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ABSTRACT

The perturbed Morse oscillafor is modified by adding a velocity-
dependent term to aliow for the nonadiabatic correction due to the
breakdown. of the Born-Oppenheimer approximation. A recurrence formula -
for this velocity-dependent term is derived. This formula is then
used to derive ; via a perturbationvcalculation - explicit expressions
for the Dunham coefficients-which include the nonadiabatic corrections.

Values of the PMO parameters (including the velocity-dependent
parameter) are obtained for the ground state of the three isotopic
molecules H,, HD, and D, using two approaches. .In the first approach,
iteration computations are used to evaluate the different parameters
from the experimentally derived Dunham coefficients. In the second
approach, the PMO parameters are obtained by fitting the experimental
energies directly in terms of the model parameters. The second ap-
proach is preferred to the first due to inaccuracies in the empirical
Dunham coefficients.,

The nonadiabatic corrections calculated using the present method
for H2 and D2 are in agreement with those obtained using alternafive
methods. Moreover the present method proves very successful in pre-
dicting eigenvalues for HD which are in a very good agreement with the

experimental ones.

viii



DIATOMIC MOLECULES AS PERTURBED MORSE OSCILLATORS AND THE EFFECT

OF THE BREAKDOWN OF THE BORN-OPPENHEIMER APPROXIMATION



' CHAPTER I

INTRODUCTION

The Born-Oppenheimer approximation [1] based on the fact that
electrons move thousands of times faster than the heavy nucléi in
a diatomic molecule, involves a complete separation between elec-
tronic and nuclear motion. One assumes that the nuclei move so
siowly that the electrons are not affected by.fhe nuclear speed,
while the electrons move so fast that the nuclei observe only an
effective vibrational potential energy due to the electronic.
motion. in this approximation, functions that describe the motion
of the electrons are obtained by keeping'the nuclei fixed in space,
then the motion of the nuclei themselves are considered [2]. The
stationary state wavefunction of the molecule is then the product of.
the electronic and nuclear wavefunctions. In this fashion, the nu-
clear motion (vibration and rotation) is reduced to a one-dimension-
al, one-particle problem in quantum mechanics solvable by analytical
or numerical methods.

The radial Schroedinger equation for the rotating oscillator is
given by |

2 42 2‘
FE v d IS Dy o) =B, @, D



where r is the internuclear distance, ¢ is the reduced mass, and V and
J are the vibrational and rotational quantum numbers, respectively.
V(r) is the potential energy function of the nuclei and :consists of two
parts; the nuclear repulsion term th(rj = E%%&-e? and the electronic
energy Ve(r) calculated by considering the nqclei fixed in space a dis-
tance r gpart. The potential energy function V(r) is a complicated
fuﬁction of r and of the electronic quantum numbers and is not known
exactly-e*éépt féfughe”siméiest”ﬁélecﬁié;: »i;L ,

;Ideally, a m;déimfgéential en;rgy function for a vibrating dia-
tomic molecule should have a simple, analytic form. The worth of that
function is judged by the agreement between the eigenvalues it predicts
and the spectroscopically observed term values. Several different poten-
tial models and approximation methods have been used with varying degrees
of success. Empirical potential-energy curves for the bound states of
diatomic molecules.can be determined from experimental data for the
vibrational levels G(v) ahd rotational constants B(v) by using the
Rydberg-Klein-Rees method (RKR) [3]. In this method the turning points

in the potential energylcurve are given by

Toax = (£2 + fﬂ% £ £,

min
The intermediate functions f and g which depend upon the term values

G(v) and the rotational constants B(v) have the integral form:

i v -
£v) = —— I [G(v) - G(v')] “av'
(2hcey) Voin

and

| % (v .
e = FpL[ b6 - ol e

v_.
mn



where y is the reduced mass. The lower limit of integration Viin is
that value of v for which the quantity E(v,J=0) = YOO + G(v) vanishes. -
The functions G and B in the above equations are polynomials that
have been fitted to experimental data.

Another approach is the Morse potential [4] given by:

V(g) = ¥, (1 - 7?2

s

where ¢ = T - Ty T, is the equilibrium internuclear separation, Vé
and a are constants determined from molecular properties. While this
potential has analytic solutions and is probably the best three para-
meter model for actual molecules, it fails to describe the fine
spectroscopic details and it is difficult to include the effect of
rotation in the potential function.

One of the étandar& potentials for describing the vibrational
motion of a diatomic molecule is the Dunham potential [5]. ﬁunham

applied a version of the WKB approximation to a perturbed harmonic

oscillator. The Dunham potential is given by
V(r) = heaot?(1 + 1€ + 38" + ...)

where the leading term here is a harmonic oscillator potential with
ag = m2/4Be where w, is the classical frequency, B, = h/(8w2ur:c) s
£=(r-re)/re , t is the nuclear reduced mass and T, is the value of
.the internuclear distance r at equilibrium. This potential has poor
convergence properties and does not produce analytic wavefunctions.

Dunham expressed the elgenvalues E of equation (1.1) as a double

v,dJ

power series in vibrational and rotat10na1 quantum numbers (v+5) and

J as follows:



B,y = I Y0+ i@k, - an
3k |

The term values G(v) and the rotational constants B(v) are related

to the empirical coefficients by:

6 = I Yjotv + )’

j=1

(1.3)

and

B(v)

Xo Y5 v+ SN | (1.4)

Coefficients with k>1 are the centrifugal distortion constants Dv

and H ..., etc.
v

o = - 1 Y,zt’v L (1.5)
H(V) = 2 YJS(V +m)) (1.6)
and the energy eigenvame_; can be rewritten as:
'"’EV’J. = 6(v) + B(W [JI+1)] + DO [FE+D]? + h(V) [FI+D)1° + ...
: (1.7)

Among analytic potentials, the one currently exhibiting the
greatest capécity for accuracy is the perfurbed Morse oscillator
(PMO) potential [6], defined by:

V) =V [y + 1 byl
e n=4 n )

where y = 1 - exp[-a(r - re)]L This potential converges for all values
of r except for a singularity at'r = 0. Its parameters are related to

" the dissociation ehergy De by



The leading term of the PMO potential is a Morse potential f4j::_Fof- '

‘mulas hgye been given in [6] for calculating the three Morse para-

meters ‘p =er, , 0= (EpVé)g/aﬁ,and T = V;/hc. " Here, o is approximately

, the number of bound states of the Morse oscillator, roughly

o= wblzmexe . Pdrmulas for the PMO coeff%cients up through b2 were given by
Huffaker [6,7]. The expressions obtained for the energy levels |
via peiturbation [6] were found to be mathematically equivélent té

‘those obtained by Dunham [51. The Dunham coefficients in the PMO

model are expressed in terms of the modifiéd Dunham' - coefficicats

‘ass

V) L @) L L@
Y, =Y +ij)+1’jk ‘.

Jk J oo 9
wheré
(0) (2) (4) g
ij >> ij >> .ij > etc._ .

and where Ygg)/Y§§2) 2 0(22) . In de;iving the formulas for the vérious '
:Dunhgm.coefficients.using the PMO modei, the Born-Oppenheimer approii-
mation was assumed to be valid. This'shoﬁla be accurate for molecules -~
with large reduced masses. For light molecules however the validity
of.;ﬁcﬁ an apprﬁximatioﬁ is duestionable. |

The drawbacks of the Born-Oppenheimer approximation can be under-
stood by considering the molecular Hamiltonian H which consists of -
the kinetic energy operators T of the nuclei and the electrons and
the Coulomb interaction V between all particles: |

H=T+V

n
-3
+
-3
+
:<
+
<
+
<3

(1.8)



P L L
o M @ 121 o T ]___T 1>J W
| 1.9)

where o refers to a nucleus w1th mass M charge 2 e and position £°{

and where i refers _to an electron with p051t10n r1

-~ [N

[Atomlc un1ts (m e = fi=e=1) are used. }

Considering a d1afom1r molecule, where the Hamiltonian is relatively

simple, Eq. (1.9) gives:
(4. L sy ey | (1.10)
[2 MZ ; j_] ’ ' *

where the positions of each particle are relative to a laboratory

frame. Referring all coordinates to the nuclear center of mass; Eq.

(1.10) yields [8]

[

N

= 11 2 1 .
i = TCM (u vr * M1+M2 iE E ) + v(r,;{i) (1.11)
’

s ?

and the exact Schroedinger equation is

Hy=Ep, | (1.12)

wheré T is the relative position of M; with respect to M, I, ave thé
position vectors of the electrons relative to the nuclear center of
mass, and M; and M, are the nuclear masses. Since TCM depends only
on the molecular center of mass and V is a function of r and r;» Eq.
(1.12) is separable into center-of-mass motion and relative particles
(intérnal) motion. The exact Schroedinger equation_for the internal
motion is

- 3G V2D e TRy VG - Bl = 0 (113)
1 1,] .

2



In the Born-Oppenheimer approximation, one assumes that the molecular

wavefunction { is given by:

Vo) = ug (RsmIx(®) (1.14)

where w: Qgi;r) is the electronic wavefunction and x(r) is the nuclear
function. Substituting Eq. (1.14) into Eq. (1.13) and neglecting the

_ S weleeal sl g R
ter@s_;/Cley?zviii‘gh x& an?rFI/Zu?ern , which couple electronic and

nuclear motion, we obtain the equation:

x() [- %.Z V; + V(Ki’r)]w: (xd;rj]- w: (xi;r)g% Vi(r)
i

= 2% (gpsm)x)  @.s)

for the Born-Oppenheimer approximation. Defining Wﬁo(r) through the

equation:

[- %‘, Vi o+ V(g - Wgo(r)]m: (£;37) = 0 (1.16)
1 .

we obtain by substituting into Eq. (1.15)

[- Ziu 2+ 10 - ENx() = 0 (1.17)

which is the equation for nuclear motion. The quantity Wﬁo(r),

the electronic énergy as a function of nuclear coordinates, plays now

the role of the potential [V in Eq. (1.1)] in which the nuclei move.
For light molecules; the Born-Oppenheimer approximation fails to

predict some experimental features. For examplé electronic isotope

shifts have been observed for diatomic hydrides [9,10], although ac-

cording to the Born-Oppenheimer approximation, the potential curve of



each electronic state of the molecule should be invariant to isotopic
substitution. The isotope effects must be due to the small terms in-
volving the coupling between electronic and nuclear motion, neglected
in the Born-Oppenheimer approximation.

