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CHAPTER I 
 

INTRODUCTION 
 

Statement of problem 

 Variations in annual wheat crops due to genetic and climatic factors result into 

differences in end use quality in wheat flours. End use quality affects the quality of yeast 

leavened bread products. In order to maintain the quality of bread, the baking industry 

uses dough improvers such as surfactants and oxidizing agents. Although the improver 

effect of these additives is widely studied in dough system, its effect on gluten visco-

elasticity has not been examined. Gluten is an important functional ingredient of wheat 

flours that comprises about 80% of its total protein content. Very little evidence is 

available on the quantification of fundamental visco-elastic properties of gluten and its 

correlation to the mixing and baking properties. Gluten is made up of gliadins and 

glutenins. Gliadins impart viscosity while glutenins are responsible for elastic strength of 

gluten. Gliadins are low molecular weight monomeric protein molecules while glutenins 

are made up of low molecular weight as well as high molecular weight polymeric 

subunits. Surfactants have been reported to improve loaf characteristics and crumb 

texture but their exact molecular mechanism is not known. Effect of surfactants on visco-

elasticity of gluten is poorly studied. 
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Furthermore, these monomeric and polymeric proteins are entangled and crosslinked 

together with disulfide linkages as well as secondary noncovalent hydrophilic and 

hydrophobic bonds. Formation, breakdown and reformation of these disulfide and 

hydrogen bonds is brought about by surfactants, oxidizing and reducing agents. An effect 

of oxidizing agents such as ascorbic acid in promoting the disulfide linkages and its 

correlation to gluten visco-elasticity and baking and mixing properties of flours is not 

very well understood. Effect of disruption of hydrophilic and hydrophobic bonds with 

displacement of water molecules with agents like urea on visco-elasticity of gluten has 

not been studied to understand the importance of noncovalent hydrogen bonds in dough 

systems. The mechanisms by which reducing agents such as dithiothreitol dislocate 

disulfide linkages changing the structure and distribution of gluten and its effects on 

mixing, baking and visco-elasticity of dough and gluten are not understood fully. 

Purpose of the study 

 The objectives of this study are 1) to quantify the visco-elastic properties of 

gluten extracted from commercial hard red winter wheat flours with different protein 

content and 2) to measure and correlate the effect of diacetyl tartaric acid ester of 

monoglyceride (DATEM), ascorbic acid, urea and DTT on the visco-elastic properties of 

gluten and mixing and baking properties of wheat flours. 

Hypotheses 

1) DATEM strengthens the gluten by improving its visco-elastic properties and as a 

result improve the mixing and baking quality of wheat flours. 

2) Oxidizing effect of ascorbic acid promotes disulfide bonds in gluten and improves 

its visco-elastic potential resulting into improved baking performance. 
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3) Urea disrupts noncovalent hydrophilic and hydrophobic bonds in gluten 

decreasing the visco-elastic characteristics of gluten and baking and mixing 

performance of wheat flours. 

4) DTT reduces gluten by severing the disulfide linkages within gluten proteins 

reducing the visco-elastic ability of gluten and mixing and baking properties of 

wheat flours. 

Assumptions 

 Addition of surfactants and oxidizing agents, the distribution of low and high 

molecular weight subunits of gluten could be modified which could affect the dough 

properties of baking, mixing and visco-elasticity. 

DATEM is an amphiphilic molecule with hydrophobic and hydrophilic domains. 

DATEM will orient itself in the gluten and dough with its appropriate moieties. When 

subjected to practical stress during baking processes, due to the breakdown and formation 

of different crosslinks present in the gluten and shifting and mobility of polymeric and 

monomeric subunits of gluten, visco-elastic properties are affected. Structure of gluten is 

changed with folding and unfolding of gluten which in turn affects dough strength. We 

assume that DATEM will decrease the surface tension in gluten and dough, align itself in 

the interface of protein, starch and bubbles in dough or interface of protein and air in 

gluten and maintain the integrity of the dough and gluten structure. We also assume that 

DATEM will increase the quality of weak flours with low protein content by 

strengthening the gluten quality and dough structure. 

 Ascorbic acid reacts with oxygen during mixing and is oxidized to 

dehydroascorbic acid (DHA). Dehydroascorbic acid reacts with endogenous glutathione 
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(GSH) and converts it to its oxidized form (GSSG). The interchange of sulfhydryl (-SH) 

to disulfide linkages (-SS) in high and low molecular weight glutenin subunits and 

gliadins in gluten results in improvement of dough strength and enhanced loaf properties. 

We assume ascorbic acid addition to gluten will promote the disulfide linkages and 

strengthen it improving the quality. 

 Urea competes with water to form hydrogen bonds. We assume that addition of 

urea in gluten and flours, result in displacement of bulk water from the system and 

disruption of secondary non covalent hydrophilic and hydrophobic crosslinks in gluten 

proteins. This disruption of non covalent bonds in protein can affect the visco-elastic 

properties of gluten and the integrity of dough resulting in poor performance in baking 

and mixing properties. 

 DTT is a reducing agent that will promote the conversion of disulfide linkages to 

sulfhydryl (-SH) in gluten. Since disulfide bonds in high molecular weight glutenin 

subfractions are known to form a backbone of gluten proteins, structure of gluten will 

change due to formation of gluten proteins into smaller size polymers. This will have a 

negative effect on the quality of gluten and its visco-elastic properties resulting into 

reduction of baking and mixing ability of dough.
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CHAPTER II 
 

REVIEW OF LITERATURE 

1. Wheat Quality  

Wheat is one of the primary grains consumed by humans and is grown around the 

world in diverse environments from cool rain-fed to hot dry-land areas. It has long been 

recognized that productivity and quality vary considerably as a result of environmental 

conditions. Among hard-endosperm wheat, protein amount and composition are primary 

determinants of flour functionality. At the biochemical level, composition of flour protein 

depends primarily on genotype but significant interactions with production environment 

are common (Graybosch, Peterson, Shelton & Baenziger, 1996). Both genotype and 

environment, and their interaction, affect the relationship of flour protein composition to 

loaf volume (Huebner, Nelsen, Chung & Bietz, 1997). Yield is a major concern for wheat 

growers, while millers and bakers cite variability in the functional properties of flour as 

one of their biggest problems. Despite years of research, critical gaps in our 

understanding of factors controlling yield and quality remains. Protein content is used as 

important quality parameter in end use of wheat if only similar protein quality cultivars 

are selected (Bushuk, 1998). The term quality is used to indicate the performance of a 

cultivar, at a specific protein level, in a test that reflects a specific end product, e.g., bread 

from hard common wheat, pasta from durum wheat, or cookies from soft common wheat 

(Peterson, Graybosch, Baenziger & Grombacher, 1992). A study comparing the 
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responses of higher protein content older cultivars to low protein content modern 

cultivars in Nebraska reported high tolerance over mixing and average mixing times of 

the latter with genetic improvements (Fufa, Baenziger, Beecher, Graybosch, Eskridge & 

Nelson, 2005). 

2. Gluten composition and properties 

Gluten is one of the important functional ingredients of wheat flours that impart a 

structural back bone to the bread. Gluten is a composite of two protein groups; gliadins 

and glutennins. Gliadins are monomeric low molecular weight (28,000 to 55,000 Da) 

proteins linked by interchain disulfide bonds. Non reduced glutenins on the other hand 

consists of a mixture of low and high molecular weight proteins (ranging from 500,000 to 

10 million Da). Presence of hydrogen bonds, ionic bonds, hydrophobic interactions and 

disulfide crosslinks are decisive in expression of wheat dough characteristics (Wieser, 

2007). Mature wheat contains about 8 to 17 % of protein and gluten constitutes about 

80% of the total protein that confer properties of elasticity and extensibility that are 

essential for the functionality of wheat flours (Shewry, Tatham, Barro, Barcelo & 

Lazzeri, 1995). The gluten proteins consist of monomeric gliadin components and 

polymeric glutenin units. High molecular weight subunits (HMW-GS) in glutenins that 

comprise only about 10 % of total flour protein and act as important determinant of bread 

making quality (Dupont & Altenbach, 2003). The ability of low molecular glutenin sub 

units to form intermolecular disulfide bonds with each other as well as with the HMW-

GS is also important for formation of glutenin polymers and pasta making characteristics 

(D'Ovidio & Masci, 2004). A study by Bushuk (1998) established that loaf volumes were 

not only dependent on protein content but also the quality and composition of the 
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glutenins. The same study concluded that loaf volumes were inversely related to the 

proportion of acid soluble glutenin fractions and directly related to acid insoluble glutenin 

fractions. Significantly high correlations were obtained between relative quantity of 

unextractable polymeric protein in total protein and dough resistance (r = 0.88) and with 

loaf volumes (r = 0.74) (Gupta, Khan & Macritchie, 1993). In another approach, Khatkar, 

Bell & Schofield (1995) reported that elasticity and gliadin to glutenin ratios are 

inversely related, thus suggesting the importance of the glutenin sub fractions in the 

visco-elastic of gluten. Low gliadin to glutenin ratios has higher amounts of glutenins and 

amount of high molecular sub fractions could be higher that could contribute to strength 

of gluten by offering resistance to deformation. 

3. Visco-elasticity of gluten 

Since the conventional molecular size distribution techniques such as the size 

exclusion HPLC are limited in the efficiency to fractionate the insoluble HMW-GS 

components, other techniques like visco-elastic have been used as a sensitive indicator of 

changes in the structure of HMW-GS fractions (Dobraszczyk & Morgenstern, 2003). 

HMW-GS polymers of gluten have shown to have long chain branching structure every 

40 to 50 nm. These structures gives rise to the strain hardening (non linear rapid increase 

in viscosity with increased strain) that is highly sensitive to the degree of entanglement 

and presence of long chain branching (LCB) in the HMW polymer (Humphris, 

McMaster, Miles, Gilbert, Shewry & Tatham, 2000). In order to quantify the 

measurements of viscosity, elasticity and gluten strength, more fundamental rheological 

methods and instruments are used. Dynamic oscillation testing measures the elastic and 

viscous moduli of a sample by applying oscillating stress or strain with time. But a major 
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disadvantage of this test is that it cannot replicate the stress conditions that are actually 

applied during the process of baking (Bloksma, 1990). Many rheological tests are carried 

out by small deformations that give information about structure of gluten dough but in 

order to simulate conditions during actual fermenting process, large deformations tests 

are performed to obtain information on the mechanical properties of dough (Kokelaar, 

van Vliet & Prins, 1996). Extensional testing has been performed in two different modes, 

uniaxial that involves stretching a sample in a single direction and biaxial where a sample 

is stretched in two opposing direction. This is one of the large deformation tests that 

apply a large load of stress comparable with forces applied during actual baking.  

Creep recovery tests were first used in the 1930s wherein the stress applied is 

constant and deformation (creep) in the sample is measured along with its recovery when 

the stress is removed. This method has been found reliable with high protein content and 

better quality wheat flours in which elasticity was increased with a greater recovery 

(Wang & Sun, 2002) and maximum creep strain served as a estimate of wheat dough 

strength in durum wheat flours (Edwards, Dexter, Scanlon & Cenkowski, 1999). 

 The strain rates used during the actual baking and proofing are much higher 

ranging in several hundred percent (during gas formation in proofing) in comparison to 

1% in dynamic oscillatory tests (Amemiya & Menjivar, 1992). It has been known that the 

changes in viscosity by shear and small deformations have been similar at lower strain 

rates but these viscosities drastically change in large deformations. Creep recovery 

experiments have been performed on bread dough with higher strain rates than the 

dynamic oscillatory tests and has yielded significant correlations among maximum 

recovery strain and bread volumes (Wang et al., 2002). Studies using high stresses (250 
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Pa) on dough had correlation of r = 0.79 among the maximum recovery strains and bread 

volumes (Van Bockstaele, De Leyn, Eeckhout & Dewettinck, 2008). When creep 

recovery experiments were conducted at 250 and 50 Pa stresses, the former showed 

significant correlation (r = 0.68, P < 0.01) found between maximum recovery and bread 

volume (Tronsmo, Magnus, Faergestad & Schofield, 2003). No significant differences 

were found at 50 Pa stress level. 

4. Bread quality 

Baking technology that consists in producing bread from industrial refrigerated or 

frozen or non-frozen bakery goods and retailing them to the bakery shops and 

supermarkets for the final baking, has many advantages and among them the 

standardization of product quality is very important. Analysis of bread quality includes 

loaf weight, loaf volume (determined by rapeseed displacement in a loaf volume meter), 

proof heights that measures the height of leavened dough due to expansion of bubbles 

during proofing, loaf heights after removing from oven and oven spring which is 

difference in loaf and proof heights (Rosell, Rojas & Benedito de Barber, 2001). 

Furthermore quality of bread is also assessed by different grading methods. Evaluation of 

crust color, crumb color, crumb cell structure similarly, loaf structure, color, shape, 

texture are attributed to the bread quality determination (Basman, Köksel & Ng, 2002).  

5. Surfactants in breadmaking 

   Emulsifiers are surface-active agents with hydrophilic and lipophilic properties. 

Surfactants reduce the surface tension between two immiscible phases and forms 

emulsions. The ratio of hydrophilic domain to lipophilic domain mainly determines the 

emulsifying potential of the surfactant. This ratio is called hydrophilic lipophilic balance 
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(HLB) and is scaled from 0 to 20. The surfactant with higher HLB increased the dough 

extensibility and resistance evaluated using Alveograph measurements (Addo, Slepak & 

Akoh, 1995). The surfactants are further classified according to their ionization potential; 

ionic and nonionic. The ionic emulsifiers, namely cationic (not used in foods) and anionic 

emulsifiers, are used for different purposes during baking. Nonionic surfactants such as 

sucrose esters of fatty acids and ethoxylated mono-diglycerides do not dissociate in water 

and exhibit excellent dough strengthening properties (Stampfli & Nersten, 1995). 

Commonly used surfactants in bakery industry are diacetyl tartaric acid esters of 

monodiglycerides (DATEM), sodium stearoyl-2-lactylate (SSL) and calcium stearoyl-2-

lactylate (CSL). These surfactants are excellent dough strengtheners and anionic in nature 

(Stampfli et al., 1995). 

 Although the mechanisms of surfactants in dough strengthening are not fully 

understood, theories suggests that effective surfactants form a thin interfacial layer in 

between the gluten and starch granules that improved the integrity of the dough during 

baking (Stampfli et al., 1995). Bread staling is another undesirable phenomenon that can 

be ameliorated using surfactants. Mono-diglycerides at 0.3% and SSL at 0.5% w/w flour 

basis have been shown to be very good crumb softeners as they showed 42% softening of 

crumb over the controls (Armero & Collar, 1998).  

 Numerous studies have been carried out to determine the role of surfactants in 

bread making. Emulsifiers have been suggested to form complexes with gluten proteins 

and protein-protein aggregates that increase the strength of gluten matrix resulting in 

increased dough height during proofing (Gómez, del Real, Rosell, Ronda, Blanco & 

Caballero, 2004). Keller, Orsel and Hamer (1997) reported the ability of gliadin to form 
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complexes with not only albumin monolayer but also SSL monolayer by inserting itself 

into lipid monolayer due to competing surface activities. Dough-strengthening effects 

like enhanced tenacity, visco-elasticity, improved loaf volumes, crumb softness and anti-

staling effects were not observed at 0.7% (w/w flour basis) concentrations of emulsifiers 

(Gómez et al., 2004). 

 DATEM is produced synthetically by reaction of diacetyl tartaric anhydride with 

monoacylglycerol with stearic acid as the main hydrophobic component. DATEM 

components on isolation yield three different components, a monocylglyceride group as 

major component, two carboxyl groups and a third group of esterified tartaric acid 

residues, all three play different role in baking activity (Koehler, 2001b). Different 

mechanisms of action of DATEM could be due to positive role of carboxyl group in 

visco-elastic of dough and gluten but did not improve the loaf volumes at 0.1% (w/w 

flour basis) (Koehler, 2001a). Optimum concentration of DATEM in wheat flours 

suggests that concentrations above 0.5% w/w flour basis produced no significant change 

in the visco-elasticity, dough properties and baking (Koehler & Grosch, 1999).  

 The growth and control of gas phase in baking is important determinant of final 

bread quality and textural attributes. During the proofing stage the bubbles slowly 

expand, producing increase in volume. As the volume continue to increase, coalescence 

or rupture of adjacent bubble walls leads to the cessation of bubbles and typical open 

sponge-like structure we know as bread (Dobraszczyk, 2004). Thus, the integrity of the 

cell wall structure surrounding the bubbles is extremely important in relation to gas cell 

stabilization and gas retention during proving and baking, and to the final structure and 

volume of the baked product. Small air bubbles infused in the dough during mixing give 
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better crumb texture than large ones. Large bubbles are removed during the punching 

process of dough. Surfactants reduce the surface tension at the interface of bubbles aiding 

infusion of small bubbles during mixing and reducing the coalescence (rupture) during 

proofing thus contributing fine crumb structure (Campbell & Mougeot, 1999). DATEM 

levels of 0.4 to 0.7% were effective in enhancing bubble breakup during mixing, 

increasing surface areas for mass transfer and reducing the partial pressure of CO2 

resulting into improved baked volumes (Campbell, Herrero-Sanchez, Payo-Rodriguez & 

Merchan, 2001). 

6. Oxidizing agents and breadmaking 

 In commercial flours, ascorbic acid is added as an oxidizing agent to the wheat 

flours to promote disulfide cross-linkages in gluten proteins. Ascorbic acid interacts with 

oxygen during mixing and is oxidized to dehydroascorbic acid that is mainly responsible 

for oxidizing the sulphydryl groups in gluten proteins. Improver action of L-ascorbic acid 

(L-AA) and corresponding oxidized product L-dehydroascorbic acid (L-DHAA) has been 

studied by various research groups. During mixing L-AA interacts with atmospheric 

oxygen and is oxidized to L-DHAA (Gerhard Mair, 1979). It is generally accepted that L-

DHAA is the actual oxidizing agent. However, there are many postulates as to the ways 

in which L-DHAA exerts its improver effect. The disulfide bond formation that improves 

the loaf volumes are believed to be produced by the catalytic oxidation of sulphydryl 

groups in dough by dehydroascorbate reductase (Tsen, 1965). A more popularly accepted 

theory was proposed by Grosch and Wieser (1999) suggesting that the enzyme 

glutathione reductase (GSH-DH) was readily oxidized by L-DHAA to form oxidized 

glutathione (GSSG) during mixing which reacts with protein thiols. Another assumption 
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by Kuninori and Nishiyama (1993) states that GSSG promotes inter protein disulfide 

bonds through disulfide-thiols interchange reactions. A spectroscopic method of 

measuring the levels of L-DHAA in perchloric acid extract of wheat flour samples at 265 

nm was studied concluded (Every, 1996) rapid increase of L-DHAA occurred during 

mixing when L-AA  was oxidized. High molecular weight water soluble flour fractions 

with reduced glutathione influenced the baked volumes and affected the crumb structure 

negatively (Every, Simmons, Sutton & Ross, 1999). This could suggest that effect of 

oxidizing agents is primarily specific to dough mixing properties. Ascorbic acid increased 

mixing properties, maximum resistance to extension and loaf heights. L-AA had greater 

dough strengthening effect in form of mixograph peak time and resistance to extension in 

low quality wheat flours than the high quality ones (Aamodt, Magnus & Faergestad, 

2003). A recent study predicted that the improver action of ascorbic acid (100 ppm) on 

dough rheology, mixing and baking is pronounced on strong wheat containing high 

percentage of unextractable polymeric protein (%UPP) in both flour and in total 

polymeric protein (Every, Motoi, Rao, Shorter & Simmons, 2008). Significantly high 

correlations were obtained between baking score, dough development time and maximum 

resistance to extension (r = 0.75 and r – 0.57, respectively) at P < 0.05. 

 Gluten proteins form different bonds types that directly affect the performance of 

wheat flours. They form cross-links and entanglements with hydrogen bonds and 

disulfide bonds which play a major role in folding and unfolding of protein matrix 

(Edwards, Peressini, Dexter & Mulvaney, 2001). Hydrophilic and hydrophobic 

interaction within gluten moieties during baking, stabilize the bubble formation and 

influence the quality of baked bread. Although it is widely accepted that disulfide 
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bonding provides a strong elastic backbone to the dough, interactions between non 

covalent hydrogen bonds and glutamine residues in protein are also very important in 

baking quality (Shewry, Halford, Belton & Tatham, 2002). The ability of gluten to form 

non covalent hydrogen bonds and disulfide bonds during baking in response to DATEM 

or ascorbic acid may be dependent on the protein content of the flours for the particular 

year and the quality of gluten and protein (Aamodt et al., 2003).  

7. Urea and DTT 

Recent studies indicate that hydrogen bonding between adjacent high molecular 

weight glutenin subunits may play an important role in stabilizing the structure of gluten 

(Belton et al., 1995). The role of hydrogen bonds explained by  Belton (1999) suggests 

presence of large amounts of glutamine residues in high molecular weight glutenin 

subunits. These glutamine residues are repeatedly form sequences with amino acids with 

inter-molecular and intra-molecular hydrogen bonds. On hydration of gluten, hydrogen 

bonding with water increases. When the gluten is deformed on small extension, the 

hydrogen bonds break. When the stress is released, the structure relaxes returning to 

equilibrium compensated by increased entrophy with release of hydrogen bonded water 

and reformation of hydrogen bonds. 

The ability of reduced and disulfide linkage free high molecular weight glutenin 

fractions to form branched hydrogen bonding structures was estimated with atomic force 

microscopy (Humphris et al., 2000). Branching arose from intermolecular hydrogen 

bonding between glutamine side chains and amide groups of polypeptide chains. Thus, 

the presence of specific amino acid residues in the gluten matrix could facilitate the 

hydrogen bonding and structural integrity of gluten depending on its composition. Gluten 
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treated with urea (1 to 5 M) showed increased elasticity when analyzed in the linear 

visco-elastic region due to disruption of hydrogen bonding (Inda, 1991). A similar study 

suggested elasticity decreased at urea concentrations of 0 to 3 M and increased at 

concentration of urea above 3 M. Strong and weak gluten treated with DTT at 500 ppm 

showed 60% decrease in elasticity in strong gluten compared to 42% decrease in weak 

gluten (Khatkar, 2005).  

 The objectives of this study are, 1) to understand the effect of reducing the surface 

tension using different levels of DATEM on visco-elastic properties of gluten and baking 

performance of flours of different protein content and quality; 2) to quantify the visco-

elastic properties of gluten modified by DATEM, ascorbic acid, urea and DTT and 

correlate it with the baking performance and dough characteristics of the flours with 

different protein quantity and quality. 
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Abstract 

A study involving incorporation of surfactants in gluten and wheat flours was 

performed. The objective of the study was to assess the effect of adding diacetyl tartaric 

acid ester of monoglycerides (DATEM) on the visco-elastic and baking potential of hard 

red winter wheat flours. DATEM was added to flours and gluten extracted from the 

flours at 0.3, 0.6 and 1.0% w/w, flour basis. Six commercial hard red winter wheat flours 

obtained from two different milling sites with different protein content (8 to 13.7%). 

