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CHAP!'ER I 

INTRODUCTION 

The major purpose ot this paper will be to expose the known 

examples of hereditarily indecomposable continua, the existence theorems 

o~ hereditarily indecomposable continua and the ~roperties of such 

continua. 

The second chapter of this paper develops the theory of topolo­

gical d1mension to the extent that will be needed for the rest of the 

paper. 

Chapter III presents the basic properties of hereditarily inde­

composable continua including three cha,I,acterizations of these continua, 

one of which is original in this paper. Also in this chapter is a dem­

onstration of the existence of hereditarily indecomposable contionu of 

all topological dimensionso 

The forth chapter is a review of hereditarily indecomposable 

plane continua. The pseudo-arc and pseudo-circle are discussed in 

detail in this chapter. It is also proven that there exist an uncount­

able number o~ topologically distinct hereditar;ily indecomposable 

continua in the plane. 

History 

Brouwer (7), in 1910, was the first to describe an indecomposable 

continuum, that is, a continuum which could not be expressed as the union 

l 
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of two proper subcontinua. In 1922 Knaster (20) described a continuum 

that was hereditarily indecomposable. Moise (23), in 1948, described 

a hereditarily indecomposable continuum that was homeomorphic to each 

of its subcontinua. It was later proven by Bing (2) that the continuum 

of Knaster and the continuum of Moise were homeomorphic and homogeneous. 

In 1950 Bing (3) demonstrated the existence, for every n, of an n-1 

n dimensional hereditarily indecomposable continuum that separates E. 

Also he described a way that an infinite dimensional hereditarily inde-

composable continuum could separate the Hilbert Cube. 

In 1912 Poincare put forth an intuitive concept of the geometric 

meaning of dimension. A year later Brouwer constructed a precise and 

topologically invariant definition of dimension based on this intuitive 

concept. Brouwer's paper went unnoticed for several years until Menger 

and Urysohn, independent of Brouwer and of each other, recreated 

Brouwer's concept and made some improvements in the theory. They also 

made the concept of dimension the cornerstone of an extremely fruitful 

theory that brought unity to a large part of geometry. One of the 

basic beauties of the theory of dimension is that it provides a simple 

topological property that distinguishes the Euclidean n-spaces from one 

another. (14, p. 3). 

Definitions and Notation 

This section will review the basic definitions and notation that 

will be used in the rest of the paper. If a term is used but not de-

fined it will be assumed that it is defined in Hall and Spencer (11) or 

Moore (24). 

Much of the work of this paper will deal with subsets of the 



n n Euclidean n-spaces, E. Th~ space E will be the collection of ordered 

n-tuples ot real numbers with the norm defined as llx!I = ) ~ x~ , where 

x = (x1,x2, •.. ,xn). The surface of the unit sphere in En, 

{x e; En: llxll = l}, will be denoted as sn-l. At times En will be cons id-

ered as a vector space with the scalar multiplication defined as 

r(x1,x2, • • .,xn) = (rx1,rx2, ••• ,rxn) and vector "~ddition defined as 

(x1,x2,·~·,x!J.) + (y1,Y2, .. •,Yn) = (x1+Y1,x2+Y2,•••,xn+yn). 
n i: 

Since E is the topological p~oduct of n copies of the real line 

and since multiplication and addition are continuous on the real line it 

follows that scalar multiplication and vector addition are continuous 

n on E. 

The Hilbert space, -i/1, will be considered to be the set of all 

( ) "" 2 real sequences x = x1,x2,... such that ~xi<~. In the Hilbert space 

!lxll = J f'x: is the norm of x. The Hilbert space can be considered to 
' 1 

n be a vector space in much the same way as can E. At times it will be 

convenient to consider that Enc~ by supposing that (x1 ,x2, ••• ,xn) = 

(x1,x2,···,xn,o,o, ••• ). 

For notational convenience we will let In= fx E En: lxil ~ l, 

i = 1,2, ••• ,nJ be then-cube. Also, for notational convenience, let 

Iw = fx E ~: lx11 < 1/iJ be the Hilbert cube. n If E is considered to 

be a subspace of J/l then we 'Will let In =·ifx E E : lx11 < 1/iJ be a sub­

set of Iw. Though these two definitions for In a.re not equivalent they 

do describe homeomorphic sets and will not cause confusion in their 

context. It shall be assumed that, unless otherwise stated, that all 

spaces will be subspaces of~. This means that all spaces will be con­

sidered to be separable and metric (18, p. 125). 

The notat:l,.on d(x,y) will be used fo:r; the metric distance between 



x and y for some fixed, but usually undefined, metric. For En and if 
the distance will usually be the norm metric, where d(x,y) = l!x-Y!I• 

The following definitions will be used in this paper. 
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Definition 1.1 If Hand Kare two sets such that H n K = p and 

K n H = p then H and K are said to be separated sets. 

If Mis the union of two nonempty separated sets, Hand K, then 

the notation M =HU K sep. will be used. 

Definition 1.2 If Mis a space with Ac Mand B c M then A and 

B can be separated (in M) if and only if for some Hand K, M =HU K sep. 

with AC Hand BC K. 

It will be said that A and B can be separated (in M) by L if and 

only if A LJ B c: ~-Land A and B can be separated in M-L. 

Definition 1.3 A space Mis normal if and only if for any two 

closed disjoint subsets A and B of M there exist open subsets U and V of 

M such that Un V = p with Ac::: U and B c v. 

Definition 1.4 A space Mis completely normal if and only if 

every subspace is normal. 

Definition 1.5 A space Mis a continuum if and only if Mis a 

connected compact space. 

Definition 1.6 A continuum Mis indecomposable if and only if 

M =HU K, where Hand Kare continua, implies that either M =Hor 

M = K. 

A continuum Mis hereditarily indecomposable if and only if every 

subcontinua of Mis indecomposable. 
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Definition 1.7 If Mis a continuum and p € M then pis a cut-

point of M if and only if M-{p} = H U K sep, 

Def'ini tion l.b An arc is a homeomorphic image of the closed unit 

interval [0,1). The images of O and~ are the end-points of an arc. 

Ba$iC Theorems 

The theorems that are stated in tnis section are those elementary 

theorems that will be used in the rest of this paper. Some of these 

theorems will be proven. The source of the others are indicated by the 

references given at the end of their statements, 

Theorem 1.9 The translation f:En ~ En defined·as f(x) = x + x
0

, 

where x
0 

is fixed, is a homeomorphism. 

Proof: Since vector addition is continuous f is continuous. Also 

-1 l f , defined as f- (x) = x - x
0

, is continuous and hence f is a 

homeomorphism. 

Theorem 1.10 The function f:En_. En defined as f(x) = rx, where 

7 f O is a fixed scalar, is a homeomorphism. 

Proof: This follows from the continuity of scalar multiplication. 

Theorem 1.11 If Dis the boundary of an n-cube and Sis the 

n surface of an n-sphere in E then Sand Dare homeomorphic. 

Proof: Both Sand Dare boundaries of closed n-cells, See the 

reference (31, p. 92). 

Theorem 1.12 The set S = Sn-[p}, where p = (o,0, •• ,,0,1) c En+l, 

n is. homeomorphic to E · • 



Proof: Define f:S ~ En as f(x1 , ••• ,xn+l) = (y1 , ••• ,yn) where 

Yi= xi/(1-xn+l), l ~ i ~ n. 

Then f-1 :En ~Scan be given by f-1 (y1 , ••• ,yn) = (x1 , ••• ,xn+l) 

2 2 2 
where xi= 2yif(l!YII + 1), 1 ~ i ~ n, and xn+l = (!IYII - 1)/(HYII + 1). 

-1 Since both f and f are continuous it follows that f is a 

homeomorphism. 

Theorem 1.13 If b e En and U = lx e En: llb-xjj < 7) is an open 

sphere centered at b then there exists a homeomorphism f from En-lb} 

onto itself such that f(En-U) = U-lb}. 

Proof: Define g(x) = x - b, h(x) = (1/y )x and k(x) = x/l!xjj2 • 

-1 -1 Then let f = g oh ck 0 hog, 

Theorem 1.14 The intersection of a collection of continua that 

are linearly ordered by set inclusion is a continuum (24, p. 14). 

Theorem 1.15 If Tis a component of the domain D relative to 

the continuum Mand Dis a proper subset of M then the boundary of D 

with respect to M contains a limit point of T (24, p. lb). 

Theorem 1.16 A space Mis a separable metric space if and only 

if M can be imbedded in the Hilbert cube (1~, p. 125). 

T4eorem 1.17 If U is an open set in the separable metric space 

M then U is the countable union of closed subsets of M. 

6 

Proof: Let x € U and u be a countable basis for M. Then M nor= 

mal implies that there exists d.isJoint open sets U1 and V' such that 

U' and V' contains M-U and lx} respectively. The definition of basis 

implies that there exists V € u such that x € Ve V'. Since V n U' = ¢ 
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and u• is open, V n U' = rp. Since U' contains M-U, V c U,~ Therefore 

every point in U is contained in an element of u whose closure is con­

tained in u. Hence U is the union of those elements of u whose closure 

is contained in U and hence u being countable implies the desired result. 

Theorem 1.18 A space Mis completely normal if and only if for 

any two separated sets A and B of M there exist disjoint open sets U and 

V of M such that' A c: U and B c: v., (11, p. 110). 



CHAP!'ER II 

INTRODUCTION TO DIMENSION THEORY 

Definition and Characterizations of Dimension 

One of the basic objectives for the concept of qimension is to 

present a topological property that distinguishes the various Euclidean 

n-spaces from one another. Since properties that involve the :natural 

numbers suggest induction it is lo~ical that dimension shall have an 

inductive definition. A logical starting point would be the dimension 

of the "smallest" possible set, the empty SE;it. 

Definition 2.1 The empty set has dimension -1. 

If Mis a space then the dimension of Mis~ n (dim M ~ n) if and 

only if M has a basis a such that if A e O then dim (bd A)< n-1. 

If Mis a space and dim M < m for some m then dim M = n, where 

n is the least integer such that dim M ~ n. If for all nit is false 

that dim M ~ n then dim M = co. 

There are several sets of points whose dimension follows qirectly 

from the definition of dimension. Included among these are the follow~ 

ing examples, stated as theorems. 

Theorem 2.2 Every finite space has dimension zero. 

Theorem 2.3 The dimension of the ratioU1;1.ls as a subspace of the 

reals is zero. 



Proof: The reals have a basis consisting of intervals whose 

endpoints are irrational. The boundl;i.ries of these intervals are empty 

relative to the rat[6na1s. 
~. 

Theorem 2.4 The dimension of ~he irrationals as a subspace of 

the reals is zero. 

Proof: The reals have a basis oonsisting of interval~ whose 

endpo~~ts are rational, 

Theorem 2.5 If Mis a connected space containing at least two 

points then dim M ~ 1. 

Proof: Let D be ~n open set of M such that D and M-D are non-

9 

empty. Then if D' c D, D' f ¢, is an open set the bd D' ~ p. Therefore 

M has no basis a such that if A e 13, bd A :;\ ¢. Hence dim M /: o. It is 

evident that dim M f -l. Therefore dim M ~ 1. 

Theorem 2.6 The dim Sn< n. 

Proof: By induction, dim s0 
< 0 since s0 is finite. Assume that 

· dim Sk < k, Then Sk+l has a basis consisting of s~herical open sets 

k which have boundaries that are homeomorphic to S • (See theorem 1.12) 

Therefore dim Sk+l ~ k+l by the inductive assumption. 

n The following theorem bounds the dimension of E above by n. 

However, the proof that dim En=:; n will req~ire theorems that ocqur in 

later sections of this paper. 

Theore~ 2.7 The dim En< n. 

Proof: n The space E has a basis consisting of spherical open 
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sets. n-1 The boundaries of these open sets are homeomorphic to S since 

each spherical set is homeomorphic to the unit ball, Therefore the 

theorem follcws from theorem 2.6 and the definition of dimeijsion. 

A result of this theorem and theorem 2,5 is that E has dimension 

one, This fact is stated in the following theorem. 

Theorem 2,8 The dim E = l, 

Once the dimension of arbitrary spaces has been determined it 

is helpful to examine local dimension. For this it is necessary to 

have a definition of dimension of a space at a point in the space, 

Definition 2,9 If Mis a space and p e M then the dimension of 

Mat pis n (dim Mat p = n) where n is the least integer such that M 

has a basis u at p such that if A Ea then dim (bd A)~ n-l. If for all 

nit is false that dim Mat p ~ n then dim Mat p = ~. 

Example 2.10 Let M be a closed interval I in E together with an 

isolated point p fo I in E, Then if q EI, dim Mat q = l, Also 

dim Mat p = O. 

It is apparent from the definitions that if M js a space then 

dim M = n where n is the least integer such that for every p e M 

dim Mat p ~ n. It should also be noted th~t since every space under 

consideration has a countable basis that the word. "basis" in the defi,. 

nitions can be replaced QY "countable basistt. The dimension of a space 

is a topological property as will be shown in the following theorem, 

Theorem 2,11 If Mand N are homeomorphic spaces and dim M = n 

then dim N.= n. 
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Proof: If M = p then N = p and dim M = dim N = -l. Suppose that 

the theorem holds for n < k-1. Then if dim M =kit foilows that M has 

a basis a such that if A Eu then dim (bd A)~ k-1. If f is a homeomor~ 

phism from M to N then the set m = (B:B = f(A), A ea} is a basis for N 

and if B = f(A) Em then bd B = f(bd A). Therefore dim (bd B) < k-l 

by the inductive assumption since dim (bd A)~ k-1. Hence dim N < k by 

the definition of dimension. If dim N < k then the inductive assumption 

would imply that d;lm M < k. Therefore d;lm N = k. Hence the theprem 

follows by induction. 

Theorem 2.12 lf Mis a space, Kc: Mand dim M = n then dim K '!!: n. 

Proof: By induction theorem 2.12 holds for n = -1. Hence if 

theorem 2.12 holds fork< n then if dim M = n tQere is a basis u of M 

such that if A Ea, dim (bd A)< n. Then m = (B:B CK n A, A E O} is a 

basis for K and if B = K r, A E: m then bd A contains bd B relative to M 

which in turn contains bd B relative to K. Hence dim (bd B) < n since 

dim (bd A)< n, Therefore dim K < n. 

The following two theorems give characterizations of the dimen~ 

sion of spaces that will be useful in the proofs of several of the 

theorems that are to be found in the rest of this chapter. 

Theorem 2.13 A subspace M' of a space M has dimension< n if and 

only if every point p of M' has a basis a in M such that if A E o, 

dim (M' n bd A)< n. 

Proof: Suppose the condition holds and let p EM' and let a be 

a basis of pin M such that if A E: a then dim (M' n bd A)< n. Then 

m = fB:B = M' n A, A ea} is a basis of pin M' such that if Be~ then 
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dim (bd B rel M') < n since if 13 = M' n A then (bd B rel M') c M' n bd A. 

Hence for all p € M' the dim M1 at p ~ n which implies that dim M' ~ n. 

Conversely, suppose that dim M' ~ n and let p € M'. Let Ube an 

open subset of M containing p and let U' ~ M1 nu. Then the definition 

of dimension implies that there exists an open subset V' of M' contain­

ing p such that dim (bd V' rel M1 ) < n and V' c U'. Since V' and M'-V'" 

are separated sets the complete normaiity of M implies that there exist 

disJoint open sets A and B of M such that V' c A and M'~V'" c B. There­

fore, if V =An Uc U and x € M' n bd V then x t V' sinqe V' c v. 

Thus M' n bd V c bd V' rel M', which implies that dim (M' n bd V) ~ 

dim (bd V' rel M') < n. Therefore a= fA: p € A, A open in M1 

dim (M' n bd A)< n} is a basis of pin M that meets the necessary 

conditions, and the theorem is proven. 

Theorem 2.14 If Mis a space then dim M ~ n if and only if for 

every p e M and closed set K where K does not contain p, p can 'be sep~ 

arated from K by a closed set C where dim C < n. 

Proof: Suppose dim M ~ n. Then if p ~Mand K is a closed set 

not containing p there is an open set U containing p such that Uc M-K 

and dim (bd U) < n. The bd U is closed and separates p from K. 

Conversely, if the condition holds and p €Mand U is an open 

set containing p then there exists a closed set C such that dim C < n. 

and M-C = A U B, where p € A, M-U c B and A il B = p. Since A is an 

open set, bd Ac: C. Therefore, by theorem 2.12, dim (bd A)~ dim C < n. 

Since Ac U it follows that M has a basis a= (A:A is open and dim 

(bd A)~ n-1}. Hence dim M ~ n, 

Corollary 2,15 If Mis a space then dim M = n if and only if 
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dim M ~ n and for some p €Mand closed set C not containing p no closed 

set of dimension less than n-1 separates p from c. 

Proof: To suppose the contrary contradicts theorem 2.14. 

Union Theorems 

One facet of the theory of dimension is the consideration of the 

dimension of the union of a collection of sets when the dimension of 

the elements of the collection are known. The first such theorem will 

concern the union of a countable collection of closed sets of dimension 

zero. However, to do this a lemma concerning the separation of closed 

sets will be needed. 

Lemma 2.16 If Mis a non-empty space then dim M = 0 if and only 

if any two disjoint closed subsets of M can be separated in M. 

Proof: If any two disJoint closed subsets of M can be separated 

in M then dim M = 0 by theorem 2,14 since any point is a closed set. 

