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PREFACE

This investigation is based upon management's need for operating
ranges to provide managerial flexibility. These ranges must be pro-
vided in such a way that any selected value will yield an insignificant
increase or decrease in the objective function (the total cost‘fuﬁction
or the total profit function).

This thesis consists of five chapters.

Chapter I, Introduction, is intended to present to the reader the
need for undertaking a study of the Sensitivity Analysis of Decision
Models. It explains why the Sensitivity Analysis of Decision Models
is needed for management.

Chapter II, Review of the Literature, presents the results of the
literature review. It summarizes the most of the work in this field
which has been published as articles and technical notes.

Chapter III, Mathematical Models, develops the basis for the
mathematical analysis required.

Chapter IV, Inventory Systems, derives a variety of inventory
models. It also presents the sensitivity analysis of these models
around their mathematical optimum for the purpose of establishing
decision ranges.

Chapter V, Recommendations and Conclusions, summarizes the results
achieved and recommendations for further studies.

Interest in this area of Sensitivity Analysis of Decision Models
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program.
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CHAPTER I

INTRODUCTION

When Operations Research techniques are applied to industrial
situations, the most common procedure is to determine the optimum trade-
off relationship between increasing and decreasing cost factors. To
produce the least cost and the most profit, current Operations Research
techniques have been carefully developed to determine the point at which
the objective function is maximized or minimized.

The exact optimum point is not required in actual practice. From
management's point of view, it is not even desirable due to the diffi-
culties involved in its exact calculation. Instead, the vital informa-
tion is the range or region of the operating variables which will result
in an approximately minimum cost and maximum profit. Sometimes, the
problem of determining this range is solved by asking from what range
variables may be selected to avoid a significant increase in the cost
for a system or a significant decrease in the profit. A knowledge of
this range then provides management with a flexibility sufficient to
perform its function of managing according to the dynamic needs of the
situation and the environment.

The procedures which are used to establish these management ranges
are broadly classified as sensitivity analysis. For a number of rea-
sons, an understanding of these ranges and their effects as studied by

sensitivity analysis is often of major importance to management. Under



changes of parameters, for instance, the stability of the optimum solu-
tion may frequently become critical. Using the exact optimum solution
point, a slight variation of a parameter in one direction may result in
a large, unfavorable difference in the objective function ( total cost
function or  total profit function). At the same time, a large varia-
tion of the parameters in a different direction may result in a small
difference. In industrial situations, where there are certain inherent
variabilities in the estimates of the parameters not taken account of
in the model, it may sometimes be desirable to move away from the
optimum solution in order to achieve a solution less likely to require
essential modification.

The values of the coefficients of the objective function may be
controllable to some extent. If this is the case, it is essential for
management to know the effects which would result from changing these
values. Even if these coefficients are not controllable, the estimates
for their value may be only approximate. This makes it important to
know for what ranges of their values the solution is still desirable.
If it is determined that the optimum solution is extremely sensitive to
their values, it may become necessary to obtain better estimates.

In a like manner, a model that involves a fixed or a first cost
which does not vary with the decision variables may be insensitive as
a whole. This might be in spite of the fact that variable parts in it
are sensitive within a predetermined increase or decrease in the
objective function above its optimum. This is yet another factor which
serves to establish the validity and importance of sensitivity analysis.

In view of this importance, this research project proposes to

develop several general mathematical models and investigate their



sensitivity. With these models as a guide, the project will continue
to investigate the application of sensitivity analysis toward general
trade~off relationships which might be encountered in the wide spectrum
of problems facing the analysts who are currently engaged in applying
quantitative methods to management.

Specifically, it is proposed that this research develops models for
a variety of total cost curve or surface equations and total profit
curve or surface equations in general mathematical forms.

It is further proposed that the project classify types of problems
which may be treated by those generalized equations and fully develop
this method of analysis for some of the classical Operations Research

techniques now in use,



CHAPTER II
REVIEW OF LITERATURE

The initial reference to the use of an economic lot range to find
the purchase quantity in situations where a quantity discount was offered
apparently occurred in a journal article by Munn, Mary and Sarah Hayward
(12)early in 1951. A similar approach to selecting buying quantity was
published in 1957 by Norman, Lang E. (10).

Since that time,. Solomon, M. J. (15) has published a significant
and useful study on economic lot ranges. In a journal monograph of 1959,
Solomon differentiated the total cost function to.obtain the economic. lot

size and the optimum total cost as:
Q = f2YS
© CI

T =YC+YS+QsCTI+5SI.
8] Q '%- 2

(¢}

and

Manipulating these functions, Solomon obtained:

e-1? =1[1+_¥_§_+_i2:|a

2P CIQ
o
Let:

To = the optimum total cost for the year
Qo = the optimum lot size
Y = the number of units sold in one year
5 = the cost per lot (set-up and paper-work)
Q = the lot size



I = the cost of carrying inventory on an annual basis

'A = the yearly cost increases of the optimum cost equal to
some predetermined proportion

P = the proportion of Q that corresponds to a penalty propor-
tion of A . o

Using a numerical example, Solomon allowed = 0,01 and finally derived
values for the lower lot size QL and the upper lot size Q . He deter-
K

mined that:

QL 0.72 Qo

and

Q

u 1040 Qoi

The author tabulated tables for lot size versus total cost, for P
versus P-l)2 , and for different monthly useages for one product using
the routiie and expediting ranges in which the last ranges correspond to
a penalty of k and in which k<l. The last tables was computed for
relatively homogeneous groups of products with approximately the same
fixed and variable cost factors. If, however, a product involves an
operation with a temporary bottleneck, the load on thebottleneck facility
can be reduced by using the lower part of the range. If the situation
is critical, then the critical range (expediting range) can be used.
Thus, the expediting range can be resorted to in emergency situations.
Such a table has the advantage of enabling a clerk to make scheduling
and inventory decisions that are consistent with scheduling criteria on
a roughly optimum basis. The proposed approach is a way of dealing with
one dimension economy of manufacture for scheduling purposes.

The approach proposed by Sclomon is a form of sensitivity analysis
which should prove useful wherever the objective is to minimize or maxi-
mize the quadratic function i%%lli subject to other considerations

which are more intangible.



Another significant contribution to sensitivity analysis concerning
the range of variables was made by Disney, R. L. (3) in a journal
article published in 1962. In presenting a model of an inventory system
for his research, Disney provided several assumptions. He assumed that
demand is known and constant, lead time is known and constant, that run-
ning out of goods is prohibitively expensive, and that the yearly cost
to hold and the cost to place are not inclusive. Disney neglected the
fixed costs in his study because they do not affect the quantity to
purchase nor the time of purchase.

Disney expressed the variable cost factors in the inventory system

as a function of the exact data needed as:

2
C~C r-1
w00 &l . LD
C 21
o
When,
Lo N _Fw (&icy) .
Yo €1/C1
Let:
C = the cost of the system at any time
Co = the cost of the system when all needed information
is known exactly
r = the ratio of the quantity to purchase at any time
to the quantity to purchase when all needed informaticn
is known exactly
N = the demand for a year
C1 = the yearly cost to hold
C2 = the cost to place one order,

(Par values indicate estimated values; values without
par indicate exact values).

The author tabulated the results of changing the ratios E; ET, and
- ' N C
L1 and then gave the corresponding effect en the total variable cost,
C1



Disney c¢oncluded thét the quantity to purchase can take a value between
sixty-five per cent and one-hundred and fifty-five per cent of the exact
value when the yield on the total variable cost is less than ten per
cent above the optimum value.

