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CHAPTER I 

INTRODUCTION 

During the past decade there has been a number of 

books and many articles appearing in technical journals 

and wri t ten on the subject of the design and analysis of 

digital or sampled-data control systems" The great inter­

est in this area of control engineering was brought about 

when digital equipment was used to replace much of the 

anal og equipment in control systems. The digital equip­

ment can handle only discrete information; therefore, the 

continuous data from the other sections of the system must 

be sampled in order to be of use. 

Although a great deal has been written about the 

analysis of linear sampled=data control systems~ very 

little has been said concerning nonlinear systems. There 

are two reasons why the study of nonlinear sampled-data 

control systems is important: first, practically all com­

ponents used in a control system are nonlinear, unless 

they are restricted to operate over a limited rangei and, 

second , in recent years control engineers have deliber­

ately introduced nonlinear elements in the control system 

to i .mprove the performance of the over- all system. The re­

fore ~ in view of the impbrtance and lack of information in 

l 



this area, this thesis 'Will be a presentation of a method 

of analysis of nonlinear sa.µipled-data control systems. 

The work to date in this field has been presented 

primarily ih thre~ papers. The first was wi-itten by 

1 Mullin in July, . 1959. In his paper he examined th~ sta-

2 

bility of saturating sampled~data systems by investigating 

the roots of its characteristic equation . The next paper 

to appear was written by Tou and Kinnen: 'in January, . 1960. 2 

They presented a method for obtaining the transient re­

sponse of nonlinear sampled-data systems. The third paper 

was written by Asel tine and Nesbit in August, 1960, in 
.• 

which they described a phase plane method of analysis for 

nonlinear sampled-data control swstems} There have been 

other authors who mentioned nonlinearities in their dis­

cussion of linear sampled-data systems~ however, their 

study was very liaited. 

In view of the fa.ct that very little has been reported 

on the analysis of nonlinear sampled-data control systems 

using the real frequency domain, this study will be an 

1F. J Q Mullin, " Stab.ilfty of Saturating Sampled-Data 
S:ystems," American Institute of Electrical Engineers-Part I 
Communications and Electronics (July, 1959), p. 270. -

2Tou and Kinnen., va Analysis of Nonlinear Sampled-Data 
Control Systems ~" American Institute of . Electrical Engi­
neers Transactions-Part II Applicati<:tn and Industry 
(January, 1960) , pp. 386-394: 

3J. A. Aseltine and R. A. Nesbit, uThe Incremental 
Phase Plane for Nonlinear Sampled-Data Systems," Transac­
tions of Institute of Radio Engineers on Automatic Control 
(August'-; 1960), pp.-Y59-165. --



3 

analysis in that domain. The graphical tool to be used in 

thi~ analysis will be the Nyquist diagrams. These diagrams 

are polar plots of the magnitude and phase of the systems 

open-loop transfer function which will be ~eferred to 

hereafter as frequency phase plot. Once the frequency 

phase plot has been obtained, the system's degree of sta­

pility may be found by employing the conventional methods 

of analysis for linear conti·nuou,s.-data systems. Therefore, 

this thesis will be limited to the problem of obtaining a 

frequency phase plot for nonlinear sampled-data control 

systems. 

The type of nonlinearities to be considered here are 

ones in which the mode of operation of the system changes 

rapi4ly compared to its response time. Saturat~on, dead 

zone, and backlash or hysteresis are examples of this 

type. 



CHAPTER II 

SYSTEM ANALYSIS 

Much of the control engineer's time is taken up with 

studies of system stability. He must determine if the 

output of a system is finite when a bounded signal is ap­

plied to the input. There are several techniques which he 

may use for examining this problem. In some cases one 

technique may yield better results than another, and many 

times several will be employed before the desired results 

are obtained. One technique which has proved to be very 

useful in the design of linear and nonlinear continuous­

data systems, and also linear sampled-data control systems 

is the Nyquist diagram. If t~is technique could be 

extended to include nonlinear sampled-data control systems, 

the control engineer would have added to his repertoire a 

very useful tool. This study will be an investigation 

into the problem of making that extension. 

The basic background information for this thesis is 

presented in this chapter. This includes a thorough dis­

cussion of the system under study, the derivations of the 

transfer function of the system, the stability considera­

tions, and the Nyquist diagram for stability study of non­

linear sampled-data control systems. A considerable amount 

4 
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of space is devoted to this background information in 

order to illustrate that Nyquist diagrams can be used to 

determine the relative stability of nonlinear sampled-data 

control system as well as to linear continuous-data 

system. 

The block diagram of a typical nonlinear sampled­

data control system is shown in Figure 1. The blocks 

designated by G(s) and H(s) are the linear transfer func­

tions of the forward and feedback paths, respectively. 

N(a) is the nonlinear element of the system which may be 

either the sum of all the incidental nonlinearities of the 

system, or a nonlinear element which has been intention­

ally introduced to improve the performance of the system~ 

The names and designations of the signals are: input, 

R(s); output, C(s); actuating, E(s); sampled actuating, 

E*(s); and feedback, B(s). The signal from the output of 

the nonlinear element is designated by y, and will be dis­

cussed later in this study. The sampler is designated by 

Sand is shown here in the actuating signal line; however, 

it could be, and often is, located in other signal lines. 

When the sampler is placed in another line the analysis of 

the system is carried out in the same manner as will be 

given here; however, the results are likely to be differ­

ent. There are many cases also where more than one sampler 

is used in the system, and again only the results will 

change and not the method given here. 
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R(s) E(s) E* (st 
N( a) 

y . C(s) 
- - - - G(s) 

+ 
- , s 

. . 

B ( s) 
H(s ) -

Figure 1. Typical Nonlinear Sampled-Data Control System 

The transfer function of a system is defined as the 

ratio of the output transform of the system to its input 

transform . The transfer function for the system shown in 

Figure 1 can be derived by referring to the figure and 

observing that 

C(s) = E*(s) N(a) G(s), 

B(s) = C(s) H(s) , 

and 

E(s) = R(s) - B(s). 

Substituting C(s) , from Equation 1 , into Equation 2 and 

substituting this result for B(s) into Equation 3 will 

yield 

E(s) = R(s) - E*(s) N(a) G(s) H(s). 

(1) 

(2) 

(3) 

(4) 
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The sampler is a linear device, which means tha t the law 

of superposition is valid; therefore, Equation 3 may be 

written 

E *(s) = R*(s) - B*(s) o (5) 

The symbol• indicates that the signal has been sampled 

at a f:i,.xed rate . Equation 4 may now be written 

E*(s) = R*(s) - E*(s) N(a) HG*(s). (6) 

The term HG*(s) indicates that H(s) and G(s) are multi-

plied before sampling, which is not the same as sampling 

the output of G(s) prior to applying the signal to H(s). 

In the latter case the operation would be represented by 

G*(s) H*(s). Solving Equation 6 for E*(s) and substituting 

that back into Equation 1 yields 

C( ) _ R*(s) N~a) G~s~ 
s - 1 + N(a HG* s ' (7) 

the output of the system. Dividing each side of Equation 

7 by R*(s), the sampled input~ yields 

Q(§} N(a) G(s) 
~ = 1 + N(a) HG*(SJ 0 

(8) 

Equation 8 is the transfer function of the nonlinear 

sampled-data control system shown in Figure 1. This equa­

tion differs slight ly from the definition of a transfer 

function given above, in tha t this is a ratio of the out-

put transform to the sample d input transform, instead of 



the ratio of the output transform to the input transform. 

