
A Custom Layout of a

8 bit RISC Microcontroller

By

Kalyan Parajuli

Bachelor of Engineering

Kathmandu University

Dhulikhel, Nepal

2000

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
MAY 2005

 ii

A Custom Layout of a

8 bit RISC Microcontroller

 Thesis Approved:

 Thesis Advisor

 Dean of Graduate College

 iii

ABSTRACT

This thesis work presents custom layout of a 8-bit RISC microcontroller based on general

architecture of the PIC 16f54 on AMI 0.6 submicron technology. The system designed is

operative on all 33 general instructions of PIC 16f54 microcontroller. A modified

architecture for branching is implemented. SRAM cells were used as general purpose

memory. The operating frequency of the chip after simulation was 71.42 MHz (14nS

clock period).

This thesis also discusses the detailed system analysis and circuit behavior of the

microcontroller. An 8-bit Arithmetic Logic unit, 32 word SRAM array, 12-bit wide Input

Output port, two layered stack segment, a free running counter and its timer module were

all custom designed using Cadence’s Virtusio Integrated Circuit Design environment to

maximize speed. Conditional branching instructions were reduced to a single cycle, one

cycle less than the PIC 16f54 microcontroller. A complex three phased clock was used

for non-pipelined design. A simulated version of the microcontroller was tested fully in

the IRSIM simulator. Detailed simulation results are presented and discussed.

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Louis G. Johnson, for his continuous guidance,

encouragement and support during the work on this thesis. I also wish to thank Dr. Daniel

Grischkowsky and Dr. R. G. Ramakumar for reviewing my thesis and for their valuable

comments and suggestions concerning this work as members of my advisory committee.

Additional thanks go to my friends for being available for helpful discussions.

My sincere appreciation goes to my brother, sisters and sister-in-law for their assistance

and knowledge and also to little Jhyankur for many good words in hard time.

I am deeply grateful to my lovely wife Sarika, for accompanying me through my studies,

her endurance and support.

Finally, my parents deserve most of my gratitude for everything they have done a life

long for me.

 v

TABLE OF CONTENTS

Chapter 1... 1

1 Introduction and Thesis Organization.. 1

1.1 Introduction... 1
1.2 Scope (Objective).. 6
1.3 Thesis Organization .. 6

Chapter 2... 6

2 Architecture Design .. 7
2.1 Multiplexer.. 7

2.2 Tristate Buffer... 12
2.3 Incrementer ... 14
2.4 Zero Detector .. 16
2.5 D latch... 18
2.6 Data Flip-Flops ... 20
2.7 Ring Oscillator .. 22
2.8 Arithmetic Logic Unit... 24

2.8.1 Single-Bit Adders.. 24
2.9 SRAM ... 29
2.10 Address Decoder... 33
2.11 Read/Write circuitry for SRAM.. 34
2.12 Pre-charge for SRAM ... 35
2.13 Control signal generator for SRAM.. 36
2.14 Clock to Signal Converter for SRAM... 38
2.15 Counter.. 39
2.16 Status Register .. 40
2.17 Option Register ... 42
2.18 File Select Register ... 44
2.19 Instruction Decoder... 44

Chapter 3... 46

 vi

3 Modular Design .. 46
3.1 SRAM array .. 46
3.2 Stack Segment... 48
3.3 Accumulator.. 50
3.4 Program Counter... 51
3.5 Bit Test.. 52
3.6 Rotate and Swap ... 52
3.7 Input Output Port .. 52
3.8 Timer 0 Module .. 54

3.8.1 Timer0 Register .. 54
3.8.2 Prescalar.. 54
3.8.3 Watch Dog Timer ... 55

3.9 Instruction Decoder... 56
3.10 Data path , Signal Routing and Controlling.. 62
3.11 Status Register .. 67

Chapter 4... 68

4 Instruction Execution .. 68

4.1 Byte Oriented Instructions .. 68
4.1.1 ADDWF.. 68
4.1.2 ANDWF.. 69
4.1.3 CLRF... 70
4.1.4 CLRW... 71
4.1.5 COMF ... 72
4.1.6 DECF .. 72
4.1.7 DECFSZ.. 73
4.1.8 INCF ... 74
4.1.9 INCFSZ... 75
4.1.10 IORWF.. 76
4.1.11 MOVF... 77
4.1.12 MOVWF ... 78
4.1.13 NOP... 79
4.1.14 RLF ... 80
4.1.15 RRF... 81
4.1.16 SUBWF... 82
4.1.17 SWAPF ... 83
4.1.18 XORWF .. 84

4.2 Bit Oriented Instructions... 85

 vii

4.2.1 BCF... 85
4.2.2 BSF ... 86
4.2.3 BTFSC .. 87
4.2.4 BTFSS... 88

4.3 Literal and Control Instructions .. 89
4.3.1 ANDLW.. 89
4.3.2 IORLW ... 90
4.3.3 MOVLW... 90
4.3.4 XORLW.. 91
4.3.5 CALL .. 92
4.3.6 GOTO ... 93
4.3.7 TRIS.. 94

5 Conclusion and Future Work .. 95

5.1 Future Work .. 97

6 References... 98

7 Bibliography ... 100
Appendixes ... 101

A. Test benches... 101
A.1 Test bench for 8 bit ALU ... 101
A.2 Test bench for 32 word memory array... 108

 viii

LIST OF TABLES

Table 2-1 Comparison of Multiplexer delays and layout area.. 12

Table 2-2 D latch functional table .. 18

Table .2-3 Binary Addition .. 25

Table 2-4 Prescaling Rate .. 43

 ix

LIST OF FIGURES

Figure 1-1 General Structure of a Harvard Architecture .. 4

Figure 1-2 Generalized block diagram of a 8 bit RISC microcontroller 5

Figure 2-1 2 to 1 multiplexer .. 7

Figure 2-2 4 to 1 multiplexer ... 9

Figure 2-3 8 to 1 multiplexer .. 9

Figure 2-4 Layout of a 2 to 1 multiplexer... 10

Figure 2-5 Testing 2 to 1 multiplexer ... 10

Figure 2-6 8 to 1 multiplexer .. 11

Figure 2-7 8-bit 2 to 1 multiplexer.. 11

Figure 2-8 Schematic of a Tristate Buffer .. 12

Figure 2-9 Layout of a tristate buffer.. 13

Figure 2-10 Timing diagram of a tristate buffer ... 14

Figure 2-11 Structure of a 2 bit Incrementer .. 15

Figure 2-12 State Diagram of a 8 bit incrementer .. 15

Figure 2-13 Output of 9-bit incrementer... 16

Figure 2-14 Schematics of a zero detector.. 16

Figure 2-15 Layout of a zero detector... 17

Figure 2-16 Timing diagram of a zero detector .. 17

 x

Figure 2-17 Basic Latch.. 18

Figure 2-18 Layout of a D latch.. 19

Figure 2-19 Output of a D latch.. 20

Figure 2-20 A positive edge triggered D flip flop .. 20

Figure 2-21 State diagram of a positive edge triggered D-type Flip-flop......................... 21

Figure 2-22 Layout of 8-bit D type flip-flop .. 21

Figure 2-23 Simulation of 8-bit D type flip-flop .. 22

Figure 2-24 Ring Oscillator .. 22

Figure 2-25 Waveform of three nodes of a ring oscillator Vx,Vy, and Vz........................ 23

Figure 2-28 Block Diagram of a full adder... 24

Figure 3.18 Carry propagation signal blocked for XOR operation 26

Figure 3.19 A input pin for ALU.. 26

Figure 3.20 ALU operations multiplexed ... 27

Figure 2-29 Layout of 1-bit ALU cell... 28

Figure 2-30 Output of 4 operations of ALU ... 29

Figure 2-31 A 6 transistor Static RAM cell. ... 30

Figure 2-32 A 6-Transistor Static RAM cell with write driver. 30

Figure 2-33 SRAM cell layout.. 32

Figure 2-34 SRAM test result ... 32

Figure 2-35 Schematic Diagram of a address decoder ... 33

 xi

Figure 2-36 Layout of single bit address decoder... 34

Figure 2-37 read/write circuitry for SRAM.. 35

Figure 2-38 Layout of read/write circuitry for SRAM ... 35

Figure 2-39 Schematic of signal generator ... 36

Figure 2-40 Layout of signal generator .. 37

Figure 2-41 Timing Diagram of signal generator ... 37

Figure 2-42 SRAM internal clock generation... 38

Figure 2-43 A single bit counter ... 39

Figure 2-44 IRSIM output of a 8 bit counter .. 40

Figure 2-45 Status Register... 40

Figure 2-46 Bit allocation in a Option register ... 42

Figure 2-47 Addressing memory with FSR... 44

Figure 3-1 Block Diagram of a SRAM array.. 46

Figure 3-2 SRAM array .. 47

Figure 3-3 Position of blocks with reference to Figure 3-2 .. 47

Figure 3-4 SRAM array testing... 48

Figure 3-5 Stack Architecture... 49

Figure 3-6 Read Write Timing Diagram of Stack ... 50

Figure 3-7 Execution of GOTO and CALL instruction.. 51

Figure 3-8 Single bit Input Output Port ... 53

 xii

Figure 3-9 Timer0 module .. 55

Figure 3-10 Generation of Positive edge or negative edge clock for Timer0 module...... 55

