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CHAPTER I
INTRODUCTICN

The dynamic analysis of physical systems is a topic
which has reeeived considerable attention in the past
twenty years. Due to the demands for higher system per-
formance characteristics, technological areas such as feed-
back control, mechanical vibrations, electrical networks,
and chemical processes have been advanced immensely through
the use of procedures developed in this field.

The first step in the dynamie analysis of such systems
is the application of the appropriate physical laws, e€.g.,
the laws of conservation of mass, momentum, and energy,
which results in mathematical models that are functions of
the physical properties of the systems. Such models usu-
ally consist of nonlinear integrodifferential equations,
difference equations, or sets of these equations which are
very difficult, if not impossible, to solve analytically.
However, many systems'can be adequately described by ordi-
nary linear equations with constant coefficients in which
case the work of the analyst is greatly.simplifiedu If the
independent variable is time, such equations may be ex-

pressed in the general form:



dﬂ‘ dnu-l

% X dx .
g S 4 og = + oo + 8, =& + a.x = y(t) (1~1)
it n - -1 . 1 o)
noa4 n-1 at? 1 dt
where
8o 8y 19 cccs By 85 are real numbers
and

a, # Q.
First and Second-Order Systems

The order of a linear system is determined by the num-
ber of independent energy storage elements, thus, the

first-order equation

&y %%C + agx = y(t) (1-2)

describes such basic systems as
1. A simple thermometer (one capacitance)
2. R-C and R-L networks
3. A mass in motion against resistance
(friction) only

while the second-order equation

2
a, %E% + 8y Q% + agx = y(t) (1-3)

is applicable for
1. A two-capacitance thermometer (example -
thermometer in a well)

2. R-L-C network



%2, A mass in motion against resistance and
inductive elements (springs, etca)ql
Since such systems are of considerable importance in engi-
neering; the solutions to these equations are well
documented (1, 2, 3, 4, 5).2

Of particular interest are the responses to a step
change in the forcing function, y(t), (hereafter referred
to as the transient responses) and these are shown graphi-
cally in many texts With a normalized time base (see |
Pigures 1-1 and 1-2).

Also of interest are the steady-state responses of the
systems to a sinusoidal input (referred to as the frequency
response)o3 In such cases the output will be a sinusoidal
oscillation of the same frequency as the input, but differ-
ent in magnitude and phase. Information showing the varia-
tion of these two variables with frequency is frequently -
shown graphically with a normalized time base. Diagrams
for first-order and second-order systems described by
Equations (1-2) and (1-3) are shown in Figures 1-~3% and 1-4,

respectively.

l”Elementsa.re independent in this sense if they can-
not be combined with other elements. An inductance and
capacitance in series constitute a second-order system
whereas two inductances in series do not.' (5).

2Numbers in parentheses refer to references in the
Selected Bibliography.

5The response of a system after transient terms have
"died-out."
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Third-Order Systems

The third-order equation
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occurs frequently in the field of automatic controls. A
typical example is the electro-hydraulic servomechanism

with displacement feedback shown in Figure 1-5.

Amplifier

Figure 1-5. Third-Order Electro-Hydraulic
Servomechanism

The characteristic equation of such a system is
azs’ + @,8%2 + ays + ag = 0 (1-5)
which may be factored to the form

as(s + 8,)(s + 5,)(s + 85) =0 (1-6)

where s, , S, , 83 are the characteristic roots (sometimes



A A (b}

x(t)

Wt

Figure 1-7. Three Basic Types of Third-Order
Transient Response

The analyst does not often require knowledge of the
complete time history of the transient response, but only
certain essential characteristics. Three of these charac-
teristics are defined below and illustrated in Figure 1-9:

Overshoot, os - the difference between the

mnagnitudes of the maximum
and final (steady-state)
values of the response,

- expressed as a percentage.

Rise Time, t - time from 10% to 90% of

final value.

Settling Time, ts ~ time for the response to

decrease to less than a
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specified percentage of the
final value (2% and 5% are

common values) (7).

Response Overshoot
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| | |
0 E g Settling Time t
. L_ »} T, _
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T,

Figure 1-9. Transient Response
: Specifications

The frequency response of a stable linear system is
defined as the steady-state response which will be observed
when the forcing function is a sinusoid or disturbance of
constant frequency and amplitude (7). DPolar plots are fre-
quently used for the analysis of systems in the frequency
domain and associated with these diagrams are two important

stability criteria which are defined below and illustrated



graphically in Figure 1-10:

Gain margin - the ratio of the gain at which
the system becomes unstable to
the actual system gain.

Phase margin - the amount of negative phase
shift‘which must be introduced

to make the system unstable.6

Gain margin = 1/a
Phase margin = ¢

DEET. pR—

N /GHljw)

Figure 1-10. Gain and Phase Margin From
the Polar Plot

Definition of the Problem

The purpose of this study is to develop a procedure

6Polar plots and frequency domain are discussed in
more detail in Chapter III, ’

12
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which provides the information concerning a linear third-
order system that is necessary for analysis and synthesis
in either the time or frequency domains without resorting

to root determination methods and sets of normalized

response graphs.



CHAPTER II
LITERATURE SURVEY

General Methods for the Determination

of Roots

Practically all previously published methods for the
analysis and synthesis of linear third-order systems have
involved some root determination process,l For example,
the determination of a complete system response [such as
given by Equation (3-22)] requires a knowledge of all
three roots of the characteristic equation, while fre-
quency response techniques require at least factorization
into a single root with a quadratic term. There is a num-
ber of standard procedures for determining the roots of an
equation; algebraic methods are illustrated in references
(8, 9, 10, 11), numerical methods in references (12) and
(13), and some basic graphical techniques in references

(12, 13, 14, 15, 16).

lThere are some published methods concerned with
stability criteria which do not require knowledge of the
roots, but they give no information about response
characteristics.

14
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Third-Order Root Charts

Of particular interest, however, are the methods which
have been developed solely for the analysis of third-order
systems. One of the first was by H. K. Weiss (17) in 1939
who was analyzing the operation of a "speed-control
system" or governor. Weiss developed the cubic charts
shown in Figure 2-1(a-c) which illustrate the functional
relationship between the system roots and the system param-
eters { (damping ratio) and s (a control constant). He
also presented several normalized transient response curves
of the type shown in Figure 2-1(d4).

A similar paper by Koenig (18) in 1951 dealt with the
"Design of Damper-Stabilized Instrument Servomechanisms"
and showed the two graphs in Figure 2-2. In regard to the
use of these charts for servo design, Koenig stated:

In the general vicinity of the point r-4, K-0.3,

the complex conjugate pair of roots becomes very

dominant compared to the real root. Under this

condition the system operation approaches the
operation of a second order system. Transient

curves for a second order system have been pub-

lished for a step-position input. Therefore,

the designer, using Figs. 2 and 3 [Figure 2-2(a)

and (b)], can select the set of parameter values

correspo%ding to the amount of overshoot
desired.

2Statements of this type occur often in the literature
regarding third-order systems. The method developed by the
writer in Chapter III provides the information for design
without such restrictions.
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Figure 2-2. Root Trajectory Charts by Koenig

Higgins and Levinthal (19) used linear transformations
on a third-order equation to obtain a set of sixty charts
relating the coefficients and roots of the equation. They
stated that their procedure had two major uses:

First, in analysis it affords quick ascertainment
of the roots of a specified cubic characteristic
.equation, thus enabling rapid determination of

the stability characteristics of the corresponding
third-order servo system; conversely, in synthesis
it enables selection of the coefficients of a cubic
characteristic equation to the end that a third-
order servo system can be formulated with a desired
degree and kind of stability.

However, the reviewer of their paper considered the number
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of charts involved to be excessive (and this writer
concurs) .

The early work of Evans (20) and Liu (21) received
widespread distribution when a chapter in '"Instrument
Engineering' (a three volume work of major importance) was
devoted to their graphical methods for solving cubic and
quartic equations (22). They dealt with equations with
unity coefficients for the highest order term such as

Equation (2~l) (cbtained from Equation (1-5) by dividing by

33)9
s +Y¥,8% + Y,8 + Yo =0 (2-1)
where
_ a,
Yz = :a-i‘-') etCe

The equation was then ""expressed as the product of a first-
order term and a second-order factor, each with real

coefficients™ (22); i.e.,
(s + o)(s? + 2Lw s + wna) = 0 (2-2)

for which the roots are

8 = =0 (2"‘Ba>
s = -lo + jwn\ffi—TE?'” | (2-3b)
s = -iwn - jwn\ll -t . (2-3c)

The characteristic equations were further simplified
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by a substitution of variables which made one of the re-
maining coefficients also equal to unity; i.e., the first-
3
term coefficient was made equal to unity by factoring 'Yl/2
out of Equation (2-1) and taking the variable as —5 R
q (2-1) g 27/

1
The transformed equation was

G o ORR TACT N R v

= Yls/z[Ylj‘s/z * Yll'?/z ][CYlls/z > * 2r<Y1/2 ><Y}/2 )+<:Y%I7l;—>2]

(2-4)
and thg following curves werevplotted:
1. Curves of constant damping ratio ({) and
constant undamped angular natural frequency
(wn) as functions of the nonunity cubic

Y, Y
coefficient ratios, —gp— and —yo— (se
oefficien ios, ir §?7; (see

Figure 2-3).
2, ——?~ and ;%7= plotted as functions of { and
(see Flgure 2-4)
3. Curves of real-part-of cubic root ratios as
functions‘of the previously mentioned ratios
(see Figure 2-5).
Similar charts were developed for the other two cases;
namely, unity third- and second-order coefficients, and
unity third-order coefficient with unity constant term

(Yo = 1). This latter case was also considered by
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Stefaniak (23) with similar results.

In 1959, Mitrovic (24) published a paper on ''The
Graphical Procedure for the Analysis and Synthesis of Feed-
back Control System' which was applicable for linear sys=-
tems of any order. By allowing two coefficients of the
system equation to vary, he developed relationships which
defined curves along which the system damping ratio, {, was
constant. As a special case of his method (which is too
complex for discussion here) he considered the third-order

Equation (1-5):

azs? + g,s? + a;8 + a5 =0 (1-5)

Using a linear transformation, s = =P, Equation (1-5) was
3 :

5

transformed to a normalized equation with two wvariables
PP + P2 + BP + B, = O (2-5)
where

3, a aga
B, = —t?l and By = =05+

the roots of which were then obtained from his third-order

5The variable nomenclature here is the same as that
used by Thaler and Brown (25) who devoted a complete
chapter to Mitrovic's method.
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(a) Curves I't for different val

(b)

Figure 2=6., Third-Order Charts by Mitrovic
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charts (see Figure 2»6),,4 If three real roots were in-
volved, they were readily obtained from the small triangu-
lar shaped area in Figure 2-6(b). If two complex conjugate
roots were present, they could be determined using Equation

(2-5) once ¢ and w . were known, since

t

P=-lw, * jwntVT::ET (2-6)

and the roots of Equation (1-5) were then calculated using

the transformation relationship

s - -0 (&) (2-72)
s = -0 (&) jo T-T (&) (2-70)

A different approach to the problem of root determina-
tion of the third-order equation was made by Chu and Yeh
(26) using the root-locus method of Evans (27). They con-
cluded that if an equation of the form of (1-5) was stable,

it could be written as

3 ; 2 2 = -
s? + 2C®ns +w s + k=0 (2-8)

and manipulated to obtain

4Similar graphs with a larger scale were developed by
the writer and are shown in Appendix A. In addition, the
writer developed a set of graphs with constant wgt and wpg
curves. The use of these graphs circumvents the calcula-
tion required by Equation (2-6) and is believed to be
unique (also in Appendix A).
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k .
€3 ) 2y = -1 o (2-9)
S( S + 2C®ns + wﬂ)

