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1 Introduction 

1.1 Mining Influenced Waters 

Heavy industrial mining has occurred in the United States for more than 100 years, 

and in many cases, has led to large-scale environmental degradation, especially from 

historical operations where mining occurred prior to environmental regulations (USDA 

1993). Discharges of degraded water issuing from derelict or abandoned operations in the 

coal and hard-rock mining regions of the United States have substantial impacts on the 

environment. Many of these abandoned mine discharges (AMD) produce ecotoxic, metal-

contaminated waters that have impaired receiving stream water quality and negatively 

impacted local ecology (Letterman and Mitch 1970; Younger et al. 2004).  

According to data provided by USDA (1993), the United States Forest Service and 

Bureau of Mines estimated that 8,000-16,000 km of streams, in the eastern U.S. alone, had 

been impacted by mine drainage. Many of those stream kilometers are essentially 

biologically dead and may contain accumulated metal oxides, which can color the stream 

orange-yellow. The coloration is from the precipitation of dissolved iron as ferric 

oxyhydroxides and is locally referred to as “yellow boy”. Besides iron oxides, other metal 

contaminants of concern in coal mine drainage are manganese and aluminum, and there is 

a suite of trace metals (e.g., zinc, cadmium, lead) and water quality metrics (e.g., pH, 

alkalinity) that may pose ecological issues from hard-rock mines (Nairn et al. 2010; 

Younger 2000). 

Varying types and degrees of AMD contamination exist. However, AMD can be 

broadly divided into two main types: net-alkaline and net-acidic. Alkalinity is a metric of 

how much acidity can be neutralized for a given quantity of water. Net-alkaline water has 
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available alkalinity after complete oxidation and hydrolysis of selected metals present in 

the water. In contrast, water is considered net-acidic if insufficient alkalinity is present to 

neutralize the available proton acidity and/or that produced by metal hydrolysis. 

Determining if the water is net-alkaline or net-acidic is critical to determination of viable 

treatment approaches and if alkaline addition is needed (Hedin et al. 1994). 

Proper measurement of alkalinity and acidity is critical to identify if the water is 

net-alkaline or net-acidic. Determining pH and metals concentrations is important in 

determining net alkalinity or acidity. The oxidation and hydrolysis of certain metals can 

generate proton acidity. The generation of proton acidity makes AMD that may discharge 

alkaline become acidic. Some net-acidic AMD waters discharge with a pH in the ~2-3 

range, but can be as low as -3.4 (Gazea et al. 1996; Nordstrom et al. 2000).  

However, not all mine drainages have suppressed pH. Some AMD issuing from 

historical and active mining operations have a pH of 5-8 and are net-alkaline (Jageman et 

al. 1988; Nuttall and Younger 2000; Nairn 2010) due to the presence of carbonate geology. 

The effects of metal precipitation can be such that AMD discharges with a circum-neutral 

pH (pH ~5-6) can still be net acidic. 

1.2 Literature Review 

1.2.1 Treatment Options 

Primarily, there are two different types of treatment methods for mining impacted 

waters: active and passive treatment. Active treatment relies heavily on the use of 

aggressive, highly alkaline industrial chemicals (e.g., lime, hydrated lime, soda ash, 

sodium-hydroxide, or ammonia), fossil fuels, and almost daily operation and maintenance. 

The added chemicals increase the pH of water so the dissolved metals readily precipitate 
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as oxide or hydroxide solids. The solids are flocculated and separated from the water in 

clarifiers/oxidation ponds to form sludge. Sometimes, additional mechanical aeration is 

provided. The retained sludge is pumped to a drying bed to remove excessive moisture. A 

substantial portion of the costs associated with active treatment are related to operation and 

maintenance, treatment chemicals, and sludge handling (Younger et al. 2002). 

Passive treatment systems (PTS) are designed to use relatively little fossil fuels, 

natural physicochemical (e.g., limestone dissolution), and biological (e.g., bacterial sulfate 

reduction) processes for the treatment of AMD (Hedin et al. 1994, Fennessy and Mitsch 

1989). The AMD is passed through, via gravity, a succession of treatment cells that are 

designed with specific treatment goals. Table 1-1 lists the variety and functionality of 

different cells that have been used in passive treatment systems. In the treatment of net-

acidic waters, where additional alkalinity is needed, one of the key processes of passive 

treatment systems is alkalinity generation. These specific units include anoxic limestone 

drains, open limestone channels, automatically flushing limestone beds and various other 

geochemically-based systems, and vertical flow bioreactors (VFBRs). VFBRs utilize the 

dissolution of limestone to generate alkalinity for neutralization of excess protons and 

promote sulfate-reducing bacteria for trace metal removal as sulfides. The remainder of 

this document focuses on VFBR performance and operation.  
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Table 1-1 Different passive treatment cells and associated functions (Doshi 2006; 

Ziemkiewicz et al. 1997; Watzlaf et al. 2000) 

 

1.2.2 Vertical Flow Bioreactors 

The exact composition of individual VFBRs will vary from system to system, but 

will generally consist of an organic substrate, alkaline substrate, collection system, and 

water level control structure. Figure 1-1 shows a typical cross section of a VFBR during 

normal operation. The AMD flows into the VFBR on the left (A). The water level (B) is 

maintained above the treatment media (C), to maintain anoxic conditions and to limit 

vegetation growth in the VFBR. The water then passes vertically through the treatment 

media and is gathered by the collection system (D) (Johnson and Hallburg 2005). The 

elevation of the treated effluent control structure (E) from the VFBR maintains water 

levels. Water continues to the next cell, typically a reaeration pond. For operation and 

maintenance issues and if site conditions allow, VFBRs typically have a flush valve (F) so 

that the system can be drained and accumulated inorganic and organic solids flushed.  

Cell Function 

Vertical flow bioreactor (VFBR) Alkalinity generation via anoxic limestone 

dissolution and metal retention via sulfate 

reduction  

Anoxic limestone drain 
Alkalinity generation via anoxic limestone 

dissolution  

Oxidation ponds 
Oxidation, hydrolysis, precipitation, and retention 

of metals 

Open limestone channels Oxidation, precipitation, and retention of metals 

Surface flow wetlands Oxidation, precipitation, and retention of metals 

Horizontal flow limestone beds Manganese and zinc retention and alkalinity 

generation via limestone dissolution  

Automatic flushing limestone beds Alkalinity generation via limestone dissolution 
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The degradation of organic material under anoxic conditions provides the necessary 

environment for sulfate reducing bacteria (SRB). Based upon availability and distance 

from the source, several organic materials have been used in VFBR substrates, including, 

but not limited to, composted horse manure, mushroom compost, composted chicken litter, 

hay and straw, waste recycled paper, and municipal compost (Chang et al. 2000; Nairn et 

al. 2010; Dvorak et al. 1992). The alkaline substrate, typically mixed with the organic 

material, is used to improve the hydraulic conductivity and provide additional treatment by 

dissolution. The alkaline substrate generally consists of limestone, but dolomite, and 

mussel and arthropod shells have been used (Hengen et al. 2014). The nominal size of the 

substrate materials used within VFBRs can vary from a few millimeters to several 

centimeters in diameter. The wide variety of materials within the VFBRs makes the 

identification of substrate material critical when determining performance over time. 

 

The collection system, which acts as the drainage layer, consolidates the treated 

water from the substrate to discharge to the next treatment cell. Typically, the collection 

system will consist of a series of perforated drain pipes in a bed of non-reactive bedding 

(E) 

(A) 

(D) 

(B) 

(C) 

(F) 

Figure 1-1 Typical cross section a VFBR under normal operating conditions. 
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material. The bedding material generally consists of rounded sandstone. A non-reactive 

bedding material is used to reduce the formation of metal precipitates near the drain pipe, 

which may lead to scaling, plugging or other hydraulic conductivity problems. The 

perforated drain pipe can vary in size and material. Generally, polyvinyl chloride (PVC), 

or high density poly-ethylene (HDPE) pipes are used due to the reactiveness of the water.  

The design life of VFBRs is generally several decades (e.g., Gusek 2002). 

Maintaining appropriate and accurate water elevations in a VFBR is critical to successful 

treatment. Many different types of flow control structures exist, but typically a peri-pipe or 

stop-log system is utilized. A peri-pipe system is an adjustable outlet that uses different 

size pipes and a flexible rubber coupling. A stop-log system controls the water elevation 

by the addition or removal of non-reactive boards, either fiberglass reinforced polyester or 

PVC. If adequate elevation change exists, a flush valve is typically added so the system 

can be drained for maintenance issues. 

1.2.3 Hydraulic Conductivity 

Long term operation and maintenance issues arise in many ways and in different 

treatment cells. One of the key maintenance issues associated with VFBRs is decreased 

hydraulic conductivity, which leads to either water by-passing the cell or decreased 

treatment efficiencies (Demchak et al. 2001; Denholm et al. 2010; Doshi et al. 2006). If 

hydraulic conductivity issues are not addressed, the passive treatment system effluent may 

stop meeting treatment goals.  

The Filson 1 PTS treats an AMD in Jefferson County, Pennsylvania. The PTS was 

constructed in 1994 and included two cells similar to the above described VFBRs just by 

another name: successive alkaline producing systems (SAPS). After only three years of 



  7 

operation, it was noted that approximately 50% of the flow was by-passing the SAPS, but 

the cell was still able to positively impact the total pollution load (Demchak et al. 2001). 

The PTS was tested for functionality over a 12-month period from 1996 to 1997 (Demchak 

et al. 2001). By May 1999, both the flow and treatment in the cells decreased to the point 

that the cells had to be rehabilitated to return the original functionality (Damariscotta 

2003). 

The Jennings PTS in Butler County, Pennsylvania has been a demonstration site 

for various innovative passive treatment technologies since 1989. In 1997 a VFBR was 

constructed to treat AMD. By 2004 the permeability of the VFBR had decreased to the 

point that the majority of water was by-passing the cell and not being treated (Denholm et 

al. 2010). During that same year, the organic treatment media of the VFBR was 

mechanically mixed, which increased the hydraulic conductivity of the substrate. Within 

three years the hydraulic conductivity of the VFBR decreased again and the cell was mixed 

once more in 2007 (Denholm 2010). During this time, all of AMD that passed through the 

substrate was being adequately treated, but since a majority of the water was by-passing 

the cell, the entire AMD flow was not getting effectively treated (Denholm et al. 2010). 

