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SUMMARY ABSTRACT 

 

 

 Nanostructures are currently of great interest because of their unique properties 

and potential applications in a wide range of areas such as opto-electronic and bio-

medical devices.  Current research in nanotechnology involves fabrication and 

characterization of these structures, as well as theoretical and experimental studies to 

explore their unique and novel properties.  Not only do nanostructures have the potential 

to be both evolutionary (state-of-the-art ICs have more and more features on the 

nanoscale) but revolutionary (quantum computing) as well. 

 In this thesis, a combination of bottom-up and top-down approaches is explored to 

fabricate ordered arrays of nanostrucutures.  The bottom-up approach involves the growth 

of self-organized porous anodic aluminum oxide (AAO) films.  AAO films consist of a 

well ordered hexagonal array of close-packed pores with diameters and spacings ranging 

from around 5 to 500 nm.  Via a top-down approach, these AAO films are then used as 

masks or templates to fabricate ordered arrays of nanostructures (i.e. dots, holes, meshes, 

pillars, rings, etc.) of various materials using conventional deposition and/or etching 

techniques.  Using AAO films as masks allows a simple and economical method to 

fabricate arrays of structures with nano-scale dimensions.  Furthermore, they allow the 

fabrication of large areas (many millimeters on a side) of highly uniform and well-

ordered arrays of nanostructures, a crucial requirement for most characterization 

techniques and applications.  Characterization of these nanostructures using various 

techniques (electron microscopy, atomic force microscopy, UV-Vis absorption 



 

 xxii

spectroscopy, photoluminescence, capacitance-voltage measurements, magnetization 

hysteresis curves, etc.) will be presented.  Finally, these structures provide a unique 

opportunity to determine the single and collective properties of nanostructure arrays and 

will have various future applications including but not limited to: data storage, light 

emitting or sensing devices, nano-tribological coatings for surfaces, bio-sensors, filters, 

and more. 

 

 



 

 1

 

 

 

Chapter 1 

 

Nanostructures 

 

1.1.  NANOSTRUCTURE OVERVIEW 

 Since Richard Feynmann’s famous 1959 lecture [1] in which he described his 

vision of building and controlling matter from the bottom up utilizing atoms and 

molecules as the basic building blocks, scientists have pursued the goal of manipulating 

matter on the atomic and molecular scales.  This emerging area of study, termed 

nanotechnology, involves the fabrication, characterization, and study of the behavior of 

nano-scale materials.  These nano-scale materials or nanostructures are loosely defined as 

materials with at least one dimension on the order of 1-100 nm and are of great interest 

because of their potential use in many diverse fields ranging from opto-electronic devices 

to bio-medical applications.  In addition, they are of fundamental physical interest since 

they lie in a size regime between that of bulk material and molecular-sized material.  In 

this size regime, nano-materials behave differently from either their bulk or molecular 

counterparts.  Current research in this area is seeking to understand and exploit the 
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electronic, magnetic, optical, thermal, and mechanical properties of such structures and 

devices. 

 Figure 1.1 shows the size scales involved in the materials, characterization 

techniques, and technologies in this area of research.  For comparison, common 

biological materials and their characteristic sizes are also shown.  For instance a blood 

cell with a typical size of a few microns is rather large compared to a typical virus (~75 

nm) or to the diameter of a DNA helix (~ 2nm), both of which qualify as biological 

nanostructures.   

 The benefits of using nanostructured materials rather than their bulk counterparts 

for a variety of applications are numerous.  In some cases, improvements are obtained 

simply by fabricating smaller devices than previous versions.  As an example, the 

Figure 1.1.  Spaceline showing the length scales associated with nano-scale structures, 
characterization, and technology. 
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ongoing trend in reducing the size of transistors (the basic operating elements in current 

generation integrated circuits), allows faster processing speeds, lower operating powers, 

and higher transistor densities (i.e. more memory per unit area), while still being firmly 

based in macroscopic classical physics.  However, the benefits of using nanostructures in 

most applications is not in simply being small, but in the new intrinsic, and potentially 

advantageous properties such materials should exhibit as compared to their bulk 

counterparts.  Unlike bulk material, the properties of nanostructured materials depend 

critically on the number of atoms, N, in the system.  Properties such as atomic ionization 

potentials, chemical reactivities, magnetic moments, polarizabilities, and geometric 

structures depend critically on the number N, thereby opening up a whole new area of 

study where material properties can be engineered simply by controlling this parameter.  

Another important property that changes as N gets smaller is the surface-to-volume ratio 

of these nanostructures making the surface and interface properties of such materials 

critical.  High surface 

area materials which 

can consist of either 

highly porous 

materials or solutions 

of small 

nanoparticles have 

emerging 

applications 

including but not Figure 1.2.  Surface-to-volume atomic ratio (blue) and the 
total number of atoms (red) plotted as a function of cube 
side for Si(100) cubes.
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limited to: energy storage, battery/capacitor elements, gas separation and filtering, and 

bio-chemical separations [2].  To illustrate the importance of surface area properties in 

nanostructures, Figure 1.2 shows a plot of the surface-to-volume atomic ratios and the 

total number of atoms for increasingly smaller silicon cubes with (100)-directed faces.  

For a relatively large (1µm)3 silicon cube only about 0.1% of the atoms lie on the surface 

but for a much smaller (2 nm)3 silicon cube, nearly half of the atoms (~40%) lie on the 

surface.  At these scales, surface tension, strain, and thermal stability are all critical issues 

in these systems. 

 As alluded to above, nanostructures also lie in a regime where fundamental 

physics relations change from classical to quantum mechanical allowing new and 

interesting phenomena to take place (e.g. tunneling, quantum interference effects, etc.)  

For instance, 

confining 

electrons in 

solids to small 

length scales 

causes the 

continuous bulk 

energy bands to 

quantize into 

discrete levels.  

To illustrate this, 

Figure 1.3 shows Figure 1.3.  Density of states for free electrons in a solid for: (a) bulk 
matter (b) one spatial dimension confined (c) two spatial dimensions 
confined and (d) three spatial dimensions confined. 
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the density of states of a free electron Fermi gas for no spatial dimensions confined (3D 

or bulk material), one spatial dimension confined (2D or quantum wells), two spatial 

dimensions confined (1D or quantum wires), and three spatial dimensions confined (0D 

or quantum dots).  For bulk materials, the density of states consists of a continuous band 

whereas 0D structures (often called artificial atoms) have a discrete energy spectrum 

much like atomic or molecular energy levels. By reducing the dimensionality of various 

materials, certain properties of devices become more advantageous.  For example, 

reduced dimensionality lasers are more efficient than their bulk counterparts having 

lower current thresholds, less broadening, and reduced temperature sensitivities due to 

the more discrete density of states.  In addition, the use of discrete transition energy 

levels dependent on the size of the structure (e.g. quantum well thickness) allows a means 

to tailor the output wavelength of such reduced dimensionality lasers.   

 At this point it becomes useful to pose the question, “How small does a structure 

need to be before it starts exhibiting quantum mechanical behavior?”  The answer to this 

question is not universal and depends on the system and material properties.  As a rule of 

thumb, electronic quantum mechanical effects start to become observable when the 

wavelength of the electron is comparable to the size of at least one confined dimension in 

the structure.  In solid state systems, this corresponds to the Fermi wavelength which is 

dependent on the “free” electron density in the material.  In most metals, the electron 

density is very large (>1021 cm-3) and the value of the Fermi wavelength for most metals 

consequently lies in the range of a few nanometers.  However, in semiconductors, the 

much lower carrier density can give Fermi wavelengths of several tens to hundreds of 

nanometers.  This length scale is accessible using conventional growth and patterning 
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techniques and 

makes 

semiconductors an 

attractive material to 

observe quantum 

mechanical effects 

since relatively larger 

structures can be 

used.  In addition, 

carrier densities in 

semiconductors are adjustable via the doping of impurities and gating techniques making 

semiconductors a versatile material for both research and device structures.  Figure 1.4 

shows a plot of the free electron Fermi wavelength as a function of carrier density for 

bulk materials over a range including low to highly doped semiconductors (< 1022 cm-3) 

and metals (> 1022 cm-3).  Note that since the Fermi wavelength depends solely on the 

carrier density (not the effective masses, etc.) it is largely independent of the 

semiconductor material (neglecting band structure by assuming free electrons) and is the 

same for silicon, gallium arsenide, indium antimonide, etc. at similar doping densities.  

However, in order to observe quantum mechanical effects in these materials, the discrete 

energy levels, which are size and material dependent, must be comparable to the thermal 

energy of the electrons so as not to be washed out.  Other factors such as the mean free 

path of the electrons (temperature and material dependent) also need to be considered. 

Figure 1.4.  Bulk Fermi wavelength versus electron concentration.
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 This leads to 

further criteria for 

approximating the 

length scales that 

need to be 

approached for the 

onset of quantum 

mechanical effects 

by comparing the 

low dimensional 

quantized energy 

levels of confined 

electrons with the 

thermal energy of such electrons.  A rough approximation can be made by assuming a 

small cubic nanostructure.  In this case, the well known quantum mechanical “particle-in-

a-box states” for infinite potential barriers can be applied.  Figure 1.5 compares the 

ground state energy levels of a confined electron in a box as a function of cube size (Lx = 

Ly = Lz = L) for silicon, gallium arsenide, and indium antimonide.  The black horizontal 

lines at 26, 6.6, and 0.36 meV are the thermal energies of the electron at 300 (room 

temperature), 77 (liquid nitrogen), and 4.2 K (liquid helium), respectively.  From the 

figure, it can be seen that InSb allows the largest cube size that will exhibit quantum 

mechanical effects at a given temperature due to its small effective mass.  For example, 

the ground state energy of an InSb cube with sides of 50 nm is approximately equal to the 

Figure 1.5.  Particle-in-a-box ground state energies as a function of 
cube length, L = Lx = Ly = Lz, for silicon, gallium arsenide, and 
indium antimonide.  The black horizontal dashed lines indicate the 
thermal energies at 300K, 77K, and 4.2 K. 
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room temperature thermal energy of 26 meV.  An InSb cube with a ground state energy 

of twice the thermal energy (~52 meV) would need to be around 38 nm on a side.  For 

comparison, quantum mechanical effects for silicon should be observable at room 

temperature for a cube 10 nm on a side which has a ground state energy of 59 meV 

(calculated using the transverse effective mass, mt = 0.19me for silicon), more than 

double the 26 meV thermal energy.  This is certainly in good agreement with 

experimental and more involved theoretical results obtained for porous silicon samples 

which consist of a porous network or grid of silicon with dimensions in the sub-10 nm 

regime dependent [3, 4].  Unlike bulk silicon with its indirect bandgap, porous silicon 

exhibits visible photoluminescence whose central emission wavelength is size dependent.  

Debate continues to center on whether the observed photoluminescence is a result of 

quantum confinement effects due to the reduced size of the silicon or to high surface area 

interfacial properties [4, 5]. 

 
1.2.  NANOSTRUCTURE FABRICATION TECHNIQUES 

 To date, the fabrication of materials on the nanoscale has focused on two basic 

approaches:   

The “top-down” approach in which nanostructures are formed from bulk material by 

lithography, growth, etching, and related techniques; or the “bottom-up” approach in 

which nanostructures are built up from the individual atoms or molecules by self-

organization of materials, electrochemical methods, or chemical synthesis. 
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 The top-down approach has 

conventionally used techniques such as e-

beam or photolithography combined with 

dry or wet etching and deposition 

techniques such as thermal evaporation, e-

beam evaporation, sputtering, and 

molecular beam epitaxy (MBE).  At 

present, the top-down approach is more 

developed than the bottom-up approach 

and is most notably used in the fabrication 

of current integrated circuits.  An example of a more exotic top-down technique for 

patterning structures is shown in Figure 1.6.  This approach, termed near field scanning 

optical microscopy (NSOM) lithography, was demonstrated by Dr. Reuben Collin’s 

group at the Colorado School of Mines and imaged by the author using atomic force 

microscopy (AFM) [6].  In brief, a tapered fiber optic tip was dithered a few nanometers 

above the surface of amorphous hydrogenated silicon (a-Si:H) film resulting in the 

oxidation of the surface and hence generating an oxidized pattern wherever the tip was 

rastered.  After patterning with the NSOM, the samples were exposed to a hydrogen 

plasma etch with a high etch selectivity between oxidized and hydrogen terminated 

silicon allowing the pattern to be “developed”. 

 Although this technique and the other more mature technologies mentioned above 

are currently used for both commercial and research purposes, they suffer from several 

disadvantages that prevents them from being useful for the fabrication of smaller 

Figure 1.6.  Pattern generated using NSOM 
lithography on a-Si:H film and developed 
using a hydrogen plasma etch.  The pattern 
has linewidths of approximately 320 nm 
wide and 45 nm tall. 
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nanostructures.  One disadvantage of the top down approach is the limitation on the size 

of the material that can be constructed versus the processing time required to fabricate 

large patterns or arrays.  For instance, e-beam and STM lithography can approach 

structures below 10 nm in size but these techniques are serial requiring large amounts of 

time to fabricate large arrays or patterns.  Conversely, photolithography (a parallel 

technique) can fabricate patterns and arrays over a large area quickly, but the size of the 

structures, limited by the wavelength of light, currently only approaches around 65 nm 

using sophisticated resolution enhancement techniques such as phase-shifting 

lithography, etc. 

 Towards this end, recent work and research has focused on bottom-up techniques 

as a means to obtain well-ordered, smaller structures with less processing times.  One 

such bottom up technique, the template method, seeks to take advantage of nano-porous 

materials, which are utilized as masks or templates to seed either a growth or etching type 

process [7].  To date, most of the work in this area has used one of two types of porous 

membranes as a template:  track-etch polymeric membranes and anodic aluminum oxide 

(AAO) films.  Porous membranes fabricated by the track-etch method are prepared by 

bombarding of film of nonporous polymeric material with nuclear fission fragments.  

This creates damage tracks in the material which are then chemically etched into pores.  

The resulting material consists of randomly distributed cylindrical pores of uniform 

diameter anywhere from a few microns down to 10 nm.  Conversely, AAO films, often 

called porous alumina, are formed by anodizing an aluminum foil in an electrolytic cell.  

The resulting material consists of cylindrical pores surrounded by an aluminum oxide 

backbone.  The pore diameters are tunable anywhere from 5 nm to 500 nm depending on 
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the applied voltage, and in addition, it has recently been discovered that under the 

appropriate anodizing conditions, the pores self order into a hexagonal close packed 

array.  Of these two membranes, AAO films have a distinct advantage over track-etch 

membranes for use in lithography or pattern transfer applications due in large part 

because AAO films have more stable chemical and mechanical properties, are easier and 

cheaper to fabricate, and can have very well-ordered arrays.   

 For these reasons, the bulk of this thesis will focus on the fabrication and 

characterization of well-ordered arrays of nanostructures (dots, holes, rings, and pillars) 

fabricated using AAO films.  The following section describes the organization of this 

thesis. 

 

1.3.  THESIS OVERVIEW 

 The chapter progression of this thesis is based partially on a historical approach 

(i.e. in the order that the work was done) while maintaining some sense of logical flow.  

The remainder of this thesis is composed as follows: 

2:  Atomic Fluorine Beam Etching of Silicon and Related Materials 

 Here a novel atomic fluorine beam technique is used to etch Si-related materials 

and potential mask materials.  Temperature dependent bulk etch rates were determined 

and show an Arrhenius-type behavior with the substrate temperature.  Using a CaF2 

mask, record high aspect ratio trenches (1 µm wide by 120 µm deep) were fabricated in 

Si.  Unfortunately, this project was discontinued because our collaborator, Dr. Keil, did 

not remain at OU and initial work at reproducing high aspect ratio trenches on the 
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nanoscale proved problematic.  Finally, work on fluorine beam etching through AAO 

films was carried out and is discussed in Chapters 5 and 6. 

3:  Anodic Aluminum Oxide Films 

 This chapter is intended as a guide for future experimentalists on the growth and 

fabrication of AAO films specifically for use as templates or masks.  To start, a historical 

review of AAO films is presented discussing details of the growth mechanism.  It is 

interesting to note that the growth and ordering mechanisms of porous AAO films is, at 

present, still not fully understood.  The next part of this chapter presents work on 

optimizing the growth of AAO films specifically for use as templates or masks for the 

fabrication of arrays of nanostructures (i.e. tailoring the pore dimensions, spacings, AAO 

thickness, etc.).   

4:  Pattern Transfer with AAO Films:  Nano-Dot Arrays 

 Here work on the fabrication of nano-dot arrays of various materials by 

evaporating or sputtering material through AAO films is presented.  UV-Vis absorption 

spectroscopy of 50 nm diameter Au nano-dots, fabricated in this manner, show peaks 

qualitatively consistent with Mie scattering and absorption phenomena for Au nano-dots 

of this size. 

5:  Pattern Transfer with AAO Films:  Nano-Hole Arrays 

 Nano-hole arrays fabricated by dry etching through AAO films into underlying 

substrates (Si, GaAs, and InSb) are discussed.  In particular, results are shown for Ar+ ion 

etching, chlorine-based reactive ion beam etching, and neutral atomic fluorine beam 

etching.  All three etching techniques show characteristic nano-hole geometries and 

profiles. 
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6:  Fabrication and Characterization of Si Nano-Meshes 

 Characterization of free-standing silicon nano-meshes fabricated using a 

combination of photolithography, wet-anisotropic etching, AAO films, and dry etching 

techniques are discussed.  These Si nano-meshes were further downshifted in size by the 

use of a pattern dependent and self-limiting oxidation step, which oxidizes the outer Si 

matrix, leaving behind sub-15nm silicon cores.  Photoluminescence (PL) spectra taken on 

these structures at 77 K reveal broad peaks in the 600-1000 nm wavelength range, 

possibly indicative of quantum confinement effects in the nanostructured Si. 

7:  Fabrication and Characterization of Array of MOS-Type Nano-Capacitors 

 Capacitance-voltage (C-V) characterization of a nano-array of metal-oxide-

semiconductor (MOS) capacitors in Si is discussed.  The nano-capacitor array was 

fabricated using AAO masks, etching techniques, and oxide growth in collaboration with 

researchers at the University of North Carolina.  The conducting contact is achieved by 

using either poly-silicon or an electrolyte.  In both cases, room temperature C-V 

measurements indicated little leakage.  In the electrolyte case, capacitance values indicate 

only the thin gate oxide at the bottom of the nano-holes contributes to this capacitance. 

8:  Fabrication and Characterization of Nano-Ring Arrays 

 In this chapter, the fabrication and characterization of ordered arrays of Au, Ni 

and Si nano-rings fabricated using Ar+ sputtering and AAO templates is described.  Two 

methods are presented, both relying on the re-deposition of sputtered material inside the 

pores of an AAO mask.  Ring diameter, height, and spacing are controllable by varying 

the process conditions.  In addition, magnetization hysteresis curves were taken on a Ni 

nano-ring array and compared with a Ni nano-dot array and a bulk thin film Ni layer. 
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 This is followed by four appendices detailing related projects that were 

undertaken during the course of this research.  These were not included in the main 

section of the thesis because they are either still ongoing or are not directly related to the 

main topic of this thesis.  The appendices include: 

A1:  Pattern Transfer with AAO:  Nano-Pillar Arrays 

 This appendix describes work performed in fabricating nano-pillar arrays using 

AAO masks to define an array of dots that was subsequently used as a mask for a dry 

etching process.  Two related methods are described and results from each are shown. 

A2:  Pattern Transfer with AAO:  Carbon Nano-Tube Arrays 

 This appendix describes work on fabricating a carbon nanotube array upright on a 

SiO2/Si substrate by using an AAO template to seed an array of cobalt catalysts for a 

carbon nanotube growth step.  The resulting nanotubes were not as well ordered as the 

initial AAO templates most likely due to catalyst migration under the high temperature 

growth step. 

A3:  Niobium Nano-Meshes 

 This appendix describes work on Nb nano-meshes fabricated by Nb sputter 

deposition directly onto AAO films.  Preliminary characterization of these films using a 

scanning superconducting quantum interference device (SQUID) microscope shows the 

presence of vortices and indicates that the nano-meshes are superconducting.  Future 

work will involve characterization of these films by magnetization/susceptibility 

measurements as well as with a low temperature scanning magnetic force microscope 

with a spatial resolution comparable to the 50 nm hole diameters in these nano-meshes to 
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determine the location of the vortices when the magnetic field is commensurate with the 

diameter of the nano-holes. 

A4:  Malonic Acid-Grown AAO Films 

 This appendix describes work on the growth of porous AAO films using 

malonic acid-based electrolytes.  Electron microscopy techniques were used to determine 

the dependence of the pore diameters and spacings on the growth conditions and to 

confirm that malonic acid-grown AAO films follow the same growth mechanism as other 

porous AAO films.  In addition, a preliminary study was conducted to determine the 

feasibility of finding appropriate growth conditions for the self-ordering of the pores into 

a hexagonal close-packed array.  This initial study proved inconclusive but suggests that 

malonic acid-grown films may self-order into a hexagonally close-packed array at higher 

anodization voltages than presented here. 
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Chapter 2 

 

Atomic Fluorine Beam Etching of Silicon and 

Related Materials 

 

2.1  ABSTRACT 

 A neutral atomic fluorine beam was shown to produce etch rates in Si and 

related materials as high as 1 µm/min.  Etch rates were dependent on the substrate 

temperature and exhibited an Arrhenius-type behavior with the substrate temperature 

with an activation energy of 0.1 eV.  Room temperature etching of Si was initially not 

observed until a carbon contamination layer was removed from the Si surface by an 

initial heating step, at which point etching was observed at the expected rate.  Using a 

CaF2 resist layer, 120 µm deep by 1 µm wide trenches (aspect ratio of 120:1) were 

fabricated in Si with little sidewall taper (slopes of about 1000:1) or aspect-ratio 

dependent etching effects.  However, trying to reproduce these results on the nano-scale 

led to less impressive results, e.g. Si trenches 3.4 µm deep by 300 nm wide (aspect ratio 
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of 11:1) with sidewall tapers of about 10o were fabricated using e-beam lithographically 

defined Cr masks.  This is thought to be due to the lack of a good high temperature 

fluorine resist as well as the anisotropic nature of the F-Si etching dynamics which is 

exhibited at length scales on the order of the width of the e-beam lithography defined 

trenches.  Work on fluorine beam etching through AAO films is discussed in Chapters 5 

and 6.  Finally, much of this chapter was published with minor changes [8]: 

P. R. Larson, K. A. Copeland, G. Dharmasena, R. A. Lasell, M. Keil, and M. B. Johnson, 

“Atomic Fluorine Beam Etching of Silicon and Related Materials”, J. Vac. Sci. Technol. 

B 18, 307 (2000). 

 

2.2.  INTRODUCTION 

The ability to etch highly anisotropic features in silicon has been, and will 

continue to be, a crucial requirement for the size reduction of devices in integrated 

circuits.  Currently, dry etching techniques such as plasma etching and reactive ion 

etching are used to transfer patterns into device substrates.  These techniques have had 

remarkable success in fabricating highly anisotropic features, but they suffer from several 

disadvantages affecting their ability to etch such features on a still smaller scale.  These 

disadvantages include: substrate damage due to charging and ion bombardment, feature-

size dependence on the etch rate, and undercutting due to sidewall charging and 

scattering of reactive species [9, 10].  Recently, atomic beam techniques have been 

developed [11-15] that have the ability to etch anisotropic features into substrates [13].  

With their relatively simple chemistry and use of low energy neutral atoms, these 

techniques do not suffer from several of the disadvantages listed above.  
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 In this chapter, an application of an intense atomic fluorine beam to rapidly etch 

silicon and related materials is described.  In addition, experiments were conducted that 

utilize the inherently collimated nature of atomic beams to fabricate extremely 

anisotropic etching features. 

 

2.3.  EXPERIMENTAL DETAILS 

Figure 2.1 shows the atomic fluorine beam etching apparatus, which has been 

described elsewhere in detail [11].  The apparatus consisted of an atomic fluorine source 

connected via differential pumping to a target chamber.  Diffusion pumps using fully 

fluorinated Fomblin oils evacuated both vacuum chambers.  The target chamber pump is 

lN2 baffled, and the pressure in this chamber was about 2x10-5 Torr (5x10-6 Torr) while 

the beam is on (off).  To generate a well-collimated, intense beam, a high-pressure (2000-

3000 Torr) gas mixture of 5 % F2 in He flowing through a ~150 µm-diameter nozzle at 

the tip of a MgF2 tube was thermally dissociated.  Heating the nozzle to ~900 oC resulted 

in a measured dissociation yield of about 70 % [11].  The kinetic energy of the atomic F 

beam was measured to be 1.0±0.1 eV.   Downstream, the jet was collimated by a 750 µm-

diameter skimmer before reaching the sample target.  Beam intensities are difficult to 

measure directly [16], however, based on flow measurements for the He beam 

component, an estimate (within a factor of 2) of 1x1018 cm-2s-1 was made for the F 

intensity.  Samples were cleaned using a standard degreasing treatment (acetone, 

methanol, and DI water) and in the case of Si samples this was followed by a dilute HF 

etch to remove any surface oxides.  The samples were then mounted onto a resistively 

heated copper target assembly and loaded into the etching chamber. 
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It is useful to comment on the effects that the very-high, rather than ultra-high, 

vacuum conditions may have on the etching process.  In general, vacuum conditions 

affect an etching process either by: 1) the continual contamination of the etching surface, 

while etching is taking place; or 2) the initial build-up of a contamination layer before the 

etching process has been started.  The effect that the non-UHV conditions have through 

mechanism 1) may be estimated by comparing the atomic fluorine beam flux on the 

sample to the flux of other vacuum constituents.  Residual gas analysis of the 5x10-6 Torr 

background vacuum indicated it was nearly entirely composed of water and air.  Using 

the usual monolayer (ML) formation rate of one ML per second at 1x10-6 Torr, we find 

that the flux associated with water and air is 1x1016 cm-2s-1, or the flux ratio of atomic 

fluorine to water and air is 100:1.  Regarding oil backstreaming from the cold-trapped 

diffusion pump, the Fomblin oil partial pressure is about 10-8 Torr, as given by the vapor 

Figure 2.1.  Schematic of atomic fluorine beam etching apparatus.  A high-pressure (2000-3000 
Torr) gas mixture of 5 % molecular fluorine in helium is introduced into a MgF2 tube heated to 
900 °C.  At this temperature approximately 70% of the molecular fluorine dissociates into 
atomic fluorine.  The gas mixture then expands through the 150 µm-diameter nozzle (Nz).  The 
750 µm-diameter skimmer (Sk) collimates the gas into a beam, which impinges on the masked 
sample in the target chamber.  The energy of the atomic fluorine in the beam is about 
1.0±0.1eV, and the flux at the target is about 1x1018 cm-2s-1.  Based on the diameter of the 
source nozzle and target position, the angular dispersion is 0.1o. 
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pressure of Fomblin oil at the chamber temperature of about 25 oC [17].  Thus the flux 

ratio of atomic fluorine to Fomblin oil is 5x104:1.  Such large flux ratios are due to the 

highly directional nature of the intense atomic fluorine beam.  These flux ratios imply 

that once etching begins the effect of water and air in direct etching will be small and the 

effect of Fomblin vapor will be negligible.  On the other hand, through mechanism 2), a 

thin layer of Fomblin oil initially present on the sample at room temperature may protect 

the substrate and partially inhibit etching until the oil is removed by heating the sample to 

some threshold temperature, that depends on the vacuum conditions.  Such behavior is 

supported by the fact that the vapor pressure of Fomblin oil at 100 oC is about four orders 

of magnitude larger than at room temperature, so that at elevated sample temperatures 

one expects the layer of Fomblin oil to reduce in thickness or disappear entirely.  In fact, 

evidence of the presence of a contamination layer was directly observed in two ways.  

First, as the vacuum conditions were improved (e.g., by using a cold-trap on the diffusion 

pump and using sorption pumps to rough the etching chamber, rather than a mechanical 

pump) a reduction of this threshold temperature from about 150 oC to below 80 oC was 

observed.  Second, by initiating etching with a sample temperature at 120 oC and quickly 

reducing this temperature to 25 oC, while continuing to etch the sample, room 

temperature etching was directly observed at the expected rate.  (This result is discussed 

in more detail in the Results Section.)  In summary, the only effect of the very-high 

vacuum conditions that was observed is a thin contamination layer that initially inhibits 

etching.  To eliminate the effect of this layer, unless otherwise stated, all of the results 

reported here are for substrate temperatures at or above 120 oC, where the observed effect 

was negligible and for the best possible very-high vacuum conditions. 
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2.4.  RESULTS 

 2.4.1  Bulk Etch Rates of Si and Related Materials 

Figure 2.2 (a) shows etch depths versus time for silicon and related materials at a 

substrate temperature (TSUB) of 120 oC.  Etch depths were measured by etching through a 

nickel grid, with 0.5 mm openings and 0.75 mm period, using a Tencor Profilometer to 

measure step heights.  Etch rates were determined by etching samples for various time 

intervals.  The spread in the data is due to run-to-run variations in the atomic flux arising 

from changes in the beam-source nozzle temperature and pressure.  (Thermal dissociation 

of F2 is highly sensitive to both temperature and pressure.)  Typical run-to-run etch-rate 

variations for the same nominal conditions were about 20 %, while variations within the 

same run were lower. 

 Measured etch rates for silicon, silicon nitride, and silicon dioxide for a 

substrate temperature of 120 oC are 0.2, 0.08, and 0.03 µm/min, respectively [18].  

Typical photoresist materials etch at the rates shown in the table inset in Figure 2.2 (a), 

which also shows their etch selectivities compared to silicon.  Fully fluorinated bulk 

materials such as Teflon and CaF2, and materials such as bulk Ni that form non-volatile 

fluorides, do not etch even at temperatures well above 100 oC.  It is important to make the 

distinction between bulk materials and thin films as further experiments indicated a 

temperature dependent threshold thickness below which materials such as Ni would etch.  

Above this threshold thickness for Ni, it was found that the thickness of the film actually 

slightly increased presumably due to the buildup of a nickel fluoride layer. 
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 Figure 2.2 (b) shows a 

plot of etch rate versus sample 

temperature, for temperatures 

from 80 to 500 oC (solid 

squares), plotted in the usual 

Arrhenius form.  The good 

straight-line fit (solid line) 

through the data indicates a 

substrate-temperature-activated 

process with activation energy 

of 0.1 eV as given by the slope.  

