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CHAPTER I

INTRODUCTION

The Kingdom Fungi is an essential part of the ecosystem, playing a large role

decomposing dead organic matter.  Fungi are utilized in industry because they produce

valuable enzymes, and they are used as food and in the production of food, such as soy

sauce.  Fungi can also cause infectious diseases in humans and animals, ranging from

minor skin infections, such as ringworm, to serious and lethal infections, such as systemic

mycosis.  The number of people with compromised immune systems is rising due to

advanced HIV infections, chemotherapy for cancer patients, and other predisposing

factors that make one more susceptible to fungal infections.  There is a need for new,

more effective antifungal agents to treat and prevent fungal infections.  Ambruticin has

potential to be an antifungal agent for humans and animals.  The molecular targets of

ambruticin are still unknown, and here we use an RNA interference (RNAi) approach to

discover those targets.  The RNAi construct was first tested with a developmental gene,

brlA.  Then a genomic library was developed with the RNAi construct and screened for

resistance against the fungicide fludioxonil.  These resistant strains were tested for cross

resistance to ambruticin VS3 and sensitivity to salt.  Our results confirm that ambruticin

targets the membane components of the osmotic stress-sensing pathway.
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CHAPTER II

INDUCIBLE RNA INTERFERENCE OF brlAβ IN Aspergillus nidulans

Abstract

RNA Interference (RNAi) is a eukaryotic mechanism where small RNA

molecules regulate gene expression, and RNAi is used as a tool to silence expression of

targeted genes.  We have used Aspergillus nidulans, a multicellular fungus, to test an

alcohol-dependent inducible construct for RNAi.  This RNAi construct consists of

inverted repeats of an alcohol dehydrogenase promoter (alcA(p)) with a gene of interest

located in a unique restriction enzyme site (BamHI) between the promoters.  Our gene of

interest for silencing was brlAβ, the longer of a two-transcript, differentially expressed

gene, encoding a transcription factor that regulates asexual development and sporulation.

The RNAi mutants show normal phenotypes on standard media containing glucose, but a

remarkable loss of sporulation on alcA(p) inducing media containing threonine, similar to

that seen of brlA mutants.  Expression and lack of expression of brlA in the two

respective growth conditions was confirmed with Northern blotting, RT-PCR, and Real

Time RT-PCR.  Our results confirm the RNAi construct induces silencing of a targeted

gene.  Even though only the brlAβ transcript was targeted for RNAi, both transcripts

(brlAα and brlAβ) were not present on RNAi inducing conditions.  Anti-sense and

siRNA Northerns confirmed that the lack of brlAα expression was not due to RNAi

mechanisms, but rather a result of reduced brlAβ expression.   
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Introduction

RNA interference (RNAi) is a natural eukaryotic cellular mechanism that can be

utilized to silence gene expression. Dicer degrades double-stranded RNA into 21 base

pair siRNA duplexes that associate with the RISC complex to degrade complementary

mRNA, thus silencing gene expression (Bartel, 2004).  RNAi mechanisms have been

shown to be functional in targeting specific genes for silencing in Aspergillus nidulans

through inverted-repeat transgenes (Hammond et al, 2008; Hammond & Keller, 2005)

and siRNAs (Khatri & Rajam, 2007).  RNAi has been demonstrated in other Aspergillus

species, including the pathogen A. fumigatus (Bromley et al, 2006; Henry et al, 2007;

Khalaj et al, 2007; Mouyna et al, 2004) and industrially important A. oryzae (Yamada et

al, 2007).

A. nidulans reproduces asexually by extending its hyphae radially and developing

aerial conidiophores (Clutterbuck, 1969).  The conidiophores are differentiated at the tip

into vesicles, primary and secondary sterigmata (metullae and phialides, respectively),

and uninucleate conidia, which are the asexual spores (Adams et al, 1998; Boylan et al,

1987; Mims et al, 1988).  Bristle (brlA) mutants have normal hyphal extension, but they

have elongated conidiophores that do not develop viable conidia (Clutterbuck, 1969).

brlA’s null mutations result in complete obliteration of conidiophores, but in leaky

mutations, vesicles and sterigmata may form but do not develop viable conidia (Adams et

al, 1998; Clutterbuck, 1969).  Leaky mutants are thought to have partial brlA expression,

and variability between phenotypes may be a result of a dose effect (Adams et al, 1998;

Prade & Timberlake, 1993).  The misscheduled expression of brlA leads to cessation of

hyphal elongation and hyphal tip conidiation.  brlA is expressed prior to and in an
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epistatic relationship with other developmental genes, including abaA and wetA (Adams

et al, 1988; Mirabito et al, 1989).  brlA has two, overlapping transcripts, brlAα and brlAβ.

The brlAβ transcript begins at 851 base pairs upstream of the brlAα transcript, and has an

intron that circumvents the brlAα transcription initiation region (Prade & Timberlake,

1993).  Previous models of development propose that brlAβ initiates development, and

brlAα continues development through a feedback pathway with abaA (Han et al, 1993).

A strain that lacks brlAβ (-1290 to -404), and has an intact brlAα, has early brlAα

expression, but brlAα expression ceases after 12 hours of development (Prade &

Timberlake, 1993).  More recently it was found that overexpression of brlAβ activates

expression of brlAα, even when abaA is absent (Han & Adams, 2001).  We chose to

study silencing of this unique brlAβ transcript, and to examine how silencing of brlAβ

affects brlAα.

In this paper, we demonstrate that a construct with inverted repeats of an

inducible alcohol dehydrogenase promoter (alcA(p)) flanking brlAβ can silence its

expression through RNAi in A. nidulans.  We found that when brlAβ was silenced, brlAα

expression was also mute. The lack of anti-sense RNA and siRNAs specific for brlAα

indicate this was not due to the RNAi inactivation, but more likely that brlAβ controls the

expression of brlAα.

The alcA(p) is repressed in glucose but strongly induced in threonine, and it has

been used for misscheduled expression of brlA (Adams et al, 1988), overexpression of

brlAα and brlAβ, individually (Han & Adams, 2001), overexpression of a random

genomic DNA library (Marhoul & Adams, 1995), and gene silencing in Penicillium

expansum by inverting the downstream gene (Schumann & Hertweck, 2007).  By using
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inverted repeats of an alcA(p) flanking a gene, induced expression of double-stranded

RNA triggers the RNAi mechanism to silence that gene.  Our construct contains the

brlAβ (-2902 to -404) in a unique BamHI site, so that brlAβ may be replaced by a

genomic DNA library or a specific gene of interest.  This approach of using a single

construct to silence many genes will increase knowledge of the growth and development

mechanisms of a multicellular, sporulating model organism.

Materials and Methods

Plasmid construction.  alcA(p) was amplified with PCR from a previously

constructed plasmid pRP68A, and the resulting 622 base pair PCR fragment was cloned

into pGEM-T Easy Topoisomerase cloning vector (Promega).  This vector, pSW2,

allowed the alcA(p) to have flanking EcoRI and flanking NotI sites. Plasmid pRP07,

containing the brlAβ upstream sequence (AN0973.3, -2902 to -404, Figure 1A) cloned

into the BamHI restriction site on pBluescript ks(+), was used as a vector for the EcoRI

isolated alcA(p) from pSW2.  A plasmid with the alcA(p) oriented toward the brlAβ

fragment was selected, pSW5.  Plasmid pSW5 was used as a vector for an argB

nutritional selection gene (Johnstone et al, 1985).  Plasmid pDC1, where the BamHI site

had been filled-in through a Klenow reaction, was used as a source for argB.  It was

isolated using SacI partial digestion, and cloned into the SacI site of pSW5.  The resulting

plasmid was named pSW6.  Plasmid pSW6 was used as a vector for the NotI isolated

alcA(p) from pSW2.  A plasmid containing inverted repeats surrounding brlAβ was

selected, so that both promoters in the plasmid were oriented toward the brlAβ.  The final
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RNAi  cons t ruc t  p lasmid  was  named pSW8 (F igure  1B) .

Figure 1.  brlA Locus and RNAi Construct.  (A) The brlA locus consists of two

overlapping transcriptional units, brlAα and brlAβ.  The top line represents the brlA

genomic DNA (gDNA).  The portion of the locus flanked by BamHI sites (-2902 to -404)

used in the RNAi construct included only brlAβ.  The line of the transcripts (mRNA)

represents untranslated RNA, and the box represents translated mRNA. (B) The RNAi

construct consists of inverted repeats of inducible alcA(p)s flanking brlAβ in a unique

BamHI site and an argB marker.

Transformations were performed using E. coli SURE chemical competent cells

(Stratagene).  Additional competent cells were prepared (Inoue et al, 1990).  Plasmid

containing cells were recovered on LB Agar with 0.1mg/ml ampicillin.  DNA was

prepared according to Minipreparation protocol (Sambrook & Russell, 2001), and

solutions were prepared with chemicals obtained from Sigma-Aldrich.  Gene orientation
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and sequences were verified using restriction enzyme mapping and sequencing.

Sequencing was performed at Oklahoma State University’s Core Facility on an ABI

Model 3730 DNA Analyzer.  All genes were isolated through gel electrophoresis in 1%

agarose gels, and purified with a Gel Extraction Kit (Qiagen).  Restriction enzymes,

Ligases, and Polymerases were purchased from Invitrogen.

Aspergillus nidulans Transformation.  All strains were grown on Aspergillus

Minimal Media (MM) (Pontecorvo et al, 1953).  A. nidulans strains RMS11 (pabaA1,

yA2, argB::trpC B, veA1, trpC801) and LR191 (argB, pabaA1, pyrG, pyroA, yA2, veA1)

were used as parental strains.  Spores were grown to germination, washed with 0.6 M

MgCl2, and digested with Drisilase (Sigma-Aldrich) at 30°C at 100 rpm for one hour.

Protoplasts were washed twice with 0.6 M KCl and resuspended in STC50 (1.2 M

sorbitol, 0.01 M CaCl2, 0.05 M Tris-HCl pH 7.5).  Linear DNA (10 µg) was added, and

the mixture was incubated at room temperature for 5 minutes.  60% PEG4000 was added,

mixed by rolling on the bench, and incubated at room temperature for 20 minutes.