To allow for the effects of those small terms, a more rigorous
treatment of Eq. (1.13) is needed. For that purpose we rewrite the

Hamiltonian of Eq. (1.13) as the sum of two terms:

H = HY + HY ’ | (1.18)
where i
0 _1lyv o2 .
He=-3 Z Vi * V(x;sT) (1.19)
and
"'z o L 2 _ . 1 .
H 20 VT 2, M;) in A (1.20)

We expand the molecular wavefunction as a sum of the product terms
P(x;57) = 121 X (F), (2557) _ | (1.21)
where the basis electronic states are eigenstates of the Born-Oppen-

heimer equation:

HOYy (r51) = WOy (550 (1.22)

and the sum is over all states. To determine the nuclear motion we

must solve

[H) + H' - EJIZ1 X (), (g557) = 0 . (1.23)

Multiplying Eq. (1.23) on the left by the complex conjugate of one of
the complete set of eigenstate of Hg, e.g. ¢;? and integrating over

the electron coordinates we obtain the following rigorous set of



equations for the functions xn(;):
Floewo e @ - By @=-] B @y (.26
2p 'r " ' nn Xn mzn mn "/ Xm :
where
Hﬁn = Iwa(ii;r)ﬁ'wngii’r)dri . (1.25)

By neglecting the off-diagonal elements of H' (i.e. considering H£n=0)
we get the adiabatic approximation w=xnwn and a Schroedinger-type

equation for the nuclear motion:
Lo, g -
[ 75 Ve Uy Elx(r) = 0 (1.26)

where the potential energy U:é(r) is given by:

ad _ B0

U, (@ =W () +H (r)
_ B0y 1 . 1 21 -
=¥ O - sEy <n|i§jvi Vj|n> o <n|VZ[n> (1.27)

where the latter two terms are the adiabatic corrections to the Born
Oppenheimer approximation, which partialiy correct for the coupling
between electronic and nuclear motion. The term "adiabatic" refers
to the fact that thé simple product nature of the wavefunction is
still preserved by the terms giving rise to the corrections. In the

ground state the matrix element <0]V§]0> is given by

° *2. " _ ._l'_ . * 2 P e dZw‘O. N - .
[ Y Vabydr = - = [y (L + LO)bodr; + [ g dry (1.28)

where Lx and Ly are the electrcnic angular momentum operators for ro-

tation given by



10

. s §
x- t Z 05 &7 - % Sy.)
i i i

[ =
|

and

L, = -i E (z”i—i- x; 3%1-) (1.29)
Bunker [11] derived theoretical expressions for the isotope
shift of a transition using the adiabatic potential. The theoretical
results We¥é‘foun&4t§ bé-in good agreementiﬁitﬁ thé obéervéd isotope |
shifts of the Lyman bands Qf HZ’ Hb'and Dé.
Nonadiabatic effects (i.e., nonvanishing Hﬁn) mix different elec-
tronic states. In the nonadiabatic approximation, the wavefunction
cannot be expresse& as a simple product of electronic and nuclear

wavefunétions. Herman and Asgharian [8] showed that only second-order
neﬁeigy correction; ;gé pfoduced as a result bf including the nonadia-
batic effects in the Hamiltonian. Both adiabatic Hﬁn and nonadiabatic
H&n terms contain inverée’power of the reduced nuclear mass gnd
should be unimportant for heavy molecules. |
The use of ab i;itio variational caléui#tions 6f tﬁe elec-

tronic eigenfuncfioﬂglkéhere the wavefunctidn.is expanded in teims of )
a suitable basis set and a variational method is employed for calcula-
tions) by Kolos and Wolniewicz [12,13,14] led to very accurate computa-
tions of the potential functions and the energy levels of H, and D,.
These computations include the adiabatic correctionms.

Various techniques have been used to treat the nonadiabatic
contributions to the Born-Oppenheimer approximation. In most of these
calculations effective Hamiltonians were derived. Then different

approximations and simplifications were used to estimate the nonadia-

batic effects.
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Fisk and Kirtman [15] derived a total effective potential for the
nuclear vibration of a diatomic molecule in the ground state which
upon simplification and approximation reduces to the form:

h* 1

e -1 d d
] = Eo(r) - qu + Wad + F'<AE> - Boo(r) —d?

eff av dr

for a rotationless state (j=0) in the electronic ground state, where
E%q is the ground state eiectronic energy at equilibrium distance Toe
Wad is the expectation value of the adiabatic correction terms in the

electronic ground state. The last term in Ueff’ namely

h2., -1 4 d
(—u—) <AE>av ar Bgo(x) Ir

represents the nonadiabatic term which couples the ground electronic
d2

state with excited states. In this expression By = fwﬁ a;¥l dr; and

-<AE>av is the average excitation energy for the state in question.

Using this effective potential, Fisk and Kirtman found that for H2 in

the ground state, the nonadiabatic effects raises the energy of the

levels V=0 and V=1 by .23 and .67 en”? respectively.

Bunker [16,17] studied the effects of both the adiabatic and the
nonadiabatic correction terms. on the molecular constants and on the
Dunham coefficients. In this study the adiabatic potential was given
by

ad
V(&) =V(E) + A(E)
where V(£) is the previously defined Dunham potential and A() is the

adiabatic correction given by
AE) = <nlH'|n> = B, (Ko + K1 + K2E® + ...)

where Be and £ are as defined before, ]n> is the ground state electronic
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wavefunction and the coefficients K, are mass-independent. Both the
equilibrium distance T, and the force constant Ke are changed as.a

consequence of adding A(£). The change in the force constant is of
the order of (Bé/wg) times the force constant. The equilibrium dis-

tance r:d changes according to the equation

d B
a=r_ €\ A 1
T, {1 (agazﬁljre .

Nonadiabatic corrections were determined from the discrepancies be-
tween the adiabatic energies and the experimental values. Both adiaba-
tic and nonadiabatic terms were found to change the Dunham coefficients.
The resultant changes are of the same order of magnitude as the
higher'order modified coefficients Ygg), Yéf), ... etc. [16]. The
general expressions and the mass dependence of the coefficients ij
after allowing for the breakdown of the Born-Oppenheimer approximation
are discussed in details in [18]. | |

Adiabatic and nonadiabatic corrections were also found to change
the dipole moment Uv of the vibrational levels of thevground electronic
state of heteronuclear diatomic molecule as well as the nuclear qua-’
drupole coupling constant ,qu~ [19] where Q is the quadrupole moment
of the nucleus and q is the electric field gradient function. |

More investigations of the effects of the breakdown of the Born-
Oppenheimer approximation led Bunker et al. [20] to derive an effec-
tive vibration:-rotation Hamiltonian for the ground electronic states
of diatomic molecules. The Hamiltonian contains an effective inter-
nucléar potential and two effective reduced masses, one for the vibra-

tional and one for the rotational kinetic energy. From this Hamil-




13

tonian, the vibration-rotation equation is found to satisfy:

'1’2 dz ' ‘ﬁz L
{- ';Tva"? + [w(r) + Aw(r) + Tu?? J(JI+1) - EVJ]}wg) =0

where w(r) is the relativistically and adiabatically corrected inter-

nuclear potential function. The reason for using-ﬂ& and B, instead

of - the nuclear reduced mass p or the atomic reduced mass .
: atomic

is to account for the fact that, while the electrons move with the nuclei

as they vibrate or rotate, there i$ some non-adiabatic lag of

electrons behind the nuclear motion. Thus using an effective vibra-

tional or rotational reduced mass is more appropriate than using

nuclear or atomic reduced mass where

and < Pr < ¥atomic

B < ¥y < Matomic
As a result of the non-adiabatic lag of electrons the instantanebus :
electrostatic potential is modified to an effeﬁtive internuclear poten-
tial_function w(r) + Aw(z). A least-squares optimizatiop of Uy and
My was made [20] by fitting the eigenvalues of the above equation to
the experimental energies of the electronic ground state of H2 and D2
molecules. Satisfactory fits were achieved using fhe usual nuclear
reduced mass for the rotational term, but a Qifférent reduced mass
.fqr the yibrazioﬁal term, |
In contrast to the results of Fisk and Kirtman [15], Bunker con-
cluded that the nonadiabatic correction should lower the energies of
the vibrational levels. This lowering agrees with fhe measured dif-
ference between experimental results [22,23] and ab initio adiabatic

calculations'[12,14].




14

Bishop and Shih [24] proposed an effective Schroedinger equation
for Hz and D2 to take into account the nonadiabatic effects. For a

rotationless state, this equation is given by

--a®1 0™ L - VR BE,0R) = EW,090,0R)

where R is the internuclear distance, U(R) is the Born-Oppenheimer po-
tential corrected by the adiabatic terms, a(R) is the nonadiabatic

correction factor and is given by

\ 2
a(R) = KE(R) = - %%-<¢o %ﬁ¥l->

where X is a flexible parameter. Bishop and Shih gave heuristic argu-
_ ments for their choice of the function f(r). That effective Schroedinger
equation was then simplified into two alternative forms. In the first
form the correction factor a(R) was held constant at a(Re) to give the

equation:

-[1-a® X2 " Sz + U@, W, 035) = E,0u(v,03R).

In the second form, the effective Schroedinger equation is multiplied

by [1-a(R)] to give (aftér neglecting small terms)

2 )
- ™ Sz + VR + a®BE) - E@,0 W, 0R) -
= E(v,0)9(v,0;R) .

This equation was solved individually for each vibrational level v by
replacing the E(v,0) on the left hand side by the appropriate adiabatic
value. Both approaches were successful in predicting nonadiabatic cor-
rections which agree with the observed bnes {the difference between

experimental and calculated eigenvalues). However the second approach
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was found to give smaller root-mean-square deviations between theoreti-

cal and experimental values than the first approach. The first approach is

entirely equivalent to the method used by Bunker [20].

The ab initio adiabatic calculation described above works well

for 1light homonuclear diatomic molecules and improves the agree-

ment between calculated and experimental eigenvalues for H2 and DZ‘

The situation is different for a heteronuclear diatomic molecule such
as HD. Difficulties arise in the adiabatic approximation because the
.center of mass does not coincide with the center of charge and the

molecular Hamiltonian takes on a more complicated form. In regard to

nonadiabatic corrections Bishop and Shih [24] pointed out that their

effective Schroedinger equation is not applicable to heteronuclear

molecules. Also Bunker [20] discussed the difficulties associated wit

heteronuclear molecules which arise from the presence of additional

series of perturbations not present in the case of homonuclear molecules.