Figure 3-11 Generation of ramwr signal by MOVF instruction. 57

Figure 3-12 Skipping the count of present instruction from zero result 57

Figure 3-13 Swapping by execution of a SWAPF instruction.. 58

Figure 3-14 Data Path and Control ... 62

Figure 3-15 asel and bsel controlling datapath to ALU.. 63

Figure 3-16 A COMF operation ... 64

Figure 3-17 Bit Test Operation ... 64

Figure 3-18 Execution of RRF and RLF instruction with ALU bypassed 65

Figure 3-19 SWAPF instruction with swap_en pin .. 66

Figure 3-20 WB pin selecting SRAM_IN operation .. 66

Figure 4-1 ADDWF operation .. 69

Figure 4-2 ANDWF operation .. 70

Figure 4-3 CLRF operation... 71

Figure 4-4 CLRW operation ... 72

Figure 4-5 A COMF operation ... 72

Figure 4-6 A DECF operation... 73

Figure 4-7 DECFSZ operation.. 74

Figure 4-8 A INCF operation.. 75

 xiii

Figure 4-9 A INCFSZ operation ... 76

Figure 4-10 IORWF instruction.. 77

Figure 4-11 A MOVF operation ... 78

Figure 4-12 A NOP operation... 80

Figure 4-13 A RLF operation ... 81

Figure 4-14 A RRF operation ... 82

Figure 4-15 A SUBWF instruction... 83

Figure 4-16 A SWAPF instruction ... 84

Figure 4-17 A XORWF operation .. 85

Figure 4-18 A BCF instruction ... 86

Figure 4-19 A BSF operation.. 87

Figure 4-20 A BTFSC operation... 88

Figure 4-21 A BTFSS operation... 88

Figure 4-22 A ANDLW instruction.. 89

Figure 4-23 A IORLW instruction... 90

Figure 4-24 A MOLW instruction execution.. 91

Figure 4-25 A XORLW operation .. 92

Figure 4-26 A CALL instruction execution.. 93

Figure 4-27 A GOTO operation.. 93

Figure 4-28 A TRIS operation .. 94

 xiv

NOMENCLATURE

IO Input Output

RAM Random Access Memory

SRAM Static Random Access Memory

DFF Data Flip Flop

ALU Arithmetic Logical Unit

1 Bit is set

0 Bit is cleared

u Unimplemented Bit

XOR Exclusive OR

AND Logical AND operation

IOR Inclusive OR operation

WDT Watch Dog Timer

PSA Prescalar Assignment Bit

M1, metal1 Metal 1

M2, metal2 Metal 2

M3, metal3 Metal3

Poly Poly silicon

XXX h hexadecimal

 xv

LSb Lowest Significant Bit

MSb Most Significant Bit

x(W)*y(H) x micrometers in width by y micrometers in height

 1

Chapter 1

1 Introduction and Thesis Organization

1.1 Introduction

Contents of many different circuits put on a single chip, makes an integrated circuit. With

introduction of the integrated circuit, all the peripheral devices and microprocessor was

put on a single device. This led to development of a microcontroller. A microcontroller

differs from microprocessor in many ways. Most important aspect is with the

functionality. In order for a microprocessor to be functional, other components as

memory or components for receiving and sending data must be added to it. In short

microprocessor is the very heart of the computer. On the other hand, microcontroller is

designed to be all of that in one. No other external components are needed for its

application as all necessary components are built to it. Thus we save the time and space

needed to construct devices.

Memory location in a microcontroller simply means that we are getting some valid data

with certain input as address locations. Arithmetic Logic Unit, a.k.a. ALU, takes data

from certain memory locations or Input Output port and then perform addition,

subtraction, AND, OR, XOR,NOT or combination of these. Bus on microcontroller

 2

simply represents group of 8 or more wires responsible for transferring data and address.

In addition to these there are some pins that can be interfaced to the outside world. These

locations are called as ports. Depending upon the control signal input to the port, it can

operate as input or output terminal. In order to utilize its full functionality, we need a

timer block, whose information can be used for time elapsed, duration and control

signals. Also a separate unit, Watch Dog Timer is introduced in microcontroller. This unit

when activated will reset the program sequence after a certain time. This function is very

important in many times when some external interference take place and the program

functions incorrectly.

In our system Reduced Instruction Set Computer (RISC) architecture is used. These are

specific type of microprocessors which recognizes limited number of instructions. Until

the mid-1980s, the tendency among computer manufacturers was to build increasingly

complex CPUs that had ever-larger sets of instructions. At that time, however, a number

of computer manufacturers decided to reverse this trend by building CPUs capable of

executing only a very limited set of instructions. One advantage of reduced instruction set

computers is, they execute their instructions very fast because the instructions are so

simple. Another, perhaps more important advantage, is that RISC architecture requires

fewer transistors, which makes them cheaper to design and produce.

Back end level design of an Integrated Circuit is basically done in two different ways,

Application-Specific Integrated Circuit (ASIC) style flow and full custom layout. A

 3

custom layout means polygon-level layout done for the integrated circuit. A lot of people

use this method to increase speed reduce area.

This report presents design of 8 bit RISC microcontroller. This microcontroller is

capable of performing function of 33 instruction words. The basic input signal is given to

the instruction memory. The stored code in instruction memory will be will be decoded

through several stages including arithmetic logic unit, (ALU) and then written to

input/output port devices or to the memory. Arithmetic and logical operations as add,

subtract, exclusive or, inclusive or, complement it. Other options of setting or resetting

certain bit position can be done. It has two output ports: one is 8 bit port and the other as

4 bit port. These ports can be individually programmed to be input or output ports. This

design is done on AMI 0.6 technology, which has faster access time because of smaller

size.This design is replica of PIC 1654 microcontroller from Microchip (designed on

AMI 0.6 micron technology). It employs RISC architecture with 33 single words per

single cycle instructions. All the instructions are single cycled except branching

instructions which comprises of two cycles. The instructions are 12 bit wide. These

instructions are stored in program memory and are addressed by program counter (PC).

Additional features including power on reset, device reset timers are plus point to

the layout. This microcontroller has a self running oscillator, as well as can be

programmed and scaled down to factor of 256 or 128 depending upon mode through

software control. Also, low power consumption of the design and reduced mask layout

 4

area are plus point to this layout of a microcontroller. This microcontroller uses Harvard

architecture, i.e. program and data are accessed on separate buses.

Figure 1-1 General Structure of a Harvard Architecture

The main advantage of using Harvard architecture is that address and data bus are

separate, so single clock cycle can perform all the operations dividing one half of the

clock cycle to read and the other half to write. Also there is separate program and data

memory. This allows program memory to be of width 12 bit while data memory is yet 8-

bit width to comply with 8 bit data bus. 6T static RAM cell is used as basic block for

memory storage.

The memory access is done directly as well as indirectly. Special function

registers for controlling input output operations, status of ALU are mapped to general

memory. This device also has 8 bit ALU as well as a 8 bit accumulator. The ALU

performs arithmetic and boolean operations between data from IO port and memory or IO

port and literal, as well as with the accumulator. The ALU is 8 bit wide and is capable of

Control Memory Process

Data Bus

Address Bus

 5

addition, subtraction (2’s complement) and boolean operations. In two operands

instructions, one input is either content of memory, or accumulator, or content of IO, or

an immediate constant. The other operand can be output of working register or an

immediate constant. In single operand instruction, operand is either an accumulator or a

file register. The accumulator or working register is 8 bit negative edge triggered register.

This register cannot be directly addressed. Depending upon execution of the instructions,

output of ALU will affect the values of carry (C), Digit Carry (DC), Zero bit. A

generalized block diagram of a 8 bit RISC microcontroller is shown in Figure 1-2.

Figure 1-2 Generalized block diagram of a 8 bit RISC microcontroller

 6

1.2 Scope (Objective)

This report focuses on a custom design aspect of an 8-bit microcontroller. This project

was designed with a scope of analyzing difference in performance using AMI 0.6

technology, and verifying the differences on different aspects of architecture, which were

modified later. This report also focuses in different components used in a microcontroller

and their testing results.

1.3 Thesis Organization

The whole document is divided five different subsections. Chapter 2 discusses design

approaches used in the design. Chapter 3 discusses on design aspects large circuitry and

their test results. Chapter 4 explains operation of all 33 instructions in a PIC instruction

set. Chapter 5 presents conclusion and future work that can be done. Chapter 6 presents

test vectors used for testing few sub-modules.

 7

Chapter 2

2 Architecture Design

Architecture Design was done in schematics and then in layout. Simulations of lower

level cells were done on schematic and tested mostly using spectreS. Later using Virtuoso

layout editor from Cadence, detailed layout was drawn. This section describes detailed

design and its test results. Before testing the layout, layout of all combinational logics

was drawn and symbol view of each blocks were created. These symbol views were used

as input modules for Schematics. The output was observed, analyzed and then drawn on

layout editor for higher level designs.

2.1 Multiplexer

Multiplexer is a device capable of selecting one out of many inputs through select lines.

Setting or resetting the select lines produces different outputs. The basic of all

multiplexer can be generalized from 2 to 1 multiplexer.

Figure 2-1 2 to 1 multiplexer

 8

The output in a two to one multiplexer depends upon value of select pin. Depending upon

select pin (set or reset), output will switch accordingly. The operation of a two to one

multiplexer can be explained by the following logic equation:

y=SI1 + S I0

where y= output of multiplexer,

S=control input of multiplexer

I0, I1 = two different inputs to a multiplexer

The above equation can be simplified to (S + A)(S+B)

The schematic of a 2 to 1 multiplexer was drawn to a minimum sized transistors. Here,

select line s denotes which of the inputs among I0 and I1 will be passed to the output.

N3 is logic high when S and I1 both are high. At the same time, output of N2 depends

upon inverted S, (through N1) and I0. Thus the output y will be high if either output of N2

or N3 is logic high. Similarly, output of N3 is low irrespective of input I1 . Thus output y

will follow input pin I0. Similarly if input S =1, then N2 will always have output 0,

irrespective of input I0. Thus output of gate N4, i.e., y will always follow input I1.