A somewhat similar study was published by Withycombe, Richard (19)
a year later in 1963. In his work, Withycombe defined q as the
multiplier of the cost of ordering and carrying inventory in dollar
units, and p as a multiplier of the economic order quantity (EOQ). This

author then defined the relationship between these multipliers as:

2
q::iiﬂ_o
2p

Giving a numerical example as an application to the above formula
and table, the author tabulated q versus p. Withycombe concluded that
a considerable latitude can be tolerated in making derivations from the
calculated EOQ, and that the EOQ, as a general policy, may be rounded
to within plus or minus ten per cent in order to form convenient lots.
If other factors such as price concessions or standard packaging
indicate that it may be desirable to deviate by more than ten per cent
from the EOQ, the cost of such an action should be evaluated.’

A later techunical note by Rutenberg, H. Y, (14) in 1964 stressed
the study of the ranges of set-up cost. Here, the variable is the set-
up cost while the other parameters in the total cost equation are
assumed to be comstants. Rutenberg derived the optimum values as:

Q

. =255
T/ cT

To =/2YCISO .

and

Let:



QO = the ecomnomic order quantity (EOQ) in units

Y = the annual usage in units/year

S, = the true set-up cost in dollar/units

C = the inventory cost.at standard in dollar/units
I = the inventory carrying cost in dollar/dollar of

the inventory year
TO = the optimum total wvariable cost in dollars.
If the set-up cost is taken from the calculation as S instead of

as the exact value of S, then the above optimum values equations yield

to become:

and

T(S) = /ZYCIS .

The author defined P as the per cent of increase in the total

annual cost when using S instead of S. He then derived the expression:

~— - 1] 100 .

_1fs , S
R=={Z 4=
Il S

and came to a quadratic function:
2 T L 32
ST - 2RSS + 854 = 0 .
The solutions of this quadratic equation are the lower limit of the set-
up cost (Sy) and the upper limit of the set-up cost (Su):

51

Ii
==}
i
w
|
oy

and

u

i
95}]
7o)
+
7o

I
et

As a direct application to his study, Rutenberg gave a significant

and interesting example demonstrating that even with a set-up cost



ranging from one to over one-thousand dollars, the use of the estimated
value S rather than the exact value S had very little effect on the
total annual cost of ordering and carrying inventory. The benefit from
Rutenberg's study is that it gives a wide range for set—up gost‘while,‘
at the same time, the net increase.in the inventory total variable cost
igyﬁery little,

Important recent work has extended inventory theory beyond its
strictly classical bounds. With the presentation of many new models by
Dr. Naddor, Eliezer (11), there has been a new basis showing that sensi-
tivity analysis can be based upon tabulated data.

In sﬁmmarizing the related articles, notes, and citations which
make up the bulk of the genefal literature prior and relevant . to the
present research, we find that all previous authors who have dealt with
ordering and set-up cost and the carrying or holding cost have, regard-
less of their purpose, considered only the simple inventory model of
the two cost elements. This simple inventory model can be represented
mathematically as: .

Y = ax + & |
X

The most recent work by Dr. Naddor does, indeed, include more extensive
inventory tnodels and their sensitivity analyses. But, again, these
sensitivity analyses are based on the tabulated data only.

The purpose of this research project is to provide a variety of
mathematical models and to include their mathematical sensitivity ex-
pressions. It later seeks the application of these models and their
sensitiVity expressions to decision models in the Operations Research
field. Some of these applications might be inventory medels, replace-

ment models, production models, or queuing models. The scope of this



dissertation is limited to the continuous functions, leaving discrete

functions to further investigation.
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-CHAPTER III -
MATHEMATICAL - MODELS

This chapter is devoted to the development of mathematical models
of one independent variable X. The investigation is for the purpose
of obtaining'the optimum value Xo and the corresponding optimum value
Yo. Knowing the mathematical eptimum'(xo,'Yo), from what range mayv
vthe independent variable be selected in a way that yields an insigni-
ficant change in the dependent variable Yw above the optimum value:

Yo? The determination of the model range according to‘a predetermined
setting standard allowance is made through the derived sensitivity
>formule. The'setting‘standardballowanCe assumed in tnis study is

a 10 per cent increase in the total variable elements over its opti-
mum Vélue (minimiéation’funetion), and a 10 per cent decrease in the
-total variable elements, over its optimum value (maximization func-
tion).

The fifst part of this chapter describes the mathenatical techniques
using an illustfated‘ekample. The second part investigates the mathe-~
‘matical mode 18 graphedﬁes onevstandard curve‘suchbas the straight line,
;circle, ellipse, hyperbola, rectangular hyperbola, Gaussian, and catenary
cnrve. »Thevthird part analyzes the methenaticgl models graphed as a
"vsumvof two-standard curves such as a straight line versus. a parabola, a

“straight line versus rectangular hyperbola, and others, The first curve

11



. in these mathematical models is assumed to be an increasing function
while the second'éufve is assumed to be a decreasing function. This
assumption is necessary to provide the conditions fof the existance
of optimality for the model. The fourth part investigates the mathe-
matical models graphed as the sum of three different standard curves
such aS»a.straight line versus a parabola and a rectangular hyperbo-
la, a straight line versus a straight line and a rectangular hyperbo-
la, and a parabola Qersus a straight line and a rectangular hyperbola.
The first curve(s) is (are) assumed to be an increasing function(s) .
and the other(s) is (are) assumed to be decreasing function(s). This
assumption is again essential in providingvthe optimality in the model.
The last part summarizes the mathematical models discussed and their

sensitivity formulas,

Mathematical Techniques

As was mentioned before, the study is coﬂcerned with obtaining
;he optimum point for thése models as well as their sensitivity ex-
pressions. For the predetermined settiﬁg standard allowance increase
or decrease aBove'or-under the optimum value Yo, the study is devoted
to establishing a range from which the variable X is selected., For
the time being, we will call this range‘the decision range (defined
in Chapter IV). |

The mathematiéal techniques used are differentiation and trans-
‘formatiqn. Differentiation provides the optimality, and both differen-
tiation and transformation are used for obtaining the general sensiti-
vity expression. The model can be exp?eséed mathematically as

Y = F(X).

12



By differentiating the function Y with respect to X, the derivative of

the function is expressed as

ay _
axX F'X).

At this point, F'(X) should be equated to zero to obtain the opti-

mum valueMXO. Thus

and can be solved to find Xo. By substituting Xo in the original func-
tion Y = F(X) the corresponding optimum value Y0 can be obtained. This

can be expressed mathematically as
Y0 = F(Xo).

Therefore, the mathematical optimum point of this function"is (XO, YO).
The sensitivity expression of this mathematical model can be found by
assuming an error w incurred in the calculating or estimating of the

optimum variable XO in such a way that

where w is zero or a positive value by definition.

The effect of this error w on the bptimum value Y0 is an increase
in the case of a minimization curve or % decrease in the case of a
maximization curve. The measurement oféthe sensitivity can be done

{
1
through these ratios !

the error value Yw-

e

~ the exact optimum value Y0
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or

Y - Yo the difference between the error value

Y the exact optimum

Yw and the exact optimum Y0

value Y
o

The result from the first expression is the same as the second,

with 1.0 being the only difference between them. Thus, for the pur-
pose of this dissertation we will deal with the first expression.

| Both ratios define the sensitivity expression. The sensitivity
expression is known as a general one if it is only a function of error
W, otherwise‘the sensitivity expression is a special one. As is explained
later in thg illustrated example, the transformation technique is used
té eliminate the constant term in the original function, and, subse-
quently, it is sometimes helpful to provide a/the general sensitivity

expression.

~Illustrated Example

The following cited example is the sum of two independent curves:
an increasing parabola curve Y1 = AX2 and a decreasing straight line
curve with a positive intercept on the Y-axis Y2 = C - BX. Thus, the

sum of these two curves is

2

Y=Y, +Y,=A + C - BX.