If dim M = 0 let C and D be disjoint closed subsets of M. Then 

if p € M either pt Corp t D, Hence by theorem 2.14 either p and C 

can be separated in Mor p and D can be separated in M. Hence for each 

p € M there is a set U(p) containing p that is both open and closed in M 

such that either U(p) n C = p or U(p) n D = p. Since M has a countable 

basis (U(p):p € M} covers M implies, by the Lindelof property, that 

there is a sequence u1 ,u2 , ••• such that Ui € (U(p);p € M} for each i 

and yui = M./ (11, p. 107). 

Then if p € M let Ui be the 

first element of the sequence such that p € ui. Then p € VJ if and only 

if i = J• Hence: 



(1) CJv. = M and 
I J. 

(2) vi n vJ = p if if J. 

Since Vic Ui for each i 

(3) either Vin C = p or Vin D = ¢, 

Since Ui is open and uuk is closed, 

(4) vi = ~\ - ~Uk is open. 

14 

Let C' be the union of all Vi such that Vin D = P and let D' be 

the union 01 all other vi. 

Then C' U D' = M by (1), C' n D' = p by (2), Cc C' and De: D' 

by (3) and both C' and D' are open by (4). Hence D and Care separated 

in M since M = C' U D' sep. 

Now we can prove the union theorem for sets of dimension zero. 

Theorem 2.17 A space which is the countable union of closed 

subsets of itself each of which have dimension zero has dimension zero. 

"" ~roof: Suppose M = yci, where each Ci is a closed subset inM 

that has ~imension zero. Let Kand L be two disJoint closed sets in M. 

Then Kn c
1 

and L n c
1 

are disJoint closed subsets of the zero-

dimensional set cl::° Hence, by lemma 2,14, thexe exists disJoint closed 

sets A1 and B
1 

in c
1 

such tqat Kn c
1 

c: A1, L n cl C: Bl' Al n Bl = ¢ 

an~ A1 11 B1 = c1 • Therefore K U A1 and L U B1 a:i;e disJoint closed sub­

sets of M. Hence, by the normal~ty of M, there exists open sets G1 and 

11J_ in M such that 1 o1 n Hi' = ¢ and K U A1 c: Gl' L U B1 ' c: I\. Hence 
.-~ ' - . . 

G1 U ~:) c1 • 

Suppose Gi-l and H1 ... 1 are open sets in M such that Gi-l n H;i-l 

= p. Then by the same process as used above, using Gi,.l instead of K 



and Hi•l instead of L, there exists open sets G1 and Hi such that 

G i U H1 .:J Ci , G i -l c: G +, Hi -l c: Hi and G i n Hi = ¢. 
- a, 

15 

Hence, if G = yo1 and H = ~Hi then G and Hare disJoint open sets 

"" such that G U H '::J yci = M, K c G an9, L c: H, Therefo:re K and L are sep-

arated in Mand hence, by lemma 2.16, dim M = o. 

Theorem 2.18 Every countable set has dimension zero. 

Proof: A countaple set is the uniop of a countable collection of 

singleton sets, each of which is closed and has dimension zero, 

It is of interest to determine the dimension of the union of two 

sets when the dimensions of each set is known. The following theorem 

provides an upper bound for the dimension of the union of two sets in 

terms of the dimensions of each of them, 

Theorem 2 ,19 J;f M is a space of finite dimens:lon 1;1.nd M = A I.I B 

then dim M ~ 1 + dim A+ dim B. 

Proof: ::!3Y" double induction. If dim A= -1 and dim B = -l then 

dim M = -1 ~ l + d:lm A+ dim B since M = ¢. 
Now assume that theorem 2.17 holds for the following two cases: 

1) dim A~ m and dim B ~ n.l 

and 2) dim A< m~l and dim B ~ n. 

Suppose dim A = m and dim B = n and let p e: A U B. Then without 

loss of generality assume that p ~ A. 

Theorem 2,13 :Lmpl..ies that if U is a neighborhood of pin M there 

exists a neighborhood V c U such that p e: V and dim (An bd V) < m. 

Since B n bd Ve B theorem 2.12 implies that dim (B n bd V) ~ dim B = n. 
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The bd V ;:: (A U B) n bd V ;:: (A n bd V) U (B n bd V) and hence 

dim (bd V) = dim [ (A n bd V) U (B n bd V)] s; l + (m-1) + n = n+m by the 

inductive assumption, 

Therefore M has a basis u :;:; ( C: C is open in M and dim (bd C) .s: 

m+n}. Hence, dim M ~ m+n+l = dim A + dim B + L 

The bound given by theorem 2.19 is the best possible, since 

dim E = 1 + dim Ra+ dim Ir. It is obvious that dim (AU B) > 

max(dim A, dim B} by theorem 2.12. Between these bounds, however, no 

general con~itions can apply. 

The following union theorem for sets of dimension n is a general­

ization of theorem 2,17, 

Theorem 2.20 A space which is the countable union of closed 

subsets of dimension~ n has dimension~ n. 

Before proving theorem 2.20 it is us.eful to prove a corollary. 

It 'should be carefully noted that the corollary for the case n = k 

follows from the union theorem for sets of dimension k-1. The corollary 

for the ca~e n = k will then be used in the inductive proof of the union 

theorem for sets of dimension k. 

Corollary 2,21 If a space has dimension n ~ 0 it is the union 

of a subspace of dimension~ n-1 and a subspace of dimension zero. 

Proof of corollary 2.21' Let dim M = n. Then there exists a 

countable basis u for M such that if A€ a, dim (bd A)< n. 

Let K = U(bd A~ A€ a}. Then by the union theorem for sets of 

dimension n-1, dim K = n~l. 

If A e u then (M~~) n bd A=¢, and hence, by theorem 2.13, 



17 

dim (M-K) = o. Therefore Mis the union of K, a subspace of dimension 

~ n-1 and M-K, a subspace of dimension zero. 

Proof of theorem 2.20 If n = -l the theorem is thru. If n = 0 

then theorem 2.20 becomes theorem 2.17 which has been proven. 

Assume that theorem 2.20 is true for the case when n = k-i. Note 

again tb,at corollary 2.21 now follows. 
00 

Let M = yci, where each Ci is closed and for each i, dim Ci ..:; k. 

Let 
;..,, 

i = 2,3,4, •• p K1 = c1 and K1 = Ci - UC , Then if p € M, 
I j 

let CJ be the first element of the sequence such that p € CJ. Then 

p € K. if and only if i = 
J. J' Therefore (1) M = QKi and (2) Ki n KJ = 

if if J. Since Ki c Ci, (3) dim Ki~ k, 
:.-, 

Note that M ""'-;JC J is open in M and hence can be expressed as the 

union of a countable number of closed subsets of M since Mis a metric 

space by theorem 1.17. Therefore, Ki = Ci - i~Jc J = Ci n (M - ~'c J) is 

the union of a countable number of closed sets in M. 

By corollary 2,21 for the case n = k each K1 = H
1 

U Ni, where 

dim Hi< k and dim Ni~ o, witb. = unless Ki=¢. "" Let H = UH. and N = 
I J. .. 

UN •• 
I J. 

¢ 

if J. Hence each H. is the union of a countable number of closed sets 
J. 

of H since Ki is the union of a countable number of closed sets of N. 

Similarly, each Ni is the union of a countable number of closed subsets 

of N. 

Since dim H < ~, if Ac H
1 

then dim A< k and since dim N ~ 0 

if B ec: Ni then dim B ~ 0, Therefore His the union of a countable num­

ber of closed sets of H, each of which has dimension< k which implies 

by the inductive assumJ?tion that dim H < k. Also N is the union of a 

countable number of closed sets of N each of which has dimension~ o. 
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Therefore, by theorem 2.17, dim N ~ O, 

Hence dim M = dim (HUN)~ 1 + dim H + dim N ~ k by t?eorem 2.19 

and hence the theorem follows by induction. 

An interesting result of this theorem ;Ls the following corollary. 

Corollary 2.22 If Mis a spaGe ct dimension n then Mis the 

union of n+l subspaces of dimension zero. 

Proof: By corollary 2.21, M = M:i_ U H1 , where dim M:i_ ~ n.,..l and 

dim H1 = O. Similarly, M1 = M2 U ~, where dim M2 ~ n~2 and dim H2 = O. 

Repeating this n times, M = M U H U }! 1 U ••• U H.., where dim Hi = 0 n n n- ~"1. 

for each i and dim M = o. 
n 

Another interesting result of this theorem is that the dimension 

of a non-empty space remains uneffected by the addition of a single 

point. The following corollary generalized this fact. 

Corollary 2 .23 If M ;::;: A U B, where B is closed in M, then 

dim M = max(dim A, dim B}. 

Proof: Let n = max(dim A, dim BJ. Then M-B is open in Mand 

hence is the union of a countable number of closed subsets of Meach of 

which is a subset of A and hence has dimension~ n. Hence Mis the 

countable union of a closed subsets each of which have dimension~ n. 

Therefore, by theorem 2.20, dim M ~ n. Since either A or B has dimen-

sion nit follows that dim M = n, 
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Separation Properties of Dimension 

It is of interest to consider the dimensions of sets that separ~ 

ate a given space. This section will be concerned with such sets. One 

of the primary goals of this section will be to develop the tools neces-

n sary to prove that for each n, dim E = n. This proof will be done by 

n considering separations of I, the Euclidean n-cube. The first two of 

the separation theorems concern the separation of two closed sets of a 

space relative to a given subspace, 

Theorem 2.24 If C and Dare disJoint closed subsets of a space 

Mand A is a subset of M of dimension zero then there exists a closed 

set Bin M separa~ing C and D such that An B = ¢. 

Proof: Since Mis normal, there exists two o~en sets U and V 

such that Cc u, D c:: V and Un V = ¢. 
The disJoint sets Un A and V n A are closed in A and hence, by 

lemma 2.16, A= C' U D', where Un Ae C', vn Ac D', cTn D' =¢and 

C' n lY = ¢• 

Therefore (C' u C) n (D' LJ D) == (c"'"" u C) n (D' U D) = 

(c"'"U C) n (D' u D) = (c"'"n D') u (C n D') u (C'"n D) u (C n D) = ¢. 

since C'" c. u, V c v, C n D = ¢ and C' and D' are separated sets. 

Similarly,jC' u C) n (D 1 u D) = ¢. 
-~·: ; 

Therefore C' U; C and D' U D a.re separated sets which implies, by 

the complete normality of Mand theorem 1.18 that there exist open sets 

Wand Yin M sucp that w n Y = ¢, C' UC cw, D' U De Y and W n Y = 
(C' U C) n (D' U D). 

'.L'herefore B = bd W separates C and D and since A c W U Y, 

An B= ¢. 
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Theorem 2.25 If C and Dare disJoint closed subsets of a space 

Mand A is a subset of M of dimension~ n then there exists a closed set 

Bin M separating C and D with dim (An B) < n. 

Proof: If n = O then either A=¢, in which case the dim An B = 

-1, or dim A == 0, in which case the theorem is e;x;actJ,.y theorem 2. 24. 

If n > 0 corollary 2.21 implies that A= HU K, where dim H < n 

and dim K = 0, By theorem 2.24, C and Dare separated in M by a closed 

set B such that B n K = ¢. Hence B n A= B n H c H which implies that 

dim B n A < n. 

This next characterization of dimension is an extension of the 

characterization of dimension zero given in lemma. 2.16. 

Corollary 2.26 A space M has dimension~ n if and only if any 

two closed disJoint subsets of M canoe separated PY a closed set of 

dimension< n. 

Proof: If dim M ~ n then the result follows from theorem 2.25 

by letting A= M. If the conditions hold then any point can be separated 

from any closed set not containing it by a closed set of dimension< n, 

Hence, by theorem 2.14, dim M ~ n. 

The next theorem giv~s a method for maximizing the dimension of 

a space. This will be one of the primary tools that will be used to 

n prove the dimension of E. 

Theorem 2.27 Let M be a space of dimension< n and let Ci, c1, 
i = 1,2,3,, •• ,n, be n pairs of closed subsets of M such that Ci n c1 = ¢ 



for each i, Then there exist closed subsets of M, B1 ,B2 , •• ,,Bn such 

that Bi separates c
1 

from c1 and ~Bi=¢. 
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Proof: From corollary 2.26 there exists a closed set B1 separat­

ing c1 and c1 such tha.t dim B1 ~ n-2. Suppose closed sets B1 ,B2 , ••• ,BP, 

p < n, have been defined so that dim (rB
1

) ~ n-p-1 and each Bi separates 

C. and C ! . Then there is a closed set B 
1 

by theorem 2 .25 such that 
1 1 p+ 

dim (B 1 n UBi) ~ n-p-2 and B 1 separates C land C' 1 • Hence a p+ I p+ ' ' p+ P+ 

sequence B
1

,B2, ••• ,Bn of closed sets have been defined so that each Bi 

separates Ci and Ci and dim (~B1 ) = -1 which implies that nBi = ¢• 

n The Dimension of E 

n 
The proof that dim E = n requires the use of the Brouwer Fixed 

Point Theorem. The proof of this theorem requires the use of concepts 

t~at would require a fairly large amount of development that would not 

add to the value of this paper. ?berefore this famous theorem will be 

stated without proof. There are, however, several sources in which 

detailed proof may be found. Two of these are DugundJi's Topology (8) 

and Hurewicz and Wallman's Dimension Theory (14). The following is a 

statement of this theorem, 

Theorem 2.28 If f is a continuous function from ln to In then 

there exists an x € In such that f(x) = x. 

Theorem 2.29 Let Ci be the face of In determined by the equation 

xi = l and let c1 be the opposite face' determined by the equation x
1 

= -1 

Then if for each i B
1 

is 

it follows that ~Bi f ¢, 

n a closed subset of I separating Ci from c1 
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Proof: Since Bi is closed and separated Ci and Ci in In it 

follows that In-Bi= Ui U u1, where Ci c Ui, Ci c u1, Ui n U1 = tp and 

n u
1 

and u1 are open in I , 

For each x € In, let V(x) = {v1 ,v2, ••• ,vn) € En where lvil ·= 

d(x,Bi), with d(x,B
1

) being the metric distance between x and the closed 

n set Bi using the usual metric on E, and with vi being positive if x € u1 
negative if x € Ui and O if x e; Bi' 

Define, for each x e In, f(x) = x + V(x). 

Then let x = (x1 ,x2, ••• ,xn) and let x e u1 . Now suppose that 

d(x,C1) < d(x,Bi) and let p =(ye In: d(x,y) < d(x,Bi)). Then Dis a 

connected set, D n Bi = ¢ and D n c1 /. ¢. Therefore B. does not separ~ 
l. 

ate x from C' in In which is a contradiction. Therefore d(x,B
1

) ~ 

d(x,c1). But d(x,c1) =. l-l-x1 1 = l1+xil and hence d(x,Bi):::; l1+xil, 

Therefore, since vi= -d(x,B1), the following is acquired; 

l ~xi~ xi-d(x,Bi) =xi+ v1 ~ xi-ll+xil ~ xi-l-x1 = -1, Thus 

!xi + vi I ~ 1. 

In a similar maner, if xi e U' then lxi + vii :::; 1. 

If x € Bi then lx1 +vii~ 1 since vi= O. 

Therefore for every x e; In f(x) e In. 

To show that f is continuous it is sufficient to show that Vis 

continuous since f is the sum of V and the identity function. For that 

it is sufficient to show that Vi is continuous for each i, where Vi(x) = 

vi, the i-th, coordinate of V(x). 

Let x e Inand suppose that x, B
1

, Then let O < B ~ d(x,Bi). 

Then if d(x,y) <o, d(y,Bi) ~ B + d(x,Bi) and bence d(y,B1 ) - d(x,Bi) 

< B. Since B ~ d(x,Bi) then ye u1 if and only if x e Ui and ye u1 if 

and only if x e u1 by the argument that obtained the inequality 
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Therefore Vi(x) and Vi(y) have the same sign and d(x,Bi) ~ d(x,Ci), 

!vi (x) - vi (y)I = 

at x f. Bi. 

I d(x, Bi) - d(y, Bi) I < o. Therefore Vi is continuous 

If x € Bi then if d(x,;v-) < o it follows that d(y,B) < o + 

d(x,Bi) = e. Therefore lv1(x) - Vi(y)j = lv1(y)I < o. Hence vi is 

continuous at x € B1, and thus on all of I 0
1 

Since f is a continuous ftinction from In to In tb,eorem 2.28 

implies that there exists an x ~ In such that f(x) = x. Hence there 

exists an x € In such that f(x) = x + V(x) = x which implies that 

V(x) = O and thus that Vi(x) = d(x,Bi) = 0 for each i~ But this means, 

since each B1 is closed, that x e Bi for each i, Hence x E QBi f ¢• 

n It is now possible to place a lowev bound on the dimension of I, 

which in turn places a lower bound on the dimension of En since Inc En. 

Lemma 2.30 The dim In~ n, 

Proof: n Suppose dim I < n. Then theorem 2.27 implies that there 

exist n closed sets B1,B2 ., ••• ,Bn' such that each Bi separates Ci and Ci, 

where Ci and Ci are as def;J.ned in 2.29, such that ~Bi = ¢. But ,this 

contradicts theorem 2.29. Hence dim In~ n. 

Theorem 2.31 The dim En= n. 

Proof: n n n I c E and hence by lemma 2,30 and theorem 2,12 dim E 

~ n. By theorem 2,7, dim En~ n. Hence dim En= n. 

