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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

1 . 1 . 1 Genera 1 

In the analysis of large complex structures, the number of natural 

degrees of freedom very often strain the capacity of available computer 

facilities. This is compounded for structural dynamic problems which 

are formed as a succession of static solutions corresponding to all 

times of interest in the response hcistory. It is much more complex and 

time consuming than a static analysis. However, in the analysis of 

building frames, experience has shown that satisfactory accuracy can be 

obtained by using ten percent or less of the number of degrees of free­

dom used in the static analysis. These degrees of freedom must be care­

fully selected in order to attain satisfactory representation. Thus, it 

is essential that methods of obtaining quality reduced order models for 

these complex structures are made available to the structural engineer. 

Two general approaches have been used effectively to reduce the 

dynamic degrees of freedom. The first is based on the assumption that 

inertia forces are associated with only certain selected degrees of free­

dom of the original idealization; the remaining degrees of freedom are 

not explicitly involved in the dynamic analysis and can be condensed 

from the dynamic formulation. In the second approach the number of 
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dynamic degrees of freedom is limited by assuming that the displacements 

of the structure are combined in selected patterns, the amplitudes of 

which become the generalized coordinates of the dynamic analysis (1). 

These approaches have been combined in a variety of specific techniques; 

the essential features used in this study are discussed in the sections 

that follow. 

1.1.2 Substructuring 

Analysis of large structural systems by substructuring is accom­

plished by physically dividing the structure into convenient components, 

expressing the structural properties of each in terms of the kinematic 

freedoms on the substructure interfaces only. The reduced substructure 

models are combined to formulate the total structural problem in terms 

of the interface freedoms. Results of the solution of this reduced 

order model are introduced into the individual substructure models yteld­

ing the detailed solution for all components. 

For a given substructure the reduced order stiffness matrix is ob­

tained by the well-known technique of static condensation (2). The same 

congruent transformation used in the condensation of the stiffness matrix 

transforms the inertia properties in a consistent manner. 

l.1.3 Generalized Coordinates and Their Formulation 

An alternative approach is to combine the kinematic freedoms in 

patterns corresponding to selected displaced shapes of the total struc­

ture. The amplitudes of these shapes serve as generalized coordinates, 

from which a reduced order model is formed by the Rayleigh-Ritz method 



(1). The accuracy which can be achieved depends both on the number and 

quality of the selected deformation patterns. 
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A systematic scheme to obtain a quality reduced order model is to 

select displacement patterns corresponding to the lower modes of free 

vibration. These shapes constitute independent displacement patterns, 

the amplitudes of which may serve as generalized coordinates to approxi­

mate any form of displacement. The mode shapes thus serve the same pur­

pose as the trigonometric function in a Fourier series, and they are 

advantageous for the same reason--because of their orthogonality proper­

ties and because they describe the displacements efficiently, good 

approximations can be made with few terms (1). 

For large complex structures the solution of the free-vibration 

problem requires many computations and tremendous computer storage. Most 

often these problems exceed the capacity of available computers. Thus, 

it is again essential that some method of reduction in the number of 

degrees of freedom be employed. 

1.1.4 Modal Synthesis 

During the past decade there has been developed, withi~ the field 

of structural dynamics, a technique that may be identified by the term 

modal synthesis. A large number of papers and reports have been written 

to introduce methods or variations of methods falling within the general 

scope of this technique. All of these methods developed around the cen­

tral idea of combining features of substructuring and generalized coordi­

nates. 

The structure is divided into components or substructures, each of 

which is analyzed as a separate unit for the purpose of constructing a 
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set of modes or displacement shapes th~t can be used as generalized coor­

dinates to define displacements both in the interior of the component 

and on its boundaries or interfaces with other components. Stiffness 

and mass p~perties of each component related to this set of generalized 

coordinates are computed together with damping properties, if applicable. 

Imposition of the requirements of displacement compatibility at the com­

ponent interfaces leads to a synthesis of all of the component coordi­

nates to form a set of generalized coordinates applicable to the complete 

structure. At the same time properties of the complete structure are 

formed from the collected properties of the components. The equations of 

motion for the complete structure are thus formulated. When these are 

solved, the pertinent information in the form of displacements, veloci­

ties, and accelerations may be carried through the coordinate transforma­

tions to give corresponding information related to each separate compo­

nent. 

1.1.5 Substructures and Component Modes 

The present method combines the techniques of substructuring and 

generalized coordinates with special provisions to exploit data accumu­

lated in the course of a developing design. The structure is divided 

into components. Generalized coordinates of two types are formed. The 

first type are the deflected shapes of the total structure subjected to 

selected static loads as predicted by conventional substructure analysis. 

These are referred to as attachment modes and are augmented with general­

ized coordinates corresponding to selected responses of the individual 

substructures with interface freedoms suppressed. These generalized 

coordinates are called fixed interface modes. 



Alternative fixed interface modes may be derived from the free 

vibration mode shapes of the fixed interface substructures. 
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1.1.5.l Coordinate Transformation Matrices. Each deflected shape 

of the total structure is divided into a component mode for each sub­

structure. These component modes and those obtained from the substruc­

tures are arranged into prescribed order to form a transformation matrix 

for each substructure. These matrices are used to compute the first re­

duced order of [M], [K], and R (generalized mass, stiffness, and load 

vector) for each substrur.ture. 

1.1.5.2 Computer Model. In general, the component modes do not 

have the orthogonality properties of true mode shapes. Thus, the off­

diagonal terms of the generalized mass and stiffness matrices do not 

vanish. However, a good choice of component mode shapes will make these 

off-diagonal terms relatively small. From these generalized mass and 

stiffness matrices for the substructures, the computer model is formed 

for the total structure by superposition. The computer model is used to 

solve static and dynamic problems for the structure. When necessary, a 

better quality reduced order model may be formed by single subspace 

iteration (l). This was unnecessary for this study. 

The reduced order free vibration problem is solved by standard 

eigen-value procedure. The eigen-valuesof the dynamic matrix so ob­

tained represent approximations to the true frequencies of the lower 

modes of vibration, the accuracy generally being excellent for the low­

est modes. When the corresponding eigenvectors are normalized, they 

represent mode shapes expressed in generalized coordinates. It is of 

interest to note that these mode shapes are orthogonal with respect to 
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the generalized mass and stiffness matrices. These are transformed to 

geometric coordinates resulting in approximate mode shapes for the struc­

ture. These approximate geometric mode shapes are orthogonal with re­

spect to the mass and stiffness expressed in geometric coordinates. They 

can therefore be used in the standard mode-superposition dynamic-analysis 

procedure. 

