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VIBRATIONS OF RECTANGULAR SANDWICH PLATES
WITH VARIOUS EDGE CONDITIONS

CHAPTER I

RESUME OF DEVELOPMENTS IN THE ANALYSES
OF SANDWICH PANELS

In general, a sandwich panel consists of a low den-
sity, thick core bonded to two relatively thin, strong face
plates. Such a construction can be used to produce stiff,
light-weight structural panels that are particularly adaptable
to alr-craft, ballistic missliles, and to space vehicle con-
struction where least welght requirements are mandatory.

Most of the literature pertaining to sandwich struc-
tures treats theoretical and experimental investigatlions with
static loads., Only limited information is available concern-~
ing either the theoretical analysis of dynamic loads on sand-
wich structures, or experimental results pertaining to the
natural'frequencies angd mode'shapes of vibrations of sandwich
panels, Since vibratory phenomena embody the basic notions
and assumptions of the static stress analysis, 1t seems rele-
vant to give'an account of tﬁe development of static stress

analysis in this resume.
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Developments in the Statlc Stress Analxgis

Most of the work in the analyses of sandwich construct-
ion had been initilated and continued by the Forest Products
Laboratory,¥* United States Department of Agriculture, Suc-
cessive developments in the investigations of sandwich structures
under the sponsorship of thls agency have resulted in some of
ﬁhe basic design criteria for sandwich construction. In the
early phase of the investigations, March (1) formulated a
differential equation for the deflection on the following és-
sumptions:

1, The faclngs are so thin that their flexurel
can be neglected and they can be treated as membranes.

2. The transverse shear stress components in the
core are uniformly distributed and all other stress components
are negligible. |

S The deflections of the panel are such that.a
small deflection theory can be employed.

4, The core as well as the facings are lilsotropic.
Even undef-these simplifying assumptions, the solutions of the
resulting differential equations are very involved foi other
than simply supported piates.

Ericksen and March (2) extended the energy methods of
analysis empiqyed by British investlgators llke Leggett (3),

# Maintained at Madison, Wisconsin 1n cooperation with the

University of Wisconsin,
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Williams (4), @nd Hopkins (5) to account for orthotropic cores
in the buckling analysis of sandwich panels by assuming the

following displacement functions:

=
1}

¢ = -k (z-q)du
0Xx

v¢ = -h (z-f)ELg
27

v = w (x,y)

where u®, v®, and w® are core displacements in the x, y, and z
directions, and k, h, and r, free constants. Thus the as-
sumption that plane sections before deformation remain plane
after deformation was retalned with a slight modification; that
is, plane sections rotate about a 1line z = g for the x-dis-
placements and z = r for the y-dlsplacemént. It is obvious
that, for a sandwich panel with faclings of unequal thickness,
the middle plane of the core 1s not the neutral plane of tne
panel, Also, the assumption of different proportionality
factors k and h is readlly understandable by considering that
the elastic properties of the core material may differ greatly
in both directions., In this connection Chang and Ebcloglu (6)
comment: |
«.oFor pure bending, uC and v° are justified, But the
authors could not see the need for evaluating some of thelr
constants (such as q and r) by means of minimizing the
energy integral. To the authors's knowledge, the value of
q and r dependr only on the elastic and geometrical arrange-
ment of the sandwich cross section and should not depend
on the minimum of energy integral., Fortunately, thelr.
choice for w® was good and thelr results check with the
present theoryees

This point will be pursued further in Chapter III where this
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writer intends to show that g and r can be Justifiably con-
strued as unknown parameters whose true values are determined
by minimizing the total energy. The Ericksen-March method re-
mained the basic approach at the Forest Products Laboratoriés
where éubseguent work has been conducted with the alm of im-
proving the Ericksen-March displacement functions. In this
method the total strain energy conslists of energy due to shear-
ing strains in the core, and the energies due to membrane and
bending strains in the facings. Most of fhe work, however, has
been confined to simply-supported plates (7), (8) which are
governed by functions which; including their first and second
derivatives, are orthogonal end, additionally, setisfy the

boundary conditions approximated by Hoff (9)%*,

¥The exact boundary conditions foT & simply-supported plate, ob-

tained by means of variational methods, are:

(1) Qu +wd v = O at x=0, Xaly
2 97y,
(2) 9v +wQu =0 at y=0, y=1
oy ME)x v
(3) Qu dv =0 at x=0, x=1,, =0, y=
r.¥; E}: x TR
(4) 2w =0 at x=0, x=1
CE ba‘;r? *
(5) Q 2w 2 =0 at y=0, y=
dy° 5 x2 » Ty
(6) w=0 at x=0, z=1g, y=0, y=1

¥y
where u, v, and w are the displacements in the x, y, and 2z di-

rections and Wis the Polssons ratio. Hoff approximated the

condition (3) by 3(a) = u=0 at y=0, y=ly
v=0 at x=0, x=1j
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Thurston (10) applied the ILagrangean Multlplier method
to the energy expressions of Ericksen-March (2) to determine
deflections and buckling loadé of rectangular plates clamped
on all four edges. The Lagrangean Multiplier method was first
employed by Budiansky and Hue (11) in their buckling analysis
of clamped rectangular solid plates. The method is an appli-
cation of the minimization of functions subject to certain‘con-
stralnts. These constraints arise from the lack of appropriate
functions which satisfy the boundary conditions of plates other
than-éimply-sﬁpported., A parameter, called lagrangean '
Multiplier, 1s associated with each constrainf. Considering,
for example, a clamped beam of length 'a' with coordinate
origin at one:of the extremities, the boundary conditions may
be written as:

(a) w(0) =w(a) =0

(b) %(O)zg(a) =0

where w may be assumed as

oo
w:_-ZAm sin '2_‘1&
m [« ¥

It is clear that the boundary condition (a) is satisfied, dut
not (b)s In order to satisfy (b) the equation
- o
Z(_m__n)Amzoo.OOQOO0‘...0..".0000....(1)
m'a : .

must hold, where only even values of m enter, If the total

energj of a system is denoted by U, then the Lagrangean method
demands that |

B -AS _
5%:;1 )\&g)Am_o..................(2)
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where A is the Lagrangean Multiplier. ZEquations (1) and (2)
contain the unknown A and implicitly in u, the buckling load
Pce

In geheral, more than one constraining conditlon exist,
In fact, in case of a plate problem lnvolving double sum-
mations, there are infinitely many XS. Further, if the analysis
conslders displacements in x and y directlions, more than one
infinite set of XS occur, However, an exact solution for
buckling loads or static deflectlons would lead to an infinite
determinant. To obtain approximate results, two alternative
procedures have been suggested:

1e An upper bound solution is achleved when all
the boundary conditions are satisfied while working
with only a finlite number of undetermined co- |
efficients. This has the effect of stiffening the
plate and iaisihg the buckling loéd.

2. A lower bound solution is attained when all
the coefficlents are used, but not all the con-
straints. This relaxes the restralnts on the
boundaries and makes the plate more flexible, thus
decreasing_the buckling load,

Although the Lagrangean Multiplier method has contributed
much to the handling of more complex boundary.conditions, the
amount of work involved is tremendously large. The solutions
are not in closed form and the attained accuracy hardly warrants

the numerical effort.,  The results of Thurston (10), for example,
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are within 3% of the values predicted by Ericksen and March on

the basis of methods which do not involve such lengthy dom-
putational procedures. In addition, the Lagrangean Multiplier
method does not accomodate conditions which are functions of z.
Yet it 1s not uncommon to find the deflections w as functlons
of z in sandwich construction, for buckling or static deflection
investigations, Thus, further simplifylng assumptions are
necessary for the evalﬁation of w over the plate thlckness at
the edges. For simple.beam problems, however; the Lagrangean
Multiplier method is not too complicated despite the open form
solution; Raville (17) applied it to the vibrations of a sand-
wich beam clamped on both edges, by employing-only one con-
straint and éssuming w to be constant over the thickmess.,

Chang and Ebcioglu (6) studied the elastic stability
of sandwich panels. Their assumptions do not seem to deviate
from those of Thurston (10) and Ericksen-March (2), and their
analysis of the temperature differences in the facings could
also have been included in the works of previous authors,
However, their approach is based on the derivation of three
differential equations'by means of the principle of virtual dis-
placements. EThe solution of the differential equations has been
achleved by assuming the displacements in the following form:

' u=0C 4 cos‘r_i'g Sing%rx

a

ir:CQ sin Ix cos nay
a b

w=s sinf1Xx sin nily
5 iy b
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where u, v, and w are displacements in x, y, and z directions
respectively. These functions do satisfy the boundary con-
ditions of a simply supported plate.,® For any other boundary
condition, the difficulty of finding sultable dlsplacement
functions still continues. Also, when a summation over n 1is
introduced, the functions and their derivatives, in general, do
not exhibit orthogonal properties, resulting in open form
solutions, Furthermore, the authors admit that whereas rather
exact strain distribution are obtained for sandwich panels with
weak cores, the results become unfavorable when the stiffness
of the core approaches. that of the facings. In thls connection
it is worthwhile to point out that Bijlaard (i2) developed
equations for bending and torsional moments bj assuming the
temperature of the upper surface of a rectangular sandwich
plate to be higher than that of the lower one., Plates with
simply supported edges; and plates with two edges simply
supported and the other two free or clamped, have been dealt
with. The calculations are very involved as in all irvestigations
which treat the problem by the differential equation approach.

Raville and Kimel (13) investigated the problem of
elastic stablillity of a simply supported beam by both the
differential equation and the energy methods, . They showed
that two methods give ldentical results ﬁnder{the same set of

assumptions., Although neglecting the elasticity of the core

1

*See footnote on page (4).



9
in the plane of the core, Raville and Kimel (13) assumed non-
zero strains in the thickness direction of the core. This is
rerhaps a very desirable lmprovement, since the core is generally
very weak as well as thick in comparison to the facing materials.
The assumption that w 1s independent of i m&y be Justified in
solid plates of homogeneous and isotropic materlal, but may
~1ead to discrepencies in the analysis of sandwich plates, par-
ticularly i1f the core is weak and very thick in comparison to
the facings., The aﬁth9rs have termed this state of stress as
"antiplane" stress. Iﬁ other words, the usual two dimensional
stress. components 64, Gy, and jxy" are assumed zero, and the non-
zero components of stiress are [ sz, and Tyz' This method
of analyslis has resulted in not only "Euler type" buckling
criteria, but also in "face-wrinkling" mode shapes and their
assoclated critical values., An examination of thelr results
reveals that for relatively short panels with thin facings
and very weak cores, face-wrinkling, rather than the usual
"Euler type" buckling failure, occurs. However, for sandwich
construction of usual proportions and physical properties, the
possibility of face-wrinkling failure is very remote. The
phenomenon of face-wrinkling has also been investlgated by
Weikel and Kobayashi (14) in connection with the local buckling
of a honeycomb face'plate. Their assumptlons, besides being
numerous, are somewhat more restrictiﬁe. For example, thelr
theory applies to honeycomb cells which are square in shape,

and in which the cells are oriented such that the load 1is
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parallel to the diagonal of the cell. Comnsldering the face
plate over each cell as a simply-supported square plate, a
deflection surface was assumed for “"intercell buckling,”
i.,e.,, the buckling of the honeycomb face plate’within eéch
individual cell, For "wrinkling type" buckling which is the
buckling of the honeycomb face plate over a row of several
honeycomb cells, another deflection 1is the superposition of
the two deflections from which, by means of energj method, the
final results were established. These results show that for a
glven face and cell size of the core, the predominant mode of
buckling failuré will be wrinkling for a relatively weak core.

With increasing core stiffness, intercell buckling becomes

pfedominant.
Developments in the Dynamic Stress Analysis

As pointed out in the beginning, the literature on the
dynamical éharaéteristies of sandwlich panels is very limited.
Until.. 1959 almost all the investigations pertained to the bend-
iag and buckling phenomena of sandwich construction. In fact,
the first publication in connection with the dynamics of
sandwich plates:did not appear until September, 1959, This
publication by Yu (15) dealt with "One Dimensional Theory"
of lsotropic sandwlch panels, |

In his analysis, Yu included the rotary inertia and.
the transverseshear deformation of the core and of the
facings. The analysls is based on the state of piane-
strain which yields the following two equatibhs:



11

oSk 4 2% 2 =
J(m - gy sdr =

| el =

where u and w are displacements in the x and y directions,
respectively. In order to express the stresses in terms of
strains, the following displacement functions were assumed:
u®=z¢, |
wPszh-o Wy -Ho)

uazz%+§.(¢}’1 -4 )
wizwazwb=w°=w

°, ua, ub are the x-displacements in the core, the

where u
upper facing and the lower facing, respectively. These as-
sumptions may be summarized as:

1. The displacements in the plane of the panel
vary linearly over the thickness of the plate.

2. At each point of the panel, the vertical
cross~-section of the two facings rotate through. the same angle;
the rotation of the core is different from that of the facings.

e The core is incompressible in the thlckness
direction. On expressing stresses in terms of strains, the re-
sulting differential equations were governed by three varl-
ables, P;,Po, and w. Thus the;above analysis 1s applicable to
panels having three solid isotropic plates and where the top
and the bottom plates have the same thickness and the same

physical properties. TYu investigated two cases, one dealing



12
with the propagation of waves in an infinitely long panel,
and the other wlth the bending phenomenon of a cantllevered
isotropic sandwich panel.

Yu's analysis has thrown light on the variation of
shearing stresses over the thickness of the sandwlch plane by
considering bending of the core in the two directions and in-
troducing a correction of coeffielent for a poésible variation
of shearing stresses along the thickness. This procedure is
analagous to that of Mindlin's (16) who determined shear co-
efficlent correctlons for homogeneous plates., Yu concludes
that the appropriate value for the shear correction is nearly
equal to unity for the most common sandwich panels., For
present sandwich constructions, a uniform shear distribution a-
cross the thickness of the corevis assumed, siﬁce the core is
very weak in resisting the normal stresses in ﬁhe plane of
the plate as compared to the facings.

In a separate paper enti%led "Flexural Vibrations of
Sandwich Piates," Yu (15a) applied this theory.to an in-
finite plate in blane strain and established a _cubic equation
for the frequency. The three b;anchés of the frequency curve
were explalned in the followlng.manner: The first branch is
attributed to the assumption of-bending and membrane strains
in the facings and the transverée shears ir the core. The
second branch is assoclated with the rotary inertia of the
core and the third branch, which corresponds to the highest

frequency, 1s eliminated when the rotary inertia and transverse
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shear in the facings are neglected, thereby reducing the
cublc to a second degree equatlon.

In spite of the simplifying assumptions of isotropy,
identical facings, and plane strain, the resulting equatlons
were so involved that the author neglected also the rotary
inertia and the transverse shear in the facings, and additlon-
ally introduced further approximations, for example, that the
ratlo of faclng-to-core thickness is negligible, The simpli-
fied analysis was then applied to a simply-supported plate.
The established results bear out the importance of the shear
effect in the core, particularly in the high frequency range.
Yu (i5a) concludes:

Except for the plates with thin faces and sufficiently
low frequency ranges, the flexural rigidities of the
faces about thelr own middle planes must be included
even though they may be small by themselves, As a con-
sequence, the system of equations of motion has to re-
main sixth order and cannot be reduced, which at once

complicates the vibration problem of finite sandwich

plates with boundary conditions other than that of simply-
supported...

In order to overcome the difficulty of solving the differential
equatlion, the author, in a later publication entitled "Simplified
Vibration Analysis of Sandwich Plates," (15b) modified his
théory for sandwich plates with very thin facings, The mod-
ified displacement functlions were:

c

u =Zf) \

a- -
u= -byy

ub=+h194
whew
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Yu (15b) suggested that the rotary inertlas and the flexural
rigidities may be disregarded for lnvestigations in the low
frequency range. Employing these assumptions, he established
relatively simple equations of motion., While the analysis
was applied to an infinlite sandwich plate, no results for
any finlte plate were given,

Chang and Fang (18) deal with the periodic response of
a loaded sandwich panel, Thelr approach, though similar to
that of Yu (15b), is not as general., Among other commonly
used assumptions, they neglect the bending rigidity of the
facing, but consider the rotary inertia. As in reference
(15a), the resulting differential equations are not easy
to solve for plates with boundary conditions other than the
simply-supported., The authors (18) demonstrated the just-
ification for neglecting the'rotary inertia for long wave
lengths.

The frequency response functions have also been in-
vestigated by Bleniek and Freudenthal (19). Their analysis
1s confined to a simply-supported case and takes into account
materlal damping of the two identical facings and the core
by using complex moduli of elasticity.

Exx

1l

By (14 17n)

Ggp = G, (1+ 1sz)
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whererlxx, and]k;z, are the damping coefficlients, The
remaining assumptions were the same as in (15) and (18). The
three parameters were determined by using the displacement
functions for a simply-supported plate,#

Recently Chu (20) and Freudenthal (20) assumed non-
linear displecement functions with an aim of analyzing the
large deflection problem of sandwich panels., According to this

theory, the stralns were expresses as:
Exx =24, 3(aw )2
ox %(5i)'

where u and w are displacements in the x and y directlons,
respectively, and exx is the straln in the x direction; the

strains in the faclngs are then
2
2 _Qu W
eixx'-ihz*'é(ésf) * ?Eﬁ?

The discussion was limited to very low frequencies of a
simply-supported beam, No variation of w over the thickpess
wag considered. Chu (20) concluded that in non-linear vi-
bration analysis of honeycomb sandwich construction, the in-
fluence of transverse shear deformation can, as a rule be
neglected.

Raville (17), utilizing his earlier assumptions, (see 13)
and disregarding the elasticity of the core in the thickness
direction, investigated the natural frequencles of a clamped-

clamped beam by an energy approach in which the'Lagrangean '

#See footnote on page (4).
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Multiplier method was applied to satlisfy the boundary con-
ditions. As stated earlier, the solutior 1s in the form of
infinite series and loses its simplicity when applied to two
demensional problems. However, the energy approach does not
present the difficulties that are inherent in Yu's (15)
approach even though the assumptions of Raville do not differ
from those of Yu with the exception of the inclusion of rotery
inertia., Excellent correlation between theory and experiment
was established with most of the theoretical values agreeing

within 5% of the experimental values,

Conclusions

From the developments in the foregolng resume one con-
cludeg that most investigators pursued either the differential
equation approach, or the energy approach,

The differential equation method, though potentially
more accurate than the energy method, often presents difficulties
in finding exact solutions of the equations, so that generally,
additional simplifying assumptions become necessary. The
existing literature on the subject does not contaln investigations
of finite plates with complex boundary conditlions, especially
in regard to the vibrations., The assumption of a state of
stress in the core which is simlilar to that of the facings
simplifies the analysis, but in the'opinion of this writer,
confines it to a particular type of core material whose clastic

behaviour must not differ much from these of' the face plates.
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Generally, howe&er, this is not the case in sandwich con-
struction, If the plane stralin assumption is neglected, the
differential equation approach beconmes an almost impossible
task, on the other hand, the energy apprcach has been applied
with relative ease, Additlonal assumptions for further re-
finement can be incorporated into the theory with little diffi-
culty. The displacement functions generally imply summations
of infinlite series. However, these can be approximated by
modern computing techlques. Yet, excepting simple beam struct-
ures, the energy methods have not been fully utilized for
vibrations of sandwlich plate sfructﬁres. In the opinion of
this writer, the energy approach affords a nuch Yetter tool
for solving plate problems with complex edge conditions.

It is with this hope that the writer has undertaken an
investigation of vibrations of rectangular sandwich plates for
establishing the normal mode frequenclies. The investigation is
carried out in such a manner that various edge conditions can
be accomodated and that no restrictions are placed on the

strains in the core, particularly in the thickness direction.



CHAPTER II
EXPOSITION OF METHOD OF ANALYSIS
INTRODUCTION

This dissertation aims to present an analysis of the
normal mode frequencies of rectangular plates with various edge
conditions. ‘Since the fundamental frequency 1s usually the
frequency of maln interest to the structural engineer, the
emphasls of this ilnvestigatlon will be laid on the low-freQuency
ranges, As indicated in Chapter I, most of the work in this
field has been confined to simply-supported cases. These
anal&ses become 1mprac£icai when applied to finlte plates with
complex edge conditions., However, from a practical viewpoint,
the situations under which a plate may be treated as simply-
supported are very limited. In general, one is confronted
with cases where other than simply-supported edge conditions
correspond more closely to actuality. A vibratory analysis of
plates with clamped, free, or simply-supported edges, or
arbltrary combinations, will prové more significant in meet-

ing the growing dem=mds for an economical utilization of sand-
wich structures, particularly where strength-weight ratios

are important as in air-craft or ballistic missilles.

