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CHAPTER I
INTRODUCTION

The majJor purpose of this paper willl be to expose the knowﬁ
eiamples»of hereditarily indecomposable continua, the existence theorems
of hereditarily indecomposable ébntinua and the properties of such
continua. |

The second chapter of this paper develops the theory of topolo-
gical dimension to the extent that will be needed for the rest of the
peper.

Chapter IIT presents the basic properties of heredlitarily inde-
composable continua including three characterizations of these continua,
one of which is orlginal in this paper. Also in this chapter is a dem-
onstration of the existence of heredlitarily indecomposable contionu of
all topological dimensions.

The forth chapter is a review of heredltarily indecomposable
plane continua. The pseudo-arc and pseudo-circle are dlscussed in
detall in this chapter., It 1s also proven that there exist an uncount-
able number of topologilcally distinct hereditarily indecomposable

continuva in the plane.
‘History

Brouwer (7), in 1910, was the first to describe an indecomposable

continuum, that is, a continuum which could not be expressed as the union



of two proper subcontinua. In 1922 Knaster (20) described a continuum
that was heredltarily indecomposable. Molse (25), in 19h8, described

a hereditarily indecomposable continuum that was homeomorphic to each
of its subcontinua. It was later proven by Bing (2) that the continuum
of Knaster and the continuum of Moise were homeomorphic and homogeneous.
In 1950 Bing (3) demonstrated the existence, for every n, of an n-l
dimensional hereditarily indecomposable continuum that separates En.
Also he déscribed a way that an infinite dimensionsl hereditarily inde-
composable contlnuum could separate the Hilbert Cube.

In 1912 Poincare put forth an intultlive concept of the geometric
meaning of dimension. A year later Brouwer constructed a preciée and
topologlcally invariant definition of dimension based on this intuitive
concept. Brouwer's paper went unnoticed for several years until Menger
and Urysohn, independent of Brouwer and of each other, recreated
Brouwer's concept and made some improvements in the theory. They also
made the concept of dimenslion the cornerstone of an extremely fruitful
theory that brought unity to a large part of geometry. One of the
basic beauties of the theory of dimension is that it provides a simple
topological property that distinguishes the Euclidean n-spaces from one

another . (14, p. 3).
Definitions and Notation

This section will review the basic definitions and notation that
will be used in the rest of the paper. If a term is used but not de-
fined it will be assumed that it is defin“ed in Hall and Spencer (11) or
Moore (24).

Much of the work of thls paper will deal with subsets of the



Euclidean n-spaces, B, The space E" will be the collection of ordered
n-tuples of real numbers with the norm defined as ||x|| =+ ﬁ xi , Wwhere
X = (xl,xe,e..,xﬁ). The surface of the unit sphere in E-,

{x e E%:||x]] = 1}, will be denoted as s®"L, At times E® will be consid-
ered as a vector space with the scalar multiplication defined as
7(xl,x2,...,x ) = (7xl,7x2,;..,7x ) and vector ‘addition defined as
(xl,xe,...,x ) + (yl,ye,...,y ) = (x +yl,x2+y2,.;.,x ¥, )e

Since E is the topological product of n copies of the real line
and since multiplication and addltion are continuous on the real line 1%
follows that scalar multiplication and vector addition are continuous
on E°,

The Hilbert space, HN, will be considered to be the set of all
real sequences x = (Xj,Xp,+.. ) such that $x§‘< w, In the Hilbert space
flxl] = is the norm of x. The Hilbert space can be considered to
be & vector space in much the same way as can E®. At times 1t will be
convenient to consider that E° c HY by supposing that (xl,xz,...,xn) =
(:&l,xa,...,xn,o,o,... )e '

For notational convenience we will let I" = {x e E™: |x <1

|
i 511,2,...,n} be the n-cube. Also, for notational convenience, let

={x e T |xi| < 1/1} be the Hilbert cube. If E is considerea to
be a subspace of H then we will let " ={x € B : |xi| < 1/i} be a sub-
set of Iw. Though these two definitions.for In are not equivalent they
do describe homeomorphlc sets and will not cause con#ﬁsion in thelr
context. It shall be assumed that, unless otherﬁise‘stated, that all
spaces will be suﬁspaces of 1. This means that all sPaces will be con=-
sidered to be separable and metric (18, p. 125). §

" The notatiéﬁ d(x,y) will be used for the metric distance between



x and y for some fixed, but usually undefined, metric. For E" and HN
the distance will usually be the norm metric, where d(x,y) = ||x-y|.

The following definitions will be used in this paper.

Definition 1.1 If H and K are two sets such that HN K = P and

KN H=p then H and K are sald to be separated sets.
If M is the union of two nonempty separated sets, H and K, then

the notation M = HU K sep. will be used.

Definition 1.2 If M is a space with Ac M and Bc M then A and

B can be separated (in M) if and only if for some H and K, M = H U K sep.
with A< H and B < K.
It will be saild that A and B can be separated (in M) by L if and

only if A|) Bc M-L and A and B can be separated in M-L.

Definition 1.3 A space M 1s normal i1f and only if for any two

closed disjoint subsets A and B of M there exist open subsets U and V of

M such that TNV = p with Ac U and Bc V.

Definition 1.4 A space'M is completely normal if and only if

every subspace 1s normal.

Definition 1.5 A space M is a continuum if and only if M is a

conhected compact space.

Definition 1.6 A continuum M is indecomposable if and only if

=
i

HU K, where H and K are continua, implies that either M = H or
M"—'Ko
A continuum M 1s hereditarily indecomposable if and only if every

subcontinua of M is indecomposable.



Definition 1.7 If M is a continuum and p € M then p is a cut-

point of M if and only if M-{p} = H U K sep,

Definition 1.8 An arc is a homeomorphic image of the cloged unit

interval [0,1]. The images of 0 and 1 are the end-points of an arc.
Bagic Theorems

The theorems that are stated in this section are those elementary
theorems that will be used in the rest of this papef° come of these

theorems will be proven. The source of the others are indicated by the

references given at the end of their statements.

Theorem 1.9 The translation f:E- ~ E- defined-as £(x) = x + X

where xo is fixed, is a homeomorphism.

Proof: ©Since vector addition is continuous f is continuous. Also

-1 -
7, defined as f l(x) = x - xj, 1s continuous and hence f is a

homeomorphism.

Theorem 1.10 The function f:En» Ep'defined as f(x) = yx, where

y # 0 is a fixed ééalar, is a homeomorphism.

Proof: This follows from the continuity of scalar multiplication.

Theorem 1.1 If D is the boundary of an n-cube and S is the

surface of an n-sphere in En then S and D are homeomorphic.

Proof: Both S and D are boundaries of closed n-cells. See the

reference (31, p. 92).

Theorem 1.12 The set S = S"-(p}, where p = (0,0,..,,0,1) ¢ BT,

is homeomorphic to En,



Proof: Define f:S — E- as f(xl’°°°’x ) = (yl,aoa,yn) where

n+l

Yy = xi/(l-xn+l), 1 <1< n.

1 )

vhere x, = Eyi/(HyH2 +1), 1 <1is<n, and X 1= (Hy“2 - l)/(HYH2 +1).

- n -1
Then £ :E = 8 can be given by T (yl,...,yn) = (xl’°°°’xn+l

Since both f and f-l are continuous it follows that f is a

homeomorphism.

Theorem 1.13 If b ¢ E® and U = ix € ot I[lb-x|| < 7} is an open

sphere centered at b then there exlsts a homeomorphism f from Enutb]

onto itself such that f£(E"-U) = U-{b}.
Proof: Define g(x) =x - b, h(x) = {(1/7)x and k(x) = x/”x”zg

Then let f = g‘loh'lekoheg.

[

Theorem 1.l4 The intersection of & collection of continua that

are linearly ordered by set inclusion is a continuum (24, p. 1k).

Theorem 1.15 If T is a component of the domain D relative to

the continuum M and D is a proper subset of M then the boundary of D

with respect to M contains a limit point of T (24, p. 18&).

Theorem 1.16 A space M is a separable metric space if and only

if M can be imbedded in the Hilbert cube (18, p. 125).

Theorem 1.17 If U is an open set in the separable metric space

M then U is the countable union of closed subsets of M.

Proof: Let x € U and 8 be a countable basis for M. Then M nor-
mal implies that there exists disjoint open sets U' and V' such that
U' and V' contains M-U and {x]} respectively. The definition of basis

implies that there exists V ¢ & such that x € Vo V', Since VN U' = §



end U' is open, VN U' = p. Since U' contains M-U, V< U, Therefore
every point in U is contained in an element of & whose closure is con-
tained in U. Hence U is the union of those elements of 8 whose closure

is contained in U and hence 8 being countable implies the desired result.

Theorem 1.18 A space M is completely normal if and only if for

any two separated sets A and B of M there exist disjoint open sets U and

V of M such that AcUand B&V, (11, p. 110),



CHAPTER IT
INTRODUCTION TO DIMENSION THEORY
Definition and Characterizations of Dimension

One of the basic objectlives for the concept of dimension is to
present a topological property that distinguishes the various Euclidean
n-spaces from one another. Since properties that involve the natural
numbers suggest induction it is logical that dimension shall have an
inductive definition, A logical starting point would be the dimension

of the "smallest" possible set, the empty set.

Definition 2.1' The empty set has dimension -l.

If M is a space then the dimension of M is ¢ n (dim M ¢ n) if and
only if M has a basis § such that if A € 3 then dim (bd A) < n-l.

If M is a space and dim M <« m for some m then dim M = n, where
n is the least integer such that dim M ¢ n. If for all n it is false

that dim M < n then dim M = .

There are several sets of points whose dimension follows directly
from the definition of dimension. Included among thgse are the follow-

ing examples, staﬁed_as theorems.

Theorem 2.2 Every finite space has dimension zero.

' Theorem 2.3 The dimension of the rationais'ég a subspace of the

reals is zero.



Proof: The reals have a basls consisting of intervals whose
endpoints are irrational. The boundaries of these intervals are empty

relative to the raﬁ%bhélé.

Theorem 2.4 The dimension of the irrationals as a subspace of

the reals is zero.

Proof: The reals have a basis consisting of intervals whose

endpoihts are rational.

Theorem 2.5 If M 1s a connected space containing at least two

points then dim M = 1.

Proof: Let D be an open set of M such that D and M.D are non-
empty. Then if D' <@ D, D' # P, is an open set the bd D' # f. Therefore
M has no basis § such that if A ¢ 8, bd A ='p. Hence dim M £ 0. It is

evident that dim M # -1. Therefore dim M = 1,

Theorem 2.6 The dim S” < n.

Proof: By induction, dim s° < 0 since 8° is finite. Assume that
dim Sk < k. Then Sk+1 has a basis consisting of spherical open sets
which have boundaries that are homeomorphic to Sk. (See theorem 1.12)

Therefore dim Sk+l < k+1 by the inductive assumption.

The following theorem bounds the dimension of E® above by n.
However, the proof that dim B = n will require theorems that occur in

later sections of this paper.
Theorem 2.7 The dim En < n.

Proocf: The space o has s basis consisting of spherical open
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sets. The boundarlies of these open sets are homeomorphlc to Sn‘l since
each spherical set is homeomorphic to the unit ball. Therefore the

theorem follows from theorem 2.6 and the definltlon of dimension.

A result of this theorem and theorem 2,5 1s that E has dimension

one. This fact 1s stated in the following theorem.

Theorem 2.8 The Aim E = 1.

" Once the dimension of srbitrary spaces has been determined 1t
is helpful to examine local dimension. For this 1t 1s necessary to

have a definition of dimension of a space at s polnt in the space.

Definition 2.9 If M 1s a space and p ¢ M then the dimension of

Mat pis n (dim M at p = n) where n is the least integer such that M
has a basis 8 at p such that if A ¢ 8 then dim (bd A) € n-l. If for all

n it is false that dim M at p ¢ n then dim M at p = =,

Example 2.10 Let M be a closed interval I in E together with an

isolated point p £ I in E, Then 1f g ¢ I, dimMat g = 1. Also

dim M at p = O.

It is apparent from the definltions that if M 1s a space then
dim M = n where n 1s the least Integer such that for every p ¢ M
dim M at p < n. It should also be noted that since every space under
consideration has a countable basis that the word "basis" in the defi-
nitions can be replaced by "countable basis”. The dimension of a space

is a topological property as will be shown in the followlng theorem.

Theorem 2,11 If M and N are homeomorphic spaces and dim M = n

then dim N-= n.
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Proof: If M= then N = ) and dim M = dim N = -1. Suppose that
the theorem holds for n ¢« k-l. Then if dim M = k it follows that M has
a basis 3 such that if A ¢ 8 then dim (bd A) < k-1. If f is a homeomor-
phism from M to N then the set B = {B:B = £(A), A e 8} is a basis for N
and if B = £f(A) ¢ 8 then bd B = f(bd A). Therefore dim (bd B) < k-1
by the inductive assumption since dim (bd A) < k-1. Hence dim ﬂ < k by
the definition of dimension. If dim N < k then the inductive assumption
would imply that dim M < k. Therefore dim N = k. Hence the theorem

follows by induction.

Theorem 2.12 If M is a space, Kc M and dim M = n then dim K < n.

Proof: By induction theorem 2.12 holds for n = -l. Hence if
theorem 2.12 holds for kK < n then if dAim M = n there is g basis 8 of M
such that if A € 3, dim (bd A) <n. Then® = {B:B=Kn A, A¢ 8} is a
basis for K and if B = Kf A € B then bd A contalns bd B relative to M
which in turn containé bd B relative to K. Hence dim (bd B) < n since

dim (bd A) < n., Therefore dim K < n.

The following two theorems give characterizations of the dimen-
sion of spaces that will be useful in the proofs of several of the

theorems that are to be found in the rest of this chapter.

Theorem 2.1% A subspace M' of a space M has dimension ¢« n if and

only if every point p of M' has a basis & in M such that if A € 3,

dim (M' N bd A) < n.

Proof: Suppose the condition holds and let p € M' and let 8 be
a basis of p in M'such that if A € 8 then dim (M' N bd A) <n. Then

B ={BB=M NA, Ag 8} is a basis of p in M' such that if B € B then
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dim (bd B rel M') < n since if B = M' N A then (bd B rel M') < M' N bd A.
Hence for all p € M' the dim M' at p < n which implies that dim M' < n.
Converéely, suppose that dim ﬁ' < nand let p e M'. Let U be an
open subset of M containing p and let U' = M' N U. Then the definition
of dimension implies that there exists an open subset V' of M' contain-
ing p such that dim (bd V' rel M') < n and V' ¢ U'. Since V' and M'-V"

are separated sets the complete normality of M implies that there exist

Thus M' A bd V c bd V' rel M', which impiies that dim (M' N bd V) <
dim (bd V' rel M') < n. Therefore d = fA: p € A, A open in M,
dim (M' N bd A) < n} is a basis of p in M that meets the necessary

conditions, and the theorem is proven.

Theorem 2.14 If M is a space then dim M < n if and only if for
every p € M and closed set K wherevKgdoés not contaln p, p can be sep~

arated from K by a closed set C where dim C < n.

Proof: Suppose dim M < n. Then if p € M and K is a closed set
not containing p there is an open set U containing p such that U — M-K
and dim (bd U) < n. The bd U is closed and separates p from K.

Conversely, if the condition holds and p € M and U is an open
set containing p then there exists a closed set C such that dim C < n.
and M-C = AlJ B, where p ¢ A, M-Uc Band AN B = f. Since A is an
open set, bd A < C. Therefore, by theorem 2.12, dim (bd A) < dim C < n.
Since A< U it follows that M has a basis 8 = {A:A is open and dim

(bd A) < n-1}. Hence dim M < n,

Corollary 2.15 If M is a space then dim M = n if and only if
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dim M < n and for some p € M and closed set C not containing p no closed

set of dimension less than n-l1 separates p from C.
Proof: To suppose the contrary contradicts theorem 2.1k,
Union Theorems

One facet of the theory of dimension is the consideration of the
dimension of the union of a collection of sets when the dimension of
the elements of the collection are known. The firsf such theorem will
concern the union of a countable collection of closed sets of dimension
zero. However, to do this a lemma concerning the separation of closed

sets will be needed.

Lemma 2.16 If M is a non-empty space then dim M = O 1f and only

if any two dlsJoint closed subsets of M can be separated in M.

Proof: 1If any two disJoint closed subsets of M can be separated

in M then dim M

it

O by theorem 2.14 since any point is a closed set.