Thus for HD mixing could occur between the ground state and excited
states which could not mix for H2 or DZ'

"In the present work we use the PMO potential as an approximation
“to the actual molecular vibrational potential (including adiabatic
effects) and allow for the nonadiabatic effects by adding avvelocity-
dependent term to the PMO potential, treating it as another perturba-
tion. Thus we can study the nonadiabatic effects without the need for
an gg_igigig_calculation in the adiabatic approximation.. We hoped that
by applying that rather simple perturbation approach to hydrogen and

its isotopes, we could obtain a qualitative as well as quantitative

agreement with the results obtained for H2 and D2 molecules by Bunker
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- et al. [21] and by Bishop and Shih [24]. If our approach proved to

be successful for H2 and DZ’ we would then apply it to the HD molecule
where the application bf_the previous approaches [20,24] was question-
able. We hoped to achieve‘a better understanding of both the adiabatic
and nonadiabatic breakdown of the Born-Oppenheimer apprpximation.

| In Chapter I1 2 recursion relation for a velocity-dependent in-
teraction terﬁ is derived. Such relations make perturbation calcula-
tions of any desired ofder much easier.

In Chapter III the perturbation interaction with various unde-
termined parameters for the velocity-dependent effects as well as the
usual veloéity-independent PMO parameters were used to find first,
second, and third-order corrections to the energy eigenvalues of the
Morse oscillator. Explicit‘expressions for the various Dunham coeffi—
cienfs ij with j + k < 4 in terms of the various parameters are de-
rived.

In Chapter IV the numerical values of the PMO parameters are de-
termined for the isotopic molecules HZ’ HD, and D2. Discussion of the
effects of the accuracy of the Dunham cOefficients on the resultant
PMO pérametefs is included. The dependence of the new nonadiabatic
correction term on the reduced mass is discussed.

In Chapter V, a least-squares optimization of the PMO parameters
is made (starting with the PMO parameters obtained in Chapter IV)-
by fitting the eigenvalues given by Eq. (1.2) to the éxperimental
energieé.' The values of the PMO parameters which give the best
fit are obtained. For each molecule two sets of parameters'were

found to give an excellent fit with the experimental data. One
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R
i

- of these sets waé found to give a positive nonadiabafic correctioq,
the other gives a negative nonadiabatic correction in agreement wifh
. Bunker's results [21].- These two sets of parameters are discussed and
the calculated eigenvalues are compared with experiment using these
two sets. o
In Chapter VI we discuss the accuracy of our results and examine
the mass dependence of both the adiabatic and nonadiabatic correction
terms for the three isotopic molecules H,, HD, and D,. The nonadiabatic
correction effects are compared with those obtained for H, and D2 using
a different approach [24]. The validity of our approach to heteronu-
‘clear molecules is discussed. The usefulness of this approach is dis-
cussed along with some of the disadvantages of using the PMO potential

as an approximation of the adiabatic Born-Oppenheimer approximation

at high vibrational levels.



CHAPTER II

THEORETICAL FORMALISM

The Schroedinger equaticn for 2 non-rotating Morse oscillator is

. |
g—uqf *4% {E - D, [exp(-2au) - 2 eXP(-au)]}w =0, (2.1)

Infeld and Hull [25] showed that Eq. (2.I) could be written in the

RS

form

——z—d;i(x) + [-n? - wexp(2x) +(s + Y)exp(x)]R(x) = 0 (2.2)

-with the definitions

(s + %) = (D)% (ah) , | 23
n? = /()2 , (2.35)
and

X = -au + n2(s+%) . (2.3¢)

Equation (2.2) is recognizable as type B factorization.

Huffaker and Dwivedi tégj have shown that by transforming the Morse
oscillator from type B t;“;ype F factorization, it is possible to obtain
raising and lowering operators for n or v (the vibrational quantum

nunber) which, when applied to the physically normalized soluticns RO~~~ °

——

give

sl
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GRS =R | ) (2.42)
GORL = K | (2.4b)

where

+ _ 4n - 3% (n-%2 vk
- TG NG ar D)

(2.4c)

=X s+ -x d
[(n-;ii;!)e -zn_1$e 'd_x'

where for a particular Morse oscillator, the parameter s is a constant

and is given by the eqﬁation:

W
(s+%) =0~%—
WeXe
while n takes the values
n=s,s-l, ...mp  0<mp<1,

The vibrational quantum number is v

s - n and thus takes the values

0,1,2,...,s-n , and the function RIS1 u’s-n = q;v. Substituting (2.4c) into

(2.4a) and (2.4b) yields

s _ . 4m-1(n-%) X _s+h xd
Rn-l " 'n(s+n)(s-n+ 1)] [ne " (2n- -1 " dx-

n (2.52)

and

S - [ 4(n+ 1] (n+ !!) ]]5

Rl " Gene DG [ne

- '(;“'—:1!) R L)

Equations (2.5a) and (2.5b) can be rewritten as:

n(s+n) (s-n+1) %, _ [ _-X s+% | o X d.
D g Y Rae1 = 07 - Gyt .59

and

[n(s+n+1) (s-n)1’:Rs -X s+ % o~ X d ]R

A(n+l) (0+5) © ‘n+l [ne T ey T - (2.5d)
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Subtracting (2.5d) from (2.5c), we obtain

n(s-n)(s+n+ 1)]1,R [n(s+ n)(s- n+ 1)115Rs
s Das 52 BT TE IR
(2.6a)

_ s +3%) s + X% -x d .S
ey ey - * T

Rearranging, Eq. (2.6a). becomes

-xd ps __1 _n(s+n)(s-n+ 1)1!¢R5 '
dx "n 4(n-3)" (n-1) 1 Tn-1

(s+%) o5 :
I(_l{z-_;‘-)— Rn (2.6b)

n(s- n)(s+n+ 1)]': S

-y Paan Ris1 *

With x = -au + 2n2(s+%) and y = 1- e'au,'Eq.'_(Z.6b) becomes

d RS = - (s + %) [n(s+ n)(s- n+ 1)]11Rs
dy n - 2(n-%) (n-1) n-1
(s + %)2 s ' '
T 2m-W @+ fa 2.7)

(s +3%) m(s-n)(s+n+l).ks
‘2w Lo+ D 3 Rnel

In terms of ¥, Eq. (2.7) becomes

- g (o-v-%) (20-v-1) (v+1) % ) o?
w" %(0- - )[ (6-v- _§) 1 lP d (o-v) (o-v-1) 'le

(2.8)

. o] [(o-v-%) (20-v)v]35
d (o-v) (o-v+%)

Defining

1

__oe*_ 1
G=-7 (o-v) (o-v-1)

v (2.9a)

| and
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+ o} vic - v+ %) (20 - v).%.
D- = F 2(0 - V) [ (o, -V 3 %) ] > (2.9b)

substituting in Eq. (2.8), we obtain the recursion relation
3 o> =Cop + D,y o+ D . (2.10)
dy by 1’4l v+ltv+l viv-1 . : *

Since we are interested in the kinetic energy operator, a repeated

application of Eq. (2.10) yields the following:

d2 + _+ +
dy? lwv> - Dv+1Dv+2¢v+2 * Dv+1(Cv Cv+1)wv+1
2 -+
+ (C + Dv+1Dv+1 Dva)q;v A (2.11)
* Dv(cv l)wv— v v-lwv-
Using the binomial expansion, D;+1, D; and Cv are expanded in the form:
+ _ Jo 3u+7/2 4+ (u- ., :
Dv+1 - = -i' (u + %) {1 + 4U 802 .e (2.123)
=/ -y [1a U2 -], (2.12b)
v 2 e 4o 8% v
and
_ u . 3u?+ %
Cv—-{;é'l'g'*‘—z—ori"' ...} (2.12(:)
where u = v + 4. Substituting Eqs. (2.12) into Eq. (2.11), we
obtain
d2 2 -1(9y,3 -2 v, 2
Iz NJV> ucs+(—u -i—-)+o (2u +—)+0' (—u +7u +32 o hy
11u + 15/2  ou? + 10u + 7/2\ -
* P+1{° —— 20 Yys1 (2.13)

+

+5  -7u% s 10u + 67/4
Jo + 16 }"’m

* P+2{02 +'(:I,uZ
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_ [(uif)(ui%) (u+m;%-)];é
im STaT <Tal :

(2.14)
The kinetic energy operator d%/dr? can be derived using the relation

y=Q-e2% | _ (2.15)
where q = 1 - To- Upon differentiation Eq. (2.15) yields

d ddy _ _-aq d

E— = 3751-: = ae dy . (2.16)

A second differentiation gives:

- az{(l N - w-ng) (2.17)
Defining

z=¢.1 . | (2.18)
Eq. (2.17) becomes

a2 _ of 1 A T

Fr {m‘fay? e - .
Expanding (1 + z)~2 and (1 + 2z)~'Eq. (2.19) becomes:

a®> _ of,d* 4, 2d® d, 3% d

-a;z-— a {(—(Fz- - d}’) Z(a*);z— d}’) + Z ('a;a— E) + L. - (2.20)

Substituting Egs. (2.10) and (2.13) and the expansions of powers of z

from [19] into Eq. (2.20) we obtain the recursion relation:

'Sl'fz‘ v > = [-uc; E 2 . o~ 134uly
dr® v e v
) 121

R o 23u® + 16u + =
1 -
* Ptl{CU+2)0 ) }“’vﬂ
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2 10u * 58 18u® * 130u + 156
+P 2{O ¥ }wv+2

y)
79
‘p, 202+11“- 7, 36uz %),
13 4 vi3
2
+ P 4{30 + (18u 3°)°}¢v14
+ Pi5{4°2 + (6u * 10)0}¢v15 . ' - (2.21)

By using the recursion relation (2.21) as a perturbation to the per-
turbed Morse oscillator (which has been proven to be a good approxi-
mation for actual heavy molecules) we can still maintain the approxi-
mate separation of nuclear and electronic motion without assuming, as

in the Born-Oppenheimer approximation, fixed nuclei of infinite masses.



CHAPTER III

PERTURBATION CALCULATION.

