows as x
% ker - kernel function
% par - kernel parameter
% eta - level of uncertainty
% output: alpha - lagrange multiplier
% b - bias
[m,c] =size(x);
% Finding kernel matrix
k=kernel(x’,ker,par);
z=y;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimization part
%%%%%%%%%%%%%%%%%%
x0=zeros(m+2,1);
lb1=-inf*ones(m+1,1);
ubc=-ones(m,1);
if eta∼=0
%problem structure in Tomlab
Prob=conAssign(’ofxor’,’ofxor g’,[],[],[lb1;0],[],’coba’,x0,[],[],[],...
[],[],’perccon3’,’perccon3 dc’,[],[],[],[ubc]);

else
Prob=conAssign(’ofxor’,’ofxor g’,[],[],[lb1;0],[],’coba’,x0,[],[],[],...
[],[],’perccon2’,’perccon2 dc’,[],[],[],[ubc]);
end
Prob.user.H=k;
Prob.user.z=z;
Prob.user.sqrteta=sqrt(eta);
R=tomRun(’snopt’, Prob, [], 2);
alpha=R.x k(1:m);
b=R.x k(m+1);
clear R;
%%%%%%%%%%%%%%%%%%%%%%%
function f=ofxor(x)
%Objective function
n=length(x)-2;
f=x(n+2);

63

%%%%%%%%%%%%%%%%%%%%%%%%
function g =ofxor g(x)
%Gradient of the obj function
g=zeros(length(x),1);
g(length(x))=1;

%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=perccon2(x,Prob);
%Constraint
k=Prob.user.H;
z=Prob.user.z;
n=length(x)-2;
kx = k’*x(1:n);
g=[z.*(-kx-x(n+1)) - x(n+2);kx’*x(1:n)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=perccon2 dc(x,Prob);
%Gradient of the constraint
k=Prob.user.H;
z=Prob.user.z;
n = length(x)-2;
J=zeros(n,length(x));
J(1:n,1:n) = -diag(z)*k’;
J(1:n,n+1) = -z;
J(1:n,n+2) = -1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=perccon3(x,Prob);
k=Prob.user.H;
z=Prob.user.z;
sqeta=Prob.user.sqrteta;
n = length(x) - 2;
x2k = x(1:n)’*k*x(1:n);
% s is uncertainty =(w,u)
s = sqeta*sqrt(x2k);
g=[-s + z.*(-k’*x(1:n)-x(n+1)) - x(n+2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=perccon3 dc(x,Prob);
%Gradient of the constraint
k=Prob.user.H;
z=Prob.user.z;
sqeta=Prob.user.sqrteta;
n = length(x) - 2;
J=zeros(n,length(x));
x2k = x(1:n)’*k*x(1:n);
%This is to avoid zero matrix
x2k=x2k+1e-10*eye(size(x2k));
s = sqeta*sqrt(x2k);
kx = x(1:n)’*k;

64

J(1:n,1:n) = -diag(z)*k’;
J(1:n,n+1) = -z;
J(1:n,n+2) = -1;
J(1:n,1:n) = J(1:n,1:n)-ones(n,1)*(sqeta/sqrt(x2k))*kx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha,b]=tomtrainsvm(x,y,ker,par,C,eta)
% This code is to compute alpha and b with SNOPT for svm problem
% R(1) ... R(m) : represents alpha
% R(m+1) : represents b
% input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% C - cost constant or upper bound for alpha
% eta - level of uncertainty
% output: alpha - lagrange multiplier
% b - bias
[m,c]=size(x);
% Finding kernel matrix
k = zeros(m,m);
k=kernel(x’,ker,par);
z=y;
% Optimization part
x0=zeros(2*m+1,1);
lb2=zeros(m,1);
lb1=-inf*ones(m+1,1);
ubc=-ones(m,1);
if eta ∼=0
Prob = conAssign(’svmof’,’svmof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’svmcon’,’svmcon dc’,[],[],[],[ubc]);
else
Prob =conAssign(’svmof’,’svmof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’svmcon1’,’svmcon1 dc’,[],[],[],[ubc]);
end
Prob.user.H=k;
Prob.user.z=z;
Prob.user.C=C;
Prob.user.sqrteta=sqrt(eta);
R=tomRun(’snopt’, Prob, [], 2);
alpha=R.x k(1:m);
b=R.x k(m+1);
clear R;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f]=svmof(x,Prob);
%The obj function
k=Prob.user.H;
z=Prob.user.z;