1.1.5.3 Modal Superposition. The approximate geometric mode shapes 

discussed in the previous section are used to form new transformation 

matrices for each substructure. These transformation matrices are used 

to compute new reduced orders of [MJ, [KJ, and [CJ (generalized mass, 

stiffness, and damping) for each substructure. These new reduced orders 

of [MJ, [KJ, and [CJ are used to form the equation of motion. This equa­

tion is numerically integrated. In this study a fourth-order Runge-Kutta 

technique is used (3). The response of the structure is computed by 

superposition of the various modal contributions, hence the name modal 

superposition. 

1.1.5.4 Numerical Demonstration. The theory was tested on three 

different models. They consisted of a simply supported beam model, a 

multi-story steel frame model, and a twenty-story reinforced concrete 

frame model. For the simply supported beam model, the lower natural fre­

quencies were computed and compared with well-known classical results. 

The lower natural frequencies were computed for the steel frame using 

only deflected shapes as component modes. The frame was then modeled 

using different combinations of attachment modes and fixed interface 

modes computed from the free vibration problem for the substructures. 

The lower frequencies and mode shapes were computed and compared with a 
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conventional solution of the free vibration problem for the total struc­

ture. For the third model the lower frequencies and orthogonal modes 

were computed. The lower modes and frequencies were used to form the 

equation of motion for the structure. This equation was integrated for 

earthquake excitation using the referenced fourth-order Runge-Kutta tech­

nique. The response of the structure was compared with the solution 

given in References (1), (4), and (5). 

1.2 Purpose and Scope 

The primary objective of this study was to develop an accurate and 

economical technique for dynamic analysis of complex substructures. The 

proposed technique combines substructuring and mode superposition in 

terms of component modes used as generalized coordinates. 

In each case the structure was divided into substructures and trans­

formation matrices formed for each substructure. These transformation 

matrices were formed from component modes which were the attachment modes 

for the total structure and fixed interface modes for the substructures. 

Reduced orders of [M] and [K] were computed for the substructure and the 

computer model formed. 

From the solution of the free vibration problem for the computer 

model, the lower frequencies and normal modes were computed. These lower 

frequencies and mode shapes were used in a standard modal transformation 

to formulate the equation of motion. 

using the Reinforced Concrete model. 

The equation of motion was solved 

Results obtained were compared 

with classical or referenced solutions. 

The review of literatute is presented in Chapter II. Chapter III 

gives a detailed description of the methodology. The verification of 



the results of the study are presented in Chapter IV. Chapter V con"" 

tains the summary, conciusions, and recommendations of the research. 
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CHAPTER II 

LITERATURE REVIEW 

In recent years much attention has been given to the dynamic be­

havior of structural systems. To overcome the many problems and diffi­

culties encountered in the analysis of large complex structures, many 

substructuring technqiues have been developed. The terms modal synthe­

sis, substructure coupling, component modes, and component modal synthe­

sis are all techniques of solving complex dynamic problems. The basic 

scheme is to· divide the system into parts,or components, ·to describe 

physical displacements of the components in terms of reduced generalized 

coordinates and to combine the reduced component models through the use 

of interface compatibility. The reduced order properties of the complete 

structure are used to formulate and solve the equations of motion far dis­

p·lacements, velocities, and accelerations. Carrying these back through 

a coordinate transformation, the corresponding information for each sub­

structure is determined. 

2.1 Earlier Investigations 

The earliest concepts of modal synthesis were restricted to struc­

tures with statically determinate interfaces and have been overshadowed 

by later developments. The early works of Serbin (6), Sofrin (7), and 

Bishop (8) treated the structure as a composite system. A significant 

development of these methods with solutions by means of electrical analog 

9 
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systems was developed by MacNeal (9). · Hunn (10) introduced the idea of 

combining vibration modes of component parts of an airplane structure 

in dealing with the problem of dynamic response. These early works did 

not make use of matrix algebra because digital computers were not readi­

ly available at this time. Further, no attempt at dealing with the 

redundancies at the interface of component parts was undertaken. 

One of the first to use matrix a 1 gebra ·was Hurty ( 11). He was a 1 so 

the first to deal with redundancies in the interconnections (12). The 

early papers of Hurty (11) through (14) introduced the concept of modal 

synthesis. The first of these papers appeared in 1960. However, these 

techniques were not applied in the aerospace industry until the mid 

l960's. This was perhaps due to the fact that in the mid 1960's com­

puters were available and computer programs dealing with matrix algebra 

were in use. Bamford (15) developed a computer program using Hurty's 

method with some modifications. 

Goldman (16) (17) introduced a new technique which employed free 

interface substructure normal modes. This proved that constraint modes 

as used in other techniques are not needed. This always leads to an 

eigen-solution of the single matrix. Since the mid 1960's, modal syn­

thesis has become a popular subject in research and industrial fields. 

2.2 Later Developments 

In section 2.1 most of the pioneers in modal synthesis were listed. 

Authors covered in this section did excellent work to improve or modify 

the work of these early pioneers. 

Craig and Bampton (18) made an improvement to Hurty's method (12) 

(13) by showing that it is not essential to separate the set of 



11 

constraint modes into rigid-body modes and redundant constraint modes. 

That is, all modes associated with boundary freedoms are treated alike, 

which leads to simplicity of computer programming and the possibility 

of shorter computer time. Similar proof was presented by Bajan, Feng, 

and Jaszlics (19) (20). 

Hou (21) developed a technique of employing free-interface normal 

modes which is similar to work presented earlier by Goldman (16) (17). 

However, he used a different technique for generating the system trans­

formation which is less complex than Goldman's approach. 

Gladwell (22) presented a component modal substitution method that 

is suitable for statically determinate models, which he called the 

"Branch Mode 11 analysis. The component modes are determined by allowing 

the component to vibrate with distortion, while all other components are 

assumed attached and rigid. Using the same concepts, Benfield and Hruda 

(23) developed a comprehensive matrix analysis offering alternative pro­

cedures for constructing the branch stiffness and mass matrices. A pri-

. mary advantage of component mode substitution is the ability to select 

fewer generalized coordinates and still obtain satisfactory results. 

Their technique included an approximation to the interface loading effect 

of one component on another and also permits treatment of redundantly 

interconnected components. Four variations of the basic theme of branch 

modes are described by Benfield and Hurda. 

In 1971, Hart, Hurty, and Collins (24) presented a survey of modal 

synthesis methods. Each method discussed is based upon the Rayleigh­

Ritz energy principle. They found that the methods that adapt themselves 

easily to the digital computer fall in three categories: 
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1. Free-Free Modal Synthesis--where composite structural dynamic 

characteristics are developed from the free-free mode shapes of the com­

ponents. 