The perturbed Hamiltonian used in the present calculatiom is

H=Hy+H +H | GB.1)

where Ho is the unperturbed Hamiltonian satisfying the Schroedinger

bequation
© _ 5, ‘ 3.2)
H&h 'E&h . | (3.2)

H1 consists of two parts: (a) perturbation to the Morse oscillator

(anharmonic effects) with the form [6],

heT ] b (1 - e =her [ c (*- 17, (3.3)

n=4 n=4

where the coefficients c are related to bn by

n-3
cn = =1 cn,mbn-m+1 R
n-m+l (3.4)
“a,m * 'cn,m-l( .

and

cn,1 =1, and

(b) perturbation due to the inclusion of the nonrigid rotational energy

term, shown by Huffaker [6] to have the form

v ow

‘o4

cene
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e = X L Py(P) SR Ao (e -1+ B (- 1)
" cm(ea"‘1 -1)3+ nrm__(e“‘cl - 1)% 4 Er'O;(eaq - 18 .(3;5)
+ Frot(eaq -1)¢+ ...

where.

K = -%2(%;_1)_ | (3.6)

where J is the rotational quantum number. The polynomials Pgﬁp) are
defined in [6]. The rotational coefficients Arot’ coe Frot are related

to the quantum number J or K as follows:

2K

Arot=-hc—5-’
B, =hcow(p+3) ,
Tot pZ )
_ K .2_2
Crot = hegw GPT* 30+ 8,
3.7)
= K 0% 11 » (3
Dmt-hc-&,—(2+4p +6p +5) |
C e K@ .5, g2
E.ot = -hc_ps (GP" +50° +7p° +10p +6) ,
_ K p° 137 4 15 3 85 »
Frot =hege Cxrgo P + 0+ v 150+7)
The combined effects of (a) and (b) give
H = A(e®® - 1) + B(e?*® - )2 + c(?1 - 1)? D(eaq - D" _
(3.8)

+ E(e?® - 1)° + F(e®1 - 1% + ...

where A, B, and C are purely rotational, while D, E, ... etc. combine"

rotational and anharmonic effects, i.e.,.
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A= Arot ’
B= Brot 2
C= crot ’

D= Drot + thCu.,

E = Erot + hetes ,

-

F
rot

LR
"

+ hcfcs . o (3.9)

The expansion of powers of [expﬁau)—l] needed for perturbation are
listed in [27].

The second perturbation term H2 is the velocity dependent term and
is_prqportionallto the operator (d?/dr?) for which a recursion formula
was derived in the previous chapter. first, second and third-order
perturbation calculations were performed to study the effect of the
Born-Oppenheimer-violating term on the energy eigenvalues and on the
modified Dunham coefficients. The results of the perturbation calcula-
tion due to the total perturbatlon H,+H, are 115ted in Table I grouped

by the order of perturbation and then alphabetlcally, also, the correction
due to H [6] is written before the contribution resultlng from the velo:
city-dependent term.

In the calculation we made use of the fact that the vibrational
wavefunctions are orthogonal, and of the cémmon formulas of perturbation

[28] where the shift in energy due to first order perturbation is
pED) = jm,|vrs (3.10)
the energy correction AE(Z) due to second order correction is given
'by

(2) _ ¢ <v|Hz2|v'><vt|Ha|v>
aER = 1 0) _ (0 ’
[E,” - Ej

(3.11)
V'
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and the energy shifts AE(S) due to third order correction is

[3)’_ <v|Hz |v'><y! |Ho |vi'><v |Ho [v> : '
AE = (3.12)
V'§V" [E‘(,O) - E\(,('))][E‘(,o) 51(,?.)]

. | <v]H, |v'>]%<v]Ha | v>
v Ey - By

The energy difference between the vibrational levels of the Morse os-

cillator are expressed in the form

{E(O) (0)]- = - _.E..._.{l + -l;l + (%)2 + .,,} - (3.13)

v Eyen 2nve
where w = v + %{n + 1),
Table I. Perturbation Terms Contributing to the Dunham Coefficients ij'_

First-order Perturbation Terms

A[(2u/0) + 0-%(3u? + 1) + 0™ 3(4u® + u)]

eoie @ e D oot + 2]
+ Clo2(6u® + 1) + o~3(38ud + 19u)]

o3 69u 187u

- 3
3 4 2

L

G[o~*(35u* + 385u )1 + H[ _4(35u 245u )]
- )\[110' + (-:2"— uz-‘}];~ . e _

Second-order Perturbation Terms

75u zz_ gg -2 2
16)] + AB[O + g~ %(72u? + 8)]

-1},2 9u -
-(2v,) {A s+ 35+ o™

. AC[‘%“ + 02(720% + 1] + AD[0"2(36u% + 7) + o~ (584u’ + 358u)]
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AE[o-Z(IS“ + 1851) + g~3(355u® + 280u)]

35u 17Su

"AFo~%(120u® + 120u) + AGo~3( -

15

B2 [zi-f 0~2(30u® + -;—)] + BCo™2(27u? + vy,

. BD[0~2(3u? + 3) + g~*(286u’ + 175u)]

15u3 75u

BEo™*(80u? + 65u) + BFo™* (55— + =)

2
020'2(154" + —176-) + CDo~%(104u® + 65u)

-3 3 . 95u 17u 7. - 595u 29103u?
CEg~*(35u +—8-—) D%{o 5 ( * =35 )1

165u 885u )
16

1125u . 402502

DEc™" ( =) +

+ DFo~"(

315u . 1085u?

EZ -'4( . ) “

)3[(53-‘21 + 02 (3u® + -i—) + o(4u® + %—u)]

: -1 19 -2 33.
M[2uw + %+ 0t mu+o ( u? + 23]

35u) ]

BA[uo + (—— u? + 7) + o~ (10u® +

c:;\[(l—asl u? + %) + o~} (30ud + l(-’-Elu)]
32 . 3 gt 1153 .35
DX[(-Z'U + Z‘) (=~ 7 u)]

EA[(50u® + 45u)o-!]

n[%s- ud -175- u)o"]}
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Third-order Perturbation Texrms

'2{A3(1 + 17u) + A2B(1 + 9_93) AZC(27u)
.,
azp[E2 4 52 (B 4 333y
0 4
AZEO‘Z(ZSgu U, pr2 BT AT

ABZ(Z—l—u-) ABC(gFu) + ABDg™2(222u2 + 123)

ABEG™2(30u2 + ) + ACDg™2 (39u? + %5"-)

3
AD2 -3(98511 2683u) ADE -3(225u 7185u)
3 u 20 =2 2 2 2 -3 85u 33511
B (—20) + B2Dg™2(6u? + ) + BD (—— 16 =)

375 , 1707 9 15
3 -u ut u?) - 33 __ 2 —_
Azxo(— ud - 5 u) + )\ZA[Ulo3 + 5 o2 (u? + )]

B%A[o % +{16u + %7- u? + -‘I%)]

AZB[(% u? + %)02 + (—;— u’ o+ > u)o]

81

13 .
CZA(-I-e—’ ut - % u? + —-) + )FC(

145 ' 1797)0-1

Dz)‘( - g_g'ujg-l + APD(43u" 12—5) + XZE(%E' u? - l'08—5' o

AB)A(2u® + 321 u)o + AC)\(% ud + %9- u)o

47 185 381
ADA(U - _U)G' - AE)&( 12 2 = 64)}

where A is a constant for a given molecule and will be determined by fitting

the theoretically derived Dunham coefficients to the experimental values.
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Making the necessary substitutions for A, B, ... and replacing C4, ... , Cs

with by, ... , bg according to equations "(3.9) and (3.47) then collecting '

the coefficients of various powers of u = v + % and J(J+1), expressions for
the modified Dunham coefficients Yﬁg’) as functions of p, o, T, A,

bs ... bg are obtained. The results are listed in Table II.

Tabie il

Dunham Coefficients of the Perturbed Morse Oscillator

@

Yég) = 31;-[% by - 'i'b"A] ..

MORNORE' JR

Y{g) _ méz) =,%; [-3b4-15b5+25be - %Zb.f ~ 56A2 - 70byA - 60bsh - 60bgA] |

(2 _o __1 5 3.2l » 2
Y51 = Bg W[—_(sp+4p—14p+15-p(7p+9)bu

+ 15p%s + A(-10p° - &L o2+ 36p - 30)] .

L) _ L (0) . T b 3

Yzo = wexe = 0,2[1 - —'2-:+ ZA(]. - 'ibl;)] »

(2) (2 _ 5 237., »
Y20 = WX = Yeow [9bs - 15bg - 35by + 49bg + >0 by

1
+ %$-b4b5 - 77gl+b6 - 217 b52] .

y© o p©@ ___T

02 e 95.55 s

@ _ (@ __= 59 , . 111 3 623
Yoo = D¢’ =gorprol-Tg P * g P - Tg P+ 19%

- 163 + pz(%e- p%- 27p + 119)by - 10p3 (p+9)bs +45p‘*b6-'46p'*b% :
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+ (2337 0* + 3?;7 0’ 5203 02 +.‘~Zi4l p + 1167)A] .
rD = ol = - Sl - 0+ 8 - 1,
v - W[':"" + BB 11385‘32 - 285p + 175
JRPSTE A - P R A R L

15p%(17p + 15)b' + 175p°b, + p*(1043p + 1005)—— - 715p%b, -25—

+

1251p"
7

A[91p% + - 2550p° + 2400p% + 1260p - 420]

' 4
i Az[8370 + 20470 _ 1360% _ 1050p2 - 630p] .

4
§8) = weygo) = %:[-b + 5bg + Sbg - 177 b2 + 3b.‘A]
Yég) - Héo) - W(-p +3) .
a‘z\(
Y§3) = -Béo) 4p 5 [ 13—+ 18p - 19 + 8p2b, 13 13, A] .

0 0 3T -7p3 . 23p2 ' s
.’gl) - cha - 20406.{ g * : - 10p + 5+ 392(9'1)1’" + 5p%bs

7 3
tZ P Al ..
w0 _ (0 _ 5T . 5, 109 s 139 , |
' 2
+ pz(%,’— p? - -7%?—& 34p - 17)by

+ 0?21 - 300 + 28)bs + 9p*(p - 1)b
3 5 PP 6

2 ’ .
+ 14p%b; - 51p%(p - 1)'—’4?- - 4505bubs. + 3A0%] . -
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(0) (o) -73p , 3510° _5290% .
Y22 = =517l 2 5~ * 375p - iS5
pz
+ 3% (32 ~ - 570 + 61)b, + 30(0 - 3)bs
+ 45p"bg - 780"b2 + 75 0*A] .
0 13
Y® =0 20 = Slrsbs - 3be + by + 7o + 220} - 33, B - 330, B
\
63 75
-—4—b§ * 3 by + 12b5A]
0 _,0 __T p? 2
Y04—Le —0—8—511;'[-5,3+9p-13+pb|.].
Ao?
whete A =3 (3.14)

Piscussion of Formulas
If we examine the formulas in Table II we find that to a first approxl-
mation the change in the Dunham coeff1c1ents ng) due to the 1nc1u51on

of the Born-Oppenheimer violating term can be expressed by the following

simple relation:

(0 _ (0)
6ij = YJk (3.15a)
- From (3.1523) it -is clear that the new velocity-dependent -
'perturbatlon term does not affect the coefficients Y( ) or Ygg) .