By equating the phase angle and magnitude on each side of
this equation, two relationships were derived which were
used to plot the five possible_shapes of root locus for
cubic characteristic equations. It was found that ' the
shapes of the root locus for these five cases are all por-
tions of a hyperbola or its degenerated form in addition to
a certain portion ¢f the real axis,' and that, although
Equation (2-8) had éhree parameters, only the parameters_t
and w determined the exact shape of the root locus (26).
The functional relationship was further simplified by the

substitution of the quantities

k' = a‘% (2-10a)
e (2-10b)

n

into Equation (2-9), resulting in
k_ 1 (2-11)

s (s? ¥ 2¢s’ + 1) ~ ~

for which the shape of the root locus is determined by {
alone. Chu and Yeh plotted a family of root loci on the
complex s’'-plane for various values of £ (see Figure 2-7)
and commented that "all possible roots of a cubic charac-

teristic equation can be extracted from this chart" (26).
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Figure 2=7. Root-Locus Chart by
Chu and Yeh

Relationships Between Roots and Transient Response

In addition to the aforementioned references which
dealt mainly with the problem of root determination, there
have been several papers concerned with the relationships
between the roots and the transient response of a system.
The problem was considered for general linear systems (no
restriction on order) by Mulligan (28) whb éoncluded that,

.» Systems having appreciable separation between
poles, particularly along the o [reall axis rela-

tive to the first pair of complex poles, and
having no complex poles very close to the ¢ axis
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and no complex zeros very near to the first pair

of complex poles, it is quite likely that the

term sin (B, t + Ay, ) [the sinusoid in the response

equation due to the first pair of complex poles]

will provide a very good approximation to g(t)

[the time responsel] at the time corresponding to

the first maximum and beyond.
Mulligan presented charts and equations which could be used
to calculate the per cent of error involved when poles were
neglected, but did not give any fixed value for the magni-
tude of ""appreciable separation’ requiredo5 He also devel-
oped several "constant overshoot=factor charts' (see Figure
2-8) for different dominant-pole angles (a measure of the
demping of the dominant poles).

Zemanian (29) later extended the work of Mulligan with
a procedure for determining '"the rise time from zero to the

final value.” However, the application of such methods to

third-order systems would be of benefit only when one is

2In regard to this problem, D'Azzo and Houpis (2)
stated:

The values of Tp [time to peak overshoot] and Mp

[peak overshoot] are therefore sufficiently accu-
rate if the other poles have a negative real part
whose magnitude is equal to or greater than B/Tp,

And, Truxal (7) presented the design criterion that:

.os any real poles which are to contribute negli-
gibly to the step-function response should be
placed at least six times as far from the jw axis
as those poles governing the response. Clearly,
it is irrelevant whether such poles far from the
Jw axis are actually real; complex poles are also
negligible as long as the real part is much larger
than that of the significant poles.
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dealing with a ""category b' (see Figure 1-6) root pattern
which satisfies the criteria for "appreciable separation

between poles."
Normalized Response Curves

A number of people have made extensive use of normal-
ized transient response curves.,6 One of the first was
Bretoi (30) who was concerned with the analysis and syn-
thesis of an automatic flight control system. A third-
order equation was developed which described the motion of
the aircraft about the yaw axis. The normalized transient
responses of the system were shown graphically (see Figure
2-9). |

In addition, Elgerd and Stephens (31) developed the
responses shown in Figure 2-10 as part of their paper deal-
ing with '""nine fundamental pole-zero configurations."
According to the authors, the purpose of their charts was
to enable the designer '"to correlate immediately the con-
nection between pole-zero configurations and real-time
response, "

Meyfarth (32) made use of the cubic charts of Evans

and Liu (20, 21) to produce a total of ninety-six charts

(see Figure 2-11) showing normalized step responses,

impulse responses, and Bode plots (frequency response) for

6For example, see Figure 1-8 by Clark (4).



Y. Acfuin®

Ao/wn? W~ TP+2y5%+S +Aofond
'w;, -§3'2551 S+Ao/wn3 R T
! J ‘ 1 . . ) .—’“'7'-— :: = O .
i ’ e —— e s e
10 /v-“"."‘._:'»____—,-.--fﬁfﬁ;’""—"'— : P /”,"/, //-""*,_-,—74—— =
° T T L L bl A AT | || — Aon-i0ds
g4 L A ‘ : it A , -== Aolwn:-12db
ST s — Ao/wn®-10db al LAt Eel3| < Acln-ibdb
4 /,," - - = -~ Aolwnd==| | db ] ‘ ///,'7 T 1 . : — Ao/wnag-\ed‘b
P/ A |——Rokun®-l2db | ol L LZE e Bolorz—8db
A —TAoknHddb | LT | i S L DR T |
Ot—< 34 5 6 7 8 9 lO ” ;2 ;3 14 2 3456 78 910U 12 3 14 15 16 I7 18 1920
. ?-w‘ { : - ' ' ; f*anf
. n (b) TKXBD—ORDEB CnAn'r—Danc'rxomx, RESPonse TO STEP Hammc
(2) ©  THarD-OnpErR CmART—DirECTIONAL RE- , _ INPUT
sponNsg ‘To Step Heapine INvuT : ' :
_ S C¥ . Ackue?
' LWn3. ' ' Wi 3342752 +S+Aofon’
Wi 53427545 +Asf)n L : g___i i
; D N i i ~~~~'—_——~—,‘_ !
Ottt =% i ey Rty e —— 1.0 i Iy v /_‘4/"‘#-:: T
o / //—’ //-’:: I o e 8 /,,u“ ’// /;';‘//:____‘__ |
K pig A - . P Py N
6 AAAE T L pojnte-100 67, T = Ackord-10db _
' 1 U /,'/ - _ ===DPoltn>-124b ’ Y, .//'//,3/ bl e== Ackon-2db A
4—‘ L ,/ =T ——Aocln>s-4db 41— /ﬁ:: < - C=16" —— Aoltan®:-1ddb —
- ; === Aoltn®= - 16db o 7 0 R e Aokor-16db _
T N R I I | =17 AcuniBdh
0 I 23 4 56 78 92101 RI134 O o 2 3 4 5 6 7 8 9 on R’ B 14 I5 16 I7 18 i9 20
_ 1= Wnt . o _ . t=wnt
(e) Tmnn-Onm:n CrART—DIRECTIONAL RE~ - (:1) Tmno-Ommn CHART—DIRECTIONAL Rasponsm r0 STEP Hl-:mmc
8roNsE To Ster Heaping INpuT e : .InpPUT,

Figure 2-9. Normalized Response Curves of Bretoi



SYSTEM RESPONSE~CH

L5 1
125 =] 125 P
=3 o
: ko
L 0
4 d=4] ~d Z —— N
e Py ’ W pavy.
g / / T z R ‘. . /V .
Lo A W . N/ )
& .:l { 5 0,/ / R ke 31 ¢ 1
/ / T Gt LP‘«- > /7’}',’7 d:-ﬁ%l L——g.a.
e 1 4
26 A/ d_%?’ | hi PRENEY 4, / bz ft=izs 1
/ =g =05 /
;/A ///
o‘) i 2 3 4 5 [ ; F- 3 4 -3
(&) NORMALIZED TIME=ts (&) NORMALIZED TIME=—t,
15
P o~
. \%ﬂ‘
TS /|
i =1 - //////’JQQ:\\
. P | _adon T
% / / ol = § ? / 'B\\
P v a wr AN
by : AN Z
2 ] - | ~ 2 A PN
g m > o 7= 4 ]
: 7 =aegR 7 an T
: bl z,) T -3
VT HE 8 e
> 1= 23 o / d=3 ]
le //7 ‘ -w'_du -3 s / / ] ‘, .
o OZ/
z 3 Y 5 _ % ] 2 ) 3 5 s
(o) NORMALIZED TIME —ta 7 () NORMALIZED TIME—t,
[#] ) (99 .

Figure 2-10. Normalized Response Curves of Third-Order System by Elgerd
and Stephens



53

Ay ylwp 8 ﬂo V'“g” Ay ey 1) 8, i, 1)
$TER _9;;-6—- WPULSE , S ster, 25  MPULSE, ,.Qﬁ_'_'__.

16 . o 6 % — s

STEP ) STEP oo

“ IMPULSE <=~ =wn e 14 . IMPULSE » o= == N

"2 12 1.2 2

Y (\\ //‘ e 10 10 r\ 0

0.9'7 : o8 o8 08
06 l 06 08 l 08
oal—pr 0.4 04 0.9
\ ! “I
0.2} 0.2 o2 02
." i Sy . ) \

° \\ '," o ° o o
~0.2] -02 =02 -0.2
~0AG—4 T i6 20 24 26 32 36 a6 %¢ ~%4 620 2426 33 36 40 °*

w,l - u,!
0 4 & 12 K, 2a 28 32 3 S v e S S e T
A}‘ 1?' 40 . 50
o w0 f._" 30 40 o w A 30 s
Ay ';-;'
+ ¢ + . 4 ' + ) 3 4 s > 4 '
3 10 V’T,‘ 20 2 30 o 10 :/’T 20 23 L
t f
) 3 '&?
. a. G.

LOG AMPLITUDE RATIO PHASE IN DEGREES LOG AMPLITUOE RATIO PHASE IN DEGREES
02 30 ot 30
0.4 - o o - 0

i Rty Y haais 0 N W = .
o =3 30 -0 ~ad ~ o 20
e . \\L \
~04 - 60 -0.2 ' O 0
3, h
N
0.2 - \ %0 -03 o. 90
)
1
-03 y \ 120 ~04 “‘ \ 120
1 1
-04 \ 150 -08 A 150
-05 L 80 -06 ‘v\ 180
\ \\
1
PHASE ==~~~ . N PHASE - ==~ ™
~0.7 |LOG AMP ' sl 240 -08|LOG aMP 124
i X9 ~

-08 | - -0.9

NG 2 03 05DTOT 0203 050710 20 30 86270 06 B2 03 050701 02635 050716 20 30 50270

w «

oy o
S S —— et 4 S SO S S S SR VU S S S
02.03 osorat A3, o0s07ip 2030 30 00 0203 .007 A3 03 osor) 203
A A .

00 02 03 0507 Oi G507 10 20 30

Ay
Vg™

"

02 03 .05.07 Qi

_\3/?:‘ 030710 2030 30
)

a

(a) TWwg = ?..40 Le = 0.2

00 02 03 0807 [A3 Uds G807 10 2030

Ay

02 05 050704 3[A3 'Q3Q7 10 2030 %0
) Yt
Yy

(bl

Tgwg = 2.0

Figure 2-11., Normalized Response Curves by Meyfarth

§‘=0,4, .



B4

forty-eight different combinations of Cf9 damping ratio,
and Ifmf$ product of time constant of the factor represent-

ing the real root and the undamped natural frequency.
Charts With Transient Response Characteristics

There have been several authors who developed charts
showing thé functional relatidnship between the sysﬁem
roots and the transient response characteristics. Burnette
and Shumate (%3) used a digital computer to calculate the
data for the charts shown in Figure 2-12, while Clement
(34) used an analog computer for his third-order curves in
Figure 2-1%3. Clark (4) in his textbook included a consid-
erable amount of material on third-order systems among
which were the normalized curves previously shown in Figure

1-8 and the overshoot chart in Figure 2-14.
Summary of Current Methods

The present methods for the analysis of third-order
systems which were cited in the last two sections of this
chapter have two basic steps in common:

l. A root-determination process.

