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“Ye who amid this feverish world would wear 

A feverish body free from pain, of cares a mind, 

Fly the rank city, shun its turbid air; 

Breathe not the chaos of eternal smoke 

And volatile corruption.” 

 --Armstrong
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1. INTRODUCTION

 

Life as it exists today would not be possible without ozone.  In fact, this essential 

molecule, comprised solely of three oxygen atoms, forms a protective layer in the 

stratospheric region of Earth’s atmosphere, twenty-five kilometers above our daily 

activities.  Without the ozone layer, energetic shortwave solar radiation would penetrate 

through the atmosphere to Earth’s surface instead of its normal absorption by high 

altitude ozone as part of the Chapman Cycle, resulting in a marked increase in skin 

cancer occurrences. 

 

Yet, ozone itself poses a threat to public health.  How can this be?  While stratospheric 

ozone shields the lower atmosphere from considerable ultraviolet radiation, tropospheric 

ozone acts as a strong oxidant, irritating the respiratory systems of anyone or any creature 

who inhales the invisible gas in an appreciable concentration.  Research has linked ozone 

to the onset of asthma, particularly in children, and additional studies have shown that 

human mortality increases in conjunction with severe ozone pollution episodes. 

 

Ozone not only threatens the welfare of public health as a short-term respiratory irritant, 

but it also poses more profound implications to the long-term meteorological climate.  As 

a greenhouse gas, ozone is responsible for as much as one-third of the observed global 

warming over the past century, as it is an absorber of long-wave radiation emitted by the 
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Earth.  Increases in tropospheric ozone concentrations will enhance long-wave radiation 

absorption, further increasing global mean surface temperatures.  The decline of air 

quality is another possible ramification of climate change, as predicted global mean 

temperature increases of 2.0-4.5ºC by the end of this century will likely prompt a chain 

reaction of large-scale meteorological pattern changes, resulting in mid-latitude ozone 

pollution episodes of increased duration and severity.    

 

The correlation between increasing ground-level ozone concentrations and adverse health 

effects has prompted three decades of U.S. Environmental Protection Agency regulation 

and enforcement, beginning with the Clean Air Act of 1970.  As a Clean Air Act 

provision, a National Ambient Air Quality Standard (NAAQS) for ozone was initially 

established in 1971, eventually becoming the 1-hour standard of 0.12 parts per million.  

While the 1-hour ozone standard remains valid and enforceable, new regulations from the 

EPA have established a new 8-hour standard of 0.08 parts per million, and in some states, 

even this standard has been superseded by more stringent guidelines. 

 

Compliance of state and federal air quality standards requires knowledge of both the 

source and the fate of lower tropospheric, or atmospheric “boundary-layer” ozone.  Many 

studies examining the meteorological and chemical aspects of ground-level ozone have 

been published over the last several decades, including a detailed early attempt by 

Cornelius Fox (1873), but comparatively few have analyzed the impacts that 

meteorological conditions have on ozone concentrations at altitude within the boundary 

layer, where more substantive conclusions can be drawn regarding the relative 
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magnitudes of transport and local photochemical production, which comprise the total 

ozone concentration. 

 

High ground-level ozone concentrations impose a burden on the quality of life, both 

directly as a health concern (particularly to the young, the elderly, and persons who spend 

considerable time outdoors), as well as indirectly through increased health care costs, 

physical damages to sensitive agricultural crops, and the burdens of air quality 

compliance to the local, state, and federal economies.  This study sought to clarify the 

relative magnitudes that local photochemical production and distant transport have on 

ground-level ozone concentrations at 36ºN, and the findings indicate that while local 

meteorology is particularly important for short-term photochemical processes, a 

significant component of the ground-level ozone concentration is transferred through 

large-scale subsidence, relying on atmospheric wave propagation.  Therefore, conclusions 

drawn from this six-month vertical profile of boundary-layer ozone are intended for the 

improvement of short-term ozone forecasting, which can be used in air quality warning 

issuance and subsequent control strategies, as well as more general outlooks prepared 

several days in advance, which consider the positions of atmospheric wave ridges and 

troughs.  Additionally, results from this study serve as an outlook of the long-term 

prospects of ozone pollution, and in particular, the impact that a changing climate may 

impart upon ground-level ozone concentrations in the mid-latitudes.  

 

When Schönbein discovered ozone in 1839, he named it after the German word “ozein,” 

literally describing its pungent odor, which can be readily sensed in the vicinity of a 
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thunderstorm.  Although ozone generally isn’t in sufficient ambient atmospheric quantity 

to identify through the sense of smell, it is in concentrations high enough to threaten 

public welfare, perhaps as a mild irritation to the nose and throat, or perhaps as the trigger 

for a life-threatening asthma attack.  Understanding the dynamics of ozone in the context 

of large-scale production and transport will improve the forecasting of persistent and 

dangerous pollution episodes, ensuring that it doesn’t become a suffocating blanket in the 

air that we breathe. 
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2. HYPOTHESIS AND RESEARCH OBJECTIVES 

 

Ozone in the lower troposphere, or atmospheric “boundary layer,” is a heavily regulated 

air pollutant, as epidemiologic studies have shown that exposure results in respiratory 

distress, even at relatively low concentrations.  However, the origin and behavior of 

ground-level ozone is not fully understood, as local photochemical production is 

complemented by an appreciable background concentration within the greater vertical 

expanse of the troposphere, well above the adjacent surface of the Earth.   

 

2.1. Research Hypothesis 

 

Therefore, this study hypothesizes that the analysis of ozone concentrations at an 

elevation of 210 meters within the boundary layer, and subsequent comparison of these 

concentrations with control values measured at ground level, will offer insight regarding 

the sources of distantly produced ozone, as well as estimates of magnitude.  Furthermore, 

this study hypothesizes that since meteorological conditions are a dominant factor in the 

behavior of boundary-layer ozone, conclusions can be drawn regarding the likelihood of 

significant ozone pollution episodes based on specific meteorological regimes of varying 

scale. 
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2.2. Statement of Objectives 

 

Evaluation of the hypotheses proposed in this study will require the fulfillment of the 

following objectives: 

 

1) Estimation of the background ozone concentration specific to the study location. 

 

2) Correlation of the behavior of ozone concentrations at 210 meters with the control 

values measured at ground level. 

 

3) Evaluation of the relationships between specific meteorological parameters and 

ozone concentrations measured at 210 meters and at ground level. 

 

4) Identification of transport pathways, based on meteorological conditions, for 

ozone concentrations not explained by local photochemical production.     

 

Execution of the aforementioned objectives will result in a more detailed profile of ozone 

origin and behavior at the study location, providing decision-making support for ozone 

forecasting as well as abatement and control strategies.  Additionally, improved insight 

into the large-scale meteorological processes influencing the tropospheric background 

ozone concentration and subsequent relationship to ground-level ozone will also be 

achieved, including the possible implications arising from climate change.  
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3. OZONE PHOTOCHEMISTRY

 

The existence of ozone in Earth’s atmosphere is nothing new.  In fact, photochemical 

reactions in ancient times spurred the production of significant concentrations of ozone, 

shielding the lower atmosphere from solar radiation as long as 700 million years ago 

(Graedel and Crutzen, 1993).  While these reactions largely transpired in the stratosphere, 

trace amounts of ozone in the troposphere must also have been present, as nitric oxide, a 

precursor gas, was undoubtedly generated in sufficient concentrations by soil bacteria as 

well as by lightning.  Yet, background concentrations of ozone in the troposphere are 

increasing (Lin et al., 2000).  Ozone photochemistry has grown more complex, as various 

industrial sources not only produce nitric oxide, but also emit enormous quantities of a 

host of organic compounds with the potential to contribute to additional ozone 

production.  While stratospheric ozone chemistry remains relatively simple (although the 

use of haloalkanes as propellants has altered these processes as well), tropospheric ozone 

chemistry involves many cycles and sub-cycles, as man-made organics trigger ozone 

formation and destruction in a multitude of ways.  Nonetheless, consideration of these 

photochemical processes is vital to understanding the mechanisms of ozone formation.     
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3.1. Atomic Structure of Ozone 

 

Ozone (O3), the tri-atomic form of molecular oxygen, is a secondary pollutant formed 

from a series of complex photochemical reactions.  Structurally, it is characterized by a 

molecular weight of 48, a molecular bond length of 1.278 Å, and an inter-bond angle of 

116.8º (Figure 3.1) (Wells, 1986).   

 

 

FIGURE 3.1: Atomic structure of ozone (Wells, 1986) 

 

The single O-O bond has a dissociation energy of approximately 105 kJ·mol-1 (Brasseur 

et al., 1999; Warneck, 2000).  Based on the energies associated with the electromagnetic 

spectrum, this corresponds to a dissociation wavelength limit of 1.19 μm, although the 

process is much more effective at higher energies (shorter wavelengths) (Warneck, 

2000).   

 

3.2. The Chapman Cycle and Photochemical Principles 

 

The most basic production of ozone involves the photolysis of diatomic oxygen (O2), 

leaving a free oxygen atom to combine with additional O2.  In fact, this reaction is 

responsible for the ozone layer, a protective barrier to ultraviolet radiation within the 

stratosphere (Graedel and Crutzen, 1993): 
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1 1
2 ( ) ( )O hv O D O D+ → +  (3.1) 

1
2( ) MO D O O+ ⎯⎯→ 3

2

 (3.2) 

 

Reactions 3.1 – 3.2 were first proposed by Sydney Chapman in 1930, and are therefore 

referred to as the Chapman cycle, along with his proposed reactions for O3 destruction 

(Taylor, 2005): 

 

3O hv O O+ → +  (3.3) 

3 22O O O+ →    (3.4) 

 

When the photolysis of any compound includes the production of atomic oxygen (O), one 

of two states will be observed: the “excited” state O(1D) or the “ground” state O(3P) (an 

additional excited state atom, O(1S), only occurs at altitudes greater than 80 km) 

(Warneck, 2000).  The primary difference between the two is the wavelength (λ) involved 

in the photo-dissociation of the parent compound (Dessler, 2000).  Generally, O(1D) is 

the only species generated when λ is less than 0.300 μm, while O(3P) is the only species 

generated at λ > 0.325 μm (Figure 3.2) (Seinfeld, 1986; Dessler, 2000).  Both species are 

possible at the interim wavelengths of 0.300-0.325 μm.  Therefore, the basic reaction of 

O3 production in the Chapman cycle (Reaction 3.1) only involves O(1D), excited-state 

oxygen, as the λ required for this reaction is less than 0.242 μm, where solar energy in 

excess of 492 kJ·mol-1 is high enough to dissociate diatomic oxygen (Graedel and 

Crutzen, 1993; Dessler, 2000; Warneck, 2000).  Ultraviolet radiation of such short 

wavelength is absorbed in the stratosphere, never reaching the lower atmosphere (Taylor, 
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2005).  Consequently, Chapman’s mechanism of O3 production is confined to the 

stratospheric ozone layer, and is not involved in tropospheric ozone chemistry.  

 

 

FIGURE 3.2: The altitudes and corresponding wavelengths at which photolysis of N2, O, 

O2, and O3 occurs in the atmosphere; O3 photolysis occurs in the UV-A, B, and C bands, 

with most ground-level photochemistry occurring within the A band  (Taylor, 2005)  

 

Instead, photochemistry in the lower troposphere occurs at λ greater than 0.290 μm, with 

the majority of ultraviolet radiation confined to λ greater than 0.320 μm (Taylor, 2005).  

These wavelengths can be classified as UV-A and UV-B, which range from 0.320-0.400 

μm and 0.280-0.320 μm, respectively (Taylor, 2005).  While all of the UV-A energy 

reaches the lower troposphere, only a fraction of UV-B does.  Most radiation with 

wavelengths shorter than 0.290 μm is absorbed by O2 and O3 at higher altitudes, never 

reaching the surface of the Earth (Seinfeld, 1975).  These shorter, harmful wavelengths 
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(0.200-0.280 μm), classified as UV-C, are those absorbed by stratospheric ozone, thus 

protecting the lower atmosphere from highly energetic radiation that poses a health threat 

to biological entities (Taylor, 2005).  

 

3.3. The Leighton Relationship and NOX Chemistry 

 

Ozone chemistry in the lower troposphere is largely governed by a catalytic cycle of 

nitrogen oxide compounds (nitric oxide (NO) and nitrogen dioxide (NO2), collectively 

referred to as NOX).  The connection between NOX and O3 was first proposed by Philip 

Leighton, who suggested a cyclic process of ozone creation and destruction (Leighton, 

1961): 

 

2
MNO hv NO O+ ⎯⎯→ +    (3.5) 

3 2NO O NO O+ → + 2    (3.6) 

 

In Leighton’s catalytic cycle, O3 production is strongly diurnal, as it requires NO2 

photolysis.  Conversion from NO2 to O3 actually requires a nearly-instantaneous second 

reaction, a modification of Chapman’s equation (Reaction 3.2), that allows either O(1D) 

or O(3P) to combine with O2 in the production of O3, as both are present in the lower 

troposphere: 

 

2 3
MO O O+ ⎯⎯→    (3.7) 
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The three fundamental equations of Leighton’s relationship are sometimes referred to as 

the photostationary-state relationship, as the steady-state assumptions result in an 

equilibrium between NO, NO2, and O3 (Finlayson-Pitts and Pitts, 2000; Glickman, 2000).  

Therefore, when NO and NO2 are the sole constituents in the diurnal O3 cycle (i.e. a 

“clean” atmosphere), the relationship between steady-state O3 concentrations and 

corresponding NO and NO2 concentrations can be described as follows (Leighton, 1961; 

Seinfeld, 1986; NRC, 1991; Finlayson-Pitts and Pitts, 2000): 

 

1 2
3

2

[ ][ ]
[ ]

k NOO
k NO

=    (3.8) 

 

Rate constant k1 is specific to the photolysis of NO2, (Equation 3.5), while k2 is defined as 

the reaction rate constant of NO2 regeneration (Equation 3.6).  While k1 is dependent on 

solar intensity, k2 has been experimentally measured as 1.8 x 10-14 cm3·molecule-1·s-1 at 

298 K (25ºC) (Seinfeld, 1986; Warneck, 2000).  The National Research Council reports 

that when NO and NO2 are available in a ratio of 1:1 at a temperature of 25°C, the 

corresponding background O3 concentration is 0.020 ppm, corresponding to a value of 

0.009 cm3·molecule-1·s-1 for k1 (1991).  NOX reactions are rapid, as NO2 has an average 

half life of 100 seconds in the clear, calm atmosphere (Cox, 1988). 

 

Concentrations of NOX and O3 are not at equilibrium in the lower atmosphere, however.  

Emissions from a multitude of natural and anthropogenic sources contribute to ozone 

process chemistry, and the reactions described in Equations 3.5 – 3.7 cannot be used as a 

sole explanation for tropospheric ozone chemistry.  Even so, Leighton’s relationship does 
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explain the strongly diurnal behavior of ground-level ozone.  When photochemical 

reactions cease in the absence of sunlight, surface deposition of ozone at velocities as 

high as 1 cm·s-1 quickly deplete near-surface O3 concentrations since no additional 

production occurs during the overnight hours (Brasseur et al., 1999).  Therefore, ground-

level ozone concentrations minimize at or shortly after sunrise when the solar altitude is 

insufficient for highly energetic radiation to reach Earth’s surface.  As a result of surface 

depositional processes, ozone concentrations at ground-level commonly approach zero 

during the early morning hours (Figure 3.3). 
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FIGURE 3.3: Diurnal ozone behavior at several metropolitan Tulsa, Oklahoma 

monitoring sites, 26 July 2001; sunrise occurred at 05:26 CST. 
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When additional gases of biogenic and anthropogenic origin interfere with the ozone 

cycle, they do not act in the direct production or conversion of ozone, but instead serve as 

indirect catalysts that alter the relative concentrations of NOX through secondary 

reactions, driving the entire cycle away from steady-state equilibrium.  These reactions 

must occur.  Otherwise, no change in the day to day concentration of O3 would be 

detectable.  The most important secondary ozone reactions involve the hydroxyl radical 

and a host of volatile organic compounds, and each includes a number of chemical 

pathways.   

 

3.4. Hydroxyl Chemistry 

 

The rate of ozone formation proceeds as a function of NOX availability.  As demonstrated 

in Reaction 3.6, NO directly reduces O3 to NO2 and O2, yielding a net loss of ozone.  

However, when NO is in the presence of VOCs, the net result is O3 production as NO 

reacts with HO2 to produce additional NO2, the ozone precursor gas (Crutzen, 1988).   

 

Thus, NO2 concentrations in the troposphere are critical to the ozone budget, as it directly 

controls the rates of O3 production and destruction, respectively.  Without an appreciable 

reservoir of NO2, ozone formation is highly restricted.  A NO2-limited environment is 

dependant on the availability of the hydroxyl (OH) radical, the most significant oxidant in 

the troposphere, which reacts with NO2 to ultimately form nitric acid, a major ozone sink 

(Figure 3.4) (Crowley and Carl, 1997).   
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FIGURE 3.4: NOX, OH influences on O3 cycle (Atkinson, 2000) 

 

Production of OH requires the presence of O(1D) (Finlayson-Pitts and Pitts, 1997).  

Excited state oxygen is much more reactive than O(3P), as it contains 270 kJ·mol-1 more 

energy than ground-state oxygen (Brasseur et al., 1999).  Thus, O(1D) readily combines 

with water vapor in the generation of the hydroxyl (OH) radical (Andreae and Crutzen, 

1997; Crowley and Carl, 1997; Abram et al., 2000; Folkins and Chatfield, 2000; 

Lelieveld et al., 2002): 

 

1
2( ) 2O D H O OH+ →    (3.9) 

 

This reaction is the primary source of tropospheric OH, and it acts as an O3 sink, as 

O(1D) doesn’t contribute to the direct reformation of O3, unlike the O(3P) reaction 

sequence (Folkins and Chatfield, 2000).  Reaction times are rapid, as evidenced by 

measurements taken during a 1999 solar eclipse in England, where OH concentrations 

minimized nearly instantaneously with a momentary loss of solar radiation (Abram et al., 

2000). 
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Since ultraviolet wavelengths required for O(1D) production are typically absorbed above 

ground level, O3 photolysis in the troposphere yields only 3% of free oxygen as O(1D), 

while O(3P) accounts for the remaining 97% (Lelieveld et al., 2002).  Even though O(1D) 

is relatively rare at ground level, the lack of water vapor in the upper troposphere 

confines the reaction to the lower atmosphere (Folkins and Chatfield, 2000). 

 

Experimental evidence confirms the significant role that O(1D) plays in the NO2  budget 

of  the lower atmosphere.  Hydroxyl radical concentrations are strongly diurnal, and since 

ultraviolet radiation is required for O3 photolysis, OH concentrations tend to peak during 

the daytime hours, concurrent with the theoretical yield of O(1D) from photolysis (Brown 

et al., 2004).  Subsequently, OH reacts with NO2 to form HNO3, resulting in lower O3 

concentrations.  Brown et al. (2004) found OH to be the primary mechanism for daytime 

NO2-limitation, and furthermore determined HNO3 to be the largest sink of NO2 within 

the lower atmosphere:  

 

2 3NO OH HNO+ →    (3.10) 

 

In addition to the direct conversion of NO2 to HNO3, the nitrate radical (NO3) is also an 

important compound in NO2-limiting chemistry.  NO3 is primarily a product of the 

reaction between ozone and nitrous oxide (Gould, 1972; Seinfeld, 1986; Atkinson, 2000): 

 

3 2 3O NO NO O+ → + 2    (3.11) 
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During the daytime, NO3 dissociates rapidly (on the order of 5 seconds), and its photo-

reactivity occurs over a much larger spectrum than the observed absorption wavelengths 

for ozone, including those commonly observed in the lower atmosphere (NRC, 1991; 

Atkinson, 2000; Brimblecombe, 2000): 

 

3 2NO hv NO O+ → +    (3.12) 

3 2NO hv NO O+ → +    (3.13) 

 

Approximately 90% of photo-dissociated NO3 is converted to NO2 and O, while the 

remainder reverts to NO (Atkinson, 2000).  NO3 can also combine with free hydrogen 

radicals to produce nitric acid, another NOX sink (Le Bras, 1997).  According to Andreae 

and Crutzen (1997), NO3 is responsible for a significant portion of the global HNO3 

budget: 

 

3 3NO RH HNO R+ → +    (3.14) 

  

In the absence of ultraviolet radiation, NO3 behaves quite differently.  In fact, NO3 

dominates the nocturnal chemistry of the lower troposphere, as OH is strongly diurnal 

(Finlayson-Pitts and Pitts, 1997).  Without OH actively removing NO2 from the ozone 

cycle, NO3 performs the same function, generating dinitrogen pentoxide (N2O5), a major 

NOX sink (Jacob, 2000): 

 

2 3 2NO NO N O+ → 5    (3.15) 
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Hydrolysis of N2O5 subsequently yields HNO3, which is removed from the O3 cycle 

through wet and dry depositional processes (Mentel et al., 1999; Brown et al., 2004):   

 

2 5 2 32N O H O HNO+ →    (3.16) 

 

Dinitrogen pentoxide can also revert to NO3 and NO2, but only in a warm lower 

troposphere, as the reaction is thermal (Jacob, 1998): 

 

2 5 3 2N O NO NO→ +    (3.17) 

 

Reaction 3.17 requires temperatures in the lower atmosphere in excess of 280 K (7ºC) 

(Jacob, 1998).  Otherwise, it will not proceed, and N2O5 hydrolysis will dominate.  A 

summarization of the NO3 photolysis rate constants, as well as constants for the primary 

lower tropospheric O3 and NOX photochemical reactions proposed by Chapman and 

Leighton, is presented in Table 3.1. 

 

TABLE 3.1: Reaction rates (k) as a function of ultraviolet wavelength for selected O3 

and NOX photochemical processes (Brasseur et al., 1999) 

Reaction λ (μm) k (s-1) 
   

O3 + hv → O(1D) + O2 < 0.310 1 x 10-5

NO2 + hv → NO + O(3P) 0.250-0.400 8 x 10-3

NO3 + hv → NO2 + O(3P) 0.400-0.625 2 x 10-1

NO3 + hv → NO + O2 0.585-0.625 2 x 10-2
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3.5. VOC Influences on the Ozone Cycle 

 

While it is true that O3 production and depletion in the presence of NOX are the reactions 

that predominantly drive the surface ozone cycle, many VOC reactions contribute to the 

cyclic O3 process as well (Figure 3.5).  Otherwise, local ozone concentrations would 

exhibit no variability, but instead would behave according to Leighton’s steady-state 

equilibrium.  However, net ozone production occurs, as organic compounds convert 

additional amounts of NO to NO2 (Leighton, 1961). 

  

 

FIGURE 3.5: The cyclic relationship between NOX, VOCs (as radicals), and O3 

(Atkinson, 2000) 

 

VOCs lead to O3 formation through intermediate alkoxy radicals (RO), alkyl peroxy 

radicals (RO2), and hydroperoxy radicals (HO2).  Alkyl peroxy radicals react with NO to 

produce NO2, which is then available for O3 production (Seinfeld, 1986; Atkinson, 2000; 

Finlayson-Pitts and Pitts, 2000; Jacob, 2000): 
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2 2RO NO RO NO+ → +    (3.18) 

 

Net alkyl peroxy radical generation is a precursor of the efficiency of ozone production 

from VOC contribution.  Instantaneous RO2 concentration is a function of VOC 

concentration, OH concentration, and the rate of photolysis (Cox, 1988): 

 

2[ ] [ ][ ] [ ]VOC OH VOC
d RO k OH VOC J VOC

dt
= Σ + Σ    (3.19)   

 

According to Jacob (2000), the simplest role that HOX plays in the production of NO2 is 

the reaction of OH with carbon monoxide (CO): 

 

2
2 2

OCO OH CO HO+ ⎯⎯→ +    (3.20) 

 

Once the hydroperoxy radical is available for chemical reaction, it reacts with NO in the 

production of NO2 (Seinfeld, 1986; NRC, 1991; Jacob, 1998; Atkinson, 2000; Finlayson-

Pitts and Pitts, 2000; Jacob, 2000): 

 

2 2HO NO OH NO+ → +    (3.21) 

 

Additional HO2 is generated by VOC reactions with OH, which also produce RO2 (Jacob, 

1998; Atkinson, 2000; Jacob, 2000): 
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2 2VOC OH RO HO+ → +    (3.22) 

 

Formaldehyde (CH2O), an intermediate VOC compound, also acts in the net production 

of HO2, as it photo-dissociates in the presence of ultraviolet radiation (Jacob, 1998; 

Jacob, 2000): 

 

22
2 22OCH O hv CO HO+ ⎯⎯→ +    (3.23) 

 

As demonstrated in Reactions 3.19 – 3.23, VOCs undoubtedly contribute to net NO2 

production, and therefore net O3 production, in a cyclic nature, as the generation of RO2 

and HO2 results in additive NO2 reactions.  Figure 3.6 expresses O3 concentrations (in 

parts per million) as a function of NOX and VOC concentrations.   

 

 

FIGURE 3.6: O3 concentration isopleths as a function of NOX and VOC concentrations 

(Seinfeld, 1986) 
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Even though the primary O3 loss mechanism is through rapid reaction with NO, depletion 

also progresses through reactions with OH and HO2 (Jacob, 1998; Atkinson, 2000; Jacob, 

2000): 

 

3 2 2O HO OH O+ → + 2

2

2

2

   (3.24) 

3 2O OH HO O+ → +    (3.25) 

 

Loss of HO2 from the so-called “HOX cycle,” and therefore loss from the ozone cycle, 

proceeds through the following reactions (Seinfeld, 1986; NRC, 1991; Jacob, 1998; 

Atkinson, 2000; Jacob, 2000):     

 

2 2 2 2HO HO H O O+ → +    (3.26) 

2 2RO HO ROOH O+ → +    (3.27) 

2 2OH HO H O O+ → + 2    (3.28) 

 

Generation of hydrogen peroxide (H2O2) in Reaction 3.26 is significant in part because it 

is also a strong oxidant, and has been shown to contribute to plant damage and forest 

decline (Becker et al., 1990; Brimblecombe, 2000).  The relative yields of H2O2 as a 

function of VOC concentration are expressed in Table 3.2 with no water vapor 

concentration, and with a water vapor partial pressure of 1.3 hPa (1.3 millibars). 
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TABLE 3.2: Molar yields of H2O2 for selected VOCs (Becker et al., 1990) 

VOC %H2O2 (no H2O) %H2O2 (1.3 hPa H2O) 
   

Isoprene 0.04 0.10 
β-Pinene 0.04 0.15 
α-Pinene 0.10 0.50 
Δ3-Carene 0.13 0.60 

d-Limonene 0.30 1.80 
trans-Butene 0.06 0.50 

Isobutene 0.04 0.37 
 

 

Consideration of the role that VOCs play in the larger schemes of NOX and O3 chemistry 

would not be complete without mention of peroxyacetylnitrate (CH3COO2NO2).  