Additional information concerning sampled-data transfer 

functions has been given by Tou~ 1 

In a stability study, the fact that the input signal 

has been sampled will have no effect, because the defini-

tion of stability states that the output of the system 

must be finite when a bounded signal is applied to the 

input. The signal from the sampler is only the function 

8 

value of the signal prior to sampling; therefore, the sam-

pled signal will be bounded if the · signal, prior to sam-

pling, is bounded. Thus, the stability of the system may 

be determined the same way as linear continuous-data con-

trol systems: by examining the poles of Equation 8, or the 

zeros of 

1 + N(a) HG*(s) = O. (9) 

Equation 9 is the denominator of Equation 8 set equal to 

zero. All the roots of this equation must be located in 

the left half of the s-plane in order to have a stable 

system. An outline of the proof of this has been given 

by Tou for continuous-data and sampled-data control 

systems. 2 ' 3 

1J. T. Tou, Digital and Sampled-Data Control Systems 
(New York, 1959), pp. 115-117. 

2Ibid, pp. 20-23. 

3rbid, p. 125. 
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The method which is used for the detection of roots 

of Equation 9 not in the left half of the s-plane is the 

Nyquist diagram. This diagram is essentially a mapping of 

the entire right half of the s-plane into the HG-plane. 

The HG-plane is an open loop t ransfer function plane on 

which a frequency phase plot of N(a) HG*(s), withs re-

placed with jw and w varied from zero to infinity, is 

plotted. This plot on the HG-plane is called the Nyquist 

diagram. Nyquist did the original work to show that roots 

of Equation 9 , which lie in t he right half of the s-plane, 

will cause the frequency phase plot of N(a) HG*(jw) to en­

circle the critical point ( - 1 + jO). 4 A plot of N(a) 

HG*(jw) on a Nyquist diagram ~ and an investigation of this 

plot to determine its encirclements of the -1 + jO point, 

will yield information as to the stability of the system. 

In Figure 2, the system that has a response given by curve 

(a) is stable, while the system with a response like curve 

(b) is unstable. There is occasionally some difficulty in 

determining if the p l ot enci r cles the -1 + jO point; how-

ever, most books on control systems and servomechanisms 

outline the method for this i nvestigation~ and will not 

be given here.5 

4H. Nyquist, "Regeneration Theory, ' 0 Bell System 
Technical Journal, 11 (1932)~ pp. 126-47. 

5 G. J. Thaler and R. G. Brown, Servomechanism Analysis 
(New York, 1953)~ pp. 159-162. 
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j ,W 

s - plane 

(1 

Figure 2. Nyqui st Diagram 

Another very important aspect of the Nyquist diagram 

is that not only absolute stability, but also the relative 

stability,of a system can be obtained . This is accom­

plished by observing the frequency phase plot in the 

neighborhood of t he critical point . The system became 

more oscillatory as the p l ot is shif t ed to the left. Thus, 

the response of t he sys tem shown by curve (b) , in Figure 3, 

is more oscillatory than the one shown by curve (a). Both 

systems are stable ~ however . The degree of instability of 

a system can be determi ned i n the same way as the degree 

of stability . The system with a resp onse shown by curve 

(c)~ in Figure 3 , is not as unstable as the one with the 

response shown by curve ( d) . 



s - plane 

(a ) 

( d) (c) 

Figure 3. Stable and Unstable Plots on a 
Nyquist Diagram 

A means of measuring the degree of stability or 

11 

instability of a system has b een set up through the use of 

M-circles o These circles are dr awn on a Nyquist diagram 

and represent a constant magni t ude of the output of the 

system to the inputo Thi s rat i o is given as 

I 
Q_~1 I G* cs, I M = lPTsJ = ·1+ HG (s) . ( 10) 

The locus of a c onstant magnitude rati o , M, may be shown 

to be a circle on the comp l ex plane, with a radius 

r f12 - 1 (11) 

and a center located at the p oint 
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[ - ( 12) 

A family of t hese c onstant magnitude circles may be drawn 

on the HG* ( s) - plane and t he d.egree of stabi l ity of t he 

system is assoc i a t ed wi th the v a l ue of M whi ch is tangent 

to the frequenc y pha se p l ot . A s y s t em wi th a frequency 

phase plot t angent t o t he c irc le with M equal to 1.3 ~ 

usually is c onsidered sat i sfactory from the stability 

standpoint. ·systems t end to be more osci llatory with 

higher values of M. A f ami ly o f M-circ l es and a frequency 

phase p l ot are shown i n F i gure 4. The value of maximum 

Mis 1.5. 

Figure 4 . M- Ci r c les and Frequency Phase Plot 
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It has been shown that t he relative stability of a 

control system can be found by making a frequency phase 

plot of N(a) HG*(s) on a Nyquist diagram. The analysis of 

the stability is performed by c on, entional methods of 

continuous-data linear systems once the plot is complete. 

The problem left to be performed in this thesis will be 

the one of obtaining the pl ot for N(a) HG*(s) . The subse­

quence chapters will be devoted to this problem. 



CHAPTER III 

ANALYTICAL STUDY 

It was pointed out in Chapter II that the stability 

of a nonlinear sampled-data control system could be found 

from the frequency phase plot of N(a) HG*(jw). It was 

also pointed out that the relative stability of the sys­

tem, as well as the absolute stability, could be deter­

mined by this method. However ~ here are several problems 

which make it impossible to proceed immediately with the 

phase plot by conventional methods given in linear 

continuous-data systems o First, there is the problem of 

finding a way to express the nonlinear element, N(a). The 

second problem is one of obtaining the transfer function 

for HG*(j_w)~ and the third problem is that of getting the 

composite response of N(a) and HG•(jw) . 

In thi s paper a method for obtaining the frequency 

phase plot of N(a) HG*( j w) is reported . The study is 

limited to systems which have nonlinear elements of the 

"fast nonlinearity oQ type ~ and a control system which has 

only one sampler . The steps presented for obtaining the 

frequency phase plot for N(a) HG* ( jw) are: (1) plot 

HG*(jw) on a Nyquist di agram using methods developed for 

linear sampled- data control systems , (2) approximate N(a) 

14 
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by means of a 00 describing function 1\ and (3) vary HG*(jw) 

in a manner that will account for the nonlinear element 

by using the approximation for N(a). The results of this 

will be an approximation for the frequency phase plot of 

N(a) HG*(jw). This approximation for the frequency phase 

plot will in most cases yield satisfactory results for de­

termining the relative stability of a nonlinear sampled­

data control system. In those cases where the results are 

not satisfactory ~ a method for improving the frequency 

phase plot of N(a) HG*(jw) is presented so that any degree 

of accuracy may be obtained. 

Frequency Phase Plot for HG*(jw) 

The first step to be performed in obtaining a fre­

quency phase plot for N(a) HG*(jw) is to plot HG*(jw) on 

a Nyquist diagram in a manner which has been outlined in 

books on linear sampled-data control systems. The basic 

steps for obtaining the frequency phase plot for HG*(jw) 

are presented here in order to tie this portion of the 

method for obtai ning the Nyquist' plot for N(a) HG*(j w) 

in with the second portion ~ which is on the approximation 

for the nonlinear element ~ N(a). 