Flours and gluten with no treatment were used as controls. Visco-elastic properties of 

gluten were analyzed with a creep-recovery method. Dough mixing properties of flour 

were measured using a Farinograph and baking properties were evaluated using a straight 

dough method on pup loaves. DATEM increased (36 to 62% range) the separation time 

of gluten from all flours significantly (P < 0.05). DATEM levels of 1% decreased delta 

compliance (42 to 66% range) of gluten from most flours significantly (P < 0.05). This 

increase of separation time and decrease in delta compliance of gluten indicated the 

strengthening of gluten due to DATEM. The levels of 1% DATEM decreased creep-

recovery compliance in gluten extracted from most flours by 31 to 50%. DATEM levels 

of 0.6% in wheat dough showed significant (P < 0.05) increase in loaf volumes in all 

wheat flours regardless of protein content. All loaf volumes dramatically decreased with 

1% DATEM. Mixing characteristics showed high correlation with flour protein content 

as well as baking properties. Increase in dough heights during proofing showed 

significant negative correlation (r = -0.57, P < 0.01) with delta compliance (viscosity). 

Oven spring rise was negatively correlated (r = -0.69, P < 0.01) to separation time 

(elasticity) and positively correlated (r = 0.50, P < 0.01) to delta compliance (viscosity). 
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Biplots of principal component analysis explain 65.4% of total variance. First principal 

component axis explained 40.1% variance and was dominated by flour protein content 

while second component axis explained 25.3% variance and was influenced by delta 

compliance (viscosity). Visco-elastic characteristics were mostly independent of flour 

baking properties. DATEM improved the baking potential of high protein flours from 

both sites and improved the visco-elastic properties of gluten in low protein flours. 
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1. Introduction 

 Wheat quality, like any other agricultural products, is subject annual variations 

due to environmental and genetic factors. Wheat flour quality variations are important 

factors in quality of baked products produced from flour. The milling and baking industry 

depend in the production of products made from a high level of uniformity and 

consistency in flour performance to meet the demands of automated, high-speed, 

processing facilities (Peterson, Graybosch, Shelton & Baenziger, 1998). In order to 

overcome the problems faced by inconsistent and non-uniform quality of wheat flours, a 

variety of dough improving additives are used (Azizi & Rao, 2004). To achieve 

consistency and uniform quality, blending of commercial gluten with wheat flours to 

improve dough characteristics and quality of bread is a common practice (Borla, Motta, 

Saiz & Fritz, 2004). Among functional food additives, surfactants have been used to 

improve dough properties and the quality of bread including dough strength, rate of 

hydration, tolerance to mixing, crumb strength, slicing characteristics, reduction of 

shortening in the formula, loaf volume and shelf life (Stampfli & Nersten, 1995). 

Diacetyl tartaric acid ester of monoacylglyceride (DATEM) is a surfactant widely used 

by the bread-making industry. DATEM increases the loaf volumes and improves the 

handling of wheat dough. Three active fractions of DATEM have been found to improve 

baking properties in wheat dough (Koehler, 2001a).  The major active component was the 

glycerol molecule with a stearic acid component attached; the second fraction was the 

diacetyltartaric acid and hydroxyl group on the secondary carbon and the third fraction 

was the acetylated hydroxyl group on the primary carbon (Koehler, 2001b). Emulsifiers 

form complexes with gluten proteins and starch (Krog, 1981), form inter-lamellar films in 
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between starch and gluten and improve the retention of the gas (Stampfli et al., 1995). 

The polar and non polar lipids were observed in similar areas when gliadins, starch and 

protein lipid matrix were located when visualized by confocal microscopy (Li, 

Dobraszczyk & Wilde, 2004). The exact effect of low surface tension brought about by 

surfactants on protein-starch matrix and bubble interface and its influence on gluten 

visco-elasticity is not understood very well.  

 Different rheological methods have been used to study the visco-elastic nature of 

dough including extensional techniques (BollaÌn & Collar, 2004), shear oscillation 

(Baltsavias, Jurgens & Vliet, 1997), stress relaxation and creep-recovery (Campos, Steffe 

& Ng, 1997) over the past few years. Many test methods attempt to measure large 

deformations using the uniaxial extensional  properties of doughs, such as the Simon 

Research Extensometer, Brabender Extensigraph, Stable Micro Systems Kieffer dough 

and gluten extensibility rig, but none of these gives rheological data in fundamental units 

of stress and strain (Dobraszczyk & Morgenstern, 2003). Large deformations are very 

common in processing of foods. Use of creep recovery visco-elastic testing was 

introduced by Bloksma (1962) and involves measurement of deformation and recovery of 

a sample under constant stress. Recent studies by Edwards et al. (1999), Wang et al. 

(2002) and Van Bockstaele et al. (2008) suggests the use of creep-recovery as a 

simplified approach for interpretation of visco-elasticity of gluten and its quality 

compared to other studies. 

 The objectives of this study are 1) to quantify the effect of increasing DATEM 

concentrations on the visco-elastic properties of gluten using commercial wheat flours 
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using creep-recovery technique and 2) to evaluate the effect of DATEM on the bread-

making quality using commercial wheat flours. 

2. Materials and Methods 

 Six commercial wheat flours were used in this study. They were obtained from 

two different sites A and B (locations kept confidential at the supplier’s request) in 

Oklahoma.  Blends of wheat were used including different cultivars and types of wheat to 

obtain the ranges in protein content and different physical dough and bread making 

potential. The flours were enriched and malted.  

 Wheat flours were obtained from two sites in Oklahoma (A & B), and represented 

three levels of flour protein (FP) content (L = low, M = medium and H = high) from each 

source, and three levels of DATEM (Caravan Ingredients, Lenexa, KS 66515) were used. 

DATEM was added to the flours at 0.3, 0.6 and 1.0%, w/w flour basis. Flours with no 

DATEM were used as controls.  Thus, site A flours were denoted as 1A0, 1A0.3, 1A0.6 

and 1A1; 2A0, 2A0.3, 2A0.6 2A1; 3A0, 3A0.3, 3A0.6, 3A1, respectively. Similarly site 

B flours were named, 1B0, 1B0.3, 1B0.6 and 1B1; 2B0, 2B0.3, 2B0.6 and 2B1; 3B0, 

3B0.3, 3B0.6 and 3B1, respectively. The protein, moisture and ash contents were 

determined using the NIR system (FOSS NIR Systems Inc, Laurel, MD 20723) and 

results are shown in Table 1. This design was implemented in gluten visco-elastic, 

mixing properties in Farinograph and baking tests. 

2.1. Gluten extraction 

 Glutens were prepared in triplicates in an automated gluten washer, Glutomatic 

2200 (Perten Instruments, Sweden) from 10 g of flour. Five mL of DATEM solution (0.6, 

1.2 and 2 g DATEM in 100 ml of 2% NaCl solution) was heated to 65°C for proper 
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dispersion. Flour was wetted using DATEM solution and mixed for 20 sec and washed 

for 10 min with 2% NaCl solution (w/v). Control samples were mixed with 5.0 ml of pure 

deionized water. 

2.2. Creep recovery tests 

 The creep recovery of gluten were performed using the protocols of Zhao et al. 

(2007) and Liang et al. (2007). Creep-recovery measurements of flour-water dough were 

made on a Rheometer AR1000 N (TA Instruments, New castle, DE), using a 25 mm 

parallel-plate. The test was performed in a controlled temperature environment (25°C). 

The gluten samples after removing from the Glutomatic 2200 automatic washing system 

were rounded gently into a ball shape. The sample was relaxed under metallic plates with 

top plate weighing 2500 g for 60 min at room temperature (25°C) before the creep-

recovery measurement. 

 A 0.5-g gluten sample (30 mm diameter, cut from the relaxed gluten) was loaded 

between the parallel plate and the gap was set to 2.5 mm. To reduce moisture loss, a 

plastic cap covered the sample-plate interface and the whole geometry was covered in the 

holding chamber. In order to maintain the humidity in the chamber, a concentric plastic 

container with water was placed around the sample. The peltier base attachment and 

parallel plate geometry were custom made with cross hatch surface to prevent slippage. 

TA Software for Windows (Rheology Advantage Instrument Control V.5.4) was used to 

program the creep-recovery experiment. A constant stress of 40 Pa was applied to shear 

the gluten and maintained for 100 s creep test. The stress was released after 100 s and 

gluten recovery was measured for 1000 s. The deformation of gluten under the stress and 

its recovery after the stress removed was measured as compliance by the Rheology 
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Advantage Data Analysis (software version 5.4.8). Time constants of logarithmic values 

for creep (TCC) and recovery (TCR) at 63.2% were calculated using a exponential 

decaying function. The calculations were modified from the method of Chaung & Yeh 

(2006) to describe the rate at which the creep and recovery reached equilibrium. This 

study used time constants for both creep and recovery instead of only for recovery that 

was used by Chaung and Yeh (2006) study. Equilibrium reached at a faster rate was 

indicated by small time constant values. The creep-recovery measurements from the 

software were plotted against time (logarithmic scale) for each treatment and controls. 

The measurements of creep (J) and recovery (Jr) compliance were superimposed on each 

other to depict the visco-elasticity properties such as the delta compliance at 100s (J-Jr) 

and the separation time (SeP). Rubbery plateau separation time is the time to which J and 

Jr are no longer superimposed and split (Fig. 2). The higher the value of J-Jr, less 

elasticity and more viscosity behavior is observed. The higher the value of SeP, the more 

elasticity and less viscous behavior are observed. Recoverability (RCY) in gluten is 

calculated by following formula: RCY = (compliance of recovery Jr at 100 s/compliance 

of creep J at 100 s) * 100. A graphical representation of visco-elastic parameters is 

depicted in Fig. 2. 

2.3. Dough mixing properties 

 Flours were analyzed for optimal dough development time (DT), stability time 

(ST), breaking time (BT) and water absorption (adjusted to 14% protein content; WA) at 

63 rpm and 30°C in a 10-g bowl Farinograph-E (C.W. Brabender Instruments, 

Hackensack, NJ) according to approved method 54-21 (AACC 2000). DATEM solution 

(3, 6, 10 g per 100 ml deionized water) was heated at 65° C for proper dispersion and 1 
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mL was added to 10 g of wheat flour sample prior to addition of pre-calculated amount of 

water for mixing and hydration. 

2.4. Baking tests 

 Approved method 10-10B (AACC, 2000) consisting of 100-g flour optimized 

straight-dough bread making procedure was used for baking experiments. DATEM was 

added to the flour by dissolving 0.3, 0.6 and 1 g in 3 g of melted fat for proper dispersion. 

A 100-g mixer Swanson-Working pin-type, (National Mfg. Co. TMCO Inc, Lincoln, NE) 

was used to mix the dough. Optimum mixing times were obtained by using several 

baking trials. All loaves were weighed and measured for dough proof heights (PH) and 

loaf heights (LH) using a digital proof height gauge (National Mfg. Co. TMCO Inc, 

Lincoln NE) and loaf volume (LV) by rapeseed displacement 10 min after they were 

removed from the oven. Difference between loaf height and proof heights referred as the 

oven spring (OSP) was calculated (Fan, Mitchell & Blanshard, 1999). Specific volume 

(SV) was calculated as ratio of loaf volumes to the loaf weights. 

3. Statistics 

 A factorial design within a randomized block design was implemented, with sites 

as a blocking factor. Within each site, 4 levels of DATEM and 3 levels of flour protein 

were compared in a 4 X 3 factorial. The significant differences in means were compared 

using ANOVA with Tukey’s comparisons (α =0.05) in SAS programs (Version 9.1 SAS 

Institute Inc., Cary, NC). Variables of baking, visco-elastic and farinograph were 

correlated using Pearson’s correlation coefficients without blocking the sites at α = 0.01 

and α = 0.05. 
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 The variables from visco-elastic experiments (J-Jr, SeP, RCY, TCC and TCR), 

dough characteristics (WA, DT, ST and BT) and baking characteristics (LV, PH, LH, 

OSP and SV) that are possibly correlated, were transformed into principal components. 

Principal component analysis (PCA) is a mathematical algorithm that reduces the 

dimensionality of the data (Ringner, 2008). In order to do so, PCA identifies directions of 

maximum variation in data called principal components. Principal components are linear 

combination of original variables. Variables that project greatest variance lie on the first 

co-ordinate called principal component 1 (PC1) and set of uncorrelated variables that 

project that project second greatest variance lie on PC2. Data is centered and standardized 

to minimize mean squared error. For each variable, a line that passes in a certain direction 

through its mean and minimizing sum of squared error is determined and is called as 

eigenvector. Eigenvector has a scalar value to indicate its magnitude called eigenvalues. 

An eigenvalue indicates the portion of the variance that is correlated with each 

eigenvector. The length of eigenvector and its proximity to the component axis is 

proportional to the amount of variation explained by that variable and its correlation to 

principal component, respectively (Ringner, 2008). Canoco for windows version 4.5 

(Biometris, Plant Research International, Wageningen, the Netherlands) was used to 

perform PCA. 

4. Results 

4.1. Visco-elastic properties  

 Creep recovery experiments performed on the controls indicate significantly low 

recovery compliance values for gluten from 2A, 2B and 1B flours (Appendix 1, Fig. 1). 

DATEM treatments significantly reduced the recovery compliance for creep and recovery 
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in gluten extracted from commercial wheat flour samples from both sites in comparison 

to controls (Appendix 1, Fig. 2 & 3). Overall, addition of 1 % DATEM reduced the 

recovery compliance of gluten the most in all flours (Appendix 1, Fig. 2 & 3) except 3A, 

3B and 1B which showed no significant differences in reduction at 0.6% and 1%. The 

ability of DATEM to reduce recovery compliance in gluten from site A was highest in 

low protein flours (62%) compared to medium (44%) and high (42%) protein flours 

(Appendix 1, Fig. 2). Recovery compliance reduction by 1% DATEM in site B gluten 

was 55% for high protein flour, 45% with medium protein flour and 36 % with low 

protein flour (Appendix 1, Fig. 3). 

Significant protein and DATEM treatment interactions were observed in visco-

elastic variables within both the sites except for recoverability (RCY) in site A (Appendix 

2, Table 1). This means no simple statements can be made that one level of DATEM 

always produces a predictive effect, regardless of protein content of flour. DATEM levels 

increased the SeP time (elasticity) in 1A gluten by 36.4% with 0.6% DATEM and 2A 

gluten by 61.9% at 1% concentration (Table 3). DATEM levels of 0.6% and 1% 

increased SeP time in 2B and 3B by 59% and 35.8%, respectively (Table 3). Reduction in 

J-Jr (elasticity) was brought out by DATEM levels of 1% in gluten from 1A, 2A and 3A 

by 56.6, 42.1 and 45%, respectively. A similar trend in reduction of J-Jr with 1% 

DATEM was observed in 1B, 2B and 3B by 43.9, 47.8 and 66.2%, respectively. No 

significant differences and interactions in recoverability of gluten were noticed in sites A. 

(Appendix 2, Table 1). The protein and treatment effects were significant (P < 0.05) 

where the recoverability was high (84.2%) in medium protein gluten and high 

recoverability (83.2%) for 0.6% treatment effect (Appendix 3, Table 1). In site B, the 
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recoverability was not affected by treatment, only protein effect of controls was observed. 

Significantly higher recoverability (P < 0.05) of 1B0 (86.5%) was observed compared to 

2B0 (80.8%) and 3B0 at 81.2% (Table 4). Time constants of creep were lowered 

significantly by 1 % DATEM in 1A gluten by 40% and 36% by 0.3% DATEM but no 

significant differences were observed in other gluten samples from both sites. Time 

constants for recovery were significantly lowered in 1A by 50% at 1% DATEM (Table 

3). Time constants for recovery reduced by 55% and 41% in 2B and 3B treated with 1% 

DATEM (Table 4). In contrast, time constants increased in 1B by 42% with DATEM 

levels. 

4.2. Mixing properties 

Dough characteristics were evaluated by Farinograph measurements as shown in 

Tables 2 and 3 and statistical analyses in Appendix 2, Table 1. Flour protein content and 

addition of DATEM significantly affected dough water absorption (WA) and there was a 

significant interaction of protein and DATEM addition for samples from both sites 

(Appendix 2, Table 1). No interaction was observed in dough breakdown time (BT) in 

site A flours (Appendix 2, Table 1). Dough breakdown time for high protein in site B 

(14.4 min) was significantly high compared to other protein levels (Appendix 3, Table 1). 

WA was 63.6% in high protein content flours and decreased to 51.2% as protein content 

reduced as observed in site A (Table 3). In site B, 0.6% and 1% DATEM increased water 

absorption in dough with all protein contents by 4.8% in 1B and 3B flours and 6% in 2B 

flours (Table 4). Stability time decreased with 1% DATEM level in flours with all protein 

contents in site A by 55, 71 and 21% in 1A, 2A and 3A, respectively (Table 3). On the 

contrary, 1% DATEM increased stability time in low and medium protein flours by 83% 
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and 32%, respectively in site B (Table 4). No significant interactions of protein and 

DATEM levels were observed in DT of flours from site B (Appendix 2, Table 1). 

Significantly lower DT (P < 0.05) was observed in 1% DATEM level (treatment effect) 

with 1.6 min compared to other treatments levels (Appendix 3, Table 1) in site B. Dough 

development time for high protein in site B was significantly high with 1.96 min 

compared to other protein levels (Appendix 3, Table 1). 

4.3.  Baking characteristics  

 Baking characteristics such as the loaf volumes (LV), loaf height (LH), 

proof height (PH), oven spring (OSP) and specific volume (SV) and are shown in Table 2 

and 3. Significant interactions among flour protein content and DATEM addition were 

observed in baking properties except for LH in site A and OSP in both sites (Appendix 2, 

Table 1). Significantly low LH (P < 0.05) was observed in 0.6% DATEM level 

(treatment effect) with 88.5 mm of all treatments levels (Appendix 3, Table 1) in site A. 

Loaf heights for high protein in site A was significantly high with 96.85 mm of all 

protein levels (Appendix 3, Table 1). Significantly low OSP (P < 0.05) was observed in 

1% DATEM (treatment effect) with 13.0 and 9.56 mm of all treatments levels (Appendix 

3, Table 1) in sites A and B, respectively. Oven springs for low protein in sites A and B 

were significantly low with 18.2 and 13.2 mm of all protein levels, respectively. 

(Appendix 3, Table 1). Increment in DATEM levels up to 0.6 % in baking increased LV 

but drastically dropped at 1% irrespective of protein content in both sites. In site B flours, 

0.6% DATEM increased loaf volumes by 4% in 1B, 7.3% in 2B and 5.7% in 3B. Increase 

in loaf volumes in 3A (FP = 13.7%) and 3B (FP = 11.4%) were similar (table 4). Proof 

heights increased significantly only at 1 % DATEM level in all 1A flour by 17%, while 
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no significant effects on proof heights were observed in other flours (Table 3). Overall no 

significant changes in loaf heights were observed with addition of DATEM except for 1B 

which decreased with 1% DATEM (Tables 3 and 4). Increasing DATEM levels 

decreased OSP in all bread loaves from site A but no significant changes were observed 

in breads from site B. For the most part, SV increased when DATEM was added at 0.3 

and 0.6% and decreased with 1% (Tables 3 and 4), except for 1A flour in which SV 

increased linearly with addition of 0.3 and 0.6% DATEM (Table 3). 

4.4.  Correlations and PCA 

 Pearson’s correlation coefficients for variables of visco-elastic, 

farinograph and baking properties are shown in Table 5. Flour protein was significantly 

correlated (P < 0.01) with baking and dough characteristics (Table 5).  A highly 

significant negative correlation between PH and J-Jr (r = -0.57) suggest the role of 

increased elasticity in flours and gluten due to surface tension changes. A significant 

positive correlation of oven spring with J-Jr (r = 0.50, P < 0.01) suggests that an increase 

in viscosity is associated with oven spring. Positive correlation of oven spring with 

recovery time constants (r = 0.36, P < 0.05) suggests that faster the rate of recovery 

induced by DATEM had a positive effect on oven spring. Correlations of proof height 

with recoverability (r = 0.46, P <0.05), rate of deformation or TCC (r = -0.44, P < 0.05) 

and  J-Jr (r = -0.57, P < 0.01) as shown in Table 5 suggested not only the role of both 

viscosity and elasticity of gluten are important but also the faster rate at which the gluten 

deformed in the baking process (Table 5).  

Principal component analyses were performed on the data sets obtained from 

visco-elastic, baking and farinograph parameters to get the overview of variability (Fig. 
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2). The two principal component axes 1 and 2 explained 66.8% variability (Table 6). 

Principal component axis 1 (PC1) and principal component axis 2 (PC2) explained 39.9% 

and 26.9% of total variance, respectively. Flour protein content (FP) has a slightly longer 

vector (Fig. 1) and highest explained variance (87.1%) in the first axis or PC1 (Table 5). 

Variables related to baking properties, loaf volume (LV), loaf heights (LH) and specific 

volume (SV) and mixing properties, water absorption (WA) in the order of their variation 

were projected on PC1. Visco-elastic variables are independent and uncorrelated to the 

first component axis. These variables were associated with the second component axis 

PC2. The highest variance (87.1%) on PC2 is explained by J-Jr with the longest 

eigenvector. The biplot of PC1 to PC2 shows two closely related groups of variables. The 

lower left quadrant grouping, LV, SV, LH and DT shows baking performance parameters 

are closely related to dough development time. The second grouping is observed in PC2 

lower right quadrant, consists of J-Jr, TCC and TCR. This grouping is related to the 

visco-elastic properties of gluten. In the first quadrant, medium protein flours from site B 

were brought closer to PC2 axis which is dominated by visco-elastic properties. Increased 

DATEM levels up to 0.6% (Fig. 2) clustered the site A high protein flours close to the 

PC1 axis that is dominated by protein content, baking and dough characteristics as 

observed in lower left quadrant. DATEM increments increased the proximity of site A 

low protein flours towards PC1. Site A low protein flour (8% FP) and site B low protein 

flour with 1% DATEM showed weakest correlation to the variables (component axis) this 

can be explained in part by their low protein content and inferior quality. 
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5. Discussions 

 DATEM altered the visco-elastic properties of gluten by decreasing the creep and 

recovery compliance with increasing concentrations irrespective of protein content. In 

this set of samples, gluten strength was independent of the protein content (Appendix 1, 

Fig. 1 and 2).  Low protein flour from site B exhibited stronger gluten in controls while 

medium protein flour exhibited higher gluten strength from site A. This study observed 

gluten strengthening from concentrations of 0-1% DATEM using creep-recovery in 

contrast to the studies of Koehler and Grosch (1999) that reported 0-0.5% and Stampfli, 

Nersten and Molteberg (1996) reported 1-2% DATEM concentrations in gluten using 

extensigraph. Changes in creep-recovery compliance of gluten were not specific to the 

protein content and gluten strength of 1B in site B and 2A in site A were higher than its 

counterparts. However, this was not found true in case of baking where increased loaf 

volumes were observed with 0.6% DATEM. Increased protein contents also increased 

loaf volumes as reported by Farvilli et al. (1997). High DATEM concentrations decreased 

loaf volumes in this study which agrees with reports by Campbell et al.(2001). Flours 

obtained from site A, showed improved elasticity (increased SeP and decreased J-Jr, 

decreased creep-recovery compliance), loaf volumes in low protein content flours with 

addition of DATEM. But its ability to improve the elasticity of the flour with high protein 

diminished. It is possible that flours with different protein content may vary with 

presence of low molecular weight glutenin markers that could act as predictors of dough 

strength and visco-elasticity of gluten (Edwards, Mulvaney, Scanlon & Dexter, 2003). 