Abbreviated as PAN, CH3COO2NO2 is generated by the reaction of VOCs with NO2 

through the intermediate acetylperoxy radical (CH3COO2) (Lesclaux et al., 1997; Jacob, 

2000): 

 

3 2 2 3 2
MCH COO NO CH COO NO+ ⎯⎯→ 2

2

   (3.29) 

 

This reaction is efficient in removing NO2 from the ozone cycle in VOC-polluted areas.  

However, PAN itself cycles back to NO2, particularly at high temperatures.  Where 

temperatures exceed 295 K (22ºC), Reaction 3.29 reverses (Jacob, 2000): 

 

3 2 2 3 2
MCH COO NO CH COO NO⎯⎯→ +    (3.30) 
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The lifetime of PAN is much longer at low temperatures, and therefore is a potential 

source of NO2 advection if mixed into the upper troposphere (Jacob, 2000). 

 

Nocturnal reactions involving VOC chemistry also influence NO3, adding importance to 

its availability based on the thermal profile of the lower atmosphere.  High NO3 

concentrations result in the oxidation of many VOCs, including isoprene and terpene, 

natural VOCs emitted by trees and plants (Figure 3.7) (Jacob, 1998).   

 

 

FIGURE 3.7: Possible reaction pathway between NO3 and isoprene (C5H8) (Hjorth et al., 

1997) 

 

As previously discussed, the reaction pathways of VOCs are complex, acting as both 

sources and sinks of O3, but in general, the addition of organic compounds to NO3-rich 

environments provides a major source for organic peroxy radicals (RO2), which then 

contribute to NOX (and subsequently O3) chemistry (Burrows et al., 1997).  A novel 
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pathway involving the conversion of NO3 to RO2, and subsequently the net production of 

OH and NO2, has been suggested by Le Bras et al. (1997): 

 

3NO VOC R+ →    (3.31) 

2 2
MR O R+ ⎯⎯→ O

2

   (3.32) 

2 3 2RO NO RO NO O+ → + +    (3.33) 

2 2RO O HO+ →    (3.34) 

2 3 2HO NO OH NO O+ → + + 2    (3.35) 

 

A summary of average tropospheric lifetimes of selected VOCs in the presence of OH, 

NO3, O3, and ultraviolet radiation is given in Table 3.3. 

 

TABLE 3.3: Average VOC lifetimes in the presence of OH, NO3, O3, and hv (in days) 

(Adapted from NRC, 1991) 

VOC OH NO3 O3 hv 
     

Methane 4.38 x 103 > 4.38 x 104 > 1.64 x 106 - 
Ethane 6.00 x 101 > 4.38 x 104 > 1.64 x 106 - 
Propane 1.30 x 101 > 9.13 x 102 > 1.64 x 106 - 
n-Butane 6.10 x 100 > 9.13 x 102 > 1.64 x 106 - 
n-Octane 1.80 x 100 2.60 x 102 > 1.64 x 106 - 
Ethene 1.80 x 100 2.25 x 102 9.70 x 100 - 
Propene 2.90 x 10-1 4.90 x 100 1.50 x 100 - 
Isoprene 7.50 x 10-2 3.47 x 10-2 1.20 x 100 - 
α-Pinene 3.40 x 100 3.47 x 10-3 1.00 x 100 - 
Acetylene 1.90 x 101 > 9.13 x 102 2.12 x 103 - 
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Formaldehyde 1.60 x 100 2.81 x 104 > 1.64 x 103 - 
Acetaldehyde 1.00 x 100 1.70 x 101 > 1.64 x 103 1.67 x 10-1

Acetone 6.80 x 101 - > 1.64 x 103 1.50 x 101

Methyl ethyl ketone 1.34 x 101 - > 1.64 x 103 - 
Methylglyoxal 1.08 x 101 - > 1.64 x 103 8.33 x 10-2

Methanol 1.70 x 101 > 7.70 x 101 - - 
Ethanol 4.70 x 101 > 5.10 x 101 - - 

Methyl t-butyl ether 5.50 x 100 - - - 
Benzene 1.25 x 101 > 2.19 x 103 > 1.64 x 103 - 
Toluene 2.60 x 100 6.94 x 102 > 1.64 x 103 - 

m-Xylene 3.25 x 10-1 2.00 x 102 > 1.64 x 103 - 
 

 

3.6. The Special Case of Methane 

 

Methane (CH4) is an organic greenhouse gas that is abundant in the lower atmosphere.  In 

addition to anthropogenic sources, it is produced naturally in large quantities by 

anaerobic bacteria that occupy lake sediments, wetland soils, and even the digestive tracts 

of cattle and termites (Warneck, 2000).  Therefore, CH4 represents a special case of 

VOC/NOX chemistry, as it not only is a normal component of the Earth’s atmosphere, but 

it also is structurally simple, thus providing a novel example of the VOC chemical 

pathway. 

 

The tropospheric lifetime of CH4 is defined as follows (NRC, 1991): 

 

4 4

1
[ ]CH CH

OHk OH
τ =    (3.36) 
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Calculation of the kinetic constant required for Equation 3.36 represents the reaction rate 

between CH4 and OH.  Since CH4 has a much longer lifetime than OH, reactions 

involving CH4 will progress and contribute to net changes in O3 concentrations (NRC, 

1991).  According to Warneck (2000), τ equals 8.3 years. 

 

The influence that methane has on ozone concentrations varies depending on the presence 

of NO.  When NO is available for reaction, the net result is the production of ozone, as 

highlighted by Reactions 3.37 – 3.40 (Cox, 1988): 

 

4 3OH CH CH H O+ → + 2

2

2

2

   (3.37) 

3 2 3
MCH O CH O+ ⎯⎯→    (3.38) 

3 2 3 2CH O NO CH O NO+ → +    (3.39) 

3 2CH O O HCHO HO+ → +    (3.40) 

 

This sequence continues with Reaction 3.21, followed by Reactions 3.5 and 3.7.  When 

balanced, the final yield is two O3 molecules for each CH4 molecule (Cox, 1988).  

Crutzen (1988) has determined that one CH4 molecule ultimately produces 3.7 O3 

molecules when NO is included in the reaction sequence.  Conversely, when NO is 

unavailable, one CH4 molecule results in a net loss of 1.7 O3 molecules (Crutzen, 1988).  

Methane reaction in the absence of NO proceeds in the following manner (Cox, 1988; 

Brasseur et al., 1999): 

 

4 3OH CH CH H O+ → +    (3.41) 
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3 2 3 2CH O M CH O M+ + → +    (3.42) 

3 2 2 3 2CH O HO CH OOH O+ → +    (3.43) 

3 3CH OOH hv CH O OH+ → +    (3.44) 

3 2CH O O HCHO HO+ → + 2    (3.45) 

 

As a distinction between CH4 and less common VOCs, some authors refer to the latter as 

non-methane VOCs, or NMVOCs.  A simplified schematic of the complete ozone cycle, 

with contributions from VOCs (including CH4), OH, and NOX is presented in Figure 3.8.   

 

 

FIGURE 3.8: The complexity of the O3 cycle (Mudway and Kelly, 2000) 
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3.7. Summary 

 

In summary, the chemistry involving ozone and all associated compounds is quite 

complex, and furthermore, many of the secondary and tertiary reactions involving VOCs 

are not fully understood.  The Leighton relationship provides a basis for the consideration 

of photochemical ozone production, as it is undoubtedly driven by the catalytic NOX 

cycle.  However, significant consideration must also be given to the interaction of OH 

with NOX, as hydroxyl is the primary tropospheric oxidant, and even though it has a very 

short residence time, it nonetheless drives many NOX production and destruction 

reactions.  Finally, VOCs present exceptional difficulty when considering ozone 

chemistry, as the various organic compounds emitted by human sources (in addition to 

many natural sources) can be structurally complex, leading to numerous additional 

reactions that influence ozone concentrations.   
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4. AIR POLLUTION METEOROLOGY

 

The generation, transport, and fate of tropospheric ozone as an air pollutant are largely 

governed by meteorological processes of varying scale.  When discussing the size and 

scope of meteorological systems, they are generally divided into the following categories: 

micro-scale (< 2 km), meso-scale (2-2000 km), and synoptic-scale (> 2000 km) 

(Glickman, 2000).  Ozone is influenced by local, short-term fluctuations of 

environmental variables, including dry-bulb temperature, wind speed, and boundary-layer 

thickness, as well as by large-scale events of long duration, including the location and 

magnitude of the polar jet stream.  Therefore, it is appropriate to discuss ozone in a global 

context of upper-level atmospheric dynamics and in a local context of boundary-layer 

characteristics.         

 

4.1. Upper-Level Dynamics 

 

Dynamic motion in Earth’s atmosphere drives the phenomenon known as “weather.”  

Without the continuous movement of air resulting from Earth’s rotation as well as the 

permanent thermal contrast between the polar region and the equator, the atmosphere 

would be devoid of waves that bring changing conditions with them.  However, the 

atmosphere is in motion, and within it are waves of varying magnitude and duration that 

are not only responsible for weather, but also impact the large-scale behavior of 
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tropospheric ozone.  These systems, from synoptic-scale Rossby waves to meso-scale 

baroclinic waves, are the primary mechanisms in the distribution of ozone in the mid-

latitudes.  Therefore, a more complete understanding of dynamic wave motion in the 

atmosphere is an important consideration of ozone formation and transport. 

 

4.1.1. Rossby Wave Formation 

 

At any given time, the circulation of the upper troposphere is characterized by a series of 

slow-moving, large-amplitude waves.  These large-scale disturbances, also known as 

planetary waves, were first theorized in 1939 by Carl-Gustav Rossby, thus carrying his 

name (Hess, 1979).  

 

In the broadest sense, Rossby waves originate from the variation of the Coriolis force 

with latitude.  Indeed, the Coriolis force is dynamic, equaling zero at the equator and 

increasing with latitude, maximizing at the poles.  This effect can easily be calculated 

from the Coriolis force equation, since Earth’s angular momentum (Ω) can be considered 

as a constant 7.292 x 10-5 rad·s-1, leaving latitude (φ ) as the only variable (Hess, 1979; 

Fleagle and Businger, 1980): 

 

2 sinf φ= Ω    (4.1) 

 

Thus, at a latitude of 0º, f  equals zero, while at a latitude of 90º, f  equals 14.6 x 10-5 

rad·s-1, twice Earth’s angular momentum. 
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Vorticity is defined as the “curl” of a fluid per unit area, and the Coriolis force is nothing 

more than vorticity measured at any fixed point on Earth’s surface, thus accounting for 

“planetary” vorticity exerted by the movement of fluid in a rotating system (Glickman, 

2000).  Relative vorticity (ζ), or vorticity neglecting the effects of the Coriolis force, can 

be expressed in Cartesian coordinates as the difference between the displacement of the 

zonal and meridonal components of flow (Cushman-Roisin, 1994):    

 

v u
x y

ζ ∂ ∂
= −
∂ ∂

   (4.2) 

 

Absolute vorticity (η) is therefore the sum of relative vorticity and planetary vorticity 

(Cushman-Roisin, 1994): 

 

fη ζ= +    (4.3) 

 

Finally, potential vorticity (P) defines absolute vorticity as a function of a characteristic 

pressure thickness, δp: 

 

P
p
η
δ

=    (4.4) 

 

Any large decrease in δp (i.e. flow over tall mountain ranges) will result in an increase in 

η, as P is conserved (Cushman-Roisin, 1994).  This relationship is commonly expressed 
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as the Ertel vorticity theorem, and is valid for frictionless, adiabatic flows (Carlson, 

1998).   

 

The conservation of potential vorticity therefore explains why Rossby waves form in the 

first place.  In the Northern Hemisphere, a decrease in δp in westerly flow increases 

cyclonic vorticity, which deflects the flow toward the equator (Fleagle and Businger, 

1980).  At some point in time after the flow has deflected, δp no longer decreases, and the 

flow curves toward the north, with increasing f (Figure 4.1) (Fleagle and Businger, 

1980).  Again, potential vorticity is conserved, and does so through a decrease in relative 

vorticity, which is characteristically anti-cyclonic. 

 

 

FIGURE 4.1: Conservation of potential vorticity a) vertically over a mountain, and b) 

horizontal development of a trough on the lee side of a mountain (Fleagle and Businger, 

1980) 

 

Perturbations within the upper-tropospheric flow lead to a series of cyclonically/anti-

cyclonically paired Rossby waves.  These large-scale waves are also referred to as the β-

effect, as β is simply defined as the change in the Coriolis force with latitude (Holton, 

1992): 
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df
dy

β =    (4.5) 

 

In the Northern Hemisphere, any flow disturbance prompting a right (equatorward) 

deflection constitutes a  positive (+) β shift, and will subsequently be followed by a 

negative (-) β shift toward the pole (Holton, 1992; Carlson, 1998).  Thus, the flow of the 

middle and upper troposphere is characterized by a sinusoidal wave about the original 

flow equilibrium position that completely encircles the globe (Figure 4.2). 

 

 

FIGURE 4.2: β-shifts of atmospheric Rossby waves (Holton, 1992) 

 

According to Carlson (1998), the average number of waves in the Northern Hemisphere 

is seven, although some may be of shorter wavelength than Rossby waves.  Palmén and 

Newton (1969) indicate that four or five concurrent Rossby waves are most common in 

the planetary circulation. 
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The propagation of Rossby waves is very slow when compared with upper-level wind 

speeds.  In fact, they often appear to be stationary.  While short waves progress at 

average speeds of 10-20 m·s-1, Rossby waves generally move at speeds less than 8 m·s-1 

(Palmén and Newton, 1969).  Seasonality also affects Rossby wave propagation, as they 

travel, on average, 2º of longitude per day during spring, versus 0.8º of longitude per day 

during the autumn months (Reiter, 1963). 

 

Rossby wave speed can be calculated from the frequency equation, which relates the 

forward wave speed to the zonal (westerly) flow speed (u ), β, and the wave number (k) 

(Fleagle and Businger, 1980): 

 

2c u
k
β

= −    (4.6) 

 

4.1.2. Polar Front Theory and the Polar Jet 

 

Rossby waves propagate within the polar jet stream, a discontinuous ribbon of strong 

wind speeds in the upper reaches of the troposphere at the middle and high latitudes.  The 

polar jet stream originates from the baroclinicity, or stratification, between the ever-

present cold polar air mass and warm subtropical air mass (Reiter, 1963; Palmén and 

Newton, 1969).  This boundary, where stratification results from the difference in density 

between these air masses of contrasting temperature, is commonly referred to as the polar 

front (Reiter, 1963).   
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The polar front is notable in part because it extends from the tropopause downward to 

Earth’s surface.  According to Djurić (1994), the shape of the polar front is a function of 

vertical motion, frontogenesis, and frontolysis.  Although it is dynamically connected to 

the polar jet, the polar front at ground level can sometimes stray several hundred miles 

from the polar jet, particularly when cold air flows southward as a gravity current when 

forcing along the polar jet is weak (Djurić, 1994). 

 

In order for the density stratification along the polar front to result in the development of 

the polar jet stream, two conditions must occur (Reiter, 1963): 

 

1. motion arising from a pressure gradient force in the meridional temperature 

contrast along the polar front; and 

 

2. angular momentum from a rotating Earth 

 

Pressure forces along the vertical axis of the atmosphere are governed by hydrostatic 

processes, where the pressure exerted by the weight of overlying atmosphere is balanced 

by gravity.  When a fluid is at rest, no internal shear forces are acting upon it.  Therefore, 

according to Pascal’s principle, pressure is acting equally in all directions on the fluid 

(Figure 4.3) (Michelson, 1970). 
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FIGURE 4.3: Pascal’s principle of equal pressure exertion on all surfaces of a fluid 

(Evett and Liu, 1987) 

 

In terms of a three-dimensional coordinate system, 

 

x y zp p p p= = =    (4.7) 

 

This relationship is the basis of the hydrostatic equation.  Consider the three-dimensional 

pressure field acting on a hydrostatic fluid in Figure 4.4: 
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FIGURE 4.4: Hydrostatic forces acting on a fluid (Pefley and Murray, 1966) 

 

Mathematically, the pressure field can be expressed as:  

 

p p pdp dx dy dz
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

   (4.8) 

 

The pressure field equation is a gradient equation, indicating the change in pressure with 

respect to each axis.  For the sake of simplicity, the gradient can be replaced with the del 

operator, which is appropriate for a collection of partial differential equations, as it as 

defined as: 

 

i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

   (4.9) 
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By substituting, the pressure field of the hydrostatic fluid becomes .  Newton’s 2p∇ nd 

Law of Motion states that force is equal to the acceleration of mass (Pefley and Murray, 

1966)  

 

F mα=    (4.10) 

 

Since pressure is acting on the hydrostatic fluid in all three directions, then force can be 

re-defined as the pressure gradient (Pefley and Murray, 1966): 

 

F p= ∇    (4.11) 

 

The mass of a fluid can be defined as ρ dx dy dz, and since the z-axis is aligned with the 

axis of gravitational acceleration toward Earth’s center, it satisfies the required 

acceleration term (Pefley and Murray, 1966).  Thus, in its fundamental form, the 

hydrostatic equation can be expressed as the following partial differential equation 

(Feynman, 1971): 

 

p ρ∇ = − ∇Φ    (4.12) 

 

However, the fundamental form of the hydrostatic equation has no solution, as the 

variation of ρ prevents static equilibrium (Feynman, 1971).  If ρ is treated as a constant, 

however, then the equation can be solved (Michelson, 1970): 
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.p constρ+ Φ =    (4.13) 

 

The hydrostatic relationship can then be applied to the equations of motion in relation to 

a hydrostatic fluid (Pefley and Murray, 1966): 

 

x y zdp g dx g dy g dzρ ρ ρ= − − −    (4.14) 

 

The vector of gravitational acceleration was purposely chosen as the alignment of the z-

axis.  Since g is not acting in the x- or y-planes, the equations of motion in these axes 

simplify to zero (Prandtl and Tietjens, 1957; Michelson, 1970): 

 

0x
p g
x

ρ∂
= − =

∂
   (4.15) 

 

0y
p g
y

ρ∂
= − =

∂
   (4.16) 

 

Alignment of the z-axis yields the following relationship, where pressure forces are 

counteracted by gravitational forces (Prandtl and Tietjens, 1957; Michelson, 1970): 

 

z
p g
z

ρ∂
= −

∂
   (4.17)   
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Integration of the preceding equation results in the algebraic form of the hydrostatic 

equation (Hess, 1979): 

 

0 0

p h

dp g dz p ghρ ρ= − → = −∫ ∫    (4.18) 

 

Along the horizontal axes, however, pressure is not balanced by gravity, but instead is 

balanced by the Coriolis effect.  Consider the horizontal component equations of motion, 

accounting for the Coriolis force ( f ) (Hess, 1979; Fleagle and Businger, 1980): 

 

1
v

pf
xρ
∂

− = −
∂

   (4.19) 

 

1
u

pf
yρ
∂

= −
∂

   (4.20) 

 

These equations constitute the geostrophic balance, which is the horizontal equivalent of 

the hydrostatic balance (Glickman, 2000).  Instead of the gravity force that was noted in 

the vertical (z) direction, however, note the Coriolis terms vf  and uf , expressed in 

component directions. 

 

Since air is compressible, the variable density behavior of the atmosphere must also be 

considered when describing the balance of forces.  The density of a gas varies as a 
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function of pressure and temperature, and can be stated as the equation of state, or ideal 

gas equation (Pefley and Murray, 1966): 

 

pV mRT=    (4.21) 

 

Density is defined as mass per unit volume, and the ideal gas equation can therefore be 

re-written as follows: 

 

p RTρ=    (4.22) 

 

As a combination of the hydrostatic equation and the equation of state, geostrophic 

balance can be expressed in terms of the x, y, and z axes (Hess, 1979; Fleagle and 

Businger, 1980; Holton, 1992; Carlson, 1998; Andrews, 2004): 

 

lnvf pR
T x

∂
= −

∂
   (4.23) 

 

lnuf pR
T y

∂
=

∂
   (4.24) 

 

lng pR
T z

∂
= −

∂
   (4.25) 
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Through cross-differentiation, the following equations can be derived (Hess, 1979; 

Fleagle and Businger, 1980; Holton, 1992; Carlson, 1998; Andrews, 2004): 

 

u R T
p fp y

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

   (4.26) 

 

v R T
p fp x
∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠

   (4.27) 

 

Equations 4.26 – 4.27 are more commonly referred to as the thermal wind equations, and 

they mathematically explain the development of the polar jet stream, expressing the 

component equations of motion in terms of pressure and the Coriolis force in the x and y 

directions (Reiter, 1963). 

 

In the atmosphere, heights are commonly defined in terms of a constant pressure, or 

“isobaric” surface.  By considering heights in an isobaric manner, the pressure ridges and 

troughs located within the polar jet stream that constitute slowly propagating Rossby 

waves can be readily identified.  The standard convention for expressing vertical 

distances in the atmosphere is not the geometric, or actual height, but instead is 

geopotential height, a closely related term.  If the ideal gas equation is substituted into the 

hydrostatic equation, it can be expressed as (Hess, 1979): 

 

dp g dz
p RT
= −    (4.28) 
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The term gdz can be redefined as a thickness term (ΔZ), and when Equation 4.28 is 

integrated, the geopotential thickness, a measure of specific energy between any two 

pressure layers, can be calculated (Hess, 1979): 

 

 1

2

ln
p

p

RZ Td p
g

Δ = ∫    (4.29) 

 

If the temperature (T) is defined as a mean temperature of the thickness in question, then 

the geopotential thickness can be restated in the following terms (Holton, 1992): 

 

0

ln pZ H
p

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
   (4.30)           

 

In this form, /H RT g= , and the initial pressure has been redefined as the surface 

pressure (p0) so that the geopotential thickness becomes the geopotential height (Z) 

(Holton, 1992).  Geopotential height is preferred to geometric height in part because the 

simplification eliminates the necessity for an air density term, and because the two values 

are nearly identical throughout the troposphere (Andrews, 2004).  

 

4.1.3. Baroclinic Wave Development 

 

In contrast to the large-scale, nearly stationary movement of planetary Rossby waves, 

baroclinic, or “short” waves are of much smaller wavelength and propagate rapidly along 

the polar jet stream.  Baroclinic waves develop in regions of strong temperature contrast, 
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or baroclinicity, within the polar jet.  As a consequence, pronounced wind shear develops 

along the periphery of the jet, and baroclinic disturbances amplify into synoptic scale 

waves.  These waves generally propagate at speeds of 10-20 m·s-1, thus rotating through 

slow-moving Rossby waves, which propagate at speeds less than 8 m·s-1 (Palmén and 

Newton, 1969).   

 

Once a baroclinic wave develops, thermal advection acts as a positive feedback loop in 

strengthening it.  Cold air advects equatorward on the west side of the wave axis, while 

warm air advects poleward on the eastern flank of the axis, creating the characteristic 

sinusoidal trough-ridge structure of the baroclinic disturbance (Palmén and Newton, 

1969; Carlson, 1998).  In order to transfer potential energy to wave development and 

amplification, it is necessary for the baroclinic trough to tilt into the polar jet stream with 

height (Palmén and Newton, 1969; Holton, 1992). 

 

Baroclinic troughs are synonymous with rising motion in the troposphere, which plays a 

pivotal role in the vertical distribution of air pollutants.  Specifically, the flow of air 

through a baroclinic trough imparts positive vorticity, as described by the vorticity 

equation (Holton, 1992; Djurić, 1994; Carlson, 1998): 

 

( )V f
t

0ζ ζ∂
+ ⋅∇ + =

∂
   (4.31) 

 

When a baroclinic wave is embedded within the polar jet stream, flow tends to accelerate 

in the bottom of the trough when compared with poleward locations along the wave axis 
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(Holton, 1992; Djurić, 1994).  This differential zone of velocity results in a counter-

clockwise spin of the flow, or positive curvature vorticity.  From the vorticity equation, 

several assumptions can be made regarding the behavior of planetary and relative 

(curvature) vorticity, which in turn yields the quasi-geostrophic equation (Holton, 1992): 

 

0( )g
g gV f f

t p
ζ ωζ
∂ ∂

= − ⋅∇ + +
∂ ∂

   (4.32) 

 

Geopotential tendency, or the change in geopotential energy (whose gradient is defined 

as acceleration due to gravity, or g∇Φ = − ), is defined as / tχ = ∂Φ ∂ (Holton, 1992).  

The quasi-geostrophic equation can subsequently be re-written as follows (Holton, 1992): 

 

( )g g g gV f V gvζ ζ β− ⋅∇ + = − ⋅∇ −    (4.33) 

 

A combination of the modified quasi-geostrophic equation and the thermodynamic 

energy equation therefore constitutes the geopotential tendency equation (Holton, 1992): 

 

2 2
2 20 0

0
0

1
g g

f ff V f V
p p f p p

χ
σ σ

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂Φ
∇ + = − ⋅∇ ∇ Φ + − − ⋅∇ −⎢ ⎥ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

   (4.34) 

 

This equation expresses the behavior of vorticity within baroclinic waves, and in 

particular, why rising motions are associated with troughs and sinking motions with 
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ridges, respectively.  The first primary term on the right hand side of the geopotential 

tendency equation is the vorticity advection term (Holton, 1992): 

 

2
0

0

1
gf V f

f
⎛ ⎞

− ⋅∇ ∇ Φ+⎜ ⎟
⎝ ⎠

   (4.35) 

 

Along the trough and ridge axes of the baroclinic wave, the potential vorticity advection 

term goes to 0.  Therefore, / t∂Φ ∂  (expressed as χ ) is approximated by differential 

temperature advection, the third term in the geopotential tendency equation (Holton, 

1992): 

 

2
0

g
f V

p pσ
⎡ ⎤⎛ ⎞∂ ∂

− − ⋅∇ −⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

Φ

0

0

   (4.36) 

 

Since baroclinic troughs and ridges are tilted into the flow of the polar jet stream, the 

upper-tropospheric trough overlies cold air advection, and conversely, the upper-

tropospheric ridge overlies warm air advection (Palmén and Newton, 1969; Holton, 

1992).  The geostrophic wind (Vg) is positive in the case of warm air advection, and the 

entire term is therefore negative.  Thus positive vorticity advection occurs ahead of a 

baroclinic trough, as  is proportional to temperature, and in this case, 

(Holton, 1992; Carlson, 1998).  When cold air advection is occurring, V

/ t−∂Φ ∂

/ t∂Φ ∂ < g is 

negative, and , signifying negative vorticity advection as the ridge axis 

approaches (Holton, 1992; Carlson, 1998). 

/ t∂Φ ∂ >
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The vertical motion associated with baroclinic waves is perhaps more completely 

understood by re-defining quasi-geostrophic flow in terms of vertical velocity (ω) instead 

of χ .  In this case, a diagnostic formula known as the omega equation is derived (Holton, 

1992; Djurić, 1994; Carlson, 1998): 

 

2 2
2 2 20 0

2
0

1 1
g

f f V f V
p p f

ω
σ σ σ

⎡ ⎤
g p

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
∇ + = ⋅∇ ∇ Φ + + ∇ ⋅∇ −⎢ ⎥⎜ ⎟

Φ
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

   (4.37) 

 

In this form, the term on the left side of the equation is proportional to –ω (Holton, 1992).  