65

C=Prob.user.C;
sqeta=Prob.user.sqrteta;
m=size(x,1);
n = 0.5*(m - 1);
x2k = x(1:n)’*k*x(1:n);
sumslack=C*sum(x(n+2:m));
f=[0.5*x2k + sumslack];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=svmof g(x,Prob);
%Gradient of the obj function
k=Prob.user.H;
C=Prob.user.C;
m=length(x);
n = 0.5*(m-1);
J=zeros(length(x),1);
J(1:n) = x(1:n)’*k;
J(n+1)=0;
J(n+2:m)=C*ones(n,1);

function [g]=svmcon(x,Prob);
%Constraint
k=Prob.user.H;
z=Prob.user.z;
sqeta=Prob.user.sqrteta;
m=length(x);
n = 0.5*(m-1);
x2k = x(1:n)’*k*x(1:n);
s = sqeta*sqrt(x2k);
kx = k’*x(1:n);
slack=zeros(n,1);
for j=1:n
slack(j)=x(n+1+j);
end
g=[-s + z.*(-kx-x(n+1))-slack];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=svmcon dc(x,Prob);
%Gradient of the constraint
k=Prob.user.H;
z=Prob.user.z;
sqeta=Prob.user.sqrteta;
m=length(x);
n = 0.5*(m-1);
J=zeros(n,length(x));
x2k = x(1:n)’*k*x(1:n);
x2k=x2k+1e-10*eye(size(x2k));
s = sqeta*sqrt(x2k);
kx = x(1:n)’*k;

66

J(1:n,1:n) = -diag(z)*k’;
J(1:n,n+1) = -z;
J(1:n,n+2:m)=-eye(n);
J(1:n,1:n) = J(1:n,1:n)-ones(n,1)*(sqeta/sqrt(x2k))*kx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=svmcon1(x,Prob);
%constraint
k=Prob.user.H;
z=Prob.user.z;
m=size(x,1);
n =0.5*(m-1);
kx = k’*x(1:n);
slack=zeros(n,1);
for j=1:n
slack(j)=x(j+n+1);
end
g=[z.*(-kx-x(n+1)) -slack];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=svmcon1 dc(x,Prob);
%Gradient of the constraint
k=Prob.user.H;
z=Prob.user.z;
m=size(x,1);
n =0.5*(m-1);
J=zeros(n,m);
J(1:n,1:n) = -diag(z)*k’;
J(1:n,n+1) = -z;
J(1:n,n+2:m)=-eye(n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testperc(x,tstx,ker,par,alpha,b)
%to predict the label of data point with feasibility approach or svm
% input : x - training sample
% tstx- testing sample
% ker - kernel function (should be the same as in training phase)
% par - kernel parameter (should be the same as in training phase
% output: yt - binary label 1 or -1
%run after tomtrainperc.m or tomtrainsvm.m
m = size(tstx,1);
k=kernel(tstx’,x’,ker,par);
yt=(alpha’*k’)’+b;
for i=1:m
if yt(i)<0
yt(i)=-1;
else
yt(i)=1;

67

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha0,b0]=tommultiperc(x,y,ker,par,eta)
%This code is to compute alpha0 , b0 for multiclass kernel
% with feasibility approach with one-against-all approach
% input : x - training sample for training
% ker - kernel function
% y - training label
% eta - degree of uncertainty
% output: alpha0 - lagrange multiplier
% b0 - bias
xsup0=[];
alpha0=[];
b0=[];
st = cputime;
Mmax=max(y);label: 1, 2, 3, ..., M
Mmin=min(y);label: 1, 2, 3, ..., M
M = Mmax-Mmin + 1;
nbsv=zeros(1,M);
nbsuppvector=zeros(1,M);
for i=1:M
yone=(y==i)+(y ∼=i)*(-1);
[alpha,b]=tomtrainperc(x,yone,ker,par,eta);
alpha=alpha’;
alpha0=[alpha0;alpha];
b0=[b0;b];
end;
fprintf(’Computation-time: %4.1f seconds\n’,cputime - st);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha0,b0,nbdata,xsup]=tommultiperconeaone(x,y,ker,par,eta)
%This code is to compute alpha0, b0 for multiclass kernel %with feasibility approach with
one-against-one approach
%input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% eta - degree of uncertainty
% output: alpha0 - lagrange multiplier
% nbdata - number of data for each class
% b0 - bias
alpha0=[];
xsup=[];
b0=[];
classifier=[];
Mmax=max(y);label: 1, 2, 3, ..., M
Mmin=min(y);label: 1, 2, 3, ..., M