Generally the changes in ngl) for & # 0 are small and can be neglected
without éffecting the accuracy of the results, as they are at most 1/¢?

of the biggest changes in Y( )

From Eq. (3.15a) we see that the Dunham coefficients in the nonadia-
batic approximation Y?;d are related to those.in the adiabatic approach

[6] ij by the following simple relation



Jhad - o . .on <

Yj: % {jkll - ji) (3.15b)
and

nad _ .

Yok ¥ ka _ - (3.15¢)

Since the Dunham coefficients on (which are related .to the vibrational
energies) are proportional to o~ where 0 is given by
>
[2uv T1*
0‘=..._....e__
ah ’

we can see that Eq. (3.15a) is in fact equivalent to

Rl e Y R TV  (3.154)

d

where "2 is the reduced mass in the nonadiabatic approximation.

Rearranging Eq. (3.15c) yields:

a3 s ua e 2a)  (3.1%¢)
i.e. tﬁe nonadiabatic corrections can be looked at as using an effective
redqced mass for the vibrational energiés which is different from the
reduced mass used in the adiabatic approximation by 2uA. By the samé
argument we can see from Eq. (3.15¢) that the reduced mass involved in
calculating the rotational energies is not changed by the nonadiabatic.
corrections. This conclusion agrees with Bunker et al. [20], who
found that the nonadiabatic corrections can be accounted for by solving

an effective Hamiltonian which contains two different reduced masses:

e o

one | for the vibrational kinetic energy operator and one W, for the

rotational energy operator. Satisfactory fit to the experimental
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vibrational, rotational energies of the ground state of HZ and D2 were
obtained when B, was kept equal to the nuclear reduced mass u while H,
which gives ;hg pfif fit was found to satisfy the relation B, = u/ (1+B)
where B was found to be the same for both isotopes.
Ignoring higher-order modified Dunham coefficients, we use the ex=

perimental values of wgs Bgs Do and o to find the new parameter A and

the three Morse parameters p, ¢ and T as follows:

)

Ay [l - (0 /2B)(0 /87, - (3.162)
GeWe '
p=1+ T a - DT (3.16b)
e .
1 %
o & oz (B/D)*, (3.16¢)
T3y 0B (B/D )% . (3.16d)

If we set the vélocity dependent term A in Eq. (3.16a) equal to
zero the equations for the three Morse parameters, p, o, T bécome equi-
valent to those obtained from the PMO model [6]. With similar approxi-
mation the first three parametérs of the PMO model, by, bs, and bg, can

be determined from WeXgs Ye,and WY using the following equations:

2
_ 2 0 WX

bo =3 -l . (3.172)
L _ 1 (2ye0*p® | 7p®  23p? ) 2,2
bs = 353{ i (a3 -2 +10p - 5 + 3p°(p 1)b,

- T, R (3.17b)

1 .20° : 17b2
be = & [T uy, + by - 5bs + =7 - 3bud] . (3.17¢)

In a similar fashion if Y31 = ﬁe and Y40 = w2z, are known, appropriate
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values of by, bg can be determined from the following equations:

= 4 40° o s 109
by [( +p7 - 15 o* + 25p% - 139 p +42p - 14
13 5 71 — e
- pz(? p? L p? + 34p - 17)b,,
1,502 T T T
- (= 3 309 + 28)b5 - 90 (o - 1)bs
b b2 s . s‘ '
+ 51p*(p - 1)—4— + 45p°bybs - 3Ap°] . . (3.174)
B 7 8a™ 3 3 : 13- 33 33
bs'[ss'r eZe ’7‘b§*7b57b7'5§b Iz bebs + 77 Dube
63,2 75,2 12, 0
+ 38 bS - 56 b4 - & bsA] . (3.173)

The error in such’a proceés is cumilative as Egs. (3.16) represent

the near cancellation of large terms. Also the loss of pfecision in
calculating the various Dunham coefficients affects the ;Ecuracy of

the various model parameters. With these two factors in mind we devgloped
an iterative procedure where the available Dunham cbefficieits were used
as an input to calculate approximate values offfhe various parameters
which in turn are used to calculate higher order correction onj, Ygil...
etc., then a comparison between the resultant Dunham coefficients and

the corresponding experimental values is made. Iteration computation is

continued until the desired degree of self comsistency is achieved.



CHAPTER 1V

ITERATION CALCULATION OF THE PMO PARAMETERS FOﬁ.Hé, ﬁD; AND Dz'

We chose to study‘the.hydrogen molecule and its isotopic species
HD and D2 because they have the smallest reduced masses and thus .
should have the largesf violation of the Born-Oppenheimer approximation.
Evidence of violation of the Born-Oppenheimer approximation for H2 and
D, was pointed out by Bunker [11].

H2’ HD, and D2 molecules have been extensively investigated ex-
perimentally. The Raman scattering by Stoicheff;[zgj provides precise
rotational data on v=0,1 for the electronic grouﬁd state of HZ which
when combined with the infrared quadrupole spectrum'ISO,Sl] and with ~
the electronic emission spectrum [22] provides rotationalléﬁd &iﬁré-'*
tional data for highe; levels up to v=14. For HD, Raman scattering
) [égngnd.;he.infrared rotation vibration spectrum (1-0, 2-0, 3-0, 4-0
.bands)”[32,3§] provide rotational and vibrational data up to v=4. The
“gléctronic absorption spectrum by Dabrowski and Herzberg [34]; provides

accurate rotationaldconstants and vibrational intervals of the ground
state of HD up to the dissociation limit. For D, both analysis of
the ﬁigh resolution work of Lyman and Werner bands by Bredohl and

Herzberg [23] and the Raman data [29] provide precise values of

rotational and vibrational energies up to the last vibrational

36
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level v=21 which lies 6n1y 2 cmﬂ'l below dissociation. It is worth-
while here to mention that in all the above investigatiops, the values
of the Dunham coefficients obtained by forced or least square fitting
depend fairly strongly on the number of vibrational levels v and
" the degree of the poiynomials used. Thus, they are not uniquely
determined, and as Bredohl et al. [23] have pointed out, it is impossi-
ble to establish from expgrimental data which particular ij isvclosest
to the true value. This point has also been emphasized by Cashioh
135 molecule one set of data basedvon a three-term formula

2
to fit the first three levels was given by Stoicheff [29]. Another set

[35]. For the H

of coefficients were given by Herzbexg et al, [22], who found that a
good representation of their experimental data is obtained by retaining
Stoicheff's values for YlO’ 20 30

Y, and Y,. but using a four-term férmula
to‘fit the first eight levels. For HD two sets of‘coefficiénts bésed
on 10 and 5 level fits were found to represent the experimeptal data
[34]; on the other hand three sets of coefficients based onv19, 10 and
5 level fits Qere,given [23] for D,. We used. the different sets of
coefficients for the three isotopes as an input to our program to
obtain. the variéus PMO parameters. The results of calculation along
with the correspondiﬁg Dunham coefficients are listed in Tables III,

IV and V for H,, HD and D, respectively.

2° 2

From Tables III-V we see that, although different sets of coef-
ficients for a particular molecule yield PMO parameters which differ
only slightly, yet the change in the new perturbation parameter A is

relatively large and depends strohgly on the particular set of data

used as an input. Moreover the sign of A is reversed when Y52 chénges
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Table III

The Dunham coefficients YjK and PMO Parameters of the Ground State

x1;; of H,
YJ.K 8 level fit [22] 3 level fit [29]
19 4400.39 4406.35
Y, -120.815 -120.815
Yo 0.7242 0.7242
Yo;. 60.864 60.841
Y, -3.07638 -3.0177
Y, 0.06017 0.0285
Yo, -0.04657 -0.04684;
PMO parameters
) 1.60905 1.598405
o 13.96924 14.11779 -
T 30756.12 30986.03
by 0.15541280 0.14245260
bs 0.05632070 0.04726374
bs 0.02145786 0.02038393
A 0.6088775x10=* ~ -0.3390600x10-2
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Table IV

The Dunham coefficients YjK and PMO Parameters of the Ground State

DI ERy N2

X'z* of HD
YjK 10 level fit 5 leve} fit
Yio 3813.15 3813.55
Yy -91.65 -92.01
Yz, 0.723 0.862
Yy, 45.6554 45.6430
Y;, -1.9860 -1.9615
Y, 0.03146 0.02027
Yy, 0.026051 0.026322
PMO parameters -
o 1.627131 1.548189
g 16.0383 16.318151 -
T 31097.81 31046.83
by 0.15105530 0.13559800
bs 0.05005741 0.0530612
be 0.04328541 0.0341543
A 0.2296507x10~2 -0.260286x10"2




The Dunham coefficients Y.

Table V

and PMO Parameters of the Ground State X‘ZZ of 02

jK

YjK 19 level fit 10 level fit 5 level fit
Y0 3116.08 3115.50 3115.78

Yoo -62.40 -61.82 -62.04

Yoo 0.812 0.562 0.618

Yo, 30.4558 - 30.4436 30.4338
Y1, -1.1009 -1.0786 ~1.0690

Y, 0.02237 0.01265 0.007877
Yo, 10.011655 0.011655 0.011655
PMO parameters

0 1.615758 1.6037720 1.598195

o 19.58761 19.874890 20.0095

T 30505.79 30932.05 ‘ 31130.20

b, 0.1421837 0.1382988 0.132i8360
bs '0.080262 0.0580003 0.0479549
b 0.04447317 0.0413803 0.05476411 -
A -0.0759507x10~2 -0.117475x10-% -0.1748395x10-2

*YOZ is obtained approximately by linear extrapolation of the constants D, for

¥=0 and v=1 using the relation'Be % D; - Dye

oy
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" tic as it is for H

41 .

by as little as 0.006% as in the case of H, and by about 0.01% for HD.

2

The strong dependence of A on the coefficients Y o is clear from Eq.

