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Abstract

Super resolution as an exciting application in image processing was studied widely

in the literature. This dessertion presents new approaches to video super resolu-

tion, based on sparse coding and belief propagation. First, find candidate match

pixels on multiple frames using sparse coding and belief propagation. Second, incor-

porate information from these candidate pixels with weights computed using the

Nonlocal-Means (NLM) method in the first approach or using SCoBeP method in

the second approach. The effectiveness of the proposed methods is demonstrated

for both synthetic and real video sequences in the experiment section. In addition,

the experimental results show that my models are naturally robust in handling su-

per resolution on video sequences affected by scene motions and/or small camera

motions.

Moreover, in this dissertation, I describe a denoising method using low-rank ma-

trix completion. In the proposed denoising approach, I present a patch-based video

denoising algorithm by grouping similar patches and then formulating the problem

of removing noise using a decomposition approach for low-rank matrix completion.

Experiments show that the proposed approach robustly removes mixed noise such

as impulsive noise, Poisson noise, and Gaussian noise from any natural noisy video.

Moreover, my approach outperforms state-of-the-art denoising techniques such as

VBM3D and 3DWTF in terms of both time and quality. My technique also achieves

significant improvement over time against other matrix completion methods.

xiv



CHAPTER 1

INTRODUCTION

Today, with advances in sensor design, the given image is relatively clean for digital

cameras, but it remains noisy and blurry for low-grade and mobile phone cameras.

Thus the super resolution problem is still of acute importance, and I present a

novel learned image model method, which outperforms the-state-of-the-art, super

resolution task on real and synthetic low sequences. Sparse representation techniques

are beginning to show significant impact on image processing [17–20]. Also, the

results of these methods illustrate that the sparse representation can be correctly

recovered from the downsampled signals.

In addition, Images from various modalities need to be denoised as a pre-processing

step for many planning, navigation, detection, data-fusion and visualization tasks in

medical applications [21, 22]. Video sequences are often corrupted by noise during

acquisition or transmission. CT slices are often corrupted by noise during acquisition

or transmission. Noises are added in the CT slices during acquisition by CT scanner

sensors [23]. Some noise sources located in camera hardware became active during

image acquisition under some lighting conditions. Other noise sources are over

transmission channels. Most video denoising algorithms proposed in the literature

assume additive white Gaussian noise, which can be categorized into pixel domain

and transform domain methods. However, I consider Impulsive/Poisson/Gaussian

noise in my work and will show how robust my denoising method is. The goal of

my denoising method is to keep only the reliable pixels and get rid of all other un-
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reliable pixels I find as noise. For each patch in the reference frame, I find the similar

patches in the other frames using a block matching algorithm. The found matches

will be vectorized and then stacked into a matrix. The reliable pixel values in the

matrix are between the mean ± standard deviation of all elements in the same row.

The main step will be done by applying the matrix completion approach [24] on

the incomplete matrix. The output of matrix completion is a noise free full matrix.

Then, the average value of each row in the full matrix can recover the denoised

patch. Repeating the same procedure for all blocks of reference frame can build a

denoised frame.

1.1 Classic Super Resolution

Super resolution reconstruction attempts to estimate one high quality result X out

of several lower resolution and potentially noisy images

{
Yt

}T
t=1

. A popular way

to model LR images

{
Yt

}T
t=1

from a pseudo HR image X is through a sequence

of operations including geometrical wrapping Ft, linear space-invariant blurring H,

spatial decimation Dt, and zero-mean white Gaussian noise εt. The model can be

summarized with the following equation:

Yt = DHFtX + εt, t = 1, 2, 3, ..., T, (1.1)

where T is the number of available LR frames. Note that I assume H and D are

identical for all frames in the sequence.

The recovery of X from

{
Yt

}T
t=1

using the above mentioned model requires us

to solve an inverse problem. The maximum a posteriori probability estimate of X
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can be obtained by minimizing the following objective function with respect to X :

ε2MAP (X ) =
1

2

T∑
t=1

‖DHFtX − Yt‖2
2 + λ · TV (X ), (1.2)

where the first summation term ensures that the projections of the estimate X looks

similar to the LR images and the second term, λ · TV (X ), acts as a prior and helps

to remove artifacts from the final solution and improves the rate of convergence [25].

Since H and Ft are space-invariant operators in (1.2), they can be considered as

block circulant matrices (assuming a cyclic boundary treatment) that they commute

[7, 26]. This allows one to solve (1.2) in the following two steps [2, 7, 26, 27]. First,

minimize the following penalty function with respect to Z:

ε2ML(Z) =
1

2

T∑
t=1

‖DFtZ − Yt‖2
2 , (1.3)

where Z can be interpreted as a blurred version of the HR frame X and thus should

be approximately equal to HX . This step estimates the blurry high-resolution

image Z from the collection of the low resolution images Y . For a more general case

with multiple input patches, I will modify ε2ML in (1.3) to (2.7) as shown in Section

1.3.

Then, impose the constraint of the closeness of Z and HX and incorporate back

the regularization term to obtain the following objective function:

ε2MAP (X ) = ‖HX − Z‖2
2 + λ · TV (X ), (1.4)

where X can be obtained through minimizing (2.8) in Section 2.3.3. Since H is

usually singular, this stage is an under-determined problem and needs regularization

(see [28, 29] for more detail).

In summary, one can break the minimization problem in (1.2) in two steps:

3



1. compute a blurred version of HR Z by minimizing (1.3).

2. estimate the deblurred frame X from the found blurred HR Z in step 1.

As the second step only involves the classic deblurring problem, many potential

techniques can be applied here. In my proposed approaches, I adopt the Adaptive

Kernel Total Variation (AKTV) regularized locally-adaptive kernel regression in a

variational approach developed by Takeda et al. [30], which can simultaneously in-

terpolate and deblur in one integrated step. However, one can generally incorporate

any deblurring techniques into the proposed method.

1.2 Background of NLM Filter

The whole entity of a self-similar object is exactly like or similar to a part of itself.

As a consequence, parts of it can show the same statistical properties at many

scales. Based on this presumption, non-local self-similarity techniques have been

widely used in areas such as image denoising [13, 31], texture synthesis [32], and

super resolution [2, 5, 27]. For example, the NLM filter, which is based on the

assumption that image content is likely to repeat itself within its neighborhood, is

applied successfully to image denoising. Its key idea is that one can denoise a pixel

[i, j] by performing weighted average around its neighborhood [31]. More precisely,

denote Y [i, j] as the intensity of pixel [i, j], then the intensity of denoised pixel [q, l],

X [q, l], can be written as

X [q, l] =

∑
(i,j)∈N (q,l)W [i, j, q, l]Y [i, j]∑

(i,j)∈N (q,l)W [i, j, q, l]
, (1.5)

where N (q, l) denotes a neighborhood around pixel [q, l], andW [i, j, q, l] is a weight

that is decreased with the distances between pixels [i, j] and [q, l], and increased

with the similarity of the patches centering at the two pixels. The formula in (1.5)

describes the NLM filter where denoising each pixel is done by averaging all pixels
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in its neighborhood. However, this averaging is not performed blindly and instead

each pixel in the relevant neighborhood is assigned a weight which corresponds to

the probability that the pixel Y [i, j] and the pixel X [q, l], prior to the additive noise

degradation, had the same value.

NLM filter computes the weight based on both radiometric proximity and geo-

metric proximity between the pixels. The radiometric part is estimated by comput-

ing the Euclidean distance between two image patches centered around these two

included pixels. Let us consider Rq,l as the matrix that extracts a patch with fixed

and predefined size of g × g pixels at its position [q, l] in the image. Hence, Rq,lY

is equivalent to the g × g matrix representing the extracted patch of Y at position

of [q, l]. As NLM estimation is a zero-order regression, only the zero-order basis is

used for estimation. Therefore, the NLM weights look like

W [i, j, q, l] =exp

{
−
‖Rq,lY −Ri,jY‖2

2

2σ2

}

×f(
√

(q − i)2 + (l − j)2),

(1.6)

where σ manages the effects of radiometric differences between two patches and

when the intensities of the two patches are far away, the weight becomes very small

and thus can be ignored. Whereas the function f is in charge of the geometric

distance, and it may have many forms such as a Gaussian, a box function, or a

constant [2, 27]. Since there are various other ways to choose the weights in (1.5),

in this chapter I will restrict my choice to SCoBeP [1] and NLM as described in

Sections 2.3.2 and 2.3.3.

1.3 NLM for Super Resolution

Since self-similarities exist in most natural images, one can also use the NLM algo-

rithm to take advantage the non-local similarity property of natural images in the
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superresolution problem.

In essence, one may extract a target patch information from multiple patches

instead of one patch per each LR frame. This allows us to modify ε2ML in (1.3)

instead to [2, 27]

ε2ML(Z) =
1

2

T∑
t=1

∑
[q,l]∈I

∑
[ri,rj]∈N (q,l)

W [i, j, q, l, t]

×
∥∥DRH

q,lZ −RL
i,jYt

∥∥2

2
,

(1.7)

where I is the set of pixel coordinates of the entire frame X , N (q, l) is a neigh-

borhood of the pixel [q, l], and W [i, j, q, l, t] can be interpreted as a weight that the

pixel [q, l] in the reference frame should be mapped to the pixel [i, j] in the tth LR

frame Yt. RH
q,l and RL

i,j are defined as the HR and LR patch extraction operators

respectively, where the size of the extracted patches are related to the resolution

ratio r as follows. Let the size of patches extracted by RL
i,j and RH

q,l be g × g and

k × k, respectively. I have k = r(g − 1) + 1. Note that k is not set precisely as rg

to avoid the need of extrapolation. The detail in computing W will be deferred to

Section 2.3.2 and 2.3.3.