Taking one specific site of flours at a time, gluten quality of site B flours had 

improvement directly proportional to their protein content. Similar protein contents 
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among the site B flours e.g. only a 0.2 % difference in between 1B and 2B showed a 

great amount of differences in its visco-elastic, dough and baking characteristics 

evidently suggesting differences in their protein quality over quantity. The stress levels 

applied to the gluten under creep recovery experiments were 40 Pa that seemed less than 

practical stress levels that the dough undergoes during actual baking process, but since 

gluten is only one of the components of the complex dough structure, stress levels in 

present study seemed appropriate. Liang et al. (2007) tested stress levels from 10 to 300 

Pa and reported that stress level of 40 Pa was optimized to test creep recovery of gluten 

within linear visco-elastic region. Although present study used the measurements from 

gluten visco-elastic in linear visco-elastic region, it will be interesting to find out if a 

better correlation is observed at larger deformations and non linear visco-elastic region.  

The flours obtained in this study were blend of different varieties with majority of 

hard red winter wheat (90 to 95%) optimized to certain protein content for better output. 

With no significant difference in protein contents of low protein content flour in site B 

(10.4%) and medium protein flours from same site was (10.5 %), loaf volumes of 2B 

flours were significantly higher than that of 1B flours (Table 4). This clearly 

demonstrated that along with protein content, quality of protein also influences the loaf 

volumes. Decrease in stability time in flours of site B with DATEM addition and 

contrasting effect with increased stability time in flours from site A also showed protein 

quality affects dough mixing properties in wheat flours. 

 In agreement with a similar study by Tronsmo et al. (2003) who observed less 

correlations between visco-elastic and baking properties, few highly significant and 

strong correlations were observed between visco-elastic properties and baking and dough 
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characteristics. Our study observed similar trends in which viscosity and elasticity of 

gluten were independent of most baking properties (Fig. 2). The only visco-elastic 

parameters correlated with baking parameters were time constants for creep recovery, 

delta compliance with oven spring and recoverability with proof heights (Tables 5 and 

Fig. 2).  This suggests that added DATEM concentrations could be interacting with 

specific gliadin sites as well as modifying the low molecular weight glutenins (Edwards, 

Peressini, Dexter & Mulvaney, 2001) in some flours modifying the viscosity that in turn 

may increase the baking potential. Previous studies with creep recovery and baking 

showed very low correlations among the visco-elastic and baking variables (Wang et al., 

2002).  

Similarly a weak negative correlation of decreased time constants of creep with 

proof height suggested DATEM increased the rate at which gluten deformed could lead 

to increased proof height (Table 5). Weaker correlations also suggest that DATEM alone 

may not be the only factor that could correlate the gluten visco-elasticity to baking and 

dough characteristics. It is also worth noting that high DATEM concentrations (1%) that 

were optimum in increasing visco-elastic strength of gluten did not improve baking 

performance. This could mean that an interaction of high DATEM concentrations with a 

sole gluten component of flour at molecular level is different than its interaction in a 

complex colloidal mixture of dough. It is quite possible that efficacy of DATEM level to 

increase the loaf volumes at levels of 1% may not be stronger as it did with gluten as a 

single flour component due to the complex composition of dough that has starch, gluten, 

air , water and other minor components. Although protein content showed the highest 

significant positive correlation (P < 0.01) with dough mixing characteristics, water 
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absorption in site A was not affected by DATEM. On the contrary, 0.6% and 1 % 

DATEM increased water absorption in flours from site B. This may be due to the protein 

quality affecting the ability of DATEM to interact with number of hydrophilic and 

hydrophobic sites in the flour proteins. The rise in loaf in oven (OSP) was significantly 

affected by DATEM concentrations up to 0.6 % (Tables 3 and 4) and rather dropped 

significantly (P < 0.05) at 1% DATEM levels. This suggests that there is maximum 

effectiveness of DATEM during the thermal stages of baking and beyond that level the 

effect is detrimental. This could be due to the starch gelatinization and protein 

denaturation that affected DATEM interactions adversely during that stage. Similar 

adverse effect of high surfactant (DATEM + MGL) levels on mixing and baking 

properties was reported that weakened the structure of dough by additional adsorption at 

protein binding sites (Armero & Collar, 1996). Elasticity and viscosity of gluten could be 

playing a prominent role during different stages of baking as reported by Koehler 

(2001b). Ability of surfactants to improve the baking potential in flours could be function 

of not only the flour protein content but also the quality of gluten. High protein flours 

with protein ranges above 11.5% from both sites improved their baking quality with 

addition of 0.6% DATEM levels (Fig. 2). DATEM improved the gluten elasticity and 

loaf volumes of very low content protein flours (site A FP = 8%) as observed in Fig. 2 

and Table 3.  

6. Conclusions 

 Gluten strength measured by creep recovery experiments was not related to the 

protein content of the flours. Ability of DATEM to improve weak gluten was observed to 

be higher than its ability to improve the strength of stronger gluten. Visco-elastic 
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properties of gluten showed a strengthening effect with high DATEM concentrations in 

flours with different protein contents, however, the increase in loaf volumes increased 

with 0.6% levels. This suggests DATEM interactions in a single functional ingredient as 

gluten is less complicated than that in the dough. Improvement of gluten visco-elastic 

properties differed in flours by their location and their protein quality.  Although, loaf 

volumes were a function of protein content with increased DATEM concentrations in 

each site, protein quality also influences the baking output. Viscosity and elasticity of 

gluten influenced different processes of baking due to surface tension modifications by 

DATEM. Viscosity and elasticity of gluten showed correlation to processes of baking 

such as oven spring and proof heights. 
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Table 1. Proximate analysis of flours (means ± SD, n=2) obtained from sites A and B.  

 
 

Flours Protein (%) Moisture (%) Ash (%) 
1A   7.95 ± 0.05  11.69 ± 0.02 0.29 ± 0.01 
2A 11.19 ± 0.07 10.51 ± 0.03 0.38 ± 0.01 
3A 13.68 ± 0.02 10.14 ± 0.02 0.41 ± 0.00 
    

1B 10.40 ± 0.10 12.54 ± 0.02 0.47 ± 0.00 
2B 10.59 ± 0.07 12.57 ± 0.00 0.48 ± 0.01 
3B 11.38 ± 0.01 12.98 ± 0.04 0.58 ± 0.01 
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Table 2. Definitions of visco-elastic, mixing and baking terms. 
 

Abbreviations Definitions Units 
Visco-elastic   

J-Jr Delta compliance defined as the difference in 
compliance of creep and recovery at 100 s. An 
increase in delta compliance suggests that the viscous 
component is higher than elastic component by either 
an increase in viscosity or decrease in elasticity of the 
gluten structure at 100s. 

(J) 

SeP Separation time is time at which the creep and 
recovery split and no longer stay superimposed (Fig. 
1). An increase in separation time suggests that the 
elastic component is higher than viscous component by 
either an increase in elasticity or decrease in viscosity 
of the gluten structure. 

(s) 

RCY Percent recoverability is the elastic ability of gluten to 
recover to its original state after the stress is removed. 

(%) 

TCC Rate at which the deformation of gluten reaches its 
equilibrium. Higher the value of TCC slower the rate 
of deformation of gluten 

(s) 

TCR Rate at which the elastic recovery of gluten reaches its 
equilibrium. Higher the value if TCR, slower the rate 
of recovery of gluten 

(s) 

   
Mixing   

WA Ability of flour to absorb water in order to form a 
convened dough consistency at 500 FU. 

(%) 

DT Time required for the flour to develop into dough of 
convened consistency during mixing. 

(min) 

ST Time for which the developed dough remains stable 
during mixing. 

(min) 

BT Time at which the dough starts breaking down after 
mixing. 

(min) 

   
Baking   

LV Volumes of baked loaf measured at 10 min. (cm3) 
LH Heights of baked loaves. (mm) 
PH Heights of loaves after proofing. (mm) 

OSP Increase in height of loaves in the oven during baking. (mm) 
SV Specific volume of baked loaves. (cm3/g) 

   
FP Flour protein  (%) 

 
 
 



48
 

 T
ab

le
 3

. V
is

co
-e

la
st

ic
, f

ar
in

og
ra

ph
 a

nd
 b

ak
in

g 
ch

ar
ac

te
ri

st
ic

s 
in

 c
om

m
er

ci
al

 w
he

at
 fl

ou
rs

 fr
om

 s
ite

 A
, t

re
at

ed
 w

ith
 D

A
T

E
M

 le
ve

ls
. 

M
ea

ns
 w

ith
 s

am
e 

su
pe

rs
cr

ip
ts

 in
 a

 c
ol

um
n 

ar
e 

no
t s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 (P

 >
 0

.0
5)

. T
he

 s
ta

nd
ar

d 
de

vi
at

io
ns

 o
f m

ea
ns

 a
re

 
sh

ow
n 

in
 p

ar
en

th
es

es
. D

ef
in

iti
on

s 
of

 v
is

co
-e

la
st

ic
, m

ix
in

g 
an

d 
ba

ki
ng

 v
ar

ia
bl

es
 d

es
cr

ib
ed

 in
 T

ab
le

 2
. F

lo
ur

 p
ro

te
in

 c
on

te
nt

 
(%

), 
1A

 =
 7

.9
5,

 2
A

 =
 1

1.
19

, 3
A

 =
 1

3.
68

, 1
B

 =
 1

0.
4,

 2
B

 =
 1

0.
59

 a
nd

 3
B

 =
 1

1.
38

, r
es

pe
ct

iv
el

y.
 

 T
R
T
 

V
is
co
-e
la
st
ic
 

F
ar
in
o
g
ra
p
h
 

B
ak
in
g
 

 
S
eP
 

J-
J r
 

%
 R
C
 
T
C
R
 
T
C
C
 
W
A
 

D
T
 

S
T
 

B
T
 

L
V
 

P
H
 

L
H
 

O
S
P
 

S
V
 

 
(s
) 

(J
) 

(%
) 

(s
) 

(s
) 

(%
) 

(m
in
) 

(m
in
) 

(m
in
) 

(c
c)
 

(m
m
) 

(m
m
) 

(m
m
) 

(c
c/
g
) 

1A
0 

4.
8e
 

1.
27

a  
79

.3
c  

8.
0a

bc
 
9.
5a
 

53
.6

c  
1.
0c
 

2.
0e
 

1.
4b
 

55
0.
0i
 

59
.2

e  
84

.4
de
 

25
.2

a  
4.
0h
 

 
(0
.3
) 

(0
.1
) 

(1
.0
) 

(0
.9
) 

(0
.7
) 

(0
.2
) 

(0
.1
) 

(0
.0
) 

(0
.1
) 

(4
.1
) 

(1
.5
) 

(1
.3
) 

(0
.2
) 

(0
.0
2)
 

1A
0.
3 

4.
7e
 

1.
11

a  
80

.8
bc
 

8.
3a

b  
9.
6a
 

51
.2

d  
1.
0c
 

2.
0e
 

1.
6b
 

58
2.
5h
 
66

.8
d  

86
.7

cd
e  

19
.9

ab
cd
 
4.
4g
 

 
(0
.7
) 

(0
.1
) 

(1
.1
) 

(0
.7
) 

(0
.9
) 

(0
.0
) 

(0
.1
) 

(0
.4
) 

(0
.1
) 

(2
.9
) 

(1
.9
) 

(0
.0
) 

(2
.0
) 

(0
.0
) 

1A
0.
6 

8.
2d
 

0.
75

bc
 

82
.3

ab
c  

6.
4c

de
 
6.
8b

c  
52

.1
cd
 
0.
8c
 

1.
4e
 

1.
5b
 

64
8.
8g
 
68

.3
d  

85
.7

de
 

17
.4

bc
d  

4.
8f
 

 
(0
.3
) 

(0
.1
) 

(1
.8
) 

(0
.8
) 

(0
.4
) 

(0
.1
) 

(0
.1
) 

(0
.3
) 

(0
.1
) 

(6
.3
) 

(0
.5
) 

(1
.6
) 

(1
.0
) 

(0
.0
2)
 

1A
1 

12
.6

c  
0.
55

cd
ef
 
80

.8
bc
 

4.
0f
 

6.
8b

c  
52

.7
cd
 
1.
1c
 

0.
9e
 

1.
4b
 

55
3.
8i
 

71
.2

bc
d  

81
.4

e  
10

.2
e  

4.
1h
 

 
(1
.3
) 

(0
.1
) 

(1
.9
) 

(0
.2
) 

(0
.5
) 

(0
.8
) 

(0
.1
) 

(0
.6
) 

(0
.2
) 

(4
.8
) 

(0
.2
) 

(1
.3
) 

(1
.1
) 

(0
.0
6)
 

2A
0 

16
.4

b  
0.
57

bc
de
 
82

.7
ab
c  

4.
0f
 

6.
2b

c  
58

.6
b  

1.
8c
 

8.
3d
 

3.
7b
 

74
5.
0e
 
71

.0
bc
d  

94
.5

ab
 

23
.5

ab
 

5.
4d
 

 
(0
.8
) 

(0
.1
) 

(1
.8
) 

(0
.6
) 

(0
.1
) 

(0
.3
) 

(0
.0
) 

(0
.7
) 

(1
.1
) 

(4
.1
) 

(1
.7
) 

(0
.6
) 

(2
.3
) 

(0
.0
) 

2A
0.
3 

26
.5

a  
0.
39

de
f  

85
.4

a  
9.
7a
 

5.
0c
 

58
.9

b  
1.
6c
 

13
.6

c  
3.
3b
 

77
8.
8d
 
70

.8
bc
d  

94
.3

ab
 

23
.5

ab
 

5.
7c
 

 
(1
.1
) 

(0
.0
) 

(1
.2
) 

(0
.9
) 

(0
.3
) 

(0
.4
) 

(0
.1
) 

(2
.1
) 

(0
.3
) 

(4
.8
) 

(0
.6
) 

(4
.1
) 

(3
.5
) 

(0
.0
6)
 

2A
0.
6 

25
.8

a  
0.
34

ef
 

85
.1

ab
 

4.
7e

f  
6.
6b

c  
59

.0
b  

1.
5c
 

2.
4e
 

2.
7b
 

82
6.
3c
 
69

.7
cd
 

94
.3

ab
 

24
.6

ab
 

5.
9b

c  
 

(0
.4
) 

(0
.1
) 

(2
.3
) 

(0
.6
) 

(0
.4
) 

(0
.4
) 

(0
.0
) 

(0
.2
) 

(0
.1
) 

(4
.8
) 

(1
.6
) 

(2
.3
) 

(0
.6
) 

(0
.0
8)
 

2A
1 

25
.2

a  
0.
33

f  
83

.6
ab
c  

4.
9e

f  
5.
5b

c  
59

.9
b  

2.
1c
 

2.
9e
 

3.
0b
 

69
5.
0f
 
75

.9
ab
 

90
.2

bc
d  

14
.3

de
 

5.
1e
 

 
(2
.0
) 

(0
.0
) 

(1
.5
) 

(0
.6
) 

(0
.5
) 

(0
.1
) 

(0
.1
) 

(0
.6
) 

(0
.1
) 

(1
2.
2)
 

(1
.8
) 

(2
.9
) 

(1
.1
) 

(0
.0
1)
 

3A
0 

10
.7

cd
 
1.
11

a  
80

.2
c  

5.
8d

ef
 
7.
2b
 

63
.6

a  
10

.8
a  

21
.5

a  
16

.0
a  

82
1.
3c
 
74

.2
ab
c  

97
.3

ab
 

23
.1

ab
 

5.
9c
 

 
(1
.0
) 

(0
.1
) 

(0
.5
) 

(0
.7
) 

(0
.5
) 

(0
.9
) 

(0
.1
) 

(0
.9
) 

(0
.2
) 

(4
.8
) 

(2
.6
) 

(0
.3
) 

(2
.8
) 

(0
.0
3)
 

3A
0.
3 

9.
6c

d  
0.
80

b  
82

.5
ab
c  

6.
6b

cd
 
7.
3b
 

62
.5

a  
9.
3b
 

15
.6

c  
12

.2
a  

84
7.
5b
 
75

.8
ab
 

97
.3

ab
 

21
.5

ab
c  

6.
2a
 

 
(1
.3
) 

(0
.1
) 

(2
.0
) 

(0
.6
) 

(0
.1
) 

(0
.4
) 

(0
.4
) 

(1
.6
) 

(0
.1
) 

(2
.9
) 

(0
.9
) 

(0
.7
) 

(1
.6
) 

(0
.0
4)
 

3A
0.
6 

10
.5

cd
 
0.
70

bc
 

82
.4

ab
c  

4.
8e

f  
6.
9b
 

64
.1

a  
8.
0b
 

19
.7

ab
 
15

.4
a  

87
2.
5a
 
75

.0
ab
c  

98
.8

a  
23

.7
ab
 

6.
0a

b  
 

(1
.5
) 

(0
.0
) 

(1
.5
) 

(0
.2
) 

(0
.3
) 

(0
.0
) 

(0
.1
) 

(1
.3
) 

(5
.5
) 

(6
.5
) 

(0
.8
) 

(0
.2
) 

(0
.6
) 

(0
.0
) 

3A
1 

11
.4

cd
 
0.
61

bc
d  

82
.8

ab
c  

5.
9d

e  
7.
4b
 

63
.2

a  
8.
7b
 

16
.9

bc
 
14

.2
a  

73
8.
8e
 
79

.5
a  

94
.1

ab
c  

14
.6

cd
e  

5.
5d
 

  
(1
.1
) 

(0
.1
) 

(0
.6
) 

(0
.2
) 

(0
.6
) 

(0
.3
) 

(1
.2
) 

(0
.1
) 

(2
.0
) 

(4
.8
) 

(0
.6
) 

(2
.3
) 

(1
.7
) 

(0
.0
5)
 

48 



49
 

 T
ab

le
 4

. V
is

co
-e

la
st

ic
, f

ar
in

og
ra

ph
 a

nd
 b

ak
in

g 
ch

ar
ac

te
ri

st
ic

s 
in

 c
om

m
er

ci
al

 w
he

at
 fl

ou
rs

 fr
om

 s
ite

 B
, t

re
at

ed
 w

ith
 D

A
T

E
M

 le
ve

ls
. 

M
ea

ns
 w

ith
 s

am
e 

su
pe

rs
cr

ip
ts

 in
 a

 c
ol

um
n 

ar
e 

no
t s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 (P

 >
 0

.0
5)

. T
he

 s
ta

nd
ar

d 
de

vi
at

io
ns

 o
f m

ea
ns

 a
re

 
sh

ow
n 

in
 p

ar
en

th
es

es
. D

ef
in

iti
on

s 
of

 v
is

co
-e

la
st

ic
, m

ix
in

g 
an

d 
ba

ki
ng

 v
ar

ia
bl

es
 d

es
cr

ib
ed

 in
 T

ab
le

 2
. F

lo
ur

 p
ro

te
in

 c
on

te
nt

 
(%

), 
1A

 =
 7

.9
5,

 2
A

 =
 1

1.
19

, 3
A

 =
 1

3.
68

, 1
B

 =
 1

0.
4,

 2
B

 =
 1

0.
59

 a
nd

 3
B

 =
 1

1.
38

, r
es

pe
ct

iv
el

y.
 