Corollary 2,32 The dim In= n. 

Proof: Inc En and hence dim In~ dim En= n. Hence, by lemma 

n 2.30, dim I = n. 
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Subspaces of En with Dimension n. 

It is apparent that if Mis a subspace of En then d:lm M ~ n. It 

is the purpose of this section to develop a necessary and sufficient 

condition for dim M to be n, namely that M must contain a non-empty 

n open subs et of E • To do this, however, it is nee essary to develop 

n some 9f the properties related to E, one being that for any two count~ 

able dense subsets of En there is a homeomorphism mapping one onto the 

other, The first few de:f':Lnitions and lemma.a will be directed toward 

this task. 

Definition 2.33 l. 2 n . n If B = (e ,e , ••• ,e J is a basis for E as a 

i vector space and x = ~rie then ri is the i-th coordinate of x relative 

to B, The components of the ordered n-tuple (r1 ,r2, •.• ,yn) are the 

coordinates of x relative to B. 

If x = (x1,x2, .. ,,~h) then the coordinates shall be understood 

to be relative to the standard unit vectors, ei. 

Definition 2.34 If x ~ (x1 ,x2 , •• p,xn) and y = (y1 ,Y2 , ••• ,yn) 

then xoy = f:x.y. 
I 1 i 

Definition 2.35 If H = (x: a 0 x = rJ where a f (o,o, •.. ,o) is a 

n fixed··.element of E and r is a fixed real number then H is a hyperplane 

n in E • 

Theorem 2.36 If His a. hyperplane in En then His homeomorphic 

n-1 to E • Furthermore, if H contains the origin then His a sub-vector 

n space of E with vector dimension n-1. 

Proof: $uppose H = (x: aox = r} and that H contains the origin. 



Then y = a (o,o, ••• ,o) = o. 

Let x,y ~ H. Then for a,f3 e E, ao(ax+f3y) = fa. (axi+f3y.) = 
I ). J. 

Therefore CXx+f3y e H which implies that His a 

n sub-vector space of E. 
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Since H' = fx: a~= 1) I¢ and H' n H =¢the vector dimension 

· 1 2 k} of H is less than n. Let (x ,x , ••• ,x , k < n, be a vector basis for 

H and let x" e H' • 

Now suppose that z e En so that aoz = f3 fl, Then if y = 
[f3/(f3-l)]x0 

- [1/(f3-l)]z it follows that a<l'y = a.{lf3/(f3-l)]xn-[l/(f3-l)]z] 

= [f3/(f3-l)]l - [1/(f3-l)]f3 = 0 and ye H. 'U'lere;fore z = f3xn + (l-f3)y = 
n i { 1 k n) f3x + (l-f3)Eyix. Hence z is a linear combination of x , ••• ,x ,x • 

Now suppose that aoz = 1 and let he En such that a~h = 2. By 

r 1 2 k n the previous paragraph his a linear combination of x ,x , ••• ,x ,x }• 

Then if y = -h + 2z it follows that aoy = ao(-h + 2z) = -2+2 = 0 and 

hence ye H. Since z = (1/2)y + (1/2)h it follows that z is a linear 

1 2 k n combina,tion of fx ,x , ••• ,x ,x} since both handy are. 

· l 2 k n n Therefore [x ,x ,, •• ,x ,x} is a basis for E which implies that 

n k = n-1 since a basis for E contains n elements, Hence the vector 
I 

dimension of His n-1. 

The mapping f' such that f(x) = f(~r1xi) = (r1;;2, ... ,yn_1 ) from 

n-1 . H to E is a homeomorphism, since multiplication and addition are 

continuous in both directions. 

Let K = (x: adx = y} and let be K. Then the function fb such 

that fb(x) = (x - b) is a homeomorphism from En to En since fb is a 

translation. Let ye K. Then aofb(y) = ao(y - b) = r-Y = o, and hence 

fb(y) e H. 

Also if z e H then aof;1 (z) = ao(z + b) = 0 + y =rand f~1 (z) eK. 
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0

(K) ~Hand K is homeomorphic to H which is homeo­

n-1 morphic to E • 

Definition 2.37 A basis (coordinate system) in En is in general 

position with respect to a set Ac En if for each distinct pair 

ai,aJ e A, ai-aJ has all non-zero coordinates relative to the basis. 

Lemma 2.38 
n . 

If A is a countable subset of E then there exists a 

n coordinate system in E that is in general position with respect to A. 

Proof: n Let A be a countable subset of E. If n = 1 then the 

lemma is true since each element of E has only one coordinate. 

Assume that the lemma holds for n = k-1. 

If a1,aJ e Ac Ef let LiJ = (x: x ::= y(ai..a.J), 1 e E}, and 

Hij = (x: xo(a1
...a.J) = O}. 

Then LiJ is a line and. is homeomorphic to E and HiJ is a hyper­

plane and is homeomorphic to Ek-.:1.. Therefore dim LiJ,;: 1 and dim HiJ = 
k. 

k-1. Since both LiJ and HiJ ar~ closed in E and th~ collection of LiJ 

anci HiJ is countable then ·,~}LiJ U HiJ) = K has dimension < k by theorem 

2.20. 

Since dim Ek= k tttere exists a point eke Ef-K, Let L = 
k k . 

[x: x =ye} and H = (x: xoe }= 0. [ 1 k-ll Let s , ••• , s .. 

k k be a vector basis for the hyperplane Hand lets = e. Then 
.. 

[ 1 k-1 k} _k .. s ,·~·,s ,s =Sis a vector basis for E-. 

i 
!:1. s • 

1 

Consider t~e proJectio~ map P:Ef .... H defined as(P(x) = P(Er
1
si) ;::: 

Now suppose there exists a pair ai,aJ e A sue~ that ai /= aJ and 

P(ai) = P(aJ). i i J . 
Then a = Eais and a = !:~isl have the same coordinates 

except for the k-th coordinates. Therefore ai ..aJ = (ak-{3k )sk = 
k k i . 

(ak-{3k)e which implies that e = [l/(ak-{3k)](a ..a.J) e LiJ which is a 
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contrad.ictio:n since ek t Lij" Therefore P restricted to A is one-to-one. 

r 1 k-1) By the inductive assum~tion, there is a basis B' = ie , ••• ,e 

for H such that the coordinate system of H relative to B' is in general 

position relative to P(A) since P(A) is countable. Let B = 

[- 1. k~l kl k e , ••• ,e ,e be a basis for E. 
~ i k i 

Let a= fais = ~~ie. To show that ak = ~k consider P(a) = 
IH i k-1 i tl.,;1 i k t!:J i k ls;.I i k 
tais = ~rie. Then a= fais + C\.s = frie + aks = trie + ake = 

~~ie1 • Since coordinates relative to Bare unique, ak = ~k. By similar 

reasoning ri = ~i fc!ir i < k and hence, for i < k, the i-th coordinate of 

a relative to Bis the same as the i-th coordinate of P(a) relative to 

B'' 

Hence if a,b are different elements of A then for i < k, a-b have 

non-zero i-th. coordinates relative to B sin~e the coordinate system of 

H relative to B' is in general position relative to P(A) and P restricted 

to A is one-to-one. 

Now suppose that ai,aJ are different elements of A and that 

ai,aJ have the sa~e k-th coordinates relative to B. Then ai - aJ = 
..!!. i .!I. i Id(, i 
2.;a. e - l;~ • e = 2.; ai -13 • ) e e; H • 
I 1 I 1 I 1 

which is a contradiction. Hence for any pair a,b different elements of 

A, a-b has a non-zero k-th coordinate relative to B, 

Therefore the coordinate system of Ek relative to Bis in general 

position relative to A. 

Definition 2.39 If x f O is a real number then sgn(x) = lxl/x. 

4 {. 1 2 l 2 Definition 2. 0 Jf X = x ,x , ••• } and Y = (y ,Y , •• ,} are two 

sequences (possibly finite of the same length) in En such that the co­

ordinate system of En is in general position relative to both X and Y 
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then X and Y are similarly-placed if and only if for every pair i and J 

( i j ) .( i J ) i j i j sgn xk - xk = sgn yk - yk fork= 1,2, ••• ,n, where xk,xk,Yk,Yk are the 

k-th coordinates of xi,xJ,Yi,yJ, 

Lemma 2.41 n Let A and B be two countable dense sets in E and let 

the coordinate system be in general position with respect to A and B. 

Then A and B may be arranged into similarly-placed sequences. 

Proof: 1 2 1 2 Let A= [a ,a, ••• } and B = (b ,b , ••• } and as usual if 

n x € E then xi is the i.th coo+dinate of x. 

l 1 1 l 2 2 ( 1 2 Let c =a, d = b and d = b • Then if sgn di-di)= -1 let 

D. = fo € E: c7-5 < 01 and if sgn(d7-d~) = 1 let,D. = fo € E: c7-o > OJ. 
l . . l · · 1 1 1 1 

Since each D. is open in E and A is dense in En it follows that there l. . 

2 
exists a€ A such that for each i = 1,2, ••• ,n, ai~Di. Let c be the 

first such element of A. 'Then (c1 ,c2 ) and (rt",d2 ) are similarly-placed. 

Suppose c1 ,c2, ••• ,c2J and d1 ,d; ••• ,d2J have been defined so that 

( 1 2 2J) ( 1 2 2j) c , c , .•• , c and d , d , •.•• , d are similarly .. placed. Then let 

c2J+l be the first element of A such that c2J+l # ci for any i < 2J+l. 

M 
Let <\: be the maximum element of the set of k-th coo:rdinates of elements 

l 2 2j j 2j+l J > 2j+l of (d ,d , ••• ,d } such that ck< ck , i = 1,2, ••• ,2j. If ck ck 

M M i 
for all i = l,2,.,.,2J then choose~ so that~<~ for all i = 
1,2, ... ,2j. 

Now let~ be the minimum element of the set of k"th coordinates 

1 2 2J i 2J+l . of elements of (d ,d ~ ••• ,d } such that· ck> ck , 1 = 1,2, ••• ,2j. 

If c~ < c~J+l for all i then choose~ so that~>~ for all i, 

L t Sh th t d!1 > a.M If i < 2J+l ci > c2J+l for e us now . ow a K -~. ck ck or k k 

all i then it is obvious that~>~- Otherwise there exist cq and cp 

q 2J+l p 2J+l q M p m 
such that ck < ck and ck > ck ~nd also that ~ = '\ and, ~ = ~, 
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( 1 2 2j ) ( 1 2 2J ) . . Since c ,c , .•• ,c and d ,d ,·~·,d are similarly-placed and 

c~ - c~ > 0 it follows that ~ - ~ > 0 and hence that ( > (. 
n m m 

Since Bis dense in E there exists ab€ B such that~< bk<~ 

for all k = 1,2, ••. ,n. Let d2j+l be the first such element of B. Then 

( l 2 2J 2J+l) ( 1 2 2j c ,c , ••• ,c ,c and d ,d , ••• ,d 2j+l) ,d are similarly-placed, 

Let d2J+2 be the first element of B not proveously choosen and 

pick c2J+2 to be the first element of A such that (c1 , ••• ,c2j+2 ) and 

(d1 , •.• ,d2J+2 ) are similarly-placed, Such an element of A can be found 

in a manner similar to that used to find d2J+l. 

. 1 2 1 2 ) Then by induction C = [c ,c , ..• J and D = (d ,d , ••• have been 

defined. The sequences C and Dare similarly-placed by the inductive 

i i 
definitions and are rearrangements of A and B since if a € A, b € B 

then ai = cJ and bi= dk where J ~ 2i and k ~ 2i, 

Theorem 2.42 For any two countable dense subsets A and B of En 

n there exists a homeomorphism of E · on itself that maps A one-to~one 

onto B, 

Proof; By lemma 2.38 it can be assumed that the coordinate 

system is in general position relative to both A and B, By lemma 2.39 

1 2 1 2 
it can be assumed that A= (a ,a, ••• } and, B = [b ,b , ••• } are 

similarly-placed sequences. 

1 2 
Let ~ = [ak,ak, ••• } and ~ = Define a function 

fk:~.~ Bk by letting fk(a!) = b~. 

Since the coordinate system is in general position relative to 

both A and B, no two distinct elements of~ are equal and no two disti­

nct elements of ~ are ·equal. Therefore fk is a one-to-one and onto 

function. 
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Let re E-~ and let~= (ak € ~: ak > r) and~= (ak E ~: 

ak < r). Note that~ U ~=~,which implies that f(A: U Ak) ~ 

f(~) U f(~) = B: I.J ~ = ~· Since A: n ~ = ¢ it follows that 

1\ n Bk = ¢• 
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Since A and Bare similarly-placed it follows that sgn(a~-a~) = 

sgn(bt-bJ) = sgn(f(at) - f(a~)). Therefore at< a~ if and only if 

f(at) < f(a~). Hence each element of B; is less than each element of 

I\· 
Since B is .,dense in E11 it follows that ~. is dense in E which 

implies that the least upper bound of Bk equals the greast lower bound 

of B:. Now define fk(r) = s = lub Bk= glb B:. 

Now suppose thats e ~· Then there exists ak e ~ such that 

fk(ak) = s. Without loss of generality, assume that r < ak. Then Ak 
i . i 

dense in E implies there is an ak e ~such that r < ak < ak, which 

implies that b! < s. But ate~ which implies that pt e B; and hence 

i 
s ~ bk which is a contradiction .. Therefore s e E-B 

It should now be noted that fk(~) =~={bk€ Bk: bk> s} and 

that fk(Ak) =Bk= (bk e Bk: bk< sJ. Therefore if fk
1

:Bk 4 ~ is 

extended to includes e E~J\ in a manner similar to that used to extend 

fk to include r it would follow that fk.1 (s) = r since fk.
1

(B:) =~and 

fk
1
(~) = ~· Therefore fk:E ~Eis a one-to-one onto fµnction. 

It should a7so be noted that fk is order perserving, that is 

r 1 < rJ if and o~y if fk(r1 ) .< fk(rJ). H~nce, if ~~:I.,rJ) and (si,eJ) 

are open intervals in Ethen fk[(ri,rJ)] = (fk(r1 ),fk(rJ)) and 

f~[(si,sJ)] = (fk
1

(si),fk.
1

(sj)). Therefore fk is both continuous and 

open and hence fk is a homeomorphism from E to E. 

If x e En let Pk be the projection map defined by Pk(x) = ~· 
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Now let f(x) = y where yk = fk(Pk(x)). Since fk and Pk are continuous 

for each kit follows that f is continuous, Also if g is defined so 

that g(y) = x where xk = fk1 (Pk(y)) then g is continuous. Since 

g(f(x)) = x and f(g(x)) = x for all x e En it follows that f and g are 

i i i i 
inverse homeomorphisms. Also if a € A then fk(Pk(a )) = fk(ak) = bk 

which implies that f(ai) = bi, Therefore f(A) =Band f is the 

required homeomorphism. 

This next lemma gives the dimension of En less those points that 

have rational coordinates, This lemma will be used to prove that it is 

necessary for a subset of En to have an open subset of En in order that 

it have dimension n. 

Lemma 2.43 If Rn is the set of points of En that have all a 

rational coordinates then En-Rn has dimension n-1. a 

Proof: If n = l the lemma is true since E-R is the set of a 

irrational numbers which has dimension zero. 

Suppose the lemma is true for n = k-1. 

Let x e: Ek-Rk. 
a Then if D is an open set containing x there exist 

open k-cube k an Cc: D containing x of the form C = (y EE: ri < Yi < s.' 
J. 

ri,si € Ra}· 

Then each face Fi of c, determined by the equation yi = ri or by 

k the equation yi = $1' has the property that Ra n F is dense in F • 

Therefore, if Fis the boundary of c, which is the union of all of the 

faces of c, then R! n Fis dense in F. 

By theorem 1,11 and theorem 1,12 if z € F then F -{z} is hom~o-

h . t Ek-l 4 morp ic o and hence, by theorem 2. 2, there exists a homeomorphism 

f:(F-(z}) ~ Ek-l such that f(F n Rk-fz}) = Rk-l. 
a a 
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( ( k ) ) k -1 k :1 l h Therefore f F- R U z ;: E -R whic}::l_ imp ies t at . a ~ 

( ( k ) ) ( k-1 k-1) . dim F- Ra u z = dim E ... R = k-2 by the inductive assumption. 

Therefore, by corollary 2 .23, dim [ (F-(R! U z)) U z] = dim(F ... R!) 

= k-2,since a space is not affected by the adJunction of a single point. 

Hence [C:C is ope~ in Ek, x e C, dim (bd C n (Ek-R!)) = k-2 is a basis 

for x. Thus by theorem 2,13 dim (Ek-Rk) at xis k-1 which implies that a 
k k dim (E -R ) = k-1. a 

The theorem now follows by inquction. 

We can now show a necessary ~nd sufficient condition for a subset 

n of E to have dimension n. 

Theorem 2.44 A subspace N of E~ has dimension n if and only if 

n N contains a non-empty open subset of E. 

n Proof: If N contains a non-empty open subset of E then N contains 

an open sphere in E that is homeomorphic to E and hence has dimension 

n. Therefore dim N ~ n. n Since N c E, dim N < n which implies that 

dim N = n. 