The VFBR was overhauled completely in 2012 and full functionality of the VFBR was 

restored (Dunn et al. 2014). 

In Reynolds County, Missouri at the West Fork Mine Site, a VFBR was constructed 

in 1996 to treat a discharge from an active lead-zinc mine (Gusek et al. 1998). The VFBR 

experienced a number of hydraulic conductivity problems related to geotextile layers, algal 

mat growth and suspended solids entering the cell. Eventually, woodchips were added to 

the treatment mix in order to increase the hydraulic conductivity (Doshi et al. 2006). 
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Even with issues in aging VFBRs, there is a dearth of hydraulic conductivity 

measurements for treatment substrates. The few studies that have been done are based upon 

tracer studies and were conducted on systems that had been in operation for four years or 

less (Diaz-Goebes and Younger 2004; Wolkersdorfer et al. 2005; Watson et al. 2008). 

In 2000, Diaz-Goebes and Younger did a tracer study on the newly built Bodwen 

Close PTS and at the Pelenna III PTS, which was built in 1998. At the Bodwen Close PTS, 

1-kg of LiCl was used as tracer on a VFBR with a treatment mix of composted conifer bark 

mulch, cow manure, and straw. The hydraulic conductivity of the new system was 

estimated to be 3x10-3 cm/s. For the two-year old system at Pelenna III, a similar tracer 

study was completed with 50-kg of NaCl. The treatment substrate was composed of 

composted manure and straw. The determined hydraulic conductivity was 3.6x10-4 cm/s 

(Diaz-Goebes and Younger 2004). In 2004, additional tracer studies were completed at the 

Bowden Close PTS and the updated conductivity was estimated to have decreased to 4x10-

4 cm/s. No hydraulic conductivity issues were noted during testing (Wolkersdorfer et al. 

2005).  

At the Tan y Garn abandoned coal mine in South Wales, UK, a PTS was built in 

2006. Watson et al. (2008) monitored the hydraulic conductivity of the system over the 

first two and one-half years of operation. The treatment media in the VFBR was layered 

with 10 cm of municipal compost, 60 cm of mixed layer of 50:50 municipal compost and 

limestone gravel, and 10 cm of limestone gravel, from top to bottom, respectively. At the 

startup of the VFBR the hydraulic conductivity was reported to be 6x10-3 cm/s. After, one 

year of operation the hydraulic conductivity decreased to 1x10-3 cm/s and by the second 

year of the study it had decreased to 2x10-4 cm/s (Watson et al. 2008).  
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1.3 Objectives and Hypotheses 

This research focused on characterizing the organic layer in VFBRs and quantifying 

the hydraulic conductivity of multiple passive treatment systems with the intention of 

developing plans for extending the lives of the treatment systems. The first objective for 

this research was to show that the hydraulic conductivity values of the VFBRs have 

changed since installation, therefore requiring operation and maintenance to maintain water 

quality improvement performance. The second objective was to compare several different 

methods of determining hydraulic conductivity and expected values. 

The first hypothesis for this research is the hydraulic conductivity and other 

physical characteristics of the treatment substrate that has been in operation for an extended 

period of time differ significantly from those determined by the available data obtained 

before or during the installation of the VFBRs. The second hypothesis was that a 

comparison of several different methods, including the new method, of determining 

hydraulic conductivity will return statistically similar results. 

2 Methods 

2.1 Site Selection 

The first step of site selection was identification of appropriate passive treatment 

systems with VFBRs. Prior to field work, information and data were collected (e.g., 

available as-built designs, water quality performance data) about each of the identified 

sites. Based on the available information and data, the Mayer Ranch, Hartshorne and Red 

Oak PTS were selected for this study.  
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2.1.1  Selected Sites 

The three selected sites are located in eastern Oklahoma (Figure 2-1). Hartshorne 

and Red Oak PTS are located in the Arkoma Basin where bituminous coal was, and still is, 

mined (Suneson 2012). The Mayer Ranch PTS is located in northeast Oklahoma, within 

the Tar Creek Superfund Site, part of the Tri-State Lead-Zinc Mining District.  

A summary of the locations and other basic information about the selected PTS is in 

Table 2-1. The original AMD issuing from the abandoned mining operations in the Arkoma 

Basin (Hartshorne and Red Oak PTS) are net acidic, while at Mayer Ranch PTS, the AMD 

discharge is net alkaline. The raw mine water at these three locations has elevated levels of 

metals and suppressed pH. A summary of raw water for the selected PTS is in Table 2-2. 

  

Mayer Ranch 

Red Oak 

Hartshorne 

Figure 2-1 Location map of the three selected sites. 
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Table 2-1 Comparison of selected PTS. 

Table 2-2 Raw water quality for selected PTS (Nairn et al. 2010, Canty 1999) 

PTS pH 

Fe 

(µg/L) 

Al 

(µg/L) 

Mn 

(µg/L) 

Zn 

(µg/L) 

Pb 

(µg/L) 

Cd 

(µg/L) 

Ni 

(µg/L) 

Mayer Ranch 5.9 192,000 - 1,200 11,000 60 17 970 

Red Oak 4.4 200,000 6,000 7,000 360 <1 <1 308 

Hartshorne 5.4 765,000 351 11,000 43 180 17 110 

 

2.1.2 Mayer Ranch PTS 

The Mayer Ranch PTS was constructed in 2008 to ameliorate a net alkaline 

discharge from the historic lead-zinc Tri-State Mining District (Nairn 2010). The treatment 

system is comprised of ten treatments cells, with eight (C2N/S-C5N/S) in parallel treatment 

trains of four cells (Figure 2-2). C3N and C3S are the VFBRs and were selected for testing. 

Summary influent water quality for Mayer Ranch PTS is in Table 2-2. The degraded mine 

water is similar to other AMD discharges in the Tri-State Mining District (Nairn 2010).  

The VFBRs at Mayer Ranch PTS and are comprised of mixed organic treatment 

media, limestone drainage layer, and inline water level control structure from Agri Drain. 

The treatment media was composed of 10% limestone sand, 45% compost, and 45% 

woodchips. In addition, the Mayer Ranch PTS VRBRs were constructed with horizontal 

porewater samplers. The porewater samplers are grouped into three different locations 

within each cell and the samplers extend different distances (Figure 2-3). 

PTS Location 

Number 

 of Cells 

Type of 

Mining 

Net Alkaline/ 

Net Acidity 

Mayer Ranch Ottawa County, OK 

(Tar Creek Superfund Site) 

10 Lead/Zinc Alkaline 

Red Oak Latimer County, OK 

(Arkoma Basin) 

5 Bituminous 

Coal 

Acidic 

Hartshorne Pittsburg County, OK 

(Arkoma Basin) 

5 Bituminous 

Coal 

Acidic 
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C3N 

C3S 

N 

M 

S 

N 

M 

S 

Figure 2-3 Diagram of the porewater samplers at Mayer Ranch PTS. The length of the 

porewater samplers are not to scale. Locations are approximate. The blue arrows 

indicate where the water enters and leaves the cell. (Google Earth A 2013) 
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2.1.3 Red Oak PTS 

The Red Oak PTS was constructed in 2001 to address a net acidic discharge from 

an abandoned bituminous coal mine in the Arkoma Basin. The treatment system is 

comprised of 5 cells (Figure 2-4). C2 and C4 are VFBRs, but only C4 was selected for 

testing due to a malfunctioning flush valve for C2. A summary of the influent water quality 

for Red Oak PTS is in Table 2-2. The degraded mine water is similar to other AMD in the 

Arkoma Basin. 

C4 is comprised of an organic treatment media mix, limestone drainage layer, 

effluent control structures and a flush valve. During the construction of Red Oak PTS, 

nested piezometers were installed in C4. At Red Oak PTS, the treatment media is composed 

Figure 2-4 Aerial image of Red Oak PTS. (Google Earth B 2013) 
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of limestone gravel and stable waste. The location of nested piezometers is shown in Figure 

2-5.  

 

2.1.4 Hartshorne PTS 

 The Hartshorne PTS was constructed in 2005 to address a net acidic discharge from 

an abandoned bituminous coal mine in the Arkoma Basin. Similarly, to Red Oak PTS, the 

treatment system is comprised of 5 cells (Figure 2-6). C2 and C4 are VFBRs, but only C4 

6 
8 

5 

4 
9 

3 

2 
7 

1 

Figure 2-5 Diagram of the nested piezometer at the Red Oak PTS. 

Locations are approximate. The blue arrows indicate where the water 

enters and leaves the cell. (Google Earth B 2013) 
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was selected to be tested. A summary of the influent water quality for Hartshorne PTS is 

in Table 2-2.  

  

C4 is different than the other selected VFBRs in that the treatment media is layered. 

A layer of 100% spent mushroom compost overlays a layer of limestone. The VFBR is 

comprised of an organic treatment layer, limestone drainage layer, effluent control 

structures and a flush valve. No additional piezometers or porewater samplers were 

installed during construction. The system may have been constructed in late 2005, but due 

C1 

C2 

C4 

C5 

Existing  

Farm Pond 

Figure 2-6 Aerial image of Hartshorne PTS. (Google Earth 2012) 

VFBRs 
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to a severe regional drought AMD did not flow through the system until early 2007. During 

that time, a portion of berm eroded into the treatment substrate and may have impacted the 

hydraulic conductivity of the VFBR. Since the AMD did not begin to flow through the 

system until 2007 that will be the year noted as when the system begun operation. Figure 

2-7 shows where the water enters and exits the cell. 

 

2.1.5 Summary of Selected VFBRs 

Various features of the selected VFBRs are summarized in Table 2-3. The VFBRs 

are similar in basic construction, for example the use of an organic substrate in the 

treatment mix, but differ in types of treatment media, hydraulic loading rate, configuration, 

surface area, and other metrics.  