STC50 was added to dilute the mixture, mixed by inversion, and poured on three plates,

with 1.2 M sorbitol and appropriate supplements, excluding arginine for nutritional

selection of transformants.  Plates were incubated three days to allow development of the

transformants.  Eight total pSw8 strains were obtained, and two pDC1 strains were

obtained.

Analysis of Transformants.  To extract genomic DNA, spores were grown on

MM broth on Petri dishes for no more than 24 hours.  The mycelia mats were harvested,

washed with sterile water, and frozen with liquid nitrogen.  Mycleia were lysed by adding

1 ml of genomic extraction solution (1% SDS, 50 mM EDTA) to 100 mg of tissue, heated
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one hour at 68ºC, and separated by centrifugation.  The supernatant was transferred, 45 µl

of 5 M potassium acetate was added, and samples were incubated on ice 10-30 minutes

and centrifuged.  The supernatant was transferred, and the genomic DNA was

precipitated with 95% ethanol.  The genomic DNA was fished out with a glass hook,

washed with 70% ethanol, and resuspended in TE with 10 mg/ml RNase.

PCR analysis of 10 ng genomic DNA was performed using Pfx (Invitrogen)

according to manufacture’s directions.  Southern Blot analysis (Sambrook & Russell,

2001) of 5 µg genomic DNA, digested with EcoRI was performed using DIG High Prime

DNA Labeling and Detection kit (Roche) or 32P-dATP DNA labeled probe constructed

with RadPrime DNA Labeling System (Invitrogen).

Phenotype analysis of transformants was observed by growing the strains on MM

agar for 48 hours at 37°C. Spores were harvested from the plates by scraping with sterile

water, and inoculated into MM broth.  These cultures were incubated 24 hours, shaking

250 rpm at 37°C.  Mycelia were harvested by filtration and washed thoroughly with

sterile water.  Each strain was plated on MM containing 100 mM glucose and 100 mM

threonine as the sole carbon source.  These plates were incubated for 24 hours for visible

phenotypes.  Images of plates were taken by scanning the plates using a Microtek

ScanMaker 4700.  Digital Photographs (Canon Powershot A620) were taken under a

stereomicroscope (Nikon SMZ-U) at 60X magnification, and pictures of tape mounts

were taken at 600X magnification under a light microscope (Nikon TMS).

RNA of each strain in each condition was harvested at 24 hours after

developmental induction and purified with Tri Reagent (Sigma-Aldrich).  RNA (10 µg)

was separated on a formaldehyde agarose gel, blotted to a membrane, and fixed to the
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membrane with UV light (Sambrook & Russell, 2001). DNA probes were constructed as

previously mentioned, and 32P-UTP RNA probes were constructed with Maxiscript T7

kit (Ambion).  Hybridization and detection were carried out as previously described

(Sambrook & Russell, 2001).  For analysis of siRNAs, 5 µg of RNA of each sample was

hybridized with a sodium carbonate treated probe (Catalanotto et al, 2002) with a

mirVana miRNA detection kit (Ambion) and run on a 15% denaturing polyacrylamide

gel.

Reverse transcriptase PCR (RT-PCR) analysis was begun by treating 2 µg of each

RNA sample with DNase (Ambion) and converting it to cDNA with Reverse

Transcriptase (Ambion).  RT-PCR analysis was set up with Pfx (Invitrogen), 100 ng of

cDNA template, and 300 µM of each primer into 50 µl total reactions.  The reactions

were carried out on MJ Research PC-200 Thermal Cycler for 22 cycles with the

following conditions:  1. 94C for 2 minutes, 2. 94C for 30 seconds, 3. 50C for 30

seconds, 4. 68C for 5 minutes, 5. GoTo step 2. 21 times, 6. 68C for 5 minutes.  Each

sample had 8 µl run on a 1% agarose gel.  The gels were stained with ethidium bromide

and pictures were taken on a GelDoc-IT TS Imaging System (UVP).

Each Real-Time RT-PCR reaction was set up with SYBR Green PCR master mix

(Applied Biosystems), 20 ng of cDNA, and 300 µM of each primer into 15 µl total

reactions.  Each reaction was performed in duplicate or triplicate on 96 well, optical

plates on an Applied Biosystems 7500 Real-Time PCR System.  Dissociation curves

were performed for each reaction following the PCR and agarose gels were run on

selected samples to ensure purity of products.  For analysis, the threshold was set at 1.5

for the Ct value, and ΔΔ Ct calculations were performed relative to Actin and the mean Δ
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Ct.  Gene expression fold change values were derived from 10(-ΔΔCt/ln10/ln2), where the

primer efficiency (ln10/ln2) was calculated experimentally for each primer set by PCR

reactions of serial dilutions of genomic DNA.  The average fold change and standard

deviation were calculated for each sample and graphed on Microsoft Excel.

Table 1:  Primers used in this study.
Primer Sequence Purpose
alcA(p) + AAAAATCTTACTCCAGTGGTTCGG clone alcA, DNA probe
alcA(p) - GAGGCGAGGTGATAGGATTGGAAG clone alcA, DNA probe
pSW8 brlA left GCTGACGATCAGCTTTCTCC sequencing, PCR
pSW8 argB right GTTTCGCAATGGCTGTAGGT sequencing, PCR
brlAβ left GGATGCCACTTTCTCTCTGC DNA probe, PCR
T7 and brlAβ left ATATTAATACGACTCACTATAGGGGATGCCACTTTCTCTCTGC RNA probe
brlAβ right GTCTCAACCCGCACGTAGAT DNA/RNA probe, PCR
brlAβ left 2 CGTTTAAGGGCGGGTCTATT RT-PCR
brlAβ right 2 GAGAAGTGCCAGCCAGAGTC RT-PCR
brlAα left TCACCAACTCGCTCATTCAC RT-PCR
brlAα right ACGTTCCCTAAGCTTTGCAG RT-PCR
brlAα and β left ATATGGATCCTCACTCCCCAACAACACGTA DNA probe, RT-PCR
T7, brlAα and β left ATATTAATACGACTCACTATAGGTCACTCCCCAACAACACGTA RNA probe
brlAα and β right ATATGGATCCGAACTGCACCTGCTTGATGA DNA/RNA probe, RT-PCR
creA left CATGAGCCGTTCCCATTC DNA probe, RT-PCR
creA right AACGGAATTTGCGGTTGA DNA probe, RT-PCR
brlAβ Forward AAACAGCTAGTCCAGCCCTCTGTT Real time RT-PCR
brlAβ Reverse AGCAAGGCCAGGAATGTAGGCTAT Real time RT-PCR
brlAα Forward TTCATTCCTTCACTGGCCTCCACT Real time RT-PCR
brlAα Reverse AGCACCGTTCAGTTTACGTTCCCT Real time RT-PCR
brlAα and β Forward ACGAACTCCTGGTTCTGCTTCGAT Real time RT-PCR
brlAα and β Reverse ATTCGTTCCTGCCCTTCCATGCTA Real time RT-PCR
actA Forward TCAGGTTATCACCATCGGCAACGA Real time RT-PCR
actA Reverse TACCACCGCTTTCCAGACCAAGAA Real time RT-PCR

Results

The RNAi construct integrates into the genome.  In order to prove that the

RNAi construct can integrate into the genome of A. nidulans, a sporulating, argB

deficient strain was transformed.  Eight resulting transformation strains were argB

sufficient, and all strains sporulated on standard MM.  Hyphal mats of these strains were

grown and genomic DNA was extracted.  Southern Blots were performed with EcoRI

digested genomic DNA, using a DIG-labeled alcA(p) as a probe (data not shown).  PCR

reactions were performed on the genomic DNA with primers that were specific for the
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RNAi construct, with the left primer specific for brlA and the right primer specific for

argB (Table 1).  These were also the primers used for sequencing the plasmid DNA

before transforming it into A. nidulans (data not shown).  The Southern and PCR results

indicate that four of the transformation strains, named JB1, JB3, JB6 and JB8, contain the

RNAi construct.  Additional PCR reactions and Southern Blots were performed on

transformation strains JB1 and JB3 (Figure 2).  The first PCR primers used were argB

and brlA specific as before (Figure 2A).  This primer set gave strong products for the

RNAi construct, JB1 and JB3, but no product for pBluescript or the wild type.  Primers

specific for the brlAβ (Table 1) were also used (Figure 2B).  Again strong products were

present in the RNAi construct, JB1 and JB3, no product was seen in pBluescript, and a

product was present for the native brlAβ in the wild type.  These results indicate the

RNAi construct is integrated into the genome.  In the Southern blots, genomic DNA was

both not digested and digested with EcoRI and probed with an isotopically labeled PCR

product specific for brlAβ (Figure 2C).  This blot shows that all the strains have a native

brlA gene (4.6 kb), and JB1 and JB3 possess an additional brlA band that is a smaller size

than the wild type (2.5 kb), due to the EcoRI digestion sites introduced to through the

RNAi construct.  The Southern blot results indicate again the RNAi construct is

integrated into the genome and the native brlA gene is present in the strains as well

without being disrupted by homologous recombination.  The 2.5 kb band in the Southern

blot is stoichoimetrically more dense than the 4.6 kb band, indicating that there could be

more that one copy of the RNAi construct integrated into the genome.  To further

demonstrate that the RNAi construct is integrated into the genome of the RNAi strains,

sexual crosses (Pontecorvo et al, 1953) between JB1 and JB3 with the wild-type argB
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deficient strain were performed (data not shown).  All argB sufficient progeny analyzed

possessed  the  induc ib le  s i l enc ing  o f  the  b r l A  phenotype.

Figure 2.  Integration of the RNAi construct into the genome.  (A) Plasmid DNA from

pBluescript ks(+) (pBS), the RNAi construct (pSw8) and genomic DNA isolated from the

wild type (WT) and RNAi strains, JB1 and JB3, were all analyzed with PCR to verify

presence of the RNAi construct (top band) and native and RNAi construct brlAβ (bottom

band).  (B) Southern blot analysis of wild type, JB1 and JB3 genomic DNA, both not

digested (ND) and digested with EcoRI revealed presence of a 4.6 kb brlAβ band in all

strains that is part of the native brlA locus and a 2.5 kb brlAβ band in JB1 and JB3 that is
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part of the RNAi construct.  Shown below is a photograph of the 0.7% agarose gel with

ethidium bromide stained genomic DNA, from which the membrane was blotted.