The positive direction of ω is set so that downward velocity is positive, and the direction 

of upward vertical motion, defined as W, can therefore be expressed as –ω.  Thus, the 

strongest upward vertical motion in the vicinity of a baroclinic wave (+W) occurs in 

advance of the upper-tropospheric trough in the region of warm air advection, and the 

strongest downward vertical motion (-W) occurs in advance of the upper-tropospheric 

ridge in the region of cold air advection (Holton, 1992).  Again, these systems are tilted 

into the upper-level flow, and +W therefore directly overlies the accompanying center of 

surface low pressure, while –W directly overlies the center of surface high pressure 

(Figure 4.5) (Holton, 1992). 

 

 

 

 48  



 

FIGURE 4.5: Maximum upward and downward motion overlying surface low and high 

pressure (dashed isobars) in relation to a baroclinic wave (denoted as solid geopotential 

height lines) (Holton, 1992)   

 

The formation processes of waves in the zonal flow of the polar jet stream can continue 

in the presence of significant baroclinic instability, leading to wave amplification, and in 

some cases, cyclone formation.  According to Palmén and Newton (1969), baroclinic 

wave amplification is constrained by the following factors: 

 

1. A minimum wavelength is required for amplification. 

 

2. A wavelength range between 2500 and 5000 km is favored for amplification. 

 

3. Intensification is proportional to baroclinicity. 

 

In order for cyclogenesis to proceed, the baroclinic wave requires an underlying surface 

boundary, such as a front or trough.  Thus, meridional mountain ranges within the zonal 

flow of the polar jet are often the focus for cyclone development, and this phenomenon is 
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commonly witnessed on the eastern side of the Rocky Mountains, where lee troughs form 

(Carlson, 1998).  Baroclinic zones along fronts and coastlines also promote cyclogenesis 

(Carlson, 1998). 

 

Flow exiting a baroclinic trough tends to be diffluent, and this characteristic leads to the 

development of a center of low pressure in the lower atmosphere.  Since mass diverges in 

the upper troposphere ahead of a trough, the principle of conservation of mass dictates 

that mass compensation, or convergence, must occur in the lower troposphere (Palmén 

and Newton, 1969; Carlson, 1998).  The principle of conservation of mass is 

mathematically expressed by the continuity equation (a derivation of Reynolds transport 

theorem), and when combined with the hydrostatic equation, the relationship between 

mass and pressure can be stated as the pressure tendency equation (Palmén and Newton, 

1969): 

 

0 0
0

h h
p g Vdz g V dz
t

ρ ρ
∞ ∞∂⎛ ⎞ = − ∇ ⋅ − ⋅∇⎜ ⎟∂⎝ ⎠ ∫ ∫    (4.38) 

 

From this equation, mass divergence in the upper troposphere must result in decreasing 

pressure in the underlying column, as mass is transported upward to compensate for the 

divergence ahead of the trough.  As positive vorticity advects through the base of the 

trough, this motion is imparted to the convergent flow in the lower troposphere, and a 

cyclonic circulation subsequently develops (Holton, 1992).  If mass divergence at the top 

of the column exceeds mass convergence below, then the cyclone strengthens (Palmén 

and Newton, 1969).  Due to the aforementioned westward tilt of the baroclinic trough, the 
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cyclonic circulation in the lower troposphere will develop ahead of the trough axis in the 

region of divergence. 

 

Thermal advection, or the introduction of warm air ahead of the cyclone and cold air 

trailing the cyclone, serves as a positive feedback loop as baroclinic instability increases, 

therefore increasing upper-tropospheric divergence ahead of the wave (Palmén and 

Newton, 1969).  The increased exodus of mass at this level amplifies the surface cyclone, 

and the process continues.  As increasing positive vorticity advects through the 

strengthening baroclinic trough, the cyclonically rotating motion translates to the pressure 

field, and a closed contour low within the base of the trough may subsequently develop if 

the process continues long enough (Figure 4.6) (Palmén and Newton, 1969).   
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FIGURE 4.6: Stages of cyclogenesis, including A) a disturbance underlying the upper-

tropospheric trough; B) amplification of the surface cyclone and overlying upper-

tropospheric trough; and C) upper-tropospheric closed low in phase with surface cyclone 

at maximum strength.  Upper-tropospheric geopotential height contours are denoted by 

thick solid lines, while surface geopotential height contours are denoted by thin solid 

lines.  The 1000-500 hPa thickness is represented by dashed lines (Palmén and Newton, 

1969) 

 

Baroclinic wave amplification and cyclogenesis cannot continue infinitely, however, as 

the positive feedback loop reaches a point when thermal advection no longer increases.  

The limitation of baroclinic amplification can be examined through the thermal advection 

equation (Palmén and Newton, 1969): 

 

( )0 a
T V T
t

ω∂
= − ∇ + Γ −Γ

∂
   (4.39) 
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Normally, the temperature advection term 0V T− ∇  is larger than the static stability term 

( )aω Γ −Γ  (Palmén and Newton, 1969).  At some point during wave amplification, 

however, increasing vertical motion (ω) in response to increasing upper tropospheric 

mass divergence increases sufficiently that stability offsets horizontal temperature 

advection, and local temperature change goes to 0.  Otherwise, cyclones would infinitely 

strengthen. 

 

Instead, cyclones associated with baroclinic waves reach maximum intensity and begin to 

weaken, as the upper tropospheric trough begins to negatively tilt in the presence of 

strong positive vorticity advection followed by increasing cold air advection behind the 

trough (Palmén and Newton, 1969; Carlson, 1998).  This tilt brings the closed upper 

tropospheric low into phase with the cyclone, effectively eliminating the overlying mass 

divergence and weakening the cyclone in a process referred to as cyclolysis (Glickman, 

2000).  Net increases in mass resulting from the continued convergence in the lower 

troposphere “fill” the cyclone, and pressure subsequently rises. 
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4.2. Boundary-Layer Meteorology 

 

The Earth’s atmosphere is comprised of many layers – each with distinct physical and 

chemical properties.  Of particular interest when considering near-surface photochemical 

processes is the atmospheric boundary layer.  The boundary layer varies in size and 

structure on horizontal, vertical, and temporal scales.  In general, however, the processes 

that govern the characteristics of the boundary layer remain constant regardless of 

location. 

 

4.2.1. Structure and Stability 

 

Boundary-layer processes arise when laminar flow encounters friction, thereby 

generating a component of drag.  Within the atmospheric boundary layer, turbulence is a 

function of two processes: differential surface heating and mechanical resistance 

(Seaman, 2000).  In the presence of sunlight, terrains of varying elevation and 

composition heat at different rates.  As a function of the ideal gas equation, air density is 

inversely proportional to ambient temperature (Equation 4.22).  Therefore, when parcels 

of air are differentially heated, they will ascend or descend at rates based on their 

densities relative to one another. 

 

In addition to turbulence generated by unequal surface heating, the frictional forces 

within the boundary layer also result from mechanical resistance.  When fluids flow over 

surfaces that vary with respect to elevation and composition, resistive forces of varying 
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magnitudes are generated.  Air that flows through the boundary layer as wind encounters 

complex terrain, vegetation, and man-made structures.  All contribute to the frictional 

forces that are present in the boundary layer.   

 

The combination of differential surface heating and mechanical resistance within the 

boundary layer results in thermodynamic and dynamic instability, and turbulent wind 

motion near the Earth’s surface ensues (Shaw et al., 2004).  As parcels churn within the 

boundary layer, they effectively mix the entire depth in which they are acting.  This 

process is commonly known as the development of the mixed layer.  This layer, also 

referred to as the convective mixed layer if convective turbulence is dominant, is 

diurnally driven, and is capped by a temperature inversion and entrainment zone (EZ) 

(Figure 4.7) (Stull, 1988). 

 

 

FIGURE 4.7: Atmospheric boundary layer structure (Stull, 2000) 

 

After sunrise, the mixed layer initiates as a shallow layer with the onset of mixing.  As 

convective and mechanical processes increase, the depth of the mixed layer responds by 

increasing to uniform depth, encompassing much of the total depth of the boundary layer.  
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Finally, as turbulent processes subside with sunset and the subsequent loss of differential 

surface heating, the mixed layer dissipates (Stull, 1988).  Convective cells within the 

boundary layer, also known as eddies, may occupy a cross-sectional width of 1 kilometer 

and last as long as 30 minutes (Seaman, 2000). 

 

Evolution of the depth of the convective boundary layer cannot be easily determined in a 

mathematical sense, as no simple model can exactly reproduce the multitude of variable 

processes that govern the full development of the mixed layer (Arya, 2001).  However, 

this thickness can be estimated by a variety of integral models, including the 

thermodynamic method of mixed-layer growth (Arya, 2001): 

 

1 Mh
t t

θ
γ
∂∂

=
∂ ∂

   (4.40) 

 

In Equation 4.40, ∂h/∂t represents the variable height of the boundary layer, while ∂θ/∂t is 

the change in mixed-layer potential temperature.  The symbol γ is used as a proxy for the 

potential temperature evolution above the boundary layer.  Following simplification, the 

thermodynamic estimation of convective boundary-layer depth can be explicitly 

computed (Arya, 2001): 
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 56  



This form of the thermodynamic growth equation considers the initial boundary-layer 

depth (h0), an integration constant (C), and ( )
0

/ωθ γ , the surface heat flux (measured as 

W·m-2).  Although Equation 4.41 represents a simplified approximation of the depth of 

the convective boundary layer, it nonetheless requires a rigorous calculation.  Therefore, 

less intensive approximations of boundary-layer depth can be obtained from the analysis 

of skew-T thermodynamic soundings, vertical reflectivity from wind profilers, and short-

term meteorological model outputs, including the Rapid Update Cycle (RUC) (Figure 

4.8).  

 

 

FIGURE 4.8: RUC analysis of 16:00 CST boundary-layer heights (in kilometers), 15 

March 2007 (NOAA) 
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When mixing processes within the boundary layer cease with the loss of daytime heating, 

the mixed layer transforms into two distinct layers: the nocturnal boundary layer and the 

residual layer.  The nocturnal boundary layer encompasses the lowest few hundred 

meters of the atmosphere, and is categorically stable since the air temperature increases 

with height.  According to Garratt (1994), the typical depth of the nocturnal boundary 

layer under calm, clear skies is 100 meters.  The minimum depth of the nocturnal 

boundary layer can be expressed as follows (Stull, 2000): 

 

3/ 4
NBL RLH aU≈ t    (4.42) 

 

Minimum nocturnal boundary-layer height, HNBL, is a product of a (expressed in m1/4·s1/4 

and estimated as 0.15 for flat terrain), residual-layer wind speed URL (m·s-1), and length of 

time (in seconds) following boundary-layer decoupling.  The actual height of the 

nocturnal boundary layer may be as many as 5 times the value determined in this 

equation.  Even so, it can be seen that with a low residual-layer wind speed (common 

during the broad regimes of anti-cyclonic subsidence during the summer months), the 

minimum height of the nocturnal boundary layer will be in close proximity to ground 

level. 

 

The residual layer, which overlies the nocturnal boundary layer, is classified as statically 

neutral (Stull, 1988).  The temperature within the residual layer is constant with height.  

Characteristics from recent mixing within the mixed layer continue within the residual 

layer.  Interaction between the residual layer and nocturnal boundary layer is minimized 
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due to the inverted temperature profile near ground level.  Since temperature increases 

with height in the nocturnal boundary layer, differences in air densities promote 

stratification between the two layers.  The residual layer is effectively decoupled from the 

nocturnal boundary layer and the Earth’s surface, and therefore acts as a potential 

reservoir for air pollutants that were mixed into the boundary layer during the previous 

day. 

 

Vertical temperature profiles of the atmospheric boundary layer dictate the degree of 

stability present adjacent to ground level, thus providing a measure of buoyancy.  Within 

the troposphere, the dry adiabatic lapse rate, or rate at which the temperature of a parcel 

of air decreases with height in the absence of heat exchange, is defined as follows (Arya, 

2001): 

 

d
T
z

∂
Γ = −

∂
   (4.43) 

 

This value is assumed to be -0.0098 K·m-1.  When a parcel is lifted through a dry 

adiabatic process, the cooling experienced with increasing elevation results from a 

decrease in pressure, which is proportional to temperature in the ideal gas equation. 

 

When air is saturated, the lapse rate differs from that of dry adiabatic processes, as latent 

heat is released with condensation.  Again assuming no transfer of heat between the lifted 

parcel of air and the surrounding atmosphere, the moist adiabatic lapse rate (ΓS) is lower 

than the dry adiabatic rate as a result of the latent heat of condensation.  The moist 
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adiabatic lapse rate is a temperature-dependant variable, ranging from -0.0036 K·m-1 at 

303 K to -0.0069 K·m-1 at 273 K. 

 

Actual lapse rates within the atmospheric boundary layer, when compared with the dry 

and moist adiabatic rates, provide a measure of stability.  If the actual lapse rate is greater 

than the dry adiabatic lapse rate, then the boundary layer is unstable, and air will 

buoyantly rise and turbulently mix (Hess, 1979).  Conversely, the boundary layer is stable 

when the actual lapse rate is exceeded by the moist adiabatic lapse rate (Hess, 1979).  

When this condition is present, air parcels are negatively buoyant, thus limiting mixing 

within a given layer.  Nocturnal temperatures in the lower boundary layer often increase 

with height as an inversion, therefore leading to a very stable lower region that decouples 

from the middle and upper boundary layer.  If a parcel is within a stable environment 

through a short depth, but will become unstable if lifted above the stable layer, then it is 

conditionally unstable (Hess, 1979).       

 

4.2.2. Vertical Wind Profile 

 

The magnitude of wind velocities in the atmospheric boundary layer vary as a function of 

height.  During the daytime when significant mixing is present, wind velocities within the 

boundary layer increase with height, roughly in an exponential fashion.  Frictional forces 

at the surface retard the flow of air, while flow at the top of the boundary layer is nearly 

laminar (in the case of a fully developed boundary layer).  Thus, winds within the 

boundary layer can be described by the following power law relationship: 
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Wind velocity (u) at height z is calculated by considering known wind velocity (u0) at 

known height (z0) in relation to exponent P, which is a stability variable that ranges 

between 0 and 1.  The greatest variation in boundary-layer wind velocities occurs very 

close to the Earth’s surface (Figure 4.9).            

 

 

FIGURE 4.9: Wind speed as a function of height within the boundary layer (Wark et al., 

1998) 

 

In the free troposphere, large-scale circulations are geostrophic, as the Coriolis force and 

the pressure gradient force are in balance (Michelson, 1970).  Likewise, winds in the 

upper reaches of the atmospheric boundary layer are approximately geostrophic as well, 

due to the small magnitude of frictional forces when compared with the lower and middle 
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portions of the boundary layer.  As a result, wind vectors around a cyclone (or anti-

cyclone) are tangential to the isobars, or lines of equal pressure (Figure 4.10). 

 

 

FIGURE 4.10: Geostrophic flow around a cyclone (Michelson, 1970) 

 

Unlike geostrophic winds aloft, however, boundary layer winds are slowed by surface 

frictional forces, thus deviating from geostrophic balance (Arya, 2001).  Frictional forces 

ultimately slow the attendant flow, and are therefore classified as subgeostrophic 

(Glickman, 2000).  Boundary-layer deviation from geostrophic flow can be expressed as 

follows (Glickman, 2000): 
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In Equations 4.45 and 4.46, Δv and Δu are Cartesian components of boundary-layer 

winds, where Δv is the difference between the actual wind component v and the 

geostrophic wind component vg, Δu is the difference between the actual wind component 

u and the geostrophic wind component ug, CD is the coefficient of drag, m is the total 

wind speed, f  is the Coriolis parameter, and z is the depth of the boundary layer. 

 

Since frictional forces within the boundary layer result in an imbalance between the 

pressure gradient force and the Coriolis force, subgeostrophic wind vectors are not 

tangential to isobars near ground level.  Instead, boundary-layer winds tend to cross 

isobars, ranging from a very subtle angle of intersection over nearly smooth surface to 

pronounced angles over rough terrain (Figure 4.11).  Water surfaces produce a deviation 

of approximately 10º, while the deviation from geostrophic flow may be as large as 35º in 

urban and forested areas (Arya, 2001).  In narrow zones of baroclinicity, the angle of 

deviation can be as high as 70º (Arya, 2001).  When flow is counter-clockwise around a 

cyclone, these subgeostrophic winds are directed toward the center of low pressure, and 

when an anti-cyclone is present, the flow is directed away from the center of high 

pressure (Michelson, 1970). 
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FIGURE 4.11: Deviation of the actual wind vector from the geostrophic wind vector in 

the middle portion of the atmospheric boundary layer (Arya, 2001) 

 

4.2.3. Nocturnal Low-Level Jet 

 

With the loss of solar heating and decoupling of the nocturnal boundary layer from the 

residual layer, the frictional forces that affect local winds near the surface during the 

daytime decrease.  In response to the decrease in surface drag, winds immediately above 

the surface accelerate to compensate for the absence of retarding frictional forces (Fast 

and McCorcle, 1990; Arya, 1999).  The resultant nocturnal wind maximum, commonly 

referred to as the nocturnal low-level jet, accelerates beyond the geostrophic wind speed, 

and is subsequently classified as supergeostrophic.  The periodicity of the low-level jet is 

dependent on the Coriolis force (Bonner, 1968; Fast and McCorcle, 1990): 
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The Coriolis parameter ( f ) deflects flow to the right in the Northern Hemisphere as a 

result of the Earth’s rotation, and is a function of latitude.  Subsequently, the pressure 

gradient responsible for the development of the nocturnal low-level jet rotates clockwise 

(Fast and McCorcle, 1990).  Winds within the lowest part of the boundary layer exhibit 

the most significant deflection (Figure 4.12) (Sutton, 1953).  

 

 

FIGURE 4.12: Wind angle deflection versus height within the atmospheric boundary 

layer (Sutton, 1953) 

 

The nose of the nocturnal low-level jet coincides with the top of the nocturnal 

temperature inversion within the atmospheric boundary layer (Figure 4.13) (Blackadar, 

1957).  Winds within the low-level jet can achieve speeds as high as 30 m·s-1 in the upper 

reaches of the nocturnal boundary layer, which is usually within the lowest 300 meters of 

the atmosphere (Stull, 1988).  Wind speed maxima in nocturnal low-level jets commonly 
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approach 20 m·s-1 (Fast and McCorcle, 1990).  Bonner found that most low-level jets 

occur between 1 km and 1.5 km above ground level (1968).  However, fluctuations in the 

strength and the height of the nocturnal low-level jet are common on short temporal 

scales (Blackadar, 1957).  Shear forces generated underneath the low-level jet influence 

the turbulence of the nocturnal boundary layer, thus determining the degree of nocturnal 

mixing (Banta et al., 2003).  

 

 

FIGURE 4.13: Vertical wind speed profile indicating nocturnal low-level jet, Tulsa, 

Oklahoma, 03:00 CST, 8 August 1951 (Blackadar, 1957) 

 

Using a two-year upper-air data set, Bonner developed a set of criteria necessary for the 

consideration of the presence or absence of nocturnal supergeostrophic winds near the 

surface (1968).  Each class corresponds to an increasing minimum wind speed 

requirement.  Studies indicated that the nocturnal low-level jet is most prevalent in the 

south-central United States (Bonner, 1968):   
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o CLASS 1: Winds at the height of maximum wind speeds must equal or exceed 12 

m·s-1.  Winds must decrease by 6 m·s-1 to the next highest minimum or to a height 

of 3 km, whichever is lowest.   

 

As Figure 4.14 indicates, the most  prevalent occurrence of this category of nocturnal 

low-level jet was observed across south-central Kansas and western Oklahoma, where 

over 400 distinct jets were measured during the two-year study. 

  

 

FIGURE 4.14: Number of nocturnal low-level jet occurrences meeting or exceeding 

Class 1, January 1959 through December 1960 (Bonner, 1968) 
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o CLASS 2: Winds at the height of maximum wind speeds must equal or exceed 16 

m·s-1.  Winds must decrease by 8 m·s-1 to the next highest minimum or to a height 

of 3 km, whichever is lowest. 

 

Again, the most prevalent region of nocturnal low-level jets as set forth by Bonner’s 

criteria was across south-central Kansas and western Oklahoma, which by far 

experienced more instances of the low-level jet than any other location (Figure 4.15). 

 

 

FIGURE 4.15: Number of nocturnal low-level jet occurrences meeting or exceeding 

Class 2, January 1959 through December 1960 (Bonner, 1968) 
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o CLASS 3: Winds at the height of maximum wind speeds must equal or exceed 20 

m·s-1.  Winds must decrease by 10 m·s-1 to the next highest minimum or to a 

height of 3 km, whichever is lowest. 

 

As Figures 4.16 indicates, the most frequent occurrence of the nocturnal low-level jet, 

even at the highest categorical wind speeds was found to exist across south-central 

Kansas and western Oklahoma.  This finding has been supported in a recent study by 

Whiteman et al. (1997). 

 

 

FIGURE 4.16: Number of nocturnal low-level jet occurrences meeting or exceeding 

Class 3, January 1959 through December 1960 (Bonner, 1968) 

 

While it is inaccurate to describe the low-level jet as an ever-present phenomenon, it is 

common in this region, where it has been reported in upper-air soundings 30% of the time 

(Stull, 1988).  Additional buoyancy forces related to the general decrease in slope east of 
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the Rocky Mountains have been attributed to the frequency and magnitude of the 

nocturnal low-level jet in this region (Fast and McCorcle, 1990).      

 

4.2.4. Meteorological Variables 

 

In addition to wind speed and direction, meteorological parameters commonly measured 

within the boundary layer include temperature, dew point, relative humidity, and 

pressure.  At National Oceanic and Atmospheric Administration (NOAA) meteorological 

observation installations, wind speed and direction is measured at 10 meters (33 feet), 

while other variables are measured at a height of 1.5 meters (5 feet) (NOAA, 1998).  

Oklahoma Mesonet stations measure dry-bulb temperature, dew-point temperature, 

relative humidity, and solar radiation at a height of 1.5 meters (5 feet) above the ground, 

which is in the surface layer of the atmospheric boundary layer.  Likewise, air pressure is 

measured in the surface layer at a height of 0.75 meters (2.5 feet).  Winds are measured at 

a height of 10 meters (33 feet), which is in the mixed layer or nocturnal boundary layer, 

depending on the time of day (Brock et al., 1995; McPherson et al., 2007).  Even though 

these variables are reported as a time-averaged value ranging from minutes to hours, they 

tend to fluctuate in a nearly instantaneous manner (Figure 4.17). 
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FIGURE 4.17: Derivation of time-averaged wind speed from instantaneous wind speed 

(Sutton, 1953) 

 

Air temperatures that are commonly measured with mercury thermometers are more 

formally known as dry-bulb temperatures.  In contrast, wet-bulb temperatures account for 

cooling processes associated with evaporation (Doswell et al., 1991).  Wet-bulb 

temperatures are determined by moistening a wick placed around the bulb of a mercury 

thermometer and subsequently moving it rapidly with circular motion until all water on 

the wick has evaporated.  A wet-bulb thermometer is referred to as a sling psychrometer. 

 

Potential temperature (θ) is defined as the temperature of an unsaturated parcel of dry air 

if it has been adiabatically transported from its environmental conditions (T, p) to the 

standard pressure height (p0) of 100 kPa (Glickman, 2000).  Poisson’s formula is used to 

estimate θ (Hess, 1979; Doswell et al., 1991; Glickman, 2000): 
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Poisson’s constant (κ), equivalent to Rd/cp, equals 0.286 for dry air (Hess, 1979).  

 

The change in potential temperature with height (∂θ/∂z) can be used to estimate the 

stability of the boundary layer (Banta et al., 2003).  Quantification of nocturnal boundary 

layer stability and depth can be determined by calculating the Richardson number 

(Berman et al., 1999; Glickman, 2000; Arya, 2001; Banta et al., 2003): 
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  (4.49)   

 

In addition to the change in potential temperature with height (∂θ/∂z), the acceleration of 

gravity (g) and vertical wind shear (∂u/∂z) are required for Richardson number 

calculation.  The critical Richardson number is generally assumed to be 0.25.  Below this 

value, conditions are turbulent (Glickman, 2000). 

 

Saturation vapor pressure (es) is inversely proportional to temperature, and can be 

calculated from a variation of the ideal gas equation (Equation 4.22) known as the 

Clausius-Clapeyron equation, where e0 is a constant 0.611 kPa, Lv/Rv is a constant 5,423 

K, and T0 is a constant 273 K (Hess, 1979; Stull, 2000): 
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Water vapor content of the lower atmosphere can be directly or indirectly calculated from 

the vapor pressure derived in Equation 4.50.  A common thermodynamic expression of 

water vapor is the mixing ratio, which is the mass of water vapor to the mass of saturated 

air (Stull, 2000).  Mixing ratios are approximated by calculating specific humidity 

(Glickman, 2000): 

 

0.622ew
p e

=
−

   (4.51) 

 

Air pressure is represented by the symbol p in Equation 4.51, and the vapor pressure of 

water is represented by the symbol e.  The numerical value 0.622 g·g-1 is the ratio ε of the 

gas constant of dry air (Rd) to the gas constant of water vapor (Rv) (Stull, 2000).   

 

Humidity can also be expressed on a relative basis known as relative humidity (RH%).  

Relative humidity is a percentage ratio of the actual water vapor concentration to the 

saturation water vapor concentration at a given temperature and pressure (Stull, 2000).  

Therefore,  
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A common but more complex expression of water vapor concentration is the dew-point 

temperature, defined as the temperature at which saturation will occur (Stull, 2000):   
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Equation 4.53 simplifies when T0, Rv/Lv, and e0 are considered as constants, leaving 

actual vapor pressure as the only variable.  Dew-point temperature (Td) is expressed in 

degrees K. 

 

4.2.5. Summary 

 

Ground-level ozone is highly influenced by meteorological conditions in the boundary 

layer (Hidy, 2000).  In fact, relative concentrations of O3 are likely more dependent upon 

meteorological conditions than any other factor.  Local photochemical production, an 

important O3 formation process, requires sunlight, high temperatures, and weak winds 

(Zhang et al., 1998).  If ozone isn’t solely locally produced, then two additional sources 

must be considered: 1) regional horizontal transport from other source areas; and 2) 

transport from the free troposphere and adjacent lower stratosphere.  Thus, as with local 

photochemical production, the transport of O3 also depends largely on meteorological 

processes, and these processes range from local, short-term events to long-term 

planetary-scale circulations. 
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5. OZONE AND HUMAN HEALTH

 

Ozone is classified as a health-related air pollutant because of its ability to cause 

respiratory distress.  In fact, the EPA (2004) lists the following consequences of ozone 

inhalation, even at low to moderate concentrations: 

 

o acute respiratory distress 

o asthma onset 

o temporary lung capacity decreases of 15% - 20% in healthy adults 

o inflammation of lung tissue 

o increase in emergency room visits and hospital admissions 

o decrease in immune system function 

 

The basis for the health-related concerns surrounding ground-level ozone is scientific 

research, and many studies affirm the information provided by the EPA.  In Ohio, Jaffe et 

al. (2003) calculated a 5% increase in the number of emergency room visits for every 

0.01 ppm increase in the 8-hour average O3 concentration.  Wilson et al. (2005) found a 

correlation between increased ozone and emergency room visits in New England.  Lung 

impairment has been shown to occur at ozone concentrations as low as 0.02 ppm (NRC, 

1977). 
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5.1. Asthma in Sensitive Populations 

 

Asthma is known to result from exposure to ozone pollution (Desqueyroux et al., 2002).  