1 2

The optimum point (Xo’ Yo) of this total function can be obtained
by differentiating Y with respect to X, equating the result to zero,
solving for Xo’ and substituting Xo in the vaunction to obtain:Yo as

follows



ay
X S 2AX+0-B
0=2AX - B
0
: B
Xo T O2A
Y =AX " - BX +¢C
0 (o]
=A§——2--B%A-+c
LA
2
- _ B
=-m;te

Therefore the optimum point of the function (Xo, YO) is

B B2

Gr-—zx* O

The sensitivity expression can be obtained by assuming that an

error w has been associated with Xo in such a way that

and

W = zero or a positive value.

Thus, the corresponding value Yw which results from considering

Xw = wXO instead of the optimum value Xo is
2 2
2 B B
o - +
LA v T

and the sensitivity expression is

B2
Yw I (W - 2w) + C .
B 2
Y" - B oy

15



At this point the expression is not a general one. To obtain a
general expression, transform the original function Y to another new
function Y' such that the origin (0, 0) is shifted to another new

origin (0, -C). Thus,

X. =X = wX =wxXx'
w - W o o

w=w' = zero or a positivé value
2
- _c=B 2.
Yu’ Yw ¢ 4A (v 2w)
B2
'= - B o e
Yo Yo ¢ 4A
and
1
Yw _ Yy - ¢ - W2 - 2w
I [Yo - €
o o

By setting a standard 10 per cent increase over the transforméd
optimum Yo' (the minimum value of the variable parts in the function)
or the 10 per cent decrease under the transformed optimum Yo' (the
maximum of the variable parts of the function) four possibilities
arise as in Figures 1 and 2:

a) The original function is a minimization and the optimum
of the transformed function Yo' is a negative value. Thus

Y ! .
v _ =90 _ . g.90
7] ~ 100 -9
o
b.) The original function is a minimization and the transformed
optimum Yo is a positiye value. Thus

Yl
W 1.10 - _
] ~Too =
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(a)

0

P
-

Y 1
Y0'=»1,oo! |

X, %

Figure (1), Minimization Curves



¥
()
Y
w
L Y,
%o
{o / X
¥ '=-1.00
e - i
Yw' = -1.10
| Yo' |
(d)
Y|
.Yw'

Figure (2). Maximization Curves

18
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c) The original function is a maximization and the transformed
~ optimum value Yo' is a negative value. Thus

d) The original function is a maximization and the transformed
optimum value Yo' is a positive value. Thus

The using of an absolute value of a transformed optimum value‘Yo'lis
for the purpose to be consistent with the directions of the axes of the
original function Y.

In our example the curve is a minimization and Yo is negative,

Thus, the sensitivity expression yields to
w2 - 2w + .90 = 0.

The roots of this quadratic equation show the lower decision

range w1 énd the upper decision range LA to be
2 -¥4 - 4x.90
W, =
1 2
= 1,0 - LlO = - ,68377
and

2 +V4 - 4x.90

u 2

1.0 - /10 = 1,31622,

The decision range is

0.68377  w 1.31622
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and

0.68377X X & 1.31622x .

Numerical example: For the above model, assume A = 1.00, B = 1,00,

and C = 10.0. Thus by substitution

B
Xo X0 oA 2.00
2
y =-2 4c¢c=09.75
o 4A ot
2
B
' = o — = -
Yo 4A 25
YI
W _ 2
lY_W = -,90 = W - 2w
o
wi = 0,68377
W = 1.31622
u
Xy = 0,68377 (2.00) = 1.36754
X, = 1,31622 (2,00) = 2,63244

and the decision range

1.36756 S X 2,63244.

The effect of an allowing a 10 per cent increase in the total
variable parts of the function on'the resulting net per cent in-

crease is

! -
v W .
yio- -
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By substituting we have

Y, - 10.0
90 = 1670
(o]

Y = .90y + 1.0
[o}

W o 1.0
v - .90 + e
o o

.90 x 9.75 + 1.0
9.75

= 1.0025

The 10 per cent increase in total variable items will yield
only 0.25 per cent in total function which in practice is negli- ..

gible.

Models of One Standard Curve

Straight Line Model

The straight line model can be represented mathematically as

Y=M{+ B

where

=
It

‘the slope of the line and a positive amount

B = the intercept of the line on the Y-axis and a
positive amount.
/

Follow the same procedufés as in the illustrated example pp. 14 - 21,

Thus -
dy

ax M+ 0

therefore,



This result contradicts the assumption that M > 0. Therefore,
one can conclude no optimum for the straight line model and conse-

quently no sensitivity analysis around the optimum,

Circle Model

The mathematical circle model can be represented as

,Y:j—_/Rz—_(X-H)Z + K

The positive sign indicates the upper semi-circle, while the negative
sign indicates the lower semi-circle. The following discussion is
limited to the lower semi-circle, the minimization curve, where

(H, K) = the coordinates of the center of the
cipcle

and
R = the radius of the circle.
Follow the same procedures given in the illustrated example pp.

14 - 21. Thus

. . _
dy 1l .2 21~
& - '_'z'[(“ - (X“”] 2 ['Z(X‘“’J
: 1 ~
1.2 ] )
- E[R - (XO-H)] [-Z(XO-H)_|

X =H

Yo='-‘,R2 +K=-R+K .

Transform the origin of the function (0, 0) to another new one (0, -K).

(o]
1]

and

Thus,

! =
Y '*Y -K=-R

22
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Assume an error w has been . associated with Xo in such a way that

X = wX
w o

and

w = zero or a positive value.

The corresponding value due to this error w is

—JRZ- Hz(wz—f. 1) .

<
1]

The semnsitivity expression is

o

W H 2 2
s Jl-{=) (w -1 .
o
This sensitivity expression is a function of the error w, the
parameter of the circle R, and the abcissa of the origin of the circle.
Thus, it is a special expression and the sensitivity analysis varies
from one model to another. However, there is a general expression for

the family of circle models when R = H and is presented as
v .
W 2
'?""" =/1'—(W -].) .
] |

Numerical example: Let

&

R=H

The sensitivity expression for the lower semi-circle model is

YI § N
I-{;WT'=_'9O=/I-(W-1)2 .
(o]

By squaring both sides, one can obtain




we - 2w+ 0.81 = 0.
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The upper limit of the decision range wjand the lower limit of

the decision range w, are

1

2 + J4.00 - 4x.81

1.4357

u 2
and
w. = 2 - ¢4.0g - 4x.81 = .5643

Thus, the decision range is

.5643 gw L 1.4357

The decision range, due to the 10 per cent increase in the

total variable items for the family circle models when R = H,

results in the 43 per cent above and under the optimum value Xo'

Ellipse Model

“ The circle is a special form of an
to those obtained from the circle model
model. The only difference is that the

instead of the radius if the major axis

Parabola Model

ellipse. Thus, results similar
can be obtained for the ellipse
semi-major axis is replaced

is parallel to the x-axis.

The* general mathematical expression for the parabola model is

1

Y= & -

4P

where

m? + K



4p = the length of the latus rectum
and | |
(H, K) = the coordinates of the vertix of
the parabola.
Follow the same procedures as in the illustrated example pp.
14 —;21? Thus
dy _ . 2
X - P X-H+0
-1
0= > (X0 H)
X =H
o
and
Y =K .
o

Assume that an error w has

estimating the optimum value Xo

and

W = Zero or

been incurred in calculating or

in such a manner that

wX

a positive value

The corresponding value Yw due to this errorw is

Y =
W

2
H 2
2 -1
4P (w )"+ K

and the sensitivity expression for the .total functions

Y
W

%ol

The transformation here is not valid due to having yielded Y0

H2

4P K

i - 12+ 1.00

= OB

25



Therefore, the sensitivity expression is not a general one and varies
frdm.one function to another.
Numerical example: The following two examples show that the
sensitivity expression varies from one parabola model to another
due to the different parameters.
Example 1.
Given for the parabola model;

H= 100 X = 100 and P = 5.00.