18
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It is also desirable that a unified approach to the vi-
brations of sandwich plates be developed in such a way that
the analysis is directly applicable to all possible edge

conditions.

In the opinion of this writer, the exlsting theoriles
can be further improved by disregarding the simplifyling as-
sumption of core rigidity in the thickness direction, resulting
in more exact straln distribution 1n the core and better

accuracy for vibrational characteristics of the plates.

Assumptlions
The proposed analysis of sandwich plates will be based

on the following assumptions. Some of these are recognized

as standard assumptions for common types of sandwich con-
struction., More rigorous assumptions regarding the core and

the facings are included here, thus rendering this analysis more

general in comparison to the vibratory investigations outlined

in Chapter I.

FPacings:
(2). The facings of the sandwich plate are of tweo

different materials and thicknesses:
(b). The facings are thin, orthotropic elastic plates,

and are subject to membrane as well as bending strains.

(c). The core is an orthotropic elastic continum,

Tie two axes of orthotropy are characteirized

=

e e s e
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by "transverse" and "ribbon" directions as
shoﬁn in Fig. i. | |

(d)e The bending stiffness of the core about the
transverse axis is negligible,

(e). The displacements in the core vary linearly
across the thickness of the core.

(f). The core carries no shearing stress in the
plane of plate,

(g)e The core is subject to transverse shearing
stresses in (Z-T) and (Z-R) planes which are
uniformly distributed over.the thickness of
the core,

Thlis assumption of constant shearing stresses over the thickness
of the core is justified in the light of Yu's investigation.
Bond:

(h)s All bonds are strong enough to assure continuity
of stresses.,

Yu and Raville analyzed vibrations of sandwich panels
by assuming isotropic facings of the same material, Chang
(18) comducted his snalysis by considering facings of two
different materials, but with the same Poisson's ratio. He,
in addition, neglected the bending rigidity of the facings.
The assumption of zero normal stresses ln the core reduced the
orthotropy of the core to two shear modull in the work of Chang
and to one shear modulus in Raville's one dimensional case,

To this author's knowledge, no literature exists in

which non-zero straing in the thickness direction of the core
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are considered in connection with the vibratory analysis.
The consideration of finite elasticity of the core in its
thickness direction will not only include in the analysis
symmetrical modes of vibration of tbe plate about its neutral
plane, but will also establish more accurate results,
particularly for weak cores.

Materials commonly used for sandwich construction
exhibit no isotropic behaviour, Not only is the core 4
anistropic, but the facing materials in general also possess
anistropic characterlistics. In order to facllitate the
analysis of stress and strain, some further simplifying
assunptions become necessary with regard to the anistropye.
For common types of sandwich materials, the assumption of
orthotropy 1s frequently employed. The necessary stress-
strain relations based on orthotropy are described in

Appendix (B).

Method of Analysis
Regarding the method of analysis, this writer feels

that the energy approach is best suited for establishing a
general and a refined vibratory ahalysis of sandwich plates.
No proofs of energy principles and variational methods are
included here; detalled accounts of energy methods are glven
in any standard text like those of Timoshenko (21), Bleich
(22), Langhaar (23), and Wang (24)., Suffice it to say that
the energy method for the solutions of the problems of

vibrations is founded on an extremum principle of mechanics
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utilizing an energy criterion which characterized the conditions
of equlilibrium in an elastic systeme This energy criterion,
generally called the "Minimum of the Potential Energy,"
states (24):
of all displacemeﬁts satisfying glven boundary conditions,
those which satisfy the equilibrium condltlons make the
potential energy V assume a stationary value. For stable
equilibrium V is minimum,
As a consequence of this minimal principle, the governing
differential equations are obtalined by means of the calculus
of variation. (See 15a, 18, 19). However, instead of solving
the differential equations together with the boundary
conditions, an often difficult mathematical task, one may
interpret the problem as that which seeks functlons that
minimize and satisfy the potential energy‘of the system,
Several approaches have been’suggésted for finding the solutlions
of boundary-value problems of which the methods of Rayleigh
and Ritz are of prime importance.

Rayleigh's Method: A mechenical system with infinitely
many degrees of freedom may be reduced to a system with finite
degrees of freedom by means of assumptions regarding the
nature of deformation., This ldea was first employed by Lord
Rayleigh (27) in his studies of vibration?,

According to Rayleigh's method, when a conservetive
system vibrates freely, the total mechanical energy is

coastant. Assuming the system vibrates in a normal mode, the
particles will execute simple harmonic motions and if the mean

values of the kinetic and potential energies, i.e., averages
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over a long period of time, are (1/2)T and (1/2)V, the con-

Tmax = vmax which in

servation of the total energy leads to
essence is Rayleigh®s frequency criterion.

It was Rayleigih®s idea to assume a configuration close
to the actual configuration of the vibrating system for deter=

mining the kinetic energy, T,.,, and the potential energy

ma
Vaaxs Of the system. The cholice of a definite shape for a
deflection curve in this method 1s equivalent to introducing
additional constraints which reduce the system to ome having a
single degree of freedom, Such additional constraints can
only increase the rigidity of the system and lead to a fre-
quency of vibration in excess of the exact value,

Rayleigh-Ritz Method: In order to achieve better
accuracy for frequencies as well as closer estimates for
mode shapes Ritz, in 1909, refined and generalized Rayleigh's
method which has since then been calied the Rayleigh-Ritz
method, Basically, Ritz suggested that assumed deflection
curves be expressed by the sum of several functions in the form

WP + 0P ke v e e s (2.1)

in which the qb-terms represent an arbitrarily chosen set of
functions of x and y, satisfying the same boundary conditions
as the deflection w and where the coefficlents Oy are
undetermined parameters., Substituting w in the expression
for total energy of the system and performing the required
mathematical operations leads to the relation

2,
Vma.x - Tmax = F1 (01, 02000 n) - Fg[ Q (019 02, ...Cn)]
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in which F1 and F. are quadratic forms of the parameters Cyp-

2
If w is to be regarded as a solution of the extremum problem
it must satisfy the condition that the functlon Vmex = Tmax
assume & statlonary value, Consequently, the parameters 0;
must be selected to make the expression F, -8U2 Fy stationary.
The problem therefore becomes an ordinary extremum problem

in which 04, Op, o..C, are variables to be obtalned from
é%—(ﬁ——-ﬁf\‘;) =0 ; (= 1,2,--- N.

l -
This operation results in a system of n homogeneous equations

the n conditions,
which are linear ln the n parameters, Cj . For such a set of
equations, a nontrivial solutlion is only possible when the
determinant of the coefficlents vanishes, This establishes
the required frequency criterion. Thus the importance of
fhe energy criterion for the solutlion of vibration problems
becomes evident in the light of:the Rayleigh-Ritz method
which leads to a direct solution of the extremum problem.

When based upon an appropriate set of co-ordinate
functions, the Ritz method furnishes a sequence of parameters
C4 which diminish in many cases so rapldly that only a few
terms of the series (2-1) suffice to determine the frequency
with the required degree of accﬁracyo

Timoshenko (25), p. 371, .While investigating the
vibrations of a string, found that with only one parameter
C,. the result for the fundamental frequency was 0.66%
higher than the exact frequency. By taking two such para-

meters, the error was reduced to less than 0,001%. When
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three terms of the expression (@) were considered, the error

for the third mode of vibration was found to be less than
2.

It 1s seen that by using the Ritz method, not only the
fundamental fregquency but also the frequencies of higher modes
of vibratlons can be obtalned with good accuracy by taking a
sufficient number of térms of the expression (2-1)., The major
advantage of the Ritz method lies in the fact that it pro-
vides approximate solutions of the extremum problems in those
cases where an exact solutlon of the characteristic-~value
problem becomes too difficult or 1 not practical., The method
can also be applied with much advantage to the fregquency cal-
culation in less difficult problems, since 1t requires less
effort than the solution of a complex transcendental equation.

The accuracy of the Ritz method depends largely on the
proper choice of co-ordinate fumnctions., These must be, of
necessity, "admissible;" that is, they must satisfy the so-
called "artificial boundary conditions." (See ?7). These
two types of boundary conditions are also known as "geometric
boundary conditions" and "dynamic boundary conditions,” re-
spectively. In case of plates, the deflectlon and slope re-
gquirements constitute artificial boundary conditions, while the
demand that the second or third derivatives vanlish at the
boundary is a natural boundary condition. From a practical
consideration of the rate of convergence, it is desirable to

satisfy the natural boﬁndany conditions 1f possible. There 1s
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no other restriction as to the form of these functions. However,
1f these functlons are orthogonal, a conslderable simpli-
fication is achieved in the evaluation of energy expressions.
For this reason the Fourlier serlies play such a paramount role
in the applications of the Ritz method in the theory of elast-
icity. The use of these series, of course, is limited to
problems whose boundary conditions are in accord with the
boundary values of the co-ordinate functions of a Fourler ex-
pansion.

It should be noted that the Ritz method does not pro-
vide the means for gauging the accuracy of the results ob-
tained, While the accuracy is obviously increased by taking
more terms, the only way to Judge the convergence of the series
is by comparing results obtained with increasing numbers of
terms. However, this lengthy process was shortened by Trefftz
(28) who, in 1935, supplemented the Rayleigh-Ritz method by
establishing a bound of the characteristic-value problem.

This permlts one to enclose Eﬁb solution between an upper and
a lower limit-an important criterion for Jggifg the accuracy

of the solution. The physical 1nterpietation of the lower
1limit solutior was mentioned in Chepter I where 1t was applied
for establishing the‘buckling criterion of a plate, The
agssumed displacement functions of‘the:plate did not satisfy all
the edge condiﬁions; and consequently the analysis was carrled
ocut by the Lagrangean Multiplier method, (SeelO).

Thus the Ritz method is not confined to those functlons

alone which satisfy the boundary conditions, but may be ex-
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tended to such problems where all the boundary concitions,
are not satisfied by the assumed functlons, In this case,
the problem reduces to what is generally known as the "con-

strained extremum."

Determination of

Co-ordinate (characteristic) Functions

Most of the work on vibratlons of éandwich plates has

been limited to simply-supported cases because for these
edge conditions, co-ordinate functions are mere sine and co-
sine series which not only satisfy the boundary conditlons, but
in addition have orthogonal properties. Therefore, the integra-
tion of the energy expressions is simple and the final results
can be expressed in closed form. For plates with arbiirary
edge conditions, other means must be employed forxr obtaining
the co-ordinate functions,

For the'purpose of meetlng the edge conditions of a
rectangular plate in t;o perpendicular directions, x and y,
the co-ordinate functions of two beams, one having the same
edge conditions as those of the plate in one direction, say
x, and the other having the same edge conditions as those of
the plate in the perpendicular directlon y, are introduced.
If these co~ordinate functions are based upon the exact conw
figuration of the vibration beams, the results obtalned from
the Rayleigh-Ritz method are highly accurate. Therefore, in
search of co-ordinate functions, it 1s desirable to seeck the
solution of the differential equétion'of a vibrating beam
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with arbitrary edge conditions,
The governing differential equation for a freely vi-

brating beam of uniform cross section is given by
o4 _
EIﬁ% -l-f g'g'— O,ooooo000000000000000000000000.(2.22)

The genersl solution of this differential equatlon 1s
W= [A, coshAX + As COSAX + A3 sinhA x + A4sin>\x] .

[c sinpt + D cospt ] ceesens(2.3)
where >\4 = f__EE ’ )\ being the shape parameter, and p the
circular frequzgéy. Since the boundary conditions are time-
independent, they can only be reflected in the expresslon 1in
the first bracket of (2.3)

Ay cosh Ax + 4y cos A X + Az sinh A\ x + 4, sin \ x = X(x)
cessses(2.4)

Since X (x) is a function of the co-ordinate x which determines
the shape of the normal mode of vibration, it 1ls called the
"shape function" or "noermal function." The constants A4 are
determined by tﬁe conditions of restréint at both ends of the
beam, resulting in a set of four linear homogeneous equatlons,
The solution of such a system demands that the determinant of
the coefficlents vanish, which furnlishes an equation for the
shape parameter )., the only unknown in the equation.

This equation is, in general, a transcendental equation,
having an infinite number of roots MA; (B = 1, 2, eee)
which are referred to as the "characteristic values" of

the parameter An and define an infinite number of fiequencies.
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Substitution of one of the characteristic values )\n into the
normal function (2,%4) yields four equations for the four con-

stants A A'Qn’ A3n’ and Azm’ From equilibrium and com-

in?

patibility comnslideratlons 1t follows that the rank of the deter-
minant of the goefficients of these equations 1s three, so that
only three independent equations in four unkncwns are avallable,
From these three equations the :t'a.tiosTa!1 = Azn/Am’ T’jn =
A3n/A1n and—A-4n = A#n/iln can be determined, and the solution
(2.4) assumes the form

n

Ain

b4 =[A1n (cosh AT + I‘an cos A X + I}n sinh )\ x +
sin knx)]...............'.......o...&".........(a.ﬁ)
where A‘ln remains an arbitrary constant.
The mode shapes can, therefore, only be found within
an arbitrary constant by using the end conditions alone, Xn
are called "characteristic functions"™ of the homogeneous dif-
ferential equation (2,2) assoclated ﬁth the particular bound-
ary condlition of the case consldered.
For a simply-supported beam, the equation (2.6) assumes
a very simple form, (see Timdshenko 25). The normal function is
X, = Aqp (sinXx)
where A = E_Eand the frequency is given by

b <) S E1/p

For other edge conditions, the characteristic functions

retain the same form as given in (2.6). Appendix (A) contains
tables glving fhe values of the characteristic functions and
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their first three derivatives for each of the first five modes

(n =1,2,3,4,5) of three different types of beams, namely,

Table 1 Clamped-0lamped beam % ‘g
Table 2 Clamped~Free beam a

Table 3 Olamped~-Supported bea.mg_ >
These tables have been prepared by Young and Felgar (29) at the
University of Texas.

For further reference, equation (2.6) is used in the form

X, (x) = coshﬁné- - Ces ﬁn%'. - An ( s.'nl{ﬁna. ~-Sin Bn%)

where (ﬁ%#g is the shape parameter whose values can be directly
read from Appendix (4A).

The characteristic function for a free-free beam 1is the
same as the second derivative of the characteristic function
for a clamped-clamped beam, and the characteristic function
for a free supported beam is the same as the second derivative
of the characteristic function for a clamped supported beam.
Therefore, the values of the functions for these two additional
céses can be obtained directly from the tables and thelr first
mode shapes correspond fo n = 3., The only type of beam not
included is the supported-supported beam for which the character-
istic function 15 ordinary trigonometrlic sine functlion,

The orthogonal properties of the characteristic func-
tions are discussed in detall in reference (27) and the results

reproduced here:

Jf(mxndxz(fornzm

=0forn:r,m
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The second derivatives of these functions are also orthogonal

and satisfy the relations,

- eaaxm (azgm) dx —(ﬂn )4 l) for n = m
,!(axa. ) (00 ( B
= 0, for n# m

With the exception of X1 and X2 for a free-free beam for which

A ¢
TV ax = [1%5%,)° ax =o
Jg - i3

It should be noted that the, integrals of the itype

¢ t
2
= s [

]

do not in general possess orthogonal properties. The evalu~
ation of such integrals for different end condltions is given

in Appendix (4).



CHAPTER III
THEORETICAL ANALYSIS

In chapter II a method of analysls based upon the
Rayleigh-Ritz approach which utllizes the energy criterion
for the characteristic-value problems was presented, As an
aid to understanding, the characteristic functlions of a homo-
geneous beam with arbitrary end conditlions were formulated to
indicate their application to homogeneous plate problems, In
this chapter these characteristic functions are employed in
the Rayleigh-Ritz method for obtaining the natural frequencies
for a freely vibrating sandwich plate with arbitrary edge con-
ditions.

The coordinate system used in this analysis is shown
in Fig. 2a. The axes are orlented such that the "transverse"
and the "ribbon" directions of the core are parallel to the |
X and y éxes reépectively.

The analysis commences by establishing the strain and the
kinetic energies of a vibrating plate. Owing to the peculiar-
ities of the stress distributions, the energles in the core and
the facings are derived separately.

Gore: ‘ A
In developing an expression for the straln energy in

the core, the displacement functions u®, v°, and wC in the

32



33

X, ¥, and 2z directions are assumed in the following form:

o¢ o¢
W =) YXin(x) Yin(y) Opnlz)E(t)

x oo

vc = Z xem(x) Yan(y)¢mn(z)f(t) 003(301)
o

W = ) YEgn(x) Tan(3)Yun(2)2(t)

m n
vhere X3, are functions of x only; Y,, are functions of y

only, (1 = 1,2,3); ans @n, and Y, are functions of z only;
and £(t) 1s a harmonic function of time, The choice of the
functions Xim and Y;, depend upon the edge conditioms. In
choosing these functions, use is made of the characteristic
functions discussed previously and given in Appendix (A) for
various edge conditions, For example, in the case of a rectan-
gular plate clamped along the edge x=0 and free along the edges
X=a, y=0 and y=b, the characteristic function for a clamped-
free beam, given on page (es, should be used for x3m and

the characteristic function for a free-free beam, given on
page 107, should be used for Y3m; For consistency of notation,
when one of the characteristic functions is used for X3m’ f

is replaced by a; if it 1s used for Y3y, Q is replaced by b
and x is changed to y.

The functlons Xy, and Yg,, (1 = 1,2) are then deter-

mined by using the tables in Appendix (A)., To satisfy the com-
patibility conditions in the plane of the plate in additien to
the "geometric"” boundary conditions, the followling replacements
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in the equations (3.%1) become necessary:
-~
X1m 1s replaced by X3m
Xop 1s replaced by X3m

Y is replaced by Y3n

in
an 1s replaced by fgﬁ

where X;; and th are the first derivatives of X3zp and Yszp

wlth respect to x and y respectively.

Making the above substitutlons and discarding the subscript 3,

the displacement functions (3,1) assume the form:

=
i

o o
¢ ZZXm(x) Tn(y) Ounlz) sil ¢
i ;ZX (X) ¥ (y)é‘mn(z SinSLln 000(302)
c Zme (x) T (3) Wpn(2) sinflnt

where(dnis the natural frequency of the m'® mode in the x dir-

<:
|

L

ection and the ntk mode in the y direction.

To check the vallidity of the displacement functlons
(3.2), an example of a rectangular plate clamped along the
four edges is considered. The edge conditlions of such a plate

with sldes a and b are:

#© (0,y) = w® (a,y) = w¢ (x,0) = w (x,b) = O

%_;T_c(ogy) = ‘%g-c(asy) =g'2;—c(xso) "-—'%}'f'c(va):() ese(3:3)

C
(0,y) = u® (a,y) = v° (x,0) = v° (x,b) = 0
p

(Oab)\ I///J//l//‘ ////11' (a_)b)
N ';
\ r
\ y
‘O e x

@, O)
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Using the characteristic functions for clamped-clamped beams,
in both directions, and changing { to'a for Xm and ( to'b'
for Im’ 1t is obvious from Table { of the Appendix (A) that
all the edge conditions in (3.3) are satisfied.

For the determination Of\yﬁh the displacement w® is
assumed to vary linearly over the depth of the core. That is,
q;n(z) in the third equation of (3.2) has the form:

W (2) =4, +2z B, e (344)
where Apn and B, are parameters to be determined. For a core
which 1s rigid 1in the thlickness direction, “;n(z) must be in-
dependent of z and consequently an must vanish, - For thils
reason, and with no loss in generality, equation (2-13) is

re-written as:

%D(Z) = A + Z -‘E‘in ‘ 000(305)
Ef

mn

where EG is the modulus of elasticity in the z-direction of
the core.

The functions 9 andqb n 8re determined 1in accordance
with the assumption of uniform transverse shearing stresses
in the core, l.e.,

; .
2%z _ o ves(3.6)

oz

Expressing the shearing stresses in terms of shearing stralns

ylelds

G‘“(—Qa_? gigz) e e (327D,
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Substitution of the displacement functions into (8-1¢)
leads to
V4 /
=) + o (a) = 0 eea(3.8)
where emn and \ymn are the second, and the first derivatives of
an and \Hmn wlth réspect to z, respectively. Integrating
equation (3-:8) twice with respect to z, and making use of the
relation (3~5), the following expression for an is obtalned:

emn(z) = Knln + Z(an"A-mn) o= '52'E gézn-n 000(309)

where Kmn and an are the constants of integration.