68

M = Mmax-Mmin + 1;
nbdata=zeros(1,M*(M-1)/2);
nbalpha=zeros(1,M*(M-1)/2);
st = cputime;
k=1;
for i=1:M-1
for j=i+1:M
indi=find(y==i);
indj=find(y==j);
xapp=[x(indi,:); x(indj,:)];
yone=[ones(length(indi),1);-ones(length(indj),1)];
[alpha,b]=tomtrainperc(xapp,yone,ker,par,eta);
xsup=[xsup;xapp];
n2=size(xapp,1);
alpha=alpha’;
n1=size(alpha,2);
nbalpha(k)=n1;
nbdata(k)=n2;
classifier(k,:)=[i j];
alpha0=[alpha0;alpha’];
b0=[b0;b];
k=k+1;
end;
end;
fprintf(’Computation-time: %4.1f seconds\n’,cputime - st);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha0,b0]=tommultisvm(x,y,ker,par,C,eta)
%This code is to compute alpha0 , b0 for multiclass svm
%with one-against-all approach
%input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% C - constant cost(upper bound for alpha)
% eta - degree of uncertainty
% output: alpha0 - lagrange multiplier
% b0 - bias
xsup0=[];
alpha0=[];
b0=[];
st = cputime;
Mmax=max(y);label: 1, 2, 3, ..., M
Mmin=min(y);label: 1, 2, 3, ..., M
M = Mmax-Mmin + 1;
nbsv=zeros(1,M);
nbsuppvector=zeros(1,M);
for i=1:M
yone=(y==i)+(y∼=i)*(-1);

69

[alpha,b]=tomtrainsvm(x,yone,ker,par,C,eta);
alpha=alpha’;
alpha0=[alpha0;alpha];
b0=[b0;b];
end;
fprintf(’Computation-time: %4.1f seconds\n’,cputime - st);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha0,b0,nbdata,xsup]=tommultisvmoneaone(x,y,ker,par,C,)
%This code is to compute alpha0, b0 for multiclass kernel svm
%using SNOPTwith one-against-one approach
%input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% eta - degree of uncertainty
% output: alpha0 - lagrange multiplier
% b0 - bias
alpha0=[];
xsup=[];
b0=[];
classifier=[];
Mmax=max(y);label: 1, 2, 3, ..., M
Mmin=min(y);label: 1, 2, 3, ..., M
M = Mmax-Mmin + 1;
nbdata=zeros(1,M*(M-1)/2);
nbalpha=zeros(1,M*(M-1)/2);
st = cputime;
k=1;
for i=1:M-1
for j=i+1:M
indi=find(y==i);
indj=find(y==j);
xapp=[x(indi,:); x(indj,:)];
yone=[ones(length(indi),1);-ones(length(indj),1)];
[alpha,b]=tomtrainsvm(xapp,yone,ker,par,C,eta);
xsup=[xsup;xapp];
n2=size(xapp,1);
alpha=alpha’;
n1=size(alpha,2);
nbalpha(k)=n1;
nbdata(k)=n2;
classifier(k,:)=[i j];
alpha0=[alpha0;alpha’];
b0=[b0;b];
clear alpha,b;
k=k+1;
end;
end;