The method used for obtaining a Nyquist plot for 

HG*(jw) can best be shown by first observing the effect of 

a sampler on a signal~ and then using this information to 

construct a frequency phase plot for the linear portion of 

the system. Once the characteristics of this sampler are 
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determined the remainder of the system can be described 

and analyzed in the usual manner. The sampler, along with 

its input and output, is shown in Figure 5. The sampler 

converts the continuous signal into a train of pulses, 

which are regularly spaced and have a magnitude equal to 

the function value at the sampling instant. Since the 

sampling duration is small compared to the time constants 

of the system ~ the output from the sampler can be consid-

ered as a train of impulses with the dimension represent-

ing the value of the continuous signal at the sampled 

instant. The output from the sampler can be written as: 

x*(t) = o(t) X (t), (13) 

where o(t) is a train of impulses occurring every T 

seconds . Tis called the sampling period. If the Laplace 

transform of Equation 13 is taken~ the results will be 

00 

X*(s) = ¥ ~ X(s + jnws), (14) 
n=-oo 

where ws is the sampling frequency. Equation 14 places in 

evidence the effect of the sampler on a signal in terms of 

the frequency spectrum of the input and output. The most 

important characteristic of the sampler is the periodicity. 

X*(s) is a simple periodic function with a period jws. 

Figure 6 illustrates that X*(s) takes on the same value at 

congruent points (a0 ~ a 1 , a - l i etc.) in the various period 

strips in the s-plane. 



X(t) 

r------i 
II / I X( t ) ./ X*(t) .......:..;..:..~~--,-~1~-- ~---i~~~~~-

1 . I L _ Sarnp:_er _ _J 

X*. ( t ) 

Figure 5. The Sampl er and Waveforms of Input 
and Output 

j w 

e -----------------
a1 . 3Ws 

s t r i p 1 

s t r i p 0 

------ - --
e 

s t r i p - 1 

J­'2 

w . s 
-J -2 

3W 
=j _s_ 

2 

0 

Figure 6. Periodi ci ty Strips of X*(s) i n the s-Plane 

17 
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The periodicity property of x•(s) is also demonstrated 

by the frequency spectra plotted in Figure 7. Here the 

spectra of the sampler input is given in Figure 7a, and 

the frequency spectra of the sampler output, which was 

determined from Equation 14~ is shown in Figure 7b. The 

sampler output consists of the spectrum of the primary 

signal and the spectra of the complementary signals. The 

spectrum of the primary signal is similar to that of the 

sampler input~ except that it is attenuated by a factor 

1/T, and it is centered at zero frequency. The spectra of 

the complementary signals are identical with those of the 

primary signal, but they are displaced from the primary 

component by nws units. 

I r:1\jw)j 
w 

s --2 

0 

(a) 

w s 
2 

----~..._~ .................. ~_._~_._..._,____.,____..__._ __ ~--~---,.___._~--~ ........ .......,.w 
-2 w - 3 w = w - w w w 3 w 2 w s s s s O s s s s - -2 2 Primary 2 2 

Complementary Components Component Compl ementary Components 

(b) 

Figure 7. Frequency Spectra of the Original and the 
Sampled Signal 
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The primary component is the desired signal , and can 

generally be removed by filtering the unwanted complemen­

tary components. This filtering is possible if the sam­

pling frequency is more than twice the highest frequency 

of the input signal. If the sampling frequency is de­

creased to less than twice the highest frequency of the 

input signal ~ distortion appears due to the entangled 

combination of the upper part of the primary component and 

the lower part of the first higher group of the complemen-

tary components . This is shown in Figure 8. Thus , signals 

of frequency equal to ws/2 or higher cannot be transmitted 

by the sampling device . If it were desired to transmit 

signals of higher frequencies, the sampling rate of the 

system would have to be increased. 

/x*(jw)/ 

~--~~_._~ .......... '-'-~_....~_._.........,'--~'--~-!-+-....i.....~-'-~...i....a.....i.~--1-~~-'-.,..w 
-2 w ~ 3 w - w - w O w w 3 w 2 w s s s s s s s s 

2 2 2 ? 

Figure 8. Frequency Spectrum of Sampler Output When 
Sampling Frequency i s Less Than Twice the Highest 
Input Signal 
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The important thing to observe here is the periodic­

ity introduced by the sampler, and that when HG*(s) is 

substituted in Equation 14 for X*(s) the result is 

00 

HG* (s) = i I HG(s + jnws) • (15) 
n=-oo 

Equation 15 is the one that will be needed in this study. 

The frequency phase plot of HG*(s) can be constructed 

by replacing the complex variables with jw and allowing w 

to vary from minus infinity to plus infinity. If the 

right side of Equation 15 is expanded into the series 

+ HG(jw + j2ws) + ••• + HG(jw- jws) + 

+ HG ( jw - j 2 ws) + ••• ] , (16) 

the frequency loci i s the vectorial sum of each phasor , 

where the phasor represents a term of the series. 

Since HG*(jw) is a periodic function with a period of 

jws' the frequency phase plot repeats itself when the fre­

quency is increased by w s . Thus , the polar plot of HG*( j w) 

for the fre quency range from minus infinity to plus infin-

ity is identical with tha t for the frequency range Oto 

ws . Furthermore, since the polar plot of HG*(jw) is sym­

metrical with respect to the real axis, the plot for the 
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frequency range between ws/2 and ws is the mirror image of 

the plot for the frequency range between O and ws/2. As a 

result, in investigating the frequency phase characteris-

tics of a sampled-data system only the frequency range 

from Oto ws/2 is of interest. 

When constructing the Nyquist diagram, it is usually 

possible to limit the computation to a small number of the 

phasors of Equation 16. The number of phasors needed 

depends upon the bandwidth of the system and can be seen 

in the construction processo When the sampling frequency 

ws is high in comparison with the bandwidth of the system, 

Equation 16 can be approximated by the first three terms 

of the series without much loss of accuracy. Thus, 

Equation 16 becomes 

00 

iI HG(jw+ jnws)~~HG(jw) +iHG(jw-jws) +iHG(jw + jws). 
n=-00 

(17) 

The first term of the right-hand member of Equation 17 is 

the predominating term, the second term is the major cor-

rection term, and the third term is added for obtaining 

better accuracy. In order for the approximation of 

HG•(jw) by a few terms of the series given in Equation 16 

to be effective, it is necessary for HG(jw) to approach 

zero at least as rapidly as l/w 2 for frequencies above ws.1 

1J. R. Raggazzini, and G. F. Franklin, Sampled-Data 
Control Systems (New York, 1958), p. 131. 
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The construction process for the polar plot is 

explained in Figure 9. First the polar plot of T-1HG(jw) 

is constructed for both positive and negative frequencies, 

then the three phasors , T-1HG(jw1), T-1HG(jw 1 - jws) ~ and 

T-1HG( jw1 + j,ws), are added vectorially to give the approxi­

mate value of T-1HG•(jw1 ). T-1HG(jw1) is given in Figure9 

by phasor OA , T-1HG(jw1 - jws) by OB , and T-1HG(jw1 + jws) 

by OC. The three phasors add together vectorially to pro-

duce OE. OE is the approximate value of the frequency 

phase plot of a linear sampled-data system when the fre­

quency w1 is applied to the input. Additional points along 

the frequency phase plot may be found in this same manner 

at w2 , w3 , etc . When enough of these points have been de­

termined, the results will be the frequency phase plot of 

the linear sampled-data control system. This is shown by 

the dotted line in Figure 9. 

Approximation for the Nonlinear Element 

The method for obtaining a frequency phase plot for 

the linear sampled-data control system has been presented , 

thus the attention now turns to the problem of finding a 

way to express the transfer function of the nonlinear ele­

ment, N(a), and combining that transfer function with 

HG*(jw) . As stated earlier, the nonlinear elements which 

are represented by N(a) in this thesis are of the type 

known as "fast nonlinearities" ; that is, types in which 

the mode of operation of the system changes rapidly 
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compared to its response time. Some nonlinearities of 

this type are saturation, hysteresis or backlash, and dead 

zone. The input-output characteristics of these are shown 

in Figure 10. 