An etch rate as high as 1 

 µm/min for silicon is observed 

for TSUB=500 oC.  For a 

substrate temperature of 25 oC 

and etch time of 15 minutes, 

the etching rate directly 

measured was 9x10-4 µm/min, 

two orders of magnitude lower 

than the etch rate expected for 

Arrhenius behavior.  This is 

most likely explained by a thin 

protective layer of Fomblin oil 
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Figure 2.2.  (a) Etch depth vs. time for silicon, Si3N4 and 
SiO2 at TSUB=120°C.  Measured etch rates of resists at 
200oC given in table (inset). (b) An Arrhenius plot 
showing silicon etch rate versus 1000/TSUB.  Our results 
are shown with a solid line through solid squares.  Room 
temperature etch rate is shown as an open square.  The 
arrows indicate etch efficiencies for silicon assuming two 
(four) fluorine atoms for every silicon atom removed, i.e.
SiF2 (SiF4).  Results shown for Flamm et al.11 (dashed 
line) and Giapis et al.5 (solid circle) are normalized to our 
flux in order to compare etching efficiencies. 
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that inhibits the etching.  To demonstrate the existence of a contamination layer and that 

this layer can be removed effectively by heating the sample to 120 oC,  a silicon sample 

was first etched for 5 minutes at 120 oC, then cooled to 25 oC in about 2.5 minutes with 

the fluorine beam still on, and finally, continued etching for one hour.  For this 

procedure, the cumulative etch depth was found to be 4.6 µm, much deeper than expected 

if only the etching at 120 oC was effective.  The depth attributable to room temperature 

etching was determined by subtracting the known depth for etching at 120 oC for 5 min. 

(1.1 µm, as measured in this run), and the depth for etching during the 2.5 min. cool 

down (0.3 µm, using etch rates at three intermediate temperatures determined by 

extrapolation).  This gives a room temperature etch rate of 0.06 µm/min which agrees 

well with the Arrhenius behavior, as shown in Figure 2.2 (b).  The difference between the 

two room-temperature measurements directly indicates the presence of a thin layer of 

contamination that inhibits etching during direct room temperature etching, which 

however, is removed by first initiating etching at 120 oC.  Finally, for comparison, on the 

Arrhenius plot in Figure 2.2 (b), results are shown from Flamm et al. [19] (dotted line) 

for atomic fluorine gas etching, and Giapis et al. [13] (solid circle) for atomic fluorine 

beam etching.  All these results have been normalized to the flux in this work to compare 

etching efficiencies.  Detailed comparisons of these different etching techniques are left 

to the Discussion Section below. 

 2.4.2  Bulk-Etched Si Surface Topography 

 The roughness of etched surfaces was measured by atomic force microscopy 

using a Topometrix TMX 2000 AFM.  A Si(100) sample etched for 5 minutes at 200oC 

(about 1.3  µm of Si removed) had an RMS roughness of about 30 nm.  This roughness is 
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similar to that observed using other fluorine-based etching techniques [20, 21].  In 

addition, the etched surfaces of Si(100) samples were further investigated with scanning 

electron microscopy (SEM) at different temperatures.  Figure 2.3 shows top down SEM 

micrographs for bulk Si(100) etched at 227 °C (a), 441 °C (b), and 560 °C (c).  The insets 

in the upper right hand corner show the corresponding cross-sectional views.  Looking at 

the top down images, the surface was seen to consist of roughly square-shaped natural 

trenches.  Note the anisotropy in the [100] and [010] directions in the top down SEM 

images implying an anisotropy in the etching dynamics between F and Si.  From looking 

at the cross-sectional views of the bulk etched Si, it appears that substrate temperature 

plays an important role in the sort of taper angle formed.  Qualitatively, a higher the 

temperature leads to a smaller taper angle implying that higher temperatures are 

necessary for high aspect ratio structures. 

 2.4.3  Lithographically Patterned, Fluorine-Etched Si 

 To investigate the anisotropic nature of etching Si with this atomic fluorine beam, 

CaF2 was used as an etch-resistant mask.  For the CaF2-masked Si(100) substrates, 1  µm-

wide slots were opened in molecular-beam-epitaxially grown 20 nm-thick CaF2 layers 

(a) (b) (c)

227°C 441°C 560°C

(a) (b) (c)

227°C 441°C 560°C
Figure 2.3.  Top down and cross-sectional SEM views (inset) of unpatterned F-etched 
Si(100) at substrate temperatures of 227 oC, 441 oC, and 560 oC. Note the anisotropy in the 
[100] and [010] directions in the top down views. Also, note how the sidewall taper angle gets 
smaller as the temperature increases in the cross-sectional views. 
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using electron-beam 

lithography following the 

procedure of Hirose et al. 

[22].  In this case, a standard 

SEM (JEOL JSM-880) with 

a 20 keV, 1 nA electron 

beam was used to write lines 

with a dose of 2.5 Ccm-2.  

CaF2 under direct electron-

beam exposure dissociates 

leaving Ca, which oxidizes in 

air.  The resist layer was then 

developed in water (CaO is 

100 times more soluble in 

water than CaF2) leaving 1 

 µm-wide openings to the 

underlying silicon.  Figure 2.4 (a) shows a cross-sectional SEM view of a 1  µm-wide, 

120  µm-deep trench in Si(100) fabricated by etching for 100 minutes with TSUB=500 oC.  

This trench is extremely anisotropic, with an aspect ratio of about 120:1 and a sidewall 

slope of about 1000:1 over nearly the entire depth.  These aspect ratios and sidewall 

slopes were directly measured from SEM micrographs of samples cleaved along a plane 

intersecting the etched trench at a right angle and are comparable or higher than those 

currently achievable by reactive ion etching [23, 24].  Another notable feature is that the 

Figure 2.4.  (a) Cross-sectional SEM view of a 1 µm wide, 
120 µm-deep, CaF2-masked trench in Si(100).  (b) Plot of 
the expected profile assuming a cosine distribution for 
reactive species scattered at the bottom of the trench with 
the solid (dotted) line for full (20%) reactivity.  (c) Top
down SEM view of the trench and the CaF2 mask, as 
labeled.  Note the pinholes in the CaF2 mask.  
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1.2 µm/min etch rate observed for the 

trench is within 20 % of the open-area 

etch rate of 1.0  µm /min at 500oC 

(Figure 2.2 (b)).  Since this is 

comparable to the run-to-run error of 

the experiments (see above), it was 

concluded that this atomic beam does 

not exhibit appreciable aspect-ratio 

dependent etching (ARDE) effects [9], 

for the conditions presented here.  

 ARDE effects were seen however as patterned structures with smaller dimensions 

were etched.  In an effort to go to nanometer scale geometries (i.e. same high aspect 

ratios but nanometer size openings), e-beam patterned photoresists were used as masks to 

etch Si.  Figure 2.5 shows a top down SEM view of some typical results using e-beam 

lithography on 60-80 nm thick PMGI resist.  The Si was fluorine etched for 10 minutes at 

a substrate temperature of 190 oC.  The areas that were not etched through are due to 

varying exposures of the e-beam.  The problem with this technique is that the fluorine 

etches most organic photoresists, and this limits the ultimate depth attainable using this 

technique.  Another problem with organic photoresists is their inability to withstand 

temperatures above about 200 oC.  The inset table in Figure 2.2 (a) shows etch rates and 

selectivities (compared to Si) of some more common photoresist materials. 

 The results obtained with organic photoresists indicated that another more suitable 

high temperature fluorine resist was needed.  With this idea in mind, a double resist 

Figure 2.5.  Top down SEM view of fluorine 
etched trenches in Si.  The pattern was produced 
using e-beam lithography on 60-80 nm thick 
PMGI resist.  The Si was then fluorine etched for 
10 minutes at 190 oC. The areas that were not 
etched through are due to varying exposures of 
the e-beam. 
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transfer technique 

was attempted 

using e-beam 

patterned 

photoresists to 

define the 

pattern, with an 

underlying Cr 

layer providing 

the mask to the 

fluorine.  The 

patterned was 

transferred from the photoresist to the Cr layer by means of a Cr wet etch, before the 

sample was exposed to the fluorine beam.  Figures 2.6 (a) and (b) shows SEM views of 

trenches fabricated in this way.  The samples consisted of ~ 60 nm e-beam exposed 

PMMA on ~ 50 nm evaporated Cr on Si(100).  The sample in the cross-sectional SEM in 

Figure 2.6 (b) was fluorine etched for 17 minutes at a substrate temperature of 250 oC.  

The width of the trench is about 300 nm and the depth is roughly 3.4 µm, giving an 

aspect ratio of around 11.  The Cr etched at a rate of about 8 nm/min at 250 oC which 

once again limited the ultimate depth attainable for the trench.  Another important point 

to note about the trench etched using the Cr mask is the sidewall taper of about 10o.  This 

was not observed in the original results using CaF2 masked trenches etched at a substrate 

temperature of 500 oC.  As discussed in the next section, it is thought that ARDE effects 

Figure 2.6.  (a) Oblique angle SEM view of F-etched trench in Si 
fabricated using a double layer resist technique.  The sample consisted 
of 60 nm e-beam patterned PMMA on 50 nm evaporated Cr.  The 
pattern was transferred to the Cr layer by means of a Cr wet etch.  The 
sample was then etched in the fluorine beam for 17 minutes at 250 oC. 
(b) Cross-sectional SEM picture of fluorine etched trench in Si.  The 
sample was fabricated in the same manner as (a).  The resulting trench 
is 300 nm wide and 3.4 µm deep.  Note the sidewall taper of about 
10o. 
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begin to show up when the width of the patterned structures starts to approach the width 

of the naturally occurring etched trenches in unmasked Si (Figure 2.3) due to the 

anisotropy in the F-Si etching mechanism. 

 

2.5.  DISCUSSION 

In this section, the open-area etch results are discussed first followed by a 

discussion on the extremely anisotropic trenches obtained by etching through 1 µm wide 

CaF2 slot masks. In both cases the results of this work are compared to results obtained 

using other related techniques.  Finally, the results in attempting to etch nanoscale 

trenches while still maintaining high aspect ratios are discussed. 

2.5.1  Bulk-Etched Si and Related Materials 

In this work, it was found that the Si etch rate dependence on sample temperature 

and the etch selectivity to SiO2 and Si3N4 are in qualitative agreement with those 

observed elsewhere [19].  Returning to the Arrhenius plot of Figure 2.2 (b), it is noted 

that the activation energy of 0.1 eV is in good agreement with Flamm et al. [19].  

However, it should be observed that there is a large disparity between the etch 

efficiencies for the different etching techniques.  The right axis of the Arrhenius plot 

directly indicates the efficiency of Si removal by fluorine.  (The arrows at 50 % and 25 % 

indicate an etch rate assuming unit efficiency for producing SiF2 and SiF4, respectively.)  

Based on the atomic fluorine flux, the etching efficiency for fluorine beam in this work is 

3 % for TSUB=250 oC, i.e., one Si atom is removed for every 30 incident fluorine atoms.  

This is much higher than the 0.25 % efficiency determined by Flamm et al. [19] 

(extrapolated to TSUB=250 oC) for etching with room-temperature atomic fluorine gas.  
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Conversely, the results of Giapis et al. [13] demonstrate much higher efficiencies for an 

energetic fluorine beam generated by pulsed laser-induced dissociation of SF6, even 

though this beam is incident upon a room-temperature substrate.  It is therefore concluded 

that the etching rate is strongly dependent upon the incident kinetic energy of the atomic 

fluorine, [25] which averages 0.025 eV for Flamm et al. (0.25 % efficiency), 1 eV for the 

present work (3% efficiency), and 5 eV for Giapis et al. (40 % efficiency at room 

temperature).  As discussed below, this energy dependent etch efficiency is important for 

the anisotropic etching results achieved in this work. 

2.5.2  Micron-Scale, CaF2-Masked Si Trenches 

As noted in the Results Section associated with the highly anisotropic trench, two 

important features are observed:  1) a lack of aspect ratio dependent etching (ARDE) and 

2) a lack of sidewall etching.  To understand this behavior the anisotropic etching process 

is discussed and modeled in terms of a highly collimated beam incident through a slot 

into the trench and the transport of the reacted and unreacted gas products out of the 

trench.  Below this process is discussed and modeled to explain, first the lack of ARDE, 

and second the lack of sidewall etching. 

 The lack of observation of ARDE, even for the high aspect-ratio trench, may at 

first be surprising because ARDE is often observed for the usual medium-vacuum plasma 

techniques.  However, in this beam technique, the incoming atoms in the beam will have 

little or no interaction with the trench walls.  This is a consequence of the mask geometry 

and the fact that the beam is very well collimated.  (This is in contrast to other gas-phase 

techniques where the interactions of the incident (uncollimated) reactive species with the 

trench walls are very important.)  In the atomic beam case, it is the gas-gas phase 
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interaction of the incident reactive F atoms with the effusive gas load from the trench 

bottom, which ultimately limits the depth of the trench for a given width.  As shown 

below, this lack of observation of ARDE in the CaF2-masked etch experiment is 

indicating that the mean-free-path length of the atomic F in the incident atomic beam in 

the trench (including the build up of pressure at the bottom of the trench) is larger than 

the depth of the trench itself.  Adapting the procedure of Coburn and Winters [26], the 

pressure at the trench bottom is determined in accordance with Knudsen transport by 

treating the trench bottom as a gas source and the trench itself as a conductance to the 

vacuum chamber at base vacuum.  Note that implicit in considering Knudsen transport 

for the gas scattered from the trench bottom is the assumption that this gas will be 

randomly distributed in both energy and direction, in sharp contrast to the incident beam.  

This assumption is reasonable given that Hwang et al. [27] observed a largely cosine 

distributed scattered flux in their atomic F scattering experiments associated with both 

trapping desorption and indirect inelastic scattered fluorine [28].  In this case, because the 

trench bottom is not smooth, as discussed in the Results Section, even the direct 

scattering will tend to be random implying a cosine angular distribution.  Using Q as the 

mass flow, or throughput, from the trench bottom that arises from the scattered incident 

beam, taking into account that by far the greatest contribution to this gas throughput is 

from the 95 % He in the beam (the etch products themselves having negligible effect), we 

find that 

 

where ΦHe is the incident beam flux, a and b are the length and width of the trench, 

respectively, C is the trench conductance, ∆p is the pressure difference between the 

Q = C p kT abHe∆ Φ≈ , (2.1) 
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trench bottom and outside the trench, and kT is included to convert from atoms/s to Torr-

liter/s.  The conductance for a slot with rectangular cross-section in the Knudsen flow 

regime is  

 

 

where L is the trench depth, T and m are the temperature and mass for the gas species, 

and K is an experimental geometry-dependent correction factor [29].  Using Eqns. (2.1) 

and (2.2) and rearranging, one finds 

 

 

Using K=2, ΦHe=1.3x1019 cm-2s-1, and m and T for He at the source temperature of 

900 oC (1173 K) equation (2.3) gives a pressure difference of about 70 Pa or 500 mTorr 

[30].  This pressure difference, ∆p, is essentially the pressure build-up at the bottom of 

the trench, pt, because the pressure outside the trench (2x10-5 Torr) is negligible in 

comparison.  Using the relationship between mean-free path length, λ, and pressure from 

Ref. 31, and Eqn. (2.3), it is found that 

 

 

where MF and MHe are the atomic masses of F and He, respectively, and σHe-F is the 

Helium-Fluorine cross section [32].  Using MF/MHe=19/4, T=1173 K, pt=500 mTorr and 

σHe-F = 0.2 nm2, it is found that the mean free path of the incident atomic fluorine in the 

beam is about 500 µm.  (Note that in this calculation the gas temperature of He in the 

source was used and all scattering except F-He scattering was neglected, however, taking 
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T equal to the sample temperature, and including the other gas species has little effect on 

this outcome.)  This mean-free-path length exceeds the trench depth by a factor of four, 

which explains the absence of gas-gas interactions leading to ARDE.  Alternatively, by 

considering the probability of an incident F atom to undergo a collision as given by the 

mean-free-path length above, one finds that the probability of an incident F atom 

reaching 120  µm depth without collision is about 90 %.  The ultimate depth attainable 

for a given trench width can be estimated by determining the depth at which this collision 

probability is about 50 %.  Under the conditions of the present experiment, this depth is 

about 250  µm for a 1  µm-wide opening of the trench.  In addition, as indicated from 

Equation (2.4) the ultimate depth of a trench, L, scales with its width, b.  In other words, 

for this analysis the critical parameter for attaining a trench of a certain depth is its aspect 

ratio, L/b.  For the beam flux used in this work, the ultimate aspect ratio is about 250:1, 

however, by reducing the incident flux, even higher aspect ratios should be possible.  

Finally, based on this analysis, such high aspect ratios should be possible for much 

smaller trench openings, however this was not seen experimentally. 

Regarding the observed lack of sidewall etching, for a collimated neutral beam, 

undercutting results from reactive species scattering within the trench and then striking 

and etching the sidewalls.  As discussed above, for the pressure regime and geometry in 

this work, gas phase interactions within the trench are not important.  Only reactive 

species scattered from the trench bottom will contribute to sidewall etching.  Given the 

relatively low efficiency of etching (7 % at 500 oC), it is expected that there is substantial 

backscattered atomic fluorine.  Again, as discussed above, as observed by Hwang et al. 

[27] and because the trench bottom is not smooth, it is a reasonable assumption that the 
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reactive backscattered flux comes off with a cosine distribution.  Therefore one can 

model the effect of this backscattered atomic fluorine by: treating each element of area on 

the trench bottom as a cosine distributed source of fluorine, ΦFdxdy; integrating over the 

trench width, x from 0 to b, and length, y from -∞  to ∞  (a very long trench is being 

considered) to determine the flux density of atomic fluorine at a point z on the sidewall as  

 

 

where z=0 is the bottom of the trench.  Finally, (assuming a uniform etch rate, µ, so that 

the depth of the trench, z, is given by z=µt, where t is the etch time) by integrating over 

the time corresponding to the time to etch from position z on the side wall to the final 

bottom of the trench, it is found that the number density of fluorine atoms that hit the 

sidewall at a position z on the trench wall is 

 

 

The solid curve in Figure 2.3 (b) shows the trench profile calculated using this 

model with the assumption that the reactivity of backscattered fluorine is undiminished 

from that of fluorine incident upon the bottom of the trench.  This profile shows a trench 

twice as wide as the mask opening with substantial curvature at the trench bottom.  The 

dotted profile, calculated by assuming reduced reactivity of the scattered species by a 

factor of five, still shows widening, again with curvature at the bottom.  The form of 

sidewall curvature given by this model is absent in our trenches.  Etching of the sidewall 

at the top of the trench is seen within about 3  µm of the mask, but this is clearly not of 

the form expected from scattered reactive species.  In fact, the top feature appears to be 
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the result of fluorine atoms that pass through pinholes in the CaF2 mask near the trench 

opening and etch the Si.  These pinholes are shown in the SEM micrograph in Figure 2.3 

(c). 

 This lack of sidewall etching observed in our trench is both qualitatively and 

quantitatively different from that observed by Giapis et al., who use atomic F with much 

higher incident kinetic energies [13, 27].  For F atoms incident at 5 eV, they see sidewall 

etching of about 14%, while this is reduced to about 3 % for F atoms at 18 eV.  

Interestingly, much less sidewall etching is observed in this case even though the etch 

rate indicates a lower fluorine reaction efficiency.  This implies that the large number of 

F atoms scattering from the bottom do not significantly etch the sidewalls in this case.  

Thus the observed lack of sidewall etching must result from reduced etching efficiency 

for F atoms scattered from the trench bottom, or to build-up of a passivation layer due to 

residual vacuum constituents, or to both.  It is thought that the former is much more 

likely, as is now discussed. 

 In order for atomic F to contribute to sidewall etching, the fluorine atoms 

incoming from the highly collimated beam must first strike the trench bottom, since the 

role of gas-gas collisions in the trench is negligible.  Even partial energy accommodation 

with the surface will then deprive most of these F atoms of a considerable fraction of 

their incident 1 eV kinetic energy, so that subsequent collisions with the sidewall will 

occur with much lower kinetic energy and at very large incident angles.  Both these 

conditions would reduce sidewall etching efficiency.  For example, based on the work of 

Flamm et al. [19], extrapolated using Figure 2.2 (b), thermalized F atoms would etch Si 

at a rate of only about 0.1 µm/min (at 500 oC), which is a factor of ten lower than our 
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observed (downward) etching rate (thermalization at the substrate temperature of 500 oC 

implies an average kinetic energy of 0.07 eV).  Thus, from kinetic energy arguments 

alone, one would expect diffusively scattered fluorine to etch at a much slower rate than 

the atomic fluorine incident at 1 eV directly from the beam.  Indeed, the magnitude of 

this variance in etch rates can by itself explain the sort of anisotropy observed.  The 

alternative possibility that sidewall etching is inhibited by build-up of a passivation layer 

from the non-UHV background is unlikely because, as discussed earlier, the ratio of 

background flux to the atomic fluorine beam flux is very low.  Furthermore, this flux 

ratio on the sidewalls becomes even smaller as the trench gets deeper due to the slowness 

of Knudsen transport of background constituents down the trench.  If the background 

vacuum was important, passivation would be more complete higher up the trench, and 

one would expect to see the trench widen as it goes deeper, which is not observed at all. 

 2.5.3  Nano-Scale Si Trenches 

 The above analysis suggests that the etching process is aspect ratio dependent 

with very little sidewall etching making this process ideally suitable for etching high 

aspect ratio nanoscale features.  However, this was not observed experimentally as seen 

in the trench widening and sidewall taper observed in the cross-sectional SEM in Figure 

2.6 (b) and also in anodic aluminum oxide (AAO)-masked trenches shown and discussed 

in Chapter 5.  This is due to the lack of a suitable high temperature fluorine mask as well 

as the possible failure of the trench model and analysis developed in the proceeding 

section at these length scales.  The preceding model and analysis does not take into 

account the anisotropic F-Si etching mechanism that can be directly observed in the SEM 

images shown in Figure 2.3.  The top down images suggest that F etches different Si 
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planes at different rates.  In addition, these different plane etch rates are highly dependent 

on temperature and thus affect the sidewall taper angles as seen in the inset cross-

sectional images.  In the model and analysis discussed above, a uniform etch rate, µ = z/t, 

was assumed which was a valid for the large trench widths being discussed, since in this 

case the anisotropic F-Si etching mechanism could be essentially ignored.  However, at 

length scales approaching the naturally occurring trenches in unpatterned Si (typical 

trench widths are around 100-300 nm) this assumption is no longer valid and the 

anisotropy in the etching dynamics can no longer be ignored.  In fact, when trying to etch 

patterned structures approaching the scale of the naturally formed trenches in unpatterned 

Si, trench widening and increased taper angles are observed consistent with the naturally 

formed trenches.  This etching anisotropy along with the lack of a suitable high 

temperature F mask led to trenches with aspect ratios limited to around 10 with taper 

angles of approximately 10o.  In contrast, the high aspect ratio trench shown in Figure 2.4 

is a direct result of the large width of the trench (essentially a bulk material size of 1 µm) 

where the highly anisotropic nature of the F-Si etching mechanism could be ignored. 

 Trenches of the width and depth demonstrated here may be useful to micro-

electro-mechanical-systems (MEMS) applications, as well as isolation trenches in 

integrated circuits.  Of course this will require uniform etching over realistic wafer 

dimensions.  This can be attained through a combination of increasing the beam size and 

rastering the wafer under the enlarged beam.  The former can be accomplished by 

enlarging the skimmer, or by moving the sample further from the nozzle (Figure 1), or 

both.  Increasing the nozzle-sample distance increases the beam flux, which can be 

compensated by increasing the gas flow.   
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2.6.  CONCLUSION 

A neutral atomic fluorine beam was shown to produce etch rates in silicon as high 

as 1  µm/min.  Using a CaF2 resist layer 120  µm deep by 1 µm wide trenches (aspect 

ratio 120:1) were fabricated in silicon with no appreciable sidewall taper (slopes of about 

1000:1) or ARDE effects.  Achieving such anisotropic etching suggests that scattered 

species do not contribute significantly to sidewall etching, i.e. the vast majority of etching 

is caused by the highly directional incident atomic-fluorine beam.  Although sidewall 

passivation caused by background vacuum constituents could be inhibiting sidewall 

etching, it is shown that this is unlikely due to the much larger flux directed at the 

substrate by the collimated atomic fluorine beam.  It was calculated that the ultimate 

depth attainable for a 1 µm wide trench is about 250 µm, and it was shown that that the 

critical parameter for the ultimate depth of a trench is its aspect ratio with the caveat that 

the width of the trench be larger than the naturally occurring trenches in unpatterned Si so 

as to not be affected by the anisotropic F-Si etching dynamics.  Because of this 

anisotropy and the lack of a good high temperature thin film fluorine resist, extending 

this work to the nanoscale lead to structures with aspect ratios of around 11:1 for a 300 

nm wide trench with a taper angle of 10o.   
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Chapter 3 

 

Anodic Aluminum Oxide Films 

 

3.1.  ABSTRACT 

 This chapter focuses on the growth and characterization of anodic 

aluminum oxide (AAO) films and is intended as a guide for future experimentalists 

working with AAO films.  To start, a general review of the history and growth 

mechanisms of AAO films (both barrier- and porous-type) will be presented.  Like 

porous films, barrier-type films are grown from an aluminum foil in an electrolytic cell, 

but the resulting film is nonporous.  However, because the growth mechanism involved 

in barrier-type oxides also plays an integral part in porous oxide growth, understanding 

this process is essential for understanding the growth of porous films.  Next, the growth 

of porous alumina films will be discussed including the processes involved in the 

ordering of the resulting pores into a hexagonal close packed array under the appropriate 

anodizing conditions.  Finally, work done on optimizing the growth of porous AAO films 

specifically for use as templates or masks for the fabrication of nanostructures will be 
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presented.  This includes preparing the Al foil growth substrate, finding suitable 

anodization conditions for maximizing the ordering of the AAO nano-pores, and tailoring 

the pore dimensions, spacings, and AAO thickness.   

 

3.2.  BACKGROUND AND OVERVIEW OF AAO FILMS 

 It has long been known that the surface of aluminum has a high affinity for 

oxygen.  As such, the metal is covered with an oxide film about 1-2.5 nm thick that forms 

immediately upon exposure to air [33].  Anodic oxidation, or anodizing, is an electrolytic 

process for improving this natural oxide to produce a thicker, more resistant oxide film 

on aluminum.  The aim of this process is to produce an oxide film which has excellent 

corrosion resistance, is attractively finished, and possesses other commercially desirable 

qualities.  As such, anodic aluminum oxide (AAO) films have been fabricated 

commercially for corrosion resistant applications since approximately the 1930s [33]. 

 In general, the type of AAO film that can be grown on aluminum can be broken 

up into two distinct categories:  barrier-type and porous-type films.  Barrier-type films 

consist of a relatively thin compact layer of alumina grown on an aluminum substrate, 

whereas porous-type films consist of an outer layer composed of a thick porous film 

structure of alumina on top of an inner compact layer of alumina on an aluminum 

substrate.  Because of its similar properties to barrier-type oxide films, the inner compact 

layer in a porous-type film is termed the barrier layer.  Figure 3.1 shows a simplified 

schematic of an electrolytic cell used for the growth of anodic oxide films and a cross-

sectional view of the typical structure of a barrier-type and porous-type film.  The type of 

oxide produced depends upon several factors, the most important of which is the nature 
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of the electrolyte.  Barrier-type films 

are formed in nearly neutral 

electrolytes (pH values of 5-7) in 

which the formed oxide film is 

completely insoluble.  Electrolytes 

of this type include neutral boric 

acid solution and ammonium 

tetraborate in ethylene glycol along 

with several organic electrolytes such as citric acid.  Electrolytes in which the anodically 

formed oxide film is slightly soluble form porous-type films.  The most common 

electrolytes of this type include sulfuric acid, oxalic acid, phosphoric acid, and chromic 

acid. 

 Apart from the different structural morphology of the two types of films, the other 

major difference is in the thickness of the film that can be produced.  The thickness of 

barrier-type films is controlled by the applied voltage and is limited to a voltage below 

that corresponding to dielectric breakdown of the oxide which is around 500-700V [34].  

The corresponding maximum thickness attainable for a barrier-type film is around 0.7-1.0 

µm.  These films are typically characterized by a parameter called the anodizing ratio 

given in terms of nm V-1 which specifies the approximate thickness of the film formed 

under a specific applied voltage.  Typical values of the anodizing ratio for aluminum are 

1.2-1.4 nm V-1.  In contrast, the thickness of the outer layer of porous-type films is time 

dependent, has no such limitations on the applied voltage, and can grow to be hundreds 

of microns thick.  However, similar to barrier-type films, the thickness of the inner 

Figure 3.1.  Simplified schematic of electrolytic 
cell (shown left) used to produce both barrier-type 
and porous-type alumina films (shown in cross-
section on the right).
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compact layer of porous-type films is voltage dependent and can be described by an 

anodizing ratio that is typically smaller that that given for corresponding barrier-type 

films. 

 Barrier-type films are currently of commercial use in the field of dielectric 

capacitors and in the protection of thin, vacuum deposited aluminum.  Conversely, 

porous-type films, which can be grown much thicker, offer excellent corrosion and 

abrasion resistance for bulk aluminum.  In addition, due to their high porosity, they make 

an excellent base for paints and dyes.  Therefore, porous-type films are often used in 

applications where the aluminum surface is to be protected from corrosion and also 

decorative applications where the normally transparent alumina film is dyed the 

appropriate color and sealed.  Sealing is a process wherein the porous films are immersed 

in hot water.  This process seals or closes up the pores which results in a nonporous film 

whose thickness is many times higher than those attainable in barrier-type films.  The 

chemical process involved in sealing or closing up the pores is thought to be the 

formation of boehmite by partial hydration of alumina [35]: 

 

 

3.3.  BARRIER-TYPE AAO FILMS 

 Although the bulk of this chapter is concerned with porous-type AAO films, the 

growth mechanism involved in barrier-type AAO films should be considered first before 

a more complete understanding of porous films can be obtained.  As previously 

mentioned, barrier-type films are generally grown in an electrolytic cell with nearly 

)OH(AlOOHOAl 2232 →+ (3.1) 
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neutral electrolytes.  The grown film is insoluble in the electrolyte and consists of a thin 

compact layer of aluminum oxide. 