  

Figure 2-7 Aerial photograph of the VFBR at the Hartshorne PTS. The blue 

arrows indicate where the water enters and leaves the cell. (Google Earth 2012) 
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Table 2-3 Summary of selected VFBRs 
PTS Mayer Ranch Mayer Ranch Red Oak Hartshorne 

Site abbreviation C3N C3S RO H 

Cell studied 3N 3S 4 4 

Treatment Media 10% limestone 

sand 

45% wood chips 

45% mushroom 

compost 

10% limestone 

sand 

45% wood chips 

45% mushroom 

compost 

stable waste 

limestone gravel 

100% mushroom  

compost 

Year Constructed 2008 2008 2001 2007 

Treatment Media 

Surface Area (m2) 

604 556 388 202 

Designed  

Thickness (m) 

0.5 0.5 1.0 0.5 

Volume (m3) 302 278 388 101 

Measured  

Thickness (m) 

0.37 0.29 - 0.35 

Design Flow 

(m3/min) 

0.237 0.237 0.0756 0.0389 

Hydraulic Loading 

Rate (cm/s) 

2.35E-02 2.56E-02 1.17E-02 1.16E-02 

 

2.2 Field Methods 

2.2.1 Field Falling Head Permeability Tests (F-FHT) 

Full-scale falling head permeability tests were done for whole VFBRs, which is 

represents the hydraulic conductivity for the whole treatment unit. Pressure transducers 

(Solinst Model 3001) were deployed in various treatment cells (VFBRs and down-gradient 

process units) such that hydraulic conductivity could be calculated after VFBR drain valves 

were opened. With the transducers deployed, background water level data were collected 

for a minimum of 24 hours prior to performing full-scale falling head permeability tests. 

While the background data were collected, the relative elevations of the water levels and 

controlling discharge elevations (e.g., invert of the effluent pipes) were determined. These 
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measurements were utilized in determination of the hydraulic head between each cell. Once 

the initial elevation data were collected, the flush valve of the VFBR was opened allowing 

the VFBR to drain, thus providing for a full-scale falling head test. The flush valve 

remained open for a minimum of one week to either allow the system to completely drain 

to the substrate level or come to steady-state at a new water elevation. 

𝐾 =
𝑎𝐿

𝐴𝑡
ln (

ℎ𝑜

ℎ1
)     (eq. 2-1) 

Where: 

𝐾 =  hydraulic conductivity 

𝑎 =  area of the VFBR water surface 

𝐿 =  length of the treatment media (depth of media) 

𝐴 =  area of the VFBR treatment media surface 

ℎ0  = initial height of water 

ℎ1  =  final height of water 

𝑡 =  time required to get reach h1 from h0 

2.2.2 Modified Single Ring Infiltrometer Test (MI) 

 An innovative single ring infiltrometer was developed specifically for this project. 

The infiltrometer represents the hydraulic conductivity of only the treatment media and is 

a point measurement. For the single ring infiltrometer test, the water level within the 

VFBRs was lowered to ~75-150 mm above the organic substrate surface. If the cell could 

not be drained to the appropriate level due to site conditions, the water was either pumped 

from the next component so the cell could drain or the water was pumped directly from the 

cell. A modified 25.4-cm diameter single ring infiltrometer was designed and built for this 

test. A scalloped band-saw blade was welded on the bottom of the steel infiltrometer so the 
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ring would cut through the material with minimal disturbance. The modified infiltrometer 

is 53.4 cm in length and was designed to go through the entire section of organic substrate 

at some locations. Seven centimeters from the base of the infiltrometer, a pre-drilled hole 

allowed installation of a manometer once the infiltrometer was placed to its final depth in 

the substrate. 

As shown in Figure 2-8, the infiltrometer (A) was rotated into the organic substrate 

(B), minimizing disturbance. Once the bottom was placed at the appropriate depth, gym 

weights (totaling 57 kg) (C), a 151-cm PVC standpipe (D), a manometer (E), and a 

measuring tape (measuring down from the top of the stand pipe) were installed. A pressure 

Figure 2-8 Diagram of the modified single ring infiltrometer 

during operation. 

(A) 

(D) 

 

(B) 

(E) 

151 cm 

53.4 cm 
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transducer was deployed in the standpipe to measure the water level at one second intervals. 

Water was then added to the infiltrometer to fill the standpipe.  

The falling water levels within the standpipe and manometer were respectively 

monitored with the transducer as well as manually. This in-situ falling head test was 

repeated several times to gather a statistically valid set of measurements. Once the falling 

head infiltrometer tests were complete, the organic substrate was removed from the outside 

of the infiltrometer and a foam pad was slid into place on the bottom. Once the pad was in 

place, the infiltrometer was carefully removed and the substrate within the infiltrometer 

was collected for use in other tests. Two core samples were taken from each VFBR and 

returned to the laboratory. The calculations for the MI are the same calculations presented 

for the F-FHT. 

At each selected VFBR, the MI was tested at least four different locations. The 

locations were distributed to get a representative value for the substrate layer. Figures 2-9 

through 2-12 show the test locations for each of the selected PTS. Location MI-1 shown in 

Figure 2-12 was not included in the calculations since the methodology for the apparatus 

was still being developed. 
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C3N 

N 

M 

S 

MI-1 
MI-2 

MI-3 

MI-4 

MI-5 

Figure 2-9 Diagram of hydraulic conductivity tests at Mayer Ranch PTS C3N. The 

yellow, black, and blue line indicated tested porewater samplers. The yellow stars 

indicate the locations of the MI tests. Locations are approximate. The blue arrows 

indicate where the water enters and leaves the cell. (Google Earth A 2013) 
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C3S 

N 

M 

S 

MI-1 
MI-2 

MI-4 

MI-3 

Figure 2-10 Diagram of hydraulic conductivity tests at Mayer Ranch PTS C3S. The 

yellow, black, and blue line indicated tested porewater samplers. The yellow stars 

indicate the locations of the MI tests. Locations are approximate. The blue arrows 

indicate where the water enters and leaves the cell. (Google Earth A 2013) 
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Figure 2-11 Diagram of locations for hydraulic conductivity tests at the Red Oak PTS. The red dots 

indicate locations where nested piezometers were tested and the yellow stars indicate the locations of 

the MI tests. Locations are approximate. (Google Earth B 2013) 

5 

6 

9 

2 

1 

MI-3 

MI-1 

MI-2 

MI-4 

MI-5 

MI-4 

MI-3 

MI-1 

MI-2 

Figure 2-12 Diagram of hydraulic conductivity tests at Hartshorne PTS. The yellow stars indicate the 

locations of the MI tests. Locations are approximate. (Google Earth 2012) 
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2.2.3 Slug Tests (ST) 

Mayer Ranch and Red Oak had previously installed pore water samplers and 

piezometers, but Hartshorne did not. The slug tests are point measurement of the treatment 

media and represent the hydraulic conductivity of only the treatment media around the 

casing. At Red Oak PTS, 18 piezometers were installed during construction. At each 

location, there are two piezometers installed at different depths: 0.3 and 1 m. The 

piezometers were installed with a 15.3-cm sand pack. Slug tests were performed on ten of 

the piezometers at Red Oak PTS following the Bouwer and Rice Slug Test Method for 

partially penetrating wells (Bouwer and Rice 1976). While the VFBRs were normal 

operation, a transducer was installed in the piezometer to measure the water elevation in 

the piezometer. A sufficient quantity of water was added to the piezometer to overflow the 

piezometer. This quantity of water acted as a “slug” and by monitoring the rate of decrease 

in the piezometer it was possible to calculate the hydraulic conductivity. Once the water 

returned to near steady-state (e.g., the original elevation in the piezometer), the test was 

repeated two more times. The transducer remained in the piezometer until the water level 

again reached near steady-state. The transducer was then retrieved for data collection.  

At the Mayer Ranch PTS, horizontal porewater samplers were installed during the 

construction of the VFBRs. The porewater samplers consist of 0.64-cm diameter LDPE 

lines within 2.5-cm PVC electrical conduit. The screen interval of the porewater samplers 

are 68.6 to 71.2-cm. In each of the VFBRs, there are seven porewater samplers that extend 

4.3, 5.7, 8.5, 11.4, and 12 m from shore into the VFBR substrate at a depth of approximately 

23 cm.  
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For this study, an apparatus was attached to the existing porewater samplers (Figure 

2-13). The apparatus was a 5.1-cm diameter by 1.5-m PVC pipe that was drilled and tapped 

such that a 0.64-cm diameter valve and a 0.64-cm diameter manometer could be threaded 

onto the pipe, 15-cm from the bottom of the pipe. The bottom of the pipe was capped with 

a 5.1-cm PVC cap. The 5.1-cm pipe had gradations on the side to measure the water level 

in the pipe, via the manometer. Water was added to the 5.1-cm diameter pipe and the water 

level in the pipe was monitored as it drained out through the porewater sampler. 

 

By measuring the flow rate through the porewater samplers and comparing the 

hydraulic head between the VFBR and the apparatus, the hydraulic conductivity of the 

organic substrate surrounding the `porewater samplers was estimated. Below are the 

Figure 2-13 Diagram of the apparatus used to 

perform the slug test at Mayer Rach PTS. 

1.5 m 

porewater 

sampler 
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equations used to calculate the hydraulic conductivity (Figure 2-14, 2-15), as shown in 

Bower (1989). 

 

Bower and Rice Equations: 

𝐾 =
𝑟𝑐

2 ln(
𝑅𝑒
𝑟𝑤

)

2𝐿𝑒

1

𝑡
ln (

𝑦𝑜

𝑦𝑡
)     (eq. 2-2) 

where 

ln (
𝑅𝑒

𝑟𝑤
) = [

1.1

ln(
𝐿𝑤
𝑟𝑤

)
+

𝐴+𝐵𝑙𝑛[
𝐻−𝐿𝑤

𝑟𝑤
]

𝐿𝑒
𝑟𝑤

]

−1

    (eq. 2-3) 

 

𝐾 = hydraulic conductivity around screened interval 

𝑟𝑐= radius of the pipe 

𝑟𝑤= radial distance of undisturbed portion from centerline 

𝑅𝑒= effective radial distance over which y is dissipated 

𝐿𝑒= screened interval 

𝐿𝑤= vertical difference between bottom of casing and static water table outside  

𝑦 = vertical difference between water level inside well and static water table outside  

𝑦0 = 𝑦 at time 0 

𝑦𝑡 = 𝑦 at time 𝑡 

𝑡= time  

𝐴, 𝐵 = dimensionless numbers 
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Figure 2-14 Diagram for the 

Bower and Rice Slug test. 

(Bouwer 1989). 

Figure 2-15 Dimensionless parameters for the Bower and 

Rice Slug test equation (Bouwer 1989). 
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2.2.4 Bulk Density (BD) 

Dry bulk density is the dry weight of soil per given unit of volume and can provide 

insight into the porosity of the soil or substrate. Due to being unable to drop the water level 

lower than the substrate level at Hartshorne, a bulk density examination was performed at 

a single location. At C3S, it was possible to perform three bulk density tests, but the water 

level was too high in the southwest corner of the cell to perform the bulk density test. At 

RO and C3N, four bulk density tests were performed.  