Jaffe et al. (2003) and Wilson et al. (2005) noted increases in asthma-related hospital 

visits with corresponding increases in ground-level O3 concentrations.  According to Lu 

and Wang (2004), asthma attacks and respiratory infections are more common as O3 

increases.  Particularly susceptible are children and the elderly (Wilson et al., 2005).  

Children who are active in outdoor sports in high O3 concentration areas are over three 

times more likely to develop asthma (McConnell et al., 2002).  Furthermore, the asthma 

risk increases with the intensity of the sport and with the number of sports in which 

children participate (McConnell et al., 2002).  Active adults are at risk as well.  A study 

by Selwyn et al. (1983) in Houston, Texas found that runners experienced decreased lung 

function in the presence of high ozone concentration.   

 

5.2. Mortality 

 

In severe episodes, ozone exposure can be fatal.  Mortality is difficult to assess, however, 

as high ozone concentrations often accompany heat waves, which also statistically 

increase the probability of death (NRC, 1977).  When ground-level O3 concentrations 

rose as high as 0.226 ppm in August 2003 in the United Kingdom, 600 deaths were 

directly attributable to the ozone concentration (Stedman, 2004).  In Mexico City, 

O’Neill et al. (2004) found a positive correlation between O3 concentration and mortality, 

where a 0.65% increase in deaths was noted for every 0.01 ppm increase in ozone.  
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Mortality was higher among the elderly, with a 1.39% increase per 0.01 ppm increase in 

ozone concentration (O’Neill et al., 2004).   

 

5.3. Pulmonary Responses to Ozone Inhalation 

 

Ozone is much too reactive to reach the surface of the human lung (Mudway and Kelly, 

2000).  Instead, O3 reacts in the nasal passages and upper respiratory system (Mudway 

and Kelly, 2000).  At low concentrations, O3 is neutralized through reaction with uric 

acid, and doesn’t pose a significant risk to the pulmonary system (Mudway and Kelly, 

2000).  However, eye, nose, and throat irritation is common with exposure to low levels 

of O3 (Lu et al., 2004).  In fact, Desqueyroux et al. (2002) noted an increase in health-

related effects with only modest increases in ozone.  At higher concentrations, O3 

overwhelms the neutralization capacity of uric acid in the nasal passages, and secondary 

oxidation products from reactions with proteins and lipids irritate the lung surface (Figure 

5.1) (Mudway and Kelly, 2000). 

 

 

FIGURE 5.1: O3 reactions near the surface of the lung (Mudway and Kelly, 2000) 
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Mudway and Kelly (2000) determined that lung function becomes impaired at a threshold 

of 0.07 ppm.  High O3 concentrations have been associated with decreases in forced 

expiratory volume (FEV) and peak expiratory flow (PEF) in the human lung 

(Desqueyroux et al., 2002).  According to McDonnell et al. (1983), a 2.6% decrease in 

FEV was experimentally observed at an ozone concentration of 0.011 ppm, and at 0.043 

ppm, an FEV decrease of 24% was observed. 
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6. THE REGULATORY ENVIRONMENT  

 

The increasing tide of ground-level ozone has generated much policy debate within the 

United States government, and implications of recurrent ozone episodes place a financial 

and regulatory strain on metropolitan areas throughout the country.  As evidenced by a 

recent cartoon in the Tulsa World (Simpson, 2005), local populations feel the pressure of 

maintaining ozone compliance and avoiding strain on the local economy: 

 

 

FIGURE 6.1: Tulsa World cartoon commentary on local air pollution (Simpson, 2005)   
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6.1. Federal Regulations 

 

Ozone, defined as a criteria air pollutant in the Clean Air Act (CAA), is subject to 

regulation in accordance with the National Ambient Air Quality Standards (NAAQS) 

(EPA, 2005).  The O3 NAAQS, established on 30 April 1971 in Sec. 109 of the CAA, 

was originally set as a 1-hour standard of 0.08 ppm (EPA, 2005).  The 1-hour standard 

was subsequently increased to 0.12 ppm on 08 February 1979 (EPA, 2005).  Penalties for 

non-attainment listed in 40 CFR 51.900 include the implementation of reasonably 

available control technologies, vehicle inspection and maintenance programs, vapor 

recovery systems at fueling stations, transportation control measures, and increased air 

quality monitoring (EPA, 2006).  The O3 NAAQS definition was again revised on 18 July 

1997, with the current 1-hour standard as follows in Section 40 of the Code of Federal 

Regulations (EPA, 2006):   

 

§50.9 National 1-hour primary and secondary ambient air quality standards for 

ozone. 

  

(a) The level of the national 1-hour primary and secondary ambient air quality 

standards for ozone measured by a reference method based on appendix D 

to this part and designated in accordance with part 53 of this chapter, is 

0.12 parts per million (235 μg·m-3).  The standard is attained when the 

expected number of days per calendar year with maximum hourly average 
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concentrations above 0.12 parts per million (235 μg·m-3) is equal to or less 

than 1, as determined by appendix H to this part. 

 

(b) The 1-hour standards set forth in this section will remain applicable to all 

areas notwithstanding the promulgation of 8-hour ozone standards under 

§50.10.  The 1-hour NAAQS set forth in paragraph (a) of this section will 

no longer apply to an area one year after the effective date of the 

designation of that area for the 8-hour ozone NAAQS pursuant to section 

107 of the Clean Air Act.  Area designations and classifications with 

respect to the 1-hour standards are codified in 40 CFR part 81. 

 

(c) EPA’s authority under paragraph (b) of this section to determine that the 

1-hour standard no longer applies to an area based on a determination that 

the area has attained the 1-hour standard is stayed until such time as EPA 

issues a final rule revising or reinstating such authority and considers and 

addresses in such rulemaking any comments concerning (1) which, if any, 

implementation activities for a revised ozone standard (including but not 

limited to designation and classification of areas) would need to occur 

before EPA would determine that the 1-hour ozone standard no longer 

applies to an area, and (2) the effect of revising the ozone NAAQS on the 

existing 1-hour ozone designations. 

 

 81  



In addition, the 1997 O3 NAAQS Review defined a new 8-hour standard, which 

accompanies the 1-hour standard in 40 CFR (EPA, 2006): 

 

§50.10 National 8-hour primary and secondary ambient air quality standards for 

ozone. 

 

(a) The level of the national 8-hour primary and secondary ambient air quality 

standards for ozone measured by a reference method based on appendix D 

to this part and designated in accordance with part 53 of this chapter, is 

0.08 parts per million (ppm), daily maximum 8-hour average.   

 

(b) The 8-hour primary and secondary ozone ambient air quality standards are 

met at an ambient air quality monitoring site when the average of the 

annual fourth-highest daily maximum 8-hour average ozone concentration 

is less than or equal to 0.08 ppm, as determined in accordance with 

appendix I to this part. 

 

Nearly 50 metropolitan areas in the U.S. are in violation of the 0.12 ppm 1-hour EPA O3 

standard (Rohli et al., 2004).  However, the EPA is in the process of adopting the 8-hour 

ozone standard, thereby phasing out the 1-hour standard.  According to 40 CFR 50.9(b), 

“…the 1-hour NAAQS set forth in paragraph (a) of this section will no longer apply to an 

area one year after the effective date of the designation of that area for the 8-hour ozone 

NAAQS pursuant to section 107 of the Clean Air Act…” (EPA, 2006).  If a metropolitan 
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statistical area is designated as not meeting the 8-hour standard, then measures must be 

taken in order to achieve compliance.  Following legal challenges, the EPA is in the 

process of revising the 1997 O3 NAAQS Review and proposed 8-hour standard, which is 

scheduled to become final on 19 December 2007 (EPA, 2005; EPA Review, 2006).  As 

of 2005, all locations in Oklahoma were in attainment with the outgoing 1-hour and new 

8-hour O3 standards (ODEQ, 2005).   

 

6.2. Local Implementation 

 

As a preventative measure to comply with the pending 8-hour O3 standard and avoid non-

attainment, many municipalities have adopted early action compacts (EACs) that 

voluntarily implement air quality control measures.  Local governmental agencies in the 

Tulsa, Oklahoma metropolitan area collectively share planning responsibilities as the 

Indian Nations Council of Governments (INCOG).  On 31 December 2002, INCOG and 

the Oklahoma Department of Environmental Quality (ODEQ) entered into a 

Memorandum of Agreement (MOA) in order to formulate and implement a Clean Air 

Action Plan (CAAP) “…that will reduce ground-level ozone concentrations in the Tulsa 

Transportation Management Area to comply with the 8-hour ozone standard by 

December 31, 2007, and maintain the standard beyond that date…” (INCOG, 2002).  The 

EAC, which was accepted by the EPA, was based on an initial agreement between EPA 

Region IV and the Texas Commission on Environmental Quality (INCOG, 2002).  Tulsa 

area governments and ODEQ had previously entered into an O3 Flex Agreement with the 
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EPA in an attempt to reduce precursor emissions that contribute to the 1-hour O3 NAAQS 

(Figure 6.2) (INCOG, 2002). 

 

 

FIGURE 6.2: Tulsa, Oklahoma Early Action Compact (EAC) boundary (INCOG, 2002) 

 

The primary goals of the Tulsa EAC protocol include an accelerated reduction time frame 

through emissions reduction strategies, increased local control of emissions reduction 

strategies, and deferral of possible non-attainment designation, provided that EAC 

protocol milestones are achieved (INCOG, 2002).  The Tulsa EAC has been incorporated 

into the state implementation plan (SIP), which is legally binding (INCOG, 2002).  The 
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final draft of the SIP was submitted to the EPA in December 2004 (ODEQ, 2004).  State 

Implementation Plans are required as described in 40 CFR 51.104 (EPA, 2006). 

 

Of the 29 urban areas that have entered into EACs with the EPA, 15 are currently in 

attainment of the 8-hour O3 standard, including the Tulsa metropolitan area.  The EAC 

program requires each participating metropolitan area to issue a report on milestones at 

regular intervals.  Reduction strategies in Tulsa have focused on the transportation sector, 

and the 31 December 2005 Tulsa EAC progress report indicates a projected 5.23% 

weekday reduction of NOX and a 0.05% weekday reduction of VOCs as a result of traffic 

modifications (ODEQ, 2005).   

 

Provisions of the rules and regulations accompanying the 8-hour ozone standard require 

air pollution notification to the general public.  In the Dallas-Fort Worth, Texas 

metropolitan area, where O3 compliance has not been achieved, an air pollution advisory 

system has been implemented (Stuckey and Sattler, 2003).  In 2005, Congress mandated 

daily air quality forecast issuance by the National Weather Service in large metropolitan 

areas (Banta et al., 2003).  Currently, daily air quality statements are only issued for 

Oklahoma City within the State of Oklahoma (Figure 6.3).   

 

 

 85  



 

FIGURE 6.3: Daily air quality report example (NWS Norman, 2006) 

 

Although the program was initiated in 1991, 11 years before the adoption of the EAC, the 

Indian Nations Council of Governments maintains a comprehensive ozone mitigation and 

notification program known as “Ozone Alert” (INCOG, 2006).  The Ozone Alert 

program continues as a provision of the EAC, which requires public awareness and 

involvement (INCOG, 2002).  Through coordination with ODEQ, ozone alerts are issued 

through local media outlets on days that are likely to experience high O3 concentrations. 

 

As of March 2007, the Tulsa metropolitan area was in compliance with the 8-hour O3 

NAAQS.  However, continued implementation of the EAC protocol and SIP were 

underway in order to fulfill the obligation that the local and state governments have to the 

EPA and to maintain NAAQS compliance. 
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 7. RECENT OZONE STUDIES

 

Although ground-level ozone has been well studied over the past three decades, many 

research projects have focused on the local, diurnal photochemical production of O3 and 

precursor compounds, largely ignoring the roles that boundary-layer meteorology and 

subsequent transport pathways play in the relative changes in ozone concentrations.  

However, it has been suggested that meteorology is the governing factor in the net 

change of ground-level ozone concentration (Solomon et al., 2000).  Several recent 

experiments have focused on the relationship between the atmospheric boundary layer 

and tropospheric ozone.   

 

7.1. Boundary-Layer Considerations 

 

Findings from recent studies indicate that ozone concentrations in the lower atmosphere 

are driven by the characteristic daily development and dissipation of the atmospheric 

boundary layer.  When the depth of the boundary layer increases during the mid-morning 

hours, O3 suspended aloft mixes downward to the Earth’s surface (Chan et al., 1998; 

Zhang et al., 1998; Zhang and Rao, 1999; Aneja et al., 2000; Baumann et al., 2000; Lin et 

al., 2004; Steinbacher et al., 2004).  Conversely, it has also been noted that vigorous 

boundary-layer mixing not only contributes to the downward transport of O3, but also 

upward transport, or “venting,” from the boundary layer into the troposphere (Monks, 
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2000; Seaman, 2000).  Bithell et al. (2000) concluded that polluted boundary layer air 

results in significant tropospheric O3 production once it is vented by convection.  Plaza et 

al. (1997) found that surface ozone plumes in the Spanish capital city of Madrid extended 

to heights of 1000 meters to 1200 meters above the surface.  According to Banta et al. 

(2005), increased boundary-layer depth reduces overall O3 concentration as a result of 

dilution from the increased mixing volume.  Ozone within the free troposphere behaves 

differently than O3 in close proximity to the ground surface.  O3 aloft is not subject to 

surface depositional processes, and thus remains higher (Aneja et al., 2000).  

Consequently, the lifetimes of O3 and precursor molecules are much longer above the 

boundary layer (Figure 7.1) (Ridley et al., 2004).      

 

 

FIGURE 7.1: Physical and photochemical processes acting on O3 in the middle 

troposphere and in the boundary layer (Levy, 1984)  

 

7.2. Tower Studies 

 

A select number of recent research projects have implemented tower studies – data 

acquisition originating from platforms on buildings, broadcast towers, mountains, and 

other vertical structures within the boundary layer.  At Frohnau Tower in Berlin, 
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Germany (324 meters), O3 concentrations differed from O3 measurements at the surface 

and appeared to have a distinct origin (Rappenglück et al., 2004).  According to Aneja et 

al. (2000), increasing O3 concentrations with height, recorded at an elevation of 433 

meters in North Carolina, signaled the presence of regional transport (Figure 7.2). 

 

 

FIGURE 7.2: 10-day comparison of O3 concentrations measured at ground level and at 

433 meters in Garner, North Carolina (Zhang and Rao, 1999) 

 

During the summer months of 1993 through 1995, data were collected continuously from 

the transmission tower in North Carolina at three elevations: ground level, 250 meters, 

and 433 meters (Aneja et al., 2000).  Linear regression performed on the data set revealed 

that a distinct correlation axis existed when ground-level O3 data were compared with 

concentrations measured at height within the boundary layer, but significant interference 

was also present at low O3 concentrations, and the overall correlation was therefore low.  
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However, when the 250 meter and 433 meter datasets were compared with one another, 

the low-level interference was eliminated, and correlation therefore increased 

significantly (Figure 7.3) (Aneja et al., 2000). 

 

 

FIGURE 7.3: Vertical O3 concentration correlation plots, Garner, North Carolina (Aneja 

et al., 2000) 

 

The ground-level and 433 meter O3 concentration data were also considered as time-

dependent correlations.  Kim et al. (2002) found that the strongest concentration 
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correlations between the two heights occurred during the mid to late afternoon hours, 

when boundary-layer mixing reached its peak intensity (Figure 7.4). 

 

 

FIGURE 7.4: Ground-level and 433 meter time-dependent O3 concentration correlations, 

Garner, North Carolina (Kim et al., 2002) 

     

A previous tower study in southeastern Oklahoma found that ozone behavior aloft was 

similar to findings of other tower studies, with higher O3 concentrations prevalent 

immediately above the low-level temperature inversion within the nocturnal boundary 

layer (Figure 7.5) (Kastner-Klein et al., 2002).  During the 1997 Southern California 

Ozone Study (SCOS-97), O3 was measured on both sides of the low-level nocturnal 

 91  



temperature inversion, with higher concentrations present immediately above the inverted 

layer (Rosenthal et al., 2003). 

 

 

FIGURE 7.5: 7-day comparison of O3 concentrations measured at ground level in the 

Oklahoma City metropolitan area and at Buffalo Mountain, a rural elevated site in 

southeastern Oklahoma (Kastner-Klein et al., 2002) 

 

7.3. Tropospheric Background Concentrations 

 

Background ozone concentrations can be directly measured within the middle part of the 

atmospheric boundary layer since O3 at these elevations is not subject to the same degree 

of depositional processes that occur at Earth’s surface.  Reports of background 

concentrations vary, but all values given in recent literature are relatively high.  In the 

1995 North American Research Strategy for Tropospheric Ozone (NARSTO) campaign, 

Zhang et al. (1998) examined the presence of an O3 reservoir along the Atlantic Coast of 

the United States, where background concentrations varied between 0.08 and 0.1 ppm.  

Liu et al. (2004) measured background O3 concentrations between 0.078 and 0.086 ppm 
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in a layer between 600 meters and 900 meters above ground level in Taiwan.  Mudway 

and Kelly (2000) reported that the background O3 concentration in London, United 

Kingdom ranges between 0.02 and 0.04 ppm.  In Madrid, Spain, the nocturnal 

(background) O3 concentration varied between 0.06 and 0.080 ppm in recent 

experimental measurements (Plaza et al., 1997).  Likewise, background concentrations in 

the eastern Atlantic were similar to those in southwestern Europe, with measured values 

between 0.05 and 0.070 ppm (Gangoiti et al., 2001).  Ozone is not limited to populated, 

industrialized areas.  Concentrations as high as 0.04 ppm have been measured north of 

the Arctic Circle in Greenland during the winter months (Heidam et al., 2004).  Figure 

7.6 illustrates an example of the nocturnal O3 concentrations vertically through the 

boundary layer in Nashville, Tennessee.  
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FIGURE 7.6: Typical nocturnal O3 concentrations in the atmospheric boundary layer and 

lower troposphere (Baumann et al., 2000) 

 

Rodríguez et al. (2004) concluded that high O3 concentrations within the nocturnal 

boundary layer are an indicator of regional transport processes, and thus not of local 

origin.  Pochanart et al. (2004) arrived at a similar conclusion, stating that background O3 

concentrations do not originate from local, short-term surface photochemistry, but instead 

are indicative of tropospheric ozone.  Ozone resulting from local, short-term 

photochemistry combines with background O3, contributing to the overall ozone 

concentration in a particular location at any given time (Pont and Fontan, 2001).  Ridley 
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et al. (2004) recorded ozone concentrations within the troposphere as high as 0.125 ppm 

with aircraft instrumentation.  With data from the 433-meter tower study in North 

Carolina, Zhang and Rao (1999) estimated that 50% of the total measured ozone 

concentration resulted from entrainment, or transport, while the other 50% was due to 

local photochemistry.  On the other hand, Lin et al. (2004) estimated that 40% of total 

ozone was due to transport, 40% was due to short-term local photochemistry, and 20% 

was due to residual local photochemistry.  Ground-level ozone in New England is also 

thought to be of remote origin, with baseline concentrations representative of transport 

(Angevine et al., 2004).  European researchers have reported concurring opinions.  

Fenger (1999) described European ozone as a propagating mobile plume, while 

Rappenglück et al. (2004) noted that ozone-rich air masses in Germany are likely 

transported from remote regions.   

 

The origins of background ozone are not fully understood, but certain processes are likely 

contributors.  Of particular interest in the lower atmosphere is the nocturnal low-level jet.  

Low-level jets have been linked to the horizontal transport of pollutant plumes, including 

ozone.  Steinbacher et al. (2004) measured O3 concentrations on the Swiss Plateau in 

central Europe.  They found that ozone was transported by a föehn, or nocturnal low-

level jet, through the Alps, thus contributing to increases in O3 concentrations at elevation 

within the boundary layer (Steinbacher et al., 2004).  Zhang et al. (1998) also noted the 

presence of a nocturnal low-level jet and its possible contribution to ozone transport in 

the eastern U.S.  Carlson et al. (1992) demonstrated the effectiveness of transport within 
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the low-level jet by constructing trajectories for insect movement through the central 

United States. 

 

7.4. Subtropical Anti-Cyclones 

 

Synoptic-scale meteorological features that have been linked to episodes of high ozone 

concentrations include high-pressure systems.  High-pressure systems are synonymous 

with large-scale subsidence through the troposphere, and also coincide with stagnant 

conditions at Earth’s surface.  High concentrations of O3 have been associated with high-

pressure systems and attendant subsidence, particularly when the anti-cyclonic circulation 

surrounding the center of high pressure is weak (Hidy, 2000).  Attention has been given 

to high ozone concentration episodes in southwestern Europe, including Spain and the 

Canary Islands, which is often under the influence of the semi-permanent Azores High 

(Plaza et al., 1997; Gangoiti et al., 2001; Millán et al., 2002; Rodríguez et al., 2004).  The 

causal connection linking high-pressure systems to increases in ozone concentrations is 

also a key finding in studies conducted in eastern Asia.  Chan et al. (1998), Wang et al. 

(1998), and So and Wang (2003) all noted that ozone episodes in Hong Kong were 

concurrent with high-pressure systems.  Common high-pressure systems influencing 

China include the continental Asian High and the equatorial Australian High (Chan et al., 

1998).  Lin et al. (2004) published similar conclusions regarding synoptic influences on 

ozone in Taiwan.  Further north, ozone episodes in Seoul, Korea are coupled with the 

presence of the North Pacific High (Ghim et al., 2001).  The connection between high-

pressure and high O3 concentrations is not limited to countries abroad.  Within the United 
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States, a study in Nashville, Tennessee found that high pressure aloft and subsequent 

stagnation of the boundary layer increases the likelihood of high levels of ground-level 

ozone (Baumann et al., 2000).  Boucouvala and Bornstein (2003) determined that similar 

synoptic-pressure regimes contribute to an ozone increase on the Pacific Coast of the 

United States, where the Pacific High tends to dominate.  The presence of the Pacific 

High, a broad, anti-cyclonic circulation, promotes stagnation within the boundary layer in 

the Los Angeles metropolitan area (Boucouvala and Bornstein, 2003).  The Pacific High 

is marked by strong subsidence through the troposphere (Rosenthal et al., 2003).  In the 

south-central United States, Rohli et al. (2004) discussed the possible contribution of O3 

in Louisiana through horizontal advection around the Bermuda High from sources in 

southeastern Texas.  As the Bermuda High shifts eastward, lower concentrations of ozone 

appear to enter the region from the Gulf of Mexico (Rohli et al., 2004).  Mid-Atlantic air 

pollution episodes also intensify from synoptic anti-cyclonic circulations, as O3 rich air 

propagates into the Baltimore-Washington, D.C. corridor under the influence of high 

pressure (Blumenthal et al., 1998; Zhang et al., 1998). 

 

7.5. Exchange between the Stratosphere and Troposphere 

 

Cyclonic systems also influence ozone concentrations within the troposphere.  According 

to Kim et al. (2002), high concentrations of O3 in Korea have been recorded in the 

presence of a cut-off low – a cyclonic circulation detached from the mean mid-level flow.  

A similar synoptic pattern, marked by a cut-off low-pressure system, resulted in increased 

ozone concentrations in the Pyrenees Mountains of Spain (Tulet et al., 2002).  Rodríguez 
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et al. (2004) observed high O3 concentrations on the western sides of upper-level 

cyclones in the North Atlantic, and they speculate that stratospheric ozone is entering the 

troposphere through tropopause folds in these regions as a function of stratospheric-

tropospheric exchange (Figure 7.7). 

 

 

FIGURE 7.7: Tropopause folding and subsequent introduction of O3 into the troposphere 

(Reiter, 1978) 

 

In fact, stratospheric-tropospheric exchange is a mechanism that potentially contributes 

significant ozone concentrations to the troposphere (Chan et al., 1998; Bithell et al., 

2000).  When a strong, detached low-pressure system is present in the middle 

atmosphere, the height of the troposphere, or tropopause, descends behind the center of 

the cyclonic circulation (Tulet et al., 2002).  In this scenario, exchange between the 

stratosphere and troposphere occurs as the tropopause folds underneath the upper-level 

cyclone or an attendant upper-level trough (Figure 7.8) (Kim et al., 2002; Rao et al., 

 98  



2004).  These meteorological features are commonly in close proximity to the upper-level 

jet stream (Rao et al., 2004).  

 

 

FIGURE 7.8: Modeled O3 concentrations in the middle troposphere resulting from 

tropopause folding immediately behind a trough and associated cyclone (Dufour et al., 

2005) 

 

7.6. Lightning NOX Fixation in the Tropics 

 

A major source for ozone involved in stratospheric-tropospheric exchange is the 

equatorial region, where numerous thunderstorms and subsequent lightning discharges 

occur with regularity (Egorova et al., 1999; Beirle et al., 2004).  According to Rao et al. 
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(2004), the tropical stratosphere is the primary global O3 reservoir.  Lightning fixes 

atmospheric nitrogen, in turn generating O3 (Cooray and Rahman, 2005).  Return strokes 

(also known as cloud-to-ground flashes, or CGs) are responsible for the production of 

primary NOX gases (Cooray and Rahman, 2005).  Lightning and NO2 are strongly 

correlated (Beirle et al., 2004).  Positive streamers are most efficient in terms of gas 

production, with an overall O3 efficiency of 2-3 x 1017 molecules·J-1 (Cooray and 

Rahman, 2005). 