4 to 1 multiplexers, 8 to 1 multiplexers were designed with 2 to 1 multiplexer as lower

level cell. Figure 2.2 and Figure 2.3 shows symbolic connections of 4 to 1 and 8 to 1

multiplexers.

 9

Figure 2-2 4 to 1 multiplexer

Figure 2-3 8 to 1 multiplexer

In figure 2.2, M1, M2 and M3 are single bit 2 to 1 multiplexer. S0 and S1 represent

control bits for selecting one out of four inputs. Similarly in figure 2.3, multiplexers M41

and M42 are 4 to 1 multiplexers with S<0:1> as input select lines. M4 is a 2 to 1 bit

multiplexer with control line S2. Figure 2.4 shows layout of a 2 to 1 multiplexer. Here

metal1 and metal2 are only used. The total area of the layout is 15.6 (W) * 11.1(H) with

an access time of 0.01nS. Figure 2.5 shows simulation result where one of out of two

input is selected by 2 to 1 multiplexer. Figure 2.6 shows 8 to 1 multiplexer where addr is

3 bit address selecting one of eight inputs. Similarly 8-bit and 9-bit 2 to 1 multiplexers

were designed by replicating instances of 2 to 1 multiplexer. Output waveform of 8-bit 2

to 1 multiplexer is shown in figure 2.7.

 10

Figure 2-4 Layout of a 2 to 1 multiplexer

Figure 2-5 Testing 2 to 1 multiplexer

 11

Figure 2-6 8 to 1 multiplexer

Figure 2-7 8-bit 2 to 1 multiplexer

Table 2.1 shows comparison with size and area of different multiplexers used.

 12

Table 2-1 Comparison of Multiplexer delays and layout area

Type Delay(in nS) Area(W in um * H in um)

1-bit 2 to 1 multiplexer 0.01 15.6*11.1

4 to 1 multiplexer 0.01 24.6*38.4

8-bit 2 to 1 multiplexer 0.01 18.15*80.55

9-bit 2 to 1 multiplexer 0.01 18.15*95.55

2.2 Tristate Buffer

A general tristate buffer transfers input signal to output, with enable signal high else

disconnects the output. This buffer is used on input output (IO) pins where single pin is

used as input with enable high and as an output with enable low. Figure 2.8 shows

schematic of a tristate buffer.

Figure 2-8 Schematic of a Tristate Buffer

 13

The output is al a floating state when both pmos and nmos transistors are turned off. It

will be like open circuit and thus passing an ideal zero current through the output i.e.

keeping impedance, Z=V/I ∞.

 When enable signal is high, the output is followed by the input. If logic high is to

be passed, then output will follow through the pmos transistor. If a logic zero is to be

transferred, output is followed through nmos transistor. A floating state is said to occur

only when enable is reset, i.e. both the transistors driving the output to a pin are turned

off. Figure 2.9 shows layout of a tristate buffer. The total delay of the circuit was 0.01nS

with a total layout area of 14.40(W) * 19.4(H).

Figure 2-9 Layout of a tristate buffer

 14

Figure 2-10 Timing diagram of a tristate buffer

2.3 Incrementer

This is a simple incrementer adds output of PC by one every positive edge

of the clock cycle. The operation of a 2-bit incrementer can be depicted from the

following logic equation:

iCout1= iCin XOR Cin

Cout1=Cin1 AND iCin

iCout2=iCout1 XOR Cout1

 15

Figure 2-11 Structure of a 2 bit Incrementer

The iCout1 output goes high when either of the iCin and Cin pin is set. That is

sum of two zeros is a zero where as sum of an input and its complement is always one. So

iCoutn (where n is number of inputs), denotes the sum of two inputs and carry is

generated only when two inputs are set. Thus Coutn is a AND operation of two inputs.

The initial input pin Cin is always tied to input high as output of incrementer is iCin,

incremented by one. In our design, we use 9-bit wide incrementer, which acts as a

circular counter. Figure 2.13 shows output of a 9-bit incrementer, where output is

incremented every clock cycle. Delay in is .09nS in the system. The total layout area is

172.65(W)* 19.03(H).

Figure 2-12 State Diagram of a 8 bit incrementer

01h

1Fh

FEh

FFh

00h

 16

Figure 2-13 Output of 9-bit incrementer

2.4 Zero Detector

Output of a zero detector goes high when all 8-bit inputs are zero. The delay of the total

circuit is proportional to log2N, where N is number of stages. Figure 2.14 shows

schematic diagram of a zero detector. Total delay of a zero detector is 0.09nS. Total

layout area is 34.2(W)* 21.00(H). Figure 2.16 shows operation of a zero detector.

Figure 2-14 Schematics of a zero detector

 17

Figure 2-15 Layout of a zero detector

Figure 2-16 Timing diagram of a zero detector

 18

2.5 D latch

Latches are level triggered asynchronous sequential circuits containing one feedback

which is equivalent to two asynchronous states. D-latch is an asynchronous sequential

circuit specified by the following functional table:

Table 2-2 D latch functional table

Clock Operation

0 Q<=Q Hold

1 Q<=D Load

Next state output, Qi+1 = clock . Qi + clock.Di

where Qi=output of present state,

 Di=input of present state,

 Qi+1=output of next state

Figure 2-17 Basic Latch

The basic schematic of latch used in our design is shown in figure 2.17. Here,

 19

clock signal CLK is applied simultaneously to N3 and N4. Gates N1 and N2 form a latch

whereas N3 and N4 are steering circuits.

When (CLK == 0), output of N3 and N4 are 1 independent of output of N5. Hence the

circuit is equivalent to a latch. Here all the transistors were drawn to a minimum size.

Figure 2.18 shows layout of a D latch. Figure 2.19 shows the operation of a D latch.

Figure 2-18 Layout of a D latch

 20

Figure 2-19 Output of a D latch

2.6 Data Flip-Flops

Flip-flops are edge triggered sequential circuits which contain two synchronous

states, or at least four asynchronous states with at least 2 internal feedback loops.

This acts as a building block for all register and counters.

Figure 2-20 A positive edge triggered D flip flop

CLK

Di+1Di

D Latch

D Latch

Qi Qi+1
Q

P

 21

Figure 2-21 State diagram of a positive edge triggered D-type Flip-flop

There are four states coded by 2-bit binary words which represent two state signals, P and

Q. There are two input signals, D (data) and CLK (clock). Both state signals can be used

as outputs and here, the Q signal being of principal interest. The expected behavior is that

during rising edge of the clock signal, 1-bit data from input D is loaded into the flip-flop.

, i.e. Q<=D. Outside the rising edge of the clock signal, the state Q is to be unchanged.

Figure 2-23 shows IRSIM response of an 8-bit D type flip-flop and its corresponding

layout in Figure 2.22. Worst case delay observed was 0.5nS with total of 290.4(W) *

41.1(H) of a single bit D flip-flop.

Figure 2-22 Layout of 8-bit D type flip-flop

CLKCLK

CLK & D

 CLK & D

CLKCLK

C
LK

C

LK
 &

 D

C
LK

C

LK
 &

 D

P Q
0 0

P Q
0 1

P Q
1 1

P Q
1 0

 22

Figure 2-23 Simulation of 8-bit D type flip-flop

2.7 Ring Oscillator

A ring oscillator is realized by placing an odd number of inverters in a loop. This is

because of circuit latch occurring when numbers of inverters are even.

Figure 2-24 Ring Oscillator

 Let us analyze a circuit with three stage ring oscillator as shown in Figure 2-24.

If it is assumed initially that voltage at each node of this circuit is equal, and there is no

noise, the circuit would not oscillate and remain in same stage forever. However, this is

not the ideal case as node voltages are different and there is always noise in the circuit.

 Vx Vy Vz

 23

The noise introduced disrupts the circuit and signal swings form rail to rail .Considering

the waveform below,

Figure 2-25 Waveform of three nodes of a ring oscillator Vx,Vy, and Vz

Let Vx initially be charged to Vdd and under this initial condition, Vy=0 and

similarly Vz follows Vx, Vz=Vdd. But in practice, as soon as current flows in the circuit,

and each transition undergoes through a delay of one inverter between adjacent nodes of

a circuit. In this case, total circuit period is six times the transistor delay (TD). Thus

description can be described as a period of oscillation in a ring oscillator is twice the

inverter delay. Thus frequency of Oscillation can be expressed as

fosc=1/(2nTd).

Figure 2-26 shows layout of a ring oscillator and Figure 2-27 shows oscillator output waveform.

Figure 2-26 Layout of a ring oscillator

Figure 2-27 Ring oscillator output

Vx

Vy

Vz

 24

2.8 Arithmetic Logic Unit

 Arithmetic logic unit comprises of circuitry for arithmetic and logical operations. The

arithmetic unit comprises of a full adder capable of addition, subtraction (by two’s

complement method) and a logical unit for complement, exclusive OR, AND and NOT

operation.

Figure 2-28 Block Diagram of a full adder

A full adder is capable of adding input data and one carry from previous significant bit.

In Figure 2-28 above, A and B are adder inputs, Cin is the carry input , S is the sum

output, and Cout the carry output.

2.8.1 Single-Bit Adders

 The simplest approach of an adder implemented is by combinational gates for

majority of functions. The logic equation for generating Sum and carry signals are:

Cout=A.B + A. Cin + B. Cin

Sum, S= A.B.Cin + A. B . Cin + A B Cin + A B Cin

Cout

Sum

A

B

Cin

 Full Adder

 25

which may be factorized as:

Cin(A.B + A . B) + Cin (A. B + A .B)

= A XOR B XOR Cin

Table .2-3 Binary Addition

An eight bit parallel full adder is constructed by cascading eight one bit adder

cells in parallel. The inputs A and B are 8-bit. In each of these cells, the Cout pin of lower

order cell is connected to Cin of higher order cell. This operation can be expressed with

the following logic equation:

Cini+1=Couti , where i is the ith
 stage.