Output Output 

b 

(a) Saturation (b) Hysteresis or 
backlash 

(c) Dead zone 

Figure 10. Input-Output Characteristics of 
Nonlinear Elements 

In the study of nonlinear continuous-data systems a 

method known as the '°describing-function" is used quite 

extensively to represent the element N(cx.) . 2 The describing-

function wil l be introduced here as a first approximation 

for N(cx.) 9 and this value will be used to obtain the fre-

quency phase plot for N(cx.) HG*(jw) . 

2J. G. Truxal, Automatic Feedback Contro l System 
Synthesis (New York, 1959), p. 134. 
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The describing-function analysis is based on three 

assumptions: (1) There is only one nonlinear element in 

the system. If there is more than one, then a single ele­

ment will be considered as containing all the nonlineari­

ties of the system. It is theoretically possible to 

consider systems with more than one isolated nonlinearity, 

but the analysis becomes unduly complicated. (2) The 

output of the nonlinear element depends only on the 

present value and past history of the input. In other 

words, no time- varying characteristics are included in 

N(a). (3) If the input of N(a) is a sinusoidal signal, 

only the fundamental component of the output of N(a) con­

tributes to the input to the system . 

The last assumption is the key to the describing­

function analysis, and it is justified on two grounds; 

first, the harmonics of the output of N(a) are ordinarily 

of smaller amplitude than the fundamental; and second, in 

most feedback control systems, the gain of the sy~tem 

transfer function decreases as the frequency increases , 

with the result that the higher harmonics are attenuated 

more than the fundamental i n the transmission through the 

system. 

The describing-function is defined as the ratio of 

the fundamental component of the output to the amplitude 

of the input . Thus , if the input to the element, N(a), 

is e = e 1 sinwt and the Fourier series analysis gives the 

output as d = d 1 s i n(wt + 81 ) + d3sin(3wt + 83) + ••• , then the 
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describing-function would be given by 

N(a) (18) 

where e 1 is the phase shift between the input wave and the 

fundamental wave, and a is the variable used to indicate 

the degree of nonlinearity in the element. Actually the 

describing-function is a method for linearizing the non­

linear element. A change in a will change the value of 

N(a), which is given in Equation 18. 

The value given for N(a) in Equation 18 is considered 

to be the transfer function of N(a) and used to adjust the 

frequency phase plot of HG•(jw), which was shown in Figure 

9 (page 

HG *(j w) 

23). This adjustment is made by multiplying 
d1 

by el Q for all values of w. The resulting plot 

for w; w1 will be 

[I HG'(jw1l/6] c:~ Q J . 
This equals 

or it can be seen that the plot of HG*(jw) can be multi-

plied 
d1 

by-
el 

and shifted in phase by e1. In cases where e1 
varies as w varies, the value of el must be changed for 

each value of w. The resulting plot on a Nyquist diagram 

will be the frequency phase plot of N(a) HG*(jw). With 

this plot the examination of the degree of stability of 
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the nonlinear sampled-data control system can be carried 

out by the conventional methods used in linear continuous­

data systems. 

Improved Approximation for N(cx) HG*(jw) 

The describing-function is only an approximation for 

the transfer function of N(cx) . In many instances, this 

approximation is adequate because the higher order harmon­

ics are usually relatively small when compared to the 

fundamental and also the linear portion of the control 

system usually tends to filter out the higher order har­

monics. As the harmonics become large when compared to 

the fundamental ~ the frequency phase plot of N(cx) HG*(jw), 

using the describing-function to represent N(cx), becomes 

less accurate . The ratio of the next higher harmonic and 

the fundamental is a measure of the accuracy of the 

describing-function analysis. Since this ratio is a meas­

urement of the accuracy of the frequency phase plot for 

N(cx) HG*(jw), it appears that the ratio of the harmonic to 

the fundamental could be used to improve the accuracy of 

the frequency phase plot. The scheme used in this thesis 

to obtain the first correction to the frequency phase plot 

which was obtained using the describing-function was to 

find the percentage of the magnitude of a given harmonic 

to the magnitude of the fundamental . This percentage was 

multiplied by the value of the linear sampled-data fre­

quency phase plot taken at the frequency of the harmonic. 
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This value is then added vectorially to the value of the 

frequency phase plot at the fundamental frequency. In 

other words, if it is desired to obtain the effect of the 

third harmonic on the frequency phase plot at the frequency 

wa' and the magnitude of the third harmonic is five per 

cent of the fundamental, then the process is to take five 

per cent of the magnitude of the linear sampled-data fre­

quency plot at the frequency ;wa and add that value vec­

torially to the sum of the response for the system to the 

fundamental at wa and the second harmonic at 2wa. The sum 

of these three phasors is the value of frequency phase 

plot at the frequency, wa' when all higher-order harmonics 

to be considered in the above manner depend only on the 

degree of accuracy desired. 

Example of the Method 

The method of obtaining the frequency phase plot of 

N(a) HG*(jw) can be explained best by means of an illus­

tration. The nonlinear element to be used in the example 

will be saturation. The input-output characteristics of 

this type nonlinear element was shown in Figure 10a (page 

24). When the input to the element is sinusoidal, then 

the output wave will be as shown in Figure 11. The symbol 

a is the angle and bis the magnitude at which saturation 

occurs. The Fourier series of this output wave is given 

as 

(19) 



b 

-b ------------------------4 

Figure llo Output of Saturation Type Nonlinearity 
With Sinusoidal Input 
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when the input is e = a sin x. The values of Yn can be 

found from 

30 

2 i1t = - e sin nx dx 1t 0 n = 1 ~ 3, 5, ··• (20) 

where 

e = a sin x 0 < X < a , (21) 

e = a sin a a<x<n-a, (22) 

and 

e = a sin x n-a<x<n. (23) 

The evaluation for y 1 becomes 

g1t[ ra a 11t -a y 1 = ~ sin x sin xdx + a a sin a sin xdx + 

+ f n a sin x sin xdx], 
n - a 

which yields 

y 1 = ~a[a +!sin 2a]~ where O <a<~· 

(24) 

(25) 

Thus, when a=; (no saturation) the value for y 1 = a, 

which is the magnitude of the input, and at a= 0 the 

value for y 1 = 0. The describing function for the 

saturation-type nonlinearity is given as the fundamental 

component divided by the input signal, which is 
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Y1 2[ 1 :1 1t 
N(cx) = a 6 = 'i t + 2 sin 2 ':J i:::_, 0 < ex < 2 . (26) 

There is no phase shift between the input and output sig­

nal, thus cx1 = 0 for all values of ex; however, this is not 

true for all types of nonlinearities. 

The describing function for the saturation type non-

linearity has been obtained in Equation 26, therefore, the 

first step in the analysis is to plot HG•(jw), the linear 

frequency phase plot of the sampled-data system, on the 

Nyquist diagram. This is accomplished by the conventional 

method that was described earlier ~ where HG• ( j w) was ap-

proximated with the vector sum of the first three terms of 

the series 

HG*(jw) = i HG (jw) + i HG(j w - jws) + i HG(jw + jws)o 

(27) 

The next step is to replace N(cx) with the describing 

function. The describing function can be considered as a 

first approximation for N(cx). In the case of the satura-

tion nonlinearity, the describing function is a reduction 

in magnitude only ~ without shift in phase. Thus, once a 

value of ex has been selected (that is, a certain amount of 

saturation is present), the value of HG*(jw) can be re­

duced in magnitude by the amount of the describing function. 

The effect of the nonlinear element , therefore, tends to 

move the plot of the frequency phase to the right, and 

since the critical point is the point -1 + jO , the degree 

of stability of the system will be increased. 