Thus the first of the equations (3~2) takes the form:

¢ ¢ :
= ZZ,(X)Yn(Y) [Kmni-z(in;z Amn)-%%”*‘]bingmu

000(3.10)0

In an analogous manner, vC is given by

_ZZ%(X)Y (v) [I'mn +2 ];z Amn) - - E’:}sin%n

ees(3e11)
where L I and Hmn are constants of integration.
Since the parameters an and H = in quations (3.10)
and (3.11) are associated with shearing stresses, it wlll prove

advantageous to represent them as an and I..J:mn , respectively.
c c
Gxz Gyz

#See footnote on following page.
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Re-writing equations (3.5), (3.10), and (3,11), the

displacement functions in the x, y, and z directions are:

% o
v = ) ) T(aTgr) [ Ty + 5 2 ten)- g8 %’gﬁ]
- vz z
[sinf?nn‘t] 000(3.12)

#Employing the same assumptions as Ericksen, u® in equation

(3.10) reduces to:

0 = KTy [Epy + 2(Fp-igy)]

000(30103)0

= At [ 1+ 2] [2 - ey |

/
Observing that X Y Ay, =gxﬁ, equation (3.10a) becomes

F
u® = -K(z-q)Ql'i, provided (1‘ - ..M): K ana &g
ox A
Apn-F,
This 1s sxactly the x displacement function assumed by Erlcksen.
Hence q may be regarded as an arbitrary parameter whose value
can be determined by minimizing the energy.
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Strain-Energy Considerations

The total strain energy of the system consists of
(1) strain energy of the core
(2) energy due to membrane strains in the facings and

(3) energy due to bending strains in the facings.

1. Strain Energy in the Core

The strain energy V¢ in the core in accordance with

the assumed state of stress 1s given by

v°=1_
2

Using the stress-straln relations derived in Appendix (B),

c .c c_.c C anC C \nC
6, €, +6 & ) "’TyZTyZ) AVesa(3413)

equation (3.13) takes the form

c _ 1 C,.c\2 ,C,.c,2 ,_CC c,.C C
4

c C \2, .C 2
+[ 6550, )P405, 05,07 v SNERTS
E® E® . E;V;+ E° ¢ .
Denoting s UV 85s T by g3, and L2 L by &30
1-V2Vy 1-Vz 0y 1-v, vy

and observing the relations,

€2= 35 ey <o - (= 8) (T2)

c c
c _ u® L DwC ¢c _ v W
Pxz = %z_+6i—' andY’yZ_ z F y

equation (3.14) becomes
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°=;-f[}%<'g—>2 A=

c e, v©¢ owt
6%z (2% + el (82 +2e5) 1 axayda......(3.15)

b:4
The evaluation of the varlous quantities in equation (3,15)

is accomplished in the followlng manner:

|

et §=teg [(3) e
18 =L eg [ [(28) (e
%+ 4 o [ (- DTHGE)e
Iy = 3 O3z L[;% + ;c]zdv

ot [ 3 3w

With the displacement functions given in (3.12), the

N[

Iss

above integrals may be expressed as:

1§ = 1 &5 ff ZZ c)]zsinant dxdydz

0970
Because of the orthogonal properties discussed previously

5 =1 e§ (a)(®)(e) ZZJA) 5122
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abe & '} B 2
Ig:%‘ gg S(J[iZXmYn(Z" 5) (Amn+zi:%£)J sinQant dxdydz
”
000

2
¢] o o 4 B ) ,
=L &8 J(a)(b)ZZ (égl) [(z- S) (Ayys2 ﬁ)] dz 512§ ¢
o)
or o
781 ¢ % Z i(ﬁn)“ 2 fon 4 202(0mm)L1n2Q) s
2=5 ga(a)(b) To - Amn"'CAmnE"c';"' + 8C ZC in™y iy
m n /A A

Referring to Appendix (C), I%p, 1§ emd I%.Yield:

oo c
150=F e5o(a) [;i S( z—%“i)(Amn‘bzz-g—n) (z- §)(az) (fzmm)
)
o0 00 c
+ :i; ;-{%ﬁj( -zg‘-#- (Am?-i-zz.;gﬂx)( z-%)dz sinannt
ntq o
where
b

2

wm(ff, L35 g canci
() L20 B GeGe)
7

nf a :
[sin ant]
abe o o
_1 a® N Hyn 2
14=1 Gyszf[ ‘meYn(;c— ]dxdydz sin®() ¢
o ”n yz
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IE%G;;Z(a)(c) [ iiﬂ&{@ _ ﬂl_i(HﬂnH.llﬂ 51020t
m A b ng b ng ng mn
where
I br 7 7
Ing = fznz,? dy
b
0
abe ? F 2
C_{aC -CO nn
15—§ze j’ j:j‘ Zf'x"‘yn( EE’_)} sineant dxdydz
oo’ LA B
[ I /F 2
Belefa @) [y ) 2 (g,
- N
¢ & g
I F § .2
PRPESE €
lcc B ¢ 4 G’xz ze
mFp
where
Inp - /s
D = fxmxpdx
0
" Therefore total ﬁ:?%%n energy in the core is:-
B 2
c_1 c mn
V=5 (g3 (abe) ZHZ(-EE-
+ g3 (éhﬁéiii é§94 2 4o Agnmm 3c2(:52292
12 =5 2%%2 5 \ES ]
[ J B B
c nn ( < : mn
*332%3 ) ) = (=) *iiz—?‘ & E—§.4]
Lm A z ’"5;:7 z g
(j* oI Epn |2 o'l Eggé ",
c nn 1y
"'Gyz (ac) ZZT(EE-) +ZZZITF’(G (ﬂ]
- m - n 9 ¥z ¥z

+ G;z(bc)[

ees(3.16)
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2. Strain Energy in the Facings

Due To Membrane Stralns

The strains in the middle plene of the facings are re=-
ferred to as membrane strains. Denoting the middle plane uls-
placements of the upper facing £2% in the x,y, and z directions
by u®, v®, and w*, and the corresponding middle plane dim=~
placements of the lower facing £b by ub, vb, and wb, re-
spectively, the following relations between the middle plane.

displacements of the faclngs and the displacements.of the core

exlst:
w2 = [ + 1 £2 (bwc) ]
_u 2 3x ] z=0
@ = ve s 1o 20
! 2 oy -0
_fec
wo= ]z-o
c
ub = [uc - %—Fb (Pr;’—) 000(3017)
Z=C
wP = rvb - %fb Qw°) ]
¥ zZ=C

b _ r.c
v [V ]Z::C

The relations (3.17) are based on the assumption that the facing
displacements in the x and y directions vary linearly through
the facing thicknesses and that the facing displacements 1n the

z-direction are constant over the thicknesses. Using equations
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(3.17), the resulting expressions for the linear and shearing

strains in the upper facling are:

a _u® _ |out 1 08 ( 2WC)
émx-—.s%-—[a%-*'é'f %E,E Z=0
|
€z =b__wzf‘_=[mfi o 12 %2
oy oy 2 oy J> .o
Y‘a = aua +'ava 010(3018)

mxy 2y ©°x

2, 52 %) ,ov° ]
[ ¥ Ox0y +3x z=0

where G-Sx and éﬁy represent the linear strains in the x and y
directions, and Y’:%xy represents the shearing strains.
The corresponding linear and shearing stralns of the

lower fac'ings in terms of the core displaéements are

[ N\..b b (22.Cy |
eb = Qu” . (&_WE)
mx “1lox 2 Ox2 Jlz-¢
ed _lav® .10 @5
my L'ay 2 'ay2 zZ=cC

.._.(3.19)

Upper Facing. The straln energy assoclated with the

membrane strains in the upper fa¢ing 18 given by the expression:

a_8a a _8 G . a
vlan' = %f(axémx +6y emy+ Txy Y’mxy)dvooooooooooooo(3020)
v
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Expressing stresses in terms of stralns, equatlion (3.20) takes

the form:

Vp = %[[(W){Ex(emx) + Ey (€qy :

2
+ (Ex x+Ey ?)éfn.x%iy}"ﬁ'iy(vgxy) ]dv0000000.°000..0(3021)

Denoting
avg ava
1-)§vy - V%"? i-Vay

the equation (3.21) reduces to:

a 2 2
Ve - %[[a?(eg) a3(€2.)%+ adpledy) (€dy) 462y (Phxy) ]dv
v
000(3022)
The evaluation of the various integrals in (3.22) is accomp-

lished in the following manner:
Let Iip = ) y 1 \&px/ 4V, Jom= z |, 2 (Emy) dv

2
Iion= & [ 132(€3x) €5y )av, and 13; = L f 62y (P2ry)  av.
v v
Substituting the relation (3.18), the above integrals
take the form:

Ifp =1} [[ZZYnxmn-«-z(L-Am)

ze

- _g, ..%2 + 1 1’ (Amn"' Z mn} ] dxdydz sin2 mnt

z=0
abo

o 2
R Ify =1 af f [ j’ [in;Yn (Kpnt & faAmn)] axdydz s1n?)pnt
0 0 -
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Similarly,
a a.b o oC y 8 2
I5p = _;. a3 j’ [inmYn(I.mn+ %.f n)] dxdydz sin%) -t
m n
0-0 “~r2
abo r&x, . a
a — 1 A& £
Iom= L e [Z Ty (Kgn +§Amn)]..
m n
070 =£%
8¢ oo
/Y fa o
[;“ X (Ton + £ 4gn) |axéyas sin (2t

b

n=Lc f [ f e[zgyn (Kpp+Ly +22 n)rdxdydz stn) ¢
0

Employing the results of Appendix (C), the above integrals

reduce to:

I3 = 1 dFabty ‘i-z.( ) [ ' g_ mn]281n2 mnt eoe(3-23)
Ioy =1 dg abf ZZ&} [ L mn] s1n2Q mnt e ee(3-24)

a a.a '
Ijom = = £ d“i2[ . o (Eppt 5 ll‘mn)‘l' + £ A
& Jd
d 72 ~a
+ ‘I%P' "%g (Kygn+ > A ) (Tpy + %Apn)

L -]

g .
22 38 (it £ on) (ng £bng)

+

s> B 5 818 v
+ M-H-s:Mg

0

OQOCOcoeJ 3 .

“mp £2 A 1n° .t
+man? D 28 (Kppt Sapn) (gt L) s5®
m¢ P, nFE ? ” 0?0(3'25)
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NOj—s
(]
q Y
b
(i)
s[>~]8
18
® [

Ton Do (i empeeoa)”

UIHN
B

&

+
sM1R
Mg g 'dl\/]g

[l
B

—%9— ( Emn +Lgn +£*Apn ) ( Kpn+Lpn+24pn)

o EH

—£7 (K +Tgn £ ) (K o*lng ¥t Amq

E[¢/|8 B 9[:’]8 o H
B8 + )8

'dl\/lg ~D.~0
¢m3

: b L (Rpn+Lpp+£%A5,) (Kmq-i-Lmqq-faAm?]
m+D, N#Q [ th} oes(3-26)
In short, the total energy in the upper facing due to mem-
brane strains can be represented by
Vit = (I5m + 130 + IFom + IZm) oes(3.27)
where the expressions for AI?m, Iome I?Qmand I%‘m are given by
equations (3.23), (3.24), (3.25), and (3.26), respectively.
Lower Facing. The energy associated with membrane
strains in the lower fé.cing £P 15

b

=1 [ (6x +67€ny +ToxyYimxy) 0¥ vee(3.28)

ploying stress-strain relations, equation (3.28) is written

in the form:

g

=1 Ha?(e}’.,g aB(€ By) 2 HBa (€ Be) (€ oy ohy ()] av,
v ...(3'29)
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Let
b _ b b ~b 42 b b, .b 2
1, = al I 1adel )Py, = lI ap(€ o)y,
v v
a’ (€D )(G,b Jav and 15 = 1( &l (P
12m = "j 12 >m x,y mxy

Substituting the relations (3.19) for strain components, the

above integrals are expressed as:

a b c+f[S&
b b z (F 2 B
Ig, =41d ff [Zi {Km +z\ B0 o p )-2° oo
im 1 n n
200 | ey g - - E 5
b(Am + 2 Bm) dzxdydz sin=()
> n fzg__}z_c mn
ab c+.f° oQ b
b b f
I1m—';'d1ff [ Z {%n - (e + )Amn
00
c b 2 2
E (c+£®) By, dxdydz sin an
p £9 +rbZZX oy - 4mn) Bori
I2m=.12d2f[<z [mann{Im+z(c —Z_c—'
0 Gyz Ez
Ban,) 12
1P, + 2 22) dxdydz sin
2 mn E%— I z:—.cj 7 2an

2
dx dy dz sinzﬂnmt

b
- % (c+f”) an}]



b f£fb9G o6
b o CR b
fn = &% [ [ [2 Yo { fonr 222 - (e4f hhmn
(o] (o] "M n

oC o :
ZZXmY,I'l {I‘mn'*' c % - (c+ %b) Apn- %(c«t-fb) z_@eﬂg}] .
z

[dxdydz] sinQant
b b b g+l re & 7 Ho
3w = %Gx.')’jl‘z [ZBmYn{Kmn"'c _ix_q + —
0 m R Gxz G§z

b B ‘a:
~2(c+ 'jé',' ) App-c(c+£P) E%'j}]z dxdydz sinQant
z

Referring to Appendix (C), the evaluation of the above in-

tegrals yields:
o

| o
i =1 abab £P ; (E:;)l* [(Kmn"' c -E%;‘;

‘ 2
- (c+ gb) Amn"' % (c+ fb) :—ém—n'] 81112an 000(3"30)
2z

o &
Tow = & 4z abfb;;(%) 4[(I.nm+ c %)- (c+ £ )agy

- C(C <+ fb) B—nclli-]2 Sinannt see (3"31 )
E .
z
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o o
b
I?Em = " d12f [;Zn% _J_'n_n{K_mnm -E-‘éxl-rz-l- - (c+ i )Amn
vy B £P b
- Z(c+£®) -E-’é;—n}{Iamn-i-c g?: -(x+ 5 JA - %(c+f ) z_?l;
o & o o . |
- _mp “nn Fon _ £ Clasf?y Zmn] .
+m§;; 2 2 Enn+c E%'; (c+ % )AL, 2(c+f ) ig—}
W D _
{Ilpn +C -G,A_ - (C+ '- ) A-pn - % (C"'fb) %cm-l;}
J2 z
® o8 0 o,
: d. dJd by
“ZZ; —'2‘2 nq{ nt C Gx: - (c+ £ 5 )Apn c+fb)-8—}
n$p, 1 g
B
{I‘mq"' c HJ?—: (c+ g )A-mq" %(c+fb) E‘é‘ﬁ }] sinEant
000(3-32)
b Gb b & wIm I F Hyy
S s T e (G2 )
Xz ¥z

oo

o (G2 + )-2(cs £ ) -o (042) 59:} .

X2z yz Eg

{Kpn"'l'pn"' C(EEZ- + _L) -2 (c+— )Apn c(c+f ) _E_} .
Gyg
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z2 yz Ez

F b
{%qﬂ‘mqw(ag':' %)-Q(c% )Amq-c(c-t-fb) g_.;l}

4
+
n .

o0 o
- I L+c(..L+_B._)2( )A-(+f)
L i R }
FPrn#g

{Kmq-:-l.mq-i-c(_-‘l + h-)-:E'(c-i--g-b )Amq"’(c-!-fb:»)%g-}] 91112ant
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ess(3:33)
The total energy of the lower facing due to membrane strains

may be written as

b

' b b
VH - (I? + I )

gm + Ilan + I3in
b b b b
where the terms I1m’ Is., I12m’ and I_':m' are gliven by equations

eee(3e34)

(3030)’ (3031)’ (3032)’ and (3033)’ respectively.

3« Strain Energy in the Facings
Due To Bending Stralns

The stralns due to bending of the facings about thelr
own middle planes can be determined from the slopes and curva-
tures of each facing. Since the strains due to bending vary
linearly and are zero at the middle planes, the bending stiraln
in the x-direction of the upper facing is:

ggx-_-. +za(%2£)za=o, where z2=0 is the middle plane of the

facing fao



From Fig. 3(b)
a £2
=Z+ =
z25=2 =
Therefore
a 2.8
a f W
=+(2+ = )
€ax ( z (g—g—z )

Since

s L
o
)(%;z_)z=0

Z=

L2
2

e gx=+(2+

] [

Simllariy, the bending strain of the upper facing la the y-

direction is:

a _ ;a %fc
eBy—+((2+ 5 )(5—-za - )z=0

A A
. z%0 £
V20 ug
i X
Zz
C/L - ZC=O _ ¢
lzc
; . ! *T,
/. —— . Z =0  _ i
ot Jzb ey '
Fig. 3(b) IR
ceo(3e342)
...(3.34b)

The shearing strains, eﬁn in the upper facing are now ex-

pressed in terms of the core displacements., Observing tha.t

! a8
u% =z (g-'xﬁ-), and vg = 2% (g-";—), where uff and vg are the de-

formations in the upper facling in the x and y directions due to

bending alone,

Y’gw"’a (2+ fa) (g%)zw

since

V
a3

eoe(3e340c)

For the lower facing, £0, the relation between z and

z? » Where zP=0 1s the middle plane of the faclng fb, is:
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£b

z:(c+g)+zb

or
b
= (Z"'C"‘ % )o

Consequently, the stralins are

b _ (one _ 2w’
€py = (270 )¢ i 2)z—c ces(3.35)
b 2.c
b by
€gy = (ao- F) )
b £P, 32
Pixy = 2(z-c- & = )(gg—y)z_c

Upper faocing. The strain energy in the upyper facing due

to bending stralns is written as:

2 2
Vp= & f [a, €505 (€5,) 1 (€0 (€3 462, (2, )7 av
v
let
a a, 2
I1B = %Id"] kégx) dv, %Idg(egy)dv’
v 1 4

a ' 2
_ l a a a a - l a r,a

Substituting equations (3.34b), and (3.,34c) into the above
quantities, the following relations are obtalned:

22
113— 2-41 ! J j 245 )ZZXmYn(Amnm_iz"A)z-oJ dxdydz sin2ant

a_b.o 2
- [ f .[XZI;YnAmn(zq- %a )] dxdydz §1n2 ant
0 0=



;.. (R)~a2 sinaﬂmﬁt eee(3.36)

>
&
1oy %.dgab l_(fb)3.§:~ é%&)igﬁn s1n¥) b cee(3.37)

o e b
o¢ 00 %&ioo
dJ: dJ dJd
P U0t Ty L0 e Ty ane

n#q. : ? eeoe ° 8
°‘;m:p niq (3.38)

R o
12 - lsiy(é_)(faf[zzl%r %@22322 oy A

mp

n*q m*P’n*q 000(3 39)
The total straln energy in the upper Iacing due to the bending

. strailns 1s nocw given by

v3 = 19 + 135 + Ifon+ I cee(3.40)
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where I35, I3p, Ijop and I§p correspond to the equatlons
(3.35), (3.37), (3.38) @nd (3.39) above
Lower Facing, The strain energy in thé lower faclng
due to bendlng 1s:

b 2, .b,.b
V%: %f[d?(eBx) +d2(€By) +d12(eBx)(€By)+G'.Bxy(Y)Bxy) ldv
v ces(3.41)
Denoting
, 2
I?B by ;Id?(égx) dv, IgB by 2sd2(€By) dv,
Y v

b b b y(ed b 42
IyoB by %Ld'[a(,eBx)(eBy)dv and I%B bY[Ggy(PBxy) v,
v

and using relations (3.35), the following expressions are
obtained:

I.D =1 1 .Zj z-c—%fb)gZ.XmY (Amn an)] dxdydzsin?{)mt
a c-l-fb
-é-dg J f J [(z-c ZZX )] dxdydzsinngnt
()
et ][ [ o) Zizxmwmwgz”]
oc o
[ XmYn(A mn-l-cz-?)] dxdydz s1n2Qnmt
' a -l-:t"D 2 | 2
I§B=%G§y f f f 4(z_c%£b)2rizx;Y;(Amw%‘i)] dxdydzsiniqmt
0 "0 -0

with the results ofocAppendix (C), the above integrals yield:
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ld (f )@pn (A "'c_) Eineﬂmn 000(3043

2

2
b b b Jmm Jnn Bmn
I05=(281, o (£°) (G2 F (A veT2) +

).) ) fp Jon ;ﬁ)(A roER s
V4

pn Ec

18
8% 18
,a[\‘__jS
=
cig“
"
3
U
&
E -

s>18p s[>

d dJ
anp-zq-.—im _:g'(Apn"'cEE—) (A, +c ) siqﬂnt cee(3.44)

mng

c
z
I
+ Zﬁ_lm_‘! —M(Amn-!-oB-v‘E)(A m;’.’é‘&.)