The nth bit of the Sum, Sn indicates result, while the nth Carry signal (Coutn) indicates

whether an overflow has occurred. As the carry out signal Cout is used to generate the

sum (S), sum (S) will be delayed with respect to Carry signal. For the case of eight bit

parallel adder, the total delay of eight stages, T8=8 * Tc, where Tc is the delay of one carry

stage, T8 is total delay time of eight stages. For AND logical operation, a 2 input NAND

gate is used as a basic cell. Output of the NAND gate is used in a multiplexer to select the

A 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1

Cin 0 1 0 1 0 1 0 1

Cout S 0 0 0 1 01 1 0 0 1 1 0 1 0 1 1

 26

desired output. Here, transistors are made as minimum in size as possible, to minimize

delay. For OR type of instructions, a 2 input NOR gate is used with its output connected

to 4 to 1 multiplexer. A XOR operation was performed with two of three inputs(A and

B). Inputs A and B will be in finite state and Cout and Cin signals will be forced to have

logic value zero. XOR operation was equivalent to a ADD instruction with Cout forced to

zero. Figure 3.18 below shows how carry generated is blocked in a XOR operation.

Figure 3.18 Carry propagation signal blocked for XOR operation

 In the above figure, N1 has two active low inputs Cout_in and sel_fa . Sel_fa

active indicates that Carryout of the first stage Couti ,(in ith stage) is propagated to the

next stage as Cini+1. Arithmetic operations (addition, subtraction, MOV, IOR) all are

processed in the arithmetic block.

Figure 3.19 A input pin for ALU

 27

 Out of two variables to ALU, one of the variables is activated or deactivated by

active high enable_a pin. Enabling this pin, produces signal to output of N1. Also,

invert_a activated, always inverts the logic value on pin A. If output of N1 is 1, output of

N2 will also be 1. Thus COMF and subtraction using 2’s complement instruction use this

design approach. While adding three variables, when Cin is high and inv_a also high,

operation resulting is a 2’s complement subtraction. Similarly, XOR, SUB, COMF and

AND operators are performed by ALU. Also BCF instruction when executed decodes 3-

bit address and is XORed with other operand. Similarly, BSF instruction is implemented

by decoding the 3-bit position to 8 bits and ORing the operands.

Figure 3.20 ALU operations multiplexed

Final Output, Y=sel_fa.a1 + sel_XOR.a1 + sel_and.a3+sel_or.a4

which can be further simplified to

Y= (1a (s1+ s3) (a2 + s2)(4a + 4s)

4 to 1
multiplexer

AND

XOR

FULL ADDER

OR

selection

 28

where 1a = _outfull_adder

 a2 = and_out

 s1= sel_fa

 s2 =sel_and

 s3 = sel_xor

4s = sel_or

4a = out_or

Final output Y, is constructed for the above logic equation for desired output with

minimum transistor size. Higher order ALU cells are constructed by joining Cin of higher

stages to Cout of lower stages. Figure 2-30 shows operation of a 8 bit ALU. Total area of

single bit ALU cell is 144.6(W) * 11.1(H) as shown in figure 2.29 and worst case delay

of single cell is 0.05nS.

Figure 2-29 Layout of 1-bit ALU cell

 29

Figure 2-30 Output of 4 operations of ALU

2.9 SRAM

Static RAM is the fastest writeable memory. It relies on cross coupled inverters to

maintain the stored logical value.

 30

Figure 2-31 A 6 transistor Static RAM cell.

 The word line turns on the nmos pass transistor on bit and bitbar lines which

allows data to be read or written to/from memory cell. The nmos pass transistor

connected to the cross coupled inverter is driven all the way high or low by full swing

cross coupled inverters , resulting in zero power consumption.

Figure 2-32 A 6-Transistor Static RAM cell with write driver.

SRAM
CELL

Pre-charge logic

word

write
enable

 31

Theorey of operation

i) Write Operation

The transistors N1 and N2 enabled, allows data and its complement to be moved

to bit and bitbar lines. The word line is asserted with a high voltage. The bit or bitbar

lines are driven to Vss and Vdd-VT respectively where VT = transient voltage. Considering

a case of writing on a previously stored zero value, cell has to be pulled above the RAM

cell inverter threshold , as well as cell bar pulled well below cell threshold voltage.

ii) Read Operation

While reading, small transistors in the memory cell must drive large capacitance on bit

and bitbar lines. The bit line capacitance is dominated by contribution of drain of pass

transistors from the entire column of memory cell connected to the bit lines. Pre-charge

must be done before each read and write cycle starting, to overpower result of previously

stored value stored on bit and bitbar lines. Here, data is latched through the bitbar line an

data is read only through the bit line. Initially, cell and cellbar, the two cross-coupled

inverters were set to Vdd and Gnd respectively. Figure 2-34 shows waveform of static

RAM while reading and writing. Here, bit line is isolated and not pre-charged, so we can

see a large decay in time for the charge stored. In Figure 2-34, Vwrite is the write signal,

VwordA is the word enable signal, Vpre is the precharge. VbitA and VbitAbar show

signals at bit and bitbar lines.

 32

Figure 2-33 SRAM cell layout

Figure 2-34 SRAM test result

 33

2.10 Address Decoder

Figure 2-35 Schematic Diagram of a address decoder

Selection of one out of 32 bits is with 5 bit address input. Gates N1 and N2 are made of

nominal size. Gate N3 is made 8 times bigger as that of N1 and N2 because gate N3 is

used to drive 16 transistors along the bit and bitbar lines. Input en is passed through N4

gate, so the output y of gate N3 is always controlled by input N3. This can be logically

expressed as,

 Y= A0.A1.A2.A3.A4.en where,

A<0:4> are 5-bit address input,

en is enable signal ,

Y is output of address decoder.

 If any of the input is in logic low, then the output y will be logic 0. Five input pins of N1

and N2 is selected between itself and its complement. Vertical metal 2 lines are drawn

 34

each separated by 0.9 µm each of 1.2µm width. Poly lines are drawn and 1.2 µm wide

M1 spread between two M2 lines as shown in figure 2.36 below. The layout area of each

individual address decoder is 46.65(W) * 13.20(H) with an access delay of 0.02ns.

Figure 2-36 Layout of single bit address decoder

2.11 Read/Write circuitry for SRAM

Input pins rd/wr selects read or write operation. When read mode is selected, i.e. rd/wr

=1, and din=1, output of both N1 and N2 is zero disabling N4 and N5. This implies that,

during read operation, bit and bitbar lines are isolated. Similarly, when rd/wr=1, N4 and

N5 are turned on or off depending upon the din input. Figure 2.37 shows the circuitry for

read/write operation. Total area of the read write circuitry is 12.15(W) * 35.85(H).Figure

2.38 shows layout of read/write circuitry.

 35

Figure 2-37 read/write circuitry for SRAM

Figure 2-38 Layout of read/write circuitry for SRAM

2.12 Pre-charge for SRAM

A large P-type transistor is connected to bit and bitbar lines. These transistors are turned

on and off before every read and write operations. This ensures that the pass transistors

swing to maximum value.

Memory Array

 36

2.13 Control signal generator for SRAM

Figure 2.39, shows schematic diagram of a signal generator. Pre is the driving bit for

pre-charge circuit, decoder_en is word line enable pin, internal rd_wr_out is read/write

port, readWrite is input read/write signal, and strobe is the control signal for generating

the output signals. Here, Pre is an active low signal, as the pre-charge block is made up

of pmos transistors. When strobe signal goes low, Pre is activated and den is low. As

long as strobe signal is low, Pre is activated and den is low. When Pre active high, den is

low and rd_wr_out will be in read mode. When output of N2 is high, output of N4 is also

high, so as to ensure that decoder_en and pre-charge are changed at the same time. The

rd_wr_out zero indicates that Pre and decoder_en are both high. This control circuitry is

added to insure that correct values set on bit and bitbar lines are stored. Layout area of

this circuit is 25.20(W) * 16.10(H). Figure 2.40 shows layout of a signal generator

Figure 2-39 Schematic of signal generator

 37

Figure 2-40 Layout of signal generator

Figure 2-41 Timing Diagram of signal generator

 38

2.14 Clock to Signal Converter for SRAM

Three phases of clock signals were used to generate the strobe and read/write signals.

Clock 1(clk1) and Clock 2(clk2) signals are responsible of generation of strobe signal for

memory. Similarly, combination of all three of clock1, clock2 and clock3 are used for

ramwr signal. Clock 2 is basic clock for the whole microcontroller.

Figure 2-42 SRAM internal clock generation

 39

2.15 Counter

Counters are made up of edge triggered flip-flops. The total delay is the added

delay of each individual blocks. 8 bit counter is constructed from a D flip-flop, with

complemented output of dffi, Q i connected to input of ith stage, Di. This result in output

being changed every positive edge of clock cycle.

Figure 2-43 A single bit counter

Reset signal, was shared between all the eight flip-flops. Also the output of ith

stage Qi is connected to clock signal Clki+1 of DFFi+1
th stage. The total delay on the

sequential circuit is combined delay of each individual flip-flops. A worst case delay of

1.35nS was observed. Figure 2-44 below shows IRSIM output of a counter.