The bulk density of the substrate was determined based upon the Sand Funnel 

Method (Method 12-3.2) in Methods of Soils Analysis (Blake and Hartge 1986). Once the 

water level with each cell was dropped below the surface of the substrate, the vegetative 

growth and any accumulated sludge was removed and the template for the sand-funnel 

apparatus was placed on the surface of the organic substrate (Figure 2-16). Through a hole 

in the template, some of the substrate was removed with a large spoon. The excavated 

substrate was retained for drying at the laboratory. Once the sample was excavated, the 

void was filled with a measured volume of sand of known density. In the laboratory, the 

sample of the substrate was dried to remove the moisture and weighed. The bulk density 

was calculated with the following equations.  

The bulk density (𝜌𝑑) was calculated using the following equation: 

𝜌𝑑 =
𝑑𝑟𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
    (eq. 2-4) 

The volume of sample was calculated using the following equation:  

 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑎𝑛𝑑 𝑢𝑠𝑒𝑑

𝑠𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
    (eq. 2-5) 
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Figure 2-16 Sand-funnel apparatuses for the Method 12-3. 

 

2.3 Laboratory Methods 

2.3.1 Laboratory Falling Head Permeability Tests (L-FHT) 

Collected samples were utilized for laboratory-scale falling head permeability tests. 

The method of Klute and Dirkson (1986) (Method 28-4.2), was followed. A 10.2- mm x 

90-mm drain-waste-vent (DWV) PVC drain pipe (standpipe) was spun into the cores 

collected from the infiltrometer tests. The standpipe was then removed along with substrate 

within it (Figure 2-17, A).  

Once the outside of the pipe was cleaned, a layer of petroleum jelly was liberally 

applied to the outside bottom of the pipe. The petroleum jelly helped create a water tight 

seal and lubricated the connection between the standpipe and the base. The standpipe (i.e., 

pipe and substrate) was placed on a base of layered (B) geotextile, pea gravel (~ 1 cm 

diameter), and egg sized gravel (~3-5 cm diameter). The housing for the base consisted of 

a 10.2-cm coupling, 10.2-cm x 10-cm PVC drain pipe and a 10.2-cm PVC cap. In the base 
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of the cap, a 1.27-cm hole was drilled and tapped for a 1.91-cm threaded PVC 90° elbow 

(C). A rubber stopper was used to control the flow of water out of the permeameter.  

With the apparatus assembled, water was added to fill the standpipe. The water used 

in these experiments was collected from the respective VFBRs. A pressure transducer was 

installed within the standpipe to measure the water levels during the test. Once the pressure 

transducer collected sufficient background information to determine the maximum height 

of the water within the standpipe, the test was started and the rubber stopper removed. The 

test ran for 30 or 60 minutes, depending on the rate of falling hydraulic head. The rate in 

the drop of hydraulic head within the standpipe was used to calculate the hydraulic 

conductivity of the substrate based on Equation 2-1.  

Figure 2-17 An example of the apparatus used 

for the falling head permeability test. 

 

(A) 

(B) (C) 

105 cm 
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2.3.2 Particle Density (PD) 

Particle density was used to determine the dry bulk density of samples. Due to the 

presence of limestone gravel in the treatment media of the Red Oak PTS, only the organic 

portion of the treatment media was tested. Since the organic substrate would have a density 

less than 1 g/cm3, the particle density of the substrate was determined by following the 

method of Weindorf and Wittie (2003). A 50-g sample of the organic substrate was dried 

at 70°C for 48 hours to remove moisture. The dried samples were lightly ground to break 

up the larger organic masses. Once the sample was ground, 10-20 g were placed in a 

graduated cylinder and weighed. Hexane was then added to the tared graduated cylinder 

and swirled to displace the gases in the organic substrate. Additional hexane was added to 

the graduated cylinder to 100 mL and reweighed to determine the total mass of hexane and 

substrate. Particle density was calculated as follows: 

𝜌𝑝 = 𝜌ℎ(𝑊𝑐)/[ 𝑊𝑐 − (𝑊𝑐ℎ − 𝑊ℎ)]     (eq. 2-6) 

where: 

𝜌𝑝= particle density (g/cm3) 

𝜌ℎ= density of hexane (g/cm3) 

𝑊𝑐= weight of oven dried compost (g) 

𝑊𝑐ℎ= weight of sample and hexane (g) 

𝑊ℎ= weight of 100 mL pure hexane (g) 

 

2.3.3 Moisture Content (MC) 

Moisture content of the substrate was determined by following Garden (1986). The 

samples from the field bulk density test were weighed (to the nearest 0.1 g) in an aluminum 
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dish. The samples were then dried at 100-110oC until constant mass. The samples were 

then placed in a desiccator until cool. The samples were reweighed to determine the 

moisture content by difference. The moisture content was calculated using the following 

equation: 

𝜃𝑔 =
𝑚−𝑑

𝑑
     (eq. 2-7) 

Where 

𝜃𝑔= gravimetric moisture content 

𝑚= moist soil mass (g) 

𝑑= dry soil mass (g) 

2.3.4 Loss on Ignition (LOI) 

Loss on ignition estimates the portion of the substrate sample that represents organic 

matter. Due to the presence of limestone gravel in the treatment media of the Red Oak PTS, 

only the organic portion of the treatment media was tested. The fraction of soil organic 

matter (SOM) was estimated by loss on ignition (LOI) following Method 13.2 in Methods 

of Soil Analysis (Nelson and Sommers 1996). The dried moisture content samples were 

placed in a muffle furnace at 400oC for 16 hours. The samples were placed in a desiccator 

until cool. Once, cool the samples were reweighed to determine the SOM by difference in 

weight before and after combustion. 

The LOI was calculated using the following equation: 

𝐿𝑂𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡105−𝑊𝑒𝑖𝑔ℎ𝑡400

𝑊𝑒𝑖𝑔ℎ𝑡105
∗ 100   (eq. 2-8) 

Where: 

𝑊𝑒𝑖𝑔ℎ𝑡105 = weight of the sample dried at 105°C for 24 hours 

𝑊𝑒𝑖𝑔ℎ𝑡400= weight of the sample dried at 400°C for 16 hours 
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2.3.5 Particle Size Analysis 

Particle size analyses determines the size distribution of different particle sizes in 

the substrate sample. Particle size analyses were completed utilizing the Hydrometer 

Method (Method 15-5) in Methods of Soil Analysis (Gee and Bauder 1986). Samples were 

dried, crushed and passed through a 200-mesh sieve. Of the portion that passed the 200-

mesh screen, 40.0 grams of sample were allowed to soak overnight night in 250 mL DI 

water and 100 mL of sodium hexametaphosphate solution (50 g/L). The soaked sample 

was transferred to a metal dispersing cup and mixed with a malted-milk-mixer for 5 

minutes.  

The suspension was transferred to a sedimentation cylinder and DI water was added 

to bring the volume to 1 L. A rubber stopper was used to shake the sedimentation cylinder 

for one minute. After one minute of shaking, the rubber stopper was removed and the 

hydrometer was lowered into the suspension. Hydrometer readings were taken at 30 

seconds and 1 minute. The hydrometer was then removed and dried. At 3, 10, 30, 60, 90, 

120 and 1440 minutes the hydrometer was read. Before each reading a blank measurement 

was taken. 

 

 

2.4 Summary of Methods 

Several different methods were used in the field and laboratory to determine the 

hydraulic conductivity and characteristics of the organic substrate used in the studied 

VFBRs. A summary of the methods is shown in Table 2-4.  
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Table 2-4 Summary of the methodologies. 

Test 

Parameter 

measured Justification 

Falling Head Permeability – 

Field 

K method comparison 

Falling Head Permeability – 

Laboratory 

K method comparison 

Modified Single Ring 

Infiltrometer Test 

K method comparison, sample 

collection 

Slug Test K method comparison 

Bulk Density ρb phys. of org. sub., sample collection  

Particle Density ρp phys. characterization of org. sub.   

Loss on Ignition SOM chem. characterization of org. sub.  

Particle Size Analysis - 

Hydrometer Method 

particle size 

distribution 

phys. characterization of org. sub.   

 Notes: K = hydraulic conductivity, SOM = soil organic matter, phys. = physical, org.= organic, 

chem. = chemical, sub. = substrate 

 

3 Results and Discussion 

3.1 Treatment Media Characterization 

3.1.1 Particle Size Analysis 

 Particle size analyses were completed on the treatment media samples. Table 3-1 

shows the fraction that passed 2000-μm screen and photos of the fractions are shown in 

Figure 3-1. For Red Oak PTS, 85.8% by mass of the material did not pass the screen; 

therefore, most the treatment media was limestone gravel, which is apparent in the photo 

(Figure 3-1, bottom-left). C3N and C3S had a similar proportion pass through a 2000-μm 

screen (~50%), while Hartshorne had much more of the sample pass through the screen. 

For C3S and C3N most the retained material was wood chips and limestone sand. 

Figure 3-2 is a particle size distribution curve for the less than 2000-μm particle 

size for each cell. Red Oak, C3N and C3S follow a similar curve, however, for Hartshorne 
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most the sample was in the sand size fraction. Hartshorne had a higher than expected 

proportion in the sand fraction. 

Table 3-1 Weight and percentage of material that passed a 2000 µm screen. 

Location  

Total weight >2000 µm   <2000 µm 

(g) (g) (%)   (g) (%) 

RO 874.6 750.6 85.8%  124.0 14.2% 

C3N 302.2 151.3 50.1%  150.9 49.9% 

C3S 353.9 188.5 53.3%  165.4 46.7% 

H 213.7 69.8 32.7%   143.9 67.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-1 Photos of the greater than 2000 μm fraction (left in each photo) and the 

less than 2000 μm fraction (right in each photo). The less than 2000 μm fraction was 

used for the hydrometer test. Top row from left to right C3N, C3S. Bottom row from 

left to right RO, H. 
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3.1.2 Particle Density 

The results for particle density are shown in Table 3-2. Statistical differences 

between means at locations within a given site and between sites were calculated using 

Student’s t-tests (Table 3-3). For each location within a cell, the results were not 

statistically different. Red Oak PTS was statistically different from all of the other sites, 

most likely due to the particle density only being performed on the organic treatment media 

fraction. However, across the sites there were only two locations that were statistically 

similar, C3N/C3S and C3S/H. 