 

Once ozone is generated in tropical thunderstorms, transport to the mid-latitudes occurs 

as a function of the Brewer-Dobson circulation, a large-scale stratospheric system 

resulting from Rossby wave motion (Figure 7.9) (Andrews, 2000; Grewe et al., 2002; 

Rao et al., 2004).  At low latitudes, large concentrations of O3 and NOX rise into the 

equatorial stratosphere in the ascending limb of the circulation, followed by horizontal 

transfer toward the poles.  At the middle and high latitudes, momentum decreases 

sufficiently for descent, and ozone subsides into the upper troposphere (Holton, 1995; 

Andrews, 2000).  While strongest during the winter months in the Northern Hemisphere, 

the Brewer-Dobson circulation nonetheless continues throughout the year (Holton, 1995).    
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FIGURE 7.9: Cross-section of mean 1980-1989 stratospheric ozone concentrations 

(Dobson units per km), measured by the Nimbus-7 weather satellite, with arrows 

indicating the transport of ozone from the equatorial region to the mid-latitudes, 

consistent with the Brewer-Dobson circulation (NASA, 2000) 

 

7.7. Hadley Cell Circulation 

 

Ozone in the upper reaches of the mid-latitude troposphere is influenced by another 

large-scale circulation known as the Hadley cell.  Driven by warm, moist convection in 

the tropics, the Hadley cell also ascends at the equator, although it is confined to the 

troposphere (Figure 7.10) (Palmén and Newton, 1969).  Descent occurs in the sub-
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tropics, where subsidence drives the development of the large, semi-permanent anti-

cyclones associated with ozone pollution episodes at ground level (Djurić, 1994).  In 

addition to the subsidence of ozone introduced through stratospheric-tropospheric 

exchange, secondary ozone production in the tropical upper troposphere is possibly 

transferred to the mid-latitudes through the direct mechanisms of this circulation (Grewe 

et al., 2004).  As a result of the Hadley cell and its relationship with the Brewer-Dobson 

circulation and stratospheric-tropospheric exchange, ozone concentrations within the 

troposphere are normally quite high, and Grewe et al. (2001) quantified the mid-

tropospheric O3 mixing ratio as 0.075 ppm (by volume). 

 

 

FIGURE 7.10: Hadley Cell circulation between the tropics and the mid-latitudes 

(Brimblecombe, 1996) 
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7.8. Frontal Boundaries 

 

Aside from large-scale meteorological features of the middle and upper atmosphere, O3 is 

also influenced by smaller-scale meteorological processes, including frontal boundaries.  

When particularly weak boundaries are present and associated weak, shifting surface 

winds prevail, ozone re-circulates over an area, increasing total concentration.  Re-

circulation is particularly problematic in coastal and near-coastal areas where sea breezes 

result in multiple daily passages of weak boundaries.  Wang et al. (1998) reported on the 

variability of O3 in Hong Kong as a result of sea-breeze meteorology, and Banta et al. 

(2005) described re-circulating ozone over the Houston, Texas metropolitan area as a 

“pollutant wall.”  A similar effect is observed in the event of a weak boundary passage 

far inland, well beyond the range of the sea breeze.  Surface winds converge along 

troughs and frontal boundaries, contributing to a zone of higher pollutant concentration 

(Gaza, 1998).  Weak boundaries tend to be shallow, and O3 trapping ensues as a result of 

the frontal structure (Gaza, 1998).  Previous research has shown that troughs slowly 

moving across the Tulsa, Oklahoma metropolitan area result in higher O3 concentrations 

along and immediately ahead of the boundary as air pollutants are accumulated through 

trapping (Williams, 2001).  In areas where the predominant terrain is not flat, mountains 

and valleys amplify the impact that ozone has on local air pollution.  Convergent surface 

winds on the lee side of the Appalachian Mountains in the eastern U.S. have been 

observed to increase ozone concentrations in a manner similar to trapping along a trough 

or frontal boundary, leading to multi-day episodes (Zhang et al., 1998).  In Mexico City, 
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where air quality is continually poor, pollutants including O3 are trapped within the deep 

valley in which the city is located (Hidy, 2000; O’Neill et al., 2004).  

 

7.9. Biogenic Ozone Production 

 

Sources of tropospheric ozone are thought to originate largely from anthropogenic 

activities and lightning.  However, natural sources independent of atmospheric electrical 

processes contribute to ground-level ozone as well.  Soils have been identified as 

potential sources of ozone, where NOX is abundant (Trainer et al., 2000).  Pasqualini et 

al. (2003) established phenols in forested areas as an indicator of ozone production from 

natural sources.  Cultivated fields and forests generate precursor VOC compounds (Pison 

and Menut, 2004).  Solomon et al. (2000) identified isoprene from deciduous vegetation 

and terpenes from conifers as the predominant biogenic VOCs responsible for O3 

production.  Isoprene concentrations in forested areas have been characterized as 

significant in the O3 cycle (Trainer et al., 2000).  However, contradictory research 

regarding the contribution of biogenic O3 sources has been offered in recent literature.  

According to Yang et al. (2004), uptake through trees in Beijing appeared to reduce urban 

air pollutants.  A national park study in the U.S. indicated the suppression of O3 

formation in high isoprene environments (Kang et al., 2004).  
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7.10. Summary 

 

Recent research clearly indicates that ozone in the free troposphere is present in 

appreciable concentrations, ranging from 0.02 to 0.1 ppm, depending on the literature 

source (Zhang et al., 1998; Mudway and Kelly, 2000).  Several studies have confirmed 

that the background ozone concentration accounts for a significant portion of the daily 

ground-level ozone maximum, as the development of the atmospheric boundary layer 

enhances mixing and transports ozone to the surface (Chan et al., 1998; Zhang et al., 

1998; Zhang and Rao, 1999; Aneja et al., 2000; Baumann et al., 2000; Lin et al., 2004; 

Steinbacher et al., 2004).  Tower studies, which vertically profile ozone through the depth 

of the atmospheric boundary layer, have shown that mixing is most effective during the 

afternoon hours, when a high degree of correlation exists between O3 at ground-level and 

aloft (Aneja et al., 2000; Kim et al., 2002).   

 

The mechanisms of background ozone transport in the troposphere are not fully 

understood, but the nocturnal low-level jet is thought to play a role (Zhang et al., 1998; 

Steinbacher et al., 2004).  Likewise, high O3 concentrations are known to accompany 

subtropical anti-cyclones (Plaza et al., 1997; Blumenthal et al., 1998; Chan et al., 1998; 

Zhang et al., 1998; Baumann et al., 2000; Hidy, 2000; Gangoiti et al., 2001; Ghim et al., 

2001; Millán et al., 2002; Boucouvala and Bornstein, 2003; Rosenthal et al., 2003; So 

and Wang, 2003; Lin et al., 2004; Rodríguez et al., 2004; Rohli et al., 2004).  This 

relationship may occur as a result of ozone exchange between the stratosphere and 

troposphere in the vicinity of the polar jet stream (Chan et al., 1998; Bithell et al., 2000; 
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Kim et al., 2002; Tulet et al., 2002; Rao et al., 2004), while some studies suggest that 

high ozone concentrations coinciding with subtropical anti-cyclones may instead result 

from the Hadley Cell circulation, which transports air from the tropics, a major ozone 

source due to frequent lightning, to the sub-tropics, where the transported air sinks and 

promotes stagnant meteorological conditions (Grewe et al., 2004).      
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8. METHODS AND MATERIALS
 
 
 
Analysis of ozone formation and transport during the period spanning 01 June – 30 

November 2005 required a multi-step data-gathering approach.  First, ozone was 

experimentally measured at 210 meters, and paired measurements were taken at ground 

level as control data.  Second, several meteorological parameters were gathered from 

external sources and paired with the ground-level and 210-meter ozone concentrations in 

order to draw conclusions regarding the dependence on meteorology for local 

photochemical formation as well as long-distance transport, thus incorporating meso-

scale and synoptic-scale meteorological processes.  Finally, a vertical profile of ozone 

was measured with a high-altitude balloon payload, or sounding, providing additional 

insight into the behavior of background ozone concentrations.  All data sets were then 

analyzed with computer-assisted methods for comparison. 

 
 
8.1. Theory of Ozone Measurement 

 

Ozone can be experimentally measured according to the principle of the Beer-Lambert 

absorption law: 

 

0

clI e
I

α−=    (8.1) 
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Transmittance, expressed as I/I0, is the ratio of UV intensity of light through ambient air 

containing ozone to the UV intensity of light through reference (zero concentration) air 

(TEC, 2004).  This ratio is an exponential function of α, the molecular absorption 

coefficient of O3 at a wavelength of 0.254 μm; the O3 concentration (c) expressed in atm; 

and the optical path length (l), measured in centimeters.   

 

8.2. Experimental Measurement 

 

Data were collected every five minutes between 00:00 CST on 01 June 2005 and 00:00 

CST on 01 December 2005 at two sites in Tulsa (Figure 8.1):  

 

1. Ground level, ODEQ Site 1127, 36th St. North and Peoria Avenue 

 

2. 210 meters, City of Tulsa communications facility, roof of Bank of Oklahoma 

Tower, 1st St. and Cincinnati Avenue 
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FIGURE 8.1: O3 study site locations in metropolitan Tulsa, Oklahoma 

 

Ozone measured at ground level was used as control data for the 210-meter 

concentrations measured at the Bank of Oklahoma Tower.  The physical distance 

between the two sites was approximately 5 km. 

 

Ambient air analysis was performed at each site with the Thermo Electron Corporation 

Model 49C UV Photometric Analyzer (Figure 8.2).  Two Model 49C analyzers were 

donated by the ODEQ to the Oklahoma State University School of Civil and 

Environmental Engineering for the purpose of the study.  Beer-Lambert constants 

specific to the Model 49C analyzer are α = 308 cm-1 and l = 38 cm.   Calibration of the 
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Model 49C at the Bank of Oklahoma Tower was performed with an O3 generator prior to 

the beginning of the study in May 2005, during a routine maintenance visit in August 

2005, and following the termination of the study in December 2005.  All maintenance 

and routine ambient air monitoring was conducted in accordance with 40 CFR 50, and 

therefore meets EPA requirements for O3 data certification.  Ozone measuring equipment 

at Site 1127 was maintained by the ODEQ during the course of the study, and also 

adheres to 40 CFR 50.  Data collected at the Bank of Oklahoma Tower was retrieved 

remotely through a telephone connection and TEI for Windows software.  Electricity, 

telephone connection, and space at the Bank of Oklahoma Tower site were provided by 

the City of Tulsa.  Data from Site 1127 were retrieved monthly from the ODEQ.    

 

 

FIGURE 8.2: TEC Model 49C O3 analyzer flow schematic (TEC, 2004)  

 

Following collection of the ground-level and 210-meter O3 data, the 5-minute 

concentrations were re-averaged and converted to an interval of one hour.  In addition to 
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the EPA designation of 1-hour averages in 40 CFR 50.9, many meteorological variables 

are reported in this interval as well, making it convenient for data analysis.  Ozone 

concentrations measured at both sites were also converted to 24-hour averages for 

comparison with meteorological sounding data.  

 

8.3. Meteorological Data Sources 

 

In addition to the ozone measurements that were recorded, several meteorological data 

sets were analyzed as well, including the following: 

 

o Five-minute meteorological data recorded at Skiatook, Oklahoma, 

approximately 20 km north of the Bank of Oklahoma Tower (data accessed 

from the Oklahoma Mesonet (http://www.mesonet.ou.edu/), converted to 1-

hour averages for comparison with O3).  

 

o Hourly surface meteorological data recorded at the Tulsa International Airport 

Aviation Weather Observing System (AWOS), approximately 8 km east of the 

Bank of Oklahoma Tower (data accessed from NOAA National Climatic Data 

Center (http://www.ncdc.noaa.gov/)). 

 

o Hourly 210-meter wind speed and direction were recorded on the roof of the 

Bank of Oklahoma Tower in conjunction with the 210-meter ozone experiment.  

Wind speed and direction were measured with a Davis Instruments Weather 
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Wizard III meteorological station.  Data were saved to a Davis Instruments 

WeatherLink logger and retrieved and analyzed with an accompanying 

software program. 

 

o Hourly vertical wind profiler data recorded at Haskell, Oklahoma (HKL02), 

approximately 40 km southeast of the Bank of Oklahoma Tower (data accessed 

from the NOAA Earth System Research Laboratory, Global Systems Division 

(http://profiler.noaa.gov/)). 

 

o Daily upper-air meteorological sounding data recorded at Brownsville, Texas 

(KBRO), Norman, Oklahoma (KOUN), and Aberdeen, South Dakota (KABR) 

(data accessed from NOAA Earth System Research Laboratory, Global 

Systems Division (http://raob.fsl.noaa.gov/)). 

 

o Composite National Centers for Environmental Prediction (NCEP)/National 

Center for Atmospheric Research (NCAR) upper-air meteorological re-analysis 

graphics (data accessed from NOAA Earth System Research Laboratory, 

Physical Sciences Division (http://www.cdc.noaa.gov/)). 

 

Surface and upper-air meteorological data were analyzed as paired data with ozone in 

Microsoft Excel and graphically with RAOB and Digital Atmosphere, two commercially 

available meteorological software packages. 
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8.4 Ozonesonde Payload and Launch 

 

A vertical profile of ozone was constructed on 08 October 2005 using a 2B Technologies 

Model 202 Ozone Monitor attached as a payload to a Scientific Sales, Inc. 600-gram 

meteorological balloon.  The theory of operation of the Model 202 is similar to that of the 

Model 49C.  The molecular absorption coefficient remains constant at 308 cm-1, and the 

optical path length is shorter (15 cm) (2B Tech., 2001).  Launch of the ozonesonde 

occurred at 08:00 CST at rural site 20 km north of downtown Tulsa, and the total flight 

time was approximately two hours.  Ozone was measured in 10 second increments from 

ground level to a maximum altitude of 29,000 meters, and data were saved internally.  

The ozonesonde was tracked with global positioning and radio transmitting and receiving 

equipment, and once the payload was retrieved, data were downloaded from the Model 

202. 
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9. RESULTS AND DISCUSSION

 

Measurements taken during the course of this research study centered on ozone behavior 

in the atmospheric boundary layer, and subsequently, a data set of 4,392 hourly O3 

averages was acquired from the ground-level and 210-meter monitoring sites.  

Additionally, several ground-level meteorological data sets were obtained, allowing for 

comparison with the ground-level and 210-meter ozone concentrations.  The combination 

of these locally measured parameters allowed for detailed analysis of the dependence of 

local photochemical ozone production on meteorological variables, including air 

temperature, relative humidity, wind speed, and solar radiation.  As a result of 210-meter 

O3 concentration trends, however, insight regarding the behavior of tropospheric ozone in 

relation to large-scale, dynamic meteorological process was also gained.  Therefore, the 

results of this research have been subdivided into two components: short-term, local-scale 

photochemical production and longer-term, distant-origin ozone that propagates in 

concert with the global atmospheric circulation.  

 

9.1. Local-Scale Phenomena 

 

When assessing the magnitude of local photochemical ozone production, it was 

appropriate to begin with a comparison between ground-level and 210-meter O3 in an 

effort to gauge whether or not ozone measured vertically within the atmospheric 
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boundary layer behaves as a heterogeneous, layered system or as a well-mixed, 

homogeneous system.  The construction of a vertical ozone profile revealed a time-

dependant relationship between the two levels in which both types of systems were 

observed, yielding important clues regarding the role that the structure of the boundary 

layer plays in the evolution of the diurnal ozone profile at ground level.  Furthermore, the 

consideration of local meteorological variables allowed for assessment of the conditions 

in which high ground-level ozone concentrations are favored.     

 

9.1.1. Boundary-Layer Ozone Correlations 

 

Over the course of the 6-month research period, ground-level and 210-meter ozone 

concentrations for the 12-hour daytime interval beginning at 08:00 CST and ending at 

20:00 CST were correlated, as this increment approximated the hours of sunlight during 

the summer months.  A linear response was observed, and the coefficient of 

determination (R2) equaled 0.6089 (Figure 9.1).  Ozone homogeneity between the two 

heights generally began within two hours of sunrise, when the structure of the 

atmospheric boundary layer transitioned from a decoupled low-level stable nocturnal 

boundary layer and overlying residual layer to a coupled, convectively driven mixed 

layer in the lower atmosphere.   
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FIGURE 9.1: 12-hour daytime correlation between 210-meter and ground-level O3 

concentrations (08:00 CST – 20:00 CST), 01 June 2005 – 30 November 2005 

 

It was clear, however, that substantial deviation from the linear correlation was present at 

lower ozone concentrations in the 12-hour daytime data.  This interference was 

attributable to poor correlation at the beginning and end of the 12-hour daytime period, 

when O3 concentrations tend to be vertically heterogeneous as a result of decreased 

boundary layer mixing.  The correlation between ground-level and 210-meter O3 

improved with reduction of the daytime interval from 12 hours to 9 hours, beginning at 

08:00 CST and ending at 17:00 CST (Figure 9.2).  Within this period, R2 increased to 

0.7919. 
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FIGURE 9.2: 9-hour daytime correlation between 210-meter and ground-level O3 

concentrations (08:00 CST – 17:00 CST), 01 June 2005 – 30 November 2005 

 

Additional refinement of the daytime ozone interval into morning and afternoon 

components improved the correlation between ground-level and 210-meter ozone.  

Concentrations during the 5-hour morning and early afternoon period, beginning at 08:00 

CST and ending at 13:00 CST, remained strongly correlated, but with an R2 of 0.7253, 

the correlation was weaker than that of the 9-hour daytime period (Figure 9.3).  

Interference at low ozone concentrations was slightly more prominent, resulting from the 

temporal variability of boundary-layer coupling and onset of convective mixing. 
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FIGURE 9.3: 5-hour morning correlation between 210-meter and ground-level O3 

concentrations (08:00 CST – 13:00 CST), 01 June 2005 – 30 November 2005 

    

The afternoon period, a 4-hour interval beginning at 13:00 CST and ending at 17:00 CST, 

provided the highest overall O3 concentration correlation for the daytime hours (Figure 

9.4).  Interference at low ozone concentrations, present in the morning concentration 

correlation data, was noticeably absent.  The coefficient of determination consequently 

increased to 0.8372.  Strong correlation in the afternoon data coincided with vigorous 

convective mixing in the atmospheric boundary layer, which was most pronounced 

during the afternoon hours when maximum surface heating was realized.  During this 

interval, O3 concentrations were nearly homogenous through the vertical extent of the 

boundary layer. 
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FIGURE 9.4: 4-hour afternoon correlation between 210-meter and ground-level O3 

concentrations (13:00 CST – 17:00 CST), 01 June 2005 – 30 November 2005 

      

Latency is another consideration when measuring vertical ozone concentrations in the 

boundary layer.  Previous research has indicated that convective eddies occur on the 

order of 30 minutes (Seaman, 2000).  Therefore, any ozone resulting from local, surface-

based sources during daytime photochemical processes will require additional time to 

mix from ground level to 210 meters.  In an effort to account for convective mixing 

between the two heights, the 9-hour daytime O3 correlation data were offset by one hour, 

with the 210-meter ozone data shifted to match ground-level data from the previous hour.  

This technique yielded the strongest correlation between ground-level and 210-meter 

concentrations, with an R2 equal to 0.8781 (Figure 9.5). 
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FIGURE 9.5: 9-hour daytime correlation between 210-meter and ground-level O3 

concentrations (08:00 CST – 17:00 CST; 210-meter O3 concentrations offset to previous 

hour ground-level O3 concentrations), 01 June 2005 – 30 November 2005 

 

While ozone concentrations exhibited strong vertical correlation during the daytime, the 

opposite was true at night.  Once surface heating was lost, radiational cooling prompted 

the decoupling of the atmospheric boundary layer into the stable nocturnal boundary 

layer and the elevated residual layer from the previous day’s convective mixing.  Vertical 

ozone concentrations within the boundary layer dissociated as well, effectively resulting 

in two independent reservoirs.  Ozone concentrations at ground level decreased in 

response to the cessation of photochemistry and continuance of depositional processes 

within the nocturnal boundary layer.  Depositional processes were much less effective 
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within the residual layer, and ozone concentrations at 210 meters consequently remained 

high.  Therefore, nocturnal ozone concentrations showed no discernable correlation 

between ground level and 210 meters.  For the 12-hour nighttime period beginning at 

20:00 CST and ending at 08:00 CST, R2 equaled 0.0045 (Figure 9.6).   
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FIGURE 9.6: Correlation between nighttime 210-meter and ground-level O3 

concentrations (20:00 CST – 08:00 CST), 01 June 2005 – 30 November 2005 
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9.1.2. Dry-Bulb Temperature  

 

With an R2 value equal to 0.3333, the correlation between ground-level ozone and 

ground-level dry-bulb (air) temperature (measured at Tulsa International Airport) was 

weak.  However, a noticeable relationship existed between high ozone concentrations and 

corresponding high dry-bulb temperatures.  At low ground level O3 concentrations, there 

was a random distribution within the 0-35ºC dry-bulb temperature range (Figure 9.7). 
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FIGURE 9.7: Correlation between ground-level O3 and dry-bulb temperature, 01 June 

2005 – 30 November 2005 
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In fact, only 44% of O3 concentrations equal to or exceeding 0.03 ppm occurred at a dry-

bulb temperature of 30ºC or higher.  At 0.05 ppm, however, this percentage improved to 

74%.  When high ground-level ozone concentrations were measured, a strong positive 

correlation was observed in conjunction with high ground-level air temperatures.  All 

occurrences of 0.07 ppm or higher O3 were coupled with a dry-bulb temperature of at 

least 27ºC, and all exceedances of the 0.09 ppm ground-level O3 concentration threshold 

took place when the dry-bulb temperature was at least 30ºC.  The relationship between 

ground-level O3 and dry-bulb temperature is summarized in Table 9.1. 

 

TABLE 9.1: Percentages of O3 exceedances at selected dry-bulb temperatures 

O3 (ppm) ≥   n % ≥ 25ºC % ≥ 27ºC % ≥ 30ºC 
      

0.01  3183 57 45 28 
0.02  2624 63 52 34 
0.03  1892 74 64 44 
0.04  1254 85 76 57 
0.05  730 96 92 74 
0.06  437 99 99 91 
0.07  201 100 100 97 
0.08  57 100 100 96 
0.09  17 100 100 100 
0.10   4 100 100 100 

 

 

A contraction of the research data interval from 6 months to 4 months, including the 

period generally considered as the ozone season (01 June 2005 – 30 September 2005), 

resulted in the exclusion of many of the low O3 concentrations observed in the 6-month 

analysis, leaving a linear distribution of higher ground-level ozone concentrations (Figure 
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9.8).  As a result, the correlation between ground-level O3 and ground-level dry-bulb 

temperature improved (R2 = 0.4897).   
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FIGURE 9.8: Correlation between ground-level O3 and dry-bulb temperature, 01 June 

2005 – 30 September 2005 

 

Ozone concentrations at 210 meters were less responsive to surface meteorological 

processes, as indicated by the weaker correlation with dry-bulb temperature at this level 

than at ground level (Figure 9.9).  When the six-month research data period was 

considered, R2 equaled 0.2592, suggestive of a more random distribution than was 

observed with ground-level O3, particularly at high dry-bulb temperatures.  Decreasing 

the research data interval to four months resulted in a sharp decrease in correlation (R2 = 

0.1023).   
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FIGURE 9.9: Correlation between 210-meter O3 and dry-bulb temperature, 01 June 

2005 – 30 November 2005 
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9.1.3. Water Vapor 

 

Water vapor in the lower atmosphere can be expressed in several ways, including relative 

humidity (RH%), wet-bulb temperature, and dew-point temperature, as discussed in 

Section 4.2.  All water vapor variables were measured at Tulsa International Airport. 

 

Wet-bulb temperatures did not provide a good fit with the ground-level or 210-meter 

ozone concentrations.  When ground-level ozone was considered, substantial interference 

was present at low concentrations over the six-month research period.  Correlation was 

poor, as R2 equaled 0.1233 (Figure 9.10).      

y = 0.0011x + 0.0086
R2 = 0.1233

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30 35

wet-bulb temperature [ºC]

gr
ou

nd
-le

ve
l O

3 [
pp

m
]

 

FIGURE 9.10: Correlation between ground-level O3 and wet-bulb temperature, 01 June 

2005 – 30 November 2005 
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Reduction of the research data interval to four months eliminated much of the random 

scatter present at low O3 concentration levels.  However, better correlation was not 

achieved, as R2 actually decreased slightly to 0.1185. 

 

At 210 meters, the correlation between ozone and wet-bulb temperature was higher than 

the ground-level correlation over the six-month research period (R2 = 0.1727), although 

still weak.  The data tended to separate into two distinct groups – one at very low O3 

concentrations, and another, more pronounced region at very high O3 concentrations 

(Figure 9.11). 
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FIGURE 9.11: Correlation between 210-meter O3 and wet-bulb temperature, 01 June 

2005 – 30 November 2005 
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As with the ground-level ozone data, the 210-meter ozone time interval under 

consideration was reduced to four months in order to remove the low O3 concentrations 

that occurred late in the year, thus attempting to achieve a higher correlation between O3 

and wet-bulb temperatures.  Instead, the opposite occurred as the correlation decreased to 

virtually zero (R2 = 0.0023). 

 

Dew-point temperature correlation to ground-level and 210-meter O3 was very similar to 

the wet-bulb correlation, since both measures of water vapor content are proportional 

with regard to one another.  Therefore, the scatter plots correlating O3 and dew-point 

temperature were identical to the wet-bulb correlation graphs, with the lone exception of 

a slight shift in temperature for each O3 datum, as dew-point temperatures are always 

lower than wet-bulb temperatures unless the air is completely saturated. 

 

The best correlations between O3 and water vapor were achieved by considering relative 

humidity.  Unlike wet-bulb and dew-point temperatures, relative humidity is a function of 

temperature and pressure instead of temperature alone.   

 

When the six-month research data interval was considered, the correlation between 

ground-level O3 and RH% was not particularly high (R2 = 0.3356), but a distinct negative 

relationship between the two clearly existed (Figure 9.12), as higher RH% values 

corresponded to lower O3 concentrations.   
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FIGURE 9.12: Correlation between ground-level O3 and relative humidity, 01 June 2005 

– 30 November 2005 

 

Refinement of the data interval to the four-month ozone season improved the correlation 

between ground-level O3 and RH%, as R2 increased significantly to 0.5286.  Most of the 

interference at lower ozone concentrations was eliminated, resulting in a linear 

distribution with a negative slope (Figure 9.13) 
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FIGURE 9.13: Correlation between ground-level O3 and relative humidity, 01 June 2005 

– 30 September 2005 

 

Ozone from the 210-meter level was also plotted against RH%, but over the course of the 

six-month research data interval, no correlation was established (R2 = 0.0558) (Figure 

9.14).   
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FIGURE 9.14: Six-month correlation between 210-meter O3 concentration and relative 

humidity, 01 June 2005 – 30 November 2005 

 

However, this result improved with the four-month data interval, as R2 equaled 0.1763.  

The increased correlation between the two parameters likely reflected more vigorous 

mixing during the late summer months, which in turn transported water vapor more 

effectively through the depth of the boundary layer.  Nonetheless, the correlation 

remained poor, signifying that ground-level ozone was more responsive to water vapor in 

the lower atmosphere than ozone measured at 210 meters. 
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9.1.4. Air Pressure 

 

Although a discernable correlation was found between ground-level ozone and air 

pressure (measured at Tulsa International Airport) when considered as a component of 

relative humidity, no appreciable relationship existed between ground-level O3 and air 

pressure alone, measured in hecto-Pascals (hPa).  Most O3 concentrations fell within a 

range of 980 hPa to 1000 hPa.  The coefficient of determination for the six-month 

research interval was 0.0273 (Figure 9.15). 
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FIGURE 9.15: Correlation between ground-level O3 and air pressure, 01 June 2005 – 30 

November 2005 
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Consideration of O3 concentrations from the four-month ozone season did not result in an 

improvement of R2, which decreased to 0.0122.   