Clock

Di+1Di

D Latch

D Latch

Qi Qi+1

 40

Figure 2-44 IRSIM output of a 8 bit counter

2.16 Status Register

 Status Register is a eight bit wide register which contains present status of ALU,

comprising of arithmetic, logical as well as RESET status. The status register is

destination of many instructions. If STATUS register is destination for an instruction that

affects Z, DC or C bits, these bits are set or cleared according to device logic. Bits TO

and PD are not writeable. The register is mapped to special purpose memory SRAM at

location 03h.

TO PD Z DC C

Figure 2-45 Status Register

 41

bit 7-5: Unused

bit 4: TO: Time-out bit

 1= After power-up, CLRWDT instruction, or SLEEP instruction

 0=A WDT time-out occurred.

bit 3: PD: Power-down bit

 1= After power-up or by the CLRWDT instruction

 0= By execution of sleep instruction

bit 2: Z: Zero bit

 1=Result of an arithmetic or logic operation is zero

 0= Result of an arithmetic or logic operation is not zero

bit 1: DC: Digit Carry /Borrow bit (for ADDWF and SUBWF instructions)

 ADDWF

 1=A carry from the fourth low order bit of the result occurred

0=A carry from the fourth low order bit of the result did not occur

 SUBWF

 1=A borrow from the fourth low order bit of the result occurred

0=A borrow from the fourth low order bit of the result did not

occur

 42

bit 0: C: Carry/ borrow bit (for ADDWF, SUBWF, RRF and RLF instructions)

 ADDWF

 1= A carry occurred

 0=A carry did not occur

 SUBWF

 1=A borrow did not occur

 0=A borrow occurred

 RRF,RLF

 Loaded with LSb or MSb , respectively

2.17 Option Register

 Option register is a 6-bit, write only register. It contains various control bits to

configure Timer 0 /WDT prescalar and Timer 0 module. The option register is connected

to the accumulator and it is addressed by OPTION instruction. A reset signal, RESET

sets all pins of OPTION register high.

 T0CS T0SE PSA PS2 PS1 PS0

Figure 2-46 Bit allocation in a Option register

bit 7-6: Unimplemented

 43

bit 5 T0CS: Timer0 Clock source select bit

 1=Transition on T0CK1 pin

 0=Internal instruction cycle clock

bit 4: T0SE: Timer0 source edge select bit

 1=Increment on high to low transition on T0CK1 pin

 0=increment on low to high transition on T0CK1 pin

bit 3: PSA: Prescalar assignment bit

 1=Prescalar assigned to Watch Dog Timer

 0= Prescalar assigned to Timer0

Bit 2-0: PS<2:0>: Prescalar rate select bits

Table 2-4 Prescaling Rate
Bit Value Timer0 Rate WDT

Rate
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8

100 1:32 1:16
101 1:64 1:32
110 1:128 1:64

111 1:256 1:128

 44

2.18 File Select Register

 File select register (FSR) is a 5 bit register used for indirectly addressing the data

memory. The 5-bit wide FSR register is used to address 25 memory locations in between

address of 00h to 1Fh. 27 memory locations are general purpose and 6 of them are special

purpose location which is mapped to specific registers.

Figure 2-47 Addressing memory with FSR

2.19 Instruction Decoder

 Instruction Decoder is designed with combinational logics and state elements,

capable of decoding 12 bit wide instruction set. The decoder is capable of analyzing 12

bit OPCODE and generating bit oriented, or byte oriented, or literal and control

operations. General format of instruction to be decoded are as follows:

Data
Memory

FSR

Location

 45

 Byte oriented file register operations:

 where

d=0 for destination Accumulator
 d=1 for destination file register(f)
 f= 5 bit register file address

 Bit oriented file register operations:

 where

b=3-bit bit address
 f= 5-bit file register address

Literal and control instructions (except for GOTO)

 where

k=8-bit intermediate value

 Literal and Control Operation(only for GOTO)

 where
k=9-bit intermediate value

11 9 8 0

OPCODE k (literal)

11 8 7 0

OPCODE k(literal)

11 8 7 5 4 0

 OPCODE fffff d

11 6 5 4 0

 OPCODE fffff d

 46

Chapter 3

3 Modular Design

3.1 SRAM array

Figure 3-1 Block Diagram of a SRAM array

Height of address decoder was matched as that of SRAM array. Output of SRAM cell

was connected to each 32 bit output of address decoder. Power lines were drawn in

common with metal2 and metal3 respectively. Address lines a<4:0> and abar<4:0> were

all drawn vertically for sharing pins with vertical address decoders. In a SRAM cell,

power lines were drawn both vertically and horizontally. Bit and bitbar liens were drawn

vertically so as for sharing with other cells. Cells were placed back to back vertically to

save space as distance between n-active to n-well must be 1.8um in ami0.6 technology.

Bit and bitbar lines were connected to SRAM read/write circuitry with bit and bitbar lines

 47

equally spaced. Width of read/write circuit was same as that of memory cell. The inputs

for read/write circuitry, read/write and data in were drawn vertically. Pre-charge was

placed right below the read/write circuitry. Below the address decoder, internal signal

generator was placed and data latch fro SRAM was placed right below the pre-charge

circuit. Figure 3-2 shows, total layout and Figure 3-3 shows position of individual blocks

with respect to layout. Testing of SRAM array block was done with all individual sub

circuits attached together. Figure 3-4 shows SRAM timing diagram read and write with

all blocks synchronized.

Figure 3-2 SRAM array

Figure 3-3 Position of blocks with reference to Figure 3-2

32 word SRAM array

5 to 32 bit Decoder

Pr
e-

ch
ar

ge
 a

nd

re
ad

 w
rit

e
lo

gi
c

Signal
generator

L
a
t
c
h

 48

Figure 3-4 SRAM array testing

3.2 Stack Segment

Stack segment is used to store future Program Counter(PC) values. It has two levels of

stack each 9-bit wide. The first stack segment is activated by positive edge of clock 1.

This gets activated before clock 2 goes high i.e. when writing has been done and

calculation achieved. When stacksel pin is activated, connection between added PC i.e.

PC+1 is established with the stack segment. When Clk1 has a positive edge and stacksel

pin is high, stack segment 1 is latched by positive edge of clk2.

 49

 While reading stack to the program memory, stackout is selected during negative

clock cycle of clk2. This results in path between PC and stack1. Now stack1 is latched by

positive edge of clk1 during negative edge of clk2. Also, stacksel has a value of zero, i.e.

while reading neither PC+1 is activated nor is written to stack1. Note that while reading

from the stack, value of stack1 is not written to next level of stack (stack2).

Figure 3-5 Stack Architecture

Stack 1

Stack 2

PC

Out

 50

`

Figure 3-6 Read Write Timing Diagram of Stack

3.3 Accumulator

Accumulator, also known as working register was made by 8-bit negative edge triggered

register. The control signal is accwr, which is by default at logic level 1. Generally, when

memory write operation is required, clock signal to accumulator can be expressed by the

following logic equation,

accwr<=clk2 . instrbus<5> where

 51

clk2 is clock signal for microcontroller,

instrbus<5> is fifth bit in instruction bus , which goes low while writing to accumulator,

accwr is accumulator clock signal.

Input to accumulator is either from ALU or from rotate or swap functional block

(selected by roate_en pin from instruction decoder). Output of accumulator is to memory,

IO ports, status register, OPTION register and ALU.

3.4 Program Counter

Program counter is a 9-bit wide register. As a program instruction is executed, Program

Counter (PC) will contain address of the next program instruction to be executed. The PC

value is increased by 1 every instruction cycle, unless an instruction changes the PC . For

example, when executing a GOTO instruction, bits<8: 0> of PC are provided by GOTO

instruction word. For a CALL instruction, PC<7:0> is provided by CALL instruction

word. Pin PC<8> is always cleared in this situation.

Figure 3-7 Execution of GOTO and CALL instruction

PC

Instruction Word

a) Execution of a GOTO instruction

PC

Instruction Word

0

b) Execution of a CALL instruction

 52

3.5 Bit Test

This block is made up with single 8 to 1 bit multiplexer Address given by b bus<2:0>

will decode 1 out of eight bits and then transfer it to output BTout. Enable pin, btf_en ,

when selected , corresponding bit position value is transferred to BTout pin, else BTout

will always equal to zero.

3.6 Rotate and Swap

Rotate instructions, RLF and RRF uses 9-bit operands (8-bit memory data and Carry) to

rotate right or left controlled by rf pin. swapf_en enables the swap operation of lower

bits<3:0> with bits<7:4>. This block is connected to output of SRAM. Output of this

block is connected to a 8- bit multiplexer, where ALU_OUT bus is another input.

3.7 Input Output Port

In this design, two ports are available, a 4-bit wide and a 8-bit wide. Both have

bidirectional bit by bit programmable pins.

 53

Figure 3-8 Single bit Input Output Port

A tris input being set, ensures that the IO (Input Output) port is ready for read operation.

The RD_PORT signal is responsible for reading the IO port. While reading, the pmos and

nmos transistors are both turned off. Thus the signal captured only on the IO port is easily

transferred to the data bus.

 When writing to the IO port, the tris signal is reset and data is latched through the

D bus. During write operation, WR signal set ensures that data is written to the latch. The

IO port is connected to the pads for external IO operation.

 54

3.8 Timer 0 Module

3.8.1 Timer0 Register

This mode is selected by clearing T0CS bit, OPTION<5>. In timer mode, Timer0 will be

incrementing every instruction cycle. By writing values to TMR0 register, it can be used

as a timer. Counter mode is selected by setting the O0CS bit , in OPTION<5>. IN this

mode, Timer0 will increment either on every rising or falling edge of T0CK1 pin

determined by source edge select bit T0SC (OPTION<4>).Clearing T0SE selects right

edge. Prescalar may be used either by Timer) module or watchdog timer but not by both.