2. Association of the root pattern with a

normalized response or response character-
istic chart.
The root determination may or may not take a considerable

amount of time, depending on the experience of the analyst,
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but the major disadvantage of the current methods lies in
the fact that, even with a large number of charts, only a
few discrete points or curves are of use to the analyst for
a particular design problem. For instance, consider the
work of Meyfarth (32), who developed ninety-six charts of
normalized responses (see Figure 2-11). Of the forty-eight
transient response curves, only four showed overshoot be-
tween 20 per cent and 40 per cent. Thus, for a designer
faced with a transient response limit of 30 per cent, the
possible parameter combinations with which he can work is
definitely limited. In addition, such characteristics as
rise time, settling time, phase margin, etc., have to be
scaled off each chart. All of these factors, coupled with
the fact that the system roots have to be re-evaluated
everytime a parameter is changed, make this method of
little practical use in system design.
The work of Burnette and Shumate (33) (see Figure
2-12) is also of limited applicability because:
1. Only three different natural frequencies were
used in the development of the rise time
charts.,
2. Only six different ratios of real root parts
were shown on the overshoot chart.
Likewise, Clement (34) included only five negative root
trajectories on his response characteristic curves (see

Figure 2-1%).
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The chart by Clark (4) (see Figure 2-14) represents
the best approach to date. However, it also requires a
knowledge of the roots and the information available is
limited to the response characteristic of overshoot, while
the values of settling time and rise time must be scaled
from the accompanying normalized response curves (sece
Figure 1-8).

The need for a generalized approach, which will pro-
vide in a direct and versatile manner the information re-
quired for the analysis and synthesis of linear third-order

systems, seems apparent from a review of the literature.



CHAPTER III
DEVELOPMENT OF THE ANALYSIS METHOD

In this chapter a method for the analysis and synthe-
sis of linear third-order systems is presented. The method
makes use of a set of charts to determine the following
response characteristics of the system as functioﬁs of the

coefficients of the system characteristic equation:

Transient response characteristics
| 1. Overshoot
2. Rise time
3, Settling time (output within 5 per cent
of final wvalue)

Fregquency response characteristics

1. Gain margin
2. Phase margin.
The transient response charts are applicéble for sys~-

tems described by the transfer function1

k
asS? + 8, S° + a;8 + ag

G(s) = (3-1)

lFor a definition of transfer function, see reference

(5).

40



41

f) .
where k is a dimensional constant.“~ If the system de-
scribed by this transfer function is subjected to a unit

step input, then

1
, T(s) = )
and5
X(s) - k (3-2)
s(ass* + @,8% + a;s + 3ap) ° -
The steady-state solution is4
k
X(t)ss = E;“ (3=3)

Thus, if k = a,s x(t)ss = 1 and there is no steady-state

y(t)ss - X<t>s;>° However, if k # a5

]

error (e(t)ss

there will be a steady-state error equal to

e(t),, = 1 - == (3-4)
O

The simplest procedure for handling both cases is to con-
sider the ordinate scale of the response plot to be '"per

cent of x(t) " then the overshoot, rise time, and set-

ss®

tling time quantities derived for the case where k = 8, are

2k is sometimes referred to as the forward loop gain,

3Initial conditions are assumed to be zero throughout
this text.

“1im x(t) =s 1im X(s) (6).

T 00 s -0
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applicable also for k # a,-
The frequency response charts may be used only for

systems with the transfer function

a

(@] .
G(S) =
5 2
838° + g8 s + & s + 8

(3-5)

Relationships Between Responses

Mitrovic (24) used the linear transformation S = %L P
‘asz

to transfornm

assd + @, + a;8 + a9 = 0 (1-5)
to the normalized equation
P> + P2 + B,P + B, = 0 (2-5)
where

8, 8z ana
B = 2% ana B, - 2051 .

2

Since the transformation is one of "magnification' only, the
root pattern geometry for Equation (1-5) will be the same

as that for Equation (2-5), except for a difference in the
magnitudes of the roots.,f3 Thus, the following relationships

between system parameters will hold:

532 and a; are both real numbers; therefore, no rota-
tion or translation is involved.
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Parameter | Relationshipé‘u
Damping'rafio (¢ = cos™) =&
Undamped natural frequency W, = <§§> ®ot
Daéped natural frequency Wy = (%? D3t
Time constant of real root £ = (g-:) by

Coo = 7o1)
Time gonstantl of complex roots tew = <-§-:> Prwt
(o = ';‘f‘és'i‘) ,,
Ratio of real parts, B = f% B = B#

For example, consider a system with the characteristic

equation
s + 482 + 9s + 10 =0

the roots of which are [see Figure 2-1(a)]

The transformed equation (using s = 4P) is

PP o+ P o+ f%I’+—é% = 0

6The subscript t denotes a variable of the transformed
equation. ’



with roots [see Figure 3-1(b)]

Im.

Rei

)é______z

44

Im

Nj-

Re

i
k3K

—— l L
P

T
1
roj-

Figure %-1. Roots of Equations (1-5) and (2-5)

The parameters of the two systems are:

Parameter (a)

{b)
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Parameter (a) (b)
tpw 1 4
B 2 2

Since § and B are the same in both cases, normalized
response plots for the two systems will be identical except
for the time scales (for example, see Figure 1-8). Hence,
in the case of step inputs, the overshoot for the two sys-
tems will be the same, while the rise time and settling
time are related by tr = (gf) tft and ts = (ﬁf) tst’
respectively. Because all third-order equations may be
normalized by Mitrovic's procedure, the transient response
of any third-order system (with no zero in the transfer
function) can be ascertained from the transient responses
of the system associated with the normalized characteristic
equation.

As was mentioned previously, the charts involving gain
margin and phase margin are applicable only for systems
where k = W However, the values of these stability cri-
teria for the system with the normalized characteristic
equation are the same as those for the systenm before nor-

malization, so no transformation is required°7
Basis for Coordinate System

The coefficients and the roots (-P, , =P, , =P; ) of

7The reason for this relationship is discussed in more
detail later in the chapter.
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Equation (2-5) are related as follows:

P, +P +P =1 (3-6a)

Pl P2 + Pl P3 + Pz P3 = Bl (3—*6b)
P, P, P, = By (3-6¢)

If Equation (3-6a) is solved for P, , then by substitution
Bl = P2 P3 + (P2 + P3 )(l - P2 b P}) (5""73)

B, =P P;(1 -F - PF;). (3-70)

Hence, if the system has three real roots (-o4y s -0tz »
~Gts )
B, = 0tz 0Ot3 + (02 + 043)(1 - o - og5) (3-8a)
By = Otz Ot3 (1 = Oz = Ot3) (%-8b)

If -ot, is a root of Equation (2-5), then

-O’t13 + (jt.v.f3 - B1 O+t1 +”BO = 0 (5.‘,9>

and

Bo = Oty (By = Oy + Otf) (3-10)

which is the equation of a straight line of slope o, with
an intersection on the B, axis at oty - ot
If Equation (2-5) has only one real root (ot =

l-2CQnt), the complex roots are P = -Cwnt e Jo_ . 1~C

and
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B, = wznt + 2§wnt - 4(Cmﬂt)2 (3-11a)
Bo = w2 . (1-2Cw ). (3-11b)

If £ = O, then
B, = B (3-12)

which defines the line separating the stable and unstable

regions on the chart in Figure 3-2.

Bo > By

UNSTABLE

Figure 3-2. Basic Root Pattern Regions
of Normalized Third-Order
Equations

When B, < By, the complex roots fall in the right one-

half of the P-plane and any system disturbance will result
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in an unstable reéponse. The stable region;-Bi¢>Bo; is
divided into three regions correéponding to thevtype of
root pattern involved: |

1. Three real roots (enclosed by-{ = 1).

2. Two complex roots with Bt= z§i£-> 1.

3. Iwo complex roots with at< 1.8

The liné separating the last two regions is determined
using the relationship Oy = Cwnt =1 to obtain the equation

3
of the line

Bo - 5 (B - 3) . (3-13)

Equations (3-8) and (3-11) are used in the following
sections to locate points on the B; - By charts associated

with particular response characteristics.
Transient Response Equations
Consider a system described by the transfer function

8o

as s> + 3, 8° + a8 + 35

G(s) = (3-14)

e stability criteria B, > By is equivalent to
Routh's criteria a;a, > azag.

9The top part of the £ = 1 line along with the exten-
sion of the line defined in Equation (3-~13) separates
regions of overshoot and no overshoot for step inputs (see
Figure 3-2).
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which can be transformed to

B
O
GP) =T v EP T8 (3-15)

When complex roots are involved, the latter transfer func-

tion may be manipulated to

) Otwntz
G(P) = —7 (3-16)
(P + Ot)(P + 2EwntP +o )
Where
- 2
BO = Otwnt o

If such a system is subjected to a unit step input, then

2
Ot¥n%

AP) = B+ o, 0(F + 2%, Pru_7) (3-17)

the inverse transform of which is

x(t) =1 -

-Cw_ .t -
oe nt sin(wnffl - Bt - ¢)

' V?if2=??)(g§ o ey R

w_ V1 - 2
where ¢ = tan—l V1o + tanml 0t
- Wy = O

(6).
t

Substituting op =1 - 2Cwnt
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-(1 - 2Cwnt)t

w 2 e
nt

x(t) = 1 - ” -
mmnt)z - 6ant + 1 + mn_g

-t t -
(1 - 28wpy)e sin(wpVl - Gt - @)

YV - CO8(Cu, ? - 6Cu_, + 1 : .23
(3-19)

VT

°

w
and ¢ = tan™1 IEE%ZIE + tan™t g%%—————~—
nt - 1
When the system has three real roots, the transfer
function is

Tty Ttz Ot3

= (P + Oty F(P + Otz )(P + Ot3) (5—20)

G(P)

where
Bg = Ot 04203 -

For a unit step input, the inverse transform of X(P) is

-0, t
) Otz Otsz €
" (otz = o, )(0og3 — oty )

x(t) =

"‘Gtz t
Ot10t¢3¢€

(oty - 0tz )(ots = Ot2)

—ot3 b

Ot 042 €
6). -
(ot - Ots )(0tz - Ots) (6) (3-21)
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Substituting oty = 1 = Oty = Ot

_(l_'gtg'-0t3 )t
Ot20t3 €

1- (20t2 + Ot3 - l)(20t3 + Gt2 - l)

x(t)

""Utzt
(1 - ot - ot3)043e
= (1-20t; - 0t3)(0t3 = Otz )

—Gtst
(1 - o4z - O1t3 )Qtze (3-22)
- (1~ 20t3 - 042 )(Otp ~ O3 )

The response Equations (3%-19) and (3%-22) are used in
the following sections concerned with transient response

charjacteristics°
Settling Time Chart

Settling time is defined as the time for the response
to decrease to less than a specified percentage of the
final value. In this thesis five per cent was selected.

The procedure used by most analysts concerned with
settling time is to work with the envelope of the system
response rather than with the exact equation, since in most
cases only a small error will result and the mathematics is
simplified. If this approach is used, then for a specified
value of settling time, the following nonlinear equation

9

must be solved when complex roots are involved.