For the converse, suppose dim N = n and that N contains no non­

empty open subset of En. Then En-N is dense in E0 which implies that 

there exists a countable subset A of En-N that is dert~e in En. (If~ 

n is a countable basis for E let A be the image of a choice function that 

assigns to each element B of ~ an element of B n (En_-N).) Let f be a 
,'. ~). 

homeomorphism from En to En that maps A one-to-one onto the set of 

n 
points of E that have all rational coordinates. Note that f exists by 

theorem 2.42. Then f(N) c En-Rn and t(N) has dimension n. But 
a 

n n ·· · 
dim E -R = n-1 which ~ontradicts theorem 2,lZ and thus M must contain a 

n a non-empty open subset of E and the theorem ,has been proven. 
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From this theorem a corollary concerning the c;U.mension of the 

boundary of an open set is obtained. 

Corollary 2.45 n 
Let Ube an open set in E that is neither empty 

n nor dense in E. '1,1hen the dimension of the boundary of U is n-1. 

Proof: Let B qe the boundary of u. Since B contains no open 

subset of En it follows that the dim BF n by theorem 2.44. Therefore 

dim B < n. Now suppose that dim B < n-1 and that U is bounded. Then 

if x € U there is an r such that U' = (y: d(x,y) < r} :) U. Therefore, 

n 
if x' € E and 5 > O there is a bomeomorph:i,sm from U' to 

(y: d(x' ,y) < o} ;=:u~o such that x is mapped to x'. ~us U0 contains the 

image of U which h~s a boundary of dimens:i,on < n-1, This would imply 
, ·_-·" _,,,.:r",:.~ 

that the collection of open sets containing x' that have boundaries 

with dimension< n-1 form a basis for En at x' and since x' is arbi­

trary, such sets form a basis for En. This then implies that dim En< n 
. n 

which contradicts the fact that dim E = n. Therefore, dim B = n-1. 

Now suppose that U is not bounded. Then there is a point x € En 

n ·"' n such that xis in the interior of E -U since U is not dense in E. 

This implies that there exists an open sphere U' centered at x such 

that U' n U = ¢. Then by theorem 1.13 there exist$ a.homeomorphism f 

from En-x onto itself that maps En-U' onto U'-x, Then f(U) c U' is 

bounded and hence, by the first case, the dim. bd f(U) ::c n-1. Since 

f(En -U') = U' -x, ;f (B) contains all of bd f(U) with the possible 

exception of x. If f(B) = bd f(U) then p.im B = dim f(B) = dim f(U) = 

n-1. If f(B) = bd f(U) - x then dim B = dim f(B) = dim (bd f(U) - x) ·-

dim bd f(U) = n-1 since the dimension of a set cannot be increased by 

tbe adJunction of a single point. 



The la.st major theorem of this section states that any subspace 

of En that separates En has dimension of at lea.st n-1, However, to 

prove this the following lemma. is needed. 

Lemma. 2.46 The following three statements a.bout a. space Ma.re 

equivalent: 

(l) The space M can be separated by a. subset D of dimension~ n. 

(2) The space M contains a.n open set U which is neither empty 

nor dense in M whose boundary has dimension~ n. 

(3) The space M =HU K, where Hand Ka.re closed proper subsets 

of M and dim ( H n K) ~ n. 

Proof: Part I, (1) ~ (2): 

Since D separated M, M-D =AU B sep. By the complete normality 

of M there exist open sets U and V of M such that Ac U, B c V and 

U n V = ¢, Therefore, U -/: ¢ and M-U :J B -j,. ¢ hence U is neither empty 

nor dense :i.n M. Also bd Uc D and hence dim bd U ~ dim D ~ n and 

hence (1) ... (2), 

Part II, (2) - (3): 

Let U be such an open set. Then H = M-U and K·, = U are closed 

proper subsets of Mand dim (H n K) = dim bd U ~ n. Thus (2) ... (3). 

Patt III, (3) ... (1): 

Let H and K be such closed sets. Then H n K has dimension ~ n 

and separates M since M-(H n K) = (K-H) U (H-K) sep. Thus H n K meeti;, 

the necessary conditions to complete the proof. 

Theorem z.47 n n If N is a subspace of E · and N separates E then 
: 

dim N ~ n-1. 
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Proof: n Suppose E could be separated by a subspace whose dimen-

sion is < n-1. Then lemma ~.46 implies that there is a non-empty open 

n n 
subset of E that is not dense in E and has a boupdary of dimension< 

n-1. But this contradicts corollary 2,45. Hence the theorem is true. 

From this theorem two coroll.aries are obtaineq.. These corollaries 

concern the dimensions of sets that separate certain types of subspaces 

n of E. 

Corollary g.48 If S is ,a connected open su1:),set of En then S 

cannqt, be separated by a subset of S whose dimens,ion is less tha,n n-1. 

Proof: Suppose D separates Sand dim D < n-1. Then S-D = 

AU B sep. Since, by theorem 2.42, D contains no open set it follows 

that Au B = s. Since sis connected, An BI p. Let X €An B. Then 

let Ube a spherical neighborhood of x that is contained in S, Then U 

is homeomorphic to En. 

But U-(U n D) = (U n A) U (U n B) sep. which implies that U n D 

separates u. But dim (Un D) ~ dim D < n.l which contradicts theorem 

2.47. Therefore the corollary follows. 

n 
Corollary 2,49 If Sis a connected open subset of E then S 

cannot be separated by any subset of S of dimension< n-l. 

Proof:1 Let D be a subset of S of dimension< n-1. Then since 

n S is a connected open subset of E , corollary 2 .48 implies that S-D is 
,{ 

connected. 

If x € (bd S)-D and R is any open set containing x then Rn Sis 

a non-empty open subset of s. But Rn S ¢. D since theorem 2.44 implies 

n that D contains no open subset of E. Thus there exists 
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y € [(Rn S)-D] c S-D, This implies that xis a limit point of S-D 

which is connected, Therefore S-D c S-D c S-D which implies that S-D 

is connected (11, p. 82). Thus the corollary follows. 

The following theorem is a result, though not an obvious one, of 

Tietze's Extension Theorem (11, p. 80) which gives some conditions 

under which a function may be extended to a larger domain. While 

Tietze's Extension Theorem is a classical one it involves topics that 

are beyond the scope of this paper and hence will not be proven. The 

following theorem will, however, be useful in the next chapter in the 

discussion of the non-homogenity of hereditarily indecomposable continua 

of dimensions greater than one. This theorem is included in Chapter II 

since it is basicly a.dimension theorem. 

Theorem 2,50 If Mis a compact set of dimension n then there 

exists a continuum in M that has dimension n at each of its points. 

Infinite Dimensional Spaces 

In this section two spaces, both of which have infinite dimension, 

will be discussed. The first, EN, will be a vector space over E with a 

countable infinite vector basis B = (e1 ,e2 , .•• J. The topology on EN can 

be generated by the norm l!xrJ = Jflxij
2 

where x = ~~ie\ xi € E. It 

should be noted that for each x only a finite number of xi are non-zero. 

The second space to be considered, if, will be the Hilbert space, 
! 

the set of all sequences x = fx1 ,x2, ••• J such that ~lxil 2< ~. As is 

well known If is a vector space over E whose vector basis is uncountable, 

The topology on If can be generated by the norm l!xll = J~lxil 2 , 

While these spaces will not be considered during the rest of this 
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paper they do present ~nteresting examples demonstrating the behavior of 

dimension on infinite dimensional topological spaces. Both of these 

spaces have infinite dimensions since each contains, in a homeomorphic 

n sen~e, E for all finite n and hence it could not be true that they 

would have finite dimension, 

Theorem 2.51 The space Ef is the union of a countable number of 

subspaces each of which have zero dimension. 

Proof: If En is considered to be the coliection of points of EN 

such that all but the first n coordinates are zero then Ef = UEn. 
I 

Since dim En= n for each n, c;iorollary 2,22 implies that for each n, 

n "' n n ,. 
E =,UA., where each A. has dimension zero. 

1:./ 1· . 1 . 
N n 

Therefore E =.UAi, and 
'i"" 

the theorem follows, 

Before considering the dimensional properties of EN let us note 

that In can be considered to be a subset of Iw as was done in Chapter I 

n w I and that the faces of I c:: I are determined by the equations y. = 1 i 
1 

or y. = -1/i. 
1 

Theorem 2.52 The space i/1 is not the union of a countable 

number of spaces each of which have zero dimension. 

Proof: Suppose the theorem were not true. Then~= UA., where 
I 1 

for each i the dim Ai= o. w 
Then Di= Ai n I has dimension less than 

w 
or equal to zero and I = UDi. 

L 

Let c1 be the face of Iw determined by the equation xi= 1/i and 

C' be the face determined by the equatio~ xi= -1/i. Then theorem 2,24 

implies that there exist, for each i, a closed set Bi separating Ci 

from c1 such that Bin D
1 

= ¢. 
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Since, for each n, Bi separates Ci n Iw and C~ n Iw, theorem 2.29 

that, for each n, nBi f ¢. For each n let xn e nBi. If for an 

infinite number of n, there is an x w that n 
then X e nBi e I such X::: X 

since nBi contains all but a finite number of n If, the other X • on 

hand, there are an infinite number of distinct n then Iw being compact X 

implies that fx1 ,x2, •• ~J has a limit point x € Iw. Since fo~ each n, 

n nBi is closed and contains all but a finite numper of x, x € nB1 which 

implies that x e nB .• 
J. 

Since UDi = Iw there exists a Di 

that x ~Din ~i· But this contradicts 

Hence the theorem follows. 

such that x e D. which implies 
J. 

the fact that Din Bi=¢. 

An alternate def:i,nition of dimension can now be given that 

assigns different'values of dimension to HN and ~N. This definition 

assumes that dimension zero has been defined. 

Definition 2.53 If Mis a non~empty space then dim M = n, where 

n is the least cardinal such that Mis the union of n+l subspaces each 

of which have dimension zero. 

Theorem 2.19 and corollary 2.22 implies that for finite dimension 

this definition and definition 2.l are equivalent. This definition, 

however, assigns different values for EN and~. Using this definition 

vector dimension and topological dimension behave in somewhat similar 

manners, even for the infinite cases. 



CHAPTER III 

HEREDITARILY INDECOMPOSABLE CO]'f.L'INUA IN HIGHER DIMENSION 

Definitions and Characterizations 

Heredit~rily indecomposab],,e continua that separate Euclidean 

n-spaces provide examples of sets that have some of the properties of 

n-fipheres but fail to behave in other "nice" ways. Th;ls section w:1.11 

provide the definition and characterizations of hereditarily indecom-

posable continua. 

Definition 3.1 If Mis a ~ontinuum then Mis indecomposable if 

and only if Mis not the union of two proper subcontinlJ,a, If Mis not 

indecomposable then it is said to be decomposable. If M has the property 

that every subcontinuum is indecomposable then Mis hereditarily 

indecomposable, 

Definition 3.2 If Mis a continuum and me M then the composant 

of min M, Cm' is the union of all proper subcontinua of M that 

contain M, 

Theorem 3. 3 If M is a con,t1nuum and CP is the composant of p in 

M then C- = M. 
p 

Proof: If C = M then the theorem is true since Mis closed, p 

Otherwise let x ~ M-Cp. Let R be the open sphere about x with 

radius 1/n. Suppose that xis not a limit point of CP. Then for some 

39 
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k and for all n ~ k, Rn n Cp = ¢. 
For each n ~ k let M be the component of M-R 1 that contains p. n n+ · 

If q € C then there exists a proper subcontinuum Q of M containing p 
p 

and q. Since Q c C ~ M-ir--.:-
1 

it follows that Qr M which implies that 
p M n 

CP e Mn r Mn. Note that Mn is a continuum and that~ n Rn+l = ¢~ 
.&..-

Hence Mis a proper subcontinuum of M containing p and M c C • n n p 

Hence CP = M = M. n n 

But by theorem 1.15 there exists a point r € M n bd (M-ir--.:-1 ) = n n+ 

bd r--
1

. Therefore r n+ 

xis a limit point of 

€ C n r--
1 

= ¢, p n+ 

C and C = M. p p 

which is a contradiction. Hence 

Theorem 3.4 If Mis an indecomposable continuum then its 

composants are pairwise disJoint. 

Proof: Let C and C be composants of an indecomposable cont-
p q 

inuum Mand suppose that x € C n C • Then there exist proper subconti-
p q 

nua M and M of M such that x,p e M and x,q € M. Since Mis p q p q 

indecomposable M UM 1 M. Therefore M UM is a proper subcontinuum P , , q r P q . 

of M containing p ,and q. 

Suppose y € C • Then there exists a proper subcontinuum M of M 
p y 

containing y and p. Since (M UM) UM is a proper subcontinuum of M 
p q y 

containing q and y it follows that y € C and that C c C • q p q 

Similarly C c: C • Therefore C = C and the theorem follows, 
q p p q 

In order to prove the first characterization of hereditarily 

indecomposable continua it is necessary to prove the following lemma. 

It might be noted that this lemma is generalized by P •. M. Swingle in 

his discussion of "Generalized Indecomposable Continua." (26) • 
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Lemma 3.5 If Mis a continuum that is not the union of three 

subcontinua none of which is contained in the union of the other two 

then either Mis indecomposable or the union of two indecomposable 

continu,a. 

Proof: Let M be such a continuum and suppose that Mis not 

indecomposable. Then M =HU K where Hand Kare proper subcontinua of 

M. Suppose H' = lI-K = N1 U N2 sep. If N1 and N2 are connected then 

M =KU N1 U N2 which contradicts the hypothesis since K-H' I¢. If 

N2 = N
3 

U N4 sep. then ij' = N1 U N
3 

U N4 sep. 

Suppose that KU N1 =AU B sep. Since K is connected either 

K c A or K c B. Without loss of generality let K c A Gtnd thus B c N1. 

Then M =(AU N
3 

U N4 ) U B sep. which is a contradiction since Bis 

separated from both N
3 

and N4 • Therefore KU N
1 

is connected. 

Similarly, K U N
3 

~nd K U N4 are connected. Hence M = (K U N1 ) U 

(K U N
3

) U (K U N4) which is a contradiction of the hypothesis since 

N1 ,N
3 

and N4 are mutually exclussive. Therefore H' is connected and 

thus H' is a continuum. 

Now suppose that H' is decomposable. Then H' = 11i U ~' where 

1\ and~ are proper subcontinua of H'. Therefore n~ither I\ nor~ 

contain H'K. Hence M = 11i U ~UK which is a contr~diction. Therefore 

H' is indecomposable. 

In a similar manner K' = K-H is an indecomposable continuu,m. 

Now suppose that P = M-(H' UK')~¢, Then it Pis connected 

M = H' UK' UP which contradicts the hypothesis. Therefore P = 

J;1 U P2 sep. 

It should be noted that either H' or K' intersect both P1 and P2 

for otherwise M would fail to be connected, This fact can be verified 
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by considering all other possible cases. Without loss of generality 

suppose that both P1 and P2 intersect H'. Then in a manner similar to 

that used above to show that KU N1 is connected it follows that H' U P1 

and H' U P2 are connected. Henc~ M = K' U (H' U P1 ) U (H' U P2 ) which 

contradicts the hypothesis. Hence P = ¢ and H' U K' = M and the lemma 

is proven. 

The following characterization of hereditarily indecomposable 

continua is due to William R. Zame. (33) • 

Theorem 3.6 If Mis a continuum then Mis hereditarily inde-

composable 'if and only if each pair of subcontinua, Hand K, of M has 

the property that H-K is connected, 

Proof: Suppose M has two s~bcontinua Hand K that fail to have 

the desired property. Then H-K =AU B sep. Then AUK and BU Kare 

connected by a process used in lemma 3.5. Therefore H =(AUK) U 

(BU K) is decomposable and Mis not hereditarily indecomposable. 

Conversely, suppose that Mis not hereditarily indecomposable. 

Then there is a continuum N c M that is decomposable. Therefore 

N =HU K where Hand Kare proper subcontinua of N. To show the 

existence of a pair of continua, one of which separates the other, 

several casses need to be considered. 

Case I: The point set H n K is connected. Then N-(H n K) = 

(N-H) n (N-K) sep. which implies that N and H n K is the desired pair. 

If H n K ,is not connected there exist two components C and D of ' 

H n K. By the reference (24, p. 15) there exists a continuum H' c H 

that intersects both C and D so that no subcontinuum of H' intersects 

both C and D, Note that H' is not a subset of H n K. For the rest of 



the discussion let c € C n H1 and d ~ D n H' • 

Case II: The point set H n K is not connected and H' = 
N1 U N2 U N

3 
where each Ni is a subcontinuum of H' and no Ni is a subset 

of the union of tlle other two. 

If c e Ni and de NJ then if J since no proper subcontinuum of 

H' intersects both C and D. Without loss of generality, suppose c E N1 

and d E N2 • If N
1 

n N2 f ¢ then N1 U N2 would oe a proper subcontinuum 

of H' intersecting both C and D· Hence N1 0 N2 =¢and H1 -N3 = 

(N1 -N3) U (N2 -N
3

) sep. and H' and N:; is the desired pair. 

If H' is not the union of three continua, no one of which is 

contained in the union of the other two lemma 3.5 implies H' is either 

indecomposable or the union of two indecomposable continua. 