As for the first step, one can show that the optimum Z can be computed as [2]

Z[q, l] =

∑T
t=1

∑
[ri,rj]∈N (q,l)W [i, j, q, l, t]Yt[i, j]∑T

t=1

∑
[ri,rj]∈N (q,l)W [i, j, q, l, t]

. (1.8)

1.4 Contribution of My Dissertation

The contributions of the proposed approach can be summarized as follows:

(i) Decomposing each reference image patch into a linear combination of a few
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elements from a basis set, which increases the expressiveness of basis patches that

allows the reconstruction of edges with high fidelity, and avoids the need of accurate

motion estimation.

(ii) Identifying the best similar matches based on the local and the geometric

characteristics using factor graph, which efficiently trade off both characteristics

optimally.

(iii) Incorporating SCoBeP to efficiently sift through pixels from all LR images

and thus resulting much more accurate non-local candidates for subsequent estima-

tion.

(iv) Demonstrating competitive performance of the proposed methods with both

synthetic and real video sequences.

(v) Breaking the locality constraint in the conventional restoration methods us-

ing NLM method, which provides similarity by exploiting the redundancy between

overlapping patches.

(vi) Exploiting both SCoBeP output and the NLM technique in calculating

weights to facilitate tradeoff between computational complexity and performance.

(vii) Incorporating belief propagation into sparse coding, which increases the

effect of each neighboring LR pixel on the candidate points.

(viii) relying on basic vector operations instead of utilizing SVD in video denois-

ing, which the approach is immediately applicable to matrices of any field (including

finite field matrices).

The rest of my dissertation is structured as follows. I give a brief summary of

related work and review the background of super resolution and NLM filter in the

next chapter. In Section 2.3, I introduce my proposed methods: SCoBeP-SR and

SCoBeP-NLM. Implementation issues are also presented in detail in this section.

Section 3.3.3 presents the experimental results and compares my results with that

of the existing super resolution methods. Moreover, I will introduce the concept

7



of my video deoising method using block matching filtering and matrix completion

method in Chapter 3. I further show my simulation results in Section 3.3.1. Finally,

Chapter 4 concludes the work has been done throughout this dissertation.
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CHAPTER 2

A SUPER RESOLUTION METHOD FOR VIDEO WITH

CAMERA AND OBJECT MOTION USING SCoBeP

2.1 Introduction

Super resolution tries to combine several low resolution (LR) images from a scene

and produces one higher resolution image with better optical resolution. This is an

inverse problem that is commonly tackled by integrating denoising, deblurring, and

upsampling.

Fig. 2.1 illustrates this inverse process and presents how the LR sequence may

be modeled using an original higher resolution frame. During imaging, the blurring

effect can be modeled by the optical point spread function (PSF). The scene may

then be warped due to camera or object motion. Moreover, the motion effect might

not be the same for all frames in the sequence. A fixed decimation operator is

typically used to model the effect of sampling by the image sensor. The operator

is characterized by the resolution ratio between the original higher resolution frame

and the LR sequence. The noise, which in most applications assumed to be white

i.i.d. Gaussian, is added to the LR frames. The outcome of the super resolution

reconstruction problem depends on the involved operators and noise characteristics

of the above mentioned model.

A wide variety of super resolution methods have been studied in the last two

decades [2,4,5,7,27,33–37]. Huang and Tsai were the first to address the multiframe

9



super resolution problem using a frequency domain approach that works for band

limited and noise-free images [38]. Later, it was extended by others, such as Kim et

al. who proposed a super resolution method on noisy and blurred images [39]. Pleg

and Irani [33] also suggested a different approach for the super resolution problem

based on the iterative backprojection (IBP) method adopted from computer aided

tomography (CAT). Recently, an iterative multiframe super resolution method was

presented in [4] that relied on extending the steerable kernel method in space-time.

However, the approach assumes the input frames only contain smooth textures.

Also, it has difficulties to estimate a pixel-wise motion in regions with the larger

motion [40].
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Figure 2.1: A general model of multi-frame super resolution.
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Figure 2.2: Block diagram representation of my models.
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In dealing with camera position variation, a few attempts have been made

through a global motion model [7, 35, 38, 41]. Bonchev and Alexiev suggested a

method of super resolution that used the information from several LR frames by

controlling the camera position in frequency domain when taking frames [35]. Also,

in [41] a maximum a posteriori (MAP) was adopted to provide coarse estimates of

rotation and translation between images. The authors claimed that such estimation

step provided enough accuracy to effectively remove the effect of the rotational and

coarse (super-pixel) translational motion between the images. Although that algo-

rithm incorporates smoothness priors as a constraint to reconstruct the HR images,

using these smoothness priors might not lead to smooth results [42]. A number of

super resolution approaches using Total Variation (TV) regularization terms have

been explored in the last decade, e.g., the approach by Mitzel et al. in [36], where

their method is not restricted to any particular motion model and they do not

assume that the motion is known. In another work, Farsiu et al. suggested a mul-

tiframe super resolution method by applying constraints on the L1 norm of both

the bilateral TV regularization term and the data fusion term to produce a sharp,

high resolution (HR) image [7]. The researchers also registered the LR images with

respect to a reference frame before starting the super resolution process. Liu

and Sun in [40] proposed a Bayesian framework for adaptive video super resolution

that deals with video super resolution by also simultaneously estimating underlying

large motion. Moreover, they jointly estimated the flow field and the noise level in

a coarse-to-fine manner on a Gaussian image pyramid using the HR image and the

blur kernel.

In this work, I focus on video frames that suffer from non-homogeneous noise,

atmosphere or camera blur, motion and down-sampling effects. Also, as real videos

can be taken from both fixed or movable cameras, I also consider frames affected by

scene motions and/or small camera motions. Note that as I will see in the coming
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sections, the approach I introduced here works well for such scenario. My method

is complementary to approaches such as [40], which considers the superresolution of

sequences with larger camera motions but little or no scene motions.

I propose to solve the super resolution problem using a novel framework taking

advantage of two recently developed techniques: SCoBeP [1] and Nonlocal-Means

(NLM) [31]. My approaches are based on the concept of Sparse Coding and Belief

Propagation (SCoBeP) which is earlier introduced in [1] for 2-D signals (images).

It turns out that the technique is well-suited for super resolution of video (a 3-D

signal) as I explore in this chapter.

As a summary of my approaches, I first build an overcomplete dictionary out of

all block features of LR frames as shown in Fig. 2.2. Different from [43], I am not

generating HR/LR patch pairs from the frames by exploiting self-similarities. For

each pixel of the initial estimate of the HR frame, I then select a set of candidate

pixels out of the constructed dictionary using sparse coding [44]. The match score of

each candidate pixel will be evaluated taking both local and neighboring information

into account using belief propagation [45]. The best matches will be selected as the

candidates with the highest scores. An occluded pixel or any pixel not covered by

the LR frames is likely to be identified since the match scores in this case will be

significantly smaller than a typical maximum score when a match pixel actually

exists. Finally, in my first proposed method, the NLM approach exploits similarity

in patches around candidate pixels to average out the noise among similar patches [2]

and in my second proposed method, a pixel is reconstruct from multiple candidate

pixels with the weights extracted directly from the output of SCoBeP.

In the experiment section, I also illustrate that the proposed methods can per-

form well on real LR videos (besides “phantom” LR videos generated artificially)

and can reconstruct image edges with high fidelity. Although the NLM filtering

has shown great potentials for image denoising and superresolution [31], it is only
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Table 2.1: Summary of Notation

Notation Description

X the reconstructed HR frame

Yt the LR frame at t

yt the interpolated LR frame at t

T the number of available LR frames

Z the blurred version of the reconstructed HR frame

N (q, l) a neighborhood around pixel [q, l]

Rql the matrix that extracts a patch centered around
pixel [q, l]

r the resolution (magnification) ratio

n the number of candidate pixels

Xql the vectorized patch at pixel [q, l] in the reference
frame

Dt the dictionary constructed from the tth LR frame Yt
αqlt the sparse representation vector of a patch centered

around pixel [q, l] in tth LR frame

Yqlt the vectorized patch at pixel [q, l] in the tth LR frame
Yt

W [i, j, q, l, b, t] the weight mapping from a pixel in the reference
frame to bth candidate pixel in the tth interpolated
LR frame yt

cp an n×2 matrix storing the locations of the candidate
pixels

ρqlt the prior probability of pixel [q, l] in the reference
frame mapping to the bth candidate pixel in tth inter-
polated LR frame

effective when a reference patch can be identified to accurately represent the tar-

geted patch. Moreover, NLM approaches generally have very high computational

complexity. I will show in this chapter reference patches can be effectively found by

SCoBeP. Further, I will also show that the NLM step may be skipped completely

(as demonstrated in the second method) with only a small performance penalty but

a significant (about three times) speed-up.
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2.2 Related Work And Background

Sparse representation [19] and self-similar-based techniques [5,27] have been used in

super resolution in recent years. In this section, I will review how some of the recent

works use these techniques in recovering the downsampled signals and computing

the similarity of image patches.

In [19,20], a large set (of the order of a hundred thousand) of patches randomly

sampled from natural images to train an LR and a HR dictionaries. The main idea

consists of seeking in the database for a sparse representation of each patch of the

LR input, followed by using this representation to generate the HR output. Yang et

al. [43] proposed a super-resolution method that exploits self-similarities and group

structural constraints of image patches using only one single input frame. In this

algorithm, the patch self-similarity within the image is exploited and the group spar-

sity then will be introduced for better regularization in the reconstruction process.