 

Likewise, no correlation existed between ozone measured at 210 meters and ground-level 

air pressure.  Although air pressure measurements were made at ground level, adherence 

to the hydrostatic equation requires that air pressure at 210 meters would be 

proportionally lower (see Section 4.1).  When analyzed, R2 equaled 0.006 for the six-

month data interval (Figure 9.16).   
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FIGURE 9.16: Correlation between 210-meter O3 and ground-level air pressure, 01 June 

2005 – 30 November 2005 
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Outlying data points were eliminated when the research interval was reduced to four 

months, but the correlation between 210-meter ozone concentrations and ground-level air 

pressure did not improve.  With an R2 value of 0.0068, no correlation was found to exist 

between the two.  

 

9.1.5. Wind Speed and Direction 

 

Wind speeds and directions were measured at ground level (Tulsa International Airport) 

and at 210 meters (the roof of the Bank of Oklahoma Tower).  When ground-level ozone 

was paired with ground-level wind speed, a very weak correlation was found, as the 

coefficient of determination equaled 0.1121 (Figure 9.17).  Distribution at low to 

moderate wind speeds was random.  However, a noticeable threshold existed between 

high O3 concentrations and wind speeds at ground level, as all concentrations equal to or 

greater than 0.08 ppm occurred at wind speeds lower than 5 m·s-1.  While Figure 9.17 

suggests a positive correlation between ground-level wind speed and ground-level ozone, 

this effect results from the randomness of the data at low concentrations, as the 

correlation is negative at O3 concentrations ≥ 0.01 ppm.    
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FIGURE 9.17: Correlation between ground-level O3 and ground-level wind speed, 01 

June 2005 – 30 November 2005 

 

Comparison of ground-level ozone concentrations with wind speeds measured at 210 

meters resulted in no correlation, as R2 equaled 0.0005 (Figure 9.18).  However, it should 

be noted that high ozone concentrations (O3 ≥ 0.08 ppm) only occurred when the 210-

meter wind speed was less than 4 m·s-1, a trend similar to that observed with ground-level 

ozone and wind speeds.  As with ground-level wind speed, a negatively-sloped regression 

trend line is occurs when 210-meter wind speed is paired with ground-level O3 values ≥ 

0.01 ppm.       
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FIGURE 9.18: Correlation between ground-level O3 and 210-meter wind speed, 01 June 

2005 – 30 November 2005 

 

Ozone concentrations measured at 210 meters showed no dependence on wind speeds at 

ground level or aloft.  When 210-meter O3 concentrations were plotted against ground-

level wind speed, the coefficient of determination was negligible at a value of 0.0191 

(Figure 9.19).  Again, a noticeable trend was evident at higher O3 concentrations, as the 

exceedance of the 0.08 ppm 210-meter ozone threshold required ground-level wind 

speeds below 6 m·s-1.  
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FIGURE 9.19: Correlation between 210-meter O3 and ground-level wind speed, 01 June 

2005 – 30 November 2005 

 

Likewise, consideration of 210-meter wind speeds did not yield any correlation with 210-

meter ozone concentrations.  In fact, R2 was again negligible at a value of 0.003 (Figure 

9.20).  In accordance with the other comparisons between wind speeds and ozone 

concentrations at both levels, however, high O3 concentrations (O3 ≥ 0.08 ppm) at 210 

meters also exhibited a relationship with low wind speeds at the same height.  With the 

exception of two outliers, all wind speeds fell below 4 m·s-1 above the 0.08 ppm 

concentration threshold.        
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FIGURE 9.20: Correlation between 210-meter O3 and 210-meter wind speed, 01 June 

2005 – 30 November 2005 

 

During the course of the research project, winds at ground level originated from the south 

(180º) more than any other direction, accounting for the direction of flow 25% of the 

time.  In fact, winds at ground level originated from 180º ± 45º over 50% of the time.  

Therefore, southerly winds were the dominant wind direction during the months in which 

ozone posed a significant health threat (Figure 9.21).   
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FIGURE 9.21: Ground-level wind frequency plot, 01 June 2005 – 30 November 2005 

 

High ground-level O3 concentrations, defined in this paper as ≥ 0.08 ppm, tended to 

coincide with winds originating from the east-southeast.  Almost 30% of these ozone 

concentrations originated from 120º ± 20º.  Over 50% of high O3 concentrations occurred 

when the wind direction was 150º ± 50º, particularly significant when considering that 

21% of the wind direction data associated with O3 concentrations ≥ 0.08 ppm were 

missing and were therefore not included in the calculation.  Based on this information, 

only 26% of the observed high O3 concentrations did not correspond to wind directions 
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between 100º and 200º.  Of the remaining high concentration values, nearly 11% 

occurred during calm winds, which have no associated component of direction (Table 

9.2). 

 

TABLE 9.2: Frequencies of ground-level wind direction with ground-level ozone ≥ 0.08 

parts per million 

Wind Dir (º) n % Total 
   

100 2 3.5 
110 3 5.3 
120 4 7.0 
130 3 5.3 
140 5 8.8 
150 1 1.8 
160 2 3.5 
170 2 3.5 
180 2 3.5 
190 2 3.5 
200 2 3.5 

other 11 19.3 
calm 6 10.5 

missing 12 21.1 
 

 

Wind directions measured on the roof of the Bank of Oklahoma tower were in a slightly 

different format than those measured at Tulsa International Airport, as the ground-level 

anemometer recorded direction in increments of 10º, while the 210-meter anemometer 

measured direction in increments of 22.5º.  When the 210-meter wind direction was 

considered instead of ground-level wind parameters, the results were surprising.  Nearly 

50% of the time, ground-level O3 concentrations equal to or in excess of 0.08 ppm were 

associated with winds originating from the south-southwest (202.5º).  While the 
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frequency of southerly winds in conjunction with high ground-level ozone concentrations 

were similar, the differences included: a) the 210-meter wind direction associated with 

high ground-level ozone concentrations was confined to a much narrower directional 

interval; and b) the most favored ground-level wind direction for high ground-level O3 

was southeast (140º), which had a frequency of 8.77%, whereas the most frequently 

occurring 210-meter wind direction associated with high ground-level O3 was south-

southwest (202.5º) (Table 9.3).        

  

TABLE 9.3: Frequencies of 210-meter wind direction with ground-level ozone ≥ 0.08 

parts per million 

Wind Dir (º) n % Total 
   

112.5 0 0.0 
135.0 0 0.0 
157.5 0 0.0 
180.0 2 3.5 
202.5 28 49.1 
225.0 2 3.5 
other 8 14.0 
calm 0 0.0 

missing 17 29.8 
 

 

At 210 meters, the dominant wind direction deviates slightly from ground-level, as winds 

at height tend to approach geostrophic balance with the decreasing effects of surface 

friction.  Thus, winds at this level originated from the south-southwest (202.5º) more than 

any other direction, with a frequency of 35%.  Winds originated from 202.5º ± 22.5º 

more than 60% of the time at this height (Figure 9.22). 
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FIGURE 9.22: 210-meter wind frequency plot, 01 June 2005 – 30 November 2005 

 

By comparison, 210-meter ozone concentrations were more uniformly distributed among 

possible wind directions than were O3 concentrations at ground level.  Although less than 

10% of the sample had missing wind direction data, the 150º ± 50º interval accounted for 

approximately 6% fewer high O3 concentrations at this level (Table 9.4).  
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TABLE 9.4: Frequencies of ground-level wind direction with 210-meter ozone ≥ 0.08 

parts per million 

Wind Dir (º) n % Total 
   

100 3 4.8 
110 5 7.9 
120 4 6.4 
130 2 3.2 
140 4 6.4 
150 3 4.8 
160 1 1.6 
170 1 1.6 
180 2 3.2 
190 3 4.8 
200 2 3.2 

other 18 28.6 
calm 9 14.3 

missing 6 9.5 
 

 

As with the relationship between ground-level ozone and wind directions measured at 

210 meters, the comparison between 210-meter O3 and wind directions measured at the 

same level yielded insightful results.  South-southwesterly winds (202.5º) remained the 

most prominent wind direction for high ozone concentrations, but at a frequency of 

36.51%, the spread was more uniformly distributed among wind directions with a 

southerly component.  It should be noted, however, that 67% of the distribution fell 

within the interval 157.5º ± 45º, with 14.29% of the remaining data classified as missing.  

Thus, high 210-meter O3 concentrations overwhelmingly occurred in the presence of 

winds with a southerly component (Table 9.5).  
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TABLE 9.5: Frequencies of 210-meter wind direction with 210-meter ozone ≥ 0.08 parts 

per million 

Wind Dir (º) n % Total 
   

112.5 8 12.7 
135.0 1 1.6 
157.5 2 3.2 
180.0 6 9.5 
202.5 23 36.5 
225.0 2 3.2 
other 12 19.1 
calm 0 0.0 

missing 9 14.3 
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9.1.6. Ultraviolet Radiation 

 

Ultraviolet (UV) radiation was measured at an Oklahoma Mesonet site in the nearby 

town of Skiatook, approximately 17 km northwest of the ground level ozone monitoring 

site and 20 km north of the Bank of Oklahoma, the 210-meter ozone monitoring site, 

respectively.   

 

Comparison of UV radiation with ground-level ozone concentrations produced a positive 

correlation, although not exceedingly strong (R2 = 0.4483).  This degree of correlation 

was partially due to the lag between maximum incoming solar radiation and maximum 

O3 concentration, typically on the order of 1-3 hours (Figure 9.23).   
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FIGURE 9.23: Correlation between ground-level O3 and solar radiation, 01 June 2005 – 

30 November 2005 

 

When the data were offset so that ground-level O3 lagged incoming UV by 2 hours, the 

best correlation (R2 = 0.6065) was achieved (Figure 9.24).  The correlation for a 1-hour 

offset was similar (R2 = 0.5759), while the correlation for the 3-hour lag was weaker, as 

the coefficient of determination had decreased to 0.5316. 
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FIGURE 9.24: Maximum correlation between ground-level O3 and solar radiation (2-

hour offset), 01 June 2005 – 30 November 2005 

 

The observed lag between 210-meter ozone and incoming solar radiation was larger than 

the offset between UV and ground level ozone, partially due to a lag in the time required 

for mixing between ground level and 210 meters.  When no offset was instituted, no 

correlation existed (Figure 9.25) (R2 = 0.0257). 
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FIGURE 9.25: Correlation between 210-meter O3 and solar radiation, 01 June 2005 – 30 

November 2005 

 

Correlation gradually improved to a maximum R2 of 0.2246 with a solar radiation offset 

of 4 hours (Figure 9.26).  This value remained virtually unchanged with a 5-hour offset.  

With an offset of six hours, the correlation decreased, as R2 equaled 0.1982.  The 

coefficient of determination thereafter continued to decrease as the lag time increased.   
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FIGURE 9.26: Maximum correlation between 210-meter O3 and solar radiation (4-hour 

offset), 01 June 2005 – 30 November 2005 
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9.2. Ozonesonde Measurements of Background O3

 

Background ozone concentrations are especially important when assessing the origin and 

magnitude of transported ozone.  One of the most important findings in this research 

study concerns the behavior of the background (residual) ozone concentration, which was 

measured both as the nocturnal O3 concentration minimum at 210 meters and as the 

residual O3 concentration in the troposphere by vertically profiling the atmosphere with 

ozone soundings, or “ozonesondes.”   

 

As has been previously discussed, ozone measured at 210 meters was well mixed with 

ground-level ozone during the day, but decoupled during the overnight hours, thus 

behaving as an independent system.  Objective analysis suggests that the background 

concentration ozone, measured as the nocturnal difference in ozone concentrations 

between ground level and 210 meters, ranged between 0.01 and 0.06 parts per million in 

the Tulsa metropolitan area, although the range was typically a much smaller 0.03-0.05 

ppm interval.  These values are consistent with background concentrations measured in 

previous research studies (Plaza et al., 1997; Zhang et al., 1998; Baumann et al., 2000; 

Mudway and Kelly, 2000; Gangoiti et al., 2001; Liu et al., 2004).   

  

Nocturnal wind speeds at 210 meters were rarely negligible during the course of the 

research study, even during the overnight hours when winds tended to be calm at ground 

level.  Subsequently, a transport vector was always present at this elevation.  Appreciable 
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wind speeds aloft therefore signified that the background ozone concentration at 210 

meters was transient and therefore not of local origin. 

 

The existence of an appreciable background ozone concentration above the 210-meter 

level, while documented in previous literature, was nonetheless verified by profiling the 

vertical extent of tropospheric ozone with the launch of an ozonesonde on 08 October 

2005 in the Tulsa metropolitan area.  The resulting profile indicated that O3 

concentrations above the surface were generally uniform with height through the lower 

and mid-troposphere, where residual ozone concentrations on the order of 0.01 parts per 

million were measured (Figure 9.27).   

 

 

FIGURE 9.27: A) Vertical ozone concentrations measured at 8:00 CST on 08 October 

2005 at Tulsa, Oklahoma, and B) Corresponding 6:00 CST atmospheric sounding from 

Norman, Oklahoma 
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However, a noticeable ozone maximum occurred at approximately 400 hPa, or 

approximately 7 km above ground level.  The abrupt increase in free tropospheric ozone 

occurred well below the height of the local troposphere, indicated on the 6:00 CST 

Norman, Oklahoma atmospheric sounding at an elevation of 17 km.  Geopotential height 

analysis at the 300 hPa level on the morning of 08 October indicated a bifurcated polar jet 

stream with an embedded upper-level “shortwave” trough over Oklahoma (Figure 9.28).  

It appears that the intrusion of high O3 concentrations at 400 hPa may be attributable to 

the passage of the trough, as a narrow zone of tropopause folding likely occurred as well.  

 

 

FIGURE 9.28: 300 hPa geopotential height analysis, 6:00 CST, 08 October 2005 

(NOAA, 2006) 
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Aside from the ozone maximum at 400 hPa, background ozone concentrations in the 

troposphere were relatively low at the time of the local ozonesonde launch when 

compared with values reported in previous research.  The lack of ozone in the lower 

troposphere was likely due to the passage of the polar front in conjunction with the 

aforementioned upper-level trough (Figure 9.29).  Unlike boundary-layer fronts, the polar 

front marks the equator-ward extent of the permanent polar air mass, and it is 

characterized by a vertical discontinuity through the troposphere.  The polar front is 

always associated with the polar jet stream, although it can meander several hundred 

kilometers from the jet core. 

 

FIGURE 9.29: A) Polar jet stream; and B) the passage of the polar front, 06 October 

2005 (NOAA, 2006) 

 

Although vertical ozone profiling of the entire troposphere was limited to a single 

ozonesonde in the context of this research study, previous measurements from ozone 

soundings were taken on a weekly basis at Huntsville, Alabama (35.2ºN, 86.6ºW) as part 

of a joint long-term research project between the University of Alabama-Huntsville, 

NOAA, and NASA.  Ozonesondes in the Huntsville study were launched during the 
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period beginning on 20 April 1999 and ending on 20 August 2005 (UAH, 2006).  Since 

Huntsville is a mid-sized metropolitan area in the same geographical region as Tulsa with 

similar climatology, conclusions pertaining to the vertical characteristics of ozone can be 

drawn and subsequently applied to the Tulsa study.   

 

Residual ozone concentrations in the troposphere above Huntsville were found to be on 

the order of 0.05-0.07 ppm during the course of the 2005 ozone season (prior to the final 

ozonesonde launch at this location on 20 August) (UAH, 2006).  In fact, little variation 

was observed in the vertical ozone column from June through August.  When the scope 

of ozone sounding analysis was broadened to include the entire Huntsville data set, a 

clear trend emerged: significant variation in tropospheric ozone coincided with the 

passages of mid-latitude cyclones and attendant upper-level pressure troughs, similar to 

the pattern observed in the 08 October 2005 Tulsa ozonesonde.  At least thirteen 

intrusions of stratospheric ozone into the troposphere are discernable in the 6-year 

Huntsville ozonesonde record (UAH, 2006).  Each is characterized by high ozone 

concentrations in the troposphere (> 0.3 ppm), and the origin of these reservoirs was 

presumably the descent of stratospheric ozone into the mid-troposphere as a result of 

tropopause folding in the vicinity of the polar jet stream and associated cyclones. 

 

Does stratospheric ozone directly contribute to boundary layer ozone concentrations, or is 

it instead supplying the tropospheric ozone reservoir, which requires longer transport 

time to the surface?  Of the thirteen identified stratospheric ozone intrusions in the 

Huntsville ozonesonde record, only one mission was coupled with an additional flight on 
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the following day, yielding insight to this question.  At 12:00 CST on 08 April 2000, an 

ozone maximum in excess of 0.3 parts per million was observed at an altitude of 9 km, 

well below the 17 km height of the tropopause (Figure 9.30) (UAH, 2006).  The lower 

boundary of the mid-troposphere ozone maximum approached 5 km.  Meanwhile, ozone 

concentrations in the lowest 3 km of the atmosphere were on the order of 0.025-0.030 

ppm (UAH, 2006).   

 

 

FIGURE 9.30: A) Ozone maximum in the mid-troposphere at Huntsville, Alabama 

corresponding to the B) approach of an upper-level trough (300 hPa heights expressed as 

meters) at 12:00 CST on 08 April 2000 (UAH, 2006; NOAA, 2006) 

 

Twelve hours later, at 00:00 CST on 09 April, a subsequent ozone sounding indicated 

that ozone concentrations in the mid-troposphere (5-10 km) had decreased considerably, 

as no maximum was observed at this altitude (Figure 9.31) (UAH, 2006).  Instead, ozone 

concentrations increased in the lowest 3 km of the atmosphere, and were measured in the 

0.05-0.06 ppm range (UAH, 2006).  
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FIGURE 9.31: A) Ozone maximum in the lower troposphere at Huntsville, Alabama 

corresponding to the B) departure of an upper-level trough (300 hPa heights expressed as 

meters) at 00:00 CST on 09 April 2000 (UAH, 2006, NOAA, 2006) 

 

Thus, while the stratospheric intrusion of ozone into the troposphere most assuredly 

contributes to the overall reservoir of residual ozone in the free troposphere, it can also 

influence boundary layer ozone concentrations on short time scales following the passage 

of a mid-latitude cyclone and upper-level trough within the global atmospheric 

circulation.    

 

It has been established that background ozone concentrations are highly dynamic in 

response to the characteristics of the synoptic upper-level meteorological regime, 

implying an appreciable component of ozone transport.  Thus, if ozone isn’t solely 

locally produced, then what is its origin?  Attention must be turned to two processes: 

vertical transport through the troposphere, and horizontal transport in boundary-layer 

winds, including the nocturnal low-level jet. 
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9.3. Vertical Transport and the Global Atmospheric Circulation  

 

Analysis of the 210-meter data indicated that the long-term ozone signal was sinusoidal.  

Under the influence of strong anti-cyclonic subsidence, background values in the range of 

0.05-0.06 ppm were commonly observed.  Although these high residual concentrations 

were most frequent during the mid- to late-summer months when the influence of 

subtropical ridging was at its peak, background concentrations exceeding 0.04 ppm were 

observed during the fall months with the passage of weaker anti-cyclones. 

 

Relatively low residual ozone concentrations coincided with the passages of upper-level 

cyclones.  Background concentrations in the range of 0.01-0.02 ppm commonly 

accompanied the cyclonic flow of atmospheric short-wave and long-wave disturbances, 

regardless of season.  Low background concentrations were more frequent during the fall 

months, however, as a result of the increased presence of atmospheric disturbances in 

progressive upper-level flow associated with the polar jet stream. 

 

Long-term ozone data collected during the study were characterized by a series of 

concentration maxima and minima corresponding to the passages of pressure ridges and 

troughs embedded within the polar jet stream (Figure 9.32).  Boundary-layer ozone 

concentrations increased with the intensification of high pressure systems and associated 

pressure ridges.  Conversely, boundary-layer ozone concentrations decreased with the 

approach and passage of upper-level pressure troughs.  As winter approached, the polar 

jet stream shifted toward the equator.  Ozone concentration variability subsequently 
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increased in response to an increase in the amplitude and frequency of atmospheric 

disturbances, and boundary-layer ozone concentrations trended downward.  
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FIGURE 9.32: 210-meter ozone concentrations measured in Tulsa, Oklahoma during the 

2005 ozone season 

 

Quantification of the impacts that upper-level pressure ridge and trough passages have on 

the ozone budget of the lower atmosphere was achieved by considering the geopotential 

heights of the 300 hPa constant pressure surface.  Specifically, this surface, representative 

of the height of the jet stream in the mid-latitudes, was used as an estimate of the 

amplitude and frequency of atmospheric disturbances within the polar jet (Reiter, 1963).  

Since the polar jet stream varies longitudinally as the troposphere thermally expands and 
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contracts with the yearly seasonal cycle, three upper-air sounding sites – Brownsville, 

Texas, Norman, Oklahoma, and Aberdeen, South Dakota – were selected for analysis 

(Figure 9.33).  Each site is separated by approximately 10º of latitude. 

 

 

FIGURE 9.33: Upper-air sounding locations in relation to Tulsa, Oklahoma 
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While atmospheric disturbances were hardly noticeable at Brownsville, Texas during the 

summer and fall months with the dominance of subtropical upper-level high pressure, 

relative geopotential height increases and decreases were pronounced at Aberdeen, South 

Dakota, a site in much closer proximity to the polar jet stream (Figure 9.34). 

 

 

FIGURE 9.34: A) Mean 300 hPa polar jet stream, July 2005, and B) mean 300 hPa polar 

jet stream, November 2005 (NOAA, 2006) 

 

It is clear from the upper-level height measurements obtained at Brownsville, Norman, 

and Aberdeen that the amplitude between upper-level pressure ridges and troughs varies 

with longitude (Figure 9.35).  The seasonal maximum geopotential heights at all three 

locations, occurring during early July, represented the peak of thermal expansion of the 

troposphere.  Afterwards, the troposphere began to cool with a decrease in solar radiation, 

resulting in a trend of lower geopotential heights.      
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FIGURE 9.35: 300 hPa geopotential heights observed at 26ºN (Brownsville, Texas), 

35ºN (Norman, Oklahoma), and 46ºN (Aberdeen, South Dakota) during the 2005 six-

month ozone season    

 

Correlation between the 24-hour (daily) ozone average measured at 210 meters in Tulsa, 

Oklahoma and the 300 hPa geopotential height measured in Brownsville, Texas was 

weak (R2 = 0.14), primarily due to the subtle nature of upper-level height responses to 

atmospheric disturbance at a significant distance equator-ward from the polar jet stream 

(Figure 9.36).  Brownsville, Texas is located at a latitude of 26ºN, only 3ºN of the Tropic 

of Cancer.  This region is in the descending limb of the equatorial Hadley Cell 

circulation, resulting in a strong subtropical anti-cyclonic influence.  The polar jet stream 
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and accompanying atmospheric disturbances are therefore usually located well to the 

north during the summer months. 
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FIGURE 9.36: 210-meter ozone concentrations measured in Tulsa, Oklahoma (36ºN) 

compared with 300 hPa geopotential heights measured in Brownsville, Texas (26ºN)   

 

Boundary-layer ozone concentrations measured at Tulsa, Oklahoma were compared with 

300 hPa geopotential heights measured at nearby Norman, Oklahoma, the nearest source 

of upper-level meteorological sounding data (Figure 9.37).  Correlation was weak (R2 = 

0.22), due in part to the spatial and temporal variations between the polar jet stream and 

the ozone study location, as the mean position of the polar jet stream during the 6-month 

study was 50ºN.   
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FIGURE 9.37: 210-meter ozone concentrations measured in Tulsa, Oklahoma (36ºN) 

compared with 300 hPa geopotential heights measured in Norman, Oklahoma (35ºN) 

 

Geopotential heights representative of the 300 hPa constant pressure surface measured at 

Aberdeen, South Dakota were also compared with the 210-meter ozone concentrations 

measured at Tulsa, Oklahoma, as the sounding location was in close proximity to the 

mean position of the polar jet stream (Figure 9.38).  As a result, the correlation increased 

appreciably (R2 = 0.36).  Furthermore, better agreement of the graphed data was achieved 

when the 210-meter ozone trace was plotted against the Aberdeen, South Dakota 300 hPa 

geopotential height data than with the Norman, Oklahoma or Brownsville, Texas 300 hPa 

geopotential heights – again a possible reflection of the proximity between Aberdeen, 

South Dakota (46ºN) and the mean position of the polar jet stream (50ºN). 
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FIGURE 9.38: Boundary-layer ozone concentrations measured in Tulsa, Oklahoma 

(36ºN) compared with 300 hPa geopotential heights measured in Aberdeen, South Dakota 

(46ºN)  

 

The best correlation between 210-meter ozone and 300 hPa geopotential heights 

measured at 46ºN was achieved when a lag time was introduced between the two.  The 

highest coefficient of determination (R2 = 0.38) occurred with a lag of 18 hours, 

consistent with the vertical tilt of atmospheric waves and the subsequent offset of upper-

level troughs and ridges with respect to their lower tropospheric counterparts (Figure 

9.39).  This indicated that maximum ozone concentrations were associated with 300 hPa 

ridges centered to the west of Tulsa. 
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FIGURE 9.39: Correlation (as R2) based on time shift between 210-meter ozone 

concentrations measured in Tulsa, Oklahoma and 300 hPa geopotential heights measured 

in close proximity to the polar jet stream at Aberdeen, South Dakota; Positive shifts 

correspond to height values that have been advanced in time with respect to ozone, while 

negative shifts correspond to ozone concentrations that have been advanced in time with 

respect to geopotential heights 

 

Vertical tilt of upper-level ridges and troughs could have accounted for the lag observed 

between 210-meter ozone and 300 hPa geopotential heights.  With the approach of upper-

level ridges, mass convergence in the downstream entrance into an adjacent upper-level 

trough resulted in large-scale subsidence through the vertical extent of the troposphere, 

and background ozone concentrations in the boundary layer increased to values as high as 
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0.06 parts per million.  This synoptic meteorological regime favored not only an increase 

in the background ozone concentration, but also an increase in local photochemical 

production, as high temperatures, low relative humidity, and low wind speeds often 

accompany large-scale subsidence.  When these conditions persisted for periods 

exceeding one week with the onset of Rossby wave ridging, the combination of very high 

background concentrations and ideal photochemical production in the boundary layer 

resulted in the most severe ozone pollution episodes observed during the research study. 