32 

The method just described may be seen in Figure 12 

where the value of the describing function is assumed to 

be approximately one-half. The point A is the magnitude 

and phase for the linear frequency phase locus at wa' 

while the point A1 is the corresponding magnitude and 

phase for the frequency phase locus for the nonlinear sys­

tem ~ N(a) HG•(jwa) o This same reduction i s carried out at 

Band B', C and C', etc., until the plot for N(a) HG•(jw) 

is complete for all values of frequency between O and 

w /2. s 

I 
m 

Figure 12~ Method for Constructing the Nonlinear 
Sampled-Data Frequency Phase Loci 



The control engineer may be curious to know if the 

plot of N(a) HG*(jw) obtained by using the describing 
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function is adequate to yield desired results, therefore, 

the next problem which he must take into account is the 

one of knowing when it is necessary to consider higher-

order harmonics. Perhaps one of the best ways to find out 

how important the higher-order harmonics are, in compari-

son to the fundamental, is to make a plot of the funda-

mental and several of the harmonics as the variable is 

varied. From this plot the control engineer should be 

able to see very clearly the relationship between the 

fundamental and the other harmonics. Figure 13 is a plot 

of the magnitudes of the fundamental, third, and fifth 

harmonics for a saturation-type nonlinearity, as the angle 

a is varied from 0° to 90°. The symbol a is the angle 

associated with the amount of saturation present and can 

be expressed as 

a = sin-1 [:Magnitude of saturation] 
LMagnitude of input signa3:_j • (28) 

When no saturation is present, the magnitude of saturation 

is equal to the magnitude of the input signal and a= 90 ° ; 

and at the other extreme, when the system is completely 

saturated and the magnitude of saturation is zero, a= 0°. 

Referring to Figure 13 j one can see that, as the amount of 

saturation increases ~ or as a decreases, the magnitude of 

the third harmonic relative to the magnitude of the funda-

mental increases at a rapid rate. Thus, for slight 



saturation (a> 60°), the percentage of third harmonic to 

fundamental is less than about five per cent. For values 

of saturation in the region 60° <a< 90°, the value for 

N(a) can be approximated very well by using only the fun­

damental harmonic; however, for values of a< 60° the 

third harmonic must be taken into account in order to have 

an approximation for N(a) that is within five per cent of 

the actual value. At values of a< 30°, the fifth harmonic 

becomes noticeable and should also be taken into 

consideration. 
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-·2 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
Angle at which saturation occurs (a) 

Figure 13. Magnitude of Harmonics for Saturated Sine 
Wave 
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Output Output 

.39 

(a) a = 51° (b) 

..._......__.__._ __ ~..__._~_.-a 
a=23° 1t 

Figure 14. Two Degrees of Saturation 

The two waveforms shown in Figure 14 illustrate why 

the higher-order harmonics must be compared with the fun­

damental in order to have any meaning in the calculation 

of the effect of the higher-order harmonics. One can see 

that the period and magnitude of the input wave to the 

nonlinear element is the same for both waves, but the out­

put waves are completely different. In Figure 14a, the 

wave is saturated when a= 51°, and in Figure 14b, the 

wave is saturated when a= 23°. Referring now to Figure 

13, one finds that the magnitude of the fundamental and 

third harmonics have the values listed in Table I. 

From Table I, one can see that the magnitudes of the 

third harmonic, at each value of a, are approximately the 

same when compared to the input wave. However, one also 

can see that the third harmonic has a much greater effect 

on the wave shown in Figure 14b than the one shown in 
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Figure 14a. If one would compare the third to the funda­

.mental harmonic, one would find that the percentage of 

third harmonic to fundamental would be considerably dif­

ferent. This is tabulated in Table II. 

TABLE I 

RELATIVE MAGNITUDES OF THE FUNDAMENTAL 
.AND THIRD HARMONICS FOR TWO DEGREES 

OF SATURATION 

ex 51° 23° 

Fundamental 088 .48 

Third 009 .13 

TABLE II 

PERCENTAGE THIRD HARMONIC FOR TWO DEGREES 
OF SATURATION 

ex 51° 23° 

% third harmoni·c 10 27 
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The information given in Tables I and II will now be 

used to illustrate how it can be used to determine the 

stability of the nonlinear sampled-data control system 

shown in Figure 15. It will be assumed that the nonlinear 

element is of the saturation-type which saturates at a= 

23°. Thus, from Table I, the value of the fundamental is 

0.48 of the input signal and from Table 'II the third 

harmonic is 27 per cent. This information will be used to 

complete the frequency phase plot of an actual system. 

R s E(s) E*(s) 
N(23°) C(s 

Figure 15. Nonlinear Sampled-Data Control System 

The system to be controlled is G1(s) = s(.O;~ + l)' 

the sampling frequency , fs ' is 20 cycles per second, and 

the transfer function designated by GH(s) is a hold 

circuit. The hold circuit is a low-pass filter which 

removes the complementary signal components that were 

produced by the sampler. This is needed in order to re­

duce the ripple in the output signal of the sampled-data 
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control system. One of the simplest holding devices is 

the zero-order holding circuit or boxcar generator, in 

which the value of the input pulse is held constant until 

the arrival of the next sampling pulse. The waveforms of 

the input and output of a zero-order holding circuit are 

shown in Figure 16. 

e*(t) ~ ~ - __ ..._......, ________ ---11~~. _______ ze_r_o_-_O_r_d_er------~ .... ----e1_<t_) ______ __ 
Hold Circuit 

e•(t) 

0 T 2T 3T 4T 5T 6T 7T C •• 

Figure 16. Waveforms a t the Input and Output 
of a Zero-Order Hold Circuit 

The transfer function of the zero-order hold circuit 

was given by Tou as 
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1 -Ts 
- E 

s (29) 

where Tis the period of the sampling rate.' Thus, the 

over-all transfer function of the system shown in Figure 

15 is given as 

or 

40~1-E)-Ts 
G(s) = s 2 .05s + 1) · 

(30) 

(31) 

The first step of the analysis is to calculate the 

continuous-data open-loop response of G(jw) as w is varied 

from zero to infinity. This has been calculated and tabu-

lated in Column II of Table III. The second step in the 

calculation is to find the linear sampled-data system 

response. This is calculated using the first two terms of 

Equation 27, and multiplying the quantity by Tin order to 

account for the hold circuit. These values are tabulated 

in Column VI of Table III, and plotted as curve (a) in 

Figure 17. 

The third step in the calculation is the one used to 

adjust the linear sampled-data frequency phase plot in 

such a manner as to account for the fundamental harmonic. 

This is accomplished by multiplying each value of the 

'J. T. Tou, Digital and Sampled-Data Control Systems 
(New York, 1959), p. 134.-
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f G(jW) 

1.5 3.84/-115° 

2 2.68/-123° 

3 1.55/-133° 

4 .99/-142° . 