The prescalar assignment is software controlled by PSA(OPTION<3>). Clearing PSA bit

will assign prescalar to Timer0. the prescalar is unreachable. When prescalar is assigned

to Timer0 module, prescale rate of 1:2 , 1:4,1:8,1:16,1:32,1:64,1:128,1:256 are selectable.

3.8.2 Prescalar

An 8-bit counter is available as prescalar for Timer0 module or as postscalar for

watchdog timer. Prescalar may be used either by Timer) module or WDT but not by both.

The PSA and PS<2:0> bits of OPTION<3:0> determine prescalar assignment and

prescalar ratio.

 55

3.8.3 Watch Dog Timer

Figure 3-9 Timer0 module

Gate N1 determines positive or negative edge of clock to be used by XOR operation with

T0SE pin. T0SE pin can change input clock inverted so as output clock can be used as

positive edge triggered or negative edge triggered sub-system.

Figure 3-10 Generation of Positive edge or negative edge clock for Timer0 module

Input clock

TOSE

Output

N1

M1

M3

M4

M2

 56

In multiplexer M1, pin T0CS selects the counter mode. Output of multiplexer M1 is

given to multiplexer M3 where PSA high selects WDT signal as output. Since, pre-scalar

can be used by either one of them. M3 is used as selector through PSA pin. Output of 8-

bit counter is given to 8 to 1 multiplexer which selects pre-scaling by PS<2:0> bits of

OPTION register. Output of watchdog timer or pre-scaled watchdog timer is used to

choose watchdog time out pin on multiplexer M4. Also TMR0 register clock, multiplexer

M2 selects pre-scaled clock or a direct clock through PSA pin.

3.9 Instruction Decoder

 Main objective in designing an instruction decoder was to decode 12-bit thirty

three instructions and generate corresponding output signals. Most of the instructions

involving operation to/from memory were having first five LSB bits as memory address

locations. The sixth bit, set “1” indicates that the operation requires writing to memory

through ramwr signal. This bit low on negative clock cycle indicates that write to

memory is in current instruction cycle.

Similarly generation of branching and control instructions needed few additional

instructions. For conditional instructions, skip if clear (SC) and skip if set (SS) signals

were used, to skip from present instructions if present operational result is a zero or one.

General instructions of this type include BTFSS and BTFSC.

 57

Figure 3-11 Generation of ramwr signal by MOVF instruction.

Figure 3-12 Skipping the count of present instruction from zero result

 58

 Similarly ZDout pin goes high when result is zero from execution of present

instruction. When INCFSZ or DECFSZ instruction is executed, ZDen pin high indicates

that present operation is zero for zero detection. A GOTO pin high enables 9 bit literal

from instruction set to be input to the program counter. At first by positive edge of clk1

PC+1 is pushed to the stack level 1 by positive edge of clk1 when clk2 is in negative

edge.

 A rotate_en pin high selects operation of rotate left though carry (RLF) or rotate

right through carry (RRF). This operation involves rotating through left or right by rf pin.

rf pin set indicates that the operation involves rotate through left and rf low indicates that

rotate operation is anticlockwise. SWAPF instruction activates the swap_en pin. This pin

enabled indicates that value read from memory is swapped 4 bits, i.e. 4 LSb(input<3:0>)

and 4 MSb(input<7:4> are swapped with each other.

Figure 3-13 Swapping by execution of a SWAPF instruction

 59

 A NOP instruction is a no operation instruction that generates the clock cycle, but

state of the machine is not altered. Only the program counter is incremented by one for

execution of the next instruction.

 Arithmetic operations ADDWF, DECF, DECFSZ, INCF, INCFSZ and SUBWF

are all executed with arithmetic unit. This unit is activated by selection of active low

sel_fa pin. Logical operations involving ORing two operands, IORLW and IORWF are

activated by active low sel_or bit. Similarly, logical and operation ANDLW, ANDWF

are activated by active low sel_and bit. XORLW, XORWF signals activate active low

sel_xor operation. This generation is same as generation of sum signal without the carry

chain. So generation of sel_xor pin de-activates the carry chain, as XORed operation of

two inputs is processed. MOVLW, MOVF and MOVWF instructions involve in OR

operation with 00H. The result of ORing with input is always the same, i.e. the same bit

is passed through the operation and the status register can be latched. For an exception,

MOVWF instruction has no memory involved, so during write cycle, the ramwr signal is

activated and contents of accumulator were written to memory by write-back pin high.

CLRF and CLRW instructions read content from SRAM or accumulator and AND them

with zeroes.

 Bit clear of memory (BCF) and Bit Set of memory (BSF) both involved a little bit

complex architecture. First 5 LSb were used as address to read contents from memory.

 60

Now, remaining three bits 7, 6, and 5 are used to target one of eight bits. This is a general

case of 3 to 8 decoder. The zero on respective bit is set depending on address generated

by 3 to 8 decoder. For example, a 010b sets third bit low and rest to a high (11111011b,

FBh). Also BTFSZ and BTFSS instructions required operation of with a 8 to 1

multiplexer. Testing bit position was set by bits 7-5 in instruction set,. These bits were

used as an address to decode one out of eight bits. Result of this operation BTout is used

for latching PC+1 or PC+2 instructions in the program counter.

 Unconditional branching instruction, GOTO when activated, latches contents of

instruction set’s bits<8:0> to PC latch. Also, at the same time the PC+1 is latched to the

stack segment 1.

 Literal operations, ANDLW, IORLW, MOVLW, RETLW, and XORLW were

implemented by passing eight bit of literal through b bus to ALU. An inv_a pin inverts all

incoming bits of ALU_A bus to ALU. A high on inv_a pin does XOR operation of

incoming bits with 1 so that the result is an inverted bit. This pin is used for subtraction

A enable_a pin is used as input to ALU for bus ALU_A which discards any data coming

to the input pin and sets it as a low. This pin is used if ALU operation involves MOVing

contents from/to memory. A RETLW instruction is implemented as a two cycle

instruction. First, value of eight bit is moved to accumulator and similarly stack is

activated and output of stack is ready for next instruction cycle, latched to the program

counter.

 61

 A OPTION instruction is activated by logic high on option_en pin. This pin high

latches content of accumulator to 6 bit wide option register in negative edge of clock

cycle. Similarly TRIS instruction latches contents of accumulator to the TRIS register.

Contents of TRIS and OPTION are also mapped to SRAM and latched to their respective

address locations. Also contents of OPTION and TRIS register are latched to SRAM

during their write operations. A CALL instruction activates the stack segment. Next

instruction to be executed is loaded to the stack. New instruction location to be addressed

is stored in PC. Pins GOTO and stacksel are active during this operation. Negative edge

of clk1 and stacksel load values of PC+1 to stack and negative clk2 activates GOTO pin

which enables address set by call to call a subroutine latched to PC.

 62

3.10 Data path , Signal Routing and Controlling

Figure 3-14 Data Path and Control

 Data bus b carries literal values from instruction set to ALU or to other peripheral

blocks. Execution of literal control instructions like, MOVLW, IORLW, ANDLW are

executed, pin bsel is turned high. As a result, bus b is connected to ALU_B bus through

the 2 to 1 8-bit multiplexer. Pin asel low connects output of accumulator to ALU_A bus ,

and asel high connects a bus which always carries values 00h or 01h .DECF and

DECFSZ instructions value 01h of a bus is used to decrement by one from present value

in ALU_B BUS of ALU.

rotate acc

10
WB&CL

ram w

FS

1

0

FS

0

1
BT

bsel

asel

SRAM

COM
F

RRF
RLF

Bit
Test
SWA

Accumul

COMF

ADDRESS

a bus

b bus

 63

Figure 3-15 asel and bsel controlling datapath to ALU

FSR_en pin high selects output of 5-bit wide File select Register as address input to

memory. FSR_en pin low, selects output of instruction decoder as immediate address for

one out of 32 memory locations.

Comf_en pin active high inverts all data out of memory. This pin is used in conjunction

with COMF instruction. Comf_en pin low, selects normal data from memory to the

data_bus.

 64

Figure 3-16 A COMF operation

Bit Test sub-block, when enabled through active high btf_en pin, selects one out of eight

inputs addressed by bits b<2:0> of b bus. This operation is carried out by 8 to 1 single bit

multiplexer. Output of Bit Test sub-block, BTout is connected to address generation sub-

block.

Figure 3-17 Bit Test Operation

 65

 Rotate Block, when enabled through rotate_en pin, data bus is rotated by one bit through

carry bit in status register. Pin rf low , rotate operation is rotate right through carry and rf

high , enables rotate through carry right. For example, during execution of RRF

instruction, C bit is moved to bit < 7> and b<0> bit is moved to position of C bit , where

C is Carry flag in status register. By execution of rotate block, output of rotate instruction

bypasses the ALU, i.e. the rotate_en pin high, selects output of rotate block connected to

input of accumulator.

Figure 3-18 Execution of RRF and RLF instruction with ALU bypassed

SWAPF instruction is carried out by swapping lower 4 bit positions with upper 4 bit

positions, bits<7:4> acquires values of bits<3:0> and similarly bits<3:0> acquires values

of bits<7:4>. Pin swapf_en high is used for this operation.

 66

Figure 3-19 SWAPF instruction with swap_en pin

Accumulator to memory write operation, MOVWF, is activated by a writeback(WB) pin

active . When this pin is set, then contents of output of accumulator is passed to input of

SRAM and path between output of ALU and SRAM_in bus is disconnected.