 It should be noted that these anodic films are not pure oxides, since they contain 

varying amounts of impurities, such as water and the forming anion.  X-ray and electron 

diffraction techniques along with infrared spectroscopy indicate that the resulting 

structure of barrier-type films is comprised mostly of amorphous material surrounded by 

microcrystallites of γ–Al2O3 with the amount of crystalline material increasing with 

increasing formation voltage and temperature [34, 35].  The intercrystallite regions 

contain amorphous alumina, molecular water (usually in the form of boehmite, 

(AlO(OH)), hydroxyl groups, and some anion species incorporated from the electrolyte 

solution.  The amount of anion incorporation in barrier-type films is usually low (<10%) 

and depends on the electrolyte, voltage, and temperature. 

 Evidence found employing inert gas markers suggests that oxide growth proceeds 

at the metal/oxide interface as well as the oxide/electrolyte interface by the migration and 

subsequent reaction of oxygen 

containing anions and Al3+ 

cations under the applied field 

[33].  The oxygen containing 

anions are comprised mainly of 

OH- ions and O2- ions with the 

remainder being oxygen-

containing anions from the 

electrolyte.  There is then a Figure 3.2  Schematic showing the ions involved in 
barrier-type oxide growth and the direction of the 
concentration gradients under an applied electric field.
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concentration gradient of OH-, O2- and other oxygen-containing anions throughout the 

barrier-layer oxide with the highest concentration at the outer surface next to the 

oxide/electrolyte interface.  The relative proportions of the migrating anions will depend 

on their charge and size as well as the local conditions at the oxide/electrolyte interface.  

Similarly, there is a concentration gradient of A13+ cations throughout the film with the 

highest concentration gradient at the inner surface next to the metal/oxide interface.  This 

situation is shown schematically in Figure 3.2.  The overall electrochemical reaction 

occurring is: 

 

The underlying oxidation reactions occurring at the Al anode are: 

 

 

Finally, the reduction reaction occurring at the inert cathode is the evolution of hydrogen 

gas bubbles: 

 

To better 

understand ionic 

migration across 

the oxide film, 

Figure 3.3 shows 

a simplified and 

approximate 

potential energy 

2322 332 HOAlOHAl +→+ (3.2) 

32
23

32
3

32

332

OAlOAl

HOAlOHAl

→+

+→+
−+

+−+
(3.3) 

222 HeH →+ −+ (3.4) 

Figure 3.3.  Approximate potential energy curve of a mobile ion in 
aluminum oxide
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curve of a mobile ion in the oxide region.  In order for a mobile ion to reach either the 

metal/oxide interface (in the case of oxygen containing anions) or the oxide/electrolyte 

interface (in the case of Al cations), it is necessary for the ions to “hop” over potential 

diffusion barriers.  In the figure, the barriers correspond to the position of the atoms in the 

oxide and migration occurs by ions moving from one interstitial site to the next.  It should 

be noted that the dominant mechanism of transport could also occur by vacancies or a 

place-exchange mechanism, but the qualitative nature of the potential energy curve would 

remain the same. 

Application of an 

electric field, E, across the 

oxide results in an overall 

raising or lowering of the 

potential barriers by an 

amount qEa as shown in 

Figure 3.4 where a is half 

the interatomic distance and 

q is the charge on the mobile ion.  From this and the use of elementary rate theory, the 

ionic current density, i, across a diffusion barrier at position x under the influence of an 

applied field can be expressed as [34]: 

 

 

where v is the atomic frequency of vibration, Q is the height of the potential barrier, k is 

Boltzmann's constant, T, is the absolute temperature, and n is the concentration of the 
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Figure 3.4.  Resulting potential energy curve upon 
application of an electric field across the oxide. 
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mobile ions where the subscript indicates whether it is evaluated at x-a or x+a. 

By converting the difference equation for i in expression (3.5) into a differential 

equation, and solving this equation for i and E independent of position (i.e. neglecting 

space charge effects), an expression for the concentration, n, can be solved for.  Utilizing 

this expression, the current density can then be expressed as [37]: 

 

 

where, 

 

and, 

 

Here we see that D corresponds to the intrinsic diffusion coefficient for this model while 

µ is the chemical potential of the ionic species in the dilute approximation where µo is the 

intrinsic chemical potential. 

At this point it is useful to look at two limiting regimes, namely the thin film, 

high E regime and the thick film, small E regime.  For the previous case, if the thickness, 

d, of the oxide film is small, then E=V/d is large and one exponential term in the 

sinh(qaE/kT) expression of equation (3.6) dominates.  Combining this with the 

assumption that ∂n/∂x=0, the current density reduces to the well-known Mott-Cabrera 

conduction equation [38]: 

 

 

This equation simply describes the ionic conduction in terms of an effective activation 
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energy, Q-qaE, for migration across the thin oxide layer. 

This can be contrasted with the thick film limit where d is large and hence, E=V/d 

is small.  In this case, the term sinh(qaE/kT) in equation (3.6) can be replaced by its 

argument and making use of the Einstein relation, σ/D=q/kT, the current density can be 

expressed as [37]: 

 

 

where σ is the mobility of the ionic species.  This simply considers the current density to 

consist of two parts, one due to diffusion and the other to the electric field.  This familiar 

expression is probably encountered more often in the case of electronic conduction, but 

here it should be kept in mind that for this particular case it refers to ionic conduction. 

In conclusion, oxide growth in barrier-type films proceeds by the ionic 

conduction and subsequent reaction of oxygen containing anions and Al cations at both 

the metal/oxide and oxide/electrolyte interfaces under the applied field.  This same 

mechanism is responsible for the oxide growth in porous-type AAO films as well. 

However, as shown in the next section, there is also a field-assisted dissolution process 

present in porous oxide growth that is primarily responsible for the production of the 

pores.  These two growth and etching processes work together to produce the unique 

structure of porous alumina. 

 

3.4.  POROUS-TYPE AAO FILMS 

 3.4.1 Structure and Composition 

The structure of porous alumina has been obtained from secondary electron 
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microscope (SEM) 

and transmission 

electron microscope 

(TEM) techniques 

[34, 35, 39-43].  It 

has been shown to 

consist of a thin, compact, scalloped layer (called the barrier layer) next to the aluminum 

substrate with a thick, porous structure on top consisting of arrays of cylindrical shaped 

pores surrounded by an alumina backbone.  The alumina surrounding the pores can be 

broken up to represent a hexagonal cell structure with each cell containing one pore.  

Figure 3.5 shows a schematic of the ideal structure of porous alumina.  Under the most 

general fabrication conditions, the pores are not ordered as shown in the figure, but 

instead display a more random arrangement.  Under these conditions, the pores are not 

necessarily circular and the cell structure can be quite distorted.  However, as shown in a 

later section, under the appropriate anodizing conditions, porous alumina membranes can 

approach the ideal ordered structure as shown in Figure 3.5. 

As in the case of barrier-type films, the grown oxide consists of regions of 

microcrystallites of pure alumina and amorphous regions containing alumina, water, and 

the acid anion [34, 35].  Recent studies have shown that the amorphous regions 

containing the acid anion are located around the pores with the barrier layer consisting of 

mainly crystalline alumina [44, 45].  In addition, the amount of incorporation of the acid 

anion into the structure depends highly on the electrolyte itself, with films grown in 

sulfuric acid electrolytes having the highest incorporation of acid anions followed by 

Figure 3.5.  Schematic representation of ideal structure of 
porous alumina. 
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oxalic, phosphoric, and chromic acid which contains practically no anion incorporation. 

In the latter case at least, this is thought to be due to the rather large size of the chromic 

acid anion. 

 3.4.2 Overview of Growth 

As previously mentioned, porous-type alumina films are formed in essentially the 

same manner as barrier-type films except the nature of the electrolyte is such that the 

grown oxide is slightly soluble in it. There are many electrolytes that meet this criterion, 

but the most common and commercially important are phosphoric, oxalic, chromic, and 

sulfuric acids at varying concentrations [36].  The growth of porous-type alumina films 

proceeds by oxide growth at the metal/oxide and oxide/electrolyte interfaces in the same 

manner as described for barrier-type films. However, because the oxide is slightly soluble 

in the electrolyte, a competing process termed field-assisted dissolution takes place at the 

oxide/electrolyte interface.  It is this process that is responsible for the generation of the 

pores at random positions throughout the oxide.  If the anodizing conditions are right (i.e. 

appropriate electrolyte concentration, voltage, and to a secondary extent, temperature) 

then a steady state condition is soon setup in which the two predominately different 

reactions are occurring at about the same rate.  This allows the propagation of the pores 

to continue along with the oxide growth.  If however, one or the other of these two 

mechanisms dominates, then porous-type growth will not occur.  For example if, as we've 

already seen, electrochemical oxidation leading to oxide growth dominates, then the film 

formed is a barrier-type oxide film.  If, however, field-assisted chemical dissolution 

dominates, then a situation is setup where the oxide is dissolved nearly as fast as it is 

formed with the result that, at the end of the treatment, only a very thin oxide coating 
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remains.  The simultaneous 

formation and rapid dissolution 

of the oxide tends to smooth out 

surface irregularities and 

produces a very smooth, mirror-

like finish.  This process is 

termed electropolishing [33].  

The growth of porous alumina 

is therefore an intermediate case 

where oxide growth and the 

subsequent dissolution of this 

oxide are both occurring at 

roughly the same rate under steady state conditions. 

Figure 3.6 shows voltage vs. time and current vs. time curves for anodizing at 

constant current and constant voltage respectively. It also shows the subsequent stages of 

development of the porous alumina films.  The development of porous films under 

constant voltage anodizing will be described here although a similar situation occurs for 

constant current anodizing as well.  Initially, when the voltage is first applied, the current 

starts out very high due to the fact that there is only a very thin oxide layer present and 

hence very little impedance for ionic migration.  As the oxide film thickens, the current 

starts to fall as shown in region I of the curve.  At this point, the current goes through a 

shallow minimum as pores start to initiate and hence more current pathways start to open 

up as shown in region II.  It is during this region that field-assisted dissolution starts 

Figure 3.6.  Voltage vs. time and current vs. time curves 
for anodizing at constant current density and constant 
voltage, respectively.  The subsequent stages of pore 
growth are also shown.
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becoming competitive with oxide growth.  In region III, major pores are starting to 

develop and the current rises again due to the thin barrier layer at the base of the pores 

allowing current pathways for oxide growth.  Finally, in region IV, the pores are fully 

developed, and a steady state situation is developed where the current density takes on a 

roughly constant value throughout the rest of the anodizing process. In this region, the 

growth and dissolution are occurring at roughly the same rate. 

The oxide growth mechanism due to ionic migration has already been discussed 

in the previous section dealing with barrier-type AAO.  The field-assisted dissolution 

process responsible for the production of the pores will now be examined in more detail 

before going on to discuss pore initiation, pore development, the steady state regime, and 

the special case of pore ordering. 

 3.4.3 Field-Assisted Dissolution 

 Figure 3.7 shows a schematic representation of the field-assisted dissolution 

process occurring at the oxide/electrolyte interface of porous alumina taken from 

reference [40].  For simplicity, the schematic assumes a NaCl-type arrangement of the 

aluminum oxide atoms, 

although in reality the 

bonding is more 

complex.  Figure 3.7 (a) 

shows the oxide before 

application of an electric 

field.  Due to the ionic 

nature of the aluminum 
Figure 3.7.  Schematic representation of the field-assisted 
dissolution of Al2O3 (a) before polarization, (b) after 
polarization, (c) removal of Al3+ and O2- ion, and (d) the 
remaining oxide.  Figure taken from Ref. [40]. 
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oxide bonds, applying a field across the oxide polarizes the atomic structure of the 

material as shown in Figure 3.7 (b).  This process effectively lowers the activation 

energy for dissolution of the oxide (Figure 3.7 (c)), allowing this process to occur much 

more rapidly than would occur without the field. This facilitates the solvation of Al3+ 

ions by water molecules and the removal of O2- ions by H+ ions giving water as shown 

in Figure 3.7 (d). One important consequence of this process is that essentially all of the 

Al3+ ions that migrate to the oxide/electrolyte interface do not contribute significantly to 

growth but are ejected into the 

electrolyte. 

 3.4.4 Pore Intiation 

 Early electron 

microscopy work performed in 

the 1970s by researchers at the 

University of Manchester 

Institute of Science and 

Technology helped to 

elucidate the process of pore 

initiation [40].  Figure 3.8 

shows their transmission 

electron microscope (TEM) 

images of porous alumina 

films anodized at 50 A/m2 in 

0.4 M phosphoric acid at 

Figure 3.8.  TEM images of porous AAO films grown 
at 50 Am-2 in 0.4 M phosphoric acid at 25oC for (a) 40 
s, (b) 80 s, (c) 120 s, (d) 160 s, (e) 200s, (f) 280 s and 
(g) 330 s showing initial pore initiation and 
development.  Images taken from Ref. [40]. 
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various stages of development [40].  Bright regions in the images represent thinner areas 

of the oxide while the darker regions represent thicker areas.  Initially, as shown in Figure 

3.8 (a), regions of locally thicker oxide islands roughly tens of nm in diameter nucleate at 

random positions.  Through Figures 3.8 (b)-(c), these islands increase in size and number.  

By Figure 3.8 (d), the onset of major pores is starting to develop due to the merging of 

these islands leaving thin areas of oxide in between.  Figures 3.8 (e)-(f) show this trend 

continuing until all of the major pores are mostly developed by Figure 3.8 (g). 

To explain this behavior, researchers at Keio University in Japan proposed a 

model to explain the development of pore initiation [46].  Figure 3.9 shows a cross-

sectional schematic illustrating their 

model for the initiation of the pores 

[46].  Figure 3.9 (a) shows the 

roughness and non-uniform thickness of 

the initial barrier-type oxide layer.  This 

results from the roughness of the initial 

aluminum surface as well as the 

induced stress in the oxide layer 

resulting from the difference in the 

density of the aluminum in the oxide 

compared to that of bulk aluminum.  

Furthermore, this stress causes cracks 

(Figure 3.9 (a)) in the oxide which then 

rapidly "heal" by enhanced oxide 

Figure 3.9.  Schematic diagrams showing 
the non-uniform thickening of the barrier 
oxide and eventual development of major 
pores.  Through the development of tensile 
stresses, cracks in the barrier oxide develop 
in the regions associated with pre-existing 
ridges at the metal/oxide interface.  Current 
concentration results in the development of 
protuberances of locally thicker film at the 
oxide/electrolyte interface.  Eventually, 
current concentrates in the locally thinner 
regions of the oxide on either side of the 
protuberances.  Schematic taken from Ref. 
[46]. 
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growth due to the increased ionic mobility in the cracks.  This leads to even further 

surface roughening as shown in Figure 3.9 (b).  The current is then enhanced in the thin 

oxide regions between the ridges, which exhibit distorted semi-spherical curvatures of 

varying radii as shown in Figures 3.9 (b)-(c).  This curvature increases the local electric 

field at the oxide/electrolyte interface, which in turn increases the oxide dissolution rate 

in this area.  This leads to pore initiation as shown in Figures 3.9 (c)-(d). 

 3.4.5 Pore Development 

At this stage, the pores consist of semi-spherical thin regions of oxide nucleating 

at random positions on the surface in between regions of thicker oxide.  An important 

point to make is that the oxide growth kinetics requires the oxide to be of a uniform 

thickness in a direction perpendicular to the local surface.  This can be seen by reviewing 

the thin film, high field limit for the current density in Eqn. 3.9 earlier in this paper.  

Essentially, Eqn. 3.9 can be rewritten as i=Aexp(BV/d), where A and B are constants, V is 

the applied voltage and d is the oxide thickness perpendicular to the local surface.  If a 

certain region of oxide is thinner than the rest (i.e. d is small), there will be less 

resistance to ionic migration and hence a faster growth rate will occur in this region until 

the oxide thickness catches up to the surrounding areas.  A consequence of this is that the 

local geometry of the metal/oxide interface is then determined by the corresponding 

oxide/electrolyte interface.  Therefore, a semi-spherical curvature at the oxide/electrolyte 

interface develops a semi-spherical curvature at the metal/oxide interface. At this point, 

the nucleated pores continue to widen and the radius of curvature at the bottom of the 

pores gets bigger due to a substantial lateral component of the electric field [36, 40].  

This continues until the major pores meet their neighbors and the lateral fields cancel as 
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the scalloped areas merge.  The steady state pore diameter and cell size are now 

established, and the pores can continue to propagate into the substrate by oxide growth at 

the metal/oxide interface and field-assisted dissolution of the oxide at the 

oxide/electrolyte interface.  The cell walls no longer play a part in the growth process 

since the voltage drop (and hence all the growth and dissolution) takes place at the 

respective interfaces at the base of the pores.  As the pores propagate into the substrate, 

the new material can only expand in the vertical direction, so that the existing cell walls 

are pushed upwards. 

 3.4.6 Steady State Growth 

Under steady state conditions, when the voltage doesn't change with time, the 

resultant film parameters (pore diameter, cell size, etc.) do not change.  Figure 3.10 

shows a schematic illustrating the distribution of the electric field lines or equivalently 

the current lines in a pore.  It can be seen that the field increases on passing from the cell 

base to the pore base.  By assuming that the base of the pore is hemispherical, the amount 

the field increases from the cell base to the pore base can be measured approximately by 

the ratio of the cell base area to the pore base area [40]: 

 

 

where r is the radius of curvature of the pore base and b is the barrier layer oxide 

thickness. 

 From this expression, it is possible to understand why the pore diameter remains 

stable under steady state conditions.  For example, any tendency for the pore diameter to 

increase diameter as a result of an increased dissolution rate will result in the radius of 
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curvature of the pore base becoming 

larger.  This increased radius of 

curvature then results in a decrease in 

the local field at the pore base and hence 

a reduced dissolution rate.  Likewise, a 

decreased dissolution rate will result in a 

smaller radius of curvature.  This 

smaller radius of curvature results in a 

larger electric field at the pore base, and 

increases the dissolution rate.  Hence, a 

self-adjusting situation is set up where any tendency for the pore diameter to increase or 

decrease is held in check by a consequent increase or decrease in the radius of curvature 

at the pore base which determines the local field [36, 40].  Essentially, for a given voltage 

in steady state, oxide growth occurs at a constant rate determined by the average field.  It 

is balanced by field-assisted dissolution, whose rate is determined by the local field, 

which in turn is determined by the radius of curvature of the pore base. 

 A theoretical modeling of porous oxide growth on aluminum was first attempted 

in a 1992 paper by V. P. Parkhutik and V. I. Shershulsky [47].  To start, equations are set 

up for the current density and hence the propagation rates at the two interfaces, taking 

into account the growth and dissolution of the oxide.  To analyze the steady state 

condition at the bottom of the pores, they assume that the barrier layer thickness remains 

constant and the radius of curvature at the base of the pore remains unchanged.  This 

analysis enables them to plot a function of the radius of curvature of the pores versus the 

Figure 3.10.  Schematic representation 
showing the distribution of field lines in porous 
alumina.
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electric field at the oxide/electrolyte interface.  

The result is that for very large changes in the 

pore geometry, the surface electric field is 

practically unchanged during steady state pore 

growth.  Next, by assuming that both of the 

oxide boundaries at the bottom of the pore can 

be represented as concentric hemispheres, an 

expression relating the cell size (and pore 

radius) to the applied voltage can be found.  

The cell size and radius are both found to be 

linearly dependent on the applied voltage In 

accordance with experimental results where it 

is found that the pore diameters can vary from 

about 5 nm to 500 nm by varying the forming voltage.  Figure 3.11 shows a plot of the 

cell size or interpore distance versus the applied voltage [47].  The straight line is the 

theoretical fit from their model while the points are experimental data from films grown 

in various electrolytes.  The agreement is found to be quite good.  Their conclusions are 

that the proportionality between the pore size and the voltage is of a quite general nature 

and is not sensitive to the particular features of pore shape. 

 3.4.7 Ordered Growth 

 For the most general processing conditions of porous alumina, the resulting 

structure is a random array of pores.  Examples of unordered films grown in 0.3 M 

phosphoric acid are shown in the secondary electron microscope (SEM) images in 

Figure 3.11.  The theoretical 
dependence of cell size versus applied 
voltage (straight line) compared with 
experimental data of different 
electrolytes (triangle, oxalic acid; 
square, phosphoric acid; open circle, 
glicolic acid; closed circle, tartaric 
acid).  Graph taken from Ref. [47]. 
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Figures 3.12 (a) and (b) for forming voltages of 150 V and 180 V, respectively [48].  

However, in 1995, a Japanese group found that under the right processing conditions, 

namely the appropriate forming voltages (specific for each electrolyte) and very long 

anodization times, the pores would self order into a hexagonally close packed array with 

well ordered domains several microns in size [49, 50].  Figure 3.12 (c) shows an SEM 

micrograph of an ordered porous alumina film formed in 0.3 M phosphoric acid at 195 V 

for 16 hours [48]. 

While it is not yet known what causes the alumina membranes to spontaneously 

order under the right processing conditions, there are a number of conditions that are 

known to affect the degree to which the films will order.  In addition to the two most 

important parameters (voltage and time), the electrolyte concentration, stirring of the 

electrolyte, temperature, and substrate preparation all play an important part in the 

ordering process [51-54].  When these conditions are suitable, the result is a stable anodic 

state, i.e., stable voltage and current, which is found to be an essential requirement for the 

ordering process to occur [51]. 

One possible explanation for the ordering of the pores was put forward by a 

German group in 1998 [55].  They state that the self-organized arrangement of 

Figure 3.12.  SEM micrographs of porous alumina films formed in 0.3 M phosphoric acid 
at 0oC for 16 hours.  The unordered films in (a) and (b) were formed in 150 V and 180 V, 
respectively.  The ordered film shown in (c) was formed in 195 V.  The scale for all three 
micrographs is given in (c).  Images taken from Ref. [48]. 

(a) (b) (c)
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neighboring pores can be explained 

by a repulsive interaction between 

the pores.  A possible origin of the 

forces between neighboring pores 

was proposed to be the mechanical 

stress associated with the expansion 

during oxide formation at the 

metal/oxide interface.  Figure 3.13 

shows a schematic depicting the 

expansion of aluminum during 

oxidation [55].  While all the O2-/OH- ions reaching the metal/oxide interface are 

involved in growth processes, the Al3+ ions reaching the oxide/electrolyte interface are all 

ejected into the electrolyte.  By varying the voltage and electrolyte, the amount of 

aluminum going into forming the oxide can be varied.  Essentially, the relative transport 

numbers of Al3+ and O2-/OH- ions through the film is a function of the voltage and 

electrolyte, which varies the stress at the metal/oxide interface.  To measure this 

experimentally, films were grown for long anodization times in various voltages and 

electrolytes, and the volume expansion was measured.  The volume expansion factor was 

simply calculated by measuring the ratio of the relative thickness of the alumina layer 

grown to the aluminum consumed, and was found to vary from about 0.8 to 1.7 by 

varying the anodization conditions.  It was found that maximum ordering was achieved 

whenever the anodization conditions lead to moderate volume expansion factors of 1.4.  

The primary parameter found to give this expansion factor was a narrow range of 

Figure 3.13.  Schematic of the expansion of Al 
during anodic oxidation.  On the left, the level of 
the unoxidized metal surface is depicted.
Schematic taken from Ref. [55]. 
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anodizing voltage which was dependent on the electrolyte and electrolyte concentration 

used. 

In the case of contraction (i.e. volume expansion factors less than one), no 

repulsive forces between the pores are expected, and experimentally no ordered domains 

were observed.  As the volume expansion rose above one, small ordered domains were 

observed.  At moderate volume expansion factors of about 1.4, maximum ordering was 

observed with ordered domains of about a micron in size separated by grain boundaries 

where a large amount of defects also occurred.  It was found that for larger volume 

expansion factors, structural defects and irregular pore growth occurred, which were 

often characterized by unstable currents.  In addition, large volume expansion factors 

were associated with high anodizing voltages and large growth rates which serve to 

reduce the interaction between the neighboring pores. 

It is important to note that ordering of the pores occurs through time at the 

metal/oxide interface.  Under the appropriate anodization conditions leading to a 

moderate expansion of the oxide, the pores still initiate at random positions on the oxide 

surface and only became progressively ordered at the metal-oxide interface through time.  

As mentioned above, the appropriate anodization conditions for good ordering of the 

pores is mainly determined by the anodization voltage specific to the electrolyte and 

electrolyte concentration.  When these parameters are chosen such that they give 

expansion factors between 1.2-1.4, or equivalently a porosity of about 10%, well ordered 

pore arrays result after long anodization times.  This observation has lead to the so called 

“10% porosity rule” [56] which states that the self-ordering of the AAO pores with any 

interpore spacing is possible as long as the anodization voltage combined with the pH of 
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the electrolyte is tuned to give an AAO film with 10% porosity. 

As a final comment, it should be noted that very well ordered arrays with no grain 

boundaries can be fabricated over large areas (~ 5 mm2 or larger) by texturing the surface 

of the starting Al foil with an array of concave pits and anodizing under the appropriate 

conditions [57, 58].  These dimples serve as ordered nucleation sites for the pores rather 

than the random pore initiation sites that occur without texturing. 

 

3.5.  EXPERIMENTAL RESULTS AND DISCUSSION 

 The following section presents work on optimizing the growth of AAO films 

specifically for use as templates or masks for the fabrication of arrays of nanostructures  

To start, the Al foil growth substrates were subjected to various pre-growth processes to 

optimize the growth of the AAO films.  Following this, examples of porous AAO films 

obtained under different growth conditions (various electrolytes, low temperature growth, 

and evaporated Al on silicon substrates) are reported and discussed with an emphasis 

towards tailoring the pore dimensions, spacings, thickness, etc. 

 3.5.1 Al Foil Pre-Treatment Study 

 High purity (99.999%), 0.25 mm thick aluminum foils were degreased in 

tetrachloroethylene (TCE), acetone, methanol, and DI water, followed by a cleaning step 

consisting of a 1:10:20:69 mixed solution of hydrofluoric acid (HF), nitric acid (HNO3), 

hydrochloric acid (HCl), and water (H2O) at 25 oC for five minutes.  Figure 3.14 (a) 

shows a Nomarski optical microscope image of a cleaned Al foil while Figure 3.14 (b) 

shows an SEM image of the same sample.  Note the presence of square defects in the 

SEM image.  Following the degreasing, the Al foils were annealed under forming gas 
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(80% N2, 20% H2) at 550 oC for 

three hours to remove 

mechanical stresses in the film 

and increase grain sizes.  Figure 

3.14 (c) shows a Nomarski 

optical microscope image of an 

annealed Al foil while Figure 

3.14 (d) shows an SEM image of 

the sample.  Note the density of 

square defects in the annealed 

foil is smaller than in the 

unannealed foil.  To further 

reduce the surface roughness of 

the films, the Al substrates were 

electropolished in a 1:3 mixture 

of perchloric acid (HClO4) and 

ethanol (C2H5OH) for three 

minutes at a constant current density of 100 mA/cm2 and a temperature of 2 oC.  This was 

accomplished using a temperature-controlled anodization cell similar to the schematic in 

Figure 3.1 using a Pt cathode.  The back and sides of the Al foils were coated in black 

wax to prevent any back side electropolishing or anodizing as well as to eliminate any 

edge effects.  The electropolishing step produced a mirror surface as shown in the 

Nomarski optical microscope and SEM images, Figures 3.14 (e) and (f), respectively.  

Figure 3.14.  (a) Nomarski optical microscope image 
of degreased and acid cleaned, high purity Al foil.  (b) 
SEM image of degreased and acid cleaned, high purity 
Al foil.  (c)  Nomarski optical microscope image of 
annealed Al foil.  (d)  SEM image of annealed Al foil. 
(e) Nomarski optical microscope image of annealed and 
electropolished Al foil.  (f) SEM image of annealed and 
electropolished Al foil.
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Note that the electropolishing step 

has clearly defined the grain 

boundaries as seen in the optical 

microscope image while the SEM 

image indicates that most of the 

square defects are gone. 

 At this point, the pre-

treatment of the Al foils was 

complete and they were ready for anodization.  To maximize ordering of the pores in the 

AAO, a two step anodization process similar to that reported by Masuda was used [59].  

In this process, a long first anodization step (generally greater than 12 hours) at the 

appropriate constant voltage that maximizes the self-organization process (specific to 

each electrolyte) is performed to insure good ordering at the metal-oxide interface.  As 

previously mentioned, the pores initiate at random positions and self-order at the metal-

oxide interface through time.  This is shown schematically in Figure 3.15 (a).  The porous 

AAO film is then stripped off leaving behind periodic concave patterns in the Al surface 

as depicted in Figure 3.15 (b).  These ordered arrays of dimples serve as nucleation sites 

for the second anodization step insuring maximum ordering from the outset.  This allows 

the growth of a porous AAO film with uniform and straight pore channels (Figure 3.15 

(c)), a requirement if the film is to be used as a mask or template for pattern transfer. 

 Figures 3.16 (a) and (b) show Nomarski optical microscope and SEM images of 

the top surface of a porous AAO film after a first anodization at a constant voltage of 40 

V in 0.3 M oxalic acid (C2H2O4) for 15 hours at 5 oC.  The anodization conditions were 

Figure 3.15  Process schematic for fabricating a
well-ordered AAO film. (a) Long period 
anodization of Al foil to obtain well-ordered pores 
at the metal/oxide interface.  Pore initiation on the 
top surface of the AAO film is random. (b)  Etch 
off resulting AAO film leaving behind pore base 
replica in Al foil  (c)  Short period re-anodization 
of Al foil to fabricate well-ordered, thin film with 
straight pore channels. 
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designed to maximize the ordering 

at the metal-oxide interface as 

determined by previous researchers 

[49, 52].  Note the random 

orientation of the pores and the 

large variation in both pore 

diameter and spacing in the SEM 

image reflecting the random pore 

initialization at the start of the 

anodization.  Next, the porous 

AAO film was etched off in a 1:1 

mixture of 6 wt % phosphoric acid 

and 1.6 wt % chromic acid at 60 

oC.  This left behind periodic concave patterns in the Al surface that served as nucleation 

sites for the second anodization step to insure maximum ordering from the outset.  The 

second anodization step was conducted at a constant voltage of 40 V in 0.3 M oxalic acid 

for five minutes at 5 oC.  Figures 3.16 (c) and (d) show Nomarski optical microscope and 

SEM images of the top surface of the porous AAO film after the second anodization step.  