 T
R
T
 

V
is
co
-e
la
st
ic
 

F
ar
in
o
g
ra
p
h
 

B
ak
in
g
 

 
S
eP
 

J-
J r
 
%
 R
C
 
T
C
R
 
T
C
C
 

W
A
 

D
T
 

S
T
 

B
T
 

L
V
 

P
H
 

L
H
 

O
P
 

S
V
 

 
(s
) 

(J
) 

(%
) 

(s
) 

(s
) 

(%
) 

(m
in
) 

(m
in
) 

(m
in
) 

(c
c)
 

(m
m
) 

(m
m
) 

(m
m
) 

(c
c/
g
) 

1B
0 

29
.0

ab
 
0.
28

ef
 

86
.5

a  
3.
2e

f  
5.
0a

bc
d  

59
.3

ef
 
1.
5a

b  
1.
8e
 

2.
1c
 

69
6.
3d
 

76
.9

a  
91

.1
ab
c  

14
.2

ab
c  

4.
9e
 

 
(2
.7
) 

(0
.0
) 

(1
.2
) 

(0
.3
) 

(0
.3
) 

(0
.0
) 

(0
.0
) 

(0
.4
) 

(0
.1
) 

(4
.8
) 

(1
.9
) 

(1
.7
) 

(0
.1
) 

(0
.0
) 

1B
0.
3 

29
.6

ab
 
0.
41

de
 
83

.6
ab
 
3.
2e

f  
3.
2d
 

59
.1

f  
1.
5b
 

8.
3d
 

2.
5c
 

71
5.
0b

c  
72

.1
a  

90
.0

bc
 

17
.9

ab
c  

5.
0d

e  
 

(1
.5
) 

(0
.1
) 

(1
.8
) 

(0
.4
) 

(0
.1
) 

(0
.0
) 

(0
.1
) 

(0
.0
) 

(0
.0
) 

(4
.1
) 

(0
.7
) 

(0
.5
) 

(0
.2
) 

(0
.0
6)
 

1B
0.
6 

26
.7

b  
0.
26

ef
 

83
.3

ab
 
5.
2c

d  
7.
0a
 

62
.3

c  
1.
8a

b  
10

.5
d  

3.
7c
 

72
6.
3a
 

78
.7

a  
90

.4
ab
c  

11
.6

bc
d  

5.
1d

e  
 

(2
.7
) 

(0
.0
) 

(0
.8
) 

(0
.1
) 

(1
.6
) 

(0
.1
) 

(0
.1
) 

(0
.2
) 

(0
.5
) 

(2
.5
) 

(1
.4
) 

(2
.7
) 

(4
.0
) 

(0
.0
9)
 

1B
1 

32
.3

a  
0.
23

f  
83

.8
ab
 
5.
5c

d  
4.
1c

d  
62

.3
c  

1.
7a

b  
11

.0
cd
 
9.
9b
 

54
7.
5g

h  
73

.0
a  

77
.0

d  
4.
0d
 

3.
9g
 

 
(3
.8
) 

(0
.0
) 

(2
.0
) 

(0
.3
) 

(0
.2
) 

(0
.3
) 

(0
.0
) 

(0
.5
) 

(1
.4
) 

(6
.5
) 

(1
.5
) 

(4
.1
) 

(2
.5
) 

(0
.0
7)
 

2B
0 

10
.2

cd
 
0.
71

ab
 
80

.8
b  

6.
2b

c  
6.
2a

b  
59

.6
ef
 
1.
9a

b  
10

.4
d  

4.
5c
 

77
2.
5e
 

73
.3

a  
94

.3
ab
c  

21
.0

ab
c  

5.
5c
 

 
(1
.4
) 

(0
.1
) 

(1
.7
) 

(1
.1
) 

(0
.5
) 

(0
.1
) 

(0
.2
) 

(0
.7
) 

(0
.1
) 

(2
.9
) 

(0
.1
) 

(1
.0
) 

(1
.0
) 

(0
.0
2)
 

2B
0.
3 

13
.5

cd
 
0.
59

bc
 

82
.9

ab
 
6.
0b

c  
6.
5a
 

59
.9

e  
1.
5a

b  
12

.8
e  

2.
8c
 

82
1.
3c
 

75
.9

a  
98

.5
ab
 

22
.5

ab
 

5.
9b
 

 
(1
.2
) 

(0
.0
) 

(0
.4
) 

(0
.9
) 

(0
.4
) 

(0
.2
) 

(0
.0
) 

(0
.1
) 

(0
.1
) 

(2
.5
) 

(1
.9
) 

(1
.9
) 

(0
.1
) 

(0
.0
7)
 

2B
0.
6 

24
.9

b  
0.
41

de
 
83

.6
ab
 
5.
5c

d  
4.
4b

cd
 

63
.7

a  
2.
0a

b  
14

.1
bc
 
4.
0c
 

83
3.
8b
 

76
.7

a  
99

.4
a  

22
.7

ab
 

6.
0a

b  
 

(1
.1
) 

(0
.1
) 

(1
.8
) 

(0
.7
) 

(0
.3
) 

(0
.0
) 

(0
.1
) 

(0
.2
) 

(0
.1
) 

(4
.8
) 

(1
.2
) 

(1
.0
) 

(0
.2
) 

(0
.0
7)
 

2B
1 

13
.6

cd
 
0.
37

de
f  
82

.7
ab
 
2.
8f
 

6.
4a

b  
63

.4
ab
 
2.
1a

b  
15

.4
ab
 
12

.5
ab
 
62

7.
5i
 

76
.7

a  
86

.8
c  

10
.1

cd
 

4.
6f
 

 
(1
.0
) 

(0
.1
) 

(2
.8
) 

(0
.8
) 

(1
.1
) 

(0
.0
) 

(0
.1
) 

(2
.5
) 

(1
.4
) 

(6
.5
) 

(0
.9
) 

(2
.7
) 

(1
.8
) 

(0
.0
7)
 

3B
0 

9.
3d
 

0.
83

a  
81

.2
b  

7.
7a

b  
6.
5a
 

60
.6

d  
1.
9a

b  
18

.6
a  

4.
2c
 

79
8.
8h
 

75
.0

a  
95

.5
ab
c  

20
.5

ab
c  

5.
9b
 

 
(1
.0
) 

(0
.1
) 

(2
.0
) 

(0
.1
) 

(0
.8
) 

(0
.1
) 

(0
.1
) 

(0
.8
) 

(0
.2
) 

(2
.5
) 

(0
.2
) 

(2
.0
) 

(1
.8
) 

(0
.0
5)
 

3B
0.
3 

14
.3

c  
0.
64

bc
 

83
.4

ab
 
6.
4a

bc
 
5.
9a

bc
 

61
.2

d  
1.
9a

b  
10

.2
d  

2.
9c
 

83
1.
3f

g  
73

.7
a  

99
.2

a  
25

.6
a  

6.
2a
 

 
(1
.4
) 

(0
.0
) 

(0
.5
) 

(0
.5
) 

(0
.2
) 

(0
.0
) 

(0
.5
) 

(0
.4
) 

(0
.6
) 

(2
.5
) 

(0
.3
) 

(2
.8
) 

(3
.1
) 

(0
.0
) 

3B
0.
6 

15
.4

c  
0.
49

cd
 

82
.6

ab
 
4.
8c

de
 
5.
9a

bc
 

62
.8

bc
 
1.
9a

b  
15

.8
ab
 
14

.9
a  

84
7.
5f
 

73
.4

a  
96

.8
ab
 

23
.4

a  
6.
1a
 

 
(2
.0
) 

(0
.1
) 

(2
.7
) 

(0
.1
) 

(0
.5
) 

(0
.4
) 

(0
.0
) 

(0
.6
) 

(2
.5
) 

(2
.9
) 

(0
.7
) 

(3
.2
) 

(2
.6
) 

(0
.0
2)
 

3B
1 

14
.5

c  
0.
28

de
f  
85

.3
ab
 
4.
5d

e  
5.
2a

bc
 

63
.7

a  
2.
2a
 

15
.9

ab
 
13

.6
ab
 
70

7.
5j
 

78
.8

a  
93

.4
ab
c  

14
.5

ab
cd
 
5.
2d
 

 
(0
.5
) 

(0
.1
) 

(1
.3
) 

(0
.4
) 

(0
.6
) 

(0
.1
) 

(0
.3
) 

(0
.8
) 

(1
.1
) 

(9
.6
) 

(0
.8
) 

(1
.4
) 

(2
.3
) 

(0
.1
) 

49 



50
 

 T
ab

le
 5

. P
ea

rs
on

’s
 c

or
re

la
tio

n 
co

ef
fi

ci
en

ts
 o

f t
he

 v
is

co
-e

la
st

ic
 p

ro
pe

rt
ie

s 
of

 g
lu

te
n,

 d
ou

gh
 a

nd
 b

ak
in

g 
ch

ar
ac

te
ri

st
ic

s.
 D

ef
in

iti
on

s 
of

 
vi

sc
o-

el
as

tic
, m

ix
in

g 
an

d 
ba

ki
ng

 v
ar

ia
bl

es
 e

xp
la

in
ed

 in
 T

ab
le

 2
. 

 
 

S
eP

 
J-
J r
 

R
C
Y
 
T
C
R
 
T
C
C
 

W
A
 

D
T
 

S
T
 

B
T
 

L
V
 

P
H
 

L
H
 

S
V
 
O
S
P
 
F
P
 

S
eP

 
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

J-
J r
 
-0
.8
1*
* 

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

R
C
Y
 

 
-0
.8
2*
* 

1 
 

 
 

 
 

 
 

 
 

 
 

 

T
C
R
 

 
0.
46

* 
 

1 
 

 
 

 
 

 
 

 
 

 
 

T
C
C
 

 
0.
76

**
 
-0
.6
6*
* 

0.
44

* 
1 

 
 

 
 

 
 

 
 

 
 

W
A
 

 
-0
.4
0*
 

0.
35

* 
 

-0
.4
3*
 

1 
 

 
 

 
 

 
 

 
 

D
T
 

 
 

 
 

 
0.
50

**
 

1 
 

 
 

 
 

 
 

 

S
T
 

 
 

 
 

 
0.
78

**
 
0.
64

**
 

1 
 

 
 

 
 

 
 

B
T
 

 
 

 
 

 
0.
71

**
 
0.
73

**
 
0.
80

**
 

1 
 

 
 

 
 

 

L
V
 

 
 

 
 

 
0.
60

**
 

0.
44

* 
0.
59

**
 

 
1 

 
 

 
 

 

P
H
 

 
-0
.5
7*
* 

0.
46

* 
 

-0
.4
4*
 
0.
77

**
 

0.
35

* 
0.
56

**
 
0.
46

* 
0.
43

* 
1 

 
 

 
 

L
H
 

 
 

 
 

 
0.
53

**
 

0.
41

* 
0.
57

**
 

 
0.
95

**
 
0.
41

* 
1 

 
 

 

S
V
 

 
 

 
 

 
-0
.5
4*
* 

0.
42

**
 
0.
52

**
 

 
0.
99

**
 
0.
39

* 
0.
95

**
 

1 
 

 

O
S
P
 

 
0.
50

**
 

 
0.
36

* 
 

 
 

 
 

0.
64

* 
0.
35

* 
0.
71

**
 
0.
68

**
 

1 
 

F
P
 

 
 

 
 

 
0.
82

**
 
0.
80

**
 
0.
77

**
 
0.
72

**
 
0.
73

**
 
0.
61

**
 
0.
67

**
 

 
 

1 
 *C

or
re

la
tio

n 
is

 s
ig

ni
fi

ca
nt

 a
t α

 =
 0

.0
5 

le
ve

l  

**
C

or
re

la
tio

n 
is

 s
ig

ni
fi

ca
nt

 a
t α

 =
 0

.0
1 

le
ve

l  

50 



51 
 

Table 6.  Explained variance (%) in PCA of visco-elastic, mixing and baking variables in 
gluten and flours treated with DATEM. Definitions of visco-elastic, mixing and baking 
variables explained in Table 2. 
 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 39.9 26.9 66.8 

     
Visco-elastic  SeP        0.31 69.79 70.1 

  J-Jr        2.78 87.11 89.89 

  RCY        5.14 48.09 53.23 

  TCR        1.34 28.22 29.56 

  TCC        6.97 60.8 67.77 

     
Farinograph  WA         76.68 9.1 85.78 

  DT         46.07 11.8 57.87 

  ST         64.66 1.03 65.69 

  BT         46.66 0.28 46.94 

     
Baking  PH         46.89 22.9 69.79 

  LH         63.62 8.73 72.35 

  SV         69.03 6.74 75.77 

  OSP         8.68 44.93 53.61 

  LV         72.93 3.42 76.35 
      
Protein Content  FP         87.07 0.43 87.5 
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Fig. 1. A graphical representation of creep recovery behavior of gluten
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Fig. 2. Loading plot of first two principal components based on baking, visco-elastic and 
dough properties of six commercial wheat flours obtained from sites A and B, added with 
three levels of DATEM. Definitions of visco-elastic, mixing and baking variables 
explained in Table 2. Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 
10.4, 2B = 10.59 and 3B = 11.38, respectively. 
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Abstract 

 Effect of oxidizing agent, ascorbic acid was evaluated on the visco-elastic 

properties of gluten and mixing and baking properties of dough in hard red winter wheat 

flours obtained from two different sources. Ascorbic acid was added to gluten and wheat 

flours at the levels of 0, 50, 100, 150 and 200 ppm. Creep-recovery measurements were 

performed to investigate the effect of ascorbic acid on visco-elastic properties of gluten. 

Mixing properties of wheat flours were evaluated using the Farinograph measurements. 

Baking characteristics were measured after the wheat flours were baked using an 

optimized straight dough bread making method. No significance changes in creep and 

recovery compliance were observed except ascorbic acid decreased compliance 

(increased elasticity) in site A flour with 8% protein content by 35% with 50 ppm and site 

B flour with 11.5% protein content by 32% with 150 ppm, respectively. No specific 

trends were observed in separation time and delta compliance of gluten with ascorbic 

acid addition. An overall significant reduction of recoverability of gluten with ascorbic 

acid was observed. Rate of creep and recovery indicated by changes in time constants for 

creep and recovery showed no specific trend with ascorbic acid addition. No clear trend 

was observed in the mixing properties of flour with addition of ascorbic acid. Loaf 

volumes, loaf heights, oven springs, specific volumes and proof heights in all flours 

showed significant (P < 0.05) increase at 100 to 150 ppm ascorbic acid levels. Loaf 

volumes increased in all flours (3 to 13% range) with 100 to 150 ppm ascorbic acid 

levels. All flours showed a sharp decrease in loaf properties like volume, height, proof 

height, oven spring and specific volume with 200 ppm. Pearson correlation coefficients 

and principal component analysis indicated that increase in oven springs were associated 



56 
 

with increase in viscosity of dough and weakening of gluten. Oven spring was 

significantly (P < 0.01) negatively correlated to elasticity properties of gluten, percent 

recoverability (r = -0.57). Separation time showed weak but significant correlation with 

proof heights (r = 0.38, P <0.05) and highly significant correlation with specific volume 

(r = -0.61, P < 0.01). All other visco-elastic properties were independent of baking and 

mixing properties. Mixing properties were found to be negatively correlated to baking 

properties and flour protein content with addition of ascorbic acid flours. Oxidizing effect 

of ascorbic acid at the levels of 50 to 100 ppm improved the quality baking performance 

in wheat flours. Rise in oven spring and specific volumes were closely associated with 

increase in viscous component of gluten with ascorbic acid addition. 
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1. Introduction 

Flour quality and dough strength are important characteristics of baked bread. 

Ascorbic acid is used as one of the dough improvement additive by the baking industry. 

Many studies have been performed to understand the mechanism of ascorbic acid in 

enhancing the quality of dough. Reduction-oxidation reactions takes place during mixing 

and water addition involving the sulphydryl (SH) residues and disulfide (SS) linkages in 

gluten. These reactions modify the polymeric fraction of gluten leading to the changes in 

gluten visco-elasticity (Chen & Schofield, 1996). The reaction sequence that follows the 

addition of ascorbic acid to dough was reviewed by Grosch and Wieser (1999). L-

Ascorbic acid (L-AA) interacts with oxygen during mixing and is oxidized to L-

dehydroascorbic acid (L-DHA). The endogenous glutathione (GSH) in flour is converted 

to its oxidized disulfide derivative GSSG catalyzed by glutathione reductase GSH-DH 

and L-DHA as its co-substrate. This causes SH/SS exchange by the reaction of GSSG 

with SH groups of proteins. The dough improver effect of L-AA is due to the oxidation 

of GSH to GSSG and rapid blocking of SH groups in gluten (Grosch et al., 1999). Free 

GSH weakens the dough by cleaving the intermolecular SS bonds in glutenin causing 

depolymerization (Chen et al., 1996). Another theory proposed by Tilley et al. (2001) 

suggested that tyrosine cross-linkage along with disulfide linkage could be equally 

contributing towards the strengthening effect of dough. Dityrosine an isomer of tyrosine 

was found in sections of glutenin is a source of tyrosine crosslinking among gluten 

proteins. The microbial enzyme transglutaminase improves the dough properties during 

mixing via a non oxidative cross linking (Gerrard, Fayle, Wilson, Newberry, Ross & 

Kavale, 1998). Transglutaminase catalyses the acyl-transfer reaction between the γ-

carboxyamide group of peptide bound glutamine residues and various primary amines. 
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The ε-amino groups of lysine residues in proteins can act as the primary amine, yielding 

inter- and intramolecular ε -N-glutamyl lysine crosslinks. 

There is very little evidence available on the action of ascorbic acid (AA) in 

visco-elasticity of gluten and its correlation to breadmaking process. The objectives of 

this study are 1) to investigate the effect of ascorbic acid on visco-elastic properties of 

gluten extracted from flours with different protein content from different locations; 2) to 

quantify the effect of ascorbic acid on visco-elastic properties of gluten using creep 

recovery and 3) to correlate the visco-elastic changes in gluten induced by ascorbic acid 

with baking performance of the flours. 

2. Materials and Methods 

The procurement of wheat flour samples are explained in methods and materials section 

of chapter 3. 

 Four levels (50, 100, 150 and 200 ppm) of ascorbic acid (Malinckrodt Baker Inc., 

Phillipsburg, NJ 08865), were added to flours from each source.  Thus, site A flours were 

denoted as 1A0, 1A50, 1A100, 1A150 and 1A200; 2A0, 2A50, 2A100, 2A150 and 

2A200; 3A0, 3A50, 3A100, 3A150 and 3A200, respectively. Similarly site B flours were 

named, 1B0, 1B50, 1B100, 1B150 and 1B200; 2B0, 2B50, 2B100, 2B150 and 2B200; 

3B0, 3B50, 3B100, 3B150 and 3B200, respectively. Flours and gluten isolated from 

flours with no AA were used as controls. The protein, moisture and ash contents were 

determined using the NIR system (FOSS NIR Systems Inc, Laurel, MD 20723) as shown 

in Table 1 (Chapter III).  
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2.1.       Gluten extraction 

 Glutens were prepared in triplicates in an automated gluten washer, Glutomatic 

2200 (Perten Instruments, Sweden) from 10 g of flour and 5.0 mL of AA solution (0.05, 

0.1. 0.15 and 0.2 g ascorbic acid in 500 ml 2% salt solution) using a mixing time of 60 

sec and washing for 10 min with 2% NaCl solution (w/v). Control samples were mixed 

with 5.0 ml of pure deionized water. 

2.2.  Creep recovery tests 

 The creep recovery experiments were carried out as described in Chapter III. The 

definitions of visco-elastic parameters are explained in Table 2, Chapter III. 

2.3.  Dough mixing properties 

 One ml of AA (0.05, 0.1, 0.15 and 0.2 g per 100 ml deionized water) was added 

to 10 g of wheat flour. Dough mixing properties were evaluated as described in Chapter 

three. Definitions of the terms used to describe dough mixing properties as explained in 

Table 2, Chapter III. 

2.4.    Baking tests 

 Baking tests were performed as explained in chapter 2. The definitions of baking, 

dough mixing and visco-elastic are explained in Table 2 (Chapter III). 

3. Statistics 

Statistical analysis is performed using same methods explained in chapter III. 

4. Results 

4.1. Visco-elastic properties 

Effects of ascorbic acid on the visco-elastic properties of gluten varied and were 

dependent of protein content, protein quality and source of the flours. Gluten strength 
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increased in form of recovery compliance reduction by 35% in 1A flours with addition of 

50 ppm AA and by 32% in 3B flours with 150 ppm AA (Fig. 4 and 5. Appendix1). No 

significant gluten strengthening reduction, i.e. decrease in recovery compliance was 

observed in other flours. AA at 200 ppm weakened the gluten in all flours.  

Significant interactions were observed in the visco-elastic properties of gluten 

extracted from flours of different protein content and ascorbic acid addition (Appendix 2, 

Table 2) except for time constants for creep in site B. Elasticity decrease estimated as 

SEP was observed in 1A, 2A, 3A and 1B gluten by 43.1, 83.5, 64.4 and 70% at 100 ppm 

AA levels, respectively (Tables 1 and 2). Gluten from 2B showed increased viscosity 

with reduction in SEP at 200 AA levels by 74.5%. Similarly, reduction in J-Jr as a 

function of elasticity was observed in 1A and 3B at 50 ppm and 150 ppm AA levels by 

30 and 40%, respectively (Tables 1 and 2). AA levels of 200 ppm decreased the 

recoverability in gluten in all flours significantly. Ascorbic acid reduced the time constant 

for creep by 43% in 1A gluten enhancing its ability to respond to stress at a faster rate 

compared to creep rates of gluten from other flours (Table 1). A significant protein and 

treatment effects were observed in TCC (Appendix 2, Table 3). Low protein from site B 

had significantly low time constant (TCC) of 5.4 min compared to medium protein level 

while AA level of 200 ppm increased significantly the deformation rate to 11.85 s 

compared to controls (Appendix 3, Table 2). Time constants for recovery reduced in 1A 

and 3B flours significantly at 50 and 100 ppm AA levels by 48 and 69%, respectively 

(Tables 1 and 2). Gluten from other flours showed slow recovery rates at increased AA 

levels. 
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4.2. Dough mixing properties 

Significant interactions were observed in the mixing properties of flours of 

different protein content and ascorbic acid addition (Appendix 2, Table 2) except dough 

development time (DT) in site B. Water absorption in 1A and 3B flours decreased in 6 

and 3%, respectively where AA was added at levels of 200 ppm (Tables 1 and 2). In 

contrast, 3A flour had 2.3% higher water absorption at 200 ppm AA concentrations 

(Table 1). Dough stability increased in 1A flour by 52.3% at 50 ppm ascorbic acid 

addition (Table 1). In site B flours, dough stability decreased in high protein flour with 

the addition of AA, with 80% decrease at 200 ppm. Similarly, dough breakdown time 

showed no major differences in flours from sites A and B with ascorbic acid treatment. 

The development time of high protein in site A decreased by 56% with 50 ppm AA 

(Table1). No significant differences were observed in the flour protein and ascorbic acid 

treatment interaction in dough development time as well as the protein and ascorbic acid 

treatment effects in site B flours (Appendix 2, Table 2). 

4.3. Baking characteristics 

Significant interactions of flour protein content and ascorbic acid addition in 

baking properties were observed except proof heights in both sites and specific volumes 

in site A (Appendix 1, Table 2). The addition of AA to flours from both sites A and B 

produced an increase in bread loaf volume up to 150 ppm (Table 1 and 2.). With the 

addition of 200 ppm, the bread volume decreased. The increased loaf volumes were 

obtained with 100 ppm and 150 ppm of AA, except for one sample, 3A flour, in which 

loaf volume was obtained with 50 ppm AA (Table 1.). Breads from 1A, 2A and 3A flours 

showed loaf volume increase up to 13, 9 and 7% respectively with addition of AA. Loaf 
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volumes increased in 1B, 2B and 3B with 100 ppm AA by 6.5, 8.7% and 2.9%, 

respectively. Significantly high PH (P < 0.05) was observed in controls (treatment effect) 

with77.01 and 77.77 mm of all treatments levels (Appendix 3, Table 2) in sites A and B, 

respectively. High protein (protein effect) had significantly high proof height (76.1 mm, 

P < 0.05) among all protein contents (Appendix 3, Table 2). Loaf heights (LH) increased 

up to the addition of 100 ppm AA and decreased with higher concentrations in all the 

flours in sites A and B (Tables 1 and 2). Loaf height increased with AA additions by 7%, 

4% and 5% in 1A, 2A and 3A, respectively at 100 ppm. In site B flours, increase in loaf 

heights with 100 ppm AA was observed in 1B, 2B and 3B was 9%, 3.6% and 2%, 

respectively. Oven springs also known as oven spring, increased with 50 ppm AA levels 

in all flours from site A (56, 40 and 34% in 1A, 2A and 3A, respectively) and 100 ppm 

levels in flours from site B (53, 12 and 19% in 1B, 2B and 3B, respectively). No 

significant differences were observed in the flour protein and ascorbic acid treatment 

interaction in specific volumes as well as the protein and ascorbic acid treatment effects 

(Appendix 2, Table 2). Specific volumes significantly increased in all site B flours at 100 

ppm AA levels (Table 2).  

4.4. Correlations and PCA 

Significant negative correlations were observed among baking properties and 

dough mixing characteristics (Table 3). The most dough improvement and gluten 

strengthening were observed at AA levels of 50 ppm. Effects of levels of AA higher than 

100 ppm were negatively influencing the baking properties and weakened gluten by 

increasing its compliance. Dough mixing properties were highly negatively correlated to 

flour protein content. Weak negative correlation between J-Jr and PH (r = -0.33 at P < 
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0.05) indicated the response of proof height during fermentation was inversely related to 

increased elasticity. Elasticity of gluten in form of separation time (SeP) had weak 

positive correlation with proof heights (r = 0.38, P < 0.05) and strong negative correlation 

to specific volume (r = -0.61, P < 0.01) as shown in Table 3. Increase in oven spring 

(OSP) could be contributing to increase the viscosity in gluten at AA levels above 100 

ppm as significant correlations were observed with J-Jr (r = 0.36 at P < 0.05) and RCY (r 

= -0.57 P < 0.01), respectively (Table 3).  