Another recent example based on an enhanced sparse representation in transform

domain is block-matching 3-D filter (BM3D) [18], which uses a block matching tech-

nique to find a set of similar 2D blocks. Danielyan et al. have extended (BM3D)

in [37] for image and video super resolution. They produce a sparse representa-

tion of the true signal in the transform domain to exploit the similarity among the

blocks. In contrast to the sparse representation approaches discussed above where

they use information from only one corresponding pixel per LR frame to reconstruct

a target pixel, my first approach incorporates the NLM method to take advantage

information from multiple matched pixels for the reconstruction.

I now turn to a discussion of certain works associated with self-similar-based

technique. Plenty of works have emerged lately based on self-similarity for natu-

ral image and video processing. The self-similarity property shows that the image

content desires to repeat itself within some neighborhoods. Non local self-similarity
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has been effectively applied to many aspects of image processing [17, 27, 32]. Fol-

lowing this insight, Buades et al. used this approach in image denoising, which is

known as the NLM method [31]. The NLM method was used also in image restora-

tion explicitly exploits self-similarities in natural images [27, 31]. Liu and Freeman

in [46] proposed a video denoising approach to use an approximate k-nearest neigh-

bor (AKNN) algorithm to approximately but rapidly seek the most similar patches

for a given video. As pointed out in [47], [46] takes into account only similar blocks

for a given video and thus could be classified as a “closest structure” method, while

one can call the original NLM method [31] a “closest space” method in the sense

that it uses only closest blocks in a small window. Moreover, Marial et al. in [17]

extended the NLM method in denoising and demosaicking using the idea that sim-

ilar patches have similar sparsity patterns. Also, in [5], Zhang et al. proposed a

non-local kernel regression method for image and video super resolution, which ex-

ploits both non-local self-similarity and local structural regularity in a single model.

Distinct from the local kernel regression, the NLM method estimates the value of a

pixel from all possible patches collected from a search area, and breaks the locality

constraint in the restoration algorithms. Protter et al. [2] generalized this denois-

ing method to perform multiframe super resolution reconstruction with no explicit

motion estimation. In that work, computing the similarity of video frame patches

resulted in probabilistic estimates of motion.

Prior works have been limited to block matching in restricted neighborhoods.

These neighborhoods determine the candidate matches of target pixels and thus

have a significant impact on SR performance. However, they have always been

assigned with limited sizes and regular shapes (e.g., as rectangular blocks) in prior

works and hence often do not include the best match patches. Due to this poor

block matching, the prior techniques could suffer from block artifacts in some test

cases [2, 48].
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In contrast, the advantage of SCoBeP registration is that the chosen candi-

dates will have better “diversity” when compared with the AKNN or even the exact

K-nearest neighobor (KNN) approach (see Fig. 2.3). This originates from the in-

duced orthogonality of the patches when sparsity is imposed in the solution. In the

KNN case, when a smooth patch is incorrectly matched to a patch, the next best

“matches” are likely around the neighborhood of the wrong patch and it ends up

incorrect matching for all patches. The better “diversity” actually affords SCoBeP

a larger search window compared with other registration without sacrificing the ro-

bustness of the approach [1]. In this chapter, I take advantage of SCoBeP to select

from each LR frame a set of candidate pixels which are likely to be most similar to

the target pixel. As a result, for each pixel and per LR frame, I have an irregular

neighborhood that can include any pixel in the frame. This significantly improves

the block matching performance that directly links to the overall SR performance.

2.3 Proposed Method

The key to apply NLM to super resolution efficiently depends on how I can identify

the appropriate neighboring set (N (q, l)) for each pixel and also how I can choose

the appropriate weighting function. In particular, the neighborhood N (q, l) has

significant effect on the performance of the NLM filter. The neighborhood should be

sufficiently large to take advantage “non-local” benefit of the algorithm. However,

this also significantly increases the complexity of the algorithm.

Ideally, I would like the neighborhood set N (q, l) to cover the entire frame. That

is, to allow each pixel to take into account information from any pixel of every LR

frame and let the weight variable W [i, j, q, l, t] to take care of the significance of the

contribution. This, of course, will lead to unrealistic computational load if I blindly

look into every pixel of every LR frame. What I need is an intelligent preprocessing

step to identify pixels that are likely to provide useful information to the target pixel
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no matter where the formers locate. The described problem above is closely related

to image registration, and I want to look for multiple matches from each reference

frame (i.e., an LR frame in this case).

While many registration methods can be used, I chose to use SCoBeP [1] for the

aforementioned purpose as SCoBeP naturally identifies multiple matched pixels and

returns the corresponding match scores as needed in this application. In summary,

for each pixel in the initial estimate of the HR frame, I use SCoBeP to select from

each LR frame a set of n candidate pixels which are likely to be most similar to the

target pixel. The similarity between a target pixel and a candidate pixel, which will

be characterized by a weight, will be used by the SCoBeP method as to be described

in Section 2.3.2 or the NLM filter as to be described in Section 2.3.3.

For the rest of this section, I will review the SCoBeP registration technique in the

context of superresolution and provide the implementation details of my proposed

super resolution methods, SCoBeP-SR and SCoBeP-NLM, which are based on sparse

coding, belief propagation and NLM. I divide the super resolution process into two

steps as shown in Sections 2.3.1 and 2.3.2 or 2.3.3.

2.3.1 Use SCoBeP [1] to compute the locations and prior

probabilities of candidate pixels

The proposed method described here is inspired by my recent work, SCoBeP [1].

First, I extract the features from all interpolated LR frames

{
yt

}T
t=1

and the refer-

ence frame X . To extract the features, I consider a patch of size (2h+1)2 containing

neighboring pixels around each pixel on the reference and LR frames, where h is a

positive integer. For each pixel [p, q] in the reference frame X , I vectorized the patch

centered around the pixel [p, q] to a feature vector Xql ∈ RS×1, where S = (2h+ 1)2.

In this dissertation, I focus myself on only using block features even though

the proposed approach can generally be applied to other features (such as SIFT-
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features). Thus, each feature considered here is essentially a vectorized block cen-

tered around a pixel in a frame.

Second, to match the extracted features of the reference frame to the correspond-

ing extracted features of the tth interpolated LR frame yt, I create a dictionary which

contains all feature vectors of yt. More precisely, a dictionary Dt ∈ RS×MN (M and

N are the height and width of the interpolated LR frame yt minus h from each side)

is constructed with all possible vector Yqlt ∈ RS×1 as Dt’s column vectors, where

Yqlt is created in the same manner as Xql but from the tth interpolated LR frame yt

instead. Thus, I can write Dt as

Dt = [Y1,1,tY1,2,t · · ·Y1,N,tY2,1,t · · ·YM,N,t]. (2.1)

I then normalize dictionary Dt to guarantee the norm of each feature vector to be

1.

Third, to identify the candidate Yqlt that looks most similar to the input Xql in

the reference frame, I apply sparse coding to each extracted features of the reference

frame. Sparse coding will reconstruct a reference patch at pixel [q, l] as a linear

combination of LR patches. Denote αqlt as the sparse vector where each element

corresponds to a coefficient in this combination. Note that αqlt should be sparse,

i.e., it should be 0 for most coefficients.

Mathematically, I try to solve the following sparse coding problem of finding the

most sparse coefficient vector αqlt such that

Xql = Dtαqlt. (2.2)
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(a)

(b)

Figure 2.3: Candidate points obtained by KNN and sparse coding. The images in
(a) shows that KNN tends to result in candidate points with poor diversity. And
thus it can easily miss including the true corresponding point as one of its candidate
points. In contrast, the images in (b) show that the candidate points of sparse
coding tend to diversify and thus is more likely to include the true corresponding
point.
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Figure 2.4: Sparse representation of a feature vector Xql with a dictionary Dt: αqlt as a sparse vector constructs the feature
vector Xql using a few columns (highlighted in gray) of dictionary Dt.

22



The sparse vector αqlt is the representation of Xql, which has few number of non-

zeros coefficients. Thus, αqlt describes how to construct Xql as a linear combination

of a few columns (also referred to as atoms) in Dt. The locations of the nonzero

coefficients in αqlt specifically point out which Yql in the dictionary Dt is used to

build Xql and the values of the non-zero coefficients in αqlt show what “portions”

thereof are used for its construction. As shown in Fig. 2.4, one expected that most

of the coefficients in αqlt obtained by sparse coding are zero, and the bases of those

non-zero coefficients correspond to the highlighted gray columns in Dt. Thus, Xql

can be written as a sparse linear combination of those highlighted gray columns.

To solve (2.2), besides linear programming, many other suboptimal techniques

have been proposed including orthogonal matching pursuit [49], Subspace Pursuit

(SP) [50] and gradient projection [51]. In this work, I employed Subspace Pur-

suit (SP) [50]. After finding the sparse representation vector αqlt, to select the n

candidate pixels, I simply pick those corresponding to n largest absolute value of

coefficients in αqlt. I denote cpqlt as an n × 2 matrix storing the locations of these

candidate pixels and ρqlt as the length-n vector storing the corresponding values

of αqlt. I will take the normalized |ρqlt| as a prior probability of matching the ref-

erence patch at [q, l] to a patch of the interpolated LR frame yt taking only local

characteristics into account but ignoring geometric characteristics of the matches.

Finally, to incorporate geometric characteristics, I model the problem by a factor

graph and apply belief propagation to update probabilities ρqlt (for more details,

see [1]).

I assume the operations such as warping and blurring in the maximum a poste-

riori probability equation (1.2) are known. However, this is not true in practice. In

particular, while the blurring operation can be approximated to be more or less con-

stant over the entire scene, the warping operation could vary from pixels to pixels.