The RNAi strains have inducible silencing of the brlA phenotype.  A. nidulans

conidiophore development is suppressed in submerged culture, but spores inoculated into

submerged culture develop vegetatively to produce mature mycelia.  Conidiophore

development begins in a synchronized manner when the mycelia are plated and exposed

to air (Axelrod, 1972; Boylan et al, 1987).  The wild type, JB1 and JB3 were grown by

inoculating spores in standard MM broth with appropriate supplements, and shaken 24

hours at 250 rpm.  Mycelia was harvested by filtration, washed thoroughly with sterile

water, and plated on either glucose or threonine MM (Figure 3). After 24 hours of

developmental induction, it was clear that the wild type developed conidia on both

glucose and threonine, but the RNAi strains developed conidia only on glucose.  The lack

of yellow-pigmented conidia makes the RNAi strains appear white on threonine (Figure

3A).  The RNAi strains developed extended aerial conidiophores that did not continue

development to produce viable conidia on threonine, just as the brlA phenotype exhibits

(Figure 3B and C).  The lack of full conidiophore and conidia development indicates that

brlA is silenced when the RNAi strains develop in alcA(p) inducing conditions, but brlA is

expressed normally without silencing in the presence of glucose that represses alcA(p).
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Figure 3.  Phenotypes of RNAi Strains.  (A) Plates that contained either glucose (G) or

threonine (T) as the sole carbon source.  (B) Plates under a stereomicroscope, 60X

magnification.  (C) Tape mounts under a light microscope, 1000X.  These images show

the wild type (WT) on both conditions, and the RNAi strains (JB1 and JB3) on glucose

with normal development, but the RNAi strains on threonine show brlA phenotypes.

JB1 displays a complete brlA null phenotype with elongated, aerial conidiophores

that do not develop vesicles, sterigmata or conidia.  On the other hand, JB3 displays the

brlA leaky phenotype that develops rudimentary vesicles and sterigmata in an abnormal

manner, and it lacks viable conidia (Figure 4).  The variability in the phenotypes of the

two RNAi strains indicates that RNAi construct can be useful in constructing strains that

have varied amounts of gene silencing.
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Figure 4.  Scanning Electron Microscopy (SEM) Images of JB3.  This RNAi strain

produces chains of conidia in glucose, but it has a partial, or leaky, brlA phenotype in

threonine, where conidiophores are partially formed.  J.S. Barton fixed and coated the

samples and ran the SEM at the OSU Microscopy Facility in Stillwater, OK.

Expression of brlA is reduced in silencing conditions.  In order to prove that the

expression of brlA is silenced on threonine, but not on glucose, gene expression analysis

was performed with Northern blotting, RT-PCR, and Real Time RT-PCR (Figure 5).

RNA used for these experiments was harvested at 24 hours after mycelia were plated.

The Northern blots were probed with an isotopically labeled DNA probe specific to the

downstream portion of brlA, where brlAα and brlAβ transcripts overlap (Figure 5A).  The

Northern blot shows abundant brlA expression on glucose in all the strains.  On

threonine, the wild type had abundant brlA expression, but JB1 had a nearly absent

signal, and JB3 had a drastically reduced signal for both brlAα and brlAβ expression.  As
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a control creA was also probed to show similar expression in all strains and conditions,

and rRNA is shown as a loading control.  In the RT-PCR reactions (Figure 5B), the wild

type had nearly equal PCR products in both glucose and threonine.  Both JB1 and JB3

had abundant products from glucose, but on threonine JB1 had nearly no product and JB3

had much less product for both brlAα and brlAβ.  In order to quantify the fold change of

the brlAα and brlAβ transcripts, Real Time RT-PCR was employed (Figure 5C).  In the

wild type, brlAα and brlAβ transcripts were nearly equal on both glucose and threonine.

This indicates that no RNAi of brlA is occurring on threonine in the wild type.  In JB1,

brlA transcript level on glucose is approximately equal to that of wild type on glucose,

but there is only slightly detectable abundance of brlAα and brlAβ in JB1 on threonine.

JB3 had a large amount of brlAα and brlAβ on glucose, four to nearly five fold more

transcripts than wild type on glucose, but JB3 brlAα and brlAβ transcript level on

threonine was three to four fold less abundant than on glucose.  These experimental

results indicate that the expression of brlA is indeed silenced in alcA(p) inducing

conditions in the RNAi strains.  The silencing in JB1 is more drastic than the silencing in

JB3, which corresponds to the respective brlA null and leaky phenotypes.  The silencing

of both the brlAα and brlAβ transcripts is clearly shown here, but this raised the question

of whether the silencing of brlAα is due to RNAi mechanisms or lack of brlAβ transcript.
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Figure 5.  Expression of brlA in the RNAi strains.  (A) Northern blot analysis of RNA

indicates that brlA expression is present in the wild type (WT) in both conditions and the

RNAi mutants (JB1 and JB3) in glucose (G), but not detectable on threonine (T).

Expression of creA was consistent in all samples.  (B) RT-PCR revealed the same pattern

as the Northern:  normal brlA expression in wild type in both conditions and RNAi

mutants in glucose, insignificant amounts of brlA expression in JB1, and reduced but

detectable amounts of brlA expression in JB3.  brlAα and brlAβ specific primers were

used, as well as primers for the overlapping portion of brlAαβ. creA showed consistent

expression in all strains and conditions. RNA samples revealed no products, to ensure

that it was not contaminated with genomic DNA.  Controls for each primer set was
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carried out with:  genomic DNA (g), and a cDNA library (c).  (C) Real Time RT-PCR

allowed for the fold change quantification of the transcripts.  Primers specific for brlAα,

brlAβ, and brlAαβ were used. The wild type had normal expression of brlA on both

conditions.  JB1 had normal brlA expression on glucose, but almost undetectable

expression on threonine.  JB3 had high levels of brlA expression on glucose, but

drastically reduced expression on threonine.

Silencing of brlAβ is due to RNAi.  To verify that RNAi mechanisms are the

direct cause of brlA silencing, Northern blots to detect anti-sense RNA and siRNAs were

performed (Figure 6).  These blots also verify that brlAβ is the target of RNAi, not brlAα.

Isotopically labeled RNA probes were constructed for the brlAβ anti-sense Northern

(Figure 6A), and a band approximately 400 bp, the predicted size of the brlAβ transcript

being targeted for silencing, was present in the RNAi mutant strains on threonine.  Anti-

sense RNA of brlAβ was not detected in the wild type or in the RNAi strains on glucose.

Anti-sense RNA of the overlapping portion of brlAα and brlAβ (Figure 6B) was not

detected in any of the strains or conditions.  Just as in the anti-sense RNA Northern blots,

siRNAs for brlAβ (Figure 6C) were present in the RNAi strains on threonine, but not in

the wild type or on glucose.  No siRNAs were detected for the overlapping portion of

brlAα and brlAβ (Figure 6D).  These Northerns also show that much more anti-sense

RNA and siRNAs are present in the JB1 RNAi mutant than in the JB3 RNAi mutant.

The variability in the RNAi corresponds to respective brlA null and leaky phenotypes of

the RNAi strains.
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Figure 6.  Blots showing RNAi of brlA in the RNAi strains.  (A) Northern blot analysis

of the wild type (WT), and RNAi strains (JB1 and JB3) in glucose (G) and threonine (T)

using an RNA sense probe specific for brlAβ detected complementary anti-sense RNA

present in the JB1 and JB3 in threonine. (B) An RNA sense probe specific for brlAαβ did

not detect any anti-sense RNA.  (C) siRNAs specific for brlAβ in the RNAi mutants on

threonine were detected.  No siRNAs were detected in the wild type or the RNAi mutants

on glucose.  (D) No siRNAs were detected using a probe specific for brlAαβ.  This

indicated that the RNAi mechanism is specifically targeting brlAβ, not brlAα.  Small

molecular weight RNA is shown to verify the integrity of the RNA.
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Discussion

Inducing inverted repeats of alcA promoters that flank brlAβ causes RNAi to

nearly eliminate or severely reduce brlA expression.  The unique RNAi construct

integrated stably into the genome of the RNAi strains, and it did not disrupt the native

brlA locus.  This was verified through PCR and Southern analysis.  The RNAi strains had

normal conidiation and expression of brlA on alcA(p) suppressive media (glucose), but

dramatic brlA phenotypes and loss of expression on alcA(p) inducing media (threonine).

RNAi was the cause of the brlAβ silencing, due to presence of anti-sense RNA and

siRNAs on alcA(p) inducing media, but RNAi did not cause brlAα silencing.  Lack of

brlAα expression is most likely due to lack of brlAβ expression and loss of feedback

mechanisms to activate brlAα.

The RNAi construct used here serves as a powerful genetic tool for four reasons.

First, alcA(p) is suppressed in glucose and strongly induced in threonine (Lockington et

al, 1985).  The alcA(p) can force expression of a downstream region of DNA (Adams et

al, 1988; Han & Adams, 2001; Marhoul & Adams, 1995; Mirabito et al, 1989), and this is

useful in isolating and examining essential genes.  Mutants that die when an essential

gene is knocked out by homologous recombination or silenced by a constitutively

expressed promoter, may be isolated with our RNAi construct under alcA(p) suppressive

conditions, and then examined under alcA(p) inducing conditions.  Second, the orientation

of the gene or gene fragment between the alcA(p)s may be in either direction.  Since they

are transcribing RNA in both directions, double-stranded RNA will be produced

regardless of the orientation of the DNA in the BamHI site flanked by the alcA(p)s.
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Orienting the gene to be silenced in either direction is an advantage over the currently

popular use of inverted-repeat transgenes (ITRs) where the gene of interest must be

cloned in specific orientations to produce double-stranded hairpin RNA (Hammond et al,

2008; Hammond & Keller, 2005; Nakayashiki et al, 2005; Yamada et al, 2007).  The

third reason our construct is a useful genetic tool is because the RNAi may nearly

eliminate expression of a gene altogether or only downregulate gene expression.  This

variability in the silencing of the genes is probably due to where the RNAi construct has

integrated into the genome.  The RNAi construct can integrate into a typical wild type

strain so that it may reside in a portion of the genome that has high or low amounts of

transcription.  Although variations between strains in the amount of gene silencing is

sometimes considered a disadvantage (Nakayashiki, 2005), in our case the variability

between strains allowed for a null and leaky brlA phenotype, and this difference between

the amounts of gene silencing may prove useful in understanding the function of other

genes that produce different phenotypes with partial expression.  Finally, the fourth

reason our RNAi construct is a powerful genetic tool is because any gene, gene fragment

or a genomic library may be inserted in either orientation into the unique BamHI site

between the alcA(p)s and examined with inducible gene silencing.