6 .50/-152° 

8 .30/-158° 

10 .20/-163° 

12 .14/-165° 

14 .10/-167_<>_ 

TABLE III 

CALCULATED OPEN-LOOP RESPONSE OF THE NONLINEAR SAMPLED-DATA CONTROL SYSTEM 

III IV V VI VII VIII 
0 

TGH(jw) G* ( jw) .48G*(jw) .27G*(j;t.0) G(jW-jW ) ~ G(jW+jnw ) 
s n=-1 s 

.06/170° 3.87/-116° .99/-. 14° 3.83/-130° 1.84/-130° .20/-193° 

.06/170° 2.72/ -125° .98/- 18° 2.68/-143° 1.29/-143° .14/-214° 

.07/170° 1.60/-1350 - .96/- 27° 1.54/-162° .74/-162° .oB/-250° 

.08/169° 1.05/-146° .94/- 36° .99/-182° .48/-182° .06/- 299° 

.10/167° .58/-160° .86/- 54° .50/-214° .24/-214° .11/-397° 

.14~ .43/-170° .76/- 72° 0 33L-.2lf-2° .16L-242° 

.20~ .40/-180° .64/- 90° .26/-270° .12L::270° 

.30~ .43/-190° .51/-108° .22/-299° .11/-299° 

.50/152° .58/-200° -37L--126° .21/-328° .1oa28° 

IX 

N(23°)G*(jw) 

1.92~0 

1.34/-149° 

-75/-170° 

.47/-189° 

.13L-212° 

+'" 
0 



-120° -110° -100° -90° 

Figure 17. Frequency Characteristic of the Nonlinear 
Sampled-Data Control System 
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linear frequency phase by the value of the fundamental 

harmonic when a= 23°. This value of the fundamental is 

0.48. The result of this is listed in Column VII of 
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Table III; it is the first approximation for the frequency 

phase plot of the nonlinear sampled-data system. The 

final step in the calculation is used to obtain a better 

approximation for the frequency phase plot. This calcula­

tion is carried out by adding vectorially 27 per cent of 

the linear sampled-data locus at 3wa to the value of the 

first approximation at wa· This final result is tabulated 

in Column IX of Table III, and is the desired frequency 

characteristic of the nonlinear sampled-data control 

system. A plot of this is shown as curve (b) in Figure 17. 

The actual steps used to obtain the frequency phase 

plot, as shown by curve (b) in Figure 17, were: 

1. Obtain a frequency phase plot of the linear 

continuous-data system HG(jw). 

2. Obtain the frequency phase plot of the linear 

sampled-data system HG*(jw). 

3. Obtain the describing function for N(a) and 

multiply that value by HG*(jw). This yields 

the first approximation for the frequency 

phase plot of the nonlinear sampled-data con­

trol system. 

4. In the case where higher accuracy is desired, 

each higher ordered harmonic from the output 

of the nonlinear element is compared to the 



fundamental as a percentage. This percentage 

is multiplied by the linear sampled-data sys­

tem responds at nwa' where n is the value of 

the harmonic under consideration, and wa is 

the value of w where a point on the frequency 

phase plot of N(~) HG•(jw) is being calculated. 

The value of the percentage of the higher 

ordered harmonic multiplied by the linear 

sampled-data system response at nwa is added 

vectorially to the results obtained at wain 3 

(on preceding page). This step is repeated 

until enough points along the plot have been 

obtained so that a smooth curve can be 

approximated. 
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CHAPTER IV 

EXPERIMENTAL STUDY 

In Chapter III an analysis was made to determine the 

polar plot of the open-loop transfer function of a non­

lin~ar sampled-data control system. In order to verify 

the results given in that chapter, an experimental study 

was conducted using a Donner electronic analog computer to 

simulate the control system. This chapter will be a dis­

cussion of the system used in the study, the method used 

to obtain the results, and the tabulation of the results. 

The analysis of the results will be given in Chapter V. 

The system chosen in this experimental study is shown 

in Figure 15. The transfer function of the controlled 
40 

system was given as G1 (s) = s(.05s + l)~ the transfer 
1 -Ts 

function of the hold circuit was GH(s) = -! ; the sam-

pling frequency, fs' was equal to 20 cycles per second, 

and the nonlinear element was a saturation-type nonlinear-

ity which has an input-output characteristic as shown in 

Figure lOa (page 24). Data were obtained for three values 

of saturation; that is, for three values of a. The values 

of a equal to 90°, 51°, and 23° were taken and recorded. 
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System Used for the 

The transfer function of G(s) = 

Study 

40(1 - E-.05s) 
s2 (. 05s + 1) 

45 

was 

programmed on a Donner electronic analog computer using 

the techniques given by Johnson. 1 The analog computer 

circuit for this transfer function is shown in Figure 18 • 

• j. 
Figure 18. Analog Computer Circuit for 

Forward Transfer Function 

The transfer function of each of the amplifiers shown in 

. Figure 18 are 

G 1 - E-.05s 
(32) = 0 s 

Gl 
1 (33) = R3c2s ' 

1c. L. Johnson, Analog Computer Techniques (New York, 
1956). 
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and 

(34) 

Thus, the over-all open-loop transfer function is 

(35) 

or 

(36) 

The sampler was simulated by a relay, which closed 

for one-fifth of a cycle when its coil was energized. A 

Hewlett-Packard sine wave oscillator was used to energize 

the relay at 20 cycles per second. 

The saturation-type nonlinearity was produced with a 

diode circuit used in conjuction with one of the opera­

tional amplifiers of the Donner electronic analog computer. 

The circuit for performing this operation is shown in 

Figure 19 along with the input and output waveforms to the 

circuit. 

The output wave is identical to the input wave, with 

the exception of the clipping of the upper portion of the 

wave, which is the effect of saturation in a system. The 

potentiometers were used to adjust the amount of clipping. 

A schematic of the complete system as used in this 

study is shown in Figure 20. 



e. ( t) 
1 

+lOOV 

-lOOV 

A 

Potentiometer B 

-e ( t) 
0 

e (t) 
0 

Figure 19. Circuit for Generating Nonlinearity 
Along With Input and Output Waveforms 

Method Used to Obtain Results 
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The procedure used to obtain the results was to set 

up the system shown in Figure 20 on the Donner electronic 

analog computer. A sine wave of 20 cycles per second from 

the sine wave oscillator was applied to the coil of the 

relay, and the amplitude of the wave was adjusted until 

the contacts of the relay were closed for approximately 

one-fifth of the period (0.05 second). The next step was 

to apply a sine wave of variable frequency to the input 

designated by r(t); the amplitude of this signal was varied 

until it produced an actuating signal e(t) of a specific 

magnitude, which in turn produced the desired amount of 



+lOOV 

-lOOV 

Relay 
Coil 

.lM 

Sine Wave 
Oscillator 

5M 

Figur~ 20. Analog Comp;uter Schematic of the Nonlinear Sampled-Data Control System 

~ 
CX> 
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nonlinearity. With this specific magnitude of signal 

e(t), the two potentiometers A and B were adjusted until 

the output y(t) was limited to the desired value. Thus, 

when the signal e(t) was adjusted to have the magnitude 

specified above, the saturation was set at one particular 

value. As the frequency at the input of the system, r(t), 

was varied, its magnitude had to be adjusted to bring 

e(t) to the desired value. 

A Hewlett-Packard oscilloscope was used to measure 

the peak-to-peak voltage c(t) at the output, and the 

actuating signal e(t). Also with the aid of an electronic 

switch, the two signals, c(t) and e(t), were displayed on 

the oscilloscope at the same time in order to measure the 

phase relationship of the two waves. With this informa­

tion, the open-loop response of the system could be calcu­

lated by the equation 

G(jw) = ~ /phase angle between c and e • (37) 

These data were taken for the three case a= 90° 

(linear system), a = 51° (small amount of nonlinearity), 

and a= 23° (large amount of nonlinearity). 