70

fprintf(’Computation time: %4.1f seconds\n’,cputime - st);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testmultiperc(x,tstx,nbclass,ker,par,alpha0,b0)
%This to predict the label of data point with feasibility approach
%using one against all
%input : x - training set
%tstx - testing set
%nbclass-number of class
%ker - kernel function (should be the same as in training phase)
%par - kernel parameter (should be the same as in training phase
%alpha0,b0 - obtained from running trainmultiperc.m
% output : yt - predicted label for testing set
n1 = size(tstx,1)
H=kernel(tstx’,x’,ker,par);
size(H)
for i=1:nbclass
yt(:,i)=(alpha0(i,:)*H’)’+b0(i);
end
[maxi,yt]=max(yt’);
yt=yt’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testmultisvm(x,tstx,nbclass,ker,par,alpha0,b0)
%This to predict the label of data point with svm
%using one against all
%input : x - training set
%tstx - testing set
%nbclass-number of class
%ker - kernel function (should be the same as in training phase)
%par - kernel parameter (should be the same as in training phase
%alpha0,b0 - obtained from running trainmultisvm.m
% output : yt - predicted label for testing set
n = size(x,1);
H=kernel(tstx’,x’,ker,par);
for i=1:nbclass
yt(:,i)=(alpha0(i,:)*H’)’+b0(i);
end
[maxi,yt]=max(yt’);
yt=yt’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testmultiperconeaone(xsup,tstx,nbdata,ker,par,alpha0,b0)
%This code is to predict the label of data point with feasibility approach % for multiclass
with one against one
%input :
% xsup - obatained from training phase
%tstx - testing sample
%nbdata- number of data of each class

71

%ker - kernel function (should be the same as in training phase)
%par - kernel parameter (should be the same as in training phase
%alpha0,b0 - obtained from running trainmultiperconeaone.m
% output : yt - predicted label for testing set
%run after trainmultiperconeaone.m
[n1,n2]=size(tstx);
nbclass=(1+ sqrt(1+4*2*length(nbdata)))/2;
vote=zeros(n1,nbclass);
k=1;
nbdata=[0 nbdata];
aux=cumsum(nbdata);
for i=1:nbclass-1;
for j=i+1:nbclass;
xaux=xsup(aux(k)+1:aux(k)+nbdata(k+1),:);
alphaaux=alpha0(aux(k)+1:aux(k)+nbdata(k+1));
baux=b0(k);
H=kernel(tstx’,xaux’,ker,par);
yt=(alphaaux’*H’)’+baux;
indi=find(yt≥0);
indj=find(yt<0);
vote(indi,i)=vote(indi,i)+1;
vote(indj,j)=vote(indj,j)+1;
k=k+1;
end
end
[maxi,yt]=max(vote’);
yt=yt’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testmultisvmoneaone(xsup,tstx,nbdata,ker,par,alpha0,b0)
%This code is to predict the label of data point with SVM
%for multiclass with one against one
%input : xsup - obatained from training phase
% tstx - testing sample
% nbdata- number of data of each class
% ker - kernel function (should be the same as in training phase)
% par - kernel parameter (should be the same as in training phase
% alpha0,b0 - obtained from running trainmultiperconeaone.m
% output : yt - predicted label for testing set
%run after trainmultisvmoneaone.m
[n1,n2]=size(tstx);
nbclass=(1+ sqrt(1+4*2*length(nbdata)))/2;
vote=zeros(n1,nbclass);
k=1;
nbdata=[0 nbdata];
aux=cumsum(nbdata);
for i=1:nbclass-1;
for j=i+1:nbclass;
xaux=xsup(aux(k)+1:aux(k)+nbdata(k+1),:);