 

As upper-level troughs progressed toward the study location, a marked decrease in 

background ozone concentrations was observed.  Specifically, large-scale mass 

divergence downstream from the axes of approaching troughs resulted in a broad region 

of tropospheric ascent, leading to a decrease in the background ozone concentration 

measured at 210 meters.  Under this synoptic meteorological regime, minimum 

(background) ozone concentrations measured at 210 meters were recorded.  The lift 

associated with large-scale mass divergence in the upper troposphere promoted 

increasing wind speed, moisture advection, and cloud formation.  Thus, local 

photochemical production was limited, and in conjunction with the relatively low 

background concentrations that were observed, total boundary-layer ozone concentrations 

remained low during upper-level trough passages.   

 

Although the highest degree of correlation between 210-meter ozone and 300 hPa 

geopotential heights was observed with a small lag, the coefficient of determination did 

not exceed 0.40.  Interference resulting from the imperfect fit between static upper-level 
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meteorological sounding data and a dynamic polar jet stream likely limited the degree of 

correlation, as no continuous, direct measure of jet stream heights is available.  

Nonetheless, the statistical correlation between 210-meter ozone and 300 hPa 

geopotential heights clearly improved with 300 hPa constant pressure surface heights in 

close proximity to the mean position of the polar jet stream.  Visual inspection of the 

preceding figures (particularly Figure 9.38) indicates that 210-meter ozone maxima 

corresponded to 300 hPa height maxima, and likewise, 210-meter ozone minima 

corresponded to 300 hPa height minima.  Furthermore, the amplitudes of both the 210-

meter concentrations and the 300 hPa geopotential heights increased with the influence of 

the proximal polar jet stream toward the end of the research study.  Therefore, the 

selection of data from the Aberdeen, South Dakota upper-air sounding site proved to be 

advantageous, as it was close enough to the mean position of the polar jet stream to 

improve the correlation between 210-meter ozone and 300 hPa geopotential heights when 

compared with sites closer to the equator. 

 

An illustration of the dynamic relationship between residual ozone concentrations at 210 

meters and the global atmospheric circulation is evident in the research data spanning the 

two-week period beginning on 18 July 2005 and ending on 27 July 2005.  During this 

interval, a peak in background ozone concentrations and 300 hPa heights that occurred on 

25 July was bound by relative background O3 and 300 hPa geopotential height minimums 

indicative of trough passages on 18 July and 27 July, respectively (Figure 9.40). 
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FIGURE 9.40: Boundary-layer ozone concentrations measured in Tulsa, Oklahoma 

(36ºN) compared with 300 hPa geopotential heights measured in Aberdeen, South Dakota 

(46ºN) for the period beginning on 18 July 2005 and ending on 27 July 2005 

 

Inspection of Northern Hemisphere 300 hPa constant pressure analyses indicates that the 

observed 210-meter residual O3 minimum on 18 July coincided with the passage of an 

upper-level trough through central portions of North America, thereby dampening the 

influence of a subtropical anti-cyclone centered at 30ºN (Figure 9.41). 
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FIGURE 9.41: 300 hPa geopotential height analysis, 18 July 2005 (NOAA, 2006) 

 

Once the upper-level trough shifted into eastern Canada by 23 July, the polar jet stream 

again migrated northward, and the 30ºN subtropical anti-cyclone expanded across the 

interior U.S., with the 300 hPa 9690-meter geopotential height contour surging as far 

north as 46ºN (Figure 9.42).  Background ozone concentrations subsequently peaked in 

response to the onset of tropospheric subsidence. 
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FIGURE 9.42: 300 hPa geopotential height analysis, 23 July 2005 (NOAA, 2006) 

 

By 27 July, another upper-level trough propagated eastward across North America, again 

muting the strength and aerial coverage of the 30ºN subtropical anti-cyclone.  The polar 

jet stream shifted southward, with the 300 hPa 9600-meter geopotential height contour 

extending into northern Kansas (Figure 9.43).  As expected, background ozone 

concentrations minimized with the passage of the atmospheric disturbance.  
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FIGURE 9.43: 300 hPa geopotential height analysis, 27 July 2005 (NOAA, 2006) 

 

Although 18 July 2005 – 27 July 2005 exemplifies the relationship between background 

ozone concentrations and 300 hPa geopotential heights, many paired fluctuations 

between 300 hPa geopotential heights and the 210-meter O3 concentration were present 

in the 2005 research data record, particularly during the fall months with the seasonal 

shift of the polar jet stream toward the equator. 
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9.4. Horizontal Transport 

 

Two modes of possible horizontal ozone transport must be considered: the lateral 

movement of local ozone plumes as a result of ground-level winds, and the transfer of 

local ozone in the nocturnal low-level jet. 

 

9.4.1. Local Surface Winds 

 

Assessment of the magnitude and spatial extent of ground-level horizontal ozone 

transport in the region of the research study was achieved by comparing 1-hour ozone 

concentrations in the Dallas – Fort Worth, Texas metropolitan area with corresponding 

ozone concentrations in southern Oklahoma.  Specifically, two monitoring sites in the 

greater Dallas – Fort Worth area, Denton and Midlothian, were considered, as well as the 

Burneyville site in southern Oklahoma (Figure 9.44).  Denton and Midlothian were 

advantageous site selections due to their locations on the north and south sides of the 

Dallas-Fort Worth metropolitan area, respectively.  Burneyville, located approximately 

80 km north of Denton and 130 km north of Dallas – Fort Worth, is close enough to 

experience same day ozone transport from the metropolitan area of 5.5 million persons 

when southerly winds are present.  
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FIGURE 9.44: Location of Burneyville, Oklahoma in relation to the Dallas – Fort 

Worth, Texas metropolitan area   

 

Monitoring was operational at Burneyville during the 1999 and 2000 ozone seasons, and 

days on which the following criteria were met were included in the analysis: 1) 

Burneyville must have a 1-hour O3 concentration ≥ 0.075 ppm; 2) Denton must have a 1-

hour O3 concentration ≥ 0.075 ppm; and 3) the average daily surface wind direction at 
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Burneyville must contain a southerly component.  As a result, 22 days met the established 

criteria in 1999, and 35 days qualified in 2000.  Statistically, the selected days accounted 

for 55% of the total days that O3 concentrations of 0.075 ppm were reached or exceeded 

in Burneyville in 1999, and 81% of the total days that O3 concentrations reached or 

exceeded 0.075 ppm in Burneyville in 2000.  Midlothian equaled or exceeded O3 

concentrations of 0.075 ppm on 12 of the selected days in 1999 and 23 of the selected 

days in 2000. 

 

Burneyville recorded O3 concentrations ≥ 0.075 ppm with the presence of southerly 

average daily wind directions on 25 days in 1999.  Denton recorded O3 concentrations ≥ 

0.075 ppm with the presence of southerly average daily wind directions on 22 days in 

1999, or 88% of the time that Burneyville did.  Midlothian only recorded O3 

concentrations ≥ 0.075 ppm with the presence of southerly average daily wind directions 

on 12 days in 1999, 48% of the time that Burneyville did.  In 2000, Burneyville recorded 

O3 concentrations ≥ 0.075 ppm with the presence of southerly average daily wind 

directions on 37 days.  Denton recorded O3 concentrations ≥ 0.075 ppm with the presence 

of southerly average daily wind directions on 35 days, 95% of the time that Burneyville 

did.  Again, Midlothian recorded fewer O3 concentrations ≥ 0.075 ppm than the other 

sites in the presence of southerly average daily wind directions on 23 days, 62% of the 

time that Burneyville did.  Regression analysis for the 1999 and 2000 ozone seasons 

shows a strong correlation between ground-level O3 concentrations in Denton and 

Burneyville (Figure 9.45).   
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FIGURE 9.45: Correlation between ozone concentrations at Burneyville, Oklahoma and 

Denton, Texas during the 1999 and 2000 O3 seasons 

 

A gauge of transport is the time characteristic of peak ozone concentration in 

Burneyville.  Normally, locally generated ground-level ozone peaks in the early to mid-

afternoon, when solar radiation is most intense (Solomon et al., 2000).  However, O3 

tended to peak at the Burneyville monitoring station late in the day, indicative of surface 

transport.  Accordingly, a seasonal “latency” histogram has been developed to analyze 

the average daily ozone concentrations at Burneyville and Denton.  This technique plots 

the frequency of ozone levels ≥ 0.075 ppm as a function of the 1-hour intervals in which 

ozone was recorded.  Furthermore, only days in which the aforementioned analysis 

criteria (southerly winds, O3 ≥ 0.075 ppm at Burneyville and Denton) were considered.  
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Data from 1999 and 2000 clearly demonstrate that latency exists between O3 

concentrations in Denton and Burneyville.  The 1999 latency histogram comparing 

Burneyville and Denton indicates that the entire O3 production process occurs earlier in 

the day at Denton than at Burneyville (Figure 9.46).  At Denton, ozone, on average, 

peaked during the early to mid-afternoon, with the 14:00 CST one-hour interval 

occurring most frequently.  Conversely, the most frequent one-hour interval for peak 

ozone concentrations at Burneyville was 17:00 CST.     
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FIGURE 9.46: Latency between peak ozone concentrations at Burneyville, Oklahoma 

and Denton, Texas during the 1999 O3 season 

 

The latency histogram comparing Burneyville and Denton during the 2000 ozone season 

also indicates that the O3 production process occurs earlier in day at Denton than at 
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Burneyville (Figure 9.47).  At Denton, ozone, on average, peaked during the early to 

mid-afternoon, with the 14:00 CST – 16:00 CST interval occurring most frequently.  The 

most frequent one-hour interval at Burneyville was 18:00 CST.        
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FIGURE 9.47: Latency between peak ozone concentrations at Burneyville, Oklahoma 

and Denton, Texas during the 2000 O3 season 

 

In addition to the lag time in O3 peaks at Denton and Burneyville during the 1999 and 

2000 ozone seasons, the latency histograms indicate that ozone concentrations peak at 

Denton earlier in the day than at Burneyville.  O3 concentrations peak at Denton 

following the morning rush hour, typical of local production.  At Burneyville, however, 

O3 peaks four hours later as southerly surface winds transport ozone and precursor 

 177  



compounds northward.  Late evening peaks, 21:00 CST to 00:00 CST, never occurred at 

Denton, but were observed several times at Burneyville.  

 

While ozone transported in ground-level winds from Dallas – Fort Worth clearly impacts 

sites in southern Oklahoma on the order of 100 km to the north, does it significantly 

impact ozone concentrations in Tulsa?  Ground-level wind vectors cannot account for 12-

hour transport of ozone on a scale of 400 km, as sustained winds of 10 m·s-1 for long 

periods of time were not realized during the 1999-2000 research study, nor were they 

realized during the 2005 research study.  Since ozone and precursor compounds are 

affected by surface depositional processes, the nocturnal low-level jet appears to be the 

most promising mechanism for transport occurring over a horizontal distance of 400 km.  

 

9.4.2. Nocturnal Low-Level Jet 

 

The impacts that the nocturnal low-level jet have on the residual ozone concentration at 

210 meters were analyzed by determining the frequency of low-level jet occurrence and 

by assessing the strength of the low-level jet during the days on which its presence was 

detectable at the study location.  Evidence of the nocturnal low-level jet was gathered 

from the Haskell, Oklahoma NOAA wind profiler site, where ultrasonically-derived wind 

speeds and directions are measured and recorded in one-hour averages.  Overall, a 

nocturnal low-level jet was observed on 78 of 183 days included in the research study.  

The mean nocturnal low-level jet direction of origin was 198.96º ± 30.62º, and the mean 

wind speed was 18.21 m·s-1 ± 5.14 m·s-1.  From this information, magnitudes of the 
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nocturnal low-level jet were quantified according to the conditions set forth in Section 

4.2, with Bonner’s type 1, 2, and 3 classes hereafter defined as “weak,” “moderate,” and 

“strong” nocturnal low-level jets, respectively. 

 

Weak nocturnal low-level jets constituted 32 of the 78 instances of the low-level jet 

during the study period, or 41.03% of the total.  The mean direction of origin was 190.56º 

± 38.07º, and the mean height above ground-level was 750 m ± 81.72 m, with an average 

low-level jet height of 500 meters occurring 61.11% of the time. 

 

Moderate and strong nocturnal low-level jets were also an appreciable component of the 

total, as they were observed on 23 of the 78 known low-level jet episodes during the 

study.  The mean direction of the moderate low-level jet was 199.61º ± 24.92º, while the 

mean direction of the strong low-level jet was 210.00º ± 19.71º.  The mean height of the 

moderate nocturnal low-level jet was 597.82 m ± 235.24 m, and the jet core was observed 

at an elevation of 500 meters above ground-level 78.26% of the time.  Strong nocturnal 

low-level jets tended to occur at slightly higher elevations, with a mean of 869.57 m ± 

327.43 m.  Statistics for weak, moderate, and strong nocturnal low-level jets are 

summarized in Table 9.6.   
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TABLE 9.6: Nocturnal low-level jet statistics, Haskell, Oklahoma, 01 Jun 2005 – 30 

Nov 2005 

Type Interval (m·s-1) n Mean Dir. (º) σ (º) Mean Ht. (m) σ (m) 
       

1  12 ≤ x < 16 32 190.6 38.1 750.0 81.7 
2  16 ≤ x < 20 23 199.6 24.9 597.8 235.2 
3  20 ≤ x 23 210.0 19.7 869.6 327.4 

 

 

Although nocturnal low-level jets were present on nearly 50% of the days included in the 

research study, they were less likely to occur during the months in which average ozone 

concentrations reach peak levels.  Instead, low-level jets were more frequent in early June 

and again in October and November, coinciding with the approach of the upper-level 

polar jet stream (Table 9.7).  When the polar jet and attendant atmospheric disturbances 

traverse the middle latitudes of the North American continent, geostrophic balance in the 

general atmospheric circulation is maintained by a decrease in tropospheric pressure 

along the lee side of the Rocky Mountains as the polar jet sinks and deflects to the right.  

This process, known as lee cyclogenesis, enhances the strength of the nocturnal low-level 

jet.  Thus, the frequency of the nocturnal low-level jet decreased at the study location 

during the summer months as the polar jet stream shifted toward the north. 

 

TABLE 9.7: Comparison of nocturnal low-level jet frequency and magnitude at Haskell, 

Oklahoma between July 2005 and November 2005 

  n Class 1 (%) Class 2 (%) Class 3 (%) 
     

July 10 70 10 20 
November 16 6 13 81 
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Therefore, it appears that the nocturnal low-level jet is not a major factor in the 

seasonally high O3 concentrations at the study location, as the low-level jet is infrequent 

when consistently high ozone concentrations are most prevalent.  It is known from 

observation, however, that winds with a southerly component are common at the study 

location, even if the definition of a low-level jet is not met.  Since winds originated from 

202.5º ± 22.5º more than 60% of the time at 210 meters, it is reasonable to assume that 

the residual ozone at this height constituting the background ozone concentration 

possibly originated from the same direction.   

 

The most significant source that falls within 202.5º ± 22.5º of the study location is the 

Dallas – Fort Worth metropolitan area.  Previous research found a strong correlation 

between ozone concentrations in Dallas – Fort Worth and Oklahoma City (Kastner-Klein 

et al., 2002).  At a distance of approximately 350 km from the study location, ozone 

transport could occur within 12 hours if wind speeds were maintained at 10 m·s-1.  

 

Calculations from a simple Gaussian dispersion model indicate that at a distance of 

approximately 400 km, representative of the transport vector between Tulsa and Dallas – 

Fort Worth, the centerline concentration of O3 would be negligible.  This approach 

requires many assumptions, including the classification of ozone as a steady-state, non-

reactive pollutant, but even so, the result suggests that a metropolitan source area at 

considerable distance cannot account for the observed background ozone concentration. 
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Concentration (C) in the Gaussian dispersion equation is calculated as μg·m-3.  Additional 

components of the equation include the horizontal and vertical dispersion parameters, σy 

and σz, which are functions of boundary-layer stability and distance from the source, the 

emissions rate Q (expressed as μg·s-1), the effective stack height H (210 meters), the 

average wind speed (u) at H (in m·s-1), and the horizontal and vertical deviations from the 

centerline, y and z (also expressed in meters).  This calculation was performed with 

NOAA HYSPLIT, a Lagrangian trajectory model that ingests actual meteorological data 

and computes Gaussian dispersion downwind from the source (NOAA, 2007).  When 

plume concentrations were calculated using the NOAA HYSPLIT dispersion model, even 

the worst-case O3 pollution scenarios resulted in a minimal contribution of ozone in Tulsa 

from the Dallas – Fort Worth metropolitan area.  In fact, concentrations were orders of 

magnitudes lower at the end point than they were at the source. 

 

The NOAA HYSPLIT model was run over a continuous period of 24 hours.  Actual 

meteorological data were input over the duration of the model simulation – 18:00 CST on 

02 November 2005 through 18:00 CST on 03 November 2005.  This date was selected 

because it offered a representative sample of a strong nocturnal low-level jet (Figure 

9.48). 
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FIGURE 9.48: Evolution of the nocturnal low-level jet in the Tulsa metropolitan area, 

18:00 CST, 02 November 2005 – 06:00 CST, 03 November 2005 

 

Emission rates were set at 20 x 1012 μg·hr-1, equivalent to a 10 km x 10 km x 0.2 km box 

with an average, steady-state O3 concentration of 250 μg·m-3, or roughly 0.12 ppm.  

While the dimensions of the box are smaller than the aerial footprint of Dallas – Fort 

Worth, several model runs were attempted in order to fit expected concentrations close to 

the source.  When a larger mass flow rate was used, unrealistic concentrations were 

observed downwind, and smaller mass flow rates also resulted in unrealistic downwind 

conditions.   
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Modeled plumes at the continuous 20 x 1012 μg·hr-1 emission rate in the Dallas – Fort 

Worth metropolitan area yielded O3 concentrations varying between 60 μg·m-3 (0.028 

ppm) and 550 μg·m-3 (0.256 ppm) immediately downwind from the source.  However, 

transported O3 concentrations of no larger than 10 μg·m-3 (0.005 ppm) were calculated at 

a distance of 400 km to the north in the Tulsa metropolitan area (Figure 9.49).   

 

 

FIGURE 9.49: 12-hour NOAA HYSPLIT steady-state O3 plume simulation with NCEP 

GDAS meteorological data at 06:00 CST on 03 November 2005 (concentrations reported 

in μg·m-3)        

 184  



Again, emphasis must be placed on the assumptions made in the NOAA HYSPLIT model 

simulation.  No depositional processes or reactions were considered, effectively 

classifying the transported O3 as steady state.  While ozone behaves in a steady-state 

manner above ground level where it is largely free from depositional processes and 

reactions, some deposition will nonetheless occur, resulting in a lower concentration at 

the terminus.  Also, the difficulty in constructing a three-dimensional domain on a 

metropolitan scale was highlighted by the necessity for a surface footprint (100 km2) 

much smaller than the actual footprint of Dallas – Fort Worth (~ 2500 km2).  Otherwise, 

the modeled O3 concentrations in close proximity to the source were unrealistic.  Even 

with the pronounced limitations of using this type of modeling scheme to predict the 

long-range transport of ozone, it can still be inferred that O3 concentrations transported at 

a distance of 400 km are orders of magnitude lower than at the source.  Furthermore, 

meso-scale meteorological conditions supporting the transport of O3 over long distances 

are the exception, not the rule.  Thus, the availability of locally-produced ozone for 

distant transport is limited from any single source. 
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10. SUMMARY AND CONCLUSIONS 

 

Tulsa, Oklahoma and similarly-sized cities in the mid-latitudes have long been plagued 

by episodes of ozone air pollution.  Beginning in the 1970s, when the United States 

Environmental Protection Agency established a one-hour O3 concentration standard, 

ozone has been at the forefront of local, state and federal air quality regulations, 

continuing with the current transition to a new, stricter eight-hour standard.  Health and 

economic implications arising from “non-attainment” are profound, and this study 

therefore sought to investigate local ozone concentrations during the summer and fall 

months of 2005 with the intent of determining the relative contributions of locally 

photochemically produced and distantly transported ozone, respectively, which could 

then be compared with meteorological processes of varying scale in an effort to improve 

air pollution forecasting. 

 

10.1. Background Ozone in the Troposphere 

 

In order to assess the impact that transport had on local ozone concentrations, it was 

necessary to measure O3 in a vertical configuration within the atmospheric boundary 

layer so that locally produced ozone could effectively be filtered from the data set.  Thus, 

ozone concentrations were recorded on the roof of the Bank of Oklahoma Tower in 

downtown Tulsa at an elevation of 210 meters and compared with data from a ground-
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level control site operated by the Oklahoma Department of Environmental Quality 

located nearby.  Selection of the 210-meter level for ozone measurement proved to be 

advantageous for several reasons.  Not only did the 210-meter data provide a basis for 

establishment of the background ozone concentration at the study location, but it also 

provided significant insight into the dynamic behavior of residual ozone while allowing 

for a comparison between meteorological processes in the troposphere and ozone 

concentrations in the boundary layer. 

 

This 6-month study indicated that ozone concentrations in the atmospheric boundary 

layer are influenced by large-scale subsidence in the troposphere.  Nocturnal 

concentrations at 210 meters effectively constituted the background, or residual level of 

ozone, indicative of transient O3 reservoirs within the troposphere.  Thus, ozone at 

ground level is not solely a product of local photochemistry, but instead is a combination 

of local sources and large-scale vertical transport.  The background ozone concentration 

was clearly observed in the 210-meter data, as the nocturnal minimum ranged between 

0.02 and 0.06 parts per million over the course of the study.  Conversely, ozone 

concentrations at ground level were strongly diurnal, approaching 0 parts per million 

during the overnight hours. 

 

What can be gained by establishing the background ozone concentration in Tulsa?  By 

understanding the relationship between locally produced ozone and transported ozone, 

mitigation strategies can be focused.  Local production only appears to account for 25-

50% of the total local ozone concentration, with the highest concentrations observed 
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during meteorological conditions that favor optimal photochemical production.  Control 

strategies therefore must also account for episodes that cause increases in the background 

ozone concentration, as these episodes were commonly observed in conjunction with 

high ground-level readings. 

 

When considered over the course of the six-month study, background concentrations 

exhibited a sinusoidal pattern characterized by a series of large-scale maxima and minima 

with varying frequency and amplitude.  If the residual concentration were solely a 

function of incoming solar radiation, then it should peak in conjunction with the summer 

solstice and decrease thereafter, coinciding with the axial tilt of the Earth.  As the data 

indicated, however, this was not the case. 

 

Instead, two aspects of the 210-meter ozone measurements contradict the notion that 

concentrations in the troposphere behave according to the amount of solar radiation 

received in the troposphere.  First, the highest ozone concentrations recorded at the Tulsa 

study location occurred during August and September, two months after the summer 

solstice.  Thus, an appreciable lag existed between the two.  Explanation of the 

underlying processes responsible for this discrepancy lies in the second signal observed 

in the 210-meter data set – the aforementioned sinusoidal behavior of O3 during the 

study.  Specifically, the passage of atmospheric waves dictated the favorability, or lack 

thereof, of meteorological conditions in the troposphere for increased background 

concentrations.  Variation in the six-month trace of 210-meter ozone concentrations 

mirrored the passages of atmospheric waves, with residual O3 maxima aligning with 

 188  



pressure ridge axes and O3 minima aligning with pressure trough axes, respectively.  

Inspection revealed that pressure trough passages were usually of short duration, 

characteristic of baroclinic “short” waves progressing along the polar jet stream, while 

influences from pressure ridges were generally of longer duration, as the general 

circulation of the troposphere at the study location was characterized by baroclinic waves 

and by large-scale, slow-moving Rossby waves over the course of the experiment. 

 

With the approach of baroclinic and Rossby wave ridges, not only did large-scale 

subsidence lead to an increase in O3 concentrations in the atmospheric boundary layer, 

but an enhancement of local photochemistry occurred as well, as low wind speeds, low 

relative humidity, and increased solar radiation and air temperature – all characteristics of 

anti-cyclonic flow regimes – contributed to high ozone concentrations at ground level.  

Therefore, anti-cyclones provide an optimal scenario for high boundary-layer ozone 

concentrations, particularly during the summer months.  Not only was ozone transported 

downward in subsiding flow, but photochemical production was maximized as well.  This 

combination of factors explains why high background and locally photochemically 

produced O3 concentrations typically coincide with one another, resulting in severe air 

pollution episodes.  The effects that anti-cyclones and related weather patterns have on 

boundary-layer ozone concentrations were observed during the fall months as well, 

although muted. Not only did a seasonal shift in Earth’s axial tilt result in less incoming 

solar radiation when compared with the summer months, but Rossby wave ridging was 

less pronounced during the fall, and large-scale subsidence was confined to the rapid 

passages of baroclinic wave ridges.       
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Even though background ozone concentrations were measured at 210 meters, they 

nonetheless constituted an important indicator of the actual ground-level concentration 

(Figure 10.1).  While ozone is clearly more diurnal at ground level than at 210 meters, the 

two levels vigorously mix in the presence of sunlight and the subsequent onset of 

convective eddies, thus transforming the boundary layer into a uniform reservoir.  As a 

result, background O3 concentrations are an important component of the daily maximum 

measured at ground level.  However, local meteorological conditions are also important 

in assessing the potential for air pollution episodes in the boundary layer. 
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FIGURE 10.1: 210-meter ozone concentrations superimposed on ground-level ozone 

concentrations, indicating the homogeneity of the boundary layer during the daytime, 

when maximum concentrations at the two levels are nearly identical; non-overlapping 

minimum concentrations are indicative of nocturnal measurements when the boundary 

layer decouples. 

 

10.2. Local Meteorological Variables 

 

Attention was paid to several boundary-layer meteorological variables measured at 

ground level and at 210 meters.  Upon analysis, it was determined that three parameters – 

ground-level dry-bulb (air) temperature, relative humidity, and wind speed – were by far 

the most important when predicting the likelihood of high ground-level ozone 
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concentrations.  In fact, a relatively strong correlation existed between ozone and each of 

these variables.  When an arbitrary 1-hour ground level O3 concentration of 0.08 parts per 

million was compared with corresponding dry-bulb temperatures, a lower threshold of 

27ºC was noted as the minimum ambient temperature required for this concentration 

level.  Both relative humidity and ground-level (10-meter) wind speed were negatively 

correlated with ground level concentrations, as the 0.08 parts per million O3 level 

required an upper bound of 50% RH and 5 m·s-1 wind speed, respectively.  Furthermore, 

all three boundary-layer meteorological conditions together were necessary over the 

course of several consecutive hours in order for the O3 concentration threshold to be met.  

Otherwise, ground-level ozone concentrations remained relatively low.   

 

TABLE 10.1: Maximum correlations (as R2) observed between ozone (ground-level, 210 

meters) and ground-level meteorological variables  

  Dry-Bulb Temp. RH Solar Rad. Wind Spd. 
     