9F = the envelope of x(t) - 0.95.
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Y 2 e»(l~2§wnt)tst
nt

F(c [¢] t ) = 005 b 7 ]
nt? st §T2wnt) —6fw_ + 1+ f

-Cw__t
(l-— 2cwnt)e nt st
- — 7 = 0
V(I -8)08(Cw, )% ~6Cw  +1+w 7]
(3-23)
while for real roots
~(1-0t - 0t3 )bg¢
B £ ) o Otz Og3 €
Otz sOt3 9 U/ = - > - (204, *+ Ogs — 1)(204s + Oy — 1)
“Otgt
(1=-04, =03 )ogse st
T (1-204; ~-0ts )(Ots - Otz )
—Ot;t t
(1-04 —Og3)0p2 € °
(3-24)

= (1-2043 — 0tz J(otz = Otz )

Since there are two unknowns remaining in these equations

after the settling time is specified, one of the other

variables must be fixed before a solution is possible.
The writer chose to fix w when the system had com-

nt
10

plex roots and ots when real roots were involved. The

Newton-Raphson method was then employed to solve for the

lownt was specified for each calculation because { ap-
proached a constant value as @Wpt was decreased. In this
region of the B, - By chart the third-order system may be
~effectively approximated by a second-order system.
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remaining variable in the equation, afterwhich B, and B,
were determined using the appropriate equations in the pre-
vious section.t Thus, by varying . (or o043 ) systemati-
cally while keeping the settling time fixed, a set of B, -
B, values were generated which defined a "line of constant
settling time.'" The calculations were performed by an IBM

1410 computer and the results are shown in Figure 3m5.12

Overshoot Chart

Overshoot is defined as the difference between the
magnitudes of the maximum_and final values of the response,
expressed as a percentage. Since overshoot may occur only
when the system has complex roots, the response Equation
(3-22) for real roots is not involved in this section.

At the point of peak overshoot of a system response,
the derivative of the response Equation (3-19) is equal to
zero. Thus, for a specified wvalue of overshoot, os, the

following equations must holdalab

11The Newton-Raphson method is discussed in Appendix
B"’I ° )

12The Fortran program is reproduced in Appendix B-II.

13F(ngnt,t) = x(t) = 1 - os
6(E 0, 58) = %(t).

i
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" tz e@(l*gf:(ﬂnt>t
F(L,0 . ,t) = —08 =3 né , 3
*nt? §(twnt) - 6C@nt + 1T+ 2
| ~Lot ———p
(1=2Cw t)e sin(w V1 = 2t - @)
+ n nt - O
7 3 . V3
V({1 - Ezj[S(C&ht) =°6Cwnt + 1+t

(3-25)
(1 = 28w_, )t
(1 - 2§('QI).“{:ND:ntze ne

= ‘ 7 3
8<c@nt) 6§mnt'+]'+ wnt

G(tawnt 9t>

=“tmzrt:t

,[ wnt(l - ECwnt)e |
VT -"T)08(Ruw, )7 = 6wy + 1 + w, i’

X [€ sin (0 VI="T% - @) -VI-TF

cos(wntflw»? - @)j}z 0. (3-26)

Holding wnt as well as overshoot constant. the writer

1]
used a generalization of the Newton-Raphson methodl4 to

solve both equations simultaneously for £ and t°l5 Using

the values of ¢ and W Equations (3-1la) and (3-11b) were

t‘)
then used to calculate B, and Bgy. By varying W,y as before,

the procedure was repeated for additional B, - By points

14Th.e generalization for the simultaneous solution of
two equations and the Fortran programare listed in AppendixC.

15Care must be exercised to obtain only points of peak
overshoot, since Equations (3-25) and (3-26) may be satis-
fied by values of L, Wy 4 9 and t not associated with a peak
overshoot.
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and a “"1line of constant overshoot' was obtained. The re-
sults for various values of overshoot are shown in Figure

24,
Rise Time Chart

There are several different definitions for the rise
time of a system. The definition employed here is the one
given in Chapter I3 the time from 10 per cent to 90 per
cent of the final value. Thus, in order to determine the
system parameters for a selected value of rise time, trt*

the following relationships must hold simultaneously:

X<t1> = 0.1 (3“"2?)
X(tz ) = Oo9 ‘ (5"’28>
by - by = b (3-29)

For complex roots, the equations are:

" z@m<1 - 2§wnt>t1
“nt

253 2 i ’ P4
S(ﬁwht) 6§wﬁt + Lo+ W

gty at

=La by
o~ ) 10 N ~ — )
(l==2Cwnt)e Sln;&wntfl B4y, - ®)

TYICe)ielte

7 i 3
nt> - 6Cwnt + 1o+ “nt ]

(3-30)
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wntze
G’(?: w t ) = Ool"” - T
*nt* 2 B(Cwnt)? o 6l:mnt + 1+ O
(1- ZZ;wnt)e sin (mnt\} 1=, - @)
+ =0
V(IT-0)T8(e, )7 =68u . + 1 + o °]
(3-31)

while for real roots

~(1 - oz = O3 )t
Ut@ Utge
tz * Otz ~ 1)(20t3 + Oz =~ 1)

F(otp 903 56y ) = 0.9 - (20

=0tp Ty
(1 ~ o, = Og3)0p3€
(1 =20t - Ots )(Ots ~ Otz J

=0tz by
(1 = O = Og3 )0z @
= (1-20t3 =tz J(Otp - O3 )

=0 (3=33)

“(l@ T = !’jbg >t2
Ot Of3 ©
T (204; + Otz = 1)(20t5 + Oty = 1)

G(Gtz 30-{;3 9tg> = Ool

=0t ta
<1 = Ot = Ogs3 )Cft;@

(1~ 20t =03 )(04s = Ot )

=03 by
(1 = otz = Ot3)04€.

= {1 = 2043 = Otp J(Ota = Ot3 ) =0 (3-324)

H(bpgotyste) = t2 = By = B0 = O. (3-35)
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Numerical procedures similar to those employed in the two
previous sections were used for this problem and By - B,
points were determined which defined a family of "lines of

”16

censtant rise time. They are shown in Figure 3%-=5.

Chart for Gain Margin and Phase Margin

Consider the system defined by the block diagram con-
figuration in Figure 3-6. The open=loop transfer function
is given by the guantity within the block

’ a@ )
G = s(ass? + g;8 + ay) (3-36)

while the closed-=loop transfer function is the same as
that used in previous theory:

7
=]

6(s) = -5 (3-37a)

a

G(s) = 2 (3-37b)

a3 5% + @8 S° + a5 + 8g°

16The generalization of the Newton-Raphson method for
the simultaneous solution of three equations and the asso-
ciated Fortran program are listed in Appendix D.
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a
- o e {(3)
s(a352 +a,s + al)

Y(s)

Figure 3-6. Block Diagram of a Third-Order System

Gain margin and phase margin are measures of the sta-
bility of such a system which result from a frequency re-
sponse analysis using Nyquist's stability criterion. This
criterion is applied in the following manner:

1. Substitute jw for s in the open loop transfer

function.

2. Plot the polar curve of G'(jw) as w varies

from O to + e,
3. If the system has no poles in the right one-
half s plane, the system is stable if the
G'(jw) contour does not encircle the -1 point (7).
Using this criterion as a basis, the stability criteria as
defined by Thaler and Brown (25) are:

Gain margin is the ratio of the gain at which the

system becomes unstable to the actual system gain,

assuming that the phase of all vectors remains
unchanged ...

Phase margin is the amount of negative phase shift

which must be introduced (without gain increase)

to make the curve pass through the -1 + jo point.

The vector which must be shifted is obviously one
unit long, ... '
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The block diagram for the system associated with the
normalized equation is shown in Figure 3-7 with the system
gain Bo' Using the stability criterion, B, > By, given
earlier in the chapter, it is obvious that if the gain of
this system, B,, is a variable while B, is constant, the
gain margin is given by the ratio %Z. Hence, ﬁ;ines of
constant gain margin'' for the system are straight lines

from the origin on a B, - B chart. Several such lines are

shown in Figure 3-8.

B
1(P) 2 = X(P)
P(P® + P + B,)

) Figure 3-7. Block Diagram of a Normalized
Third-Order System

Substitution of jw into the open loop transfer func-

tion of the normalized system yields

639 = I =) (3-38)

the maénitude of which is



B 0,8+0:5%4Q,5+Qo=0
B 5.0, 0, o a, @ iy Maps
B B : -

02

O.l

S T SR )
_o—

%J ! .,.”:,,,1.:.;..”,7...,“” el EEap e feot,
06 07 08 09

0

72
A

Figure 3-8, Lines of Constant Gain Margin and Constant Phase Margin
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B
G(3 = . o z_
0G| = Fergrroee (3-39)
and the phase angle
- - We
/G(jw) = -tan™t ELZBJ&- . (%3-40)
Since
. -1 B, = w?
the phase margin,Y , is given by
cam P, "12 V
Y = tan 1 EL—w(L (3-42)
when the magnitude relationship for a unit vector is
satisfied
Bo = Vo* + BZ 0% - 2B, ©* Wt (3-43)

Thus, in order to solve the system parameters associ-
ated with a particular value of phase margin, B; was speci-
fied and Equation (3-42) solved for w. Substituting the
values of B, and & into Equation (3-43) yielded B, and as a
result a point on the B, - B, chart for a particular value
of phase margin was defined. By varying B, while holding ¥
constant, subsequent computations yielded data for a "'line
of constant phase margino“‘17 A family of such lines is

shown in Figure 3-8,

17Phe Fortran program is listed in Appendix E.
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Since the transformation relating the two systems is
one of the magnitude only (s = ?? P), then a polar plot in
the s-plane will be geometrically similar to the one in the
P-plane and, as a result, the gain margins and phase
margins of‘the two systems are identical. Therefore,
Figure 5-8vmay be used to determine directly the gain
margin and phase margins of systems described by the open

loop transfer function in Equation (3-36).

Procedure for the Analysis of Systems

With Known Coefficients
If the coefficients of the system transfer function

k
2
58° + 3,8° + a5 + ag

(3-1)

G(S) = a

are known, then the method for the determination of the
transient and frequency response characteristics consists

of the following steps:
2
1. Calculate B, = 225% and B_ = 202
2 o a,

2. Read tst and trt from Figures 3%-% and 3=5,

respectively.
= (81 - :
%2, Calculate ts = (az tst transient
response
= (a0 ¢ {
tr = (az Ure characteristics,

4. Read overshoot from Figure 5~4wJ
Calculate %L (the gain margin). ) frequency re-
0

6. Read Y (phase margin) from » sponse stability

Figure 3-8. < criteria.
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Procedure for the Synthesis of Systems

Restricted by Design Specifications

If one or more parameters of the system are considered
to be variable, then the following procedure is suggested
for the synthesis of a system which will satisfy design
specifications:

1. Determine B, and B, as functions of the

unknown parameter(s).

2. Using the appropriate charts, select a
point such that the_design specifica-
tions are satisfied. Note the B, - B,
coordinates of this selected point.

3, Solve the equation(s) developed in step

1 for the value(s) of the parameter(s).



CHAPTER IV
EXPERIMENTAL VERIFICATION OF THEORY

The theoretical analysis presented in Chapter IV is
applicable to third-order systems in general. Thus, mathe-
matically at least, the choice of a system to be used for
the experimental phase of this investigation was restricted
only to the order involved and not to any particular type
of physical system. However, in order to verify the theo-
retical results over a wide range of B, - B, values, prac-
tical limitations on the choice of a system existed. The
selection of a mechanical or hydraulic control system,
while being an intriquing possibility, was not considered
feasible because of the great amount of difficulty and ex-
pense in changing system parameters such as piston area,
valve gain, and damping. In addition, the measuring and
recording of the input and output variables of such sys-
tems would present problems.,

The system which was selected was a third-order elec=-
trical network which, when designed with variable elements,
provides the simplest and most accurate means of parameter
variation along with an easily recorded output variable,

voltage. The network was established using an electronic

71
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differential analyzer, commonly referred to as an "

analog
computer.'" In this case, however, the use of the word
"analog' is not applicable, since the third-order electri-
cal network is one of the class of systems for which the
theory of this dissertation is applicable. Therefore, the
response records which were obtained from the analog

computer (see Figures 4-2 through 4-9) are the experimental

data of this investigation.
Experimental System and Procedure

The third-order electrical network which was set-up on
the analog computer (EAI Model TR-10) is shown in block
diagram form in Figure 4-1. The transfer function of the

system is

B

@]
G(F) = 5T T 5P 75, (4-1)

where B, and B, are determined by the wiper position of two
separate potentiometers.