If dim M = O let C and D be disjoint closed subsets of M. Then

if p ¢ M elther p ﬁ Corp ﬁ D. Hence by theorem 2.14% either p and C
can be separated in M or p and D can be separated in M. Hence for each
P € M there is a set U(p) containing p that is both open and closed in M-
such that either U(p) N C = P or U(p) N D = P. Since M has a countable
basis fU(p):p € M} covers M implies;, by the Lindelof property, that
there is a sequence U ,U,,... such that U, e {U(p);p € M} for each i

and '@Ui = M. (11, p. 107).

.

1-1
Now let Vl = Ui and Vi = Ui- yUk. Then 1f p € M let Ui be the

first element of the sequence such that p € v, - Then p € VJ if and only

iri = 3. Hence:.



1k

(1) Qvi =M and

(2)vinv =pir 1 g,

J
Since Vi<: Ui for each i
(3) eithervinC=¢orvinD=¢,
Since Ui is open and UUk is closed,

(h)-V. =, - Db is open.
Let C' be the union of all Vi such that V N D=pH and let D' be

the union of all other Vi.
Then C' U D' =Mby (1), C'N D' =P by (2), Cc C' and D& D'
y (3) and both C' and D' are open by (4). Hence D and C are separated

in M since M = C' U D' sep.
Now we can prove the union theorem for sets of dlmension zero.

Theorem 2.17 A space which 1is fhe countable union of closed

subsets of 1tself each of which have dimension zero has dimension zero,

Proof: BSuppose M = Gci, where each C, is a ¢losed subset in M
]

i
that has dimension zero. Let K and L be two disjoint. closed sets in M.

Then K N Cl and L N C, are disjoint closed subsets of the zero-~

1

dimen31onal set C Hence, by lemma 2,14, there exists disjoint closed

1

sets Al and Bl in Cl such that KN C

sets of M. Hence, by the normality of M, there exists open sets Gl and

HlinMsuchthatG ng = ¢andKUAlc:G,LUB <:H:L Hence

lCAl’anlcsB’A_l

Therefore K A and L U B are disJoint closed sub-

NB =p

Gl U HliD Cl°
Suppose Gi 1 and Hi a1 are open sets in M such that 5 rwﬁ&_l

= ¢ Then by the same process as used above, using Gi 1 instead of K
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and Hi-l

Gy U By D6y, 6

instead of L, there exists open sets G, and Hi such that

i
1 © G By cH and G NH =p.

Hence, if G = GGi and H = GHi then G and H are disJoint open sets
such that G U II:)@Ci =M, KcGand L ¢ H, Therefore K and L are sep-

arated in M and hence, by lemma 2.16, dim M = O.

Theorem 2.18 Every countable set has dimension zero.

Proof: A countable set is the union of a countable collection of

singleton sets, each of which is closed and has dimension zero,

It is of interest to determine the dimension of the union of two
sets when the dimensions of each set 1s known. The following theorem
provides an upper bound for the dimension of the union of two sets in

terms of the dimensions of each of them.

Theorem 2.19 If M is a space of finite dimension and M = A |} B

then dim M < 1 + dim A + dim B.

Proof: By double induction. If dim A = -1 and dim B . -1 then
m M= -1 <1+ dimA + dim B since M = §.

Now assume that theorem 2.17 holds for the following two cases:

1) dim A < m and dim B < n-l

and 2) dim A < m-1 and dim B < n.

Suppose dim A = m and dim B = n and let p € A | B. Then without
loss of generality assume that p € A.

Thecorem 2,13 implies that if U 1s a neighborhood of p in M there
exists a neighborhood V < U such that p e V and dim (A N ba v) <m,

Since BN bd Vc B theorem 2.12 implies that dim (BN bd V) < dim B = n.
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Thebd V=(AUB)NbdV=(ANDbdV)U (BN bd V) and hence
dim (ba V) = dim [(ANDbAV)U (BN DA V)]l <1+ (m-1) + n = ntm by the
inductive assumption,

Therefore M has a basis 8 = {C:C 1s open in M and dim (bd C) <

m+n}. Hence, dim M < m+n+l = dim A + dim B + 1.

The bound given by theorem 2,19 is the best possible, since
dim E = 1 + dim Ra + dim Ir. It is obvious that dim (A U B) >
max{dim A, dim B} by theorem 2,12, Between these bounds, however, no
general conditions can apply.

The following union theorem for sets of dimension n is a general-

ization of theorem 2,17,

Theorem 2.20 A space which is the countable union of closed

subsets of dimension ¢ n has dimension < n.

Before proving theorem 2.20 it is useful to prove a corollary.
It 'should be carefully noted that the corollary for thé case n = k
follows from the union theorem for sets 6f dimension k~l. The corollary
for the case n = k will then be used in the inductive proof of the union

theorem for sets of dimension k.

Corollary 2.21 If a space hag dimension n =2 0 it is the union

of a subspace of dimension < n-1 and a subspace of dimension zero.

Proof of corollary 2.21 Let dim M = n. Then there exists a

countable basis & for M such that if A ¢ 3, dim (bd A) < n.
Let K = U{bd A: A € 3}. Then by the union theorem for sets of
dimension n-l, dim K = n-l.

If A € 3 then (M-K) N bd A = p, and hence, by theorem 2.13,
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dim (M-K) = O. Therefore M is the union of K, a subspace of dimension

< n-1 and M-K, a subspace of dimension zero.

Proof of theorem 2.20 If n = -1 the theorem is thru. If n = O

then theorem 2.20 becomes theorem 2.17 which has been proven.
Assume that theorem 2.20 is true for the case when n = k-l1. Note
again that corollary 2.21 now follows.

Let M = QCi, where each Ci 1s closed and for each 1, dim Ci < K.

Let Kl 1 1 3

let CJ be the first element of the seguence such that p € CJ° Then

q=1
=C, and K, =C -'LlJC,iz:E,B,br,.”. Then if D € M,

D ¢ K, if and only if 1 = J. Therefére (1) M = ["]Ki and (2) K, N K, = )

if 1 # J. Since K, < Cy5 (3) dim K, < k.

Note that M‘ijcj is open in M and hence can be expressed as the
1

union of a countable number.of closed subsets of M since M is a metric

space by theorem 1.17. Therefore, Ki = Ci "UCJ

the union of a countable number of cloged sets in M,

m - {ic,) 1
:Ciﬂ -L'JJIS

By corollary 2.21 for the case n = kX each Ki = Hi U Ni’ where

dim H; < k and dim N.« O, with = unless Ki =fp. Let H= gﬁi and N

[

B

1l Pl J J
i # 3. Hence each Hi is the union of a countable number of closed sets

-8

@
° = = i ) =
N;. Note that H, = H N K, =/H NK =HN K, since H, N K, P if
of H since Ki is the union of a countable number of closed sets of N.
Similarly, each Ni 1s the unlon of a countable number of closed subsets
of N.

e

Since dim H< k, if A Hi then dim A < k and since dim N < O
if Be Ni then dim B < B. Therefore H is the union of a countable num-
ber of closed sets of H, each of which has dimension < k.which implies
by the inductive assumption that dim H < k. Also N is the union of a

countable number of closed sets of N each of which has dimension < O.




18

Therefore, by theorem 2.17, dim N ¢ O,
Hence dim M = dim (HU N) < 1 + dim H + dim N ¢ k by theorem 2.19

and hence the theorem follows by induction.
An interesting result of this theorem is the following corollary.

Corollary 2.22 If M is a space of dimension n then M is the

union of n+l subspaces of dimension zero.

Proof: By corollary 2.21, M ='Mi 8] Hi, where dim Mi < n-l1 and

]

dim H, = 0. Similarly, M < n-2 and dim H 0.

1 1 2 2
Repeating this n times, M = Mh U Hﬁ {4 Hn-l U oeee U Hi, where dim Hi

= Mé U Hé, vhere dim M

0]

fi

for each 1 and dim Mn = Q.

Another interssting result of this theorem is that the dimension
of a non-empty space remains uneffected by the addition of a single

point. The following corollary generalized this fact.

Corcllary 2.23 If M = AU B, where B is closed in M, then

dim M = max{dim A, dim B}.

Proof: Let n = max{dim A, dim B}. Then M-B is open in M and
hence is the union of & countable number of closed subsets of M each of
which is a subset of A and hence has dimension < n. Hence M is the
countable union of a closed subséts each of which have dimension < n.
Therefore, by theorem 2.20, dim M ¢« n. 8ince either A or B has dimen-

sion n 1t follows that dim M = n,
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Separgtion Properties of Dimension

It is of interest to consider the dimensions of sets that separ-
ate a given space. This sectlion will be concerned with such sets. One
of the primary goals of thls section will be to develop the tools neces-
sary to prove that for each n, dim En = n., This proof will be done by
considering separations of In, the Euclidean n-cube. The first two of'
the separation theorems concern the separation of two closed sels of a

space relative to a given subspace.

Theorem 2.24 If C and D are disjoint closed subsets of a space

M and A Is a subset of M of dimension zero then there exists a closed

set B in M separating C and D such that AN B = §.

Proof: ©Since M is normal, there exlsts two open sets U and V
such that Cc U, D& Vand TNV = §.

The disJoint sets U N A and VN A are closed in A and hence, by
lemma 2.16, A= C' U D', vhere UNAeC', TNACD',T"ND = ¢ and
c'nD = 4.

Thereforemﬂ ('UD)=(C UT)N (D' UD) =

Truce)n(@ud)=({C@ no)u(cno)u (T ndD)U (CnD)=p.

since TT< T, D'V, CN D= and C' and D' are separated sets.
Similarly, (c' uec)n T UD = g
Therefore C U C and D' J D are separated sets which implies, by
the complete normallty of M and theorem 1.18 that there exlst open sets
WandY in Msuch that WNY =@, C' UCcW, D UDe=YandWNY=
ctuc)yn (d{rDJ.
Therefore B = bd W separates C and D and since Ac Wl Y,

AHB;=¢u
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Theorem 2.25 If C and D are disjoint closed subsets of a space

M and A is a subset of M of dimension ¢ n then there exists a closed set

B in M separating C and D with dim (A N B) < n.

Proof: If n = O then either A = §, in which case the dim AN B =
-1, or dim A = O, in which case the theorem is exactly theorem 2.2k,

If n > 0 corollary 2.21 implies that A = HU K, where dim H<n
and dim K = 0. By theorem 2.2k, C and D are separated in M by a closed
set B such that BN K = . Hence BN A = BN H c H which implies that

dim BN A < n.

This next characterizatlon of dimension is an extension of the

characterization of dimension zero given in lemma 2.16.

Corollary 2.26 A space M has dimension < n if and only if any
two closed disJoint subsets of M can be separated by & closed sét of

dimension < n.

Proof: If dim M £ n then the result follows from theorem 2.25
by letting A = M. If the conditions hold then any point can be separated
from any closed set not containing it by a closed set of dimension < n.

Hence, by theorem 2.14%, dim M < n.

The next theorem gives a method.for maximizing the dimension of
a space. This will be one of the primary tools that will be used to

prove the dimension of En.

Theorem 2.27 Let M be a space of dimension < n and let Ci’ Ci,

i=1,2,3,,.s,n, be n pairs of closed subsets of M such that Ci n Ci = ¢
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for each 1. Then there exist closed subsets of M, Bl’BE""’Bn such

J ! - °
that B, separates Ci from Ci and 631 A¢

Proof: From corollary 2.26 there exists a closed set B1 separat-
ing C; and Ci such that dim Bl < n-2. Buppose closed sets Bl’32’°’°’Bp’

p < 1n, have been defined so that dim (ﬁBi) < n-p-1 and each Bi separates
Cy and CJ. Then there is & closed set B by theorem 2.25 such that

. ¢ 1 ‘
dim (3p+l N gBi) < n-p-2 and Bp+ separates Cp+ and C Hence a

1 1 p+1°

B_,,..;Bn of closed sets have been defined so that each B

2 |
and C} and aln (ﬁBi) = -1 which implies that NB, = p.

sequence Bl’

separates C

i

i

‘The Dimension of En

The proof thét dim E'=n reguires the use of ﬁhe Brouwer Fixed
PoinETTheorem. Tﬂé proof of ﬁhis theorem féquireé.ﬁhé use of concepts
that would require a fairly large amount of development that would not
add to the value of this paper. Therefore this famous theorem will be
stated without proof. There are, however, several sources‘in which

detalled proof may be found. Two of these are DugundJji's Topology (8)

and Hurewicz and Wallman's Dimension Theory (14). The following is &

statement of this theorem.

Theorem 2.28 If f is a continuous function from In to In then

there exists an x € I" such that f(x) = x.

Theorem 2.29 Let Ci be the face of In determined by the equation

"= 1 and let Ci be the opposite face determined by the equatiéh xi = -],

t

i

%y

Then if for each i B, is a closed subset of I" separating c, from C

1
1t follows that ﬁBi # b



22

Proof: Since Bi is_closed and separated Ci and Ci in In it
n - 1 . ' 1 v
follows that I'-By = U; U Uj, where C; < Uy, C; < U, Uy nu; = $ and
Ui and Ui are open in In.
For each x € I, let V(x) = (vo,v ,+..,v ) € E* vwhere |v,]| =
1°°2 n i
d(x,Bi), with d(x,Bi) being the metric distance between x and the closed
set Bi using the usual metric on En, and with vy being positive if x'e‘Ui

negative if x ¢ Ui and 0 if x ¢ Bi’

Define, for each x € In, fx) = x + V(x).

Then let x = (xl,xE,...,xn) and let x € U;. Now suppose that
a(x,c}) < a(x,B,) and let D = {y ¢ ™ dalx,y) < a(x,B;)}. Then Dis a
connected set, DN B; =pand DN C; # p. Therefore B, does not separ-
ate x from C' in I" which is a contradiction. Therefore d(x,Bi) <
a(x,c;). But a(x,C}) =‘|—l-xi| = Il+xi| and hence d(x,B,) < |l+xi|°

Therefore, since v; = -d(x,B;), the following is acquired;
Lzx, 2 xi-d(x,Bi) =%+ vy 2~xi-|l+xi| > xi-l-xi = -1, Thus
|xi . Vil . -

In & similar maner, if x, € U' then |x, + v,| < 1.

1
If x € By then |x, + v.] < 1 since v, = O.
1 1

i

Therefore for every x € I £(x) ¢ ",

To show that f is continuous it is sufficient to éhow that V is
continuous since f 1s the sum of V and the identity function. For that
it is sufficient to show that Vi is continuous for each 1, where Vi(x) =
v;, the 1-th, coordinate of vix).

Let x ¢ I and suppose that x £ Bi, Then let 0 < & <« d(x,Bi).

Then if d(x,y) < 8,‘d(y,Bi) < &+ d(x,Bi) and hence d(y,B,) - d(x,Bi)

i)
<d, Since?d < d(x,Bi) then y € U; if and only if x ¢ U; and y € U} if

and only if x € Ui by the argument that obtained the inequality
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d(x,Bi) < d(x,Ci). Therefore Vi(x) and V, (y) have the same sign and

i
lVi(x) - Vi(y)| = |d(x,Bi) - d(y,Bi)| < 8. Therefore V, is continucus

i
at x £ B,.

If x ¢ B, then if d(x,y) <8 it follows that d(y,B;) <& +
d(x,Bi) = . Therefore IVi(x) - Vi(y)l = IVi(y)l <®. Hence V, is
continuous at x € B;, and thus on all of 1°, |

Since f is a continuous fundiion from I® to I theorem 2.28
implies that there exists an x € I° such that f(x) = x. Hence there
exists an x € I such that £(x) = x + V(x) = x which implies that
V(x) = O and thus that V,(x) = a(x,B,) = O for each 1, But this means,

since each B, is closed, that x € B, for each i. Hence x € 631 # o

It is now possible to place a lower bound on the dimension of ?

which in turn places a lower bound on the dimension of En.since In'c En;

Lemma 2.30 The dim I" 2 n.
Proof: Suppose dim 1" < n. Then theorem 2,27 implies that there

exist n closed sets Bl’B2”"’Bn’ such that each Bi separates Ci and Ci,

where C; and C} are as defined in 2.29, such that @Bi = f. But this

contradicts theorem 2.29. Hence dim In = n.

Theorem 2.31 The dim En'= n.

Proof: I c E and hence by lemma 2.%0 and theorem 2.12 dim B

2 n. By theorem 2;7, dim Ens:n. Hence dim’En= n,

Corollary 2.32 The dim In = N

Proof: I" < E® and hence dim I < dim E® = n. Hence, by lemma

2.%0, dim I" = n.
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Subspaces of En with Dimension n.