A. nidulans serves as an asexual developmental genetic model due to its quick

growth and development, ease of making developmental mutants, and ease of mapping

the developmental loci through sexual crosses (Clutterbuck, 1969; Pontecorvo et al,

1953).  Conidiophore development has been shown to involve expression of about 1,000

genes (Timberlake, 1980), and brlA is key in the initiation of proper conidiophore

development due to its upstream regulation of other developmental specific genes, such
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as abaA  (Adams & Timberlake, 1990; Mirabito et al, 1989), wetA  (Marshall &

Timberlake, 1991), rodA (Chang & Timberlake, 1993; Stringer et al, 1991), and stuA

(Miller et al, 1992).  The regulation of brlA has been speculated and examined

intensively, but there are still unanswered questions about it (Aguirre, 1993; Han &

Adams, 2001; Han et al, 1993; Prade & Timberlake, 1993).  The most current models

suggest that brlAβ initiates asexual development, since it is present in small quantities in

vegetative cells, and brlAα continues the development through a feedback mechanism

with abaA (Adams et al, 1998; Han & Adams, 2001; Han et al, 1993).  A. nidulans

contains two RNA-dependent RNA polymerases that could amplify the RNAi signal

through transitive RNAi, shown to occur in Caenorhabditis elegans (Alder et al, 2003),

but transitive RNAi has been absent in previous A. nidulans silencing experiments

(Hammond & Keller, 2005).  With a few rare exceptions, RNAi is sequence specific in

fungi, not locus specific (Nakayashiki, 2005).  If the RNAi signal were amplified, all

RNAi strains would have null brlA phenotypes.  One of our RNAi strains, JB3, has a

leaky phenotype when induced, indicating lack of amplification of the RNAi signal and

lack of transitive RNAi.  Our results also show that RNAi was specific for brlAβ, due to

the presence of anti-sense RNA and siRNAs specific to brlAβ, and lack of these specific

for brlAα.  The RNAi construct in this study only targeted brlAβ for silencing.  However,

our results show that both brlAα and brlAβ expression were not present or severely

reduced when the RNAi strains were induced.  Furthermore, in a brlAβ knockout mutant,

brlAα expression was not detected after 12 hours of developmental induction (Prade &

Timberlake, 1993), and overexpression of brlAβ induces expression of brlAα, even when
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abaA is not present (Han & Adams, 2001).  This evidence strongly suggests that brlAβ

plays a key role in regulating expression of brlAα.
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CHAPTER III

FLUDIOXONIL AND AMBRUTICIN RESISTANCE IN Aspergillus nidulans USING

A NOVEL APPROACH WITH INDUCIBLE RNA INTERFERENCE

Abstract

Ambruticin is an antifungal agent with potential for use to treat fungal infections

in humans and animals, and fludioxonil is a commonly used fungicide in agriculture.

Evidence has pointed to the osmotic stress-signaling pathway to be the target of

ambruticin and fludioxonil due to intracellular accumulation of glycerol.  Further

evidence of resistance conferred by mutations of upstream group III histidine kinases, an

additive effect of resistance by response regulators, and improper activation of Hog1, in

the HOG MAP kinase pathway, supports that ambruticin and fludioxonil mimic osmotic

stress.  Here we show that there are exceptions and inconsistencies in the proposed

targets, and we use a novel method to identify resistance to ambruticin and fludioxonil

with a genomic RNA interference library of Aspergillus nidulans.  Nearly 300 strains in

the library were found to have fludioxonil and ambruticin resistance, as well as sensitivity

to osmotic stress.  We further analyzed the 24 annotated multiple hits for the same ORFs

and found that 19 are isolated with the membrane fraction and 21 have transmembrane

domains.  This indicates that downregulation of multiple genes may confer resistance to

antifungals that affect the osmotic stress-signaling pathway.   
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Introduction

Ambruticin is an antifungal agent produced by the myxobacterium Sorangium

cellulosum.  Ambruticin S was first isolated and structure determined in the 1977 (Ringel

et al, 1977).  Ambruticin S was found to effectively kill a wide range of fungi with MICs

lower than 1.5 µg/ml, including Coccidiodes immitis, Trichophyton mentagrophytes,

Histoplasma capsulatum, Botrytis cinerea, Aspergillus flavus and Candida parapsilosis.

Ambruticin was found ineffective in killing Cryptococcus neoformans and Candida

albicans, (Ringel et al, 1977).  Ambruticin was shown to be effective in mice against

coccidioidomycosis (Levine et al, 1978) and histoplasmosis (Shadomy et al, 1978), and it

was effective against Trichophyton mentagrophytes in guinea pigs (Ringel, 1978).

Ambruticin was readily absorbed by the oral route in mice, guinea pigs and a single dog,

and it prolonged the life of mice severely infected with C. albicans from 5 days to 15

days (Ringel, 1978).  No noticeable side effects were observed in any of the above

studies with reasonable doses, and no resistance to ambruticin was developed in vitro

after 10 passages of H. capsulatum and M. fulvum (Ringel, 1978).  In 1985, Simpkin

suggested the mode of action for ambruticin in Candida parapsilosis was by inhibiting

amino acid uptake into the cells, determined with experiments with 14C-leucine

(Simpkin, 1985).

Congeners of the ambruticins were separated by chromatography and identified in

1991 (Figure 1)(Hofle et al, 1991), and they were labeled as Ambruticin S, VS1 through

VS5, and VS3 N-oxide. Ambruticin S has a hydroxyl group at the C5 position, and

ambruticin VS compounds have quaternary ammonium groups at C5.  The VS

compounds were found to be more effective in antifungal activity and less sensitive to pH
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changes than S (Hofle et al, 1991).  A synthesized derivative of ambruticin VS4, called

KOSN-2079 (MIC 1 µg/ml) was tested against a clinical strain of Aspergillus fumigatus

in mice, reducing pulmonary fungal numbers and increase survival compared to the

control group (Chiang et al, 2006).  Two derivatives of Ambruticin, KOSN-2079 and

KOSN-2089 (MICs 2.5 and 0.5 µg/ml) were used to treat mice infected with lethal doses

of Coccidioides.  73-100% of the mice were effectively free of Coccidioides after

treatment.  The most promising of these results were of KOSN-2089 at 50 mg/kg/day,

and the authors suggested that more mouse studies be done so that ambruticin can be

used against Coccidioides infections in humans and animals (Shubitz et al, 2006).
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Figure 1.  Structures of ambruticin congeners (Hofle et al, 1991).
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An antifungal compound with similar structure was also isolated from Sorangium

cellulosum called jerangolid A (Gerth et al, 1996).  Strains of the yeasts Hansenula

anomala and Trichosporon terrestre, that were resistant to jerangolid A were cross

resistant to ambruticin VS3 and pyrrolnitrin, but the mechanisms of action was not

known of any of these drugs at the time.  It was found that H. anomala leaked [14C]-2-

aminoisobutyric acid into the supernatant, indicating an increase in membrane

permeability (Gerth et al, 1996).

Pyrrolnitrin is a phenylpyrrole antifungal produced by several Pseudomonas

species (Arima et al, 1965).  Its derivatives, fludioxonil and fenpiclonil, are used as

fungicides to control plant pathogenic fungi (Gehmann et al, 1990).  Another group of

fungicides, dicarboximides, showed cross resistance with the phenylpyrroles in Botrytis

cinerea and Fusarium vivale mutants, and these resistant mutants showed sensitivity to

high osmotic stress (Leroux et al, 1992).  Fenpiclonil resistant strains of Fusarium

sulphureum were also found to be osmotically sensitivity, and fenpiclonil caused

accumulation of glycerol and mannitol in F. sulphureum mycelium (Jespers & Waard,

1995).  Both fenpiclonil and fludioxonil were found to increase the accumulation of

glycerol in the mycelium of Neurospora crassa, similar to an osmotic shock response,

and inhibit a protein kinase (PK-III) (Pillonel & Meyer, 1997).  Aromatic hydrocarbon

fungicides, such as dicloran, also mimic the osmotic stress response, making it the target

of three distinct classes of fungicidal agents, dicarboximides, phenylpyrroles, and

aromatic hydrocarbons (Leroux et al, 2002; Ochiai et al, 2002).

The cross-resistance of pyrrolnitrin and ambruticin found by Gerth et al. above,

led to the suggestion that the mechanism of action of ambruticin is interference with
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osmoregulation, similar to phenylpyrroles.  It was found that glycerol, triacylglycerols

and free fatty acids accumulate in H. anomala cells treated with ambruticin VS3 and

pyrrolnitrin.  The cells swell and leak low molecular weight compounds, and the

leakiness is assumed to kill the cells (Knauth & Reichenbach, 2000).

In S. cerevisiae, the HOG MAP kinase pathway regulates cellular turgor pressure

and is well studied (Figure 2A) (Posas et al, 1996).  It consists of a MAPKKK

(Ssk2/Ssk22), a MAPKK (Pbs2) and a MAPK (Hog1). The cascade's upstream sensing

and regulatory components consist of a hybrid histidine kinase signal transduction

phosphorelay.  The integral membrane histidine kinase (Sln1) consists of transmembrane

sensing domain, a histidine kinase domain and a response regulator domain, and it is the

only histidine kinase present in S. cerevisiae.  The next component of the phosphorelay is

a histidine phosphotransferase protein (Ypd1), and the final component is a response

regulator protein (Ssk1) (Posas et al, 1996). Hog1 is activated, or phosphorylated, under

high osmolarity conditions, activating transcription of up to 10% of yeast genes

(Hohmann, 2002), including glycerol synthesis enzymes, such as glycerol-3-phosphate

dehydrogenase (gpd1) and glycerol-3-phosphatase (hor2).  Osmotic stress reduces the

permeability of the plasma membrane to glycerol by inhibiting a glycerol transporter

(Fps1).  Glycerol accumulation in the cytoplasm restores the osmotic gradient between

the cells and their environment.  Deletions of sln1 and ypd1 are lethal, and deletion of

hog1, pbs2, or gpd1 are osmotically sensitive (Gustin et al, 1998).  Although S. cerevisiae

contains a single protein for each step of the histidine kinase phosphorelay, other fungi

contain multiple histidine kinases (with varied sensory domains) and multiple response

regulators, making the pathway more complex (Figure 2B, 2C, 2D) (Catlett et al, 2003).
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Figure 2.  Comparing the Osmotic Stress-Signaling Pathways. (A) Saccharomyces

cerevisiae only contains one histidine kinase, Sln1, and response regulator, but also uses

an alternate Sho1 pathway to signal osmotic stress.  (B) Candida albicans contains three

histidine kinases, one of which is homologous to Sln1 and one categorized as a group III

histidine kinase.  (C) Neurospora crassa has 11 histidine kinases, but has not been well

studied in other areas of the upstream signaling components.  (D) Aspergillus nidulans

contains 15 histidine kinases and four response regulators.  All organisms have

homologous MAPKKKs, MAPKKs, and MAPKs.

