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VIBRATIOHS OF REOTANGUMR SANDWICH PLATES
WITH VARIOUS EDGE CONDITIONS

CHAPTER I

RESUME OF DEVELOPMENTS IN THE ANALYSES 
OF SANDWICH PANELS

In general, a sandwich panel consists of a low den­
sity, thick core bonded to two relatively thin, strong face 
plates. Such a construction can be used to produce stiff, 
light-weight structural panels that are particularly adaptable 
to air-craft, ballistic missiles, and to space vehicle con­
struction where least weight requirements are mandatory.

Most of the literature pertaining to sandwich struc­
tures treats theoretical and experimental investigations with 
static loads. Only limited information is available concern­
ing either the theoretical analysis of dynamic loads on sand­
wich structures, or experimental results pertaining to the 
natural frequencies and mode shapes of vibrations of sandwich 
panels. Since vibratory phenomena embody the basic notions 
and assumptions of the static stress analysis, it seems rele­
vant to give an account of the development of static stress 
analysis in this resume.
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Developments In the Static Stress Analysis 
Most of the work in the analyses of sandwich construct­

ion had been initiated and continued by the Forest Products 
Laboratory,* United States Department of Agriculture, Suc­
cessive developments in the investigations of sandwich structures 
under the sponsorship of this agency have resulted in some of 
the basic design criteria for sandwich construction. In the 
early phase of the investigations, March (1) formulated a 
differential equation for the deflection on the following as­
sumptions:

1, The facings are so thin that their flexural 
can be neglected and they can be treated as membranes*

2, The transverse shear stress components in the 
core are uniformly distributed and all other stress components 
are negligible.

3, The deflections of the panel are such that a 
small deflection theory can be employed,

4, The core as well as the facings are isotropic. 
Even under these simplifying assumptions, the solutions of the 
resulting differential equations are very Involved for other 
than simply supported plates.

Ericksen and March (2) extended the energy methods of 
analysis employed by British investigators like Leggett (3),

* Maintained at Madison^ Wisconsin in cooperation with the 
University of Wisconsin,
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Williams (4), and Hopkins (5) to account for orthotropic cores 
in the buckling analysis of sandwich panels by assuming the 
following displacement functions: 

u® = -k (z~q ) 3 w
3 X

V® = -h ( z-r ) Sw
B y

w® = w (x,y)
where u°, v°, and w® are core displacements in the x, y, and z 
directions, and k, h, and r, free constants. Thus the as­
sumption that plane sections before deformation remain plane 
after deformation was retained with a slight modification; that 
is, plane sections rotate about a line z = g. for the x-dis- 
placements and z = r for the y-displacement. It is obvious 
that, for a sandwich panel with facings of unequal thickness, 
the middle plane of the core is not the neutral plane of the 
panel. Also, the assumption of different proportionality 
factors k and h is readily understandable by considering that 
the elastic properties of the core material may differ greatly 
in both directions. In this connection Ohang and Ebcioglu (6) 
comment:

...For pure bending, u® and v® are justified. But the 
authors could not see the need for evaluating some of their 
constants (such as q and r) by means of minimizing the 
energy integral. To the authors *s knowledge, the value of 
q and r dépende only on the elastic and geometrical arrange­
ment of the sandwich cross section and should not depend 
on the minimum of energy integral. Fortunately, their, 
choice for w® was good and their results check with the 
present theory,,.

This point will be pursued further in Chapter III where this
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writer intends to show that g and r can he Justifiably con­
strued as unknown parameters whose true values are determined 
by minimizing the total energy. The Ericksen-March method re­
mained the basic approach at the Forest Products Laboratories 
where subsequent work has been conducted with the aim of im­
proving the Ericksen-March displacement functions. In this 
method the total strain energy consists of energy due to shear­
ing strains in the core, and the energies due to membrane and 
bending strains in the facings. Most of the work, however, has 
been confined to simply-supported plates (7)» (8) which are 
governed by functions which, including their first and second 
derivatives, are orthogonal and, additionally, satisfy the 
boundary conditions approximated by Hoff (9)*.
*The exact boundary conditions for a simply-supported plate, ob- 
tained by means of variational methods, are:

( 1 ) Bu +yU»b V = 0 
@x d y

at x=0. Xaljc

(2) 3 V +jw3u = 0 
éTy 3x

at 7=0, 7=ly

(3) ^  = 0 
3 7 5x

at x=0. x=l^, 7=0, 7=

(4) at x=0. Xslx

(5) at 7=0, 7=ly

(6) W=0 at x=0. x=l^, y=0, y=l.7
where u, v, and w are the displacements in the x, y, and z di­
rections and /uis the Poissons ratio. Hoff approximated the
condition (3) by 3(a) = u=0 at y=0, y=ly

v=0 at x=0, x=lx
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Thurston (10) applied the Lagrangean Multiplier method 

to the energy expressions of Ericksen-March (2) to determine 
deflections and buckling loads of rectangular plates clamped 
on all four edges. The Lagrangean Multiplier method was first 
employed by Budiansky and Hut, (11) in their buckling analysis 
of clamped rectangular solid plates. The method is an appli­
cation of the minimization of functions subject to certain con­
straints. These constraints arise from the lack of appropriate 
functions which satisfy the boundary conditions of plates other 
than simply-supported. A parameter, called Lagrangean 
Multiplier, is associated with each constraint. Considering, 
for example, a clamped beam of length ®a* with coordinate 
origin at one of the extremities, the boundary conditions may 
be written as;

(a) w(0) = w(a) = 0
(b) ^ 0

where w may be assumed asoc
w=^Am sin mlfK

m  O»
It is clear that the boundary condition (a) is satisfied, but
not (b). In order to satisfy (b) the equation oc

T* (wff) Am=0............ . ........(1)
m ' a .

must hold, where only even values of m enter. If the total 
energy of a system is denoted by TJ, then the Lagrangean method 
demands that

 (.)
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where X is the Lagrangean Multiplier, Equations (l) and (2) 
contain the unknown A and implicitly in u, the buckling load 
Pc»

In general, more than one constraining condition exist.
In fact, in case of a plate problem involving double sum­
mations, there are infinitely many ̂ . Further, if the analysis 
considers displacements in x and y directions, more than one 
infinite set of >?* occur. However, an exact solution for 
buckling loads or static deflections would lead to an infinite 
determinant. To obtain approximate results, two alternative 
procedures have been suggested:

1• An upper bound solution is achieved when all 
the boundary conditions are satisfied while working 
with only a finite number of undetermined co­
efficients. This has the effect of stiffening the 
plate and raising the buckling load.
2, A lower bound solution is attained when all 
the coefficients are used, but not all the con­
straints, This relaxes the restraints on the 
boundaries and makes the plate more flexible, thus 
decreasing the buckling load.

Although the Lagrangean Multiplier method has contributed 
much to the handling of more complex boundary conditions, the 
amount of work involved is tremendously large. The solutions 
are not in closed form and the attained accuracy hardly warrants 
the numerical effort. The results of Thurston (10), for example.
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are within 3^ of the values predicted hy Ericksen and March on 
the basis of methods which do not involve such lengthy com­
putational procedures. In addition, the Lagrangean Multiplier 
method does not accomodate conditions which are functions of z. 
Yet it is not uncommon to find the deflections w as functions 
of z in sandwich construction, for buckling or static deflection 
investigations. Thus, further simplifying assumptions are 
necessary for the evaluation of w over the plate thickness at 
the edges. For simple.beam problems, however, the Lagrangean 
Multiplier method is not too complicated despite the open form
solution; Ravilie (17) applied it to the vibrations of a sand­
wich beam clamped on both edges, by employing only one con­
straint and assuming w to be constant over the thickness.

Ohang and Ebcioglu (6) studied the elastic stability 
of sandwich panels. Their assumptions do not seem to deviate 
from those of Thurston (10) and Ericksen-March (2), and their 
analysis of the temperature differences in the facings could 
also have been included in the works of previous authors. 
However, their approach is based on the derivation of three 
differential equations by means of the principle of virtual dis­
placements. The solution of the differential equations has been 
achieved by assuming the displacements in the following form:

u=0< cos TTx sin ntfy
a b

v=Op sin nx cos nirya b
w5 , sin-fix sin nffy 

 ̂ a b
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where u, v, and w are displacements in x, y, and z directions 
respectively. These functions do satisfy the boundary con­
ditions of a simply supported plate.* For any other boundary 
condition, the difficulty of finding suitable displacement 
functions still continues. Also, when a summation over n is 
introduced, the functions and their derivatives, in general, do 
not exhibit orthogonal properties, resulting in open form 
solutions. Furthermore, the authors admit that whereof rather 
exact strain distribution are obtained for sandwich panels with 
weak cores, the results become unfavorable when the stiffness 
of the core approaches.that of the facings. In this connection 
it is worthwhile to point out that Bijlaard (12) developed 
equations for bending and torsional moments by assuming the 
temperature of the upper surface of a rectangular sandwich 
plate to be higher than that of the lower one. Plates with 
simply supported edges, and plates with two edges simply 
supported and the other two free or clamped, have been dealt 
with. The calculations are very involved as in all investigations 
which treat the problem by the differential equation approach.

Raville and Kimel (13) investigated the problem of 
elastic stability of a simply supported beam by both the 
differential equation and the energy methods. They showed 
that two methods give identical results under the same set of 
assumptions. Although neglecting the elasticity of the core

 :    1  -----
*See footnote on page (4).
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In the plane of the core, Raville and Kimel (13) assumed non­
zero strains in the thickness direction of the core. This is 
perhaps a very desirable improvement, since the core is generally 
very weak as well as thick in comparison to the facing materlal.a. 
The assumption that w is independent of z may be justified in 
solid plates of homogeneous and isotropic material, but may 
lead to discrepancies in the analysis of sandwich plates, par­
ticularly if the core is weak and very thick in comparison to 
the facings. The authors have termed this state of stress as 
"antiplane" stress. In other words, the usual two dimensional 
streiS;. components (5̂ , <5jt and , are assumed zero, and the non­
zero components of stress are Txz* method
of analysis has resulted in not only "Euler type" buckling 
criteria, but also in "face-wrinkling" mode shapes and their 
associated critical values. An examination of their results 
reveals that for relatively short panels with thin facings 
and very weak cores, face-wrinkling, rather than the usual 
"Euler type" buckling failure, occurs. However, for sandwich 
construction of usual proportions and physical properties, the 
possibility of face-wrinkling failure is very remote. The 
phenomenon of face-wrinkling has also been investigated by 
Weikel and Kobayashi (14) in connection with the local buckling 
of a honeycomb face plate. Their assumptions, besides being 
numerous, are somewhat more restrictive. For example, their 
theory applies to honeycomb cells which are square in shape, 
and in which the cells are oriented such that the load is
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parallel to the diagonal of the cell. Considering the face 
plate over each cell as a simply-supported square plate, a 
deflection surface was assumed for "intercell buckling," 
i.e., the buckling of the honeycomb face plate within each 
individual cell. For "wrinkling type" buckling which Is the 
buckling of the honeycomb face plate over a row of several 
honeycomb cells, another deflection is the superposition of 
the two deflections from which, by means of energy method, the 
final results were established. These results show that for a 
given face and cell size of the core, the predominant mode of 
buckling failure will be wrinkling for a relatively weak core. 
With increasing core stiffness, intercell buckling becomes 
predominant.

Developments in the Dynamic Stress Analysis 
As pointed out in the beginning, the literature on the 

dynamical characteristics of sandwich panels is very limited. 
Until: 1959 almost all the Investigations pertained to the bend­
ing and buckling phenomena of sandwich construction. In fact, 
the first publication in connection with the dynamics of 
sandwich plates did not appear until September, 1959. This 
publication by Xu (15) dealt with "One Dimensional Theory" 
of isotropic sandwich panels.

In his analysis, Tu included the rotary inertia and 
the transverse shear deformation of the core and oi the 
facings. The analysis is based on the state of plane- 
strain which yields the following two equations:
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where u and w are displacements in the x and j directions, 
respectively. In order to express the stresses in terms of 
strains, the following displacement functions were assumed :

u®=z{^
û =zv>2-|(‘/'i -ŷ )
u^=z^+G(Y;^-(^)

4  "L

W =W®’=ïW ::tw°=w
where u°, û , u^ are the x-displacements in the core, the 
upper facing and the lower facing, respectively. These as­
sumptions may be summarized as:

1• The displacements in the plane of the panel 
vary linearly over the thickness of the plate,

2, At each point of the panel, the vertical
cross-section of the two facings rotate through,the same angle; 
the rotation of the core is different from that of the facings,

3, The core is incompressible in the thickness 
direction. On expressing stresses in terms of strains, the re­
sulting differential equations were governed by three vari­
ables, ,< 2̂» w. Thus the above analysis is applicable to
panels having three solid isotropic plates and where the top 
and the bottom plates have the same thickness and the same 
physical properties, Yu investigated two cases, one dealing
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with the propagation of waves in an infinitely long panel, 
and the other with the hending phenomenon of a cantilevered 
isotropic sandwich panel.

Yu's analysis has thrown light on the variation of 
shearing stresses over the thickness of the sandwich plane by 
considering bending of the core in the two directions and in­
troducing a correction of coefficient for a possible variation 
of shearing stresses along the thickness. This procedure is 
analagous to that of Mindlin's (16) who determined shear co­
efficient corrections for homogeneous plates, Yu concludes 
that the appropriate value for the shear correction is nearly 
equal to unity for the most common sandwich panels. For 
present sandwich constructions, a uniform shear distribution a- 
cross the thickness of the core is assumed, since the core is 
very weak in resi&ting the normal stresses in the plane of 
the plate as compared to the facings.

In a separate paper entitled "Flexural Vibrations of 
Sandwich Plates," Yu (15a) applied this theory to an in­
finite plate in plane strain and established a cubic equation 
for the frequency. The three branches of the frequency curve 
were explained in the following.manner: The first branch is 
attributed to the assumption of bending and membrane strains 
in the facings and the trsuisverse shears in the core. The 
second branch is associated with the rotary inertia of the 
core and the third branch, which corresponds to the highest 
frequency, is eliminated when the rotary inertia and transverse
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shear in the facings are neglected, thereby reducing the
cubic to a second degree equation.

In spite of the simplifying assumptions of isotropy, 
identical facings, and plane strain, the resulting equations 
were so involved that the author neglected also the rotary 
inertia and the transverse shear in the facings, and addition­
ally introduced further approximations, for example, that the
ratio of facing-to-core thickness is negligible. The simpli­
fied analysis was then applied to a simply-supported plate.
The established results bear out the importance of the shear 
effect in the core, particularly in the high frequency range.
Yu (15a) concludes;

Except for the plates with thin faces and sufficiently 
low frequency ranges, the flexural rigidities of the 
faces about their own middle planes must be included 
even though they may be small by themselves. As a con­
sequence, the system of equations of motion has to re­
main sixth order and cannot be reduced, which at once 
complicates the vibration problem of finite sandwich 
plates with boundary conditions other than that of simply- supported...

In order to overcome the difficulty of solving the differential 
equation, the author, in a later publication entitled "Simplified 
Vibration Analysis of Sandwich Plates," (15b) modified his 
theory for sandwich plates with very thin facings. The mod­
ified displacement functions were:

u^=

u^=+h^(^

w*-=w
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Yu (15b) suggested that the rotary inertias and the flexural 
rigidities may be disregarded for investigations in the low 
frequency range. Employing these assumptions, he established 
relatively simple equations of motion, While the analysis 
was applied to an infinite sandwich plate, no results for 
any finite plate were given,

Ohang and Pang (18) deal with the periodic response of 
a loaded sandwich panel. Their approach, though similar to 
that of Yu (15b), is not as general. Among other commonly 
used assumptions, they neglect the bending rigidity of the 
facing, but consider the rotary inertia. As in reference 
(15a), the resulting differential equations are not easy 
to solve for plates with boundary conditions other than the 
simply-supported. The authors (18) demonstrated the just­
ification for neglecting the rotary inertia for long wave 
lengths.

The frequency response functions have also been in­
vestigated by Bieniek and Preudenthal (19). Their analysis 
is confined to a simply-supported case and takes into account 
material damping of the two identical facings and the core 
by using complex moduli of elasticity.

ir.)xz
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where n , and 1a» , are the damping coefficients. TheIXX ' xz
remaining assumptions were the same as in (15) and (18). The 
three parameters were determined by using the displacement 
functions for a simply-supported plate.*

Recently Chu (20) and Preudenthal (20) assumed non­
linear displacement functions with an aim of analyzing the 
large deflection problem of sandwich panels. According to this 
theory, the strains were expresses as:

where u and w are displacements in the x and y directions, 
respectively, and is the strain in the x direction; the 
strains in the facings are then

- - I f

The discussion was limited to very low frequencies of a 
simply-supported beam. No variation of w over the thickness 
was considered, Chu (20) concluded that in non-linear vi­
bration analysis of honeycomb sandwich construction, the in­
fluence of transverse shear deformation can, as a rule be 
neglected,

Raville (17), utilizing his earlier assumptions, (see 13) 
and disregarding the elasticity of the core in the thickness 
direction, investigated the natural frequencies of a clamped- 
clamped beam by an energy approach in which the Lagrangean

♦See footnote on page (4),
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Multiplier method was applied to satisfy the boundary con­
ditions. As stated earlier, the solution is in the form of 
infinite series and loses its simplicity when applied to two 
demensional problems. However, the energy approach does not 
present the difficulties that are inherent in Yu's (15) 
approach even though the assumptions of Raville do not differ 
from those of Yu with the exception of the inclusion of rotary 
inertia. Excellent correlation between theory and experiment 
was established with most of the theoretical values agreeing 
within 5^ of the experimental values*

Conclusions
Prom the developments in the foregoing resume one con- 

cludeà that most investigators pursued either the differential 
equation approach, or the energy approach.

The differential equation method, though potentially 
more accurate than the energy method, often presents difficulties 
in finding exact solutions of the equations, so that generally, 
additional simplifying assumptions become necessary. The 
existing literature on the subject does not contain investigations 
of finite plates with complex boundary conditions, especially 
in regard to the vibrations. The assumption of a state of 
stress in the core which is similar to that of the facings 
simplifies the analysis, but in the opinion of this writer, 
confines it to a particular type of core material whose elastic 
behaviour must not differ much from these of the face plates.
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Generally, however, this is not the case in sandwich con­
struction, If the plane strain assumption is neglected, the 
differential equation approach becomes an almost impossible 
task, on the other hand, the energy approach has been applied 
with relative ease. Additional assumptions for further re­
finement can be incorporated into the theory with little diffi­
culty, The displacement functions generally imply summations 
of infinite series. However, these can be approximated by 
modern computing teohigues. Yet, excepting simple beam struct­
ures, the energy methods have not been fully utilized for 
vibrations of sandwich plate structures. In the opinion of 
this writer, the energy approach affords a much better tool 
for solving plate problems with complex edge conditions.