It is apparent that if M is a subspace of En then dim M ¢« n. It
is the purpose of this section to develop a necessary and sufficient
condition for dim M to be n, namely that M must contain a non-empty
open subset of E', To do this, however, it is necessary to develop
some of the properties related to En, one being that for any two count-
able dense subsets of En there is a homeomorphism mapping one onto the
other. The first few definitions and lemmas wlill be directed tbward

this task.

Definition 2.3% If B = {el,eg,...,en} is a basis for E- as a

vector space and x = Zyiei then 75 is the i-th coordinate of x relafive
to B, The components of the ordered n-tuple (71’72"'°’7n) are the
cobrdinates of x relative to B.

If x = (xl,xg,..,,gn) then the coordinates shall be understood

to be relative to the standard unit vectors, el,

: Definition.2.34 If x

(xl;xe)”wxn) and y = (yl’y.?’“"yn)

then xey = §xiyi.

1l

 Definition 2.35 If H = {x: asx = 7} vhere a £ (0,0,...,0) is a

Tixed element of En and y is a fixed real number then H 1s a hyperplane

in E°.

Theorem 2.36 If H is a hyperplane in En theh H is homeomorphic

to 07T, Furthermore, i1f H contains the origin then H is a sub-vector

space of En with vector dimension n-l.

Proof: Suppose H = {X: @¢x = 7} and that H contains the origin.
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Then y = a (0,0,...,0) = 0.

Let x,y € H. Then for @,B ¢ E, ac(ax+By) = iai(axi+ﬁyi) =
C@aixi + Bﬁaiyi = 0. Therefore Ox+By € H which implies that His a
sub-vector space of En.

. Since H' = {x: ax =1} # § and H' N H = § the vector dimension

of H is less than n. Let {xl,xz,.;.,xk}, k <n, be é vector basis for
H and let x" ¢ H'. | |

Now suppose that z € E° 50 that asz =’B %ii» Then if y =
[B/(B-l)]xn - [l/(B-l)]Z it follows that asy = &°[[5/(5-1)]Xn-[l/(5-1)]Z]
= [B/(B-1)]1 - [1/(B-1)]B = 0 and y € H. Therefore z.= Bx" + (1-B)y =
Bx" +,(l-B)271xi. Hence z is a linear combination of [xl,,..,xk,xn}o

Now suppose that aez = 1 and let h € E® such that ash = 2, By
the previous paragraph h is a linear combination of {il,xz,o;e,xk,xn},

Then if Yy = -h + 2z it follows that asy = ae(-h % 2z) = 242 = 0 and
hence y € H. Since z = (1/2)y + (1/2)h it follows that z is a linear

combination of {xl,xe,...,xk,xn} since both h and y are.

Therefore {xl,xa,,..,xk,xn} is a basls for E® which implies that
k = n-1 since a basis for E" contains n elements. Hence the vector
dimension of H is n-l.

' The mapping f such that f(x) = f(iyixi) =;(&1:;2,.,.,7n_1) from

H to En'l ig a homeomorphism, since multipiiéatidn and addition are '
coﬁtinuous‘in both.directions; o

Let K = {x: asx = 7} and let b ¢ K. Then the function f, such
that fb(x) = (x - b) is a homeomorphism from E" to Enhsince f, 18 a

v~y = 0, and hence

B

translation. Let y € K. Then aofb(y) =as(y - b)
fb(y) € H.

Also if z ¢ H then.aafgl(z) =ao(z +b) =0+ 7 =7 and fgl(z) €K,
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Therefore fb(K) = H and K 1s homeomorphic to H which is homeo-

morphic to E l

Definition 2.37 A basis (coordinate system) in ED is in general

position wilith respect to a set A ¢ En if for each distinct pair
J J

,a €A, ai-a has all non-zero coordinates relative to the basis.

Lemma 2.38 If A is a countable subset of E" then there exists a

coordinate system in E® that is in general position with respect to A.

Proof: Let A be a countable subset of E°. If n = 1 then the
lemma is true since each element of E has only one coordinate.

Assume that the lemma holds for n = k=l.

it

If ai,aJ € Ac Ek let LiJ ={x: x = 7(ai—aJ),‘7 e E}, and
HiJ = {x: xo(a J) = 0}. ' | -

Then L 13 is a line and is homeomorphic to E and H 13 is a hyper-
plane and is homeomorphic to Ek 1. Therefore dim LiJ = 1 and dim H 13 =
k-1. Since both Lij and HiJ are closed in Ek and the collection of LiJ
and HiJ is countabie theniﬁ(LiJ U HiJ) = K has dimension < Xk by theorem
2.20. |

| Since dim Ek‘& k there.exists a point ek € Ek-KQ Let L =
[sc: X = 'yek} and H = {x: xaek}; 0 . DNote that & ¢ H Let {sl,...,sk‘l}
be a vector basis for the hyperplane H and let sk = ekq Then
{s yeens8 k - k} S is a vector basis for Ek

Fi 0-3

Consider the proJection map P: Ekﬂ H defined as P(x) P(Zyis ) =
c27isi. Now suppose there exists a pair ai,aJ € A such that a % a and
P(ai) = P(aJ). Then a’ = Zaisi and aJ = EBis have the same coordinates
except for the k-th coordinates., Therefore al.ad = ka-sk)sk =

(ak-sk)ek which impiies that e - (1/ (ak“sk-)](a;'aj):.é L p which is a
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contradiction since ek £ LiJ' Therefore P restricted to A 1s one-to-one.
By the inductive assumption, there 1s a basis B' = {el,a..,ek’l]
for H such that the coordinate system of H relative to B' is in general

position relative to P(A) since P(A) is countable. Let B =

[el,;..,ek"l,ek} be a basis for Ekp

= B, consider Pla)

k
i 4, 1 k : i k & 1 k
e . Then g = $ais + aks = gyie + aks = ﬁyie + ake

LS. . S |
Let a = §a15'= ;Bie . To show that ¢

}I(:-l 1
lais - }\:7

]

i
éﬂiei. Since coordinates relative to B are unique, ak = Bk. By similar

reasoning 7y = Bi for i <k and hence, for i < k the i-th coordinate of
a relative to B is the same as the i-th coordinate of P(a) relative to
B!,

Hence 1f a,b are different elements of A then for i <k, a-b have
non-zero i-th, coordlnates relative to B since the coordinate system of
H relative to B' is in general position relative to P(A) and P restricted

to A is one-to-one.

Now suppose that ai,aJ are different elements of A and that
a‘1=

é‘o.'ie - %B E(O.’ -ﬁ )e € H, Therefore e o(a - aJ) = 0 and ek € HiJ

which‘is a contradictlon. Hence for any pair a,b different elements of

ai J have the same k-th coordinates relative to B, Then ai -

A, a-b has a non-zero k-th coordinate relative to B.
Therefore the coordinate system of Ek relative to B 1s in general

position relative to A.

Definition 2.39 If x f 0 is a real number then sgn(x) = |x|/x.

- Definition 2.40 If X = [xl,xg,... } and Y = {yl,yg,... } are two

sequences (possibly finite of the same length) in En,such that the co-

ordinate system of En is in general position relative to both X and Y



28

then X and Y are similarly-placed if and only if for every psir 1 and J

i v i i i
sgn(xk - xi) = sgn(yk - yi)for k =1,2,...,n, vhere xk,xi,yk,yi are the

k-th coordinates of xl,xj,yi,ya.

Lemma 2.41 ILet A and B be two countable dense sets in jon and let
the coordinate system be in general position with respect to A and B.

Then A and B may be arranged into similarly-piaced sequences.

Proof: Let A = {al,az,...} and B = [bl,be,...} and as usual if
X € En then Xy is the i-th coordipate of =x.
Let cl = al, d; = b1 and d? = b?

. Then if sgn(di-di) = -1 let
D, = {8 ¢ E: 01-6 < 0% and if sgn(d;~d2) =11let D = {d e E: cl-ﬁ > 0}.
i o Ui : - 171 1 1
Since each Di is open in E and A is dense in En it follows that there
exists a € A such that for each 1 = 1,2,...,n, aieDi. Let 02 be the
. PO 1l 2 1 2
first such element of A. Then (¢ ,c ) and (d ,d") are similarly-placed.

23 12 2

Suppose cl,cz,...,c and d ,d,...,d J have been defined so that

(cl,ce,...,ceJ) and (d;,d?,a..,dzj) are similarly-placed. Then let
¢! ve the first element of A such that o9 # et for any 1 < 23j+1.
Let dﬁ be the maximum element‘of the set of k-th coordinates of elements
of {a,d%,...,a%) such that ¢f < cEM, 1 = 1,8,..0,05. 12 o) > B
for all i = 1,2,...,23J then choose dg s0 that dﬁ < di for all 1 =
1,2,...,2].

Now let di be the minimum element of the sef 6f k~th coordinates

of elements of {dl,d?,...,dej} such that'ci > c§5+l, i=1,2,...,23,
If ¢ < ci9* for all 1 then choose & so that af > ay for all i.

Let us now show that a > dg. If ci < ci3+l or ci > ci3+l for
all i then it is obvious that di > di. Otherwise there exist c* and P
such that c2 < c2J+l and cf > c§J+l and also that di = dg and, di = dg.

k k k
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Since (cl,cg,...,cej) and (d dg,,.., 2J) are similarly-placed and

q Y m
ck - ck > 0 1t follows that dk - dk > 0 and hence that dk > dk°

Since B is dense in En there exists a b € B such that dz < bk < di

23+ be the first such element of B. Then

for all k = 1,2,...,n. Let d
(cl,cg,..o,c2J ,c2J+l) and (dl dg,...,d J ,d J+l) are similarly-placed.

Let 4 23+2 be the first element of B not proveously choosen and
23+2 2J+2

pick ¢ to be the first element of A such that (cl,...,c ) and
i 23+2 s

(a,...,d ) are similarly-placed. Such an element of A can be found

in a manner similar to that used to find d23+l,

Then by induction C = {cl,ce,,a.} and D = {d d ,.o.} have been

defined. The seguences C and D are similarly-placed by the inductive
definitions and are rearrangements of A and B since if a® € A, bi € B

then a’ = cJ and bl = dk where J <« 21 and k ¢ 21.

Theorem 2.42 For any two countable dense subsets A and B of o

there exists a homeomorphism of E® on ltself that maps A one-to-one

onto B.

Proof; By lemma 2.3%8 it can be assumed that the coordinate
system 1s in general position relative to both A and B. By lemma 2.3%9
it can be assumed that A = {al,ae,...} énd B = {bl bg,...} are
similarly-placed sequences. .

Let A, = [ak, k"" .} and Bk = {bi,bi,...}.rﬁééine a funct%on
fk:Ak‘a B, by letting fk(ak) = bk.

Since the coordinate system is in general position relative to
both A and B, no two distinct elements of Ak are egual and no two disti-
nct elements of Bk are .equal. Therefore fk is a one-fo-one and onto

function.
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Let r e E-Ak and let A; = {ak € Ays:oa > r} and A£ = {ak € A

a, <r}. Note that A; U A; = A, which implies that £(A, U A =
f(Ak) U £(a) = u B, = B . Since A; N A = p it follows that
Bkan=¢.

Since A and B are similarly-placed it follows that sgn(ak-ai)

sgn(b;-bj) = sgn(f(ai) - f(ai)). Therefore a> < ad if and only if

k k
f(ai) < f(ai). Hence each element of B£ is less than each element of
B;'

S8ince B is dense in En it follows that Bk.is dense in E which

implies that the least upper bound of B£ equals the greast lower bound

of B.. Now define f (r) = s = lub B = glb B.
k' k = k’
Now suppose that s ¢ Bk' Then there exists 8, € Ak such that
fk(ak) = 8. Without loss of generality, assume that r <ap. Then A

dense in E implies there is an ai € A such that r < ei <8y, which

. i i + ‘ . i +
implies that bk <s. But 8y € Ak which rmplies that bk € Bk and hence
s > bi which is a contradiction. Therefore s ¢ E-B .

k
+ + e )
It should now be noted that fk(Ak) = By = {b € Bk. b, > s} and

k(A ) = Bk = [b k: bk < s}. Therefore 1f f B = Ak is

extended to include s € E- Bk in a manner s1milar to that used to extend

that f

-1 : o -
fk to include r‘lt would follow that £ (s) =r s:.nc_efk (Bk) = Ak and

Bk Ai, Therefore fk E—- E is a one-to-one onto function.

It should also be noted that fk is order perserv1ng, that is

ry <Ar_J if and on%¥v1f fk(ri)’< fk(rJ). Heooe, if;g?i’rJ) and (si,sJ)
are open intervals in E then fk[(ri,rJ)] = (fk(ri),fk(rJ)) and

k

is a homeomorphlsm from E to E.

i ~1 -1 s
[(si,sJ)] = (fk (si),fk (sj))o Therefore f, is both continuous and

open and hence fk

IfT x e S let Pk be the projection map defined by Bk(x) = X
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Now let f(x) = y where y, = £, (P, (x)). Since f. and P, are continuous
Yk k‘V'k k k
for each k it follows that f is continuous. Also if g 1s defined so

-1(

that g(y) = x where x, = f) Pk(y)) then g is continuous, Since

g(f(x)) = x and f(g(x)) = x for all x € E= it follows that f and g are

inverse homeomorphisms. Also if a~ € A then fk(Pk(ai)) = fk(ai) = bi

i

which implies that f(a~) = b, Therefore f(A) = B and f is the

required homeomorphism.

This next lemma gives the dlmension of E” less those points that
have rational coordinates. This lemma will be used to prove that it is
necessary for a subset of En to have an open subset of En in order that -

i1t have dimension n.

Lemma 2.43% If RZ is the set of points of B that have all

rational coordinates then En!RZ has dimension n-l.

Proof: If n = 1 the lemma is true since E-Ra is the set of
irrational numbers which has dimension zerc.

Suppose the lemma is true for n = k-l.

Let x ¢ Ek-Rk, Then 1f D is an open set contgining x there exist

an open k-cube C & D containing x of the form C = {y € Ek r, < yi < 8:9

s, € R }

r \
1’71

Then each face F of C, determined by the equatlon yi = r. or by

the equatlon y; =8 has the property that Rk nrFrE is dense in F .

il
Therefore, if F is the boundary of C, which 1s the union of all of the

faces of C, then Rz N F is dense in F.
By theorem 1.11 and theorem 1.12 if z ¢ F then F -{z} 1is homeo-

morphic to Ek_l and hence, by theorem 2,42, there exists a homeomorphism

k-1

f:(F-{z}) - EX"L such that f(F N Rz-{z}) =R,
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Therefore f(F-(R Uz))s= 'l k L which implies that
dim(F-(Rz ) z)) = dim (Ek'l-—Rk"l) = k-2 by the inductive assumption.
Therefore, by corollary 2.23, dim [(F-(RE yz))Uz] = dim(F«Rz)
= k-2,8ince a space is not affected by the adjunction of a single point.
Hence {C:C is open in Ek, X € c, dim (bd C N (E )) = k-2 1s a basis
for x. Thus by theorem 2.1% dim (E -Ra) at x 1s k-1 which implies that
dim (E ) = k-1.

The theorem now follows by induction.

We can now show a necessary and sufficient condition for a subset

of En to have dimension n.

Theorem 2.44 A subspace N of E” bas dimension n if and only if

N contains a non-empty open subset of En.

Proof: If N contains a non-empty open subset of En then N contains
gn open sphere ih E that is homeomorphic to E and hence has dimension
n. Therefore dim N 2 n. Since N C En dim N ¢« n which implies that
dim N =

For the converse, suppose dim N = n and that N contains no non-
empty open subset of En. Then Ean is dense in Eﬁ which implies that
there exists a countable subset A of E -N that is dense in E . (If B
is a countable basis for E let A be the image of a choice function that
a551gns to each element B of ﬁ an element of B ﬂ (E —N) ) Let f be a
homeomorphism from E to E that maps A one-to-one onto the set of
points of E that have all rational coordinates. Note that f exists by
theorem 2.42. Then £(N) < En-Rz and £(N) has dimensicn n. But

dim En-R: = n-1 which contradicts theorem 2.12 and thﬁs M must cohtain

8 nonéempty.open subset of En and the theorem,has beeh proven,
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From thls theorem a corollary concerning the dimenslon of the

boundary of an open set is obtained.

Corollary 2.45 Let U be an open set in En that is neither empty

nor dense in En. Then the dimension of the boundary of U is n-l.