In N. crassa, osmotic sensitive mutants, os-1, os-2, os-3 and os-5 are resistant to

dicarboximides and phenylpyrroles (Fujimura et al, 2000).  The os-1 gene is a hybrid

histidine kinase predicted to be an osmosensor in N. crassa, containing six repeats of a 90

amino acid HAMP domain for sensing, a histidine kinase domain, and a response

regulator domain (group III histidine kinase), and mutations in this gene resulted in

resistance to phenylpyrroles (Ochiai et al, 2001).  The group III histidine kinases,

homologs of os-1 containing the repeated HAMP domains, have also been found in other

filamentous fungi to cause osmotic sensitivity and phenylpyrrole resistance, such as

Alernaria brassicicola (Avenot et al, 2005), Alternaria alternata (Dry et al, 2004),

Botrytis cinerea (Cui et al, 2002), Cochilobolus heterostrophus (Yoshimi et al, 2005;

Yoshimi et al, 2004), Magnaporthe oryzae (Motoyama et al, 2008), and Aspergillus

nidulans (Hagiwara et al, 2007).
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Fludioxonil caused improper phosphorylation and activation of the homologous

Hog1 protein in C. lagenarium, C. heterostrophus, B. cinerea (Kojima et al, 2004), A.

nidulans (Furukawa et al, 2007), and N. crassa (Noguchi et al, 2007).  HogA activation in

A. nidulans activated the promoter of gfdB (glycerol-3-phosphate dehydrogenase)

(Furukawa et al, 2007), and Hog1 activation in N. crassa activated three genes for

glycerol synthesis, two for gluconeogenesis, and one for catalase (Noguchi et al, 2007).

Deletion of the group III histidine kinase in C. heterostrophus caused improper

phophorylation of the Hog1 homolog (Yoshimi et al, 2005).  Ambruticin VS4 and

fludioxonil both caused improper phosphorylation of the hog1 homologs in A. brassiciola

and N. crassa (Dongo et al, 2009).  S. cerevisiae does not contain a group III histidine

kinase and is naturally resistant to fludioxonil, but in the presence of high salt conditions

and ambruticin VS3, the group III histidine kinase of M. oryzae caused improper

phosphorylation in S. cerevisiae Hog1 (Vetcher et al, 2007).  It has been suggested that

presence of group III histidine kinases are a prerequisite for ambruticin sensitivity

(Dongo et al, 2009), but it is important to note here that C. albicans and C. neoformans

both contain a group III histidine kinase (Bahn et al, 2006; Ochiai et al, 2002), but both

organisms are naturally resistant to ambruticin (Ringel et al, 1977).  We furthermore

show in this work that Aspergillus niger contains a group III histidine kinase

(An07g08100) and is naturally resistant to ambruticin VS3.

Several response regulators, the final protein in the histidine kinase signaling

phosphorelay, have been studied in the fungi with focus on fludioxonil resistance.  In N.

crassa Rrg1 mutants were osmosensitive and fludioxonil resistant (Jones et al, 2007), but

Rrg2 mutants have not been studied.  In Cryptococcus neoformans, the response regulator
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Ssk1 was found to modulate phosphorylation of Hog1, but Skn7 response regulator

functions independently of Hog1 and mutants of Skn7 are resistant to sodium ion changes

and fludioxonil (Bahn et al, 2006).  In C. heterostrophus, both response regulators, Ssk1

and Skn7, acted additively to respond to fludioxonil, with the double mutant being most

resistant (Izumitsu et al, 2007).  In A. nidulans, deletion of SskA alone is not resistant to

fludioxonil, and deletion of SrrA alone is only resistant to fludioxonil in liquid media, not

solid media.  A double deletion of SrrA and SskA was fully resistant on liquid and solid

media, and suggests these response regulators also act additively to give fludioxonil

resistance (Hagiwara et al, 2007).

Filamentous fungi with the homologous hog1 deletions were resistant to

fludioxonil and sensitive to high osmotic stress conditions in N. crassa (Zhang et al,

2002) and Colletotrichum lagenarium (Kojima et al, 2004).  Deletion of hog1 in the

pathogenic basidiomycete, C. neoformans, was also resistant to fludioxonil and sensitive

to a variety of stresses (Bahn et al, 2007), but it is important to note that even though the

hogA deletion in A. nidulans is sensitive to osmotic stress (Han & Prade, 2002), it is not

resistant to fludioxonil (Hagiwara et al, 2007).  It is further shown in this work that A.

nidulans with the hogA deletion is not resistant to ambruticin VS3.

Although the above work adds to the evidence of the mechanisms of ambruticin

and fludioxonil resistance, the full picture is still incomplete.  It is also not clear if the

two drugs share the same target, because A. niger, C. albicans and C. neoformans possess

natural sensitivity to fludioxonil, but also natural resistance to ambruticin, even though all

contain a group III histidine kinase.  It is also not clear why the hogA deletion in A.

nidulans is not resistant to fludioxonil or ambruticin, when the HOG MAP kinase
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pathway is presumed to be the drugs' primary target.  Additionally, the finding that

fludioxonil sensitivity is regulated by three different pathways in C. neoformans (Kojima

et al, 2006) suggests that the HOG MAP kinase pathway is not the only target.

In this work, we will present a new approach to understanding the intricate

changes that occur when the antifungals are applied and a new model for how these drugs

target a complete pathway, rather than specific steps in the pathway.  We used a unique

RNA interference vector, that we previously used to silence brlAβ (Barton & Prade,

2008), to construct a library with 10,000 RNAi strains.  We screened the RNAi library for

resistance to fludioxonil, then for cross resistance to ambruticin VS3 and sensitivity to

osmotic stress.  The silenced insert was rescued from the resistant strains, amplified by

PCR, and sequenced.  Genes with more than one hit were further analyzed in silico, and

most contained transmembrane domains.

Materials and Methods

Strains and Media.  Aspergillus nidulans RMS011 (pabaA1, yA2, argB::trpC, veA1,

trpC801) was used as the parental strain in transformations and as a wild-type strain.  A.

nidulans A26 (biA1) genomic DNA was used for cloning the RNAi library, and it was

obtained from the Fungal Genetics Stock Center (FGSC) in Kansas City, MO.  Strains

from the RNAi library are named after their plate and location.  Aspergillus Minimal

Media (MM) was used with appropriate supplementation (Pontecorvo et al, 1953).
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DNA Cloning.  A. nidulans A26 genomic DNA was prepared as follows:  one full plate

of spores were inoculated in liquid MM broth with biotin supplementation in a standard

Petri dish and incubated overnight at 37°C.  The hyphal mat was harvested and washed

thoroughly with sterile water, frozen under liquid nitrogen, suspended in genomic

extraction solution (1% SDS and 50mM EDTA), and heated at 68°C for 10 minutes.  The

hyphae was separated from the supernatant by centrifugation, and the supernatant was

added to an equivalent volume of 5M potassium acetate.  It was incubated on ice for 10

minutes, centrifuged, and the supernatant was added to 2.5 volumes of 95% ethanol and

stored at -20°C overnight.  The DNA was then collected with a sterile glass hook and

suspended in TE containing 10 mg/ml RNaseA.

The genomic DNA was partially digested with Sau3AI, quality checked by

agarose gel electrophoresis, and purified through a PCR purification kit (Qiagen).  The

RNAi construct, pSW8, from Barton and Prade 2008 was used as a vector for the RNAi

library.  It was digested with BamHI, dephosphorylated and also run though the PCR

purification kit, due to the inability to heat inactivate BamHI.  The vector and partially

digested genomic DNA were ligated overnight at 4°C.  The ligations were transformed

into chemically competent E. coli SURE (Stop Unwanted REarrangements, Stratagene)

by heat shock (Inoue et al, 1990).

Selected clones from the RNAi library were digested with EcoRI and run on

agarose gel electrophoresis to check the integrity of the ligations.  The RNAi library

DNA was prepared with an endotoxin free plasmid preparation kit (Qiagen) in

preparation to be transformed into A. nidulans.



39

Aspergillus Transformation.  This procedure was taken from Yelton et al. (Yelton et al,

1984), with the following modifications.  One plate full of A. nidulans RMS011 spores

was inoculated in liquid MM broth with arginine and para-amino benzoic acid

supplements and shaken overnight at 37°C.  The mycelium was harvested by vacuum

filtration and washed with 0.6 M MgSO4.  A cell wall degrading enzyme cocktail was

added to the washed mycelium, consisting of 500 mg Lysing Enzymzes from

Trichoderma harzianum (Sigma L1412-10G), 250 mg Lysozyme (Sigma L7651-2), and

100 mg BSA (Sigma A-4503), all suspended in protoplasting solution (1.1M potassium

chloride, 0.1M citric acid, adjusted to pH 5.8 with potassium hydroxide, and filter

sterilized).  The mycelium/enzyme solution was incubated at 30°C with shaking for 3-5

hours.  Protoplasts were harvested by vacuum filtration through miracloth (Calbiochem

475855), and washed by centrifugation three times with STC50 (1.2 M sorbitol, 10 mM

calcium chloride, 50 mM Tris-HCl pH 7.5).  After the final was, protoplasts were

suspended in 1 ml of STC50.  150 µl of protoplasts were mixed with 50 µl (10 µg) DNA,

and incubated at room temperature for 10 minutes.  2 ml of 60% PEG 4000 was mixed

and incubated at room temperature for 20 minutes.  The mixture was diluted with 12 ml

of STC50 and plated on selective (excluding arginine as a supplement) MM plates

containing 12 M sorbitol as an osmotic stabilizer, and incubated at 37°C for 3 days.