"Thus,
X = 100
o
Y = 100
il
and
w2 100 x 100

WK - 4 x5 x 100 - °+00

26

For a 10 per cent standard allowance increase in total variable

elements above its optimum, the sensitivity expression is

Y )
K |= 1,10 = 5(w ~ 1)
(o] .

Solving this quadratic function the lower and upper limits are

obtained as

0

2 -4 - 3,52 _

1 5 = ,65375

w2 - 2w + .88

w

and

2+ ¥4 - 3,52

w = = 1.34625,
u : 2
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Therefore, the decision range is

0.65375X X \<1.34625X0

65.375 X L 134.625 .

W

Example 2,

Given the parameters of the parabola model as

H = 100
K = 100
P=10
Thus,
X = 100
o
Y = 100
o .
and
2
H _ 100 x 100

4K - 4 x 10 x 100 - 220 -

For a 10 per cent standard allowance increase in the
total variable elements above its optimum, the sensitivity
expression is

Y
lY

Y. = 1.10 = 2,5(w - 1)2 .
ol

Solving this quadratic functiony,the lower and upper limits

of the decision range are obtained as

w2 - 2w+ .56 = O
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9 -4 - 2.2

w, = 5 = ,3375
and
w o= 2ENE - 2.24 ) ceos,
u 2
Therefore the decision range is
0.3375x X, K 1.6625%
33'75\<Xw K166.25 .
HZ
These two examples show that as the ratio AT is smaller,

" the decision range is widéer and vice versa.

Gaussian model

The general mathematical expression of the Gaussian curve is

v=£%,

Follow the same procedures as in the illustrated example pp.1l4 - 21. Thus

2

dy -X
ax - E (-2X)
-XQZ
0= - E
2X
OA
0=X
o
and
Yy =g °=1.00 .
o
Assumed that an error w has been associated with Xo in such a way
that



and
w = zero or a positive value,

The corresponding value Yw due to this error is

w2
Y =E
w
and the sensitivity expression is
Y -2
W -w

e L

Yol
This sensitivity expression is a general one. For setting a 10

per cent standard allowance, the decision range can be obtained as

...w?'
1,10 = E
w2 = ,1005
wy o= -0.317
and
w = 0,317
u

Thus, the decision range is

-0.317 \<w \<.3l7

and

-0.317xo\< xw\<.;317xo

Catenary Model

The general expression of the catéhary curve is

v = A (EX/A‘_ E—X/A)

29



where

A = parameter of the catenary model or
specifically the y-intercept.

Follow the same procedures given in the illustrated example pp.

-14 - 21. Thus

4y _ A [Ex/A NE RS 229 Q)]
4 ,

dx A A
_1 [EX/A ) E—X/A
2 , ]
and ' : —
0=l [EXO/A _ g Xo/A
2
or
eXo/A _ pXo/A ]
This result implies that
X =0.00 .
o

By substitution, one can obtain

Assume an error W occurs with Xo in such a way that

X =wX , w—:>0
w [o] —

The resulting corresponding value Yw is

v = A I:EW/A + E-w/A]
w 2

and the sensitivity expression is



Y RE
w_ 11 w/A -w/A
5 2EE tE ]
o _ .
The decision range for an hllowance 10 per cent increase in'Yw over

Y is
° .

Numerical example: TIf A= 1.00 is given for the catenary model,

the following results are obtained by substitution:

X =0
(o]
Y =A = 1.00
[o]
and
Yw ' 1 w -W
=1.lO=-2-(E +E ).

||
(o]

Z, Thus,

To solve this equation, put Ew =
- 1
2,20 = 7 + 7
Y _
Z - 2,20Z + 1.00

]
=]

The roots of this quadratic equatiomn are

7 - 2:20 -Y4.84 - 4.00 _ 6418

1 2.00

and

2,20 +¥4.84 - 4.00

T = 1.4582 .

N
I




The lower and upper limits of the decision range are

and
w_ = 0,376 .
u )

Therefore, the decision range is
-0.376_w <, 376,

Modéls as a Summation of Two Different Standard CurVes

32

A condition for providing the trade-off relationship in each of the

' following models is to have one curve as an increasing function while
the 6thef curve 1s a decreasing function, Throughout this discussion

the first curve is referred to as an increasing. fungtion while the

setond: curvé isireferred .to as a decreasing one.

Straight Line Versus Ellipse Model

The equation of an increasing straight line function is

Y, = MK,

1
The equation of a lower semi-half of the ellipse is

Y, - a2 (x-H)2 +K .
Therefore, the equation of the sum of the two curves is
Y=y ¥y

where

M = the slope of the line and a positive -amount

=M - A% - (x-u)2_+ K
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A = the semi-major axis of the”ellipse
and
(H, K) = the coordinates of the center of the
ellipse. ~
Following the same procedures, it is found that
| R 1
dy - 11,2 2 |72
dX~M-2~A.-(X-H)] E(X—H)]
and _ | 1
11,2 2172
O-M-ZA-(XO-H)} [Z(XO-HE\,
Thus, » 2
2 (Xo - H)
M==3 )
A° - (X_-H)
2 2
@ - B M+ =
and
N S
J1+ w2
The corresponding optimum value Yo is
2 MA 2
Y =M ————2_+H-/A—(--——~——+H-H
© J1+M . 1+ u2
+K'
o /2 2 2,2
MA . AT(lL+M) - MA

= M H - + K
yrem® o | /1 + M2



2
=L—E4 - 1|+ Mi+K.
)/1+M2

Transforming the origin of the function (0, 0) to another new

one (0, -K), the result is

Yo'=Yo-K=-—-A-—E42-1 MH.

/1 + 2

Assume an error w has been incurred in calculating or estimating X
. o

in such a way that

and

W = Zero or a positive value.

Thus, the corresponding value Yw' which results from inducing this

error w is

v U= =R 4ol a2 0 MAY L n o HP

W '],1+M2 1+ M2

and the sensitivity expression is

MAw

MA 2 2
Mw s+ H |- A7 - ( + wH - H
Y - [;l + M2 ' ] / 1+ M2 .
.___.._A_._. M2 - + MH
f1+ 12

\
W
1
AT
This expression is not a general one because it is a function of

" the error w and the parameters of the function. Thus, one can expect
the sensitivity analysis to vary from ope model to another according

to the values of-the.parameters.
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‘Stréight Line Vefsus Circle Model |

The circle is a special case of the ellipse. Thus, for the straight
line versus the circle model the same results can simply be obtained by
replacing the radius R instead of the semi~major axis if the major axis

of the ellipse isvparallellto the x-axis,

Straight Line Versus Parabola Model
The straight line'as an increasing function can be represented mathe=-
matically as
Y1 = MS-

‘and the half of the parabola as a decreasing function as
¥y

=« AJX +C.
Thus, the sum of the'two functions 1is

‘Y.= Y].-i-Y2 =‘MX-A\}X+C
“where

M = .the slope of the straight line and a
‘positive value

A=2/pP ; the parameter of the dééreasing
parabola '

4P = the latus rectum of the parabola

C = the ordinate of the parabola vertix of the

y-axis and a positive amount,

Following the same procedures as before ~ the following steps

can be obtained

Q-Y'- = M A
& 2J%
- _A
R Lo
2

= A
MX, =73 )



and
| 2
Y =M-A-—-2-- A
4M

2
2A s+
M.

As the function involves a constant term, the transformation is
used to eliminate this constant term. Thus, after transforming the
origin (0, 0) of the function to another origin (0, -C), it is

found that

Assume an error w has been associated with Xo in such a way

that

and

w' = w = zero or a positive value,

The transformed corresponding value Yw' is

: 'A2
| B, ——— - M
‘ YW =T (w 2¢W,) ’

and, thus, the sensitivity expression is

Y ! :
w| =.w - 2‘W.

| o]
(o]

This mentioned function is a minimization and.the transformed

" optimum value Yo' is negative thus for a setting 10 per cent increase

36
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in Yw' above its optimum one can obtain (Illustrated example pp. 14 - 21)

0.9 =w - 2y%.