Results Obtained From the Experimental Analysis 

The data tabulated in Table IV are the results 

obtained with the saturation of the system fixed at three 

different levels. The second column is the data for a 

equal to 90° (no saturation or linear). The third column 



f 

1.73 

2.00 

2.35 

2.53 

2.94 

3.90 

5.00 

5.90 

TABLE IV 

EXPERIMENTAL RESULTS 

N ( 90 ° ) G • ( j w) N(51 °)G•~j w) 

3.20/-128° 2.90/-130° 

2.80/-131° 2.40/-133° 

2.04/-138° 1.92/-140° 

1.96/-141° 1.76/-143° 

1.56/-144° 1.36/-146° 

0.96/-157° 0.84/-164° 

0 . 64/-180° 0.60/-180° 

0.44/-193° 0.34/-185° 
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N(23°)G•(jw) 

1. 60/-131 ° 

1.40/-134° 

1.05/-142° 

0.97/-144° 

0. 75/-152° 

0.45/-166° 

0.30/-180° 

0.10/-185° 



is for a equal to 51° (small amount of saturation), and 

the fourth column for a equal to 23° (large amount of 

saturation). The analysis of these experimental results 

will be presented in the next chapter. 
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CHAPTER V 

SUMMARY AND ANALYSIS OF RESULTS 

The purpose of this thesis was to present a method 

for obtaining the frequency phase plot of a nonlinear 

sampled-data control system so that the relative stability 

of the system could be determined. The nonlinear elements 

are of the ' 0 fast nonlinearity n type, or ones in which the 

mode of operation of the system changes rapidly compared 

to its response time. The analysis was carried out in the 

frequency domain and the Nyquist diagram was the tool used 

for determining the stability. 

It was shown in Chapter II that the relative stability 

of a nonlinear sampled-data control pystem could be deter­

mined if the open-loop response of the system was plotted 

on a Nyquist diagram. It was also shown that once the 

frequency phase plot, or open-loop frequency response, had 

been obtained, the relative stability of the nonlinear 

sampled-data system could be found in the same manner as 

the relative stability of a linear continuous-data control 

system·. That is, the relative stability of a nonlinear 

sampled-data control system could be obtained through the 

uses of M-circles in the same manner as they are used for 

studying stability in linear continuous-data systems. 
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There were a number of problems which had to be con-

sidered before the frequency phase plot could be 

constructed. The first problem was that of selecting a 

method for plotting HG•(jw), the sampled transfer function 

of the linear portion of the system. This problem was 

overcome by examining the effect of a sampler on a signal 

and noting that the output from the sampler can be ex-

pressed in the series 

00 

HG• (jw) = ~ HG(jw) + ~I HG(jw + jnw8 ) + 
n=l 

00 

+ ~I HG(jw - jnws). 
n=l 

(38) 

Each of the terms on the right-hand side of Equation 38 

can be represented by a vector, and the vectorial sum of 

these yield the value HG•(jw). The response HG•(jw) can 

usually be approximated very accurately by only a few 

terms of the series; therefore, the frequency phase plot 

of the linear portion of the system may be obtained with­

out must difficulty. 

The next problem which had to be overcome was finding 

a way to express or represent the nonlinear element or 

nonlinear portion of the system. The describing-function 

is a method used to represent these elements in continuous-

data systems; therefore, a successful attempt was made to 

extend this method to sampled-data systems. The 
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describing-function is defined as the value of the funda-

mental harmonic at the output of the nonlinear element, 

divided by the value of the input signal. This is ex-

pressed in a formula as 

(39) 

where e1 is the angle between the two~ d1 is magnitude of 

the fundamental harmonic ~ e1 is the magnitude of the input 

signal and a represents the degree or amount of 

nonlinearity . 

The magnitude and phase of the describing-function is 

used in the same manner as any transfer function; that is, 

Equation 39 is inserted into the system in the place of 

the nonlinear element. 

Equation 39 is a very good approximation for the 

transfer function of the nonlinear element for a great 

number of control systems. This statement is true because 

the higher order harmonics are usually very small when 

compared to the fundamental ~ and also because the system 

usually attenuates the higher order harmonics. In cases 

where this i s true~ the describing-function is accurate 

enough for determining the relative stability of the 

system; however~ there are times when the describing-

function does not adequately describe the nonlinear ele-

ment and the higher- order harmonics must be considered 

along with the fundamental if accurate results are 

required. 
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The higher-order harmonics were used to obtain a more 

accurate frequency phase plot in the following manner: 

First, the value of each of the more predominatedharmonics 

was calculated using the Fourier series analysis~ and this 

value was compared to the fundamental as a percentage. The 

value of this percentage was multiplied by the magnitude 

and phase of the linear response of the system at the fre­

quency of the harmonic. The result obtained from this 

multiplication was added vectorially to the describing­

function0s response. The describing-function's response 

was taken at the frequency of the fundamental, and the 

harmonic responses were taken at the frequency of each 

harmonic. As an example~ if it were desired to find the 

response of the nonlinear system at the frequency wa with 

third and fifth harmonics present ~ the procedure to be 

followed would be: (1) find the percentage of the third 

and fifth harmonic relative to the fundamental; (2) multi­

ply the value of the percentage of third harmonic by the 

value of the linear response at 3wa and the value of the 

percentage of fifth harmonic at the value of the linear 

response at 5wa ~ and (3) add vectorially both results ob­

tained from (2) above to the vector which would be obtained 

when the magnitude and phase of the fundamental was multi­

plied by the linear frequency response at the frequency wa. 

The sum of these three vectors is the response of the non­

linear system at the frequency wa . It is assumed in this 

example that the effect of the harmonics above the fifthis 

negligible. 
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Analysis of the Results 

The frequency phase plot of a typical nonlinear 

sampled-data control system, shown in Figure 15, was ob­

tained in Chapter III. The techniques presented in this 

thesis were used to obtain this plot. The nonlinear ele­

ment of the system was one which saturated at a value of~ 

equal to 23°. The value of the fundamental at this degree 

of saturation was found, through a Fourier series analysis, 

to be 0.48. The percentage of the third harmonic, rela­

tive to the fundamental, was 27 per cent. 

The linear frequency phase plot was calculated from 

the vector sum of the first two terms of the series 

. . . . 
(40) 

Nine different values of w were used in order to obtain a 

smooth curve on the Nyquist diagram. The results of this 

calculation are tabulated in Column VI of Table III, and a 

frequency phase plot is shown as curve (a) in Figure 17. 

This plot passes through or slightly to the left of the 

critical point (-1 + jO); therefore, the linear system is 

unstable. Actually, the linear response was of little 

interest except that it was needed in the calculation for 

the nonlinear response. 

The next step of the calculation was performed by 

multiplying each term of Column VI of Table III, the linear 
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frequency response, by 0.48, the magnitude of the funda­

mental harmonic. This result is tabulated in Column VII 

of Table III. The third step was performed by multiplying 

each term of the linear frequency response (Column VI of 

Table III) by 27 per cent, the percentage of the third 

harmonic. Column VII is a tabulation of this result. 

Each term in that column is 27 per cent of the linear fre­

quency response at three times the frequency of the line 

in which it is located . That is , the second term from the 

top in Column VIII, which is located in the line corre­

sponding to a frequency of 2 cycles per second, is 

0.14/-214°. This term is 27 per cent of the linear fre­

quency response at a frequency of 6 cycles per second,which 

is the fifth term in Column VI . 

The vector sum of Columns VII and VIII yields the re­

sults of the nonlinear frequency phase plot for the 

sampled-data system shown in Figure 15. 

are plotted as curve (b) in Figure 17, 

These same results 

The nonlinear sys-

tem is stable and the degree of stability, or intersection 

of the frequency phase plot with a M-circle, is M = 2.8. 

Although the intention here was not to improve the stabil­

ity of the system with the addition of a nonlinear element, 

the system was changed from an unstable one to one which 

is very stable. The objective was to present a method 

which would enable a control engineer to obtain a frequency 

phase plot of a nonlinear sampled-data control system, a 

plot from which he would be able to make a system stability 
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analysis using techniques already known to him. 