The experimental procedure consisted of the following

steps:

1. Several B, - B, points associated with the
particular response characteristics to be
investigated were selected from the digital
computer data.

2. The B;- - B, potentiometers were set using

the coordinate values of one point.



-10V
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¢

1 f =10% Q 1

o - Par
— <

Figure 4-1. Circuit Diagram for Third-Order Electrical System
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3. The system was subjected tb a step input
in voltage.
4. The output voltage of the system was recorded
with a T-Y plotter (EAI Model 1110).
5. Bteps 2-4 were repeated for the other B, - Bg
points selected in Step 1.
A large number of tests were run in each phase of the in-
vestigation of response characteristics and in every
instance the experimental response checked exactly (within
the accuracy of the analog computer and recorder),l Some

of the results are shown in the following sections.
Constant Settling Time Responses

A "1line of constant settling time' falls in the area
of no overshoot on the B, - By chart (see Figure 3-3) as
well as the area where overshoot occurs. This is accounted
fbr by the fact that in the first case the real root is
dominant while in the second case the complex roots are
dominant and the settling time is largely determined by the
real part of the complex roots. Thus, the B, —‘Bé points
which were selected for testing are representative of both
root patterns as well as a wide range of system nétural

frequencies.

lIt was not possible to test directly for phase margin,
however several textbook problems were checked using Figure
3-8 and the results agreed with the text answer in each

case,
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The results of the tests for settling times of 20 and
40 are shown in Figures 4-2 and 4-3, resPectively.2 Exami-
nation of these traces reveals that in all cases the system
response settled to within five per cent of the final value
in the amount of time predicted. The reason that the
traces do not cross the * 5% lines exactly at the predicted
time is due to the fact that the equation of the response
envelope was used in the analysis and not the exact re-
sponse equation; However, the amount of error involved is

small and 1s considered to be acceptable for system design.
Constant Overshoot Responses

The second phase of the testing was concerned with
verifying the accuracy of the '""lines of constant overshoot."
Each curve in Figure 3-4 represents an infinite number of
system parameter combinations, all having the same_peak
overshoot value in response to a step input.

Several points were selected from the data derived by
the digital computer for 5 per cent and 40 per cent peak
~overshoot conditions and tested according to the previously
outlined procedure. The results of the tests are shown in
Figures 4-4.and 4-5 and, as mentioned previously, checked
with the values predicted by the theory of Chapter IIT.

Note the wide range in natural frequency.

2The system which was analyzed had been normalizeds
therefore, the response time is dimensionless.
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Constant Rise Time Responses

In Chapter IIT the three conditions .which are neces- .
sary for a system to have a specified rise time. were de-

fined. They are:

x(t,) = 0.1 (5—27)
x(t,) = 0.9 | (3-28)
by = t2 - by (3-29)

Thus, the B, - B, points which fall on a particular line in
Figure 3%3-5 represent systems that, although they have dif-
ferent system parameter combinations, will respond to step
inputs in such a way that the elapsed time from 10 per cent
to 90 per cent of the final value will be the same. In
other words, the transient responses may differ greatly as
far as overshoot (or no overshoot) and settling time'are
concerned, but in all cases t, - %, is a constant value.
The values of rise time chosen for the tests were 2,
5, and 15 and the results are shown in Figures 4-6, 4-7,
and 4-8, respectively. The values for t; and t, determined
by the numerical program are shown 6n the charts with the
appropriate curve notation. The experimental values ére in

agreement with the predicted values.
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Effect of Gain Variation

If the gain of a third-order system, 85 is increased
while the other parameters of the system are held constant,
then B1<$t§{> will remain constant while Bo<$g§#:> in-.
creases. The trajectory on a By - By chart associated with
a gain variation is; thus, a line parallel to the By axis.
Therefore, in order to investigate the effect of ggin vari-
ation, B, musf be held constant while By is varied.

.For this series of tests, the B, potentiometer was set
at 0.50 and the setting of the BO potentiometer varied in
steps from 0.05 to 0.55. The responses for these tests are
shown in Figure 4-9. At the value of gain, By = 0.05, the
system responded with no overshoot (a characteristic in
agreement with Figure 3%-5). However, as the gain was in-
creased, peak overshoots of increasing magnitudes occurred
until, with Bo = 0.50, a steady-state sinqsoidal response
occurred. When the BO potentiometer was set at 0955; the
system response to a step input was of an unstable charac-
ter (the response envelope was growing exponentially).

Thué, the line B, = Bo separates the regiops of stability
and unstability as predicted theoretically° In addition,
the gain margin of the system associated with the initial
0. 50
0.05
agrees with the results of the previous chapter.

pdint (B, = 0.50, BO = 0,05) was or 10 which also
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Summary of Tests Results

A wide range of system parameter values were used in
the tests reported in this chapter to determine the accu-
racy of the response characteristic curves in Chapter III.
Since the experimental results in all tests agreed. with the
predicted values (within the accuracy of the computer and
recorder), it may be concluded that the theoretical analy-
sis was correct and, therefore, the charts may be used with
confidence for the analysis and synthesis of linear third-

order systems.



CHAPTER V

APPLICATIONS OF THE ANALYSIS
AND SYNTHESIS PROCEDURES

The procedures outlined in the last two sections of
Chapter III specify the steps which are to be followed in
applying the response characteristic charts for the analy-
sis and synthesis of a linear third-order system. Several
applications are made in this chapter of the utility of

these procedures and for convenience the steps involved are

repeated here.

Procedure for the Analysis of Systems

With Known Coefficients

If the coefficients of the system transfer function

G(s) = k (3-1)

ass® + 3,8% + a; s + ag

are known, then the method for the determination of the

transient and frequency response characteristics consists

of the following steps:
. 2
1. Calculate B, = étil and By = 3%%10
, 2

2. Read tst and trt from Figures 3-% and 3-5,

respectively.

87
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as’ .
%, Calculate ts <azﬂ tst transient

response

tr <§£>trt

4. Read overshoot from Figure 3-4.)

characteristics.

5. Calculate = (the gain margin).

Bo
6. Read Y (phase margin) frequency response
from Figure 3-8, stability criteria.

Procedure for the Synthesis of Systems

Restricted by Design Specifications

If one or more parameters of the system are considered
to be variable, then the following procedure is suggested
for the synthesis of a system which will satisfy design
specifications: |

1. Determine B, and By as functions of the

unknown parameter(s).

2. Using the appropriate charts, select a
point such that the design specifications
are satisfieda Note the B, - By coordi-
nates of this selected point.

%3, Solve the equation(s) developed in step 1

for the value(s) of the parameter(s).
System With Fixed Parameters

Assume that the parameters of a particular servo sys-

tem have been specified and that the closed loop transfer
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function is

G(s) =

S3 + 482 + 45 + 8 °

Problem:

What are the transient and frequency response charac-
teristics of the system?
Solution:

Using the first procedure outline above:

1 B A 1 5 __8 1
- Hhe=mhr = § °c =Y "8
2. tst = 49 from Figure 3-3.
trt = 3,45 from Figure 3-5.
3.t = %) 49 = 127 units of time
t_ = (% 3.44 = 0.86 units of time.
4, og = 54% from Figure 3-4.
. cn oo 1 /1 '
5. Gain margin = T/8 = 2.

6. Phase margin, Y = 21° from Figure 3-8.
The system response using B, = % and By, =~% is shown
in Figure 5-1.
Supplementary Information: If the analyst needs to know &,
W, and the roots of the system, the charts in Appendix A

may be used.

1. £ = .163% and wnt = ,377 from
: Appendix. A=-T,
= (& - =
w, = .aD w o = 4(.377) = 1.508.
2 Ot = 08769 Cwnt = 00629 wdt = 0374 fI‘OI}l

Appendix A-mIZI.'»’m°
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The roots are s

'39(‘%) = .4(,."‘“876)
=3.501

= (?i)(“:‘”nt * j‘”d_.t>

4(-.062 = j.374)

it

()]
i

-. 248 + 41.496.

i

This system is badly underdamped as evidenced by the
overshoot‘of 54% and the large ratio of settling time to
rise time. In addition, the ratio of real root parts, B,
is quite high indicating that the complex roots are domi-
nant. If the analyst had decided to neglect the real root
by assuming a second order model, then %he predicted over-

shoot would have been 59.5%, an error of approximately 10%.
System With a Variable Parameter

The block diagram for the electro-hydraulic servomech-

anism illustrated in Chapter I is shown in Figure 5-2.

: : Valve Valve
Amplifier  Magnet dynamics X,(6) gain o) Ram
) >\ ¢(s) i(s) | F(s) 1 v s) [ :
¥(s) = + Ka Ku Ms 4+ Batk Ko AT x(s)
_dnput < . L=0 - ‘
potentiometer -
Ko e
QOutput
potentiometer

Figure 5-2. Block Diagram for Electro-
Hydraulic Servomechanism
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Third-order systems, such as that shown in Figure 5-1, with
simple gain elements in the feedback loop are in the~class

of systems for which this dissertation is applicable. How-
ever, for convenience the system can be changed to one with

unity feedback where Ky = KAKMKOKV/A (see Figure 5-3).

3 | A
W) —> %, 5 | S 485 4 4)

Figure 5-3. Block Diagram in Figure 5-2
Redrawn as a Unity
Feedback System

Problem:
If K, = 1 volt/cm

Ky = 0.2 volt/cm
KM = 27,400 dynes/ma
M = 50 gm.
k= 17.25 x lOsdynes/cm
B = 30,000 dynes/cm/sec-
KV = 2760 cm® /sec/cm
A =5 cm?
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what is the highest value of amplifier gain, KA? which can

be used without causing overshoot in response to a step in-

put of one volt at the summing junction?l

Solution: | \
a3 = 50
8 = 30,000
a, = 17.25 x 10° | - _
ag = KA(27,4OO)(276O)(002)/5 = 3,02 KA x 10% .

Using the procedure set forth at the start of this chapter:

' a, a (17.25 x 10°)(50)
1. B =53 (50,000)% = <959

5 . 882 (3.02 Ky X 10%)(50)?2 580 K. x 10-*
°© " & (30,000)3 = <o A °
2, From Figure 3-4 with B, = 0.959, By = 0.245 for no

overshoot°2

0.24
3. Ky =55 x lg_f = 874 ma/V.

The analog computer response with B, = 0.959, By = 0.245 is

shown in Figure 5-4,

1The figures and problem 1in this section are from
"Introduction to Automatic Control Systems' by Clark (4).

°If the equation coefficients are such that B, is
larger than the range of Figure 3-5, then for a no over-
shoot response the following criterion may be used:

2
B, > 3By + ge
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Supplementary Information:
1. ©Settling time 4
From Figure 3-3, tst 10.3
by = <so,ooo> (20.3)

2. Rise time

.0171 seconds.

I

From Figure 3-5, ¢ 4.5

rt

tr = <35%855> (4;5) = ;0075 seconds;

It is vaious from the settling time and rise time values
that the system responds very rapidly to system disturb-
ances. It is, thever, a very stable system with a gain
margin of %z = 3,92, This means that thé amplifier gain
could be increased to (5,92)(574) or 3430 ma/V before an

unstable condition will occur.
System With Two-Variable Parameters

Problem:

Assume that the designer wishes to reduce the size of
the valve spring in the servo system of the previous sec-
tion, but the design ;pecifications restrict the settling
time_to a maximum of .02 seconds for a step input of one
volt. With KA variable, what 1s the smallest spring con~-
stant,]%{,which can be utilized to meet the dual design

specifications of no overshoot with ts < .02 seconds?



Solutipn:

1.