2. Component-Mode Synthesis--where composite structural dynamic 

characteristics are developed using boundary-fixed mode shapes of the 

components and the boundary displacement functions. 

3. Component-Mode Substitution--where free-free model displacement 

functions are improved by the consideration of interface loading at the 

attachment points. 

2.3 Recent De~elopments 

The work of Bamford, Wada, Garcia, and Chisholm (25) outlined the 

basic steps of a generalized substructure coupling procedure. Emphasis 

was placed on experience and techniques deemed necessary to obtain accu­

rate solutions. The authors pointed out that one disadvantage was the 

understanding required by the engineer to properly select the substruc­

tures, interface, and displacement functions. Craig and Chang (26) (27) 

presented a more general procedure with detailed definitions. 

Hurty (28) presented a convergence criterion. He developed a method 

for predicting truncation errors for unused component modes. Morosow 

and Abbott (29) derived a technique for determining the modal participa­

tion factors, or weighing factors, to assess which component modes 

should be included. 

Dowell (30) (31) introduced the use of Lagrange multipliers to en­

force constraints in structures represented by component modes. Klein 

(32) in his thesis presented similar work related to the Lagrange multi­

plier technique for component mode synthesis. 
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Klosterman (33) (34) and Klosterman and Lemon (35) described modal 

synthesis techniques which combined analytical and experimental data 

for components and also provided for residual flexibility and inertia 

restraint. Good correlations between calculated and measured frequency 

response was noted. 

In 1972, a Symposium on Substructure Testing and Synthesis was 

sponsored by NASA Marshall Space Flight Center. Benfield, Bodley, and 
'. 

Morosow (36) presented a paper on modal synthesis methods. They com-

pared the accuracy of several modal synthesis methods based on a two-

component truss with redundant interface connections. 

Hasselman and Hart (37), using Hurty's component mode synthesis 

method, considered the effect of random structural properties on system 

modal properties. They presented a minimization technique for dealing 

with convergence. 

Neubert (38) presented a paper on the development of improved mathe-

matical models of substructures based on two synthesis approaches, the 

modal synthesis method and the impedance or dynamic stiffness method. 

Berman (39) presented a method of modal synthesis which made use of 

substructure response to forces at the interface coordinates and per-

formed an exact reduction of the substructure to those coordinates, in-

stead of using modes of the components as general coordinates of the 

system. 

MacNeal (40) presented a procedure for employing mixed or hybrid 

component modes (i.e., modes obtained with some interface coordinates 

free and other fixed). He also employed statically derived modes to 

improve the representation. Rubin (41) presented a method of component­

modes which employs an incomplete set of free-boundary normal modes of 
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vibration, augmented with an account for 11 residual effects 11 (contribu-

tions of neglected modes). This method adds residual inertial and 

dissipative effects to the residual flexibility introduced by MacNeal 

(40). Chang (42) in his thesis and Craig and Cheng (43) ·(44) discussed 

the coupling of sbustructures represented by the Rubin component-modes 

model (41) and presented several numerical examples. 

Most of the methods of modal synthesis deal with the undamped free­

vibration problem. However, a few studies of damping in component modal 

synthesis have been conducted. Klein and Dowell (45) in a continuation 

of their early works (30) (31) (32) employed the Lagrange Multiplier 

technique to couple damped substructures. Klosterman (33) (34) and 

Klosterman and Lemon (35) employed damping and experimentally-determined 

component modes to determine system frequency response. 

Most of the work presented in this section can be classified as 

modifications or improvements to previous works. 

2.4 Summary of Modal Synthesis Methods 

In survey and review papers, Craig and Chang (26), Hinze (46), and 

Craig (47) presented a complete description of the various methods of 

modal synthesis. These papers contain many numerical examples and com­

pare the accuracy of the different methods. 

Modal synthesis is based on the Rayleigh-Ritz procedures. It is a 

method for formulating and solving dynamic problems when dealing with 

complex structural systems. Solutions obtained from modal synthesis are 

approximate in that the motion of the structure is limited to a few modes 

or displacement functions characterizing the behavior of the total struc­

ture. Some methods are found to be more suitable for certain dynamic 
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problems than others. The literature has shown that no single method is 

generally preferred over another one. 

Hurty is considered to be the pioneer in modal synthesis. His work 

is one of the simplest and has demonstrated excellent results. It has 

been widely accepted and is the basis of most methods now in use. 

The major objective of all the various modal synthesis methods is 

the economical use of computers. The method presented in this study has 

the same objective with special provisions for use of data accumulated 

in the design phase of a structural system. 



CHAPTER III 

METHOD OF ANALYSIS 

The present scheme follows the basic pattern of modal synthesis 

with special provision to exploit data accumulated in the course of a 

developing design. Precomputed static mode shapes are directly used in 

the formulation of substructure component modes. This approach permits 

the creation of a reduced order dynamic model of a structure by sequen-

tial manipulation of substructure data utilizing data computed from 

service loads. 

3.1 Substructure Model 

The structure to be analyzed is partitioned into convenient sub-

structures as shown schematically in Figure l. 

Sub 

Figure l. Schematic Substructure Partitions 

16 
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Physical coordinates are the x,y components of translation and the rota­

tion (e) at each joint. 

3.2 Attachment Modes 

In this study attachment modes are the deflected shapes of the total 

structure computed from service loads using conventional substructure 

analysis. These attachment modes are used as component modes for the 

substructures. Figure 2 illustrates the attachment mode concept. 

Figure 2. Structure Attachment Modes 

3.3 Fixed Interface Modes 

Linear combinations of the physical coordinates interior to the nth 

substructure are chosen as the generalized coordinates for the particular 

substructure. These are the deformed shapes of the substructure arising 

from arbitrary loads with the interfaces rigidly constrained. Figure 3 

illustrates the geometric interpretation of these coordinates. 
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Sub n Sub n 

Figure 3. Substructure Fixed Interface Modes 

Fixed interface modes may alternatively be obtained by computing 

the natural modes of vibration for a substructure with interfaces fixed. 

3.4 Approximate Modes As Generalized Coordinates 

Each attachment mode or fixed interface mode constitutes an approxi­

mate mode for the total structure. Those approximate modes are treated 

as generalized coordinates to form transformation matrices for the sub-

structures. The number of approximate modes used is arbitrary and 

should be somewhat greater than the number of degrees of freedom retained 

in the final solution. 

3.5 Coordinate Transformation 

The chosen generalized coordinates lead to simple coordinate trans-

formations which permit the serial assembly of the generalized stiffness, 

mass, etc., by substructures. 