One way to handle the unknown warping problem is to adopt the Bayesian formu-
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lation and integrate all possible warping operations, this is of course too expensive

to compute. Fortunately, the SCoBeP step has already provided us some candidate

match locations. So (1.8) becomes

Z[q, l] =

∑T
t=1

∑n
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt)
W [i, j, q, l, b, t]Yt[i, j]∑T

t=1

∑n
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt)
W [i, j, q, l, b, t]

, (2.3)

where W [i, j, q, l, b, t] can be interpreted as the weight mapping from a pixel in the

reference frame to bth candidate pixel in the tth interpolated LR frame yt. Since

there are various other ways to choose the weights in (2.3), in this chapter I will

restrict my choice to SCoBeP-SR weights and SCoBeP-NLM weights as described

in the next subsections.

2.3.2 Calculate Weights for SCoBeP-SR

As SCoBeP has naturally identified pixels that are most likely to be relevant to a

target pixel and also output the corresponding “weight” of the relevant pixels. Thus,

I have introduced and implemented a new SCoBeP based SR algorithm, SCoBeP-

SR, where “mixing” weights and candidates are extracted from the SCoBeP step

only.

The method for calculating W [i, j, q, l, b, t] for SCoBeP-SR is based on the ma-

terials that have been developed in section 2.3.1. As some candidate locations and

the corresponding belief are available from the SCoBeP output. I will simply assign

the weights as zero except the candidate locations and the weights precisely as the

beliefs output from SCoBeP. More precisely, I define

W [i, j, q, l, b, t] = I(cpbqlt = [i, j])ρ
(b)
qlt, (2.4)
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where I(cpbqlt = [i, j]) is an indicator function which is equal to 1 if cpbqlt = [i, j] and

0 otherwise. To maintain the original formulation, the neighborhood function of a

patch P will just equal to the patch itself. That is, N (P) = P .

2.3.3 Calculate Weights for SCoBeP-NLM

In this subsection, the method for estimatingW [i, j, q, l, b, t], based on the materials

that have been developed in Sections 1.2 and 2.3.1, is proposed as follows:
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Algorithm 1 Super Resolution framework using SCoBeP - estimate version of HR
frame X
Inputs : LR and noisy frames

{
Yt
}T
t=1

, resolution ratio r, weight patch R, frame
number tc and the maximum number of iterations

Initialize :

• Set Z as the bicubic interpolated frame of Ytc

Iterate : while the maximum number of iterations is not reached
Use SCoBeP to find candidate pixels : For each increased resolution frame yt

• Extract dense feature

• Construct dictionary Dt

• Find the initial estimates of candidate pixel probabilities ρqlt and candidate
pixel locations cpqlt

• Apply belief propagation to refine ρqlt and cpqlt

Find the blurred HR frame : For each pixel location [q, l] on the HR frame Z
and for b ∈ {1, 2, · · · , n}, for each pixel location [i, j] such that [ri, rj] ∈ N (cp

(b)
qlt)

• Compute weights:

1. SCoBeP-SR weights: W [i, j, q, l, b, t] = I(cpbqlt = [i, j])ρ
(b)
qlt OR

2. SCoBeP-NLM weights:

W [i, j, q, l, b, t] = ρ
(b)
qltexp

−
∥∥∥∥∥Rq,lZ−R

cp
(b)
qlt

yt

∥∥∥∥∥
2

2

2σ2


× f(

√
(q − ri)2 + (l − rj)2 + ξ(t− tc)2)

• Compute Z, the blurred version of reconstructed HR frame: Z[q, l] =∑T
t=1

∑n
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt

)
W[i,j,q,l,b,t]Yt[i,j]∑T

t=1

∑n
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt

)
W[i,j,q,l,b,t]

End of Iteration
Perform deblurring : X =TVdeblur(Z)
Output : a HR frame X
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Figure 2.5: Candidate pixel and weight computation in SCoBeP. For the patch in the middle frame, SCoBeP weights the found
candidate pixels along the space-time.
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W [i, j, q, l, b, t] =ρ
(b)
qltexp

−
∥∥∥Rq,lZ −Rcp

(b)
qlt
yt

∥∥∥2

2

2σ2


×f(

√
(q − ri)2 + (l − rj)2 + ξ(t− tc)2), (2.5)

where tc is the frame number of the output frame (see Fig. 2.5), and ξ is a scaling

factor taking into account the difference in scale along the temporal and spatial

dimensions. Note that I denote here ρ
(b)
qlt as the bth element of ρqlt (the probability of

pixel [q, l] in the reference frame mapping to the bth candidate pixel in tth interpolated

LR frame), and cp
(b)
qlt as the bth row of cpqlt (the bth candidate location described by

cpqlt). Hence, R
cp

(b)
qlt

in (2.5) extracts a patch at the position cp
(b)
qlt from frame yt. To

follow the notation easily, I summarized them in Table 2.1.

Note that computing weights involves the knowledge of the unknown frame Z.

For first iteration, the weights are computed by using an estimated version of Z,

which is a scaled-up frame generated by a conventional image interpolation algo-

rithm such as bicubic, bilinear, or the lanczos method [3,52,53]. For the remaining

iterations, the weights are computed using the estimated Z obtained in the pre-

vious iteration. The main procedure for my proposed methods are summarized in

Algorithm 1, and also graphically depicted in Fig. 2.2. Note that in Algorithm 1,

one can either pick SCoBeP-SR weights or SCoBeP-NLM weights for computing the

weights.

As a summary of my approaches, I was able to write and minimize my cost
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function which has two terms:

ε2MAP (X ) =

1

2

T∑
t=1

∑
[q,l]∈I

n∑
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt)

W [i, j, q, l, b, t]

×
∥∥DRH

q,lHX −RL
i,jYt

∥∥2

2
+ λ · TV (X ). (2.6)

As described in Section 1.1, I followed [2, 7, 27] and decomposed (2.6) into two

steps:

1. compute a blurred version of HR Z which Z = HX by minimizing

ε2ML(Z) =

1

2

T∑
t=1

∑
[q,l]∈I

n∑
b=1

∑
[i,j]|[ri,rj]∈N (cp

(b)
qlt)

W [i, j, q, l, b, t]

×
∥∥DRH

q,lZ −RL
i,jYt

∥∥2

2
, (2.7)

2. estimate the deblurred frame X from the found blurred HR Z in step 1:

ε2MAP (X ) = ‖HX − Z‖2
2 + λ · TV (X ), (2.8)

I introduced the first step in Sections 2.3.1, 2.3.2, and 2.3.3, and as the sec-

ond step is the conventional deblurring problem, many works can be applied here,

which I simply adopted (AKTV) regularized locally-adaptive kernel regression in a

variational approach developed by Takeda et al. [30].

I denote cpqlv as an n×2 matrix storing the locations of these candidate pixels and

ρqlv as the length-n vector storing the corresponding values of αqlv. Each coefficient

in ρqlv serves as a prior probability of matching the reference patch at [q, l] to a LR

patch of Yv taking only local characteristic into accounts but ignoring geometric
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characteristics of the matches. Finally, to incorporate geometric characteristics,

I model the problem by a factor graph and apply belief propagation to update

probabilities ρqlv (for more details, see [1]).

2.4 Experimental Results

In this section, I consider in two separated subsections with two different sets of

experiments1. I utilize four test sequences (Miss America, Foreman, Suzie and

Stefan) in Section 2.4.1 to compare the performance of my proposed methods with

the state-of-the-art methods [2, 4, 6]. In that section I will first generate synthetic

LR sequences and next apply super resolution methods to the degraded sequences.

I will then compare the results to the ground truth (the original sequences). Also, in

Section 2.4.2, I will illustrate additional examples that will assess my super resolution

methods for real video sequences. Comparison will be made against the multi-image

super resolution method proposed by Farsui et al. [7], 3-D ISKR method [4], super

resolution Using TV prior method [6] and a single image up-sampling using the

Lanczos algorithm [3], which were implemented using the software provided by their

authors.

1The image frames of the result sequences using SCoBeP-NLM and SCoBeP-SR are available at
http://students.ou.edu/B/Nafise.Barzigar-1/software/SCoBeP-NLM.html.
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(a) (b) (c) (d) (e)

Figure 2.6: Results for the 8th, 13th and 23th frame from the “Foreman” sequence. From Left column to Right column: LR
frame; GNL-Means [2]; Lanczos interpolation [3]; result of the proposed SCoBeP-NLM; result of the proposed SCoBeP-SR.
Also, the PSNR values for all the frames are shown in Fig. 2.7(b).
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2.4.1 Evaluation On Synthetic Sequences

In this section, to evaluate my performance, I present some super resolution exam-

ples using existing sequences such as Miss America, Foreman, Suzie, and Stefan.

The sequences in this section contain object motions only in the scene and no cam-

era movement. All tests in this section were processed in the following manner: All

30 frames were involved in the reconstruction of each frame. The similar block size

used for computing weight (R) was 13× 13 and was not changed for various tests.