This expression is a general one since it is a function of tﬁgwérror W.
To obtain the roots of this expression let yw = Z thus by substitution

one can obtain

zz-zz+.90=0.

The roots of this quadratic function are

\ g =21 V% - 3.6 _ 9 31622
u 2
and
2 -4 -3.6
z, = 212 = 0.68377 .

The corresponding roots w. and v, are the lower and upper limits of the

1
error for predetermined 10 per cent increase in Yw' above its optimum

as

(1.31622)2

€

]

N
L]

1.73245

and

0.46756 .

€
[

N
il

(0.68377)°

Therefore the decision range is

0.46756 L w L1.73245
or

0.46756X05;:Xw.§:1,7324§Xo‘
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A2 A2
0.46756 —<x 17325 2

wr v 4M

The curve is flatter in the upper range than in the lower range within
the decision range. A complete evaluation and ranges are obtained by
the aid of digital computer in Appendix A.

Numerical example: For the straight line versus parabola model

let
M = f0;50
A= 2.0
c = 10.0 .

By substitution, the following results can be obtained

A 2 x 2
X'=X = = = 4,0
2 L]
o o 4M2 4 x (1/2)
A2
Yo = - M + C = -2410= 8.0
and
2
A
T R = -2.0 .
Yo ‘ 4M 2.0
The decision range is
»0.46756(X0) éxw él;.,73245(x0)

i
4

0.46756(4.0) £x £ 6.92980.
R w

At this stage the question‘can be ‘asked, what is the net increase

in the total function if the constant term is taken into consideration?
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The answervcan be obtained by manipulating the ratios as

w :
¥T= .90
o
Y ! = .90 X ("2.0) = "1.80
W : ,
Y =Y '+c¢ = 8,20
w v
and
Y .
w _ 8.20 _
¥~ 8.00 = 1.025,

This means that the 10 per cent increase in Yw? over Yoa
will yield only a‘2.5'pér cent increase in the total_function
above its optimum. This slight increase in the total function
provides a wide range for decision making process that is a
range of about 53 per cent in the lower side and 73 per cent
in the upper side of»the optiﬁum value Xo.

The evaluation of this kind of models is given in the Appen-

dix A,

Straight Line Versus Rectangular Hyperbola Model

The sum of the two curves, a straight line as an increasing function
and a rectangular hyperbola as a decreasing function, 1is

B
Y-—MX-I'E

where

=
It

the slope of the straight line and a positive amount

=
]

the parameter of the rectangular hyperbola and a
positive amount. '
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Following the same procedures as in the illustrated example, pp,l4 -

21, the following steps can be obtained

dy B
— M - m—
dx ,x2‘
0_=M-—B—2-
X
[o]
ry
xo —‘JM
and
. |2 2 M
= -— —_ = R
Yo JM v BB ZJMB

The assumption of an error w is provided to describe the semsitivity
analysis of the curve., Assuming an error w has been occurred in such

a way that
and
w = zero or a positive value

the corresponding value Yw due to this error w is

and the sensitivity expression is

Yw _ w2 + 1 .
IYOI | 2w '

This is a minimization type of expressioén curve with Yo positive,
Thus

y . 2
Y- 1.10 - =¥ +1
_ 2w
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- The solution of: this quadratic function gives the upber and lower

limits of the decision range as

0

= 2.2 + ‘4084 - 4.00

u 2

2.2 -{4.84 - 4.00

Mt

w2 -2.2w+ 1

and

The decision’range_wiil be

0.641743 <w

< <1.-558256

N

and

0. 641743X°< Xw < 1.558256){

B
0.641743\/ < X < 1.558256[;

The curve 'is flatter in the upper range than in the lower rangé
‘within the decision range.
| Numerical example: For the above model assume M = 0.50, and
B = 8.00.

By substitution, the results obtained are

fr o [s L
x_o_JM ’ JTTE 4.0

2y1/2x8

8.0

o]

]
D
(-]
=
"

0.641743(4.0) <X <1.558256(4.0)
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2.566972 wa<6. 233024,

The evaluation of this kind of models is evaluated on the digital

computer (Appendik A).

.Parabola Versus Straight Line Model

The sum of an increasing parabola curve and a decreasing straight line

is
2
=AX +C-M
where
1 v
A= P the parameter of the parabola
4P = the 1ength of the latus rectum of the parabola

C = the ordinate intercept of the stralght 1ine
and a pos1t1ve value

M = the slope of the straight line and a positive
value,

Differentiate with respect to X, equafe the result to zero, solve

for the optimum value X and substitute with X, in Y function to obtain

Y as
o
dy _ '
% 28X + 0 = M
0=2AX -M
o
=M
T :
2 \
M M-
Y =A—s+C - M=
o 4A2‘ 2A
5 !
M
= 4A + C.

The sensitivity expression can be obtained by assuming an error

w has been associated with X provided that
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and

W = zero or a positive value,

The corresponding value Yw due to this error w is

2
=M |2

Tranform the origin of the function (0, 0) to another new

origin (0, »C). Thus the transformed value Yw' is

2 ]
M 2
¢ = 2 - _
Yw 7y w 2w | .

The sensitivity expression is
Y ]

%]

=W - 2w ;

The type of this expression curve is minimization and Yo’ is

negative. Thus

w2 - 2w+ 0.90 =0 .

The solution of this quadratic function gives the upper and lower

- limits of the decision range as

w = 2 +"2*\ = 3:60  _ ;. 316228

and
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w, = 2= '24 = 3:60 _ 4.683774.

1

The decision range will be
0.683774 <w <1.316228

and

0.683774X < X, <1 316228%

M M
0.683774 A \\XW,S;1.316228 T

The flatness of the curve is quite equal in the upper and lower
range of the decision range. The 32 per cent upper the optimum Xo
and 32 per cent lower the optimum Xo is the result of an allowance
10 per cent increase in the total variable elements. If the constant
term is concerned in the functibn this 10 pef cent is going to be less
and as the constant term is high the reduction in this 10 per cent
will be more;

Numerical example: For the above model let

A = 0.10
M= 0.50
C = 6.00 .

By substitution, the following results can be obtained

M 10
X, = 34 T 2x 2 275
2
=M
Yo = " 4A +C
10 ~
= - T h + 6,00 = 5,375
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= =,625,

The decision range is

0.683774(2.5)<::Xw<::1.316228(2.5)

1.709435<::xw‘:;3.292570 .
The evaluation of this kind of models is evaluated on the digital

computer (Appendix A).

Parabola Versus Parabola Model

The sum of an increasing parabola and a decreasing parabola is
'Y=Ax2-B/x+c
where

A= z%— » the parameter of the increasing parabola

1
4P1 = the latus rectum of the increasing parabola
B = ZQ/PZ, the parameter of the decreasing parabola

4P2 the latus rectum of the decreasing parabola
C = the ordinate of the decreasing parabola vertix
and a positive value.

The optimum point (Xo, Yo)_of this funct?on can be obtained by
differentiating thevy-function with respect to X, equating the result
to zero, solving the past equation to obtain Xo,'and again substituting
with the value Xo in the Y-function to obtain Yo as follows

ay _ __B
X = UK - ==

2
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2/3

>
o

n
l lw'
)

4A

1 3fadt 3l
Yo =% Yo% -G tc-
° 4A :

This funcﬁion contains‘a constant term C. Thus, to obtain a
génersl sensitivity expression, transform the origin (0, 0) of the
original function to another new origin (0, -C). -

| The obtimum of the transformed function (Xo', Yo') is (xo’Yo - C).
At this point assume an error w has been associated with Xo or XO' in

such a way that

and
w = zero pr.é'positive value.