The matrix relating the generalized coordinates, with the global 

coordinates belonging to the nth substructure, including its boundaries, 

is shown schematically partitioned below (Figure 4), where the dimen-

s ions 

S = total number of generalized coordinates; 
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A = number of fixed interface modes; 

D = number of attachment modes; 

An = number of fixed interface modes assigned to the nth substruc-

ture; 

In = number of physical coordinates internal to the nth substr~c­

ture; and 

Jn = number of physical coordinates on interfaces of the nth sub­

structure. 

The columns of the populated blocks are the deformed shapes of the sub-

structure for the fixed and deformed interface modes, respectively. 

[B ] = 
n 0 0 

A 

s 

Figure 4. Transformation f1atrix 

3.6 Model Assembly 

The substructure matrices are assembled into the generalized model 

by the familiar transformations: 
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z 
[Bt] [K ] [B ] [K] = l 

n=l n n n (3. la) 

z 
[B~] [Mn] [Bn] [M] = l 

n=l 
(3. lb) 

z 
[B~] {Rn} R = l 

n=l 
(3.lc) 

where [K], [M], and {R} are the generalized stiffness, mass, and load 

matrices, respectively; [Kn]' {Mn]' and {Rn} represent the same quanti­

ties for the nth substructure; and z is the number of substructures. 

The reduced order s ta tic problem is ,. 

[K] {r} = {R} 

while the generalized form of the free vibration problem is 

2 [K - w M] {r} = 0 

where {r} is the vector of amplitudes of the generalized displacements. 

3.7 Example of Coordinate Transformation 

To clarify the concept of attachment modes, fixed interface modes, 

and the physical interpretation of coordinate transformation, the follow­

ing example is given (Figure 5). The simply supported beam of Figure 5 

has 5 joints, 4 bar elements, and 15 degrees of freedom (x1, y1, e1, x2, 

y2, e2, ... , e5). It is divided into two substructures. For this exam­

ple four generalized coordinates are assigned, two to the total structure 

and one to each substructure. Two static load conditions are applied to 

the total structure and two attachment modes computed (Figure 6). Also 

one static load condition is applied to each substructure and two fixed 

interface modes computed (Figure 7). The attachment modes are separated 
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into component modes for the substructures. These component modes plus 

the fixed interface modes for the substructures are arranged in pre­

scribed order to form transformation matrices for the substructures. 

~ 
83 84 85 

~ ~ ~ tY2 tY3 tY5 
x .... x ~ x X5 • 

l 2 3 4 

@ © 
Sub l Sub 2 

Figure 5. Simply Supported Beam Hi th Degrees 
of Freedom Shown 

pl p2 

0 G) © 0 G) © 
G) 0 CD ® 

Load Condition No. 1 Load Condition No. 2 

Figure 6. Load Conditions for Attachment Modes 

For simplicity the displacements are represented by the joints and 

and load condition numbers as subscripts. The first subscript is the 

joint number and the second subscript is the load condition number. 
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Attachment Mode No. 1 Attachment Mode No. 2 

x,, = 0 x12 = 0 

Y11 = 0 Yl2 = 0 

811 ., 0 812 ., 0 

x21 
., 0 x22 -f 0 

Component ., 0 
Component 

y 22 ., 0 Mode No. 1 , 1 Y21 Mode No. 1,2 

821 
., 0 e22 -f o 

X31 
., 0 ' X32 "f Q 

Y31 
., 0 Y32 -f 0 

831 
., 0 832 ., 0 

X41 ., 0 X42 "f 0 

y 41 
., 0 .component 

y 42 ., 0 Component 
Mode No. 2, 1 Mode No. 2,2 

8 41 
., 0 842 

., 0 

X51 
., 0 X52 

., 0 

Y51 = 0 Y52 = 0 

. 851 ., 0 852 ., 0 

0 
I 

Load Condition No. 3 Load Condition No. 4 

Figure 7. Load Conditions for Fixed Interface Modes 



Fixed Interface Mode No. l 

Xl3 = Q 

Y13 = 0 

813 # 0 

X23 F 0 

Y23 # 0 

823 f 0 

X33 = 0 

Y33 = 0 

833 = 0 

Component 
Mode No. l ,3 

3.7.l Transformation Matrices 

0 0 0 0 

0 0 0 0 

813 0 811 812 

x23 0 x21 x21 

[B J = l Y23 0 Y21 Y21 

823 0 821 821 

0 0 X31 X31 

0 0 Y31 Y31 

0 0 · 8 31 8 31 

Fixed Interface Mode No. 2 

X34 = 0 

Y34 = 0 

834 = 0 

x44 '# 0 

y 44 f 0 

844 f 0 

x54 f 0 

Y54 = 0 

854 # 0 

[B ] = 2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

X44 

Y44 

844 

X54 

0 

8 54 

Component 
Mode No. 2,3 

X31 X32 

Y31 Y32 

831 832 

X41 X42 

y 41 Y42 

8 41 842 

X51 X52 

0 0 

8 51 8 52 

23 
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Note that [81] is made up of physical coordinates for joints 1, 2, 

3, and [82] is made up of physical coordinates for joints 3, 4, 5. The 

interface displacements (x31 , x32 , y31 , y32 , 031 , and 032 ) appear in 

both [81] and [82], thus ensuring compatibility. 

3.7.2 Coordinate Transformations 

[K1J [B~] [K1J [B1J [i~-1] T = = [B1J [M1J [B1J 

[K2J 
T 

[M2J 
T = [B2] [K2] [B2] = [82] [M2J [BJ] 

[K] = [Kl J + [K2J [M] = [Ml J + [M2J 

rn1} = [BT] {Rl} (R2} = [BT] {R2} 1 2 

{R} = (Rl} + {R2} 

3.8 Reduced Order Free Vibration Problem 

The reduction scheme in the previous section reduced the structure 

from N degrees of freedom, as represented by the geometric coordinates, 

to S degrees of freedom representing the number of generalized coordi­

nates ~nd corresponding approximate modes (where N is the number of geo­

metric degrees of freedom in the original idealization and S is the 

number of approximate modes used). From the solution of the reduced 

order free vibration problem, the lower frequencies and mode shapes ex-

pressed in generalized coordinates are computed. The frequencies repre-

sent approximations to the true frequencies of the lower modes of 

vibration, the accuracy is generally very good for the lowest modes and 

very poor in the highest modes. The generalized coordinate mode shapes(~) 
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represent a square S x S matrix. These mode shapes are orthogonal with 

respect to the generalized mass and stiffness matrices .. That is: 

[<pm]T [M] [<Pn] = 0 

[<Pm]T [K] [<Pn] = 0 

m t n 

m t n 

(3.4a) 

(3.4b) 

As many approximate modes as desired may be used in the original 

reduction. In general, ,it may be advisable to use as many as S approxi­

mate modes if it is desired to obtain S/2 vibration mode shapes and fre­

quencies with good accuracy (1). 