ﬁz —Ew‘l(kpnm.n_)( +c._£.)] stnX) & ... (3.44Q)

m#p, Nq B2

The strain energy in the

|-

ower facing due to bending

strains 1s now expressed as:

b_ b b b b
VR = 1bp + IBp + Iiop + I ees(3445)
_where 111’13’ 1P ’ 1?2}3 and I3]3 are given by equations (3.42),

(3.43), (3.44) and (3.44Q)respectively.
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Total Strain-Energy

The total strain energy of the system is obtained by
adding the results of equations (3.16), (3.27), (3.34),
(3.40) and (3.45):

Vi ¢ = — (g%) (abe) ;Z (an)

og o

+Gg(a—?%3)zz (&_) [A2 +CA:mann¥ GE(an) ]

+° (ac3§2Jnn(an)2 acBEiif%g_( 22 (g2 ]

321
Hpn, B
 a Z§—< -’;,ﬂ(G%:)(E-%a)]

og %
2, [bo frd 2 (o) e ZZZE‘-“-NFM)(-B—)]

+(a?>abﬂﬁyé’!)“[xm%f%mrugabfam%“[%%ﬂm]e
00 o

Jum Jnn 8

-an 1 102

+d12f{22_8_ b (Kmn+§£ Am)(Lm?f 4n)
Cg 0c o

+z Ip Jnn

R ar —p (Kot Ay ) (B #1658 )

m§p
og 00 00

e i
e “a _%q'(l‘mn""g'faAmn) (%q"zfa"mq)
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DRRIEA b0 (g #0gB0)| 91220 e (3.46)
m$p,nHl

Kinetic Energy

The total kinetic energy in the vibrating system con-
sists of translational and rotational components., Since the aim

of the presentlinvestigation centers on the low-fréquency range,
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the rotational energy components are ignored because thelr in-
clusion will not significantly affect the accuracy of the re-
sults, Similarly, the energy components due to translatlons
in the plane of plete are insignificant and can be neglected,
Therefore, only the kinetic energy due to vertical translation
is accounted for in the preéent analysis,

Consldering the kinetic energy 4T of a differential
element of the sandwich plate, the energy due to vertical trans-
lation 1is:

ar = [(drr?')(v’wa)z + (amP) () + (dm°)(ﬁ°)2] ees (3447)

where the superscrips a, b, and ¢ refer to the upper facling, the
lower facing, and the core, If,fa,fb and € are the mass
densities per unit volume of the upper facing, lower facing and

the core, and considering Wa=(wc)z=o and wbz(w°)2=c, equation

(3.47) produces

2 2 2
4T = L [fa { (%«C)Z:o} dva+fb{ (%°)Z=c} dvb-&-f{(';rc )} dv®
...(3. )

By means of the displacement functions (3.12), the terms of

the above equations can be expressed as:
o2 roe oc

Pa [(%c') 2=0 dva:'?%n ZZXmYnAmn]advacosQant

oc oc
pb’ (w° )p= | 2dvb=fﬂgL;ZXmYn(Amn+cg-—g£)] 2dvb coszgzmt
i) c

°C oc
p‘f L(;lc )j zdvc=§ (&n[g ;%Yn(Amn"'z%';E)] 2d\r" cosﬂnt

L
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The total kinetic energy 'T' due to vertical translation of

the vibrating plate 1s, therefore, gliven by:

ab

T = %Qm f -o[ E[ imenAmn] dxdydz

00

+f b co.

o

3

VA

Siig:

0\
r

abe o 2
+ffﬁﬁ2);){’(%p+z z—;lé)] @xdydz coszﬂmnt cee(3.49)
0oo0o0 e

Observing the orthogonal properties of Xp and Y,, and carrying
out the indicated integrations, equation (3.49) yields:

= —an(a)(h){ Zfoa 2 + ZDbfb(Am

o+ iw?% n+cA.mn—-5——|——c2( mn) ] cosenmt 000(3050)
poon Z

n

Frequency Criterion

The vibrating plate is assumed ta be a conservative

system, so that the variation of the total energy assoclatad
with the arbitrary displacements must vanish, These dis-

placements are defined by the parameters Apn, Byns Fmns Hpns
Kmn and ILp,; thus the parameters Amn’ ceoy Lmn must be chosen
so as to make (Vpoe=-Tpor) = O. This leads to the following set

of equations:



62

J%Ez(vmax“Tmax) =0

‘él—(vmax"mmax) =0
mn

'E%E(Vmax”Tmax) =0

Q9 (v

Hon max"Tmax) =0

-Ei_ﬁvmax‘Tmax) =0
n

)

max-TmaX - oo ( 30 51 )

l
o

_Q (v
Imn

When the expressions for Vpgy and Tp.», given by the equations
(3.45) and (3.50) are substituted into the equations (3.51),

a‘system of six equations contalning the pafameters Amn“‘Lmn
is obtained. It 1s observed that these six equations contain

series of the form,

N -
pZApn,....,..., ngn..... eer (3.52).

For a practical solutlion, only a finite number of terms in
these series need by consldered,

The convergence of these serles depends largely upon
the proper choice of the coordinate functions. Only the first
term of these series 1s considered here because (1) the present
analyslis employs the coordinate functions which describe the
mode configuration exactly, and (2) because of the prime
interest in the low-frequency range. IThis reduces the sysiem
of equations (3.51) to the following six equations in -six para-

meters, Ap,, Bpys Fons Hppe Kpns 2304 L.
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0 = (3_%52 [.§.§°C3 + 2¢P (czi’b)]

For a non-trivial solution of the system (3.52) the
determinant of the coeffiecients A , B , see I must vanish,
mn° mn mn
This condition of a vanishing coefficient determinant constit-

utes the frequency criterlon.,
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Hence
-
2
°11'szn)\11 Cio=Qmni12 %3 Ciz %5 Cye

2 2
Ci2Ymn A1z C22=(P"mn A2z  C23 O2a Co5  O26

%13 %23 O35 O34 O35 036 | _ |
O14 Coy Ozs Ouy  Ons  Cug
C1i5 O25 0z5 Cus Cs5 Csp
C1i6 Co6 ®36 Cus Os6 Ce6

- eee(3.53)
The evaluation of the determinant yields a quadratic in K?emn‘
That is, for each mode shape which 1s characterized by m-half
waves in the x-direction and n-half waves in the y~-direction,
there are two values of f)zmn' These two frequencles have the
following significance:

Suppose ({}2mn)1 and (f}zmn)a are the two frequencies
for the m-n mode with ({32 ), being the smaller of the two.
This lower frequency (§}?mn)1 1s assoclated with that type of
motion in which the two facings and the core all move in
phase, This corresponds to the motion of the neutral plane
and thus (f?amn)1 is the frequency of the normal mode of
vibration., The practical interest of the engineer centers on
the lower frequency, ((?amn)l’ since for sandwich construciion
of the nsual proportions and physical properties, the value of
((?2mn)2 is so much larger than (§7gmn)1 that the corresponding
vibration mode is hardly encountered, The larger frequency
(S?gmn)é is associated with the "face-wrinkling" of the sand-

wich plate, The mode shape given by (522 may be attributed

mn)2
to a motion in which the two parts of sandwich, above and

below the neutral plane, move independentlye.



CHAPTER IV

APPLICATIONS AND DISCUSSION

In Chapter III, a theoretical analysis of sandwich
plates was developed without restricting the edge condltions
of the plates. The analyslis led to the frequency criterion in
terms of the determinantal equation (3.53)., In the present
chapter this equation 1s employed to predict the frequencles for,

(1). sandwich beams
(2). solid plates
(3). general cases of sandwich plates.

In spite of the simplified form of the frequency equation
(3.53), the resulting quadratic rnQQﬁmn is tod complicated for
formulating results in parametric form. However, before at-
tempting a numerical evaluatibn of the quadratic, the analysis
is validated by comparing the known frequencies of solid beanms
and plates, wlth those of sandwlch structures reduced to homo-

geneous and isotropic beams and plates.

1. Sandwich Beam
In reducing the sandwich plate to a sandwich beam, the
parameters Hp, and Ly, vanish and the system of equations (3.52)

assurnes the form
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- 9 F

2
011-$PpM1 C12-Puhiz O3 Ci5 A
N o 2
C12= M2 C22= U nhoz Ca5 Cos B

=0

c 0 c 0 F

13 23 33 35 m

O45 Cos Ci5 Ous K

40w

The coefficients Cij,‘kij, and other derlivations pertaining
to sandwlch beams with arbltrary edge conditions are gliven in
Appendix (D). The frequency equation (4.1) is applied here to
a simplj-supported beam with lsotropic fécings. The followlng
variations in the physical bropérties are consgidered,
Case (a):
E —~ 00 G2, = Finite

By means of this condition the effect Qf shear strains

in the core can be determined. With Bm approaching Zero,

equation (4.1) ylelds the following frequencies:

= ()% B [1 N ]

o &) (1- v2)[p°c+9(fa+fb)]L F +,+' m2perbe 2R }
(£2+£2)a (1-1F)6E,
00.0(402)

Where m i1s the mode number, and IF + IT are the moments of
inertia of the spaced facings about the nmeutral plane.

As G$; goes to infinity, the frequencies of wihration of
a sardwich beam are the same as those of a homogeneous beam

whose moment of inertia is equal to the moment of linertia of
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the spaced facings of the sandwich.
The expression

c(IL)2 __£°£P E -5 cee(4a3)
T (£24£2) (1-4F)6S,

represents the shear effect ln the core. For small values of

m, the factor Ip in equation (4.2) is small compared to

14p2s
The factor Iy represents the contribution of the flexural stiff-
ness of the individual faclings to the over all stiffness of
the sandwich.
The shear effect can best be illustrated by means of an

example for which

% . o
fa=fb=(%6), ‘5‘“3‘5; c =1
B = 109

6S,(1-y2) 4203

with these substitutions the expression (4.2) takes the form:

(P = @IL)*E R SR T V1
> 2
2 (1-P)pPep(E5)] | 6000  2000({1+m2(0.0119)

cos(Bedt)
When the expression inside the brackets was evaluated

for m = 1, 3, and 5, the followlng results were obtained:

mode number G, =% GS,-finite difference
m= 1 0:8605 020599 1.18%
m=23 0.0606 0.0543 10.60%
m=>5 0.0606 0.047 28.72%

It is seen that even 1n low frequency range the effect

of shear is significant and becomes more pronounced with the
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increasing mode numbers.
If the core and one of the faclng thicknesses are as=-
sumed to be zero, then the frequencies obiained from (4.2) are

those of a simply-supported solid beam and are given by,
4 E Ip :

2
On = (gn)'ETT:;ET ees(4:5)

vhere Ip is the moment of inertia of the facling about the neutral
plane.
Case (b): G%y — 0O, Eg = finite

This condition demonstrates the influence of the core
elesticity in the thickmess direction. Even under the as-
sumption of G§Z—> oc, the resulting quadratic equation in
(ﬂem) is too involved for a parametrlic representation. How-
ever, the results of this case are fully discussed in Appendix
(D). PFor each mode, two values of the frequency are obtained.
The mode corresponding to the smaller frequency 1s the normal
mode and that corresponding to the larger frequency 1s the face-
wrinkling mode. The mode shapes of the fundamental frequencies
are shown in Appendix (D). .

The influence of core elasticlty in the thickmess

directlon is shown by the fbllowing comparisozi:

mode number Eg —p Eg = finite difference
m=1. 104.820 x 10% 104,485 x 10% 0.32%
m=2 167.712 x 109 167.045 x 10° 0.40%
m=73 849,042 x 105 843,845 x 109 0.61%

Obviously, from the comparison of Case {a) -and Gase (b),
the effect of elasticity in the core is megligible in comparison

to the transverse shear effects.
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2. Homogeneous and Isotropic Plates

The reduction of a sandwich plate to =2 homogeneous and
isatropic solid plate involves the following simplifications:
(1). The core is considered rigid, necessitating that Ej
. approach infinity, so that the elastlciiy parameter of the core
_in_ggnes to zero.
(2). The transverse shear effects in the core are con-

sidered insignificant, requiring that G; and @S approach

vz
infinity, so that the parameters Fmn and Hgn become zero.
Gxz Gyz

With these modifications, the frequency criterion (3.53)

reduces to:

i .
011 - (PmaM1 %15 Cyg |
C15 %55 56| =©
C16 Cs6  Cee
- ) eee(4.6)

For homogeneous and isotroplc facings of the same

material and egual thicknesses

£8 = £ = f; i =ag=a=a83 = E__ (1-92)
b E

G2, =Gy = G =

A 2(14+V )

a _ab _ 2)E

d12 - d12 - (1_v )

Oonsidering a square plate of length "a" with all edges clamped,
and introducing the above substitutions, equation (4.6) yields
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the followling value for the fundamental frequency:

| 5 2
2 __=E (B1 +I11)[4f3 £2 fz} L
Tt = Gt goosage ) (3 7112004 ree (870

4 2
E 2(B1 + T11) [2£3 + f(c+f)2]
12(1-v2)a* (Cc + 20f)

2D
ah(?cc+2€f)

B 3 2
where D, = [2f + f(c+f) ],
8 12(1-p2)a™

and is referred to as the "flexural rigidity" of the sandwich

87 + 151 veu(2.8)

plate.
As "c" goes to zero, the two facings approach each other.
Assuming that the two facings move as a unit, the problem re-

duces to that of a solid, homogeneous and isotropic plate whose

thickness 1s equal to 2f,

With this substitution,

4 2
2 . _ _E [2ﬁ1 + 2111] B3
Tal 12(1-92)a* 2Pr
=_E [ F P - ] or)3
12(192)abpar) LET (1)
Let h = 2f ; A .
B,y = —En 281 + 2113
" 2.0 4
12(1"“ )?a h 000(409)
or § =\J/ D [2( + 4+ 12 )]
11 P Pr + 174

ees (4,10)



73
where D is the flexural rigldity of the two combined facings.

For a plate clamped along four edges, ﬁ1 and I are given

11
in Appendix (A). Substitution of these values into equation

(4,10) yields

Cq = 36.10\/D/ (@nat) ces (&4.11)

Considering that for a2 beam Viy+o, @n—m, and Ip,—=o0, the
frequency for the fundamental mode of a beam can be directly
derived from (4.9). As shown in Appendix (D); the higher

frequencles for beams with arbitrary edge conditions are glven by,

=_Eg3__5‘*
§.22m 12 8.4]3 " 000(4512)

Using the approprlate values ofﬁ% for the prescribed boundary
conditions from Appendix (4), the exact solutiors of solid beamsg
with arbitréry edge conditions are obtained,

Stanisic (33) investigated the problem.of free vibrations
of a homoééneous square plate, clamped along the edges ﬁy means
of Galarkin's method. The value of the fundamental frequency

obtained by thlis approach is

€y = 36.11\/D/puat | ceo(%.13)

Young (27), solving the same problem by the Ritz method,
achieved better accuracy by considering 36'terms of the re-

sulting.series. His value for the fundamental frequency is

Q11 = 35’99 \/E/?hal" » 000(4014)

which differs by 0.66% and 0.666% from those given by the present
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analysis and that of Stanisic, respectively, For a square
plate clamped along the edges, the frequencles obtalned from
equation (4.,6) for the first three modes, which correspond
to (m=n=1), (m=2, n=1; m=1, n=2) and (m=n=2), are tabulated

here together with the frequenclies glven by Stanlsic and Young.

Table 4,1
ist 2nd >rd
Stanisic 36,11 73673 108,85
Present Analysis| 36,10 73.72 108.85
Young 35699 T3.41 108.27

The results of the present analysis compare satls-~
factorily with those of Stanisic and Young, in the low frequency
range. However, they deviate steadily from Young's results
as the mode number 1s increased. To achieve better accuraéy
for frequencies at higher modes of vibration, additional terms

of the series in equation (3.46) must be considered.

3. Applications to Sandwich Plates

In the preceding sectlons the general frequency criteri-
on (3.53) for the vibrations of sandwich plates was applled to
sandwich beams, as well as to solld beams and plates. The
resulting frequencies involved constants of the form ﬁm, an
and Ign. (See equation 4.10). The values of these constants
depend upon the edge conditions and can be taken directly from

Appendix (A). Therefore, the frequency anslyses were performed
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without specifying the edge conditions prior to the final
step of the computations, thereby est ®lishing a unified ap~
proach for the vibrations of plates w .a different edge con-
ditions.

In this section the frequency equation (3.53) is ap-
plied to the general case of sandwich plates. The evaluation
of the frequex}cy equation is considered for a plate with arbi-
trary edge conditions for the following cases:

(1) A square plate with faclngs of equal thickmesses,
but of different materials., .
(a) (m,m) = (1,1); (2,1);5 (1,2); (2,2); (3,3).
(b) Negligible bending stiffness in the ribbon
direction of the core, (m,n) = (1,1); (2,1);
(1,2). |
(2) A plate with varying aspect ratio, and facings of un-
equal thicknesses and of different material:
(myn) = (1,1).
(3) A square plate with a variable “core-facing thick-
ness ratio™ and facings of equal thicknesses and of
the same material, (m,n) = (1,1).
(2) With a rigid core in the thickmess direction.
(b) With a non-rigid core in the thickness
direction.
(c) With a core having an infinite elasticity
modulus in the thickness direction and infinite

transverse shear moduli;
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(4) A square plate with facings of the same material,
and having variable "facing thickness-ratio,"

Since the evaluation of the determinantal equation (3.53)
1s too involved for parametric representation, numerical values
are directly substituted into the frequency equation., The
evaluation is based upon the physical properties of aluminum
honeycomb core and aluminum facings taken from the data pre-
pared by Kunzi (34). These properties are shbwn in Appendix
(E).

edges 1s considered in the light of the above cases,

An example of a sandwich plate clamped along the four
The
computef solutions for the frequencieé are gi&en in the
following tables.

Table 4.1(a)

_ b _ . _ b . h_—
Ry =% = 1.0,0}22 =IF = 1.05 Rs= &= = 32.0
a =36 , £2 - 0,0167
NG R 2 3
1 1125,5290 | 2233,7490
2 2283,4660 | 3284,9990
3 6366,.5610
Table 4.1(b)
Same data as in Table 4.,1(a) excepting
_ g8 — 0 g33 —» O
m
n 1 2 3
1 |1125.,4960 | 2233.7340
2 12283.3440 | 3284,.9150
3 6366.394
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Table 4,2
kg =2 K3 = 352,0 (m,n) = (1,1)
K1 05 1 .15 2 205

Q11 2645,7530 993.619 | T44,694 | 676.994 650.555

Table 4.3(a)

' 4 &
Ky = 1.05 ko = 1.0, # =0 =Y=1; 2=36 ; £=0.016 , (m,n)=(1,1)

K3 16 32 48 64 80

§31 678.902 | 1144.912 | 1519.073 | 1833.645 2104,042

Table 4.3(b)

Ssme data as in Table 4.3 (a) but Ej —e oc

K3 16 32 48 64 80

i1l 682.7140]1152.0940] 1529. 3060 [1846.797| 2122,097

Table 4.3(c)

Same data as in Table 4.3(b) dbut ng--oc,G§E~oe‘
‘K3 | o ] 32 | 8 | 64
(h1| 55.8820|1171.4070}1567.,5300 | 1907.9750

Table 4.4
k, = 1, kg = 32,M=]=P1, (m,n = 1)
Ko 0.5 1 1.25 1.5 2
(hi]1001.942|1144,912 | 1167.923 | 1180,165 1192
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From tables 4.1(a) and 4.1(b), 1t is observed that
the effect of the bending stiffness in the ribbon direction
of the core 1s insignificant. Therefore, the assumption of an
antiplane stress distribution in the core should be considered
accurate enough for problems involving sandwich constructlon.
For the fundamental mode, the effect of elasticity, as seen
from Table_4;3(a), incresses steadily fof various core thick-
uesses, but deviates less than one percent when compared to
the rigid core as shown in Table 4.3(b). A comparison be-
tween Table 4.3(a) and 4,3(c) shows the differences in
frequencles due to shear effects. Even for the fundamental mode,
with a variable core~facing thickness ratio, the frequency
values for a core with finite shear modull are approximately
3.3% lower than those obtained from a core with infinite shear
moduli, However, in the analysis of the sandwich beam, it was
shown that this difference increases considerably for higher
modes. Therefore, 1n case of plates, significant differences
can be eipected at higher médes.