The corresponding Yw' is calculated by substituting on instead

of X%in the y-function. Thus

o, 1/3 | ’
g | _B_L_’_T _‘4_\7_3 ] (w)i/z
w {ﬁA 4 *

]

and ~ 1/3
o 6A‘ 4

The sensitivity expression of this kind of models is

y ! 2

o _ v

Yy ! 3
o]

/2

(B~

w !

W

The type of this curve for the sensitivity expression is a
minimization with negative optimum value Yo’. The sensitivity expression

will be



YW' 2 4 1/2
I?(;TI— =0.90 = 3 "3 (w)

or

/2

+ 2,70 0.

W - 4wt

The two positive roots of this equation around its optimum are
obtained from Appendix A. These two positive roots are the lower

and the upper limits of the decision range as

Wy = 0.5733071 and v, = 1,4612770
or

Xl = the lower range = 0.5733071(X0)
and

X, = the upper range = 1.4612770(Xo).

The decision range corresponding to the predetermined 10 per cent

increase in transformed value Yw' above its optimum Yo' is ~

0. 5733071(xo)<xw<1.4612770(x0)

2/3 2/3

0.5733071 ( 72 ) <xw<1.4612770( =) -

The curve is slightly flatter in the upper range than in the
lower range.

If the model is a summation of an increasing parabola of a type

/2

2
Y, = B(X)1 and a decreasing parabola of a type Y, = AX" the dis-

cussion will lead to a sensitivity expression
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Y ! 2 L
W oW 4 1/2

- 1
%
This type of curve is a maximization with a negative optimum value'Yo'.

Therefore, for 10 per cent decrease in the Y value under its optimum,

- .the sensitivity expressioﬁ will be .
1/2

2 ’4
0.90 = -’—§+ -3- (w)
or
W awy? 42,70 =0 .

The positive two roots of this equation around its optimum are -
the lowéf and;upper limits of the decision,range and are obtained
from Appendix B as |
W) = 0.5734145 and w, = 1.4612045

‘which is the.same result obtained in the minimization (neglecting these
slight differences) and this is true due to the fact that the maximizing
of the negativerf the function is the minimizing of the.same fungtion.

Numerical exAmple: For the above ﬁodel iet_A ; .10, B= 2,0, and

€ = 10.0, |

By substitution, the following results are calculated as

, 1/3 1/3
B 2x 2x 10x 10
"3 = 16
°  16a%
T = 2,924
B4 1/3 ,
Y, =35 - *¢
16 x 10173 % (-3/4) + 10.0



-2,4825 + 10,0 = 7,5175

Y ''=-2,4825
o

and the decision range 1is

1/3 1/3
0.57330710¢( Z% ) <::wa::1.461277( Z% )

0.57330710(2.924)<::}<W<::1.461277o(2,924)°

‘Parabola Versus Rectangular Hyperbola Model

The sum of an increasing parabola and a decreasing rectangular

hyperbola is

where

L the parameter of the parabola

A=7p
4P = the latus rectum of the parabola
B = the'parameter of the rectangular hyperbola,

Differentiate with respect to X, equate the result to zero, solve
for the optimum value Xd’ and again substitute in Y-function with Xo

to obtain Yo as

dy B:
— = QAKX - e
dx 2
0= 2ax - -2
‘ o} X 2
L ‘0
= B
Xo B 2A

]
-

~~

>

=]
o -

N
<‘-£i

Bl

+
L“:i

(&
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Assume an error w has been associated with Xo in such a way that

X = wX
W o

and
W = zero. or a positive value,

The corresponding value Yw due to this error w is

1 2 1/3
¥ = (ABZ)_§ Y/S + (2&
(4)
and the sensitivity expression is
Y
_w_ _.6295 w2 + 1.2599
‘Yol 1.8894 1.8894%
1 2 2
--§W +-§V—V'

The type of this sensitivity expression is a minimization with
a positive optimum value Y, . Thus the sensitivity expression for
a 10 per cent increase in the Y value above its optimum Y0 will yield

to

or

W - 3.3w 4 2.0=0 .

The two positive roots of this kind of model around its optimum
are obtained from Appendix A. These two positive roots are the lower

and upper limits of the decision range as

W, o= 0.7186767 and w, o= 1.3473911

or
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or

X, = 0,7186767X and X 1.3473911X
1 o} u o

or

B 1/3 B 1/3
X 0= 0.7186767 ( A ) and X, 1.3473991 ( ETN )

and the decision range is

1/3 ‘ 1/3

0.7186767 ( 2 ) &L X L1.3473911 (L) .

The model is flatter in the upper range than in the lower range
within the decision range. Complete evaluation of this kind of models
is given in Appendix A.

Numerical example: For the above model let A = 1 and B = 16,00.

8

By substitution the following results are calculated as

o 2A 2 '
2 1/3
Yo = 1.8894 (AB") = 6.000

1/3
1.8894 ( i@%ﬁ )

and the decision range is

0.7186767X0g X g 1.3473911X0

w

2.8747068<XW\<\5.3895644 .

Cubical Parabola Versus Straight Line Model

The equation of the sum of a cubical parabola as an increasing func-

tion and a straight line as a decreasing function is
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; Y=AX" - MX+C

where
| A =vthe parameter of the cubical pafabola
‘M = the slope of fhe straight line and a
positive value
C = the intercept of the slope of straight.line on the

y-axis and a positive value

Follow the same procedures as in the illustrated example pp. 14 - 21,

dy _ 2
dx"_3Ax - M
0=3AX2-M
O
o - 3A
1/2 1/2
3 2
vo=[af 25 | 5B +c
(34)
31/2

& (—]:;--1)+c.

‘Transform the origin of the function (0,0) to(0,-C) thus

3 1/2
v = ) (- 2/3)
o “3A ’

Assume an error w has been associated with Xo in such a way that

X = wX
w o

and



W = zero or a positive value.
The corresponding transformed value Yw” due to this error w is
3 1/2 3
. o M A
Yw ( 3A ) ( 3 )

and the sensitivity expression is

where

‘Y 'I = the absolute optimum transformed
o . -
value in order to be consistent
with the original directions of the
axes.

The type of this sensitivity expression is a minimization with a
negative optimum value. Thus
Y ! 3
W

W
-3:?1—-.90 = - EW + 5

and

W3 - 3W+ 1.80 = 0.

The two positive roots of this function around its optimum are
the lower and the upper ranges of the decision range and are given in

Appendix A as

Wy = 0.7293004 and wu = 1.2479858

or

X

= 0.7293004X and w = 1.2479858X
1 fo} u o}

53



and the range is

1/

" 2 v 12
0.7293004 ( 57 < X, él.2479858 ¢33

This kind of model is flatter in the lower range than in the
upper range within the decision range. The complete evaluation of

this kind of models is given in Appendix A.

Wl

Numerical example: TFor the above model let A = -]_—(]j, M= and
¢ = 10.
By sﬁbstitution, the following results can be obtained as

1/2 /2

M 16 _ 4
Xo_(ﬁ) —(3x3) T3
3 1/2
M 2
= (= -2y +
v = () (-3)+c
1/2
_ 2 10
-3 ( 3x3x3x3 ) + 10.0
2 3.163
= -3 X 5 + 10.0
= - 0,2343 4+ 10,000 = 9,7667
'=v -c = -0.2343
o o

and the decision range is

0. 7293004}{0 é X

- Ll 2479858Xo

0.9724005 éxw ‘él.‘6639811 .
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Cubical Parabola Versus Parabola Model

The equation of the sum of a cubical parabola as an increasing

function, and a parabola as a decreasing function is

Y=AX3+C-B\/;

where
A = the parameter of the cubical parabola
C = the ordinate of the parabola vertix
B = 2yP, the parameter of the parabola
4P = the latus rectum of the parabola.

Follow the same procedures as in the illustrated example pp. L&-21.