It is with this hope that the writer has undertaken an 
investigation of vibrations of rectangular sandwich plates for 
establishing the normal mode frequencies. The investigation is 
carried out in such a manner that various edge conditions can 
be accomodated and that no restrictions are placed on the 
strains in the core, particularly in the thickness direction.



CHAPTER II 

EXPOSITION OF METHOD OP ANALYSIS 

INTRODUCTION

This dissertation aims to present an analysis of the
normal mode frequencies of rectangular plates with various edge
conditions. Since the fundamental frequency is usually the
frequency of main interest to the structural engineer, the
emphasis of this investigation will be laid on the low-frequency
ranges. As indicated in Chapter I, most of the work in this
field has been confined to simply-supported cases. These
analyses become impractical when applied to finite plates with
complex edge conditions. However, from a practical viewpoint,
the situations under which a plate may be treated as simply-
supported are very limited. In general, one is confronted
with cases where other than simply-supported edge conditions
correspond more closely to actuality, A vibratory analysis of
plates with clamped, free, or simply-supported edges, or
arbitrary combinations, will prove more significant in jneet-
ing the growing demands for an economical utilization of saî d- 
wich structures, particularly where strength-weight ratios
are important as in air-craft or ballistic missiles,

18
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It is also desirable that a unified approach to the vi­

brations of sandwich plates be developed in such a way that 
the analysis is directly applicable to all possible edge 
conditions.

In the opinion of this writer, the existing theories 
can be further improved by disregarding the simplifying as­
sumption of core rigidity in the thickness direction, resulting 
in more exact strain distribution in the core and better 
accuracy for vibrational characteristics of the plates.

Assumptions
The proposed analysis of sandwich plates will be based 

on the following assumptions. Some of these are recognized 
as standard assumptions for common types of sandwich con­
struction, More rigorous assumptions regarding the core and 
the facings are included here, thus rendering this analysis more 
general in comparison to the vibratory investigations outlined 
in Chapter I,
Pacings :

(a). The facings of the sandwich plate are of two 
different materials and thicknesses,

(b). The facings are thin, orthotropic elastic plates,
and are subject to membrane as well as bending strains.

Cores
(c). The core is an ortho tropic elastic continum.

Tie two axes of orthotropy are characterized
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by "transverse" and "ribbon." directions as 
shown in Pig. 1.

(d). The bending stiffness of the core about the 
transverse axis is negligible.

(e). The displacements in the core vary linearly 
across the thickness of the core.

(f). The core carries no shearing stress in the 
plane of plate.

(g). The core is subject to transverse shearing 
stresses in (Z-T) and (Z-R) planes which are 
uniformly distributed over the thickness of 
the core.

This assumption of constant shearing stresses over the thickness 
of the core is justified in the light of Tu*s investigation. 
Bond;

(h). All bonds are strong enough to assure continuity 
of stresses.

Tu and Eaville analyzed vibrations of sandwich panels 
by assuming isotropic facings of the same material. Ohang 
(18) conducted his analysis by considering facings of two 
different materials, but with the same Poisson's ratio. He, 
in addition, neglected the bending rigidity of the facings.
The assumption of zero normal stresses In the core reduced the 
orthotropy of the core to two shear moduli in the work of Ohang 
and to one shear modulus in Raville's one dimensional case.

To this author's knowledge, no literature exists in 
which non-zero strains in the thickness direction of the core



21
are considered in connection with the vibratory analysis.
The consideration of finite elasticity of the core in its 
thickness direction will not only include in the analysis 
symmetrical modes of vibration of the plate about its neutral 
plane, but will also establish more accurate results, 
particularly for weak cores.

Materials commonly used for sandwich construction 
exhibit no isotropic behaviour, Not only is the core 
anistropic, but the facing materials in general also possess 
anistropic characteristics. In order to facilitate the 
analysis of stress and strain, some further simplifying 
assumptions become necessary with regard to the anistropy.
For common types of sandwich materials, the assumption of 
orthotropy is frequently employed. The necessary stress- 
8train relations based on orthotropy are described in 
Appendix (B),

Method of Analysis 
Regarding the method of analysis, this writer feels 

that the energy approach is best suited for establishing a 
general and a refined vibratory analysis of sandwich plates. 
No proofs of energy principles and variational methods are 
included here; detailed accounts of energy methods are given 
in any standard text like those of Timoshenko (21), Bleich 
(22), Langhaar (23), and Wang (24), Suffice it to say that 
the energy method for the solutions of the problems of 
vibrations is founded on an extremum principle of mechanics
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utilizing an energy criterion which characterized the conditions 
of equilibrium in an elastic system. This energy criterion^ 
generally called the "Minimum of the Potential Energy," 
states (24);

Of all displacements satisfying given boundary conditions, 
those which satisfy the equilibrium conditions make the 
potential energy V assume a stationary value. For stable 
equilibrium V Is minimum.

As a consequence of this minimal principle, the governing
differential equations are obtained by means of the calculus
of variation. (See 15a, 18, 19). However, instead of solving
the differential equations together with the boundary
conditions, an often difficult mathematical task, one may
interpret the problem as that which seeks functions that
minimize and satisfy the potential energy of the system.
Several approaches have been suggested for finding the solutions
of boundary-value problems of which the methods of Rayleigh
and Ritz are of prime Importance.

Rayleigh*s Method: A mechanical system with Infinitely
many degrees of freedom may be reduced to a system with finite 
degrees of freedom by means of assumptions regarding the 
nature of deformation. This idea was first employed by Lord 
Rayleigh (27) in his studies of vibrations.

According to Rayleigh*s method, when a conservative 
system vibrates freely, the total mechanical energy is
constant. Assuming the system vibrates In a normal mode, the
particles will execute simple harmonic motions and if the mean
values of the kinetic and potential energies. I.e., averages
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over a long period of time, are (1!/2)T and (l/2)Y, the con­
servation of the total energy leads to ^max = ̂ max which In 
essence Is Rayleigh's frequency criterion.

It was Rayleigh's Idea to assume a configuration close 
to the actual configuration of the vibrating system for deter- 
mlnli^ the kinetic energy, T^ax’ the potential energy 
^aaz^ of the system. The choice of a definite shape for a 
deflection curve In this method Is equivalent to Introducing 
additional constraints which reduce the system to one having a 
single degree of freedom. Such additional constraints can 
only Increase the rigidity of the system and lead to a fre­
quency of vibration In excess of the exact value.

Raylelgh-Rltz Method; In order to achieve better 
accuracy for frequencies as well as closer estimates for 
mode shapes Rltz, In 1909, refined and generalized Rayleigh's 
method which has since then been called the Raylelgh-Rltz 
method. Basically, Rltz suggested that assumed deflection 
curves be expressed by the sum of several functions In the form

w=0 (̂̂  ̂+ . * • • . ,  (2*1)
In which the terms represent an arbitrarily chosen set of 
functions of x and y, satisfying the same boundary conditions 
as the deflection w and where the coefficients 0{ are 
undetermined parameters* Substituting w In the expression 
for total energy of the system and performing the required 
mathematical operations leads to the relation 
^max - ^max = (0 ,̂ Cg... n) - Pg[ Q  ®2» •••®n ]̂
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in which and F  ̂are quadratic forms of the parameters Ci\
If w is to be regarded as a solution of the extremum problem 
it must satisfy the condition that the function - ^max
assume a stationary value. Consequently, the parameters Oj 
must be selected to make the expression Pg stationary.
The problem therefore becomes an ordinary extremum problem 
in which O-j, Og, ...O^ are variables to be obtained from 
the n conditions^ —3— ( F T ^  1)2 ,—  n.
This operation results in a system of n homogeneous equations 
which are linear in the n parameters, 0^ , For such a set of 
equations, a nontrivial solution is only possible when the 
determinant of the coefficients vanishes. This establishes 
the required frequency criterion. Thus the importance of 
the energy criterion for the solution of vibration problems 
becomes evident in the light of the Rayleigh-Eitz method 
which leads to a direct solution of the extremum problem,

When based upon an appropriate set of co-ordinate 
functions, the Ritz method furnishes a sequence of parameters 
0^ which diminish in many cases so rapidly that only a few 
terms of the series (2-1) suffice to determine the frequency 
with the required degree of accuracy,

Timoshenko (25), p. 371, ,while investigating the 
vibrations of a string, found that with only one parameter 
0 ,̂ the result for the fundamental frequency was 0,66# 
higher than the exact frequency. By taking two _such para­
meters, the error was reduced to less than 0,001#, When



25
three terms of the expression 0*1) were considered, the error 
for the third mode of vibration was found to be less than

2
It is seen that by using the Ritz method, not only the 

fundamental frequency but also the frequencies of higher modes 
of vibrations can be obtained with good accuracy by taking a 
sufficient number of terms of the expression (2-1), The major 
advantage of the Ritz method lies in the fact that it pro­
vides approximate solutions of the extremum problems in those 
cases where an exact solution of the characteristic-value 
problem becomes too difficult or is not practical. The method 
can also be applied with much advantage to the frequency cal­
culation in less difficult problems, since it requires less 
effort than the solution of a complex transcendental equation.

The accuracy of the Ritz method deplends largely on the 
proper choice of co-ordinate functions. These must be, of 
necessity, "admissible;" that is, they must satisfy the so- 
called "artificial boundary conditions." (See 17). These 
two types of boundary conditions are also known as "geometric 
boundary conditions" and "dynamic boundary conditions," re­
spectively. In case of plates, the deflection and slope re­
quirements constitute artificial boundary conditions, while the 
demand that the second or third derivatives vanish at the 
boundary is a natural boundary condition. Prom a practical 
consideration of the rate of convergence, it is desirable to 
satisfy the natural boundary conditions if possible. There is
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no other restriction as to the form of these functions. However, 
If these functions are orthogonal, a considerable simpli­
fication Is achieved In the evaluation of energy expressions.
For this reason the Fourier series play such a paramount role 
In the applications of the Rltz method In the theory of elast­
icity. The use of these series, of course. Is limited to 
problems whose boundary conditions are In accord with the 
boundary values of the co-ordinate functions of a Fourier ex­
pansion.

It should be noted that the Rltz method does not pro­
vide the means for gauging the accuracy of the results ob­
tained. While the accuracy Is obviously Increased by taking 
more terms, the only way to judge the convergence of the series 
Is by comparing results obtained with Increasing numbers of 
terms. However, this lengthy process was shortened by Trefftz 
(28) who. In 1935» supplemented the Raylelgh-Rltz method by 
establishing a bound of the characteristic-value problem.
This permits one to enclose -̂ e solution between an upper and 
a lower llmlt-an Important criterion for juding the accuracy 
of the solution. The physical Interpretation of the lower 
limit solution, was mentioned In Chapter I where It was applied 
for establishing the buckling criterion of a plate. The 
assumed displacement functions of the plate did not satisfy all 
the edge conditions, and consequently the analysis was carried 
out by the Lagrangean Multiplier method. (SeelO),

Thus the Rltz method Is not confined to those functions 
alone which satisfy the boundary conditions, but may be ex-
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tended to such problems where all the boundary conditions, 
are not satisfied by the assumed functions. In this case, 
the problem reduces to what Is generally known as the "con­
strained extremum."

Determination of 
Oo-ordlnate (characteristic) Functions 

Most of the work on vibrations of sandwich plates has 
been limited to simply-supported cases because for these 
edge conditions, co-ordinate functions are mere sine and co­
sine series which not only satisfy the boundary conditions, but 
In addition have orthogonal properties. Therefore, the Integra* 
tlou of the energy expressions Is simple and the final results 
can be expressed In closed form. For plates with arbitrary 
edge conditions, other means must be employed for obtaining 
the co-ordinate functions.

For the purpose of meeting the edge conditions of a 
rectangular plate In two perpendicular directions, x and y, 
the co-ordinate functions of two beams, one having the same 
edge conditions as those of the plate In one direction, say 
X, and the other having the same edge conditions as those of 
the plate In the perpendicular direction y, are Introduced.
If these co-ordinate functions are based upon the exact con­
figuration of the vibration beams, the results obtained from 
the Eaylelgh-Eitz method are highly accurate. Therefore, In 
search of co-ordinate functions. It Is desirable to seek the 
solution of the differential equation of a vibrating beam
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•with arbitrary edge conditioiiB.

The governing differential equation for a freely vi­
brating beam of uniform cross section is given by

^  =   (2.22)
The general solution of this differential equation is

w = ooshX^ + Ag COS X z + A-j sinh/^ z + Â ^̂ sin A z j •

ĵO sinpt + D cospt j .....,.(2.3) 
where = f » X  "being the shape parameter, and p theEXcircular frequency. Since the boundary conditions are time- 
independent, they can only be reflected in the expression in 
the first bracket of (2.3)
A-j cosh X x  + Ag cos X X + A^ sinh X z + sin X z = X(x)

...... (2.4)
Since XC>̂ ) is a function of the co-ordinate x which determines 
the shape of the normal mode of vibration, it is called the 
"shape function" or "normal function." The constants Â  are 
determined by the conditions of restraint at both ends of the 
beam, resulting in a set of four linear homogeneous equations. 
The solution of such a system demands that the determinant of 
the coefficients vanish, which furnishes an equation for the 
shape parameter X , the only unknown in the equation.

This equation is, in general, a transcendental equation, 
having an infinite number of roots X^; (n = 1, 2, ...) 
which are referred to as the "characteristic values" of 
the parameter Xn &iid define an infinite number of frequencies.
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Substitution of one of the characteristic values An into the 
normal function (2.4) yields four equations for the four con­
stants A^, and A^^. From equilibrium and com­

patibility considerations it follows that the rank of the deter­
minant of the coefficients of these equations is three, so that 
only three independent equations in four unknowns are available. 
From these three equations the ratios = A2jĵ /Â ,̂ =
A^g/Aj^ and A.ĵ  ̂= Â ^̂ /Â ^̂  can be determined, and the solution 
(2,4) assumes the form

\  =[^1n (oo8h + Ag^ cos + A ^  sinhX^z +
^ 4n sinX^z^j.,............   (2.6)

where remains an arbitrary constant.
The mode shapes can, therefore, only be found within 

an arbitrary constant by using the end conditions alone; 
are called "characteristic functions" of the homogeneous dif­
ferential equation (2.2) associated with the particular bound­
ary condition of the case considered.

For a simply-supported beam, the equation (2,6) assumes 
a very simple form, (see Timoshenko 25)* The normal function is 

= Ai%i (sinX^z) 
where X̂  ̂= ̂  and the frequency is given by

K. J El/f
For other edge conditions, the characteristic functions 

retain the same form as given in (2.6), Appendix (A) contains 
tables _giTring the values of the characteristic functions -and
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their first three derivatives for each of the first five modes 
(n = 1,2,3,4,5) of three different types of beams, namely.

Table 1___Olamped-Olamped beam |
Table 2___Olamped-Pree beam |
Table 3___Olamped-Supported beam|______________  ^

These tables have been prepared by Young and Pelgar (29) at the 
University of Texas.

Por further reference, equation (2.6) is used in the form 
(x) = cosh — Cos — 0(0 ̂ - S»»'

where ( ^ ^  is the shape parameter whose values can be directly 
read from Appendix (A),

The characteristic function for a free-free beam is the 
same as the second derivative of the characteristic function 
for a clamped-clamped beam, and the characteristic function 
for a free supported beam is the same as the second derivative 
of the characteristic function for a clamped supported beam. 
Therefore, the values of the functions for these two additional 
cases can be obtained directly from the tables and their first 
mode shapes correspond to n = 3. The only type of beam not 
included is the supported-supported beam for which the character­
istic function is ordinary trigonometric sine function.

The orthogonal properties of the characteristic func­
tions are discussed in detail in reference (27) and the results
reproduced here:

■( ,
%  Xnd.% = ( for n = m

0 = 0 for n ± m
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The second derivatives of these functions are also orthogonal 
and satisfy the relations,

A dx =(Ai for n = m
I ^  (7)4 ^ ^

= 0, for n ̂  m
With the exception of and Xg for a free-free beam for which 

Î ̂ o r'- a 2
dx =0

It should be noted that the, integrals of the type

do not in general possess orthogonal properties. The evalu­
ation of such integrals for different end conditions is given 
In Appendix (A).



CHAPTER III 

THEORETIOAL AJiTALYSIS

In chapter II a method of analysis based upon the 
Raylelgh-Rltz approach which utilizes the energy criterion 
for the characteristic-value problems was presented. As an 
aid to understanding, the characteristic functions of a homo­
geneous beam with arbltreury end conditions were formulated to 
Indicate their application to homogeneous plate problems. In 
this chapter these characteristic functions are employed In 
the Raylelgh-Rltz method for obtaining the natural frequencies 
for a freely vibrating sandwich plate with arbitrary edge con­
ditions.

The coordinate system used In this analysis Is shown 
In Pig, 2a, The ares are oriented such that the "transverse" 
and the "ribbon" directions of the core are peœallel to the 
X and y azes respectively.

The analysis commences by establishing the strain and the 
kinetic energies of a vibrating plate. Owing to the peculiar­
ities of the stress distributions, the energies In the core and 
the facings are derived separately.
Gore:

In developing an expression for the strain energy In 
the core, the displacement functions u°, v®, and w® In the

32
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Z; y, and z directions are assumed in the following form: 

oc oo
Yin(y) 0jnî(2:)f(t)

rn n 
Oc oc

m /7
OC oe

= Z&m(^) ^3n(y)Ymn(z)f(t)^  n
where are functions of x only; are functions of y 
only, (i = 1)2,3); and are functions of z only;
and f(t) is a harmonic function of time. The choice of the 
functions X^^ and Yĵ  ̂depend upon the edge conditions. In 
choosing these functions, use is made of the characteristic 
functions discussed previously and given in Appendix (A) for 
various edge conditions, For example, in the case of a rectan­
gular plate clamped along the edge x=0 and free along the edges 
x=a, y=0 and y=b, the characteristic function for a clamped- 
free beam, given on page lag , should be used for X ^  and 
the characteristic function for a free-free beam, given on 
page I07, should be used for Ŷ ĝ , For consistency of notation, 
when one of the characteristic functions is used for X^, 
is replaced by a; if it is used for Ŷ ĵ , f is replaced by b 

and X is changed to y.
The functions X ^  and Y^, (1 = 1,2) are then deter­

mined by using the tables in Appendix (A), To satisfy the com­
patibility conditions in the plnne of the plate In addition ta 
the "geometric" boundary conditions, the following replaoements
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in the equations (3*'«) ‘become necessary: 

is replaced by 
Xgjjj is replaced by X_^ 

is replaced by 
Yg^ is replaced by Y ^  

where and Y ^  are the first derivatives of X ^  and Y^a 
with respect to x and y respectively.
Mating the above substitutions and discarding the subscript 35
the displacement functions (3.1) assume the form: 

oc OP
?n(y) ^mn(z) sli^t

oc oc*
V° = ^n(3̂ )<ÿmn(z) sin$\,ĵ t ...(3.2)

oc oe
= ^ ^ m ( % )  ^n(y) Ymn(^) sln^t 

whereQjjmis the natural frequency of the m^^ mode in the x dir­
ection and the n'̂b' mode in the y direction.