72

alphaaux=alpha0(aux(k)+1:aux(k)+nbdata(k+1));
baux=b0(k);
H=kernel(tstx’,xaux’,ker,par);
yt=(alphaaux’*H’)+baux;
indi=find(yt≥0);
indj=find(yt<0);
vote(indi,i)=vote(indi,i)+1;
vote(indj,j)=vote(indj,j)+1;
k=k+1;
end
end
[maxi,yt]=max(vote’);
yt=yt’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function K = kernel(varargin)
% kernel Computes kernel matrix.
% Synopsis:
% K = kernel(X, ker, arg)
% K = kernel(X1, X2, ker, arg)
% Description:
% K = kernel(X, ker, arg) returns matrix K [n x n] where n is
% number of input data n=size(X,2). The matrix K contains
% values of kernel function for given data X, i.e.,
% K(i,j)=k(X(:,i),X(:,j)), i,j=1,...,n.
% K = kernel(X1, X2, ker, arg) return matrix [n x m] where n
% is number of data in X1 and X2, i.e., n=size(X1,2) and
% m=size(X2,2). The kernel matrix K contains values of kernel
% functions for given data X1 and X2, i.e.,
% K(i,j)=k(X1(:,i),X2(:,j)), i = 1, ..., n, j = 1, ...,m.
% This function is only interface for C-code. To make executable
% file run mex kernelccode.c kernel.c
% Input:
% X [dim x n] Input data.
% or
% X1 [dim x n], X2 [dim x m] Input data.
% ker [string] Kernel identifier.
% arg [...] Argument of selected kernel.
% Output:
% K [n x n] Kernel matrix.
% or
% K [n x m] Kernel matrix.
% About: Statistical Pattern Recognition Toolbox
% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
if nargin ==3,
[ker,arg]=kerarg(varargin2, varargin3);
K = kernelccode(varargin1, ker, arg);
else
[ker,arg]=kerarg(varargin3, varargin4);
K = kernelccode(varargin1, varargin2, ker, arg);

73

end
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ker,arg]=kerarg(name,arg)
% kerarg Returns kernel identifier and adjusted arguments.
% [ker,arg]=kerarg(name,arg)
% Description:
% This function serves as an interface between C-code functions
% using library kernel.c and M-files.
% The input is a given kernel name and corresponding arguments.
% The output is the kernel identifier (integer) and kernel argument
% adjusted if necesary.
% Input:
% name [string] Kernel name.
% arg [...] Kernel argument.
% Output:
% id [int] Kernel identifier.
% arg [...] Kernel argument.
% About: Statistical Pattern Recognition Toolbox
% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
% http://www.cvut.cz Czech Technical University Prague
% http://www.feld.cvut.cz Faculty of Electrical Engineering
% http://cmp.felk.cvut.cz Center for Machine Perception
% Modifications:
% 4-June-2003, VF
switch lower(name)
case ’linear’
ker = 0; arg = 0;
case ’poly’
ker = 1;
if isempty(arg), arg = [1,1];
elseif length(arg) < 2, arg=[arg,1]; end
case ’rbf’
ker = 2;
if isempty(arg), arg = 1; end
case ’sigmoid’
ker = 3;
if isempty(arg), arg = [1,1]; end
otherwise
error(’Unknown kernel identifier.’);
end
return;

74

Appendix B
Matlab Code for Regression Analysis

75

The flowchart for regression code

76

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha,b]=percreg(x,y,ker,par,epsi,eta)
% This code is to compute alpha and b with SNOPT in feasibility
%approach for regression
% w(1) ... w(m) : represents alpha
% w(m+1) : represents b
% input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% epsi- epsilon
% eta - level of uncertainty
% output: alpha - lagrange multiplier
% b - bias
[m, c] = size(x);
k = zeros(m,m);
k=kernel(x’,ker,par);
z=y;
%%%%%%%%%%%%%%%%%%%
% Optimization part
x0=zeros(2+m,1);
lb2=zeros(1,1);
lb1=-inf*ones(m+1,1);
ubc1=epsi*ones(m,1);
ubc2=epsi*ones(m,1);
%This the structure of problem using Tomlab
if eta ∼=0
Prob = conAssign(’percregof’,’percregof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’percregcon’,’percregcon dc’,[],[],[],[ubc1;ubc2]);
else
Prob = conAssign(’percregof’,’percregof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’percregcon1’,’percregcon1 dc’,[],[],[],[ubc1;ubc2]);
end
Prob.user.H=k;
Prob.user.z=z;
Prob.user.sqrteta=sqrt(eta);
Prob.SOL.optPar(10)=0.0001;
Prob.SOL.optPar(30)=300000;
R=tomRun(’snopt’, Prob, [], 2);
alpha=R.x k(1:m);
b=R.x k(m+1);
clear R;
clear k;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=percregcon1(x,Prob);
m=length(x);
n=(m-2);