96

k_(50)

-8

L02K x 10°)(50)2 ' -
B = 0TIt = 280 Ky x 107

: 30,000 [ B
2.ty =(223%D) (L02) - 12.
Using Figures 3-3 and 3-4 simultaneously, the
minimum value of B, which satisfies the design
criteria occurs at the point
B1 = 0-475 Bo = 00084O
B 30° . Q. 425.% 10°% . . 6
LI TS e o vl £55 = 7.63 x 10" dynes/cm.
L B e 108 0084 X 108
el =~ E el
The analog response using B, = 0.475 , BO = 0.084 is
shown in Figure 5-5.

To the writer's knowledge, there are no other methods

of solution, outside of trial and error procedures, for a

problem of this type.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The analysis and synthesis of linear third-order Sys=-
tems is a topic which is of considerable interest in the
area of_feedback controls, particularly hydraulic control
systems. The synthesis methods which are curreﬁtly avail~
able are limited in their usefulness because of the diffi-
culty of relating system parameters to response
characteristics such as overshoot, settling time, gain
margin, etc. The major disadvantages of these methods are:

1. A root determination process is required in
all cases.

2. Only a small number of system parameter
combinations are depicted by the normalized
response curves which are used.

This dissertation is concerned with the development of

a method for the analysis and synthesis of linear third-
order systems which makes use of the root-pattern and
response relationships between the generalized third-order
equation and the normalized third-order equation with unity
second-order and third-order coefficients. The results of

the theoretical analysis are illustrated graphically and

98
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incorporated into analysis and synthesis procedures which

offer the following advantages over current methods:

10

Direct functional relationships between sys-
tem parameters and response characteristics
are available. Thus, the root determination
process is obviated completely.

The functional relationships are continuous
rather than discrete. Therefore, an infinite
number of system parameter combinations which
satisfy design criteria are available for the

synthesis procedure.

There appear to be several promising areas for the

extension of the work initiated in this investigation. In

particular, the following recommendations are made:

1.

The system response equations be analyzed with
the objective of defining exactly the system
variable combinations (and, thus, areas on a
B, - By chart) which may be adequately de-
scribed by first-order and second-order equa-
tions. The procedure for making the appropri-
ate reduction in order would be an integral
part of this work along with an error analysis
of the approximation involved.

An investigation be made of the response char-
acteristic relationships in order to develop a

procedure to be used especially for evaluation
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of third-order system parameters from
experimental response data.

Investigate the possibility of extending
the theory of this dissertation into the
analysis of higher-order systems with

limited ranges of parameter values.
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APPENDIX A-I

MITROVIC'S CHART
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APPENDIX A-II

ROOT CHART
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APPENDIX B-I

NEWTON-RAPHSON METHOD FOR ONE EQUATION

110



NEWTON-RAPHSON METHOD FOR ONE EQUATION
Given:
F(Ls0pgtgg) = O

% constant. .

with w4 and ts
Development of Method:

1. Expand F(C,wnt,tst) in a Taylor series about

£ = Ck and truncate after two terms.

F(c‘awnt ’tst) = F(ck,wnt,tst) + (t - ck) F’ (tk‘)wnt ,tst)

2. Solve for ¢.

Procedure:

1. Let tk be an initial approximation to the
solution of the given equation.
2. As the next approximation, take

F(Gye 0084
Ck+1 - tk - Fj(ck#ont’tst)

3. Continue iterations until the process

111
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converges to a solution for L.

Reference: McCracken and Dorn (13), pp. 133, 156.
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FORTRAN PROGRAM FOR LINES OF CONSTANT
SETTLING TIME
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500
501
502
600
700

701

N -

10

80

MONSS - JOB 252740040 K K GOWDY  SETTLING TIME
MONS3 ASGN MGO»A2

MONS S ASGN MJBsA3

MONS $ MODE GO»TEST

MONS$ EXEQ FORTRAN

PROGRAM TO COMPUTE LINES OF CONSTANT SETTLING TIME

FOR A LINEAR THIRD ORDER SYSTEM
Z2=DAMPING RATIO W=NATURAL FREQUENCY
FORMAT(4F10e5)

FORMAT(///11Xs4HZETAs6X s 4HFREQs TX 9 4HT IME 96X 0 4HBETA 96X 92HB1 98X »

12HBO»6X 9 1HK)

FORMAT(F1l6e5+F9e¢49F1l14495Xs15HINPUT CARD DATA)

FORMAT(F16659F9e43F11e493F10e4915)

114

FORMAT(//2X92HTSs8Xs1HA»9X s 1HB 19X s LHC 99X ¢ 3HSUMs TX92HB1 98X s2HBO 96X »

11HK) .
FORMAT(F6el196F1044915)
Y=400005

ROFF=400005
READ(19500)ZsW»sT»D1
M=1

N=1

I=1 o

WRITE(3501)
WRITE(3+502)2ZsWsT

K=1

IF(ZeGEele0)GO TO 150
L=1

W2=W¥W

W3=W2#y

ZW=2%4W
IF(ZWelLTeOe)2ZW=00e
Axloe~(2%2)

AR=SQRT (A}
Uz=le=(2e%2W)
IF(UeLTe0a)U=0,

V=U-ZW

IF(L.GE+3)GO TO 100
Bz (B ¥ZWHZW)~(6e%*2ZW)+1e+W2
BR=SQRT(B)

ARBR=AR¥*BR
2WB83=84%2W-3
E1=EXP(~2W#*T)
E2=EXP(-U#T)
FP1=w2%*E2/8B
FP2=U*E1/ARBR
F=+05-FP1-FP2
IF{L+EQe¢2)GO TO 95
FRZ1l==2+%#W* (B¥T+2W83)*FPl/8
FRZ2==FP2* (=~W*(2+/U+T )+ (W¥*2W83/B)1~(Z/A))
FRZ=FRZ1+FRZ2
DELTAZ=-F/FRZ
2=2+DELTAZ
IF(ABS(DELTAZ) o LEeY)L =3
IF(Z2eLTe040)2=04
IF(2.GTele0)2=1,

K=K+1

IF(KeLT¢100)GO TO 10
2=2ZHOLD

W=W+D1

K=l

L=2

GO TO 10
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85 Z3(1e=(3e/T))/20
Waloe
M=1
“N=2
GO TO S5
95 FRW1==2 o ¥WHRHE2H (BH(ZWHT+16 )~ (8o HZWHZW=(3,%ZW)+W2) )/ (B%B)
FRW2=EI*(Z'(U*T+20)+(U*(30*ZN*Z-(30*Z)+W)/B))/ARBR
FRW=FRW1+FRW2
DELTAW=-F/FRW
W=W+DELTAW
IF{ABS(DELTAW) eLEeY)L=4
IF{WelTeO0eO)W=00e
IF(WeGTelaO)W=1le
K=K+1
IF(KeLTe1l00)GO TO 10
GO TO (85s51)sN
100 BETA=(le/2ZW) -2
Bl=(24%ZW)—=(3e%W2 )+ (4o *W2%*A)+ROFF
BO=w2*U+ROFF
IF(LeEQe4)GO TO 145
2HOLD=Z
WRITE(3’600)Z’W’T’BETA B1sB0sK .
=Z+{(2~ ZZ)*(Z 22)/7(22-21))
Zl“ZZ
22=ZHOLD ‘
IF(MeLEe2)2=2ZHOLD
M=M+1
W=w-D1
IF(ZeGEele)GO TO (8091509150) N
IF(WaGEe0s01)GO TO 5
145 WRITE(3+600)2ZsWsT9BETA»B1yB0OsK
K=1
L=2
2=2+D1
IF(Z.LTela0)GO TO 10
150 Z=1e
B=Z %Y
BHOLD=B
K=l
. ET=EXP(~-T)
160 BT=0#*T
Bl=1l.-B
B2=81-8B
B3=82-B
B4=B83-B
B32=B3%B83
B33=B32%B3
EBT=EXP(-BT)
IF(B24LTe0s0)B2=0¢
EB2T=EXP{~B2%T)
BP1=B*B#*EB2T/B32
sz=(BZ*BT*B3+BZ*BQ)*EBT/B32
F=+05~-BP1-BP2
FRB=-2.*B*EBZT*(1.+BT'30*B*BT)/B33+T*BP2“EBT*C‘T-Q.*BT+6.*B*BT)*B3
1-2.%8)/B33 .
DELTAB=~F/FRB
B=B+DELTAB
. IF({BeGTale5*BHOLD)B=0.75%B
165 IF(ABS(DELTAB) oL T«Y)GO TO 170
IF{BelLTe0s0)B=0s
K=K+1: !
IF(KeGT«1l00)GO TO (854+180) N
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GO TO 160
170 Zw=8
w=8
BETA=(le/ZW)—2s
W2=W Y :
U=le=(2e%ZW)
Bl=(2e%ZW}=(3e*W2)+ROFF
BO=W2 #U+ROFF
WRITE(3s600)ZsWeTsBETAsBlsBOsK
GO TO (85+180) N :
180 WRITE(3+700)
C=B
B=aB-e01l
A=ls=-C-B
- 184 K=1
185 C=le~A-B .
: IF(CelTe0n)C=0o,
IF(CeGTale)C=1s
IF(BeLTsA)GO TO 1
AB=A%*B
AC=A%C
BC=B%C
AMB=A~B
AMC=A~C
BMC=B~-C
EA=EXP(~A*T})
EB=EXP (~B*T)
EC=EXP(~C*T)
DA=AMB*AMC
DB=AMB*BMC
DC=AMC*BMC i
F=e05-B*¥C*EA/DA+A*C*EB/DB-A#BREC/DC
FRA3==B*ECK (DC* (A%¥T+16 ) —A¥* (4% A+5,4%B~34) )/ (DC*DC)
FRA2=—EB*AMC*(DB+AC) 7/({DB*DB)
FRAL1=BH*EA* (DA% (C*T+1s ) +CX(4e¥A~B~10))/(DA%DA)
FRA=FRA1+FRA2+FRA3
DELTAA=-F/FRA
A=A+DELTAA
IF(AsLTe0s)A=0.
IF{AeGTele)A=1,
K=K+1 i
IF(KeGTe100)GO TO (19541}t
IF(ABS(DELTAA} «GT+Y)}GO TO 185"
AHOLD=A
BHOLD=8B
CHOLD=C
Bl=A%*B+C#*(A+B)+ROFF
BO=A%B*C+ROFF
SUM=A+B+C+ROFF
WRITE(3s701)TsAsBsCsSUMeBL+BOK
B=B-D1
GO TO 184
195 1=2
Dl=oool
A=AHOLD -
B=BHOLD-D1
C=CHOLD
GO TO 184
END
MON$$ = EXEQ LINKLOAD
PHASEENTIREPROG
CALL MAINPGM i
MONS$S EXEQ ENTIREPROG sMJB
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GENERALIZATION OF NEWTON-RAPHSON METHOD
FOR TWO EQUATIONS

Given:

1
O

F(CSwntst) =

1
O

G’(Cswnt st) =

with W+ constant.
Development of Method:

1. Expand both F(C,wnt,t) and G(C,wnt,t) in Taylor

series about § = Ck, t = tk and truncate after

two terms. For simplification let

F = F(c,wnt‘)t) Fk = F(ck,wnt’tk)
G' = G(<C9wnt$t) Gk = G(ck’wnt’tk),
then
aFk. aFk
F:Fk+(c—ck)-a-z-+(t—1?k) 3% 0t e = 0
aGk aG-k
Gsz-i-(C—Ck) '—a—f"+(t—-‘bk)-fa-{;—+...=o

2. Rearrange with Ek and Gk on the right

aEk oF.

(C-"Ck) faz-+ (t-»tk) -3%{- = --Fk
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%2, Use Cramer's

c=zk-
t = tk +
where
;o 0y
= 3F
Procedure:
1. Let Ck and tk

+ (t - tk)

rule to

[P
[P

aGk

solve for £ and t.