To check the validity of the displacement functions 
(3.2)4 an example of a rectangular plate clamped along the 
four edges is considered. The edge conditions of such a plate 
with sides a and b are:

w° (Ô y) = w® (a,y) = w° (x,0) = w° (x,b) = 0

||°(0,y) = 1|°(a,y) =|S®(x,0) ='|2°(xpb)=0 ...(3.3)

u° (0,y) = u° (a,y) = v° (x,0) = v° (z,b) = 0
COjb)
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Using the characteristic functions for clamped-clamped bemns, 
in both directions, and changing f to'a'for and f to b 
for X »̂ it is obvious from Table 1 of the Appendix (A) that 
all the edge conditions in (3.3) are satisfied.

For the determination ofv^^^ the displacement is 
assumed to vary linearly over the depth of the core. That is, 
V^(z) in the third equation of (3.2) has the form:

“ \ n   ̂®mn ,,.(3.4)
where Ap,n and are parameters to be determined. For a core
which is rigid in the thickness direction, \l^(z) must be in­
dependent of z and consequently B^^ must vanish. For this 
reason, and with no loss in generality, equation (2-13) is 
re-written as:

where is the modulus of elasticity in the z-direction of 
the core.

The functions and̂ ĵ ĵ  are determined in accordance 
with the assumption of uniform transverse shearing stresses 
in the core, i.e.,

"àîz- = 0 ...(3,6)
~bx.

Expressing the shearing stresses in terms of shearing strains 
yields

...(3.7).
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Substitution of the displacement functions into (3~T6) 
leads to

®mn^^^ ° ••.(3.8)
where and the second, and the first derivatives of

and y/ynn with réspect to z, respectively* Integrating
equation (3~'î8 ) twice with respect to z, and making use of the
relation (3-5), the following expression f o r i s  obtaineds

= ^ n  + ^(^mn-4nn) " ^  | f ^  • • • ( 3 . 9 )

where and are the constants of integration.
Thus the first of the equations (3-2) takes the forms*

m ft L V iZ f

In an analogous manner, \p is given by

tea
Eg binj L u trm

• ••(3 .10),

V® -

...(5.11)
where and are constants of integration.

Since the parameters E and in equations (3.10) 
and (3.11) are associated with shearing stresses^ J.t will prove 
advantageous to represent them as Ê T, and , respectively,

Gzz Gyz

«■See footnote on following page.
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Re-wrlting équations (3*5), (3.10), and (3*11), the 

displacement functions in the x, y, and z directions ore:

f Km, + ^  _ 4m.) . W
m  n L J

SL ̂
rC

yz z
*..(3*12)[sisf&atj

w® = Z  Z4n<*)^nty) [ Ama + =gn O L -“2 J

^Employing the same assumptions as Ericksen, u® in equation 
(3*10) reduces to;

«® = V n  [ W  +

Observing that " 9 ^ *  equation (3* 10a) becomes

u® = -E(z-q) provided (l - J^)= K and _ _
4m' C - C

This is exactly the z displacement function assumed by Ericksen* 
Hence q may be regarded as an arbitrary parameter whose value 
can be determined by minimizing the energy.
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Straln-Energy Considerations 
The total strain energy of the system consists of

(1) strain energy of the core
(2) energy due to membrane strains in the facings and
(3) energy due to bending strains in the facings.

1. Strain Energy in the Core 
The strain energy 7° in the core in accordance with 

the assumed state of stress is given by

Using the stress-strain relations derived in Appendix (B), 
equation (3.13) takes the form

7^
= i f '  I W |

and observing the relations,

' 4

equation (3.14) becomes
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■ ' 4  f f p ( W ‘ ‘ 4
7

2

4 .  (Ifi .||1) ' cLzdydz..... (3.15)

The evaluatloii of the various quantities in equation (5.15) 
is accomplished in the following manners

Let I§ = ̂  S§

^2 = | e |  j[ [( %-z)

I§2 = i 8§2[[ (

1^4 = 1 ®y^{, [ s i * ^ J

Iss = 5 I  [ ̂

With the displacement functions given in (3.12), the 
above integrals may be expressed ass

&  4  i / T  S
o o o

Because of the orthogonal properties discussed previously

l| = i g§ ( a ) ( b ) ( c ) ^ g W ^  sia^Q^t
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Il4  S2 /M /?
i2Q.s l n 4 ) Z m a t  d x i d y d z

_1 g>

abc.

J . 000

4 = 1  gi(a)(b) Z 5 ^ f

Referring to Appendix (0), I32» I4 amd I5 ,yield;

oe oc O g B V T
^324 832(a) Ê E  |f

J z  z
O

•where 
b
j ^  = '-f

o c  OC

■ 3 2 4  «k( )̂ <tf [ I  5 Ç f  %?

a b c CO CO
; v . ( ^ ) ] dxdydz sin^Q^^t

0 0 0
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T br / /±a&= j dy

I
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2
aojj

/»» <?

* ï î . t ¥ ( ^ X ^  ^ry> Lr̂ z
where

2nm

& Ea
%erefore total strain energy in the core is:- j oc 00
7° = i

+ g| tafe 
12

8| (̂ tc)

®mn ®-

+ G®2 (ac)
[ s S ^ (  ÿ

Oe oo oe

+ Gzz #» /) ''xz n fs> xz xz 4

...(3.16)
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2* Strain Energy in the Facings 
Due To Membrane Strains

The strains in the middle plane of the facings are re­
ferred to as membrane strains. Denoting the middle plane dis­
placements of the upper facing f® in the x,y, and z directions 
by u®", V®, and w®’, and the corresponding middle plane dis­
placements of the lower facing f^ by u^, v̂ , and re­
spectively, the following relations between the middle plane 
displacements of the facings and the displacements ; of the core 
exist:

z=0

V® = (v® + j. f® 1
^ àj \

= fw‘=l•- J z=o
u^ = [u® - ^ j ...(3.17)

w^ = fw° 1 ̂z=c
The relations (3.17) are based on the assumption that the facing 
displacements In the x and y directions vary linearly through 
the facing thicknesses and that the facing displacements In the 
z-direction are constant over the thicknesses. Using equations
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(3.17), the resulting expressions for the linear and shearing 
strains in the upper facing are:

Z = o

I . . .

= r ^  + f^ (^.%) 1
[Ô7 Ô3dy ax J

where and represent the linear strains in the x and y 
directions, and represents the shearing strains.

The corresponding linear and shearing strains of the
lower facings in terms of the core displacements are

...(3.19)

^ _ f  ̂ (^wl)oy bybx axVmxy
Upper Pacing. The strain energy associated with the 

membrane strains in the upper facing is given by the expression:

& J(«ieSx  (3.20)
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Expressing stresses in terms of strains, equation (3.20) takes 
the form:

2t
dv (3.21 )

Denoting _
_ f 2 _ by at, 3 _  by d|. aad ÜîSfl»^ by d* .

1-v^Ç
the equation (3.21) reduces to:

^m = ) + ^ts(^mx)(^my)+Gxy(Ymxy)
'' ...(3.22)

The evaluation of the various integrals in (3.22) is accomp­
lished in the following manner:

Let = i j”df (6âx)^âT, j|j= ̂  l^df (ely)^dT

Ltsm- ̂  ̂ ̂ ts(̂ mz)(̂ my) ;  bud Ijm = *̂ xy(K̂ iy) dv*
Substituting the relation (3.18), the above integrals 

take the form:
a b (LpOCoc

^im =
a D U.r'* OC^ I .1?

- i •; f f f E H » - " % - s

2 iT
2

I ̂ ^(Vi+ 2 dxdydz sin2Qjjĵ t

a b o iroe oc
OR ifm = 1

O 0 -f^



lom = i d?

îam = I ̂ f2 rYf [tpn ( V  + f\n)]
I I I  ^-L-L J0 0 -f

* #*Annj]d:ayas sln^Q^^t

^3m = 2 ^zy r  r  t̂mn'̂ '̂toi'*'̂ \m) dxdydz Btn^-n t
'0 "D - .'*’mn

Employing the results of Appendix (0), the above integrals 
reduce to: opoç

Im = i dfabf^cL

Igm = & 4

% )  K n  * § \ i ]

• ;■;-zB^)*[v‘ fvf-l:) mn

•••• (3-23)

t ...(3-24)

r  - #  ( W  2 4m) ( V *  I ̂ mn’
QC ̂  OC

4  %  (W  f4m)(V- f v >
m ̂  p

•̂ L̂ / -S^ (I<mn+ Amn)(Kmq+

§*^P»)(%a?+ f V ’
m ^ p, n ̂  Ÿ " ••♦(3-25)
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.oc oc

OC oe OC

Pm p 
oc %

+
n + ^

-,

+/ ■ ̂  (̂ n.'*‘̂ii+^ ̂ n  ) (  ̂I
m n p q a b [ o/\  ̂ Jm ̂ p, IslnfSZoat ...(3-26)

In short, the total energy in the upper facing due to mem­
brane strains can be represented by

T@ = (i%m+ igm + lîam + !#«) ...(3.27)
where the expressions for ftp,, 1̂ .  I^ggand are given by 
eg.uations (3.23), (3.24), (3.25), and (3.26), respectively.

Lower Pacing. The energy associated with membrane 
strains in the lower facing f^ is :

Th = i + 6 ^ e ^  +7;SyYÜ^y) ...(3.28)

Employing stress-strain relations, equation (3.28) is written 
in the form:

vS = i f|di(€^) + dg(6 Sy) +^12(^m%)(^my)(^^(^mzy)
^  ...(3.29)

4 ç  " "
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Let

iim = 4  i L  = ij^a‘( e ^ ) 2dv,

:l2m = lj/l2(emzl(6 ^y)dv and = ij^S^(lf>^^)^dv

Substituting the relations (3.19) for strain components, the 
above integrals are expressed as;

Ilm = i ̂ 1
a b o+f , « ,
j j  j   ̂ 2

pOO
2 B.

1m

f dxdydz sin^Q^j^t
, i M

_ |  (c+f^) B^j j^dxdydz sin^Qg^t

mn
Eg

2m
- ̂ na%) - z^ ^mi

G^z e|

1 jpb/.
2

Î 1 '— Î' l-âniTi + Z M-'J i j
Ë T  1 z=cj

dxdydz sin^^^^t

a h  c+f^ oc oo ^ ,
+ 2 m  - (c + |“)A^rc 2'yz

- I (c+f^) Bmn|j dx dy dz sin^Q^t
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b fbpOC OC
lïs m  = i  4 i2  f  ff ] W  ^

Jo J)Jc ̂ m n '■ Gxz

- I .o+fk) .2 W  J

y p m ^ n  ( W  0 %  - (o+ l'*) 1 (0^ ”) ^ ) ]  .
m  V  (. Gÿz 2 gO JJ

txdydzl s i n ^ n ^ t

-2(c+ l*̂ ) Aĝ -̂o(o+fT3) dxdydz sln^Omit

Referring to Appendix (G ), the evaluation of the above in­
tegrals yields:

I Ï „  = 1  abd? f ” £ p % f  o
xz

2
-  (c+ 2 )̂ Agg -̂ g. (c+ f^) sin^fim n . . . ( 3 - 3 0 )Ez J

oe oe

l|a = I 4z abf" I  % )  [ ( W Uyz

-  C(c + f^)  sin^Qjj^t . . . ( 3 - 3 1 )
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12m ~ S z
(0+ §' Itt

OC oc OC
r T T ^ i m

&XZ - (=+ I*” )-V-|( ■>+*’’> ^ 1  •

fl’pn +® - Co+ I ) Apn - § (c+f'’)
oC' OC 0Û

mfP, nf<f

1 ,+ c
G^z -  ÿ  } sin^Qmn^

...(3-32)

3m ^  V V h m  Izm
I ^xz ^JZ

. 2(0. oCo.f”) Ï -

I^n+I:pii+ ° ( ^  + ^ )  -2 (c+l )A -c(c+f^) ^«5a tryz -“z
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00

+

TZ

y  of OP ar>

/»ity

+ ̂ ) - 2(o+§ )Amq-c(c+f^) 
I ''xz ''yz 3% sln^mat

...(3,33)
The total energy of the lover facing due to membrane strains 
may he v^itten as

4  = (4k + + 4 %  + ...(3.34)
vhere the terms , I ^  , , and are given by equations

(3*30), (3.31), (3.32), and (3.33), respectively.

3. Strain Energy in the Facings 
Due To Bending Strains

The strains due to bending of the facings about their 
own middle planes can be determined from the slopes and curva­
tures of each facing. Since the streilns due to bending vary 
linearly and sure zero at the middle planes $ the bending -strain 
in the x-direotion of the upper facing is:

vhere z^O Is the middle pleine of the
facing f^.
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Prom Pig. 3(b)

z^=z+ f2
Therefore

c - ' »-Bx

Since

I T

Z =̂rO

Æ

z^=o

( " " U  - K L2  zîkû_ -

Pig. 3(b)

4
f-.:

...(3.34a)
Similarly, the bending strain of the upper facing in the y- 
direction is:

“By ' ^ a y" z=o ...(3.34b)
The shearing strains, G§iy ^  the upper facing are now ex­
pressed in terms of the core displacements. Observing that 
u| = and v| = z^ where u| and Vg are the de­
formations in the upper facing in the x and y directions due to 
bending alone,

since q. ^
For the lower facing, f^, the relation between z and 

z^, where z^=0 is the middle plane of the facing f^, is:

...(3.34c)
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z = (c+ 2 ^ ) +
or

Z
'h 'P »Z =r (z—C“ ly )#

Oonseg.uently, the strains are

eL = ...(3.35)

'(’Bzy = f  )<^>z=o
ÏÏT)T)er faoing. The strain e n e rg y  in the upper facing due 

to bending strains is written as:

= ^||^di(Êj^) +<i|(€By)

let

^12B = ^3B = 2
Substituting equations (3.34b), and (3.34c) into the above 
quantities, the following relations are obtained:

a b 0 r oc Of
IlB= ^ l  /^r f Î dxdydz sin^Q^^tso m  n z=0j

O 0 -I
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‘•2B 1̂ )] dxdydz
0 0 -fi

I3B- 2^iy
or
ra

>t£ÿ”Vmn]
OC oc

mn“ 
oc 00

...(3.36)

...(3.37)I|3 = 1 a|a. L(f»)^ | S ^ > ^ 4 x

<2B = K 2 % > < ^ > Ç Z ¥  ¥  4 . 4 4 4 - % ^  ^ v

v f 'f v
■" 4 4 4 - ¥

n#q

m^p

'-F- -i^nAnq
m#p,n+q

4=  |«^(&) ¥ 4 + % % ^  ^ v

...(3.38)

-3B- 2"^ 'Î2 
oc oc 00

Imm Im
Ocococ OcV

nfv

a b -f^pnVq
...(3.39)nfcL

The total strain energy in the upper facing due to the bending 
strains is no-s? given by:

V| = I?B + i|b + IÎ2B+ i|b ...(3.4T)
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where Ifs» IÎ2B correspond to the equations
(3.35), (3.37), (3.38) and (3.39) above

Lower Facing. The strain energy in the lower facing 
due to bending is:

h "^s(^By) "*̂12(^Bz^^^By) +^zy(^Bzy)
'V*- ...(3.41)

Denoting
iiB by 1 j i 2 B  by 1 j a2*%y)"dy,

Il2B by ^  ̂1 2 )(^By)^y 3̂B

and using relations (3.35), the following expressions are 
obtained;

b
1̂B=Ŝ 1 ^azayazsln^t

oc OC

2B = H Î  [f |( z-o-^h mn*
*h “h “k L Z JO 0 C OÇ̂ OÇ»b

lVllVn< Er. JZ
OÇOO

|̂b=4 ® ^  j  ' ĵ *4( z-o-^" ) ^azaydzsln^t

with the results of Appendix (C), the above Integrals yield:OCOg
^1B=(^1 ...(3.42)
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o c  OQ

w  oo

5 5 5 ^  ( V*°^)*

, n «^> +«,“2 H 2 ( ) I V % ?
OQ 00 Op

Jfflp ^pn
""Eg

oc 00 oo

oc 00 oc op
^ 9 % ^  slq2(%nt • • • (3.4Wa b P^ Eg niq jjc
mfp,afq .ec

L)'

“* r-T 9 **r '±

^3B=
00 oc oc

^ 9 ^  ¥ < v .« ^ ) ( v « r f  )
m»r z

n#q
v w v

* 4 4 4 4 ^  ( V + o ^ ) ]  ... (3. W )
«P. n.q ^  ^

The strain energy in the lower facing due to bending 
strains is now expressed as;

■*" ^2B '*’ ^3B ...(5.45)
where J^g, l|^, and I^g are given by equations (3-42),

(3.43), (3.44) and (3.44Cl)respectively.
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Total Straln-Energy

The total strain energy of the system is obtained by 
adding the results of equations (3.16), (3.27), (3.34), 
(3.40) and (3.45): 00 oc

« °  w Z Z• / Jnn^^n\2,ac^ +Î2

+G"yz

00

[“ Î 5
OQQp 00

D Qfz E|
00 op

+g!zz

n*q
00 (30 OQ

# p
op q q OQ

^00%

oooeoo

2 pn
# P  OQ ooy

n+q
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ûO 00 oe 00 o cT

e/i* â ' ' ̂ '̂ iudApu 
co oc 00 00 y

-^mii4nq+ m -^^pn^mqj
m p.n q

a b
n+q ^  ̂  -- ^  ̂

*^12 ^ ( 4 m + ° ÿ ) '
oû oe 00

i f  ( w |a ) ( v « ^ )
4 1  «oo

44ĝ S Î  if if(4m«̂ )̂  
*ÎS if if (Â «|̂ ) ( V«ÿ)
Btï̂p
00 oq^_

I I

n + q
'z ®z

" ^ i î ? ? i f  i f ( V « ^ > < V « ÿ ^ ) l  ...(3.46)z 2 J

Kinetic Energy 
The total kinetic energy in the vibrating system con­

sists of translational and rotational components- Since the aim 
of the present investigation centers on the low-frequency range.
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the rotational energy components are ignored because their in­
clusion will not significantly affect the accuracy of the re­
sults, Similarly, the energy components due to translations 
in the plane of plate are insignificant and can be neglected. 
Therefore, only the kinetic energy due to vertical translation 
is accounted for in the present analysis.