The set of generalized-coordinate mode shapes are normalized by 

dividing by some reference coordinate. The product of the approximate 

mode shapes and the generalized-coordinate mode shapes gives approximate 

mode shapes in geometric coordinates, which is of dimension NxS. These 

mode shapes are orthogonal with respect to the mass and stiffness ex­

pressed in geometric coordinates. They are used in the standard mode­

superposition dynamic-analysis procedure (1). 

3.9 Modal Transformation 

The mode superposition method is a very effective procedure for the 

dynamic analysis of any linearly elastic structure to any prescribed 

dynamic excitation. One of its major advantages is that the same general 

technique is used to obtain any desired degree of accuracy. A simple 

approximate solution is provided by considering only the fundamental mode 

of vibration. Adding more modes increases the accuracy of the solution. 

The second reduction is a standard modal superposition by substruc­

tures. The lower modes (up to one-half of the approximate modes if de­

sired) are used to form new component modes for the substructures. 
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These component modes are orthogonal and the new reduced orders of [M] 
'~: 

and [K] are true diagonal matrices. The damping matrix is also diagonal 

when modal damping is used. Summing these new reduced orders of [M], 

[K], and [C] for the substructures is synonymous to modal superposition 

for the total structure. 

3.10 The Equation of Motion 

The equation of motion, when the excitation is applied to a build-

ing in the form of horizontal support motion, has the form: 

[M]{Xt} + [C]f X} + [K]{X} = 0 (3.5) 

where {Xt} denotes total displacement, and {X} is relative displacement. 

The inertia-force term depends on total motion, while the damping and 

elastic forces depend only on relative motion. The mass of the struc­

ture is assumed to be lumped or concentrated at the joints. The inertia 

forces (F1) of the structure are given by: 

(3.6) 

in which 

[M] diagonal matrix of the structure masses; and 
.. 

{Xt} = total acceleration of the stories. 

The damping forces at the floor levels, {F0}, may be expressed similar­

ly: 

(3.7) 

in which 

[C] = damping matrix of the building; and 
. 

{X} = relative velocity of the stories. 
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The relationship between total and relative displacements is expressed 

as: 

where 

{Xg} = horizontal support displacement; and 

{l} = unit column vector. 

(3.8) 

Differentiating Equation (3.8) twice with respect to time and substitut­

ing into Equation (3.5) leads to the following equation involving only 

the relative displacement as the dependent variable: 

[M]{X} + [C]{X} + [K]{X} = -[M]{l}Xg (3.9) 

where -[M]{l}Xg represents the effective force acting in the structure. 

The structure responds as though dynamic forces were applied at each 

floor or story level. This force is equal to the product of the story 

mass and the ground acceleration. 

The mode superposition method of analysis is based on a transforma-. 
tion of the relative displacement coordinates of the structure to gener-

alized mode shapes. The orthogonality of the modes permits the defini­

tion of modal mass, stiffness, and damping (for damping proportional to 

mass or stiffness matrices): 

{~n}T [M]{~n} = M (3.lOa) n 

{~ }T [K]{~n} = K (3.lOb) n 

{~ }T [C]{~n} = c (3.lOc) n 

where {~n} is the nth mode. In this study the damping matrix is propor­

tional to the mass matrix which leads to the following relationship (1): 



[CJ = 0 0 

0 0 

0 

0 

0 0 

0 

0 

0 

0 
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(3.11) 

where s is the percent of critical damping. The transformation which 
results in mode superposition is expresseq as: 

{X} = [~]{V} (3.12) 

where 

[~] = transformation matrix made up of the mode shapes; and 

{V} = amplitude of the modal components. 

Substituting Equation (3.12) into Equation (3.9) leads to 

.. . .. 
[M][~]{V} + [C][~]{V} + [K][~J {V} = -[M]{l}X 

g 
(3.13) 

Premultiplying by the transpose of the transformation matrix, the equa-

tion of motion becomes 

or 

[~T][M][~]{V} + [~TJ[C][~]{V} + [~T][K][~]{V} -[~TJ[M]{l}X9 
(3.14) 

(3. 15) 

3.11 Solution of Equation of Motion 

For this study a computer program that established the various ma-

trices and necessary transformations was developed. A subprogram based 

on a fourth-order Runge-Kutta technique (3) was added to this program. 

Thus a step-by-step integration of the equation of motion is carried out. 



CHAPTER IV 

NUMERICAL APPLICATIONS 

To demonstrate the effectiveness of the present scheme for solving 

structural dynamic problems, three different models were selected and 

analyzed. The theory was first applied to a simply supported beam and 

the lower natural frequencies computed. All approximate modes used for 

this model consisted of deflected shapes computed from static loads. 

The second model consisted of a thirteen-story steel frame. The 

lower natural frequencies were computed using only approximate modes 

from deflected shapes due to static loads. The frame was then analyzed 

for the lower frequencies and modes using a combination of fixed inter­

face natural free vibration modes for the substructures and deflected 

shapes for the total structure under static loads. 

The third model consisted of a twenty-story reinforced concrete 

frame. The lower frequencies and modes were computed using fixed inter­

face natural modes for the substructures and static deflected shapes for 

the connected model. The lower frequencies and modes were used in a 

modal transformation to formulate the equation of motion. The response 

envelopes of displacements and moments for the girders and interior col­

umns due to earthquake excitation were computed and compared with those 

given in References (1), (4), and (5). 

29 
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4.1 Simply Supported Beam Model 

4.1.l Beam Properties 

The beam is model with 10 uniform bar elements ana 11 joints shown 

in Figure 8. Masses of (l.294) slugs are lumped at the interior joints. 

The beam was substructured as shown in Figure 9. Each substructure has 

6 joints and 5 bar elements. 

4.1.2 Approximate Modes 

The connected model and substructures were loaded as shown in Figure 

10 and static mode shapes were computed for each load condition. These 

load conditions were chosen arbitrarily. 

The beam model was analyzed using seven approximate modes as general­

ized coordinates (static modes computed from all load conditions except 

5, 6, and 10). The model was then analyzed using all 10 approx1mate 

modes as generalized coordinates. 

4.1.3 ·Numerical Results for Beam Model 

To evaluate the results obtained from the reduced order free vibra­

tion problem, the natural frequencies for the total structure were com­

puted in the conventional manner. These are the baseline solution for 

the model with no reduction in degrees of freedom. Table I shows the 

lowest six of those natural frequencies. 