Thus

dy 2 B
— = 3AX" - ——
dx 2‘/‘;
2
0= amx * . L
24X
(o]
2/5
- ¢ B
Xo = ( 6A )
1/5 1/5
6 5
= L) ve- (22)
° 6 XA
6 \ 1/5
- (L) (.1_ ) + e
6A 6

Transform the origin (0,0) of the original function to another

new origin (0, -C).
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_ Thus,
; 64y 1/5
5 [B
| B - = e = {2
Y Y C 3 (6A) .
The two positive roots of this function around its optimum are
the lower and the upper limits of the decision range for the assumption

of 10 per cent increase in the transformed value Yw' above its optimum

Yo'. These two roots are

w, = 0.6252769 and w = 1.3537807
or
X_ = 0.6252769X  and X, = 1.3537807X
and the decision range is
0,6252769X0<Xw<1.3537807X0

ox

2
> |
A

) 2/5

2/5
; . <
0.6252769 ( ) g X, 1-3537807 (

6% 1/5 3
S - w_
0= (&) (%)

and the sensitivity expression is

where

‘Y " = the absolute value of Y ' to be consistent
with the original directions of the axes.

The type of this sensitivity expression is a minimization and YO'

is a negative value, Thus
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or

w3 - 6w + 4.50 = 0,

The curve is flatter in the lower range than in the upper range.
The evaluation of this kind of modelsis evaluated on the digital computer
(Appendix A).

Numerical example: Let for the above model A = ,083, B = 2.83,

and C = 10.00.

By substitution, the following results can be obtained

: 1/5
2 1/5 2
B (2.83)
X = =
0 {r6x6A2:] : {j36x(.083) ;]
=2/3 "
6 1/5
2.83 5 .
: — 2| + 10.0
¥, [6x .083 ] 0
Yy 's= Y ~C =-3 41
9] [o] 3

and the decision range is

2 2
0.6252769 ( § )éxw 41.3537807 (3)
o.,usasos@;w 40.9025204 .

Cubical Parabola Versus Rectangular Hyﬁerbola Model

The sum of an increasing cubical parabola and a decreasing rectangu-

lar hyperbola is
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where

L.
I

the parameter of the cubical parabola

==}
i

the parameter of the rectangular hyperbola.

Follow the same procedures as pp. 14-21 in the illustrated example.

Thus
dy 2 B
== = 3AY" - =
dx Xz
0 = 3AX02 - 25
X
(o]
. - (B ) 1/4
o 3A
1/4 1/4
A%p3 T
L, =\_3 T A\TE
° N3

1/4 o -
(AB3) z;/” 1+ 4 / ;
27

g\ /4
1.741 CAB )

Assume an error has been associated with Xo in such a way that

X = wX
W o

and

w = zerc or 3 positive value.

Therefore, the corresponding value Yw due to this error w is



1/4
Y = (AB3) 0.425w° + 22210

And the sensitivity expression is

Y 425w 1.316

Y = 1741 Y 1741w

_ 1w 3
=%t

The type of this sensitivity expression is a minimization with

a positive optimum value Yo. Thus,

3
1,10 =

ok
+
I

and

w4 - 4,4w + 3,0

1
o

L]

The two positive roots of this equation around its optimum are
the lower and upper ranges of the decision range for 10 per cent in-
crease in the value Yw above its optimum Yo' The roots are obtained

by the aid of the digital computer (Appendix A) as

It

w, = 0,7561323 and v, 1.2664232

1

or

X, = 0,7561323X and X° 1.2664232X
1 I} u o

or

59
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g L4 ' : g L4
X, = 0.7561323 ( 35 and X = 1.2664232 ( 3, ) ]
And the decision range is
3 1/4 B 1/4
0.7561323 ( 33 ) < Xw<1.2664232 (33) .

The curve is slightly flatter in the upper range than in the lower
range within the decision range. VA complete evaluation for the sensitivity
expression is evaluated by the aid of a digital computer for w = ,05 to
w = 3.95 with an increment of w = 0.5 (Appendix A).

Numerical example: For the above model let A = —— and B = 4,0,

12

By substitution, these following results can be obtained as

< - 13__-)1/4 R 4x12)l/l;f o
o= (33 =(35) =2
1/4
4xb4xh
Y = 1741 ( —50)
2 = 1,521

1.315
and the decision range will be

0.7561323X éxw 41.2664232)(0

L 2.5328464

WD

1.5122646 éx

Straight Line Versus Reciprocal of the Quadratic Function
‘The eguation of the sum of an increasing straight line and a de-

creasing reciprocal of a quadratic function is
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Im

where

M = the slope of the straight line and a positive
value
B = the parameter of the reciprical of the

quadratic function.

Follow the same procedures as in the illustrated example pp. 14-21,

Thus

dy 2B
— =M - ==
dX X3
0=M__g.g.
X
[0}

M

1/3
(2BM2> (1 + %—)

o2 1/3
1.50 (zBM ) :

3 1/3 2 1/3
Yz(MZB) +(B3L) |

]

Al

Assume an error w has been associated with XO in such a way that
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and

W = zero or a positive value .

The corresponding value Yw due to this error is

1/3
Y = (éBM2> (w +-—l—)
w 2W2

and the sensitivity expression is

wlro

W+""‘];'27‘ o
3w

Y
—E=
| ol
0 -
The type of this sensitivity expression is a minimization with

a positive optimum value Yos Thus, according to the illustrated example,

the sensitivity expression will be

¥ 2 1
l?—o‘!r 1.10 =§w+-3-v?

or

3 2
2w - 3.3w" + 1.0=0 .

The two positive roots of this equation around its optimum are
the lower and the upper ranges of the decision ramge for 10 per cent
increase in the value Y, above its optimhm Yo. These two roots are
obtained by the aid of the digital computer (Apbendix A). The roots

are



W, = 0.742112 and W, = 1.3919315

or
Xl = 0.7421112X and X = 1.3919315X
o u o
or
» op 1/3 2p (13
X1 = 0,7421112 ( T ) and Xu = 1,3919315 ( M ) .
The decision range is
1/3 1/3

2B 28
0.7421112 (5= ) <§; xw\§;1.3919315 (%) .

The curve of this type of model is flatter in the upper range
than in the lower range within the decision range. A complete evalua-
tion for this kind of modelsis given in Appendix A,

Numerical example: For the above model let A = 1.0 and B = 4,00,

- By substitution, the following results can be obtalned as

1/3 1/3
2B . 2x4.0 _
X = (.ﬁ_ ) ) = (_._I__..) = 2.0

1.50(2)(4.07(1.0){]..0)1/3 = 3.0

1]

and the decision range will be

é
0. 7421112)(0 %Xw él. 39 19315X°

4842224 2.7838630 .
1.48 éxwg 7

63
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Models as a Summation of Three Different Standard. Curves

The condition for providing the optimality (trade off relation-

ship) in each of these models can be attained by having one increasing

curve while the others are decreasing ones, or by having one decreasing
curve while the others are increasing ones. The discussion here is limited
to the three unknown curves occuring frequently in Operations Research
field. These curves are straight line:, rectangular hyperbola and parabola,

The same analogy can be applied to any kind of curve.

Straight Line and Parabola Versus Rectangular Hyperbola

The straight line and parabola are increasing functions, and the
rectangular hyperbola is a decreasing function. The sum of these three

curves 1is

Y = MX + AXC + 2

where

M = the slope of the straight line and a positive
value

A = the parameter of the parabola

B = the parameter of the rectangular hyperbola.

Follow the same procedures given in the illustrated example pp. 15-19,

Thus
dy B
EL = M+ 28X - =
2
dX X
0= M+ 28X - —2=
o 2
X
(o]
3 2 B
X Y% ~m=0 -



This is the cubid function and can be solved as follows.