Proof: Let B be the boundary of U. Since B contains no open
subset of E° it follows that the ddm B # n by theorem_EPhh.l Therefore
dim B < n. Now suppose that dim B < n-1 and that U is bounded. Then
if x € U there is an r such that U' = {y: d(x,y) <r}DTU. Therefore,
if x' € E and 8 > 0 there is a homeomorphism from U' to

A

[y d(x ,¥) < 5} U such that x 1s mapped to x'. Thus Uy contains the
L4

1mage of U which has 8 boundary of dimension < n-l. This would 1mply
that the collection of open sets containing x' thatwhave boundaries
with dimension < n-1 form a basis for E" at x' and since x' is arbi-
trary, such sets form a basis for E . This then impiies that dim E- < n
which contradicts the fact that dim E° = n. Therefore, dim B = n-l.

Now suppose‘that U is not bounded.v Then there is a point x ¢ E°
such that x is in the interior of E°-U since U is not dense in E°.
This implies that‘there exists an open sphere U' centered at x such
that U' NT = ¢ Then by theorem 1.13 there exists a homeomorphlsm f
from E--x onto itself that maps E'-U' onto U'-x. Then f(U) c U is
bounded and hence, by the first ca.se, the dim bd f(U) = n-l. Since
f(ED U') = U'x, f(B) contains all of bd £(U) with the possible
exception of x. If;_f(B) - bd £(U) then @im B = dim £(B) = dim £(U) =
n-l. If £f(B) = bd £f(U) - x then dim B = dim £(B) = dlm (bd £(U) - x) =
dim bd f(u) = n-l'since the dimension of a set cannot be increased by

the adjunction of a single point.
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The last major theorem of this sectlon states that any subspace
of En that separates En has dimension of at least n-l. However, to

prove this the following lemma is needed.

Lemma 2.46 The following three statements about a space M are

equivalent:
(l) The space M can be separated by a subsgset D of dimension < n.
(2) The space M contains an open.set U which is neither empty
nor dense in M whose boundary has dimenéion < N.
(3) The space M = H U K, vhere H and K are closed proper subsets

of Mand dim (HN K) < n.

Proof: Part I, (1) = (2):

Since D separated M, M-D = A U B sep., By the completg normality
of M there exist open sets U and V of M such that AcCU, BcVand
UN V=g, Therefore, U # § and M5B # § hence U is neither empty
nor dense in M. Also bd U< D and hence dim bd U gvdim D < nand

hence (1) - (2),

Part II, (2) - (3):
.- Let U be such an open set. Then H = M-U and K.= U are closed

proper subsets of M and dim (HN K) = dim bd U ¢ n. Thus (2) = (3).

Part III, (3) - (1):
Let H and K be such cloged sets. Then HN K has dimension ¢ n
and separates M since M-(H N K) = (K-H) U (H~K) sep. .Thus H N K meets

the necessary conditions to complete the proof.

Theorem 2.47 If N is a subspace of E® and N gseparates E® then

dim N 2 n-l.
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Proof: Suppose E could be separated by a subspace whose dimen-
sion is < n-1, Then lemma 2.46 implies that there 1s a non-empty open
subset of En that 1s not dense in En and hes a boundary of dimension <

n-l1. But this contradicts corollary 2,45. Hence the theorem is true.

From this theorem two corollaries are obtained. These corollaries.
concern the dimensions of sets that separate certain types of subspaces

of En.

Corollary g,hB If S is & connected open subset of En then S

cannQt be separated by a subset of S whose dimension is less than n-l.

Proof: Suppose D separates S and dim D < p-l. Then S-D =
Ay B sep. Since, by theorem 2.42, D contains no open set it follows
that Xy B = S. Since S 1s connected, AN B £ ¢i Let x ¢ &N E.‘ Then
let_Unbe a spherical‘neighbornood of x that 1s ccntained in S, Then‘U
is homeomorphic to Eno o |

But U-(U N D) (Un A) U (UN B) sep. which implies that U no
separetes U. But dim (un D) < dim D < n.l which contradicts theorem 1

2.47. Therefore the corollary follows.

Corollary 2.49 If S is a connected open subset of E® then S

cannot be separated by any subset of S of dimension < n-l.

Proof:; Let D be a subset of § of dimension < n-l1. Then since
S 1s a connected open subset of E , corollary ? h8 implies that S-D is
connected.

If x € (bd 8)-D and R 1s any open set containing x then R N S is
& non-empty open subset of S. But R N S ¢ D since theorem 2.44 implies

that D contains no open subset of En. Thus there exists
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y € [(RN 8)-D) © S-D. This implies that x is a limit point of S-D
which is connected. Therefore S-D < 5-D ¢ S-D which implies that S-D

is connected. (11, p. 82). Thus the coroliary follows.

The following theorem is a result, though not an obvious one, of
Tietze's Extension Theorem (11, p. 80) which gives some conditions
under which a function may be extended to a larger domain. While
Tietze's Extension Theorem is a classical one it involves.topics that
are beyond the scope of this paper and hence will not be pfoven. The
following theorem will, however, be useful in the next chapter in the
discussion of the non-homogenity of hereditarily indecomposable continua
of dimensions greater than one. This theorem is included in Chapter IT

since 1t is basicly a dimension theorem.

Theorem 2.50 If M is a compact set of dimension n then there

exists a continuum in M that has dimension n at each of its points.
Infinite Dimensional Spaces

In this section two spaces, both of which have infinite dimension,

will be discussed. The first, EN, will be a vector space over E with a

countable infinite vector basis B = {el,ee,..,}. The topology on EN can

be generated by the norm ||x]| = Vi]xile where x = zxiei, x, € E. It

should be noted that for each x only a finite number of Xy are non-zero.

The second space to be considered, HN, will be the Hilbert space,

- ® 3 Ao
the set of all sequences X = [xl,x } such that ;]x112< w, As is

2,009

well known HN is a vector space over E whose vector basis is uncountable.

The topology on 1 can be generated by the norm |[x|| = J?]xilec

While these spaces will not be considered during the rest of this
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paper they do present interesting examples demonstrating the behavior of
dimension on infinite dimensional topological spaces. Both of these -
spaces have infinite dimensions since each contains, in a homeomorphic
sense, E® for all finite n and hence it could not be true that they

would have finite dimension,

Theorem 2.51 The space EN is the union of a countable number of
subspaces each of ﬁhich have zero dimension.

Proof: If E° is considered to be the collection of points of EN
{

such that all but the first n coordinates are zero then EN = GEn,
1 ! t

Since dim En = n for each n, corollary 2.22 implies that for each n,

© n N

E =, A, where each A? has dimension zero: Therefore E

n
5 -1961, and

the theorem follows,

; ‘ N
Before considering the dimensional properties of H let us note

that I" can be considered to be a subset of I® as was done in Chapter I

and that the faces of I c I" are determined by the equations i = 1/i

or y, = -1/1.

Theorem 2.52 The space HN is not the union of“a countable °

number of spaces each of which have zero dimension.

Proof: Suppose the theorem were not true. Then H’N = UAi’ where

for each i the dim Ai = 0. Then D, = Ai N 1° has dimension less than

s
or equsal to zero and Iw = UDi'

Let Cs be the face of I° determined by the equation X, = 1/i and

C' be the face determined by the equation x, = -1/i. Then theorem 2.24

i

implies that there exist, for each i, a closed set B

e

1 separating Ci

] -
from C; such that B; N D, = P,
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Since, for each n, B, separates Ci N 1° and Ci n Iw, theorem 2.29

i
says that, for each n, NB, # . For each n let x" e NB,. If for an
infinite number of n, there is an x ¢ Im such'that X = xn then x ¢ nBi
since ﬂBi contains“all but a finite number of x". If, on the other
hand, there are an infinite number of distinct xn thgn Iw being compact
implies that {xl,xa,...} has a limit point x e I®. Since for each n,
_ﬂBi is closed and contains all but a finite number of xn, X € nBi which
implies that x € ﬂBi. | |

| Since LJDi = Iw there exists a Di such that x e:‘Di which implies
that x ¢ D; N B,. But this contradicts the fact that D, N B, = g

Hence the theorem ‘follows.

- An alternate definition of dimension can now be given that

assigns dlfferent values of dimension to 1 and EN; "This definition

assumes that dimension zero has been defined.

Definition 2.53 If M is a non-empty space then dim M = n, where
n is the least cardinal such that M is the union of n+l subspaces each

of which have dimension zero.

Theorem Q,iévgnd corollary 2.22 implies that f;r finite dimension
this definition and definition 2,1 are equivalent. This definition,
however, assigns different values for EN and HN, Using this definition
vector dimension énd tbpological dimension behave in somewhat similar‘

manners, even for the infinite cases,



CHAPTER III.
HEREDITARILY INDECOMPOSABLE CONTINUA IN HIGHER DIMENSION
Definitions and Characterizations

Hereditarily indecomposable continua that separate Euclidean
n-spaces provide examples of sets that have some of the properties of
n-spheres but fail to behave in other "ﬁice" ways, This section will
provide the definition and characterizations of hereditarily indecom-

posable continua.

Definition 3.1 If M is a continuum then M is indecomposable if

and only if M is not the union of two proper subcontinua. If M is not
indecomposable then it 1s said to be decomposable. If M has the property
that every subcontinuum is indecomposable then M is hereditariiy

indecomposable,

Definition 3.2 JIf M is a continuum and m ¢ M then the composant

of m in M, Cm, is the unlon of all proper subcontinua of M that

contain M.

Theorem 3.3 If M is a continuum and Cp is the composant of p in
M then C_ = M.
b

Proof: If C
P

Otherwlse let x € M—Cpq Let R be the open sphere about x with

M then the theorem is true since M is closed.

il

radius l/n. Suppose that x is not a limit point of Cp. Then for some

39
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k and for all n 2 k, Rnncp=¢.
For each n =2 k let Mn be the component of M-IRn+l that contains P
If q € CP then there exlsts a proper subcontinuum Q of M containing p

and gq. Since @ CIC j: M-ﬁn+l it follows that Q r'anwhich implies that

P | )
C, & M, = M. Note that H is a continuum and that M; nR, =2
Hence M; is a proper subcontinuum of M containing p and ﬁ;<: Cp°

Hence C_ =M =M.
P n n

But by theorem 1.15 there exists a point r € M_ N bd (M-§n+l) =

bd R = §, which is a contradiction. Hence

e Therefore r € Cp N Rn

+1
x is a 1limit point of cp and E; = M.

Theorem 3.4 if M is an indecomposable continuum then its

composants ‘are paifwise disjoint.

Proof: Let Cp and Cq be composants of an indecomposable cont-
inuum M and suppose that x € Cp N Cq. Then there exist proper subconti-
nua M? and M.q of M such that x,p e Mb and X,q € Mq' Since M is
indeégmposable MP‘FU_LMq #£ M. Thefefore Mb U Mé isaa”proper subcontinuum
of M containing pﬂand q.

Suppose y éECP, Then there exists a proper.éugcontinuum My of M
containing y and p. Since (Mp U Mq) U'M& is a proper subcontinuum of M
conteining g and y it follows that y € Cq and that Cp’c:qu

Similarly Cq= < Cp. Therefore Cp = Cq and the theorem follows.

In order to prove the first characterization of hereditarily
indecomposable continua it is necessary to prove the following lemma, .
It might be noted that this lemma is generalized by P..M. Swingle in

his discussion of "Generalized Indecomposable Continua " (26),
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Lemma 3.5 If M is a continuum that is not the union of three
subcontinua none of which is contained in the union of the other two
then either M is indecomposable or the union of two indecomposable

continua.

Proof: Let M be such a continuum and suppose that M is not
indecomposable. Then M = H |y K where K and K are proper subcontinua of
M. Suppose H' = H-K = N, U X, sep. If N, and N, are connected then
M = KUDN; UDN, vwhich contradicts the hypothesis since K-H' # . If
N2 = I\I:,5 U Nh sepolthen H' = N1 U’N3 U Nh sép. %;
| Suppose that K U Nl = A|J B sep. Since K is cqnnected either
Kc A or Kc B. Withqut loss of_generality let K(; éiand thus B<:'N1q

Then M = (AU N, U N,) U B sep. vhich is a contradiction since B is

3

separated from both N, and Nh' Therefore K U N 1s connected.

5 1
Similarly, K U N5 and K U N, are comnected. Hence M = (K}U Ni)‘U
(K u N3) u(Kuy N#) which is a contradiction of the hyppthesis‘sinée
NifNB and NL are mﬁtual;y exclussive. ThereforeEH'Aié connected and
thus H' is a contiﬁﬁum. ” | _

Now supposerﬁhat H' 1s decomposable. Then ﬂ' = Hi U Hé, whgre
Hi and Hé are proper subcontinua of H'. Thefefo;eiﬁéither Hi nor Hé
contain H'K. Henée M ='Hi U Hé U K which is a céhtréaiction. Theréfbre
H' ié indecomposaﬁle,

In a similar manner K'_= K-H is ankipdecompo§ayle cont)‘.nuu,m_°

| Now supposé that P = M-(H' U K') # §. Then.i%;P is connected

M=H UK' U which_contradicts the hypothesis. Therefore T =
Ei U Pé SEP.

It should be noted that either H' o;.K' intersect both Pi and P2

for otherwise M would fail to be connected. This fact can be verified
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by consldering all other possible cases. Wlthout loss of generality
suppose that both Pl and P2 intersect H'. Then in a manner similar to

that used above to show that K | Nl is connected it follows that H' U Pl
and H' U P, are connected. Hence M =K' U (H' U Pl) u (H' y P2) which
contradicts the hypothesis. Hence P = f and H' U K' = M and the lemma

is proven.

‘The following characterization of hereditarily indecomposable

continua is due to’ William R. Zame. (33),

Theorem 3.6 If M 1s a .continuum then M 1s hereditarily inde-
composable 1f and only 1f each palr of subcontinua, H and K, of M has

the property that'HfK is connected.

Proof: Suppose M has two subcontinua H agd K}£hat fall to have
the desired propert&. Then H-K = AU B sep. Thén A U K and B Y K are
connected by a précess used in lemma 3.5. Thereforé H= (A‘U K) U
(B U K) is decomposable and M is not hereditarily indecomposable.

Conversely, suppose that M i1s not hereditarily indecomposable. -
Then there is a cqntinuum N < M that 1s decomposablef' Therefore
N = HU K where H and K are proper subcontinua of N.rhTo show the
existence of a palr of continua, one of which separatés the other,
several casses neéd to be considered. 1

~ Case I: Tyé point set HN K is coﬂnegted. $hen'N-(H NK)=
(N-H) N (N-K) sep; which implies that N and H N Kvis éhe,desired pair.

If HN K is not connected there exist two cbmﬁonents C and D éfi
HN K. By the ¥eference (24, p. 15) there exists a continuum H' < H
that intersects both C and D so that no subcontinuum of H' intersects

both C and D. Note that H' is not a subset of H N K. For the rest of
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the discussion let ¢c e CN H' and d e DN H'.
Case II: The point set HN K is not connected and H' =

Ni,U N2 U N, where each N, is a subcontinuum of H' and no N, is a subset

3 i 1

of the union of the other two,

If c e Ni ahd d € N_ then 1 % J since no proper sgubcontinuum of

J
H' intersects both C and D. Without loss of generality, suppose ¢ € Nl

and 4 € NE' If N

of H' intersecting both C and D. Hence N, N N, ='¢ and H'-N

is the desired pair.

p N Ny # p then N, U N, would be a proper subcontinuum

5 =
(Nl-NB) U (NE-N3) sep. and H' and N3

If H' is not the union of three continua, no one of which is
contained in the union of the”other two 1¢ﬁma 3.5 impiies H' is either'
indecomposable or the union of two indecoﬁposableuéégfinua.

Case III: The polnt set HN K is nét connec%ed and H' is
indecomposable. Consider Cc and Cd to be the composgpts of H"contain-
ing ¢ and 4. Since'no proper subcontinuuﬁ’of H‘.cqnﬁéins both ¢ and 4
theorem 3.4 implieéuthat C, N €y =P Also since C, = H' by theorem 3.3
Cc is not a subset of K and therevis an x € Cc-K. Similarly there
exisﬁs ¥y € Cy-K. ”?herefore tﬁere are proper subcontinua V and W of H'
so that x,c € vc:"c'C and y,d é WeCy. Since V'nfw:;3¢ and KU VU W is
a continuum, KU V Q W and K is the desired pair‘és‘K.separates
KUVUW. . ~~m |

Case IV: iﬂe point,sef HN K is not connégtgdﬁand H' is thg
unioﬁ»of T and T! ﬁhére T and T' aré indecomposablerp;oper subcon£inua
of H', and both T-T' and T'-T are connected, Without loss of generality
let TNC#P. Then TN D= P for otherwise T would not be a proper
subcontinuum of H'. Hence (H! ﬂ‘D) cT'. FSimilarly T NC =@ and

(B*nc)crT.
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IfTTC KU T then T-T' < K which implies that T-T' < C since
T-T' is connected which implies that T-T' « C since C is closed. But
T' N TF" # f and hence T' N C # § which is a contradiction. Therefore
T-(KU T') # §. Similarly T'-(KU T) £ 8.