Case III; The po:J,nt ~et H n K is not connected and H' is 

indecomposable. Consider Cc and Cd to be the composants of H' contain­

ing c and d. Since no proper subcontinuum 'of H' contains both c and d 
,, 

theorem 3.4 :J,mplies that Cc n Cd=¢• Also since Cc= H' by theorem 3.3 

C is not a subset of Kand there is an x e C -K. Similarly there C . C 

exists y e Cd -K. J'herefore there are proper subcontinua V and W of H' 

so that x,c e V c Cc and y,d e W c ed. Since V n W = ¢ and KU Vu W is 

a continuum, KU VU Wand K is the desired pair.as K separates 

KUVUW. 

Case IV: The point, set H n K is not connected and H' is the 

union of T and T' where T and T' are indeco~posable proper subcontinua 

of H', and both T-T' and T' -T are connected. Without loss of gene,rali ty 

let T n Cf¢. Then T n D =¢for otherwise T would not be a proper 

subcontinuum of H'. Hence (H' n D) c T'. Similarly T' n C =¢and 

(H' n C) c: T. 
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If T c K U T' then T-T' c K which impl:I,.es that T-T' c C since 

T~T' is connected which implies that T-T' c C since C is closed. But 

T' n T-T' f ¢ and hence T' n CF¢ which is a contradiction. Therefore 

T-(K U T') f ¢. Similarly T' -(KU T) f p. 
Now let Cc and Cd to be composants of T and T' respectively 

containing c and d. Then there exist x € Cc n (T-(K U T')) and 

y € Cd n (T' -(K U T)) since every open set of a continuum intersects 

every composant of the continuum. JU~o there exist proper s.:ubcontinua 

V c T and W c: T' such that x,c e V and y,c e W. Therefore, as in case 

III, the desired pair is KU VU Wand K, 

Case V: In case IV either T-T' or T' -T fails to be connected, 

in which case T and T' is the desired pair. 

As all possibilities have been exausted the theorem is proven. 

The next characterization of a hereditar;i..ly inciecomposable 

continuum is stated in terms of the following defined property Q. The 

definition of property Q is motivated by a theorem by John Jobe. (15) 

Definition 3,7 Let S oe a separable metric space and M 1:1, 

continuum in S. Then M has property Qin S if and only if for every 

continuum Nin S such that N n M f ¢, N-M f ¢ and M-N f p, then there 

exists a point p €Mn N such that pis a limit point of both M-N arid 

N-M. A continuum Mis S has property Q hereditarily in S if and only 

if each sub continuum of M has property Q in S. :fl 

Theorem 3.8 Let T be a separable metric space and M a continuum 

in T. Then Mis hereditarily indecomposable if and only if for every 

function f and separable metric space S such that f imbeds M in s, then 

f(M) has property ~-hereditarily ins. 



Proof: Assume the condition of the theorem. Let M be a 

continuum in a separable metric space Sand suppose that Mis not 

hereditarily indecomposable. This implies the existence of a decompo-

sable subcontinuum M' of M. The definition of decomposable implies that 

M' =HU K where Hand Kare proper subcontinua of M'. Thus M'-K = 

H-K is a non-empty point set. Choose a point h in H-K. Note that 

since Sis a separable metric space then S XS is also a separable 

metric space. Define f:M' ~ S x S such that f(m) = (m1h) for each 

me M'. Also define g:M' ~ S x S such that g(m) = (h,m) for each 

m e M'. Then both f and g imbed M' in S X S and hence both f(M') = 

M' x (h} = ~ and g(M') = (h} x M' = M2 are homeomorphic to M' and 

therefore are continua in S x s. Let 11i = f(H) and 1S_ = f(K). Then 

~ = f(M') = f(H) U f(K) = 11i U K1 C:: f(M) is decomposable with 

(h,h) e Ii_ -K1 since he H-K. Also the definitions off and g imply 

that M1 n M2 = f(h,h)} = H1 n ~ since He M'. Since h ~ K then 

1S. n ~=¢and since (h,h) € 11:i.. n M2 then 11i U M2 is a continuum in 

S XS. 

The point set ~-(11J_U M2 )= (~-H1 )-M2 = (K1 -H1 )-~ = K1 -11J_ since 

~ = f1i U 1S_ and~ n K1 = ¢. It is noted that M1 -(~ U ~) f ¢ since 

K1 -H1 /.: ¢ and that M1 -(11i O M2 ) = K1 -11i e; IS. since K1 is a closed set. 

The point s~t (11J_ U ,M2 )-1\ = (H1 -~) U (~ -J\L = ~ -( (h,h )} 

since f1i c ~ and~ n M1 = [(h,h)}. It is note.d thei.;t (IS_ U M2 )-M1 f ¢ 

since M2 is non-d~generate and that (f1i U f\;)-Mi_ = M2-{(h,h)J ~ M2 

since (h,h) is a limit point of~ and~ is closed, 

Since ~ n 1S. = ¢, it follows that ~ -(Ei_ U M2 ) n (H1 U ~)-Mj_ c 

IS. n ~ = ¢. Therefore, by the definition of property Qin S x s, 

f(M') =~does not have property Qin S x Sand thus, f(M) does not 
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have property Q hereditarily in S x S. This is a contradiction of the 

condition and thus the sufficiency part of the theorem is proved. 

Conversely, suppose Mis a hereditarily indecomposable continuum 

in the separable metric space Sand let N c S be a continuum such that 

N n M f ¢, N-M f ¢ and M-N f p. 
Suppose that M-N n N-M ::; fl. Let T be a component of M-N. Then 

theorem 1.15 implies there exists p e bd (M-N) n T. (Note: Boundaries 

are relative to MUN.) Since Tc M.and Mis closed it follows that 

TC M. Since M-N is open relative to MUN and p € bd (M-N) it follaws 

that pt M-N, Hence p € N, 

Note that p e N-M since w:M n M:N'::; ¢. Therefore N-(~) c Mn N 

is a domain relative to N that contains p. Let L be the component of 

N-(N-M) that contains p. Then theorem 1.15 implies that there exists 

q € bd (N-M) n L. Note that qt T for if it wer~ then q € M:N' n w:f4 

since Tc M-N and this would be a contradiction. Also note that L c M 

and hence Le M since Mis closed. 

Therefore both T and Lare subcontinua of M containing p. Hence 

T U L is a subcontinuum of M. Since T c M-N and t c N it follows that 

T-L f ¢• Also q € .L-T F ¢. Therefore TU Lis a decomposable subcon­

tinuum of M which contradicts M being hereditarily indecomposable. 

Hence M-N n N-M f ¢ and there exists a point p such t.hat pis a limit 

point of both M-N and N-M, Hence M has property Qin S, 

Now assume that Mis a hereditarily indecomposable continuum in 

a separable metric spaces. Let f be any function that imbedds Min a 

separable metric space S' and consider f(M), Since f is a homeomorphism 

then f(M) is a hereditarily indecomposable continuum in S'. Let M' be 

any subcontinuum of f(M), Then the above paragraph implies that M' has 



property Qin S' and hence f(M) has property Q hereditarily in S1 and 

the theorem is proven. 

Jt was thought that in theorem 3.8 the condition "for every 

function f and space S such that f imbeds Mins, f(M) has property Q 

hereditarily in S" could be replaced by the condition "M has property Q 

hereditarily in :r." To see that this cannot be done the following 

example exhibits~ space T and a decomposable continuum Min T such that 

M has property Q bereditarily in T. Thus, this example compliments the 

statement of theorem 3.8. 

Example 3.9 Let s1 and s2 be two pseudo-arcs in the plane 

constructed from (-1,0) to (o,o) and (o,o) to (1,0) respectively such 

that s1 s 2 = f(o,o)}. Let p = (o,o). Let T be the subspace of the 

plane such that T = 81 U s 2 • iet Hand K be non-degenerate proper 

subcontinua of 81 a;nd s
2 

respectively such that H n K = (p}. Then 

M_= HU K is a decomposable compact continuum that has property Q 

hereditarily in T. 

Verification Let N be any subcontinuum of T such that N n M /= ¢, 

N-M /=¢,and M-N /= ¢. If N c: s1 or N c:: s2 then the reference (15) 

implies that N is a hereditarily ;l.ndecomposable continuum and thus 

theorem 3,8 implies that N has property Qin T. Therefore, there exists 

a point p €Mn N such that pis a limit point of both M-N and N-M. 

Now consider N n (8 -fp}) f ¢ and N n (8 -.[p}) f ¢. Let 

1:i_ = 81 n N and 1S_ = 82 n N and thus N ~ H1 U K1 • If ,it is noted that 

N-(p} = (H1 -(p}) U (IS_-(p}) sep. then reference (16) implies that 11J_ 

and K1 are non-degenerate subcontinua of 81 and s2 respectively. The 

reference (15) implies that both H1 and IS. are pseudO'..a.rcs. The 
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definition of N and the fact that the pseudo-arc is hereditarily 

indecomposable imply that either (a) He~, ~1c K, ~-Hf¢, and 

K-1S. -I= ¢ or (b) 11J_ c H, Kc 1S., H-rS_ f ¢, and K1-K f ¢. The consider-

ation of each possibility is similar so w,i thout loss of generality 

case (a) is considered. 

First note that reference (23) implies that Hand K1 are inde­

composable subcontinua of H1 and K respectively. The point pis a 

limit point of H1 -Hc N-M and K-1)_ c: M-N since indecomposable subcon­

tinua are continua of condensation, Since p €Mn Nit has been 

verified that M has property Qin T, 

Now if M' is~ subcontinuum of M, then either (a) M' c s1 or 

(b) M' c:: s2 or (c) M1 -s1 f ¢ and M'-S2 f ¢. In c~ses (a) and (b) 

M' is hereditarily indecomposable and hence has property Qin T. In 

case (c) M' has property Qin T by the method used to show that M has 

property Qin T. Therefore, M has prop$rty Qin T hereditarily. 

Since Mis decomposable the example is verified, 

In 1942 J. L. Kelley published a paper on "The Hyperspaces of a 
. - . 

Continuum" (19) in, which he proved that if a heredi tari:\.y in'decomposable 

continuum of dimension greater than one existed that an infinite dimen-

sional hereditarily indecomposable continuum also existed, In this 

paper Kelly also gave a characterization of indecomposable and heredi-

tarily indecomposable continua. These characterizations will be stated 

here without proof since their value to this paper is historic rather 

than mathematical and since their proofs involve ideas not in the 

mainstream of this paper. 



Definition 3,10 If M is a continuum then C(M) is the collection 

of all subcontinua of M with the topology generated by the metric 

defined as follows: If H,K € C(M) then d'(H,K) = supfx:x = d(H,k), 

k €Kor x = d(h,K), h € H}. 

Theorem 3.11 .If Mis a continuum then in order that M be 

indecomposable it is necessary and sufficient that C(M) - [M} fail to 

be arcwise connected, 

Theorem 3.12 If Mis a continuum then Mis hereditarily 

indecomposable if and only if C(M) contains a unique arc between every 

pair of its elements, 

Existence 

This section of this chapter will be concerned with the existence 

of hereditarily indecomposable continua of all dimensions, including the 

infinite dimension. These continua will be the intersection of 

increasingly "crooked" domains of En under the following definitions of 

crooked. Much of the material of this chapter is ba~ed on a paper, 

"Higher Dimensional Hereditarily Indecomposable Continua", by 

R.H. Bing (3). 

Definition.3,13 An arc xy is €-crooked if fo:r'each pair of 

points a and bin xy there exist points c and din the subarc ab such 

that c is between a and d, d(a,d) <€and d(b,c) < €. 

Definition 3,14 A domain Dis €-crooked if every arc contained 

in Dis €-crooked. 
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Definition 3.15 If hk is an arc with endpoints hand k and H 

and Kare two sets containing hand k respectively then hk is e-crooked 

with respect to Hand Kif and only if there exist poiµts rands in hk 

such that r is between hands, d(s,H) <€and d(r,K) < e. 

Definition 3.16 If Dis a domain and Hand Kare two sets then 

Dis e-crooked with respect to Hand Kif and only if every arc in D 

with endpoints in,H and K respectively is ,e-orooked ~ith respect to 

Hand K. 

These definitions can now be used to show the existence of 

e-crooked doma~ns that are contained in arbitrary bounded domains. 

Theorem 3.17 If Dis a bounded domain in En (or Iw) that 

separates the point b from the point c, e > o, and Hand Kare two 

non-empty sets in En (or Iw) then there exists a dol?l8.in G such that G 

is e-crooked with respect to H and K and G c: D and. G separates b from c. 

Proof: Let K' = (x: x e Kand d(x,H) ~ e} a~d En-D =BU C sep. 

where b e B and c € C. Also let 8 = d(B,C). Note that 5 > 0 since D 

is bounded and either B or C is compact. (11, p. 91) 

Then if K' =¢let E ~ (x: 8/4 < d(x,B) < 38/4}. Then 

G n (BU C) = ¢ and hence G c: D. Also b € B c (x: d(x,B) < 8/4} and 

c € C c: (x: d(x,B) > 38/4 J and thus G separates b from c. Also if M is 

an arc in G from a point h in H to a point kin K then an r can be 

choosen so that d(~,k) < e and ans can be choosen so thats is between 

rand k and d(s,k) < €~d(k,H) since d(k,H) < e. Therefore 

d(s,H) ~ d(s,k) + i(k,H) < E and G is €-crooked with respect to Hand K. 



Now suppose that K' I¢ and let V = yvi where 

v1 = (x: d(x,B) = 36/4, d(x,K') ~ e/2}, 

v2 = (x: 5/2 s: d(x,B) s: 35/4, d(x,K') = e/2}, 

v
3 

= (x: d(x,B) = 5/2, d(x,H UK')~ e/2}, 

v4 = f x: o/4 :,;: d(x,B) s: 5/2, d(x,H) = .e/2}, 

and v
5 

= (x: d(x,B) = 5/4, d(x,H) ~ e/2}. 
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Consider F = [x: d(x,B) s: 5/4} U [x: d(x~B) s: 35/4, d(x,H) s: e/2} 

U fx: 5/2 s: d(x,B) ~ 35/4, d(x,K') .? e/2 = B1 U B2 U B
3

. Note that F · 

is closed since it is the union of closed sets, Also note that B c 

int B1 c int F and that F n C =¢since d(F,C) ~ 5/4. Therefore bd F 

separates B from c. 

Now let x € bd Bl U bd B2 lJ bd B3' If x € bd Bl then d(x,B) = 

5/4. Thus if d(x,H) ~ e/2 then x e v
5 

c v. If d(x,H) < e/2 then 

x e int B2 c: int F. Similarly if x e bd B2 then d(x,H) = e/~. Then 

x e V4 c v or x e int (Bl u B3) c int F. If x e bd B3 then 

x e v1 U v2 U v
3 

c V or x e int B2 c:: int F. In all cases x e V or 

x e int F, Therefore, since bd Fe bd B1 U bd B2 U bd B
3

, bd F c V. 

Thus V separates B from C since bd F separates B from C and 

d(V,B U C) = 5/4 > O. 

Now let r = min[e/4, 5/16} and let G1 ~ [x: d(x,v1 ) < r}, Then 
s 

G = ~Gi is an open set containing V. Note that if x e G2 then 

d(x,K') s: d(x,v2 ) + d(V2,K1
) s: e/4 + e/2 < e and that similarly if x e a4 

then d(x,H) < e. Also observe that d(G1 U G2 U G3'G5,) ==: o/8 and hence 

a4 separates (G1 U G2 U a
3

)-e4 from a
5

-e4 in G and that in a similar 

manner G2 separates G1 -G2 from (G
3 

U G4 U G
5

)-G2 in G, Also note that 

if x e H n G then x e Gland if x e K' n G then x e G5. Note too that 

d(G,B UC)~ 35/16 and hence G n (Bu C) =¢which implies that Ge D 



and that G separates B from C since V c G. 

To show that G is e-crooked relative to Hand K let hk be an arc 

in G such tna.t h €Hand k € K. Then if kt K' an rands can be 

choosen as was done in the case when K' = ¢~ If k € K' then k e G
5 

and 

h e G1 • Since G4 ., separates G1 from G
5 

n K' in G and hk is a connected 

subset of G there exists an s € hk n G4 • Similarly,,·. s:t,nce G2 separates 

G
5 

from G1 n Hin G there ~ists an re hk n G2 • Since G4 separates G2 

from G
5 

n K' in Git follows thats is betw~en rand kin hk. Also 

d(s,H) < e and d(r,K) ~ d(r,K') < e and hence hk is e.:.:.crooked with 

respect to H and K. Therefore G is e-crooked with respect to H and K 

and the theorem is proven. 

Before showing the existence of connected, e-crooked domains that 

separate En (or Iw) a discussion of a property of domains in En (and Iw) 

is needed. 

Definition 3.18 A connected space Mis unicoherent if and only 

if M = A U B, where A and B are closed connected subsets of M, implies 

that An Bis connected. 

Whyburn (30, p. 225-228) shows that En is unicoherent for all n. 

It should be noted that the proof presented by Whyburn also holds for 

Iw. The ideas used by Whyburn's proof include topics from homotopy 

·. n w ~ 
theory and as a result the ~roof that E and I are unicoherent will not 

be included in this paper. However the following: fac"t abo1,lt En (and Iw) 

will be proven by assuming the unicoherence of En and Iw. 