Note the very well ordered hexagonally close packed array of pores in the SEM image.  

The pores have an average diameter around 40 nm with 100 nm pore-to-pore separation. 

 3.5.2 Porous AAO Film Results 

 Anodization of films in both 0.3 M oxalic acid and 1.7 wt % sulfuric acid were 

conducted under constant voltage conditions.  Unless otherwise specified, the pre-

Figure 3.16.  (a) Nomarski optical microscope image 
of porous AAO film after first anodization.  (b) SEM 
image of porous AAO film after first anodization.  (c) 
Nomarski optical microscope image of porous AAO 
film after second anodization.  (d) SEM image of 
porous AAO film after second anodization. 
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treatment of the Al foils was 

identical to that described 

above.  Figure 3.17 shows a 

typical current vs. time curve 

for a first anodization of an 8 

mm x 8mm AAO film 

anodized at a constant 

voltage of 40 V in 0.3 M 

oxalic acid for roughly 20 

hours at 5 oC.  The current initially starts our high, immediately decreases, goes through a 

minimum, climbs to a local maximum at around 5 minutes, and remains relatively 

constant for the rest of the anodization.  Note that this curve agrees qualitatively with the 

constant voltage curve typical for porous AAO films as shown in Figure 3.6. 

 Figure 3.18 shows SEM images of two films anodized in oxalic acid, and sulfuric 

acid.  Figure 3.18 (a) shows a top down SEM image of a film anodized at 40 V in 0.3 M 

Figure 3.17  Typical current vs. time curve for a porous 
AAO film anodized at a constant voltage of 40 V in 0.3 
M oxalic acid for approximately 20 hours at 5 oC. 

Figure 3.18.  (a) SEM micrograph of porous AAO film anodized at 40V in 0.3M oxalic acid at 
5oC.  Inset shows higher magnification SEM image.  (b)  SEM micrograph of porous AAO film 
anodized at 27 V in 1.7 wt% sulfuric acid at 5oC.
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oxalic acid at 5 oC for approximately 20 hours.  After anodization, the AAO film was 

removed from the Al foil in a saturated mercury chloride solution, and the barrier layer 

was removed in a 5 wt % phosphoric acid solution for 35 minutes.  The SEM image 

shows the well-ordered side of the AAO film after the first anodization.  The inset shows 

a higher magnification SEM image.  The AAO film has an average pore diameter of 40 

nm with a pore-to-pore spacing of 100 nm.  Note that the film has a polycrystalline 

structure with micron-sized domains.  Figure 3.18 (b) shows a top down SEM image of a 

film anodized at 27 V in 1.7 wt % sulfuric acid (H2SO4) at 5 oC for approximately 20 

hours.  Like the oxalic acid-grown sample, the AAO was removed from the Al foil in a 

saturated mercury chloride solution, and the barrier layer was removed in a 5 wt % 

phosphoric acid solution for 35 

minutes.  This film has an 

average pore diameter of 20 nm 

with a pore-to-pore spacing of 

60 nm.   

 The average diameters 

and pore-to-pore spacings agree 

well with the work of others as 

seen in Figure 3.19 which plots 

the linear relationship between 

the interpore spacing and the 

applied voltage for films grown 

in different electrolytes [52].  

Figure 3.19.  Interpore distance versus applied voltage 
for porous AAO films grown in sulfuric acid, oxalic 
acid, and phosphoric acid electrolytes.  Inset table 
shows the pore diameters and interpore separations for 
the three electrolytes under the conditions that 
maximizes the ordering of the pores.  Data taken from 
Ref. [52]. 
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The inset table shows the pore diameters 

and interpore spacings for the three most 

common electrolytes centered around the 

narrow voltage window that maximizes 

ordering. 

 The use of these porous AAO films 

as templates or shadow masks for the 

fabrication of arrays of nanostructures 

requires that the pore channels be straight 

and uniform (no kinks,etc.) and that the 

AAO film thickness be small enough to 

allow pattern transfer to occur.  The use of a two step anodization process [59] insures the 

uniformity of the pore channels and allows the thickness to be tailored to the desired 

value by the second anodization time.  Figure 3.20 shows a near cross-sectional SEM 

image of a 40 V, 0.3 M oxalic acid-grown AAO film after a second anodization time of 5 

minutes.  The AAO was removed from the Al substrate by a saturated mercury chloride 

Figure 3.20.  Near cross-sectional SEM 
image of oxalic acid-grown AAO film 
removed from the Al foil and lifted out onto 
a silicon substrate.  Inset shows a higher 
magnification cross-sectional SEM image of 
the barrier layer.

Figure 3.21.  1 µm x 1 µm, 3D-rendered atomic force microscopy images of an oxalic acid-
grown AAO porous side up (a) and barrier layer side up (b).  Color scale for both images is 
approximately 15 nm. 
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solution and lifted out onto a silicon substrate.  Note the straightness and uniformity of 

the pores.  The inset of Figure 3.20 shows a higher magnification cross-sectional SEM 

image of the barrier layer.  For comparison, Figures 3.21 (a) and (b) show 1 µm2, 3D 

rendered, non-contact atomic force microscopy (AFM) images taken with a Topometrix 

TMX 2000 Explorer system of the top side of a porous AAO film (a) and the bottom 

barrier layer side (b) of an AAO film grown under similar conditions to the film shown in 

Figure 3.20.  The color scale for both of the images is 15 nm.  To use these porous AAO 

films as through-hole masks, the barrier layer needs to be removed from the bottom side 

of the film.  This will be discussed in detail in Chapter 4. 

 Control over the thickness of the AAO films is also a requirement for the use of 

these films as templates or shadow masks.  For a given a temperature and anodization 

voltage, the AAO thickness depends on the anodization time of the second anodization.  

Figure 3.22.  AAO film thickness vs. secondary anodization time for films grown in 0.3 M 
oxalic acid at 40 V and 2 oC.  Images on the right show 60o oblique angle SEM micrographs of 
AAO films grown for 1 minute, 5 minutes, and 8 minutes.
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Figure 3.22 shows the thickness versus anodization time for secondary anodizations 

performed at 40 V in 0.3 M oxalic acid at 2 oC.  A straight line fit through the data gives 

a growth rate of approximately 66 nm/min under these conditions.  The right hand side 

shows oblique angle SEM views (60o from normal) of AAO films for second anodization 

times of 8 minutes, 5 minutes, and 1 minute.  Note that the 1 minute film has very little 

thickness other than the barrier layer thickness.  These results are specific to the 

anodization conditions, i.e. 0.3 M oxalic acid at 40 V and a temperature of 2 oC.  These 

results would vary for other anodization conditions. 

 3.5.3 Low Temperature Porous AAO Film Results 

 It has previously been reported that anodization of Al carried out at low 

temperatures (~0 to -80 oC) in sulfuric/methanol electrolytes can produce unordered pore 

arrays with smaller pore diameters and spacings than those found in AAO films carried 

out above 0 oC [60].  Towards this 

end, an anodization of Al was 

performed at 15V and -32 oC in a 

3:1 mixture of 1.2 M H2SO4 and 

water for 48 hours.  The addition 

of methanol in the electrolyte was 

to insure that the electrolyte did 

not freeze during the low 

temperature anodization and a 

long anodization time was 

required because of the much Figure 3.23.  Porous AAO film grown in a 1:1 
mixture of 1.2M sulfuric acid: MeOH at 15V and -
32oC.
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slower growth rate at low temperatures.  Figure 3.23 shows an SEM image of the 

resulting porous AAO film.  Note that the pores are not well ordered and the pore 

diameters, ranging from about 10-22 nm, are not uniform.  At this time, it is unknown if 

low temperature anodization of Al can lead to a well ordered pore array and if possible, 

what conditions are required.  Although the pore sizes are smaller than room temperature 

anodizations, this line of research was abandoned due to the disordered array and 

impracticality of anodizing for several days to achieve an AAO film for pattern transfer. 

 3.5.4 Evaporated Al on Si Porous AAO Results 

 As a means of exploring a way to produce a porous AAO film on a silicon 

substrate, work was performed on anodizing thermally evaporated Al on Si films 

following the work of Crouse et al [61].  First, a 2 µm thick film of 99.99% Al was 

thermally evaporated in a vacuum of 8 x 10-7 Torr on a 1-10 ohm cm n-type Si substrate.  

The Si backside and edges were coated in black wax and the Al film was anodized in 0.3 

M oxalic acid at 40 V at 5 oC.  After roughly 13 minutes, the Al film was seen to change 

color and the current decreased substantially.  The film was then subjected to a pore 

widening etch consisting of a 5 wt % solution of phosphoric acid at 30 oC for 1 hour.  

Figure 3.24 (a) shows an 11o from normal SEM image of the porous AAO film.  The 

Figure 3.24.  (a) 11o oblique angle SEM 
image of porous AAO film anodized from 
thermally evaporated Al/Si  (b) Cross-
sectional SEM image of porous AAO film 
anodized from thermally evaporated Al/Si. 
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pores are roughly 80 nm in diameter (due to the pore widening step) spaced 100 nm 

apart.  Figure 3.24 (b) shows a cross-sectional SEM image of the porous AAO film.  As 

can be seen from Figure 3.24 (a), the pores were not very well ordered due to the use of 

only one short period anodization step (limited by the thicknesss of the evaporated Al 

film).  To obtain better ordering, it is possible to utilize a two step anodization on a 

thicker evaporated Al film or to imprint the Al film prior to anodization.  In fact, both of 

these techniques have been used by research groups to achieve better pore ordering [62, 

63]. 

 

3.6.  CONCLUSION 

 The growth mechanisms and previous work regarding AAO films was reviewed.  

Essentially, the growth of porous alumina proceeds by oxide growth at the metal/oxide 

interface dictated by the average field, and field-assisted dissolution at the 

oxide/electrolyte interface dictated by the local field which is influenced by the radius of 

curvature at the pore base.  The constant pore diameters, which are proportional to the 

applied voltage, result from the equilibrium barrier layer thickness and the pore base 

radius of curvature subsequently established.  As a result, pore diameters are proportional 

to the applied voltage and are tunable anywhere from about 5 nm to 500 nm.  In addition, 

ordering of the pores into a hexagonal close packed array can occur under the appropriate 

anodizing conditions, the most important of which are narrow voltage windows specific 

to the electrolyte and long anodization times.  Although at present, the mechanism of 

ordering has not been fully elucidated, it is thought to result from repulsive forces 

between neighboring pores as a result of stress at the metal/oxide interface.   
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 Because of the unique structure of porous alumina membranes, many applications 

of this film are possible, including its use as a nano-template to create ordered arrays of 

nanostructures.  Towards this end, porous AAO films designed to maximize its use as a 

nano-template were grown and characterized.  AAO films grown in oxalic acid (40 nm 

pore diameters, 100 nm interpore spacing), and sulfuric acid (20 nm pore diameters, 60 

nm interpore spacing) were fabricated at the appropriate voltages to maximize the self-

ordering of the pores.  In addition, low temperature anodizations were carried out in 

sulfuric acid to produce unordered arrays of pores with pore diameters ranging from 10-

20 nm.  Finally, anodizations were carried out on thermally evaporated Al/Si to produce 

AAO templates grown on silicon substrates. 
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Chapter 4 

 

Pattern Transfer with AAO:  Nano-Dot Arrays 

 

4.1.  ABSTRACT 

 Nano-dot arrays of a wide range of materials have been fabricated onto various 

substrates by evaporating or sputtering material through AAO films.  Depending on the 

dot and substrate materials, nano-dot arrays could have a wide variety of applications 

such as data storage (i.e. magnetic memory storage), or nano-tribological coatings to 

improve the friction, lubrication, or wear of surfaces.  In addition, the fabrication 

technique presented allows large areas to be patterned (~ mm x mm) which is essential 

for certain characterization techniques (i.e. optical and magnetic measurements, etc.)  

First, the pattern transfer technique using AAO films as masks will be described.  In 

short, the AAO films, after removal from the Al foil and removal of the thin barrier layer, 

are placed directly onto substrates and used as shadow masks or templates during an 

evaporation or sputter-deposition step.  After material deposition and upon removal of the 

AAO film, a well-ordered hexagonal array of nano-dots with lateral dimensions 
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comparable to the pore dimensions of the AAO is obtained.  Next, various examples of 

dot arrays both evaporated and sputter-deposited will be presented.  Finally, 

characterization by UV-Vis absorption spectroscopy on Au nano-dot arrays showed 

peaks in the 500-600 nm region, qualitatively consistent with Mie scattering and 

absorption phenomena for nano-dots of this size. 

 

4.2.  PATTERN TRANSFER TECHNIQUE 

 As discussed in the previous chapter, sample processing starts with an AAO 

template fabricated using a two-step anodization process on a pure (99.999%) Al foil 

following the work of Masuda et al. [59].  Figure 4.1 shows a schematic of the processes 

involved in fabricating a through-hole mask from a porous AAO film.  First, a long 

period anodization step on the order of 15 hours is performed on an Al foil as shown in 

Figure 4.1 (a).  The purpose of this step is to insure maximum ordering of the pores since, 

as shown in Chapter 3, the base of the pores become more ordered in time under the 

appropriate electrolyte-specific anodization voltage.  This step is followed by etching off 

the AAO film in a 1:1 mixture of 6 wt % phosphoric acid: 1.8 wt %chromic acid at 60 oC 

for two hours.  This leaves behind a replica of the pore bottoms in the Al foil as shown in 

Figure 4.1 (b).  The aluminum foil is then re-anodized under identical conditions as the 

Figure 4.1.  Process schematic for fabricating a through-hole porous AAO mask.  (a) Long 
period anodization of Al foil (b)  Etch off resulting AAO film leaving behind pore base 
replica in Al foil  (c)  Short period reanodization of Al foil  (d) Spin on collodion coating to 
protect top surface of AAO  (e) Remove Al foil in saturated HgCl2 solution  (f)  Etch away 
barrier layer in 5 wt% phosphoric acid (g) Lift off AAO film onto desired substrate and 
remove collodion in acetone.   
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first anodization but for a much shorter period (~5 minutes), giving a thin porous AAO 

film with maximized pore ordering and straight pore channels as shown in Figure 4.1 (c).  

This completes the growth of the AAO film and it is now ready to be lifted off and 

further processed into a through-hole mask following the procedure first laid out by 

Masuda et al. [59].  First, a thin polymer film consisting of collodion in amyl acetate is 

spun onto the surface of the AAO film to protect it from further processing steps.  This is 

shown in Figure 4.1 (d).  Next, a saturated HgCl2 solution is used to separate the AAO 

from the Al foil as depicted in Figure 4.1 (e).  The remaining AAO barrier layer is then 

removed in a 5 wt % solution of H3PO4 at 30 oC for 35 minutes leaving a through-hole 

mask as shown in Figure 4.1 (f).  The resulting AAO through-hole mask, which was 

roughly 3 mm by 3 mm in size for the work performed here, is then placed on the desired 

substrate and the collodion layer is removed in acetone.  The resulting sample is then 

ready for subsequent pattern transfer (e.g. deposition or etching processes) as shown in 

Figure 4.1 (g).   

 

4.3.  THERMALLY EVAPORATED NANO-DOT ARRAYS 

 4.3.1 MgF2 Nano-Dot Array using Oxalic Acid-Grown AAO Mask 

 An AAO film was fabricated by a two step anodization process as described 

above.  First, the film was anodized in 0.3 M oxalic acid at 40 V and 10 oC for 15 hours.  

The AAO film was stripped from the Al foil and a secondary anodization in 0.3 M oxalic 

acid at 40 V and 10 oC for 5 minutes was carried out.  This resulted in an AAO film 

approximately 500 nm thick with 50 nm pore diameters spaced 100 nm apart.  Next, the 

processing steps shown in Figure 4.1 (d)-(g) were carried out to make a through-hole 
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mask.  In particular, a thin layer of collodion was spun onto the AAO film and the film 

was separated from the Al foil in a saturated HgCl2 solution.  Next, the barrier layer was 

removed in a 5 wt % solution of H3PO4 at 30 oC for about 35 minutes.  This was followed 

by lifting off the AAO film onto a Si substrate and allowing the film to dry before 

immersing the sample in acetone to remove the collodion layer.  This resulted in a 

through-hole AAO mask approximately 3 mm x 3 mm in size weakly bonded by van der 

Waal forces to a Si substrate. 

 Next, a 50 nm layer of MgF2 was deposited onto the Si through the AAO mask by 

thermal evaporation using an Edwards E306A in a vacuum of ~ 10-6 Torr.  The source 

material, consisting of a 5 mm x 5mm x 2mm piece of MgF2, was placed directly 

underneath the sample with a sample-to-source distance of approximately 10 cm.  This 

allowed a significant fraction of the evaporated MgF2 (with an estimated angular 

dispersion of ~ 100 mm/5 mm = 20:1) to travel down the pores of the mask (which had 

an aspect ratio of 500 nm/50 nm = 10:1 and hence could accept angular dispersions up to 

10:1).  Unless otherwise stated, all other evaporations used to create nano-dot arrays as 

described later in this chapter were performed under identical conditions.  After 

evaporation, the AAO film was removed by mechanical means (i.e., double-side carbon 

tape was used to removed the AAO) although it should be noted that chemical wet 

etching compatible with the dot material was also used to remove AAO films from other 

samples. 

 Figure 4.2 shows SEM micrographs taken with a JEOL 880 SEM of the resulting 

MgF2 dot array on the Si substrate.  The dots have an average diameter of 50 nm with an 

average center-to-center spacing of 100 nm.  From the low magnification SEM image in 
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Figure 4.2 (a), it can be seen that the hexagonal arrangement of the dots corresponds well 

with the hexagonal arrangement of the pores in the AAO mask.  The regularity or degree 

of ordering of the dots depends on the degree of ordering of the pores in the AAO film 

and as discussed in the last chapter is highly dependent on the anodization conditions.  As 

seen in both Figures 4.2 (a) and (b), grain boundaries separate the well-ordered micron-

sized regions.  In addition, point defects and missing dots can be seen.  The missing dots 

are most likely due to the presence of dust or particles blocking the pores in the AAO 

mask during the evaporation or MgF2 clumping or balling up on the surface of the AAO 

mask and subsequently blocking the pores during the evaporation step.  Figure 4.2 (c) 

shows a close-up SEM in a region exhibiting very good order. 

 Figure 4.3 (a) shows a 500 nm x 500 nm 3D-rendered non-contact AFM image 

taken with a Topometrix TMX 2000 Explorer system of the MgF2 dot array while Figure 

3 (b) shows a line scan taken through the black line crossing the AFM image.  A bulk 

evaporation of 50 nm (as determined by a crystal monitor and bulk step height 

measurements) of MgF2 yielded an average dot height of 12 nm +/- 11%.  The difference 

Figure 4.2.  Top down SEM micrographs of array of MgF2 nano-dots thermally evaporated 
through a porous AAO mask onto a Si substrate.  (a)  Low magnification SEM showing 
presence of grain boundaries and missing dots  (b)  Medium magnification SEM  (c)  High 
magnification showing a very well-ordered region.
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in the deposition thickness and the dot height is assumed to be due to MgF2 material 

coating the top and side of the pores of the AAO mask yielding a material transmission 

factor through the 10:1 aspect ratio pores of 24 %.  The shape of the dots in this case is 

roughly spherical with a flat base.  The average dot diameter as determined from AFM 

linescans was found to be 60 nm +/- 9 % with an average center-to-center dot spacing of 

110 nm +/- 5 %.  The diameter and spacing dimensions determined from AFM scans are 

slightly larger than those determined from the SEM micrographs and the known 

dimensions of the AAO mask (50 nm diameter pores spaced 100 nm apart).  This 

difference in the lateral dimensions is most likely an AFM imaging artifact possibly due 

to the AFM tip radius of curvature (quoted to be about 10 nm) being roughly the same 

size as the nano-dots.  In fact, other AFM scans show clear imaging artifacts and AFM 

tips were seen to clearly degrade through time while scanning these nano-dot arrays.  

However, the AFM scan does serve to indicate that all dimensions (height, diameter, and 

spacings) are extremely uniform with deviations of roughly 10% or less. 

 

Figure 4.3.  (a) 3D rendered AFM scan showing hexagonal array of thermally evaporated MgF2
nano-dots.  (b)  Line scan of dots taken from the black line crossing the AFM scan in (a). 
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 4.3.2 Other Examples of Thermally Evaporated Nano-Dot Arrays using 

Oxalic Acid-Grown AAO Masks 

 As a general rule of thumb, utilizing this method essentially any material that can 

be thermally evaporated can be used to create a nano-dot array.  Dot arrays of various 

materials including Au, Al, Cr, Fe, 

In, and Ni were fabricated during the 

course of this research.  As an 

example, Figure 4.4 shows top down 

SEM micrographs of a Au array of 

nano-dots evaporated through an 

oxalic acid-grown AAO mask with 

50 nm pore diameters spaced 100 

nm apart.  Once again, grain 

boundaries, point defects, and 

missing dots can be seen in Figures 

Figure 4.4.  Top down SEM micrographs of array of Au nano-dots thermally evaporated 
through a porous AAO mask onto a Si substrate.  (a)  Low magnification SEM showing 
presence of grain boundaries and missing dots  (b)  Medium magnification SEM  (c)  High 
magnification showing a very well-ordered region. 

Figure 4.5.  60o oblique angle SEM 
micrograph of Au nano-dot array thermally 
evaporated through a porous AAO mask onto a 
Si substrate.  Note the remaining porous AAO 
mask in the upper left part of the image. 
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4.4 (a) and (b) while Figure 4.4 (c) shows a region exhibiting a very well-ordered array of 

dots.  In this case approximately 70 nm of Au was evaporated through a 500 nm thick 

mask yielding approximately 20 nm tall dots.  Figure 4.5 shows a 60o oblique angle SEM 

micrograph of the Au nano-dot array where a piece of the AAO mask remains.  Note the 

presence of a Au layer coating the top surface of the AAO and preferentially balling up or 

accumulating at higher positions around the pore walls.  This effect along with decreasing 

pore diameters during evaporation as Au continues to coat the AAO pore walls can affect 

the dot transfer characteristics including the shape and height of the dots.   

 To illustrate 

this, Figure 4.6 shows 

60o oblique angle SEM 

micrographs of Ni dot 

arrays for two different 

evaporation thicknesses 

demonstrating the 

dependence of dot 

height and shape on the 

amount of evaporation.  

Figures 4.6 (a) and (b) 

show low 

magnification and high 

magnification images, 

respectively, of 15 nm 

Figure 4.6.  60o oblique angle SEM micrographs of Ni dot 
arrays evaporated through an AAO mask illustrating dot height 
and shape differences controlled through the amount of 
evaporation.  (a) and (b) show low magnification and high 
magnification SEM images, respectively of 15 nm tall spherical
Ni dots.  (c) and (d) show low mag. and high mag. SEM images, 
respectively of 45 nm tall conical Ni dots. 
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high dots (30 nm bulk Ni evaporated) while Figures 4.6 (c) and (d) shows low 

magnification and high magnification images, respectively, of 45 nm high dots (70 nm 

bulk Ni evaporated).  In both cases, the dots have an average diameter of 75 nm (due to a 

pore widening step) and are spaced 100 nm apart.  In both cases, a 350 nm thick, 75 nm 

pore diameter (aspect ratio ~ 4.6:1) AAO mask was used yielding material transmission 

factors of (15 nm/30 nm) ~ 50 % and (45 nm/70 nm) ~ 64 %, respectively.  The 

transmission factors are in fairly good agreement with each other and as expected, are 

larger than those found using higher aspect ratio masks.  Also, note that the taller dots 

appear more conical in shape than the smaller spheroid dots.  This is thought to be due to 

the decreasing pore size during the evaporation as Ni started to close up the pores. 

 As a final concern in fabricating nano-dot arrays using this method, it should be 

noted that some nano-dot arrays showed the presence of remaining organic materials that 

could only be removed by plasma etching.  The organic material was thought to be 

remnants of the collodion layer used during AAO mask processing.  Figure 4.7 shows top 

Figure 4.7.  (a)  SEM micrograph of Ni nano-dot array after removal of AAO mask.  (b) 
SEM micrograph of same Ni nano-dot array after an O2 plasma etching step to remove
organic materials. 
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down SEM micrographs of a Ni nano-dot array before and after an oxygen plasma 

etching step to remove organic materials.  Figure 4.7 (a) shows a Ni dot array directly 

after removal of the AAO mask while Figure 7 (b) shows the same Ni dot array after a 

0.8 Torr, 70W O2 plasma etching step for 30 minutes.  Note the clear presence of debris 

around the dots shown in Figure 4.7 (a) which was successfully removed by plasma 

etching as shown in Figure 4.7 (b). 

 4.3.3 Thermally Evaporated Nano-Dot Arrays using Sulfuric Acid-Grown 

AAO Masks 

The above examples of nano-dot arrays were all created using oxalic acid-grown 

porous AAO masks which yielded dots with diameters ranging anywhere from about 50-

75 nm with dot-to-dot spacings of 100 nm.  Some success in transferring dot array 

patterns was also obtained using sulfuric acid-grown AAO masks with smaller 

dimensions.  In this case, the AAO film was anodized in 1.7 wt % sulfuric acid at 27 V 

and 2 oC for 15 hours, conditions appropriate to maximize the self-ordering.  The AAO 

film was then stripped from the Al foil and a secondary anodization under identical 

conditions as the first was carried out for 3 minutes.  This resulted in an AAO film 

approximately 200 nm thick with 20 nm pore diameters spaced 60 nm apart.  The 

remaining processing steps were identical to that used above for oxalic acid-grown films 

except the barrier layer opening etch was done for 26 minutes instead of 34 minutes due 

to the thinner barrier layer resulting from the lower anodizing voltage.  AAO masks were 

then lifted off onto Si and various materials were evaporated.   

Figure 4.8 (a) shows a top down SEM image of a Ni nano-dot array thermally 

evaporated through a sulfuric acid-grown AAO mask.  From this figure, it can be seen 
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that the transfer and the ordering of the dots are not as good as the ones fabricated using 

the oxalic acid-grown masks although the nano-dot dimensions are smaller.  Figure 4.8 

(b) shows a cross-sectional SEM image of the dots with the AAO still present although 

slightly off the surface of the silicon substrate, presumably due to cleaving the sample for 

SEM observation.  Note the presence of Ni coating the top surface of the AAO film.  

From the two images in Figure 4.8, the diameter and spacing of the dots are around 25 

nm and 60 nm, respectively showing good agreement with the AAO pore dimensions.  In 

addition, the cross-sectional image shows the 30 nm tall dots to be extremely conical in 

shape due to Ni closing up the pore diameters during evaporation.  70 nm of Ni was 

evaporated in this case giving a material transmission factor through the 10:1 aspect ratio 

pores of 43 %.   

 Figure 4.9 (a) shows a 5 µm x 5 µm AFM image of MgF2 dots evaporated 

through a sulfuric acid-grown AAO film onto a Si substrate while Figure 4.9 (b) shows a 

2 µm x 2 µm AFM image of the same sample.  (Note that an imaging artifact occurs 

about three quarters of the way down Figure 4.9 (b) which does not reflect the actual 

topography of the sample.)  The color scale in these images is 40 nm and the average dot 

Figure 4.8.  (a) Top down SEM micrograph of array of Ni nano-dots thermally evaporated 
onto a Si substrate through a sulfuric acid-grown porous AAO mask with 20 nm pore 
diameters spaced 60 nm apart.  (b)  Cross-sectional SEM image showing the sulfuric acid-
grown porous AAO mask and Ni dot array. 
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height is roughly 30 nm.  Once again, the transfer and ordering of the dots is not as good 

as the oxalic-acid grown films used to transfer dot arrays.  Missing dots and greater 

variation in dot height, consistent with problems with material transmission through the 

mask, are presumably due to the smaller pore diameters (although the aspect ratio of the 

sulfuric acid and oxalic acid-grown AAO films are comparable) closing up more readily 

during the evaporation.  Different evaporation parameters such as a longer source-to-

sample distance, better vacuum, and slower evaporation rates would probably yield better 

results. 

 

4.4.  SPUTTER DEPOSITED NANO-DOT ARRAYS 

 In addition, to thermally evaporated nano-dot arrays, AAO films have also been 

used successfully to create sputtered nano-dot arrays.  Carbon, cobalt, and molybdenum 

sputtered dot arrays on both silicon and gallium arsenide have been fabricated during the 

course of this research.  As an example, Figure 4.10 (a) and (b) shows 5 µm x 5 µm and 1 

Figure 4.9.  (a) 5 µm x 5 µm non-contact AFM image of MgF2 nano-dot array thermally 
evaporated through a sulfuric acid-grown AAO mask.  (b) 2 µm x 2 µm non-contact AFM 
image of the same array.  The color scale is approximately 40 nm in both images. 
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µm x 1 µm non-contact AFM images, respectively, of a Mo nano-dot array sputtered 

using a Torus 2C Sputter Deposition Source through a 500 nm thick oxalic acid-grown 

AAO mask.  The color scale for both images is approximately 14 nm.  The source 

material, consisting of a 2” diameter target of Mo, was positioned directly underneath the 

sample and the sample-to-source was approximately 12 cm.  In addition, a 2 mm aperture 

was placed 2 cm away from the sample to limit the incoming divergence angle of the 

sputtered material and increase the chance of this material traveling down the pore 

channels to the substrate.  This was done to counteract the broad flux distribution of the 

source (unlike thermal evaporation) and essentially created a point source with an angular 

dispersion of 20mm/2mm = 10:1 so as to be comparable to the 10:1 aspect ratio of the 

AAO mask.  Mo was then RF-sputtered in an Ar plasma at a pressure of 10-3 Torr, and 

100 W.  220 nm was evaporated onto a crystal monitor located closer (approximately 

8mm) to the Mo source than the sample.  Figure 4.10 (a) shows a typical region with 

grain boundaries and some missing dots while Figure 4.10 (b) shows a close-up of a well-

Figure 4.10.  (a) 5 µm x 5 µm non-contact AFM image of Mo dots sputtered through an 
oxalic acid-grown AAO mask onto a Si substrate.  (b) 2 µm x 2 µm non-contact AFM image 
of a well-ordered region.  The color scale for both images is approximately 14 nm. 
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ordered region.  The nano-dot array and nano-dot shape compares well with arrays 

created by thermal evaporation.  From the AFM images in Figure 4.10, the average dot 

diameter is around 55 nm with a dot-to-dot spacing of 100 nm.  The average dot height is 

10 nm.  The smaller height of the nano-dots reflects the fact that much of the sputtered 

material did not reach the sample due to the inclusion of the aperture that limited the high 

divergence angle particles. 