_ | Now let C and C to be composants of T and T' respectively
containing ¢ and d. Then there exist x € C_ N (T- (K U T')) and
yecCyN (T'-(K U T)) since every open set of a continuum intersecté
every composant of the continuum. Also there exist pfopef éubcontinua
Vc Tvéﬁd.w c T suéh that x,c e V.éﬁd Y,¢ € W. Therefore, as in case
IITI, the desired fair isKUVUW aﬁd K, | |

Case V: In case IV either T-T' or T'-T fails ‘to be connected,
in which case T and T' is the desired pair..

- As all possibilities have been exausted the tﬁeorem is proven.

i

The next characterization of a hereditarily indecomposable
continuum is statéd in terms of the following defined property Q. The

definitlon of property § 1s motivated by a theorem by John Jobe. (15)

Definition.3,7 Let S be a separable metric sﬁace and M g
continuum in S. Then M has property Q in S if and only if for every.
continuum N in S such that NN M £ 9, N-M £ § and M-N £ P, then there
exists a point p € M\ N such that p is a limit point of both M-N and
N-M. A continuum M is S has property Q hereditarilyin S if and only

T3]

if edch subcontinuui of M has property @ in Sa Todm

Theorem 5.8 Let T be a séparablé metric space and M a continuum
in 7. Then M is hereditarily’indecomposable if and only if for every
function f and separable metric space S such that f imbeds M in S, then

f(M) has property Q hereditarily in S.
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Proof: Assume the condition of the theorem. Let M be a
continuum in a separable metric space S and suppose that M is not
hereditarily indecomposable. This implies the existence of a decompo-
sable subcontinuum M' of M.  The definition of decomposable implies that
M' = HU K vhere H and K are prdper subcontinua of M'. Thus M'-K =
H-K is a non-empty point set. Choose a point h in H-K. Note that
since S is a separable metric space then S X S is also a separable
metric space. Define f:M' - S X S such that f(m) = (m,h) for each
me M'. Also define g:M' ~ S x S such that g(m) ; (h,m) for each
m e M'. Then both f and g imbed M' in S x S and hence both f(M') =
M' x {h} = M, and g(M') = (h} x M' = M, are homeomorphic to M' and
therefore are continua in § X 8. Let H = f£(H) and K, = f(K). Then
M, = £(M*) = £(H) U £(K) =‘Hl UK e £(M) is decomposable with -
(h,h)be Hi'Kl since h ¢ H-K. Also the definitions of f and g imply
that M, N M, = {(h,h)} = H) N M, since H& M'. Since h ¢ K then
KN, = p and since (h,h) ¢ H n M, then H, U M, is a continuum in
S x 8. S

The point set M -(H U My)= (M -H )-M, = (Kl-Hl)-M2 = K -H since
M =H UK and M, N K, =$. It is noted that Ml-(Hl UM,) # p since
K, -H # p and thaﬁ'Ml-(Hi U Mé) = K -H € K| since K, 1s a closed set.

The point set (H UMy)-My = (H -M) U (M,-M ) = My-{(h,n)}
since H, & M and{[e nM = {i(h,h)}o It is noted that (1, U Mg)fMl )

since M2 is non-digenerate and that (Hl U‘ME)-Mi *~M2f{(h’h’} T M2

since (h,h) is a limit point of M, and M, is closed.

Since Mé n Ki = ﬁ, it follows that Mi-(Hi U M2) N (Hi U MQ)-Mi c
K NN, = f. Therefore, by the definition of property Q in S X §,

f(M') = M, does not have property Q in 8 x S and thus, (M) does not
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have property Q hereditarily in S X S. This is a contradiction of the
condition and thus the sufficiency part of the theorem 1s proved.

Conversely, suppose M is a hereditarily indeconmposable continuum
in the separable metric space S and let N S be a continuum such that
NNM#£pP, N-M # p and M-N £ p.

Suppose that M-N N N-M = §. Let T be a component of M-N. Then
theorem 1.15 implie; there exists p € bd (M-N) N T. (Note: Boundaries
are relative to MU N.) Since T <~ M and M is closed it follows that
T M. Since M-N is open relative to M U N and p € bd (M-N) it follows
that p ¢ M-N. Hence p ¢ N.

Note that p ¢ N-M since N-M N M-N = f. Therefore N (N—M) cMNN
is a domain relative to N thaﬁ contains p. Let L be the component of
N-(N-M) that contains p. Then theorem 1.15 implies that there exists
q € bd (N-M) N L. Note that g £ T for if it were then g € M-N N N-M
since T < M-N and this would be a contradiction. Also note that Lc M
and hence L < M since M is closed. |

Therefore both T and T are subcontinua of M containing p. Hence
TULis a subcontinuum of M. Since T c M-N and.TIc ﬁ it follows that

T-L# p. Alsogq e ﬁ T # p. Therefore TUT is a decomposable subcon-
tinuum of M which contradicts M belng hereditarily 1ndecomposable,
Hence M-N N W-M # P and there exists a point p such that p is a limit
point-of both M-N“and N-M. Hence M has property Q ;nJSp

Now assume that M is a hereditarily 1ndecomposable contlnuum in
a"separable metrié space 8. Let f be any function that imbedds M in a
separable metric space S' and consider f(M), Since f is a homeomorphism
then f(M)‘is a hereditarily indecomposable continuum in S8'. Let M' be

any subcontinuum of f£(M). Then the above paragraph implies that M' has
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property Q in S' and hence f(M) has property @ hereditarily in §' and

the theorem is proven.

It was thought that in theorem 3.8 the condition "for every
function f and space S such that f imbeds M in S, £(M) has property Q
hereditarily in S" could be replaced by the condition "M has property Q
hereditarily in T." To see that this cannot be done the following
example exhibits & space T and a decomposable continuum M in T such that
M has property @ hereditarily in T. Thus, this example compliments: the

statement of theorem 3.8.

Example 3.9 Let S, and Sa‘be two pseudo-arcs in the plane

constructed from (-1,0) to (0,0) and (0,0) to (1,0) respectively such

1
plane such that T = Sl U SE' Let H and K be non-degenerate proper

that S S, = {(0,0)}. Let p = (0,0). Let T be the subspace of the

subcontinua of‘S:L

M=HUZKis a deéomposable compact continuum that has property @

‘and S, respectively such that H N K = {p}. Then

hereditarily in T.

Verlflcation Let N be any subcontinuum of T such that N N M £ @,

N-M # p, and M-N ;é . IrNc 8, or N5, then the I_j'e;f'erence (15)
implies that N is a hereditarily indecompdsable cOntinuum and thus
theorem 3.8 implies that N has property Q in T. ,Thehefore, there exists
a point p e M N N such that p is a limit point of both M-N and N-M,‘

Now consider N N (S -{p}) £ P and NN (8 ,[p}) % p. Let
H =8 N N and Ki = S, N N and thus N = H U Kl° If it is noted that
N-{p} = (Hl-[P});U (Kl_{p}) sep. then reference (16) implies that H

and“K1 are non-degenerate subcantinua of S. and 82 respectively. The

1
reference (15) implies that both Hi and Ki are pseudo-arcs. The
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definition of N and the fact that the pseudo-arc is hereditarily
indecomposable imply that either (a) He H, KcK, H-H # P, and
K-K_L‘;é P or (b) H cH, Kc K, H-H £ P, and Kl-K # f. The consider-
ation of each possibility is similar so wlthout loss of generality
case (a) is considered. |

First note that reference (23) lmplies that H and K; are inde-
composable subcontinua of Hl and K respectively. The point p is a
limit point of Hy-H C N-M and K-K < M-N since indec@ﬁposable subcon-
tinua are continua of condensation. Sincep e M N Nfit has been
verified that M has property @ in T. v

Now if M' is a subcontinuum of M, then either (a) M' c:sl or
(v) M' < S, or (c) L .sl # § ana M'-S, £ ¢ In ca’sesﬂ(a) and (b)
M' is hereditarily indecomposable and hence has property @ in T. In
case (c) M' has property Q in T by the method used to show that M has
property Q in T. ‘Iherefore, M has propérty Q in T hereditarily.

© Since M is decomposable the example is verified.

In 1942 J. L. Kelley published a paper on "The Hyperspaces of a
Continuum" (19) in ‘which he proved that if a hereditarily indecomposable
contiﬁuum of dimension greater than one existed that an infinite dimen-
sionai hereditarily indecompogable continuum also existeda In this
papgr)Kelly also gave a characterization of indecémfoéable and heredi-~
tarily indecomposéble continua. These characterizations will be stated
here without proof since their value to this paper 1s historic rather
than mathematical and since thelr proofs involve ideas not in the

mainstream of this paper.
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Definition 3.10 If M is a continuum then C(M) is the collection

of all subcontinua of M with the topology generated by the metric
defined as follows: If H,K ¢ C(M) then d'(H,K) = sup{x:x = d(H,k),

k ¢ X or x = d(h,K), h ¢ H}.

Theorem 3.11 If M is a continuum then in order that M be

indecomposable it is necessary and sufficient that C(M) - (M} fail to

be arcwise connected.

Theorem 3.12 >If M is a continuum then M is hereditarily

indecomposable if and only if C(M) contains a unique arc between every

pair of its elements.
Existence

This sectiéﬁ of this chapter will be concérned>with the existence
of hereditarily indeéomposable continua of all dimensions, including the
infiﬁite dimension; These continua will be the intersection of
increasingly "crooked" domains of E- under the following definitions of
crooked. Much of,fhe material of this chapter is based on a paper,
"Higher Dimensional Hereditarily Indecomposable Continua", by

R. H. Bing (3),

Definition 3.13 An arc xy is e€-crooked if for‘each pair of

points a and b in xy there exiet points c and 4 in the subarc ab such

that c¢ is between a and d, d(a,d) < e and d(b,c) < €.

Definition 3.14 A domain D is e-crooked if every arc contained

invD is €-crooked.
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Definition 3,15 If hk is an arc with endpoints h and k and H
and K are two sets containing h and k respectively then hk is e-crooked
with respect to H and K if and only if there exist points r and s in hk

such that r is between h and s, d(s,H) < € and 4(r,K) < e.

Definition 3.16 If D is & domain and H and K are two sets then

D is e-crooked with respect to H and K 1f and only if every arc in D
with endpoints in H and K respectively is,e-crooked with respect to .

H and K.

These deflinitions can now be used to show the exlstence of

e-crooked domains that are contained in arbitrary bounded domeins.

Theorem 3.17 If D is a bounded domain in E° (or I") that

separates the point b from the point c, € > 0, and H and K are two
non-empty sets in E° (or IV) then there exists a domain G such that G

is e-crooked with respect to Hand Kand G < D andéG:éeparates b from Ce

Proof: Let K' = {x: x € K and d(x,H) 2 e}/and‘En-D = B U C sep.
where b € B and ¢ € C. Also let 8 = d(B,C). Note‘ﬁﬁét & >0 since D
is bounded and either B or ¢ is compact. (11, p.'91):l

Then if XK' = § let E = (x: 5/4 < da(x,B) < 55/4}. Then |
5vﬂ (BUC) = f and hence G D. Also b ¢ B ct{x:\d(g,B) < 8/4} and
ceCec {x: d(x,B)r> 35/4} and thus G separates b fré@ c. Also if M is
an arc in G from arpoint h in H to a point k in K theﬁ an r can be
choosen so that d(r,k) < € and an s can be chooéenAéo that s is between
r and k and d(s,k) < e;d(k,H) since d(k,H) < €. Therefore

a(s,H) < d(s,k) + d(k,H) < € and ¢ is e-crooked with respect to H and K.
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Now suppose that K' # § and let V = @Vi where
!

v, = {x: d(x,B) = 3/4, d(x,K') = ¢/2},

<i
i

{x: 8/2 < a(x,B) < 38/4, d(x,K') = ¢/2},

<3
#

5 {x: a(x,B) = 8/2, a(x,H U K') = ¢/2},

v, = {x: 8/k < d(x,B) < 8/2, a(x,H) =‘€/?}’

i

and Vg {x: da(x,B) = d/k, d(x,H) = ¢/2}.

Consider F'= {x: d(x,B) < 8/4} U {x: d(x,B) < 38/4, d(x,H) < €¢/2}
3 Note that F
is closed since 1t 1s the union of closed sets. Also?note that B <

U {x: 8/2 < d(x,B) 5 38/k, d(x,K') 2 ¢/2 =B UB,UB

1

separates B from C.

int B, € int F and that FN C = § since a(F,C) = /4. Therefore bd F

Now let x € bd B, U bd B, U bd B If x € bd B, then d(x,B) =

_ 3’ 1
8/4. Thus if d(x,H) = ¢/2 then x ¢ v5 c V. If d(x,H) < €/2 then
x € int B, © int F. Similarly if x € bd B, then d(x,H) = €/2, Then

x eV, ©Vorxe int (Bl U 33)<: int F. If x e bd 33 then

X € Vi U Vé U VB CV or x e int 32 & int P. In all cases x € V or’

x € int F. Therefore, since bd FC bd Bl'u bd 32 U bd 33’ hd PC V.
Thus V separates B from C since bd F separétes B from.C and
a(v,BU C) = 8/4 > 0.

Now let 7 = min{e/k, 5/16} and let Gy = [x: d(x,Vi) < 7}. Then

G = gGi is an open set containing V. Note that if’x € G2 then

a(x,K') < d(x,Vé) + d(Vé,K') < €/4 + ¢/2 < ¢ and that similarly if x € G,
then d(x,H) < €. Also observe that d(Gl UG, U G3’G5) > 3/8 and hence

G, separates (Gl UG, U GB)'Gh from G.-G, in G and that in a similar

5
G, from (G5 UGy U G5)432 in G. Also note that

manner G, separates G

2 1

if x e HN G then x ¢ Gl and 1f x € K' N G then x € G5° Note too that

a(G,B U C) = 35/16 and hence TN (BU C) = P which implies that & < D
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and that G separates B from C since V C G.

To show that G is e-crooked relative to H and K let hk be an arc
in G such that h € Hand k € K. Then if k £ K' an r and s can be
choosen as was done in the case when K' = @#, If k € K' then k € G5 and
h e G,. Since Gh separates G, from G_ N K‘ in G and hk is a connected

"1 1 5

subset of G there exists an s € hk N Gu Simllarly, since G separates

2

G from G, N Hin G there exists an r € hk ﬂ G Since Gu separates G2

5 1
from G5 n K in G it follows that s 1s between r and k in hk. Also
d(s,H) < ¢ and d(r,K) < d(r,K') < ¢ and hence hk is é-crooked with
respect to H and K. Therefore G is e-crooked with réspect to H and K

and the theorem is proven.

Before showing the existence of connected, e-crooked domains that
separate E- (or Iw) a discussion of a property of domains in E° (and I)

is needed.

Definition 3.18 A connected space M is unicoherent if and only

if M = AU B, where A and B are closed connected subsets of M, implies

that A N B is connected.

- Whyburn (50, P 225-228) shows that E is unicoherent for all n.
It should be noted that the proof presented by Whyburn also holds for
Iw° The ideas used by Whyburn's proof include top1ca from homotopy
theory and as a result the proof that E® and % are unicoherent will not
be included in this paper. waever the followingffaét gbout ED (and Iw) '

will be proven by assuming the unicoherence of B and‘Iw.

Lemma 3.19 If D is a bounded domain in En or;Iw that separates

points b and ¢ then some component of D also separates b and c.
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Proof: Let En-D =BU C sep,, b e Band ¢ € C. Also let
d(B,C) = ® >0, since either B or C is compact. Let B' be the component
of {x: d(x,B) < 5/4} that contains b and let C' be the component of
{x: d(x,C) < 5/4} that contains c. Then since both B' and C' are closed
D' = En-(B' U C') is a domain. It should be noted it.hat if A is a
component of D' then A is itself a domain (24, p. B6) and that A has
1imi£ points in eifher B' or C', for otherwise E-=Ay ((D'-A) y B Q
C') sep. Let H be the union of B' with all of the coﬁponents of D!
that have limit points in B' but not in C'. Theﬁ H is a closed and
connected set. Let K be the union of c' w;th all.of ﬁhe components of
D' that have limit points in C'. Then K is connected, HYy K = E® and
HnN K = §. |

Since E- is unicoherent HN K = bd H is connected. Also since
b e int B' & int Hand ¢c € C' & K it follows that bd H separates b from
c. Furthermore, bd H < bd B' « D which implies that some component D"

of D contains bd H. Then D" separates b from c and the lemma is true.
The following theorem of e¢~crooked domains can now be proven.