0F

k
w1/
aFk

3t /5

6Fk aGk

O g
ot k
oG

R4 "’Gk

.-

ot ot oL °

be initial approximations for

the solution of the given equations.

2. Use the equations above to solve for the

next approximations §k+l and ¢

k+1°

%2, Continue the iterations until two successive

approximations are found to be sufficiently

close to each other.

L

19

Reference: McCracken and Dorn (13), pp. 144-145, 156-157.
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500
501

502
601
699

700
701

702

10

20

40

121

MON$$ JOB 252740040 K K GOWDY OVERSHOOT

MONS$ - ASGN MGO»A2
MONS$ ASGN MJByA3
MONSS$ MODE GO»TEST
MONS$S EXEQ FORTRAN

PROGRAM TO COMPUTE LINES OF CONSTANT PEAK OVERSHOOT
FOR A LINEAR THIRD ORDER SYSTEM

2=DAMPING RATIO W=NATURAL FREQUENCY

REAL JsNPEAK :
FORMAT(5F10.5)
FORMAT(///6XOZHOSO5Xt4HZETA.6XO“HFREQO6X04HT]MEo7Xo5H$lGMA.5XO
14HREAL 9 TX 9 4HIMAGsBX s 4HBETAs5X 9 2HBL1 98X 9 2HBO»6X 9 1HK 04X s SHNPEAK )
FORMAT(FB84292F10e53F114435X915HINPUT CARD DATA)
FORMAT(FB84232F106e59F11e493F10e5sF11e492F10a&915+17)
FORMAT (/775X v 1HF 39X s3HFRZ v TX 93HFRT s TX9s1HG 99X 9 3HGRZ » TX93HGRT 97X 9 1HJ»
19X s IHZ 99X o 6HDELTAZ 94X 9 1HT 99X s 6HDELTAT)
FORMAT(11F1045)

FORMAT(/5X+s2HAR98X9s1HB 99X 92HBR»8X » 1HU.9X.1HV'9X02H51oﬂXoZHEZtBXolH
1P+9X s lHRs9IX 9 1HS 99X 93HFPl 9 TX93HFP2)

FORMAT(12F10e5)

READ(1+4500)0592sWsTsD1

Y=,00005

ROFF=+,00005

P1=3,141593

WRITE(3+501)

WRITE(3+502)0S9ZsWsT

L=1

M=1

K=l

W2=W*W

W3=W2 %W

ZW=Z %W

IF(KeGTal00)GO TO (150,41) L

A=le~(2%2)

AR=SQRT(A)

WD=W#*AR

B=(Be#ZWHZW)—(6e*ZW)+1e+W2

lF(B.LT «0e)B=0.

BR=SQRT(8B)

ARBR=AR*BR

ZW83=8+%ZW-3,

Usle—=(2e%ZW)

Vale=(3e%*2W)

E1=EXP(~ZW*T)

E2=EXP(~U*T)

E3=EXP(-V#*T)

P=PI-ATAN(AR/Z)+ATAN(WD/V)
lF(VoLToOo)P=2-*Pl-ATAN(AR/Z)-ATAN(ND/ABS(V))
R=WD*T-P

S=SIN(R)

C=COS(R) ]

RRZ=((ZW~3«%W2)/B~2W*T~1e) /AR

FPl=W2%E2/8B

FP2=U*E1/ARBR

F==0S~FP1l+FP2#*S

FRZ1==2.#W3HE2# ( THB-WHZW83)/(B*B)

FRZ2=E1#* (U#C*RRZ~W*S* (T*U+2,))/ARBR

FR23=-U¥EL1#S* (W*ZW83#A-Z2#B)/ (A*B*ARBR)
FRZ=FRZ1+FRZ2+FR23

FRT=U#FP1-WXkFP2# (Z#S~AR*(C)

G=FRT

GRZ1=2#W3HE2# (B* (UNT~1e )~U*ZWB3)/B N
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GRZ2e—-WHEL1® (SH (UR(]1,-RRZ*AR)~ZW* (U¥*T+243) ) /ARBR
GRZ3=UHE]L* (Z#S-AR¥C)* (WXZWB83/(ARBR*B)~2/(ARBR%A))
GRZ=GRZ1+GRZ2+GRZ3
GRT-'U*U*WZ*EZ/B-WZ*U*EI*(S*(le'Zo*Z*Z)+C*20*Z*AR)/ARBR
J=FRZ*GRT-FRT*GRZ '
IF(LeEQe1l}GO TO. 70
IF(ABS(J)elLTele5)J=SIGN(1e50sJ)
70 DELTAZ={G¥FRT-F#GRT)/J
DELTAT= (F*GRZ-G*FRZ)/J
2=2+DELTAZ
IF{ZeGTole)Z=10
IF(ZeLTe0e)Z=00¢
T=T+DELTAT
1§(TeLT400)T=0,
K=K+1
IF(ABS(DELTAZ)sGEsY)GO TO 10
IF(ABS(DELTAT) «GTeY)GO TO 10
95 R3=R+(2e%P])
' T3={R3+P) /WD
S3=SIN(R3)
E13=EXP(~ZW¥*T3)
E23=EXP (-U*T3)
F2=le=FPl+FP2%S
F2=1e~W2*E23/B+U¥E13%#S53/ARBR
IF(FZQGE.F3)GO TO 100 -
C T=T3:
GO TO 5
. 100 R1=R~(2e%P[)
. T1=(R1+P) /WD
IF(T1eLE«0+0)GO TO 110
51=SIN(R1)
EL1=EXP{(-ZW*T1)
E21=EXP(~U*T1)
Fl=le-W2¥E21/B+U*E11%*S1/ARBR
IF(FlaslLTeF2)GO TO 110
T=T1
GO TO 5
BETA=(1le/2W}-2,
110 ZW=2%W .
Usle—~2e%*ZW ]
Bl=2e#ZW+W2=Ge ¥ ZW*ZW+ROFF
BO=w2#U+ROFF
NPEAK=(R+(2e%*P11)/(2+%P1}
NP=NPEAK
WRITE(3’601)OS’ZDWDTQUOZN’WD’BETA Bl:BOsKsNP
2HOLD=2
2=2+((2-22)%(2-22)/822-21}) .
21=22 :
22=2HOLD
IF(TelLToTHOLDIM=1
THOLD=T
TT+((T-T2)¥(T=-T2}/(T2~T1))
T1l=T2
T2=THOLD
IF(MaGTs2)GO TO 125
120 2=ZHOLD
T=THOLD
125 M=M+1
W=W-D1
IF(WeGE«0.02)GO TO 5
GO TO0 1
150 K=1



L=2

M=1
2=ZHOLD
T=THOLD
Wal+D1
GO TO 5
END
MONS S

MONS$

EXEQ LINKLOAD
PHASEENTIREPROG
CALL MAINPGM

EXEQ ENTIREPROGs»MJB
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Given:

GENERALIZATION OF NEWTON-RAPHSON METHOD
FOR THREE EQUATIONS

I
(@]

F(L,0,, 5t )

H
(@]

G(gawnt sty )

H(tLy sty ot2) = O

w;th wnt and trt constant.

Development of Method:

1.

Expand F(tswntatl)s G(Cswnt$t2> and H(trt‘)tl 9 tz)
in Taylor series about § - L, & = tix, T = Gk

and truncate after two terms. TFor simplification

let

F = F(ts‘l’nt ,ti) Fk = F(Ck‘)wnt ‘)tlk)
G = G(C$wntst? ) Gk = G(Ck,wnt s 62 k)
H = H(trt,tl ,t2 ) Hk = H(trt 9t1k9t2 k)
then

aFk aFk )
F.—:Fk+(C-§k)—gg—+(t1—‘Clk)_a-f;‘+aoa=o
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G’=G’k+(cn—tk) "a"“"&"‘f'(t?“tzl{)"a‘je’;"‘f eoo = O
0H aHk T
k
H=Hk+<t1_t1k)é—:—+<t2 "tak)é“%‘z—“" cos = 0

2. Rearrange with Fk, Gk’ Hk on the right.

oF, oF,
(C"Ck) jﬂf + (tl"tlk) EE? + 0 = “Fk
aGk aGk
(E-1¢) 3F * 0 + (6, - bpx) 3%, = O
0
0 + (tl “'t1k) E‘EH% + (t2 "‘tzk) B—-Hl{- = “Hk

2. Use Cramer's rule to solve for &, t,, and t,.

k k k
b, = t2k+\tFka¢-Gk——€-a -+ H g ————aC]/J
aHk 0H
Xk _ _ _k _
where 3T, = 1 3%, - 1

Procedure:

1. Let &y, tiyxs t2 be initial approximations for the
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solution of the given equations.

2. Use the equations above to solve for the next
approximations Ck+1, t1,k+10 B2 k+re

-3, Continue the iterations until two successive
approximations are iound to be sufficiently
close to each other.

Reference: McCracken and Dorn (1%), pp. 136-157.
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499
500

501
600
601
800

801

10

15

129

MONS$ S JOB - 252740040 K K GOwDY RISE TIME
MONS $ ASGN MGOsA2

MON$ % ASGN MJUBsA3

MONS $ MODE GOSTEST

MONSS EXEQ FORTRANs»s 59929 sMAINPGM

PROGRAM TO COMPUTE LINES OF CONSTANT RISE TIME

FOR A LINEAR THIRD ORDER SYSTEM

Z=DAMPING RATIO W=NATURAL FREQUENCY

REAL J

FORMAT(6F1045)
FORMAT(//7/710X¢5HZETA=9F5e2+s5Xs5HFREQ=9F562+5X33HTR=3F54295X93HT 2=,
1F5e295X93HT1=3F5e235X93HD1=sF5¢2»10X915HINPUT CARD DATA}
FORMAT(//7/725Xs4HZETAs TX s 4HFREQ 96X s2HTRs8X92HT298X9s2HT 18X s 4HBETA
16X92HB1 98X 92HBQ s 6X s LHK) .

FORMAT(20XsF10e597F10e4+15)
FORMAT(//720X3F10e594F10e4910X9s17THSOLUTION ESTIMATE)
FORMAT(//716X91HAs9Xs1HBsIXs LHC+IX s 2HTR 9BX s2HT2 98X e2HT1 98X ¢3HSUM»7X
152HBLl+s8X92HBO6X91HK)

FORMAT(10X99F10e4s15)

P1=3,141593

Y=,00005

ROFF=00005

READ(14499)Z+WsTR9sT2,5T14D1
WRITE(3+500)ZsWsTRsT2+sT1s01
L=1

M=1

N=1

IF(Z4EQele)GO TO 150
IF(Z4EQeQ0+)GO TO 200
WRITE(3+501)

K=l

W2=sWHW

W3=W2 %W

ZW=Z %W

IF(KeGT¢100)GO TO 1
Asle~Z%2

AR=SQRT(A)

Bz (Be*ZWHZW)=(6e®ZIW)+14+W2
BR=SQRT(B)

ARBR=AR¥*BR

V=U-ZW

Usle=(2+%ZW)

WD=W#AR

ZW83=8 o#ZW—=3 e
P=pI~-ATAN(AR/Z)+ATAN(WD/V)
IF(VeLTe0s)P=2¢#P]1-ATAN(AR/Z)}-ATAN(WD/ABSI(V))
R1=wWD*T1-pP

R2=WD#T2-P

S$1=SIN(RI)

5$2=SIN(R2)

C1=COS(R1)

C2=COS(R2)

EL1=EXP(-ZW*T1l)
E12=EXP(~ZW*T2)
E21=EXP(-U*T1)

E22=EXP (=-U#*T2)
FP1=Ww2%*E21/B

GPl=w2*E22/8
FP2=U*E11/ARBR



g0

100

120

150
151
152
153
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GP2=U*E12/ARBR