Considering the kinetic energy dT of a differential 
element of the sandwich plate, the energy due to vertical trans­
lation is :

dl = ̂  |(dnP)(y)^ + {dm’=)(w'’)® + j ...(3.47)

where the superscrips a, b, and c refer to the upper facing, the 
lower facing, and the core. If y  ̂ and^ ° are the mass
densities per unit volume of the upper facing, lower facing and 
the core, and considering )̂ -o w^=(w° )g_g, equation

(3,47) produces

f I (^°)z=oj dv^+^|(w^)| dv°
,\,(3.48)

By means of the displacement functions (3,12), the terms of 
the above equations can be expressed as;

2 ^  12
/f %  [ZSm^nAnn] dv^Cos^t

o e  O c  

OC o c

pS [(y )]
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The total kinetic energy *T* due to vertical translation of 
the vibrating plate is, therefore, given by:

 ̂- iQmrv
a b 0 £0

i m  I0 0 -f& n
dxdydz

a b c +f̂ .

* 1 1 1  f M  h '0 0 0

+ J J ÿ ) ]  axdydzLosSQ^t ...(5.49)
o o o "

Observing the orthogonal properties of 3^ and and carrying 
out the indicated integrations, equation (3.49) yields:

I=iQ^^(a)(b){ T  V\ i—à m nm n
oc oc

' I Fm n
^mn.1_2/^mn\2 cos^n^t ...(3.50)

Frequencv Criterion.
TbA vibrating, plate la assumed, ta be a  conservatlve

system, so that the variation of the total energy associated 
with the arbitrary displacements must vanish» These dis­
placements are defined by the parameters A^, F^n* ^n>

and thus the parameters ..., must be chosen
so as to make (̂ ffiax“̂ max^ = 0. This leads to the following set 
of equations:
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■(V,max ^max

max“^max

-^(^max'^max

à Mr _Tmax max

— ^^max”^max
Knjn
*5 (V _m 
Lmn max max

= 0 

= 0 

= 0 

= 0 

= 0

= 0
..»(3.51)

When the expressions for and fjaax» given by the equations
(3.45) and (3.50) are substituted into the equations (3.51), 
a system of six equations containing the parameters 
is obtained. It is observed that these six equations contain
series of the form, 

oo oc
Z  V ’ • • ♦ (3.52 ) •

p" * P
For a practical solution, only a finite number of terms in 
these series need by considered.

The convergence of these series depends largely upon 
the proper choice of the coordinate functions. Only the first 
term of these series is considered here because (1) the present 
analysis employs the coordinate functions "which describe the 
mode gnrat.i nn exactly., _and (2) hecause of the prime
interest in the low-frequency range. This reduces the system 
of equations (3.51) to the following six aquations in-six para­
meters, Ajjjjĵ, » ^n® "̂ mn*
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'36 f^c f m  £s£ dt_+ ^  E m
L a2 a2 b2

^45 =

'55

CfP £s® %  dïp+ 2Gb 3 m  
?  b2 ^  a2 b

isn] >.2 J

'56

2f^[l# V  + G|y ̂  I^] + 2fb [(^)\ï + G ^  lag î ^ j

^a [ Jmm Jnn ^a 2 G^ ^  Innl ^ ^b [ j ^
L a'̂' b̂  37 2 v2J I «2 ,2

b
‘12

°66 = 
C46

Xii 

Xj2

22

+2G^ m  3ml
^  a2 b^J

2f- i a  ̂ ] *  2f^ % )

= 2 j f ° 0  + f V

63 L

For a non-trivial solution of the system (3*52) the 
determinant of the coefficients A , B , ... 1 must vanish.mn TtiTi ynn
This condition of a vanishing coefficient determinant constit­
utes the frequency criterion.
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Hence

^11 "'̂ inn X 11 ^12“0  mn \ 12 '13 "l4 "15 "16

°12*iQ̂ mn \l2 ^22-Q  mnX22 O23 O24 O25 O26
°13 "23 "33 "34 "35 "36

®24 O54 O44 O45 O46
°15 O25 O35 O45 O55 O56
°16 026 "36 O46 O56 066

...(3.53)
The evaluation of the determinant yields a quadratic in
That is, for each mode shape which is characterized by m-half
waves in the x-direction and n-half waves in the y-direction,
there are two values of « These two frequencies have thea c mn
following significance:

Suppose ( ). and (O^ ) are the two frequencies-* '■ mn I  ̂mn c.
for the m-n mode with (O^ )« being the smaller of the two. ̂mn 1
This lower frequency is associated with that type of
motion in which the two facings and the core all move in 
phase. This corresponds to the motion of the neutral plane 
and thus (.Q̂ Ttm ) i the frequency of the normal mode of 
vibration. The practical interest of the engineer centers on 
the lower frequency, ^, since for sandwich construction
of the usual propnrt.1 ons -and physical properties, the value af 
(̂ ^mn^2 GO much larger than that the corresponding
vibration mode is hardly encountered. The larger frequency

is associated with the "face-wrinkling" of the .sand­
wich plate. The mode shape given by (O^ )« may be attributedmn ^
to a motion in which the two parts of sandwich, above and 
below the neutral plane, move independently.



CHAPTER IV

APPLICATIONS AND DISCUSSION 
In Chapter III, a theoretical analysis of sandwich 

plates was developed without restricting the edge conditions 
of the plates. The analysis led to the frequency criterion in 
terms of the determinantal equation (3.53). In the present 
chapter this equation is employed to predict the frequencies for,

(1). sandwich beams
(2). solid plates
(3). general cases of sandwich plates.

In spite of the simplified form of the frequency equation
(3.53), the resulting quadratic in^^^ is too complicated for 
formulating results in parametric form. However, before at­
tempting a numerical evaluation of the quadratic, the analysis 
is validated by comparing the known frequencies of solid beams 
and plates, with those of sandwich structures reduced to homo­
geneous and isotropic beams and plates.

1• Sandwich Beam 
In reducing the sandwich plate to a sandwich beam, the 

parameters Hg^ and vanish and the system of equations (3.52) 
assumes the form

67
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^11”0 ^m^11 ^12“n^mAl2 °13 Ol5

®12~Q^mAl2 ®22" Q  mA22 °23 °25 Bm

°13 °23 °33 0
35

F
m

"15 °25 S 5 °45

= 0

...(4.1)
The coefficients Aijs other derivations pertaining 
to sandwich beams with arbitrary edge conditions are given in 
Appendix (D). The frequency equation (4.1) is applied here to 
a simply-supported beam with isotropic facings. The following 
variations in the physical properties are considered.

Case (a):
Eg oo G^g = Finite

By means of this condition the effect of shear strains 
in the core can be determined. With approaching zero, 
equation (4.1) yields the following frequencies:

n"m = (1-V^)[p®c4f(f^+f^)] F mgfg-fbcTTgE
(f*+fb)a2(1-\f)G0gJ

...(4.2)
Where m is the mode number, and Ip + are the moments of
inertia of tl̂ e spaced facings about the neutral plane.

As Gxz -goes to infinity^ the -freqnenclas of vibration of 
a sandwich beam are the same as those of a homogeneous beam 
whose moment of inertia is equal to the moment of inertia of
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the spaced facings of the sandwich.

The expression
c Æ ) 2 _ f î î ^  5^ = S  ...(4.3)

(f&+ft)(l--f )G%z

represents the shear effect in the core. For small values of
IT
1 +m2s
J

m, the factor Ip in equation (4.2) is small compared to — ï-

The factor Ip represents the contribution of the flexural stiff" 
ness of the individual facings to the over all stiffness of 
the sandwich.

The shear effect can best be illustrated by means of an 
example for which

E_______  = 1p5
Glz(l-v^) 4203

with these substitutions the expression (4,2) takes the form:

(1--i?)[f°c+f(|̂ )] I 6000 2000 [l"Hn2(0.0119)
...(4*4)

When the expression inside the brackets was evaluated
for m = 1, 3, and 5, the following results were obtained:

mode number oS^-flnite difference
m = 1 0.0605 0.0599 1.18#
m = 3 0.0606 0.0543 10.60^
■m = 5 0.0606 0.047 28.72#
It is seen that even in low frequency range the effect

of shear is significant and becomes more pronounced with the
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increasing mode numbers.

If the core and one of the facing thicknesses are as­
sumed to be zero, then the frequencies obtained from (4,2) are 
those of a simply-supported solid beam and are given by,

where Ip is the moment of inertia of the facing about the neutral 
plane.

Case (b)i oo, Eg = finite
This condition demonstrates the influence of the core 

elasticity in the thickness direction. Even under the as­
sumption of oSg—► 00, the resulting quadratic equation in

Is too involved for a parametric representation. How­
ever, the results of this case are fully discussed in Appendix 
(r). For each mode, two values of the frequency are obtained.
The mode corresponding to the smaller frequency is the normal 
mode and that corresponding to the larger frequency is the face- 
wrinkling mode. The mode shapes of the fundamental frequencies 
are shown in Appendix (D),

The influence of core elasticity in the thickness 
direction is shown by the following comparison:

C _ Qmode number Ez — Ez = finite , difference
m = 1 104,820 X 104 104,485 x 10^ 0.32#
m = 2 167,712 X 1o5 167*045 z 10^ 0.40#
m = 3 849,042 x 105 843.845 x 10^ 0,61#

Dbvlously, from the aompariaon -of Case 4a) -and Oase (b),
the effect of elasticity in the core is negligible An comparison
to the transverse shear effects.
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2. Homogeneoua and. Isotroulc Plates 
The réduction of a sand-wi ch plate to _a homogeneoiia and 

iaatropic solid plate involves the fallowing simplifications ;
(1). The core is considered rigid, necessitating that E% 

approach infinity, so that the elasticity parameter of the core
goes to zero,
(2), The transverse shear effects in the core are con-2z

sidered insignificant, requiring that and approach
infinity, so that the parameters ^mn and ^mn become zero,

G%z ®yz

With these modifications, the frequency criterion (3*53) 
reduces to:

°11 “ n^mnXll °15 = 16

®15 °55 =56 = 0

Ol6 =56 =66
• ,.,(4,6)

for homogeneous and isotropic facings of the same
material and equal thicknesses

f* = ft = f; d? = d| = d^ - - (i-»4
at, = a}L = G = ■ s

2(I+V )

Considering a square plate of length “a" jd-th all adges-clamped, 
and introducing the above substitutions, equation (4,6) yields
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the following value for the fundamental frequency:

i|- 2=  E {h  + [ I f3+12f2o+fo2 II ...(4.7)(l-̂ )â  (fCc+2ff ) L" J
E alÉlJLill) L )  + f(o+f)2]

(?®c + 2ff) J12(1-*2)a4 (f

 --  (ft + 111) ...(4.8)
a (f°o+2ff)

where Dg = ® 2f̂  + f(c+f)^j,
12(1-p2)a4

and is referred to as the "flexural rigidity" of the sandwich 
plate.

As "c" goes to zero, the two facings approach each other, 
Assuming that the two facings move as a unit, the problem re­
duces to that of a solid, homogeneous and isotropic plate whose 
thickness is equal to 2f.
With this substitution,

=Æ.. - ^ ______  f + g^ll] Sf3
L oP-p12(1-9^ )â  L 2ff

Let h = 2f ,.4 _2
^ ' 1  = 4 M  ^'"'412(1-V )fa h ...(4.9)

or 0 i, ...(4.10)
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where D is the flexural rigidity of the two combined facings.
For a plate clamped along four edges, and are given 
in Appendix (A), Substitution of these values into equation 
(4.10) yields _____

011 = 36.1oYl)/(^j^a^) ,..(4.11)
Considering that for a beamV-V^o, Pg-*o, and Ijnn”*"®» the 
frequency for the fundamental mode of a beam can be directly 
derived from (4.9). As shown in Appendix (D), the higher 
frequencies for beams with arbitrary edge conditions are given by,

A  = ,12 a ^  ...(4.12) 
Using the appropriate values o f f o r  the prescribed boundary 
conditions from Appendix (A), the exact solutions of solid beams 
with arbitrary edge conditions are obtained.

Stanisic (33) investigated the problem of free vibrations 
of a homogeneous square plate, clamped along the edges by means 
of Galarkin's method. The value of the fundamental frequency 
obtained by this approach is

Q,, = 36.11 ...(4.13)
Young (27), solving the same problem by the Eitz method, 
achieved better accuracy by considering 36 terms of the re­
sulting series. His value for the fundamental frequency is

Oil = 35.99^/pha^ „ ...(4.14)

which differs by 0.66# and 0.666# from those given by the present
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analysis and that of Stanisic, respectively. Per a square 
plate clamped along the edges, the frequencies obtained from 
equation (4,6) for the first three modes, which correspond 
to (m=ai=1 ), (m=2, n=1; m=1, n=2) and (m=n=2), are tabulated 
here together with the frequencies given by Stanisic and Young.

Table 4,1

1st 2nd 3rd

Stanisic
Present Analysis 
Young

36,11
36,10
35.99

73.73
73.72
73,41

108.85
108.85 
108.27

The results of the present analysis compare satis­
factorily with those of Stanisic and Young, in the low frequency 
range. However, they deviate steadily from Young* s results 
as the mode number is increased. To achieve better accuracy 
for frequencies at higher modes of vibration, additional terms 
of the series in equation (3*46) must be considered,

3, Apnlications to Sandwich Plates 
In the preceding sections the general frequency criteri­

on (3.53) for the vibrations of sandwich plates was applied to 
sandwich beams, as well as to solid beams and plates. The 
resulting frequencies involved constants of the formĵ jg, 
and Imn, (See equation 4.10), The values of these constants 
depend upon the edge conditions and can be taken directly from 
Appendix (A). Therefore, the frequency analyses were performed
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without specifying the edge conditions prior to the final 
step of the computations, thereby est' blishing a unified ap­
proach for the vibrations of plates w; different edge con­
ditions.

In this section the frequency equation (3.53) is ap­
plied to the general case of sandwich plates. The evaluation 
of the frequency equation is considered for a plate with arbi­
trary edge conditions for the following cases;

(1) A seyuaré plate with facings of equal thicknesses, 
but of different materials..

(a) (m,n) = (1,1); (2,1); (1,2); (2 ,2 ); (3,3).
(b) Negligible bending stiffness in the ribbon 

direction of the core, (m,n) = (1,1); (2,1); 
(1,2 ).

(2) A plate with varying aspect ratio, and facings of un­
equal thicknesses and of different material:
(m,n) = (1,1).

(3) A square plate with a variable "core-facing thick­
ness ratio" and facings of equal thicknesses and of 
the same material, (m,n) = (1,1).

(a) With a rigid core in the thickness direction.
(b) With a non-rigid core in the thickness 

direction.
(c) With a core having an infinite elasticity 

modulus in the thickness direction and infinite 
transverse shear moduli.
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(4) A square plate with facings of the same material, 

and having variable "facing tblckness-ratio."
Since the evaluation of the determinantal equation (3.53) 

is too involved for parametric representation, numerical values 
are directly substituted into the frequency equation. The 
evaluation is based upon the physical properties of aluminum 
honeycomb core and aluminum facings taken from the data pre­
pared by Kunzi (34). These properties are shown in Appendix 
(E). An example of a sandwich plate clamped along the four 
edges is considered in the light of the above cases. The 
computer solutions for the frequencies are given in the 
following tables.

Table 4.1(a)

■ 1.0» — 32•0
fa = 0.016»,______a = 36

Table 4.1(b)

Same data as in Table 4.1(a) excepting

1125.4960
2283.3440

6366.394
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Table 4.2

kg = 2 K3 = 32.0 (m,n) = (1,1)

El .5 1 .15 2 2.5

fin 2645.7530 993.619 744.694 676.994 650.555

Table 4.3(a)

= 1.0,
n i/

kl =- 1 «0̂  kg = y=y=1| a=36 ; f=0*0l6 , (]h,il)=( 1,1)

% 16 32 48 64 80
678.902 1144.912 1519.073 1833.645 2104.042

Table 4.3(b)

Same data as in Table 4.3 (a) but Eg — oc

E3 16 32 48 64 80

fill 682.7140 1152.0940 1529.3060 1846.797 2122.097

Table 4.3(c)

Same data as in Table 4.3(b) 1îut — p-oc,G®5^oc
K3 G 32 43 64

fin 55.8820 1171.4070 1567.5300 1907.9750

Table 4.4

k, = 1, kg = 32,/*'=’/=f:=1, (m,n = 1)

K2 0.5 1 1.25 1.5 2

fin 1001.942 1144.912 1167.923 1180.165 1192
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From tables 4.1(a) and 4.1(b), It is observed that 

the effect of the bending stiffness in the ribbon direction 
of the core is insignificant. Therefore, the assumption of an 
antiplane stress distribution in the core should be considered 
accurate enough for problems involving sandwich construction.
For the fundamental mode, the effect of elasticity, as seen 
from Table 4.3(a), increases steadily for various core thick­
nesses, but deviates less than one percent when compared to 
the rigid core as shown in Table 4.3(b). A comparison be­
tween Table 4.3(a) and 4.3(c) shows the differences in 
frequencies due to shear effects. Even for the fundamental mode, 
with a variable core-facing thickness ratio, the frequency 
values for a core with finite shear moduli are approximately 
3.3^ lower than those obtained from a core with infinite shear 
moduli. However, in the analysis of the sandwich beam, it was 
shown that this difference increases considerably for higher 
modes. Therefore, in case of plates, significant differences 
can be expected at higher modes.

To demonstrate the applicability of the method to 
the plates with other edge conditions, another example of a 
plate clamped along one edge and free along the remaining 
three edges is considered here. This example considers a 
square plate whose upper facing, core, and lower facing are 
made of aluminum, aluminum honeycomb, and of steel, respec­
tively, The frequencies for the first three mode numbers are 
given in the following table.
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Table 4*5

Data same as in Table 4.1(a)
X 1 2 3
1 112.0 696.622 1907.943
2 298.6040 1004.1090 2196.7030
 ̂3 907.0405 1789.4040 3041.9550

To establish the validity of the results, of the above 
case, the sandwich plate is reduced to a solid, homogeneous 
and isotropic plate as before. Assuming G — 0, the ele­
ments 0^^ and of the equation (4.6) reduce to zero and the 
resulting frequency is given by

Cvi
Xii

where
0 , ,  =  £ p d , 2 + « x y  Î M

and
X| ̂ — ^ f

Introducing the values of J , J for a clamped-' w mm mm
free beam and the values of for a free-free

beam, the frequency for the fundamental mqde (m^ = 1,1) JLs 
given by.



■  Æ  ( ' " H  T,
80

E
6(4ff) L J (1-V2)a4

Let 2f = h ;
therefore,

[ ’ " H

or
O n  = 3.515 Jvpa'hi ...(4.15)

The frequency obtained by Young (2?) for a square cantilever
plate is ________

Oil = 3.494 ̂ D/^a4h ...(4.16)
which is approximately ^  lower than the one given by the 
present analysis.



OHAPTEfi V 

CONCLUSIONS
A unified approach to the vibrations of sandwich plates 

with arbitrary edge conditions was presented by utilizing the 
Rayleigh-Eitz energy method. The theoretical analysis was 
based upon more rigorous assumptions than commonly found in the 
literature. The validity was established by reducing the 
general frequency criterion of sandwich plates to cases of sand­
wich beams, solid beams and solid plates. The results of the 
present theory were in close agreement with the known values 
of the above cases.