Theorem 3,20 If D is a bounded domain in En or Iw that separates

the point b from the point ¢ and if € > O then there exists a connected

e-crooked domain G such that G < D and G separates b from c.

Proof': Since D is bounded, D is bounded and hence compact.
thegefore there e#ists a finite open covering 3 6% DHT DO of sphefes df
diameter less that e/2. Let {(gl,gi),(g2,gé),...,(gg;gé)} be the finite
collection of all pairs of elements of @.

Now suppose Diq , 1 < i < n, has been definea so as to meet the

il
hypothesis of theorem 3.17. Then theorem 3.17 implies that there exists
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a domain Di such that Di is e/E-crooked with respect to gi and gi,

‘Di c:'Di and Di separates b from c.

-1 ‘
Let A be an arc in Dn and let x,y € A. Then there is a pair
gi,gi such that, without loss of generality, x € giugpd Yy € gi. Since
the arc xy C A is contained in D, by the inductive definition of D_
there exists poinﬁé r and s in arc xy such that r 1s between x and s
and d(s,g ) < ¢/2 and d(r,g') < ¢/2. Sinée the diame%ers of g, and g}
are less than e/2; the triangle inequality lmplies that d(s,x) < € and
d(r,y) < €. Therefore D, is e-crooked.

Also §;<: D and D separates b from c. Lemma’3.7 implies that

some component G Of‘Dn separates b from ¢, Since T &' D and G is a

domain theorem 3.20 follows,

From the existence of éucrooked domaiﬁs as givén in theorem 3.20
it ig now possiblé;to show the existence of hereditarily indecomposable
continua of all dimensions, including infinite dimensional hereditarily

indecomposable continua.

Theorem 3.2l If H and K are mutually exclusiVé continua in En

(in T”) then there exists a hereditarily indecomposable continua of

d;mension n-1 (of infinite dimension) that separates H from K.

4
&

Proof: Let h ¢ Hand k € K; Since H and K are bounded there
exists an open sphere D such that HU K< D. Let 8, = D-(HU K). Then
SO is a bounded domain that separates H from K and hence h from k.

Suppose S,, 0 < i < J, has been defined so that §;<: 8y 30 8 is

i’
1/i-crooked, i 2 1, and each Si i8 a connected bounded domain, i = 1,
and each S sgeparates h from k.

Then theorem 3.20 implies that there exists a 1/j-crooked domain
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S'j that separates h from k so that §3'a SJ—l'

Let C = ﬁgz. lSince C is the intersection of a nest of continua

theorem 1.14% implies that C is a continuum.

Now suppose there is a continuum M < C such that M 1ls decompos-
able. Then M = Ay B where A and:B are proper subcoﬁfinua of M. Let
P € B-A and g € A-B and cheose n so that d(p,A) >A2/n and d(q,B) > 2/n.

Let OA be the union of all open spheres that are subsets of Sn, have

centers in A and have radii less than 1/n. Similarly, let OB be the

union of all open spheres that are subsets of Sn, have centers in B and

have radii less than 1/n. Then 0, and O

containing A and B respectively and d(q,OA) >1/n and d(p,OB) > 1/n.

are connected open sets

Let x € AN B #P. Then x € Oy N Oy which is a comnected domain. Since

B
a connected domeln is arcwise connected and since no arc separates a

connected domain let px be an arc in O, and xq be an src in

B
(OAfpx) U {x}. Then px U xq = pxq is an arc in 0, U Og+ Since pxq < S,
which is 1/n-crooked, there exist points r and s suqﬁrthat r is between
P andfs in pxq anézd(p,s) < 1/n and d(r,q) < l/n..w§ipce a(p,s) < 1/n
andvd(p,xq) g;d(p;CA) >1/n it follows that s ¢ xq,‘tThereforevs € Px
and since r is between q and s, re px. Therefore d(r,q) 2 d(px,q) =
d(OB,q) > 1/n which is a contradiction and hence there does not exist a
decomposable subcontinuum of C. Therefore C is hereditasrily
indecomposable. )

To show that C separates H from K suppose that h and k lie in the
same component P of En-C (or Iw-c), Then, since P is open and connected

there exists an arc hk <« P. For every 1 = 1, Si

separates H from K. Therefore CN Pc CN hk = ﬁ(gz N hk) # § since the

N hk #£ P since 8,

intersectlon of a nest of non-empty compact sets 1s non-empty. Since
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this is a contradiction h and k lie in distinct components of En~C

(or Iw-c). Therefore 1f P is the component of E--C (or 1°.¢) contain-
ing h then k ¢ P and E°-C = [(E"-C)-P] U P sep. with K c (E"-C)-P and
H< P, Hence C separates H from K.

If C < E" then dim C # n for otherwise C would contain an open
set of En by theorem 2.44 which would imply that C wquld contain a
decomposable continuum. Also dim C 2 n-1 by theoremre.h7 since C
separates En. Therefore dim C = n-l.

If C ¢« Iw leﬁ Kn, n 2 2, be a sub-vector spééé'of HN, the
Hilbert space, containing h and k. Then K is homeoﬁdrphic to E and
k' n Iw is the closure of a connected open set in K'. Since C separates
K' N 1° corollary 2.49 implies that dim C 2 n-2 for all n. Therefore
dim C = =,

Hence the éXistende of hereditarily indeéémposable continua of

all dimensions has been proven.

Corollary 3.22 If [Si} is a nested sequence;of domains such that

for each 1, 8, is 1/i-crooked then every continuum in ﬁsi is

hereditarily indecomposable.

Proof: This was included in the proof of theorem 3.21 by showing

that C contained no decomposable continuum.

Theorem 3.23 There exist bases for En and Iw such that each

element in the bases has as its boundary a hereditarily indecomposable

continuum,

Proof: Let p € E', let e >0, and let B = {x; d(x,p) < €}. Then
the domain B-[p} separates p from bd B. Hence theorem 3.20 implies the

existence of a hereditarily indecomposable continuum H < B-{p} that
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separated p from bd B. Let C be the component of En-H that contains p.
Let D be the union of all components of En-H that do not contain p.

Then C and D U H are closed and connected sets and E- = C U (DU H).
Therefore the unicoherence of B implies that T ﬂ_(? g H) = K is
connééted. Since K.is closed and K < H 1t follows %h;t K is hereditari-
ly indecomposable;. Also K = bd C < B. Thus for every point in En there
exists arbitrarily smell open sets that have as their boundarieé
hereditarily indecomposable continua and the theorem holds for £,

This proof also holds for I-.
Separating Properties

As was noted in the previous section, in E" there exist, for
every palr of disjJoint continua H and K in En, a hereditérily indecomp-
osable continua separating H and K. This can be generalized to the
point that if A agd:B are disjoint compact sets in En, or in any space,
then there exists aIClosed set, each of whose components are hereditar -
ily indecomposable, that separates A from B in E'. To do this the

following lemma will be useful.

l Lemma 5.2hl”If Al’A2’°°°’An is a finite ssqueﬁge of pairwiée
disjoint compact subsets of the separable metric space S then the space
S' whose points are Al’AQ"'°’An and those points in S--(A:L U eee U An)
is a separable metric space under the metric for 8' -that is such that
the distance between x and y in 8' is their distanceé’in S as subsets

of S.

Proof: ©8ince the sets Al’A2’°’°’An are pairwise disJoint and

compact, if x,y € 8' then d(x,y) > 0 if x # y and hence S' is a metric



58

space. If K 1s a countable dense set in S then K-(Al U ees U An) is
a countably dense set in S' and S' is separable. Therefore the lemma

holds.

Theorem 3.25 If A and B are disjoint compact subsets of a
separable metric space S then there exists a closed gset H in S that
separates A from Btin S such that each component of H_is hereditarily

indecomposable.

Proof': Siﬁce, by lemme 3.24, the space S' determined by
considering A and B as points is separable and metrlc then theorem 1.16
1mp11es there exists a function g:8' - ® that 1mbeds S' in 1. Also
since h:S ~ §', where h(m) = m if m ¢ 8-(A U B), h(m) Aif m € A and
h(m) ; Bifme B; is an open continuous function (18, p. 9%) it
follows that f = g h is an open continuous function from S to £(8) = ¥
that maps A and B to the single points a and b in I and that T is one-
to-one on S-(A |} B).

Theorem 3.21 implies there exists a hereditarily indecomposable
continuum H' in I that seParetes a from b in I°. Let ™.H =
P' J Q' sep., wherea € P' and b € Q'+ Then let H = f‘l(H'), P = f"l(P')
and Q = f’l(Q'). ‘Then H is closed since the inverse ‘of closed sets
under continuous functlons are closed. Also if x is a limlt p01nt of P
then f(x) is a llmlt point of P' which implies that f(x) £ Q' since P!
and Qf are separated sets. Therefore x ﬁ Q and noilimlt point of P is
in Q. Similarly ﬁo limit point of Q is in P. Therefere P and Q are
separated sets. Also since f is one-to-one on H'it‘follows that S-H =

P Q sep. Furthermore, if D is a component of H then £(D) is a subcon-

tinuum of H' since‘f:H - f(H) c H® is a homeomorphisﬁ: Therefore (D)
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is hereditarily indecomposable and hence D is hereditarily indecompos-

able. Hence the theorem follows.
Homogeneity

Definition 3.26 A space M is homogeneous if and only if for each

palr of points x and y in M there exists a homeomqrphism f from M into

M such that f(x) = y.

Though the pseudo-arc is a homogeneous hereditarily indecompos-
able continuum no hereditarily indecomposable continuum of dimension
greater than one is homogeneous. This will be shown by showing that
every hereditarily indecomposable continuum of dimension n contains a
subcontinuum of dimension n-l and that every heredlitarily indecomposable
continuum of dimension n contains a point such that if a non-degenerate
subcontinuum contains that point then that subcontinuum is also of
dimension n. It should be noted, however, that this method will not
apply for infinite dimensions as there exlst infinite dimensioﬁal
hereditarily indecomposable continua that contain no non-degenerate
finite dimensional continuam(je)° This will be discussed in the next

section.

Theorem 3.27 If M is an n dimensional continuum then M contains

a subcontinuum of “‘dimension k for all k ¢ n.

Proof: The aefinition of dimension imblies th;re exlsts a péint
P € M such that sémé domain D containing ﬁ has a béﬁ;;ary (relativevto
M) of dimension n-l.

Since bd D is compact theorem 2.50 implies that bd D contains a

continuum H that has dimensibn n-1 at each of ité poiﬁtse Therefore H
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is a subcontinuum of M that has dimension n-l.
By repeated application of this proof there exists a subcontin-

uum of M of every dimension less than n and the theorem follows.

Theorem 3.28 If M is a hereditarily indecomposable continuum of

finite dimension then there exists p'e M such that if N is a non-

degenerate subcontinuum of M containing p then dim M = dim N.

Proof: Let M =M and suppose that for 1 <k, M has been
defined so that for each 1, O <ic<k, Mi 1s a subcontinuum of M RE
the diameter of each M is less than 1/1 and dim M = dim M.

Since Mk-l 1s compact there exists a finite 0pen covering
Gl"' ,G of qul such that each element of Gl”"’G has diameter less
than 1/k. Then Mk_l = Q(Mk_l:ﬁ Gi) is the union of a finite number of
compact sets of diameter less than l/k. Thus theorem 2.18 implies that

for some J, Mk-l N G, has the dimension of Mk-i' Since Mk-l NG, 1s

J J
compact theorem 2.50 implies that some continuum Mk in Mk-l n GJ has
the same dimension as Mk_i. Hence dim Mk = dim M and thevdiameter of
Mk is less than 1/k and Mk(: Mk-l'

Thus a sequence (M&} of continua has been defined with the
desired properties.

Since the sequence 1s nested and each element 1s compact there
exists a point p € nM » Suppose N 1s a non-degenerate subcontinuum Qf
M containing p and let q ¢ N euch that g %;P° Then‘ier some n,

1/n < a(a,p). Since p € M and the diametef;of M iswless than l/n;it
follows that g £ M . Since M N N £ §, either M cNor NcM, for
otherwise Mn U N would be a decomposable subcontinuum of M. Since

q € Mn-N, Mn c N. Therefore theorem 2.12 implies that dim M = dim Mn
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< dim N ¢ dim M since N%.: N« M. Hence dim N = dim M and the theorem

follows.

Theorem 3.29 No hereditarily indecomposable continuum of

dimension greater than one is homogeneous.

Proof: Suppose that M is a homogeneous hereditarily indecompos -
able continuum and that the dim M = n > 1, Then theorém 3.27 implies
that M contains a continuum H of dimension n-1. Note that dim H >0
and hence H is rnondegenerate. Also theorem 3.28 impiies that there
exists a point p € M such that if N is a subcontinuu@ of M containing p
then dim N = n. Let q € H. Then M being homogeneousvimplies there
exists a homeomorphism f:M —» M such that f(q) = p. Therefore f(H) is a
subcontinuum of M containing p and dim f(H) = n since f is a homeomor-
phism. But theorem 2.11 implies that dim f{H) = dim H = h-l which is a
contradiction. Therefore no hereditarily indecomposabie continuum of

dimension greater than one is homogeneous.
HID Continua

In 1926 L. A. Tumarkin (27) asked if there miéht be a non-
degenerate continuum such that each of its subéontinug were infinite or
Zero dimensional.‘vvan Heemert, in l9h6, qlaimedvto pfove that all
infinite dimensional continua contained one dimeﬁsional continua (28).
This ?roof was in error as D. W. Henderson demonstrat;d, in 1965, the
existénce of a continuum each of whose subcontinua were either infinite
dimensional or degenerate.(12). Such a continuum is a HID continuum as
defined below. It is the purpose of this section to present some of the
properties of such continua. Most of the propertiés are a result 6f

J. M. Yohe. (%2),
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Definition 3.30 If M is an infinite dimensional compact set such

that M contains no n dimensional compact sets for O < n < = then M is

said to be hereditarily infinite dimensional (HID).

Theorem 3.31 Let M be & HID continuum and let p € M. Then

dimMat p=1 or dimMat p = =,

Proof: Since M is connected and nondegenerate the definitlon of
dimension implies that dim M at p > O, for otherwlise M could be separat-
ed by the empty set.

Suppose dim M at p = n where 1 < n < «®. Then there exists a
neighborhood U (in M) of p such that dim {bd U) = n-1 > 0. Since bd U
is a compact subset of M this contradicts M being HID. Thus

dimMat p=1or dimMat p = .

Theorem 3.32 Every HID continuum in Iw contains uncountably

many mutually exclussive hereditarily indecomposable HID continua.

Proof: By»theorem 3.23, 1 has a 5asis consigting of neighbor-
hoods whose boundéries are hereditarily indecomposqbig continua.

Let M be a;HID continuum in Iw. Since dim,M é;w there exists
D € M such that dim M at p #:1. Theorem 3.3l implies that dim M at p
is =, Let € >0 be choosen so that for eéch «, O <o < g, the seﬁ
S5q = {x e M: d(x,p) < a} has a boundary in M of dimension greater than
O. This can be dqﬁe by the definition of dimension. Therefore
dim (bd S in M) ;wm, for otherwise M would contain é compact set of
positive dimension. Since not every component of bd %z in M is a

singleton, for this would imply that dim (bd Sy in M) = 0 (10, p. 22),

let N be a non-degenerate component of bd %z in M. Then dim N = ® since
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dim § # O. Hence N is a HID continuum and there exists g € N such that
dim N at g = « and there exists a & > 0 .such that if Vc

{x € N: d(x,q) <&} is an open set relative to N then bd V in N has
infinite dimension. Let U be an‘open gset in Iw such that bd U is =
hereditarily indecomposable continuum and U c {x € I?; a(x,q) <3},
Then dim (N N bd 6) = ® and N N bd U contains a compoﬁent N, of
infinite dimension, Since Nd C bd ﬁ, N 1s a hereditarily indecompos-
able HID continuum. Also since if x € N, then a(x,p) = @, it follows

that 1f @ # B then N, N NB = . Therefore, the theorem follows.

Definition 3.53 A compact n dimensional space, n > 0, is

called an n-dimensional Cantor-manifold if it cannot be separated be a
clesed subset of dimension < n-l. A compact infinlite dimensional space
is an infinite dimensional Cantor-manifold if it cgnnot be separated

by a closed subset of finite dimension.