77

k=Prob.user.H;
y=Prob.user.z;
x2k = x(1:n)’*k*x(1:n);
kx = k’*x(1:n);
g=[y-kx-x(n+1)-x(n+2);-y+kx+x(n+1)-x(n+2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=percregcon1 dc(x,Prob);
k=Prob.user.H;
m=length(x);
n = (m-2);
J=zeros(2*n+1,length(x));
x2k = x(1:n)’*k*x(1:n);
x2k=x2k+1e-10*eye(size(x2k));
kx = x(1:n)’*k;
J(1:n,1:n) =-k’;
J(1:n,n+1) = -1;
J(1:n,n+2)=-1;
J(n+1:2*n,1:n) =k’;
J(n+1:2*n,n+1) = 1;
J(n+1:2*n,m)=-1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=percregcon(x,Prob);
m=length(x);
n=(m-2);
k=Prob.user.H;
y=Prob.user.z;
sqeta=Prob.user.sqrteta;
x2k = x(1:n)’*k*x(1:n);
s = sqeta*sqrt(x2k);
kx = k’*x(1:n);
g=[y-kx-s-x(n+1)-x(n+2);-y+kx+s+x(n+1)-x(n+2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=percregcon dc(x,Prob);
k=Prob.user.H;
y=Prob.user.z;
sqeta=Prob.user.sqrteta;
m=length(x);
n = (m-2);
J=zeros(2*n,length(x));
x2k = x(1:n)’*k*x(1:n);
x2k=x2k+1e-10*eye(size(x2k));
s = sqeta*sqrt(x2k);
kx = x(1:n)’*k;
J(1:n,1:n) =-k’;
J(1:n,n+1) = -1;

78

J(1:n,n+2)=-1;
J(1:n,1:n) = J(1:n,1:n)-ones(n,1)*(sqeta/sqrt(x2k))*kx;
J(n+1:2*n,1:n) =k’;
J(n+1:2*n,n+1) = 1;
J(n+1:2*n,m)=-1;
J(n+1:2*n,1:n) = J(n+1:2*n,1:n)+ones(n,1)*(sqeta/sqrt(x2k))*kx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f=percregof(x,Prob) m=size(x,1);
n=(m-2);
sumslack=sum(x(n+2));
f=sumslack;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function g=percregof g(x,Prob)
m=length(x);
n = (m-2);
g=zeros(length(x),1);
g(1:n+1) =zeros(n+1,1);
g(n+2)=ones(1,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [alpha,b]=svmreg(x,y,ker,par,epsi,C,eta)
% This code is to compute alpha and b with SNOPT for sv regression
% R(1) ... R(m) : represents alpha
% R(m+1) : represents b
% input : x - training sample
% y - training label
% ker - kernel function
% par - kernel parameter
% epsi- epsilon
% eta - level of uncertainty
% output: alpha - lagrange multiplier
% b - bias
[m,c]= size(x);
k=kernel(x’,ker,par);
z=y;
% Optimization part
x0=zeros(3*m+1,1);
lb2=zeros(2*m,1);
lb1=-inf*ones(m+1,1);
ubc1=epsi*ones(m,1);
ubc2=epsi*ones(m,1);
if eta ∼=0
Prob = conAssign(’svmregof’,’svmregof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’svmregcon’,’svmregcon dc’,[],[],[],[ubc1;ubc2]);
else
Prob = conAssign(’svmregof’,’svmregof g’,[],[],[lb1;lb2],[],’coba2’,x0,[],[],[],...
[],[],’svmregcon1’,’svmregcon1 dc’,[],[],[],[ubc1;ubc2]);