An experimental study was conducted in order to verify 

the results obtained from the analytical study of Chapter 

III. Data were t aken for three degrees of saturation; 

that is j for three values of a. The values of a were 90°, 

51°, and 23c . The results from this experimental study 

are recorded in Table IV. The result obtained with a equal 

to 90° is the linear response of the system. 

Although the system used in the experimental study 

was supposed to be an anal og of the system used in the 

analytical study 9 it was found that the linear response of 

the two systems differed. This difference in the responses 

was due to the differences in the sampler and hold circuit 

used in the two studies " The output waveform from the 

sampler and hold circuit used in the analytical calcula­

tions is shown in Figure 2l(a)~ and the waveform obtained 

from the experiment al study is shown in Figure 2l(b). The 

difference between the t wo waveforms was produced because 

the sampler used in the experi mental study closed for a 

time period of T/5 9 whereas 9 the sampler in the analytical 

study was cl osed onl y momentari l y o The sampler and hold 

circuit ~ l ike the one whi ch produced the waveform in 

Figure 2lb ~ will cause less phase shift in the sampled­

data frequency response than a sampler and hold circuit 

with a waveform l ike t hat shown in Figure 21a. Therefore , 

the phase shift found in the experi mental study was not as 

great as that calculated in the analytical study. 
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Figure 21. Output Waveforms From Sampler and Hold Circuit 

Before a true compari~on could be made between the 

experimental and analytical study ~ the analytical results 

had to be changed to t ake into account a sampler and hold 

circuit with a waveform of the type shown in Figure 21b. 

This change made the experimental system essentially iden­

tical to that used in the analyti~al study. The curve 

shown in Figure 22 is the corrected response• of the system 

used in the analytical study ~ and the points which were 

obtained from the experi ment al study are plotted on the 

same curve. The experiment al points are designated by the 

symbol a . It can be seen that the experimental points 

agree very well with the calculated curve . 

The linear frequency phase plot ~ shown in Figure 22, 

was used to obtai n calculated data for the plot of the 

nonlinear sampled-data system with a equal to 51° and 23°. 
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Figure 22 . Calculated and Experimental Response of 
the Linear Sampled-Data Control System (o: = 90°) 
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These two curves are s hown in Figures 23 and 24 , 

respectively " The results of the experiment al data are 

plotted on e a c h of these curve s and d es ignated by G, The 

experimental r esult s a gain a gree very well with the calcu­

lated resultso 

The degree of stability of each of the three saturated 

systems was determined by the employment of M-circleso It 

was found tha t the degree of stability increased with 

saturation o The change was fro m M = 3 , for the linear 

system , to M = 2.6 for a equal 51° and to M = 1.7 for a 

equal 23 ° 0 From these results ~ it becomes apparent that a 

saturating type nonlinear element could be used to improve 

the stability of a system. 

Some difficulty was experienced in determining the 

phase shift between the input and output waves to the sys­

tem at input signal near one-half the sampling frequency. 

This was due to subharmonic generation within the system 

brought about by the nonlinearity " Because of this diffi­

culty and because the system would seldom be operated in 

the region of ws/2 ~ no special effort was made to obtain 

these resul t s o 
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Figure 23. Calculated and Experimental Response of 
the Nonlinear Sampled-Data Control System (ex.= 51 °) 
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Figure 24 . Calculated and Experimental Resp onse of 
the Nonlinea r Sampled-Da ta Control System (a= 23°) 



CHAPTER VI 

CONCLUSIONS 

It was the object of this thesis to study the stabil­

ity of nonlinear sampled-data control systems using the 

real frequency domaino The graphical tool used to study 

stability was the Nyquist diagramo The nonlinear elements 

of the system are of the fast nonlinearity-type in which 

the mode of operation of the system changes rapidly com­

pared to its response timeo Nonlinear elements of this 

type are saturation ~ hysteresis or backlash~ dead zone ~ 

etc. As a result of this study~ a technique has been 

developed for examining the stability of nonlinear sampled­

data control systems in the frequency domain. 

It was pointed out in Chapter II that the stability 

of the nonlinear sampled-data control system could be ob­

tained from a frequency phase plot of the open-loop trans­

fer function ~ N(a) HG*(s) . The work in this thesis was 

limited to the problem of finding a way to obtain a plot 

of N(a) HG*(s) on a Nyquist diagram. 

A suitable procedure of evaluation was evolved and 

follows: 

1. Calculate the frequency response of the linear 

portion of the system. This is accomplished by 

64 
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using the series 

00 

=Tl~ HG* (s) L.. (41) 

n=-oo 

Each term of the right-hand side of the series 

can be represented by a vector. The vectorial 

sum of these will yield HG~(s). Fortunately, 

this sum usually can be represented by two or 

three terms of this series. 

2. Make a Fourier series analysis of the output 

waveform from the nonlinear element when a 

sinusoidal is applied to the input. 

3. Replace the nonlinear element with a first 

approximation for the nonlinear element by 

using the describing-function. The describing­

function is the ratio of the fundamental to the 

sinusoidal input to the element. 

4. Multiply the frequency response obtained (in 1 

above) by the describing-function. This result 

will be the frequency phase plot for the nonlin-

ear sampled-data control system, when all 

higher-ordered harmonics from the nonlinear ele-

ment are neglected. 

The result~ which is obtained from 4 above, is the 

frequency phase plot for a nonlinear sampled-data control 

system. The accuracy of this procedure is l imited only 

to the degree that the higher-ordered harmonics, which are 
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present at the output of the nonlinear element, are neg­

lected. If the magnitude of each harmonic is very small 

when compared to the fundamental ~ the result obtained (on 

the preceding page) will be very accurate; however, if the 

harmonics are not small when compared to the fundamental, 

the result will be poor. 

The additional steps which should be taken to account 

for higher order harmonics and increase the accuracy of 

the calculations are : 

5" Calculate the percentage harmonic relative to 

the fundamental. 

6. Multiply this percentage by the linear frequency 

response of the system at the frequency of the 

harmonic o 

7. Add this result, vectorially, to the result 

obtained in 4 (on preceding page). 

8. Repeat step 6 for each of the harmonics that 

need considering (this will become apparent in 

the calculation process) , and add each of these 

to 7 above . 

It was found that the method as proposed for obtain­

ing a frequency phase plot of a nonlinear sampled-data 

control system is very accurate . 

fied in the experimental study . 

This accuracy was veri­

The results of the ana-

lytical and experimental study can be seen in Figures 23 

and 24. It also appears that the control engineer can use 

this method to examine the stability of a nonlinear 
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sampl ed~dat a control system by following the steps outlined 

i n this t hesis and utilizing techniques with which he is 

familiar o 

The nonl i::o.ear e l ement of the saturation-type increased 

the relative s t ability of the system. 

Although this s t udy covered , both analytically and 

experimental ly ~ t he nonlinearity of saturation in detail , 

it is felt that addi t ional work should be done for other 

t ypes of nonlinearities o The nonlinear element of back­

lash or hys t eresis should be of particular interest because 

it is a very common oc curr ence i.n nature 9 and because the 

phase shift wi t hin the nonlinear element varies as the 

frequency t o the element is var ied . 

Another area for additional study would be the case 

where several nonlinearit ies are combined into one element~ 

such as saturation and dead zone 9 saturation and hysteresis, 

dead zone and hysteresis ? e t c o Furthermore 9 a study of 

systems whi ch cont ain more t han a single sampler would be 

of particul ar i nt erest s i nc e t hese systems occur quite 

often i n practice . 
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