Principal component analysis (PCA) was performed in order to classify the 

samples on basis of visco-elastic performance of gluten, mixing characteristics of the 

flours and baking properties of the flours with addition of AA. PCA grouped the linear 

combinations visco-elastic, farinograph and baking variables into principal components 

captured maximum variance. Principal components 1 and 2 (Fig.1) accounted for 66.2% 

of the total variance with 39.9% variance explained by PC1 and 26.3 % variance 

explained by PC2. The majority of PC1 was influenced by linear combinations of flour 

protein content (87.3% explained variance), followed by dough breakdown time, dough 

development time, loaf heights and loaf volume (Table 4). PC2 was clearly related to the 

visco-elastic properties dominated by SeP at 80.7% explained variance followed by delta 

compliance and recoverability (RCY) at 78.4 and 73.1% explained variance, respectively 

(Table 4). Confirming the results from Pearson’s correlation coefficient (Table 3), flour 

protein was highly positively correlated to baking properties and negatively correlated to 

the dough mixing properties. Visco-elastic properties were independent of baking and 

mixing properties with one exception. The oven springs were found to positively 

correlate with ∆ compliance (viscosity) and negatively correlated to recoverability.  
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Low protein site A flours showed higher positive correlation to dough mixing 

properties and negative correlation to baking properties at 0 and 50 ppm. Similarly, high 

protein flours from site A showed very high positive correlations with baking properties 

and negative correlations at 50 ppm. As AA levels increased 1A and 3A samples became 

independent of mixing and baking properties. Low protein site B flours added with AA 

were independent of baking and mixing properties but were highly correlated to the 

elasticity of gluten.  

5. Discussion 

The oxidizing effect of ascorbic acid had a variable effect in the visco-elastic, 

mixing and baking properties on the set of samples analyzed. The ability of AA to 

improve the loaf volumes differed with protein content and the sites of procurement of 

flours.  Conforming to our study, the ability of ascorbic acid to strengthen the dough from 

lower protein flours more than higher protein flours was also observed in hearth loaves 

bread (Aamodt, Magnus & Faergestad, 2003). Overall, the flour protein quality as 

measured by mixing baking and visco-elastic properties, improved by the oxidation of 

sulphydryl to disulfide bonds due to blending of local cultivars. The concentration of AA 

in our study in different processes of baking was found to be optimum at 50 -100 ppm 

that could be the highest levels of AA to convert the GSH to GSSG and bring a positive 

effect on dough strength. The results agreed with Koehler (2003b) who reported that AA 

levels of 125 ppm were optimum to improve on dough structure and visco-elastic. 

Oxidizing agents promote SS bond formation and, hence, minimize SH/SS interchange 

with positive impacts on oven spring and oven spring time (Joye, Lagrain & Delcour, 

2009). Our study agreed that ascorbic acid treatments affected the oven springs positively 
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which could be due to promotion of SS bond formation. Rise in oven spring was one of 

the prominent baking properties that were highly correlated to decreased elasticity in our 

study. Increased oven spring along with loaf volumes was extensively observed with AA 

additions of 15 ppm (Yamada & Preston, 1994). High concentrations of AA increased 

gluten viscosity may be responsible for the increasing oven spring as observed in the 

baking performance of flours. The baking process in this study was carried out at room 

temperature. However, a study by Li et al. (2004) compared the formation of oxidized 

glutathione GSSG at 25 C and 40 C, reported 70% higher GSSG formation at 40° C.  

Gluten strength of low protein flour from site A (FP = 8%) improved with 50 ppm AA. 

Similar trend was reflected in baking properties where increase in loaf volumes and loaf 

heights was more pronounced in low protein content flours. Oxidized AA (DHAA) reacts 

rapidly with GSH to form GSSG and inhibits depolymerization of glutenin 

intermolecular disulfide linkages that makes the dough weak (Joye et al., 2009). Koehler 

(2003a) reported that AA levels of 100 and 125 ppm decrease the GSH and increased 

cysteine residues that bind to protein SH groups and found a strong correlation between 

flour protein quality and sulfahydril (SH) concentration. Koehler (2003a) reported similar 

ability of AA at optimized concentrations to improve the quality of lower protein content 

flours with increased concentration of SH groups of glutenins than high protein content. 

During mixing ascorbic acid rapidly consumes free oxygen radicals and gets oxidized to 

DHAA which in turn oxidize reform sulfyhydril (-SH) bonds to disulfide linkages. But at 

high concentration of AA and limited mixing time can yield limited oxygen for reactions 

thus allowing only partial oxidation of AA to DHAA. The non oxidized AA could act as 

reducing agent and reverse the reaction of disulfide interchange back to glutathione. The 
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bread qualities in form of loaf volumes and heights as well as visco-elastic properties of 

gluten were negatively affected at 150 to 200 ppm of ascorbic acid levels in this study. 

Concentration of oxygen available after mixing can be limited due to competition 

between ascorbic acid and yeast (Lu & Seib, 1998). Lu and Seib (1998) reported that 

only 33% of DHAA was formed from 200 ppm ascorbic acid level due to limiting 

oxygen availability during mixing. The study of Lu and Seib (1998) further reported that 

addition of 25 ppm of DHAA produced loaf volumes of 930 cc while 25 ppm of non 

oxidized AA produced loaf volumes of 730 cc. Thus the improver action of ascorbic acid 

depended mostly on the availability of oxygen during mixing. It is possible that gluten 

being a single isolated functional ingredient of flour may require low amounts of ascorbic 

acid concentrations to bring about strengthening effect. The ability of ascorbic acid to 

bring to improve visco-elasticity in gluten depends on the quality of gluten of which 

available SH residues in the glutenin sub fractions is an important factor. Significant 

negative correlations of baking parameters with dough mixing properties (Table 3 and 

Fig. 4) could suggest that the ability of AA at higher levels diminishes due to increased 

competition to react with oxygen. When oxygen is limiting, AA has a reducing effect 

during mixing, and weakening of the gluten network occurs (Li, Li, Tsiami & Schofield, 

2000). Decreased proof heights explained minimal role of AA in gas stabilization. 

Wikstrom and Eliasson (1998) reported higher increase in loaf volumes in low protein 

(FP = 8%) and medium protein (FP = 11.2%) winter wheat flours similar to the protein 

contents of 1A and 3B by 19% and 51%, respectively. Wikstrom and Elliasson (1998) 

also reported that stress relaxation measurements after a large strain decreased relaxation 

rate in dough from high, medium and low protein flours with the effect less pronounced 



67 
 

in low protein flour. Our study in contrast with Wikstorm and Eliasson’s (1998) 

observation that rate at which gluten deformed and recovered accelerated to reach 

equilibrium at AA levels of 150 ppm and above in low protein flours and showed no 

differences in higher protein flours. 

6. Conclusions 

Effect of ascorbic acid as a dough improver is effective at concentrations less than 

100 ppm. Ascorbic acid improved baking performance of low protein flours effectively. 

Response of the flours to ascorbic acid treatment was a function of quality of the protein 

as well as the content. Addition of ascorbic acid modified gluten viscosity which in turn 

increased the rise of loafs in the oven. Gluten strengthening by ascorbic acid was 

effective at low concentrations in low protein content flours and higher concentrations as 

protein level increased. Relationship of gluten strengthening was observed with baking 

performance in low protein flours to be more efficient than higher protein. Although, 

visco-elastic and baking variables had very few individual correlations, flours from both 

sites with range of 10.5 to 11% protein content and ascorbic acid concentrations  of 50 to 

150 ppm were found to be correlated to visco-elastic changes in gluten. 
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Table 4.  Explained variance (%) in PCA of visco-elastic, mixing and baking variables in 
gluten and flours treated with ascorbic acid. Definitions of visco-elastic, mixing 
and baking variables explained in Table 2, Chapter III. 

 

Ascorbic acid 
Axes PC1 PC2 1+2 
PC (%) 39.89 26.30 66.19 

     
Visco-elastic  SeP        1.52 80.74 82.26 

  J-Jr        1.76 78.45 80.21 

  RCY        0.11 73.13 73.24 

  TCR        4.63 44.27 48.90 

  TCC        0.49 41.93 42.42 

     
Farinograph  WA         70.38 3.35 73.73 

  DT         77.81 2.88 80.69 

  ST         65.17 2.96 68.13 

  BT         87.04 0.57 87.61 

     
Baking  PH         63.43 6.58 70.01 

  LH         60.97 10.89 71.86 

  SV         70.88 3.34 74.22 

  OSP         2.11 43.67 45.78 

  LV         4.76 0.01 4.77 
   
Protein content  FP         87.30 1.69 88.99 
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Fig. 1. Loading plot of first two principal components based on baking, visco-elastic and 
dough properties of six commercial wheat flours obtained from sites A and B, 
added with four levels of ascorbic acid. Definitions of visco-elastic, mixing and 
baking variables explained in Table 2, Chapter III. Flour protein content (%), 1A 
= 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B = 11.38, 
respectively. 
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CHAPTER V 
 

EFFECT OF UREA ON MIXING AND BAKING PROPERTIES IN WHEAT FLOURS 
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Abstract 

 Effect of urea was evalulated on the visco-elastic properties of gluten and mixing 

and baking properties of dough in hard red winter wheat flours obtained from two 

different sources. Urea was added to gluten and wheat flours at the levels of 0, 0.5, 1 and 

1.5 M concentrations. Creep-recovery measurements were performed to investigate the 

effect of urea on visco-elastic properties of gluten. Mixing properties of wheat flours 

were evaluated using the Farinograph measurements. Baking characteristics were 

measured after the wheat flours were baked using an optimized straight dough bread 

making method. An overall increase (25 to 27% range) in recovery compliance of gluten 

with urea in most flours with few exceptions indicated the weakening of gluten. Overall 

significant decrease (33 to 65%) in separation time of gluten in all flours with few 

exceptions was observed (P < 0.05). Changes in delta compliance due to urea addition to 

gluten did not indicate a specific change. Time constants for creep and recovery increased 

(25 to 50% range) indicating a slowdown in rates at which gluten deformed and 

recovered in most cases except a few. Urea addition resulted in a general decrease in 

dough stability in most flours except in site A flour with 11.5% protein content which 

showed increase in stability by 53% at 1 M urea. Water absorption ability of all flours 

decreased (1.5% to 4% range) with urea addition. Dough development time was found to 

be significantly correlated to delta compliance (r = -0.57, P <0.01) indicating decrease in 

development time could be attributed to increase in viscous component of gluten induced 

by urea addition. Loaf characteristics such as loaf heights, loaf volumes, specific 

volumes, oven springs and proof heights decreased significantly (P <0.05) with urea 

addition. A sharp significant decrease in loaf volumes (18 to 38% range) and oven 
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springs (79 to 87% range) was observed with urea addition. Weak but significant 

correlations (P < 0.05) of visco-elastic properties such as creep and recovery time 

constants and percent recoverability of gluten with proof heights and loaf heights were 

observed. Correlation of recoverability of gluten with proof heights (r = 0.38) and loaf 

heights (r = 0.39) indicated decrease in elastic recovery in gluten could be associated with 

decreased proof and loaf heights of dough due to urea addition. A negative correlation of 

recovery time constants of gluten with proof heights (r = -0.40) and loaf heights (r = -

0.39) suggested that baking properties were affected due to the rate at which the gluten 

recovered was slowed down by urea addition. Urea addition in gluten extracted from all 

flours decreased its overall strength and rate at which the gluten deformed and recovered 

which could be attributed to the poor baking performance and loaf qualities of the wheat 

flours. 
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1. Introduction  

Urea is widely used as denaturant agents, but it is still not clear by which 

molecular mechanism they denature proteins. It is well known that the solubility of most 

protein side chains and backbone increases with denaturant concentration It has been 

shown that these urea concentrations are high enough (i) to destabilize many proteins and 

enzymes (Finer, Franks & Tait, 1972), (ii) to interfere with protein–ligand interactions 

(Yancey & Somero, 1978), (iii) to perturb conformation and assembly state of urea-

sensitive proteins (Yancey & Somero, 1980), and (iv) to offer competitive inhibition of 

enzymes (Yancey et al., 1978). Urea is understood to disturb the ability of water to 

maintain the tetrahederal hydrogen bonding (Caballero-Herrera, Nordstrand, Berndt & 

Nilsson, 2005). Urea competes with water molecule and has a tendency to form hydrogen 

bonds with peptide units faster than water (Tobi, Elber & Thirumalai, 2003). It has also 

been suggested that urea induces a denaturation process of electrostatic character by 

adhering on the surface of charged residues, leading to repulsion between residues. The 

result of the repulsion is an opening to water into the protein interior that will provoke the 

unfolding (Tobi et al., 2003).It has been generally accepted that gluten play a key role in 

determining the unique baking quality of wheat by conferring water absorption capacity, 

cohesivity, viscosity and elasticity on dough. The visco-elastic properties of gluten enable 

the wheat dough to be processed into a range of food products including bread, pasta, and 

noodles. Gluten is made up of monomeric gliadins and polymeric glutenin fractions. The 

gliadins are considered to impart viscous properties to dough and the polymeric glutenins 

elastic properties. One group of glutenin proteins, the HMW subunits, has been shown to 

play a major role in determining dough elasticity (Shewry, Halford, Belton & Tatham, 
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2002b). A large number of gene sequences are now available for HMW subunits, 

showing that they typically comprise between 630 and 820 amino acids, with Mr ranging 

from 67,500 to 88,000 (Shewry, Halford, Tatham, Popineau, Lafiandra & Belton, 2003). 

Their sequences can be divided into three domains; an extensive central domain consists 

of repeated sequences based on two or three peptide motifs, hexapeptides, nonapeptides 

and tripeptides which vary in length from 420 to 700 residues. These repetitive domains 

are flanked by shorter non-repetitive domains which vary in length between 81 to 104 

residues at the N-terminus and 42 residues at the C-terminus. The non-repetitive N- and 

C-terminal domains contain most or all of the cysteine residues available for inter-chain 

covalent bonding. The repetitive domains of the molecules contain many hydrophilic 

glutamine residues that can interact with the  solvent (water) or form intermolecular 

hydrogen bonds, leading to nonentropic interactions (Feeney et al., 2003). High-MW 

glutenin subunits join end-to end through disulfide bonds to provide a sort of backbone to 

the gluten complex. Low-MW glutenin subunits are also crosslinked through disulfide 

bonds into the protein network. The smaller spherical gliadin molecules are incorporated 

into gluten primarily through noncovalent (hydrogen and hydrophobic) bonds (Bietz & 

Lookhart, 1996). The ultimate structure and properties of gluten may depend on the 

amounts and types of specific proteins that are present. Thus, even slight changes in type 

or amount of key subunits can markedly change gluten's quality or functionality. Belton 

et al. (1995b) proposed a model for structure and function of glutenin. This model 

postulated that repetitive domains of glutenin that do not interact with other chains are 

called as loops and are mobile sections of polymer. During extension (or dough mixing) 

the subunits become aligned, resulting in the formation of more rigid intermolecular β-
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sheet also termed as train structures stabilized by interchain hydrogen bonds and 

corresponding decreases in β-turn (loop) structures (Belton, 1999). The glutenin structure 

as a whole is made up of entanglements of long peptide chains end linked by disulfide 

bonds to N and C terminals and crosslinked by hydrogen bonding among glutamine 

residues of repetitive portions of chains. Working or stretching of the dough extends the 

loops, and the trains are pulled apart, allowing the proteins to slide along one another 

(Edwards et al., 2003). Reestablishment of the train-loop equilibrium, driven by 

conformational entropy of the loops and the enthalpy of the inter-chain hydrogen bonds, 

provides elastic recovery. However, if the secondary cross-links are completely disrupted 

during processes of baking by temperatures and pressures, the quality of the loaf will be 

affected. There are very few studies that investigated the effect of disrupted non covalent 

bonds on the visco-elastic properties of gluten and performance of wheat flours.  

The objective of this study was assess the effect of urea on visco-elastic properties 

of gluten using creep-recovery, mixing and baking properties of commercial hard red 

winter wheat flours by breaking the non-covalent hydrogen bonding in dough. 

2. Materials and Methods 

 The procurement of wheat flour samples are explained in materials and methods 

section of chapter III. 

 Three levels (0.5, 1 and 1.5 M) of urea (VWR International Inc., West Chester, 

PA 19380), were added to flours from each source.  Thus, site A flours were denoted as 

1A0, 1A0.5, 1A1 and 1A1.5; 2A0, 2A0.5, 2A1 2A1.5; 3A0, 3A0.5, 3A1, 3A1.5, 

respectively. Similarly site B flours were named, 1B0, 1B0.5, 1B16 and 1B1.5; 2B0, 

2B0.5, 2B1 and 2B1.5; 3B0, 3B0.5, 3B1and 3B1.5, respectively. Flours and gluten 
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isolated from flours with no AA were used as controls. The protein, moisture and ash 

contents were determined using the NIR system (FOSS NIR Systems Inc, Laurel, MD 

20723) as shown in Table 1 (Chapter III). This design was implemented in gluten visco-

elastic, dough farinograph tests and baking tests. 

2.1.  Gluten extraction 

 Glutens were prepared in triplicates in an automated gluten washer, Glutomatic 

2200 (Perten Instruments, Sweden) from 10 g of flour and 5.0 mL of urea solution (3, 6, 

and 9 g urea in 100 ml 2% salt solution) using a mixing time of 60 sec and washing for 

10 min with 2% NaCl solution (w/v). Control samples were mixed with 5.0 ml of pure 

deionized water. 

2.2.  Creep recovery tests 

 The creep recovery experiments were carried out as described in Chapter III. 

2.3. Dough mixing properties 

 One ml of urea (3, 6 and 9 g per 100 ml deionized water) was added to 10 g of 

wheat flour. Dough mixing properties were evaluated as described in Chapter III. 

2.4.    Baking tests 

 Five ml of urea solution (3, 6 and 9 g urea in 100 ml deionized water) was added 

to the flour. Baking tests were performed as explained in chapter 2. The definitions of 

baking, dough mixing and visco-elastic are explained in Table 2 (Chapter III). 

3. Statistics 

Statistical analysis is performed using same methods explained in chapter III. 

 

4. Results 
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4.1. Visco-elastic properties 

Urea levels affected the recovery compliance of gluten extracted from site A 

flours very differently with different protein levels. A significant decrease in recovery 

compliance (P < 0.05) by 39% with 1.5 M urea was observed in 1A gluten (Appendix 1, 

Fig. 6). In 2A and 3A gluten, 0.5 M urea significantly increased the recovery compliance 

by 27% (Appendix 1, Fig. 6). No significant differences in recovery compliance of gluten 

extracted from 1B were seen with urea addition. Urea level of 1.5 M increased the 

recovery compliance of gluten from 2B flours significantly by 25% (Appendix 1, Fig 7). 

Gluten extracted from high protein flour from site B strengthened with decrease in 

recovery compliance by 40% with 0.5 M urea and 20% with 1 M urea, respectively 

(Appendix 1, Fig 7). 

Significant interactions among flour protein contents and urea levels in the visco-

elastic properties of gluten were observed except for recovery time constants in site A 

(Appendix 2, Table 3). Delayed elasticity of gluten from 2A, 3A and 1B decreased in 

form of separation time (SeP) by 32.3, 65.4, and 33.1% with urea addition of 1, 0.5 and 

1.5 M, respectively (Tables 1 and 2). On the contrary, SeP increased in 3B with 0.5 M 

urea by 46.8% (Table 2). Delta compliance (J-Jr) decreased in gluten from 1A suggesting 

increased elasticity by 42% with 1.5 M urea concentration (Table 1). No significant 

change was observed in J-Jr of gluten from 2A with urea addition. Gluten elasticity of 3A 

decreased with 1.5 M urea levels as delta compliance increased by 23% (Table 1). No 

significant changes were observed in delta compliance of gluten from 1B. Elasticity 

increased in gluten from 3A as SeP increased by 79.4% and J-Jr decreased by 44% with 

0.5 M urea concentrations (Table 2). 



83 
 

An increase of 5% in percent recoverability was observed in gluten from 3A flour 

at 1 M urea level (Table 1). No significant differences were seen in percent recoverability 

of gluten extracted from other flours from both sites with urea. There was no significant 

interaction in recovery time constants (TCR) in gluten from site A flours (Appendix 2, 

Table 3). A significant protein effect was observed in which mean recovery rates (TCR) 

of gluten from 1A flours were 50 and 34% longer than those of gluten from 1A and 3A, 

respectively (Table 1). The rate at which the gluten recovered in 2B flours was 28.7% 

slower than the controls at 1.5 M urea (Table 2). Faster recovery rates of gluten by 41.5% 

were observed with 0.5 M urea over controls in 3B flours (Table 2). Significant protein 

effect (P < 0.05) indicated that rate of recovery of gluten with urea was 7.93 s in low 

protein, 5.62 s in high protein and 4.4 s in medium protein (Appendix 3, Table 3) The 

rate at which the gluten deformed (TCC) showed no significant differences with urea 

addition except for gluten from 2B flour. Deformation rate of gluten slowed as time 

constants for creep increased in comparison controls by 22.5% with 1.5 M urea level in 

2B (Table 2). 

4.2. Dough mixing properties 

Significant interactions of flour protein content and urea levels in mixing 

properties of flours were observed with the exception of dough development time (DT) in 

site B 9Appendix 2, Table 3). Water absorption (WA) of 3A flour increased by 4.6% at 

1.5 M urea levels (Table 1). Urea concentration of 1 M increased WA in 1B, 2B and 3B 

flours by 2.5, 1.5 and 2%, respectively (Table 2). Dough development time (DT) 

increased in 1A flours by 28.5% and decreased in 3A flours by 16.6% with 0.5 M urea 

(Table 1). Significant protein and treatment effect were observed in DT of flours in site 
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B. Dough development time was significantly high in flours in site B with 1.5 M urea 

levels (2.1 min) compared to controls and 1 M urea (Appendix 3, Table 3) while high 

protein flour gad significantly high DT (2.06 min) compared to other protein levels 

(Appendix 3, Table 3). Dough stability time (ST) showed increase of 53% in 2A flour at 

1 M urea level (Table 1). Dough stability of 3A and 2B decreased by 28 and 35%, 

respectively with 1.5 M urea and 35.5% in 3B with 0.5% urea levels (Tables 1 and 2). 

Time required to breakdown the dough after mixing (BT) decreased by 26% with 0.5 M 

urea in 3A flour and further increased with increasing concentration of urea (Table 1). 

High protein flour from site B showed increase in BT by 53.3% at 1 M urea level (Table 

2). 