The present analysis, in addition to being applicable to 
various edge conditions of plates, is not limited to the low 
frequency range. By considering more terms of the infinite series 
of the resulting frequency equation, the analysis can be applied 
to high frequency ranges as well.

The effects of various parameters in the analysis were 
brought out by an examination of special cases of sandwich 
beams, as well as by tabulated values pertaining to sandwich 
plates. It was shown that even in the low frequency range, the 
assumption of finite shear moduli in the core ŷ ields results 
which deviate considerably from those obtained by assuming
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Infinite core moduli. In higher frequency ranges, this de­
viation will become greater.

The frequencies obtained by considering the elasticity 
of the core in the thickness direction did not show signifi­
cant deviations from those of the rigid core for the fun­
damental mode. However, one would expect an increase in this 
deviation at higher modes. A formulation of actual variation 
of the displacement in the thickness direction of the core must 
be developed for a definite conclusion. Such a law can be es­
tablished by means of experimental investigations.

The theory was developed in such a manner that different 
laws of variation regarding the transverse shearing stresses, 
and the strains in the thickness direction of the core, can be 
easily introduced in the analysis. The use of digital computers 
is mandatory for accurate prediction of frequency analysis of 
sandwich plates, particularly for the higher frequency ranges.
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NOMENOIATUEE

All quantities with, superscripts a, h, and c refer to 
upper facing, lower facing, and core, respectively. 

a,b = sides of a rectangular plate 
f®" = thickness of the upper facing 
f^ = thickness of the lower facing 
C = thickness of the core 
u' = core-displacement in the x-direction
v^ = core-displacement in the y-dlxaction
w° = core-displacement in the z-direction

= modulus of elasticity of upper facing in the x-direction
E® = modulus of elasticity of upper facing in the y-dlrection
Eg = modulus of elasticity of the core in the z-direction
E^ = modulus of elasticity of the core in the y-direction
®" = Poisson* s ratio for the upper facing 
^ = Poisson*B ratio for the lower facing 
® = Poisson*s ratio for the core

d
1- X y
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dfg =

g|, = 4v: + vz$,

G ^  = shear modulus of upper facing
G ^  = shear modulus of the lower facing
G^2 = transverse shear modulus of the core in z-z 
G®2 = transverse shear modulus of the core in y-z 

= elements of a determinant 
8ij = elastic constants of an orthotropic body 
f^ = mass density per unit volume of the upper facing 

= mass density per unit volume of the lower facing 
= mass density per unit volume of the core 

^Tnn = circular frequency of a plate for m^^ mode in
the z-direction and n̂ h. mode in the y-direction 

•Ajiua* 3mnJ ?mna ^mn» ^mn* — arbitrary parameters 
= function of z only

Tji = function of y only
©mn* ^  = fractions of z only

ça = membrane strains of the upper facing in the 
z-direction
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c a = membrane strains of the upper facing in the 

y-direction
= membrane strains of the lower facing in the x-direction 
= membrane strains of the lower facing in the y-direction
= shearing strains in the upper facing associated 
with the membrane strains 

T̂ mèy ~ shearing strains in the lower facing associated 
with the membrane strains 

= bending strains of the upper facing in the z-direction
= bending strains of the upper facing in the y-direction

^Iz " strains of the lower facing in the z-direction
= bending strains of the lower facing in the y-direction
= shearing strains. in the upper facing associated with 
the bending strains 

= shearing strains in the lower facing associated with 
the bending strains

= characteristic function of a beam for the n^^ mode

jS ,dL = beam parameters for the n^^ mode

/da

n  = £ ^
f>,a

ya



Adhesive

Face sheet

Expanded core
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panel

(a) Primary parts.

I

(b) Core notation.
Figure .1.- pandwlch structure.
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APPENDIX A 

OHAEAOTERISTIO FUNCTIONS

Appendix A provides tables of the characteristic 
functions and their derivatives, for nearly all common types 
of beams. These functions are tabulated at intervals of the 
arguement, corresponding to ^  of the beam lenght? fhese tables 
have been taken from the University of Texas Publication, 
series No. 44. See (29).

Following the tables is a summary of data which in­
cludes the mathematical expressions for the characteristic 
functions, and the numerical values of the beam constants 
o(^ and/3ji.

The appendix concludes by giving the numerical values of 
the integrals of the type.

dx
o

O
where all subscripts range from 1 to 5. These values are given 
in the tables 4 through ?•
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T a b le  i

C h a r a c t e r is t ic  F u n c t io n s  a n d  D erivatives
C l a m p e d -C l a m p e d  B e a m

First Mode

X i>. f  0x2

0.00 0.00000 0.00000 2.00000 -  1.96500
0.02 0.00867 0.180U 1.81412 -  1.96473
0.04 0.03358 0.34324 1.62832 -  1.96235
0.06 0.07306 0.48850 1.44284 -  1.‘95792
0,08 0.12545 0.61624 1.25802 -  1.94862

.0 .00 0.18910 0.72655 1.07433 -  1.93333
0.12 0.26237 0.81956 0.89234 -  1.91254
0.14 0.34363 0.89546 • 0.71270 -  1.88393
0.16 0.43126 0.95451 0.53615 -  1.84732
0.18 0.52370 0.99702 . 0.36346 -  1.80219

0.20 0.61939 1.02342 0.19545 -  1.74814
0.22 0.71684 1.03418 0.03300 -  1.68494
0.24 0.81459 1.02986 -  0.12305 -  1.61250
0 .26 0.91124 1.0U13 -  0.27180 -  1.53085
0.28 1.00546 0.97870 -  0.41240 -  1.4W17

0.30 1.09600 0.93338 -  0.54401 -  1.34074
0.32 1.18168 0.87608 -  0.66581 -  1.23296
0.34 1.26141 0.60774 -  0.77704 -  1.U "'35
0.36 1.33419 0.72992 -  0.87699 -  0.99452
0.36 1.39913 0.64219 -  0.96500 -  0.86516

0.40 1.45545 0.54723 -  1.04050 -  0.73007
0.42 1.50247 0.44574 -  1.10297 -  0.59008
0.44 1.53962 0.33397 -  1.15202 -  0.44611
0.46 1.56647 0.22821 -  1.18728 -  0.29911
0.48 1.58271 0.11478 -  1.20854 -  0.15007

0.50 1.58815 • 0.00000 -  1.21565 0.00000
0.52 1.58271 -  0.11478 -  1.20854 0.15007
0.54 . 1.56647 -  0.22821 -  1.18723 0.29911
0.56 1.53962 -  0.33397 -  1.15202 0.44611
0.58 1.50247 -  0.44574 -  1.10297 0.59008

0.60 1.45545 -  0.54723 -  1.04050 0.73007
0.62 1.39913 -  0.64219 -  0.96500 0.86516
0.64 1.33419 -  0.72992 -  Oi87699 0.99452
0.66 1.26141 -  0.80774 0.77704 1.11735
0.68 1.18168 -  0.87608 -  0.66581 1.23296

0.70 1.09600 -  0.93338 -  0.54401 1.34074
0.72 1.00546 -  0.97370 -  0.41240 1.44017
0.74 0.91124 -  1.01113 -  0.27180 1.53085
0.76 0.81459 -  1.02986 -  0.12305 1.61250
0.78 0.71684 -  1.03418 0.03300 1.68494

0.80 0.61939 -  1.02342 0.19545 1.748U
0.82 0.52370 -  0.99702 0.36346 1.80219
0.84 0.43126 -  0.95451 0.53615 1.84732
0.86 0.34363 -  0.89545 0.71270 1.88393
0.83 0.26237 -  0.81956 0.89234 1.91254

0.90 0.18910 -  0.72655 1.07433 1.93383
0.92 0.12545 -  0.61624 1.25802 1.94862
0.94 0.07306 -  0.48850 1.44284 1.95792
0.96 0.03358 -  0.34324 1.62832 1.96285
0.98 0.00867 -  0.18041 1.81412 1.96473

1.00 0.00000 0.00000 2.00000 1.96500
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T a b le  1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES 
Clamped-Clamped Be a m 

Second Mode

f ^2

0.00 0,00000 o.oocoo 3.00000 -  3.00155
0.02 0.02333 » 0.28944 1.68563 -  2.0CO31
0.04 0.08834 0.52955 1.37202 -  1.99205
0.06 0.18715 0.72055 1.06061 -  1.97030
0.08 0.31214 0.86296 0.75336 -  1,93186

0.10 0.45573 0.95776 0.45486 -  1.87176
0.12 0.61058 1.00644 0.16713 -  1.78313
0.14 0.76958 1.01105 • -  0.10554 -  1.67975
0.16 0.92602 0.97427 -  0.35923 -  1.54652
0.18 1.07363 0.89940 -  0.59010 -  1.38933

0.20 1.20674 0.79030 -  0.79450 -  1.21002
0.22 1.32032 0.65138 -  0.96918 -  1.01127
0.24 "1.41005 0.48755 -  1.11133 -  0.79651
0.26 1.47245 0.30410 -  1.21876 -  0.56977
0.28 1.50485 0.10660 -  1.28991 -  0.33555

0.30 1.50550 -  0.09916 -  1.32402 -  0.09872
0.32 1.47357 -  0.30736 -  1.32106 0.13566
0.34 1.40914 -  0.51224 -  1.28181 0.36246
0.36 1.313U -  0.70819 -  1.20736 0.57665
0.38 1.18740 -  0.88997 -  1.10157. 0.77340

0.40 1.03457 -  1.05271 = 0,96605 0,94823
0.42 0.85794 -  1.19209 -  0.80507 1.097U
0.44 0.66150 -  1.30448 -  0.62296 1.21670
0.46 0.44973 -  1.38693 -  0.42456 1.30414
0.48 0.22751 -  1.43728 -  0.21503 1.35744

0.50 0.00000 -  1.45420 0.00000 1.37532
0.52 -  0.22751 -  1.43728 0.21503 1.35744
0.54 -  0.44973 -  1.38693 0.42456 1.30414
0.56 -  0.66150 . -  1.30448 0.62296 1.21670
0.58 -  0.85754 -  1.19209 0.80507 1.09714

0.60 -  1.03457 « 1.05271 0.96605 0.94223
0.62 -  1.18740 -  0.83997 • 1.10157 0.77340
0.64 -  1.31314 -  0.70319 1.20786 0.57665
0.66 -  1.40914 -  0.51224 1.23181 0.36246
0.68 -  1.47357 - 0.30736 1.32106 0.13566

0.70 -  1.50550 -  0.09916 1.32402 -  0.09S72
0.72 -  1.50435 0.10660 1.28991 -  0.33555
0.74 -  1.47245 o.3oao 1.21876 -  0.56977
0.76 -  1.41005 0.48755 1.11133 -  0.79651
0.78 -  1.32032 0.65138 0,96918 _ -  1.01127

0.80 -  1.20674 0.79030 0.79450 -  1.21002
0.82 -  1.07363 0.89940 0.59010 -  1.38933
0.84 -  0.92602 •0.97427 0.35923 -  1.54652
0.86 -  0.76953 I.OUO5 O.IO554 -  1.67975
0.88 -  0.61058 1.00644 • -  0.16713 -  1.78813

0.90 -  0.45573 0.95776 -  0.45486 -  1.87176
0.92 -  0.31214 0.86296 -  0.75386 -  1.93166
0.94 -  0.18715 0.72055 -  1.0=061 -1 .97030
0.96 -  0.08834 0.52955 -  1.37202 -  1.99205
0.93 -  0.02333 0.23944 -  1.63563 -  2.00031

1.00 0.00000 0.00000 -  2.00000 -  2.00155
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T a b le  1

C h a r a c te r is t ic  F u n c t io n s  a n d  D e r iv a t iv e s
Cla m p e d -C la m p e d  Be a m

Third Mode

t *3
0.00 0.00000 0.00000 2.0Ü000 - 1.999930.02 0.04481 0.39U7 1.56038 - 1.996580.04 0.16510 0.68646 1.12323 - 1.974690.06 0.33975 0.88609 0.69428 - 1.919980.08 0.54804 0.99303 0.28189 - 1.82280
0.10 0.77005 1.01202 - 0.10393 - 1.677950.12 0.98720 0.95006 - 0.45252 - 1.48447
0.14 1.18265 O.8I649 - 0.75348 - 1.245350.16 1.34190 0.62285 - 0.99733 - 0.966980.18 1.45317 0.38256 - 1.17657 - 0.65867
0.20 1.50782 0.11050 - 1.28572 - 0.331990.22 . 1.50059 - 0.17759 - 1.32220 - 0.00005
0.24 1.42971 • - 0.46573 -• 1.28637 0.323330.26 1.29690 - 0.73833 - 1.18165 0.624250.28 1.10719 - 0.98087 - 1.01443 0.88956
0.30 0.86864 - 1.18057 - 0.79387 1.107620.32 0.59186 - 1.32694 . - 0.53145 I.26SSO
0.34 0.28949 - 1.41222 - 0.24051 1.36606
0.36 - 0.02445 - 1.43171 0.06433 1.395290.38 - 0.33528 - 1.38399 0.36811 1.35554
0.40 - 0.62337 - 1.27099 0.65569 1.24912 ,
0.42 - 0.88987 - 1.09782 0.91301 1.03148
0.44 - 1.10739 - 0.87257 1.12747 0.86096
0.46 - 1.27060 - 0.60586 1.28860 0.59842
0.48 - 1.37174 - 0.31031 1.38852 0.30669

0.50 - 1.40600 0.00000 1.42233 0.00000
0.52 - 1.37174 0.31031 1.38352 - 0.30669
0.54 - 1.27060 0.60586 1.28860 - 0.59842
0.56 - 1.10739 0.87257 1.12747 - 0.86096
0.58 - 0.88987 1.09782 0.91301 - 1.08148
0.60 - 0.62837 1.27099 0.65569 - 1.24912
0.62 - 0.33528 1.38399 0.36811 - 1.35554
0.64 - 0.02445 1.43171 0.06438 - 1.395290.66 0.28949 1.41222 - 0.24051 - 1.36606
0.63 0.59186 1.32694 - 0.53145 - 1.26880
0.70 0.86864 1.18057 - 0.79387 - 1.10762
0.72 1.10719 0.98087 - 1.01443 - 0.88956
0.74 1.29690 0.73833 - 1.18165 . 0.62425
0.76 1.42971 0.46573 - 1.28637 - 0.32333
0.78 1.50059 0.17759 - 1.32220 0.00005
0.80 1.50782 . - 0.11050 ' - 1.28572 0.331990.82 1.45317 - 0.38256 ■ - 1.17657 0.65867
0.84 1.34190 - 0.62265 - 9̂ 99738 0.96698
0.86 1.13265 - 0.81649 - 0.75348 = 1.245350.83 0.93720 -0.95006 - 0.45252 1.48447
0.90 0.77005 - 1.01202 - 0.10393 1.67795
0.92 0.54804 - 0.99303 0.28189 1.82280
0.94 0.33975 - 0.88609 0.69428 1.91993
0.96 0.16510 - 0.68646 1.12323 1.97469
0.93 0.04431 - 0.39147 1.56038 1.99658
1.00 0.00000 0.00000 Ni 2.00000 1.99993
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T a ble  1

C h a r a c te r is t ic  F u n c t io n s  a n d  D er iv a tiv e s
Cl a m p e d -C l a m p e d  B e a m

Fourth Mode

f *4
0.00 0.00000 0.00000 2.00000 - 2.000000.02 0.07241 0.48557 1.43502 - 1.993000.04 0.25958 0.81207 0.87653 - 1.943240.06 0.51697 0.98325 0.33977 - 1.839600.08 0.80177 1.00739 - 0.15633 -  1.65333

0.10 1.07449 0.90083 - 0.58802 • - 1.387360.12 1.30073 0.63345 - 0.93412 - 1.050120.14 1.45303 0.33242 - 1.17673 - 0.658790.16 1.51203 0.02894 - 1.30380 - 0.237250.13 1.46765 - 0.34351 - 1.31068 0.18649
0.20 1.31923 - 0.70122 - 1.20092 0.582860.22 1.07550 - 1.01271 - 0.98634 0.92349 ■0.24 0.75348 - 1.25091 - 0.68630 1.183640.26 0.37700 - 1.39515 - 0.32640 1.344420.23 - 0.02537 - 1.43265 0.06348 1.39439
0.30 - 0.42263 - 1.35944 0.45136 1.330560.32 - 0.78413 - 1.18053 0.80569 1.15876
0.34 - 1.03159 - 0.90972 1,09776 0.893190.36 - 1.29186 - 0.56793 ■1.30395 0.555370.33 - 1.39853 - 0.18205 1.40755 0.17245
0.40 - 1.39351 0.21753 1.40010 - 0.224940.42 - 1.27726 0.59923 1.28198 - 0.60506
0.44 - 1.05920 0.93289 1.06244 . - 0.937590.46 - 0.75676 1.19208 0.75879 - 1.196040.48 - 0.39407 1.35629 0.39504 - 1.35983
0.50 0.00000 1.41251 0.00000 - 1.41592
0.52 0.39407 1.35629 - 0.39504 - 1.35983
0.54 0.75676 1.19208 - 0.75879 - 1.196040.56 1.05920 0.93289 - 1.06244 - 0.937590.58 1.27726 0.59923 - 1.28193 •- 0.60506
0.60 1.39351 0.21753 - 1.40010 - 0.224940.62 1.39858 - 0.18205 - 1.40755 0.172450.64 1.29186 - 0.56793 - 1.30395 0.555370.66 1.08159 - 0.90972 - 1.09776 0.89319.0.68 0.78413 - 1.16053 - 0.80569 1.15876
0.70 0.42268 - 1.35944 - 0.45136 1.330560.72 0.02537 - 1.43265 - 0.06343 1.394390.74 - 0.37700 - 1.39515 0.32640 1.344420.76 - 0.75348 - 1.25091 0.68630 1.183640.73 = 1.07550 - 1.01271 0.98634 0.92349

. 0.80 - 1.31923 - 0.70122 1.20092 0.582360.82 - 1.46765 - 0.34351 1.31063 0.186490.34 - 1.51208 0.02894 1.30330 - 0.237250.86 - 1.45303 0.38242 1.17673 - 0.658790.88 - 1.30078 0.68345 0.93412 -  1.05012

0.90 - U07449 0.90083 0.58802 - 1.387360.92 - 0.80177 1.00739 0.15633 - 1.653330.94 - 0.51697 0.98325 - 0.33937 - 1.83960
0.96 . - 0.25958 0.81207 - 0.87658 - 1.94824
0.98 -0.07241 0.48557 - 1.43502 -  1.99300
1.00 0.00000 0.00000 « 2.00000 -  2.00000
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T a b le  1

C h a r a c t e r is t ic  F u n c t io n s  a n d  D e r iv a t iv e s
Cl a m p e d -C l a m p e d  Beam