The low patch extraction operator RL
i,j extracts only one pixel, therefore the RH

q,l

extracts a patch of size 3× 3 pixels. Also, the search area (the size of neighborhood

N ) is 31 × 31 pixels. I set the parameter σ = 2.2 and the maximum number of

iterations equal to 2 for all sequences.
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(a) Miss America
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(b) Foreman
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(c) Suzie

Figure 2.7: PSNR values of each super resolved frame by Lanczos [3], GNL-Means [2], and the proposed method for (a) the
results of Miss America shown in Fig. 2.11, (b) the results of Foreman shown in Fig. 2.6, and (c) the results of Suzie shown
in Fig. 2.8. The average PSNR values for all frames for the Miss America example are 34.12[dB] (Lanczos), 35.09[dB] (GNL-
Means [2]), 35.73[DB] (SCoBeP-SR) and 35.94[dB] (SCoBeP-NLM) and the average PSNR values for the Foreman example
are 28.51[dB] (Lanczos), 29.01[dB] (GNL-Means [2]), 29.71[DB] (SCoBeP-SR) and 29.80[dB] (SCoBeP-NLM), and also the
average PSNR values for the Suzie example are 29.73[dB] (Lanczos), 29.79[dB] (GNL-Means [2]), 30.56[DB] (SCoBeP-SR) and
30.77[dB] (SCoBeP-NLM), respectively.
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(f) (g) (h) (i) (j)

Figure 2.8: Results for the 3th and 23th frame from the “Suzie” sequence. From Left column to Right column: LR frame;
GNL-Means [2]; Lanczos interpolation [3]; result of the proposed SCoBeP-NLM; result of the proposed SCoBeP-SR. Also, the
PSNR values for all the frames are shown in Fig. 2.7(c).
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Table 2.2: PSNR for 8th and 13th frames of Miss America Sequence

Miss Amer-
ica Se-
quence

Nearest
Neighbor-
hood

Lanczos [3] GNL-
Means [2]

3-D ISKR
[4]

SCoBeP-
NLM

SCoBeP-SR

8th frame 32.97 34.76 34.49 35.53 36.28 36.20
13th frame 32.74 34.48 35.33 35.15 36.33 36.02
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Figure 2.9: Video super resolution for Suzie sequence: (frame 28 and 18 with the resolution ratio 3, PSNR in brackets). From
Left column to Right column: Ground truth; LR frame; GNL-Means [2] [PSNR: 29.87 - 29.86]; Lanczos interpolation [3] [PSNR:
29.41 - 29.27]; SCoBeP-NLM [PSNR: 30.95 - 30.75]; SCoBeP-SR [PSNR: 30.55 - 30.71].
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Figure 2.10: Video super resolution for Foreman sequence: From Left column to Right column: Ground truth; GNL-Means [2];
3-D ISKR [4]; NLKR [5]; result of the proposed SCoBeP-NLM.
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(f) (g)

Figure 2.11: Video super resolution for Miss America sequence; frame 8 (top) and frame 13 (bottom): From left to right:
Ground truth; Lanczos interpolation [3]; GNL-Means [2]; 3-D ISKR [4]; super resolution Using TV prior [6]; SCoBeP-NLM;
SCoBeP-SR.
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To generate the LR frames, first, I degrade the test sequences by blurring the

videos with a 3 × 3 uniform point spread function (PSF) and downsampling them

by a resolution ratio of 3 : 1 in both horizontal and vertical directions. Then the

white Gaussian noise with standard deviation of σnoise = 2 is added to each frame.

Two of the selected LR sequences, Foreman and Suzie for frame numbers 8, 13, 23,

and frame numbers 3, 23 are shown in Figs. 2.6(a), and 2.8(a), respectively. Then,

I upscale the degraded videos using the Lanczos interpolation [3], the GNL-Means

method [2], and my proposed methods. Figs. 2.6(b)–(e), and 2.8(b)–(e), respectively,

show the results.

The graphs2 in Fig. 2.7 show the frame by frame PSNR values of Miss America,

Foreman and Suzie. My proposed methods beats the GNL-Means method in all

frames by a significant margin for all sequences. The average PSNR values for my

proposed methods and the compared methods are shown in the caption of Fig. 2.7.

The PSNR results of 8th and 13th frames of the Miss America sequence are

summarized in Table 2.2, showing that the proposed methods again constantly

outperform the current state-of-the-art methods. Note that the results from 3-D

ISKR method is cited directly from [4]. In Fig. 2.9, I show the PSNR result and a

clear visual comparison on the Suzie sequence. As shown in Fig. 2.9, although the

GNL-Means method [2] acts well at regular-structured areas, it suffers from block

artifacts3 due to poor block matching. In contrast, my proposed methods performs

remarkably well for both regular and detail structures and is free of these artifacts.

In Fig. 2.10, I further show the results of Foreman sequence compared with the

GNL-Means method [2], 3-D ISKR method [4] and NLKR [5]. The super resolu-

tion results on Miss America sequence in frames 8 and 13 and Stefan sequence are

also given in Figs. 2.11 and 2.12, respectively for visual comparison. The proposed

2The PSNR results of 3D-ISKR [4] are not listed as they are not available in their original paper.
3Please note that I have adopted the terminology “block artifact” from [5]. The terminology is

different from the artifacts typically found in low bitrate compressed image by old JPEG.
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methods outperform the other methods by notable improvement.

Moreover, I examined how my methods perform under various noise levels. I

added white Gaussian noise with standard deviation σn (varying from 0 to 2) to the

LR sequences, where the sequence with σn = 0 was degraded by the downsampling

process only. Table 2.3 shows that both SCoBeP-NLM and SCoBeP-SR are able

to produce fine details when the noise level is increasing. For a clear comparison

on varying noise level, I show the results of a noise added Foreman sequence in

Fig. 2.13, where I compared my algorithms with the state-of-the-art 3-D ISKR [4].
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Figure 2.12: Video psuper resolution for Stefan sequence: From top to bottom
column: LR frame; 3-D ISKR [4]; result of the proposed SCoBeP-NLM.
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Figure 2.13: Video super resolution for Foreman sequence with noise: I added syn-
thetic additive white Gaussian noise (AWGN) to the input LR sequence, with the
noise level σn = 1.20 (left) and σn = 2.00 (right). From top to bottom column:
Noisy LR; 3-D ISKR [4]; SCoBeP-NLM; SCoBeP-SR.
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Table 2.3: Noise Addition: PSNR for 1st frame of Foreman Sequence

Lanczos [3] 3-D ISKR [4] SCoBeP-NLM SCoBeP-SR

σn = 0.00 28.51 28.94 29.88 29.76

σn = 1.20n 28.44 28.93 29.86 29.74

σn = 1.60 28.36 28.87 29.83 29.73

σn = 2.00 28.25 28.86 29.75 29.68
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2.4.2 Evaluation on Real video Sequences

In this section, I turn to some real sequences, where I apply my proposed methods

directly to the captured sequences without altering the frames. Note that there are

no published methods that have tested on real sequences. As no standard sequence is

available, I have captured a sequence for testing and with camera motion intention-

ally introduced. We choose the multi-image super resolution method proposed by

Farsui et al. [7], 3-D ISKR method [4], super resolution Using TV prior method [6]

and a single image up-sampling using the Lanczos algorithm [3] for comparison be-

cause their source codes are available publicly. Since no ground truth is available

for a real sequence, I cannot evaluate the resulting HR frames with objective mea-

sure such as PSNR. However, the perceptual quality illustrate the robustness of my

proposed methods on real videos.

Fig. 2.14 shows the superresolution results for a real Navajo Sculpture video

sequence (70 × 80 pixels, 30 frames). One can see some “blocking” artifacts in the

original sequence due to its low resolution as shown in Fig. 2.14(a). In Fig. 2.14(m),

I illustrate the ability of my proposed methods in removing these artifacts and

resulting in a clear output. I also show the superresolution results by the Lanczos

interpolation [3], Farsui et al. method [7], 3-D ISKR method [4], and the TV

prior method [6] with three time magnification per each dimension (i.e., an output

resolution of 210×240 pixels) in Fig. 2.14(c)–(i), respectively. As shown in Fig. 2.14,

the Farsui et al. method [7] and the TV prior method [6] introduce severe block

artifacts (near the mouth and the eyes in Figs. 2.14(e) and 2.14(i) respectively),

and the 3-D ISKR method [4] does not preserve the line texture well and generates

the ghost image as shown in Fig. 2.14(g). In contrast, my proposed methods do not

suffer from these artifacts.
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The computational complexity of SCoBeP-SR can be determined by considering

the following two steps: 1) computing the locations and prior probabilities of the

candidate pixels, 2) calculating weights via the NLM and SCoBeP or only SCoBeP.

The complexity associated with the computing the location and weights of the can-

didate pixels takes 70% of the overall complexity in SCoBeP-NLM. Since I replace

NLM weight with SCoBeP weight in Algorithm 1 and I found the probabilities for

the candidate matches in the previous step it can significantly reduce computation

complexity and storage requirement. Just to put things into perspective, note that

the current implementation requires approximately 700 s per frame for the Algo-

rithm 1 using SCoBeP-NLM weights, and 230 s for Algorithm 1 using SCoBeP-SR

weights in the most demanding case like “Navajo” sequence with high-resolution

frame size of 250×220, with the current pure Matlab implementation on a Pentium

3 GHz (11-GB RAM) machine. In comparison, ISKR takes approximately 5784 s

per frame.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 2.14: Multi-frame super resolution for real frames: “Navajo” sequence. (a,b)
LR frame; (c,d) Lanczos interpolation; (e,f) Farsui et al. [7] method; (g,h) 3-D ISKR
[4]; (i,j) super resolution Using TV prior [6]; (k,l) SCoBeP-NLM; (m,n) SCoBeP-SR.
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CHAPTER 3

DENOISING METHOD USING BLOCK MATCHING

FILTERING AND LOW-RANK MATRIX COMPLETION

3.1 Introduction

The recovery of an unknown low-rank or approximately low-rank matrix from very

limited information is a recent fast growing interest. Consider a large matrix with

only a small portion of known entry, an interesting problem is to fill the missing

entry assuming the matrix has low-rank. The problem, which is referred to as matrix

completion, or more precisely low-rank matrix completion, has gained increasing

interests in research communities in recent years. So far, this problem has been

studied in many applications such as collaborative filtering [54], system identification

[55], computer vision [56], machine learning [57–59], global positioning [60] and

remote sensing [61]. An example is the famous Netflix challenge where a huge

matrix is used to represent the rating of a movie given by a user. Of course, a

typical user will only rate very few movie titles. Therefore, an algorithm will be

needed to complete the matrix to predict the ratings of all movies among all users.