To demonstrate the applicablllity of the method to
the plates with other edge conditions, another example of a
plate clamped along one edge and free along the remaining
three edges 1s considered here., This example considers a
square plate whose upper facing, core, and lower facing are
made of aluminum, aluminum honeycomb, and of steel, respec-
tively. The frequencles for the first three mode numbers are

given in the following table.
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Table 4.5
Data same as in Table 4.1(a) -
& 1 ) 2 ] 3 ~
1 112,0 696,622 1907.943 |
2 298,6040 1004,1090 2196,7030
3 | 907.0405 | 1789.4040 3041,9550

To establish the vallidity of the results, of the above
case, the sandwlch plate 1s reduced to & solid, homogeneous
and lsotropic plate as before. Assuming ¢ -— O, the ele~
ments 015 and C,q of the equation (4,6) reduce to zero and the
resulting frequency is given by

2 %
{Fm A1
where
o4 3:'3[@)“(@_) a+Im nng o 40y Inn]
+2f [(-";-)2 : ][(L) d{&Y‘dq-——m— -—n£d12+46 2 ng]
2 a a

and

My = 42
Introducing the wvalues of "ms Imm’ Jmm for a clamped-

free beam and the values of ﬁn, I Jnn for a free-free

nn?
beam, the frequency for the fundamental mgde (m,n = 1,1) is
given by,
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2 _8f> [12~362] E
Il 6(497) (1-y2)a®
Let 2f = h,

therefore,

(244

Eh” 1

Qq = 3.515 ]D/ea‘*h oo (£.15)

The frequency obtained by Young (27) for a square cantilever

or

plate ls

Q1 = 3.494 [D/fa4h ” coe(4.16)

which is approximately %% lower than the one given by the

present analysis,



CHAPTER V

CONCLUSIOXNS

A unified approach to the vibrations of sandwich plates
with arbitrary edge condlitions was presented by utllizing the
Rayleigh-Ritz energy method. The theoretlcal analyslis was
based upon more rigorous assumptions than commonly found in the
literature, The validity was established by reducing the
general frequency criterion of sandwich plates to cases of sand-
wich beams, solid beams and solid plates. The results of the
present theory were in close agreement with the known values
of the above cases,

The present analysis, in addition to being applicable to
various edge conditions of plates, is not limlited to the low
frequency range. By consldering more terms of the infinlte serles
of the resulting frequency equation, the analysis can be applled
to high frequency ranges as well.

The effects of various parameters in the analysis were
brought out by an examination of speclal cases of sandwich
beams, as well as by tabulated values pertalning to sandwlch
plates., It was shown that even in thé low frequency range, the
assumption of finite shear moduli in the core ylelds results

which deviate considerably from those obtained by assuming

81
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infinite core moduli. In higher frequency ranges, this de-
viation will become greater.

The frequencles obtalned by considering the elasticlty
of the core in the thlckness direction did not show signifi-
cant deviations from those of the rigid core for the fun-
damental mode., However, one would expect an lncrease in this
deviation at higher modes. A formulation of actual varlation
of the displacement in the thickness direction of the core must
be developed for a definite conclusion., Such a law can be es=-
tablished by means of experimental investigations,

The theory was developed in such a manner that different
laws of variation regarding the transverse shearing stresses,
and the strains in the thickness direétion of the core, can be
easil& introduced in the analysis, The use of diéital compﬁters
is mandatory for accurate prediction of frequemcy analysis of

sandwich plates, particularly for the higher frequency ranges.
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NOMENC LATURE

All qugntities.with superscripts a, b, and ¢ refer to

upper facing, lower facing, and core, respectively.

a,b
£2
£b

Q ‘J% bﬁ" ::0 40 s:\)

b
N
i

o »B

Q

H

sides of a rectangular rlate

thickness of the upper facing

thickness of the lower facing

thickness of the core

core-displacement in the x-direction

core-displacement in the y-direction

core-displacement in the z-direction

modulus of elasticity of upper facing in the x-direction
modulus of elasticity of upper facing in the y-directlion
modulus of elasticlty of the core in the z-direction
modulus of elasticity of the core in the y-direction
Poisson's ratio for the upper facing '
Poisson's ratio for the lower facing

Poisson's ratio for the core
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ay8,pay &
d?2 =k__ﬁl&-—-

a.a
-y %
c
c
g2 = "Exa“b
1-vyvz
EC
gg = 2z
c
1595
c..c c
S = SzVz * Vyfy
32 c.c
i= VoV,
G%Y = shear modulus of upper faciling
Ggy = shear modulus of the lower facing

G¢, = transverse shear modulus of the core in x-z

G, = transverse shear modulus of the core in y-z

cij = elements of a determinunt

S1j = elastlc constants of an orthotropic body
?a = mass density pér unit vdlume of fhe upper facing
PP = mass density per unit volume of the lower facing
PC = mass density per unit volume of the core

§7mn = clircular frequency of a plate for ntB mode in

the x-direction and nth maode in the y-direction
Amns Boms Funs Hmns Kmms Imp = arbitrary parameters

Xn = function of x only

Iy = function of y only

Omns @m* Yin = functions of z only

€2 = membrane stralns of the upper facling in the
mx
x-direction



€ Rz
€ Ry

a
mxy

Puly

eBz

1l

membrane
y-direct
membrane

membrane

shearing

wlth the

shearing

wlth the
bending
bending
bending
bending

shearing

88

strains of the upper faclng in the

ion

strains of the lower faclng in the x-direction

strains of the lower facling in the y-~directlon

stralns in the upper facing associated

membrane strains
st?ains in the lower facing assocliated
membrane strains

strains of the upper faclng in the x-direction
strains of the upper facing in the y-direction
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APPENDIX A
CHARACTERISTIC FUNCTIONS

Appendix A provides tables of the characterilstic
functions and their derivatives, for nearly all common types
of beams. These functlons are tabulated at intervals of the
arguement, corresponding to éﬁ of the beam lenght: These tables
have been taken from the Universlty of Texas Publication,
series No. 44, See (29).

Following the tables ls a summary of data which in-
cludes the mathematical expressions for the characterlistic
functions, and the numerical values of the beam constants
oy and By,

The appendix concludes by glving the numerical values of
the integrals of the type,

Im af"ll /
=R = [ ax
o
a
Inn. y
e flafy

o] .

where all subscripts range from 1 to 5. These values are glven

in the tables 4 through 7.
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TABLE 1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

First Mode

CLAMPED-CLAMPED BEAM

x Vo1 d w 1 d?¢ w ) 3¢
1 o | HegE | SpGR | e S
0.00 0,00000 0,00000 2.00000 - 1.96500
0.02 0,00867 0.18041 1.81412 - 1.96473
0.04 0.03358 0.34324 1.62832 - 1.96285
0.06 0.07206 0.48850 1.44284 - 1.95792
0,08 0.12545 0.61624 1.25802 - 1.94862
,0.10 0.18916 0.72655 1.07433 - 1.93383
0.12 0.26237 0.81956 0.89234 - 1.91254
0.1 0.34363 0.89546 0.71270 - 1,88393
0.16 0.43126 0.95451 0.53615 ~ 1.84732
0.18 0.52370 0.99702 L 0.36346 - 1,.80219
0.20 0.51939 1.02342 0.19545 - 1.74814,
0.22 0.71684 1.,03418 0,03300 - 1.68494
0.24 0.81459 1.02986 - 0.12305 - 1.61250
0.26 0.9112, 1.01113 - 0,27180 - 1.5%085
0.28 1.00546 0.97870 - 0.4120 - 1.44017
0.2 1.09600 0.93338 - 0,54401 - 1,307
0.32 1.18168 0.87608 ~ 0.66581 - 1.23296
0.3% 1.26141 0.80774 - 0.77704 - 1.12735
0.% 1.3349 0.72992 - 0,87699 - 0.99452
0.38 1.39913 0.64219 - 0,96500 « 0.86516
0.40 1.45545 0.54723 « 1.04050 - 0.7%07
0.42 1.50247 0.44574 - 1,10297 - 0.59008
0.44 1.53962 0.33397 - 1.15202 e 0.4611
0.46 1.56647 0.22821 - 1,18728 « 0.29911
0.48 1.58271 0.11478 - 1.20854 « 0,15007
0.5 1,58815 0,00000 - 1.21565 0.00000
0.52 1.58271 - 0,11478 - 1.20854 0.15007
0.54 . 1.56647 - 0,2282] - 1.18728 0,29911
0.56 1,53962 - 0.32397 - 1.15202 0.44611
0.58 1.50247 - 0.4457,, - 1.10297 0,553008
0.60 1.45545 - 0.54723 - 1.04050 0.,72007
0.62 1.39913 - 0.64219 « 0.96500 0.86516
0.64 1.33419 - 0,72992 - 0.87699 0.99452
0.66 1.26141 - 0,8077, - 0.77704 1.11735
0.63 1.18168 - 0.87608 - 0,66581 1.23296
0.7 1.09600 - 0.93338 - 0.54401 21,3074
0.72 1,00546 - 0,97870 - 0.412/0 1.44017
0.7% 0.9112 - 1,01113 « 0.27180 1.53085
0.76 0.81459 - 1,02986 - 0.12305 1.61250
0.78 0.71634 - 1,03418 0.03300 1.68494
0.8 0.6199 - 1,02342 0.19545 1,748,
0.82 0.52370 - 0.99702 0.3 1.80219
0.8 0.43126 - 0.95451 0.53615 1.84732
0.86 0.34363 - 0.8954%5 0.71270 1.88%93
0.88 0.26237 - 0.81956 0.89234 1.91254
0,90 0,18910 - 0,72655 1.07433 1.93333
0,92 0.12545 - 0,61624 1,25802 1.94862
0.94 0.07306 - 0.48850 1.44284 1.95792
0.96 0.03358 - 0,3432, 1.62832 1.96285
0.98 0.00867 = 0,18041 1.81412 1.96473
1.00 0.00000 0,00000 2,00000 1.9650

.92




TABLE 1

Y

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-CLAMPED BEAM

Second Mode

' veLdde | gr, Lbe | ogm 1 a3
2

'i— $2 f2 B, dx $2 = B2 dxe 92 B} dx3
0,00 0,00000 0,00C00 2.00000 = 2,00155
0.02 0.02338 » 0.28944 1.68568 - 2,00031
0.04 0,08834 . 0,52955 1.37202 = 1.99205
0.06 0.18715 0.72055 1.06061 - 1.97020
0,08 0.31214 0.86296 0.75336 - 1,93186
0.10 0.45573 0.95776 0.45486 - 1,87176
0.12 0.61058 1.00644 0.16713 . = 1.783813
0.14 0,76958 1.01105 - 0,10554 - 1.67975
0.16 0.92602 0.97427 - 0,35923 - 1.54652
0.18 1.07363 0.89940 = 0,55010 - 1.38933
0.20 1.20674 0,790 - 0,79450 - 1,21002
0.2 1.32032 0,65138 - 0,96918 - 1,011277
0.24 “1.41005 0.48755 - 1,11133 - 0,79651
0.26 1.472.5 0.30410 - 1,2187 - 0.56977
0.28 1.50485 0,10660 - 1,28991 - 0,33555
0.30 . 1.50550 - 0.09916 - 1.32402 - 0,09872
0.32 1.47357 - 0,3073% - 1.32106 0.13566
0.34 1.40914 = 0,51224 - 1,28181 0.36246
0.36 1.31314 - 0,70819 - 1,20 0.57665
0.38 1.18740 - 0,88997 - 1,10157, 0.77240
0.40 1.03457 - 1.05271 = 0,96605 0,94823
0.42 0.85794 - 1.19209 - 0.80507 1.09714
0.44 0.66150 - 1,20448 - 0,626 1.21670
0.46 0.44973 - 1.38693 - 0.42456 1.30414
0.48 0.22751 - 1.43728 - 0,21503 1.35744
0,50 0.00000 - 1,45420 0.00000 1.37532
0,52 - 0.22751 - 1.43728 0.21503 1.35744
0.54 - 0,44973 - 1,38693 0.42456 1,30414
0.56 - 0.66150 . - 1.30448 0.62296 1.21670
0.58 - 0.85754 - 1.19209 0.80507 1.09712%
0.62 = 1.18740 - 0.83%97 « 1.10157 0.773.0
0,64 - 1.31314 - 0,70319 1.20786 0,57665
0.66 - 1.4091 - 0.51224 1.28181 0.36246
0.68 = 1.47357 - 0,30736 - 1.32206 0.13566
0.7 = 1.50550 - 0,05916 1.32402 - 0,09572
0.72 - 1,504,35 0.10660 1e28931 = 0,33555
0.74 = L.47245 0.20410 1.21876 - 0.56977
0.76 = 1,41005 0.48755 1.11133 - 0,79651
0.78 | = 1,32032 0,65138 0.96918 _ - 1.01127
0.£0 - 1,20674 0.79030 0.79.50 - 1.21002
0.82 - 1,07363 0.8%5.0 0.59010 - 1.33933
0.84 - 0,92602 '0.97427 0.35923 - 1.54652
0.86 - 0,76958 1.01105 0.10554 - 1.67975
0.88 - 0,61053 1.00644, - 0,16713 ‘= 1,78813
0.90 = 0,45573 0.95776 - 0,45.86 - 1.87176
0.92 - 0,31224 0.86296 - 0,75%6 - 1.97186
0.94 - 0,18715 0,72055 o 1,0206) - 1.97030

X-73 - 0,0383% 0.52955 - 1.37202 - 1.99205
0.98 = 0,02338 28944 - = 1,63568 - 2,00001
1.00 0,00000 0.00000 = 2,00000 = 2,00155
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TABLE 1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-CLAMPED BEAM
Third Mode

toLldds g ) @b g, L O
2 3
f— ?s *3 By % ¢ -ﬁlg dx ¢3e 'p!'g dx
0.00 0.00000 0.00000 2.00000 - 1.99993
0.02 0.04481 0.39147 1.56038 - 1.99658
0.04 0.16510 0.68646 1.12323 - 1.97469
0.06 0.33975 0.88609 0.69428 - 1.91998
0.08 0.54804 0.99303 0.28189 - 1.82280
0.10 0.77005 1.01202 - 0,10393 - 1.67195
0.12 0.98720 0.95006 - 0.45252 - 1.48447
0.4 1.18265 0.81649 = 0,75348 - 1.24535
0.16 1.34190 0,62285 - 0.99738 - 0.96698
0.18. 1.45317 0.38256 - 1.17657 ~ 0.65867
0.20 1.50782 0.11050 - 1.28572 « 0,33199
0.22 1.50059 = 017759 - 1.32220 « 0.00005
0.24% 1.42971 = 0,46573 - 1,28637 0.32333
0.26 1.29690 - 0,73833 - 1.18165 0.62425
0.28 1.10719 - 0,98087 - 1.01443 0.88956
0.2 0,86864 - 1.18057 - 0.79387 1.10762
0.32 0.59186 - 1.32694 - 0,53L45 1.26830
0.34 0.28949 - 1,41222 - 0,24051 1,36606
0.3 = 0.02445 - L4071 0.06438 1.39529
0.38 - 0.33528 - 1,38399 0.36811 1.35554
0.40 - 0,62837 - 1.27099 0.65569 1.24912
0.42 - 0.88987 - 1,09782 0.9101 1.03148
0.44 - 1.10739 - 0.87257 1.12747 0.86096
0.46 = 1.27060 - 0,60586 1.28860 0.59842
0.48 - 1.37174 - 0.31031 1.38852 0,30669
0.50 = 1.40600 0.00000 1.42238 0.00000
0.52 - L.3N7% 0.31031 1.38852 - 0,30669
0.54 - 1.27060 0.60586 '1.28860 =-0.59842
0.56 - 1.10739 0.87257 1.12747 - 0,86096
0.58 - 0,88987 1.09782 0.91301 - 1.08148
0.60 - 0.62837 1.27099 *0.65569 - 1.24912
0.62 - 0,33528 1.38399 0.36811 - 1.35554
0.64 « 0,02445 14017 0.06438 - 1.39529
0.66 0.28949 1.41222 - 0.24051 - 1.36606
0.68 0.59186 1.32694 - 0.53L45 - 1,26880
0.70 0.86864, 1,18057 - 0.79387 - 1,10762
0.72 1.10719 0.98087 - 1.01L443 - 0.88956
0.74 1.29690 0.73833 - 1.18165 - 0,62425
0.76 1.42971 0.46573 - 1.28637 - 0,32323
0.78 1.%50059 0.17759 - 1,32220 0.00005
0.80 1.50782 + =0.12050 - 1.28572 0.33199
0.82 1.45317 - 0,38256 - 1.17657 0.65867
0.84 1.34190 =0.62285 = 0.99738 0.96698
0.86 1.13265 - 0.81649 = 0.75348 1.24535
0,38 0.98720 = 0,95006 - 0,45252 1.48447
0.9 0.77005 ~ 1,01202 = 0,10393 1.67T95
0.92 0.54804 - 0.99303 0.28189 1.82280
0.94 0.33975 - 0,88609 0.69428 1.91998
0.96 0,16510 - 0,68646 1.12323 197459
0.98 0.04481 - 0.39147 1.56038 1,99658
1.00 0.00000 0.00000 < 2.00000 1.99993
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TABLE 1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES
CLAMPED-CLAMPED BEAM
Fourth Mode

' 3
1 d%s " ) m ) gy
f' 2 ¢"p., dx ¢“ﬁ13dx *"pgdx.
0.00 0.00000 0.00000 2.00000 - 2,00000
0.02 0.07241 0.48557 1.43502 = 1.99300
0.04 0.25958 0.81207 0.87658 - 1.94324
0.06 0.51697 0.98325 0.33937 - 1.83960
0.08 0.80177 1.00739 - 0,15633 - 1,65333
0.10 1.07449 0.90083 - 0,58802 - 1.3873%6
0.12 1.30078 0,63345 - 0.93412 - 1,05012
0.1 1.45308 0.33242 - 1,17673 - 0.65879
0.16 - 1.51208 0.02894 - 1.30380 - 0,23725
0.18 1.246765 - 0,3435L - 1.31068 0.18649
0.2 1.31923 ~ 0,70122 - 1.20092 0.58286
0.22 1.07550 - 1.01271 - 0,986 0.923,9
0.2 0.75348 « 1,25091 = 0,686 1.18364
0.26 0,37700 ~ 1,39515 - 0,32640 1.34442
0.28 - 0,02537 - 1,43265 0.06348 1.39419
0.0 - 0.42268 - 1.35944 0.451% 1.33056
0.32 - 0.78413 - 1,18058 0.80569 1.15876
0.3% - 1.08159 - 0,90972 1. 0.89219
0.% - 1.29186 - 0,56793 *1.20395 0.55537
0.38 - 1.39858 - 0,18205 1.40755 0.17245
0.40 - 1,39351 0.21753 1.40010 - 0,22/94
0.42 - 1.27726 0.59923 1.28198 - 0.60506
0.44 = 1.05920 0.93289 1.06244 - 0.93759
0.46 = 0.75676 1.19208 0.75879 - 1.19604
0.48 = 0,39407 1.35629 0.39504 - 1.35983
0.50 0,00000 1.41251 0,00000 - 1.41592
0.52 0,39407 1.35629 -~ 0,39504 = 1.35983
0.5, 0.75676 1.19208 - 0,75879 - 1.19604
0.56 1.05920 0.93289 - 1.06244 - 0.93759
0.58 1.27726 0.59923 ~ 1.28198 ‘= 0,60506
0.60 1.39351 0.21753 - 1,40010 - 0.22,94
0.62 1.39858 - 0,18205 - 1.40755 0.27245
0.64 1.29186 - 0.56793 - 1.20395 0.55537
0.66 1.08159 - 0,90972 - 1.09776 0.89319
. 0,68 0.78313 - 1.15058 - 0.80589 1.15876
0.70 0.42268 = 1.35944 - 0.45136 1.33056
0,72 0.02537 - 1.43265 = 0,06348 1.3
0.74 - 0,37700 - 1.39515 0.32640 1.34442
.76 - 0,75348 - 1.25091 0.68630 1.18364
0.73 = 1,07550 - 1,01271 0.98634 0.92349
0,80 - 1,31923 - 0,70I22 1,20092 0,58286
0.82 - 146765 = 0,%351 1.31068 0.18649
0.84 = 1.51208 0.02894 1.20380 - 0.23725
0.86 = 1.45308 0.38242 1.17673 - 0,65879
0.88 - 1.X078 0.68345 0.93412 = 1.05012
0.90 = L0749 0.50088 0.58802 -« 1,38736
0.92 - 0,80177 1.00739 0.15633 - 1.,65333
0.9% - 0,51697 0.98325 - 0.3937 - 1,83960
96 .| = 0,25958 0.81207 - 0.87658 - 1.94824
0.98 - 0,07241 0.48557 - 1.43502 « 1.99300
1.00 0,00000 0.00000 - 2,00000 - 2,00000
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- TABLE 1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-CLAMPED BEAM