0
(3.16a). In the case of D,, although the value of A depends on the
particular set of coefficients used, fet-the change is not so drama-
2 and HD; obviously this is because we used the
same'Y02 for the three data sets. We can summarize the results in
Tables III-V as followg: ‘

(1)‘Positive vélues of A resulted when we used inaccurate set of
coefficients, e.g. for H2 positive A resulted when we used the set of
data [22] for which some of the coefficients are based 6n the 8 level
fit and some based on the 3 level fit. For HD‘thefpositive‘vaIue of
A resulted when we used data based on the 10 level fit. In that set
the Dunham coefficient Y02 has a larger standard deviation than the
Y02 in the set of data resulting in negafive values. of A.

(Zj The Dunham coefficients are obtained by fitting observed term
values to the double power series given by Eq. tl{Z) which are essen-
tially expansions in powers of (vv+ 1/2)/o. As v'increases, the
conveigence of the series becomes less rapid and affects the accu-
racy of the:derived coefficients. For that reason we believe that
the coefficients derived using a smaller number ofvvibrationél

levels v are more feliable and that we should eiclude the value
obtained from the.8 and 10 level fits for H2 and HD respectively. .
Also the small values of A resulting from the 10 and 19 level fits
for D2 are considered inaccurate.

(3) A positive value of A imblies a decrease in the leading term of

the Dunham coefficients, i;e. Y. as can be seen from Eq. (3.15).

10
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This in turn leads to an energy decrease. A negative nonadiabatic
correction is in agreement with Bunker's results [21] and with those
of Bishop and Shih [24]. On the other hand negative A means positive
nonadiabatic corrections which agrees with the earlier results ob-
tained by Fisk and Kirtman [15]. It should be recalled that Fisk

and Kirtman made an ab initio estimate, while the results of Bunker
and of Biéhbp and Shih were semi-empirical and in good agreement with
differences between experimental values and very accurate ab initio
adiabatic calculations.

Since it appears that the data based on lower level fits.should
give the most reasonable results, we repeated the calculation-of'the '
various parameters when A—O (i.e. without non-adlabatlc Born-Oppenhelmer vio-
1at10n) using sets based on the 3 level f1t for H2 and 5 level fits. for both
ﬁbf;éd D2' The results are llsted in Table VI for the two cases
(A=0 and A#£0) along with the reduced mass for gach molecule. As we
expected, the velocity-dependent term is mass-dependent’ and the cor-
rection coefficient' A is inversely proportional to the reduced mass
p. The Morse parameters p and T are nearly the same for the three
isotopic moleéﬁles, but the parameters b4, b5 and b6 are not e;actly
~ the same for the three isotopic species. This is in part due to
the inaccuracy of the raw data and to the fact that in our calculation
the series has been truncated at b6. In order to get higher PMO
model parameters, we.need more accurate data and formulas for more
Dunham coefficients. Huffaker [7] studied the effect of truncation

of the series on the various parameters for CO, HF and HC1 molecules

and concluded that truncation does not have serious effects on moie-



Comparison of the PMO Parameters and A for HZ' HD and

Table VI

2 -
mol o] (o T by bs be A M
1.594831. 14.17005 31079.30 0.1462035 0.0393670 < 0.03456199 0.00
Hz ' 0.504066
1.598405 .14.11779 30986.03 0.1424526 0.0472637 0.02038393 -0.3390600x10~2
© 1.595355  16.36822 31127.51 0.1388348 0.0462374 0.0464899 0.00
HD . -2 0.671917
1.598257 16.31851 31049.22 0.1357093 0.0528603 0.3449859 -0.260286 x10 7
1.596670~ 20.04284 31176.73 0.1340681 10;04399087 0.0619413- 0.00 -$§
02 ' 1.007363 c
1.598195 20.00950 31130.20 0.1321836 0.0479549 0.0547641:

-0.1748395x10-2.
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cules with large number of bound states ¢. However, even for CO

with 0 = 77, b,, was found to be larger than bg and by [39] even vwhen .
the series was truncated at b12' From that point of view it is clear
that in order to make bgtter evaluation of bn's for molecules with
small 0 as in the present case, we would need more precise data.

For HD, Y., = Ge and Y40 ~ WgZ, are given for both 10 and 5 level data.

31

] We used‘equations (3.i7d) and (3.17e)'to calculate b, and b,. For D

7 8
the calculation of b7'and b8 were only possible for the 19 and 10

2

level fits. For H2, b7 and b8 were not calculated owing to the lack

of sufficient data. The effect of truncating the series at b8 instead

-of-b6.£or HD and D, are shown in Table VII.
From Table VII it is clear that the effects of stopping at a

given number of parameters for HD and D, are not serious.

2
Assuming the validity of the Born-Oppenheimer_approximation (A=0)

we recalculated the eight parameters for HD obtéiﬁing‘fhé values
. :

p = 1.5064, 0 = 16.346, T = 31085cm ", b, = 0.14092, by = 0.0456,

by = 0.047903, b, = 0.026048, by = 0.016902.

6 8



Table VII

The Effect of Truncation on PMO Parameters for HD and D,

HD D

PMO Series truncated ; Series truncated | Series truncated | Series truncated
Parameter at b6 ’ at b8 at b6 ’ at bg

o) 1.59818 1.5996 1.603772 1.6046

0 16.318151 16.289 19.87489 19.855

T 31046.83 30990.00 30932.05 30900.00

by 0.135598 0.13762 0.1382988 0.13973

bs 0.0530612 0.052416 0.058003 0.057552

be ; 0.0341543 0.035479 - 0.0413803 0.042329

b7 0.034002 0.028187

be 0.0036692 A 0.014829

A -0.260286x10-2 -0.26832x10-% | . -0.0995635x10"> -0.10014x10-2

1%

~J



CHAPTER V

EVALUATION OF THE PMO PARAMETERS
BY LEAST SQUARES FITS

The results obtained in the previous chaptér are rather unsatis-
factory. First, they are based on empirical'values of Dunham coef~
ficients which are quite sensitive to the number of levels fitted.
Second, the negative values of A obtained in Chaptéf IV mean positive
nonadiabatic corrections which contradicts the results obtained by
. Bunker et al. [20]. They found that a satisfactory fit could be:
achieved if the reduced mass'u for tﬁe vibrational kinetic energyvin
the adiabatic approximation was replaced by W, = 1/ (1+B) % E(l-B). uB
was found to be the same for H2 and D2 and is given by uB = -0.0002537,
This implies an increase in the vibrational reduced mass which in turn
leads to an energy decrease as a result of using the nonadiabatic
approach. Moreover by comparing Eq. (3.15e) with Bunker's vibrational
reduced mass [16] given by u/t1+B) we found that our velocity dependent
parameter A should be approximately equal to (B/2) p (0.0002537/2yu). We
suspected that the differences between our results and those of Bunker
might be due to inaccuracies in the empirical Dunham coefficients from

which we evaluated the PMO parameters.

46
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Ideally, Dunham coefficients are the coefficients of the doubie

power series expansion for E, 5
3

B ) Yo Lipe k. (1.2)

Empirically, these coefficients are obtained by fitting techniques
invoiﬁing choices of where to trunéate the two sums'in the above
equation, and of which empirical energy eigenvalués to fit. As shown
by the entries in Tables III-V, the empiriéal Dunham coefficients for
HZ’ HD, and D2 depend rather sensitively on these choices.

In order to avoid the difficulties involved in the use of semi-

empirical Dunham coefficients, we decided to determine the best set of

: PMO"parameters (including A) directly from the empirical energy levels.

For this purpose we combined a multivariable minimization program
developed by Huffaker with our program for energy calculation using
Eq. (1.2) and formulas from Table II. We started with two sets of

PMO parameters for each molecule, one obtained in Chapter IV via the

" iteration program with the negative value of A, the other using the

same values for all parameters except for A, which we replaced by the
value A ® (B/2) *= (0.0002573/2p). These parameters were then varied

through the program so as to minimize the weighted square error

exp _ ccalc,2
VXJ Gy - By 1M | (5.1)
exp calc ; -
where EVJ and EvJ are experimental and calculated values of EVJ EOO’

and where wa is a weighting factor. Since it is known that the PMO
model is less accurate for higher values of v or J, the weight factor
W&J can make square errors for large v or J less important than those
for small v or J. At first we used a weighting function of the form
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(Ei?p)z(v + .37)2. Huffaker then suggested that another form given

[37] and [23] respectiveiy;

by (E:;p)zexplln 2(v + .3J)] might be a better representation of the

accuracy of the PMO model., We found that the two forms of W . men-

vJ
tioned above yield slightly different results. We preferred to use .

the second form to the first one.

-In carrying out the calculations the series expansions (1.2) were
i
cut off at j~< 4 and k <3 up to j + k < 4. For each molecule the

fitting procedure was carried out up to v § %0 and J = 4. As experi-

mental data we used the same data used by Bunker et al. [21] for Hz.h
Those data were calculated from constants obtained by them through .

private communications and we found it slightly different from those

given earlier by Dieke T36]. For HD and D2 we used the data given in

In Tables VIII-X we give the observéd minus the calculated values =

for H,, HD and D2 molecules respectively. In each of these tables there

2’
are two numbers for each (v,j): the upper one is the difference between
the observed and the best fit energy when A is negative while the lower

number is that difference when A is positive. The two sets of PMO para-

HD and D2 are listed

meters which produced the best fit energies for Hz,

From Tables VIIT-X' we notice the following:
(1) There is very little difference between the best fit energies calcu-
lated using either a positive nonadiabatic correction factor A or nega-

tive one and since the positive values of A have much smaller absolute

values than the ﬁégative values and agree with Bunker's values in magnitude o

as well as in sign we tend to believe that the minimum obtained using the

- negative A is a falise one. . ; C e

e m—
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Table VIII [/

The observed minus calculated vibration-rotation energies in cm

relative to the v = j = 0 energy for H2' The upper number is when

-0.,0027708. .The'lower number is when A = 0.00025996.

A=
v j=0 j=1 j=2 j=3 j=4
0.00 0.00 -0.01 -0.02 0.07
’ 0.00 0.00 -0.00 -0.02 0.04
"""" 0.04  -0.08  -0.02  -0.04  0.03
. 0.05 -0.06 0.01 -0.02 0.05
T 0.2 0.0  .0.07  -0.02  -0.01
: 0.10 0.09 0.07 -0.01 -0.02
"""" 0.05  -0.07  0.05  -0.04  0.12
: 0.08 -0.11 0.07 -0.04 0.13
"""" 0.8 -0.12  -0.08  -0.01  0.05
) 0.12 -0.15 0.09  -0.01 0.05
"""" 0.0 0.0z  0.05 0.1  0.28
° -0.11 0.05 0.09 0.15 0.28
"""" 0.0  0.04 012 0.7  0.12
° 0.06 0.10 0.17 0.19 0.05
;‘ ““ 0.2 -0.05  -0.05  0.18  0.52




Tabie IX

The observed minus calculated vibration-rotation energies in en’?
relative to the v = j = 0 energy, for HD, The upper number is when

A = -0.0023948. The lower number is when A= 0.00018714.