It has been shown theoretically that under certain assumptions the matrix can

be recovered with very high accuracy [62–64]. Their approaches convert the rank

minimization problem into a nuclear norm minimization problem instead and thus

can be solved using semidefinite program (SDP). However, the complexity grows

rather rapidly with the size of the matrix n (∼ n3). Candes and Recht [62] showed
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that one can perfectly recover most low-rank matrices from what appears to be an

in complete set of entries, and they proved in some condition, most n × n matri-

ces of rank r can be perfectly recovered by solving a simple convex optimization

program. Also, the authors claimed that their method is accurate even when the

few observed entries are corrupted by a small amount of noise. In another work,

the problem of recovering low-rank and sparse matrices using a greedy algorithm

was discussed for large matrix sizes [65]. Several efficient algorithms have been

proposed including Singular Value Thresholding (SVT) [66], Atomic Decomposi-

tion for Minimum Rank Approximation (ADMiRA) [67], Fixed Point Continuation

with Approximate (FPCA) [68], Accelerated Proximal Gradient (APG) [12], Sub-

space Evolution and Transfer (SET) [69], Singular Value Projection (SVP) [70],

OptSpace [64], and LMaFit [11], where OptSpace and SET are based on Grass-

mann manifold optimization, SVT and SVP uses iterative hard thresholding (IHT)

to facilitate matrix shrinkage, FPCA utilizes Bregman iterative algorithm and Monte

Carlo approximate SVD, and LMaFit adopts successive over-relaxation (SOR).

In this chapter, I use a decomposition method [24] to allow very efficient divide-

and-conquer approach when known entries are relatively very few. A simple “trim-

ming” method ed in that work will recover the decomposed “cluster” matrix. How-

ever, the decomposition method can also be combined with any other existing matrix

completion techniques to yield further gain. One advantage of the decomposition

approach [24] is that unlike most existing approaches it does not utilize SVD but

only relies on basic vector operations. Therefore, the approach is immediately ap-

plicable to matrices of any field (including finite field matrices). This opens up

opportunities for new applications.

Video sequences are often corrupted by noise during acquisition or transmission.

Some noise sources located in camera hardware became active during image acqui-

sition under some lighting conditions. Other noise sources are over transmission
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channels. Most video denoising algorithms proposed in the literature assume addi-

tive white Gaussian noise, which can be categorized into pixel domain and transform

domain methods. However, I consider Impulsive/Poisson/Gaussian noise in my work

and will show how robust my video denoising method is.

Many video denoising methods have been proposed in the last few decades,

e.g., [9, 10, 71, 72]. One of the first methods to address the denoising problem was

the bilateral filter, which was proposed by Tomasi and Manduchi [72]. However,

this method fails to perform well in when the noise is strong. Selesnick and Li [10]

proposed 2D and 3D dual-tree oriented wavelet transforms which give a motion-

based multi-scale decomposition for video. They used the proposed transforms for

video denoising, where the 2D transform is applied to each frame individually.

Recently, the idea of patch based sparse coding has been applied to video denois-

ing [9,17,18,73]. Marial et al. in [17] suggested to extend the sparse coding approach

by proposing that similar patches share the same dictionary elements in their sparse

decomposition on denoising. Another recent example based on an enhanced sparse

representation in transform domain is block-matching 3-D filter (BM3D) [18]. In

BM3D, similar 2D image blocks are grouped into a 3D data array based on the l2

norm distance function. Then, the 3D data array is filtered by wavelet shrinkage

or Wiener filter in 3D transform domain. The denoised image is produced from

all grouped blocks after applying the inverse 3D transform. The concept of BM3D

is generalized to video denoising in VBM3D [9]. In VBM3D, the noisy video is

processed in a block-wise manner in both spatial and temporal domains. Then, a

predictive search block-matching is combined with collaborative hard thresholding

or collaborative Wiener filtering.

Unfortunately, prior works have been limited to one specific type of noise, there

also exist other types of noise will degrade the performance of the denoising methods.

In contrast, my method does not suffer from this limitation and can remove serious
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mixed noise from video sequences.

In this work, I show that the proposed method can operate directly on the raw

noisy images that suffer from non-homogeneous noise. The proposed method is

similar to that described in [74]. However, I incorporate the matrix completion

method [24] into the denoising algorithm and rather than applying a suboptimal

block matching algorithm as in [75], I use a near-optimal block matching method [76]

with higher complexity. I can afford latter as the matrix completion method runs

significantly faster than other matrix completion methods. The goal of my denoising

method is to keep only the reliable pixels and get rid of all other un-reliable pixels

I find as noise. For each patch in the reference frame, I find the similar patches

in the other frames using a block matching algorithm. The found matches will be

vectorized and then stacked into a matrix. The reliable pixel values in the matrix

are between the mean ± standard deviation of all elements in the same row. The

main step will be done by applying the matrix completion approach [24] on the

incomplete matrix. The output of matrix completion is a noise free full matrix.

Then, the average value of each row in the full matrix can recover the denoised

patch. Repeating the same procedure for all blocks of reference frame can build a

denoised frame.

3.2 Denoising Method

The problem of video denoising can mathematically be shown as

y(x) = z(x) + n(x), (3.1)

where z(x) is the original video signal and y(x) is the observed video after being

corrupted by Gaussian/Poisson/Impulsive noise n(x). x = (i, j, k) ∈ X are coordi-

nates in the spatio-temporal 3D domain X ⊂ Z3, where the first two components
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Algorithm 2 Video Denoising using matrix completion- estimate version of de-
noised image X
Inputs : noisy video y, pixel overlap v
Initialize :

• Set V and W to be zero images of the same size as the video frame size.

Produce the pre-processing step for removing impulsive noise before
patch matching :

• Apply Adaptive Median Filter:

Y am = AMF (y)

Find the denoised patches: For each coordinate x ∈ Ω with v pixel overlap in
each direction do:

(a) Sx = BM
(
Y am
x

)
(b) ẐSx = ReliableElements

(
YSx

)
(c) Žx = DMC

(
ẐSx

)
(d) ẑx = AV Grow(Žx)

(e) V = V + ẑx

(f) W =W + ŵx

Normalize : Ẑ = V/W
Output : a denoised image Ẑ

(i, j) are the spatial coordinates and the third one k is the time (frame) index. The

main procedure for my proposed denoising method is summarized in Algorithm 2.

Implementation Details:

• Y am = AMF (y) performs adaptive median filtering using y. Because, the

video is corrupted by image noise, applying a patch matching algorithm di-

rectly on noisy video generates unreliable result. Specifically, the block match-

ing algorithm will suffer from impulsive noise, and its performance will be se-

riously degraded by strong impulsive noise. Hence, using a preprocessing step
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to remove impulsive noise before the block matching step will improve the

resulting performance. In my work, I simply use the adaptive median filter

proposed by Hwang and Haddad in [77].

• Ω ⊂ X is a set that includes the coordinates of the reference blocks. In general,

each pixel in the reference image is covered by several patches. I aggregate

overlapped patches by a weighted average at each pixel.

• Y am
x denotes a block of size q × q in Y am, where its center is at x.

• Sx = BM
(
Y am
x

)
presents a block matching algorithm using Y am

x as a reference

block, where the result is the set Sx containing the coordinates of the matched

blocks. Although there are several methods to find the similar matches [1,9,78,

79], in my work, I use the Adaptive Rood Pattern Search (ARPS) algorithm

[76] because of its computational efficiency.

• YSx denotes a matrix formed by stacking the vectorized blocks Yx∈Sx together,

where Yx is a block of size q × q centered at x in y.

• ẐSx = ReliableElements
(
YSx

)
discards those matrix elements of YSx that

are far away from mean ± standard deviation of its corresponding row, des-

ignates them as unreliable elements, and then replaces them by zero. Note that

those unreliable elements could be the pixels corrupted by Gaussian/Poisson/Impulsive

noise or from mismatched patches obtained from previous step (block match-

ing). Also, keeping the reliable elements, lets us recover the full matrix needed

for the next step.

• Žx = DMC
(
ẐSx

)
performs a decomposing approach for low-rank matrix

completion algorithm (see Section [24]) using ẐSx and Žx that will be a full

matrix with noise free elements. Recently, many matrix completion methods
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(a) (b)

(c) (d)

Figure 3.1: Video denoising for Galleon sequence: (PSNR in brackets). From left
to right: noisy image; tvregv2 [8] [PSNR: 17.8208]; VBM3D algorithm [9] [PSNR:
17.9226]; result of the proposed denoising algorithm [PSNR: 21.2437].

have been studied [11, 55, 64]. In my work, I use a decomposing approach for

low-rank matrix completion algorithm, because of its computational efficiency.

• ẑx = AV Grow(Žx) finds the average value of each row in matrix Žx and con-

verts the obtained vector to a block. Also, ẑx will be an estimated block of

size q × q centered at x in V̂ .