Fifth Mode

2,00000

‘ ! m " . . 2
& $s R ¥R ,J,gﬁi, #5 ;'g‘t’%l,,,
0.00 0,00000 0.00000 2,00000 - 2,00000
0.02 0.10567 0.57181 1.30996 - 1.98743
0.04 0,36791 0.90694 0.6209 - 1.90894
0.06 0.70632 1.01517 0.0091 - 1,720
0.08 1.04591 0.91867 - 0,592 - 1.42067
0,10 1.3278 0.65359 - 0,966 « 1,00891
0.12 1.48381 0.26880 - 1,20231 « 0,52020
0.1, 1.50043 - 0.17781 - 1,322 « 0.00021
0.16 1.36090 - 0.62465 - 1,2390 0,49865
0.18 1.07551 - 1,01269 - 0,98632 0.92351
0.20 0.67360 - 1.29164 - 0.61048 2.22851
0.22 0.09959 - 1.42540 - 0.1591 1,38072
0.24 - 0,29269 - 1.39597 0.32432 1.36434
0.26 < 0,74658 = 1.20525 0.76397 1.18287
0.28 - 1.10952 = 0.87470 1.12532 0,85886
0.3 - 1.33938 - 0.44262 1.35061. 0.4314)
0.32 = 1.40954 0.04046 1.41749 - 0.04838
0.3 - 1,31208 0.51781 L.AT72 - 0,5234)
0.36 = 1,0588) 0.93326 1.06282 = 0.93721
0.38 « 0,67987 1.23790 0.68273 - 1,24067
0.40 - 0,22021 1.39584 0.22226 - 1.39777
0.42 0.26575 ,1.38850 - 0.26425 - 1.39983
0.44 0.72046 1.21684 - 0.71933 - 1,277
0.46 1.09011 0.90119 - 1,08923 - 0.90172
0.48 1.33098 0.47892 - 1,323 = 0.47917
0.50 1.41457 0.00000 - 1,41386 0.00000 -
0.52 1.3%98 = 0.47892 - 1,323 0.47917
0.54 1.09011 - 0.90119 - 1,08923 0.90172
0.56 0.72046 - 1.21684 - 0.71933 1.21771
0.58 v 0,26575 = 1.38850 - 0.26425 1.38983
0.60 - 0,22021 - 1.39584 0.22226 1.9777°
0.62 .| = 0,67987 - 1.23790 0.68273 1.24067
0.64 - 1.05€81 - 0.93326 1.06282 0.93721
0.66 - 1.31208 - 0.51781 191772 0.52341
0.68. - 1,40954 - 0.04046 141749 0.04838 -
0.7 - 1.3%938 0.44262 135061 = 0.43141
0.72 - 1,20952 0.87470 1.12538 = 0.85886
0.74 - 0.74658 1.20525 0.7 - 1,18287
0.76 - 0.729269 1.39597 0.32432 - 1,36434
0.78 0.19959 1.42540 - 0.15491 - 1,38072
0.80 0.67360 1.29164 . - 0,61048 - 1.22851
0.82 1.07551 1.01269 .= 098632 = 0.92351
0.84 1. 0.62465 - 1,23,90 - 0.49865
0.85 1,.50043 0.17781 - 132242 0.00021
0.88 1.48381 | .~ 0.26880 - 1,23231 0.52020
0.90 1.32178 - 0.65359 - 0.96646 1.00891
0.92 1.04591 - 0.91867 = 0,54392 1.42067
0.94 0,70632 - 1.01517 0.00291 1.72440
0.96 0.3%6791 - 0.90694 0.63409 1.90894
0.98 0.10567 - 0.57181 1.2996 1.98743
1.00 0.00000 0.00000 2,00000
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TABLE 2

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-FREE BEAM

First Mode

e d$ " 29, - | 43,
‘i‘ '#u ¢| = ﬁ. dx ¢| = é?‘a"["‘ ¢u ’-él-,sdxa
0.00 0,00000 0.00000 2.00000 | = 1.46819
0.02 0.00139 0.07397 1.94494 - 1.46817
0.04 0.00552 0.14588 1,88988 - 1.46805
0.06 0.01221 0.21572 1.83483 « 146773
0.08 0.02168 0.28350 1.77980 - 1.46710 -
0.10 0,03355 0.34921 1.72480 - 146607
0.12 0.04784 0.41286 1.64985 - 1.25455
0.1% 0.06449 0.47446 1.61496 - 1,46245
0.16 0.08340 0.53400 1.56016 - 1.45968
0.18 0.10452 0.50148 1.50549 - 1,45617
0.20 012774 0.64692 1.45096 - 1.45182
0.22 0.15301 0.70031 1.39660 = 1.44656
0.2 0.18024 0.75167 1.34247 - 1.44032
0.26 0.20936 0.80100 1.28859 = 1.43302
0.28 0.2400 0.84832 1.23500 = 1.42459
0. 0.27297 0.89364 1.18175 - 1.41497
0.32 0,307 0.93696 1.12889 - = 1.40410
0.34 0.34322 0.97831 1.07646 - 1,9191
0.3 0.38065 1.01771 1.02451 - 1,37834
0.38 0.41952 1.05516 0.97309 - 1,36334
0.40 0.45977 1.09070 0.92227 - 1,34685
0.42 0.50131 1.12435 0.87209. - 1.32884
0.44 0.54408 '1.15612 0.82262 - 1,30924
0.46 0.58800 1.18606 0.77392 - 1.28801
0.48 0.63301 1.21418 0.72603 - 1.26512
0.50 0.67305 1.24052 0.67905 - 1,2/052
0,52 0,72603 1,26512 €.63301 - 1.21218
0.54 0.77392 1.28601 0.58800 - 1.18606
0.56 0.82262 1.30924 0.54408 - 1.15612
0.58 a. 1.32884 0.50131 - 1,12435
0.60 0.92227 -1.34685 0.45977 « 1,09070
0,62 0.97309 1,363, - 0.41952 - 1,05516
0.64 1.02451 1.37834 0,38065 - 1,01772
0.66 1.07646 1.39191 0.34322 - 0,97831
0.68 1.12889 1.40410 0,30730 - 0.93696
0,70 1.18175 2.41497 o 0.27297 - 0.89364
0.72 1.23500 1.43459 .- . 0.2£0%0 - 0.84832
0.74 1.28859 1.43302 0.20936 “ 0,80100
0.76 1.34247 1.44032 0.18024 - 0.75167
0,78 1.39660 1.44656 " 0.15301 - 0,700
0.80 1.45096 1,45182 0.12774 - 0.64692
0.82 1.50549 1.45617 a  0,10452 - 0.59148
0.84 1,56016 1,45968 0.08340 - 0.53400
0.86 1.61.96 1.46245 0.06449 w 0.474L6
0.88 1.66985 1.46455 0.04784 -0,
o | ime | Mmoo uRE | 3B
0.92 1.779 o4 . R
0.94 1.83483 1.46773 0.01231 - 0.2572
0.96 1.88988 1.46805 © 0.,00552 - 0,14538
0.98 1.94494 1.46817 . 0,001%9 - 0.07397
1,00 2,00000 1.46819 0.00000 « 0.00000
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TABLE 2

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-FREE BEAM
Second Mode

R R ol R il R
- -] a ]
¥ ¥2 b2 g #ombE | e nk
0.00 0.00000 0.00000 2.00000 - 2,03%9)
0.02 0.00853 0.17879 1.80877? - 2.03%66
0.04 0.03%01 0.33962 1.6176% - 2,083
0.06 0.07M174 0.48253 42680 - 2,0302
0.08 0.12305 0.60754 1,23560 - 2,02097
0.10 © .0.18526 0.71475 1.04750 -~ 2,00658
0.22 -0.25670 * 0.80428 0,86002 = 1,92500
0.14 0.33573 0.87631 0.67484 - 1.95214
0.16 - 0.42070 0.93108 0.49261 - 1.92267
0.18 0.51002 0.96892 0.31409 - 1.37901
0.20 . 0,60211 0.95020 © o 0.14007 - 1.82682
0.22 T 0.69544 0.99539 - 0.02865 - 1.76592
0.2 0.78852 0.98502 - 0,19123 - 1,69625
0.26 . -0.87992 0.95970 - 0.34687 - 1.61791
0.28 | . -0.96827 0.92013 "= 0,49475 - 1.53113
0.2 .1.05227 0.86707 - 0,63410 - 1.43624
0.32 1.13068 0.80136 - 0.76419 - 1.33373
0.3 1.20236 0.72389 - 0,864 - 1.22416
0.35 1.26626 .0.63565 - 0.99384 - 1.10821
0.38 1.32141 0.53764 - 1.09222 - 0,92667
0.40 1.36694 0.43094 - 1.17395 - 0.86040
0.42 1.40209 0.31665 - 1.25%5 - 0,73034
0.44 1.42619 0.19593 = 1.31600 - 0.597.8
0.46 1.4387 0.06995 - 1,36578 - 0,46291
0.48 1.43920 - 0,06012 - 1,40289 - 0.32772
0.50 = 1.42733 - 0,19307 - 1.42733 ‘= 0.19207
0.52 1.40289 - 0.32772 - 1.43920 «.0.06012
0.54 1.36578 - 0.46291 - 1.4387 - 0,06995
0,56 1.31600 - 0.59748 - 1,42619 . 0.19593
0.58 1.25365 - 0,703 - 1,40209 0.31665
0.60 < 1.17895 - 0.86040 - 1.%694 0.43094
0.62 1.09222 = 0,98667 - 1.32141 0.53764
0.64 0.99384 - 1.10821 - 1,26626 0.63565
0.66 0u88431 - 1.22416 - 1.20236 0.72389-
0.68 0.76419 - 1.33373 -1, 0.80136
0.70 0.63410 - 1.43624 - 1.,05227 0.86707
0.72 . 0.49475 ‘- 1.53113 - 0,96827 0.92013
0,74 0.34587 - 1.61791 - 6.87992 0.95970
0.76 $£0,19123 - 1.69625 - 0.78852 0.98%02
0.78 0,02665 - 1.76592 * - 0.695%4 0.99539
0.80 - 0.14007 - 1.82682 - 0.60211 0.99020
0.82 - 0.31409 - 1.87901 = 0.51002 0.96892
G.84 = 0.49261 - 1.92267 = 0.42070 0.93108
0.86 & 0,67484 - 1.95814 - 0.33573 0.87631
0,88 = 0,86004 = 1.985%0 - 0.25670 0.80428
0,90 - 1,04750 - 2.00658 - 0,18526 0.71475
0.92 = 1.23660 - 2,02097 « 0.12305 0.60754
0,94 - 1,22680 - 2.03002 - 0.0M74 0.48253
0.96 - 1,61764 - 2,03483 - 0.03201 0.)3962
0.98 | " =1.80877 - 2,03666 = 6,00853 0.17879
1.5 « 2,00000 - 2.0393 0,00000 0,00000 °
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TaBLE 2

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-FREE BEAM
Third Mode

»efx

o | hepdh | GeASE | Gtk

0.00 0,00000 0.00000 2.00000 - 1.99845
0.02 0.02339 0.28953 1.68610 - 1,99721
0.04 0.08339 0.52979 1.37287 - 1.98892
0.06 0.18727 0.72099 1.06189 - 1.96766
0.08 0.31238 0.86367 . 0.75558 - 1.92871
0.10 0.45614 0.95879 0.45702 o 1,86854
0.12 0.61120 1.00785 0.16974 = 1,78480
0.14 0.7704% 1.01291 = 0.10245 - 1.67629
0.16 0.92728 0.97665 - 0.35563 - 1.54286
0.20 1.20902 0.793%% - 0.78975 < 1.20575
0.22 1.32324 0.65580 - 0.96375 - 1.00656
0.24 1.41376 0.49285 - 1.10515 - 0.79124
0.26 1.47707 0.31040 - 1.21172 - 0,56380
0.28 1.51056 0.11205 - 1.28189 - 0,32872
0.2 1.51248 = 0.09041 - 1,3185 « 0.09085
0.32 1.48203 - 0.29711 - 1.31055 0. 14479
0.3, 1.41931 - 0.50026 - 1.26974 0.37310
0.3% 1.32534 - 0.69422 - 1,19598 0.53508
0.38 1.20196 - 0.873%8 - 1,08556 0.78797
0.40 1.05185 - 1.03374 - 0.94753 0.96533
0.42 0.87841 - 1.17003 « 0.78359 1,11723
0.44 0.68568 - 1.27881 - 0.59802 1,200
0.46 0.47822 - 1.35704 - 0.39555 1,33188
0.48 0.26103 - 1.40247 - 0.1813C 1.39004
0.50 0.03937 -1.413%6 - 0.02937 1.41366
0.52 - 0,18130 - 1.39004 0.26103 1.40247
0.5 - 0.39555 - 1.33188 0.47822 1.35704
0.56 - 0,59802 - 1,203 0.68568 1.27881
0.58 - 0,78359 - 1.11723 C 0.8784 1,17003
0.60 - 0.94753 - 0,96533 * 1.05185 1.03374%
0.62 - 1.08556 - 0.78797 1,20196 0.8738
0.64 - 1.19398 - 0.58908 1.32534 0.69422
0.66 - 1.26974 - 0.37310 1.41931 0,50026
0.68 - 1.31058 - 0.14479 © 1.48203 0,29711
0.7 = 1.31485 0.09085 1.51248 0.09041
0.72 - 1,28189 0.32872 1.51056 - 0,1150%
0.7 - 1.21172 0.56380 1.47707 = 0,31040
0.7 - 1.10515 0.7 1.41376 - 0,49285 ,
0.78 « 0.96375 1.006 - 1.32324 - 0,65580
0.2 - 0,78975 1.20575 1.20901 ' - 0,793%
0.82 - 0.58594 1.33540 1 1.07535 = 0,90237
0.8, - 0.35563 1.54236 0.92728 - 0,97665
3.9 - 0.10245 1.67%629 0.77049 - 1,01291
0.88 0.16974 1.78480 0.61120 « 1,00785
0.90" 0.45702 1.86854 0.45614 - 0.95879
0.92 0.75558 1.9287L 0.31238 - 0,8636T
0.9 1.06189 1.96766 0.18727 - 0.72099
0.9% 1.37287 - 2.98892 0.08829 - 0,52979
0.93 1.68610 1.9972 0.02339 - 0,29953
1.00 2.00000 19848 ° 0.00000 0.00000
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TABLE 2

CHARACTERISTIC FUNCTIONS AND DERIVATIVES
CLAMPED-FREE BEAM
Fourth Mode

o0 ) . 2¢ m é

* ) ¢‘.B4 - ¢4'-‘;3-%';|" “'79'3%37’&
0.00 0.00000 0.00000 2,00000. = 2.00007
0.02 0.04482 0.29147 1.56035 - 1.99672
0.04 0.16510 0.68645 1.12317 - 1.9782
0.06 0.33974 0.88606 0.69420 - 1.92012
0.08 0.54801 0.99298 0.23179 o 1.82294
0.10 0.77002 1.01194 - 0.10:07 - 1.67809
0.12 0.98714 0.9459%4 - 0.45270 - 1.48063
0.1 1.18256 0.81633 - 0.7533 - 1.24552
0.16 1.34177 0.62264 - 0.99762 - 0.96717
0.18 1.25299 0.35220 - 1.17627 - 0.65291
0.20 :11.‘50753 0.1i017 - 1.28628 - 0.33228
0.22 50027 - 0,17301 - 1,32262 - 0.00038
0.2, 1.42928 - 0.4662,, - 1.28638 0.32290
0.26 1.2963, - 0.73395 - 1.18226 0.62370
0.28 1.10643 - 0.98164 - 1,01518 0.83388
0.2 " 0.86774 - 1.18154 « 0.79478 1.10676
0.32 0.59073 - 1.32813 - 0,53253 1.26772
0.34 0.28208 - 1.21363 - 0,24191 1.36469
0.% - 002621 = 1.43351 0.06264 1.29357
0.38 - 0.33743 - 1.38622 0.36594 1.35339
0.40 - 0.63112 - 127376 0.652%9 1..24643
0.42 - 0.89330 - 1.10126 0.90964 1.07312
0.44 - 1.11166 - 0,87683 1.12327 0.85675
0.46 - 1.27592 « 0,61115 1.28336 0.59315
0.48 - 1.77836 - 0.31690 1.38199 0.30011
0.50 - 1.41424 = 0.00819 1.41424 - 0.00819
0.52 - 1.38199 0,30012 1.37336 - 0.31690
0.54 -1.2833% 0,59316 1.27592 - 0.61115
0.56 - 1.12327 0.85675 1.11166 - 0.87682
0.58 - 0.90964 1.07812 0.8930 - 1.10126
0.60 = 0.65299 1.24643 0.63112 - 1.27376
0.62 - 0.36594 1.35339 0.33748 - 1.38622
co | e | zm | emm | orpw

. . . - 0,28808 - 1.41368
0.68 0.53258 1.26772 « 0.5%073 - 1.32813
0.7 0.79473 1.10676 - 0.86774 - 1.18153
0.72 1.01518 0.88888. - 1.10648 - 0.9815%
o.;g 1.18226 8.62370 - 1.296;3 - 0.73395
3. 1.28688 32290 - 1,429 - 0.4562
0.78 1.32262 - 0,00039 - 1,50027 = 0,17301
0.80 1.28608 - 0.33228 - 1.50758 0.11017
0.82 1.17687 - 0,658% - 1.45299 0.382%0
0.84 0.99762 - 0,96717 -1.3077 0.62264
0.86 0.753%8 - 1.24552 - 1.18256 0.81633
0.88 0.45270 "= 1.48463 - 0.98714 0.94994
0.90 0.10407 "= 1.67909 « 0,77002 1.01194
0.92 - 0,281719 - 1.82294 - 0,54801 0.99292
0.9%4 - 0.69420 - 1,92012 - 0.33974 0.83506
0.96 - 1,12317 - 1,932 - 0.16510 0.68645
0.98 - 1,56035 - 199672 - 0.04432 0.39147

o

1.00 - 2,00000 - = 2.00007 0.00000 0.00000
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TABLE 2