 

4.5.  UV-VIS SPECTROSCOPY OF AU NANO-DOT ARRAYS 

 4.5.1 Introduction 

 In an effort to further characterize these arrays of nano-dots, UV-Vis absorption 

spectroscopy was performed on ordered and unordered Au nano-dot arrays on fused silica 

substrates.  These results were compared with results from a colloidal suspension of 

similarly sized monodisperse colloidal Au dots in an aqueous solution, as well as 

theoretical results using MiePlot v3.1.02, a computer program for the scattering of light 

from non-interacting, homogeneous spheres taking into account Mie scattering as well as 

absorption phenomena (e.g. plasmon resonances in metal nanoparticles). 

 4.5.2 Ordered and Unordered Au Nano-Dot Arrays 

 To start, an ordered Au nano-dot array on fused silica was prepared following the 

procedure discussed above using an oxalic acid-grown AAO mask.  In addition, a 

disordered Au nano-dot array on fused silica was prepared by evaporating Au through an 

unordered oxalic acid-grown AAO mask.  The unordered AAO mask was prepared by 

anodizing an Al foil once under identical conditions as the twice-anodized, ordered oxalic 

acid-grown AAO mask (i.e. the Al foil underwent a single 5 minute anodization in 0.3M 
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oxalic acid at 40 V 

and 2oC).  Both the 

ordered and 

unordered AAO 

masks were lifted 

out onto both fused 

silica and Si 

witness samples 

that underwent Au 

thermal 

evaporations.  The 

purpose of the 

witness samples 

was to allow 

convenient SEM observation to determine the dot dimensions.  Figures 4.11 (a) and (b) 

show SEM images of the top surface of both the ordered and unordered AAO films after 

the gold evaporation, respectively.  Figures 4.11 (c) and (d) show SEM images of the 

ordered Au nano-dot array and the and unordered Au nano-dot array on Si witness 

samples, respectively.  Note that both AAO films clearly show Au closing up or blocking 

some of the pores which is most likely responsible for the missing dots that can be seen 

in both the ordered and unordered Au nano-dot arrays.  Also note that the unordered array 

of dots is clearly smaller in diameter as compared to the ordered array of dots even 

though both were subjected to the same evaporation conditions.  This is mostly likely a 

Figure 4.11.  Top down SEM micrographs of:  (a) Au covered, 
ordered AAO film.  (b) Au covered, unordered AAO film.  (c) 
Ordered Au nano-dot array.  (d) Unordered Au nano-dot array. 
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consequence of the non-straight or kinked pore channels in the unordered AAO film 

limiting the amount of Au getting down the pores.  From the SEM images, the average 

diameters and spacing of the ordered (unordered) nano-dots are 75 nm (37 nm) and 100 

nm (100 nm).  From AFM measurements on the nano-dot arrays on the quartz substrates, 

the average height of the ordered (unordered) dots are approximately 60 nm (50 nm). 

 4.5.3 Monodisperse Au Dots in Aqueous Solution 

 In addition to the Au nano-dot arrays prepared using AAO films, monodisperse 

Au dots in aqueous solutions were prepared by collaborators in Dr. Lloyd Bumm’s group 

in the Physics Department at the University of Oklahoma following the standard 

procedure set out by Frens [64] involving the reduction of gold chloride with sodium 

citrate.  The Au sphere diameters are controlled by the concentration of sodium citrate.  

In brief, a higher concentration of sodium citrate leads to more nucleation sites (i.e. more 

nano-particles) which leads to smaller diameter nano-particles.  For this study, 

monodisperse Au spheres with diameters of 14 nm and 76 nm were prepared for UV-Vis 

absorption spectroscopy.  Details of the growth procedure can be found in ref [64]. 

 4.5.4 MiePlot 

 Both the 2D Au nano-dot arrays (ordered and unordered) and the Au spheres in 

aqueous solutions were compared with theoretical results using MiePlot v3.1.02.  This 

computer program takes into account Mie scattering theory and absorption phenomena.  

Mie scattering theory uses classical electromagnetic theory to calculate the scattering 

cross-section for a plane wave light incident on a  uniform dielectric sphere of arbitrary 

radius, r.  Unlike the well known Rayleigh scattering result for atoms and molecules (i.e. 

particles with r ≤ to 1/10λ) which only takes into account dipole scattering, Mie theory 
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looks at higher order excitations as well (i.e. quadrapoles, octopoles, etc.).  As such, Mie 

scattering is a good model for particles r ≥ to 1/10λ where the scattering intensity is 

largely forward.  This is in contrast to the Rayleigh result with dipole scatterers which 

scatter uniformly in all directions.  As expected, Mie scattering reduces to the Rayleigh 

formula at small radii.  For a concentration of uniformly-sized spheres such as found in a 

solution or an array, if the density is not too large, then the spheres can be treated as 

independent scatterers (i.e. no cross-talk, multiple scattering events, or collective 

phenomena).  Within this single scattering regime assumption, the scattering curve is 

additive and the intensity is simply proportional to the scattering curve for a single 

sphere. 

 MiePlot was used to calculate the extinction spectrum intensity, Qext, in the 

forward direction due to both scattering and absorption effects to account for all loss of 

light.  Thus, 

where Qscat is the extinction spectrum intensity due to scattering and Qabs is the extinction 

spectrum due to absorption.  This allows a direct comparison with UV-Vis absorption 

spectroscopy since Qext is what is directly measured.  For this particular case, MiePlot 

was used to calculate Qext versus λ for unpolarized light scattering off of monodisperse 

Au nano-spheres in a fused silica medium with diameters in the range of the Au nano-dot 

array. 

 4.5.5 UV-Vis Spectroscopy  

 The UV-Vis spectroscopy was carried out with a Varian Cary 50 consisting of a 

full spectrum Xe pulse lamp source and Si diode detectors.  Scans were taken of the 

Q Scattering Cross Section GeometricCross Section Q Qext scat abs= − − = +/ (4.1) 
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ordered and unordered Au nano-dot arrays on fused silica substrates as well as the 

monodisperse Au dots in aqueous solution.  All scans were taken at identical conditions 

consisting of a wavelength range of 350 nm-800 nm taken at a scan rate of 600 nm/min.  

The wavelength interval was 1 nm and the average collection time was 100 msec.  In 

addition, a baseline correction for background subtraction was taken on a fused silica 

substrate.  

 4.5.6 Results and Discussion 

 Figure 4.12 (a) shows a UV-Vis spectrum in the 350-800 nm range for the 

ordered and unordered Au nano-dot array, while Figure 4.12 (b) shows the calculated 

MiePlot results in the same range for monodisperse Au spheres with diameters ranging 

from 40-80 nm in a fused silica medium.  Finally, Figure 4.12 (c) shows a UV-Vis 

spectrum in the 350-800 nm range for the Au dots in an aqueous solution prepared by the 

reduction of gold chloride with sodium citrate.  A MiePlot comparison (not shown) of the 

Au dots in an aqueous solution showed excellent agreement both qualitatively and 

quantitatively with the UV-Vis spectrum of Figure 4.12 (c).  Comparing the UV-Vis 

spectrum of the 2D Au nano-dot arrays (Figure 4.12 (a)) with the UV-Vis spectrum of the 

Au dots in solution (Figure 4.12 (c)), it can be seen that the general shape of the curves 

agree well with each other.  In this case, no quantitative agreement is necessarily 

expected since the nano-dots are in two different mediums (fused silica for the 2D nano-

dot array and an aqueous environment for the Au dots in solution). 

 Comparing the UV-Vis spectrum of the 2D Au nano-dot arrays (Figure 4.12 (a)) 

with the MiePlot results (Figure 4.12 (b)), it can be seen that the spectrums show good 

qualitative agreement with each other.  Specifically, all the curves show the same general 
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trend exhibiting a peak in absorption (or Qext) in the 500-600 nm regime before dying out 

at higher wavelengths.  However, the Au nano-dot array spectrums differ quantitatively 

from the MiePlot results.  In particular, the UV-Vis spectrums are considerably broader 

than the MiePlot curves and the position of the absorption peaks suggests a dot diameter 

slightly larger than those measured directly via the SEM and AFM.  In addition, the UV-

Vis spectrum suggests that the diameter of the unordered nano-dots is larger than the 

Figure 4.12.  (a) UV-Vis spectrum of ordered and unordered Au nano-dot array.  (b) 
MiePlot theoretical results of Au dots of varying diameters in a fused silica environment.
(c) UV-Vis spectrum of 14 and 76 nm diameter Au dots in an aqueous solution. 
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diameter of the ordered nano-dots.  The cause for this disagreement in the Qext of the UV-

Vis spectrum of the nano-dot arrays compared to the Qext calculated by MiePlot must 

result from a disagreement in either Qscat, Qabs or both.   

 The most likely cause for a discrepancy in Qscat is due to the MiePlot assumption 

that the dots are spherical and monodisperse.  In fact, both SEM and AFM observations 

show the Au nano-dot arrays have both a non-uniform size distribution and a non-

spherical shape.  The size distribution is fairly small (around 10 %) for the ordered array 

but becomes more of a factor (around 20 %) for the unordered array.  In addition, the 

shape of the nano-dots in both the ordered and unordered arrays is basically conical in 

structure.  Again, a larger variety of dot shapes can be observed for the unordered array 

most likely due to the non-circular pores from the unordered AAO mask as shown in 

Figures 4.11 (b).  Another assumption made in MiePlot’s calculation of the Qscat term is 

that the concentration of dots is low enough so as to be in the single scattering regime.  In 

this case, this is probably a good assumption given that the Au nano-dot array lies in a 

plane with a density of roughly 1010 dots/cm2.  For multiple scattering events to occur, 

the incident light would have to scatter parallel (90o) to the nano-dot array and 

subsequently re-scatter in the forward direction.  These scattering events are expected to 

be minimal since light scattering from particles in this size regime is largely forward and 

thus the parallel scattering cross-section is small.   

 In addition, a discrepancy in the Qabs term could come about in the MiePlot 

calculation since it does not take into account any collective phenomena involving the 

closely-spaced (~100 nm) dots.  The wavelength dependence of both surface or bulk 

plasmon resonances could be altered by the high area density of possibly non-
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independent dots.  To resolve these discrepancies, a more involved theoretical model 

would need to be implemented taking into account both the non-uniform shape and sizes 

of these dots as well as their possible interactions via collective plasmon resonances. 

  

4.6.  CONCLUSION 

 Ordered nano-dot arrays of a wide range of materials (MgF2, Au, Ni, etc.) were 

fabricated by evaporating or sputtering material through AAO shadow masks lifted off 

onto various substrates.  Using this technique, nano-dot arrays with diameters ranging 

from 20 nm to 75 nm and dot spacings ranging from 60 nm to 100 nm were fabricated 

onto various substrates.  UV-Vis absorption spectroscopy of Au nano-dot arrays 

fabricated using these methods onto fused silica substrates showed good qualitative 

agreement with expected Mie scattering and absorption results.  Quantitative 

disagreement is likely due to a failure in the Mie scattering and absorption model to take 

into account the non-spherical, closely-spaced, and possibly collective or interacting 

behavior of these dots. 
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Chapter 5 

 

Pattern Transfer with AAO:  Nano-Hole Arrays 

 

5.1.  ABSTRACT 

 Nano-hole arrays have been fabricated onto various substrates by atomic or ion 

beam etching through AAO films.  Such structures have a variety of applications in 

various fields such as waveguiding structures in photonic devices, building blocks in IC 

fabrication (e.g. nano-capacitors in Chapter 7), etc.  As with the nano-dot arrays, large 

areas can be patterned with this technique which allows various characterization 

techniques to be used (e.g. Photoluminesence of Si in Chapter 6).  The procedure 

involved in the growth and use of the AAO films as shadow masks is identical to that 

used to create nano-dot arrays as described in Chapter 4.  As in the previous case, the Al 

foil and barrier layer are removed from AAO films and the films are placed directly onto 

various substrates.  These films are then used as shadow masks or templates to directly 

transfer the AAO nano-hole array pattern into underlying substrates through the use of 

dry etching techniques.  This chapter will present work on nano-hole arrays fabricated by 



 

 94

using three different dry etching techniques to transfer the AAO nano-pore pattern into 

underlying substrates.  In particular, Ar+ ion etching, Cl2 reactive ion beam etching 

(RIBE), and neutral atomic fluorine beam etching were investigated for fabricating nano-

hole arrays into Si, GaAs, and InSb substrates.  After etching and upon removal of the 

AAO films, a well-ordered hexagonal array of nano-holes with lateral dimensions 

comparable to the pore dimensions of the AAO was obtained.  

 

5.2.  ION ETCHED NANO-HOLE ARRAYS 

An AAO film was fabricated by a two step anodization process first laid out by 

Masuda et al. [59], described in detail in Chapters 3 and 4, and shown schematically in 

Chapter 4, Figure 1 (a)-(c).  First, a high purity Al foil was anodized in 0.3 M oxalic acid 

at 40 V and 10 oC for 15 hours.  The resulting AAO film was stripped from the Al foil 

and a secondary anodization in 0.3 M oxalic acid at 40 V and 10 oC for 5 minutes was 

carried out.  This resulted in an approximately 500 nm thick AAO film on an Al foil with 

well-ordered, hexagonally close-packed pores with 50 nm diameters spaced 100 nm 

apart..  Next, the processing steps described in Chapter 4 and shown in detail in Chapter 

4, Figure 1 (d)-(g) were carried out to make a through-hole AAO mask.  As before, a thin 

layer of collodion was spun onto the AAO film and the film was separated from the Al 

foil in a saturated HgCl2 solution.  Next, the barrier layer was removed in a 5 wt % 

solution of H3PO4 at 30 oC for about 35 minutes.  This was followed by lifting off the 

AAO film onto a GaAs substrate and allowing the film to dry before immersing the 

sample in acetone to remove the collodion layer.  This resulted in a through-hole AAO 

mask approximately 3 mm x 3 mm in size weakly bonded by van der Waal forces to a 
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GaAs substrate.  The AAO on GaAs sample was then exposed to an Ar+ ion beam (VG 

Microtech EX05) for 2 hours and 12 minutes in a vacuum environment (10-10 Torr with 

the beam off, 10-6 Torr with the beam on) with a source to sample distance of 50 mm and 

an angular divergence of about 0.1o.  The beam had an energy of 500 eV and a current 

density of 0.02 ma/cm2.  After etching, the AAO film was removed from the GaAs 

substrate in select areas by mechanical means (i.e. double-sided carbon tape was used to 

peel off the AAO film).   

Figure 5.1 (a) shows a 60o oblique angle SEM micrograph of the resulting well-

ordered nano-hole array transferred into the GaAs substrate.  A remaining piece of the 

AAO film used as the etching mask is still present in the upper right corner of the 

micrograph and shows good registry with the underlying nano-hole pattern in the GaAs.  

From the micrograph it can be seen that most of the hexagonal AAO pore pattern has 

been transferred into the GaAs substrate with the exception of a few missing holes or 

Figure 5.1.  (a) 60o oblique angle SEM micrograph of nano-hole array in GaAs fabricated by 
Ar+ ion etching through a porous AAO mask.  Note piece of AAO mask remaining in upper 
right corner.  Inset shows a cross-sectional SEM image of the nano-hole profile.  (b) 20o

oblique angle SEM micrograph showing a close-up view of the nano-hole array in GaAs. 
Again, note the piece of AAO remaining in the upper right corner. 
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defects possibly due to an obstruction blocking the AAO pores during etching.  Figure 

5.1 (b) shows a close up, 20o oblique angle SEM micrograph of the same region with the 

remaining AAO film in the upper right corner.  From top down SEM micrographs (not 

shown), the resulting nano-hole array has similar dimensions to the AAO film with nano-

hole diameters of approximately 50 nm spaced 100 nm apart.  The depth of the nano-

holes was determined by cross-sectional SEM (inset of Figure 5.1 (a)) to be about 50 nm.  

Referring to a standardized table of Ar+ ion etch rates for various materials at 500 eV and 

1 ma/cm2 [65] and normalizing the results to our current density, the bulk etch rate was 

determined to be 1.3 nm/min which would give a bulk etch depth of about 170 nm for the 

2 hours and 12 minute etching time.  The 50 nm depth of the nano-holes indicates an etch 

rate through the AAO nano-pore mask of 0.4 nm/min, a factor of roughly 3 lower than 

the expected bulk etch rate.  This retarded etch rate through the AAO nano-pores as 

compared to the bulk etch rate has been observed by other researchers as patterned 

feature sizes diminish [9].  In this case, it is most likely due to scattering events (both 

molecule/sidewall and molecule/molecule) which limit the ability to efficiently transport 

Ar+ ions and etching products (sputtered GaAs) into and out of both the relatively high 

aspect ratio AAO nano-pores (~ 10:1) and the etched nano-holes themselves. 

 Using this technique, nano-hole arrays have been fabricated in various materials 

other than the GaAs sample shown above.  As an example, Figures 5.2 (a) and (b) show 

SEM micrographs of nano-hole arrays in both Si and InSb, respectively, fabricated by 

Ar+ ion etching through AAO masks similar to the conditions shown in Figure 1.  Note 

that both Figures 5.2 (a) (a 20o oblique angle SEM micrograph) and (b) (an 11o oblique 

angle SEM micrograph) show remaining pieces of the AAO etching mask at the top of 
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the images.  These nano-hole arrays have similar lateral dimensions as the GaAs nano-

hole arrays (50 nm hole diameters spaced 100 nm apart) due to the nano-pore dimensions 

of the oxalic acid-grown AAO films.   

 The inset of Figure 5.2 (b) shows a cross-sectional SEM view of the hole profiles 

in the InSb substrate.  In this case, the holes are roughly 100 nm deep and illustrate a 

conical or triangular cross-section typical of ion or sputter-etched holes.  Physical 

sputtering effects such as the re-deposition of etched materials on the sidewalls limited 

the ultimate depth of the holes attainable in this setup to around 120 nm and also resulted 

in a significant tapering of the nano-hole sidewalls.  As expected and shown later in this 

chapter and in Chapter 7, deeper holes with steeper sidewalls and flatter hole bottoms can 

be obtained by using other dry etching techniques (RIBE or atomic beam etching) rather 

than Ar+ ion etching which relies on a purely physical bombardment of the Ar+ ions with 

Figure 5.2.  (a) 20o oblique angle SEM micrograph of nano-hole array in Si fabricated by Ar+

ion etching through an oxalic acid-grown AAO mask.  Note piece of AAO mask remains at 
the top of the image.  (b) 11o oblique angle SEM micrograph of nano-hole array in InSb 
fabricated by Ar+ ion etching through an oxalic acid-grown AAO mask.  Again, a piece of the 
AAO mask remains at the top of the image.  Inset shows a cross-sectional image of the InSb 
nano-hole profile. 
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the substrate to remove material by momentum transfer.  It is also expected that damage 

due to charging and energetic ion bombardment will also be smaller using these other 

techniques. 

 

5.3.  REACTIVE ION BEAM ETCHED NANO-HOLE ARRAYS 

 Nano-hole arrays have also been fabricated using reactive ion beam etching 

(RIBE) instead of physical sputtering.  Similar to the above, 500 nm thick, oxalic acid-

grown AAO masks with 50 nm pores spaced 100 nm apart were lifted off onto GaAs 

substrates.  These samples were then sent to researchers and collaboraters at Sandia 

National Labs who had convenient access to an RIBE chamber [66].  The samples were 

etched with an RIBE setup with a base pressure of 2x10-7 Torr using Cl2 at a flow rate of 

4 sccm, a forward power of 98 W, and a 40 mA beam current for 12 minutes.  After 

etching, the samples were sent back to the University of Oklahoma and the AAO films 

were etched away in a dilute 10 wt% solution of HF, leaving behind the transferred nano-

hole array in GaAs. 

 Figures 5.3 (a) and (b) shows top down SEM micrographs of the resulting nano-

hole array in GaAs.  The spacing of the nano-holes is approximately 100 nm, in good 

agreement with the nano-pore spacing in the AAO mask.  The hole diameters, however, 

range from about 60-75 nm and are slightly larger and less uniform than the 50 nm AAO 

pore diameters.  In addition, the nano-holes are not as circular as the pores in the AAO 

mask or the nano-holes fabricated by Ar+ ion etching.  These discrepancies are most 

likely due to a less collimated beam than the Ar+ ion beam setup and to undercutting 

inherent in chemical etching techniques such as RIBE.  In this case, etching takes place 
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due to ion bombardment as well as chemical reactions between the incoming reactive 

ions and the GaAs substrate.  While this results in steeper, smoother sidewalls and flatter 

hole bottoms as shown in the cross-sectional SEM micrograph (inset of Figure 5.3 (b)), it 

can also lead to undercutting due to reactive species scattering off the hole bottoms and 

subsequently striking and etching the hole sidewalls. 

 As mentioned above, the cross-sectional SEM view (inset of Figure 5.3 (b)) 

shows the nano-hole profiles to have much steeper sidewalls and flatter hole bottoms as 

compared to the Ar+ ion etching case.  However, the holes appear to be slightly bowed or 

widened towards the bottom of the hole.  Again, this is mostly likely an effect due to 

beam collimation and the chemical nature of etching and has been seen by other 

researchers [9].  The depth of the holes in this case is about 180 nm, deeper than the holes 

that could be etched by Ar+ ion etching which suffered from re-deposition of etched 

materials on the sidewalls affecting both the ultimate depth attainable and the nano-hole 

profile.  In this case, the etch products are volatile and do not re-deposit onto the 

Figure 5.3.  (a) Top down SEM micrograph of GaAs nano-hole array fabricated by RIBE
through an oxalic acid-grown AAO mask.  (b)  Close up SEM micrograph of GaAs nano-hole 
array.  Inset shows cross-sectional view of nano-hole profiles. 
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sidewalls of the holes.  From the etching conditions, the bulk etch rate was expected to be 

35 nm/min leading to a bulk etch depth of 420 nm.  The observed 180 nm hole depth 

gives an etch rate of 15 nm/min through the AAO nano-pores, approximately 2.3 times 

slower than the bulk etch rate and comparable to the retardation factor seen in the Ar+ ion 

etched nano-holes.  Although not verified, the damage to the GaAs material surrounding 

the RIBE nano-holes is expected to be less than the Ar+ ion etched nano-holes since the 

charging and energetic ion bombardment is less severe. 

 

5.4.  ATOMIC FLUORINE BEAM ETCHED NANO-HOLE ARRAYS 

 5.4.1 Oxalic Acid-Grown AAO Masks  

Nano-hole arrays have also been fabricated using the atomic fluorine beam 

etching apparatus discussed in Chapter 2.  In this case, 500 nm thick, oxalic acid-grown 

AAO masks with 50 nm pores spaced 100 nm apart were lifted off onto both Si(100) and 

Si(111) substrates.  The AAO/Si(100) sample was heated to 250 oC and exposed to the 

fluorine beam for 1 min. and 20 s.  The AAO/Si(111) sample was heated to 350 oC and 

exposed to the 1 eV fluorine beam for 1 min. 15s.  After exposure to the beam, the AAO 

masks were removed by mechanical means (i.e. carbon tape was used to peel the AAO 

masks off the Si substrates).  

Figures 5.4 (a) and (b) shows top down SEM micrographs of the resulting Si(100) 

and Si(111) surfaces, respectively.  In both (a) and (b), the insets show cross-sectional 

views of the nano-textured surfaces.  In the case of the Si(100) surface, a hexagonally 

close-packed, square-shaped nano-hole array was created while in the case of the Si(111) 

surface, a hexagonally close-packed, triangular-shaped nano-hole array was created.  
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These unique geometries are a consequence of the hexagonally close-packed nature of the 

AAO nano-pores combined with the purely chemical nature (rather than physical 

sputtering) of the F-Si etching mechanism which results in anisotropic etching that 

preferentially etches certain planes of Si faster than other planes.  Figure 5.4 (a) should be 

compared directly to Chapter 2, Figure 3 which shows the square-shaped holes that 

naturally occur in bulk Si when etched by this atomic fluorine beam.  The difference in 

this case is the square-shaped nano-holes were seeded into an ordered patterned by the 

AAO etching mask.  A similar situation exists in the Si(111) sample but the Si(111) 

surface exposes a different orientation of the Si planes resulting in a triangular-shaped 

nano-hole array. 

The spacing of both the square-shaped nano-holes and the triangular-shaped nano-

holes is around 100 nm, consistent with the AAO nano-pore spacings.  As discussed 

above, the anisotropic etching and undercutting lead to non-circular holes in the Si 

Figure 5.4.  (a) Top down SEM micrograph of fluorine etched square-shaped nano-hole array 
in Si(100) fabricated using an oxalic acid-grown AAO mask.  Inset shows cross-sectional 
view of the nano-holes.  (b)  Top down SEM micrograph of fluorine etched triangular-shaped 
nano-hole array in Si(111) fabricated using an oxalic acid-grown AAO mask.  Inset shows 
cross-sectional view of the nano-holes. 
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substrates with dimensions comparable or slightly larger (~ 50 nm square sides, ~ 60 nm 

triangle sides) than the 50 nm pore diameters of the AAO mask.  As determined by the 

cross-sectional SEM images (insets of Figure 5.4), the depth of the nano-holes for the 

square-shaped nano-hole array is about 120 nm while the depth of the nano-holes for the 

triangular-shaped nano-hole array is about 240 nm.  From the etching conditions, the bulk 

etch rate was 350 nm/min (substrate temperature of 250 oC) for the square-shaped nano-

hole array and 650 nm/min (substrate temperature of 350 oC) for the triangular-shaped 

nano-hole array.  The observed etch depths give etch rates through the AAO nano-pore 

masks of 90 nm/min for the square-shaped nano-hole array (3.9 times slower than the 

bulk etch rate) and 192 nm/min (3.4 times slower than the bulk etch rate) for the 

triangular-shaped nano-hole array.  The triangular-shaped nano-hole array has deeper 

nano-holes and steeper sidewall profiles, both consistent with the higher substrate 

temperature used to etch this sample as compared to the square-shaped nano-hole array.  

Similar Si nano-hole arrays are further investigated by photoluminescence in the Chapter 

6. 

5.4.2 Sulfuric Acid-Grown AAO Masks 

In addition, some success in transferring nano-hole array patterns with the atomic 

fluorine beam was also obtained using sulfuric acid-grown AAO masks with smaller 

dimensions.  In this case, the AAO film was anodized in 1.7 wt % sulfuric acid at 27 V 

and 2 oC for 15 hours, conditions appropriate to maximize the self-ordering.  The AAO 

film was then stripped from the Al foil and a secondary anodization under identical 

conditions as the first was carried out for 3 minutes.  This resulted in an AAO film 

approximately 200 nm thick with 20 nm pore diameters spaced 60 nm apart.  The 
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remaining processing steps were identical to that used for oxalic acid-grown films except 

the barrier layer opening etch was done for 26 minutes instead of 34 minutes due to the 

thinner barrier layer resulting from the lower anodizing voltage.  AAO masks were then 

lifted off onto Si(100) and Si(111) substrates.  The AAO/Si(100) and AAO/Si(111) 

samples were heated to 300 oC and exposed to the fluorine beam for 30s and 1 min., 

respectively.  After exposure to the beam, the AAO masks were removed by mechanical 

means (i.e. carbon tape was used to peel the AAO masks off the Si substrates).  

Figures 5.5 (a) and (b) shows top down SEM micrographs of the resulting Si(100) 

and Si(111) surfaces, respectively.  In both (a) and (b), the insets show cross-sectional 

views of the nano-textured surfaces.  The geometries are similar to the previous examples 

using oxalic acid-grown AAO masks (i.e. a hexagonally close-packed, square-shaped 

nano-hole array for the Si(100) substrate and a hexagonally close-packed, triangular-

shaped nano-hole array for the Si(111) substrate) but with smaller dimensions.  In this 

Figure 5.5.  (a) Top down SEM micrograph of fluorine etched square-shaped nano-hole array 
in Si(100) fabricated using a sulfuric acid-grown AAO mask.  Inset shows cross-sectional 
view of the nano-holes.  (b)  Top down SEM micrograph of fluorine etched triangular-shaped 
nano-hole array in Si(111) fabricated using a sulfuric acid-grown AAO mask.  Inset shows 
cross-sectional view of the nano-holes. 
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case, the nano-hole array spacings are around 60 nm, in close agreement with the sulfuric 

acid-grown AAO nano-pore spacing while the other dimensions (~ 20 nm square sides, ~ 

30 nm triangle sides) are again roughly the same or slightly larger than the nano-pore 

diameters of 20 nm.  From the cross-sectional SEM views, the depth of the square-shaped 

nano-holes is 35 nm while the depth of the triangular-shaped nano-holes is 70 nm.  The 

bulk etch rate of Si at a substrate temperature of 300 oC is about 550 nm/min.  The etch 

rate through the sulfuric-acid grown AAO nano-pores was 70 nm/min. for both the 

square-shaped and triangular-shaped nano-holes, nearly 8 times slower than the bulk etch 

rate and over 2 times slower than the etch rate through the oxalic acid-grown AAO pores.  

It should be noted that the oxalic acid-grown AAO has pore diameters over 2 times larger 

than the sulfuric acid-grown AAO (50 nm compared to 20 nm), although both have 

similar aspect ratios of about 10:1.  In short, regardless of the similar aspect ratios of the 

AAO shadow masks, the etch rate was seen to be a function of the feature size and 

decreases when etching through smaller holes.  

5.4.3 Evaporated Al/Si AAO Masks 

Finally, unordered nano-hole arrays were fabricated into Si by anodizing Al 

deposited onto Si(100) substrates directly and fluorine etching through the nano-pores of 

these unordered AAO masks.  The growth of the AAO directly on Si is similar to the 

work described in Chapter 3 and follows the previous work of Crouse et al. [61].  First, a 

roughly 100 nm thick film (rather than the 2 µm thick film described in Chapter 3) of 

99.99% Al was thermally evaporated in a vacuum of 8 x 10-7 Torr on 1-10 ohm cm n-

type Si(100) substrates.  The Si backsides and edges were coated in black wax and the Al 

films were anodized in 0.3 M oxalic acid at 40 V at 5 oC.  After roughly 40 s, the current 
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decreased substantially and the anodization was complete.  The films were then subjected 

to a pore widening and barrier layer removal etch consisting of a 5 wt % solution of 

phosphoric acid at 30 oC for 30 minutes.  The unordered, as-grown AAO/Si samples were 

heated to 400oC and exposed to the fluorine beam for times between 2 to 4 minutes.  In 

this case, the AAO films were not intentionally removed from the Si substrates but in 

some cases, the pieces of the AAO films peeled away (possibly due to stress) revealing 

the underlying Si beneath. 