Table 3-2 Particle density measurements for the selected sites. 

Location 

ρp 

(g/cm3) 

mean 

(g/cm3) 

s 

(g/cm3) 

RO - 3 2.0271 1.9329 0.0848 

 1.9094 - - 

 1.8624 - - 

RO - 4 1.8879 1.8863 0.1007 

 1.9863 - - 

 1.7849 - - 

C3S - 1 2.5868 2.3573 0.2237 

 2.1399 - - 

 2.3455 - - 

C3S - 4 2.8327 2.6134 0.3607 

 2.8103 - - 

 2.1972 - - 

C3SN- 1 2.5802 2.5896 0.0489 

 2.6426 - - 

 2.5462 - - 

C3SN- 3 2.5213 2.3579 0.2746 

 2.5116 - - 

 2.0409 - - 

H - 1 2.2872 2.1637 0.1357 

 2.1855 - - 

 2.0184 - - 

H- 4 2.1556 2.1901 0.0516 

 2.1654 - - 

  2.2495 - - 
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Table 3-3 Student's-t test comparison between locations and across different sites. Bolded 

values are considered statistically different. 

Location Probability 

RO 3 and 4 0.559 

C3S 1 and 4 0.366 

C34 1 and 3 0.280 

H 1 and 4 0.776 

RO and C3S 0.005 

RO and C3N 0.001 

RO and H 0.0004 

C3S and C3N 0.305 

C3S and H 0.055 

C3N and H 0.019 

 

3.1.3 Bulk Density and Moisture Content 

The characterization of the treatment media included determination of the moisture 

content and bulk density. The results from those tests and a summary of the results are 

presented in Table 3-4. The measured moisture content of the treatment media may not be 

representative of the moisture content of the treatment media during operation. That is due 

to taking the sample while the VFBR was drained. The bulk density of the treatment media 

varied between each PTS, which is likely due to the composition of the treatment media. 

The bulk density measurements ranged from 0.25 to 1.10 g/cm3, with the systems with 

more organic material having smaller bulk densities. 

Table 3-5 is summary of statistical comparisons of moisture content and dry bulk 

density between sites. Hartshorne PTS could not be included in the Student’s t-test since 

only one sample was taken at that location. Red Oak PTS was statistically different from 

both C3N and C3S. C3N and C3S were not statistically different for bulk density and 

moisture content. 
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Table 3-4 Moisture content and bulk density for each location at each site. 

Location 

Moisture 

Content 

(w) 

ρd 

(g/cm3) 

mean 

(g/cm3) 

s 

(g/cm3) 

H-1 3.96 0.25 - - 

C3S-1 1.12 0.60 0.51 0.11 

C3S-2 1.37 0.52 - - 

C3S-3 1.56 0.39 - - 

C3N-1 1.75 0.40 0.42 0.10 

C3N-2 2.23 0.29 - - 

C3N-3 1.57 0.48 - - 

C3N-4 1.23 0.52 - - 

RO-1 0.47 1.00 0.98 0.12 

RO-2 0.14 1.10 - - 

RO-3 0.36 1.00 - - 

RO-4 0.51 0.82 - - 

Table 3-5 Student’s t test comparisons of moisture content and densities between sites. 

Bolded values are considered statistically different. 

 

Location 

Probability 

Moisture Content ρd 

RO and C3S 0.004 0.003 

RO and C3N 0.004 0.0004 

C3S and C3N 0.220 0.341 

 

3.1.4 Loss on Ignition 

 To estimate the organic matter in the treatment media samples, loss on ignition 

(LOI) tests were performed on the collected bulk density samples. The results from the 

LOI tests and a summary of the results are shown in Table 3-6. Since only one bulk density 

sample was taken at Hartshorne PTS, LOI was repeated three times on the same bulk 

density sample. At the other locations, LOI was performed on individual bulk density 

samples. For the Red Oak PTS samples, the cobbles and gravel were not included in the 

LOI tests.  
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Both VFBRs at Mayer Ranch PTS had the lowest LOI of the four sites, and the 

sample from Hartshorne had the highest LOI. Hartshorne would be expected to have the 

highest organic carbon content since limestone sand, gravel or cobbles were not added to 

the treatment media mixture. 

 Table 3-7 is a summary of statistical comparisons of LOI measurements between 

sites. As expected, C3N and C3S were not statistically different. Red Oak PTS was not 

statistically different from C3N and Hartshorne, but not from C3S. Although Hartshorne 

was statistically different from C3N and C3S, it was not different from Red Oak PTS. 

Table 3-6 LOI measurements based upon bulk density samples. 

Location 

LOI  

(%) 

Average  

(%) 

s 

(%) 

H-1 41.012 41.770 1.782 

H-2 43.806 - - 

H-3 40.492 25.898 4.144 

C3S-1 24.949 - - 

C3S-2 22.310 - - 

C3S-3 30.434 - - 

C3N-1 32.360 29.755 2.787 

C3N-2 31.853 - - 

C3N-3 28.130 - - 

C3N-4 26.677 - - 

RO-1 29.803 35.873 5.130 

RO-2 33.540 - - 

RO-3 40.892 - - 

RO-4 39.259  - -  

 

Table 3-7 Student’s t test comparisons of LOI between sites. Bolded values are 

considered statistically different. 

Location Probability 

RO and C3S 0.037 

RO and C3N 0.095 

RO and H 0.102 

C3S and C3N 0.249 

C3S and RO 0.012 

C3N and RO 0.001 
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3.2 Hydraulic Conductivity 

By comparing multiple methods that examine VFBRs as a whole and as their 

individual layers, it is possible to estimate hydraulic conductivity for those process units 

and layers. For this study, 134 separate hydraulic conductivity estimates were completed 

using four different methods: field falling head, laboratory falling head, slug, and modified 

single ring infiltrometer tests. The methods can be compared in two different ways: a 

comparison of a single method across all sites and comparison of all methods at an 

individual site. 

3.2.1 Comparison of Methods Across Multiple Sites 

3.2.1.1  Field Falling Head Tests (F-FHT) 

F-FHTs were completed at all four VFBRs. With respect to the whole process unit, 

the field falling head tests are likely the most comparable measurement. The test takes into 

account the entire system, including the organic treatment media, collection system and 

effluent control structure. The F-FHTs are also the most representative of operational 

conditions, due to the low impact and holistic nature of the test. Therefore, the field falling 

head method will be considered the baseline and used against which to compare other 

methods. 

However, this method is limited in several ways. The method does not identify 

which layer of the VFBR is the hydraulically constricting layer. Identification of the 

restrictive layer is necessary when trying to identify the correct rehabilitation method. 

Additionally, the duration of the tests (up to two weeks) means that repeating the test can 

take a great deal of time (e.g., months). To repeat the test, the VFBR would have to reach 

a similar water level elevation as the first test, which could take additional weeks before 
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the test could begin. The ability to quickly drain the VFBRs is included in the design of the 

system to help “flush” the system with the intention to improve the hydraulic conductivity. 

If the system is repeatedly flushed, the hydraulic conductivity could change as a result of 

the flushing. 

It is important to understand these limitations when reviewing these data, but the 

F-FHT is the only method in this study that takes the whole system into account. Table 3-

8 shows the calculated hydraulic conductivities at each of the VFBRs. Due to the tests only 

being completed once for each cell, a Student’s t-test could not be completed for 

comparisons.  

Table 3-8 Contributing Variables and Hydraulic Conductivities for the F-FHT 

Calculations at each VFBR. 

Location 

a  

(cm2) 

L 

(cm) 

A 

(cm2) 

h0 

(cm) 

h1 

(cm) 

t 

(seconds) 

K 

(cm/s) Log(K) 

C3N 1.18E+07 37.49 6.04E+06 83.12 47.31 278100 1.49E-04 -3.83 

C3S 1.19E+07 29.26 5.56E+06 41.44 17.71 139500 3.83E-04 -3.42 

RO 4.55E+06 91.44 3.88E+06 62.18 28.87 16200 5.07E-03 -2.29 

H 7.19E+06 34.5 2.02E+06 43.99 10.79 172800 9.98E-04 -3.00 

 

The calculated hydraulic conductivities are comparable to those measured in other 

studies. Previously mentioned studies measured the hydraulic conductivity of the newly 

built Bowden Close and Tan y Garn PTS and found them to range from 6x10-3 to 3x10-3 

cm/s (Watson et al. 2008; Diaz-Goebes and Younger 2004). For systems that have been in 

place for more than two years, the hydraulic conductivity decreased from 2x10-4 to 4x10-4 

cm/s (Watson et al. 2008; Wolkersdorfer et al. 2005). Hydraulic conductivity for all of the 

VFBRs examined in this study was between 10-3 to 10-4 cm/s. 

Based on this method, the hydraulic conductivity for C4 at Red Oak PTS was the 

greatest. This VFBR has not been observed to have hydraulic conductivity issues (i.e., 

water overtopping the berms), which indicates the hydraulic conductivity of the treatment 
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media was high enough to convey the flow of water entering the cell (although the other 

VFBR at Red Oak PTS has demonstrated hydraulic conductivity problems). The other three 

VFBRS have been observed to have hydraulic conductivity issues and have lower 

measured values than Red Oak PTS. 

At the Mayer Ranch PTS, the measured values of C3N and C3S were similar, which 

may be expected considering the cells are composed of the same material, in the same 

configurations and have been operational for the same duration of time. However, due to 

an uncontrolled leaking valve during testing (unknown due to initially elevated water 

levels), an adjustment to the C3N measurement may be necessary.  

At the beginning of the F-FHT for C3N, the inlet pipe to the system was underwater. 

After the inlet valve was shut, the inlet was manually checked to see if water was entering 

the cell and no flow was observed. However, two weeks into the test, the inlet was exposed 

and water could be seen leaking through the valve. Flow was taken at that time and was 

measured to be 0.54 LPM. Since the calculations for the hydraulic conductivity were made 

when the inlet was either fully or partially submerged, it is difficult to know the exact 

impact of the leaking valve, but if the measured flow rate is used as a maximum 

contribution during testing we can recalculate the hydraulic conductivity based on the 

HLR. When including the maximum possible flow from the leaking valve the new 

calculated hydraulic conductivity is 2.02x10-4 cm/s.  