Figure 3-20 WB pin selecting SRAM_IN operation

 67

3.11 Status Register

5-bit status register is clocked individually on each bit positions. C (carry) is activated

with rotate_en and add_subwf both high and during negative edge of clk2. Digit Carry

(DC) , bit position b<1> is activated only on negative edge of clk2 and high add_subwf

instruction. Zero bit (Z), b<2> is activated by negative edge of clk2 and ZDen bit active

high. Power Down (PD) ,b<3> is activated only by active high CLRWDT and SLEEP

on negative edge of clk2. Similarly Time Out (TO) bit<4> is activated on time out on

Watch Dog Timer.

 68

Chapter 4

4 Instruction Execution

This chapter explains execution of all 33 instructions in detail. Here instructions are

classified as

• Byte oriented

• Bit oriented

• Literal and Control

In the following examples presented, all tests were carried out on IRSIM simulator. In

some instructions d represents the destination bit, fffff represent five bit address input to

memory location, and bbb represent 3-bit bit locator. Section 2.19 explains instruction

format in detail.

4.1 Byte Oriented Instructions

4.1.1 ADDWF

General operation of ADDWF involves adding contents of accumulator and memory .

Result is placed either in accumulator or memory depending on instruction bit<5>.

Encoding format: 0001 11df ffff

Description To verify operation of this instruction, two instructions are used, 1C0h (for

writing to accumulator) and 1E0h (for writing to memory). In execution of 1C0h

 69

instruction, acc_out(EFh) and sram_out(E1h) are added and result is placed in acc_out as

D0h. The second instruction adds D0h and E1h and places the result B1h in memory.

Figure 4-1 ADDWF operation

4.1.2 ANDWF

General operation of ANDWF involves AND operation between contents of accumulator

and memory. Result is placed either in accumulator or memory depending on instruction

bit<5>.

Encoding format: 0001 01df ffff

Description To verify this operation, two instruction are used, 140h (to write to

accumulator) and 160h (to write to memory) D0h .AND. B1h is 90h. This result is

 70

placed in accumulator. When instruction 160h is executed, result 90h is placed in

memory.

Figure 4-2 ANDWF operation

4.1.3 CLRF
General operation involves AND operation between memory data and 00h.The result out

of ALU, alu_out is always 00h.

Encoding format: 0000 011f ffff

Description Instruction 060h sets 00h in memory. This value is stored in respective

memory location at end of the clock cycle.

 71

Figure 4-3 CLRF operation

4.1.4 CLRW

 General operation involves, flushing accumulator and writing 00h to it.

Encoding format: 0000 0100 0000

Description Here after execution of 040h instruction, 00h is written to accumulator.

 72

Figure 4-4 CLRW operation

4.1.5 COMF
General operation involves complementing memory data and storing it.

Encoding format: 0010 01df ffff

Description Instruction 240h , complements E1h and writes 1Eh to accumulator.

Figure 4-5 A COMF operation

4.1.6 DECF
By execution of this instruction , content of memory is decremented by 1 . The result is

placed in memory or accumulator .

Encoding format: 0000 11df ffff

Description Instruction 0C0h decrements E1h by 1 and places the result E0h in

accumulator.

 73

Figure 4-6 A DECF operation

4.1.7 DECFSZ

Content of memory is decremented by execution of this instruction. If result is not zero ,

next instruction is fetched and executed. If the result is equal to zero, then instruction

fetched is discarded and instruction fetched+1 is executed.

Encoding format: 0010 11df ffff

Description instruction 2e0h decrements memory by one. When the result is zero , the

next instruction fetched is at 0F8h instead of 0F7h, making it a single cycle instruction.

 74

Figure 4-7 DECFSZ operation

4.1.8 INCF

Content of memory is incremented by one. Result is placed in accumulator or memory

depending on the instruction bit<5>.

Encoding format: 0010 10df ffff

Description By execution of instruction 220h, E1h (output of memory) is incremented by

one, and written back to memory.

 75

Figure 4-8 A INCF operation

4.1.9 INCFSZ

Content of memory is incremented by execution of this instruction. If result is not zero ,

next instruction is fetched and executed. If the result is equal to zero, then instruction

fetched is discarded and instruction fetched+1 is executed.

Encoding format: 0011 11df ffff

Description Instruction 3C0h when executed, results in 00h as output. So the next

instruction to be fetched is 0F8h instead of 0F7h.

 76

Figure 4-9 A INCFSZ operation

4.1.10 IORWF

By execution of this instruction , content of accumulator is OR’ed with memory. Result is

placed in accumulator or memory depending on the instruction bit<5>.

Encoding format: 0001 00df ffff

Description Instruction 100h when executed, result of (EFh OR E1h) =EFh is placed in

accumulator.

 77

Figure 4-10 IORWF instruction

4.1.11 MOVF

By execution of this instruction, contents of memory is moved to accumulator or memory

depending upon instruction bit<5>.

Encoding format: 0010 00df ffff

Description Instruction 220h writes E1h back to memory location 00h.

 78

Figure 4-11 A MOVF operation

4.1.12 MOVWF

By execution of this instruction, data from accumulator is moved to the memory location.

Encoding format: 0000 001f ffff

Description Instruction 0EFh stores EFh to memory location 01h.

 79

4.1.13 NOP

As the name implies, no operation is done, by execution of this instruction.

Encoding format: 0000 0000 0000

Description Instruction 000h when executed, changes nothing and no control signals are

generated.

 80

Figure 4-12 A NOP operation

4.1.14 RLF

By execution of this instruction, content of memory is rotated one bit to the left through

the carry flag(STATUS<0>). Instruction bit<5> determines destination, as accumulator

or memory.

Encoding format: 0011 01df ffff

Description Instruction 360h when executed, sram_out is shifted by one bit to the left,

and carry is in LSb position. Here, E1h shifted by one to the left , produces C2h at acc_in

bus.

 81

.

Figure 4-13 A RLF operation

4.1.15 RRF

By execution of this instruction, content of memory is rotated one bit to the right through

the carry flag(STATUS<0>). Instruction bit<5> determines destination, as accumulator

or memory.

Encoding format: 0011 00df ffff

Description Output of SRAM , E1h when rotated right through carry(0) , output is 70h.

 82

Figure 4-14 A RRF operation

4.1.16 SUBWF

By execution of this instruction , accumulator data is subtracted from memory.

Instruction bit<5> determines destination, as accumulator or memory.

Encoding format: 0000 10df ffff

Description Instruction 080h subtracts acc_out to sram_out and result is placed in

accumulator. Here, E1h-EFh is computed. Result F2h is placed in accumulator ,through

acwr signal low in negative edge of clock2.

 83

Figure 4-15 A SUBWF instruction

4.1.17 SWAPF

By execution of this instruction, upper and lower nibbles are exchanged of memory data.

Instruction bit<5> determines destination, as accumulator or memory.

Encoding format: 0011 10df ffff

Description By executing instruction 3A0h , output of memory E1h is changed to 1Eh.

Result is written to the memory.

 84

Figure 4-16 A SWAPF instruction

4.1.18 XORWF

By execution of this instruction , contents of accumulator and memory are exclusive

ORed. Instruction bit<5> determines destination, as accumulator or memory.

Encoding format: 0001 10df ffff

Description Instruction 1A0h performs an XOR operation between accumulator and

memory data, and result is written in memory. Here result 0Eh (EFh XOR E1h) is

written to memory.

 85

Figure 4-17 A XORWF operation

4.2 Bit Oriented Instructions

4.2.1 BCF
By execution of this instruction , bit location of memory addressed by instruction

bus<7:5> is cleared.

Encoding format: 0100 bbbf ffff

Description By execution of this instruction 440h, data read from memory is cleared in

third position. The result 1Ah is stored back in memory.

 86

Figure 4-18 A BCF instruction

4.2.2 BSF
By execution of this instruction , bit location of memory addressed by instruction

bus<7:5> is set.

Encoding format: 0101 bbbf ffff

Description Instruction 540h when executed, sets the second bit position of sram_out

data E1h. So the result is E5h.

 87

Figure 4-19 A BSF operation

4.2.3 BTFSC

If bit ‘b’ in memory is zero then next instruction is skipped and instruction after that is

loaded . If bit ‘b’ is not zero then next fetched instruction is executed.

Encoding format: 0110 bbbf ffff

Description Instruction 6E0h checks the 7th bit position of data read from memory. Here

it is at zero value. So the next instruction fetch address is incremented by two rather than

one.

 88

Figure 4-20 A BTFSC operation

4.2.4 BTFSS

If bit ‘b’ in memory is one, then next instruction is skipped and instruction after that is

loaded . If bit ‘b’ is not one then next fetched instruction is executed.

Encoding format: 0110 bbbf ffff

Description Instruction 7E0h checks the 7th bit of output of memory. Here, this bit is at

logic 1, so the instruction , C0Fh is fetched from PC+2, i.e. 0F8h memory location.

Figure 4-21 A BTFSS operation

 89

4.3 Literal and Control Instructions

4.3.1 ANDLW
While executing this instruction, contents of accumulator and 8-bit literal are ANDed.

The result is placed in the accumulator.

Encoding format: 1110 kkkk kkkk

Description The instruction E0Fh performs AND operation of accumulator with 8-bit

literal supplied in the instruction set. Here , value of literal supplied is 0Fh and result of

ALU is 0Fh , indicating that ANDLW operation is achieved.

Figure 4-22 A ANDLW instruction

 90

4.3.2 IORLW

While executing this instruction, contents of accumulator are ORed with 8-bit literal

value. Result is placed in the accumulator.

Encoding format: 1101 kkkk kkkk

Description 8-bit literal 0Fh is ORed with accumulator output (0Fh). The result 0Fh is

placed in accumulator register.

Figure 4-23 A IORLW instruction

4.3.3 MOVLW

The 8-bit literal is loaded to the accumulator after execution of this instruction.