0.00 0.00 0.02 -0.04 0.08
’ 0.00 0.00 0.05 0.00 0.12 \
"""" 0.04  0.04  0.05  -0.25  0.02
' 0.09 0.08 0.05 -0.26 0.10
""""" 0.07  -0.15 0.3  -0.21  0.00
: 0.11 -0.10 0.03 -0.16 0.12
"""" 013 -0.06  0.00  -0.05  0.00
: 0.12 -0.06 -0.01 -0.08 0.08
""" -0.08  -0.17  -0.05  -0.13 0.0
* -0.10 ~0.17 -0.05 -0.11 -0.01 _
'''''' 0.06  -0.15  0.04  -0.05  0.09
y 0.03 -0.15 0.08 -0.06 0.17
"""" 0.05  -0.02 0.3  0.06  0.17
° 0.03 0.00 0.21 0.11 0.28
"""" 0.26 0.6 0.7 018 0.1
’ 0.15 0.17 0.34 0.27 0.22
; """ 0.0 -0.22  -0.19  -0.45  -0.55
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Table X
The observed minus calculated vibration-rotation energies in cm"1
. relative to the v = j = 0 energy for DZ’ The upper number is when

A = -0.0012600. The lower number is when A = 0.0001313.

0.00 0.02 -0.02. 0.01 0.06
! 0.00 0.02 -0.01. 0.02 0.06
"""" 20,08 -0.06 0.1  0.09  0.06
' 0.02 0.00 0.06 0.06 0.05
o021 08 0.4 -0.06 0.1
2 0.24 0.20 0.13 -0.10 0.02
.08 -0.08  -0.02 0.2  0.10
: -0.10 -0.11 -0.09 -0.10 -0.07
""" 015 -0.14 0.0  -0.001 0.1
> -0.16 -0.18 -0.07 -0.12 0.03
"""" 0.9  0.03  0.07  -0.04  -0.16
° 0.17 0.13 0.21 0.17 0.17
"""" 0.  0.25 0.5  -0.08  -0.57
’ 0.32 0.31 0.34 0.30 0.30
"""" 0.63  0.48  0.20  -0.30  -0.9
’ 0.30 0.27 0.22 0.09 -0.02
; """ 0.61  0.43  -0.13  -1.04  -2.19




52

(2) This is the first time (to ourlknowledge) where a nonadiabatic
correction is-taken into account for a heteronuclear molecule such as

HD and the agreement between theory and experiment is‘quite satisfac-
tory. |

and H, molecules the agreement between observed and calculated

2 2

values are better than those obtained by Bunker et al. [21] except for a

(3) For D

very few points. However in our approach we are unable to fit as many
vibrational levels as in Bunker's approach since our PMO model was
ffuncated after b8, Y40, Y31, etc. and higher order coefficients become
important for higher vibrational levels.

From Table XI we notice that in the second set A is positive and
one order of magnitude smaller than A in thé first set. Also although
“both values of A in the two setS are inversely propbrtional to the
. reduced mass for the three isotopic molecules yet we find that 2pA in

3 3

the second set are equal to ¥ 0.260x10™>, 0.255x10™> and 0.264x10”

for HZ’ 3

+0.000012 estimated by Bunker et al. [21] for H

HD and D, respectively which is very close to 0.2537x10"

2 and DZ'
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i :
Table XI. | The PMO parameters which

give best fitted energies for H2’ HD and Dz.
molecule  p o T by, bs be by bs A
H2 1.5983 14.124 31014.926 0.14012 0.05350..0.04766 0.02397 '0.0205 --0.2771):10-2
1st set HD 1.5997 16.284 30982.075 0.14176 0.05334 0.04628 0.02476 0.0198 -0.2345::(10"2
D2 1.5982 20.005 31124.60 0.14026 0.04396 0.05350 0.02554 0.01627 -0.1262(10-2
H2 1.6017 14.108 31072.533 0.13955 0.05256 0.04?86 0.02362 0.02023 ,0.25'.3)9x10_3
2nd set HD 1.5966 16,393 31268.350 0.13732 0.04735 0.05058 0.02094 0.02058 0.1871x10-3
D2 1.5990 20,003 31160.990 0.>14094 0.04778 0.04644 9.02424 0.01845 0.1312xlO-’3

~

]



CHAPTER VI

ANALYSIS OF NUMERICAL RESULTS AND CONCLUSIONS

In Chapter V we showed that the differences between experimental
and calculated rovibronic energies in the adiabatic approximation were
reduced by including a nonadiabatic correction term in the PMO poten-~

tial. The mass dependence of this correction term for H,, HD,and D

2’ 2
is consistent withlthe effecis expected from the nonadiabatic inter-
‘action. For H2 and D2 our results agree quantitatively with Bunker's
results [21] and with those obtained by Bishop and Shih [24]. In
this chapter a mofe detailed analysis of the results obtained in
Chapter V will be made.

First, we consider the errors which are probably present in our
analysis because of our truncation of the PMO series. As we mentioned
in Chapter V, we used only eight PMO parameters and consequently 14
Dunham coefficients. Truncation of the PMO series at b, and the

8
Dunham coefficientstjk at j+K§4 is certainly responsible for some
of the differences between measured and calculated eigenvalues. This
contribution increases rapidly with v. For example, neglecfing the
Y50 coefficient could be.a major source of error at high v since it
contributeé Yso[(v+.5)5-.55] to the energy eigenvalues. Also Y04 and
Y41 could improve our calculated energies by YO4[J(J+1)]4 and

Y41[(v+.5)4-.54][J(J+1)] respectively. We can get a rough idea of

54



55

the magnitude of the error resulting of the neglect of Y50 by plotting
lolejol against j and extrapolating to j=5 to find the order of mag- -

nitude of Y. . Fig. 1 shows the values of log V. |-N against j for

the three 1sotopes where N=0,5,10 for H HD and D respectively.

-1

From the figure we found that Y50 x 0.0009 cm -1 for H,, 0.00055 cm

2’
for HD and 0.00017 cm"1 for DZ' This means that the error resulting

from that coefficient alone is about 21 cm'1

-1

for H2 at v=7. For HD at

For D, the error_is about 13 em ! at v=s.

Although this is 6n1y a rough estimate, and although'pért of this error is

v=8 the error is about 24 cm

removed by the neglect of Y60 (since YJO's qlternate in sign) we feel that
this is probably the largest source of error in our approach The reason
that we obtained a good agreement between theory and experiment up

to v=7, 8 and 9 for H,, HD, and'Dz.respéctively could be attributed

2°
to the fact that truncation of the series at low j has the effecf of
influencing the other coefficients,especialiy the smaller ones (YSO
and'Y4O), to compeﬁsatg for the effects of the goefficients-not inclu-
ded in the calculation. This.is in turn affects the accuracy of the
PMO'parameters, especially b7 and b8. Such effécts were -studied in de-
tail by Huffaker [7]. Hopefully by combining Huffaker's program which
takes into account higher order modified coefficients [37] with the
minimization program used here we could diminish the effect of that
error and obtain more accurate Dunham coefficients and more precise

4PM0 parameters. -

Next, we consider the implication of our results for the existence

of adiabatic and nonadiabatic effects which violate the Born-Oppen-

. heimer approximation. Recall that according to the Born-Oppenheimer
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Figure 1. The plot of logIYjO] - N against j for H,, HD.and D,- -
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approximation, the PMO parameters should be identical for different
isotopic species. From Table XI it is clear that the PMO pafameﬁers
Ds Ty oo b8 are different for the three isotopic molecules. This
means that the potential curves are different for the three isotopes.
Of course, difference in static potential curves for different isotopic
spec{es are an adiabatic correction to the Born-Oppénhéimér approxima~
tion. Bunker [17] showed that including an adiabatic correction pro-
duces a mass-dependent term in the equilibrium distance as well as in
thg force constant; hence we think of the isotopic variation of the
PMO parameters as a kind of adiabatic correction which should have
some functional dependence on the reduced masses.

To examine fhe mass dependence of the equilibrium internuclear
distance T, we use the definitions

. 1/2
_ (zuv,)

=L = = ——
Te=%> T and ¢ =+

alo”

and rearranging we find that

r x—P9
€ 0.243555/0T

Using the numerical values of p, T and ¢ from the second set of Table X
we found that the internuclear equilibrium distances L for H,, HD and

D, are 0.74134A°, 0.74139 A° and 0.74122 A® respectively. So there is

no simple dependence of r, on the reduced mass . The adiabatic

force constant K can be obtained using the definitions vosc = f%- k/u

z w,C where we = (21/0) (1+A) . Substituting the numerical values of T,

U, 6 and A we found that k = 5.7765x10°, 5.7812x10°, and 5.7731x10°

dyne/cm for HZ’ HD, and Dé respectively. Here again there is no clear
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dependeﬁcé on reduced mass. From Table XI it is aléo obvious that

the PMO coefficients b4 . b8 for HD do not Jie half-way between for .
HZ and Dé. It is certainly plausible to assume that adiabatic effects
for HD should be intermediate between those for H2 and Dz; indeed this
was assumed by Kolos ahd Wolniewicz [14].' The results in Chapter V
cleafly contradict this assumption. .

Theorists are careful to point out that various simplifying
assumptions involved in ab initio adiabatic calculations hold oniy for
homonucléar molecules, and they have not presented adiabatic reéulté
for HD. The reason is easy to understand: _the trial electron functions
are expressed in coordinates with origin at thevcenter-of-charge of
the nuclei, which provides natural symmetries. If the molecule is
homonuclear, this origin is also the equilibrium value of the center-
of-mass, and is thus very nearly an inertial system, except for smail
(adiabatic) effects when electrons move one way and nﬁclei_}he opposite '
way. On the other hand; if the molecule is heteronuélear, the cehter- :
of-mass is nowhere néar the center-of-charge, and the latter is not
an inertial system. Thus, our results for HD could be an indication
of the corrections which are present because the center-of-charge and
the center-of-mass do not coincide.