The Hartshorne VFBR is the oldest system tested, and potentially had the most 

degraded treatment media of all sites. The VFBR at Hartshorne PTS has been observed to 

have hydraulic conductivity issues for at least two years prior to testing. The quantity of 

water passing through the treatment media at Hartshorne PTS had decreased over the years 
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to 1.9 LPM (measured 2/11/16) with the rest of the water over topping the berms. Water 

was bypassing the cell and could be assumed to not be getting the designed treatment (e.g., 

Denholm 2010). The hydraulic conductivity for the Hartshorne PTS VFBR was lower than 

that of the VFBR at Red Oak PTS, but greater than either cell at Mayer Ranch PTS. Given 

the age of the system, degree of degradation, and field observations, it was expected 

Hartshorne would have the lowest hydraulic conductivity. However, those observations do 

not take into account the hydraulic throughput. The surface area of the treatment media in 

VFBRs at the Hartshorne PTS VFBR is less than the surface area at Mayer Ranch PTS 

VFBRs. Therefore, the hydraulic conductivity in the Hartshorne PTS VFBR may have been 

greater, but the hydraulic throughput was greater at Mayer Ranch PTS VFBRs. That is why 

operation and maintenance issues were at the Hartshorne PTS VFBR before the other 

systems. 

3.2.1.2 Modified Single Ring Infiltrometer 

Since this was a new tool, no methodologies were available and field testing was 

required to determine the exact technique. In the original design for the MI, no additional 

weights were included. However, when the standpipe was filled with water the entire MI 

would lift out of the treatment media. That was due to the 156-cm of head pressure within 

the system and the 25.4-cm2 plate on the top of the MI. Based on those numbers, the 

theoretical weight exerted upwards on the MI was about 79 kg. Olympic barbell weights 

were added to the top of the MI to counter the head pressure and keep it from moving 

upward during testing. Figure 3-3 shows the MI in operation with the weights. 

Two other issues impacted the funtionality of the MI: water level within the cells 

during operation and the manometer. The orginal intent of this technique was to draw down 
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the water level below the surface of the treatment media. However, at all of the sites it took 

longer to drain and/or pump down the cells than orginally thought therefore, the 

infiltrometer tests were started when the water level in the cells were less than 15 cm above 

the top of the treatment media. The infiltrometer was driven into the substrate until the top 

of the infiltrometer was at the same elevation as the water or the MI reached the bedding 

material of the drain system. Figure 3-3 shows that there is still standing water on the top 

of the treatment media during the test.  

The manometer proved to be problematic. The manometer was installed for each 

test, but the readings for each manometer varied dramatically, by up to one meter, between 

Figure 3-3 Modified single ring infiltrometer in operation at Red Oak PTS. 
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tests and locations, even within a given VFBR. The problem with getting consistent results 

were due to either shortcircuiting or plugging. However, it was not possible to know if 

there were impacts of shortcurcuiting or plugging unless  discrepancies were large. 

The manometer was intended to measure the head pressure at the bottom of the 

infiltrometer when water levels were below the surface of the treatment media. However, 

since the testing was completed with water still on the surface of the treatment media, it is 

possible to use the measurement of the water level on the outside of the infiltrometer. Using 

the water level in the cell elminated the inconsistancies associated with the manometer and 

provided more realiable results. At each location the infiltrometer test was conducted three 

times. Table 3-9 shows the mean values for each infiltrometer location. Table 3-9 

represents a total of 51 individual infiltrometer tests.  

Table 3-9 Average hydraulic conductivity numbers for the modified 

infiltrometer at all sites. 

Location 

K 

(cm/s) 

s 

(cm/s) Log(K) 

H - 1 3.64E-04 5.92E-06 -3.44 

H - 2 3.08E-04 7.16E-06 -3.51 

H - 3 3.53E-03 2.68E-04 -2.45 

H - 4 9.92E-04 4.11E-04 -3.00 

C3N - 1 6.63E-04 1.44E-04 -3.18 

C3N - 2 1.01E-04 3.37E-05 -4.00 

C3N - 3 5.52E-04 5.15E-06 -3.26 

C3N - 4 7.54E-04 2.11E-04 -3.12 

C3N - 5 * 8.96E-04 4.41E-05 -3.05 

C3S - 1 2.66E-03 9.55E-05 -2.58 

C3S - 2 2.65E-03 9.58E-05 -2.58 

C3S - 3 9.96E-03 9.01E-04 -2.00 

C3S - 4 8.84E-05 4.70E-06 -4.05 

RO - 2 2.27E-03 9.79E-05 -2.64 

RO - 3 7.12E-04 2.22E-04 -3.15 

RO - 4 1.63E-03 8.02E-04 -2.79 

RO - 5 * 3.08E-03 2.12E-04 -2.51 
Notes: Locations with an * were done with the vegetation removed. The 

vegetation was not removed at all locations due to the lack of vegetation. n=51. 
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With the exception of one location (C3S – 4), all of the hydraulic conductivities at 

each location fall within the range of 9x10-3 to 1x10-4 cm/s. Student’s t-tests were 

calculated, with α=0.05, and the probabilities are shown in Table 3-10. With the exception 

of two comparisons, the results indicate that infiltrometer data are not significantly 

different between each system.  

However, the comparisons between C3N and C3S were significantly different (p < 

0.014). Since those two cells are the most similar, it is expected that they would have 

similar values. C3N was also significantly different than RO, which makes C3N similar 

only to the VFBR at Hartshorne.  

Table 3-10 Statistical comparison of the infiltrometer data between each site. 

Bolded values are considered statistically different. 

Comparison Probability 

RO vs C3N 0.001 

RO vs C3S 0.122 

RO vs H 0.215 

C3N vs C3S 0.014 

C3N vs H 0.110 

C3S vs H 0.051 

 

3.2.1.3 Slug Tests 

Slug tests (ST) were completed at the Mayer Ranch and Red Oak PTS (Table 3-

11). The testing apparatus at both locations were installed during construction. The 

differences between the two systems make it difficult for a direct comparison. At Mayer 

Ranch PTS, horizontal porewater samples were installed and at Red Oak PTS vertical 

piezometers were installed.  

Since the porewater samplers and piezometers were installed at different angles the 

measured hydraulic conductivities are in different directions. For the Bower and Rice slug 

test, the measured K is perpendicular to the screened section of the sampler/piezometer. 



  49 

Since the porewater samplers are horizontal at Mayer Ranch PTS the hydraulic 

conductivity is measured in the vertical direction and at Red Oak PTS the hydraulic 

conductivity is measured in the horizontal direction. During normal operation of the 

VFBRs the direction of flow is in the vertical direction.  

Table 3-11 Bower and Rice Slug tests for Red Oak and Mayer Ranch PTS. 

Location 

Depth 

(m) 

K 

(cm/s) 

s 

(cm/s) Log(K) 

C3N-N-Blue 0.23 2.22E-04 3.78E-06 -3.65 

C3N-N-Yellow 0.23 2.30E-04 1.80E-05 -3.64 

C3N-M-Black 0.23 1.71E-04 7.69E-06 -3.77 

C3N-M-Blue 0.23 1.98E-04 5.50E-06 -3.70 

C3N-M-Yellow 0.23 2.00E-04 4.68E-06 -3.70 

C3N-S-Blue 0.23 3.15E-04 3.44E-06 -3.50 

C3N-S-Yellow 0.23 2.00E-04 5.48E-06 -3.70 

C3S-N-Blue 0.23 2.92E-04 8.43E-07 -3.53 

C3S-N-Yellow 0.23 1.98E-04 1.29E-05 -3.70 

C3S-M-Black 0.23 2.14E-04 4.21E-06 -3.67 

C3S-M-Blue 0.23 1.46E-04 7.63E-06 -3.84 

C3S-M-Yellow 0.23 2.50E-04 8.89E-06 -3.60 

C3S-S-Blue 0.23 1.56E-04 3.73E-06 -3.81 

C3S-S-Yellow 0.23 1.35E-04 6.53E-06 -3.87 

RO - 1A 1.0 1.95E-04 - -3.71 

RO - 1B 0.3 2.47E-04 - -3.61 

RO - 2A 1.0 1.71E-04 - -3.77 

RO - 2B 0.3 7.28E-05 - -4.14 

RO - 5A 1.0 1.44E-04 - -3.84 

RO - 5B 0.3 1.25E-04 - -3.90 

RO - 6A 1.0 1.71E-04 - -3.77 

RO - 6B 0.3 2.72E-05 - -4.57 

RO - 9A 1.0 1.74E-05 - -4.76 

RO - 9B 0.3 4.33E-05 - -4.36 
Notes: At Red Oak PTS the nested piezometers were only measured once, therefore a 

standard deviation could not be calculated. n=52. 

No literature values for slug tests measurements for piezometers in VFBRs of PTS 

were found, but the calculated hydraulic conductivities were comparable to those obtained 

by tracer studies of VFBRs (Watson et al. 2008; Diaz-Goebes and Younger 2004). A 
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comparison of slug test values in an organic matrix can be made by looking at Surride et 

al. (2005). This study focused on slug tests in peatlands and reported values in the range 

1x10-4 to 1.6x10-3 cm/s, which are within an order of magnitude from the calculated VFBR 

slug test values (Surride et al. 2005) 

At Red Oak PTS (Figure 2-5), nested piezometers were installed in pairs at nine 

different locations throughout the VFBR. Each pair were set to a depth of 0.3 m and 1.0 m, 

and five of the nine locations were tested. A Student’s t test was performed and showed 

there was no significant difference between the different depths (p=0.49). 

Comparing the methods between the sites showed significant differences between 

Red Oak and Mayer Ranch. Considering the differences in the ways the porewater samplers 

and piezometers were installed, and the similarities in the cells at Mayer Ranch, these 

results may be expected. 

Table 3-12 Student t-test comparisons of slug tests for each site. Bolded values are 

considered statistically different. 

Comparison Probability 

RO vs C3N 0.003 

RO vs C3S 0.014 

C3N vs C3S 0.194 

3.2.1.4 Laboratory Falling Head Tests 

 The laboratory falling head tests (L-FHT) were completed for all four VFBRs using 

the recovered cores from the MI tests. The cores were transported back to the University 

of Oklahoma campus and tested in the Center for Restoration of Ecosystems and 

Watersheds (CREW) laboratories. The vibrations from transportation may have impacted 

the estimated hydraulic conductivity of the treatment media. Another potential source of 

error is the diameter of the apparatus used for the L-FHT. Since the diameter of the 
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apparatus for L-FHT is smaller than the MI, the ratio of water passing through the treatment 

media in relation to the water passing along the contact between the wall of the PVC pipe 

and the treatment media could impact the results. The names listed in Table 3-13 

correspond with the locations for the infiltrometer tests.  