Table II shows the natural frequencies predicted by seven general­

ized coordinates corresponding to the first three attachment modes aug­

mented with the first four fixed interface modes of Figure 10. Reasonable 

accuracy is shown for the lowest three modes. 
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(a) Fixed Interface Modes 

~· r ·~ -------
® 

'b 

® 

(b) Attachment Modes 

Figure 10. Static Mode Shapes 



TABLE I 

SIMPLE BEAM FREQUENCIES--PHYSICAL MODEL 

Mode 2 3 4. 5 6 

Frequency (Hz) 2.01 8.56 18.11 32.19 50.00 71.18 

Mode 

TABLE II 

SIMPLE BEAM FREQUENCIES--GENERALIZED MODEL 
OF ORDER SEVEN 

1 2 3 4 5 6 

Frequency (Hz) 2.01 8.56 21.13 61.19 100.00 154.30 

33 

The approximate reduced order mode is refined by including all sta­

tic modes shown in Figure 10, givinq a ten-degree-of-freedom approxima-

tion. Excellent correlation is shown in the first six modes as shown in 

Table III. 

TABLE III 

SIMPLE BEAM FREQUENCIES--GENERALIZED MODEL 
OF ORDER TEN 

Mode 2 3 4 5 6 

Frequency (Hz) 2.01 8.05 18.11 32.15 50.00 71 .21 
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4.2 Steel Frame Model 

4.2.1 Frame Dimensions and Properties 

For the second model a thirteen-story rigid jointed planar steel 

frame was .selected. The frame has 56 joints and 91 bar elements (Figure 

ll). 

Using the portal method for wind loads and computed gravity loads, 

members were selected in the conventional way and are shown in Figure 12 .. 

The properties of the members are given in Table IV. 

Masses were lumped at the joints with the following numerical 

values: 

M1 = 12.94 lb-in./sec2 at top girder exterior column joints 

M2 = 28.40 lb-in./sec2 at top girder interior column joints 

M3 32.00 lb-in./sec 2 at all other exterior column joints = 

M4 = 71.20 lb-in./sec2 at all other interior column joints. 

The lower natural frequencies of this frame were required. The 

structure has global kinematic degrees of freedom corresponding to two 

translations and one rotation at each joint. 

4.2.2 Approximate Modes 

The connected model and substructures were loaded as shown in 

Figures 13 and 14. Static mode shapes were computed for the eight load 

conditions. 

The frame was analyzed first using only the four attachment modes 

as generalized coordinates. It was then analyzed using a combination of 

attachment modes and the fixed interface static modes computed from the 

load conditions shown in Figure 14. 



I r\ 

Sub l 

~ 

'\ 

Sub 2 
0 
-
<;j" 
o::j" 
..-

II ,, 
' 0 

-
N 
..-
CS> 

N Sub 3 
..-

,, 
' 

Sub 4 
1 It 

' 
0 
-
I..(') 
..-

-'-- !,. 
, , , . "•", ,, . .,. ,,, ,, . ""' '. 

l--25• 0 11 ---I.- 30 1 0 11 425• 0 11 -.J 
Figure 11. Building Frame--Substructure Model With 

56 Joints and 168 Degrees of Freedom 

35 



"'Tl ...... 
tC 
s:: 
"'1 
Cl) 

...... 
N . 
_o:i 
s:: ...... 
...... 
0.. ...... 
::::s 
tC 

"'Tl 
"'1 
Ill 
3 
Cl) 
I 
I 

3: 

~ 
C­
CI) 
"'1 

(/) 
(') 
::r 
Cl) 
0. 
s:: ...... 
Cl) 

- -

:::iWl 2xl 61 
"9 

vJl 2xl 61 

.,_ Wl 2x92 ...._ 

-- - - -----.- - -

:::: :::: ...... ...... 
O'I O'I 
>< >< 
O'I (.,., 

~ 0 

Wl2xl61 Wl2xl61 

::e: ::e: ...... ...... 
O'I O'I 
>< >< 
O'I CJ'1 
~ 0 

vll2xl61 Wl2xl61 

:::: ...... 
°' >< en 
~ 

~n 2x92 

(/) 
s:: 
0-

~ 

::e: ...... 
O'I 
>< 
01 
0 

Wl2x92 

- -- - - - -

:E: :::: ...... ...... 
O'I O'I 
>< >< 
CJ'1 CJ'1 
0 0 

Wl2xl33 wl2xl33 

:s :::: ...... 
O'I O'I 
>< >< 
CJ'1 CJ] 
0 0 

Wl2xl33 Wl2xl33 

::e: :::: ...... ...... 
O'I O'I 
>< >< 
01 01 
0 0 

Wl2x85 Wl2x85 

-- - -

:::: ...... 
O'I 
>< 
CJ'1 
0 

~12xl06 

::e: ...... 
O'I 
>< 
t1I 
0 ---

•112xl06 

::e: ...... 
O'I 
>< 
01 
0 

Hl2x72 

(/) 

s:: 
c-
w 

-

::e: ::e: ....... ...... 
O'I O'I 
>< >< 
O"I CJ'1 
0 0 

Wl2xl06 Wl2x79 

::e: :E: ...... ...... 
O'I O'I 
)< >< 
U1 Ol 
0 0 

vJl 2xl 06 Wl2x79 

::e: ::e: ...... ...... 
O'I O'I 
>< >< 
t1I 01 
0 0 

Wl2x72 Wl2x58 

:::: ...... 
O'I 
>< 
CJ'1 
0 

vll 2x79 

:::: ...... 
O'I 
>< 
01 
0. 

Wl2x79 

::e: ...... 
O'I 
>< 
<.n 
0 

Wl2x58 

(/) 
s:: 
O-

N 

--

:::: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

::e: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

::e: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

:::: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

:::: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

:::e:: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x53 

::e: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x40 

:::e: ...... 
O'I 
>< 
01 
0 

Wl2x40 

:::e:: ...... 
O'I 
>< 
01 
0 

Wl2x40 

(/) 
s:: 
0-

...... 

:;;:: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x40 

::e: ...... 
O'I 
>< 
CJ'1 
0 

Wl2x40 

:::: ...... 
O"'! 
>< 
CJ'1 
0 

Wl2x40 

I: 

> 
= 

I: 

= 

w 
O'I 



Member 

Wl2x40 

Wl2x53 

Wl2x58 

\fl 2x72 

W12x79 

W12x85 

W12x92 

W12xl06 

Wl2xl33 

Wl2xl61 

Wl6x36 

Wl6x50 

Wl6x64 

TABLE IV 

MEMBER PROPERTIES 

XI XA 

310. 10 11. 77 

426.10 15.59 

476. 10 17.06 

597.40 21. 16 

663.00 23.22 

723.30 24.98 

788.20 27.06 

930.70 31.19 

1071.70 39.11 

1541.80 47.38 

446.30 l 0. 59 

655.40 14.70 

833.80 18.80 
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Weight 

40.00 

53.00 

58.00 

72.00 

79.00 

85.00 

92.00 

106.00 

133.00 

161. 00 

36.00 

50.00 

64.00 
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P1 's are Load Condition No. 1, P2's are Load 
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Figure 13. Building Frame--Load Conditions 
for Attachment Modes 
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30 kips CD 
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® Sub 1 Sub No. 1 
30kips 3 joints are loaded 
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Sub 2 Sub No. 2 
3 joints are loaded 

Sub 3 Sub No. 3 
3 joints are loaded 

Sub 4 Sub No. 1 
4 joints are loaded 

Figure 14. Load Conditions for Fixed Interface Modes 
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Additional fixed interface modes for the substructures were obtained 

by solving the free vibration problem for the substructures with fixed 

interfaces. The first few normal modes are used as generalized coordi­

nates for each substructure. 