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-FREE BEAM

Fifth Mode
v d%s . ) 9 s
L =
$s $s B, O #s B S | #ae B ey

0.00 0.00000 0.00000 2.00000 - 2,00000
0.02 0.07241 0.48557 1.43502 - 1.99300
0,04 0.25958 0.81207 0.87658 - 1.94824
0,06 0.51697 0,98325 0.33937 - 1.83959
0,08 0.80177 - 1.00789 - 0.15633 - 1.65332
0.10 1.07449 0,50089 ~ 0.58801 - 1,3873%
0,12 1,20078 0.68346 - 0.93411 = 1,05011
0.1 1.45309 0.38243, - 1,17672 - 5.65378
0.16 1.51209 0.02895 - 1.30378 - 0,23723
0.18 | 1.46767 - 0.34348 = 1.31066 0.18651
0.20 1.31925 - 0.70119 - 1.20090 0.58289
0.22 1.07553 - 1,01267 - 0.98631 0.92352
0.2% 0.75353 - 1.25086 - 0.68626" 1.18368
0,26 ° 0.37706 - 1,39509 - 0,32634 1.34448
0.28 ‘- 0,02529 - 1.43257 0.06355 1.39446
0.2 - 0,42257 - 1.3593% 0.45146 1.33065
0.32 - 0.,78399 - 1.18045 0.80582 1.15889
0.34 = 1,08140 - 0.9095, 1.09793 0.89337
0.3 -1.,29162 ° - 0.5677 1.30418 0.55561
0.38 - 1.39826 = 0.18)7% 1.40786 0.17276
0.40 - 1.39310 0.21794 1.40051 - 0,22452
0.42 - 1.27670 0.59978 1.28253 ~ 0,60450
0.44 - 1,05846 0.93361 1.06317 - 0.93686
0.46 - 0,75579 . 1.19204 0.75576 - 1,19508
0.48 - 0.39278 1.35757 < 0,39632 ~ 1,35855
0.50 0.00170 1.41421 0.00170 - 1.413421
0.52 0.39632 1.35855 - 0.39278 - 1.35757
0.54 0,75976 1.19508 - = 0.75579 - 1.19304
0.56 1.06317 0.93686 - 1.05846 - 0.93361
0,58 1.28253 0.60450 - 127670 - 0,59978
0.60 1.40051 ©0.22452 - 1.39310 - 0.21794
0.62 1.40786 = 0.17276 ‘= 1.39826 0.13174
0.64 1.30418 - 0.55561 - 1.29162 0.56770
0.66 1.09793 - 0.39337 - 1.0810 0.90954
0.68 0.80582 - 1.15869 - 0.78399 1.1804%
0.70 0.45L6 - 1.33065 - 0,42257 . 1.3593%
0.72 0.06355 = 1.39446 = 0,02529 1.43257
0.74 - 0.32634 - 1.34448 0.37706 1.39509
0.76 - 0,68626 - 1.183%8 0.75353 1.25036
0.78 ~ 0.98631 . - 0.92352 1.07553 1,01257
0.80 - 1.20090 = 0.58289 , 1.31925 0,70119
0.82 - 1.31066 = 0.18651 1.46767 0.34348
0.84 - 1.30378 0.23723 1.51209 - 0,02895
0.86 - 1.17672 .0.,65878 1.453209 - 0,38243
0.88 - 0,93411 1.05011 1.30078 - 0.68345
0.90 - 0.58801 1,38736 1.,07449 - 0,90089
0.92 - 0.15633 1.65332 0.80177 - 1,00739
0.94 0.33937 1,83959 0.51697 - 0,98325
0.96 0.,87658 1.94824 0,25958 - 0.81207
0098 1.“”2 1.”” o.m - 0.43557
1.00 2.,00000 2,00000 0,00000 0,00000
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TABLE

3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES
CLAMPED-SUPPORTED BEAM

First Mode
2 d¢ " @4 -
$ $ L 8 §a Ly S

3 : et | froget [ HRw
0.00 0.00000 0.00000 2.00000 - 2,001358
0,02 0.00600 0.15089 1.84282- - 2,00140
0.04 0.02333 0.28944 1.68568 - 2,00031
0.06 0.0511% 0.41566 1.52869 ='1.99745
0.08 0.08334 0.52955 1.37202 - 1.99203
0.10 0.13400 0.63116 1.21590 = 1.98336
0.12 0.18715 0.72055 1.06060 - 1,97079
0.1 i 0.24685 0.79718 0.90647 .= 1.95379
0.16 0.31214 0.86296 0.75386 - 1,92187
0.18 0.38208 0,91623 0.60318 o 1.50464
0.20 0.45574 0.95776 0.45,55 - 1,87177
0.22 0.53221 0.98775 0.3093% - 1.8329
0.24 0,61058 1.00643 0.16712 - 1.78812
0.26 0.68999 1.01410 0.02866 - 1,73706
0.23 0.76958 1.01105 ‘= 0,10554 - 1.67975
0. 0.843852 0.99764 - 0,23500 - 1,61620
0.32 0.92601 0.97427 -'0,35923 = 1.54652
0.34 1.00129 0.94137 = 0.47775 - 1.47082
0.36 1.07363 0.89940 - 0.59%009 - 1.38932
0.8 1.14233 0.34886 - 0,69582 - 1.30229
0.40 1.20675 0.79029 = 0,79450 « 1,21002
0.42 |, 1.2662% 0.72427 - 0.88574 - 1,11288
0.44 1,32032 0.65138 - 0.96918 - 1.,01128
0.46 1.36841 0.57226 = 104447 - 0,90586
0.48 1.41006 0.48755 -1.11133 - 0,73652
0.5 2.44436 0.3979% - 1.14950 - 0.68437
0.52 1.47245 0,30410 - 1,21875 - 0,56977
0.54 1.49253 0.20675 - 1.25894 - 0.45330
0.5 1.50435 0.,10661. - 1,208992 = 0,33555
0058 1.”22 O.WU.O - 1031162 - 0021715
0.50 1.50550 = 0.09%15 - 1.32402 = 0.09872
0.562 1.49363 - 0,20332 - 1.3271, 0.01910
0.54 1.47357 = 0,30736 - 2.3206 ° «  0,13566
0.%6 1.44537 = 0.41057 - 1,30538 0.25033
0.58 1.40913 - 0.5122/, - 1.28180 0.36247 |
0,70 1.36498 - 0,51167 - 1.24904 0.47U5
0,72 1,31313 = 0,70320 - 1,20786 0.57666
0.74 1.25334 - 0.90117 - 1,15858 0.67750
0.75 1.13741 - 0,88%96 - 1.10157 0.77340
0.7 1.11218 - Q.971.00 - 1.03725 0.86382
0,%0 1.03457 - 1.05270 « 0,94606 0.94823
0.82 0.94399 = 1.12556 - 0,88849 1.02616
0.84 0.85795 - 1.19210 « 0.80507 1.09714
0.86 0.76194 - 1,25187 - 0,763 1.16078
0.38 0.66151 - 1.30448 - 0,52295 -+ 1.216%
0.90 0.55724 - 1,34960 - 0.52547 1.26453
0.92 0.44974 - 1.32693 - 0,42455 1.0414
0.94 0.33962 w 1.41622 - 0.32086 1.33515
0.9% 0,22752 - 1.43727 - 0,21507 1.35743
0.%3 0.11410 = 1,44996 - 0.10789 1.37035
lum O.W - l.w O-W 1-37”’
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TABLE 3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-SUPPORTED BEAM

Second Mode

b | hegtl) gl | aatk
f ] 2 pz X 2 5 X ‘! 3 [1
0.00 0,00000 0.00000 ~ 2.00000 - 2.00000
0.02 0.01904 0.26276 1.71729 - 1,99910
0.04 0.07241 0.48557 1.43502 - 1,99300
0.06 .0,15446 0.66857 1.15424 - 1,97727
0.08 0.25958 . 0.81207 0.87658 - 1,94824
0.10 0,38223 0.91666 0,60415 = 1,90205
0.12 0.51697 0.93325 0.33937 - 1.83960
0.14 0.65851 1,01310 - 0.08494 - 1,75656
0.16 0.80176 1.00789 = 0.15633 - 1.65333
0.18 0.94192 0.96966 - 0.33158 - 1,53001
0.20 1.07449 0.90088 - 0.58802 - 1,38736
0.22 1.19534 0,80441 -~ 0,77300 - 1,22676
0.2, 1.30078 0.68345 - 0,93412 - 1,05012
0.2 1.38759 0.54152 - 1,06927 .= 0.85985
0.28 1.45308 0.38242 - 1.17673 - 0,65879
0.3 1.49510 0.21017 - 1,25518 - 0,45011
0.32 1.51208 0.02894 - 1,30380 - 0,23724,
0.34 1.50305 - 0,15704 - 1.32224 - 0,02381
0.36 1.46765 - 0,34350 - 1.31068 0.18649
0.38 1.40611 - 0,52625 - 1.26983 0,38993
0.40 1.31923 - 0,70122 - 1.20092 0.58286
0.42 1.20839 - 0.86456 - 1.,10589 0,76180
0.44 1.07550 - 1,01270 - 0.98634 0,92349
0.46 0.92292 ° - 1,24243 - 0.84553 1.06496
0.48 0.75348 - 1,25090 - 0.68631 1.18364
0.50 0.57035 - 1.33577 - 0.51204 1.27736
0.52 0.37700 - 1,39515 = 0.32640 134442
0.54 0.17715 « 1.42770 - 0,13323 1.38365
0.56 - 0,02536 = 1.43265 0.,06348 1.29438
0.58 - 0,22661 - 1,40978 0,25968 1,37654
0.60 - 0042265‘ - 10359“ 00‘5136 1-3”56
0.62 - 0.60973 - 1,28256 0.63460 1.25745
0.64 - 0,78413 - 1.18058 0.80569 1.15876
0.66 - 0.9424, - 1,05549 0.96112 1.03650
0.68 - 1.08158 - 0.90972 1.09776 0.89319 -
0.70 ° - 1,19882 - 0.74612 1.231281 0,73172
0,72 - 1.29186 - 0.56793, 1,30395 0.55537
0.7% - 1.35888 - 0.37866 1.36930 0.36769
0.76 - 1.39858 = 0.18205 1,40755 0.,17245
0.78 - 1,41019 0.01800 1.41789 = 0.02643
0.80 - 1.39351 0,21752 1.40010 - 0.22494
0.82 - 1.34890 0.41256 1.35450 - 0.41912
0.84 - 1,27726 0.59923 1,28198 - 0.50506 _
0,86 ¢| = 1.1800, 0.77383 1.18399 - 0.7790,,
0.88 - 1.05919 0.93288 1.06244 - 0,93759
0.90 - 0,91715 1,07323 0.91976 - 1.07752
0.92 - 0,75676 1.19208 0.75879 - 1.19604
‘094 - 0.58122 1.28706 0,58271 - 1,29078
0.96 - 0.39406 1.35629 0.39504 - 1,35983
0.98 - 0,19902 .98 . 0.19951 - 1.{.0183
1.00 0.00000 1.41251 0,00000 - 1.41592
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TABLE 3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-SUPPORTED BEAM
Third Mode

3
és $ye-Ldfa | gil B8 | gm t i

'E' By dx 5 E%'dxz 3 83 dx
0.00 0.00000 0.00000 2,00000 - 2,00000
0.02 0.03386 0.36672 1.59173 - 1.99731
0.04 0.144,10 0.65020 1,18532 - 1.97961
0.06 0.29879 0.85122 0.73508 - 1.93509
0.08 0.48626 0.97168 0.39742 - 1.85535
0.10 0.69037 1.01491 0.0309 - 1,73537
0.12 0.89584 0.98593 - 0.30845 ~ 1.5701
0.4 1.08857 0.891/8 - 0,60968 - 1.37037
0.16 1.25604 0.74002 - 0.86560 -« 1,13046
0.18 1,38759 0.54152 - 2.06927 - 0.85985
0.20 1.47476 0.20725 - 1.21523 « 0,56678
0.22 1.51147 0.04939 - 1,29988 - 0,26098
0.24 . 149419 - 0.21934 - 1.32168 0.04683
0.26 1.42202 - 0,48616 - 1.28137 0.34551
0.28 1.29662 - 0.73864 ~ 1.18195 0.62397
0.0 1.12212 - 0.96520 - 1.02863 0.57171
0.32 0.90489 - 1.15556 - 0,82867 1.0M934
0.3% 0.65324 - 1.30207 - 0,59110 1.23893
0.36 0.37703 - 1,39512 - 0.32637 1.34445
0.38 0.08727 - 1.433%0 - 0.04596 1.39199
0.40 = 0.20439 = 1.41364 0.23807 1.37996
0.42 - 0.48616 - 1.33665 0.51362 1.30919
0.44 « 0,74658 - 1,20525 0.76897 1.18287
0.456 - 0.97504 - 1,0247 0.99330 1.00646
0.43 - 1.16223 - 0.80234 1.17711 0.78746
0.50 - 1,30050 - 0.54726 1.31263 0.53513
0.52 - 1.38422 - 0.2699, 1.39/11 0.26005
0.54 - 1.41001 0.01818 1.41807 - 0.0262
0.5 - 1,37687 0.30522 1.38%4 - 0.,Uu7% .
0.58 - 1,28624 0.5799 1.29160 - 0,58465
0.60 - 1.14194 0.82907 1. 14631 - 0,834
0.62 = 0.95000 1.04422 :* 0.95356 . - 1,04778
0.64 - 0,71844 1.21582 " - 0,734 - 1.21873
0.66 - 0.45691 1.33678 0.45927 - 1.3315
0.68 - 0.17628 1.40210 0.17821 - 1X0403
0.70 0.1117;, 1.20906 - = 0,11017 - 1.43064
0.72 0.39519 1.35742 - 0.39391 « 1,35870
0.74 0.66227 1.22991 - 0.66123 - 1.25036
0.76 0.90188 1.08924 = 0,90103 - 1.09010
c.7e 1,10404 0.88387 - 1.10335 - 0.88458
0.80 1.26035 0.624175 - 1.25930 - 0,64233
0.82 1.36432 0.37294 - 1.36386 - 0.37341
0.84 1.41160 0.08860 - 141124 - 0,03900
0.86 1.40025 - 0.19943 - 1.3999 0.19910
0.88 1,3072 - 0.47918 = 1.33049 0.47891
0.90 1,205%0 - 0,73904 - = 1.20573 0.73831
0.92 1.03093 - 0,96820 - 1.03085 0.96800
0.94 0,8132) - 1.15713 - 0.8131) 1.25695
0.96 0.56163- ~- |- = 1.29798 - - 0.56162 1.29732
0.98 0.28680° - |: = 1.38490 - - 0.28677 1.38476
1.00 6.00000 - 1.4429 0.00000 141414
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TABLE 3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES
CLAMPED-SUPPORTED BEAM

Fourth Mode
telodfs | gt L @2 - ?
ol B A Y- S Y-
4 4
0.00 0,00000 0.00000 2.00000 = 2,00000
0.02 0.06496 0.46278 1.26633 - 1,99.08
0.04 0.23451 0.78357 0,93792 - 1,95600
0.06 0.47104 0.96521 0.42662 - 1,86287
0.08 0,73820 1.01441 - 0.05091 - 1,70171
0.10 1.0020/ 0.94270 - 0,47581 - 1,46893
0.12 1.23237 0.76664 - 0,82947 - 1.16955
0.1 1.40407 0,50751 - 1.09559 - 0,81599
0.16 1.49825 0.19041- - 1,26206 = 0.42660
0.18 1.50306 - 0.15704 -1,32223 - 0,02380
" 0,20 1.41422 = 0,5062,, - 1.27577 . 0,367
0.22 1.23502 = 0.829.4 = 1, 12901 0.72343 -
0.2, 0.97582 - 1.10140 = 0,85466 1.02024
0.26 0.6532,, - 1.,30107 - 0,59110 1.23893
0.29 0.28879 - 1.41295 - 0.24121 1.26537
0.3 - 0,09274 - 1.42807 0.12917 1.39164
0.32 - 0,46510 - 1,34455 0,49299 . 1.31666
0.3, - 0,80250 - 1.16772 0.82386" * 1.1463
0.36 - 1,08150 - 0,90963 1.09785 0.69328
0.38 - 1,28266 - 0,58823 1.,29518 0,57571
0.40 - 1,39201 - 0,22602 1.40160 0.21644
0.42 - 1,40200 0.15152 1.40934 - 0,15886
0.44, - 1,31209 . 0.51780 1.21771 - 0.52342
0.46 - 1,12877 0.84697 1,1)%08 - 0,85127
0.48 - 0,86513 1.11580 0.86843 - 1,11910
0.50 - 0,53994 1.30530 0.54246 = 1.30782
0.52 = 0,17628 1.40210 0.17821 - 1,40/03
0.5 0., 20000 1,39937 - 0,19853 - 1,4008,
0.56 0.56222 1.29734 - 0,56109 - 1,29847
0.58 0.88466 1.10326 .= 0,88379 - 1.10413
0.60 1.14445 0.83092 = 1,14379 - 0,83159
0.62 1.32317 0.49963 - 1,32266 - 0,5001,
0.64 1.40813 0.13289 - 1.40774 - 0,13328
0.66 1.3930 = 0.24329 - 1,391 0,24299
0.68 1.27973 - 0.60226 - 1,27950 0,60203
0.70 1.07546 - 0,91854 « 107529 0.91837
0.72 0.79497 - 116974 - 0.79484 1.16960
0.74 0.45814 - 1,33802 » 0,45804 1.33792
0.76 0.0888,, - 141046 « 0,08876 1.41138
0.78 - 0.28676 - 1,38486 0.26682 1.38480
0.9 - 0,64202 = 1,26010 0.64206 1.26005
0.82 - 0.95176 - 1,04602 0.95180 1.04598
0.8, - 1,19405 - 0.757T79 1.19407 0.75776
0.86 - 1,35168 - 0,41585 1.35L70 0.41583
0.88 | -1.435 - 0.04443 1.41352 0,04441
0.90 - 1,37513 0.301, * 1. 77514 - 0,33015
0.92 - 1.23928 0.68130 1.2929 - 0.68131
0.94 = 1,01558 0.98416 1.01559 - 0,94418
0.96 = 0,71989 1.21727 0.71990 - 1,21728
¢.92 o 0,37317 1.36409 ) 0,77318 - 1,36409
1.00 0.00000 141422 0.00000 - 1.40422
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TABLE 3

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

CLAMPED-SUPPORTED BEAM

Fifth Mode

saldfs | ogo 1 dt | go, ) Oh

T 45 *5'3,“ ¢°=§';dx ”'é}dx
0.00 0.00000 0.00000 2.00000 - 2.00000
0.02 0.09685 0.55098 1.341)9 = 1.98902
0.04 0.33974 0.88607 0.69424, = 1,92005
0.06 0.65851 1.01511 0.08494 - 1,75656
0.08 0.9817 0,95000 - 0.45262 - 1.48455
0.10 1.26755 0.72628 - 0.8830 - 1,11064
0.12 1.45%08 0.38243 - 1,17672 « 0,65879
0.1, 1.51200 - 0,03274 - 1.31329 - 0.16597
0.16 1.42950 - 0.46599 - 1.28662 0.32712
0.18 1.20840 - 0.86454 - 1,10567 0.76182
0.20 0.86819 = 1,18105 - 0,79432 1.107M9
0.2 0.44239 - 1.37825 - 0,38928 1.32514
0.24 - 0.02533 - 1.43261 0.06352 1,39442
0.26 - 0,486 - 1,33665 0.51362 1.30919
0.28 = 0.89158 - 1,0995L 0.91132 1.07980
0.2 - 1.19872 - 0,74602 1.21291 0,73183
0.32 - 1,37505 « 0.31360 1.38526 0.30340
0.34 - 1.40200 0.15152 1,409 - 0,15886
0.36 - 1,27698 0.53950 1.28226 = 0,60,78
0.38 - 1.01369 0.98227 1.01748 - 0,98507
0.40 - 0.64067 1.2587L 0.64340 - 1.26144
0.42 - 0,09828 1.39912 0.20024 - 1.40109
0.44 0,26570 1.38846 - 0.26429 - 1,38987
0.46 0.70119 1.22792 - 0,70018 - - 1.22894
0.48 1.06118 0.93487 - 1,06045 - 0.93560
0.50 1.20682 0.54093 - 1,306 - 0,546
0.52 1.4161 0,08861 - 141124 - 0,08899
0.54 1.36423 - 0,37331 - 1,36395 0.37304
0.5¢ 1.16977 = 0.79500 - 1,16957 0.79481
0.58 0.84919 - 1.13100 - 0.84905 1,13086
0.60 0.43706 - 1.34505 - 0,4369% 1.34495
0.62 - 0.02218 - 1.41408 0.02225 1.41400
0.64 - 0.47902 - 1,33063 2.47907 1.33058
0.66 - 0.8842, - 1.10372 0.88425 1.10368
0,68 - 1,19405 - 0.75T9 1.19407 0.75776
0.70 - 1.37513 « 0.33015 1.37515 0.33013
0.72 - 1.40793 0.13308 1.40794 - 0,13310
0.74 - 1,28892 0.58196 1.28892 «40.58197
0.7 -« 1,03091 0.96809 1.03092 - 0,96810
0.78 - 0,66175 1.24983 0.6617% - 1.24984
0.80 - 0.22123 1.39680 0.22123 - 1.35680
0.82 0.2431% 2.39315 - 0.2431% - 1.79316
0.84 0.6810 1.23928 - 0,681 - 1,295
0.86 1.,04600 0,95178 - 1,04500 . = 0.950178
0.83 1.29790 0.56165 = 1,29750 - 0,56165
0.90 1.40985 0,11096 - 1,40985 - 0.11096
0.92 «3978 - 0,35170 - 1.36978 0.35170
0.94 1,1820} = 0,77644 - 1,18202 0.77644
0.96 0.86678 « 111745 - 0.86678 11745
0.98 0.45809 - 1,33797 - 0.45809 1.33797
1.00 0.00000 - 1.40421 0.00000 1442

106




107
Data For Beams With Various Edge Condltions

(1) Clamped-Clamped Beam
Characteristic Function

CPn = coshﬁnzr - cospn-q- ~dn(sin hﬁn - Sillﬁn

where 1311 and oln are given in the following;

-n n : odn
1 4e 730041 098250
2 7853205 1000777
3 | 1C2995608 0+999966
4 | 14137166 1 #000001
5 | 17.278760 1 - 000000
fDS (2n + 1)1 1000000

(2) Free-Free Beam
Characteristic Function

The characteristic fimction for a free-free beam is the

same as the second derivative of a clamped-clamped beam;

that is,
5‘:1?4>ﬁ=005hﬁn%’+ cosf, % - dn(sinhﬁn}(‘. +sinﬁn%l_)

The values of olp amd ﬁn are shown on the following page.
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n Ba oln

1 0

2 0

3 4¢ 730041 0982502

4 7853205 12000777

5| 10995608 04999966

6| 145137166 14000001

T 1727876 1000000
n>7 (2n-3) & 12000000

(3) Clamped-Free Beanm
Characteristic Function

¢n=

coshﬁz% - cospn%. - dn(sinhﬁn’.‘rsinﬁn%

N

n fn oln

1| 1 875104 0.7340955

2 | 4 694091 1. 081847

5 | 7 8s4757 0-999225

4 110 995541 1000034

5 114 137168 | - 0.999999
>5 | (on-1)B 1. 000000
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(4) GLAMPED-SUPPORTED BEAM
Characteristic Function

P = cosh/sn’f - cos ﬁn} - n(sinh Ign’-i - sinﬂn%)

n

n Bn . oln
1| 3.926602 | 1.000777
2 | 7.068583 | 1.000001
3 | 10.210176 | 1.000000
5 | 13.351769 | 1.000000
5 | 16.493361 1.000000

y5 | (am+1)E 1.000000

(5) FREE-SUPPORTED BEAM
Characteristic Function

The characteristic function of a free-supported beam
is the same as the second derivative of a clamped-supported
beam, that is,

¢'n/(Pa')2=cosh ﬂn%wos/sn%- - dn(sin ﬂn’i-ﬁ-sinﬁ. 7
The constants /Bn and olpare obtained from the data of clamped-
supported beam with the exception that pn =0, forn =1
and 2, For n>3, the values of ﬁ! and An for the present

case correspond to np1 for case (4).