Ground-Level O3 0.4897 0.5286 0.6065 0.1121 
210-Meter O3 0.2592 0.1763 0.2246 0.0191 

 

 

What does the dependence of local photochemical production on ground-level dry-bulb 

temperature, relative humidity, and wind speed suggest about the ozone generation 

process?  Several conclusions can be drawn, with each providing a predictive tool in the 

forecasting of the local concentration potential.   
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o Air Temperature 

 

The necessity of high dry-bulb temperatures (> 27ºC) for ground-level ozone 

concentrations in excess of 0.08 parts per million is indicative of a high degree of 

incoming solar radiation, as strong surface heating results from the uninhibited 

transfer of energy.  In addition, intermediate thermally-driven chemical reactions also 

benefit from warm temperatures in the lower atmosphere.  Finally, strong surface 

heating also drives vigorous boundary-layer convection, which acts as a positive 

feedback loop not only by promoting photochemical production, but also by 

transferring the background ozone concentrations of the free troposphere to ground 

level. 

 

o Relative Humidity 

 

Since relative humidity serves as a proxy for the hydroxyl (OH) radical, the 

availability of H2O, observed as an increase in relative humidity, results in an 

increase in boundary-layer OH.  Primary conversion of NO2 to O3 sink species is 

driven through reactions with OH, where HNO3 is the end product.  Therefore, 

increasing relative humidity limits the potential for high ozone concentrations. 
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o Wind Speed 

 

As with relative humidity, a negative correlation was also observed between ground-

level ozone and wind speed.  In general, ozone concentrations exceeding the 0.08 

parts per million threshold required wind speeds lower than 5 m·s-1.  Why?  At higher 

wind speeds, increased dispersion limited the potential for high ground-level 

concentrations.  In other words, ozone can accumulate in the absence of strong winds, 

thus maximizing local concentrations.  When winds speeds exceed 5 m·s-1, local 

reservoirs of high ozone concentrations mix with ozone-deficient air from other 

regions, lowering the overall concentration. 

 

o Solar Radiation 

 

Strong correlation was observed between ground-level ozone and ultraviolet 

radiation, provided that a sufficient lag existed between the two.  The best fit occurred 

with a lag of 2 hours between the two, accounting for the time between the initial 

photochemical reactions of precursor compounds and the highest observed 

concentration of ground-level ozone.  Even with a lag, the correlation was poor 

between 210-meter ozone and solar radiation, again indicating that the background 

ozone is of an aged, transported origin, thus remaining relatively unaffected by local 

photochemistry. 
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Other local meteorological variables, including air pressure, wet-bulb temperature, and 

dew-point temperature, were of decreased importance to local ozone concentrations when 

compared with ground-level temperature, wind speed, and relative humidity.  At 210 

meters, ground-level variables showed poor or no correlation to ozone, regardless of 

whether it was measured at that elevation or at ground level.  Thus, the background ozone 

concentration appears to be largely unaffected by local, short-term meteorology.   

 

10.3. Horizontal Transport 

 

Based on ground-level data from the Dallas – Fort Worth metropolitan area and an 

adjacent monitoring station along the Red River in southern Oklahoma, same-day surface 

transport of ozone was clearly observed during an interval of two consecutive years.  

Southerly winds were required for transport, and as a result of the 80 km distance 

between the northern suburbs of Dallas – Fort Worth and the Oklahoma – Texas border, a 

lag of 3 to 4 hours in the daily maximum ground-level O3 concentrations was observed 

between the two points. 

 

While transport was appreciable over a distance of 80 km, no significant transport was 

calculated over a span of 400 km, roughly the distance between the Dallas – Fort Worth 

metropolitan area and the Tulsa metropolitan area.  If transport were to occur over this 

distance in a timely manner, the nocturnal low-level jet appeared to be the most likely 

mechanism.  However, the generation of an ozone plume in a modified Gaussian 

dispersion calculation revealed that even with high ozone concentrations originating in 
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Dallas – Fort Worth and subsequent northward transport in a strong low-level jet, only 

minimal contributions (< 0.005 ppm) could be expected in Tulsa.  Therefore, horizontal 

ozone transport appears to be largely confined to distances of much less than 400 km, as 

dispersion and deposition dominate over long pathways.    

 

10.4. Implications Resulting from Climate Change 

 

What implications does a changing global climate hold for the long-term trends in 

ground-level ozone concentrations in the middle latitudes?  Massive amounts of climate-

altering “greenhouse” gases have been directly and indirectly released into Earth’s 

atmosphere since the dawn of the Industrial Revolution.  In particular, atmospheric 

carbon dioxide (CO2) concentrations have increased by nearly 100 ppm to a current level 

of 379 ppm, higher than any concentrations preserved in ice core records from the past 

650,000 years (IPCC, 2007).  Current predictions call for a global mean temperature 

increase of 2.0-4.5ºC over the next century, and this estimate has recently been 

reaffirmed by the Intergovernmental Panel on Climate Change (IPCC, 2007).  Much 

attention has been given to the threat that sea-level rise poses to coastal cities, but the 

potential for a major shift in global weather patterns will exist as well. 

 

Specifically, an increase in global mean temperature threatens the hemispheric balance 

between polar and subtropical air masses, marked by the polar jet stream and 

accompanying polar front.  If the loss of the polar ice cap is realized, then the Arctic 

mean temperature will increase more significantly than the global mean, perhaps by as 
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much as a factor of ten.  In the event that drastic Arctic warming occurs, a possible 

outcome is a northward progression of the polar jet stream in an effort to maintain 

temperature equilibrium.  Thus, the mean track of atmospheric waves in the Northern 

Hemisphere could shift poleward as well, resulting in a more permanent regime of 

subtropical anti-cyclones in the mid-latitudes.  A recent report by Fu et al.  

(2006) noted that a poleward shift of the polar jet stream has been observed in the 

Northern Hemisphere.  When tropospheric re-analyses of the mean position of the polar 

jet were constructed for the period spanning from 1979 through 1997, a poleward shift of 

1º latitude was discovered (Fu et al., 2006).  Since high ozone concentrations are favored 

in regions of broad-scale anti-cyclonic circulation, ozone pollution episodes of increased 

magnitude and duration must be considered as a consequence of climate change.   

 

Not only are the large urban centers of Mexico City, Dallas-Ft. Worth, Houston, and Los 

Angeles major sources of ozone precursor compounds, but they are also located within 

the belt of semi-permanent subtropical high-pressure systems in the Northern 

Hemisphere, and it is therefore no coincidence that these mega-cities regularly experience 

severe ozone pollution episodes.  If subtropical high pressure systems migrate poleward 

in response to a northward shift of the polar jet stream, large metropolitan areas in more 

northern latitudes may experience decreasing air quality as well.  After all, many of the 

major cities in the United States, including New York and Chicago, are located near the 

40th parallel, and most of Europe’s population centers are north of the subtropics.   
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In the event that the mean positions of subtropical anti-cyclones shift poleward, profound 

climate consequences will arise even if the encroachment is only a few degrees of 

latitude.  The combination of favorable meteorological conditions for high background 

and local photochemical concentrations combined with the presence of a high human 

population density in the mid-latitudes (including most major U.S. cities) will result in a 

long-term increase in tropospheric ozone pollution.  As a greenhouse gas, ozone in the 

troposphere has a relatively high radiative forcing range of 0.25-0.65 W·m-2, which 

directly corresponds to a net temperature increase in the lower atmosphere (Figure 10.2) 

(IPCC, 2007).  While these values are lower than the radiative forcing imparted by CO2 

emissions (1.49-1.83 W·m-2), they nevertheless highlight the contributory effect that 

increasing concentrations of background ozone in the troposphere will have on climate 

change. 
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FIGURE 10.2: Positive and negative radiative forcing of greenhouse gases that 

contribute to a net warming and cooling of the atmosphere, respectively.  “LOSU” refers 

to the level of scientific understanding (IPCC, 2007). 

 

What are the specific air quality implications of climate change in Tulsa, Oklahoma, and 

other similarly-sized metropolitan areas in the mid-latitudes?  As with mega-cities, mid-

sized urban centers struggle with ozone pollution episodes as well.  Although large cities 

have a greater local production potential, the impact that background concentrations have 

in both settings largely dictates the severity of ozone pollution, and high background 

concentrations imply that only modest levels of local photochemical production are 

necessary for dangerous pollution episodes, and in some cases, violation of local, state, 

and federal air quality regulations.  Thus, any upward shift in the background ozone 

concentration, such as the more permanent presence of subtropical anti-cyclones, will 
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compromise ozone air quality in the mid-sized cities of the middle latitudes.  

Furthermore, local ozone production will be enhanced as well, as the sunny, stagnant 

conditions associated with anti-cyclones are optimal for photochemical reactions.  

 

10.5. Recommendations for Implementation and Future Study 

 

A desired outcome of this study is the integration of the research findings into the current 

ozone forecasting techniques that facilitate the air quality issuances prepared on a daily 

basis by the Oklahoma Department of Environmental Quality.  In determining which day 

or, more likely, period of days are favorable for high ozone concentrations, i.e. nearing 

the 8-hour EPA NAAQS of 0.085 parts per million, it is important to consider the 

behavior of the background concentration.  Since it may not be feasible to directly 

measure the residual value of ozone on a regular basis, attention must be paid to the 

location and migration of the polar jet stream, and Rossby waves in particular, which are 

readily characterized by the positions of ridges and troughs relative to the polar jet stream 

on the 300 hPa constant pressure charts, in turn an excellent indicator of atmospheric 

wave progression.  As was shown in the research, atmospheric Rossby waves are not 

discernable at ground level, and pressure at this level could not be correlated with ozone 

concentrations.  Cognizance of Rossby wave behavior in the troposphere is important not 

only because ground-level ozone concentrations are so strongly influenced by them, but 

also because their eastward progression through the middle latitudes of the Northern 

Hemisphere is sufficiently slow that ozone pollution episodes as well as periods of 

relatively low levels of O3 can be expected over a duration of several days.  While 
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subsidence from smaller-scale baroclinic waves can also result in marked increases in the 

background ozone concentration, Rossby waves were shown to coincide with persistent 

ozone pollution episodes. 

 

Therefore, attention to forecasts generated by numerical weather prediction is especially 

important.  Several forecast models are available, but for extended periods during which 

Rossby waves in the troposphere can be tracked, the most appropriate is the Global 

Forecast System, or GFS.  Developed and maintained by the National Centers for 

Environmental Prediction (NCEP), the GFS has a horizontal resolution of 0.5º longitude 

x 0.5º latitude.  It is ideally suited for the analysis and prediction of tropospheric Rossby 

waves and the concomitant positions of large-scale pressure ridge and trough axes, as it 

provides numerical (and graphical) forecasts through 384 hours, or 16 days from the time 

of initialization. 

 

Other forecast models, including the North American Mesoscale Weather Research and 

Forecasting model (NAM-WRF) and the Rapid Update Cycle (RUC) model, are not 

suited for extended prognostication of tropospheric pressure characteristics, as they are 

only available for a period of 84 hours and 12 hours from initialization, respectively.  

However, each is at a much higher resolution than the GFS (20 km), with forecasts of 

even higher resolution (12 km) also available, thus providing a more detailed short-term 

forecast of the dynamic motion of the troposphere, including the relatively rapid 

progression of baroclinic waves.  Additionally, forecasted values of air temperature, 

relative humidity, and wind speed – all important when considering local photochemical 
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production of ozone – can also be gained from these short-term, high-resolution 

meteorological models. 

 

Therefore, the following forecast strategy is recommended: 

 

1. Based on daily 00 UTC (18:00 CST) GFS model runs, identify days with 

potentially high background O3 concentrations based on 300 hPa pressure ridge 

axes and encroachment of subtropical anti-cyclones (including baroclinic and 

Rossby waves), allowing extended forecasting of ozone through 384 hours, or 16 

days. 

 

2. Refine short-term ozone forecasting by integrating ground-level meteorological 

parameters, namely air temperature, relative humidity, wind speed, and solar 

radiation, based on the NAM-WRF model.  This will allow high-resolution 

forecasting incorporating both the characteristics of the troposphere (particularly 

baroclinic waves) as well as expected conditions in the boundary layer, but will be 

limited to 84 hours, or 3.5 days.  Since the NAM-WRF updates on a 12-hour 

cycle, higher resolution forecasts can be generated on this cycle as well. 

 

3. Implement ozone “now-casting” based on the RUC and on products issued by the 

local National Weather Service (NWS) office.  In addition to the high, short-term 

resolution that the RUC offers, point forecast matrices are available from the 

NWS, providing guidance on a 3-hour basis for a variety of ground-level 
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meteorological parameters, again including air temperature, relative humidity, and 

wind speed.  Since high ozone concentrations occur when each variable is present 

along with one another over a duration of several consecutive hours, the point 

forecast matrix is an instantaneous and easy-to-use decision-making tool that is 

available for same-day forecasting.     

 

In fact, the point forecast matrix available daily from the NWS is exceptionally well-

suited for short term “now-casting” because it blends data from a variety of 

meteorological models with forecaster experience.  Identification of likely time periods 

for high ozone concentration can be made from successive lines of forecast data, where 

air temperature, relative humidity, and wind speed are all listed in three hour intervals 

(Figure 10.3). 

 

 

FIGURE 10.3: Point forecast matrix issued by the NWS forecast office in Tulsa, 

Oklahoma on June 7, 2006 (NWS Tulsa, 2006) 
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As an example of the utility that a point forecast matrix offers to short-term ozone 

forecasting, consider the daily product that was issued by the NWS forecast office in 

Tulsa on 07 June 2006.  During the three-day period, only two 3-hour blocks met the 

three criteria necessary for high ground-level ozone concentrations: 14:00 – 17:00 CST 

(20:00 – 23:00 UTC) on Wednesday, 07 June, and again between 14:00 – 1700 CST 

(20:00 – 23:00 UTC) on Thursday, 08 June.  Although the air temperature and relative 

humidity met high ozone criteria again on Friday, June 10, wind speeds did not, as they 

were forecast to exceed 5 m·s-1 (10 mi·hr-1).  One-hour ozone concentrations did not 

surpass 0.08 ppm during the three-day interval, indicating that while surface conditions 

briefly supported high ground-level ozone on 07 and 08 June, the background 

concentration was likely insufficient for excessive total concentrations.   

 

Aside from the operational recommendations regarding the findings of this study, 

additional research is necessary, particularly with regard to the dynamic behavior of the 

background ozone concentration.  Is the background ozone concentration behaving 

similarly in other mid-latitude locations?  How much fluctuation occurs vertically, even 

at those elevations confined to the boundary layer, which is the extent of the tallest man-

made structures?  In order to gain a more complete understanding of how the background 

ozone concentration behaves, these questions must be answered.   

 

It is possible that the signature observed between background ozone and the propagation 

of atmospheric waves would be more readily evident at a different elevation.  The 

selection of 210 meters in this study was one of necessity – it represented the height of 
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the tallest building in Tulsa, where access and pre-existing utilities allowed for easy 

maintenance and data acquisition.  Studies on the order of days and weeks have been 

carried out on various transmission towers, as they can be equipped with temporary 

power and data recording devices.  When designing a tower study that lasts for several 

months or even years, however, the installation must be more permanent, which would 

inevitably incur high operational and maintenance costs.  Nonetheless, a long-term study 

of the vertical profile of boundary-layer ozone would be advantageous in furthering the 

understanding of its relationship with the global circulation, particularly if ozone were 

sampled at an interval of 250-500 meters. 

 

Likewise, a horizontal network of elevated boundary-layer ozone monitors would also 

contribute to the knowledge of background ozone behavior in relation to the polar jet 

stream and attendant atmospheric waves.  While the background ozone data acquired in 

Tulsa undoubtedly revealed a distinct pattern mimicking the propagation of atmospheric 

waves across the mid-latitudes, correlation between the two presumably could be 

improved if background concentrations closer to the position of the polar jet were 

available.  If boundary-layer ozone analyzers were paired with upper-air meteorological 

sounding sites, more conclusions regarding the background concentration in relation to 

geopotential heights could be drawn.   

 

Another topic for future exploration is the role that stratospheric-tropospheric exchange 

plays in the ozone budget of the troposphere.  Recent research suggests that appreciable 

transport of stratospheric ozone into the troposphere occurs in the vicinity of the polar jet 
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stream, where the tropopause folds underneath the core of the polar jet and subsequently 

descends toward the surface.  The magnitude and rate of ozone exchanged through this 

process is unclear, but given the relatively high ozone concentrations in the stratosphere 

coupled with observational ozonesonde evidence of stratospheric ozone in the 

troposphere (Section 9.2), stratospheric-tropospheric exchange is a mechanism that offers 

a plausible explanation of high background ozone concentrations in the free troposphere.  

Even at very slow rates of vertical descent through the troposphere, a mean travel time 

from the 300 hPa level to the boundary layer would be no more than 3-4 days, well 

within the duration of a Rossby wave.  Since tropospheric folding along the polar jet 

stream in the vicinity of atmospheric wave troughs is followed by an onset of anti-

cyclonic, subsiding circulation, increasing background ozone concentrations are likely 

influenced by the 1-2 combination of stratospheric-tropospheric exchange and subsequent 

large-scale subsidence.  An intensive effort to measure ozone concentrations in the 

vicinity of Rossby wave troughs and elsewhere along the polar jet stream will 

undoubtedly improve the overall knowledge of stratospheric ozone exchange, resulting in 

a better understanding of tropospheric background ozone concentrations and their 

connection to ozone in the atmospheric boundary layer.      

 

Finally, a more complete understanding of the connection between tropospheric ozone 

and mid-latitude climate is necessary for long-term ozone prediction.  What are the air 

quality implications arising from climate change?  Will an increase in the global mean 

temperature force the polar jet stream toward the pole?  Are subtropical highs poised to 

advance poleward in response, thus becoming permanently entrenched in the mid-
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latitudes?  These questions must be answered as a gauge for future ozone concentrations 

in the context of the nation’s air quality, as the behavior of the polar jet stream and 

atmospheric wave propagation have been shown to significantly influence background 

ozone, which in turn largely dictate concentration potential at ground level.  In Section 

10.3, it was speculated that an increase in the global mean temperature could result in a 

poleward shift of the jet stream, promoting favorable conditions for high ground-level 

ozone concentrations on a more permanent basis.  This scenario suggests that not only 

will large-scale subsidence yield increasing concentrations of background O3, but high air 

temperatures, low relative humidity, and light winds – all indicative of broad anti-

cyclonic circulation – will occur more frequently within the mid-latitudes, including 

many of the major metropolitan areas within the borders of the United States.  With time, 

a more robust data set will clarify the long-term expectations of climate change in the 

mid-latitudes, including the dynamic behavior of the atmosphere.  Ozone prediction and 

mitigation efforts can subsequently be focused on our changing world. 

 

10.6. Concluding Remarks 

 

In summary, ozone forecasting can be improved through the consideration of the 

meteorological variables that have been shown to impact local ozone concentrations, 

namely ground-level dry-bulb (air) temperature, relative humidity, and wind speed.  Each 

of these parameters plays an important role in local photochemical production, and 

careful analysis of weather regimes favorable for the combined availability of ground 

level air temperatures greater than 27ºC, relative humidity less than 50%, and ground 
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level wind speeds of less than 5 m·s-1 will signal the possibility of significant local 

photochemical production, as they have been associated with high ground-level ozone 

concentrations in the context of this research study.  Long-range ozone forecasts can be 

generated from synoptic-scale meteorological modeling, and migration of atmospheric 

waves in particular.  Fluctuations in the background ozone concentration mirror the 

passages of perturbations within the polar jet stream, and very high background 

concentrations, equaling or exceeding 0.06 parts per million, are possible during 

pronounced upper-tropospheric ridging and extended periods of anti-cyclonic circulation.  

Thus, long range numerical weather forecasts can be used in conjunction with the 

knowledge of how ozone concentrations are influenced, both in terms of local 

photochemical production as well as the dynamic behavior of the background ozone 

concentration.  Finally, the long term prospects of ozone pollution – not on the order of 

one or two weeks, or every one or two years, but instead at an interval of several decades 

– can be assessed based on current predictions of climate change.  If the global mean 

temperatures do appreciably rise, changing weather patterns in the middle latitudes may 

increase the magnitude and duration of ozone pollution episodes, even at modest 

temperature increases.  

 

Ozone has been a constituent of the tropospheric atmosphere for millions of years, both 

as a consequence of stratospheric transport and as a product of the high-temperature 

conversion of gases in contact with lightning.  Plants and trees have even contributed to 

ground-level ozone concentrations, as the emission of biogenic volatile organic 

compounds, including isoprene, inevitably incorporate into the ozone cycle.  Thus, the 
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presence of ozone is nothing new to the lower atmosphere, predating mankind itself by 

eons. 

 

What is new, however, is the emergence of a host of anthropogenic compounds that have 

entered the ozone cycle since the onset of the Industrial Revolution a century and a half 

ago, resulting in a continually increasing background concentration of tropospheric 

ozone.  While pre-industrial ozone concentrations at ground level were a by-product of 

the natural system, recent increases cannot be considered as anything other than air 

pollution.  Combustive emissions of NOX have driven ozone concentrations to levels that 

have never previously been experienced in the history of civilization.  Even though the 

most direct mechanism for ground-level ozone production is the photochemical 

conversion of NO2, a variety of other compounds also contribute to net ozone increases 

through indirect reactions.  As long as combustion is a major industrial activity, ground-

level ozone will pose a threat to air quality. 

 

In closing, more attention must be paid to the meteorological processes that affect ozone 

concentrations, as chemistry alone cannot explain the occurrences of ozone episodes, 

particularly in relation to the tropospheric background concentration.  When Cornelius 

Fox compiled his introductory work on the relationship between ozone and local 

meteorological variables in 1873, he set forth three goals that he wished to accomplish: 
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1. To give a digest of the most important facts concerned with Ozone; 

 

2. To point out the circumstances and the manner in which, the localities were, and 

the reason why, Ozone is observed in the atmosphere; and, 

 

3. To give the results of my own investigations concerning these bodies.  

 

Fox did not have the benefit of later research by Chapman, Leighton, and others that 

demonstrated the dependence of ozone production on photochemical reactions.  

Likewise, he would never know of the meteorological relationships to ozone proposed by 

Wulf and Rossby in a later era when large-scale atmospheric measurements became 

possible.  Still, his idea holds true today – meteorology is particularly important when 

describing the distribution and behavior of ozone – and this research study embraced his 

objective of detailing what is known about ozone, where it is distributed, and most 

importantly, what drives the distribution.  

 

Ozone is both a friend and a foe to mankind.  We rely on its protective characteristics in 

the stratosphere, shielding us from harmful solar rays, and yet, we are intolerant to it in 

the troposphere at modest concentrations, where is adversely affects respiratory function.  

As Fox noted over 130 years ago, meteorology is the key to understanding ozone 

formation and transport, and it was with this knowledge that this research study was 

conducted, subsequently revealing the unmistakable relationship between the background 

ozone concentration of the troposphere and the large-scale, dynamic circulation of the 
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atmosphere.  Clearly, ozone isn’t confined to the local or regional scope, but instead is a 

widespread pollutant that transcends political boundaries.  Thus, it is a burden we all 

must share.    
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APPENDIX I: METEOROLOGICAL TRENDS 
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FIGURE A.1: 6-month plot of hourly ground-level dry-bulb temperature, Tulsa 
International Airport (01 June 2005 – 30 November 2005) 
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GROUND-LEVEL DEW-POINT TEMPERATURE, 01 JUNE - 30 NOVEMBER 2005
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FIGURE A.2: 6-month plot of hourly ground-level dew-point temperature, Tulsa 
International Airport (01 June 2005 – 30 November 2005) 
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FIGURE A.3: 6-month plot of hourly ground-level air pressure, Tulsa International 
Airport (01 June 2005 – 30 November 2005) 
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FIGURE A.4: 6-month plot of hourly ground-level wind speed, Tulsa International 
Airport (01 June 2005 – 30 November 2005) 
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FIGURE A.5: 6-month plot of hourly 210-meter wind speed, Bank of Oklahoma Tower 
(01 June 2005 – 30 November 2005) 
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APPENDIX II: OPERATIONAL PHOTOGRAPHS
 
 

 

 
 

FIGURE A.6: Downtown Tulsa, Oklahoma (including the Bank of Oklahoma Tower, in 
foreground); 210-meter data collection occurred at the City of Tulsa Communications 
Facility, an enclosed structure on the roof of the Bank of Oklahoma Tower. 
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FIGURE A.7: Roof of the City of Tulsa Communications Facility, Bank of Oklahoma 
Tower; 210-meter ozone analyzer inlet was mounted on an adjacent pole on this 
structure. 

 
 
 
 

 

 
 
FIGURE A.8: Ozone analyzer inlet, Bank of Oklahoma Tower; inlet was protected from 
water intrusion by a downward-placed funnel (blue object in photograph to the left of the 
access ladder). 
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FIGURE A.9: Thermo Electron Corp. Model 49C O3 Analyzer (front), Bank of 
Oklahoma Tower; easy access was provided as a result of placement on a 
communications rack. 

 
 
 

 

 
 
FIGURE A.10: Thermo Electron Corp. Model 49C O3 Analyzer (back), Bank of 
Oklahoma Tower; the inlet stream was protected with a particulate matter filter that 
required replacement every two weeks (orange object). 
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FIGURE A.11: 2B Technologies Model 202 O3 payload, 08 October 2005 ozonesonde 
launch; the analyzer and accompanying circuit board were assembled in a padded box for 
landing protection.  

 

 
 
FIGURE A.12: Ozonesonde launch, 08 October 2005; the balloon launch carried the 
ozone analyzer, two transmitters (for tracking), a camera, and a landing chute. 
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FIGURE A.13: Ozonesonde flight path, 08 October 2005 (ascent represented as a blue 
track; descent represented as a red track); the balloon, while rising vertically into the 
stratosphere, did not stray far from the launch point as a result of relatively weak wind 
speeds. 

 

 
 
FIGURE A.14: Image captured by onboard camera as the ozonesonde was at an altitude 
of 25,300 meters over the City of Tulsa on 08 October 2005. 
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APPENDIX III: NEWS ARTICLES
 
 
 
 

 
 

FIGURE A.15: Oklahoma State University promotional advertisement appearing in the 
Tulsa World, February 10, 2006. 
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FIGURE A.16: Article appearing in the 2006 issue of Vanguard, the research magazine 
of Oklahoma State University. 
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FIGURE A.17: Press release appearing in the April 2006 issue of the Cherokee Phoenix. 
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APPENDIX IV: ORIGINAL PUBLICATIONS 
 
 
 

o Williams, D.J. (2006). Thermodynamics and weather balloons. Weather, 
61(10):286-287. 

 
o Williams, D.J. (in press). APRS and High-Altitude Research Balloons. QST, 

Accepted 02 December 2005. 
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FIGURE A.18: Thermodynamics and Weather Balloons, part 1 (Weather, 61(10):286-
287) 
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FIGURE A.19: Thermodynamics and Weather Balloons, part 2 (Weather, 61(10):286-
287) 
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APPENDIX V: OZONE ANALYZER SPECIFICATIONS
 
 
 

o 2B Technologies Model 202 (http://www.twobtech.com/) 
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o Thermo Electron Corp., Model 49C (http://www.thermo.com/) 
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