Encoding format: 1100 kkkk kkkk

 91

Description Literal value E7 is transferred to accumulator after execution of CE7h

instruction.

Figure 4-24 A MOLW instruction execution

4.3.4 XORLW

Contents of the accumulator is XORed with 8-bit literal. The result is placed in the

accumulator register.

Encoding format: 1111 kkkk kkkk

Description By execution of F1Fh instruction, 1Fh is XORed with E1h . The result F0h

is stored in accumulator.

 92

Figure 4-25 A XORLW operation

4.3.5 CALL

At first, return address (PC +1) is pushed to the stack. The 8-bit immediate address is

loaded into the PC bits<7:0>. The upper bit PC<8> is cleared.

Encoding format: 1001 kkkk kkkk

Description After execution of CALL instruction 9CDh , 9-bit literal value 0CDh is

loaded in the program counter.

 93

Figure 4-26 A CALL instruction execution

4.3.6 GOTO

GOTO is an unconditional branch instruction. The 9-bit immediate value is loaded into

PC bits <8:0>.

Encoding format: 101k kkkk kkkk

Description By execution of B0Fh instruction, 10Fh is loaded to PC .

Figure 4-27 A GOTO operation

 94

4.3.7 TRIS

After execution of this instruction , TRIS register is loaded with contents of accumulator

register.

Encoding format: 0000 0000 0fff

Description Here instruction 006h loads contents of accumulator F2h to the TRISB

register.

Figure 4-28 A TRIS operation

 95

5 Conclusion and Future Work

The project was a success both in terms of what I have learned and what I have

accomplished.

This project reinforced many important VLSI concepts. One aspect of VLSI which I

became very familiar was the idea of trade-offs. AT different itmes, there was limitation

in choosing increased area or increased speed. In many cases, layout of intracell was

limited to metal1 and metal2. This increased overall area by a little, but in other hand

speed was increased subsequently. All over our design, routing via poly was minimized

as possible.

There were many other VLSI concepts which I learned from working on this project. I

learned to design circuits, for replication. Also ,I learned floor planning, channel routing,

and designing at lower level to accommodate top level floor planning and routing.

Lot of time, I encountered problem while simulating the design. Simple combinational

logic created no problem while simulation . Higher level design connecting multiple pins

and control signals was troublesome to some extent. To count a few, I had problem for a

long time on test bench for tristate buffers and static memories. For a tristate buffer, I was

 96

on right track, but it took a week for me to figure that out. Similarly , D-latch also

aroused a lot of problem for me . I tried each and every design patterns but was not able

to analyze the test result and figure out that I was headed the right direction. Static RAM

was one of the most troublesome while designing. Reading and writing though was

perfectly achieved on a single cell, I had a lot of problem on Memory array. It would not

store anything at all. After many days, I figured out that the word lines was enabled a

long time before pre-charge went high(active low signal). This was creating a big mess.

Also , channel routing and final assembly was creating a havoc by not connecting 12

metal1 to metal2 data paths. It made me to rewire everything thrice. But thanks to the

problem, which made me to rethink about floor planning and everything next was

perfectly organized and compact.

Test benches written on spectre as too much of work. I wanted a fast and simple

alternative. Two simulators, spectreS and IRSIM were used. IRSIM was used for large IO

pins and for smaller pins spectreS was used.

Moreover , I gained a lot from this work . I was really happy to see my design working

faster and performing all the 33 instructions pretty fast.

Finally , I would like to conclude this project as a 8-bit microcontroller operating with a

total access time of 14nS

 97

5.1 Future Work
• Timing analysis

Detailed timing analysis is yet to be done on this project. Doing so , performance

of the machine can be increased.

• Instruction memory is yet to be designed.

• Adding RS232 serial interface.

• Pipelining the whole design

At this phase of project, the whole design is only pipelined by two stages.

The first phase is fetch and the second is decode. If this whole system is pipelined to 4

different stages, then a faster performance can be achieved.

 98

6 References

1. Neil H. E. Weste,David Harris,CMOS VLSI Design, A circuits and systems

perspective, Addision Wesley 3rd edition,2005

2. Jacob Millman,Christos C. Halkias,Integrated Electronics, Analog and Digital -

Circuits and Systems,Tata McGraw-Hill ,1991

3. L. G. Johnson,Memory, Class notes of Digital VLSI Design,Septemeber 2004

4. A.P.Paplinki,CMOS Function Cells, Lecture Notes, October 2002

5. L. G. Johnson,Cadence Auto-Layout Generation from Verilog code

6. Wei Lii Tan, Standard Cell Tutorial, Mississippi State University,Dallas

Semiconductor, September 2002

7. Aiyappan Natarajn , Impact of Leakage and Variation on Sense Amplifiers for

On-chip SRAMs, MS Thesis proposal by, Interconnect Circuit Design Group,

University of Massachusetts.

8. Birdy Amrutor , Static Random Access Memories(SRAM),amrutor@hpl.hp.com

9. Hong-Yi Huang, Shih-Lun Chen, Self-Isolated Gain-Enhanced Sense Amplifier

10. Ameet Ranadive, Grant Smith, Prime Factorization Chip

 99

11. Dan Clein, What is Full Custom layout Design,

www.eetimes.com/isd/features/OEG20010608S0035

12. PIC microcontrollers,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/

 100

7 Bibliography

1. L. G. Johnson, Lecture notes on Digital VLSI Design

2. DS304538D: 8 bit EPROM/ROM based CMOS Microcontrollers, Microchip

Technologies Inc. 2002

3. Neil H. E. Westet, Kamran Eshraghian,Principles of CMOS VLSI Design, A

system perspective,2nd edition

4. Douglas V. Hall,Microprocessors and Interfacing,Programming andHardware

,Tata McGraw-Hill 1991

5. Barry B. Brey, The INTEL Microprocessors,

8086/8088,80186/80188,80286,80386,80486,Pentium and Pentium Pro

Processor. Architecture ,Programming and Interfacing,Prentice-Hall of India

1998

 101

Appendixes

A. Test benches

A.1 Test bench for 8 bit ALU

logfile 1.log

vector a a_{7:0}

vector b b_{7:0}

vector out out_{7:0}

vector out1 out1_{7:0}

vector out_or out_or_{7:0}

vector inv_out1 inv_out1_{7:0}

| for full adder done ,

l sel_fa

h sel_and sel_xor en_a sel_or

l invert_a

l sel_fa

s

h cin

set a 11111111

 102

set b 00000001

s

assert out 00000001

set a 00000000

set b 00000000

l cin

s

l cin

set a 10101010

set b 01010101

s

h cin

set a 11111110

set b 00000000

s

assert out 11111111

assert cout 0

set a 01000000

set b 00010000

s

 103

assert out 01010001

assert cout 0

set a 11111111

set b 11111111

l cin

s

assert out 11111110

assert cout 1

h cin

set a 11111111

set b 11111111

s

assert out 11111111

assert cout 1

s

| test for and operation

h sel_fa

l sel_and

set a 11111111

set b 00000000

 104

s

assert out 00000000

set a 10101010

set b 01010101

s

assert out 00000000

set a 11110000

set b 11110000

s

assert out 11110000

set a 10011001

set b 10000001

s

assert out 10000001

s

| test for xor XOR GATE

h sel_and

l sel_xor

s

l cin

 105

set a 11111110

set b 10000001

s

assert out 01111111

set a 00000001

set b 10101010

s

assert out 10101011

| test for b-a SUBSTRACT

l sel_fa

h sel_xor

h cin

h invert_a

set b 11111111

set a 00000001

s

assert out 11111110

set b 00001010

set a 00000010

 106

s

assert out 00001000

set b 00000001

set a 00000001

s

assert out 00000000

set b 00010001

set a 10000000

s

assert out 10010001

set b 00000000

set a 11111111

s

assert out 00000001

| test for B + 1 B+1

l en_a

h cin

l invert_a

set b 00000000

set a 11111111

 107

s

assert out 00000001

assert cout 0

 set b 00000000

 set a 11111111

 s

 assert out 00000001

 assert cout 0

set b 01111111

s

assert out 10000000

assert cout 0

|ana a b cin sel_fa sel_and sel_xor en_a invert_a out

h sel_and sel_xor en_a sel_or sel_fa

l sel_or

set a 00001111

set b 00000001

w out1 out_or inv_out1

s

assert out 00001111

 108

set a 11111111

s

assert out 11111111

A.2 Test bench for 32 word memory array
stepsize 1.4n

vector in a4 a3 a2 a1 a0

vector din din_{7:0}

vector bit bit_{7:0}

vector clk clk1 clk2 clk3

clock clk 111 011 011 001 000 100 100 110

l wr_enable

set din 10000110

set in 00010

c

set din 00000000

set in 00011

c

set din 11000110

set in 00010

 109

c

clear

ana in din bit word3 word2

VITA

KALYAN PARAJULI

Candidate for the Degree of

Master of Science

Thesis: Custom Mask Layout of a 8 bit RISC Microcontroller

Major Field: Electrical Engineering

Biographical:
Personal Data: Born in Kathmandu,Nepal.
 Son of Baikuntha Prasad Parajuli and Kalpana Parajuli.

Education: Graduated from Vivekananda Junior College, Tenali, Andra Pradesh,

India in 1996; received a Bachelor’s Degree of Electrical and Electronics
Engineering from Kathmandu University, Dhulikhel, Nepal in September
2000. Completed Requirements for Masters of Science degree with a
major in Electrical Engineering at Oklahoma State University in May
2005 .

Experience: Graduate Teaching Assistant, Department of Physics, Oklahoma State

University, 2002-2004