Fifth Mode

a- *3
0.00 0.00000 0.0Ô000 2.00000 -  2.00000
0.02 0.10567 0.57181 1.30996 -  1.98743
0.04 0.36791 0.90694 0.63409 -  1.90894
0.06 0.70632 1.01517 0.00291 -  1.72440
0.03 1.04591 0.91867 -  0.54391 -  1.42067

0.10 1.32173 0.65359 -  0.96646 -  1.00891
0.12 1.43381 0.26880 -  1.23231 -  0.52030
0.14 1.50043 -  0.17781 -  1.32242 -  0.00021
0.16 1.36090 -  0.62465 -  1.23490 0.49865
0.18 1.07551 -  1.01269 -  0.98632 0:92351

0.20 0.67360 -  1.29164 -  0.61048 1.22851
0.22 0.09959 -  1.42540 -  0.15491 1.38072
0.24 -0.29269 1.39597 0.32432 1.36434
0.26 -  0.74653 -  1.20525 0.76897 1.18287
0.23 -  1.10952 -  0.87470 1.125# 0.85886

0.30 -  1.33938 -  0.44262 1.35061 0.43141
0.32 -  1.40954 0.04046 1.41749 -  0.04838
0.34 -  1.31208 0.51781 1.31772 -  0.52341
0.36 -  1.05831 0.93326 1.06282 -  0.93721
0.38 -  0.67987 1.23790 0.68273 -  1,24067

0.40 -  0.22021 1.39584 0.22226 -  1,39777
0.42 0.26575 1.38850 -  0.26425 -  1.38983
0.44 0.72046 ■ 1.21684 -  0.71933 -  1.21771
0.46 1.09011 0.90119 -  1,08923 -  0.90172
0.48 1.33098 0.47892 -  1,33023 -  0.47917

0,50 1.41457 0.00000 -  1.41386 0.00000
0.52 1.33093 -  0.47892 -  1,33023 0.47917
0.54 1.090U -  0.90119 -  1.08923 0.90172
0.56 0.72046 -  1.21684 -  0,71933 1.21771
0.53 < 0.26575 -  1.38850 -  0.26425 1.38983

0.60 -  0.22021 -  1.39584 0,22226 1.39777
0.62 . -  0.67987 -  1.23790 0,68273 1.24067
0.64 -  1.05831 -  0.93326 1.06282 0,93721
0.66 -  1.31208 -  0.51781 1.31772 0,52341
0.63. -  1.40954 -  0.04046 1.41749 0.04838

0.70 -  1.33933 0.44262 1,35061 - 0.43141
0.72 -  1.10952 0.87470 1,12538 -  0.85886
0.74 -  0.74653 1.20525 0,76897 -  1.18287
0.76 -  0.29269 1.39597 0,32432 -  1.36434
0.73 0.19959 1.42540 -  0.15491 -  1.38072

0.80 0.67360 1.29164 . -  0.61048 -  1.22851
0.82 1.07551 1.01269 0.98632 -  0.92351
0.34 1.36090 0.62465 -  1.23490 -  0.49865
0.36 1.50043 0.17781 -  1.32242 o.oooa
0.83 1.48331 0.26880 -  1.23231 0.52030

0.90 1.32178 -  0.65359 — 0,96646 1.00891
0.92 1.04591 -  0.91867 -  0.54391 1.42067
0.94 0.70632 -  1.01517 0.00291 1.72440
0.96 0.36791 -  0.90694 0.63409 1.90894
0.98 0.10567 -  0.57181 1.30996 1.98743

1.00 0.00000 0.00000 2.00000 2.00000
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Table 2
Ch a r a c t e r is t ic  F u n c t io n s  a n d  D e r iv a t iv e s

C l a m p e d -F ree B e a m
First Mode

0.00 0.00000 0.00000 2.00000 -  1.46319
0.02 0.00139 0.07397 1.9U94 -  1.46817
0.04. 0.00552 0.24588 1.88983 -  1.46805
0.06 0.01231 0.21572 1.33483 -  1.46773
0.03 0.02163 0.28350 1.77980 -  1.46710

0.10 0.03355 0.34921 1.72480 -  1.46607
0.12 0.04784 0.41286 1.66985 -  1.46455
0.14 0.06U9 0.47446 1.61496 -  1.46245
0.16 0.08340 0.53400 1.56016 -  1.45963
0.18 0.10452 0.59148 ' 1.50549 -  1.45617

0.20 0.12774 0.64692 1.45096 -  1.45132
0.22 0.15301 0.70031 1.39660 -  1.44656
0.24 0.18024 0.75167 1.34247 -  1.44032
0.26 0.20936 0.80100 1.28859 -  1.43302
0.23 0.24030 0.34832 1.23500 -  1.42459

0.30 0.27297 ■ 0.89364 1.18175 -  1.41497
0.32 0.30730 0.93696 1.12839 - -  1.40410
0.34 0.34322 0.97831 1.07646 -  1.39191
0.36 0.38065 1.01771 1.02451 -  1.37834
0.38 0.41952 1.05516 0.97309 -  1.36334

0.40 0.45977 1.09070 0.92227 -  1.34685
0.42 0.50131 1.12435 0.37209. -  1.32884 ,
0.44 0.54408 1.15612 0.82262 -  1.30924
0.46 0.58800 1.18606 0.77392 -  1.23801
0.43 0.63301 1.21413 0.72603 -  1.26512

0.50 0.67905 ■ 1.24052 0.67905 -  1.24052
0.52 0.72603 1.26512 0.63301 -  1.21418
0.54 0.77392 1.28801 0.58800 -  1.18606 :
0.56 0.82262 1.30924 0.54408 -  1.15612
0.53 0.87209 . 1.32884 0.50131 -  1.12435

0.60 0.92227 •1.34685 0.45977 -  1.09070
0.62 0.97309 1,36334 • 0.41952 -  1.05516
0.64 1.02451 1.37334 0.38065 -  1.01771
0.66 1.07646 1.39191 0.34322 -  0.97831
0.68 1.12889 1.40U0 0.30730 -  0.93696

0.10 1.18175 1.41497 . 0.27297 -  0.89364
0.72 1.23500 1.42459 i  • .. 0.24030 -  0.84832
0.74 1.28859 1.43302 ■ 0.20936 •- 0.80100
0.76 1.34247 1.44032 0.18024 -  0.75167
0.78 1.39660 1.44656 0.15301 -  0.70031

0.80 1.45096' 1.45132 . 0.12774 -  0.64692
0.32 1.50549 1.45617 •« 0.10452 • -  0.59148
0.84 1.56016 1,45968 0.03340 -  0.53400
0.36 1.6U96 1.46245 0.06449 -  0.47446
0.88 1.66985 1.46455 0.04784 ' - -  0.41286

0.90 1.72480 1.46607 0.03355 -  0.34921
0.92 1.77980 1.46710 0.02163 -  0.23350
0.94 1.33483 1.46773 0.01231 -  0.21572
0.96 1.83983 1.46305 ■ 0.00552 -0.14538
0.93 1.94494 1.46817 0.00139 -  0.07397

1.00 2.00000 1.46819 0.00000 . 0.00000
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T able  2

C h a r a c te r is t ic  F u n c t io n s  a n d  D er iva tives
Cl a m p e d -F ree B e a m

Second Mode

f Vi '. .
0.00 0.00000 0.00000 . ■2.00000 - 2.036930.02 0.00853 0.17879 1.80877 - 2.036660.0̂ 0.03301 0.33962 1.6176% - 2.034830.06 0.07174 0.48253 1.42680 - 2.03C020.08 0.12305 0.60754 1.23660 - 2.02097
0.10 • -0.18526 0.71475 1.04750 - 2.006580.12 • 0.25670 • 0.80428 0.36004 - 1.92590O.U 0.33573 . 0.87631 0.67484 - 1.952140.16 0.42070 0.93108 0.49261 - 1.922670.18 0.51002 0.96892 0.31409 - 1.37901
0.20 0.60211 •0.99020 0.14007 - 1.826820.22 ■ 0.69544 0.99539 - 0.02865 - 1.765920.24 0.78852 0.98502 - 0.19123 - 1.696250.26 . 0.87992 0.95970 - 0.34697 - 1.617910.28 . -0.96827 0.92013 ■- 0.49475 - 1.53113
0.30 -1.05227 0.86707 - 0.63410 - 1.436240.32 1.13068 .0.80136 - 0.76419 - 1.333730.34 1,20236 0.72389 - 0.88431 - 1.224160.36 1.26626 0.63565 - 0.99384 - 1.108210.38 1.32141 0.53764 - 1.09222 - 0.98667
0.40 1.36694 0.43094 - 1.17395 - 0.86040
0.42 1.40209 0.31665 - 1.25365 - 0.73034 :0.44 1.42619 0.19593 - 1.31600 - 0.597480.46 1.43871 0.06995 - 1.36578 - 0.462910.48 1.43920 - 0.06012 - 1.40239 - 0.32772

* 0.50 - 1.42733 - 0,19307 - 1.42733 - 0.193070.52 1.40289 - 0.32772 - 1.43920 -.0.060120.54 1.36578 - 0.46291 - 1.43871 0.069950.56 1.31600 - 0.59748 - 1.42619 . 0.195930.58 1.25365 - 0.73034 - 1.40209 0.31665
0.60 ■ 1.17895 - 0.86040 - 1.36694 0.430940.62 1.09222 -- 0.98667 - 1.32141 0.537640.64 0.99384 ■ - 1.10821 - 1.26626 0.635650.66 0..88431 - 1.22416 - 1.20236 0.72389-
0.68 0.76419 - 1.33373 - 1.13068 0.80136
0.70 0.63410 - 1.43624 - 1.05227 0.867070.72 .0.49475 - 1.53113 - 0.96827 0.920130.74 0.34687 - 1.61791 - 0.87992 0.959700.76 *0.19123 - 1.69625 - 0.78852 0.985020.78 0.02665 - 1.76592 • - 0.69544 0.99539
0.80 - 0.14007 - 1.82682 - 0.60211 0.990200,82 * 0.31409 - 1.87901 - 0.51002 0.968920.84 r 0.49261 - 1.92267 - 0.42070 0.931080.86 - 0.67484 - 1.95814 - 0.33573 0.876310.83 - 0.86004 - 1.98590 - 0.25670 ■ 0.80428
0.90 - 1.04750 - 2.00658 - 0.18526 0.714750.92 - 1.23660 - 2.02097 •- - 0.12305 0.607540.94 - 1.42680 - 2.03002 - 0.07174 0.48253
0.96 - 1.61764 - 2.03483 - 0.03301 0.33962
0.98 1.80877 - 2.03666 • 0.00853 0.17879
iM -  2.00000 - 2.03693 0.00000 0.00000
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T able  2

C h a r a c t e r is t ic  F u n c t io n s  a n d  D er iv a tiv e s
Cl a m p e d -F ree  B e a m

Third Mode

t h *» “
0.00 0.00000 0.00000 2.00000 -  1.99845
0.02 0.02339 0.28953 1.68610 -  1.99721
O.Oi 0.08839 0.52979 1.37287 -  1.98892
0.06 0.18727 0.72099 1.06189 -  1.96766
0.08 0.31238 0.86367 0.75558 -  1.92871

0.10 0.456U 0.95879 0.45702 = 1.86854
0.12 0.61120 1.00785 0.16974 -  1.78480
O .U 0.77049 1.01291 -  0.10245 -  1.67629
0.16 0.92728 0.97665 -  0.35563 -  1.54286
0.18 1.07535 0.90237 -  0.58594 -  1.38540

0.20 1.20901 0.79394 -  0.78975 -  1.20575
0.22 1.32324 0.65580 -  0.96375 -  1.00656
0.24 1.41376 0.49285 -  1.10515 -  0.79124
0.26 1.47707 0.31040 -  1.21172 -  0.56380
0.28 1.51056 0.11405 -  1.28189 -  0.32872

0.30 1.51248 -  0.09041 -  1.31485 .. 0.09085
0.32 1.48203 -  0.29711 -  1.31055 0.14479
0.34 1.41931 -  0.50026 -  1.26974 0.37310
0.36 1.32534 -  0.69422 -  1.19398 0.58908
0.38 1.20196 -  0.87368 -  1.08556 0.78797

■ 0.40 1.05185 -  1.03374 -  0.94753 0.96533
0.42 0.878U -  1.17003 -  0.78359 1.11723
0.44 0.68568 -  1.27881 -  0.59802 1.24030
0.46 0.47822 -  1.35704 -  0.39555 1.33188
0.48 0.26103 -  1.40247 f  0.18130 1.39004

0.50 0.03937 -  1.41366 • 0.03937 1.41366
0.52 -  0.18130 -  1.39004 0.26103 1.40247
0.54 -  0.39555 -  1.33188 0.47822 1.35704
0.56 -  0.59802 -  1.24030 0.68568 1.27881
0.58 -  0.78359 -  1.11723 0.87841 1.17003

0.60 -  0.94753 -  0.96533 ■ 1.05185 1.03374
0.62 -  1.08556 -  0.78797 1.20196 0.87368
0.64 -  1.19398 -  0.58903 1.32534 0.69422
0.66 -  1.26974 -  0.37310 1.41931 0.50026
0.68 -  1.31055 -  0.14479 1.48203 0.29711

0.70 -  1.31485 0.09085 1.51248 0.09041
0.72 -  1.28189 p .32872 1.51056 -  0.U405
0.74 -  1.21172 0.56380 1.47707 -  0.31040
0.76 -  1.10515 0.79124 1.41376 -  0.49285 .
0.78 -  0.96375 1.00656 1.32324 -  0.65580

0.80 -  0.78975 1.20575 1.20901 ’ -  0.79394
0.82 -  0.58594 1.33540 1.07535 -  0.90237
0.84 -  0.35563 1.54236 0.92728 -  0.97665
0.36 -  0.10245 1.67629 0.77049 -  1,01291
0.88 0.16974 1.78480 0.61120 *. 1.00785

0.90 0.45702 1.86854 0.456U ■ -  0.95879
0.92 0.75558 1.92871 0.31238 -  0.86367
0.94 1.06189 1.96766 0.18727 -0.72099
0.96 1.37287 1.98892 0.08829 -0.52979
0.98 1.68610 1.99721 0.02339 -  0 .:^ 5 3

1.00 2.00000 1.99845 ' 0.00000 0.00000
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T able  2

C h a r a c ter istic  F u n c t io n s  a n d  D e r iv a tiv e s
Cl a m p e d -F ree B e a m

Fourth Mode

f *4
0.00 0.00000 0.00000 2.00000 - 2.000070.02 0.04432 0.39U7 1.56035 - 1.996720.04 0.16510 0.68645 1.12317 - 1.974820.06 0.33974 0.88606 0.69420 - 1.920120.03 0.54801 0.99298 0.23179 - 1.82294
0.10 0.77002 1.01194 -  0.10407 - 1.678090.12 0.98714 0.94994 - 0.45270 - 1.48463
O .U 1.18256 0.81633 - 0.75363 - 1.245520.16 1.34177 0.62264 - 0.99762 - 0.967170.13 1.45299 0.38230 - 1.17637 - 0.65391
0.20 1.̂ 753 0.11017 - 1.28608 - 0.332280.22 1.50027 - 0.17301 - 1.32262 - 0.000380.24 1.42928 - 0.46624 - 1.28688 0.32290
0.26 ■ 1.29634 - 0.73895 - 1.18226 , 0.623700.28 1.10643 - 0.98164 - 1.01518 0.83338
0.30 0.86774 - 1.18154 - 0.79473 1.106760.32 0.59073 - 1.32813 - 0.53253 1.267720.34 0.28803 - 1.41368 - 0.24191 1.364690.36 = 0.02621 - 1.43351 0.06264 1.393570.38 - 0.33743 - 1.38622 0.36594 1.35339
0.40 - 0.63112 - 1.27376 0.65299 1.246430.42 - 0.89330 ■ - 1.10126 0.90964 1.073120.44 - 1.U166 • - 0.87683 1.12327 0.856750.46 - 1.27592 - 0.61115 1.28336 0.593150.48 - 1.37836 - 0.31690 1.33199 0.30011
0.50 - 1.41424 - 0.00819 1.41424 - 0.003190.52 - 1.38199 0.30012 1.37336 - 0.316900.54 - 1.28336 0.59316 1.27592 - 0.611150.56 - 1.12327 0.85675 1.11166 - 0.876840.58 - 0.90964 1.07812 0.89330 - 1.10126

0.60 - 0.65299 1.24643 0.63112 - 1.273760.62 -  0.36594 1.35339 • 0.33748 - 1.386220.64 - 0.0^264 1.39357 0.02621 - 1.433510.66 0.24191 1.36469 - 0.28808 - 1.413680.68 0.53258 • 1.26772 - 0.59073 - 1.32813
0.70 0.79478 1.10676 - 0.86774 - 1.181530.72 1.01518 0.88888. - 1.10648 . - 0.931640.74r 1.18226 0.62370 - 1.29634 - 0.733950.76 1.28633 0.32290 - 1.42923 « 0.466240.78 1.32262 - 0.00039 - 1.50027 - 0.17301
0.80 1.28608 - 0.33223 - 1.50758 0.U0170.82 1.17687 - 0.65890 -  1.45299 0.382300.84 0.99762 - 0.96717 - 1.34177 0.622640.86 0.75368 - 1.24552 - 1.18256 0.816330.88 0.45270 - 1.48463 - 0.937U 0.94994
0.90 0.10407 ■- 1.67309 - 0.77002 1.01194, 0.92 - 0.28179 - 1.82294 - 0.54801 0.992930.94 - 0.69420 - 1.92012 -  0.33974 0.886060.96 - 1.12317 - 1.97432 - 0.16510 0.63645
0.98 - 1.56035 - 1.99672 - 0.04432 0.39U 7

1.00 -  2.00000 -  2.00007 0.00000 0.00000
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T a b le  2

C h a r a c t e r is t ic  F u n c t io n s  a n d  D e r iv a t iv e s
Cl a m p e d -F ree  B e a m