Transformants of the RNAi library were transferred to 96 well plates and stores in 20%

glycerol, 10% lactose at -80°C in duplicate. 

Analysis of RNAi Library Strains.  Fludioxonil (Sigma-Aldrich Riedel-de Haën 46102)

and Ambruticin VS3 (former Kosan Biosciences, Hayward, CA) were both suspended in
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DMSO at the respective concentrations of 10 mg/ml and 5 mg/ml. The RNAi library was

screened for fludioxonil resistance on alcA(p) inducing MM (100 mM threonine and 0.1%

sucrose) at its MIC, 2.5 µg/ml.  Resistant strains were transferred to new plates and tested

for resistance on twice the MIC of both fludioxonil (5 µg/ml) and ambruticin VS3 (1

µg/ml).  The selected strains were also screened for salt sensitivity on 1 M sodium

chloride, using VM salts in the MM instead of nitrate salts and incubation at 30°C.

Strains were picked directly from the ambruticin VS3 selection plates and

streaked for lawn growth on standard Petri dishes containing MM and para-amino

benzoic acid (PABA) as a supplement.  After 2-3 days of incubation at 37°C, spores were

harvested with 1 ml of sterile water and stored at 4°C.  10 µl of the spore suspensions

were mixed with 100 µl of alkaline PEG reagent (Chomczynski & Rymaszewski, 2006),

and incubated at 68°C for 15 minutes.  50 µl PCR reactions were set up with 0.5 µl of the

lysed spore solution.  The PCR reactions were carried out with primers SK and T3, which

were modified to be more specific than the standard primers.  They are:

T3 5'-AGCGCGCAATTAACCCTCACTAAA-3'

and SK 5'-TCCCGCGGCCGCTCTAGAACTAGT-3',

ordered from Integrated DNA technologies (IDT).  The PCR reaction was as follows:  1.

94°C for 2 minutes, 2. 94°C for 30 seconds, 3.  58°C for 30 seconds, 4. 72°C for 2

minutes, 5. Go To step 2 38 times, 6. 68°C for 5 minutes.  10 µl of the PCR reaction was

run on a 1% agarose gel, bands were excised with a sterile blade, and run through a gel

extraction kit (Sigma-Aldrich).  This DNA was sent to Oklahoma State University's

Recombinant DNA/Protein Core Facility to be sequenced by Lisa Whitworth on a ABI
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model 3730 DNA Analyzer.  The sequences were blasted against the Aspergillus

nidulans genome at CADRE, NCBI and Broad.

Verification of Resistance.  Subclones were made from either the rescued RNAi insert

PCR product or by designing primers specifically for the ORF of the targeted genes.  The

PCR products were digested with BamHI, and ligating into the BamHI site of the RNAi

construct, pSW8.  The PCR products were run through the PCR purification kit before

and after digestion, and pSW8 was run through the PCR purification kit after digestion

and dephosphorylation.  The ligations were run overnight at 4°C, and transformed into E.

coli SURE cells as above.  Clones were screened by colony PCR (Sambrook & Russell,

2001) and then further confirmed by restriction digestion analysis and sequencing.  The

plasmids were transformed into A. nidulans RMS011 as above.  Twenty-three strains of

each resulting transformation were plated on 2.5 µg/ml fludioxonil and incubated no

more than seven days at 37°C.

Results

Testing Aspergilli against ambruticin VS3 and fludioxonil.  Susceptibility assays using

a 96-well format was designed to measure the effectiveness of ambruticin VS3 and

fludioxonil at increasing concentrations.  The drugs were tested in a 1% agar minimal

nutrient media containing low osmotic (VM media) and high osmotic strength (1M

NaCl).  The maximum dose that supports growth (MDSG) was recorded for various
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species of Aspergilli (Table 1).  A. nidulans wild-type, A. flavus, A. glacus, and the

pathogenic A. fumigatus all grew on ambruticin VS3 at or less than 0.5 µg/ml on both

low and high osmotic stress, but A. niger was naturally resistant to ambruticin VS3, with

10 and 15 µg/ml supporting growth on low and high osmotic stress, respectively.  The

fludioxonil MDSG pattern was different from fludioxonil in that it did not support growth

of A. nidulans, A. niger, and A. fumigatus, but it support growth of A. glacus on both low

and high osmotic strength and A. flavus on low osmotic strength only.  These results

imply that ambruticin VS3 and fludioxonil have different targets within the osmotic stress

signaling pathways, and these species of Aspergilli have differences in their osmotic

sensing and signaling pathways.  It was unexpected that A. niger was resistant to

ambruticin VS3 because it does contain a group III histidine kinase, An07g08100, and

also indicates that group III histidine kinases are not a direct interacting target of

ambruticin, as suggested in other studies.
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SIK1 and suppressor mutants.  Four A. nidulans suppressor strains of the hogA (SIK1)

temperature dependent high osmotic strength sensitive phenotype were isolated and

tested against a variety of antifungal drugs:  terbinafine, amphotericin B, fludioxonil,

fenpiclonil, and ambruticin VS3 (Table 2).  The four hogA suppressor strains were

completely susceptible to terbinafine and amphotericin B, which target ergosterol

biosynthesis and cell membrane ergosterol, respectively (Richard D. Cannon & Mikhail

V. Keniya, 2009).  Surprisingly, both A. nidulans wild-type (WT) and SIK1 were

resistant to amphotericin B, but only at low osmotic strength.  On fludioxonil, fenpiclonil

(both phenylpyrroles), and ambruticin VS3, WT, SIK1, and three of the hogA suppressor

strains were susceptible, but one hogA suppressor strain (F14) was cross resistant to the

drugs (Figure 3).  These results indicate that hogA is not the only osmotic stress signaling

pathway that phenylpyrroles and ambruticin VS3 affect, because SIK1 is not resistant.

The hogA suppressor mutants were isolated by S. Bangaru, and the antifungal assays

were performed by E. Lackey, J. Fought, R. Howard, D. Thomas, and R. Prade.
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Figure 3.  Aspergillus nidulans ΔhogA strain, SIK1, and ΔhogA suppressor strains on

fludioxonil and ambruticin VS3.  (A) Wild-type (WT), DhogA (SIK1), and four ΔhogA

suppressor strains showing the maximum dose that supports growth (MDSG) in µg/ml

concentrations.  All strains are sensitive to fludioxonil except F14.  The light yellow bar

is low salt conditions and the dark yellow bar is high salt conditions. (B) The same strains

on ambruticin VS3, again all strains are sensitive except F14.  The light red bar is low

salt conditions and the dark red bar is high salt conditions.  (C) A 96-well based assay of

the strains on ambruticin VS3 showing sensitivity of all strains except those with the F14

mutation.
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Silencing of ypdA.  The full open reading frame of A. nidulans ypdA gene, that encodes

the histidine phosphotransferase, the intermediate between histidine kinases and response

regulators in the histidine kinase phophorelay signaling pathway, was PCR amplified

with primers that had engineered BamHI sites on each 5’ end and cloned into the RNAi

construct.  Because ypdA is a lethal knockout (Vargas-Perez et al, 2007), the RNAi

approach was a suitable alternative.  A. nidulans was transformed using the arginine

selectable marker and two strains were recovered, LN421 and LN121 (Figure 4).  Both

strains were sensitive to osmotic stress with 1M NaCl, but neither strain was resistant to

ambruticin VS3 nor fludioxonil.  These results indicate that YpdA is not a direct target of

ambruticin and fludioxonil, further complicating the molecular roles played by the

antifungal drugs.  If YpdA is truly the only intermediate to the histidine kinase

phosphorelay signaling, and the osmotic stress signaling pathway is the only affected

pathway by the drugs, one would expect the strains to grow on the drugs when ypdA is

downregulated.  The work with ypdA was performed by D. Qualls and R. Prade.
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Figure 4.  Silencing of ypdA.  This assay shows four strains:  wild-type (WT), ypdA

silenced strains (LN121 and LN421), and ΔhogA (SIK1), growing on alcA(p) inducing

media (100 mM threonine) containing 1 µg/ml ambruticin VS3 (Amb), 2.5 µg/ml

fludioxonil (Flu), low salt VM Aspergillus media (LS) and high salt VM Aspergillus

media with 1M NaCl (HS).  None of the strains grew on the drugs, while all grew well on

low salt media, and LN421 and SIK1 showed the most sensitivity to high salt.
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Bioprocess Engineering of Ambruticins.  Sorangium cellulosum ATCC 25532 was

obtained from ATCC and cultured according to their instructions, using only cellulose

filter paper as a carbon source (Figure 5A).  Five one liter cultures were grown at 30°C in

rich fermentation media, including additional carbon sources and XAD-1180N resin to

absorb the ambruticins.  The resin was isolated from the media, washed with water, and

the ambruticins eluted with methanol.  The eluted solution was rotary evaporated, and a

separatory funnel was used to extract the ambruticins in ethyl acetate.  The extracts were

lyophilized, and the ambruticins were separated by column chromatography.  The

ambruticins were identified with Thin Layer Chromatography (TLC), Mass

Spectrometry, High Pressure Liquid Chromatography (HPLC), and LC MS.  The mass

spec and LCMS were run at University of California at Irvine, and the HPLC was run

with Dr. Andrew Mort at Oklahoma State University.  See J.S. Barton’s final report for

details on fermentation, isolation and characterization of the ambruticins.  Antifungal

assays were performed against A. nidulans RMS011 and Candida albicans (sample #1)

and killed with varying degrees (Figure 5B, 5C, and 5D).  This work was performed by

L.M. Barton, J.S. Barton, and R.A. Prade.
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Figure 5.  Bioprocess engineering of ambruticin.  (A) Sorangium cellulosum ATCC

25532 cultured on cellulose filter paper as a carbon source.  (B) Activity of ambruticin S,

killing both A. nidulans and C. albicans at 2 µg/ml.  (C) Activity of ambruticin VS1,

reducing growth of both organisms at higher concentration, but not killing.  (D) Activity

of ambruticin VS3 N-oxide with a distinctively pink color, killing A. nidulans at 3 µg/ml,

but only reducing growth of C. albicans at higher concentration.  All antifungal photos

were taken after 48 hours of growth at 37°C.
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The RNAi Library.  The RNAi construct previously used to demonstrate locus specific,

inducible RNAi of the brlAβ gene in Aspergillus nidulans (Barton & Prade, 2008) was

used in this study as a vector to construct a genomic library (Figure 6).  The genomic

DNA was ligated into the unique BamHI site of the RNAi construct (see Materials and

Methods).  The unique BamHI site of the RNAi construct is located between inverted

repeats of alcohol dehydrogenase promoters (alcA(p)), which are inducible on threonine

and repressible on glucose (Adams et al, 1988).  When induced, the promoters initiate

transcription of the downstream sequence, forming double stranded RNA that causes

silencing of the homologous mRNA transcripts.  The RNAi construct also contains a

functional arginine biosynthesis (argB) gene to use as a selectable marker to transforming

the parental strains (Johnstone et al, 1985).