Lemma 3.19 If Dis a bounded domain in En or Jw that separates 

points band c then some component of D also separates band c. 
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Proof: n 
Let E -D =BU C se~., b €Band c € C. Also let 

d(B,C) = 5 > O, since either B or C is compact. Let B' be the component 

of fx: d(x,B) ~ 5/4} that contains band let C' be the component of 

{x: d(x,C) ~ 5/4} that contains c. Then since both B' and C' are closed 

D' = En-(B' UC') is a domain, It should be noted that if A is a 

component of D' then A is itself a domain (24, p. 86) and that A has 

limit points in either B' or C', for otherwise En= AU ((D'-A) U B' U 

C') sep. Let H be the union o:;f' B' with all of the components of P' 

that have limit points in B' but not in C', Then His a closed and 

connected set. Let K be the union of C' with all of the components of 

D' that have limit points in C'. 

H n K = ¢. 

n Then K is connected, HU K = E and 

Since En is unicoherent H n K = bd His connected, Also since 

b e int B' c int H and c e CI c:. K it follows that bd H separates b from 

c. Furthermore, bd H c bd B' c D which implies that some component Dn 

of D contains bd H, Then D" separates b from c and the lemma is true. 

The following theorem of €-crooked cl.omains can now be proven. 

Theorem 3.20 If Dis a bounded domain in En or Iw that separates 

the point b from the point c and if e > 0 then there exists a connected 

e-crooked domain G such that Ge D and G separates b from c. 

Proof: Since Dis bounded, I5 is bounded and hence compact, 

therefore there exists a finite open covering m of D = D of spheres of . - 0 

diameter less that e/2. Let f(g1,g1),(g2,g2), ... ,(gn,g~)} be the finite 

collection of all pairs of elements of m. 

Now suppose Di-l' l ~ i ~ n, has been defined so as to meet the 

hypothesis of theorem 3.17. Then theorem 3,17 implies that there exists 



a domain Di such that Di is e/2-craoked with respect to gi and g1, 
D.. c D. l and D. separates b from c. 

]. J.- l. 

Let A be an arc in Dn and let x,y e A. Then there is a pair 

gi,gi s1,1ch that, without loss of generality, x e gi ~nd ye: g1. Since 

the arc xy c A is contained in Di by the inductive definition of Dn 

there exists points rands in arc xy such that r is between x ands 

and d(s,g ) < e/2 and d(r,g') < e/2. Since the diameters of gi and g1 
are less than e/2, the triangle inequality implies that d(s,x) < e and 

d(r,y) < e. Therefore Dn is e-crooked. 

Also D c. D and D separates b from c. Lemma 3.7 implies that ·n , n 

some component G of D separates b from c. Since cr t: D and G is a 
n 

domain theorem 3.20follows. 

From the existence of e-crooked domains as given in theorem 3.20 

it ifi now possible to show the existence of hereditarily indecomposable 

continua of all dimensions, includ.ing infinite dimensional heredita.rily 

indecomposable continua. 

Theorem 3.21 If Hand Kare mutually exclusive continua in En 

(in Iw) then there exists a hereditarily indecomposable continua of 

dimension n-1 (of infinite dimension) that separates H from K. 
i 

Proof: Leth€ Handke K. Since Hand Kare bounded there 

exists an open sphere D such that HU Kc D. Let S . = D- ( H U K) • 
0 

Then 

S
0 

is a bounded domain that s.eparates H from K and hence h from k. 

Suppose Si' 0 ~ i < J, has been defined so that S:--c Si 1 , S. is 
' ]. - ]. 

1/i-crooked, i ~ 1, and each Si is a connected bounded domain, i;;;: 1, 

and each S separates h from k. 

Then theorem 3.20 implies that there exists a 1/J .. crooked domain 
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SJ that separates h from k so that Sj"c SJ-l' 

Let C = ~Si. 1Since C is the intersection of a nest of continua 

theorem 1.14 implies that C is a continuum. 

Now suppose there is a continuum Mc C such that M ls decompos-

able. Tl;len M =AU B where A and.Bare proper subcontinua of M, Let 

p € B-A and q e A-Band choose n so that d(p,A) > 2/n and d(q,B) > 2/no 

Let OA be the union of all open spheres that are subsets of Sn' have 

centers in A and have rad~i less than 1/n. Similarly, let OB be the 

union of all open spheres that are subsets of S, have centers in Band n 

have radii less than 1/n. Then OA and OB are connected open sets 

containing A and B respectively and d(q,OA) > 1/n and d(~,OB) > 1/n. 

Let x €An Bf:;¢. Then x e OA n OB which is a connected domain. Since 

a connected domain is arcwise connected and since no arc separates a 

connected domain let px be an arc in OB and xq be an arc in 

(OA-px) U (x}. Then px U xq = pxq is an arc in OA U OB. Since pxq c: S , 
n 

which is 1/n-crooked, there exist points rands such that r is between 

p ands in pxq and d(p,s) < 1/n and d(r,q) < 1/n, Si~ce d(p,s) < 1/n 

and d(p,xq) > d(p,OA) > 1/n it follows thats I xq. Therefore s e px 

and since r is between q ands~ re px. Therefore d(r,q) ~ d(px,q):.: 

d(OB,q) > 1/n which is a contradiction and hence there does not exist a 

decomposable subcontinuum of C. Therefore C is hered,itarily 

indecomposable. 

To show that C separates H from K suppose 'that hand k lie in the 

same component P of En-C (or Iw-C). Then, since Pis open and connected 

there exists an arc hk c P. For every i :.: 1, Si n hk fa ¢ since Si 

separates H from K. Therefore C n Pc C n hk = n(S:- n hk) fa¢ since the 
I 1 

intersection of a nest of non-empty compact sets is non-empty. Since 



this is a contradiction hand k lie in distinct components of En-C 

(or Iw-C). Therefore if Pis the component of En-C (or Iw-C) contain­

ing h then k t P and En -C = [ (En-C )-P] U P sep. with K c (En -C )-P and 

H c P. Hence C separates H from K. 

If Cc En then dim Cf n for otherwise C would contain an open 

set of En by theorem 2 .44 which would imp.J_y that C would contain a 

decomposable continuum. Also dim C ~ n-1 by theorem 2.47 since C 

n 
separates E. Therefore dim C = n-1, 

If Cc Iw let ir1, n ~ 2, be a sub-vector space of ff, the 

Hilbert space, containing hand k, Then~ is homeomorphic to En and 

Kn n Iw is the closure of a connected open set in Kn. Since C separates 

r. n Iw corollary 2 .49 implies tb.at d,im C ~ n .. 2 for all n. Therefore 

dim C = co, 

• ,I', 

Hence the existence of hereditarily indecomposable continua of 

all dimensions has been proven. 

Corollary 3,22 If (Si} is a nested sequence of domains such that 

for each i, Si is 1/i-crooked then every continuum in ~Si is 

hereditarily indecomposable, 

Proof: This was included in the proof of the6rem 3.21 by showing 

that·c contained no decomposable continuum. 

Theorem 3.23 n w There exist bases for E and I such that each 

element in the bases has as its boundary a heredi ta:H:ty indecomposable 

continuum, 

Proof: Let p e En, let e > o, and let B = (x; d(x,p) < e:}. Then 

the domain B-[p} separates p from bd B. Hence theorem 3.20 implies the 

existence of a hereditarily indecomposable continuum H c B-fp} that 
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separated p from bd B. Let C be the component of En-H that contains p. 

n Let D be the union of all components of E -H that do not contain p. 

Then C and D U H are closed and connected sets e.nd En ::::; C U (D U H). 

Therefore the unicoherence of En implies that C n (D ~ H) = K is 

connected. Since K is closed and Kc:: Hit follows that K is hereditari­

ly indecomposable, Also K = bd Cc: B. Thus for every point in En there 

exists arbitrarily small open sets that have as their boundaries 

hereditarily indecomposable continua and the theorem holds for En. 

This proof also holds for Iw. 

Separating Properties 

As was noted in the previous section, in En there exist, for 

every pair of disJoint continua Hand Kin En, a hereditarily indecomp-

osable continua separating Hand K, This can be generalized to the 

point that if A and Bare disjoint compact sets in En, or in any space, 

then there exists a closed set, each of whose components are hered;itar~ 

ily indecomposable, that separates A from B :J.n En. To do this the 

following lemma will be useful. 

Lemma 3,24 If-\,~, ... ,An is a finite seq.uenpe of pairw;l.se 

disjoint compact subsets of the separable metric space S then the space 

S 1 whose points are A
1

,A2, ... ,An and those points in S-(AJ, U ••• U An) 

is a separable metric space under the metric for S' that is such that 

the distance between x and y in S' ;is their distance 1in S as subsets 

of s. 

Proof: Since the sets .Ai,~, ... ,An are pairwise disJoint and 

compact, if x,y ~ S' then d(x,y) > 0 if x f y and hence S' is a metric 



space, If K is a countable dense set in S then K-(A1 U ••• U An) is 

a countably denpe set in S' and S' is separable, Therefore the lemma 

holds. 

Theorem 3.25 If A and Bare disJoint compact subsets of a 

separable metric space S then there exists a closed set Hin S that 

separates A from B in S suc.h that each component of H is hereditarily 

indecomposable. 
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Proof: Since, by lemma 3.24, th,e space S' determined by 

consider:ing A and B as points is separable and metri~. then theorem 1.16 

implies there exists a function g: S.' - Iw that imbeds S' in Iw. Also 

since h:S ~ S', where h(m) = m if m € S-(A U B), h(m) = A if roe A and 

h(m) = B if me B, is an open continuous function (18, p. 94) it 

follows that f = g his an open continuous function from S to f(S) c Iw 

w that maps A and B to the single points a and bin I and that f is one-

to-one on S-(A lJ B). 

Theorem 3.21 implies there exists a hereditarily indecomposable 

continuum H' in Iw that separates a from bin Iw. Let Iw-H' = 

P' U Q' sep., where a e P' and b € Q.'. Then let H = f-1 (H' ), P = f-1 (P') 

and Q = f"'1 (Q 1 ). Then H is closed since the inverse·"of closed sets 

under continuous function9 are closed, Also if x is_a limit point of P 

then f(x) is a limit point of P' which implies that f(x) ~ Q' since P' 

and Q' are separated sets. Therefore x t Q and no limit point of Pis 
· r:1 ... 

in Q. Similarly no limit point of Q is in P. Therefore P and Qare 

separated sets. Also since f is one-to-one on H it follows that 8-H = 

P Q sep. Furthermore, if Dis a component of H then f(D) is a subcon-

tinuum of H' since f:H - f(H) c:. H' is a homeomorphism. Therefore f(D) 
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is heredi tari.ly indecomposable and hence D is heredi tarily indecompos­

able. Hence the theorem follows. 

Homogeneity 

Definition 3.26 A space Mis homogeneous if and only if for each 

pair of points x and yin M there exists a homeomo~phism f from Minto 

M such that f(x) = y. 

Though the pseudo-arc is a homogeneous hereditarily indecompos­

able continuum no hereditarily indecomposable continuum of dimension 

greater than one is homogeneous. This will be shown by showing that 

every hereditarily indecomposable continuum of dimension n contains a 

subcontinuum of dimension n-1 and that every hereditarily indecomposable 

continuum of dimension n contains a point such that if a non-degenerate 

subcontinuum contains that point then that subcontinuum is also of 

dimension n. It should be noted, however, that this method will not 

apply for infinite dimensions as there exist infinite dimensional 

hereditarily indecomposable continua that contain no non-degenerate 

finite dimensional continua (32). This will be discussed in the next 

section. 

Theorem 3.27 If Mis an n dimensional continuum then M contains 

a subcontinuum of'dimension k for all k '.'!'.: n. 

Proof: The definition of dimension implies there exists a point 

p € M such that some domain D containing p has a boundary (relative to 

M) of dimension n-1. 

Since bd D is compact theorem 2 .50 'implies that bd D contains a 

continuum H that has dimension n-1 at each of its points. Therefore H 
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is a subcontinuum of M that has dimension n-1. 

By repeated application of this proof there exists a subcontin-

uum of M of every dimension less than n and the theorem follows. 

Theorem 3.28 If Mis a hereditarily indecomposable continuum of 

finite dimension then there exists p ~ M such that if N is a non-

degenerate subcontinuum of M containing p then dim M::;:: dim N. 

Proof: Let M = M and suppose that for i < k, Mi has been 

defined so that for each i, 0 < i < k, Mi is a subcontinuum of M1 _1 , 

the diameter of each M1 is less than 1/i and dim M1 = d;im M. 

Since ~-l is compact there exists a finite open covering 

o1 , ••• ,Gn of ~ ... 1 .such that each element of G1, ••. ,Gn nas diameter less 

than 1/k. Then ~-l ::;:: y(J\_1 n G1 ) is the union of a finite number of 

compact sets of diameter less than 1/k. Thus theorem 2,18 implies that 

for some J, ~-l n GJ has the dimension of ~-l" Since ~-l n GJ is 

compact theorem 2.50 implies that some continuum~ in ~-l n GJ has 

the same dimension as ~-l· Hence dim~= dim Mand the diameter of 

~ is less than 1/k and~ c ~-l· 

Thus a sequence (M.} of continua qas been defined with the 
1 

desired properties. 

Since the sequence is nested and each element is compact there 
GO 

exists a point p € nM .• Suppose N is a non-degenerate subcontinuum of 
i ,. 1 

M containing p and let q € N such that q f p. Then for some n, 

1/n < d(q,p). Since p € M and the diameter of M is less than 1/n it .· n n 

follows that q ~ M. Since M n NF¢, either M c Nor N c M, for n n n 

otherwise M UN would be a decomposable subcontinuum of M. Since n 

Therefore theorem 2.12 implies that dim M = dim M 
n 
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~ dim N ~ dim M since M C:: N c: M. Hence dim N = dim Mand the theorem 
n 

follows. 

Theorem 3.29 No heredi tarily indecomposable continuum of 

dimension greater than one is homogeneous. 

Proof: Suppose that Mis a homogeneous hereditarily indecompos-

able continuum and that the dim M = n > 1. Then theorem 3.27 implies 

that M contains a continuum Hof dimension n-1, Note that dim H > 0 

and hence H is nondegenerate. Also theorem 3.28 implies that there 

exists a point p € M such that if N is a subcontinuum of M containing p 

then dim N = n. Let q e: H. Then M being homogeneous implies there 

exists a homeomorphism f:M ~ M such that f(q) = p. Therefore f(H) is a 

subcontinuum of M containing p and dim f(H) = n since f is a homeomor-

phism. But theorem 2.11 implies that dim f(H) = dim H = n-1 which is a 

contradiction. Therefore no hereditarily indecomposable continuum of 

dimension greater than one is homogeneous. 

HID Continua 

In 1926 L.A. Tumarkin (27) asked if there mi~ht be a non-

degenerate continuum such that each of its subcontinua were infinite or 

zero dimensional. Van Heemert, in 1946, claimed to prove that all 

infinite dimensional continua contained one dimensional continua (28). 

This proof was in error as D. w. Henderson demonstrated, in 1965, the 

existence of a continuum each of whose subcontinua were either infinite 

dimensional or degenerate (12). Such a continuum is a HID continuum as 

defined below. It is the purpose of this section to present some of the 

properties of such continua. Most of the properties are a result of 

J. M. Yohe, (32). 



62 

Definition 3.30 If Mis an infinite dimensional compact set such 

that M contains non dimensional compact sets for O < n < 00 then Mis 

said to be hereditarily infinite dimensional (HID), 

Theorem 3.31 Let M be a HID continuum and let p e M. Then 

dim M at p = 1 or dim M at p = oo. 

Proof: Since Mis connected and nondegenerate the definition of 

dimension implies that dim Mat p > o, for otherwise M could be separat-

ed by the empty set. 

Suppose dim Mat p = n where l < n < 00 • Then there exists a 

neighborhood U (in M) of p such that dim (bd U) = n-1 > o. Since bd U 

is a compact subset of M this contradicts M oeing HID. Thus 

dim M at p = 1 or dim M at p = oo. 

Theorem 3.32 Every HID continuum in Iw contains uncountably 

many mutually exclussive hereditarily indecomposable HID continua. 

Proof: By theorem 3.23, Iw has a basis consisting of neighbor-

hoods whose boundaries are hereditarily indecomposable continua. 

w Let M be a HID continuum in I . Since dim M = 00 there exists 

p € M such that dim Mat pf 1. Theorem 3.31 implies that dim Mat p 

is 00 • Let e > O be choosen so that for each a, O <a< e, the set 

Sa= (x e M: d(x,p) < a} has a boundary in M of dimension greater than 

0. This can be done by the definition of dimension. Therefore 

dim (bd S in M) ==,for otherwise M would contain a compact set of 

positive dimension. Since not every component of bd Sa in Mis a 

singleton, for this would imply that dim (bd Sa in M) = 0 (10, p. 22), 

let N be a non-degenerate component of bd Sa in M. Then dim N = 00 since 



dim N f O. Hence N is a HID continuum and there exists q € N such that 

dim Nat q = 00 and there exists a o > 0 such that if Ve 

(x € N: d(x,q) < o} is an open set relative to N then bd Vin N has 

w infinite dimension. Let Ube an open set in I such that bd U is a 

hereditarily indecomposable continuum and Uc (x e Iw: d(x,q) < o}. 
,.,. 

Then dim (N n bd U) = 00 and N n bd U contains a component Na of 

infinite dimension, Since Na c bd U, N is a hereditarily indecompos­

able HID continuum. Also since if x € Na then d(x,p) = a, it follows 

that if a f ~ then Nan N~ = ¢. Therefore, the theorem follows. 