4.3. Baking properties 

Significant interactions of flour protein content and urea treatment in baking 

properties were observed (Appendix 2, Table 3). Addition of urea decreased the baking 

quality of bread. All baking parameters such as loaf volumes (LV), loaf heights (LH), 

proof heights (PH), oven springs (OSP) and specific volumes (SV) showed a sharp 

decrease with 1.5 M urea level in all the breads from sites A and B. Loaf volumes in 1A, 

2A, 3A, 1B, 2B and 3B decreased by 26.1, 31.3, 34.3, 34.2, 46 and 40%, respectively 

with 1.5 M urea (Tables 1 and 2). Decrease in LH in 1A, 2A, 3A, 1B, 2B and 3B breads 

with 1.5 M urea was observed to be 38.5, 31.1, 31.8, 24.3, 45.7 and 28.5%, respectively 

(Tables 1 and 2). Urea addition of 1.5 M retarded the proof heights in 1A, 2A, 3A, 1B, 

2B and 3B by 23.6, 32.6, 31.2, 32.7, 31.9 and 20%, respectively (Tables 1 and 2). Oven 

springs decreased in 1A by 78% with 0.5 M urea (Table 1). Urea addition of 1.5 M 

decreased OSP in 2A and 3A by 26.3 and 33.7%, respectively (Table 1). OSP decreased 
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in 1B bread by 79.5% with 1 M urea level but no difference in OSP was observed at 1.5 

M urea from the control (Table 2). No oven spring rise during baking was observed at 1 

and 1.5 M urea levels, i.e. the loaves collapsed in the oven such that their heights were 

lower than proof heights which gave negative values for OSP (Table 2). Negative drop in 

2B dough OSP was 63.1% higher at 1M urea than 1.5 M urea. No significant change in 

OSP of 3B bread was observed with urea addition. Specific volumes of 1A, 2A, 3A, 1B, 

2B and 3B breads dropped by 30, 35.1, 40.6, 34.6, 47.2 and 44%, respectively at 1.5 M 

urea concentrations. Drop in LV, LH and SV was higher in 2B flour in comparison to 

bread baked from other flours. Only 2B gluten had lower rates of deformation and 

recovery (TCC and TCR, respectively) compared to the gluten from other flours with 

urea addition. Gluten strength decreased with increase in compliance with addition of 

urea in gluten from 2B flour.  

4.4. Correlations and PCA 

The relationship of visco-elastic, baking and mixing parameters affected by urea 

addition is shown in Table 3. Although separation time (SeP), a function of elasticity and 

delta compliance (J-Jr), function of viscosity and elastic behavior, showed no correlations 

with baking properties, its correlations with mixing properties were observed. Delta 

compliance (J-Jr) was significantly negatively correlated (P < 0.01) to DT and positively 

correlated to BT (r = -0.59 and 0.54, respectively). Urea levels decreased the dough 

development time and increased viscosity of gluten as observed in J-Jr and DT 

measurements of 3A flours (Table 1). Visco-elastic parameters like creep and recovery 

time constants (TCC and TCR, respectively) and percent recoverability (RCY) showed 

weak correlations (P < 0.05) with baking parameters (Table 3). Elasticity in the form of 
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percent recoverability of gluten was positive correlated to proof heights (r = 0.37) and 

loaf heights (r = 0.38). This could be due to increased recoverability (RCY) in case of 2A 

gluten which showed a decrease in loaf heights (LH) and proof heights (PH) of 2A dough 

at 1.5 M urea (Table 1). Decrease in proof heights, loaf heights and loaf volumes were 

associated to longer recovery rates (TCR) with urea addition (Table 3). Significantly 

negative correlations (P < 0.05) of TCR with LV ( r = -0.34), LH (r = -0.39) and PH (r = -

0.40) were observed. Significant increase in 2B and 1B gluten TCRs showed drastic drop 

in LV, LH and PH values in their breads (Table1). Similarly, rate of deformation (TCC) 

had weak negative correlations (P < 0.05) with LV, LH, PH and SV (Table 3). Urea 

addition increased the rate at which the gluten deformed (TCC) which decreased PH (r = 

-0.43), LH (r = -0.44), LV (r = -0.42) and SV (r = -0.40), respectively (P < 0.05).  

Fig. 1. depicts principal component analysis of visco-elastic, mixing and baking 

characteristics in hard red winter wheat flours from sites A and B. Principal component 

axis 1 (PC1) and 2 (PC2) cumulatively explained 69.5% of total variance with 41.4% and 

28.1% individually. Principal component axis 1 was dominated by loaf volumes (79.4%) 

followed by specific volume (73.4%) and loaf heights (73.6%) as reported in Table 4. 

Delta compliance (J-Jr) explained the highest variance (86.2%) on PC2. Upper left 

quadrant showed a group of closely related variables, PH, LH, SV, OSP and LV. These 

are all baking variables and are very closely related to PC1. Lower left quadrant showed 

that all mixing parameters along with flour protein content (FP) are very closely 

correlated. This was also confirmed by Pearson’s correlations of FP with WA, DT, ST 

and BT respectively in Table 3. Percent recoverability of gluten had a positive correlation 

with baking characteristics such as proof heights and loaf heights as confirmed by 
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Pearson’s correlations (Table 3). Creep and recovery rates (TCC and TCR) placed in the 

lower right quadrant had negative correlations (also refer Table 3) with baking 

characteristics.  

Addition of urea did not bring any improvement in 1A flour visco-elastic, mixing 

or baking performance. Urea addition to 3A flour showed improved water absorption and 

dough development time at 0.5 and 1 M concentration while 1.5 M concentration linked 

3A flour to viscosity (J-Jr) (Fig. 1). Urea addition decreased the elastic (SeP) performance 

of 1B flour at 1.5 M urea concentration (Fig. 1). Increased urea levels in 2B oriented it 

away from upper left quadrant to lower right quadrant which explains the longer recovery 

rates (TCR) and poor baking performance. 

5. Discussion 

Effect of urea addition on the baking characteristics of flours from both sites had a 

negative effect on the loaf quality. Visco-elastic properties of gluten measured using 

creep recovery tests showed varied results on addition of urea. Increase in recovery 

compliance in gluten from site A low protein flour and site B high protein flour with urea 

addition suggested that non-covalent crosslinks in between glutamine residues of repeat 

sections of high molecular weight glutenin fractions may not have been completely 

broken. With release of stress, hydrogen bonding could have formed back imparting the 

elastic strength. The concentrations of urea in this study may have brought partial 

disruptions in hydrogen bonding in gluten of some wheat flours. Inda and Rha (1982) 

noticed similar partial disruptions at the urea concentrations up to 3 M and complete 

disruptions of hydrogen bonds were obtained at 8 to 10 M concentrations when gluten 

was subjected to tensile testing at constant strain. The increase in elasticity as observed in 
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dynamic visco-elasticity measurements of gluten added with 1 to 5 M urea levels could 

be due to unfolding of protein polypeptides that allows freedom to the β-sheets to extend 

(Inda & Rha, 1991). Increment in the length in β-sheets provides mobility to the 

entanglements or loops and under these circumstances an increased elasticity is observed 

as longer times are required for the entanglements to move under external stress (Inda et 

al., 1991). Khatkar (2005) observed that disruption of hydrogen bonds by concentrations 

of urea less that 3 M decreased the elasticity and increased viscosity in a controlled stress 

rheometry on gluten using dynamic oscillatory measurements. However, gluten exhibited 

increased resistance to the deformation at the levels higher than 3 M up to 9 M 

concentrations. This increased strength of gluten was attributed to exposure of 

sulfahydryl (SH) group due to urea that reacted with disulfide linkage. Khatkar (2005) 

reported that shear storage modulus (G’) and shear loss modulus (G’’) of gluten treated 

with urea and measured showed significant positive relationships with bread-making 

performance, explaining 73 and 69% of the variation in loaf volume, respectively. Our 

study agreed with the observations where elastic recovery of gluten was found to be 

positively correlated to the baking parameters (Fig. 1). The secondary structure change 

during gluten deformation were studied on a highly developed gluten network isolated 

protein bodies from developing wheat endosperm subjected to biaxial tensile tests 

(Wellner et al., 2004). The tests revealed the deformation of isolated protein bodies 

slowed down by 20% in comparison to gluten that slowed by 10% after five test cycles 

(Wellner et al., 2004). Secondary crosslinks in gluten were well developed during mixing 

of dough and isolation of wet gluten. However, isolated protein bodies from developing 

wheat endosperm aggregated to give a cohesive mass upon membrane removal were 
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believed to have the least amount of hydrogen bonding. In this study gluten took longer 

time to deform and recover (TCC and TCR, Table 3) in comparison to control which 

could be due to a decreased ability of gluten to recover faster due to disruption of 

secondary bonding in glutenin subunits. During baking the starch gelatinizes and protein 

gets denatured and that affects the interactions of hydrogen bonding in protein and starch. 

Hydrogen bonds are continuously broken and reformed during heating due to the 

interaction of water and amylose from starch that forms crosslinks with amylopectin 

(Kuo & Wang, 2006). McGrane et al. (2004) used various hydrogen bond-forming and 

breaking agents to study the visco-elastic properties of amylose gels. They reported that 

the use of intermolecular hydrogen bond breaking agents such as urea reduced gel 

strength significantly, presumably by decreasing the intermolecular network formation 

between water and amylose. Steep hindrance in the ability of 2A flour dough to rise 

during oven spring that lead to negative values of oven springs at urea concentrations of 1 

and 1.5 M could be attributed to loss in viscosity due to loss of gel strength in starch. 

6. Conclusions 

Urea caused noncovalent hydrophilic bond disruption in gluten and lowered the 

baking performance of all the flours used in this study. Visco-elastic changes in gluten 

containing urea appeared to vary with the quality of protein, but overall, urea slowed the 

rate at which gluten deformed or recovered. Although urea addition affected the baking 

performance negatively, elasticity of gluten was not always reduced by hydrophilic bond 

disruption.
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Table 4.  Explained variance (%) in PCA of visco-elastic, mixing and baking variables in 
gluten and flours treated with urea. Definitions of visco-elastic, mixing and baking 
variables explained in Table 2, Chapter III. 
 

Urea 
PC (%) PC1 PC2 1+2 
Axes 41.39 28.11 69.50 

     
Visco-elastic  SeP        2.34 73.60 75.94 

  J-Jr        0.04 86.20 86.24 

  RCY        17.45 36.85 54.30 

  TCR        25.62 29.27 54.89 

  TCC        22.35 46.67 69.02 

     
Farinograph  WA         43.49 5.77 49.26 

  DT         34.00 44.13 78.13 

  ST         49.28 22.42 71.70 

  BT         43.76 42.07 85.83 

     
Baking  PH         50.27 10.23 60.50 

  LH         73.59 4.35 77.94 

  SV         76.45 2.38 78.83 

  OSP         37.15 0.31 37.46 

  LV         79.39 1.82 81.21 

  
Protein content  FP         65.65 15.59 81.24 
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1B1.51B1.51B1.51B1.5

2B02B02B02B0

2B0.52B0.52B0.52B0.5

2B12B12B12B1

2B1.52B1.52B1.52B1.5

3B03B03B03B0

3B0.53B0.53B0.53B0.5

3B13B13B13B1

3B1.53B1.53B1.53B1.5

PC1 41.4%

P
C
2 
28
.1
%

Total Explained Variance 69.5%

 
Fig. 1. Loading plot of first two principal components based on baking, visco-elastic and 

dough properties of six commercial wheat flours obtained from sites A and B, 
added with three levels of urea. Definitions of visco-elastic, mixing and baking 
variables explained in Table 2, Chapter III. Flour protein content (%), 1A = 7.95, 
2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B = 11.38, respectively. 
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Abstract 

 The redox state of dough systems are key determinants of their functionality 

during mixing and baking. Naturally occurring and added reducing agents ultimately 

affect the polymerization of monomeric and polymeric proteins that form gluten. The 

objective of the study was to determine visco-elastic properties of gluten, mixing and 

baking properties of flours containing different levels of reducing agent. Six commercial 

flours were obtained from two sites (A and B) in Oklahoma; three samples from each 

site. Dithiotheritol (DTT) was added at the levels of 0, 0.1, 0.25 and 0.5 mM to the flour 

during isolation of gluten. Creep-recovery experiments were performed to evaluate the 

visco-elastic properties of gluten. Mixing and baking were evaluated using a Farinograph 

and a 100 g flour bake test. DTT increased (12 to 54% range) the recovery compliance of 

gluten from most of the flours, indicating the weakening of gluten structure. Visco-elastic 

properties of gluten such as separation time decreased (60 to 865 range) andd delta 

compliance increased (40 to 67% range) indicating weakening of gluten structure due to 

DTT. The rate at which gluten deformed and recovered indicated by time constants for 

creep and recovery significantly slowed by 20 to 55% and 15 to 53%, respectively with 

DTT. Mixing properties of wheat flours were evaluated using the Farinograph 

measurements. Overall dough stability and water absorption decreased with addition of 

DTT with a few exceptions. Loaf volumes in all flours decreased (18 to 39% range) with 

0.5 mM DTT addition. Significantly positive correlations of separation time of gluten an 

estimate of delayed elasticity with proof heights (r = 0.56, P < 0.01) and loaf heights (r = 

0.53, P < 0.01) suggested that DTT decreased gluten elasticity affecting the performance 

of baking.  A principal component analysis (PCA) performed on viscoelastic properties 
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of gluten and mixing and baking properties of flours showed that addition of DTT 

resulted in loss of elastic properties like separation time and percent recoverability of 

gluten and oriented the flours towards viscous attributes such as increased delta 

compliance and time constants for creep and recovery of gluten in all the flours. 

Reduction of gluten by DTT resulted in decreased strength and affected the loaf 

properties in all flours. 
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1. Introduction  

The variation in dough visco-elastic and bread making performance between 

wheat cultivars is largely determined by differences in protein quantity and composition.  

Gliadins and glutenins make up the storage or gluten proteins. Glutenins are present as 

large complexes formed by subunits linked together by disulphide bonds. The two major 

groups of subunits are the low molecular weight glutenin subunits (LMW-GS) and the 

high molecular weight glutenin subunits (HMW-GS) (Wieser, 2007).  These subunits are 

associated through disulfide bonding, forming the glutenin macropolymer which is 

responsible for the viscoelastic properties characteristic of dough. The separation of high 

molecular weight subunit and low molecular weight subunit is brought about by the 

reduction of inter-chain disulfide bonds within the glutenin sub-fraction (Shewry & 

Tatham, 1997). It is well understood that the dough structure and loaf quality have been 

correlated to the presence of unextractable high molecular weight subfraction of glutenin 

(Gupta, Popineau, Lefebvre, Cornec, Lawrence & MacRitchie, 1995). Chemical 

depolymerization of the gluten macropolymer has been studied (Kawamura, Matsumura, 

Matoba, Yenozawa & Kito, 1985; Matsumura, Kawamura, Matoba & Yonezawa, 1984), 

but little evidence is available on the effect of reducing agents on the visco-elasticity of 

gluten and mixing and baking properties of dough. Gao et al. (1992) used 0.02 to 3 mM 

concentrations of DTT during dough mixing and concluded that disruption of disulfide 

bonds begin at 0.08 mM and an increased dough stickiness started at 3 mM DTT level. 

Visco-elastic studies on sodium dodecyl sulfate (SDS) insoluble protein gel extracted 

from two Canadian hard red winter wheat flours with protein contents of 6.8 and 9.6% 
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showed decrease in storage modulus (elastic component) by 79 and 97%, respectively, 

with 0.1 mM DTT concentration (Kim & Bushuk, 1995).  

The objective of this study was to assess the effect of DTT on the visco-elastic 

properties of gluten using creep-recovery, as well as mixing and baking properties of 

commercial hard red winter wheat flours  

2. Materials and Methods 

 The procurement of wheat flour samples are explained in Materials and methods 

section of Chapter III. 

 Three levels (0.1, 0.25 and 0.5 mM) of DTT (VWR International, West Chester 

PA, 19380), were added to flours from each source.  Thus, site A flours were denoted as 

1A0, 1A0.1, 1A0.25 and 1A0.5; 2A0, 2A0.1, 2A0.25 2A0.5; 3A0, 3A0.1, 3A0.25, 3A0.5, 

respectively. Similarly site B flours were named, 1B0, 1B0.1, 1B0.25 and 1B0.5; 2B0, 

2B0.1, 2B0.25 and 2B0.5; 3B0, 3B0.1, 3B0.25and 3B0.5, respectively. Flours and gluten 

isolated from flours with no DTT were used as controls. The protein, moisture and ash 

contents were determined using the NIR system (FOSS NIR Systems Inc, Laurel, MD 

20723) as shown in Table 1 (Chapter III).  

2.1.  Gluten extraction 

 A stock solution of 100 mM of DTT was prepared containing 1.54 g of DTT in 

100 mL deionized water. Working solution of DTT was prepared by containing 0.1, 0.25 

and 0.5 mL of stock solution in 100 mL of 2% NaCl solution. Glutens were prepared in 

triplicates in an automated gluten washer, Glutomatic 2200 (Perten Instruments, Sweden) 

from 10 g of flour and 5.0 mL of DTT solution using a mixing time of 20 sec and 
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washing for 10 min with 2% NaCl solution (w/v). Control samples were mixed with 5.0 

ml of pure deionized water. 

2.2.  Creep recovery tests 

 The creep recovery experiments were carried out as described in Chapter III. 

2.3.  Dough mixing properties 

 Working solutions of DTT were prepared containing 0.1, 0.25 and 0.5 mL of 

stock solution in a total of 100 mL of 2% deionized water. One ml of DTT working 

solution was added to 10 g of wheat flour at the beginning of mixing. Dough mixing 

properties were evaluated as described in Chapter III. 

2.4.    Baking tests 

 Working solutions of DTT were prepared containing 0.1, 0.25 and 0.5 mL of 

stock solution in 100 mL of 2% deionized water. Five ml of the same DTT working 

solution as described earlier was added to the flour at the beginning of mixing. Baking 

tests were performed as explained in chapter III. The definitions of baking, dough mixing 

and visco-elastic parameters are explained in Table 2 (Chapter III). 

3. Statistics 

Statistical analysis is performed using same methods elaborated in Chapter III. 

4. Results 

4.1. Visco-elastic properties 

DTT addition significantly (P < 0.05) weakened the gluten in all flours by 

increasing its compliance except for one instance, where 0.5 mM of DTT decreased the 

recovery compliance of 1A flour by 21.5% (Appendix 1, Fig. 8). Increase in recovery 

compliance of 1A gluten by 0.1 and 0.25 mM of DTT was 31.1 and 12%, respectively 
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(Appendix 1, Fig. 8). DTT level of 0.5 mM increased the recovery compliance in 2A 

flours by 43.5%. Recovery compliance of gluten in 3A flours increased by 20 and 32.1% 

with DTT addition of 0.1 and 0.5 mM levels (Appendix 1, Fig. 8). No significant increase 

in the recovery compliance of gluten of 3B flours was observed with DTT addition. 

Recovery compliance of gluten from 1B flour increased by 41, 54 and 43% with 0.1, 0.25 

and 0.5 mM of DTT, respectively (Appendix 1, Fig. 9). Recovery compliance of 2B 

flours increased at 0.1 and 0.25 mM DTT levels by 16.5 and 30.5%, respectively 

(Appendix 1, Fig. 9).  

Viscoelastic properties of gluten had significant interaction among flour protein 

content and DTT levels in all the flours except percent recoverability (RCY) in site B 

(Appendix 1, Table 4). Significant (P < 0.05) reduction in separation time (SeP) was 

observed in gluten of 1A, 2A and 3A flours (Table 1) at 0.5 mM DTT level by 77.1, 59.1 

and 85.9%, respectively. Reduction in SeP in 1B and 2B gluten by 75.1 and 71.4% with 

0.25 mM DTT levels respectively was observed (Table 2). Significant increase in delta 

compliance (J-Jr) was observed in gluten from all flours with the addition of DTT (Tables 

1 and 2). Viscosity in form of J-Jr increased at 0.5 mM DTT concentrations in 2A and 3A 

gluten by 52.8 and 40.1%, respectively. An increase in delta compliance suggests that the 

viscous component is higher than elastic component by either an increase in viscosity or 

decrease in elasticity of the gluten structure at 100s. Increase in viscosity of gluten from 

1A flour with 0.1 and 0.25 mM DTT by 45.4 and 33.1%, respectively. No significant 

differences in delta compliance of gluten in 3B gluten were observed. Viscosity (J-Jr) of 

gluten in 1B flour increased by 53 and 65.8% with 0.1 and 0.25 mM DTT concentrations 
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(Table 2). Increase of J-Jr in gluten of 2B flour with 0.25 and 0.5 mM addition was 39.1 

and 36.9%, respectively (Table 2).  

No significant differences were observed in percent recoverability of gluten 

extracted from flours from sites A and B with DTT addition. Although no significant 

interaction in recoverability of gluten from site B flours was observed (Appendix 2, Table 

4), significant treatment effects were observed (P < 0.05). The estimated percent recovery 

of gluten with was significantly high (82.8%) in controls (P < 0.05) (Appendix 3, Table 

3). The rate at which the gluten from all flours deformed and recovered (TCC and TCR, 

respectively) was reduced significantly by DTT addition (P < 0.05). Time constants for 

recovery of gluten from 1A, 2A, 1B and 2B flours increased with 0.5 mM DTT by 14.8, 

52.9, 56.1 and 35.4%, respectively, thus slowing down the rate at which the recovery 

reached equilibrium (Tables 1 and 2). DTT at of 0.1 mM increased TCR of gluten from 

3A flour by 26.6% (Table 1). No significant differences in recovery rates were observed 

in gluten from 3B flour. The rate at which the gluten of 2A flour deformed (TCC) was 

reduced by 25.3 and 29.7% compared to the control at 0.25 and 0.5 mM DTT levels, 

respectively (Table 1). No significant differences were observed in rates of gluten 

deformation of 1A flours. An increase of 28% in time constants of creep of gluten from 

3A flour was observed at 0.5 mM DTT (Table 1). Time constants for creep in gluten from 

1B flour increased with 0.5 mM concentration by 24.2% (Table 2). Rate of deformation 

(TCC) slowed in gluten from 2B flour with 0.25 and 0.5 mM DTT levels by 26.2 and 

54.7%, respectively (Table 2). Rate at which the gluten from 3B flour deformed slowed 

down by 30.8 and 20.7% with 0.1 and 0.5 mM DTT, respectively. 
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4.2. Dough mixing properties 

Significant interactions among flour protein contentas and DTT levels in mixing 

properties of gluten were observed except water absorption in site B (Appendix 2, Table 

4). Water absorption (WA) of 1A flour decreased with 0.1 mM DTT level by 4.3% 

(Table 1). No significant changes were observed in water absorption of 2A and 3A flours. 

Significant treatment and protein effects (P < 0.05) were observed in water absorption of 

flours in site B where 0.5 mM treatment level had 61.6% water absorption while high 

protein had 61.1% water absorption (Appendix 3, Table 3). Dough development time 

(DT) decreased in 3A flour by 17.6, 37 and 55.5% with addition of 0.1, 0.25 and 0.5 mM 

DTT, respectively (Table 1). DTT concentration of 0.25 mM increased DT in 2A flour by 

35.7% (Table 1). No significant differences in DT were observed in site B flours. 