A. nidulans genome is arranged into 8 chromosomes, totaling about 31 Mb in size,

with approximately 11,000-12,000 genes (Galagan et al, 2005).  The RNAi Library

contains more than 50,000 individual clones with average insert size of 600 base pairs,

which covers the genome one time.  Nearly 10,000 A. nidulans strains were isolated and

transferred to 96-well plates for storage and future use.  In this format the strains can be

stamped onto selective media to easily screen for phenotypes.  This is a powerful tool that

can be used to screen for many types of phenotypes, for example developmental mutants.

The silenced insert of the selected strains can then be rescued by polymerase chain

reaction, PCR, of genomic DNA, and identified by sequencing and blasting against the

publicly available annotated genomic sequence.
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Figure 6.  Construction and Analysis of the RNAi Library.  The RNAi library was

constructed by ligating genomic DNA fragments into an RNAi construct vector.  Each

strain in the library is preserved on a glucose (RNAi repressing) master plate.  The library

was screened by plating on threonine (RNAi inducing) selective plates, here fludioxonil

was used to further screen the library.  Phenotypes were classified according to cross

resistance to ambruticin and osmotic stress sensitivity.  The silenced insert was rescued

by PCR amplification and identified by sequencing.
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Screening for Drug Resistant Strains.  The RNAi library was screened for resistance to

the drug fludioxonil and cross-resistance to the drug ambruticin VS3 and salt sensitivity.

The selected strains had the silenced insert rescued by PCR and sequenced to identify to

gene target of interest (Figure 3, Table 3).  The RNAi library strains were plated on alcAp

inducing, selective media containing 2.5 µg/ml of the fungicide fludioxonil, which is

available to purchase (Sigma-Aldrich Riedel-de Haën 46102).  The resistant strains were

transferred to new 96-well plates and screened again at twice the MIC of fludioxonil and

ambruticin VS3 (limited availability), and salt sensitivity.  The strains were then put into

classes based on their phenotypes.  The selected strains were then PCR amplified with the

T3 and SK primers whose location on the RNAi construct is shown, and sequenced with

the SK primer.  The sequence was then blasted against the Aspergillus nidulans genome.
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Fludioxonil and Ambruticin Resistance Mechanisms.  Thirty-five RNAi inserts were

found multiple times in the resistant strains (Table 4).  Twenty-four of the inserts had

annotations and twelve were hypotheticals.  The argB gene, AN4409 ornithine carbamoyl

transferase, was found four times, implying an unexpected rearrangement occurred

during integration into the fungal genome. It must be addressed that multiple

transmembrane transporters were found among the hits.  If the function of the transporter

is to allow the drugs to enter the cell, then it is not clear why silencing of more than one

transporter causes resistance because the drug should be able to enter through another

transporter.  Gene Ontology results showed that fourteen of the twenty-four annotated

multiple hit inserts were isolated from the membrane fraction, seven were unknown, and

the other three included ubiquitination, transport and nucleolus.  Twenty-one of the

twenty-four had at least one transmembrane domain, and they were varied in their known

processes, ranging from amino acid metabolism, transport, lipid binding and metabolism,

and chitin synthesis.
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Confirming Resistance by RNAi.  To verify that the RNAi construct is conferring

resistance to the strains, rather than random integration, subclones were constructed and

tested for resistance.  The first set of transformants were originated from the rescued PCR

products, then religated into the RNAi construct.  The PCR products were chosen due to

a single, clean band given by the rescuing PCR strain.  The resistance rate of the

substrains on fludioxonil was as high as 17%, much higher than the 3% resistance rate

given by the RNAi Library, suggesting a correlation between the silenced insert and

resistance.  The second set of transformants were originated from the RNAi construct

with inserts cloned from specific ORF hits with PCR primers.  The cloning with the

specific PCR products was much cleaner than those from the rescued PCR products.  Ten

specific hits were selected for subcloning.  Those with multiple hits subcloned are

AN7165 (plasma membrane stress response protein Ist2), AN0890 (MFS multidrug

transporter), AN1189 (calcium ATPase), AN2144 (urease accessory protein UreD),

AN3927 (inositol phosphosphingolipid phospholipase C), and AN4477 (L-glutamine

transmembrane transporter).  Those with single hits subcloned are AN4447 (group VII

histidine kinase), AN4479 (group III histidine kinase NikA), and AN9168 (glycerol/H+

symporter Stl1).  Additionally, two more genes were subcloned into the RNAi construct

in separate experiments, AN2005 (histidine phosphotransferase YpdA) and AN5134

(glutamate synthase).  The YpdA subclone showed sensitivity to salt, but was not

resistant to fludioxonil or ambruticin VS3, indicating that it is not the target of the drugs.

YpdA is a lethal knockout (Vargas-Perez et al, 2007), making it a good choice for the

RNAi construct because viable mutants can be recovered, and YpdA can be partially

downregulated.
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Discussion
In this study we show that the group III histidine kinase, histidine

phosphotransferase, and MAPK HogA are not the direct target of ambruticin VS3.  We

used an inducible RNAi vector that we previously showed effectively silences brlAβ in

Aspergillus nidulans.  A genomic RNAi library was constructed and stocked for future

use, and a high-throughput screen was done with the library to test for fludioxonil

resistance.  Fludioxonil is a phenylpyrrole fungicide commonly used in agriculture,

known to mimic osmotic stress response in fungi.  It is known that deletions and

mutations of certain intermediates in the osmotic stress-signaling pathway, including the

histidine kinase phosphorelay and the HOG MAP kinase pathway, can cause resistance to

fludioxonil.  It is also known that the antifungal, ambruticin, acts in a similar manner as

fludioxonil, and the same osmotic stress-signaling pathway is affected (see introduction).

Therefore, we screened the fludioxonil resistant RNAi strains isolated from the library for

cross-resistance to ambruticin VS3, and found that the majority of strains do show cross-

resistance to both drugs.  We also found that most of the resistant strains showed

sensitivity to osmotic stress, as expected.  After rescuing and sequencing the silenced

DNA fragments from the RNAi strains, we found that inserts that were found in multiple

strains were associated with the membrane and had transmembrane domains.

The RNAi library is a powerful genetic tool to understand gene function in A.

nidulans and serves as a model for other filamentous fungi.  There are nearly 10,000

individual strains in the RNAi library, which represents approximately one strain for each

gene in the genome.  There are advantages of the RNAi library, including the ability to

screen for many phenotypes easily by stamping the master plates onto any type of

selective media.  A genomic library rather than a cDNA library allows regulatory regions



56

of the genome to be examined, rather than limiting research to transcripts.  Because the

RNAi library is an inductive system, genes that are lethal when deleted may be examined

because they the stains are first isolated, then gene silencing is induced.  Silencing of the

gene may also be partial to understand phenotypes of downregulation, rather than just

deletion, as in the case of the leaky brlA phenotype.

As with any genetic library, there are disadvantages of the system, including that

the RNAi constructs are not targeted to a specific location in the genome for integration.

Therefore it is possible that interruption of genes could cause a non-specific phenotype.

This issue may be addressed by rescuing the RNAi construct from the genome to map its

location of integration.  Another inadvertent possibility is integration of multiple RNAi

constructs into a single strain, so that multiple PCR products are rescued from a single

strain.  This may be addressed by making specific silencing constructs for each rescued

sequence to determine the gene-silencing event causing the phenotype.  During the

cloning of the RNAi library, the possibility of cloning of concatamers into the RNAi

construct is possible, and this issue must be addressed in a similar manner a multiple

integration events, by silencing each sequence individually.  Finally, because the RNAi

library DNA was introduced to the cell as a circular plasmid, there is a possibility that the

plasmid will linearize in the alcA(p) or the genomic insert, and gene silencing cannot occur

despite its integration into the genome.  Because the RNAi construct plasmid is

approximately 5 kb and the size of the alcA(p)s and genomic insert is approximately 1.8

kb, there is an approximately 75% chance that the RNAi construct can cause gene

silencing in a strain in which it is integrated, but the non-silencing strains will be

eliminated through the phenotype selection process.
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Genes found through the RNAi library are primarily transmembrane domain

proteins.  They can be further categorized into osmotic regulatory function or amino acid

synthesis/transport function related to osmotic regulation.  The genes that we chose to

specifically subclone have previously been associated with sensitivity to osmotic stress.

The group III histidine kinase deletion of Aspergillus nidulans (NikA) confers partial

sensitivity to osmotic stress (Vargas-Perez et al, 2007), and they have are implicated in

osmotic stress response in other fungi (see introduction).  Calcium ATPase in C.

neoformans, Eca1, found in the sarcoplasmic and endoplasmic reticulum is involved in

various stress tolerances, including osmotic stress, and virulence (Fan et al, 2007).  The

calcium ATPase of N. crassa, NCA-2, is also involved in osmotic stress response

(BegoÒa Benito, 2000).  The NRPS, Non-Ribosomal Peptide Synthetase, produces

bacterial and fungal cyclic peptides.  Four NRPS enzymes are conserved among

ascomycetes.  In C. heterostrophus two NRPS enzymes, NPS6 and NPS10, are

hypersensitive to various stresses, including osmotic stress (Gillian Turgeon et al, 2008).