Definition 3.33 A compact n dimensional space, n > o, is 

called an n-dimensional Cantor-manifold if it cannot be separated be a 

closed subset of dimension< n-1. A compact infinite dimensional space 

is an infinite dimensional Cantor-manifold if it cannot be separated 

by a closed subset of finite dimension. 

Note that every Cantor-manlfold is connected since it cannot be 

separated by the empty set, Also an n-d!mensional Cantor-manifold has 

dimension n at each of its points and an infinite dimensional Cantor~ 

manifold is infinite dimensional at each of its points. 

L, A. Tumarkin (27) has shown that every HID space contains an 

infinite dimensional Cantor=manifold. Therefore ea.ch of the hereditar-

ily HID continua in the space M of theorem 3.32 contains an infinite 

dimensional Cantor-manifold and the following corollary to theorem 3,32 

is a result, 

Coro.l,lary 3.34 Every HID continuum contains an uncountable 

number of mutually exclussive hereditarily indecomposable HID 

Cantor-manifolds. 
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The next theorem divides HID continua into "manifold components" 

and gives some insight into the structure of HID continua. 

Theorem 3.35 Let M be a HID continuum. Then M = UM where 
p 

each M is a maximal HID C~ntor-manifold in M containing p. 
p 

Also if p,q € M then either Mp= Mq or dim (M n M) ~ O. p q 

Proof: Let p €Mand e be the collection of all Cantor-manifolds 
p 

containing p. Since {Pl€ eP, eP I¢. 
Let (Cal be a nest in e and let c = uca. Then if C = (Pl then p 

C is a 0-dimensional Cantor-manifold and an upper bound for (Cal· 

Otherwise, if x,y € C then there exists Ca such that x,y € ca. 

Since ca is a non-degenerate subcontinuum of M it follows that dim C )(). 

Therefore dim C =~and C is an infinite dimensional Cantor-manifold. a a 

Therefore x and y cannot be separated in Ca by a subset of finite dim-

ension and hence x and y cannot be separated in C by a closed subset of 

finite dimension. 

Hence no closed set of finite dimension separates C which implies 

that no closed set of finite dimension separates c. Therefore C is a 

Cantor-manifold containing p and C is an upperbound for (Cal· Hence, 

by Zorn's lemma (18, p. 33), there exists a maximal Cantor-manifold M 
p 

containing p. 

M cM 
q p 

M UM p q 

Let p,q €Mand suppose that M n 
p 

it follows that M = M since M 
p q p 

M F ¢. q 
Then if ry1 c M or 

p q . 

and M are maximal. 
q 

Otherwise 

is not a Cantor-manifold since M and M are maximal. Also 
p q 

neither M nor M is degenerate since M n M F ¢. Therefore M UM p q p q p q 

can be separated by a closed subset Z of finite dimension. Since Mis 

HID it follows that dim Z = o. Since Z separates neither M nor M it 
p q 



it follows that (M UM )-Z =AU B sep. with M -Z CA and M -Z c B. 
p q p q 

Therefore M n M c Z and dim (M n M ) ~ dim Z = O. Henc .. e dim (M n Mq) p q p q p 

is zero and the theorem is proven. 

The next three theorems will be stated without proof. The first 

is a result of the Baire Category Theorem (14, p. 160), the second is an 

indirect result of the first and the third is a result of function 

theory (32, p. 181). 

Theorem 3.36 If Mis a compact space and Mis the countable 

union of HID compact spaces then Mis itself a HID space. 

Theorem 3,37 There exist an uncountable number of topological-

ly different HID continua. 

Theorem 3.38 There exist hereditarily indecomposable HID 

continua that can be separated by sets of dimension zero. 

The following questions were raised by J.M. Yohe (32) in his 

paper on hereditarily infinite dimensional spaces in 1969. To the 

author's knowledge these questions are yet to be answered. 

1. Does there exist a homogeneous HID space? 

2. Do there exist uncountable many topologically different 

hereditarily indecomposable HID Cantor-manifolds? 

3. Do there exist uncountable many topologically different HID 

Cantor-manifolds? 

4. If Mis an HID continuum and N is an HID Cantor-manifold in M 

and if Mis decomposed as in theorem 3.32, is it necessarily true that 

N c:: M for some p e M? 
p 



CHAPTER IV 

CHAINABLE CONTINUA IN THE PLANE 

Introduction 

In chapter III the properties and existence of hereditarily 

indecomposable continua of all dimensions was discussed. This· chapter 

will be a discussion ot chainable hereditarily indecomposable continua 

that lie in the plane. It will not be the purpose of this chapter to 

prove in detail the properties of the continua that will be mentioned, 

but rather to give the reader an understanding of the scope of the 

literature that concerns itself with such continua. This chapter will 

be a review of the thesis of McKellips (21) along with an updating of 

information discovered since his paper was completed. The material in 

this chapter will be carefully referenced in order that the reader might 

examine in detail the concepts involved. In this chapter all sets will 

be considered to be in the plane unless otherwise stated. 

There are two types of chainable hereditarily indecomposable 

continua in the plane, the pseudo-arc and the pseudo-circle. These can 

be combined in order that an uncountable number of topologically distinct 

hereditarily indecomposable continua can be found in the plane. The 

pseudo-arc and the pseudo-circle will be discussed with their properties 

stated and referenced. That there e~ist uncountably many topologically 

distinct hereditarily indecomposable continua. in the plane will be 

proven in some detail. 

66 
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The following definitions will be used for chainable. 

Definition 4.1 A finite collection of domains D = (d1 , ••• ,dn} 

is called a linear chain if and only if din dJ f ¢ if and only if 

Ii-JI ~ 1, i,J = 1,2, .•. ,n. If p and q are points belonging to <l:i_ and 

d respectively then Dis called a linear chain from p to q. 
n 

Definition 4.2 A finite collection of domains D = f<i:i_,···,dn} 

is called a circular chain if and only if din dJ f ¢ if and only if 

Ii-JI~ l, i,J = 1,2, ••• ,n, except that <l:i_ n dn f ¢. 

Definition 4.3 A continuum Mis said to be linearly (circularly) 

chainable if and only if for every positive number E there is a linear 

(circular) chain D such that Mc: U(d: d c D} and for each d € D the 

diameter of Dis less that€. If a continuum is refered to as chainable 

it will be either linearly or circularly chainable. 

Definition 4.4 If Dis a chain then each element of Dis called 

a link of D. If D and E are chains then Eis a subchain of D if and 

only if each link of Eis a link of D. If Eis a linear chain then E 

will be denoted by D(i,J) where di and dj are the end links of E. 

The following definition will be of key importance in the 

definitions of the pseudo-arc and the pseudo-circle. 

Definition 4.5 The linear chain E = fe1 ,e2 , ••• ,en}is crooked in 

the linear chain D = (<\,~,···,dm} if and only if: 

(1) 

(2) 

'1'I • '11 
yai contains ~ei. 

For every subchain E(;i.,J) of E such that ei fl ~ f ¢, 

ej n ~ f ¢, where lh-kl > 2, the following conditions hold: 
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(a) E(i,J) is the union of three chains E(i,r), E(r,s) and 

E(s,J) such that (s-r )(J-i) > 0, (i < r < s < J or 

J < s < r < i), 

(b) e is a subset of a link of D(h,k) adJacent to ~, r 

( C) e is a subset of a link of D(h,k) adJacent to ~· s 

The Pseudo-arc 

In 1922 Knaster (20) described a hereditarily indecomposable 

continuum in the plane. At that time Knaster thought that his 

continuum was homogeneous though he could not demonstrate that this was 

so. In 194b Moise (23) gave an example of a linearly chainable 

continuum, which he called a pseudo-arc, that was indecomposable and 

homeomorphic to each of its subcontinua. Later in 194b R. H, Bing (1) 

demonstrated that the pseudo 7arc was homogeneous. In 1951 Bing (2) 

proved that any linearly chainable non-degenerate hereditarily indecom­

posable continuum is homeomorphic to the pseudo-arc of Moise. This 

then showed that the continuum of Knaster was a pseudo-arc. In 1951 

F, B. Jones (15) proved that every homogeneous bounded plane continuum 

that does not separate the plane was indecomposable, By using this 

result and by adding linearly chainable to the hypothesis Bing (5) 

proved that every linearly chainable homogeneous plane continuum was a 

pseudo-arc. 

The following definition of pseudo-arc is similar to the one 

used by Moise. 

Definition 4.6 Let S be a compact set and let p and q be 

distinct points of S. Let n
1
,n2, ••• be a sequence of linear chains 
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from p to q such that: 

(l) For each i, Di+l is crooked in D., 
l. 

(2) For each i, each link of D. has 
l. 

diameter less than 1/i, 

(3) For each i, the closure of each link of Di+l is contained 

in Dt where D"!E" is the union of the links of Di, 
l. l. 

(4) For each i, each link of Di is connected, 

Let M = nD"?E", Then M is called a pseudo-arc from p to q. 
l. 

Before proving that the pseudo-arc is a hereditarily indecompos-

able continuum the following theorem should be considered. This theorem 

relates the concept of crooked chains with the concept of crooked 

domains. 

Theorem 4.7 If D and E are linear chains such that each link of 

D has diameter less than €/3 and Eis crooked in D then E*, the union of 

the links of E, is an €-crooked domain, 

Proof: Let D = (d1 ,~,···,dn} and E = fe1 ,e2 , ... ,em} be such 

chains and let A be an arc in E*. Then let x,y € A. Suppose that 

X € e1 I I ~ and y € e J n '1t. 
Then if jh-kj < 2, ~ n ~ f ¢ and the diameter of~ U ~ is 

less than 2e/3. By choosing m € (subarc xy) n '1t and n € (subarc my) n 

~ it follows that n is between m and y, d(m,y) <€and d(n,x) < €, 

Then 

d n 
g 

If lh-kl = 2 then choose integer g so that g is between hand k, 

~ U dg U ~ has diameter less than € since ~ n /g f ¢ and 

~ f ¢. Hence choose m € (subarc xy) n ~ and n € (subarc my) n ~ 

and it follows that n is between m and y, d(m,y) <€and d(n,x) < €. 

If lh-kj > 2 the definition of crooked implies that E(i,J) is the 

union of three subchains, E(i,r), E(r,s) and E(s,J) such thats is 
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between rand J, er is a subset of a link of D(h,k) adJacent to~ and 

es is a subset of a link of D(h,k) adJacent to ',i· Since x E e1 and 

y € eJ the definition of a chain implies that the subarc xy intersects 

each element of E(i,J). Therefore choose m € (subarc xy) n e. s 

Similarly the subarc my intersects each element of E(i,s) = 

E(i,r) U E(r,s). Therefore choose n E; (subarc my) n e • Then n is r 

between m and y and n,:x; € ~-l U ~ U ~+l and d(n,x) < €. Also 

m,y e <\-l U <\ U <\+l and d(m,y) < €~ ,, 

Therefore A is e-crooked which implies that E* is ~-crooked, 

It can now be shown that a pseudo-arc is a non-degenerate 

hereditarily indecomposable continuum. 

Theorem 4.8 If Mis a pseudo-arc then Mis a hereditarily 

indecomposal;>le non.:.degenerate continuum, 

.., 
Proof: Let M = ~Df where each Di meets the definition of pseudo-

.,('. .. 

arc. Then, for each i, since each link of·D1 is ¢pnnected the definition 

of chain implies that D* is connected, Also the definition of pseudo-

arc implies that TI¥ c: D~ 1 • Thus M = D!F1* is the intersection of a nest 
:1 1+ 

of continua and hence Mis a continuum. Since n
3
:i,+l_is crooked in D

3
i 

and each link of D
3

i has diameter less than 1/31 theorem 4. 7 implies 

that D3i+l is 1/L-crooked. , Hence corollary 3,22 implies that 

M =~Di*= ~D
3
*. 1 is hereditarily indecomposable. 

I I 1+ 

SinGe both P and q are elements of M it follows that Mis non-

degenerate and the theorem follows, 

While it will not be shown that the pseudo-arc is homogeneous it 

is suggested that the reader should look at the proof by McKellips (22) 
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for further information and insight. In the opening paragraph of this 

section two characterizations of the pseudo-arc were suggested. These 

will now be formally stated without proof, 

Theorem 4.9 A set Mis a pseudo-arc if and only if Mis a 

linearly chainable non-degenerate hereditarily indecomposable continuum 

(2). 

Theorem 4.10 A set Mis a pseudo-a.re if and only if Mis a 

linearly chainable nondegenerate homogeneous continuum (5 ). 

The Pseudo-circle 

After the pseudo-a.re was found to be homogeneous, Bing, Jones 

and others became interested in characterizing homogeneous continua in 

the plane. In 1951 Bing (2) published a paper in which he described 

a circularly chainable hereditarily indecomposable continuum that 

separated the plane. This continuum became known as a pseudo-circle 

and Bing posed two questions about the pseudo-circle. He asked if it 

were topologically equivalent to all other circularly chainable 

hereditarily indecomposable continua that separate the plane and if it 

were homogeneous. Lawrence Fearnley in 1969 proved that the pseudo­

circle was unique with respect to Bing's first question.,(10). Later 

that same year Fearnley also proved that the pseudo-circle was not 

homogeneous. (11). 

The following definition will be used in defining a pseudo-circle, 

Definition 4,11 If D and E are two circular chains such that 

each link of Eis contained in some link of D then Eis crooked in D if 

and only if D1 is a proper subchain of D and E1 is a subchain of E such 
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that El Dl implies that El is crooked in D1 • 

Theorem 4.12 If D and E are circular chains such that Eis 

crooked in D and the diameter of each link of Dis less than e/6 then 

E* is an €-crooked domain. 

Proof: Let D = (<\,~,···,dn) and E = (e1 ,e2, ••• ,em} be two such 

chains. Let A be an arc in E* cont~ining the points x and y. Let 

x e: ~ and y e <\. 
Then if~ and<\ are adJacent in D to each o~~er or to the same 

link of D then A is e~crooked relative to x and y by the process used 

in theorem 4.7. 

Otherwise, let z be the first point from x toy such that 

z e: (subarc xy) n (~-l U ~ U ~+l) where consideration is given if 

k = 1 or k = n. Note that (subarc xz) n (~-l U ~ U ~+l) = ¢. The 

definition of chain implies that there exists a subchain E1 of E such 

that subarc xz intersects each link of E1 .and (s~barc xz) G: E*. 

Suppose Ef n ~ # ¢. Then there exists e e E1 such that 

e n <\ -/: ¢. The definition of crooked implies that e n (~_1u<\:u'\.+l) 

which implies that (subarc xz) n (<\_1 U ~ U <\+l) -/:,/ which is a 

contradiction. Therefore Ei n ~ = ¢. 
H;ence if l\ = D .. ( ~} then, Ef c: Df and hence E1 is crooked in Dl,. 

Therefore theorem 
1
4. 7 implies that Ef is an e/2 .. crooked domain. Hence, 

C 

in subarc xz, there exists an rands such thats is between x and r, 

d(x,r) < e/2 and d(s,z) < e:/2. Since d(z,y) < e/3 it follows that 

d(s,y) < e. Hence A is e-crooked relative to x and y which implies that 

E* is an e:-crooked domain. 



73 

Definition 4.13 Let D1 ,D2, ••• be a sequence of circular chains 

such that 

(1) each link of D. is a connected domain ~ith diameter less 
J. 

than 1/i, 

(2.) the closure of each link of Di+l is contained in a link 

of Di, 

(3) 

(4) 

each Di+l is crooked in Di, 

each D~ separates the plane. 
J. 

Then M = nDf is a. pseudo-circle, 

Theorem 4.14 If Mis a pseudo-circle then Mis a hereditarily 

indecomposable continuum that separates the plane. 

Proof: If Mis a pseudo-circle then it follows from theorem 4.13 

that Mis a hereditarily indecomposable continuum in much the same way 

that theorem 4.b followed from theorem 4.7. 

That M separates the plane follows from the fact that each Df 

separates the plane. See the proof of theorem 3.21. 

While it will not be shown that the pseudo-circle is unique with 

respect to Bing's first question nor will it be shown that the pseudo-, 

circle fails to be homogeneous, the papers of Fearnley as described at 

the first of this section do give rise to the following characterizations 

of the pseudo-circle. These characterizations will be stated without 

proof. 

Theorem 4.15 If Mis a set then Mis a pseudo-circle if and only 

if M is a non-homogeneous chainable continuum, (10), 



Theorem 4.16 If Mis a set then Mis a pseudo-circle if and only 

if Mis a chainable continuum that separates the plane, (9). 

Homogeneous Continua in the Plane 

After a non-degenerate homogeneous continuum different than a 

simple closed curve was discovered the big problem in this area ,was to 

characterize homogeneous continua in the plane. Though no such general 

characterization as yet exists it is now known that there exist exactly 

three topologically distinct nondegenerate homogeneous chainable 

continua. Historically, this characterization was arrived at by the 

following path, 

In 1920 Knaster and Kuratowski (21) presented the problem: Is 

every non-degenerate homogeneous bounded plane continuum a simple closed 

curve? In 1922 Knaster (20) gave his example of a hereditarily indecom­

posable continuum which he suggested might be homogeneous. In 1937 

Zenon Waraszkiewicz (29) claimed to have proven that the only non­

degenerate homogeneous plane continuum was the simple closed curve. His 

proof was in error as Bing (4) proved in 1945 that the pseudo-arc was 

homogeneous. In 1951 Jones (16) proved that all non-degenerate homo­

geneous plane continuum that does not separate the plane was indecompos­

able, By extending this Bing (5) proved that all non degenerate 

homogeneous chainable continua that failed to separate the plane was 

the pseudo-arc. In 1954 Bing and Jones (6) discovered a homogeneous 

decomposable continuum that separates the plane. This example was 

called a "circle of pseudo-arcs", which are topologically unique. (For 

a detailed discription of a circle of pseudo-arcs see the thesis of 

McKellips (22, p. 61).) Jones (17) proved in 1955 that the only 
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decomposable homogeneous continua are the simple closed curve and the 

circle of pseudo-arcs. This left only indecomposable chainable continua 

that separate the plane open to the question as to its homogenity. When 

Fearnly (10) proved that such continua were not homogeneous it followed 

that the following three continua are the only topologically distinct 

nondegenerate homogeneous chainable plane continua. 