• ŵx is a patch with the same size as ẑx. Note that, all pixel values in ŵx are

equal to 1.
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Table 3.1: Output PSNR of my proposed denoising method for the two video sequences; note that, I kept the Gaussian and
Poisson noise constant in all tests

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhImpulsive noise density

Video name (frame size)

Suzie Coastguard

0.10 26.3679 22.6124

0.15 26.2852 22.6060

0.20 26.3810 22.5819

0.25 26.3135 22.6281

0.30 26.3545 22.6105

0.35 26.4119 22.6163

0.40 26.2867 22.6346

0.45 26.3257 22.6149

0.50 26.3257 22.5907
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Table 3.2: PSNR and time comparison for using various matrix completion

Tempete Galleon Coastguard

Proposed method
PSNR[dB] 23.37 22.73 23.57

Time(seconds) 240 218 110

Denoising method PSNR[dB] 22.79 22.60 23.63

using OptSpace [64] Time(seconds) 1355 1683 538

Denoising method PSNR[dB] 22.78 22.52 21.81

using LMAFIT1 [11] Time(seconds) 220 251 119

Denoising method PSNR[dB] 21.38 20.39 20.97

using FPCA [68] Time(seconds) 5828 7069 1584
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Table 3.3: Average PSNR for the two video sequences

Sequence Wiener2 VBM3D [9] 3DWTF [10] tvregv2 [8] Proposed denoising Method

Miss America 26.6796 30.9090 24.5168 28.1036 32.1931
vtc1nw 25.5855 28.2356 22.1496 27.7033 31.6442
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3.3 Experimental Results on Denoising

3.3.1 Natural Image Experimental Results

In this section, I present some video denoising examples to evaluate my performance,

using existing sequences such as Miss America, Galleon, and Suzie. All tests in this

section were processed in the following manner: All 30 frames were involved in the

reconstruction of each image. The block size used for block matching (q) was 20×20

and was not changed for various tests. I obtained a locally consistent solution by

allowing patches to overlap, where the overlapped regions (v) were 5 pixels in each

direction. Also, for each reference patch, I extracted 5 most similar patches used

in each frame using block matching algorithm. For simplicity, I employ the basic

version of my algorithm without taking advantage of sub u-diagonalization.

In Fig. 3.9, I show the PSNR result and a clear visual comparison of the Galleon

sequence. The original video is seriously corrupted by a significant mixed noise

level with Poisson noise, Gaussian white noise of mean zero and variance 0.02, and

Impulsive noise of the noise density 0.03. As shown in Figures. 3.9 and 3.8, VBM3D

method [9] and tvregv2 [8] generate severe artifacts at edge areas, while my proposed

denoising method performs remarkably well for the detail structures and is free of

these artifacts.

In Table 3.4, I present the PSNR results of the proposed denoising algorithm

for a few sequences, where Impulsive noise is changing. This table shows how my

algorithm is robust in denoising the corrupted sequences of serious impulsive noise.

In Graph 3.7, I compare my denoising method with the VBM3D method [9],

which is among the state-of-the-art in video denoising. In this comparison, I apply

my denoising method on Coastguard and Suzie sequences, for which I changed the

Gaussian noise but kept the Poisson and Impulsive noise constant for all methods.

Note that, for a fair comparison and also because the VBM3D method [9] works
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Figure 3.2: PSNR values of VBM3D algorithm [9] and proposed denoising method
for Coastguard and Suzie sequences. Note that, I kept the Impulsive noise consistent
in all tests.

58



(a) (b)

(c) (d)

Figure 3.3: Video denoising for Suzie sequence: (PSNR in brackets). (a) noisy
image; (b) tvregv2 [8] [PSNR:25.1205]; (c) VBM3D algorithm [9] [PSNR:26.5245];
(d) result of the proposed denoising algorithm [PSNR:29.3254].
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(a) (b)

(c) (d)

Figure 3.4: Video denoising for Coastguard sequence: (PSNR in brackets). (a) noisy
image; (b) tvregv2 [8] [PSNR:20.9469]; (c) VBM3D algorithm [9] [PSNR:21.0090];
(d) result of the proposed denoising algorithm [PSNR:23.5725].
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Figure 3.5: PSNR values of each denoised frame by VBM3D algorithm [9], 3DWTF
[10], tvregv2 [8], wiener2 and the proposed denoising method for (a) the Miss Amer-
ica and (b) the vtc1nw sequence.
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on removing just the Gaussian noise from the corrupted video, I ran the adaptive

median filter method [77] on the test data with a pre-process of removing impulsive

noise. In contrast, in my work, I did not use any existing impulsive noise method to

detect pixels corrupted by Impulsive noise. The graph in Fig. 3.5 shows the frame

by frame PSNR values of Miss America and vtc1nw. Table 3.3 shows the average

PSNR values for my proposed method and the compared methods. My proposed

method surpasses the VBM3D method [9] in all frames by a significant margin for all

sequences with more than 2dB. In contrast, while [74] also outperform the VBM3D

method but with a significantly smaller margin, I conjecture that the gain is due to

the near-optimal block matching method [76] used in my approach.

I also replaced my proposed decomposition matrix completion with OptSpace

[64], LMAFIT1 [11] and FPCA [68] to compare the result and time consumption (see

Table 3.6). It can be seen in Table 3.6 that my method has comparable performance

in terms of PSNR, for which it executes much faster than those methods.

3.3.2 Inpainting Experimental Results

To graphically illustrate the effectiveness of my proposed method, I applied it to

image inpainting. In grayscale image inpainting, the value of some of the pixels on

the image are missing, and the task here is to fill these missing values. Note that

the missing pixel positions in the image inpainting are not randomly distributed. If

the image is of low-rank, or of numerical low-rank, the matrix completion solvers

can be applied on the image inpainting problem to obtain low-rank approximations.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Image inpainting Problem for Boat image: (a) Original image; (b) rank 40 image; (c) deterministically 9.30% masked
rank 40 image; (d) LMaFit1 [11]; (e) APGL [12]; (f) result of the proposed method.
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The 512×512 original grayscale image is shown in Fig. 3.6 (a). Fig. 3.6 (b) was

obtained by truncating the SVD of the images to get the images of rank 40. Fig.

3.6 (c) is the masked image obtained from Fig. 3.6 (b), where 9.30% of the pixels

were masked in a non-random fashion. The recovered images of Fig. 3.6 (c) from

LMaFit, APGL, and my proposed method are depicted in Figs. 3.6 (d), (e), and

(f).

3.3.3 Medical Experimental Results

To evaluate the performance of the proposed method, I consider in two separated

subsections with two different sets of experiments. In Section 3.3.3, I will first

generate synthetic noisy slices and then apply denoising methods to the degraded

slices. I will then compare the results to the ground truth (the original slices)

and results generated from other state-of-the-art techniques [13–15]. Moreover,

in Section 3.3.3, I will illustrate additional examples that will assess my denoising

method for real CT slices. Comparison will be made against two state-of-the-art

techniques: the adaptive multiscale image denoising algorithm [15] and wavelet

domain image denoising algorithm [14].

I also replaced my proposed decomposition matrix completion with OptSpace

[64] to compare the result and time consumption (Table 3.6). It can be seen that

my method compares well or even betters in terms of PSNR, and it performs notably

faster than OptSpace [64].

Evaluation on Synthetic Slices

To evaluate the performance of my approach, I conducted tests on the data sets

LIDC-IDRI [80] where the size of each slice of the CT slices are 512 × 512 pixels.

All tests in this section were processed in the following manner: All 6 slices were

involved in the denoised slice. The similar block size used for block matching was
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Figure 3.7: PSNR values of non-local means algorithm [13]; wavelet domain im-
age denoising algorithm [14]; adaptive multiscale image denoising algorithm [15];
result of the proposed denoising algorithm for lung CT slices; Note that, I kept the
Gaussian noise constant in all tests.

8× 8 and was not changed for various tests. I obtained a locally consistent solution

by allowing patches to overlap, where the overlapped regions (v) were 5 pixels in

each direction. Further, for each reference patch, I extract 5 most similar patches

used in each slice using block matching algorithm.

In Fig. 3.8, I show the PSNR result and a clear visual comparison on the CT

slices. The original CT slice is corrupted by a mixture of Poisson noise, Gaussian

white noise, impulsive noise with significant noise level (variance of Gaussiance noise

= 0.02 and noise density of impulsive noise = 0.01). As shown in the figure, non-

local means algorithm [13], wavelet domain image denoising algorithm [14], and

adaptive multiscale image denoising algorithm [15] generate severe artifacts at edge

areas, while my proposed denoising method performs remarkably well for the detail

structures and is free of these artifacts.

To quantify my denoising performance, I used the Peak Signal to Noise Ratio
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Table 3.4: PSNR of my proposed denoising method for the lung slices; note that, I
kept the variaces of Gaussian and Poisson noises constant in all tests.

Noise density of Impulsive noise Lung Slices (362× 362)

0.06 24.10
0.06 24.05
0.11 24.04
0.16 24.04
0.21 24.07
0.26 24.05
0.31 24.05
0.36 24.05
0.41 24.07
0.46 24.06

(PSNR) measure between the ground truth and denoised CT slice:

PSNR = 10 log10(2552/Mean Square Error)[dB]. (3.2)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Synthetic experiment 1: (PSNR in brackets). (a) ground truth; (b)
noisy slice; (c) non-local means algorithm [13] [PSNR:20.56]; (d) wavelet domain
image denoising algorithm [14] [PSNR:23.26]; (e) adaptive multiscale image denois-
ing algorithm [15] [PSNR:22.78]; (f) result of the proposed denoising algorithm
[PSNR:24.07]. Note that, I kept the Gaussian/Poisson/Impulsive noise constant in
all tests.
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Figure 3.9: Non-synthetic (real) experiment. From left to right: real CT slice; adaptive multiscale image denoising algorithm [15];
wavelet domain image denoising algorithm [14]; result of the proposed denoising algorithm.
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Table 3.5: PSNR and time comparison for using various matrix completion for lung
slices

Proposed Denoising method

method using OptSpace [64]

PSNR 21.83 21.65

Time (seconds) 118 1398

In Table 3.4, I present the PSNR results of the proposed denoising algorithm

for a lung CT slices; where impulsive noise is changing. This table shows how my

algorithm is robust in denoising of the corrupted slices by serious impulsive noise. In

graph 3.7, I compare my denoising method with adaptive multiscale image denoising

algorithm [15], wavelet domain image denoising algorithm [14], and non-local means

algorithm [13], which are among the state-of-the-art in medical image denoising.