Note that every Cantor-menifold is cbnnected,since it cannot be
separated by the empty set. Also an n-dimensional Cantor-manifold has
dimension n at each of its points and an infinite dimensional Cantor-
manifold is infinite dimenslonal at each of its points;

L. A, Tumarkin (27) has shown that everyVHID space contains an
infinitekdimensional Cantor-manifold. Therefore each of the hereditar-
ily HID continua in the space M of theorem 3.32 contalns an infinite
dimensional Cantor-manifold and the following corollary to theorem 3,32

is a result.

Corollary 3.34 Every HID continuum contains an uncountable

number of mutually exclussive hereditarily indecomposable HID

Cantor-manifolds.
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The next theorem divides HID continua into "manifold components"

and gives some insight into the structure of HID continua.

Theorem 3.35 Let M be a HID continuum. Then M = UMp where
each Mp is a maximal HID Cantor-manifold in M containing p.

Also if p,q € M then elther M, =M or aim (Mp n Mﬁ) < 0.

Proof: Let p € M and 6p be the collection of éll Cantor-manifolds
containing p. Since {p} e €, 6p £ p. |

Let {C,} be a nest in 6p and let C = UC . Then if C = (p} then
C is a O-dimensional Cantor-manifold and an gpper bound for {Ca}°

Otherwise, 1f x,y € C then there exists'ca such that %,y ¢ q1¢
Since Ca is a non-degenerate subcontinuum of M it follows that dim C >0.
Therefore dim q: = 6 and qa is an infinite dimensional Cantor-manifold.
Therefore x and y cannot be separated in qm by a subset of finite dim-
ension and hence x and y cannot be separated in C by a closed subset of
finite dimension.

Hence no closed set of finite dimension separates C which implies
that no closed set of finite dimension separates C. Therefore C is a
Cantor-manifold containing p and C is an upperbound for [Ca}° Hence,
by Zorn's lemma (18, p. 33), there exists a maximal Céntor-manifold Mp
containing p. L

| Let p,q € M.and suppoée that MP n Mq # . Thgﬁ if Mp c Mq or

Mﬁ c?gp 1t follows that Mp = Mﬁ since MP and Mﬁ are‘m?ximal. Otherwise
Mp U Mé is not a Cantor-manifold since Mp and Mq are maximal. Also
nelther M, nor M, is degenerate since M, N M, # f. Therefore M, UM
can be separated by a closed subset Z of finlte dimension. Since M is

HID it follows that dim Z = O. Since Z separates neither Mb nor Mq it
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it follows that (Mp U Mq)-Z = AU B sep. with MP-Z C A and Mq-Z c B.
Therefore M M cZ d dim (M M dim Z = O. Hence dim N M
e re M, N . an ( b N q) < ( (Mp q)

is zero and the theorem 1s proven.

The next three theorems will be stated without proof. The first
is a result of the Baire Category Theorem (14, p. 160), the second is an
indirect result of the first and the third is a result of function

theory (32, p. 181),

Theorem 3.36 If M is a compact space and M is the countable

union of HID compact spaces then M is itself a HID space.

Theorem 3.37 There exist an uncountable number of topological-

ly different HID continua.

Theorem 3.3% There exist hereditarily indecomposable HID

continua that can be separated by sets of dimension zero.

The following questions were raised by J. M. Yohe (32) in his
paper on hereditarily infinite dimensional spaces in 1969. To the
author's knowledge these questions are yet to be answered.

l. Does there exist a homogeneous HID space?

2. Do there exist uncountable many topologically different
hereditarily indecomposable HID Cantor-manifolds?

3. Do there exist uncountable many.tbpologically different HID
Cantor-manifolds?

L, If M is an HID continuum and N is an HID Cantor-manifold in M
and if M is decomposed as in theorem 3.32, is it necessarily true that

Ne Mp for some p € M?



CHAPTER IV
CHAINABLE CONTINUA IN THE PLANE
Introduction

In chapter III the properties aﬁd existence of hereditarily
indecomposable continua of all dimensions was discussed. This chapter
will be a discussion of chainable hereditarily indecomposable continua
that lie in the plane. It will not beée the purpose of this chapter to
prove in detail the properties of the continua that will be méntioned,
but rather to give the reader an understanding of the scope of the
literature that concerns 1tself with such continua. This chapter will
be & review of the thesis of McKellips (21) along‘with an updating of
information discovered since his paper was completed. The material‘in
this chapter will be carefully referenced in order that the reader might
examine in detail the concepts involved. In this chapter all sets will
be considered to be in the plane unless otherwise stated.

There are two types of chainable hereditarily indecomposable
continua in the plane, the pseudo-arc and the pseudo-circle.v These can
be combined in order that an uncountable number of ﬁofologically distinct
heréditarily indecomposable continua can be found in ﬁhe plane. The;
pseudo-arc and the pseudp-circle will be discussed wi£h their propérties
stated and referenced. That ﬁhere exist uncountably ﬁany topologically
distinct hereditafily indecomﬁosable continua in the£§lane will be

proven in some detail.

66
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The following definitions will be used for chainable.

Definition h.l A finite collection of domains D = {dl,o..,dn}

is called a linear chain if and only if di N dJ % ¢ if and only if
li-3] <1, 1,3 = 1,2,...,n. If p and q are points belonging to d, and

dn respectively then D is called a linear chain from p to g.

Definition 4.2 A finite collection of domains D = {d1’°°°’dn}

is called a circular chain if and only if di n dJ % ¢ if and only if

li-3] <1, 1,3 = 1,2,..0,n, except that 4 N 4 £ f.

Definition 4.3 A continuum M is said to be linearly (circularly)

chainable if and only if for every pogitive number & there is a linear
{(circuiar) chain D such that M« U{d: d € D} and for each d € D the
diameter of D is less that €. If a continuum is refered to as chainable

it will be either linearly or circularly chainable.

Definition 4.4 If D is a chain then each element of D is called

a link of D. If D and E are chains then E is a subchain of D if and
only if each link of E i1s a link of D. If E is & linear chain then E

will be denoted by D(i,J) where di and dj are the end links of E.

The following definition will be of key importance in the

definitions of the pseudo-arc and the pseudo-circle.

Definition 4.5 The linear chain E = {el, ,,,.,en}is crooked in

2
the linear chain D = {dl,d2,...,dm} if and only if:

an . 4\
(1) Qdi contains peic
(2) Por every subchain E(i,J) of E such that e; N ay £ D,

ej n dk % ¢,‘where Ih-kl > 2, the following conditions hold:
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(a) E(i,J) is the unioﬁ of three chains E(i,r), E(r,s) and
E(s,J) such that (s-r)(3-1) >0. (1 <r<s < Jor
J<s<r<i),

(v) e. 1s a subset of a link of D(h,k) adJacen£ to d,

(c) e, 1s a subset of a link of D(h,k) adjacent to d, -
The Pseudo-arc

In 1922 Knaster (20) described a hereditarily indecomposable
continuum in the plane. At that time Knaster thought that his
continuum was homogeneous though he could not demonstrate that this was
so. In 194% Moise (23) gave an example of a linearly chainable
continuum, which he called a pseudo-érc, that was indecomposable and
homeomorphic to each of its subcontinua. Later in 1948 R. H. Bing (1)
demonstrated that the pseudo-arc was homogeneous. In 1951 Bing (2)
proved that any linearly chainable non-degenerate hereditarily indecom-
posable continuum is homeomorphic to the pseudo-arc of Molse. This
then showed that the continuum of Knaster was a pseudo-arc. In 1951
F. B. Jones (l5)_proved that every homogeneous bounded plane continuum
that does not separate the plane was indecomposable. By using this
result and by adding linearly chainable to the hypothesis Bing (5)
proved that every linearly chainable homogenecus plane continuum was é
pseudo-arc.

The following definition of pseudo-arc is similar to the one

used by Moise.

Definition 4.6 Let S be a compact set and let p and g be

distinct points of S. Let Dl’D2’°°' be a sequence of linear chains
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from p to q such that:

(1) For each i, D,,, 1s crooked in D,

1

(2) For each i, each link of D, has diameter less than 1/1,

(3) For each i, the closure of each link of Di+l is contalned
in D% vhere Df is the union of the links of Di’

(4) For each i, each link of D, is connected.

Let M = ano Then M is called a pseudo-arc from p to q.

Before proving that the pseudo-arc is a hereditarily indecompos-
able continuum the following theorem should be considered. This theorem
relates the concept of crooked chains with the concept of croocked

domaing.

Theorem 4.7 If D and E are linear chains such that each link of
D has diameter less than 6/3 and E is crooked in D then E¥*, the union of

the links of E, is an e-crooked domain.

Proof: Let D = {dl’d2’°°"dn} and E = {e °°,em} be such

17807
chains and let A be an arc in E¥. Then let x,y € A. Suppose that
X € ey i dh and y € e:j n dk’

Then if |h-k| < 2, 4 N4, # f and the diameter of ¢ U 4, is
less than 2¢/3. By choosing m € (subarc xy) N d, and n e (subarc my) N
d, it follows that n is between m and y, d(m,y) < € and d(n,x) < e.

If Ih-kl = 2 then choose integer g so that g is between h and k.
Then!dh ud,u dkj?és dlameter less than € since Qh Oﬁdg # § and
dg N & # §. Hence choose m € (subarc xy) N dy and n ¢ (subarc my) N dy
and it follows that n is between m and y, d(m,y) < ¢ and d(n,x) < €.

If |h-k| > 2 the definition of crooked implies that E(i,J) is the

union of three subchains, E(i,r), E(r,s) and E(s,J) such that s is
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between r and Jj, e, is a subset of a link of D(h,k) adJjacent to d, and

i
the definition of a chain implies that the subarc xy intersects

€ is a subset of a link of D(h,k) adjacent to dh. Since x € e, and

€ e
A

each element of E(i,J). Therefore choose m ¢ (subarc xy) N e

Similarly the subarc my intersects each element of E(i,s)
E(i,r) U E(r,s). Therefore choose n € (subarc my) N e.- Then n is
between m and y and n,x € 4 , U 4 U4, and d(n,x) < €. Also

my € d,_yUd Udq 5 and d(m,y) < egﬁ\

Therefore A is e-crooked which implies that E¥* is ¢-crooked.

It can now be shown that a pseudo-arc is a non-degenerate

hereditarily indecbmposable éontinuum°

Theorem 4.8 If M is a péeudo-arc then M is a hereditarily

indecomposable non-degenerate continuum.

Proof: Let M= ﬁDf where each. D Meets the definition of pseudo-

arc. Then, for each 1, since each link of D is éonnected the definition
of chaln implies that D¥* is connected Also the definitlon of pseudo-
arc implies that 5? C:Di+l° Thus M = 5? is the intersection of a nest

of conﬁinua and hence M is a continuyum. Since D is crooked in D

3141 S 31
and each link of D3i has diameter less than 1/31 theorem 4.7 implies
that Df, . is 1/i~crooked. Hence corollary 3.22 implies that

=°°*= % i . .
ODi‘ 5D5i+1 is hereditarily indecomposable.

- Since both p and g are elements of M it follows that M is non-

degenerate and the theorem follows.

While it will not be Shown that the pseudo-érc is homogeneous it

is suggested that the reader should look at the proof by McKellips (22)
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for further information and insight. In the opening paragraph of this
sectlon two characterizations of the pseudo-arc were suggested. These

will now be formally stated without proof.

Theorem 4.9 A set M is a pseudo-arc if and only if M is a

linearly chainable non-degenerate hereditarily indecomposable continuum.

(2),

Theorem 4.10 A set M is a pseudo-arc if and only if M is a

linearly chainable nondegenerate homogeneous continuum. (5),
The Pseudo-circle

After the pseudo-arc was found to be homogeneous, Bing, Jones
and others became interested in characterizing homogeneous continua in
the plane. In 1951 Bing (2) published a paper in which he described
a circularly chainable hereditarily indecomposable continuum that
separated the plane. This continuum became known as a pseudo-circle
and Bing posed two questions about the pseudo-circle. He asked 1f it
were topologically equivalent to all other circularly chainable
hereditarily indecomposable continua Ehat separate the plane and if it
were homogeneous. lLawrence Fearnley in 1969 proved that the pseudo-
circle was unique with respect to Bing's first question.(10). Later
that same year Fearnley also proved that the pseudo-circle was not
homogeneous. (11),

The following definition will be used in defining a pseudo-circle.

Definition 4%.11 If D and E are two circular chains such that

each link of E is contained in some link of D then E is crooked in D if

and only if Dl is a proper subchaln of D and El i1s a subchain of E such
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that E¥ D¥* implies that E

i T is orooked in D

1 1°

Theorem 4,12 If D and E are circular chains such that E is

crooked in D and the diameter of each link of D is less than ¢/6 then

E¥ is an e-crooked domain.

Proof: Let D = {dl’dE""'dn} and E = [el,eg,.,.,em} be two such
chains. Let A be an arc in E¥ contalning the points x and y. Let
X € dh and y € dk.

Then if dh ‘and dk are adjacent in D to each other or to the same
link of D then A 1s e_crooked relative to x and y by the process used
in theorem L.7.

Otherwise,'iet 2z be the first point from x £o;y such that
z ¢ (subarc xy) n:(d#_l U dk U dk+l) where COnsiaerafion is given if |
k =1 or k = n. Note that (subarc xz) N (dk-l ua u dk+l) = f. The
definition of chain implies that there exists a subchain El of E such
that subarc xz intersects each link of E, and (subarc xz) € E*,

Suppose E* n d # §. Then there exists e € El such that
en dk # f. The deflnltion of crooked implies that e N (dk lUdkpdk+l
which implies that (subarc xz) N (dk qUdu d.k_'_l) ;é ¢ which is a |
contradlctlon. Therefore E*n 4 = p.

Hence if Dl D-{ dk} then E# ¢ D¥ and hence E, is croocked in D

1 1 1 1°
Therefore theorem h 7 implles that: Ef is an e/2-crooked domain. Hence,
in subarc xz, there exists an r and s such that s is between x and r,
d(x,r) < ¢/2 and d(s,z) < ¢/2. Since d(z,y) < ¢/3 it follows that
d(s,y) < e. Hence A is e-crooked relative to x aﬁd y which impliesvthat

E¥ is an e-crooked domain.
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Definition 4.13 Let Dl’D2’°" be a sequence of circular chains

such that

(1) each link of D; is a comnected domain with diameter less

than 1/1, |

(2) the ciosure of each link of D, , 1s contained in a link
of Di’

(3) each D;,; is crooked in D,,

(%) each D¥ separates the plane.

Then M = ﬂD; is a pseudo-circle.

Theorem %.14 If M is a pseundo-circle then M is a hereditarily

indecomposable continuum that separates the plane.

Proof: If M is a pseudo-circle then it fdllows from theorem 4.13
that M is a heredltarily indecomposable continuum in much the same way
that theorem 4.8 followed from theorem %.7.

That M separgtes the p%ane follows from the fact that each D;

separates the plane. See the proof of theorem 35.21.

While it will not be shown that the pseudo-circle is unique with
respect to Bing's flrst question nor will it be shown that the pseudo-
circle falls to be homogeneous, the papers of Fearnley as described at
the first of this sectlon do give rise to the following characterizations
of the pseudo-circle. Theée characterizations will be stated without

proof.

Theorem 4.15 If M is a set then M 1s a pseudo-circle if and only

if M is a non-homogeneous chainable continuum. (10),
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Theorem 4%.16 If M is a set then M is a pseudo-circle if and only

if M is a chainable continuum that separates the plane. (9),
Homogeneous Continua in the Plane

After a non-degenerate homogeneous continuum different than a
simple closed curve was discovered the big problem in this area was to
characterize homogeneous continua in the plane. Though no such general
characterization as yet exists it 1s now known that there exist exactly
three topologically distinct nondegenerate homogeneous chainable
continua. Historically, this characterization was arrived at by the
following path. |

In 1920 Knaster and Kuratowski (21) presented the problem: Is
every non-degenerate homogeneous bounded plane continuum a simple closed
curve? In 1922 Knaster (20) gave his example of a hereditarily indecom-
posable continuum which he suggested might be homogeneous. In 1937
Zenon Waraszkiewicz (29) claimed to have proven that the only non-
degenerate homogeneous plane continuum was the simple closed curve. His
proof was in error as Bing (4) proved in 1948 that the pseudo-arc was
homogeneous. In 1951 Jones (16) proved thét all non-degenerate homo-
geneous plane continuum that does not separate the plane was indecompos-
able. By extending this Bing (5) proved that all nondegenerate
homogeneous chainable continua that failed to separate the plane was
the pseudo-arc. In 1954 Bing and Jones (6) discovered a homogeneous
decomposable continuum that separates the plane. This example was
called a "circle of.pseudo-arcs", which are topologically unique. (For
a detalled discription of a circle of pseudo-arcs see the thesis of

McKellips (22, p. 61).) dJones (17) proved in 1955 that the only
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decomposable homogeneous continua are the simple c;osed curve and the
circle of pseudo-arcs. This left only indecomposable chainable continua
that separate the plane open to the question as to its homogenity. When
Fearnly (10) proved that such continua were not homogeneous it followed
that the following three continua are the only topologically distinct
-nondegenerate homogeneous chainable plane continua.