Table 3-14 shows the statistical comparison between the sites. This method created 

higher variability than other methods. This could be related to the relatively small 

differences between ℎ𝑜andℎ𝑡, which for could be as small as a few centimeters. With the 

exception of three tests the standard deviation was within the same order of magnitude.  

Table 3-13 Hydraulic conductivities for the laboratory falling head tests. 

Location 

K 

(cm/s) 

s 

(cm/s) Log(K) 

H - 1  1.79E-03 2.61E-04 -2.75 

H - 4 3.22E-04 1.20E-04 -3.49 

C3N - 1 8.04E-04 7.72E-05 -3.09 

C3N - 3 2.07E-03 7.92E-04 -2.68 

C3S - 1 4.01E-04 8.30E-05 -3.40 

C3S - 4 5.91E-04 2.12E-05 -3.23 

RO - 3 2.70E-04 2.13E-04 -3.57 

RO - 3 w/ out veg  6.71E-04 5.59E-04 -3.17 

RO - 4 4.76E-03 7.43E-04 -2.32 
Notes: Only one location was tested without vegetation due to the other 

cores not having an appreciable amount of vegetation. n= 27. 

 

Due to the high variability for this method, only one comparison was found to be 

significantly different (Table 3-14). The significant difference was found between C3N and 

C3S at Mayer Ranch PTS. That was not expected considering the previously discussed 

similarities between the cells. This could be due to the transportation of the material from 

site or the wall effects from apparatus. 

Considering the results from the MI tests (Table 3-10), where there was also a 

significant difference between values for C3N and C3S, the relative differences in 
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calculated hydraulic conductivities are not the same. For the infiltrometer, C3S had the 

greater conductivity, while for the L-FHT, C4N had the greater hydraulic conductivity.  

Table 3-14 Student t comparisons of laboratory falling head tests for each site. Bolded 

values are considered statistically different. 

Comparison Probability 

RO vs MR C3N 0.580 

RO vs MR C3S 0.092 

RO vs H 0.317 

C3N vs C3S 0.043 

C3N vs H 0.448 

C3S vs H 0.158 

 

3.2.2 Comparison of Sites 

Table 3-15 summarizes the means all methods across all sites and will be referenced 

throughout the following sections. The table include the log of the hydraulic conductivity 

for easy comparison. 

Table 3-15 Summary of methods across all of the selected cells. 

    RO C3N C3S H 

F-FHT K (cm/s) 5.07E-03 1.49E-04 3.53E-04 9.98E-04 

s (cm/s) - - - - 

log(K) 

 

-2.29 

 

-3.83 

 

-3.45 

 

-3.00 

 

MI K (cm/s) 1.21E-04 2.19E-04 1.99E-04 1.30E-03 

s (cm/s) 7.79E-05 4.46E-05 5.55E-05 1.39E-03 

log(K) 

 

-3.92 

 

-3.66 

 

-3.70 

 

-2.89 

 

L-FHT K (cm/s) 1.93E-03 5.93E-04 3.84E-03 1.05E-03 

s (cm/s) 9.79E-04 2.97E-04 3.87E-03 8.23E-04 

log(K) 

 

-2.72 

 

-3.23 

 

-2.42 

 

-2.98 

 

ST K (cm/s) 1.90E-03 1.44E-03 4.96E-04 - 

s (cm/s) 2.21E-03 8.57E-04 1.17E-04 - 

log(K) -2.72 -2.84 -3.30 - 
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3.2.2.1 Mayer Ranch PTS - C3N 

For the C3N cell of the Mayer Ranch PTS, four different methods were utilized to 

calculate the hydraulic conductivity: F-FHT, MI, L-FHT, and ST. Figure 2-9 shows the 

locations of the pore water samplers and MI tests. The locations of MI-3 through MI-5 

were slightly north of the intended location within the cell and that was due to the uneven 

distribution of the treatment media. At the time of testing, the southern end of the cell had 

excess water, due to difficulties with pumping, precluding performance of the MI tests at 

the originally intended locations. 

Table 3-15 shows the mean hydraulic conductivities measured for each location 

within C3N and Figure 3-4 graphically represents the data. All of the tests, with exception 

of one of the L-FHT tests, were within1x10-4 to 6x10-4 cm/s. Like Red Oak, the F-FHT did 

not fall within the standard deviations of the ST, MI or L-FHT (Table 3-15). However, 

unlike Red Oak, all the point measurement K values were greater than the F-FHT, with the 

L-FHT showing the greatest difference. The ST hydraulic conductivity values were much 

closer to the F-FHT than at Red Oak. However, the F-FHT value did not fall within one 

standard deviation of the ST since the variability was considerably lower at C3N. One 

potential reason the ST was closer to the F-FHT test is the way in which the porewater 

samplers were installed. Instead of a sand pack, the porewater samplers were placed 

directly in the treatment media, which eliminated any interferences a sand pack may have 

played.  
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Figure 3-4 Results of four different hydraulic conductivity tests for C3N at 

Mayer Ranch. 

 

Statistically comparing the methods to each other, L-FHT and MI are the only 

methods that resulted in a probability value greater than 0.05 (Table 3-16). The statistical 

comparison results are similar to those at Red Oak PTS.  

Table 3-16 Student t-test comparison of point methods at C3N at Mayer Ranch PTS. 

Bolded values are considered statistically different. 

 

Comparison Probability 

ST vs MI 0.0002 

ST vs L-FHT 0.018 

L-FHT vs MI 0.060 

3.2.2.2 Mayer Ranch PTS - C3S 

For the C3S VFBR of the Mayer Ranch PTS, the same four methods were utilized 

to calculate hydraulic conductivity. Figure 2-10 shows the locations of the pore water 

samplers and MI tests. The location MI-4 was slightly north of the intended location due to 
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the uneven distribution of the treatment media. At the time of testing, the south-western 

end of the cell had excess water to be able to perform the MI tests. Very little vegetation 

was present during testing, so an MI test without vegetation was not performed. 

Table 3-15 shows the mean hydraulic conductivity measured for each location 

within C3S and Figure 3-5 graphically represents the data. For each location in Table 3-15, 

the test was repeated three times, except for F-FHT. All the tests were within 3x10-3 to 

2x10-4 cm/s. Similar to ST-derived K values at C3N, the variability in the ST values for 

C3S were relatively small when compared to other methods. For the MI tests, MI-4 was 

more than an order of magnitude slower than the other locations within the VFBR.  

The F-FHT K value does not fall within the standard deviations of the ST, but the 

F-FHT does fall within one standard deviation for MI and L-FHT (Table 3-15). However, 

the MI hydraulic conductivity values only encompass the F-FHT when including the MI-4 

value (Figure 2-10). When that test is removed from the calculations, the F-FHT no longer 

falls within one standard deviation. This is important to note because those measurements 

are nearly an entire order of magnitude different. Table 3-17 statistically compares the 

different methods using the Student’s t-test. For C3S, not one of the methods was 

statistically similar, even when removing the fourth MI test. 

Table 3-17 Student’s t-test comparison of point methods at C3S at Mayer Ranch PTS. 

Bolded values are considered statistically different. 

Comparison Probability 

ST vs MI 0.008 

ST vs L-FHT 0.001 

L-FHT vs MI 0.012 
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Figure 3-5 Results of four different hydraulic conductivity tests for the C3S at Mayer 

Ranch PTS. 

 

3.2.2.3 Red Oak PTS 

For the Red Oak PTS, four different methods were utilized to calculate the 

hydraulic conductivity: F-FHT, MI, L-FHT, and ST methods. Figure 2-12 shows the 

locations of the ST and MI tests. Table 3-15 shows the total mean hydraulic conductivity, 

if available, for each method measured at Red Oak PTS.  

Since the F-FHT hydraulic conductivity was only measured once, the number of 

statistical tests that could be performed were limited. For comparisons, the F-FHT will be 

compared to the other tests by examining if the F-FHT K value falls within one standard 

deviation of the other value. For Red Oak PTS, the F-FHT does not fall within one standard 

deviation of the ST, MI or L-FHT determined K values. All of the point measurements 
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(i.e., MI, L-FHT and ST) were smaller than the F-FHT. Figure 3-6 graphically compares 

the methods at the Red Oak PTS.  

 

 

Figure 3-6 Results of four different hydraulic conductivity tests for C4 at Red Oak PTS 

The ST method was expected to return similar results to the F-FHT because the 

piezometers had been in place since construction and would have had little to no 

disturbance during testing. The difference in measurements could be related to several 

issues. Since the piezometers were installed vertically, the measured hydraulic conductivity 

is perpendicular to the flow of water during normal operation. Possibly both measurements 

were accurate and the treatment media is anisotropic. 

Several different issues could have impacted the measurements. Since the 

piezometers were packed in 15 cm of sand, these tests may be more representative of 
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precipitation of metals or biological precipitates may have caused decreased permeability 

within the sand pack. Additionally, the screened section of the piezometer may have 

become occluded overtime with precipitates or biological growth. The blockage is most 

likely due to biological growth, because of the low metal concentration within that unit. 

Without additional testing of the sand pack or autopsy of the piezometer it is difficult to 

ascertain the root cause of the differences.  

 The statistical testing between the F-FHT and the other methods is limited due to 

the singular measurement for the F-FHT, but it is possible to statistically compare the other 

methods to each other. Table 3-18 shows the Student’s t-tests between each of the point 

methods at the Red Oak PTS. The ST method was statistically different from the L-FHT 

and the MI method. Comparing the MI method with the L-FHT shows there is no 

significant difference between these methods. The L-FHT were cored from the MI cores, 

therefore it would be expected that the values would be similar. 

Table 3-18 Student’s t-test comparison of point methods at the Red Oak PTS. Bolded 

values are considered statistically different. 