For H2 and D, one can still assume that the adiabatic correction
is proportional to 1/u and obtain the Born-Oppenheimer values of rg

and KO, assuming the relation:

o
N

S
e e m

and

0, C1

u
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n n
where r: and ¢~ are the equilibrium internuclear distance and the force

constant is the Born-Oppenheimer approximation. We find to a first order

approximation that rg = 0.74110 AO and Ky = 0.00012. For the force

constant we find that KO = 5.7697x105'dyne/cm and = 0.0034x105°

We find that, unlike the adiabatic effects, the nonadiabatic

effects for H,, HD and D2 are very nearly proportioﬂal to 1/u. Ina

2,
way this is surprising, since the nonadiabatic effects are thought of

as second-order-perturbation corrections involving higher electronic

states, and more excited states can mix with the ground state in HD than

in H2 or D2 because of the nuclear-exchange symmetry of the latter.

.vaviously this additional mixing is not very importént for the nonadia-
batic correction.

We also felt we should‘compare the values of the non-adiabatic
corrections with those obtained by other methods. The nonadiabatic

nad

effects E can be calculated using the férmula

e B [ AR LI FIE RS Th (6.1)
. . J
J:K::O
where YjK is the adiabatic Dunham coefficients and A is the nonadiaba-
tic coefficient defined in Chapter III. Considering a rotationless

state (J=0) Eq. (6.1) becomes

Enad - 2

SAY. (v + DT | (6.2)
& 30 2
j=0 |
Using Eq. (6.2),‘wé calculated the nonadiabatic effects relative to
v=J=0 for the three isotopes. The results are listed in Table II. For

 comparison, we included the nonadiabatic correction calculated by

Bishop and Shih [24] for H, and D, in the third and fifth columns of

2
Table XII.
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From the table it is clear thét there is a very little difference
between the nonadiabatic corrections obtained in the present approach
and those obtained by Bishop and Shih [24] using Eq. (14). Though
the nonadiabatic corrections were not calculated here for J#0 they
could in principle be calculated using Eq. (6.1). This is not done
since the J dependence of the nonadiabatic correction is small and
since we did not include high values of J in our calculations.

The nonadiabatic corrections calculated using Eq. (6.2) are plotted.
25 HD and DZ’

The PMO parameters listed in Table XI (including positive values

versus u = v + 1/2 in Figure 2 for H

of A) reduced the weighted square errors given by Eq. (5.1) from

-11 1

0.66:(10’9 to 0.17x10 for 'H,, from 0.12:(10-g to 0.40)(10-1 for HD,

29
and from 0.26x10™ to 0.40x10™ ! for D,. Consequently the Dunham co-
efficients based on these PMO parameters should be more accurate and
reliable than the set of coefficients we started with iﬁ Chapter IV
to obtain the‘PMO paramefers. In Tables XIII to XV we list the new
bunham coefficiénts which are calculated according to the formulas
given in Table II using the second set of PMO parameters obtained in-
Table XI for the three isotopes. For comparison we listed the corres-
ponding sets of coefficients obtained in references (22,29], [34] and
[23] for H2’ HD, and D2 respectively, noting that there are more than
one set for each molecule depending on the number of vibrational levels
included in the fitting procedure used in those references.

From the above analysis and the analysis in the previous chapters

we conclude that the nonadiabatic breakdown of the Born-Oppenheimer

approximation could be corrected for by adding a velocity dependent term
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Table XII
Values of the Nonadiabatic Corrections E'2d in cn™l for H
(J=20)
holecule Hz D2

A a b a b

0 0.00  0.00 0.00 . 0.00
1 -1.02. -0.97 .= -0.37 -0.36
2 -1.92 -1.83 -0.71 -0.69
3 -2.70 -2.58 -1.02 -0.99
4 -3.37 -3.21 -1.31  -1.26
5 -3.91 -~3.74 -1.57 -1.50
6 -4.34 -4.14 -1.79 -1.72
7 -4.64 -4.42 -1.98  -1.90
8 -2.16 -2.06
9 -2.29 -2.19

2

and D

a nonadiabatic correction obtained using Eq. (6.2)

b nonadiabatic correction obtained using Eq. (14)

in Ref. [24]

2
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u=(v+1/2)

. 1 2 3 4 5 6 -7 8 9

Figure 2. The nonadiabatic correction in cm'1 against v for H2, HD

and D2'



Table XIII

The Dunham coefficients YjK‘in the ground statevxlzg of H, molecule

Y D

3K RETS
(8 level fit) (3 level fit)
Y§g) : Y§§) | ik - [22] [29]
0 0.00 ‘ 8.1695 8.1695
0 60.85170 -0.00799 - 60.844 60.864 60. 841
0 -0.04645 -0.347x10"° - -0.04645 ' -0.04657 -0.04684
0.4958x10°% 0.0 0.4958x10"%
4403.72 -0.4656 4403.26 4400. 39 4400.39
-3.0341 -0.0036" -3.0376 -3.0763 -3.0177
0.00152 0.00 - 0.00152
~0.04564x10"°  -0.04564x10"°
-123.3167 ©0.0122 -123.355  -120.81  -120.81
0.0464 0.0 0.0464 0.0601 ' 0.0285
-0.809x10> 0.00 -0.809x10™5
1.546 | 1,546 0.724 0.724
-0.03576 0.00 -0.03576

-0.08829 0.00 -0.08829

€9



Table XIV

The Dunham Coefficients Y., in the ground state xlz of HD molecule.

jK
Yk Yk

(10 1evel fit] [5 level fit]
j Y§§) : Y§§) Yk [34] [34]
0 0.00 5.9916 5.9916
0 45.645 -0.005 45.640 45.655 45.643
0 -0.026 0.325x10™° . -0.0261 -0.0261 -0.0263
0 0.2100x10°%  0.00 0.2100x10"
1 3814.02 -0.1537 3813. 86 3813.15°  3813.55
1 ~1.9545 -0.2618x10°2  -1.957 1.9860  -1.9615
1 0.7002x10">  0.00 © 0.7002x10"3
1 -0.1626x10"°  0.00 -0.1626x10"%
2 -92.35 0.745x10"°  -92.35 -91.65. -92.01
2 0.0209 0.00 0.0209 0.03146 10.02027
2 0.1288x10™*  0.00 10.1288x10"
3 0.9655 0.00 0.9655 0.723 0.862
3 -0.1352x107%  0.00 -0.1352
4 .
4 -0.0473 0.00 -0.0473 0.0133 -0.0379

¥9

e e e b b+ ot et nta



The Dunham

coefficients Y.

Table XV

in the ground state x?xg of D

jK 2
Yig Hf Yig

- [19 level fit] [10 level fit] [5 level fit]
. y(® () Y,
j K iK jK jK [23] [23] [23]
0 o0 . 0.00 4.1161 4.1161
0 1 . 30.441 -0.0025 30.439 30.458 30.440 30.434
0 2  -0.0116 0.4876x10°%  -0.0116
0o 3 0.6218x107° 0.0 0.06218x10"
1 0 3115.103 -0.1545 3114.95 3116.08 3115.50 3115.78
1 1 -1.0696 -0.468x10"3 -1.0700 -1.1009 -1.0780 01.0690
1 2 0.2707x10"3  0.00 0.2707x10"3
1 3 -0.6114x10"7 0.0 -0.6114x10"7
2 0  -61.392 ~0.458x10"2 -62.40 -61.82 -62.04
2 1 0.9941x10"%  0.00 0.9941x10"2 0.02237 0.01265 0.007877
2 2 -0.6652x10"%  0.00 -0.6652x10"°
3 0 0.4778 0.00 0.4778 0.812 0.562 0.618
3 01 -0.4561x10">  0.00 -0.456x10"°
4 o0 -0.018 0.00 -0.018 -0.0228 -0.0274

-0.0764

59
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A d2/dr2 to the PMO potential and treating it as a perturbation cor-
rection.

We showed that the changes in the Dunham coefficients on (pro- -
duced by including the new term) are equivalent to a change in the
"yibrational" reduced mass of about 2Apy where p is the reduced mass
used in the adiabatic approximation. On the other hand the coeffi-
cients Yy, are not - to first order - affected by including the non-
adiabatic term. In terms of reduced masses this means that in both
adiabatic and nonadiabatic approximation we use the same reduced mass
to calculate the rotational kinetic energies.

Treating the PMO parameters and A as fitting pérameters, we were
able to achieve satisfactory fits to experimental vibronic energies
of the ground state of Hz, HD,and D2' Although several groups haye
attempted to perform gp_igigig'nonadiabatié calculation for Hz and
D2, none succeeded in fitting discrepancies between experimental and
predicted adiabatic energies. The present results prove that our
approach is as efficient - in predicting accurate eigenvalues - as
that of Bunker [20]. Also we showed that there is a very little dif-
ference between our calculations and those obtained by Bishop and
Shih [24]. Moreover our approach proved very successful for the case
of a heteronuclear molecule in contrast to the other approaches [20,
24], which were developed only for homonuclear molecules.

In the present approach we do not need an ab initio calcula@ion
to find the adiabatic enérgies, but we need ﬁrecise and reliable data
for the energy levels. Care must be taken in fitting to avoid a

“false minimum” with a value of A with the wrong sign. One can apply
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the rule that the nonadiabatic correction should lower the adiabatic
energies since it is in principle a second-order correction term.

One advantage of allowing for the breakdown of the Born-Oppen-
heimer approximation while using the PMO model is that the formulas
for the energy levels are still simple and can be easily computed and
can be applied in principle to more complicated molécules‘other than
HZ' The disadvantage of this approach is the fact that although the
convergence properties of the perturbation series are good for moderate
values of v, however we cannot study the nonadiabatic correctioms. for
levels of high quantum number v. This is of course because the PMO
model itself involves a perturbation expansion in the powers of
(ﬁ + 1/2)/0 and the accuracy of the calculated energies decreases
rapidly as v increases. To handle higher vibrational levels accurate-
ly one needs higher-order PMO coefficients bn and higher-order Dunham
coefficiehts. N

The wave functions for the PMO model including nonadiabatic ef-
fects can be calculated‘fairly easily (via perturbation theory) to the
accuracy of the PMO functions of Dwivedi and Huffaker [38,39]. We would
expect that these functions would give better representation of the
vibration and rotation eigenfunctions of light diatomic molecules.
Such functions would allow more accurate determination of the transi-

tion probabilities especially for hydrides and deuterides.
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