(1) Simple closed curves

(2) Pseudo-arcs

(3) Circles of pseudo-arcs

While it is not known 1f there might exist homogeneous continua
in the plane that are not chainable it is this writer's feeling that

no homogeneous non'chainable continua exist in the plane.
Other Hereditarily Indecomposable Continua

It will be the purpose of this section to demonstrate the
existence of an uncountable number of topologically distinct hereditarily
indecomposable continua in the plane. These continua are not, of course,
chainable as the pseudo-arc and the pseudo-circle are the only chainable
hereditarily indecomposable continua. These continuva will be, however,
combinations of the pseudo-arc and pseudo_circle.

Before begining the major task of this section some theorems

from general topology will be stated.

Theorem L4.17 If Mi,Mé,.., is a sequence (finite or infinite)
of disjJoint compaét\sets that do not separate the plane such that for
some péint m every open neighborhood of m contains all but a finite
number of the sets {Mi} then the space determined by considering each

Mi as a point is homeomorphic to the plane.
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Proof: See Ottinger's thesis (25, P T).

Definition 4.18 If M is a set such that M is homeomorphic to the

closed unit disk in the plane then M is a closed 2-cell.

Theorem 4.19 If J is a simple closed curve and M is a compact

set that does not separate the plane contained in the interior of J
then B = J |J (interior of J) and B' = J U (interior of J) with M

considered to be a point are closed 2-cells.

Proof: See Wilder, page 94 (31, p. 9%),
Theorem 4.20 If C2 is the closed unit disk, st 1s the unit

circle, x,y € C2-Sl and g:Sl - Sl is a homeomorphism then there exists

a homeomorphism f:C2 - C2 such that f restricted to Sl is g and f(x) = y.

Proof: Leﬁ S be S'l X I, where I 1s the closedrunit interval;
with Sl x {0} ideﬁfified as a single point. Define héS = C2 by letting
h(s,r) = rg(s) + (1-r)y and define k:S - 2 by letting k(s,r) =
rs + (1-r)x. Note that multiplication by r and l-r is scalar multipli-
cation and that the addition is vector addition. |

Since g is continuous and scalar multipliCatiSﬁ and vector
addition are contiﬁuous it follows that h is conﬁinuoﬁs.

If h(sl,rl> = h(se,rg), r £ 0, then both g(glzland g(sg) lie on
the ray from y th;ough h(sl’rl)° Therefore g(sl)‘= 5(52) since that ray

since g is

intersects Sl at only one point. Therefore s, = s2

1

one-to-one,
Also h(gl,rl) = h(sg,rg) implies that rl(g(sl)-y) +y =

rg(g(sg)-y) + y which implies that r, =r Therefore h is one-to-one

26

since ry = O implies that T, = 0.
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If z € Cg, z =y, then there exists s € Sl such that z is on the
line segment from s to y. Therefore, for somer, 0<r g l, 2 =18 +
(L-r)y = h(g’l(s),r). Hence h is onto.

Since S is compact, 02 is Hausdorff and h is a one-to-one
continuous outo mapping the reference (lh, p. 76) implies that h is a
'hbmeomcrphism,

In a similar mannér it follows that k is also a homeomorphism.

Let f = hok™, Then if s € Sl, f(s) = h°k'l(s) = h(s,1) = g(s).
Also £(x) = h(k"l(x)) = h(Sl X {0}) = y. Hence f meets the required

conditions.

Theorem 4.21- Let Ml,Mé,ene be a sequence ‘of compact sets that

do not separate the plane such that for each n, Mn is contained in the
interior of the compact set B . Suppose also that for each n, bd B =
Jn isba simple closed curve and that the set {Bn} is pairwise disJoint,
FUrtﬁérmore, suppose that for some b € E2 every neighﬁorhood of b‘
coﬁtains all but ; finite number of Bn° Let Xy sXpyoes be a sequence
of points such that xn € int Bn for each n. Then there exists a con-
tinuous map f:E2 - E2 such thét for each n, f(Mn) = X, and on

EQ;QMh, f is a homeomorphism.

Proof: Theorem 4.19 implies that B and Bﬁ =B, with Mn consider-
ed as a point are both homeomorphic to Ce, where‘C2 18 the closed ﬁnit
disk. Let ngn - 02 and thﬁ i 02 be hOmeomorphisms} It should beée

1l N
noted that g(Jn) = h(Jn) =8, (29, p. 31) Then theorem 4.20 implies

there exists a homeomorphism k:C2 - 02 such that k restricted to Sl is

goh ™ and k(h(Mn))' = g(x ).

If x € QB,', Tet £(x) = (g7 ekeh)(x), If x ¢ By let £(x) = x.
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Since B = Qﬁ; = QBQ U {b} it follows that f is continuous of B-fb} since
f = g-lokeh is continuous on each Bga I [yl,yg,...} c B is a seguence
converging to b and U is a neighborhood of b then U contains U{Bn:n>N}
for some N. Then, for some N', if n > N' then either y, =bor
Y, € U{BA: n >N}. In either case f(yn) € UB: n >N}y {x} = U.
Therefore f is continuous on B at b and hence f is continuous on B.

IfTy e B°-int B then vy € EE-(B-{b}) or y € J for some n. If
v € EE—(B-{b}) then f(y) =y. If y € J | then fly) = (g'lokeh)(y) =
(g—logoh_loh)(y) = y. Therefore f is continuous on B2 -int B since it is
the identity function and hence f is continuous on EE.

In a similar manner f'l is continuous and hence 1 is a
homeomorphism.

Since f(Mn) = (g'lokoh)(Mn) = X, the theorem follows.

Definition 4.22 A point p is accessible from a set D if and only

if there exists an arc A with one of its endpoints p such that

A-{p} < D.

Lemma 4.2%3 If M is a hereditarily indecomposable continuum then
there exists p € M such that p iIs not accessible from the complement of
any nondegenerate subcontinuum of M containing p. That is, for every

nondegenerate subcontinuum N of M containing p, p is not accessible

from EE-N.

Proof: Let L1 and L2 be two parallel lines each of which separ-

ate M. Then Ll separates the plane into two components Ul and U2.

Hence if Cm is a composant of M there exist points x and y in Cm n Ul
and Cm N U2 respectively. Therefore there is a proper subcontinuum M'

of M containing x and y. Also M' < C, and M' N L # P since L, separates



79

M'. Therefore C; N L; # . Similarly C N L, # p. Hence there exists
8 proper subcontinuum ef M contained in Cmvthat intersects both Ll and
L2. Let Mh be an irreducible continuum from Ll to L2 eontained in Cm"
(23, p. 15).

Then, since there exlst an uncountable number of mutually
exclussive composants of M (23, P. 59) the collection [M } is uneount-
able. Let K be tne union of Ll,L2 and the closure of the union of the
elements of {Mh}.

Note that neither Ll nor 12 separates an element of {Mﬁ} for 1f
thils were so & proper subcontinuum of some Mm that Ilntersects both 11
and L2 could be feund by a pfocess used to determine.each Mhn This
would contradict Mh being irreducible and hence each»Mh.lies on or
between Ll and L2. It should also be noted that each Mﬁ separates the

closed strip K' between L and L.
Let D be a component of E2-K that lies between Ll and L2°

Suppose D intersects three elements of [M }, M M and M3 Let Xy %5

and x3 be points in M1 N L ,Mé n Ii and M5 n Ll with X5 between xl and

1 € Vi and x3 € V3 it

3
3 3 Also elther DC Vl or DC V5°

either case D fails to intersect both Ml and Ms which is a contrsdiction.

Hence no component of E2-K that lies between Ll and L3 has boundary

X3 on L Since K' M2 V U V., sep. with x

3 1’

follows that M1 « V and M, C V In

points in more than two elements of (M3

Since the number of components of E -K are countable there exists

Mk € {M } that does not intersect the closure of any component of EE-K

that lies between Ll and L2. Let Ml be a nondegenerate subcontinuum of
Mk that does not intersect eilther Ll or L2 and let A be an arc from the

complement of M to a point p € M, . Suppose Ap} E2—M. Then some
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subarc xp lies between, but not on, Ll and LQ- Therefore

(subarc xp)-[p} C:EE-K, vhich implies that subarc xp i1s contained in D,
where D is a component of EE—K that lies between Ll and L2, which in
turn implies that M1<: Mk intersects D which is a_contra.diction° There-
fore A-{p} ¢ZE2-M and no point of Mi ig accessible from EE-M. Hence
every hereditarily indecomposable continuum M contains a non-degenerate n
subcontinuum containing no point accessible from the complement of M.

As was done in the proof of theorem 3.28, M contains a non-
degenerate subcontinuum M' with diameter less than 1 and M' contains a
subconﬁinuum Mi sueh that no point of M1 is accessible from E2-M°
Suppose that M has been defined with diameter less than 1/i. Then

i

there exists a subcontlnuum M, 4 oF Mi with dlameter less than 1/(1i+1)

such that no point of M is accessible from the complement of Mi'

+1

Let p e M Then if N is a subcontinuum of M containing p there exists

ia

i such that Mi & N. Since p e M, ., p is not accessible from the

i+l
complement of Mi and hence p is not accessible from the complement,of N,

Thus the lemma holds.

Lemms 4.24 If M is a hereditarily indecomposable continuum, D is
a domain intersecting M and C is a composant of M then there exists
P € CN D such that' p is not accessible from the complement of any sub-

continuum of M containing p.

Proof: Since C 1s dense in M, there ex1sts q e cCno. Let U be
an open sphere containing q such that U & D and U does not contain M.
Let N be an irreducible subcontinuum of M from q to bd U. Suppose for

some x € N, x é U. Then bd U separates N and there exists a point q' in

the composant of N that contains g such that q' € N-T. Hence N contains
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a proper subcontinuum N' that contains both q and q'. Since bd U sep-
srates N', (bd U) N N' # ¢ which contradicts N being irreducible from

g to bd U. Therefore N c U which implies that N DN C. Lemma 4.23

implies that there exists & point p é N such that p is not accessible

from the complement of any subcontinuum of N containing p. Such a p

meets the conditions of this lemms.

It can now be shown that there exists an uncountable number of
topologically distinct hereditarily indecomposable continua in the plane.
This will be done by associating with every subsequence of the sequence
of positive integers a hereditarily indecomposable continuum in such a
way that given two such segquences the continua associated with them
wouid he topologically distinct. Since there are an uncountable_number
of subsequences of the positive integers this would produce the desiféd

result.

Theorem 4.25 There are an uncountable number of topologically

distinct hereditarily indecompogable continua in the plane.

Proof: Let M be a pseudo-arc in the ‘Hane; let x € M and let

Xy3Xps e be a sequence of points of M that converge to x. Let Bl be

a closed disk centered at x; such that B, N {x;: 1 >1} = $. Suppose

1
the closed disks Bi centered at xi; i < n, have been defined so that
they are pair-wise disjoint and that (ghi) N {xi: izn} = . Then let
B be a closed disk centered at x so that B N ﬂ@bi U {x:1>n )}= p.

Let C.,C

12050 be a sequence of distinct composants of M and let

P= {pl,pz,.,, } be a strictly increasing seguence of positive integers.

i=i J
Then for each n, if"}l:pi <nc«< ;pi let yn € int Bn N C. such that Yn is

J

not accessible from the complement of any subcontinuum of M containing
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Y, - Such a y  exists by lemma 4,2k, (Note: ipi = 0.,) It should be

noted that each CJ contains exactly pJ

For each n let Mn be a pseudo-~circle Yn togeather with the union

elements of the sequence [yn}.

of all of the bounded complementary domalns of Yn (there exists only one
bounded complementary domain of a pseudo-circle, though this has not
been shown) such that M < int B . Note that ba M =Y . (2, p. 4B)
The definition of Mn implies that Mn falls to separate the plane so

2

that theorem 4.21 implies that there exists a continuous map f:E2 -+ B

so that f(Mn) {yn} for each n and on EE- M, fisa homeomorphism.

" Let MP

loosely speaking, M with the points Yn replaced with the pseudo-circles

]

f'l(M)-Q' (int Mn)., It should be observed that My, is,

Yn'

Suppose H is a non-degenerate subcdntinuum of MP such that for
some n, H lntersects but does not contain Yh. Thep the reference
(24, p. 86) implies that there exists q € Yn-H such ﬁhat q is accessible
from E2-(H U Yn)° Therefore there exists an arc A.&.Ez-(H U Yn-[q})
with end-point d. Note that some subarc yq of A liésnin f_l(Bn) and -
that f(subarc yq)"= aré y'yn is an arc in E2 with 6ne end-point yn,
since f is a homeqmorphism on Bn’Mh’ and that HN érc yvyn = {yn}°‘ This
implies that Yy ié\gccessible from the complement Qf:f(H) which implies
that f£(H) is degenerate since Yn is no£ accessibleﬂfrom the complemgnt‘
of a non-degeneratgwsubcontinuum of M containingvynem‘Therefore He Yn
and H is hereditayily indecomposable. |

Now supposé Hvis a non-degenerate subcontinuu@‘of MP such that
for all n, elther Y €« Hor Y N H= #. Suppose that H = K, U K, 1s the

union of two proper subcontinua of H. Since H is decomposable it

follows that H¢ Y for any n. Therefore f(H) is a non-degenerate
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subcontimmm of M. Also it follows that f(H) = f(Kl) U f(KE) is the
union of two continua. Since f(H) is indecomposable either f(H) = f(Ki)
or f(H) = f(Ké). Without loss of generality suppose f(H) = f(Kl). Then
by the previous paragraph, since f(H) = f(Ki) is nondegenerate, if
Y, € f(H) = f(Kl) then Y < H and Y < Ki; Also, since f is one-to-one
on MPJ?Yi, it folléws that H = K1° This contradicts Ki being a proper
subcoﬁtinuum of H.w'Therefore H is 1indecomposable and it follows that
MP is hereditgrily indecomposable. |

It should be noted that for any sef NcM, N‘is a proper subcon-
tinuum of M if and only if f-l(N) is a proper subcontinuum of MP’
Therefore C is a composant of M if and only if f"l(C)vis a composant of
MP' Iherefore MP is a hereditarily indecomposable cgntinuum with
exactly one composant containing exactly pi pseudo-éi;cles for each 1
and also with no other composants containing a pseudo-circle.

Therefore if P and P' are two strictly increaéing sequences of
integers with P % P' then, without loss of generality, there exists
b € P-P'. Then MP contains a composent with exactly b pseudo-clrcles
while M?, has no such composant. Therefor¢~M? and MP’ are topologically

distinct and the theorem is proven.



CHAPTER V
SUMMARY

It has been the purpose of this paper to present to the reader
an introduction to the theory of dimension and also to present a detailed
account of the curreht literature involved with the topic of hereditarily
Indecomposable cbntinua.

Chapter II discussed those elements of the theory of dimension
that would be applied in the later chapters. An effort was made to
write all of the proofs in this chapter so as not to omit any steps that
would be difficult for a person who had just finished his first course
in topology. |

Chapter III presents a discription of the existence of hereditar-
ily indecomposable continua of all dimensions. Included in this chapter
are the statements of all known characterizations of hereditarily
indecomposable continua, inclﬁding one that had previousely been undis-
covered. Also in this chapter 1s a statement of the ideas involved with
hereditarlly infinite dimerisional compact spaces.

In Chapter IV the paper limits 1tself to the plane with a
discussion of the pseudo-arc and the pseudo-circle. Much of this chap-
ter 1s a review and an updating of the thesis of Terral McKellips (22).
The two most important developments of this chapter are the relatingvof
the ideas of crooked domalns and crooked chains and the proof of the

exlistence of an uncountable number of topologically distinct

Bl
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hereditarily indecomposable continua in the plane.

Related to this paper are several topics that might prove inter-
esting for further study and research. Among these would be the study
of the properties of the pseudo-arc or the pseudo-circle and the study

of hereditarily infinite dimensional spaces.
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