Comparison Probability 

ST vs MI 0.001 

ST vs L-FHT 0.042 

L-FHT vs MI 0.976 

3.2.2.4 Hartshorne PTS 

For the fourth cell at the Hartshorne PTS, three different methods were utilized to 

calculate the hydraulic conductivity: F-FHT, MI, and L-FHT. This site did not have 

previously installed piezometers or porewater samplers to perform ST. Figure 2-7 shows 

the locations of the MI tests. Very little to no vegetation was present during testing so an 

MI test without vegetation was not performed. 
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Table 3-15 is the mean hydraulic conductivity measured for each location within 

Hartshorne and is graphically shown in Figure 3-7. For each location in Table 3-15, the 

test was repeated three times, except for F-FHT. All the tests were within 1x10-3 to 9x10-4 

cm/s. The eastern edge of the cell had lesser hydraulic conductivity by an order of 

magnitude than the western side. 

Unlike the other sites, the F-FHT falls within the standard deviations of the MI and 

L-FHT (Table 3-15). This is the only site where the MI and the L-FHT K values 

encompassed the F-FHT K value. Statistically comparing the K values derived from L-

FHT and MI with a Student’s t-test resulted in a p= 0.648, which indicates that the two data 

sets are not statistically different. 

 

Figure 3-7 Results of four different hydraulic conductivity tests for C4 the Hartshorne PTS. 
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3.3 Treatment Media vs. Hydraulic Conductivity 

A comparison of the treatment media characteristics to the hydraulic conductivity 

may help illuminate if there are treatment media parameters that could help predict the 

hydraulic conductivity and vice versa. With the collected data, it is possible to the make a 

comparison between porosity, bulk density, particle density, moisture content and LOI 

parameters with the different hydraulic conductivity methods. For the following 

comparison, the method and parameter were averaged for each cell and then compared 

across different cells. This method compares one treatment media parameter to multiple 

hydraulic conductivity measurements. That leads to the hydraulic conductivity data being 

grouped, but this grouping does not represent any trends. Table 3-19 summarizes the data 

for each parameter and methods for hydraulic conductivity.  

Table 3-19 Summary of the averaged parameters and hydraulic 

conductivities for each selected cell. 

Parameter RO H C3N C3S 

Porosity mean 0.487 0.888 0.830 0.796 

s 0.185 - 0.0416 0.0569 

Particle Density mean 1.9097 2.1769 2.4738 2.4854 

(g/cm3) s 0.0871 0.0930 0.2173 0.3028 

Bulk Density  

(g/cm3) 

mean 0.98 0.25 0.42 0.51 

s 0.12 - 0.10 0.11 

Moisture Content 

(w) 

mean 0.37 3.96 1.70 1.35 

s 0.17 - 0.42 0.22 

LOI 

(%) 

mean 35.8734 41.7700 29.7553 25.8979 

s 5.1296 1.7825 2.7868 4.1442 

MI K 

(cm/s) 

mean 3.74E-04 1.73E-04 9.85E-05 2.74E-04 

s 3.76E-04 2.01E-04 9.61E-05 4.20E-04 

L-FHT K 

(cm/s) 

mean 1.90E-03 1.05E-03 1.44E-03 4.96E-04 

s 2.21E-03 8.23E-04 8.57E-04 1.17E-04 

ST K 

(cm/s) 

mean 1.21E-04 - 2.28E-04 2.00E-04 

s 7.79E-05 - 4.86E-05 5.44E-05 

F-FHT K 

(cm/s) 

mean 5.07E-03 9.98E-04 1.49E-04 3.83E-04 

s - - - - 
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Figure 3-8 shows the comparison between porosity and hydraulic conductivity. For 

the ST, MI, and L-FHT there do not appear to any trends, however for the F-FHT, a weak 

trend show that as the porosity increases the hydraulic conductivity trends downward. A 

linear trend line applied to the data has an R2 =0.5946. A similar trend was documented by 

Beard and Weyl (1973). As the grain size becomes finer, the porosity increases, but the 

hydraulic conductivity decreases (Beard and Weyl 1973). The decrease in hydraulic 

conductivity is even greater in materials that are poorly sorted (Beard and Weyl 1973), 

such as mixed treatment media in the VFBRs. 

 

Figure 3-8 Comparison of porosity with hydraulic conductivity across VFBRs. 

 

Figure 3-9 shows the comparison between particle density and hydraulic 

conductivity. For the ST, MI, and L-FHT there do not appear to any trends, however for 

the F-FHT, as the particle density increases the hydraulic conductivity trends downward. 

A linear trend line applied to the data has an R2 =0.9888. As the density of the particles 
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increase, the hydraulic conductivity decreases. There has been no indication that particle 

density is relation to particle density in traditional soils, but one may exist here due to the 

difference in densities between the organic material and limestone.  

 

Figure 3-9 Comparison of particle density with hydraulic conductivity across the VFBRs. 

 

The comparison between bulk density and the hydraulic conductivity did not show 

the same relationship (Figure 3-10). As the bulk density increased, the hydraulic 

conductivity increased, which is the opposite of the particle density relationship. 

Considering the close relationship between particle density and bulk density it would be 

expected that the trends would be similar. Once again, the disparities in the numbers may 

be related to the different densities of the organic material compared to the density of the 

limestone. 
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Figure 3-10  Comparison of bulk density with hydraulic conductivity across the VFBRs. 

 

The comparisons between moisture content and LOI also showed weak to no trends 

(Figure 3-11, Figure 3-12). As the systems age, the organic material is broken down and 

consumed by sulfate reducing bacteria. As the organic material is consumed, it is likely 

that the material should become more compact. Therefore, it could be expected that as the 

LOI decreases, the hydraulic conductivity would decrease. For the F-FHT there is a very 

weak trend in the LOI to that gives evidence for that claim.  

The trend between particle density and hydraulic conductivity is the only strong 

trend that appears in the comparisons between the treatment substrate characteristics and 

hydraulic conductivity. The porosity does show a trend with hydraulic conductivity, but 

the trend is not as strong as particle density trend. Based upon the collected data, bulk 

density, moisture content, and loss on ignition show weak to no trends related to hydraulic 

conductivity. 
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Figure 3-11 Comparison of moisture content with LOI across the VFBRs. 

 

 

Figure 3-12 Comparison of moisture content with hydraulic conductivity 

across the VFBRs. 
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4 Conclusions 

A comparison of measurement methods at different VFBRs gave insight into 

various hydraulic conductivities of the cells. A total of 134 individual hydraulic 

conductivity tests were completed, utilizing four different methods, to estimate the 

hydraulic conductivity of the entire VFBR or the treatment media. In addition to the 

hydraulic conductivity tests, the treatment media were characterized to identify if any 

parameters could predict hydraulic conductivity. 

The four different hydraulic conductivity methods were F-FHT, MI, L-FHT, and 

ST. The F-FHT head test took into account the entire VFBR, while the MI, L-FHT and ST 

were point measurements of the organic treatment media. The F-FHT measurements were 

considered to be the most comparable to the “true” hydraulic conductivity of the process 

unit, because it took into account every layer and the piping system of the cell. F-FHT 

hydraulic conductivity measurements ranged from 5.07x10-3 to 1.49x10-4 cm/s.  

The MI was a new tool that was developed to measure the in situ hydraulic 

conductivity of the organic treatment media. No in situ direct measurements of the 

treatment media have been reported until this research. After field verifying the 

methodology, the MI method was able to produce repeatable results that were comparable 

to the F-FHT test and other methods. The measurements ranged from 9.96x10-4 to 1.04x10-

4 cm/s.  

The L-FHT tests were completed on the recovered cores from the MI tests. Since 

the L-FHT was testing the exact same material as the MI, it was expected that these two 

tests would yield similar results. The L-FHT measurements proved to be more variable 

than the other tests, which made the L-FHT measurements statistically comparable to the 
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MI measurements, but not as precise. The process of coring the substrate, and transporting 

of the cores from the field to the laboratory likely disturbed the hydraulic conductivity of 

the substrate. The L-FHT measurements ranged from 4.76x10-3 to 2.70x10-4 cm/s.  

The ST tests were completed at the Red Oak and Mayer Ranch PTS, because 

piezometers and porewater samplers were installed during construction at these sites. The 

piezometer measurements at Red Oak PTS were considerably different from the other 

measurements in the cell. However, the porewater samplers were closer to the F-FHTs 

conducted at Mayer Ranch PTS. This is likely due to the construction method of the 

piezometers. The piezometers at the Red Oak PTS most likely were measuring the 

hydraulic conductivity of the sand pack rather than the treatment media. However, another 

explanation is that the different ST measure the hydraulic conductivity in different 

direction (i.e. vertical vs horizontal). The ST measurements ranged from 3.15x10-4 to 

1.74x10-5 cm/s. 

Each method examined proved useful, but each has limitations as well. The F-FHT 

is likely most comparable to the “true” value of the entire cell and is relatively easy to 

perform. Unfortunately, it takes a considerable amount of time to be able to repeat tests 

(i.e., more than a month) and does not identify the restricting layer. The MI is an accurate 

point measurement of the treatment media, however it takes a considerable amount of work 

to gather the measurement. L-FHT, are easy to perform, but are highly variable and may 

not be representative of in situ conditions. The ST, are easy to perform, however, 

depending on the construction, may not be representative of the treatment media. There is 

no method that will fit all sites, but depending on site variables, certain methods may be 

more accurate or viable than others. 
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Comparing the hydraulic conductivity to the treatment media characteristics 

determined only one reasonable trend, with a few other weak trends. As the particle density 

of the treatment media increased, the hydraulic conductivity decreased linearly. The 

porosity does show a trend with hydraulic conductivity, but the trend is not as strong as the 

particle density trend. When comparing the bulk density, moisture content, and loss on 

ignition to the hydraulic conductivity, weak trends were identified in these data. 

Prior to this research, the only reported data that were available on the hydraulic 

conductivity of VFBRs in PTS were tracer studies completed on cells that were in operation 

for four years or less. These studies did not directly measure the hydraulic conductivity of 

the treatment media (Diaz-Goebes and Younger 2004; Wolkersdorfer et al. 2005; Watson 

et al. 2008) but rather estimated it based on other bulk hydraulic characteristics. This study 

provided hydraulic conductivity measurements of VFBRs that have been in operation for 

8-15 years, using in situ measurements of the treatment media, and a comparison the 

hydraulic conductivity against a number of different treatment media characteristics.  

Vertical flow bioreactors are important tools for the treatment AMD. However, the 

failure of these cells can happen long before the design life has been reached. The hydraulic 

conductivity of these systems can be used to identify the problems that lead to failure. The 

identification of the problem can lead to a better understanding of VFBR performance well 

as development of better design criteria to improve future systems.  
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