 Figure 5.6 (a) shows a top down SEM micrograph of the results.  The AAO film 

grown directly on Si is shown on the left hand side of the image, while the underlying 

nano-hole pattern transferred into the Si substrate is shown on the right hand side of the 

image.  As expected, the AAO consists of an unordered array of nano-holes and is shown 

in more detail with the higher magnification, top down SEM image in Figure 5.6 (b).  

From the image, some of the nano-pores appear to be totally or partially blocked which is 

consistent with meandering or migrating pore growth during the single anodization step 

resulting in non-straight or “kinked” cross-sectional pore profiles.  This situation would 

lead to less than ideal pattern transfer which can be seen in the Si substrate on the right 

hand side of Figure 5.6 (a) and verified in the SEM micrograph of Figure 5.6 (c) which 

shows a top down, close up view of the Si surface.  In this image, it appears that the AAO 

nano-hole pattern only partially transferred into the Si substrate and some of nano-holes 

appear deeper than others.  In addition, the nano-holes that did transfer into the Si(100) 

substrate are starting to merge together as a result of trench widening or undercutting 

during etching.  It is also interesting to note that the nano-holes are partially square-

shaped but still decidedly more circular than the previous examples of fluorine etching 
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through AAO masks into Si(100).  This may be due to the fact that in this case the 

seeding pattern consisted of an unordered array of non-circular, elliptical-shaped pores.  

This anisotropy in the hole shape and position could tend to obscure the natural tendency 

of the F-Si(100) etching mechanism to produce square-shaped holes. 

Figures 5.6 (d) and (e) show cross-sectional SEM micrographs of the resulting 

nano-hole profiles for similar samples, fluorine etched for 2 and 4 minutes, respectively.  

Figure 6 (d) shows roughly 50 nm wide, 400 nm deep holes (illustrating an aspect ratio of 

~ 8:1) while Figure 6 (e) shows a single 100 nm wide, 700 nm deep hole (an aspect ratio 

Figure 5.6.  (a) Top down SEM micrograph of fluorine etched nano-hole array in Si(100) 
fabricated using an AAO mask grown directly onto Si.  The left hand side of the image shows 
the unordered AAO mask while the right hand side of the image shows the exposed Si.  (b) 
Top down close up SEM micrograph of the unordered AAO mask grown by anodizing 
deposited Al on Si(100). (c)  Top down close up SEM micrograph of the unordered Si nano-
hole array.  (d)  Cross-sectional SEM view of nano-hole profiles etched for 2 min. (e)  Cross-
sectional SEM view of nano-hole profile etched for 4 minutes.  Note AAO film is still 
present. 
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of ~ 7:1).  Note that the nano-holes in Figure 5.6 (d) are touching and etching longer 

would have merged these holes together.  This was observed in much of the 4 minute 

etched sample shown in Figure 5.6 (e) except for isolated examples of single nano-holes 

where the surrounding nano-hole pattern did not transfer through the unordered, kinked 

AAO mask.  This allowed the hole in Figure 5.6 (e) to widen to roughly 100 nm since 

there were no surrounding holes to merge with.  Both of these images illustrate that fairly 

high aspect ratio structures (compared to aspect ratios of ~ 2 for Ar+ ion etching and ~ 3 

for RIBE) with steep sidewalls could be etched using this method.  There appears to be 

some widening at the top of the holes (particularly the one shown in Figure 6 (e)).  This 

could be due to undercutting from the fluorine etch but may also have occurred prior to 

etching during the anodization step which in some instances has been observed to attack 

the highly doped Si [61].  

 

5.5.  CONCLUSION 

 Ordered and unordered nano-hole arrays were fabricated by utilizing dry etching 

techniques to etch through AAO masks lifted off onto various substrates (GaAs, InSb, 

and Si).  The dry etching techniques investigated were Ar+ ion etching, Cl2 RIBE, and 

atomic fluorine beam etching.  Combining these methods with sulfuric acid and oxalic 

acid-grown AAO films allowed the fabrication of ordered and unordered nano-hole 

arrays with diameters ranging from around 20 nm to 100 nm and hole-to-hole spacings 

ranging from roughly 60 nm to 100 nm.  The best pattern transfer results in terms of 

replicating the circular pores of the AAO mask were achieved by Ar+ ion etching, a 

purely physical etching method, but the cross-sectional profiles produced were triangular 
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with significant sidewall tapers.  In addition, re-deposition effects limited the ultimate 

depth attainable using this technique to about 120 nm, or an aspect ratio of roughly 2:1.  

RIBE, combining both physical and chemical etching, produced nano-hole arrays that 

were not as circular as the AAO nano-pores, but the cross-sectional profiles produced had 

steeper sidewalls and flatter bottoms.  In this case, slightly deeper holes could be etched 

and thus larger aspect ratios of around 3:1 were attainable.  Finally, fluorine etching 

through AAO masks on Si produced hexagonally close-packed, square-shaped or 

triangular-shaped nano-hole arrays depending on the Si orientation (Si(100) or Si(111)).  

These shapes were a result of the anisotropic and purely chemical F-Si etching dynamics 

resulting in certain planes of Si being preferentially etched faster than other planes.  

Consistent with the results found in Chapter 2, the cross-sectional profiles produced were 

highly dependent on the Si substrate temperature with steeper sidewalls being produced 

at higher temperatures.  Nano-hole arrays etched through AAO grown directly on Si 

produced profiles with fairly steep sidewalls and aspect ratios around 8:1, the highest 

aspect ratios attainable out of the three dry etching techniques investigated.  However, the 

aspect ratio was ultimately limited by the nano-holes merging together due to a 

combination of undercutting during etching and the close-packed nature of the AAO 

nano-pores.  Finally, these nano-hole arrays have potential applications in device 

structures (e.g. Chapter 7) and nano-meshes for filtration and sensor arrays (e.g. Chapter 

6).  In addition, the periodicity and diameter of these nano-hole arrays are in a size 

regime that make them promising candidates for use as 2D photonic crystals for 

enhanced light extraction from III-nitride UV LEDs [67, 68]. 
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Chapter 6 

 

Fabrication and Characterization of Si Nano-

Meshes 

 

6.1.  ABSTRACT 

 Free-standing silicon nano-meshes have been fabricated on silicon-on-insulator 

(SOI) substrates using a combination of photolithography, wet-anisotropic etching, 

porous alumina templates, and dry etching techniques.  Such nano-meshes could have 

possible uses for nano-filtration and sensor array applications.  First, using a combination 

of photolithography and anisotropic wet etching, windows were patterned into the 

backside of the SOI substrates up to the thin SiO2 layer.  Next, AAO templates were used 

as contact or shadow masks to transfer a well-ordered nano-hole pattern into the top Si 

layer using an argon ion beam or an atomic fluorine beam etch.  As shown in Chapter 5, 

depending on the dry etch used and the crystalline orientation of the silicon substrate, this 

leads to a hexagonal close packed array of either circular, square, or triangular holes with 
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dimensions on the order of 20-50 nm.  After transferring the well-ordered, AAO nano-

hole array pattern, the thin SiO2 layer was removed in the open window regions by a wet 

etching step.  The resulting structure consisted of a free standing, ultra-thin (50 nm thick) 

Si nano-mesh with an array of well-ordered nanometer-sized through-holes.  Finally, 

these silicon nanostructures were further downshifted in size by the use of a pattern 

dependent and self-limiting oxidation step, which oxidizes the outer Si matrix, leaving 

behind sub-15nm silicon cores.  Photoluminescence (PL) spectra taken on these 

structures at 77K reveal broad peaks in the 600-1000 nm wavelength range, indicative of 

quantum confinement effects in the nanostructured Si. 

 

6.2.  EXPERIMENTAL DETAILS 

The SOI substrates used in this work consisted of a 50 nm thick layer of Si on top 

of a 50 nm thick layer of SiO2 on a bulk Si substrate as shown schematically in Figure 6.1 

(a).  At the start, these SOI substrates underwent a combination of polishing, 

photolithography, and anisotropic Si wet etching to pattern roughly 40 µm square 

windows in the backside of the bulk Si substrates.  These windows extended all the way 

to the 50 nm thin SiO2 layer near the top surface as shown in Figure 6.1 (b).  The 

processing steps involved in this procedure were developed in collaboration with another 

graduate student and details of this process will be described fully in his thesis [69].  The 

purpose of this step was two-fold:  1) it allowed for transmission electron microscopy 

(TEM) characterization of these structures and 2) was an essential step in isolating these 

Si nanostructures to create truly free-standing Si nano-meshes.  
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Next, AAO 

templates prepared by a 

two-step anodization 

technique [59] were 

lifted off onto the top Si 

surface following the 

same general steps 

discussed in previous 

chapters.  In this case, 

both anodic oxidation 

steps were carried out in 

a 0.3 M solution of 

aqueous oxalic acid at 40 

V and a temperature of 

10 oC.  This was 

designed to give well-

ordered, hexagonally close-packed pores 50 nm in diameter spaced 100 nm apart.  After 

the second 5 minute anodization, through-hole masks approximately 500 nm thick were 

prepared by separating the AAO films from the Al foils in a saturated HgCl2 solution and 

removing the remaining alumina barrier layers at the bottom of the pores in a 5 wt% 

solution of H3PO4 at 30 oC for about 35 minutes.  The resulting AAO masks, which were 

roughly 3 mm by 3 mm in size, were placed on the top Si surface of the specially 

prepared SOI substrates as shown in Figure 6.1 (c). 

Figure 6.1.  Schematic showing sample processing steps:  (a) 
Sample consists of 50 nm Si on 50 nm SiO2 on a Si wafer.  (b) 
Photolithography and Si wet etching to open up ~ 40 µm 
windows in the back side of Si substrate up to the SiO2 layer. 
(c) AAO mask placed on top surface of sample.  (d) F-atom or 
Ar+ etching to transfer pattern into top Si layer and etch into 
SiO2 layer.  (e) HF wet etching to remove AAO mask and etch 
away SiO2 layer creating free-standing Si nano-mesh.  (f)  Self-
limiting oxidation step done at 875oC for 2 hours to reduce the 
size of the remaining oxide-encased Si cores to a sub-15 nm 
range. 
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The AAO nano-hole array pattern was then transferred into the underlying Si 

layer using either a 500 eV Ar+ ion beam (VG Microtech EX05 ion source) or a 1 eV 

neutral atomic fluorine beam to etch the exposed silicon.  In both cases, the etching time 

was carefully controlled to etch completely through the 50 nm thick layer of Si and 

partially into the 50 nm thick SiO2 layer as shown in Figure 6.1 (d).  The samples 

exposed to the 500 eV Ar+ beam were etched in a UHV environment (~5 x 10-10 Torr 

background, ~10-6 Torr with the beam on) with a source to sample distance of 50 mm and 

an angular divergence of about 0.1o.  The beam had a current density of 0.05 ma/cm2 and 

the samples were etched for 90 minutes.  The samples exposed to the 1 eV atomic 

fluorine beam were etched in an HV environment (5x10-6 Torr background, 2x10-5 Torr 

with the beam) and were maintained at temperatures between 250 oC and 350 oC (the Si 

etch rate exhibits an Arrhenius-type dependence on the substrate temperature) and etched 

for times around 1 minute.  For more details on the atomic fluorine source and etching of 

silicon related materials refer to Chapters 2 and 5. 

After the dry etching steps to transfer a nano-hole array pattern into the top Si 

surfaces, the samples were placed in a 10:1 buffered oxide etch (BOE) for 15 minutes.  

This step, shown schematically in Figure 6.1 (e), served to etch away both the 50 nm 

thick SiO2 layer as well as the AAO mask.  Releasing the 50 nm thick nano-patterned Si 

layer from the SiO2 layer was the final step in creating free-standing Si nano-meshes. 

The resulting dimensions of the Si nano-meshes (50 nm thick with roughly 50 nm 

wide Si bars or wires surrounding the nano-holes), are too large to show any quantum 

mechanical size effects such as those argued to be seen in electro-chemically produced 

porous-Si [3, 4].  As discussed briefly in Chapter 1, porous-Si structures appear to show 
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size-dependent PL in the visible spectrum when feature sizes approach the sub-10nm 

range corresponding nicely with the expectation of the onset of quantum confinement 

effects in Si structures from the simplistic “particle-in-a-box” model presented in Chapter 

1.  In an effort to explore this size regime, techniques were investigated to further reduce 

the Si feature sizes in these Si nano-meshes.  One such method, the oxidation of non-

planar Si surfaces, has recently demonstrated the ability to reduce the size of a regularly-

sized starting pattern of Si structures (dots, wires, etc.) in a highly uniform and 

reproducible manner [70-74]. 

As studied by others [73, 74], the oxidation of non-planar surfaces of Si show a 

self-limiting and pattern dependent oxidation effect below about 950 oC attributable to 

the stress resulting from the material expansion of the grown oxide (unit cell volume of 

SiO2 is ~ 45 Å3 while the unit cell volume of Si is ~ 20 Å3).  In the case of the oxidation 

of planar Si surfaces, the resulting stress exists in the plane parallel to the Si/SiO2 

interface and relaxes in the growth direction as the existing oxide layer is pushed away.  

With the introduction of curved Si surfaces, a component of stress exists perpendicular to 

the Si/SiO2 interface.  As a consequence, extra work is required to make room for the 

grown oxide.  As the oxidation continues, the core Si structure continues to shrink, 

resulting in an increasing radius of curvature and increasing stress component 

perpendicular to the interface.  Below an oxidation temperature of about 950oC, a critical 

stress is reached causing the oxidation reaction to stop before all of the Si is fully 

consumed.  The final size of the oxide-encased Si structures depend both on the initial 

size of the Si structures as well as the initial geometry [73, 74].   
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For the Si nano-meshes fabricated in this work, the nano-mesh was viewed as a 

mesh of intertwining Si wires lying in a plane parallel to the surface.  Taking the initial 

diameters of these Si wires as 40-50 nm and using the published data of Liu et.al. [71] for 

the self-limiting oxidation of Si nanowires (patterned and fabricated perpendicular to the 

surface), an initial estimate of the oxidation parameters were chosen to reduce the size of 

the Si wires to a sub-10 nm regime.  In particular, the Si nano-mesh samples underwent 

an oxidation step in a dry O2 environment at 875 oC for two hours.  In addition to 

reducing the size of the Si nanostructures, encasing them in oxide also served to 

significantly reduce the number of Si dangling surface bonds (especially when compared 

to porous-Si), an important step for the optical characterization of these structures.  The 

resulting final structure after the oxidation step is shown schematically in Figure 6.1 (f). 

 

6.3.  RESULTS AND DISCUSSION 

 6.3.1 Electron Microscopy Results 

 Top down SEM micrographs of nano-hole arrays on SOI substrates are shown in 

Figure 6.2.  Figure 6.2 (a) shows an SEM micrograph of a fluorine etched SOI sample 

(with a bulk Si(100) substrate) after removal of the AAO mask.  In this case, no windows 

were opened up in the backside of the substrate and the thin SiO2 layer was not removed 

to allow for convenient SEM observation.  The square-like grid array is the result of the 

anisotropic nature of the fluorine-silicon etching dynamics and is similar to the results 

shown in Chapter 5 for fluorine etched Si(100) nano-hole arrays.  The cross-sectional 

SEM micrograph inset shows the Si nano-hole array with the 50 nm thick oxide layer still 

intact.  Note that in this case, the fluorine etching time (1 min. 20 sec) was insufficient to 
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allow penetration into the underlying SiO2 layer.  

Figure 6.2 (b) shows an SEM micrograph of an 

Ar+ etched SOI substrate after removal of the 

AAO mask.  Similar to the sample shown in 

Figure 6.2 (a), no windows were opened up in the 

backside of the substrate.  However, the sample 

was subjected to the BOE step to remove the 50 

nm oxide layer.  In this case, the nano-holes are 

circular and are similar to the results of the Ar+ 

etched Si nano-hole arrays shown in Chapter 5.  

The near cross-sectional SEM micrograph inset 

shows the 50 nm SiO2 layer to have been 

completely removed by the BOE etch.  Note that 

with the removal of this SiO2 support layer, the 

top patterned Si layer has collapsed and touches 

the bottom Si substrate as the layer extends 

horizontally from its anchor position, i.e. from the 

unpatterned SOI region of the substrate.  This illustrates the need to remove the back 

substrate to create truly free-standing nano-meshes. 

 Figures 6.3 (a) and (b) show a scanning electron image (SEI) and transmitted 

electron image (TEI), respectively, taken at the same position on the sample of an Ar+ ion 

etched free-standing Si nano-mesh processed up to the step shown in Figure 6.1 (e).  The 

average nano-hole diameter from the SEI image (which takes into account the top surface 

Figure 6.2.  Top down SEM 
micrographs of nano-hole arrays in 
SOI substrates.  (a) fluorine etched 
SOI nano-hole array.  Inset shows 
cross-sectional view.  (b) Ar+ etched 
SOI nano-hole array after removal of 
the SiO2 layer.  Inset shows near 
cross-sectional view. 
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of the holes) is 

approximately 48 nm 

while the average nano-

hole diameter from the 

TEI image (which takes 

into account the diameter 

from the other side of the 

holes) measure 

approximately 60 nm.  

This allows the 

calculation of the taper of 

the cross-sectional hole 

profile to be about 7o as 

measured from the plane 

perpendicular to the sample surface (inset of Figure 6.3 (b)), in good agreement with 

cross-sectional SEM results seen in Chapter 5 for Ar+ etched Si hole profiles.  Figures 6.3 

(c) and (d) show SEI and TEI images, respectively, taken at the same position on the 

sample of an Ar+ etched free-standing Si nano-mesh that has undergone a self-limiting 

oxidation step (Figure 6.1 (f)).  The SEI image shows the nano-hole array with 100 nm 

hole-to-hole spacings but with indistinct, fuzzy holes, possibly due to oxide charging 

effects.  In contrast, the TEI image clearly shows the presence of oxide rings surrounding 

the nano-holes with intertwining Si wires surrounding both the holes and oxide rings.  

The oxide rings are roughly 15 nm thick on average (in the plane dimensions) and are 

Figure 6.3.  (a) SEI image of free-standing Ar+ ion etched Si 
nano-mesh.  (b) TEI image at the same position.  Inset shows 
the taper angle of the nano-hole profiles calculated from the 
diameters of the SEI and TEI images.  (c) SEI image of 
oxidized, free-standing Ar+ etched Si nano-mesh.  (d) TEI image 
at the same position.  Note the presence of oxide rings 
surrounding the nano-holes. 
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close to touching each other in some spots.  The lateral dimensions of the Si wires in 

between the oxide rings vary anywhere from close to zero (where the oxide rings touch) 

up to 30 nm in some regions. 

 Figures 6.4 (a) and (b) shows bright field TEM images of free-standing Ar+ 

etched nano-meshes before and after the self-limiting oxidation step, respectively.  Prior 

to the oxidation (Figure 6.4(a)), the free-standing Si nano-mesh consists of 40-50 nm 

diameter nano-holes spaced 100 nm apart, in fairly good agreement with the AAO 

shadow mask.  The nano-mesh after oxidation, Figure 6.4 (b), again shows oxide rings 

roughly 15 nm in lateral thickness.  The inset in Figure 6.4 (b) is a dark field TEM image 

of the oxidized nano-hole array confirming the amorphous nature of the oxide rings (dark 

contrast) and the crystalline nature of the surrounding Si mesh (bright contrast). 

 Figures 6.5 (a) and (b) shows high resolution TEM images near a single nano-hole 

of a free-standing, Ar+ etched Si nano-mesh before and after the self-limiting oxidation 

step, respectively.  In both images, the nano-hole is in the upper left hand corner.  The 

un-oxidized nano-mesh shown in Figure 6.5 (a) shows very little amorphous Si or SiO2 

Figure 6.4.  Bright field TEM images of:  (a) free-standing, Ar+ etched Si nano-mesh.  (b) 
free-standing, Ar+ etched, oxidized Si nano-mesh.  Note the presence of oxide rings 
surrounding the nano-holes.  Inset shows a dark field TEM image of the oxidized nano-mesh 
indicating the amorphous nature of the oxide rings. 
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surrounding the nano-hole prior to the oxidation step.  After the oxidation step, however, 

the nano-mesh shown in Figure 6.5 (b) has a clearly visible amorphous oxide ring 

surrounding the nano-hole with a lateral thickness around 28 nm. 

 The lateral dimensions of the oxide rings and Si wires (i.e. the dimensions in the 

plane of the nano-mesh) were determined from the TEM images above.  The thickness 

(i.e. the dimension perpendicular to the plane of the nano-mesh) of the Si wires in the 

oxidized nano-meshes was determined using quantitative convergent beam electron 

diffraction (CBED).  In CBED, the primary electron beam from a conventional TEM is 

focused to a small spot on the sample surface and the resultant thickness-dependent 

diffraction intensity from various crystal planes is analyzed.  In this case, electrons were 

diffracted off of the amorphous oxide encased crystalline Si and the intensity of the 

diffraction spots from known Si crystal planes was measured.  Using known parameters 

of Si and an initial assumption of the Si thickness, the diffraction intensity of the spots 

was calculated and compared to the experimental data.  An iterative approach was then 

Figure 6.5.  High resolution TEM images of:  (a) free-standing, Ar+ etched Si nano-mesh near 
a single nano-hole.  (b) free-standing, Ar+ etched, oxidized Si nano-mesh near a single nano-
hole.  The nano-hole is in the upper left corner in both images.



 

 119

used to refine and fit the theory to the experimentally determined intensity to determine 

the thickness of the Si in the plane perpendicular to the electron beam.  Figure 6.6 (a) 

shows a TEM image of an oxidized Si nano-mesh sample where the letters A, B, C, and 

D show the positions where the CBED took place.  Figure 6.6 (b) shows a typical CBED 

image from region C where the diffraction spots from particular crystal planes are noted 

and the varying intensity of these diffraction spots are apparent.  Using this technique, the 

thickness of the SiO2 encased Si core wires in the regions indicated was found to be:  

12.1 ± 0.4 nm (Region A), B 14.0 ± 1.0 nm (Region B), 13.7 ± 1.0 nm (Region C), and 

15.3 ± 1.0 nm (Region D).  The average Si thickness in the four spots where the CBED 

too place is 13.8 nm which is equivalent to 18 nm of oxide on both the top and bottom 

surfaces of the nano-mesh.  This is similar to the lateral oxide ring thickness around the 

nano-holes. 

 6.3.2 Photoluminescence of Si Nano-meshes 

Figure 6.6.  (a) TEM image of oxidized Si nano-mesh.  Letters indicate spots where CBED 
took place.  (b)  Typical CBED pattern (from region C) used to calculate the thickness of the 
oxide encased Si wire mesh. 
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In an effort to investigate any quantum confinement effects in the Si nano-

crystals, PL measurements were obtained at 77K on both fluorine and Ar+ etched, 

oxidized and un-oxidized Si nano-mesh samples using a 532 nm, 10 mW excitation 

source.  PL spectra were also collected on control samples consisting of oxidized and 

unoxidized SOI substrates (i.e. no nano-hole array pattern).  The 532 nm laser was 

focused to a spot size of roughly 100 µm and directed to the area of interest on the 

samples.  Standard collection optics were used to direct the signal to a CCD spectrometer 

which collected the signal over a range of 550 to 1000 nm.   

Figure 6.7 shows the normalized PL spectrums from the samples taken at 77K.  

The top axis indicates an estimate of the expected Si feature size from the PL output, 

culminated from both theoretical and experimental work involving nano-crystalline Si 

and porous-Si [4, 5].  Figures 6.7 (a) and 6.7 (b) show the PL spectra taken from 

oxidized, fluorine etched and Ar+ etched Si nano-meshes, respectively.  Both oxidized 

nano-meshes show very broad, weak peaks in the visible spectrum.  The fluorine etched, 

oxidized nano-mesh exhibits a peak in the PL centered around 800 nm (1.5eV) with a 

full-width-half-maximum (FWHM) around 275 nm, while the Ar+ etched oxidized nano-

mesh has a peak near 600 nm (2eV) with a FWHM around 100 nm.  In addition, there 

appears to be a smaller, secondary peak in the Ar+ etched sample around 975 nm with a 

FWHM of around 125 nm.  Neither the un-oxidized, fluorine etched Si nano-mesh 

(Figure 6.7(c)) or the un-oxidized, Ar+ etched Si nano-mesh (not shown) show any PL 

emission.  Finally, the oxidized SOI control sample (Figure 6.7(e)) and the un-oxidized 

SOI control sample (Figure 6.7 (e)) show no PL output as well.  In each case, the 

spectrums were repeatable and multiple spectrums were taken on each sample.   
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The origin of 

the weak PL emission 

from the oxidized Si 

nano-meshes is 

assumed to come from 

a quantum 

confinement effect of 

the oxide encased 

silicon wire cores.  

Depending on the 

growth specifics, SiO2 

grown in dry oxidation 

steps can have a PL 

band around 620 nm-

560nm [75] while 

oxygen excess silicon 

oxide (such as can 

occur in ion implanted SOI) can have a PL band around 650 nm [75].  These bands are 

near the 600 nm peak seen in the Ar+ etched Si nano-mesh, however, no similar peak or 

any PL emission at all is seen in the oxidized and un-oxidized SOI control samples.  The 

argument for a possible quantum confinement effect is further strengthened by the lack of 

PL emission on the un-oxidized Si nano-mesh samples which have Si dimensions (on the 

order of 50 nm) that are still too large for quantum confinement effects to be apparent at 

Figure 6.7.  Photoluminescence spectra taken at 77K of:  (a) 
oxidized, fluorine etched Si nano-mesh  (b) oxidized, Ar+ etched 
Si nano-mesh  (c) Un-oxidized, fluorine etched Si nano-mesh  (d) 
oxidized SOI substrate and (e) SOI substrate. 
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77K.  Comparing with previous nano-crystalline and porous-Si work (top axis of Figure 

7), the PL emissions would seem to indicate a broad size range centered around roughly 5 

nm for the fluorine etched, oxidized nano-mesh and 3 nm (the 600 nm peak) for the Ar+ 

etched, oxidized nano-mesh.  The broad width of the PL peaks, which are comparable to 

porous-Si PL FWHM, [3] are most likely a result of the broad size distribution of the Si 

nano-wires.  This is partially confirmed in the TEM images of the Ar+ etched Si nano-

meshes which indicate lateral dimensions of the Si wires vary between 0 (in regions 

where the oxide rings touch) and 30 nm.  Although not confirmed by TEM, these non-

uniformities could be even more pronounced in the fluorine etched oxidized nano-mesh 

due to the anisotropic nature of the fluorine-silicon etching dynamics leading to a 

possibly larger distribution of sizes in this nano-mesh as indicated by the PL spectra.   

It is interesting to compare this work with that of Liu, et al. who also saw similar 

PL results after a self-limiting oxidation step of sub-50 nm Si pillars fabricated with 

electron beam lithography and reactive ion etching perpendicular to the sample surface 

[70].  After oxidation of these sub-50 nm Si columns, TEM micrographs indicated sub-5 

nm Si cores encased in oxide.  PL spectra taken on such a sample showed a broad peak 

around 650 nm with a FWHM around 100 nm, comparable to the Ar+ etched, oxidized 

nano-mesh.  As in this work they noted their low PL intensity (~ 400 times lower than 

strongly luminescent porous-Si) which was attributed to the relatively small pattern 

density (2.5 x 109 cm-2) of Si columns in their two dimensional array as compared to 

porous-Si samples.  The Si nano-mesh samples prepared in this work also consist of a 

two-dimensional array, differing from the Si columns fabricated by Liu et al. in that the 

samples consist of inter-meshing wires parallel to the substrate with a nano-hole density 
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of approximately 1010 cm-2.  Both of these cases, however, are significantly different 

from a three-dimensional porous-Si sample which has a much larger geometric cross 

section for absorbing the incident photons.   

Finally, it should also be noted that the presence and role of intrinsic crystalline 

defects in the top Si layer, dangling bonds (which can act as centers for non-radiative 

recombinations), and surface effects (associated with from surface contaminants, etc.) on 

the PL spectra is unknown.  Future work will focus on fabricating smaller nano-mesh 

samples (using sulfuric acid-grown AAO films) for further PL characterization as well as 

electron energy loss spectroscopy measurements. 

 

6.4.  CONCLUSION 

Free-standing nanometer-sized silicon meshes have been fabricated on SOI 

substrates using a combination of photolithography, wet-anisotropic etching, porous 

alumina templates, and dry etching techniques.  The resulting structure consists of an 

array of holes (square or circular) with approximately 50 nm diameters and 100 nm 

spacings.  Such nano-meshes have possible applications for nano-filtration and 

chemical/molecular sensor arrays.  These Si nano-meshes were further reduced in size by 

a pattern dependent and self-limiting oxidation step which left behind oxide-encased Si 

wires with sub-15 nm dimensions.  PL spectra from these structures showed broad, weak 

peaks indicative of quantum confinement effects. 
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Chapter 7 

 

Fabrication and Characterization of Array of 

MOS-Type Nano-Capacitors 

 

7.1.  ABSTRACT 

MOS-type nano-capacitor structures were fabricated by etching a highly ordered 

array of nano-holes through an AAO mask into a silicon oxide/silicon nitride on silicon 

substrate before growing a thermal oxide on the exposed silicon and using either a poly 

silicon gate or an electrolyte contact.  This technique allowed good pattern transfer over a 

large area (~3mm by 3mm) which in principle could be scaled up to even larger 

dimensions.  Room temperature C-V measurements on these structures showed little 

leakage.  Moreover, capacitance values for the electrolyte contact indicated that only the 

exposed silicon area contributed to this capacitance.   