79

end
Prob.user.H=k;
Prob.user.z=z;
Prob.user.C=C;
Prob.user.sqrteta=sqrt(eta);
Prob.SOL.optPar(10)=0.00001;
Prob.SOL.optPar(30)=300000;
R=tomRun(’snopt’, Prob, [], 2);
alpha=R.x k(1:m);
b=R.x k(m+1);
clear R;
clear k;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [g]=svmregcon(x,Prob);
k=Prob.user.H;
y=Prob.user.z;
sqeta=Prob.user.sqrteta;
m=length(x);
n = (1/3)*(m-1);
x2k = x(1:n)’*k*x(1:n);
s = sqeta*sqrt(x2k);
kx = k’*x(1:n);
slack1=zeros(n,1);
for j=1:n
slack1(j)=x(n+1+j);
end
slack2=zeros(n,1);
for j=1:n
slack2(j)=x(2*n+1+j);
end
g=[y-kx-s-x(n+1)-slack1;-y+kx+s+x(n+1)-slack2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=svmregcon dc(x,Prob);
%gradient of constraints of svr formulation
k=Prob.user.H;
y=Prob.user.z;
sqeta=Prob.user.sqrteta;
m=length(x);
n = (1/3)*(m-1);
J=zeros(2*n,length(x));
x2k = x(1:n)’*k*x(1:n);
x2k=x2k+1e-10*eye(size(x2k));
s = sqeta*sqrt(x2k);
kx = x(1:n)’*k;
J(1:n,1:n) =-k’;
J(1:n,n+1) = -1;
J(1:n,n+2:2*n+1)=-eye(n);

80

J(1:n,1:n) = J(1:n,1:n)-ones(n,1)*(sqeta/sqrt(x2k))*kx;
J(n+1:2*n,1:n) =k’;
J(n+1:2*n,n+1) = 1;
J(n+1:2*n,2*n+2:m)=-eye(n);
J(n+1:2*n,1:n) = J(n+1,2*n)+ones(n,1)*(sqeta/sqrt(x2k))*kx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f]=svmregof(x,Prob);
%svr objective function
k=Prob.user.H;
z=Prob.user.z;
C=Prob.user.C;
sqeta=Prob.user.sqrteta;
m=size(x,1);
n = (1/3)*(m - 1);
x2k = x(1:n)’*k*x(1:n);
sumslack=sum(x(n+2:m));
f=[0.5*x2k +C*sumslack];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J]=svmregof g(x,Prob);
%gradient of svr objective function
k=Prob.user.H;
C=Prob.user.C;
m=length(x);
n = (1/3)*(m-1);
J=zeros(length(x),1);
J(1:n) = x(1:n)’*k;
J(n+1)=0;
J(n+2:m)=C*ones(2*n,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yt=testsvmreg(x,tstx,ker,par,alpha,b);
%This code is to predict the output of testing set point with SVR/feasibility approach
%used after running svmreg
m = size(tstx,1);
k=kernel(tstx’,x’,ker,par);
yt=(alpha’*k’)’+b;

81

Bibliography

[1] M.Z. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and
Algorithms. John Wiley & Sons, New York, 1993.

[2] A Ben-Tal and A. Nemirovski. Robust solutions to uncertain linear program via
convex programming. Operation Research Letters, 25(1):1–17, 1996.

[3] A Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operation
Research, 23(4):769–805, 1998.

[4] K. Bennett and O.L. Mangasarian. Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

[5] K. Bennett and O.L. Mangasarian. Multicategory discrimination via linear program-
ming. Optimization Methods and Software, 3:27–39, 1994.

[6] K. Bennett and O.L. Mangasarian. Serial and parallel multicategory discrimination.
SIAM Journal on Optimization, 4(4):722–734, 1994.

[7] D. Bertsimas, D. Pachamanova, and M. Sim. Robust linear optimization under general
norms. Operations Research Letters, 2004.

[8] J.R. Birge. The value of statistic solution in stochastic linear programming with fixed
resources. Math. Programming, 24:314–325, 1982.

[9] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[10] S. Boyd, M.S Lobo, and L. Vandenberghe. Application of second-order cone program-
ming. Linear Algebra and its Applications, 284:193–226, 1998.

[11] Erin J. Bredensteiner and Kristin P. Bennett. Multicategory classification by support
vector machines. Computational Optimizations and Applications, 12:53–79, 1999.

[12] K. Chakraborty, K. Mehrotra, C.K. Mohan, and S. Ranka. Forecasting the behavior
of multivariate time series using neural network. Neural Networks, 5:961–970, 1992.

[13] V. Chvatal. Linear Programming. Freeman and Company, 1983.

[14] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,
2001.

82

[15] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[16] P. Dierckx. Curve and Surface Fitting with Splines. Monographs on Numerical Anal-
ysis. Clarendon Press, Oxford, 1993.