Stability of 2A and 1B flours significantly (P < 0.05) increased with addition of DTT 

while 3A, 2B and 3B flours showed decrease in stability with DTT addition (Tables 1 and 

2). DTT levels of 0.1 and 0.5 mM (Table 1) increased the stability of 2A and 1B dough 

by 54.8 and 52.2% and 81.8 and 66%, respectively (Tables 1 and 2). Stability time 

decreased by 30.1 and 66% in 3A dough and by 37.5 and 49% in 2B dough with 0.25 and 

0.5 mM DTT respectively (Tables 1 and 2). Dough stability of 3B flour decreased with 

0.1 and 0.25 mM DTT concentration by 36.5 and 54.8%, respectively (Table 2). Dough 

breakdown time (BT) of all flours increased significantly (P < 0.05) with addition of 

DATEM except the dough from 3A flour (Tables 1 and 2). Time required for the dough 

to breakdown after mixing decreased in 3A dough with 0.5 mM of DTT by 56.8% (Table 

1). Breakdown time increased by 64 and 60.6% in 2A dough and by 53.3 and 51.1% in 
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3B dough with 0.25 and 0.5 mM DTT respectively (Tables 1 and 2). Dough breakdown 

time increased in 2B flour with 0.5 mM DTT level by 37.5% (Table 2). 

4.3. Baking characteristics 

DTT treatment and protein content interactions were significant for all baking 

properties of flours from sites A and B (Appendix 2, Table 4). Addition of DTT at each 

concentration to the dough decreased the baking quality of bread. All baking parameters 

such as loaf volumes (LV), loaf heights (LH), proof heights (PH), oven springs (OSP) 

and specific volumes (SV) showed a sharp decrease with 0.5 mM DTT level in all the 

breads from sites A and B. Loaf volumes in 1A, 2A, 3A, 1B, 2B and 3B decreased by 

22.9, 29.3, 26.1, 18.5, 38.5 and 21.6%, respectively with 0.5 mM DTT (Tables 1 and 2). 

Decrease in LH in 1A, 2A, 3A, 1B, 2B and 3B breads with 0.5 mM DTT was observed to 

be 22.4, 20.3, 8.4, 23.6, 25.1 and 12.6%, respectively (Tables 1 and 2). DTT addition of 

0.5 mM retarded the proof heights in 1A, 2A, 3A, 1B, 2B and 3B by 40.7, 35.4, 27, 32.1, 

38.8 and 27.7%, respectively (Tables 1 and 2). Oven springs decreased in 1A, 2A, 3A, 

1B, 2B and 3B breads by 82.9, 81.3, 87.4, 78.9, 86.6 and 82.9% with 0.5 mM DTT 

(Table 1 and 2). Specific volumes of 1A, 2A, 3A, 1B, 2B and 3B breads dropped by 26.8, 

34, 34.4, 21.5, 40 and 24.5%, respectively at 1.5 mM DTT concentration.  

4.4. Correlations and PCA 

The relationship of visco-elastic, baking and mixing parameters affected by DTT 

addition is shown in Table 3. Separation time (SeP), a function of elasticity showed 

highly significant correlation (P <0.01) with proof heights (r = 0.56) and loaf heights (r = 

0.53) and less significant correlations (P < 0.05) with specific volume (r = 0.51) and loaf 

volume (r = 0.48). Delta compliance (J-Jr) showed weak but significant negative 
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correlations with specific volume (r = -0.37). Decrease in elasticity in form of percent 

recoverability of gluten (RCY) was significantly (P < 0.05) correlated to decreased loaf 

heights (LH), proof heights (PH) and loaf volumes (LV). Positive correlations of RCY 

were observed with PH (r = 0.48), LH (r = 0.44) and LV (r = 0.46), respectively. 

Recoverability had strong significant correlation (P < 0.01) with specific volume (SV) 

with r = 46. Visco-elastic parameters like creep and recovery time constants (TCC and 

TCR, respectively), showed weak correlations (P < 0.05) with loaf height, loaf volume 

and specific volume (Table 3). Decrease in loaf heights and loaf volumes can be 

attributed to longer recovery rates (TCR) with DTT addition (Table 3). Significant 

negative correlations (P < 0.05) of TCR with LV (r = -0.41), LH (r = -0.37) and SV (r = -

0.44) were observed. Significant increase in 1A, 2A, 1B and 2B gluten TCRs showed 

decrease in LV, LH and SV values (Table1) while the rate of deformation (TCC) had 

weak negative correlations (P < 0.05) with LV, LH, and SV (Table 3). DTT addition 

increased the rate at which the gluten deformed (TCC) and this rate was related to LH (r 

= -0.37), LV (r = -0.42) and SV (r = -0.44), respectively. This suggests that the rate of 

recovery appears to be more important than the rate of viscous deformation in gluten with 

reference to bread quality. 

Principal component analysis on visco-elastic, mixing and baking characteristics 

in hard red winter wheat flours from sites A and B, added with DTT is shown in Fig. 1. 

Principal component axis 1 (PC1) and 2 (PC2) explained 64.36% of total variance, with 

each explaining 44.58 and 19.78%, of the total variance respectively. Principal 

component axis 1 was dominated by loaf volumes (90.52%) followed by specific volume 

(88.29%) (Table 4). Time required for the dough to breakdown after mixing (BT) 
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explained for the highest variance (53.32%) on PC2. Upper right quadrant showed all 

mixing parameters along with flour protein content (FP) to be very closely correlated. 

Lower right quadrant showed a group of closely related variables, PH, LH, SV, OSP and 

LV. The closely grouped variables in upper and lower right quadrants confirmed 

significantly high correlations in Table 3. Loaf volumes, proof heights and specific 

volumes were closely placed to PC1. Percent recoverability of gluten was found to have 

positive correlation with baking characteristics such as oven springs and loaf heights 

(Fig. 1). Creep and recovery rates (TCC and TCR) placed in the upper left quadrant had 

negative correlations (also refer Table 3) with baking characteristics.  

DTT disrupted the disulfide linkages in dough from 2A, 3A, 1B, 2B and 3B 

samples and oriented them from the lower right quadrant dominated by elasticity 

parameters such as SeP and RCY to the upper left quadrant dominated by creep and 

recovery rates and viscosity parameters such as delta compliance. DTT levels in 1A 

flours appear to group the samples closer to the PC1 axis suggests that this group was 

completely independent of their visco-elastic properties and negatively correlated to their 

baking characteristics. 1A is the flour from site A with lowest protein content (8%). 

5. Discussion 

Disruption of disulfide bonds in gluten by use of DTT showed increased recovery 

compliance that was attributed to the weakening of gluten in wheat flours. Khatkar 

(2005) studied the effect of 100 ppm DTT added to gluten extracted from British winter 

wheat flours. He observed loss of elasticity in stronger gluten by 37% versus 71% 

decrease in weak gluten in form of elasticity modulus using dynamic oscillatory 

measurements at 25 Pa stress level. Our study showed consistent decrease in elasticity in 
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form of increased compliance of gluten, increased delta compliance, decreased separation 

time and increase in rate at which the structure of gluten from all flours deformed and 

recovered. Baking performance deteriorated in form of loaf volumes, heights, proof 

heights, specific volumes and oven springs with increasing levels of DTT. Elasticity of 

gluten in form of recoverability and separation times was related to the decreased in 

baking characteristics of the flours. Similarly viscosity in form of delta compliance and 

rate at which gluten deformed and recovered were inversely related to baking parameters.  

Lu & Seib (1998) reported that addition of DTT at 1.3 mM in flours with 11.5 and 

13 % protein levels did not have significant effect on water absorption but increased the 

mixing times by 9 and 19% respectively. Our study revealed that water absorption cannot 

be explained by protein content and DTT addition. While the protein contents of 2A 

(11.5%) and 3A (13.5%) flours were similar to that of the protein contents of flours 

described by Lu & Seib (1998), dough development time increased in Am and decreased 

in 3A with DTT. Disruption of disulfide bond with DTT could increase the 

hydrophobicity in the dough and affect water absorption. Similar effects were observed 

when 1% DTT and 5% β-mercaptoethanol salt in propanol were used to extract the 

glutenin subfractions in a stepwise reduction of gluten (Bean & Lookhart, 1998). The 

study reported that reducing agents disrupted the disulfide crosslinks and solubilized the 

high molecular weight subunits thus preventing the aggregation of gliadins and glutenins. 

Disruption of disulfide bonds cause unfolding of gluten macropolymer and expose the 

hydrophobic domains that will repel water causing decrease in water absorption. 

Quantitative differences in the magnitudes of visco-elastic, mixing and baking 

characteristics among different groups of glutens may be attributable to differences in the 
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density of disulfide cross-links (Khatkar, 2005), in addition to variation in the glutenin 

visco-elasticity (Southan & MacRitchie, 1999) gliadin/glutenin ratio (Uthayakumaran, 

Gras, Stoddard & Bekes, 1999), and the molecular size range and molecular size 

distribution of the glutenin polymers (Gupta et al., 1993). Reduction of gluten with DTT 

could be complete or partial depending on the quality of the flour protein. DTT 

concentrations upto 100 mM used to reduce the gluten from Chinese spring wheat 

released the glutenin subunits in form of dimers and oligomers as well as small glutenin 

aggregates in a stepwise reduction (Lindsay & Skerritt, 1998). Size exclusion HPLC and 

SDS-PAGE analyses indicated that release of low and high molecular weight subunit 

dimers were released at low DTT concentrations of 0.3 to 0.7 mM while complete 

depolymerization took place at 20 mM DTT levels releasing larger oligomers. The order 

of depolymerization of glutenin subunits was consistent with all flours used and 

rheologically effective bonds were broken down at concentrations of DTT less than 1 

mM (Lindsay et al., 1998). The decrease in visco-elastic performance of gluten added 

with DTT was independent of their protein content. This could be due to the rate at which 

the glutenin depolymerized with addition of DTT that affected the magnitude in changes 

of visco-elastic, baking and mixing properties in the flours in this study. 

6. Conclusions 

DTT levels increased the recovery compliance in the gluten extracted from all 

flours making it weaker. Reduction of gluten strength, slow recovery rates of gluten, 

decreased percent recoverability could be associated with the decrease in loaf properties 

and poor baking performance of wheat flours. An increase in delta compliance and its 

close negative correlations with baking properties suggested DTT increased the viscosity 
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in dough and decreased the quality of loaves. Mixing properties of the flours were 

independent of visco-elastic properties of gluten.  
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Table 4.  Explained variance (%) in PCA of visco-elastic, mixing and baking variables in 
gluten and flours treated with DTT. Definitions of visco-elastic, mixing and baking 
variables explained in Table 2, Chapter III. 

DTT 
PC (%) PC1 PC2 1+2 
Axes 44.58 19.78 64.36 

     
Visco-elastic  SeP        28.25 29.5 57.75 

  J-Jr        8.61 21.81 30.42 

  RCY        25.71 15.16 40.87 

  TCR        8.15 14.43 22.58 

  TCC        8.87 15.6 24.47 

     
Farinograph  WA         47.51 18.47 65.98 

  DT         37.5 37.8 75.3 

  ST         56.07 15.06 71.13 

  BT         29.45 53.32 82.77 

     
Baking  PH         84.01 1.42 85.43 

  LH         72.05 11.65 83.7 

  SV         88.29 3.49 91.78 

  OSP         26.38 24.13 50.51 

  LV         90.52 1.61 92.13 

 
Protein Content (%)  FP         57.39 33.27 90.66 
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Fig. 1. Loading plot of first two principal components based on baking, visco-elastic and 

dough properties of six commercial wheat flours obtained from sites A and B, 
added with three levels of DTT. Definitions of visco-elastic, mixing and baking 
variables explained in Table 2, Chapter III. Flour protein content (%), 1A = 7.95, 
2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B = 11.38, respectively.
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CHAPTER VII 
 

CONCLUSIONS 
 

 The structure of gluten was modified by adding diacetyl tartaric acid ester of 

monoglycerides (DATEM), ascorbic acid, urea and DTT and the changes in it visco-

elasticity were quantified along with the changes in bread quality in this study. The study 

attempted to correlate the changes in gluten visco-elasticity due to structural 

modifications with mixing and baking properties of wheat flours.  

 Addition of DATEM improved the strength of gluten extracted from all the flours 

used in this study. The DATEM level of 1% (w/w flour basis) showed highest decrease in 

creep and recovery compliance of gluten in all wheat flours. The ability of DATEM to 

improve gluten strength was observed to be specific to the quality of gluten. Bread 

quality was improved in all flours at 0.6% levels. No specific trends were observed in 

mixing characteristics of wheat flours added with DATEM. Bread quality decreased with 

1% DATEM addition. Highly significant correlations were observed among flour protein 

content and mixing and baking properties of wheat flours. For the most part visco-elastic 

properties of gluten were independent of bread quality with the exception of few. Thus 

DATEM could have modified the structure of gluten that improved its quality as well as 

the overall quality of baking in all wheat flours. 

 Gluten with ascorbic acid addition did not show any specific trend in changes in 

its visco-elasticity in all wheat flours. Similarly no specific tendency was observed in 

mixing characteristics of ascorbic acid. Baking characteristics showed improvement with 
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ascorbic levels up to 100 ppm in most wheat flours and 150 ppm in the rest. Reduction in 

the quality of bread was observed at 200 ppm. Overall rheological properties of gluten 

were independent of baking and mixing characteristics. Availability of oxygen could be a 

limiting factor in oxidizing high levels of ascorbic acid to dehydroascorbic acid which is 

solely responsible for promoting disulfide linkages and bread quality. 

 Structure of gluten modified by urea decreased overall gluten strength by 

increasing its plasticity and decreasing its rate of deformation and recovery. A general 

decrease in dough stability was observed with urea addition. Baking performance 

decreased with urea. Decrease in bread quality was positively correlated to decrease in 

gluten elasticity in form of recoverability and separation time while negatively 

correlation to delta compliance and time constants. Visco-elasticity of gluten affected by 

disruption of hydrophobic and hydrophilic bonds in glutenin subfractions by urea 

contributed to the decreased baking performance. Thus the presence of secondary non 

covalent cross links in gluten is important for bread quality. 

 Reducing effect of dithiothreitol (DTT) reduced gluten strength by increasing 

creep and recovery compliance, slowed the rate of creep and recovery and decreased 

separation times of gluten extracted from all flours. The baking performance was reduced 

dramatically with DTT addition. Significant correlations were observed among baking 

properties and visco-elasticity of gluten that suggested reduced gluten strength due to 

depolymerization of glutenin sub units as a result of cleavage of disulfide bonds affected 

the baking negatively. 

 Overall structural modifications in gluten by DATEM, ascorbic acid, urea and 

DTT changed the quality of gluten and its functionality in bread making process. 
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CHAPTER VIII 
 

FUTURE STUDIES 

 This study was a preliminary step in understanding the ability different additives 

in improving or deteriorating the physical structure of dough as well as gluten. The study 

focused on modification in visco-elastic properties of gluten and baking and mixing 

properties of flours with DATEM (surfactant), ascorbic acid (oxidizing agent), urea (non 

covalent hydrogen bond disruption in glutenin) and DTT (disulfide linkage disruption in 

glutenin). Major focus of this study was to measure the changes in visco-elastic 

properties of gluten, mixing properties of dough and baking performance of dough from 

hard red winter wheat flours with variable protein content. Correlations were identified 

among visco-elastic, baking, mixing properties in gluten and dough to establish the 

relationship between visco-elastic properties of gluten and baking and mixing 

performance with modifications by application of various treatments. The visco-elastic 

analysis was performed in the linear visco-elastic region with small deformations using 

creep-recovery techniques. 

 Although different levels of DATEM, ascorbic acid, urea and DTT were used in 

this study, optimized concentrations were not identified in this study. This can be 

achieved in a separate study with appropriate experimental design and statistical 

modeling using response surface methodology. Ratios of gliadin to glutenins, 

composition of low molecular weight and high molecular weight subunits of glutenin 

sub-fractions and changes in its distribution with optimized treatments of DATEM, 
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ascorbic acid, urea and DTT is required to be studied. Such study will increase our 

understanding of response of gluten proteins to the treatments on a molecular level.  

Microscopic visualization of DATEM in proofed dough and baked bread under confocal 

microscopy will help understand the localization and interaction of surfactant within the 

complex dough system. It will be interesting to correlate the visco-elastic measurements 

performed on gluten in non linear visco-elastic region under large deformations using 

unaxial extension or rupture tests with baking and mixing properties of the flours.
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APPENDIX 1 
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Fig. 1. Recovery compliance of gluten with no treatments applied in all wheat flours. 
Recoveries (means ± SD, n= 4) with similar letters are not significantly different (P ≤ 
0.05). 
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Fig. 2. Recovery compliance of gluten extracted from wheat flours mixed with DATEM 
and obtained from site A. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 3. Recovery compliance of gluten extracted from wheat flours mixed with DATEM 
and obtained from site B. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 4. Recovery compliance of gluten extracted from wheat flours mixed with ascorbic 
acid and obtained from site A. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 5. Recovery compliance of gluten extracted from wheat flours mixed with ascorbic 
acid and obtained from site B. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 6. Recovery compliance of gluten extracted from wheat flours mixed with urea and 
obtained from site A. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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 Fig. 7. Recovery compliance of gluten extracted from wheat flours mixed with urea and 
obtained from site B. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 8. Recovery compliance of gluten extracted from wheat flours mixed with DTT and 
obtained from site A. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Fig. 9. Recovery compliance of gluten extracted from wheat flours mixed with DTT and 
obtained from site B. Recoveries (means ± SD, n= 4) with similar letters are not 
significantly different (P ≤ 0.05). 
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Table 1. Analysis of variance for visco-elastic, mixing and baking properties of wheat 
flours from sites A and B, treated with DATEM. TRT=DATEM treatment, Prot=flour 
protein content, TRT*Prot = interaction 
 

Variable Effects 
Site A Site B 

Num 
DF 

Den 
DF F Value Pr > F Num 

DF 
Den 
DF F Value Pr > F 

SeP 
TRT 3 24 311.33 <0.0001 3 24 1286.15 <0.0001 
Prot 2 24 452.52 <0.0001 2 24 3665.47 <0.0001 
TRT*Prot 6 24 202.22 <0.0001 6 24 684.72 <0.0001 

J-Jr 
TRT 3 24 67.18 <0.0001 3 24 50.10 <0.0001 
Prot 2 24 138.77 <0.0001 2 24 75.12 <0.0001 
TRT*Prot 6 24 7.64 0.0001 6 24 9.09 <0.0001 

RCY 
TRT 3 24 4.82 0.0091 3 24 0.56 0.6470 
Prot 2 24 15.46 <0.0001 2 24 3.20 0.0584 
TRT*Prot 6 24 0.51 0.7979 6 24 2.81 0.0324 

TCC 
TRT 3 24.3 4.31 0.0142 3 24.8 2.30 0.1021 
Prot 2 24.3 37.73 <0.0001 2 24.8 9.53 0.0008 
TRT*Prot 6 24.3 9.62 <0.0001 6 24.8 11.23 <0.0001 

TCR 
TRT 3 24.3 54.20 <0.0001 3 24.8 18.04 <0.0001 
Prot 2 24.3 8.57 0.0015 2 24.8 11.63 0.0003 
TRT*Prot 6 24.3 19.33 <0.0001 6 24.8 40.88 <0.0001 

          

WA 
TRT 3 11.9 8.44 0.0028 3 11.9 625.07 <0.0001 
Prot 2 11.9 1366.90 <0.0001 2 11.9 116.60 <0.0001 
TRT*Prot 6 11.9 5.40 0.0066 6 11.9 18.48 <0.0001 

DT 
TRT 3 11.9 8.44 0.0028 3 11.9 4.69 0.0220 
Prot 2 11.9 1174.99 <0.0001 2 11.9 7.11 0.0093 
TRT*Prot 6 11.9 6.59 0.0029 6 11.9 0.77 0.6089 

ST 
TRT 3 11.9 22.27 <0.0001 3 11.9 81.57 <0.0001 
Prot 2 11.9 638.21 <0.0001 2 11.9 140.93 <0.0001 
TRT*Prot 6 11.9 27.00 <0.0001 6 11.9 41.38 <0.0001 

BT 
TRT 3 11.9 0.59 0.6349 3 11.9 108.70 <0.0001 
Prot 2 11.9 133.10 <0.0001 2 11.9 39.45 <0.0001 
TRT*Prot 6 11.9 0.69 0.6631 6 11.9 17.64 <0.0001 

          

LV 
TRT 3 35.9 931.07 <0.0001 3 35.9 3296.84 <0.0001 
Prot 2 35.9 7338.19 <0.0001 2 35.9 2892.90 <0.0001 
TRT*Prot 6 35.9 51.16 <0.0001 6 35.9 55.49 <0.0001 

LH 
TRT 3 11.9 6.98 0.0058 3 11.9 25.45 <0.0001 
Prot 2 11.9 89.17 <0.0001 2 11.9 35.74 <0.0001 
TRT*Prot 6 11.9 0.28 0.9372 6 11.9 3.16 0.0432 

PH 
TRT 3 11.9 28.57 <0.0001 3 11.9 5.80 0.0111 
Prot 2 11.9 96.16 <0.0001 2 11.9 0.42 0.6669 
TRT*Prot 6 11.9 5.62 0.0056 6 11.9 11.77 0.0002 

OSP 
TRT 3 11.9 42.81 <0.0001 3 11.9 22.44 <0.0001 
Prot 2 11.9 7.25 0.0087 2 11.9 15.86 0.0004 
TRT*Prot 6 11.9 2.77 0.0632 6 11.9 1.68 0.2098 

SV 
TRT 3 11.9 350.97 <0.0001 3 11.9 472.76 <0.0001 
Prot 2 11.9 2801.65 <0.0001 2 11.9 660.29 <0.0001 
TRT*Prot 6 11.9 28.09 <0.0001 6 11.9 5.30 0.0071 
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Table 4. Analysis of variance for visco-elastic, mixing and baking properties of wheat 
flours from sites A and B, treated with Ascorbic acid. TRT= Ascorbic acid treatment, 
Prot=flour protein content, TRT*Prot = interaction.  
 