(6) SIMPLE-SUPPORTED BEAM
Characteristic Function

qk'= SWMB"J%
Fn = (nTr)

where,
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INTEGRALS OF CHARACTERISTIC FUNCTIONS
FOR VARIOUS MODES

Table g 2 Olam;ged-Clamped Beam

Values of Im’n f %ﬁ

l? 1 2 3 4 5
1 12,30262 0 -9.73079 0 =T+ 61544
2 0 46,05012 0 -17.12892 0
3 -9,73079 0 98,90480 0 -24,34987
4 0 -17,12892 0 171.58566 0
5 ~T.61544 0 -24,34987 0 263,99798
¢ ¢
Note: Jm - Otbpdy = ~(| 2F8m 2
Toe = [ 4 Qv = - 1] 2 2tpulx
Table Clam ed-Free Beam
val : D Pm 2¢p
alues of I'“P _*ef 5% 3% Ax
m
b 1 4 5
1 4,64778 =7.37987 3.94151 -6.59339 4,59198
2 ~T.37987 32, 41735 | -22,35243 13.58245 | -22,83952
3 3.94151 -22435243 77.29889 | -35,64827 20.16203
4 -6.59339 13.58245 | -35.64827 | 149,90185 | -48.71964
5 4,59198 -22,83952 20,16203 -48,71964 228,.13325 |
Values of J ]
e = [Cop Qg
¢ L%‘ ax‘l'dx
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P 1 2 3 4 5
1 0.85824 | -11,74322 27.45315 | =37.39025 51.95662
2 1.87385 | =-13.29425 -9.04222 30.40119 | =33,70907
3 1.56451 3422933 | =45490425 ~8.33537 36438656
4 1.08737 5.54065 4,25360 -98.91821 -7.82895
5 0.91404 3.T1642 11.23264 4,73605 | =171,58466
Table (6) Pree-Free Beam
Values of Ilmp__. Ll % %Péx
P\ 1 2 3 4 5 6 7
110 0 0 0o 0 0
210 12,000 0 13.856 0 13.856 0
310 0o 49,481 0 35,378 0 36.608
410 13.856 0 108.925 0 57.589 0
510 | o 354378 0 186,867 0 78.10Q1
610 13.856 0 57.589 0 284,683 0
T10 o 36.608 o 78.101 0] 402,228

?
Values of E{_’E = I¢m%2§% ax (see following page)
o




tiz

N1 ] e 3 4 5 6 7
1] o| o]18.58910 0 43,98096 0 |69.1150%
2lof o 0 40.59448 o |8x.08889 0
3 0 0 | -12.30262 0 52,58440 0 101.62255
41of o 0 -46,05012 o |55.50868 0
5| 0| o]1.80069 0 -98.9048 0 [60.12891
6lo]l| o 0 5.,28566 0 |-171.585 0
71 0| o|o.57069 0 9.86075 o |-263.9979

Table (7) Supported-Supported Beam

Values of

4
- [P

D 1 2 3 4 5

1 e 0 0 0 0
2
2 0 402 0 0 0
3 0 o‘2 9,313 0 0
4 0 0 ) 16.[%3 0
5 0 0 0 0 25_1%3
t
Note f%p_ = L¢m% dx = - %“_‘%P dx




APPENDIX B

STRESS-STRAIN RELATIONS
The derivations of the stress-strain relations for the
facings and the core are based upon the states of stresses
ag shown in Pigs. (2¢) and (2b).
The general expression for the stress-strain relations

of an orthotropic body may be written as: (See {30) and (31).

Sx W St1 Sy 843 O ° 0 ex
6y ||S12 Se2 83 O © © €y
62 [={S13 Se3 833 O © 0 €z
T zy S14 Soy Sy Sy 0 ° Yyz
Tzx | |S15 S5 S35 Sz Sgg O YPxz
LTxy- _316 826 S36  Sus Sz See Pxy

Teeo(Bo1)
Faclngs
For faclngs, the zero components of stress and straln

are G, 'T§z’ 7;2, and € . Introducing the zero values for

these components, equations (B.1) yield:

PR Rl 17,
6x | |S11 512 O €x
_Txy_ 0 0 s66- _rxy‘



114
solving equations (B.2) for €_, €y, and Y,xy’ the strain-

stress relations take the form:

€ 1 -y )
x g Ey 0 *
Ey - —-E—w 1 0 6}" 000(3-3)
e o —?); 1 T
Xy T =
. § L e - o
provided S11522—3212 — Ex; 811322"8 12 = Ey
Son 511
S S
e _ A2 _ =
b \)x Spp - Vy and Sgg = Gyye
Conversely,
I o) T - E xE ] 'e ]
-X X X 0 x
1'Vx9y 1'vay
Gy s B E 0 ey ooo(BoLl')
1-5;95' 1'9§py
TXY 0 0 Gxy ny
. ] N ] L i

E
Lang (34) has shown that gy = -Q—(-i% where V= ,J9x\>y

Core
The gtregss-girain relations of the core ére based upon
the assumption that 5; and ’fx§ are zero., When zeroc values
are substituted for ©xC and Txg in equations (B.1), the
following relations are established.



c
Xz

where

i -V§
Eg ES
YE 1
Ey EZ
o 0
0 0
A _EC
S11533-5¢ ¥’
1182337273

511823-812813 )¢
-2

S11933-5%3

b

Sy = ng,

115

0 0
0 0
i 0
(o]
0 1
[s]
Gxz

asg cee(B.5)

A

4 = ES
S11522-592 ’

’

511523-812513 _y)¢
$11522-5%2 J

c
855 G and

A= 5,,(855855-503) + B15(8135,5-515553) + 513(312323"513522)-

Inversion of (B.5) yields:

]

-

c cgt
1_\340 &c 1 _yycyz
VCEC Eg
=9 vz 1=y

0 o
0] o

1T 1
0 0 €g
0 0 eg
C
Gyz O T;g
0 Gx || B2
L)



APPENDIX C
EVALUATION OF INTEGRALS OF INFINITE SERIES

In the present appendix, necessary expressions for the
evaluation of the integrals of infinite series are developed.
These expressions are employed in the course of analysis

in Chapter III. As a first example, consider the integral
‘ b o o , , occc/ p
abec
e [f SERECARE AL DR W
mn m n
00O
(dxdydz)

It the summation be extended tom =n = 2

cl.’, 7/ / /7 7/ /
[X1 (Y1§11+ Y2§12) + X2(Y1§21+Y2é22)] .

H

I
o—p
Ob——'
o

/ / / / / /
[X1(Y1111—Y2']12) + Xp(Y{l 21+ Ye'lze)] dxdydz

a bec yR-72)

12249 /020 /o7
= L !l [X%1§1711+X$Y2 92712+X5Y%§21721+X2Y2-G2 22

’ 2 ¢ 12 ‘v 7 /0
+EXp (13 51 M11+ 12521 02) + XoXy (1760195 G 2o

/ / 4 '
+Y1Y’2 (X3 §1 1’[1 a+i§fa1’lee)+Y2Yl1 (§$§|?1 1 “%622'121)

7 7,7 4 /7 7/ 4
AR AN PRSI [P A AP P S AR 22] dxdydz
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49) e 443 [t

s p xdydz)

b. ¢ ot 1
¥ i};‘ ZI[ )YYq(nq'lmn dx dy dz

& abe
Y 22 ff mepYan pn?mq drdydz eee(0.1)
g 0D

a
Denoting '(

o

/ ¢
)4xpdx by E-EI’-, and beandy by In

equation (0.1) reduces to:

I1-if71mm Iny <'mn7m dz +Zi; Z{ER Inn mn']pn iz
Zfi [ 3 fonen iizz RTINS

b
eee(C.2)
IfCpn = ?lm = Zpyn, 1t follows that

ZE? KmY Zun dx dy dz

°°c oc C
ZII_@ I&zﬁndzq-Zi 11_@..1_ Znpnds
n o a a b

b m R
- '*P

I8



.

oc oc og =SS (T 1
| Imn In , Zmp ng gz dz
¥ ;;:/:j:_;_ o mntng 47 ;;;o o o Pt
n+q m¥Pp, ngq
.‘.(CCB)
Let b o 00
2= T[T (L 2eram] [ L) Fotilen ) oz
m n m n
- 2070
Since Txixjdx =a fori=]
0 = 0 for i#J,

terms which are multiples of X4X; vanish in the expansion of

I1 on the previous page.

2 oo 0o c '
Imnzmndz-*-b'ZZ%I Imp Zmn Zpn 82 «..(0.6)
o

3
3

z

3
-

Next conslder : cow
> C— o8 e " . "
. 0o o A ¢ m n
This case 18 directly obtainable-from I py replacing X, by 4
and Yn by Y%. Thus,



n 9
*P)"*W eoo(Qo?)
Denoting,

[ [+ ¥

o | =
I X‘:._,‘Xp dx by 3""!‘.’ and S'Yn‘(q dy by lr‘\é_,

I4 takes the form:

< = o0 = <

S Jwn Jnn f-m,:]. wndZ+ 222 j Jmpe_ Jwn Si P]_ dz
o ° 'I" pn

o =Y "\’\POW
[

b3

wn O ’ . M r<- ‘

%—S} 2w J.E‘_’ﬁf qu;mﬁdz':"'%\j‘:"%‘:' 5%“71 pnd
q

wm+p, ‘\*T

ob
+
M n
+
, .00(008)
If Xp 1s replaced by Xp,, Iy becomes

L - L‘],‘@ Xt fne] 3 3 X ] b iz

=af3 T £ 2ol 22 [T fugland

L] U\ w W
© nwq ° ... (C.9)

Similarly, -
k&ﬁ}?ﬁ [ X"‘K Yu\ r"““ ] [ i :?_O__XM \(VI"L mg\‘! dX_d‘{ dz

009
* oo C o6 90 00

=% é%! I% rmnbl.mnd'z‘-*bZZ jgj&,k'j“"klpﬁ\z

mnp
“*p ...(C.10)



APPENDIX D

APPLICATION TO SANDWICH BEAMS
In this appendix, frequency criteria for sandwich
beams are developed from the general frequency equation
(3.53)s In applying this equation to the cases of beams, the
parameters Hmn and I‘mn approach zero and the resulting deter-

minantal equation assumes the form:

1= Quht %12- Q2 o5 0y -

C12” Q:,)wz ®20" Qi)\za %23 %25 "n
=0

%13 %23 %53 %35 Ty

5 Cos C35 ®s5 %
—1 J....D4

The constants (J:‘_j and Aij in (D.1) are derived from the ele~

mezp;a af the determinant of the equation (3.53) by makjmgﬁn,
I._, Jd , and J__ all approach zero. Under these conditions,
nm° mm m ,

the constants of (D.1) become:
0,. =22 (fa)Bda + 2 (fb)[('c-eib)a«i- 1_(£b)2 di’ (ﬂ-")4
1173 1 2 12 1 a

( b b
%12 = &% : [(caﬁ )(c+£?) + 1 (fb)2] &t et
z 2 6 a

120
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= - b

2
G5 = [’5 (£%)% aF - £° (c+ L 29 d?)]e(ég>4

T 5:;;2{ [Plest P2 ]+ 12 o gk } s

Oo3 = - E‘;?E';:; (i-z-‘ﬁ) (c4£®) [2Em)* )

%25 = - 5 2.5 (e+e”) [2 () a®]

O33 = [IZ““ e + 2 cgfb][z(ﬁ_ a} J
S-SR 6$2)2

b
035 = Fg° [2 Ep* d?]

(£%a%= £Pab ) [2@2)4:’

¢ 1

55
N 1 E[S’cc s 028 +9bfb]
A2 = -—;E[?cce + 2?0]

)\22 = 1 [% QCOB-P E?bcsz]

2
(ES)

The solution of (D.1) is too complicated for a para-

matric representation. However, & number of specisl eases can
be developed from this -equation by coensidering the following

values of the physilcal congtants.

"
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Case (a) EG —eoac, G§, = finlte.

Under this condition. the frequency equation becomes

2
= _1 [

n z 033(011055-015)-011035-0550 13+

A1 @33855-0p5)

2013015035] S el (D.2)

Assuming that the facings are of the same material, so

that d§ = df = 4, and P 8= PP =p,the substitution .of the con-
stants cij and >\i;] in (D.,2) Yields:

1% = ({22)4 d [fafb (c+ fa+fb)2 (£2 }

£24£P
b 2
1+(m)4 d c £2£° a )]_;_
[ ég xz(fa+fb) ( T;m
{?c-l- ?@a-l-fb)][ti + fafb" (étid
+.f )( )'&ze
Q% = Efm-y.l. d 1 (fa)3 + 1 (£ )3
fCc+ (£2+£D) 12 12 1
E"T (c+ £482)° 4
N 1+f h i cl&\l d

I )
(£2+£P) (%)ng

The values of I, and ﬂm depend upon the edge con-
dition of beams. For simply,-;supported edges,

I 4 4
= o (o2, (&;;) = (mm (see Appendix (4).

With these substitutions, equation (D.3) ylelds:

L

J--<(D.3)



I23 i
[ a.b a, b
C3- (ﬂfd (s®)7, 1 mbp_,_fj??f")'“_g’%
k°c+f(fa+fb)] 2 ' 1+ soebe (B8)7 4

_ (£%4£°) (53%) S

) ee.(D.3)
The values of Imm and - depend upon the edge con-

dition of beams. For simply-supported edges,

I

_Tm = (%)2, @1@34 = (n.;[[_)A; See Appendix (A).
a a® ot 4

With these substitutions, equation (D.3) yields:

4 1T 1
Qi = '(%g) a Ip + Ty
[g°c+€(fa+fb )] 1+m2£arbe 1124
b 2
L (£2+£°) a ngj
..Q(D.L")
where
3 by3
I (1. Y2237 (1§ (£°)
)7 o
Ir.= £8P (c + £24£P)2
(£2+ £P) 2
Case (b) G;z-roc, Eg = finite

Introducing these values in the system (D.1), the

parameter F, vanishes and the resulting frequency egﬁation
takes the form:
4 _\2
Qu [>\11>\22 >\12]
2
~{m [>\11(°22°55‘°825) + Mpp(0
p3)

2
; 11055'015)*2)\12(025015'012055)]
55
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1 » 2 2 2
U [022(022"22"0&5) ‘°12°55'°25°11+2°15°25012]=°

When the values of Oy and,xij are substituted in (D.1), a
lengthy and a complicated second degree equation in {)am
results. To determine the effect of finite modulus of the
core in thickness direction, the following values are directly
substituted in (D.5):

 £P = 58%; o = 10£%; ¢C = ME; b -9® _@,

10

d_d?_da e- 0.0975 E-seca; d = (10.6)(10) psi
(32.2)(12) 1in2 8911

E-Llx10 a8 (M= 1 £8 - (L) w= (L)

27~ 3 i a 10 10 10

For the fundamental mode, the two values of ()am are:
( Qf)1 ~ 104.485x10%

2
(Q1)2 ces(De6)

The first of these equations (D.6) is the usual frequency

401x107

i

of the fundamental normal mode of vibration and the second
value of frequency is attributed to the4£ace nrinklingqmode.
(See Appendix E), Due to the excessively large value of (f} 1)2

relative to (§)21)1, the mode corresponding to (§?21)2 is

seldom realized, However, for very short panels with weak
cores the possibllity of the face wrinkling mode cannot be
overiooked,
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Mode Shapes: Having found the frequenciles (§221)1
and ((221)2, the corresponding mode shapes are determined by
eliminating the parameter K, from the system (D.1).

Thus,

2 2 1.
- - Co5(C10- §>422'015C15 _ 055(C22'§2m2|2)“025
- 2 2 |= - -

%55(%11- (Al <15 %5512 2nh 2045005

legb

Substituting (()2{)1 and ()2 ) , (D.7) becomes
12

A A
L), = 166,67 and (—L)p = = 0,659
B4 B

Introducing these ratios in the displacement function,
c &

W= I%:xsi‘:cm DIE  (Ap+ z By) sin{dt,
the following results are obtained:-

w°=a1 (1+0.006z)sinfﬁéqcorresponding to ({221)1 ees(D.8)
and

w°=a2 (z-0;659)sin.I%E,correSponding to (§?21)2 es+(D.9)
whera/

a, and ag are constants.

1
These equations are plotted on the following page. Thus (DQ8)
is the motion of the neutral plane in which both facing and the
core move in phase. (D.9) exhibiis a type of motion in which
neutral plane stays staticanary, but the parts of sandwich

above and below the neutral plane move out of phase.
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Fundamental mode shape corresponding to (D.8)
o
- 3
e 1 _
25
v/ |
l §
%
)]
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Fundamental mode shape corresponding to (D.9)



APPENDIX E

This appendix contaiﬁs numerical values of the physical
constants which are taken from reference (34). For convenience,
the thicknesses, and the physical constants of the core and of
the lower facing are expressed in terms of those of the upper
facing by means of parameters. The resulting frequencles of
sandwich plates tabulated on pages (77-8) are obtained by
varying these parameters in the general frequency équation
(3.53). The upper facing £2, and the lower facing £, and the
core, are assumed to be of aluminum, steel, and aluminum honey
comb, respectively. For a rectangular sandwich plate of sides
ta' and 'b*, let

b=k1a; fb:sza;.c:.kaa

b b a a E
da = d1 = d1= dy; vhere 4| = ___x—a..z.
1-(V%)
b a b oybgb a
1-9xVy
b
Gzy = & (1- y?) aF; Gry = P (1-PV*) 4}

c a, ¢ _ a, ¢ _ a
g3 =83d1’ g =&, 475 &35 = §,45

(] a (o] a
Gzy =54d1; Ggy = SS(L‘
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