In this comparison, I apply my denoising method on lung slices which I changed

the impulsive noise and kept the Poisson and Gaussian noise constant for all meth-

ods. My proposed method surpasses the other methods with a significant margin

for all additive Impulsive Noise.

Evaluation On Non-Synthetic Slices

In this section, I turn to some real slices, where I apply my proposed method without

any changes or generating noisy slices. Note that since there are no published meth-

ods that perform denoising on such general slices, I choose the adaptive multiscale

image denoising algorithm [15] and wavelet domain image denoising algorithm [14]

for comparison, because their source code is available. As for the non-synthetic

case, while I do not have the ground truth and thus cannot evaluate the the meth-

ods quantitatively using PSNR, the visual comparison illustrates the robustness of

my proposed method when it is applied directly to real slices. Note that I used the

same slices number, block size, overlapped region, and extracted patches number
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for the non-synthetic experiment just as the synthethic case.

Evaluation on 3D Images

I evaluate my framework on Lung data sets LIDC-IDRI [80] where the size of each

slice of the CT slices are 512× 512 pixels. In general, the evaluation and thus, 3D

medical denoising methods is a difficult task. Usually, ground truth data for real

noisy data - especially in medical applications - is not available. Therefore, I perform

several experiments illustrating the potentials of my approach. In this section, I will

illustrate some examples that will assess my 3D medical denoising method for 3D

CT data. Comparison will be made against the state-of-the-art technique: PRI-

NLM3D [16] by Manjón et al. because the source codes are available publicly.

All tests in this section were processed in the following manner: All 10 slices were

involved in the denoised slice. The similar 3D block size used for block matching

was 7× 7× 5 and was not changed for various tests. I obtained a locally consistent

solution by allowing 3D patches to overlap, where the overlapped regions v were

5 voxels in each direction. Further, for each reference 3D patch, I extract 4 most

similar 3D patches used in whole 3D data using the proposed 3D block matching

algorithm.

I first generate synthetic noisy 3D CT data and then apply denoising method

to the degraded 3D CT data. The results are compared to the ground truth (the

original images).

Fig. 3.10 shows the result of the my 3D medical denoising with a 3D perspective.

In this figure, I decided to show only a part of the CT images because the inside

details of the lung are more important than the tissue around it. Figs. 3.10(a),

3.10(b) are the real and the noisy CT image, respectively. Fig. 3.10(c) shows the

result of 3D medical denoising where I used the voxels of the denoised 3D data.

As PRI-NLM3D [16] can not remove the mixed noise, for fair of comparison I

70



apply it on the 3D noisy data after removing Impulsive noise.

In Fig. 3.11, I show the PSNR result and a clear visual comparison on the CT

Lung slices. The original CT slice is corrupted by a mixture of Poisson noise, Gaus-

sian white noise, impulsive noise with significant noise level (variance of Gaussiance

noise = 0.02 and noise density of impulsive noise = 0.01). As shown in the figure,

PRI-NLM3D [16] removes the critical information at edge areas, while my proposed

denoising method performs remarkably well for the detail structures and is free of

these artifacts. To

To quantify my denoising performance, I used the Peak Signal to Noise Ratio

(PSNR) measure between the ground truth and denoised CT slice.

Evaluation on Ultrasound

To evaluate the performance of the proposed methods, I now present some exper-

imental results obtained by applying the proposed methods on some ultrasound

images. In this section, I will illustrate some examples that will assess my denoising

methods for real ultrasound images. Comparison will be made against the state-of-

the-art technique: the wavelet domain image denoising algorithm [14].
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Figure 3.10: Experiment 1 (3D display). (a) real 3D CT data; (b) noisy 3D CT data; (c)
the 3D result of my proposed denoising method.
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Figure 3.11: Experiment 2: (PSNR in brackets). (a) real CT data; (b) noisy CT data;
(c) PRI-NLM3D [16] [25.28 dB]; (d) the proposed denoising method [29.16 dB].
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Table 3.6: Time comparison for using various matrix completion

Algorithm Algorithm Denoising method

using Dense SCoBeP and matrix completion using Overlapped SCoBeP matrix completion using OptSpace [64]

Time (seconds) 410 120 1398
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I also replaced my proposed decomposition matrix completion with OptSpace

[64] to compare the result and time consumption (Table 3.6). It can be seen that

my methods perform notably faster than OptSpace [64].

All tests in this section were processed in the following manner: All 30 images

were involved in the denoised image. The similar block size used for block matching

was 63 × 63 and was not changed for various tests. I obtained a locally consistent

solution by allowing patches to overlap in denoising algorithm using Overlapped

SCoBeP matrix completion, where the overlapped regions (v) were 5 pixels in each

direction. Further, for each reference patch, I extract 3 most similar patches used

in each image using SCoBeP.

In this work, I apply my proposed methods without any changes or generating

noisy images. Note that since there are no published methods that perform denoising

on such general images, I choose the wavelet domain image denoising algorithm [14]

for comparison, because their source code is available. As for the non-synthetic case,

while I do not have the ground truth and thus cannot evaluate the the methods

quantitatively using PSNR, the visual comparison illustrates the robustness of my

proposed methods when it is applied directly to real images.

As shown in the Figures 3.12 and 3.13, wavelet domain image denoising algorithm

[14] generates severe artifacts at edge areas, while my proposed denoising methods

perform remarkably well for the detail structures and are free of these artifacts.
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Figure 3.12: Non-synthetic (real) experiment. (a) real ultrasound image; (b) wavelet
domain image denoising algorithm [14]; (c) the proposed denoising Algorithm using
Dense SCoBeP and matrix completion; (d) the proposed denoising Algorithm using
Overlapped SCoBeP matrix completion.

Figure 3.13: Non-synthetic (real) experiment. (a) real ultrasound image; (b) wavelet
domain image denoising algorithm [14]; (c) the proposed denoising Algorithm using
Dense SCoBeP and matrix completion; (d) the proposed denoising Algorithm using
Overlapped SCoBeP matrix completion.
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CHAPTER 4

CONCLUSION

This work explored several important aspect of image and video enhancment:

1. In conclusion, I have proposed two novel and efficient super resolution meth-

ods based on SCoBeP [1] and Nonlocal-Means (NLM) techniques, which finds

corresponding patches using sparse coding and demonstrates competitive re-

sults in both the synthetic and the real sequences. My techniques perform

super resolution by first running sparse coding over an overcomplete dictio-

nary constructed from the LR frames to gather possible match candidates.

Belief propagation is then applied to eliminate bad candidates and to select

optimum matches. Finally, in the SCoBeP-NLM, the NLM approach exploits

similarity in patches around candidate pixels to average out the noise among

similar patches. While the algorithm performs favorably comparing with other

recent approaches as illustrated in the experimental results, the algorithm is

quite complex and I realized that the source of most computation is originated

from the NLM component. As SCoBeP has naturally identified pixels that are

most likely to be relevant to a target pixel and also output the correspond-

ing “weight” of the relevant pixels. This suggested us that NLM is probably

not essential in my SCoBeP based SR algorithm. Thus, I have also imple-

mented a SCoBeP based SR algorithm, SCoBeP-SR, where “mixing” weights

and candidates are extracted from the SCoBeP step only.
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I conducted experiments on both the synthetic and the real video sequences,

where my approaches work well for both types of sequences demonstrating

the effectiveness and robustness of my approaches. Furthermore, unlike many

existing super resolution approaches targeting to LR frames that have been

pre-registered manually [34] or have assumed a stationary camera [5, 27], the

proposed method can handle a sequence captured with a moving camera and

do not require preprocessing of the sequence.

As SCoBeP provides decent results in images with both significantly and

slightly varying viewpoints [1, 81], hence, it will be useful to a wide range

of applications such as de-interlacing, surveillance application and medical

image super resolution. As for future work, I plan to extend my approaches

to these areas.

2. In addition, I have proposed a novel and efficient denoisinng method using

block matching filtering and matrix compleition. A key idea of [24] is to

divide and conquer. The input matrix is partitioned into clusters, and then

each cluster is filled separately. A dependency scanning step estimates the

lowest possible rank of each cluster by identifying independent rows. The

unknown elements of these independent rows can then be filled arbitrarily

without increasing the rank of the cluster. The remaining unknown elements of

the clusters are filled by the dependency relationship obtained earlier. Finally,

the ”off-diagonal” elements are filled to ensure the entire matrix has the lowest

possible rank.

I proposed a block-based video denoising method using the decomposition

approach [24], in which I keep only reliable pixels and eliminate all unreliable

pixels. My denoising method can remove the serious mixed noise from video

sequence, while most of the existing methods have been limited to one specific
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type of noise. Quantitative and qualitative experiments with video sequences

corrupted by mixed noise have shown that the proposed algorithm outperforms

the state-of-the-art methods for the denoising tasks.
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