Fifth Mode

f *5
0.00 0.00000 0.00000 2.00000 - 2.000000.02 0.07241 0.48557 1.43502 - 1.993000.04 0.25958 0.81207 0.&7658 - 1.948240.06 0.51697 0.98325 0.3,3937 - 1.839590.03 0.80177 • 1.00789 - 0.13633 - 1.65332
0.10 1.07449 0.90089 - 0.58801 - 1.387360,12 1.30073 0.68346 - 0.93411 - 1.05011OiU 1.45309 0.38243, - 1.17672 - 0.653780.16 1.51209 0.02895 - 1.30378 - 0.237230.18 1.46767 - 0.34348 - 1.31066 0.18651
0.20 1.31925 - 0.70119 - 1.20090 0.582890.22 1.07553 - 1.01267 - 0.98631 0.923520.24 0.75353 - 1.25086 - 0.68626 ■ 1.183680.26 • 0.37706 - 1.39509 - 0.32634 1.344480.28 - 0.02529 - 1.43257 0.06355 1:39446
0.30 - 0.42257 - 1.35934 0.45146 1.330650.32 - 0.‘78399 - 1.18045 0.80582 1.158890.34 - 1.08140 - 0.90954 1.09793 0.893370.36 - 1.29162 ■ - 0.56770 1.30418 0.555610.53 - 1.39826 =. 0.18174 1.40786 0.17276
0.40 - 1.39310 0.21794 1.40051 - 0.224520.42 - 1.27670 0.59978 1.28253 - 0.604500.44 - 1.05846 0.93361 ,1.06317 - 0.936860.46 - 0.75579 . 1.19304 0.75976 - 1.195080.43 - 0.39273 1.35757 • 0.39632 - 1.35855
0.50 0.00170 1.41421 0.00170 - 1.414210.52 0.39632 1.35855 - 0.39278 - 1.357570.54 0.75976 1.19508 - 0.75579 - 1.193040.56 1.06317 0.93686 - 1.05846 - 0.933610.53 1.28253 0.60450 - 1.27670 - 0.59973
0.60 1.40051 0.22452 - 1.39310 - 0.217940.62 1.40786 - 0.17276 1.39826 0.181740.64 1.30418 - 0.55561 - 1.29162 0.567700.66 1.09793 - 0.39337 - 1.08140 0.909540.68 0.80532 - 1.15869 - 0.78399 1.18045
0.70 0.45146 - 1.33065 - 0.42257 . 1.359340.72 0.06355 - 1.39446 - 0.02529 1.432570.74 - 0.32634 - 1.34448 0.37706 1.395090.76 - 0.68626 - 1.18368 0.75353 1.250360.78 - 0.98631 - 0.92352 1.07553 1.01267
0.80 - 1.20090 - 0.58289 . 1.31925 0.70119 ,0.82 - 1.31066 - 0.18651 1.46767 •0.343480.84 - 1.30378 0.23723 1.51209 - 0.028950.86 - 1.17672 .0.65873 1.45309 - 0.382430.88 - 0.934U 1.05011 1.30078 , - 0.68346
0.90 - 0.58801 1.38736 1.07449 - 0.900890.92 - 0.15633 1.65332 0.80177 - 1.007390.94 0.33937 1.83959 0.51697 - 0.983250.96 0.87658 1.94824 0.25958 - 0.812070.98 1.43502 1.99300 0.07241 - 0.43557
1.00 2.00000 2.00000 0.00000 0.00000
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T a ble  3

Ch a r a c te r is t ic  F u n c t io n s  a n d  D er iva tives

Cl a m p e d -Supported  B e a m
First Mode

t f , 4 " .  I Â " ,  1,
* f f o x z

0.00 0.00000 0.00000 3.00000 -  2.00155
0.02 0.00600 0.15089 1.84282• -  2.00140
O.Oi 0.02333 0.23944 1.68563 -  2.00031
0.06 0.051U 0.41566 1.52869 -  1.99745
0.08 0.03334 0.52955 1.37202 -  1.99203

0.10 0.134D0 0.63116 1.21590 -  1.98336
0.12 0.18715 0.72055 1.06060 -  1.97079
O .U : 0.24635 0.79778 0.90647 1.95379
0.16 0.312U 0.36296 0.75336 -  1.93187
0.13 0.33203 0.91623 0.60313 » 1.90464

0.20 0.45574 0.95776 0.454.66 -  1.87177
0.22 0.53221 0.98775 0.30935 -  1.83299
0 .2 i 0.61053 1.00643 0.16712 -  1.78812
0.26 0.63999 1.01410 0.02866 -  1.73706
0.23 0.76958 1.01105- -  0.10554 -  1.67975

0.30 0.84852 0.99764 -  0.23500 -  1.61620
0.32 0.92601 0.97427 -  0.35923 -  1.54652
0 .3 i 1.00129 0.94137 -  0.47775 -  1.47082
0.36 1.07363 0.89940 -  0.59009 -  1.38932
0.33 1.14233 0.34886 -  0.69532 -  1.30229

0.40 1.20675 0.79029 -  0.79450 -  1.21002
0.42 1.26626 ■ 0.72427 -  0.88574 -  1.11283
0.44 ‘ 1.32032 0.65138 -  0.96918 -  1.01128
0.46 1.363U 0.57226 -  1.04447 -  0.90566
0.48 1.41006 0.43755 -  1.11133 -  0.79652

0.50 1.44486 0.39794 -  1.16950 -  0.68437
0.52 1.47245 0.30410 -  1.21375 -  0.56977
0.54 1.49253 0.20675 -  1.25394 -  0.45330
0.56 1.50435 0.10661 -  1.28992 -  0.33555
0.53 1.50922 0.00440 -  1.31162 -  0.21715

0.60 1.50550 -  0.09916 -  1.32402 -  0.09372
0.62 1.49363 -  0.20332 -  1.327U 0.01910
0.64 1.47357 -  0.30736 -  1.32106 • . 0.13566
0.66 1.44537 -  0.41057 -  1.30533 0.25033
0.63 1.40913, -  0.51224 -  1.28180 0.36247 .

0.70 1.36498 -  0.61167 -  1.24904 0.47U5
0.72 1.31313 -  0.70820 -  1.20736 0.57666
0.74 1.25334 -  0.30117 -  1.15858 0.67750
0.76 1.19741 -  0.88996 -  1.10157 0.77340

, 0.73 1.11418 -  0.97400 -  1.03725 0.86382

0.30 1.03457 -  1.05270 -  0.96606 0.94823
0.82 ' 0.94399 -  1.12556 -  0.83849 1.02616
0.34 0.35795 -  1.19210 -  0.80507 1.09714
0.36 0.76194 -  1.25187 -  0.71636 1.16078
0.33 0.66151 -  1.30448 -  0.62295 1.21670

0.90 0.55724 -  1.34960 -  0.52547 1.26453
0.92 0.44974 -  1.38693 -  0.42455 1.304U
0.94 0.33962 -  1.41621 -  0.32086 1.33515
0.96 0.22752 -  1.43727 -  0.21507 1.35743
0.93 0.11410 -  1.44996 -  0.10739 1.37085

1.00 0.00000 •  1.45420 0.00000 1.37533

1(32



T able  3

Ch a r a c t e r is t ic  F u n c t io n s  a n d  D er iv a tiv e s
C la m ped -S upported  B e a m

Second Mode

f *2
0.00 0.00000 0.00000 2.00000 - 2.000000.02 0.01904 0.26276 1.71729 - 1.999100.04 0.07241 0.48557 1.43502 - 1.99300 ■0.06 .0.15446 0.66857 1.15424 - 1.977270.08 0.25958 0.81207 0.87653 - 1.94824
0.10 0.38223 0.91666 0.60U5 - 1.903050.12 0.51697 0.93325 0.33937 - 1.83960O.U 0.65851 1.01310 0.08494 - 1.756560.16 0.80176 1.00789 - 0.15633 - 1.653330.18 0.94192 0.96966 - 0.38158 - 1.53001

0.20 1.07449 0.90088 - 0.58802 - 1.387360.22 1.19534 0.80441 - 0.77300 - 1.226760.24 1.30078 0.68345 - 0.93412 - 1.050120.26 1.38759 0.54152 - 1.06927 . - 0.859350.28 1.45308 0.38242 - 1.17673 - 0.65879
0.30 1.49510 0.21017 - 1.25518 - O.450U0.32 1.51208 0.02894 - 1.30380 - 0.237240.34 1.50305 - 0.15704 - 1.32224 - 0.023810.36 1.46765 - 0.34350 - 1.31068 0.186490.38 1.406U - 0.52625 - 1.26983 0.38993
0.40 1.31923 - 0.70122 - 1.20092 0.582860.42 1.20839 - 0.86456 - 1.10569 0.76180
0.44 1.07550 - 1.01270 - 0.98634 0-.923490.46 0.92292 • - 1.14243 - 0.84553 1.064960.43 0.75348 - 1.25090 - 0.68631 1.18364
0.50 0.57035 - 1.33577 - 0.51204 1.277360.52 0.37700 - 1.39515 - 0.32640 1.34442
0.54 0.17715 - 1.42770 - 0.13323 1.383650.56 - 0.02536 - 1.43265 0.06348 1.394380.58 - 0.22661 - 1.40978 . 0.25968 1.37654
0.60 - 0.42268' - 1.35944 0.45136 1.330560.62 - 0.60973 - 1.28256 0.63460 1.257450.64 - 0.78413 - 1.18058 0.80569 1.158760.66 - 0.94244 - 1.05549 0.96112 1.036500.63 - 1.08158 - 0.90972 1.09776 0.89319 ■
0.70 • - 1.19882 - 0.74612 1.21281 0.73172
0.72 - 1.29186 - 0.56793. 1.30395 0.55537
0.74 - 1.35888 - 0.37866 1.36930 0.367690.76 - 1.39858 - 0.18205 1.40755 0.172450.78 - 1.41019 0.01800 1.41789 - 0.02643

0.80 - 1.39351 0.21752 1.40010 - 0.224940.82 - 1.34890 0.41256 1.35450 - 0.41912
0.84 - 1.27726 0.59923 1.28193 - 0.60506.0.86 • - 1.18004 0.77383 1.18399 - 0.77904 .0.83 - 1.05919 0.93288 1.06244 - 0.93759

0.90 - 0.91715 1.07323 0.91976 - 1.07752
0.92 - 0.75676 1.19208 0.75879 - 1.19604
0.94 - 0.58122 1.28706 0.58271 - 1.29078
0.96 - 0.39406 1.35629 0.39504 - 1.35983
0.98 - 0.19902 1.39839 0.19951 - 1.40183
1.00 0.00000 1.41251 0.00000 - 1.41992

' 1

1 0 3



T a b le  3

Characteristic Functions and Derivatives 
Clamped-Supported Beam

T h ird  Mode

f *3
0.00 0.00000 0.00000 2.00000 - 2.000000.02 0.03366 0.36672 1.59173 - 1.997310.04 0.14410 0.65020 1.18532 . - 1.979610.06 0.29879 0.85122 0.78508 - 1.935090.08 0.48626 0.97168 0.39742 - 1.85535
0.10 0.69037 1.0U91 0.03C09 - 1.735370.12 0.89584 0.98593 - 0.30845 - 1.57331O.U 1.08857 0.89148 - 0.60968 - 1.370370.16 1.25604 0.74002 - 0.86560 - 1.130460.18 1.38759 0.5U52 - 1.06927 - 0.85935
0.20 1.47476 0.30725 - 1.21523 » 0.566730.22 1.51U7 0.04939 - 1.29988 - 0.260980.24 1.49419 - 0.21934 - 1.32168 0.046830.26 1.42202 - 0.48616 - 1.23137 0.345510.23 1.29662 - 0.73864 - 1.18195 0.62397
0.30 1.12212 - 0.96520 - 1.02863 0.871710.32 0.90489 - 1.15556 - 0.82867 1.079340.34 0.65324 - 1.30107 - 0.59110 1.238930.36 0.37703 - 1.39512 - 0.32637 1.34U50.38 0.08727 - 1.43330 - 0.04596 1.39199
0.40 - 0.20439 - 1.41364 0.23807 1.379960.42 - 0.48616 - 1.33665 0.51362 1.30919O.U 0.74658 - 1.20525 0.76897 1.182870.46 - 0.97504 - 1.02471 0.99330 1.006460.43 - 1.16223 - 0.80234 1.177U 0.78746
0.50 - 1.30050 - 0.54726 1.31263 0.535130.52 - 1.38422 - 0.26994 1.39411 0.260050.54 . - 1.41001 0.01813 1.41807 - 0.026240.56 - 1.37687 0.30522 1.383U - 0.311790.53 - 1.28624 0.57929 1.29160 - 0.58465 ‘
0.60 - 1.14194 0.82907 1.14631 - 0.833U0.62 - 0.95000 1.04422 0.95356 . - 1.047780.64 » 0.718U 1.21582 - 0.7334 - 1.218730.66 - 0.45691 1.33678 0.45927 - 1.339150.68 - 0.17623 1.40210 0.1783 - 1X0403
O.TO 0.11174 1.40906 • - 0.U017 - 1.410640.72 0.39519 1.35742 - 0.39391 - 1.358700.74 0.66227 1.24931 - 0.66123 - 1.250360.76 0.90183 1.08924 - 0.90103 - 1.090100.73 1.10404 0.88387 - 1.10335 - 0.88458
0.80 1.26035 0.64175 - 1.25930 - 0.642330.82 1.36432 0.37294 - 1.36386 - 0.373410.84 1.4U60 0.08860 - 1.41124 - 0.089000.86 1.40025 • - 0.19943 - 1.39996 ■ 0.199100.88 1.33072 - 0.47918 - 1.33049 0.47891
0.90 1.20590 - 0.73904 - 1.20573 0.738810.92 1.03093 - 0.96820 - 1.03085 0.968000.94 0.81323 - 1.15713 - 0.81313 1.156950.96 0.56163 • - 1.29798 • - 0.56162 1.297820.98 0.28680- - - 1.38490 ■ - 0.28677 1.38476
IwOO 0.00000 ' - 1.41(29 0X0000 1.41414

1 0 4



T a b le  3

C h a r a c t e r is t ic  F u n c t io n s  and D e r iv a t iv e s
Cl a m p e d -S upported  Be a m

Fourth Mode

*4

0.00 0.00000 0.00000 2.00000 -  2.00000
0.02 0.06496 0.46278 1.46633 -  1.99408
0.04 0.23451 0.78357 0.93792 -  1.95600
0.06 0.47104 0.96521 0.42662 1.86287
0.03 0.73820 1.01441 -  0.05091 -  1.70171

0.10 1.00204 0.94270 -  0.47581 -  1.46893
0.12 1.23237 0.76664 -  0.82947 -  1.16955
O .U 1.40407 0.50751 -  1.09559 -  0.81599
0.16 1.49825 0.19041- -  1.26206 -  0.42660
0.13 1.50306 -  0.15704 -  1.32223 -  0.02380

0.20 1.41422 -  0.50624 -  1.27577 0.36779
0.22 1.23502 -  0.82944 -  1,12901 0.72343
0.24 0.97582 -  1.10140 -0,89466 1.02024
0.26 0.65324 -  1.30107 -0.59110 1.23893
0.2& 0.28879 -  1.41295 -0.24121 1.36537

0.30 -  0.09274 -  1.42807 0.12917 1.39164
0.32 -  0.46510 -  1.34455 0,49299 , 1.31666
0.34 -  0.80250 -  1.16772 0.82386 - 1.14636
0.36 -  1.08150 -  0.90963 1.09785 0.69328
0.38 -  1.28266 -  0.58823 1.29518 0.57571

0.40 -  1.39201 -  0.22602 1.40160 0.21644
0.42 -  1.40200 0.15152 1.40934 -  0.15886
0.44 -  1.31209 0.51780 1.31771 -  0.52342
0.46 -  1.12877 0.84697 1.13308 -  0.85127
0.48 -  0.86513 1.11580 0.86843 -  1.11910

0.50 -  0.53994 1.30530 0.54246 -  1.30782
0.52 -  0.17628 1.40210 0.17821 -  1.40403
0.54 0.20000 1.39937 -  0.19853 -  1.40084
0.56 0.56222 1.29734 -  0.56109 -  1.29847
0.58 0.88466 1.10326 -0.88379 -  1.10413
0.60 1.14445 0.83092 -  1.U379 -  0.83159
0.62 1.32317 0.49963 -  1.32266 -  O.50OU
0.64 1.40813 0.13289 -  1.40774 -  0.13328
0.66 1.39330 -  0.24329 -  1.39301 0,24299
0.68 1.27973 -  0.60226 -  1.27950 0.60203

0.70 1.07546 -  0.91854 -  1.07529 . 0.91837
0.72 0.79497 -  1.16974 -  0.79484 1.16960
0.74 0.45814 -  1.33802 -  0.45804 1.33792
0.76 0.08884 -  1.41U6 -  0.08876 1.4U38
0.78 -  0.20676 -  1.33486 0.28682 1.38480

0.80 -  0.64202 -  1 .^ 1 0 0.64206 1.26005
0.82 -  0.95176 -  1.04602 0.95180 1.04598
0.84 -  1.19405 -  0.75779 1.19407 0.75776
0.86 -  1.35168 -  0.41585 1.35170 0.41583
0.88 ^ -  1.41351 -  0.04443 1.41352 0 .044a

0.90 -  1.37513 0.330U  • 1.375U -  0.33015
0.92 -  1.23928 0.68130 1.23929 -  0.68131
0.94 -  1.01558 0.98416 1.01559 -  0.98418
0.96 -  0.71989 1.21727 0.71990 -  1.21728
C.98 -  0.37317 1.36409 0.37318 -  1.36409

1.00 0.00000 l.'4U 21 0.00000 -  1.0422
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T able  3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES 
Clamped-Supported Beam 

Fifth Mode

f
0.00 0.00000 0.00000 2.00000 -  2.000000.02 0.09685 0.55098 1.341)9 -  1.98902
0.04 0.33974 0.88607 0.69424 -  1.92005
0.06 0.65851 1.01311 0.08494 -  1.75656
0.08 0.98717 0.95000 -  0.45262 -  1.48455

0.10 1.26755 0.72628 -  0.88320 -  1.110640.12 1.45303 0.38243 -  1.17672 -  0.65879
O .U 1.51200 -  0.03274 -  1.31329 -  0.165970.16 1.42950 -  0.46599 -  1.28662 0.32312
0.18 1.20840 -  0.86454 -  1.10567 0.76182

0.20 0.86819 -  1.18105 -  0.79432 1.107190.22 0.44239 -  1.37825 -  0.38928 1.325U
0.24 -  0.02533 -  1.43261 0.06352 1.394420.26 -  0.46616 -  1.33665 0.51362 1.30919
0.28 -  0.89158 -  1.09954 0.91132 1.07980

0.30 -  1.19872 -  0.74602 1.21291 0.73183
0.32 -  1.37505 -  0.31360 1.38526 0.30340
0.34 -  1.40200 0.15152 1.40934 -  0.15886
0.36 -  1.27698 0.59950 1.28226 -  0.60478
0.33 -  1.01369 0.98227 1.01748 -  0.98607

0.40 -  0.64067 1.25871 0.64340 -  1.26U4
0.42 -  0.09828 1.39912 0.20024 -  1.40109
0.44 0.26570 1.38846 -  0.26429 -  1.389870.46 0.70U9 1.22792 .- 0.70018 -  1.22894
0.48 1.06118 0.93487 -  1.06045 -  0.93560

0.%) 1.30682 0.54093 -  1.30630 -  0.54146
0.52 ■ 1.41161 0.08861 -  1.41124 -  0.08899
0.54 1.36423 -  0.37331 -  1.36395 0.37304
0.56 1.16977 -  0.79500 -  1.16957 0.79481
0.58 0.84919 -  1.13100 -  0.84905 1.13086
0.60 0.43706 -  1.34505 -  0.43696 1.344950.62 -  0.02213 -  1.41403 0.02225 1.41400
0.64 -  0.47902 -  1.33063 0.47907 . 1.330580.66 -  0.88421 -  1.10371 0.88425 1.103680.68 -  1.19405 -  0.75779 1.19407 0.75776