=, 9-FPLl+(FP2%#S51)
G=61=-GPl+(GP2#%#52)
H=T2-T1-TR"
PRZ1e( (ZW-3e%W2)/B~ZW¥*T1~14)/AR
PRZ2=({(ZW-3.%W2)/B-ZW%T2-14)/AR
FRZ1=-2+#W3XE21 % (T1*B~(W*ZW83) )}/ (B*B)
GRZ1=~2¥W3*E22# (T2%B~-(W*ZW83))/(B*B)
FRZ2=E11% ((UXC1%#PRZ1)~(W¥*S1¥(T1%U+2e)))/ARBR
GRZ2=E12%# ({U*C2%PRZ2)~(W*S2%(T2%#U+26)} ) /ARBR
FRZ3a-U*E11%#S1%(W*ZW83%A-(Z2%B) )/ { A*B*ARBR)
GRZ3=-UHEL2%#S2% (WHZWEG3*A-(2%B) )/ (A*B*ARBR)
FRZ=FRZ1+FRZ2+FRZ3
GRZ=GRZ1+GRZ2+GRZ3
FRT1=U*FP1l-W*(Z%S1~AR*C1)*FP2
GRT2=U*GP 1-W*(Z%#S52-AR*(2) *GP2
J=(FRZ*GRT2)~(FRT1*GRZ) )
IF(ABS(J)eLT40605)J=SIGN(04052J) g
DELTAZ={(~F*GRT2)+(G*FRT1)-(H*FRT1%¥GRT2}))/J
DELTT1=((F*GRZ)—-(G*FRZ)+(H*FRZ#GRT2))/J
2=2+DELTAZ )
IF{ZeGTels}Z=1s

IF(Z2eGTe0+)G0O TO 90
2=0e¢
GO TO (905200) N
Tl=T1+DELTT1

lF(TloLTeOo)T1=Oo

IF(T1eGTsP/WD)T1=P/WD
T2=T1+TR
K=K+1

IF(ABS(DELTAZ) +GTeY)GO TO 10
IF(ABS{DELTT1) «GTeY)GO TO 10
ZW=Z %W
BETA=1e/2ZW~24
Bl=2o¥ZW+W2=4 e ¥ZWXZW+ROFF
BO=W2¥%(le—2e¢*ZW)+ROFF
WRITE(3n600)Z-onR9T2pT1’BETAaBloﬁogK )
ZHOLD=2Z
T1HOLD=T1
T2HOLD=T2

IF(MeLEe1l)GO TO 120
Dz=2-21
2=2+DZ

IF(ZeLE«Os GO TO 200

IF(ZeGTele)GO TO 150
T1=T1+4{(T1-T11)
T2=T2+(T2-T21)}
21=ZHOLD
T11=T1HOLD
T21=T2HOLD

© M=M+1
N=2

W=w=-D1
IF(WsGE«Q401)GO TO 5
B=W

Z=1le

K=1

Bl=1l.-B

82=B1-8

B3=B2-8

B4=B3-B

B32=B3%B83
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180

184
185

B33=832#B3
BT1=B*T1
‘BT2=B%T2
ET1=EXP({-T1)
ET2=EXP(-T2) .
EBT1=EXP(-BT1)
EBT2=EXP{-BT2)
IF(B2eLTe0e)B2=00s
EB2T1=EXP (~B2%T1)
EB2T2=EXP(~B2%#T2)
BP1l1l=B*B*EB2T1/B32

- BP12=B¥B*EB2T2/B32

BP21=(B2*BT1%#B3+B2#B4)*EBT1/832
BP22=(B2*#BT2*B3+B2#B4 ) *EBT2/832

' F=+9-BP11-BP21

G=e1-BP12-BP22
H=T2~-T1-TR .
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FRB=-2.*B*EBZT1*(1.+BT1-3.*B*BT1)/B33+T1*BP21—EBT1*((Tl-ée*BT1+6.*

1B*BT1)%*B3-2.%8) /B33

GRB=~24¥B¥EB2T2%(1e+BT2-3,#B%B7T2)/B33+T2#BP22-EBT2*{(T2~4e*BT2+6%*

1B%#BT2)#B3~2.%#B) /833
FRT1=B2*BP11+B#BP21-EBT1*¥B2¥B/B3
GRT2=B2%*BP12+B*BP22-EBT2#B2+8/B3
J=FRB#GRT2-FRT1#GRB
IF{ABS(J)eLTe0405)J=SIGN(04.054+J)
DELTAB=(~F*GRT2+G*FRT1-H*FRTL1*GRT21}/J
DELTT1=(F*GRB-G*FRB+H®FRB*GRT2)/J
8=B+DELTAB :

IF(BelLTe0e)B=00
IF(BeGTele)B=1s

T1=T1+DELTT1

IF(T1elLTe0e)T1=00s
IF(T1leGTsTRIT1=TR

T2=T1+TR

K=K+1

IF{KeGT+100) GO TO 1 ‘
IF(ABS(DELTAB) «GTeY)}GO TO 153
IF(ABS(DELTT1)eGTeY)IGO TO 153 .
ZW=B

w=8

BETA=1le/2ZW~24

Bl=2¢%ZW-3« *W*W+ROFF

BO=W*W% (1s—2e%2W)+ROFF
WRITE(3+600)ZsWsTRsT2+T19BETA»B1+B0OsK
GO TO (1804178) L

w=B-D1

M=1 '

GO TO 5

WRITE(3+800)
- C=B

B=B8-D1

A=le~C~B

K=1

C=1+-A-B

IF(CeLTs0e)C=00
IF(CeGTola)C=1,
AB=Ax%B

AC=A*C

BC=B*C

AMB=A-B

AMC=A=C

BMC=B-C
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200

202
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DA=AMB#AMC

DB=AMB#*BMC

DC=AMC*#BMC

EAT1=EXP{-A*T1)

EAT2=EXP(~A*T2)

EBT1=EXP(-B*T1}

EBT2=EXP(-B¥T2)

ECT1=EXP(~C¥*T1})

ECT2=EXP(-C*T2)
F=s9~B#CH*EAT1/DA+A®CHEBT1/DB-~A¥B*ECT1/DC
G=e1-BHCHEAT2/DA+A#CHEBT2/DB~-A*BRECT2/DC
H=T2-T1~TR

g

FRA1=B*EAT1#(DA* (C¥T1+1e)+CH(4e¥*A=-B-10o))/(DAXDA)

GRA1=B*EAT2# (DA*(C%T2+1e)+CH (4 e ¥A~B-14))/(DAXDA}
FRA2=~EBT1%AMC* (DB+AC) /(DB*DB)
GRA2=-EBT2#AMCH* (DB+AC)/(DB*DB)

"FRA3=-BH*ECT1#(DC*(A*T1+le)~AR(4e#A+5e%B-24) )/ (DCXDC)

GRA3=~BHECT2¥ (DCX (ANT2+1 e ) —AR (4o %¥A+56%B~30) )/ {DCHDC)
FRA=FRAl1+FRA2+FRA3
GRA=GRA1+GRA2+GRA3
FRT1=A%B*C#(EAT1/DA-EBT1/DB+ECT1/DC)
GRT2=A%#B*C%* (EAT2/DA-EBT2/DB+ECT2/DC)
J=FRA®GRT2-FRT1*GRA
IF(ABS{J)eLT40605)U=SIGN(04055J)
DELTAA=(~F*GRT2+G*FRT1-H*FRT1*GRT2)/J
DELTT1l=(F*GRA~G*FRA+H®FRZ%*GRT2)/J
A=A+DELTAA

IF(AdLTe0e)A=0"

IF(AsGTale)A=1,

Tl=T1+DELTT1

IF(T1lelLTe0a4)T1=04

IF(T1eGToTR)IT1I=TR

T2=T1+TR .

K=K+1

IF{KeGT100)GO TO 198

IF(ABS(DELTAA) +GT4Y)}GO TO 185
IF(ABS(DELTT1)eGTeY)GO TO 185
C=1le~A-B

Bl=A%B+C* (A+B)+ROFF

BO=A#B*¥C+ROFF

SUM=A+B+C+ROFF
WRITE(3+801)AsBsCasTRsT2sT1sSUMB1sBOSK
B=B-D1l

IF(BeGTeA)GO TO 184

L=2 '

WRITE(34+501)

GO TO 151

Z2z0s

K=1

CW2=WEW

ETI=EXP{(-T1)

ET2=EXP(~T2)

S1=SIN(W*T1)

S2=SIN(W*T2)

Cl=COS(W¥T1l)

C2=COS{W¥*T2)

D=le+W2 -

F=e9~(W*S1+C1l+W2%ET1)/D

G‘.l—(w*52+C2+w2*ET2)/D

H=T2-T1-TR

FRW=(S1%¥(~1. +Tl+w2+w2*Tl)+W*C1*(Zo-Tl-NZ*Tl)-ZQ*N*ETI*D)/(D*D)
GRW=(S2% (=1 e +T2+W2+W2%T2 ) +WHC2% (24 —T2-W2*T2) -2+ *WXET2%*D) / (D*D)
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FRT1=w* {S51-W*(C1-ET1})/D

GRT2=WH (S2~-W*{C2-ET2))/D
J=FRW*GRT2-FRT1%¥GRW
DELTAW=(~F*GRT2+G%FRT1-H*FRT1#GRT2)/J
DELTT1=(F*GRW-GH#FRW+H*FRW*GRT2)/J
W=W+DELTAW

IF(WelLToeOe)W=04

IF(WeGTele)W=1,

Tl=T1+DELTT1

IF(T1lelTe0e)TLl=0e
IF(T1eGTeTRIT1=TR

T2=T1+TR

K=K+1

IF(KeGTel00)GO TO 1
IF{ABS(DELTAW) «GToY)GO TO 202
IF(ABSI(DELTT1)«GT4Y)GO TCO 202
Bl=w*W+ROFF

BO=B1

BETA=0.
WRITE(39600)2sWsTRsT29T1sBETA4BL1sBOsK
GO T0 1

END )
MONS3 EXEQ LINKLOAD

PHASEENT IREPROG
CALL MAINPGM .

MONS3 EXEQ ENTIREPROG,MJB
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FORTRAN PROGRAM FOR LINES OF
CONSTANT PHASE MARGIN
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100
101
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MONS$ JoB 252740040 K K GOWDY PHASE MARGIN
MONS$ ASGN MGO»A2

MONS $ ASGN MJBsA3

MONS S MODE GOSTEST

MONS$ 3 EXEQ FORTRANs s 9959 s MAINPGM

PROGRAM TO COMPUTE LINES OF CONSTANT PHASE MARGIN
FOR A LINEAR THIRD ORDER SYSTEM

PM=PHASE MARGIN WC=CROSSOVER FREQUENCY
FORMAT(//729Xs 6HMARGIN »4X s 2HWC 29X s2HB1 y8X +2HBO }
FORMAT (29X +F5409F10e552F10e4)

ROFF=400005

PM=10.

PI=3,141593

GAM=PM#P /180,

WRITE(35100)

B1l=1,25

TANG=SIN(GAM)/COS(GAM)

WC=(~TANG+SQRT (TANG¥TANG+4+%B1)) /2

WC2=WC#WC
BO=WC*SQRT(B1#B1l+(]e~2+#B1)*#WC2+WC2#WC2)+ROFF
IF(BO.LT«0+)GO TO 60

IF(B0+GT«B1)GO TO 60

WRITE(3,101)PM>WC»BlsBO

Bl=Bl-.05

IF{BleGTe04)GO TO 5
PM=PM+10,
IF(PMeLTa904)GO TO 3
SToOP

END
MON$$ EXEQ LINKLOAD

PHASEENTIREPROG

CALL MAINPGM
MONS$ EXEQ ENTIREPROGsMJB
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