[17] L. El Ghaoui, G.R.G. Lanckriet, and G. Natsoulis. Robust classification with interval
data. Technical report, Technical Report CSD-03-1279, Division of Computer Science,
University of California, Berkeley, 2003. http://robotics.eecs.berkeley.edu/ gert/.

[18] L. El Ghaoui and H. Lebret. Robust solutions to least square problems to uncertain
data matrices. SIAM Journal on Matrix Analysis and Applications,, 18:1035–1064,
1997.

[19] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite
programs. SIAM J. of Optimization, 18:1035–1064, 1997.

[20] P.E. Gill, W. Murray, and M.A. Saunders. Snopt: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, Vol. 12(4):9791006, 2002.

[21] S.P. Han. A globally convergent method for nonlinear programmings. J. Optimization
Theory and Applications, 22:297, 1977.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: data
mining , inference, and prediction. Springer-Verlag, New York, 2001.

[23] Simon Haykin. Neural Network: A Comprehensive Foundation. Prentice Hall, New
Jersey, 1999.

[24] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks, 13:415–425, 2002.

[25] V. Kecman. Learning and soft computing :support vector machines, neural networks,
and fuzzy logic. MIT Press, Cambridge, 2001.

[26] P. Kouvelis and Gang Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Boston, 1997.

[27] G.R.G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M.I. Jordan. A robust min-
imax approach to classification. Journal of Machine Learning Research, 3:555–582,
2002.

[28] I. Popescue and D. Bertsimas. Optimal inequalities in probability theory: A convex
optimization approach. Technical report, Technical Report TM62, INSEAD, 2001.

[29] M.J.D. Powell. A Fast Algorithm for Nonlinearly Constrained Optimization Cal-
culations, volume 630, chapter Numerical Analysis. Lecture Notes in Mathemat-
ics,Springer Verlag, G.A.Watson (ed.), 1978.

[30] B. Santosa and T.B. Trafalis. Multiclass procedure for minimax probability machine.
In C.H. Dagli, A.L. Buczak, J. Ghosh, M Embrechts, O.Ersoy, and S. Kercel, editors,
Intelligent Engineering Systems Through Artificial Neural Networks 14, pages 447–
452. ASME Press, 2004.

[31] B. Schölkopf and A.J. Smola. Learning with Kernels. The MIT Press, Cambridge,
Massachusetts, 2002.

[32] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

83

[33] A.J. Smola, Peter L. Bartlett, B. Schölkopf, and D. Schuurmans. Adavances in Large
Margin Classifiers. The MIT Press, 2000.

[34] W.N. Street and O.L. Mangasarian. Improved generalization error via tolerant train-
ing. Journal of Optimization Theory and Applications, 96(2):259–279, 1998.

[35] T. B. Trafalis, O. Oladunni, and D. V. Papavassiliou. Two-phase flow regime identi-
fication with a multi-classification svm model. Industrial and Engineering Chemistry
Research, submitted, 2005.

[36] T.B. Trafalis and S.A. Alwazzi. Robust optimization in support vector machine
training with bounded errors. In Proceedings of the International Joint Conference
On Neural Networks, Portland, Oregon, pages 2039–2042. IEEE Press, 2003.

[37] T.B. Trafalis and S.A. Alwazzi. Robust support vector regression and applications.
In C.H. Dagli, A.L. Buczak, J. Ghosh, M Embrechts, O.Ersoy, and S. Kerc, editors,
Intelligent Engineering Systems Through Artificial Neural Networks 13, pages 181–
186. ASME Press, 2003.

[38] T.B. Trafalis, B. Santosa, and M.B. Richman. Tornado detection with kernel-based
methods. In C.H. Dagli, A.L. Buczak, J. Ghosh, M Embrechts, O.Ersoy, and S. Kercel,
editors, Intelligent Engineering Systems Through Artificial Neural Networks 13, pages
677–682. ASME Press, 2003.

[39] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[40] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[41] J. Weston and C. Watkins. Support vector machines for multi-class pattern recogni-
tion. In Proceeding of the Seventh European Symposium on Articial Neural Networks
ICANN’97, 1998.

84