0.70 -  1.37513 -  0.33015 1.37515 0.33013
0.72 -  1.40793 0.13308 1.40794 -  0.13310
0.74 -  1.28892 0.58196 1.28892 -.0.58197
0.76 -  1.03091 0.96809 1.03092 -  0.96810
0.78 -  0.66175 1.24983 0.66176 -  1.24984

0.80 -  0.22123 1.39680 0.22123 -  1.39680
0.82 0.243U 1.39315 -  0.243U -  1.39316
0.84 0.68130 1.23928 -  0.66130 -  1.239250.86 1.04600 0.95178 -  1.04600 -  0.95178
0.83 1.29790 0:56165 -  1.29790 -  0.56165

0.90 1.40985 0.11096 -  1.40985 -0 .11096
0.92 1.36978 -  0.35170 -  1.36978 0.35170
0.94 1.18201 -0.77644 -  1.18201 0.77644
0.96 0.86678 -  1.U745 -  0.86678 1.11745
0.98 0.45809 -1.33797 -0.45809 1.33797

LOO oiooooo -1.41421 0.00000 1U1421
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Data For Beams With Various Edge Conditions

(1) Olamped-0lamped Beam 
Characteristic Function
<p^ = coshj%î  - cos/3^x -c(n(sin h0&^ 

where and oCn are given in the following;
sinj3n|)

-n n o< n
1 4.730041 0*98250
2 7*853205 1*000777
3 10,995608 0*999966
4 14»157166 1*000001
5 17*278760 1 •000000

n>5 (2n + 1)J^ 1*000000

(2) Free-Free Beam 
Characteristic Function
The characteristic function for a free-free be^ is the 

same as the second derivative of a clamped-clamped beam; 
that is,

^g^^jj=coshf^ ̂  cos/3q ̂̂  - otn(sinl^a^ +sin^^)

The values of amd (9n are shown on the following page;
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n fti 4a
1 0
2 0
3 4*730041 0*982502
4 7*853205 1*000777
5 10*995608 0*999966
6 14*̂ 137166 1*000001
7 17*27876 1*000000

n>7 (2a-3)^ 1*000000

(3) Clamped-Ibree Beam 
Characteristic Fimctlon 
<^^=co8h^x _ cos^jj^ - d̂ (slnĥ ĵ 2|-slnPĵ x

a Pa Un
1 1 875104 0.7340955
2 4 694091 1«081847
3 7 854757 0.999225
4 10 995541 1 .000034
5 14 137168 ■ 0 .999999

> 5 (2a-1 ) i 1.000000
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(4) CLAMPED-SÜÎPORTED BEAM

cosh /®n| - 008 ̂ n^ - n(sinh/
n Pn . Ofn
1 3.926602 1.000777
2 7.068583 1.000001
3 10,210176 1.000000
4 13.351769 1.000000
5 16.493361 1.000000
>5 (4n+1 1o000000

- slnfinj)

(5) EEEE-SUPPORTEB BEAM 
Characteristic Eunctlon
The characteristic function of a free-supported beam 

is the same as the second derivative of a clamped-supported 
beam, that is,

^iy^f^)^-cosh^n^+cos^ny - c<n(sin ^  n^+sin 
The constantsand o(n are obtained from the data of clamped- 
supported beam with the exception that /̂ n = 0, for n = 1 
and 2. Eor nî>3, the values of ando(n for the present 
case correspond to n^1 for case (4).

where,

(6) SJMPIE-SUPPORTEI) BEAM 
Characteristic Function 

=  sin
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INTEGRALS OF OHARAOTERISTIO FUNCTIONS 

FOR VARIOUS MODES 
Table (4) Olamped-Olamped. Beam 
Values of Xwi» = 't^pA)k

1 2 3 4 5
1 12.30262 0 -9.73079 0 -7.61544
2 0 46.05012 0 -17.12892 0

3 -9.73079 0 98.90480 0 -24.34987
4 0 -17.12892 0 171.58566 O

5 -7.61544 0 -24.34987 0 263.99798

Note:

Table (5) Clamped-Free Beam
Values of -

1 2 3 4 5
1 4.64778 -7.37987 3.94151 -6.59339 4.59198
2 -7.37987 32.41735 -22.35243 13.58245 -22.83952
3 3.94151 -22.35243 77.29889 -35.64827 20.16203
4 -6.59339 13.58245 -35.64827 149.90185 -48.71964
5 4.59198 -22.83952 20.16203 -48.71964 228.13325 .

Values of
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X 1 2 3 4 5
1 0.85824 -11.74322 27.45315 -37.39025 51.95662
2 1.87385 -13.29425 -9.04222 30.40119 -33.70907
3 1.56451 3.22933 -45.90425 -8.33537 36.38656
4 1.08737 5.54065 4.25360 -98.91821 -7.82895
5 0.91404 3.71642 11.23264 4.73605 -171.58466

Table (6) Free-Free Beam 
Values of "à^

X 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0
2 0 12.000 0 13.856 0 13.856 0
3 0 0 49.481 0 35.378 0 36.608
4 0 13.856 0 108.925 0 57.589 0
5 0 ' 0 35.378 0 186.867 0 78.101
6 0 13.856 0 57.589 0 284.683 0
7 0 0 36.608 0 78.101 0 402.228

y
Values of (see following page)
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X 1 2 3 4 5 6 7
1 0 0 18.58910 0 43.98096 0 69.11504
2 0 0 0 40.59448 0 84.08889 0
3 0 0 -12.30262 0 52.58440 0 101.62255
4 0 0 0 -46.05012 0 55.50868 0
5 0 0 1.80069 0 -98.9048 0 60.12891
6 0 0 0 5.28566 0 -171.585 0
7 0 0 0.57069 0 9.86075 0 -263.9979

Table (7) SuDPorted-SuDPorted Beam 
Values of ^

TLl

ML

Note "bxo



APPENDIX B

STRESS-STRAIN RELATIONS 
The derivations of the stress-strain relations for the 

facings and the core are based upon the states of stresses 
as shown in Pigs, (2c) and (2b).

The general expression for the stress-strain relations 
of an orthotropic body may be written as: (See (30) and (31)<

6 x ^11 812 "13 0 0 0

67 812 822 833 0 0 0 € y

6z % 813 "23 "33 0 0 0 £ z
Tzy 814 "24 "34 844 0 0 fyz

fzx "15 "25 "35 "45 "55 0 fxz

t V 816 826 836 846 856 866 P = y
w —

• # .(B.l
Pacings

For facings, the zero components of stress and strain
are S , 7' , 7̂  , and 6 . Introducing the zero values for z •' yz Jxz z °
these components, equations (B.l) yield:

^xy.

’11

’12

M2
’22

0
0

866
...(B.2)
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solving eq.uations (B.2) for and the strain-
stress relations take the form:

1
» ^
Gr
Gy
fxy 0

provided S,,Sgg-S 2̂ 
Sg2

%

0

0 (5*
0 €

1 TGxy

c2s ^2

X
T
zy

*1 1

H i
Sii

Conversely,

(̂ x

6y

Tir

Ex xEx

and S
'22 66 = G.xy*

0
0 Gy ...(B.4)

Gxy

Bang (34) has shown that G ^  ~ J 2'f
Core

-The a tress--Strain relations of. the core are hased upon 
the assumption that and 7 ^  are zero. When zero values 
are substituted for ^x® and 7̂  in equations (B.l), the 
following relations are established.
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r°l y z

p c
I x z

► •
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1__ - 0 0
®y Eg

Jll 1_ 0 0
Ey e|

0 0 1 0
Gyz

0 0 0

where  A - = ES,
S11S33-SÏ3 ^

si

■'yz

fo■'zz

A  _ «0
811822-3^2

811823-812813 _yo
811833-SÎ3 — z *

811823-812813 _y c
811822-8^2 ^

®55 =844 - Gyg, 
A =  511(822833-823) + 8^2(813823-812833) + 8,2(812823-813822)

Inversion of (B.5) yields:
-

<5? 4 y°®7 0 0
i «

1-ÿG 1 «yyCy^C

6 z v:E: 0 0 (=
1- ^ ^  Vz°

z

0 0 Gyz 0 p o'yz

Ixz 0 0 0 ^X Z
TOCIzz

■ ' ■



APPENDIX 0

EVALUATION OF INTEGEALS OF INFINITE SERIES

In the present appendix, necessary expressions for the 
evaluation of the integrals of infinite series are developed. 
These expressions are employed in the course of analysis 
in Chapter III. As a first example, consider the integral

II =
OC o c

? / I f (z)mn
OC OC

m n
1-000

(dxdydz)
Lôt the summation be extended to m = n = 2

Ii = ? I |[xi(ïiSii+ T2§i2) + X2(r'ê^,+r^é22) 
•'coo

dxdydz4l22>

+X,Ï20i^2i1i1+ ̂ 2f2lTl2> + V l  (ïî5’n'Î21+̂ 2?12'Î22

+y'Yg (X?i'll2+^f2l'l22)«2T'l (̂ ffai'Jl 1 +^{22^2l)
<4(44f22ll1+%f2l1t2+^T2^,2'|21+^l4<1l'|22lj»jYdz
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" i 4 -0 i»i# f>

m
j J p 4 i > % K ^ n q l m n  dz 4y 4z
o o 0

^  !• |- fjj Vâ qfpn7nq d» dydy
0 0 O

Denoting r%X^clz by îffiÊ, and f^n^qdy by 
Jq ^

a A
equation (0*1) reduces to:

a b

"*4 M*|3, n+i

^mn ~ ̂ mn ~ ^n, follows that

dz dy dz

« OS.OÇ ,0,

‘JaS. isa. pn mq
a t)

**.(0.2)

Il =

_ ÎSB isa Z#ndz+
M*

=2a z^Zppiz
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„Ï<1̂

I»et
I2 = 7 ft [ I EVnVlJ J J Im n i I m n J

dz
<V 0 0 0  

Since I X̂ X̂ dx = a for 1 = 3
Jo = 0  for 1+3,

terms which are multiples of X^Zg vanish In the expansion of
on the previous page,

I2 = yyf fr dydz

° ® ® , OC or 00 a (%m) û̂ q̂ jnĝ mn dxdydz *«,(0*4)

^  f im “ T TÜIV -
% 2 = n T f ? - § -rt^^Lurt n Of %  00 / C , .

= a ̂  ̂  Inn hz + a I Jag ̂ vm ̂ nq. *,,X0*5)
Similarly f o

I3 =T 1 f [2^Jn V n  Zmnf dxdydz
= L "S ^mn ^mn dz + %  %  %  I ^mp ^mn ^pn dz ,..(0.6)

n Jj 1* t Jg
Next consider

^>-Cr_ -•

’o

L,= j Æ . j ' f  I n V t H  $««] [%ïx",Yn I"! win]()x <i>/ az.

This case Is directly obtainable from *?y replacing by J{̂ 
and ïn by ï̂ . Thus,



1 1 9

o o o
^Y clz-

oLk <Ay <Ix
o o om  + |5

m n <y
oo =* «Q oO

+  X  2  I.I.
"' P "* o o o

(0.7)
Denoting,

fO/ f® « T
J Xft\>̂ f>dxby Jmb and \ Y n Y a ‘=̂ Yt»y j j ^ ,

Ij, takes the form:

I-''# j | i l  j 3 ^
04 «̂ --

+ z z z
IV*

//
**+l»/n-5̂ ‘y ...(G.8)

If Xjn is replaced by X̂y,̂ I4 becomes 
.0

l5 =
O O O•<* «o

W\ *\ eh ̂  b '
...(0,9)

Similarly,
C<*>oa

fj j x z  I A  Y, f«« H I  fx.n'rn'i ««] A ^ x  az.

=  i l  J  % H»̂ l» ® (C.19)



APPENDIX D

APPLICATION TO SANDWICH BEAMS 
In this appendix, frequency criteria for sandwich 

beams are developed from the general frequency equation
(3.53)♦ In applying this equation to the cases of beams, the 
parameters and approach zero and the resulting deter- 
minantal equation assumes the form:

11“ fimXil °13 °15 %

12“ fi^Xl2 ^22" fimX22 C23 C
25

Bm

13 °23 °33 S 5

15 °25 °35 °55

= C

— D*1
The constants C^^ and in (D,l) are derived from the ele- 
meqts of the determinant of the equation (3.53) -by aaking^^,
I , J , and J all approach zero, Under these conditions,nn. mm TITI

the constants of (D.l) become:

0.. =•! 2, + 2 l_(fb)2 dïl(ê®)'I 3  ̂ L 2 12 U  a

°i2 = gg— Xo+f’’) + i (ft)^] dï im'*

12C
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13

'15

'22

'23 =

(»+ if'’) 2 (&)^
8|z 2 ' a

( c + l f %  a%j2(%)4

fbo2
C.26(E§)

I [3(orf^)2.(fh2] +12

1 . 1 /f̂ c2
*̂ XZ 2

'25 = - 1_ f” 0 (o+f*’) f 2 (_m)'̂  d̂ lEC ^  |_ a 1J

'33 =

'35 =

I;
La

Gxz mm (2
2 11'

+ 2 Ĉ f̂ il 2(|a)'̂
(̂ xz) -

af J

“55

Xi 1
Ai2

X 22

2 j?°o + f 8.̂9. +^bfbj

+ 2?aJ

_L_ [ 2 fcc3+ 2?bo2ftl 
(E°)2 L3 J

The solution of (D.l) is too complicated for a para­
metric raprésentation. Hewever, e nimber of epeoial oases oaq. 
be developed from thie equation by -conei-dering the following 
values of the physical cQ̂ onstants.



1L2
Case (a) — "-oc, Gg.g = finite.
Under this condition- the frequency equation becomes

Q m  = -1\ /_ _ 033(^1 l055*^15)-°1l035“°55®13+
Aii(Q)3@55-%5; 2O13O15C35] . ...(D.2)

Assuming that the facings are of the same material, so 
that = d̂  = d, and^8._ ̂ b =r̂ ,the substitution of the con­
stants j and )̂jLj in (D.2) Yields;

Q 2  = fe)4 4 (c+ fa^)2

1 + ^  , 
G%z(f+f )
d 0 f*fb ^ )

mm

1

a* -(D.3)
The values of 1̂ ,̂ and depend upon the edge con­

dition of beams. For simplyijsupported edges,

^  = (Sf)^ m ) ‘*
& EL El

With these substitutions, equation (D.3) yields:

(see Appendix (A).
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&
f̂ +f̂

îé"*’’- i  >'‘>’* 1 +

? ...(D.3)
The values of and  ̂̂  depend upon the edge con­

dition of beams. For simply-supported edges,
= (SJL)'̂ ; See Appendix (A).

a"

\,

With these substitutions, equation (D,3) yields:
iMÏ

1 +m^f^f^o TT̂ d 
(f +̂f^) aZsOg

...(D.4)
where

I = f!f!  (c +
(f̂ + f̂ ) 2

Case (b) G^g-^oc, E° = finite
Introducing these values in the system (D.l), the 

parameter F^ vanishes and the resulting frequency equation 
takes the form:

Qm ^XiiXaa "A 1 2 ]

f \ l^ ® 2 2 ® 5 5 " ^ 5 ^  **■ ^22^® 11^55“® 15^■*■^^12^^25° 15"® 12^55^ P  I J'55 Mi
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■WTaen the values of 0 andXj^j are substituted in (D.l), a 
lengthy and a complicated second degree equation in Q^gj 
results. To determine the effect of finite modulus of the 
core in thickness direction, the following values are directly- 
substituted in (D.5):

f^ = 2f̂ ; c = lOf̂ ; f° = = f  .

d=dï=dt; f = 3Æm 5=I|£i; a = ̂ 1 1ti2 Roll

Ec

(32.2)(12) in2 8911

= i z 10̂  d̂ ; (JL)= 1_; f̂  = (1—); /̂ = (— )3 T a 10 10 10

For the fundamental mode, the two values of are:
( Q^)^ = 104.4853:10̂

The first of these equations (D.6) is the usual frequency 
of the fundamental normal mode of vibration and the second 
value of frequency is attributed to the jf ace-wrinkling mode.
(See Appendix E). Due to the excessively large value of ( )g

relative to (Q^^)^, tl̂ e mode corresponding to ( )g is

seldom realized. However, for very short panels with weak 
cores the possibility of the face wrinkling mode cannot be 
overlooked.



5.25
Mode Shapes: Having found the frequencies

and (Q2^ )g, the corresponding mode shapes are determined by- 
eliminating the parameter from the system (D.l).
Thus,

° 5 5 ( ° 1 2 " 0 f f l X l 2 ) " ^ 1 5 ° 1 5 * ^ 5 5 ( ° 2 2 “ 0 m X l 2 ) " ® 2 5

&
■ ^ 5 5 ^ ^ 1 1 “  f i m X l i  -^15

. ^ 5 5 ^ * ^ 1 2 " ^ m \ 2 ^ " i 5 ° 2 5 .

Substituting (0^ 0 and (Q^ ) , (D.7) becomes
11 12

A, A,
(— = 166,67 and (—l)p = - 0.659

Introducing these ratios in the displacement function,

w° = ^  sin 5ÜLS (Ag+ z B^) sinfi^t, 
m

tke following results are obtained
w®=a^ (1+0.006z)sinH^,corresponding to ...(D.8)

and .
w®=a^ (z-0.659)sin corresponding to (Q^ ) ...(D.9)

 ̂ 12
whera^

â  and a^ are constants.
These equations are plotted on the following page. Thus (D.8) 
is the motion of the neutral plane in which both facing and the 
core ̂ move in- phase. erhihl is a igpe of ootion in which
neutral plane stays stationary, but the parts of -sandwich 
above and below the neutral plane move out of phase.
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C=|

Fundamental mode shape corresponding to (D.8)

z

Fundamental mode shape corresponding to (D.9)



APPEÎTDIX E

This appendix contains numerical values ni the 
constants which are taken from reference (34). For convenience, 
the thicknesses, and the physical constants of the core and of 
the lower facing are expressed in terms of those of the upper 
facing by means of parameters* The resulting frequencies of 
sandwich plates tabulated on pages (77-80 are obtained by 
varying these parameters in the general frequency equation
(3.53). The upper facing f^, and the lower facing f^, and the 
core, are assumed to be of aluminum, steel, and aluminum honey 
comb, respectively. For a rectangular sandwich plate of sides 
*a* and *b*, let

b = k^a; f ̂ = kgf^; c = kyf^

dg = dP = d^= dp5 where di = --3 1 1 2  I

S|y = 5 (1- V^) d=

g| =Sjd^; ^  =^gd^; 632 = Sfd®

S'y = S4dt; 8 ^  = V ?
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