(l) Simple closed curves 

(2) Pseudo-arcs 

(3) Circles of pseudo-arcs 

While it is not known if there might exist homogeneous continua 

in the plane that are not chainable it is this writer's feeling that 

no homogeneous non'chainable continua exist in the plane. 

Other Hereditarily Indecomposable Continua 

It will be the purpose of this section to demonstrate the 

existence of an uncountable number of topologically distinct hereditarily 

indecomposable continua in the plane. These continua are not, of course, 

chainable as the pseudo-arc and the pseudo-circle are the only chainable 

hereditarily indecomposable continua. These continua will be, however, 

combinations of the pseudo-arc and pseudo-circle. 

Before begining the major task of this section some theorems 

from general topology will be stated. 

Theorem 4.17 If~,~,··· is a sequence (finite or infinite) 

of disJoint compact sets that do not separate the plane such that for 

some point m every open neighborhood of m contains all but a finite 

number of the sets (Mi) then the space determined by considering each 

Mi as a point is homeomorphic to the plane. 
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Proof: See Ottinger's thesis (25, p. 7). 

Definition 4.15 If Mis a set such that Mis homeomorphic to. the 

closed unit disk in the plane then Mis a closed 2-cell. 

Theorem 4.19 If J is a simple closed curve and Mis a compact 

set that does not separate the plane contained in the interior of J 

then B =JU (interior of J) and B' =JU (interior of J) with M 

considered to be a point are closed 2-cells. 

Proof: See Wilder, page 94 (31, p. 94). 

2 1 Theorem 4.20 If C is the closed unit disk, S is the unit 

2 1 1 1 circle, x,y € C -S and g:S ~ S is a homeomorphism then there exists 

2 2 1 a homeomorphism f:C ~ C such that f restricted to S is g and f(x) = y. 

Proof: 1 Let S be S XI, where I is the closed unit interval, 

with s1 x fo} identified as a single point. 
2 Define h:S q C by letting 

h(s,r) = rg(s) + (1-r)y and define k:S - c2 by letting k(s,r) = 

rs+ (1-r)x. Note that multiplication by rand 1-r is scalar multipli-

cation and that the addition is vector addition. 

Since g is continuous and scalar multiplication and vector 

addition are continuous it follows that his continuous. 

If h(s1 ,r1 ) = h(s2,r2 ), r f o, then both g(s1 ) and g(s2 ) lie on 

the ray from y through h(s1 ,r1 ). Therefore g(s1 ) = ~(s2 ) since that ray 

intersects s1 at only one point. Therefore s
1

. = s2 since g is 

one-to-one, 

Also h(s1 ,r1 ) = h(s2,r2 ) implies that r 1 (g(s1 )-y) + y = 

r 2 (g(s2 )-y) + y which implies that r 1 = r 2 • Therefore his one-to-one 

since r 1 = 0 implies that r 2 = o. 
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If z € c2, z = y, tben there exists s € s1 such that z is on the 

line segment from s toy. Therefore, for some r, 0 < r ~ 1, z =rs+ 

(1-r )y = h(g-.'.!-(s) ,r). Hence h is onto. 

2 Since Sis compact, C is Hausdorff and his a one-to-one 

continuous auto mapping the reference (14, p. 76) implies that his a 

homeomcrphism. 

In a similar manner it follows that k is also a homeomorphism. 

' -1 l 1 Let f = hok , Then ifs e S, f(s) = h 0 k- (s) = h(s,1) = g(s). 

Also f(x) = h(k-1 (x)) = h(s1 X [O}) = y. Hence f meets the required 

conditions. 

Theorem 4 .21 Let Ml'~'... be a sequenc~ of compact sets that 

do noL separate the plane such that for each n, M i.s contained in the 
n 

interior of the compact set B. Suppose also that for each n, bd B = n n 

Jn is a simple closed curve and that the set (Bn} is pairwise disJoint. 

2 Furthermore, suppose that for some be E every neighborhood of b 

contains all but a finite number of Bn· Let x1 ,x2, ••• be a sequence 

of points such that x € int B for each n. Then there exists a con-n n 
2 2 

tinuous map f:E ~ E such that for each n, f(Mn) = xn and on 
2 .. 

E -UM, f is a homeomorphism. 
I Il 

Proof: Theorem 4.19 implies that B and B' = B with M consider-n n n n 
2 2 ed as a point are both homeomorphic to C, where C is the closed unit 

disk. Let 
2 2 . · 

g:B ~ C and h:B' ~ C be homeomorphisms. It should b~ n n 
1 g(J) = h(J) = S • (29, p. 31) Then theorem 4.20 implies n n noted that 

2 2 1 there exists a homeomorphism k:C ~ C such that k restricted to S is 

goh-l and k(h(M )) = g(x ). 
n n 

If X € YB~ let f(x) = (g-10 k .. h)(x)q If X ~ ~B~ let f(x) = X, 
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Since B = UB' = llB 1 U (b} it follows that f is continuous of B-fb} since , n , n · 

f -1 k h · t · h BI If ( } B i = g o O is con inuous on eac n' y1 ,y2 , ... c s a sequence 

converging to band U is a neighborhood of b then U contains U[B :n>N} 
n 

for some N. Then, for some N', if n > N' then either y = b or 
n 

yn € U[B~: n > N}. In either case f(yn) € U(Bn: n > N} U [x} c U, 

Therefore f is continuous on Bat band hence f is continuous on B. 

y € 

If y € E
2 -int B then y 

E
2

-(B-(b}) then f(y) = y. 

€ E
2 -(B-{b}) or y € Jn for some n. If 

If y € J then f(y) = (g-lokoh)(y) = 
n 

(g-1 ogoh-1 oh)(y) = y. Therefore f is continuous on E
2 -int B since it is 

the identity function and hence f is continuous on E
2

• 

In a similar manner f-l is continuous and hence f is a 

homeomorphism. 

Since f(M) = (g-10koh)(M) = x
0 

the theorem follows. 
n n 

Definition 4.22 A point pis accessible from a set D if and only 

if there exists an arc A with one of its endpoints p such that 

A-(P} c D. 

Lemma 4.23 If Mis a hereditarily indecomposable continuum then 

there exists p € M such that pis not accessible from the complement of 

any nondegenerate subcontinuum of M containing p. That is, for every 

nondegenerate subcontinuum N of M containing p, p is not ac.cessible 

2 from E -N. 

Proof: Let L1 and L2 be two parallel lines each of which separ­

ate M. Then L1 separates the plane into two components u1 and u2 . 

Hence if C is a composant of M there exist points x and yin C n u1 m m 

and Cm n u2 respectively, Therefore there is a proper subcontinuum M1 

of M containing x and y. Also M1 c Cm and M' n L1 f p since L1 separates 
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M'. Therefore Cm n 11 fa¢. Similarly Cm n 12 fa¢. Hence there exists 

a proper subcontinuum of M contained in Cm that intersects both 1i and 

L2 • Let~ be an irreducible continuum from 11 to L2 contained in Cm 

(23, p. 15). 

Then, since there exist an uncountable number of mutually 

exclussive composants of M (23, p. 59), the collection (M} is uncount-.. m 

able. Let K be the union of 1i_,L2 and the closure of the union of the 

elements of {f\i}• 

Note that neither 1i_ nor ~ separates an element of [Mm} for if 

this were so a proper subcontinuum of some~ that intersects both L1 

and L2 could be found by a process used to determine _each ~. This 

would contradict~ being irreducible and hence each Mm lies on or 

between 1i_ and 12. It should also be noted that each M separates the 
m 

closed strip K' between 1i and 12 • 

2 Let D be a component of E -K that lies between L1 and L2 • 

Suppose D intersects three elements of (Mm}, M1 ,M2 and M
3

• Let x1,~ 

and x3 be points in~ n 11 ,~ n L:i_ and M3 n 11 with x2 between x1 and 

x3 on 11 • Since Kt'.-~ = v1 U v3 sep. with x1 e; v1 and x3 e; v3 it 

follows that M:i_ c: v1 and M3 c v
3

. Also either D c v1 or D c v
3

• In 

either case D fails to intersect both~ and M
3 

which is a contradiction. 

2 Hence no component of E -K that lies between L1 and 1
3 

has boundary 

points in more than two elements of (f\i}• 
2 Since the number of components of E -Kare countable there exists 

; .• 2 
~ e; {Mm} that does not intersect the closure of any component of E -K 

that lies between L1 and 12 • Let M1 be a nondegenerate subcontinuum of 

~ that does not intersect either L1 or L2 and let A be an arc from the 

complement of M to a point p e; M1 • Suppose A-{p} c E2 ~M. Then some 
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subarc xp lies between, but not on, L1 and~· Therefore 

(subarc xp)-(p} c E2-K, which implies that subarc xp is contained in TI, 
2 

where Dis a component of E -K that lies between L1 and L2, which in 

turn implies that~ c ~ intersects D which is a contradiction. There­

fore A-(P} ¢. E
2

-M and no point of~ is accessible from E2 -M. Hence 

every hereditarily indecomposable continuum M contains a non-degenerate 

subcontinuum containing no point accessible from the complement of M. 

As was done in the proof of theorem 3.28, M contains a non-

degenerate subcontinuum M' with dia~eter less than land M' contains a 

subcontinuum ~ such that no point of~ is accessible from Ef-M. 

Suppose that Mi has been defined with diameter less than 1/i. Then 

there exists a subcontinuum Mi+l of Mi with diameter.~ess than 1/(i+l) 

such that no point of Mi+l is accessible from the complement of Mi. 

Let p e nM
1

• Then if N is a subcontinuum of M containing p there exists 

i such that M. C N. Since p e M. 1 , pis not accessible from the 
1 i+ 

complement of Mi and hence pis not accessible from the complement of N. 

Thus the lemma holds. 

Lemma 4.24 If Mis a hereditarily indecomposable continuum, Dis 

a domain intersecting Mand C is a composant of M then there exists 

p € C n D such that pis not accessible from the complement of any sub-

continuum of M containing p. 

Proof: Since C is dense in M, there exists q e C n D. Let Ube 

an open sphere containing q such that U 6 D and U does not contain M. 

Let N be an irreducible subcontinuum of M from q to bd U. Suppose for 

some x e N, x / U. Then bd U separates N and there exists a point q' in 

the composant of N that contains q such that q' e N-U. Hence N contains 
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a proper subcontinuum N' that contains both q and q'. Since bd U sep. 

srates N', (bd U) n N' f ¢ which contradicts N being irreducible from 

q to bd U. Therefore N c U which implies that Ne D n C. Lemma 4.25 

implies that there exists a point p € N such that pis not accessible 

from the complement of any subcontinuum of N containing p. Such a p 

meets the conditions of this lemma. 

It can now be shown that there exists an uncountable number of 

topologically distinct hereditarily indecomposable continua in the plane. 

This will be done by associating with every S"Ubsequence of the sequence 

of positive integers a hereditarily indecomposable continuum in such a 

way that given two such sequence9 the continua associated with them 

would tie topologically distinct. Since there are an uncountable number 

of subsequences of the positive integers this would produce the desired 

result. 

Theorem 4.25 There are an uncountable number of topologically 

distinct hereditarily indecomposable continua in the plane. 

Proof; Let M be a pseudo-arc in the ·p.ane, let x € M and let 

x1 ,x2, ••• be a sequence of points of M that converge to x. Let B1 be 

a closed disk centered at x1 such that Bin [xi: i > l} = ¢. Suppose 

the closed disks B. centered at xi, i < n, have been defined so that 
,;i. ~· ~ they are pair-wise disjoint and that (yBi) n (xi: i ~ n) == .,,. Then let 

n•I 
B be a closed disk centered at x so that B n (UBi U (x: i > n ))= ¢. n n n . , 

Let c1 ,c2, ••• be a sequence of distinct composants of Mand let 

P = (p1 ,P2, ••• } be a strictly increasing sequence of positive integers. 

~· j Then for each n, if ~Pi< n ~ Ep. let y € int B n C
1 

such that y is 
• 1 i n n v n 

not accessible from the complement of any subcontinuum of M containing 
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y. Such a y exists by lemma 4.24, n n 
0 

(Note: fPi = 0,) It should be 

noted that each CJ contains exactly pj elements of the sequence (Yn}· 

For each n let M be a pseudo-circle Y togeather with the union n n 

of all of the bounded complementary domains of Yn (there exists only one 

bounded complementary domain of a pseudo-circle, though this has not 

been shown) such that M c:: int B. Note that bd M = Y. (2, p. 48) · n n n n 

The definition of M implies that M fails to separate the plane so n n 

that theorem 4.21 implies that there exists a continuous map f:E2 ~ E2 

2 so that f(Mn) = (yn} for each n and on E - Mn, f is a homeomorphism. 

Let~= f-1 (M)J.'.1(int Mn). It should be observed that MP is, 

loosely speaking, M with the points yn replaced with the pseudo-circles 

Suppose His a non-degenerate subcontinuum of~ such that for 

some n, H intersects but does not contain Y. Then the reference 
n 

(24, p. 86) implies that there exists q € Y -H such that q is accessible n 
2 

from E -(HU Yn). 
2 Therefore there exists an arc At: E -(HU Yn-(q}) 

with end-point q. Note that some subarc yq of A lies in f-1 (B) and 
. n 

2 
that f(subarc yq) = arc y'yn :i::s an arc in E with one end-point yn' 

since f is a homeomorphism on B -M, and that H narc y'y = (Y }• This n n n n 

implies that y is accessible from the complement of f(H) which implies 
n 

that f(H) is degenerate since yn is not accessible from the complement 

of a non-degenerate subcontinuum of M containing y, Therefore H c:: Y 
n :,.. n 

and His hereditarily indecomposable, 

Now suppose His a non-degenerate subcontinuum of Mp such that 

for all n, either Yn e Hor Yn n H ~ ¢. Suppose that H = K1 U ~ is the 

union of two proper subcontinua of H. Since His decomposable it 

follows that H ¢. Y for any n. Therefore f(H) is a non-degenerate 



subcontinuum of M, Also it follows that f(H) = f(K1 ) U f(IS) is the 

union of two continua. Since f(H) is indecomposable either f(H) = f(1S_) 

or f(H) = f(K2 ). Without loss of generality suppose f(H) = f(K1 ). Then 

by the previous paragraph, since f(H) = f(K1 ) is nondegenerate, if 

y € f(H) = f(K..) then Y c Hand Y c K1 • Also, since f is one-to-one n --i n n 
di 

on Mp~Yi, it follows that H = IS_· This contradicts 1S_ being a proper 

subcontinuum of H, Therefore His indecomposable and it follows that 

MP is hereditarily indecomposable. 

It should be noted that for any set N c M, N is a proper subcon­

tinuum of M if and only if f-1 (N) is a proper subcontinuum of~· 

. -1( ) Therefore C is a composant of M if and only if f C .is a composant of 

Mp• Therefore Mp is a hereditarily indecomposable continuum with 

exactly one composant containing exactly pi pseudo-circles for each i 

and also with no other composants containing a pseudo-circle. 

Therefore if P and P' are two ~trictly increasing sequences of 

integers with Pf P' then, without loss of generality, there exists 

b € P-P'. Then~ contains a composant with exactly b pseudo-circles 

while Mp, has no such composant. Therefore Mp and Mp, are topologically 

distinct and the theorem is proven. 



CHAPTER V 

SUMMARY 

It has been the purpose of this paper to present to the reader 

an introduction to the theory of dimension and also to present a detailed 

account of the current literature involved with the topic of hereditarily 

indecomposable continua. 

Chapter II discussed those elements of the theory of dimension 

that would be applied in the later chapters, An effort was made to 

write all of the proofs in this chapter so as not to omit any steps that 

would be difficult for a person who had just finished his first course 

in topology. 

Chapter III presents a discription of the existence of hereditar­

ily indecomposable continua of all dimensions. lncluded in this chapter 

are the statements of all known characterizations of hereditarily 

indecomposable continua, including one that had previousely been undis­

covered. Also in this chapter is a statement of the ideas involved with 

hereditarily infinite dimensional compact spaces. 

In Chapter IV the paper limits its elf to the plane with a 

discussion of the pseudo-arc and the pseudo-circle. Much of this chap­

ter is a review and an updating of the thesis of Terral McKellips (22). 

The two most important developments of this chapter are the relating of 

the ideas of crooked domains and crooked chains and the proof of the 

existence of an uncountable number of topologically distinct 

b4 



hereditarily indecomposable continua in the plane, 

Related to this paper are several topics that might prove inter­

esting for further study and research. Among these would be the study 

of the properties of the pseudo-arc or the pseudo-circle and the study 

of hereditarily infinite dimensional spaces. 
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