Inositol phosphosphingolipid phospholipase C in S. cerevisiae, Isc1, is involved in

sodium and lithium ion tolerance and is an early step in salt induced signaling pathways

(Christian Betz, 2002).  The glycerol/proton symporter of S. cerevisiae, Stl1, is

osmoresponsive and induced by Hog1 (Nadal et al, 2003), and it is required for glycerol

uptake in C. albicans (Kayingo et al, 2009).   The plasma membrane stress response

protein in S. cerevisiae, Ist2, is involved in response to salt stress, and the deletion strain

is salt sensitive (Entian et al, 1999).  Ist2 has also been implicated in maintenance of

amino acid levels and ion homeostasis (Kim et al, 2005).
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Two of the specific subclones are involved in amino acid synthesis and transport

related to osmotic stress response.  In bacteria and plants, it is known that glutamate

serves as a precursor to proline, and proline synthesis is a response to salt stress

(Francisco Berteli, 1995).  Glutamate synthase, GltS, has been shown to increase

expression during osmotic stress in Bacillus subtilis (Dirk Hˆper, 2006), tomatoes

(Francisco Berteli, 1995), and barley and rice (Ueda et al, 2006).  The amino acid

transporter, whose gene ontology was L-glutamine transmembrane transporter activity,

has not been well studied in fungi; although, glutamine synthetase has been shown to be

induced by osmotic stress in sunflowers (Santos et al, 2004), indicating the importance of

glutamine in osmotic stress response.

Other proteins that are specific subclones and have not been well studied with

special regard to osmotic stress are the urease accessory protein, UreD and the group VII

histidine kinase.  An MFS (Major Facilitator Superfamily) multidrug transporter is not

involved in the osmotic stress response, but they are involved in transporting molecules

across the membrane (Higgins, 2007).  In B. cinerea an ABC transporter, similar to MFS

transporters, were found to carry fludioxonil across the membrane (Vermeulen et al,

2001).

We have shown that the A. niger group III histidine kinase, and the A. nidulans

histidine phosphotransferase YpdA, and MAP kinase HogA are not the targets of

ambruticin VS3, but the RNAi library confirms that ambruticin does target the osmotic

pathway in many different steps.  This work demonstrates that ambruticin and fludioxonil

may not have one specific target, but affect the entire osmotic stress-signaling pathway

and represents a new model for antifungal molecular mechanisms.  This work also
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demonstrates the robustness of the osmotic stress-signaling pathway; that is, it has

evolved to function although one or more of its components have been downregulated in

expression.  In an effort to explain why downregulation of many genes may cause

resistance to the drugs is that they are important in the secondary response to osmotic

stress, rather than the primary response of the histidine kinase and HOG MAP kinase

pathways.  The secondary response caused by the downregulated genes may be essential

in glycerol production and balancing of the internal osmolyte concentrations so that the

cell may be stabilized during osmotic stress.  This is to say that genes important in

secondary responses may not be directly causing resistance, but they may be “suppressors

of sensitivity.”
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APPENDICE

Appendix 1.  Key to Reordered Plates:  Strains Taken Directly From FluR Master Plates.
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Appendix 2.  Reordered Plate 3 Phenotypes (1 is growth, 0 is no growth).
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Appendix 3.  Reordered Plate 4 Phenotypes (1 is growth, 0 is no growth).
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Appendix 4.  Reordered Plate 5 Phenotypes (1 is growth, 0 is no growth).
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Appendix 5.  Reordered Plate 6 Phenotypes (1 is growth, 0 is no growth).
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Appendix 6.  Reordered Plate 7 Phenotypes (1 is growth, 0 is no growth).
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Appendix 7.  Reordered Plate 8 Phenotypes (1 is growth, 0 is no growth).
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Appendix 8.  Annotated Open Reading Frame Hits
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Appendix 8.  Annotated ORF Hits, continued.
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Appendix 8.  Annotated ORF Hits, continued.
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Appendix 8.  Annotated ORF Hits, continued.
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Appendix 8.  Annotated ORF Hits, continued.
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Appendix 9.  Hypothetical Open Reading Frame Hits.



81

Appendix 9.  Hypothetical ORF Hits, continued.
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Appendix 9.  Hypothetical ORF Hits, continued.
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Appendix 10.  Annotated Non-ORF Hits.
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Appendix 11.  Hypothetical Non-Open Reading Frame Hits

Appendix 12.  Repeating Element Hits.
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Appendix 13.  Aspergillus nidulans Strains.
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Appendix 14.  A. nidulans RMS011 PEG-Mediated DNA Transformation

Introduction
The purpose of this procedure is to perpetuate the uptake of plasmid DNA into the A.
nidulans genome.  Protoplasts, which are small spherical cells that lack complete cell
walls, must be prepared and harvested to perform the transformation.

Materials and Supplies
Media
-MM Agar plate containing Arginine and Paba (growing RMS011 spores)
-MM broth containing Arginine and Paba (growing hyphae)
-MM Agar plates containing Paba and 1.2M Sorbitol (recovery and selection)

Solutions
1) Mycelium Wash Solution (250mL)

0.6M MgSO4 36.972g
-autoclave and store at RT

2) Double Strength Protoplasting Solution (DSPS) (100mL)
1.1M KCl 8.2016g
0.1M Citric Acid 1.921g
1M KOH dropwise until pH 5.8
-filter sterilize and store at RT

3) STC 50 Solution (250mL)- Make fresh every 15 days
1.2M Sorbitol 54.65g
10mM CaCl2 0.37g
50mMTris HCl (pH 7.5) 12.5mL
-autoclave and store at RT

4) 60% PEG Solution (10mL)- Make fresh daily
PEG 4000 6g
STC 50 5mL
-microwave for 15-30 seconds
-adjust final volume to 10mL
-store at RT until use

Enzymes
500 mg Lysing Enzymes from Trichoderma harzianum (Sigma L1412-10G)
250 mg beta-D Glucanase G (InterSpex Products 0439-2)
250 mg Lysozyme, from Chicken Egg White (Sigma L7651-1G)
100 mg BSA (Sigma A-4503)
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Protoplasts preparation
-Streak entire plate of RMS011 on MM+Arg+Paba plate and grow for 2 days at 37*C
-Spores MUST be fresh
-Harvest spores with sterile water and flamed spatula under hood
-Inoculate MM+Arg+Paba broth with spores and grow O/N at 30*C shaking at 250 RPM
-Harvest mycelium with suction flask, funnel, and filter paper (get about 2 grams)
-Wash with Mycelium Wash Solution (0.6M MgSO4)
-Wash with DSPS (Double Strength Protoplasting Solution)
-Transfer mycelium to 50mL plastic centrifuge tube

-Add enzymes and BSA to 5 mL of DSPS, vortex to dissolve

-Add all the enzymes to the mycelium solution, votex to put mycelium in solution
-Incubate at 30*C, shaking at 250 RPM for 3-5 hours (the thick solution should become
more liquid with more time), do not exceed 5 hours
-You can observe the protos under the microscope at this time (they will remain stable in
a suspension of STC 50, but will burst in a suspension of water), it is advisable to get an
approximate concentration of protos using a hemocytometer

Harvesting and Washing Protoplasts
-Using a suction flask with a sterile glass tube placed inside and a sterile funnel with
miracloth (Calbiochem Cat# 475855), transfer your protos to the funnel  (the protos will
go through the miracloth, but the mycelium will stick to the cloth), collect the supernatant
in the sterile glass tube
-Transfer to an appropriate (50 mL) centrifuge tube
-Spin at 7500 RPM for 10 minutes
-Dump the supernatant, and resuspend the pellet in 45 mL STC50
-Repeat the previous 3 times to remove protoplasting enzymes
-Resuspend your final pellet in 1 mL of STC50
-Protos should be milky white in color
-Your Protos are now ready!
-Store extras in -80C by bringing protos to 20% glycerol

Transformation
-Add 10 ug DNA (linear preferred, but not necessary) to a 15 mL falcon tube
-DNA should be CsCl2 prep or Quiagen Endotoxin Free prepared (Cat. No. 12381)
-Add STC 50 to make volume of DNA 50 uL
-Add 150 uL protos, mix well by swirling, incubate at RT 10 minutes
-Add 2 mL PEG, mix well by gently rolling on bench, incubate at RT 20 minutes
-Add 12 mL STC 50, mix well by inverting tube
-Transfer 2 mL to each MM+Paba+1.2M Sorbitol plate and spread with a sterile glass
hockey stick
-Leave plates with agar side down, and incubate at 37*C for 1 day
-Invert plates and continue to incubate at 37*C for 2 more days to see transformants
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A unique RNAi construct was tested with the developmental gene, brlAβ, in the
fungal genetic model, Aspergillus nidulans.  The construct contains inverted repeats of
the inducible alcohol dehydrogenase (alcA) promoter surrounding a unique BamHI
restriction enzyme site containing any gene of interest.  The RNAi construct was utilized
to generate a genome-wide RNAi library.  The RNAi library was used here to screen for
fludioxonil resistance.  There is evidence that fludioxonil, a commonly used fungicide,
activates an osmotic stress-signaling pathway.  When it is aberrantly activated, the cells
swell beyond capacity, leak their contents, and die.  Ambruticin is an antifungal that
could potentially be used in humans and animals to treat fungal infections, and it is also
thought to aberrantly activate the osmotic stress-signaling pathway.  The RNAi library
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osmotic stress.  The silenced insert from selected strains was rescued from the genome by
PCR of the integrated RNAi construct and sequenced to identify the silenced gene.
Those genes that were identified more than one time were further analyzed in silico, and
selected genes were chosen to independently confirm resistance conferred by silencing.

Findings and Conclusions:

The RNAi construct was found to integrate into the genome of the fungus and
cause locus specific silencing of brlAβ in Aspergillus nidulans.  The RNAi strains had
inducible brlA phenotypes, and downregulation of brlA was confirmed by Northern
blotting and Real-Time Reverse-Transcriptase PCR.  The downregulation of brlA was
found to be induced by RNAi with anti-sense Northern blots and siRNA Northern blots,
and the silencing was specific for brlAβ, not brlAα, a downstream alternate transcript of
the brlA locus.

Thirty-six genes were found more than one time to cause resistance to fludioxonil
and ambruticin when silenced.  Twenty-four of these had annotations, while twelve were
hypothetical.  Twenty-one out of the twenty-four annotated genes contain transmembrane
domains, indicating that fludioxonil and ambruticin alter the plasma membrane in order
to aberrantly activate the osmotic stress-signaling pathway.  It also suggests there are
multiple ways the drugs act upon the cell, rather that having a single target.