 

7.2  INTRODUCTION 



 

 126

 There is a growing interest in the fabrication of nanometer-sized structures 

due to their potential use in high-density memories, single electron devices, vertical 

transistors and optoelectronic devices.  Conventional techniques used to fabricate such 

structures have generally used electron-beam lithography or scanning probe methods to 

transfer nanometer-sized patterns into various substrates.  These methods suffer from a 

wide variety of problems that limit their use in practical applications, most notably 

because they are serial rather than parallel processes.  Recently, anodized aluminum 

oxide (AAO) has received much attention due to its potential use in fabricating ordered 

arrays of nanometer-sized structures in combination with more conventional parallel 

processing techniques [49].  As discussed in previous chapters, the structure of AAO 

consists of ordered hexagonal arrays of pores with diameters that can range from about 

20 nm to 0.25 µm, depending on the anodizing conditions.  These properties make AAO 

films a promising candidate for the fabrication of many structures such as high-density 

magnetic memory elements, optoelectronic devices and quantum dot arrays [76-79].  

Different methods using AAO films to transfer patterns into silicon based substrates have 

been reported in the literature [61-63, 80].  However, various issues arise leading to 

problems in pattern transfer and profiles at the bottom of etched holes or trenches as 

illustrated in Chapter 5 and investigated by other researchers.  For example, on AAO 

films fabricated in aluminum deposited directly on silicon, there are problems due to the 

existence of the barrier layer at the bottom of the AAO [61, 62]; the introduction of an 

alloy layer between the aluminum and the substrate [61, 62]; and the problems with 

pattern transfer due to re-deposition effects [62].  Other problems result from a lack of 
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etch anisotropy, uniformity, and selectivity, leading to trenches or holes with rounded 

profiles and small aspect ratios [61-63, 80].   

In this chapter, capacitance-voltage (C-V) characterization of a nano-array of 

metal-oxide-semiconductor (MOS) capacitors in Si was fabricated using AAO masks in 

collaboration with researchers at the University of North Carolina [81].  In particular, a 

reactive ion etching (RIE) step followed by a wet etch through a SiO2/Si3N4 layer was 

used to achieve square nano-hole profiles at the silicon surface.  This was followed by the 

growth of a thin gate oxide at the bottom of the holes leading to an array of nanometer-

sized MOS-type structures.  In this case, the conducting contact is achieved by using 

either poly-silicon or an electrolyte.  In both cases room temperature C-V measurements 

indicated little leakage.  In the electrolyte case, capacitance values indicate only the thin 

gate oxide at the bottom of the holes contributes to this capacitance. 

 

7.3.  EXPERIMENTAL DETAILS 

Sample processing starts with an AAO film fabricated using a two-step 

anodization process on a pure (99.999%) Al foil (see Chapter 3 and Ref. 58 for details) 

[59].  Both anodic oxidation steps were carried out in a 0.3 M solution of aqueous oxalic 

acid at 40 V and a temperature of 10 oC which was designed to give pores with 

dimensions of 50 nm in diameter spaced 100 nm apart.  After the second anodization, a 

through-hole mask approximately 500 nm thick was prepared by lifting the film off of the 

Al foil in a saturated HgCl2 solution and removing the bottom alumina barrier layer in a 5 

wt % solution of H3PO4 at 30 oC for about 30 min.  The resulting mask, which was 

roughly 3 mm by 3 mm in size, was then placed on a sample, consisting of 100 nm SiO2 
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on 20 nm of Si3N4 on 

a silicon substrate, as 

shown schematically 

in Figures 7.1 (a) and 

(b).  The AAO nano-

hole array pattern 

was then transferred 

into the underlying 

substrate using a 

Semigroup reactive 

ion etching (RIE) 

1000TP tool.  First, the sample was cleaned using an oxygen plasma to remove any 

organic contamination resulting from the AAO mask fabrication/transfer process (12.5 

sccm flow of O2 at100 W and 60 mTorr).  This was followed by a CHF3/O2 reactive ion 

etch step (20 sccm flow of CHF3, 5 sccm flow of O2 at 100 W and 60 mTorr).  The etch 

time was carefully controlled by monitoring the sample etching rate so that the RIE 

process completely etched away the silicon oxide layer but only partially etched the 

silicon nitride layer, as shown in Figure 7.1 (c).  Next, the remaining exposed nitride was 

removed by a short (2 minutes, 40 seconds) 90 wt % H3PO4 wet etch at 180 oC that also 

removed almost all of the AAO mask, as shown in Figure 7.1 (d).  The phosphoric acid 

etch has a high selectivity for etching silicon nitride versus silicon oxide and leaves the 

silicon layer itself un-etched.  This combination of dry and wet etching of the sample 

served two purposes: 1) It allowed the thin nitride layer to protect the silicon surface from 

Figure 7.1.  Cross-sectional schematic of processing steps:  (a) 
Sample consisting of 100 nm SiO2 on 20 nm Si3N4 on Si.  (b)  AAO 
mask lifted off onto the sample.  (c)  RIE etching through the SiO2
and into the Si3N4 layer.  (d)  Removal of the Si3N4 layer (and the 
AAO mask) via a phosphoric acid wet etch.  (e)  5 nm of SiO2
thermally grown at base of holes.  (f)  Contacting of MOS-type 
structure with 100 nm of poly-Si or electrolyte.  
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the RIE step and 2) it leads to uniform 

side-wall profiles and flat bottoms after 

the wet etch.  After the wet etch a 5 nm 

gate oxide was thermally grown on the 

exposed silicon hole bottoms at 800 oC 

for 15 minutes, as shown in Figure 7.1(e).  

Figure 7.1(f) shows the final MOS 

structure where a 100 nm thick layer of 

poly-Si was grown by chemical vapor 

deposition.  Room temperature C-V 

measurements were made using an HP 

4284A LCR meter on this poly-Si MOS 

structure and on the sample without poly-

Si where an electrolyte was used to make 

the top contact.  The electrolyte was a 

solution of 1.0 M tetrabutylammonium 

hexafluorophosphate in propylene 

carbonate and the electrolyte area was 

about 350 µm by 350 µm. 

 

7.4.  RESULTS AND DISCUSSION 

 Figure 7.2 shows SEM images of the ordered array of nano-holes on 

silicon oxide/nitride transferred by the AAO mask before the growth of the gate oxide.  

Figure 7.2.  (a)  Plan view SEM micrograph 
of nano-hole array in SiO2/Si3N4/on Si  (b) 
Oblique angle SEM micrograph showing the 
different material layers (after wet etch). 
Inset in upper right hand corner shows a 
cross-sectional image.   
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Figure 7.2 (a) shows a plan-view micrograph of the hexagonal array of nano-holes in the 

SiO2 layer with an average diameter and spacing of 50 nm and 100 nm, respectively.  

Note the high degree of size uniformity and ordering.  Typically, such ordering can be 

achieved over 1 to 2 µm sized domains.  It should be noted that comparable ordering over 

millimeters can be achieved using AAO films fabricated using a combination 

embossing/AAO technique [57, 58, 63].  Figure 7.2 (b) shows an oblique angle SEM 

micrograph with labels indicating the different layers present.  In this case, part of the 

AAO film was intentionally left on the etched surface.  Note these holes have straight 

side walls and flat bottoms at the silicon surface.  Also the diameter of the nano-holes is 

consistent with the diameter of the AAO pores.  The inset in Figure 7.2 (b) shows an 

expanded cross-sectional view of the bottom of two holes.  It was found that the silicon 

Figure 7.3.  Room temperature Capacitance-Voltage curves taken at 100 kHz using 
the electrolyte contacting technique.  Inset is a schematic of our nano-hole structure 
unit cell with dimensions. 



 

 131

nitride protective layer/selective wet etching step is necessary to achieve this geometry at 

the silicon surface.  Similarly processed samples without the nitride layer resulted in 

rounded profiles as observed by others [62]. 

 Room temperature capacitance-voltage measurements were made on both the 

poly-Si gate electrode configuration, and the electrolyte-contacted configuration.  Both 

C-V measurements showed little leakage.  Figure 7.3 shows C-V curves taken at 100 kHz 

for the electrolyte configuration.  The hysteresis in the C-V curves is typical for 

electrolyte-contacted MOS structures as a result of their frequency response to the driving 

voltage [82].  However, the presence of interfacial states could also be partly responsible 

for causing the offset.  The inset in Figure 7.3 shows the hexagonal unit cell of the 

structure based on the SEM micrographs.  Based on this unit cell structure, the area 

fraction of gated Si area to unit cell area is 0.23.  For an electrolyte area of 350 µm by 

350 µm, an oxide capacitance of 850 pF is expected.  Based on Figure 7.3, the related 

capacitance for our nano-array is 190 pF.  The ratio of the nano-array to uniform 

capacitance is 0.22.  This agrees well with the area fraction 0.23, above, indicating that 

the gated-Si area in the nano-array is the major contribution to the capacitance. 

 

7.5.  CONCLUSION 

In conclusion, a highly ordered array of nano-holes has been formed in silicon 

oxide/silicon nitride on silicon using RIE and wet etching to transfer a pattern through an 

AAO mask.  The presence of a thin silicon nitride layer between the oxide and the silicon 

served as a buffer layer allowing improved pattern transfer with uniform profiles and flat 

trench bottoms.  This technique allowed good pattern transfer over a large area (~3mm by 
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3mm) which in principle could be scaled up to even larger dimensions.  In addition, 

MOS-type device structures formed by growing a thermal oxide on the exposed silicon 

and using either a poly-Si gate or an electrolyte contact were fabricated.  Room 

temperature C-V measurements on these structures showed little leakage.  Moreover, 

capacitance values for the electrolyte contact indicated that only the exposed silicon area 

contributed to this capacitance.  To my knowledge, this is the first reported electrical 

measurement made on nanostructured silicon devices fabricated using AAO films.  

Possible future work should involve the fabrication of similar structures to explore single 

electron effects via low temperature C-V measurements and scattering effects from 

textured channels via low temperature transport measurements. 
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Chapter 8 

 

Fabrication and Characterization of Nano-Ring 

Arrays  

 

8.1.  ABSTRACT 

Ordered arrays of Au, Ni, and Si nano-rings have been fabricated using Ar+ 

sputter re-deposition of material in a porous alumina mask.  Typical ring dimensions are 

50 nm inner diameter, 10-15 nm wall thickness with heights ranging from 50-200 nm.  

Ring composition was confirmed by electron microscopy.  Ring diameter, height and 

spacing are controllable by varying the process conditions.  This process is scalable and 

parallel, so that highly ordered nano-rings over millimeter-sized regions are possible. 

Finally, much of this chapter was published with minor changes [83]: 

K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of 

Nanoring Arrays by Sputter Redeposition using Porous Alumina Templates”, NanoLett. 

4, 167 (2004). 
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8.2  INTRODUCTION 

 Currently there is a great deal of interest in nanometer-sized rings (nano-rings) 

from theoretical, experimental and device perspectives.  Of interest are such properties 

as: persistent currents in metallic [84] or superconducting rings [85], tunable optical 

resonance in metal rings [86], novel magneto-optical behavior in semiconductor rings 

[87], magnetic response for application in patterned perpendicular recording media [88, 

89] and novel ring-shaped MRAM [90].  In addition, collective properties of ordered 

arrays, involving coupling between adjacent rings, may exhibit new physical behavior.  

Such collective properties have also received attention.  In particular, collective 

excitations in lattices have been theoretically investigated [91, 92]. 

 In the past nano-rings have been fabricated using various methods including 

electron beam techniques [84, 93] and nano-sphere lithography [94].  The methods 

described here, involving AAO templates, have advantages over these othere techniques.  

In particular, these AAO template techniques are scalable and parallel providing a 

method to fabricate large, ordered nano-ring arrays.  Moreover, these methods allow 

control over the nano-ring height independent of the ring diameter to produce high aspect 

ratio rings.   

 In this chapter, the fabrication and characterization of ordered arrays of Au, Ni 

and Si nano-rings fabricated using Ar+ sputtering and porous AAO templates are 

described.  Two methods are presented, both relying on the re-deposition of sputtered 

material inside the pores of an AAO mask.  Typical nano-ring dimensions are 50 nm 

inner diameter with 10 to 15 nm wall thickness and heights ranging from 50 to 400 nm.  

Ring composition and phase was confirmed by energy dispersive (x-ray) spectroscopy 
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(EDS) and selected area electron diffraction 

(SAED).  Ring diameter, height, and spacing 

are controllable by varying the process 

conditions.  In addition, magnetization 

hysteresis curves were taken on both a Ni 

nano-ring array and compared with a Ni 

nano-dot array and a bulk thin film Ni layer.   

 

8.3.  EXPERIMENTAL DETAILS 

 Figure 8.1 schematically shows the 

two methods used to fabricate nano-rings.  In 

Method I, Figures 8.1 (a)-(c), a through-hole 

AAO template is used as a sputter mask on 

20 nm of SiO2 on a thick layer of the desired 

ring material.  In Figure 8.1 (a) the AAO 

template is lifted off onto the sample.  Figure 

8.1 (b) shows the results of ion etching 

through the AAO pores leading to the re-

deposition of ring material around the pore 

walls.  Finally, the AAO template is 

removed (Figure 8.1 (c)) leaving behind the 

sputter re-deposited rings on the SiO2 layer.  

In Method II, Figures 8.1 (d)-(f), the 

Figure 8.1.  Schematic views of 
Method I and Method II.  For Method 
I:  (a) shows the AAO template on 20 
nm of SiO2 on the desired ring 
material,  (b) shows sputter re-
deposited material around the pore 
walls after sputter etching, (c) shows 
the rings after AAO mask is removed 
(with a plan-view added to guide the 
eye). For Method II:  (d) shows AAO 
mask on a silicon substrate after ring 
material is evaporated down the mask, 
(e) shows sputter re-deposited material 
around the pore walls after sputter 
etching,  (f) shows the rings after AAO 
mask is removed. 
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through-hole AAO template is used as an evaporation shadow mask to define an array of 

dots as shown in Figure 8.1 (d).  This is followed by an ion-etching step that leaves 

behind sputter re-deposited dot material around the pore walls as shown in Figure 8.1 (e).  

After removal of the AAO template an array of nano-rings or tubes remain as shown in 

Figure 8.1 (f).  In the paragraphs below, the growth and transfer of the alumina template, 

and the subsequent evaporation, sputtering, and processing steps are discussed in greater 

detail.  

 The AAO templates are fabricated using a two-step anodization process described 

in detail in previous chapters and elsewhere [49, 51, 52].  This two-step process starts 

with anodizing an aluminum foil for a long time (15 hr) to grow a thick porous layer.  

This is then chemically stripped off and followed by a second anodization step for a short 

time (5 min).  Using this two-step technique, very good ordering over micron sized areas 

is obtained.  More recently, a nano-imprinting technique designed to seed pore formation 

has achieved ordering over millimeter sized areas [57, 58].  In the work reported here, the 

anodization was performed either in 0.3 M oxalic acid at 40 V (producing 50 nm 

diameter pores spaced 100 nm apart) or 0.3 M sulfuric acid at 27 V (producing 20 nm 

diameter pores spaced 60 nm apart).  All anodizations were carried out at 1 oC.  After the 

second anodization, a through-hole mask about 300 nm thick was prepared by separating 

the AAO film from the Al foil in a saturated HgCl2 solution and removing the remaining 

bottom alumina barrier layer in a solution of H3PO4 (5 wt %) at 30 oC for 35 minutes.  

The resulting mask was then placed on the substrate.  Typical mask dimensions were 3 

mm x 3 mm. 
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 To evaporate appreciable material down the AAO template, it is crucial that the 

divergence of the evaporated material is lower than about 10o to accommodate the 6:1 

aspect ratio of the alumina mask.  All evaporations were carried out using an Edwards 

E306A thermal evaporator with a source-to-sample distance of 10 cm and a typical 

source size of 5 mm x 5 mm.  Under these conditions evaporating a 60 nm thick layer on 

the top surface of the AAO yields 40 nm high nano-dots and coats the top portion of the 

side-walls of the AAO template as shown schematically in Figure 8.1 (d).  This coated 

top portion is important as it contributes to the final nano-ring structure, specifically the 

height, because the sputter step is highly directional and does not remove much of this 

material. 

 As with the evaporation it is important to sputter with a low divergence ion beam.  

In this work, a VG Microtech EX05 ion source with a source to sample distance of 50 

mm and an angular divergence of about 0.1o was used.  The samples were etched with 

Ar+ beam at an energy of 500 eV and current density of 0.15 mA/cm2.  The low incoming 

energy of the Ar+ results in an under-cosine (flatter) distribution of emitted sputtered 

particles [95].  This flat distribution is better for the sputter re-deposition leading to rings 

or tubes.  The sputter time (typically 3 min.) was chosen to remove the entire bulk 

evaporated film from the alumina template surface. 

 After etching, the AAO templates were removed from the samples using an 

appropriate wet etch.  In this work an equal parts chromic/phosphoric acid (1.8%/6% by 

weight) solution was used at 60 oC.  Although removing the template is useful for 

characterization, it is not necessary, and rings left in the template have greater mechanical 

stability. 
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 Samples were characterized with a JEOL 880 SEM; a JEOL 2000 FX TEM and a 

JEOL 1010F TEM.  Secondary electron imaging (SEI), scanning transmission electron 

microscopy (STEM) dark field imaging, selected area electron diffraction (SAED), and 

electron dispersive spectroscopy (EDS) were performed with these instruments in 

addition to standard SEM and TEM imaging.  Samples prepared for SEM analysis were 

fabricated on Si substrates with the AAO mask removed after the sputtering step.  TEM 

samples were fabricated either on Si or directly on ultra-thin carbon film TEM grids [96].  

TEM samples on Si were mechanically polished and then thinned with an Ar ion mill.  

Samples fabricated on TEM grids required no further processing and were examined with 

the AAO template intact. 

 Finally, magnetization hysteresis loops were taken at room temperature on a Ni 

nano-ring array on Si fabricated using Method II, a nano-dot array on Si, and a bulk thin 

film of Ni on Si using a superconducting quantum interference (SQUID) magnetometer 

(Quantum Designs MPMS XL) at the University of Nebraska. 

 

8.4.  RESULTS AND DISCUSSION 

 8.4.1 Electron Microscopy Results 

 Figure 8.2 shows Si rings on a SiO2/Si substrate fabricated using Method I.  

Figure 8.2 (a) is a top-down SEM image showing well-ordered 50 nm inner diameter 

(ID), 10 nm thick rings with 100 nm center to center spacing.  Size variations of these 

dimensions were about 20 % (typical for Method I).  The inset shows a 45o view from 

which the ring height (Si plus SiO2) was determined to be 50 nm.  Figure 8.2 (b) is a 

TEM image of a thinned sample with a SAED pattern (inset).  The sharp diffraction 
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peaks are from the crystalline substrate (Si (100)), while diffuse rings indicate that the 

nano-rings are amorphous Si.  The difference in SEM and TEM contrast is primarily the 

result of reduced secondary electron yield from the etched hole leading to the dark region 

in the SEM image.  Finally, Figure 8.2 (c) is a plot of a Si K-edge EDS line scan across a 

single nano-ring, shown on the STEM annular dark field image (inset).  This line scan 

clearly indicates reduced Si in the center 

of the ring as expected because the hole 

extends into the Si substrate (as seen 

directly in cross-sectional views).  The 

line scan also shows reduced Si at either 

end outside the ring, although to a lesser 

extent than in the center.  Ni rings were 

also produced by this method.  Figure 8.3 

shows Ni rings on a 20 nm thick SiO2 

layer on Ni on Si substrate (inset shows a 

Figure 8.2.  Electron microscopy results for Si nano-rings fabricated using Method I.  (a) top 
down SEM micrograph of rings on a SiO2/Si substrate.  Inset is a 45o oblique view showing 
the 50 nm tall rings (same mag.).  (b) TEM image of the Si rings and SAED pattern (inset). 
(c) EDS profile of Si K-edge across the dotted line shown on the STEM annular dark field 
image of a single Si ring (inset). 

Figure 8.3.  Top down SEM micrograph of 
Ni rings on SiO2/Si substrate fabricated using 
Method I.  Inset is a 45o oblique view 
showing the 50 nm tall rings (same mag.). 
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45o view).  These rings have similar dimensions to the Si rings described above.  

 Nickel rings have also been fabricated on Si using Method II.  The electron 

microscopy results are summarized in Figure 8.4.  Figure 8.4 (a) is a large-scale view 

showing the typical micron-sized, well-ordered domains.  Figure 8.4 (b) is a close-up 

view showing a region of 50 nm ID, 10 nm thick rings separated by 100 nm.  Size 

variations for these dimensions were about 10% (typical for Method II).  Top-right inset 

is a cross-sectional image of a related sample showing that the sputter-etched holes 

continue into the Si substrate.  The top left inset shows a 55o oblique angle SEM view 

from which a nano-ring height of 200 nm was determined.  The bottom left inset shows 

nano-rings fabricated with a sulfuric acid-grown AAO template.  In this case, the rings 

have an inner diameter of about 35 nm, an outer diameter of 60 nm and a center-to-center 

spacing of about 60 nm.  Figure 8.4 (c) shows an EDS spectrum from a thinned sample 

prepared for STEM.  The SAED pattern (shown inset) indicates the presence of Ni and 

NiO.  Both results confirm the rings are Ni, (the small Cu signal is from the TEM grid).   

Figure 8.4.  Electron microscopy results for Ni rings fabricated using Method II.  (a) SEM 
image of a typical region. (b) SEM image of a well-ordered 1 µm x 1 µm region showing 
rings with inner diameters roughly 50 nm with wall thickness around 15 nm.  All insets are 
the same scale.  Top right:  a cross-sectional view showing the sputtered hole in the Si 
substrate.  Top left:  a 55o oblique view showing the 200 nm tall rings. Bottom left:  top 
down view of Ni rings fabricated in sulfuric anodized alumina, period is halved.  (c) EDS 
spectrum of Ni rings on a Si substrate.  Indexed SAED pattern (inset) and spectrum 
confirms the rings are Ni and NiO (Cu peak is due to the TEM grid). 
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 Similar results have been obtained 

with Au rings on a Si substrate and on an 

ultra-thin carbon TEM grid using Method II.  

The electron microscopy results are shown in 

Figure 8.5.  Figure 8.5 (a) is a close-up view 

showing a well-ordered region of 50 nm ID, 

10 nm thick rings separated by 100 nm.  

Bottom-right inset shows a 45o view from 

which the nano-ring height was determined to 

be approximately 150 nm.  Figure 8.5 (b) 

shows details from TEM analysis of the rings 

still in the alumina template.  The TEM image 

is shown inset (top center) and a SAED 

pattern (top-right inset).  The EDS spectrum 

shows the presence of gold (again the Cu 

signal is from the TEM grid).  The electron 

diffraction image (top-right inset) indicates 

that the rings are polycrystalline gold.   

 Au nano-ring arrays have also been fabricated directly in AAO templates grown 

on Al foils using a modified version of Method II.  In this case, a Au layer was 

evaporated directly on an approximately 300 nm thick AAO film still on the Al growth 

substrate.  This was followed by an ion-etching step that left behind sputter re-deposited 

dot material around the AAO pore walls.  Figure 8.6 shows an SEM image of the Au 

Figure 8.5.  Electron microscopy results 
for Au rings fabricated using Method II. 
(a) top down SEM micrograph of Au 
rings on a Si substrate with 45o oblique 
view (inset) showing 150 nm tall rings. 
(b) EDS spectrum of Au rings still inside 
the AAO template.  The spectrum and 
indexed SAED pattern (inset) confirm 
the rings are poly-crystalline gold. 
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rings fabricated directly in an AAO template 

on an Al foil.  The Au rings are visible 

around the AAO pore walls and have similar 

lateral dimensions to the Au rings fabricated 

using Method II above (50 nm ID, 10 nm 

thick rings separated by 100 nm).  The 

height of the nano-rings could not be 

determined from the SEM images but it is 

thought that they extend throughout the 

length of the AAO template which was 

around 300 nm.  An advantage of fabricating rings directly into AAO templates (and not 

removing the AAO) is the mechanical stability provided by the AAO itself. 

 As described above well-ordered arrays of rings have been fabricated with some 

variation in ring geometry.  The prospects for further controlling the ring and array 

geometry based on our results with Methods I and II are discussed in the paragraphs 

below.  For both methods, the center-to-center nearest neighbor spacing of the rings is the 

same as the inter-pore spacing of the AAO template.  As discussed in Chapter 3, this is 

controlled by the anodization growth conditions.  The anodization voltage primarily 

controls the inter-pore spacing with the electrolyte concentration playing a significant 

role in the pore diameter and pore ordering.  Inter-pore spacing of about 60 nm (sulfuric), 

100 nm (oxalic), and 500 nm (phosphoric) are typically used to obtain well ordered pore 

arrays.  However, using the proposed "10 % porosity rule" [56], inter-pore spacing 

between these values can be obtained while still maintaining a significant degree of 

Figure 8.6.  SEM micrograph of Au nano-
ring array fabricated in an AAO film on an 
Al foil.
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ordering.  Again, it is worth noting that long range order extending over millimeters can 

be obtained using nano-indenting techniques to initiate pore formation [57, 58]. 

 It can be seen that the rings produced by Method I are shorter than those produced 

by Method II.  In Method I, the ring height is governed primarily by the incident ion 

energy.  For the 500 eV Ar+ incident energy used in this work, the resulting etched-

material sputter distribution is an under-cosine profile resulting in short rings.  Higher ion 

energy with a closer to cosine sputter distribution should result in taller rings.  One 

disadvantage of Method I is that the rings are above a bulk layer of the same material.  

However, the SiO2 separation layer can, in principal, be selectively removed to allow the 

rings to be transferred to another substrate.  With Method II, nano-ring height is a 

combination of effects including the AAO template thickness, details of the evaporation, 

and the incident ion energy.  As shown schematically in Figure 8.1, the final ring is a 

combination of material re-deposited from the dot and that coating the top-portion of the 

AAO pore.  This has been confirmed by comparing dot (prior to sputtering) and ring 

(after sputtering) volumes.  The final ring height is slightly smaller than the thickness of 

the template.  Thus reducing or increasing the template thickness allows control over 

reducing or increasing the ring height.  In this regime, it is expected that the height of the 

shortest rings will be close to the thickness of the thinnest AAO that can be used, around 

100 nm for this work.  On the other hand, much taller rings should result from using 

thicker templates, increasing the amount of evaporated material, and decreasing the 

evaporated materials' angular divergence.  Under these circumstances, it should be 

possible to fabricate rings with aspect ratios even higher than the 4:1 ratio demonstrated 

here.  For sufficiently thick templates it should be possible to have the rings formed only 



 

 144

from the sputtered dot material, with the top portion material not contributing.  Under 

these circumstances, it should be possible to fabricate rings with heights less than 50 nm 

using Method II.   

 It is interesting to note that the outer diameters of freestanding rings often exceed 

the inner-diameter of the as grown AAO pore.  For example in Figure 8.5 (a) the outer 

diameter is about 70 nm, while in the TEM image (inset of Figure 8.5(b)) the rings in the 

AAO matrix have an outer diameter of about 50 nm.  A more dramatic example is shown 

in the SEM image of Ni rings fabricated using a sulfuric acid anodized template (lower-

left inset Figure 8.4 (b)).  For a sulfuric acid-grown AAO film, the pores are 20 nm in 

diameter with inter-pore spacing of 60 nm.  The Ni rings have inner diameters of about 

35 nm and outer diameters near 60 nm, while still maintaining the expected 60 nm period 

such that the rings are nearly touching.  This discrepancy is attributed to the widening of 

the pores during the barrier-layer opening wet etch step.  Thus there is some control over 

the outer diameter of the rings independent of the spacing.  This is important for tailoring 

the coupling between neighboring rings.  Currently, ways to improve the control of the 

barrier-layer removal step are being investigated.  Recent developments of a dry-etching 

step to more controllably remove the barrier layer may improve this process [97]. 

 8.4.2  Magnetization Hysteresis Loops of Ni Nano-Ring and Nano-Dot Arrays 

 Magnetization hysteresis loops were measured for a Ni nano-ring array on Si 

(fabricated using Method II), a Ni nano-dot array on Si, and a bulk Ni thin film on Si at 

room temperature by a superconducting quantum interference device (SQUID) 

magnetometer.  Figure 8.7 (a) and (b) shows SEM micrographs of the Ni nano-ring and 

nano-dot arrays, respectively.  As can be seen in Figure 8.7 (a) the nano-rings in this case 
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are nearly touching with dimensions of ~ 80 nm ID, 10 nm ring thicknesses and spacings 

of 100 nm.  Oblique angle SEM micrographs (not shown) were used to determine the ring 

height for this array to be 400 nm.  This was not unexpected since in this case, a thicker 

(~ 500nm) AAO template was used in the fabrication process.  From Figure 8.7 (b), the 

nano-dots have dimensions of approximately 70 nm diameters spaced 100 nm apart.  The 

height of the dots was estimated from crystal monitor data taken during the thermal 

evaporation of the dots to be about 25 nm.  Finally, the thickness of the bulk thin film of 

Ni on Si was estimated to be about 50 nm from crystal monitor measurements during the 

evaporation. 

 Figures 8.8 (a) and (b) show the hysteresis loops for the Ni nano-ring array with 

the external field applied parallel and perpendicular to the plane of the sample, 

respectively.  These can be compared directly with the hysteresis loops for the Ni nano-

dot array with the external field applied parallel and perpendicular to the plane of the 

sample (Figures 8.8 (c) and (d), respectively) as well as the hysteresis loops for the bulk 

Ni film with parallel and perpendicular applied external fields (Figures 8.8 (e) and (d), 

respectively).  Table 8.1 summarizes the coercivities, remanences, and saturation fields 

for the curves. 

Figure 8.7  SEM micrographs of (a)  Ni nano-ring sample that magnetization hysteresis loops 
were obtained on.  (b)  Ni nano-dot sample that magnetization hysteresis loops were obtained 
on. 
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Figure 8.8  Magnetization hysteresis loops for (a)  Ni nano-ring array with external field 
parallel to the plane of the sample. (b)  Ni nano-ring array with external field perpendicular to 
the plane of the sample. (c)  Ni nano-dot array with external field parallel to the plane of the 
sample. (d)  Ni nano-dot array with external field perpendicular to the plane of the sample. (e) 
Thin Ni film with external field parallel to the plane of the sample. (b)  Thin Ni film with 
external field perpendicular to the plane of the sample. 
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 The nano-ring hysteresis curves for both parallel and perpendicular external field 

directions exhibit similar values for the coercivities, remanences, and saturation fields.  In 

this case, the nano-ring array does not have a preferential magnetic orientation and shows 

no improvement over the Ni nano-dot array or Ni thin film.  This is in contrast to work on 

high aspect ratio Ni nano-wire arrays electrodeposited into AAO on Al [98].  In this 

work, the electrodeposited Ni nano-wires were 1 µm long, spaced 100 nm apart with 

diameters that could be varied between 30 and 55 nm.  In addition, TEM measurements 

indicated the electrodeposited Ni wires were polycrystalline with nano-crystallites 

between 20-100 nm.  For the 55 nm diameter nano-wire array, there was no preferential 

magnetic orientation.  However, improvements were seen as the nano-wire diameters 

were reduced culminating with a 30 nm diameter nano-wire array, which demonstrated a 

clear preferential magnetic orientation along the wire axis, a large remanance, and a high 

coercivity of 1200 Oe.   