The frame was modeled twice using the four original attachment modes 

and the first four and the the first eight normal modes for each of the 

substructures. The reduced order free vibration problem was solved and 

the lower frequencies and modes determined for the total structure. The 

first 12 frequencies are shown in Table V. 

The frame was then loaded as shown in Figure 15 and eight attachment 

modes were computed for the total structure. The frame was then modeled 

using combinations of the eight attachment modes and mode shapes for the 

substructures computed from the free vibration problem. Results are pre­

sented in the section that follows. 

4.2.3 Numerical Results for Steel Frame 

The natural frequencies and modes for the total structure were com­

puted from a conventional method to provide a baseline for assessing the 

accuracy of the reduced order analysis. The lowest 12 natural frequen­

cies are shown in Table V. The lower frequencies computed from each of 

the reduced order free vibration problems are also shown in Table V. 

The number of frequencies above the solid line are one-half of the number 

of approximate modes used in each idealization. These frequencies show 

close approximations when the same number of approximate modes are used. 

The first 12 modes computed from the conventional method and those 

computed from the reduced order when 36 component modes were used are 

plotted in Figure 16. 



TABLE V 

SUMMARY OF PLANAR FRAME FREQUENCIES 

Attachment 4 4 4 4 8 8 8 8 8 Modes 

Fixed Interface 0 4 0 0 0 0 0 0 0 Static Modes 

Fixed Interface onventional 
Free Vibration 0 0 4 16 0 4 16 20 28 Solution 

Modes of Free 
Vibration 

Mode No. Frequencies I Problem 

l 2.59 2.58 2.59 2.58 2.59 2.59 2.59 2.59 2.58 2.58 
2 7.n2 7.60 7.62 7.60 7.61 7.61 7.59 7.59 7.59 7.57 
3 13. 35 13. 25 13.30 13. 19 13. 17 13. 16 13. 10 13.lO 13. 07 13. 01 
4 20.28 19.67 19. 69 19. 21 19.33 19. 25 19. 07 19.05 19. 01 18. 80 
5 . 31. 08 30.28 27.07 26.31 25.97 25.45 25.38 25.29 25.04 
6 40.61 39.22 34.60 34.36 33.58 32.89 32.85 32.75 31. 86 
7 . 59.62 55.80 41.32 43.23 41 . 91 39.95 39.92 39.88 38.84 
8 . 140. 19 134. 78 49.69 55.38 49.82 45.65 45.60 45.55 45.43 
9 . . . 53.85 . 74.98 52.75 52.69 52. 61 51. 57 

10 . . . 63.89 . 87.22 59.93 59.84 59.67 58.52 
11 . •. . 67.09 . 143.27 67.06 67.06 67.05 . 66. 96 
12 . . . 79.43 271 . 45 78.54 78.51 78.45 78.09 

..r;:. __. 
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71!'11 71. '71 17 71 

P11 s are Load Condition No. 1, P21 s are Load Condition No. 2, etc. All 
point loads are 30 kips. 

Figure 15. Steel Frame--Load Conditions for Additional 
Attachment Modes 
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1 2 3 4 5 6 

7 8 9 10 11 12 

Conventional Modes 

------ Reduced Order Modes 

Figure 16. Steel Frame--Summary of Mode Shapes 
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The lower 12 frequencies and modes computed from the reduced order 

of 36 show close approximation to the lower natural frequencies and 

modes computed from the conventional free vibration problem. These 

lower frequencies and modes may be used in a modal transformation to 

formulate the equation of motion for the structure. 

4.3 Reinforced Concrete Frame Model 

For the final model a twenty-story reinforced concrete building 

frame was selected. The response of a building composed of two parallel 

sets of these frames subjected to earthquake excitation is given in 

References (1), (4), and (5). The response was computed using ten per­

cent critical damping in each mode for the first six modes (5). The 

response was also computed using the present method with ten percent 

critical damping and six modes. However, there were several differences 

in the method of modeling. 

In the analysis given by the above references axial deformation was 

neglected for the girders, shear deformation was included, and flexural 

deformation was considered for all members. The stiffness for the 

girders was modified to eliminate axial deformation. Several modifica­

tions were made to the frame stiffness to eliminate the vertical transla­

tion and rotational degrees of freedom, which resulted in a lateral 

stiffness for the frame. This reduced the number of degrees of freedom 

for the frame to one per story (5). 

In the present method the stiffness matrix for each substructure was 

established using standard procedures. No modifications were made to the 

stiffness matrix (all degrees of freedom were considered). Lateral 

forces computed from the Uniform Building Code (Vol. l, 1974 edition) 



45 

were used to compute the displacement of the frame. ·Using the member 

properties and dimensions given in the references, the total lateral dis-

placements exceeded those given in the references by approximately 21 

percent. These properties were adjusted to provide the same static de-

fl ecti ans as those given in the references. The resulting frame stiff-

ness was assumed to be equivalent to the original frames with the stated 

modifications. (The given EI 0 of 133,500 kip-ft2 was increased to 

158,500 kip-ft2.) 

4~3.1 Model Dimensions and Properties 

The geometric arrangement and relative stiffness properties of the 

original frame as given in References (1), (4), and (5) are shown in 

Figure 17. The fundamental period of vibration is given as 2.2 seconds. 

The structure was divided into four components. Each component has 

5 stories, 24 joints, 35 members, and 72 degrees of freedom. The story 

weight was converted to mass and lumped at the joints according to the 

area supported by the columns. 

4.3.2 Approximate Modes 

The connected model was loaded as shown in Figure 18. Static mode 

shapes (attachment modes) were computed for these eight load conditions. 

These static modes were used as component modes for the substructures. 