Variable Effects 
Site A Site B 

Num 
DF 

Den 
DF F Value Pr > F Num 

DF 
Den 
DF F Value Pr > F 

SeP 
TRT 4 22.8 869.80 <0.0001 4 23 87.14 <0.0001 
Prot 2 22.8 698.70 <0.0001 2 23 204.59 <0.0001 
TRT*Prot 8 22.8 733.77 <0.0001 8 23 99.12 <0.0001 

J-Jr 
TRT 4 18.8 83.44 <0.0001 4 18 79.59 <0.0001 
Prot 2 18.8 18.98 <0.0001 2 18 293.40 <0.0001 
TRT*Prot 8 18.8 41.17 0.0001 8 18 48.25 <0.0001 

RCY 
TRT 4 21 8.18 0.0004 4 18.7 10.13 0.0002 
Prot 2 21 5.64 0.0109 2 18.7 37.80 <0.0001 
TRT*Prot 8 21 5.92 0.0005 8 18.7 2.88 0.0285 

TCC 
TRT 4 24.8 49.80 <0.0001 4 23 2.62 0.0612 
Prot 2 24.8 88.15 <0.0001 2 23 5.81 0.0090 
TRT*Prot 8 24.8 28.97 <0.0001 8 23 2.13 <0.0752 

TCR 
TRT 4 24.8 14.62 <0.0001 4 23 6.42 0.0013 
Prot 2 24.8 24.97 <0.0001 2 23 222.43 <0.0001 
TRT*Prot 8 24.8 14.72 <0.0001 8 23 45.11 <0.0001 

          

WA 
TRT 4 15 3.17 0.0449 4 15 2.99 0.0530 
Prot 2 15 2879.29 <0.0001 2 15 3.14 0.0727 
TRT*Prot 8 15 18.49 <0.0001 8 15 3.81 0.0124 

DT 
TRT 4 15 45.56 <0.0001 4 15 0.35 0.8400 
Prot 2 15 2081.89 <0.0001 2 15 0.04 0.9573 
TRT*Prot 8 15 44.96 <0.0001 8 15 1.02 0.4620 

ST 
TRT 4 15 64.33 <0.0001 4 15 13.07 <0.0001 
Prot 2 15 714.33 <0.0001 2 15 81.42 <0.0001 
TRT*Prot 8 15 22.37 <0.0001 8 15 17.31 <0.0001 

BT 
TRT 4 15 10.99 0.0002 4 15 0.17 0.9527 
Prot 2 15 744.55 <0.0001 2 15 19.49 <0.0001 
TRT*Prot 8 15 9.01 0.0002 8 15 3.15 0.0266 

          

LV 
TRT 4 45 560.17 <0.0001 4 45 562.63 <0.0001 
Prot 2 45 2891.40 <0.0001 2 45 1688.45 <0.0001 
TRT*Prot 8 45 45.66 <0.0001 8 45 20.96 <0.0001 

LH 
TRT 4 15 41.16 <0.0001 4 15 27.74 <0.0001 
Prot 2 15 621.09 <0.0001 2 15 53.55 <0.0001 
TRT*Prot 8 15 14.02 <0.0001 8 15 1.80 0.1552 

PH 
TRT 4 15 35.98 <0.0001 4 15 22.91 <0.0001 
Prot 2 15 194.29 <0.0001 2 15 3.36 0.0625 
TRT*Prot 8 15 1.86 0.1431 8 15 1.98 0.1208 

OSP 
TRT 4 15 49.09 <0.0001 4 15 24.90 <0.0001 
Prot 2 15 2.20 0.1452 2 15 74.23 <0.0001 
TRT*Prot 8 15 3.14 0.0268 8 15 4.68 0.0004 

SV 
TRT 4 15 1.00 0.4374 4 15 327.20 <0.0001 
Prot 2 15 1.08 0.3631 2 15 885.02 <0.0001 
TRT*Prot 8 15 1.01 0.4684 8 15 6.95 0.0007 
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Table 3. Analysis of variance for visco-elastic, mixing and baking properties of wheat 
flours from sites A and B, treated with Urea. TRT=Urea treatment, Prot=flour protein 
content, TRT*Prot = interaction. 
 

Variable Effects 
Site A Site B 

Num 
DF 

Den 
DF F Value Pr > F Num 

DF 
Den 
DF F Value Pr > F 

SeP 
TRT 3 13.5 240.78 <0.0001 3 16.5 75.33 <0.0001 
Prot 2 13.5 1121.32 <0.0001 2 16.5 168.46 <0.0001 
TRT*Prot 6 13.5 347.07 <0.0001 6 16.5 49.81 <0.0001 

J-Jr 
TRT 3 15.3 5.88 0.0071 3 15.6 2.17 0.1330 
Prot 2 15.3 137.11 <0.0001 2 15.6 183.72 <0.0001 
TRT*Prot 6 15.3 24.11 0.0001 6 15.6 14.26 <0.0001 

RCY 
TRT 3 15.3 5.40 0.0099 3 15.6 0.77 0.5270 
Prot 2 15.3 11.20 0.0010 2 15.6 16.99 0.0001 
TRT*Prot 6 15.3 6.58 0.0014 6 15.6 4.18 0.0107 

TCC 
TRT 3 16.1 2.77 0.0754 3 19 23.11 <0.0001 
Prot 2 16.1 35.25 <0.0001 2 19 32.38 <0.0001 
TRT*Prot 6 16.1 4.50 0.0073 6 19 8.32 0.0002 

TCR 
TRT 3 16.1 0.76 0.5300 3 19 16.53 <0.0001 
Prot 2 16.1 83.23 <0.0001 2 19 109.78 <0.0001 
TRT*Prot 6 16.1 1.84 0.1537 6 19 19.80 <0.0001 

          

WA 
TRT 3 11.9 16.19 0.0002 3 11.9 74.61 <0.0001 
Prot 2 11.9 1261.30 <0.0001 2 11.9 35.63 <0.0001 
TRT*Prot 6 11.9 17.27 <0.0001 6 11.9 9.32 0.0006 

DT 
TRT 3 11.9 2.25 0.1358 3 11.9 6.00 0.0099 
Prot 2 11.9 2107.36 <0.0001 2 11.9 7.34 0.0084 
TRT*Prot 6 11.9 6.64 0.0029 6 11.9 2.04 0.1382 

ST 
TRT 3 11.9 3.16 0.0647 3 11.9 11.14 0.0009 
Prot 2 11.9 405.30 <0.0001 2 11.9 713.44 <0.0001 
TRT*Prot 6 11.9 13.44 0.0001 6 11.9 23.22 <0.0001 

BT 
TRT 3 11.9 4.42 0.0262 3 11.9 5.73 0.0116 
Prot 2 11.9 668.95 <0.0001 2 11.9 51.97 <0.0001 
TRT*Prot 6 11.9 5.35 0.0068 6 11.9 18.79 <0.0001 

          

LV 
TRT 3 35.9 3435.02 <0.0001 3 35.9 5546.08 <0.0001 
Prot 2 35.9 5745.18 <0.0001 2 35.9 2136.96 <0.0001 
TRT*Prot 6 35.9 159.06 <0.0001 6 35.9 527.58 <0.0001 

LH 
TRT 3 11.9 831.28 <0.0001 3 11.9 659.82 <0.0001 
Prot 2 11.9 683.71 <0.0001 2 11.9 451.88 <0.0001 
TRT*Prot 6 11.9 24.90 <0.0001 6 11.9 78.14 <0.0001 

PH 
TRT 3 11.9 267.15 <0.0001 3 11.9 432.25 <0.0001 
Prot 2 11.9 111.27 <0.0001 2 11.9 59.21 <0.0001 
TRT*Prot 6 11.9 4.28 0.0157 6 11.9 11.82 0.0002 

OSP 
TRT 3 11.9 59.69 <0.0001 3 11.9 89.46 <0.0001 
Prot 2 11.9 70.51 <0.0001 2 11.9 135.56 <0.0001 
TRT*Prot 6 11.9 13.37 0.0001 6 11.9 47.80 <0.0001 

SV 
TRT 3 11.9 942.19 <0.0001 3 11.9 1976.24 <0.0001 
Prot 2 11.9 1100.23 <0.0001 2 11.9 701.30 <0.0001 
TRT*Prot 6 11.9 45.62 <0.0001 6 11.9 182.75 <0.0001 
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Table 4. Analysis of variance for visco-elastic, mixing and baking properties of wheat 
flours from sites A and B, treated with DTT. TRT=DTT treatment, Prot=flour protein 
content, TRT*Prot = interaction. 
 

Variable Effects 
Site A Site B 

Num 
DF 

Den 
DF F Value Pr > F Num 

DF 
Den 
DF F Value Pr > F 

SeP 
TRT 3 15.6 1544.17 <0.0001 3 15.9 91.72 <0.0001 
Prot 2 15.6 3580.99 <0.0001 2 15.9 60.29 <0.0001 
TRT*Prot 6 15.6 1577.37 <0.0001 6 15.9 77.65 <0.0001 

J-Jr 
TRT 3 15.6 18.07 <0.0001 3 15.9 24.25 <0.0001 
Prot 2 15.6 83.49 <0.0001 2 15.9 53.99 <0.0001 
TRT*Prot 6 15.6 20.66 <0.0001 6 15.9 5.33 0.0034 

RCY 
TRT 3 15.6 2.26 0.1213 3 15.9 4.49 0.0.181 
Prot 2 15.6 12.44 0.0006 2 15.9 16.92 0.0001 
TRT*Prot 6 15.6 2.87 0.0439 6 15.9 0.86 0.5430 

TCC 
TRT 3 15.6 13.57 0.0001 3 15.9 70.29 <0.0001 
Prot 2 15.6 25.52 <0.0001 2 15.9 32.38 <0.0001 
TRT*Prot 6 15.6 10.56 <0.0001 6 15.9 8.32 0.0002 

TCR 
TRT 3 15.6 47.09 <0.0001 3 15.9 19.37 <0.0001 
Prot 2 15.6 62.47 <0.0001 2 15.9 31.21 <0.0001 
TRT*Prot 6 15.6 10.13 0.0001 6 15.9 8.60 0.0003 

          

WA 
TRT 3 11.9 10.25 0.0013 3 11.9 30.06 <0.0001 
Prot 2 11.9 1363.06 <0.0001 2 11.9 12.38 0.0012 
TRT*Prot 6 11.9 6.15 0.0039 6 11.9 2.49 0.0853 

DT 
TRT 3 11.9 102.64 <0.0001 3 11.9 9.01 0.0022 
Prot 2 11.9 2601.04 <0.0001 2 11.9 4.65 0.0323 
TRT*Prot 6 11.9 122.06 <0.0001 6 11.9 9.70 0.0005 

ST 
TRT 3 11.9 114.90 <0.0001 3 11.9 37.98 <0.0001 
Prot 2 11.9 1184.46 <0.0001 2 11.9 210.72 <0.0001 
TRT*Prot 6 11.9 98.88 <0.0001 6 11.9 43.68 <0.0001 

BT 
TRT 3 11.9 13.81 0.0004 3 11.9 91.55 <0.0001 
Prot 2 11.9 419.41 <0.0001 2 11.9 53.41 <0.0001 
TRT*Prot 6 11.9 38.97 <0.0001 6 11.9 30.48 <0.0001 

          

LV 
TRT 3 35.9 2738.10 <0.0001 3 35.9 2382.75 <0.0001 
Prot 2 35.9 6918.85 <0.0001 2 35.9 1304.22 <0.0001 
TRT*Prot 6 35.9 91.34 <0.0001 6 35.9 216.50 <0.0001 

LH 
TRT 3 11.9 1248.55 <0.0001 3 11.9 960.00 <0.0001 
Prot 2 11.9 707.33 <0.0001 2 11.9 135.43 <0.0001 
TRT*Prot 6 11.9 11.88 0.0002 6 11.9 11.15 0.0003 

PH 
TRT 3 11.9 111.18 <0.0001 3 11.9 431.27 <0.0001 
Prot 2 11.9 490.27 <0.0001 2 11.9 162.28 <0.0001 
TRT*Prot 6 11.9 8.36 0.0010 6 11.9 46.98 <0.0001 

OSP 
TRT 3 11.9 299.64 <0.0001 3 11.9 414.94 <0.0001 
Prot 2 11.9 1.20 0.3358 2 11.9 4.65 0.0322 
TRT*Prot 6 11.9 3.11 0.0452 6 11.9 53.21 <0.0001 

SV 
TRT 3 11.9 1992.39 <0.0001 3 11.9 931.60 <0.0001 
Prot 2 11.9 3159.37 <0.0001 2 11.9 336.49 <0.0001 
TRT*Prot 6 11.9 71.28 <0.0001 6 11.9 62.53 <0.0001 
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Table 1. Significant differences (P < 0.05) in main effects in absence of an interaction (Appendix 
2, Tables 1 to 4). Main effects: flour protein (H = high, L = low and M = medium) and treatment 
(DATEM = 0, 0.3, 0.6 and 1%) in flours obtained from sites A and B. Means are separated using 
Tukey’s test. 
 

Chapter Site Variable Effect Level Mean  Std Error Letter 
Grouping 

III A RCY (%) DATEM 0 80.74 0.50 B 
    0.3 82.91 0.50 A 
    0.6 83.26 0.50 A 
    1 82.41 0.50 AB 
   Protein H 82.00 0.44 B 
    L 80.79 0.44 B 
    M 84.21 0.44 A 

III A BT (min) Protein H 14.43 0.60 A 
    L 1.45 0.60 B 
    M 3.23 0.60 B 

III A LH (mm) DATEM 0 92.04 0.77 A 
    0.3 92.76 0.77 A 
    0.6 92.94 0.77 A 
    1 88.56 0.77 B 
   Protein H 96.85 0.67 A 
    L 84.56 0.60 C 
    M 93.32 0.60 B 

III A OSP (mm) DATEM 0 23.93 0.74 A 
    0.3 21.64 0.74 A 
    0.6 23.93 0.74 A 
    1 13.00 0.74 B 
   Protein H 20.72 0.64 A 
    L 18.17 0.64 B 
    M 21.48 0.64 A 

III B DT (min) DATEM 0 1.75 0.07 AB 
    0.3 1.60 0.07 B 
    0.6 1.88 0.07 AB 
    1 1.98 0.07 A 
   Protein H 1.96 0.06 A 
    L 1.61 0.06 B 
    M 1.83 0.06 AB 

III B OSP (mm) DATEM 0 20.25 1.17 A 
    0.3 22.00 1.17 A 
    0.6 19.25 1.17 A 
    1 9.56 1.17 B 
   Protein H 21.01 1.02 A 
    L 13.20 1.02 B 
    M 19.09 1.02 A 
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Table 2. Significant differences (P < 0.05) in main effects in absence of an interaction (Appendix 
2, Tables 1 to 4). Main effects: flour protein (H = high, L = low and M = medium) and treatment 
(Ascorbic acid = 0, 50, 100, 150 and 200 ppm) in flours obtained from sites A and B. Means are 
separated using Tukey’s test. 
 

Chapter Site Variable Effect Level Mean  Std Error Letter 
Grouping 

IV A PH (mm) Ascorbic acid 0 77.01 0.57 A 
    50 68.11 0.57 D 
    100 72.03 0.57 B 
    150 70.90 0.57 BC 
    200 69.28 0.57 CD 
        
   Protein H 76.10 0.44 A 
    L 64.42 0.44 C 
    M 73.87 0.44 B 

IV B TCC (s) Ascorbic acid 0 5.95 1.28 B 
    50 7.12 1.38 AB 
    100 6.84 1.47 AB 
    150 8.55 1.47 AB 
    200 11.85 1.47 A 
        
   Protein H 7.96 1.08 AB 
    L 5.44 1.04 B 
    M 10.98 1.17 A 

IV B LH (mm) Ascorbic acid 0 94.23 0.68 B 
    50 93.63 0.68 B 
    100 99.20 0.68 A 
    150 92.17 0.68 BC 
    200 89.32 0.68 C 
        
   Protein H 96.44 0.53 A 
    L 89.26 0.53 B 
    M 95.43 0.53 A 

IV B PH (mm) Ascorbic acid 0 77.77 0.61 A 
    50 75.04 0.61 B 
    100 76.37 0.61 AB 
    150 74.78 0.61 B 
    200 70.00 0.61 C 
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Table 3. Significant differences (P < 0.05) in main effects in absence of an interaction (Appendix 
2, Tables 1 to 4). Main effects: flour protein (H = high, L = low and M = medium) and treatment 
(Urea = 0, 0.5, 1 and 1.5 M) in flours obtained from sites A and B. Means are separated using 
Tukey’s test. 
 

Chapter Site Variable Effect Level Mean  Std Error Letter 
Grouping 

V A TCR (s) Protein H 5.62 0.20 B 
    L 7.93 0.19 A 
    M 4.40 0.19 C 

V B DT (min) Urea 0 1.75 0.06 B 
    0.5 1.93 0.06 AB 
    1 1.75 0.06 B 
    1.5 2.10 0.06 A 
        
   Protein H 2.06 0.05 A 
    L 1.75 0.05 B 
    M 1.83 0.05 B 
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Table 4. Significant differences (P < 0.05) in main effects in absence of an interaction (Appendix 
2, Tables 1 to 4). Main effects: flour protein (H = high, L = low and M = medium) and treatment 
(DTT = 0, 0.1, 0.25 and 0.5 mM) in flours obtained from sites A and B. Means are separated 
using Tukey’s test. 
 

Chapter Site Variable Effect Level Mean  Std Error Letter 
Grouping 

VI B RCY (%) DTT 0 82.84 0.54 A 
    0.1 81.59 0.66 AB 
    0.25 80.37 0.66 B 
    0.5 80.17 0.66 B 
        
   Protein H 80.61 0.54 B 
    L 83.69 0.52 A 
    M 79.43 0.54 B 

VI B WA (%) DTT 0 59.81 0.15 C 
    0.1 60.03 0.15 C 
    0.25 60.80 0.15 B 
    0.5 61.66 0.15 A 
        
   Protein H 61.11 0.13 A 
    L 60.37 0.13 B 
    M 60.25 0.13 B 
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Table 1. Description of important studies cited in this dissertation. 
Author Description Conclusion 
Aamodt et 
al. 2003 

Norwegian wheat cultivars 
(10 to 13% FP), hearth 
loaves baked, SE-HPLC 

Carried out for mono and 
polymeric fractions and 
their ratios, extensibility  

tests using Kieffer and 
gluten extensibility rig,  
controls had no additives, 

DATEM 0.45% (w/w 
flour), ascorbic acid (AA) 
(30 ppm) 

DATEM and AA improved bread 
characteristics.  

Loaf area and form ratios proportional to the 
amount of largest glutenin polymers.  

No increase in ratio of monomeric to 
polymeric protein with increase in protein 
content.  

DATEM increased Rmax/ Ext ratio, 
increased elasticity no change in viscosity. 

AA increased Rmax and MPT 

Armero et 
al. 1996 

Spanish wheat (11.13% 
FP), 100 g loaves, DATEM 
(0.3%), MGL (0.3%), SSL 
(0.5%) and controls. 
Rheological (extensibility, 
Rmax), baking, mixing by 
Farinograph 

DATEM and SSL increased loaf volumes 
(11.6 and 10.8%, respectively) and oven 
spring heights (21.1 and 12.5%, 
respectively). SSL improved the mixing 
properties like stability (25%). DATEM 
added in combination of MGL reduced the 
Rmax by 31.2% 

Koehler 
and 
Grosch 
1999 

German wheat cultivar 
(10.5% FP), DATEM 0.1 to 
0.5% w/w flour basis, 
micro-scale baking, 
rheology by micro-
extensograph 

Loaf volumes increased 55 to 60% with 0.3 
to 0.5% DATEM concentrations, 
respectively. Resistance increased by 50% 
with 0.5% DATEM compared to controls. 

Campbell 
et al. 2001 

DATEM (0, 0.4 and 0.7% 
w/w) British wheat cultivar 
Riband (8.1% FP). Loaf 
volumes, gas content, air 
content, dough density 
measured 

DATEM and SSL levels of 0.4% improved 
loaf volumes (31.8% and 40%, 
respectively).DATEM (0.4%) and SSL 
(0.7%) increased air content (11.6 and 
13.1%, respectively) and gas-free dough 
density (1.1 and 0.35%, respectively) than 
controls. 

Stampflii 
et al 1996 

Norwegian wheat (13% 
FP), DATEM 0 to 2% w/w 
flour basis, Farinograph and 
extensograph 

Extensibility decreased by 10 and 22% with 
1 and 2% DATEM, Water absorption 
increased 2.3% with 1.5% DATEM. 
Resistance to constant deformation after 90 
min resting time of dough increased by 32% 
with 2% DATEM. 

Koehler 
2003 

Ascorbic acid levels 0 to 
200 ppm added to the 
dough (French and German 

Ascorbic acid levels of 125 ppm effectively 
reduced 1 to 35% free GSH in the flour.  
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wheat cultivars wit 8 to 
13% FP), determination of 
GSH and GSSG 

Yamada 
and 
Preston 
1994 

Canadian western red 
spring wheat flour (11.7% 
FP) AA (0 to 150 ppm), 
loaf volumes oven rise and 
crumb characteristics 
measured 

Ascorbic acid treatments of 15 ppm 
increased loaf volumes by 4.7% and oven 
rise by 14.9%. No significant increase in loaf 
volumes and oven rise observed with levels 
higher than 15 ppm. 

Li et al 
2004 

Thirty eight wheat grain 
samples (9.3 to 11.8% FP), 
GSSG content in flours 
determined using HPLC 
after solubilizing with 0.025 
M DTT, pH 9  at 25 °C and 
40 °C 

The derivatization yield was 70% higher for 
GSSG and 68% higher for GSH at 40 °C 
than 25 °C 

Wikstrom 
et al 1998 

Ascorbic acid (0 to 500 
ppm), Swedish wheat flours 
(8.2 to 13.8% FP), stress 
relaxation study on dough, 
loaf volumes 

Loaf volumes increased by 19 to 52% with 
75 ppm AA levels. Initial stress levels 
increased by 44% with 50 ppm AA on flour 
with 13.8% FP. No significant increase in 
initial stress observed on other flours with 50 
ppm AA. 

The rate at which the dough relaxed was 
14.1% faster on low protein (8.2% FP) dough 
at 50 ppm AA and 15% slower in high 
protein flour at same level. 

Inda and 
Rha 1982 

Gluten isolated from wheat 
flours. Gluten subjected to 
extensibility and rupture 
tests, 0 to 8 M urea 
concentrations used 

The rate at which the stress relaxed was 
faster for gluten treated with 5 M urea (29%) 
compared to 1 M urea (11%). Constant strain 
modulus decreased by 40.6% at 1 M urea 
compared to control but increased by 35.7% 
again at 5 M urea. Similarly derived stress 
relaxation modulus decreased by 42.7 % with 
1 M urea from control and again increased 
42.7% at 5 M urea. 

Inda and 
Rha 1991 

Dynamic oscillation test 
with 1 M to 5 M urea on 
gluten isolated from 
commercial wheat flour 

Rate at which loss modulus increased with 
increased frequency was 5 % slower for 
gluten treated with 5 M urea than control. 
Loss tangent increased by 60% with 5 M 
urea with increasing frequency compared to 
10% increase of control. 

Khatkar 
2005 

Dynamic oscillatory test 
1Hz frequency and 25 Pa 
stress amplitude used, 0 to 
10 M urea concentrations 

Storage and loss modulus were positively 
correlated to loaf volumes r = 0.69 and 0.73, 
respectively). Decrease in elastic moduli with 
3 M urea was 25 and 50% with strong and 
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used, 0 to 500 ppm DTT 
used, loaf volumes, gluten 
from strong and weak 
varieties isolated. 

weak gluten respectively, but 66.6 and 40% 
increase with 8 M urea. DTT levels of 500 
ppm decreased elastic modulus by 66 and 
50% in strong and weak gluten 

McGrane 
et al 2004 

Urea concentration of 50% 
(w/w) on amylose gel, 
dynamic oscillatory testing 

Viscous modulus (G’’) and elastic modulus 
(G’) increased by 91% and 80% respectively. 

Lu and 
Seib 1998 

Hard red winter wheat 
(11.5% FP) 1.3 mM DTT 
added to flour to convert 
DHAA to AA, mixograph 
and loaf volumes 

3.2% decrease in loaf volumes observed. 
Ascorbic acid efficient at pH above 4, mixing 
time increased by 19%. 
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