Coercitvity (Oe) 
Remanence 

(memu/cm2) 
Saturation Field (Oe) 

 

Par. Perp. Par. Perp. Par. Perp. 

Nano-ring 

Array 
140 120 0.4 0.4 4800 4800 

Nano-dot 

Array 
60 90 0.6 0.2 4800 4800 

Thin Ni 

Film 
10 150 1 1 4800 4800 

Table 8.1  Summary of magnetization properties for the Ni nano-ring array, Ni nano-dot array 
and thin Ni film. 
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 For this work, the low coercive fields, remanences, and poor squareness or shape 

of the curves make this particular Ni nano-ring array unsuitable for patterned 

perpendicular magnetic media applications.  These results are most likely due to two 

reasons:  1) the Ni nano-ring arrays are amorphous rather than crystalline and 2).  The 

nano-rings are nearly touching allowing macroscopic interactions between the rings to 

dominate.  Improvements to the Ni nano-ring array might be seen by annealing the nano-

wires to induce crystallization although the Ni rings would need to be fabricated on 

substrates other than Si as the formation of nickel silicides are seen at relatively low 

temperatures (~ 250 oC for N2Si) [99].  In addition, larger ring separations would also 

help to eliminate “cross-talk” or interactions between the rings.  Finally, higher aspect 

ratio rings or cylinders providing more Ni while maintaining the same pattern density 

would also help to improve the magnetization response. 

 

8.4.  CONCLUSION 

 In summary, two methods for producing nano-ring arrays through the sputter re-

deposition of Ni, Au and Si in porous alumina templates have been presented.  The 

composition and phase of the rings was verified by SAED and EDS.  Rings fabricated 

using oxalic acid AAO templates produced rings of 50 nm inner diameter, 10 nm wall 

thickness and 100 nm center to center spacing.  Deviations from these dimensions are 

about 20 and 10 % for Method I and Method II, respectively.  Ring diameter, height, and 

spacing are controllable by varying the process conditions.  In particular with Method II a 

large variation in ring height can be achieved, and for both methods outside ring diameter 

can be increased until the rings touch.  In addition, these methods are scalable and 
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parallel which are important considerations for the development of nano-scale arrays for 

applications.  Finally, magnetization measurements were made on Ni nano-ring and 

nano-dot arrays, and a thin film of Ni.  These results showed that the nano-ring array 

exhibited little improvement over the nano-dot array or the thin film of Ni.  This is likely 

due to the fact that the nano-rings were both amorphous (rather than polycrystalline) and 

nearly touching allowing interactions between the nano-rings to dominate. 
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Appendix 1 

 

Pattern Transfer with AAO Films:  Nano-Pillar 

Arrays 

 

A1.1  ABSTRACT 

 GaAs and Si nano-pillar arrays have been fabricated by using AAO masks to 

define an array of dots that was subsequently used as a mask for a dry etching process.  

Such pillars could have applications in data storage, opto-electronics (as light emitting 

arrays) or nano-tribological coatings to improve surface characteristics.  Two methods of 

fabrication were investigated:  (1) Fe dots were evaporated through an AAO mask onto a 

GaAs substrate.  The AAO mask was removed and the array of Fe dots were used as 

masks in an Ar+ etching process to create an array of GaAs pillars.  (2)  An AAO mask 

was placed on a thin Si3N4 layer on a Si substrate.  Reactive ion etching (RIE) was used 

to etch holes through the Si3N4 layer into the Si substrate.  The exposed Si was oxidized 

leaving behind an array of SiO2 dots.  After removal of the AAO and Si3N4 layer, the 
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SiO2 dot array was used as a mask in another RIE process to create an array of Si pillars.  

This second method for creating Si nano-pillars arrays was done in collaboration with 

researchers at the University of North Carolina [81]. 

 

A1.2 EXPERIMENTAL DETAILS AND RESULTS 

 A1.2.1 GaAs Nano-Pillar Array 

 A 500 nm thick oxalic acid-grown AAO film with 50 nm pore diameters spaced 

100 nm apart was lifted off onto a GaAs substrate following the procedure outlined in 

Chapter 4 and shown schematically in Figure 4.1.  Next, 70 nm of Fe was thermally 

evaporated onto the AAO/GaAs substrate following the general procedures outlined in 

Chapter 4.  After removal of the AAO mask by mechanical means (i.e. double-sided 

tape), a well-ordered array of 20 nm tall Fe dots remained.  The sample was then exposed 

to an Ar+ ion beam (VG Microtech EX05) for 17 minutes in a vacuum environment (10-10 

Torr with the beam off, 10-6 Torr with the beam on) with a source to sample distance of 

Figure A1.1  (a)  Top down SEM micrograph of GaAs nano-pillar array.  (b)  45o oblique 
angle SEM view of GaAs nano-pillar array.  Inset shows cross-sectional SEM view. 
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50 mm and an angular divergence of about 0.1o.  The beam had an energy of 500 eV and 

a current density of 0.05 ma/cm2.  The etching time was chosen to etch away the 20 nm 

thick Fe dots, leaving behind GaAs pillars. 

 Figure A1.1 shows SEM micrographs of the resulting GaAs pillars.  Figure A1.1 

(a) shows a top down SEM micrograph of the GaAs nano-pillar array.  From the SEM 

image, the nano-pillars are 80 nm in diameter, spaced 100 nm apart, in good agreement 

with the AAO pore spacing.  Figure A1.1 (b) shows a 45o oblique angle SEM micrograph 

of the nano-pillar array.  The inset in Figure A1.1 (b) shows a cross-sectional SEM view 

of the GaAs nano-pillar array.  From the cross-sectional image the pillars are conical in 

shape and approximately 50 nm tall. 

 A1.2.2 Si Nano-Pillar Array 

Figure A1.2  Cross-sectional schematic of processing steps:  (a)  Sample consisting of 20 nm 
Si3N4 on Si.  (b)  AAO mask lifted off onto the sample.  (c)  RIE etching through the Si3N4
and into the Si substrate.  (d)  5 nm of SiO2 thermally grown at base of holes.  (e)  Removal of 
AAO and Si3N4 layer.  (f)  Final RIE step to create Si pillars. 
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 A 500 nm thick oxalic acid-grown AAO film with 50 nm pore diameters spaced 

100 nm apart was lifted off onto a 20 nm thick layer of Si3N4 on a Si substrate shown 

schematically in Figure A1.2 (a) and (b).  The AAO nano-hole array pattern was then 

transferred through the Si3N4 layer and into the underlying Si substrate using a 

Semigroup RIE 1000TP system.  This is shown schematically in Figure A1.2 (c).  After 

the RIE step, the exposed Si hole bottoms were thermally oxidized (Figure A1.2 (d)) at 

800oC for 15 minutes, and the AAO and Si3N4 layers were etched away by a short (2 

minutes, 40 seconds) 90 wt % H3PO4 wet etch at 180 oC.  This left behind an array of 

roughly 5 nm tall, 50 nm diameter SiO2 dots as shown schematically in Figure A1.2 (e).  

Finally, the SiO2 dots served as a mask for a subsequent RIE etching step with a high 

selectivity for etching Si over SiO2 using the Semigroup RIE 1000TP system to create an 

ordered array of Si pillars. 

 Figure A1.3 shows SEM micrographs of the resulting Si nano-pillar array.  Figure 

A1.3 (a) shows an oblique angle SEM view of the resulting array.  From the image, the 

pillars appear to be slightly less than 100 nm in diameter and almost touching.  In 

Figure A1.2..(a)  Oblique angle SEM view of Si nano-pillar array.  (b)  Oblique angle SEM 
close-up view of two Si nano-pillars. 



 

 154

addition, there appears to be some non-uniformity in the height of the pillars as well as 

some regions of poor pattern transfer.  Figure A1.3 (b) shows an oblique angle close-up 

SEM view of two pillars surrounded by a region of poor pattern transfer.  From this 

image, the pillars are approximately 100 nm wide at the base, 50 nm tall at the top, and 

280 nm tall. 

 

A1.3 CONCLUSION 

 Arrays of nano-pillars were fabricated using two different methods.  Both 

methods involved the use of AAO masks to define nano-dot arrays that were 

subsequently used as masks to define pillars in a dry etching step.  The first method used 

thermally evaporated Fe dots on a GaAs substrate to fabricate GaAs pillars in an Ar+ 

etching step.  The second method involved an RIE and an oxidation step to create an 

array of SiO2 dots in Si.  This was followed by another RIE step using the SiO2 dots as a 

mask to create an array of Si pillars. 
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Appendix 2 

 

Carbon Nano-Tube Arrays 

 

A2.1  ABSTRACT 

 A carbon nanotube array was fabricated upright on a SiO2/Si substrate using an 

AAO template to seed an array of cobalt catalysts for a carbon nanotube growth step.  

Perpendicular arrays of high density, uniform nanotubes such as those presented here 

could have applications in data storage or field emission devices (i.e. displays or sensors).  

To start, an AAO template was used to transfer an array of nano-holes into the SiO2 layer 

using an Ar+ beam.  Next, a cobalt nitrate solution was deposited into the nano-hole array 

and the AAO mask was removed.  The cobalt nitrate was reduced, leaving behind an 

array of nano-sized cobalt catalysts in the SiO2 nano-hole array.  This was followed by a 

carbon nanotube growth step which resulted in an array of multi-walled carbon nanotubes 

perpendicular to the growth substrate.  The nanotubes presented here were not as well 

ordered as multi-walled nanotubes grown directly in AAO templates [100, 101] but were 
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smaller in diameter.  This work involved a collaboration with Dr. Melissa Reiger’s group 

in the Department of Chemical Engineering at OU. 

 

A2.2 EXPERIMENTAL DETAILS AND RESULTS 

 A 500 nm thick oxalic acid-grown AAO film with 50 nm pore diameters spaced 

100 nm apart was lifted off onto a 900 nm thick SiO2/Si substrate following the 

procedure outlined in Chapter 4 and shown schematically in Figure 4.1.  The sample was 

then exposed to an Ar+ ion beam (VG Microtech EX05) for 5 minutes in a vacuum 

environment (10-10 Torr with the beam off, 10-6 Torr with the beam on).  The beam had 

an energy of 2 keV and a current density of 0.05 ma/cm2.  This step served to transfer a 

nano-hole array consisting of 50 nm diameter holes, approximately 5-10 nm deep with 

100 nm spacings into the SiO2 layer.  The sample was then immersed in a 6 wt% cobalt 

nitrate solution and allowed to dry overnight before removing the AAO mask 

mechanically (i.e. double sided tape).  Next, the cobalt nitrate in the nano-holes was 

reduced to cobalt by heating the sample to 500oC in an H2 environment.  Finally, the 

carbon nanotubes were grown by exposing the nano-particle cobalt catalysts in the nano-

holes to a He:CO gas mixture (a flow rate of 50 sccm He: 50 sccm CO) at 700oC.   

 Figures A2.1 (a), (b), and (c), show top down SEM micrographs of the resulting 

carbon nanotube array.  From these images, it appears that the nanotubes are not as well 

ordered as would be expected from the ordered nano-pores in the AAO mask.  However, 

the density of the nanotubes calculated from the SEM images (~1.5x1010 cm-2) is similar 

to the nano-hole array density (~ 1010 cm-2).  This would suggest that the cobalt nitrate 

was deposited into the nano-hole array initially and subsequently some of the cobalt 
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catalyst nano-particles migrated out of the nano-holes under the high temperature catalyst 

reduction or carbon nanotube growth step. 

 Figures A2.1 (c), (d), and (e) show 60o oblique angle SEM micrographs of the 

carbon nanotube array.  From these images, the diameter and height of the nanotubes 

appear to be fairly uniform.  The uniform diameter of the nanotubes is most likely a result 

of the uniform size of the catalyst nano-particles which was limited to the size of the 

nano-holes  The diameter of the nanotubes is difficult to determine from the images but 

they are considerably smaller (~ 20 nm) than the 50 nm diameter hole array, while the 

height of the nanotubes is approximately 200 nm.  In addition, it should be noted that 

there appears to be cobalt catalyst nano-particles visible on some of the tops of the 

Figure A2.1.  (a), (b), and (c)  Top down SEM micrographs at different magnifications of a 
carbon nanotube array on an SiO2/Si substrate grown using AAO pattern transfer methods and 
cobalt nano-particle catalysts. (e), (f), and (g)  60o oblique angle SEM micrographs of the 
carbon nanotube array.  Note the presence of particles on the tops of some of the tubes.  These 
are thought to be the Co nano-particle catalysts. 
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nanotubes, which is especially visible on Figures A2.1 (d) and (e).  This type of growth 

mode, termed the “tip growth mode”, where the metal catalyst resides at the tip of a 

growing nanotube, is a common mechanism for the growth of carbon nanotubes using 

metal catalysts deposited on substrates [102, 103].  This is distinct from the “base growth 

mode” where the catalyst particle resides at the base of the tube [104].  The type of 

growth mode of the nanotubes depends greatly on catalyst/substrate interactions, 

temperature gradients across the catalyst particles, and the nanotube growth technique.   

 

A2.3 CONCLUSION 

 An array of carbon nano-tubes was grown perpendicular to the SiO2/Si growth 

substrate by using AAO pattern transfer techniques with cobalt nano-particle catalysts.  

The AAO film was used to transfer a nano-hole array into the SiO2 layer by Ar+ etching.  

Next, a cobalt nitrate solution was deposited down the nano-hole array and the AAO was 

removed.  Following the reduction of the cobalt nitrate solution, an array of cobalt nano-

particle catalysts was left behind in the nano-hole array.  Finally, a carbon nanotube 

growth step produced an array of carbon nanotubes standing upright on the substrate.  

The multi-walled nanotubes were smaller than the 50 nm diameter nano-holes and not as 

well ordered as the starting AAO film used to transfer the nano-hole array into the 

substrate.  Due to the comparable nanotube and nano-hole density, it is believed that 

some of the cobalt nano-particle catalysts migrated out of the nano-holes under the high 

temperature catalyst reduction or nano-tube growth step, leading to an unordered array of 

carbon nano-tubes.  In addition, from analysis of the SEM images, it appears that the 
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nanotubes were grown by the tip growth mechanism, where the catalyst nano-particles 

reside at the tips of the nanotubes. 
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Appendix 3 

 

Fabrication and Characterization of 

Superconducting Nb Nano-Meshes 

 

A3.1  ABSTRACT 

 Nb nano-meshes have been fabricated by a Nb sputter deposition directly onto 

AAO films.  Preliminary characterization of these films using a scanning 

superconducting quantum interference device (SQUID) microscope shows the presence 

of vortices (whose position relative to the Nb mesh is limited by the SQUIDs ~ 8 µm 

spatial resolution) and indicates that the nano-meshes are superconducting.  Future work 

will attempt to determine the location of these vortices when the magnetic field is 

commensurate with the diameter of the nano-holes.   

 

A3.2  EXPERIMENTAL DETAILS 
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Nb was sputtered directly onto a 500 nm thick oxalic acid-grown AAO film on an 

Al foil with 50 nm diameter pores spaced 100 nm apart.  The 2” diameter Nb target was 

positioned directly underneath the sample and the sample-to-source distance was 

approximately 12 cm.  In addition, a 2 mm aperture was placed 2 cm away from the 

sample to limit the incoming divergence angle of the sputtered material and a 2 mm 

diameter shadow mask was placed directly on the AAO sample.  Nb was DC sputtered 

using a Torus 2C Sputter Deposition Source in an Ar plasma at a pressure of 10-3 Torr, 

Figure A3.1  (a) Low magnification SEM image showing entire 2 mm diameter region of the 
Nb nano-mesh.  (b) High magnification SEM image of the ~ 200 nm thick Nb nano-mesh 
taken in the center of the sample.  (c) High magnification SEM of the ~ 75 nm thick Nb nano-
mesh taken towards the edge of the sample.  (d) High magnification SEM image of the AAO 
film prior to the Nb sputter deposition. 
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and a forward power of 200 W.  Based on step height measurements taken on a control 

sample sputtered identically to the AAO sample, the thickness of the Nb was determined 

to be approximately 200 nm at the center of the sample and trailing off to around 75 nm 

towards the outer edge of the sample (around the edge of the 2mm diameter shadow 

mask).  Figure A3.1 (a) shows a low magnification SEM image of the entire sample 

where the 2 mm diameter region of sputtered Nb can be clearly seen.  Figure A3.1 (b) 

shows a high magnification SEM image taken from the center of the sample showing the 

roughly 200 nm thick Nb film almost covering up the AAO pores.  Figure A3.1 (c) shows 

a high magnification SEM image taken toward the edge of the sample showing the 

roughly 75 nm thick Nb film with the AAO pores still clearly visible.  Finally, Figure 

A3.1 (d) shows a high magnification SEM image of the AAO film prior to the Nb sputter 

deposition. 

 

A3.3  RESULTS 

 The Nb nano-mesh sample was imaged using a scanning SQUID microscope built 

Figure A3.2  (a) Magnetic scanning SQUID microscope image of Nb nano-mesh sample.  (b) 
Susceptibility scanning SQUID microscope image of Nb nano-mesh sample. 
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and operated by Dr. John Kirtley, a research staff member at IBM Research Division in 

Yorktown Heights, New York.  The scanning SQUID microscope is used for measuring 

local magnetic fields with a magnetic field sensitivity of <10-6 gauss Hz-1/2 at a spatial 

resolution of ~ 8 µm [105].  Figure A3.2 (a) shows a standard magnetic scanning SQUID 

microscope image taken after the sample was cooled below the Nb superconducting 

transition temperature of 9.5 K in a field of about 3 mG.  The dots present in the images 

are individual vortices, typically seen in Type II superconductors, confirming the 

superconducting nature of the sample.  The vortices are resolution limited by the 8 µm 

square pickup loop and appear to have the standard quantum of magnetic flux.  Figure 

A3.2 (b) shows a susceptibility image, a measure of the diamagnetic shielding, over the 

sample area.  From this image, it was determined that the magnetic field penetration 

depth is consistent with a depth much less than 1 µm, as expected, and fairly uniform. 

 

A3.4  CONCLUSION 

 Nb nano-meshes have been fabricated by sputter deposition onto AAO films.  

Preliminary characterization of these films using a scanning SQUID microscope with a 

spatial resolution of about 8 µm indicates that the nano-meshes are superconducting.  

Future work will involve characterization of these films by magnetization/susceptibility 

measurements as well as with a low temperature scanning magnetic force microscope 

with a spatial resolution comparable to the 50 nm hole diameters in these nano-meshes to 

determine the location of vortices when the magnetic field is commensurate with the 

diameter of the nano-holes. 
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Appendix 4 

 

Malonic Acid-Grown AAO 

 

A4.1  ABSTRACT 

Porous AAO films have been fabricated using malonic acid electrolytes and 

characterized with transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM).  Previous results within our group have suggested that malonic acid 

electrolytes can produce porous AAO films with pore diameters and spacings in a size 

regime (~100 nm diameters and 300 nm spacings) that bridges a gap between the pore 

dimensions found in AAO films formed in other electrolytes.  Towards this end, TEM 

and SEM were used to determine the dependence of the pore diameters and spacings on 

the growth conditions and to confirm that malonic acid-grown AAO films follow the 

same growth mechanism as other AAO films.  In addition, a preliminary study was 

conducted to determine the feasibility of finding appropriate growth conditions for the 

self-ordering of the pores into a hexagonal close-packed array.  Currently, this self-

ordering condition has been found in AAO films formed in three different acid 
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electrolytes (sulfuric, oxalic, and phosphoric acids) [48-50].  This initial study proved 

inconclusive but suggests that malonic acid-grown films may self-order into a 

hexagonally close-packed array at higher anodization voltages than presented here.  AAO 

films with these dimensions could have applications for the fabrication of ordered arrays 

of nanostructures as well as photonic crystal structures, where only light of specific 

wavelengths are allowed to travel through a given medium.   

  

A4.2  EXPERIMENTAL DETAILS 

To start, high purity (99.999%), 0.25 mm thick aluminum foils were degreased in 

tetrachloroethylene (TCE), acetone, methanol, and DI water, followed by a cleaning step 

consisting of a 1:10:20:69 mixed solution of hydrofluoric acid (HF), nitric acid (HNO3), 

hydrochloric acid (HCl), and water (H2O) at 25oC for five minutes.  Following the 

degreasing, the Al foils were annealed under forming gas (80% N2, 20% H2) at 550oC for 

three hours and then electropolished in a 1:3 mixture of perchloric acid (HClO4) and 

ethanol (C2H5OH) for three minutes at a constant current density of 100 mA/cm2 and a 

temperature of 2oC.  After the Al foil pre-treatment, the Al foils were anodized in 10 wt% 

malonic acid (C3H4O4) at 40oC at voltages ranging between 65 to 105 V for two hours.  

Anodizations were carried out at 40oC since anodizations carried out at room temperature 

or below did not result in appropriate current vs. time curves (e.g. Figure 3.15) that are 

the hallmark of porous AAO growth.  The resulting anodic oxide films were then stripped 

in a 1:1 solution of 5 wt% phosphoric acid: 1.8wt% chromic acid for 1 hour.  Finally, a 

second anodization was performed on the foils at the same voltages for times between 

one and two minutes.  Finally, for comparison, a well-ordered AAO film was grown 
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utilizing a two-step anodization at 40 V in 0.3M oxalic acid (C2H2O4).  Table A4.1 

summarizes the samples grown. 

 

Sample Voltage Electrolyte Temperature
1st 

Anodization 
Time 

2nd 
Anodization 

Time 

OAAO-1 40 V 0.3M Oxalic 
Acid 5°C 16 hr 5 min. 

MAAO-1 65 V 
10 wt% 
Malonic 

Acid 
40°C 2 hr 1 min. 

MAAO-2 75 V 
10 wt% 
Malonic 

Acid 
40°C 2 hr 1 min. 

MAAO-3 85 V 
10 wt% 
Malonic 

Acid 
40°C 2 hr 1 min. 

MAAO-4 95 V 
10 wt% 
Malonic 

Acid 
40°C 2 hr 2 min. 

MAAO-5 105 V 
10 wt% 
Malonic 

Acid 
40°C 2 hr 2 min. 

Table A4.1.  Malonic acid-grown AAO sample growth conditions. 

 After growth, pieces of each film were prepared for SEM and TEM observation.  

SEM preparation simply involved mounting the samples on the copper SEM boat with 

conductive carbon tape.  Figure A4.1 shows the TEM sample preparation steps.  As 

described above, the AAO films were anodized on a 0.25 mm thick, high purity 

(99.995%) Al foil as depicted in Figure A4.1 (a).  The second anodization time (between 

one and two minutes) was carefully chosen to yield a thin film suitable for TEM 

observation.  Next, a polymer layer (collodion in amyl acetate) was spun on the film to 

give the film some rigidity and to protect the surface during subsequent processing steps, 

depicted in Figure A4.1 (b).  This was followed by etching the Al foil away using a 
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saturated HgCl2 solution, thereby releasing the anodic oxide film as shown in Figure 

A4.1 (c).  Following this step, the barrier layer was removed in these films by etching in 

5 wt% phosphoric acid for 40 minutes as shown in Figure A4.1 (d).  Finally, the polymer 

layer was removed in acetone and the AAO films were lifted off onto a TEM grid as 

shown in Figure A4.1 (e).   

 

A4.3  RESULTS 

 Figure A4.2 shows TEM images of the oxalic acid and malonic acid-grown films.  

The images confirm that the malonic acid-grown films are porous.  Based on the TEM 

contrast, the oxalic acid-grown film (Figure A4.2 (a)), the 95 V malonic acid-grown film 

(Figure A4.2 (e)), and the 105 V malonic acid-grown film (Figure A4.2 (f)) appear to be 

thicker which qualitatively agrees with the 2nd anodization growth times which were 

larger for these films.  Also, except for the oxalic acid-grown film, none of the malonic 

acid-grown samples appear particularly well-ordered although qualitatively, the higher 

voltage samples appear to be more ordered than the lower voltage samples. 

 Figure A4.3 shows SEM images of the oxalic acid and malonic acid-grown films.  

Similar to the TEM images, the SEM images confirm the films are porous, however, 

none of the malonic acid-grown films appear to be well-ordered.  Again, based on the 

Figure A4.1.  (a)  AAO film grown on Al foil.  (b)  Polymer layer spun onto the surface of AAO 
to protect the top surface from further processing.  (c)  Al foil etched away to release AAO film. 
(d)  AAO barrier layer etched away to create a through-hole film.  (d)  Polymer layer removed 
and AAO film lifted off onto TEM grid. 
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SEM contrast in the dark holes, the oxalic acid-grown film (Figure A4.2 (a)), the 95 V 

malonic acid-grown film (Figure A4.2 (e)), and the 105 V malonic acid-grown film 

(Figure A4.2 (f)) appear to be thicker which agrees qualitatively with the longer second 

anodization times and the TEM images.  Finally, both the SEM and TEM images confirm 

that the average interpore spacings are larger for higher anodization voltages.  However, 

the pore diameters in the SEM images appear smaller than the corresponding films in the 

TEM images.  This is most likely a result of the barrier layer etch done in the TEM 

preparation (Figure A4.1 (d)) which also served to widen the pores.   

 Figure A4.4 (a) shows the average inter-pore spacings (error bars are given by the 

standard deviation) versus the anodization voltage calculated by taking forty 

measurements from each TEM image.  The inter-pore spacings show a linear relationship 

Figure A4.2  TEM images of:  (a) 40V oxalic acid-grown AAO film (b)  65 V malonic acid-
grown AAO film (c)  75V malonic acid-grown AAO film (d) 85V malonic acid-grown AAO 
film (e) 95V malonic acid-grown AAO film (f)  105V malonic acid-grown AAO film. 
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with the anodization voltage, in good agreement with the relationship established with 

other AAO films grown in different electrolytes, shown in the straight line fit [52].  Also 

plotted is the first peak from the radial distribution function corresponding to the first 

nearest neighbor distance which is discussed below. 

 Figure A4.4 (b) shows the average pore diameters versus the anodization voltage 

for both the TEM (blue squares) and SEM (red squares) images calculated by taking 

twenty measurements each from the TEM and SEM images.  The average pore diameters 

also vary linearly with the applied voltage as shown by the best line fits, although the 

TEM and SEM values do not agree with each other.  Again, this is most likely a result of 

the barrier layer etch in the TEM preparation (Figure A4.1 (d)) which also served to 

widen the pores.   

Figure A4.3  SEM images of:  (a) 40V oxalic acid-grown AAO film (b)  65 V malonic acid-
grown AAO film (c)  75V malonic-acid-grown AAO film (d) 85V malonic acid-grown AAO 
film (e) 95V malonic acid-grown AAO film (f)  105V malonic acid-grown AAO film. 
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 Auto-correlation of the TEM images was used to determine the degree of ordering 

in the images.  Auto-correlation is a useful technique in determining any periodic 

structures present within an image.  In short, the image is overlaid on itself at different 

positions and the degree of correlation or overlap is determined.  Figure A4.5 shows the 

auto-correlation of the TEM images.  As expected, the oxalic acid-grown AAO film 

shows good ordering as seen by the well-ordered array of bright spots in the auto-

correlation image.  The malonic acid-grown films show very little ordering although a 

clear improvement is seen in the auto-correlation images as the anodization voltage 

increases. 

 The radial distribution function was also calculated on the TEM images as a 

means to determine the degree of order present.  Given a repeating unit or structure 

(atoms, molecules, pores, etc.), the radial distribution function gives the probability of 

finding another structure a given distance away.  Figure A4.6 shows the radial 

distribution function for the TEM images.  The oxalic acid-grown film shows many peaks 

corresponding to the 1st, 2nd, 3rd, etc. nearest neighbor distances.  All of the malonic 

Figure A4.4  (a)  Average interpore spacing versus the anodization voltage for the malonic 
acid-grown films taken from the TEM images.  The red line is a best fit line seen in other 
porous AAO films.  Also plotted is the 1st peak in the radial distribution function. (b) 
Average pore diameters taken from the TEM images (blue squares) and SEM images (red 
squares) as a function of the anodization voltage.  The best line fits are also plotted. 
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acid-grown films show a small peak indicating the presence of an average nearest 

neighbor distance.  However, starting with the 75V film and becoming more pronounced 

with the higher voltage films, other peaks can be seen indicating a higher degree of 

ordering as the voltage increases.  Finally, it should also be noted that the 1st nearest 

neighbor peaks shift to the right as the voltage increases indicating that the inter-pore 

spacing is increasing. 

 

A4.4  CONCLUSION 

Porous malonic acid-grown AAO films were grown with interpore spacings 

ranging from around 180-300 nm and pore diameters from around 40-200 nm.  The 

Figure A4.5  Auto-correlation images of:  (a) 40V oxalic acid-grown AAO film (b)  65 V 
malonic acid-grown AAO film (c)  75V malonic acid-grown AAO film (d) 85V malonic acid 
grown AAO film (e) 95V malonic acid-grown AAO film (f)  105V malonic acid-grown AAO 
film. 
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average inter-pore spacings follow a linear relationship with the anodization voltage.  

This linear relationship agrees well with the growth mechanisms established for porous 

AAO films grown in other electrolytes.  The pore diameters obtained from SEM images 

of the films are smaller than the pore diameters obtained from the TEM images, probably 

due to the barrier layer etch in TEM preparation.  Finally, the existence of a self-ordered 

state in these films is inconclusive but the degree of ordering was observed to be greater 

Figure A4.6  Radial distribution function for the oxalic acid-grown AAO film and the 
malonic acid-grown AAO films. 
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at higher anodization voltages.  In conclusion, self-ordering of malonic acid-grown AAO 

films may be possible at higher anodization voltages than presented here. 
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