The free vibration problem was solved for each substructure with 

fixed interfaces. The lower modes are used as component modes for the 

respective substructures. 
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Relative Stiffness of Columns 
and Girders 
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Figure 17. Concrete Frame Dimensions and Stiffness Properties 



(1) 

" CS) 

~ 
:G) 

f7) 

fl) 

-
f5) 

-
fg) 

(33) 

fl) 

~ I/ 

(45) 
I'\ 

' 

:49) 

~ 

S7) 

fl) / 

(65) 
I'\ 

(69) 

(73) 

(77) 

1IJ ~ If}. .,,, """' "" ~ 
P1 1 s are Load Condition No. 1, P2 1s are 
Load Condition No. 2, etc. 

Sub 1 

Sub 2 

Sub 3 

Sub 4 

Figure 18. Reinforced Concrete Frame Load Conditions 
for Attachment Modes 

47 



4.3.3 Numerical Results for the Concrete 

Frame Model 
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The eight attachment modes and the first seven free vibration modes 

for each substructure were used to form transformation matrices for each 

substructure. The reduced orders of [MJ and [KJ were computed and the 

reduced order. free vibration problem solved. The frame was reduced to 

36 degrees of freedom from this transformation. 

The fundamental period of vibration was computed to be 2.228 seconds 

as compared to 2.200 seconds for the original building. This constitutes 

an error of 1;3 percent for the fundamental period of vibration. 

The first 12 lower frequencies are l~sted in Table VI along with 

those computed from a conventional solution. 

4.3.4 The Equation of Motion 

The first six modes computed in the previous section were used to 

form new transformation matrices for the substructure. From modal super­

position new reduced orders of [MJ, [KJ, and [CJ were computed for each 

substructure (for this model the damping is porportional to the mass 

matrix with ten percent critical damping in each mode). The new orders 

of [MJ, [KJ, and [CJ were used to form the equation of motion: 

The forcing function consisted of the first ten seconds of the N-S 

component of the El Centro Earthquake of 1940. The first 30 seconds of 

the digitized ground acceleration was obtained from the Pasadena Insti­

tute of Technology. This particular earthquake was selected because of 

its long duration and intensity. Figure 19 shows the accelerogram for 

the first ten seconds of the earthquake. The time step for this digit­

ized accelerogram is 0.1 seconds. 
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TABLE VI 

LOWER FREQUENCIES FOR CONCRETE FRAME MODEL 

Mode No. Reduced Order Conventional Solution Percent Variation 

2.82 2.82 0.00 
2 7.29 7.29 0.00 
3 12.61 12.60 0.04 
4 17.57 17.54 0. 19 
5 23.17 23. l 0 0.30 
6 29. 15 29.05 0.31 
7 34.26 . 34. 08 0.53 
8 40.74 40.62 0.30 
9 46.41 46. 21 0.45 

10 52.56 51. 85 l.40 
11 57. 83 57.45 0.67 
12 63. 18 62.64 0.85 

The response of the structure was evaluated using 6, 7, 8, 9, and 

10 modes. It was also evaluated using the first 15 modes computed in 

the previous section. 

The complete response history for the frame was evaluated; however, 

only the response envelope (i.e., the maximum value achieved by each re-· 

sponse quantity at any time during this period of the earthquake) were 

considered. There was small refinement in the computed responses of the 

structure when the number of modes were increased from 6 to 10. However, 

when 15 modes were used instead of 10, no change in the response of the 

structure was observed. The envelopes of lateral displacements when 6 
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modes were used are plotted in Figure 20 along with those given in Refer­

ences (1), (4), and (5). 

Response envelopes for girder ~oments and interior column moments 

were also computed and compared with those given in the References. 

These plots are shown in Figure 21. 
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Figure 21. Girder and Interior Column Moments 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5. l Summary 

A simple and economical method for dynamic analysis of large com­

plex models using a combination of substructuring and component modes as 

generalized coordinates has been presented. It is especially applicable 

for solving frame-type structures. This method is a variation of the 

Rayleigh-Ritz procedure, wherein approximate displacement patterns are 

computed from static deflected shapes. The method parallels existing 

modal synthesis methods, with the principal novelty found in the formula­

tion and treatment of the interface compatibility problem. 

Some mathematical complexity involved in devising compatible modes 

by other available schemes is avoided in the present work by choosing as 

coordinates only inherently compatible shapes with the interface displace­

ments either zero or combinations resulting from prescribed loads. 

The present technique thus relies on previously com~uted data (in 

the design phase of a structure, these deflected shapes should be readily 

available). Accordingly, the potential economy of the present technique 

rests on the availability of suitable static displacement data. 

Once suitable approximate displacement patterns are identified, a 

reduced order model in these generalized coordinates is formed by sequen­

tial processing of substructure data. 
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For forced dynamic response problems, the model is further reduced 

by defining new generalized coordinates corresponding to free vibration 

modes of the reduced order model. This permits the exploitation of the 

orthogonality of the vibration modes in subsequent analysis. 

Three numerical applications are presented. The first application 

was to compute natural frequencies and mode shapes of a simply supported 

beam. The primary motivation for this example was to verify theory and 

computer code. Excellent correlation to baseline solution was demon­

strated. 

The second numerical application was the free vibration analysis of 

a building frame.· This was conducted to investigate the accuracy achiev­

able by various combinations· of attachment and fixed interface modes. 

The final numerical application was the analysis of a standard build­

ing frame subjected to earthquake excitation. Numerical integration of 

the present model gave displacements and stresses comparable to the 

generally accepted work of Clough et al. lac cit. 

5. 2 Canel us ions 

Tne technique presented in this study is accurate and readily pro­

grammable. The use of attachment modes eliminates complex mathematical 

procedures required by similar techniques. 

Results of this study indicate that· the number of attachment modes 

are very significant for the lower frequencies and normal modes. How­

ever, the fixed interface modes also have a marked effect on these lower 

frequencies and normal modes if a considerable number are used. These 

fixed interface modes are easy to obtain from the free vibration problem, 

and as many as are necessary may be included. 



The number of attachment modes is somewhat arbitrary, but results 

from this study indicate that about one-fourth of the totai number of 

approximate modes used is a reasonable proportion. 

Results from this study reinforce the conclusion that a building 

designed for Code seismic forces must be expected to suffer overstress 

when subjected to tremors of the severity investigated. Only elastic 

stresses are predicted, while in reality plastic action would occur. 

5.3 Suggestions for Future Studies 
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In this study the number of attachment modes used was· determined 

arbitrarily. An extension of this study to determine a scientific method 

of determining the apportionment of attachment and fixed interface modes 

is suggested. 

It is also recommended that an investigation be made on the feasi­

bility of extending the first step reduction of this technique to non­

linear analysis. 

A further potential extension is to combine the present technique 

with the existing method of 5ubspace iteration to exploit the economics 

of each technique. 
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