Let
A1 = coefficlent of Xo3 = 1,00
_ . 2 M
A2 = coefficient of Xo = 3%
A_ = coefficient of X = - B
3 o o 24 °

The above function can be rewritten as

o
»
+
|
»
+
>
]

0“ L]

vSubstitute with Zo in the equation (1), and obtain
2

z 3+ A"A“Z' Zz + {a +'m+‘£‘A3 =0
o 13 o o7 3 © 27 9 .
Let _ )
| Ay
’G=(A1‘T)
and
AA
3 %12, 2 .3
R“(Az “3“'+'E7A2)'
v |
Thus,
23 _cz-r=0.
o

There are three cases for solving the cubic functions as follows

(1)
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1) When 27R% >4G3:

In this case, thé solution contains one real root and two
complex roots., As the interest here is for the real root‘,v there-
fore the reszl root wiAll be

a;, If G and R are both positive, thus find 4 in such a way

cosh ¢ = |3 3/20 R}

- \G /] 2 °

Then, the real root is given by the equation
1/2 .

Z = 2 G cosh ("ﬁ)

o 3
»Y?

that

and consequently by substitution

/2 A,
G cosh (_é/:i) -3

(o]

L}

B3

‘ » Az
- »Al cosh (é/3) - -—5—-

. 2
= —-2;-— —-M—-é- - 1.0 cosh (é/S) - fé% .
3~ V124

b, If G is a negative and R is a positive, find 15_ in such

a way that

| L 3/2
i (2)7 (1)

Then, the real root is given by the equation

-1/2
2 , 2
7 == (-G Sinh (—-)
°. ,/3 ( ) 3

and -
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2) When 27R2 < 4G3

In this case the cubic equation has three real roots as fol-

lows. Find ¢ in such a way that
cos & = 3 )3/2' R
-_— G 2
Then, the three roots are
2 1/2 [
ZlO = G cos - -3-
( )1/2
3
Z = 2 Gl/2 cos ’”/'"
20 1/2 ©
bl
and
[ S 7 2 "
Z30 172 cos |
Gl
and

and
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. o2 A_z_ A1/2 m+ é M
300y \ 3 %) o8 3 ) T oA

€Y

2 3
3) When 27R” = 4G7, the cubic equation has three real roots, two

or them are equal as follows

Z = 27 --—:.3.}'3'.

10 = %20 = 53 (equal roots)

[}

R (single root) .

Z30 = 7p

The corresponding roots are
10 720 26 6A

30 26 6A

Let us assume that the equation yields one real root. Thus

2. 1/2 é
zZ__ (M - =) -4
XO = 172 ( 5 - 1.00) cosh<3) YO

(3) 12A

Substitute with Xo in Y function to obtain Y0

Assume an error w has been associated with.X0 in such a way that

X = wX
W o

and
w = zero or a positive value.

Thus, the corresponding value Y is

68
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and the sensitivity expression is

Y MX AX 2
%] " (g'%i.) " +(Ff“i) v (ﬁ;iz;?%

= Aw+ B w2 + C l

[o] ] ow

where

! Y ! = the absolute value of the optimum value
Yo to be consistent with the original
directionsof the axes.

The interpretation of this sensitivity expression is equal to
another transformed curve as the sum of the straight line with a
positive slope = AO and the parabola with a parameter Bo, and the
rectangular hyperbola with a parameter Co. The values of Aé, Bo’

and C are
o

A = the optimum part of the straight line MX0
over the absolute optimum of the total
variable parts of the function HYO'HO

“B = the optimum part of the parabola AXO: over

the absclute optimum of the total variable

parts of the function Y@'ﬂ o
Co = the optimum part of the rectangular hyperbola ~§
o

over the ébolute optimum of the total variable

parts of the function ﬂYO‘g .

The expression is general or in other words the expression is a
function of the error w (the parameterszuuixo are constants). Sensitivity
expressions can be easily derived for each case around their optimum real

roots. From this discussion one can notice that there are multiple real
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optimum solutions.,

Straight Line Versus Parabola and Rectangular Hyperbola Model

- In this model the straight line is an increasing, and the parabola
and the rectangular hyperbola are decreasing functions. The sum of
these three curves is

1/2 B

Y=MX-A(X) +C+ %

where

M = the slope of the straight line and a positive
value '

>
i

2 JP the parameter of the decreasing parabola

4P = the length of the latus rectum of the parabola

(9]
il

the ordinate of the vertix on the parabola on the
y-axis :

B = the parameter of the rectangular hyperbola.

Follow the same procedures as in the illustrated example pp. 14-21.

Thus,
91=M_A(X)‘1’2__§
ax =~ M- 3 2
-1/2
A B
0=M——(X.) -2
2 \%o X
3/2
sz-é(*) 2B =0
o 2t ;
24 2 A% 3
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2 4 A>3

2
M Xo'.- A

X - 2MBX 2"i' B = 0.
o o

As the coefficients of the fourth power equation are in letters
instead of figures, the soldtion is not available, For situations
which have this kind of equation, the sensitivity expression for the

variable parts is as follows

‘Where Yo', Ao,ﬁo, and Co are defined in the previous model.

Parabola Versus Straight Line and Rectangular Hyperbola

This model is a summation of a parabola as an increasing function -
and a straight line and a rectangular hyperbola as decreasing functions,

Thus, the summation function is

Y=-'AX2-MX+C+§-

where

A = the parameter of an increasing parabola
M = the slope of the straight line and a positive value

C = the intercept of the straight line of the y-axis and
a positive value

B = the parameter of the rectangular hyperbola.

Follow the same procedures given in the illustrated example pp. 14—
21, Thus the sensitivity expression is

y !
Y_ET
%ol

€ |

= A w2 - Bw+C
o] s} o]
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where Yo”, As B, and c, are defined in the previous model.

Sunmary of the Sensitivity Analysis of the Mathematical Models

The fbllowing four tibles summarize the optima, sensitivity expressions,

and decision ranges of the discussed mathematical models in Chapter 3,
Table 1 deals with a variety of one standard curve mo&els, |

Table 2 and Table 3 summarize a variety of a summation of two different
standard curve models., However, Table 2 deals with the minimization
functions and Table 3 treats the maximization functibns. These two
different standard curves are evaluated in detail by the aid of a digital
computer in Appendices A and B, It is worth to mention thét ranges and
thé optima 6f the X values of the models No. 3, 5, 6, 8, and 9 in Table
3 (minimization) are the same as the range and the optima.of the X values
of the models No. 1, 2, 3, 4, and 5 in Tabie IV (maximization). The
optima of the transformed Y values (optimum of the variable parts of
the function only) in Table 3 arelthe negative optima of»the transformed
¥ values in Table 4, These results reconcile the fact that the minimizing
of the objective function is the same as the maximizing of the negative
of the same objective function. The final Table No. 4 summarizes the
discussions of a summation of three different étandard curves (straight
line, parabola, and rectangular hypeibola). The models in Tables 2, 3,
and 4 are discussed under the assumption that the first curve(s).ié (are)

an increasing function(s) while the other(s) is (are) a decreasing one(s).



. TABIE I
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS
ONE STANDARD CURVE MODELS

Type of Mathematical Optimum Sensitivity Decision Range for
No. the Model Equation Values Expression 10% Increase
(X ,Y) Yy ! _
o’’o » W ,
T - Lower Upper
o
1. Circle ! | 1-( ;;1 ) (u-1)2
2, Ellipse 2 1-( % )2(W-1)2
2
: H 2
3. Parabola 1+ AT (w-1)
* 2 . 2
4, Gaussian >  YeE™X (0,a) B -0.317 0.317
5. Catenary 1 EW/A —w/A
3 - E

L
~

1

%

2

ale
w

General sensitivity expression only for the family of circle models H = R
General sensitivity expression only for the family of ellipse models H = A

General sensitivity expression

€L



TABIE II
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODEILS
SUMMATION OF TWO DIFFERENT STANDARD CURVES (MINIMIZ.*) MODELS

No. Type of Optimum Values Sensitivity : Decision Range
the Model Xo, Yo Expression for 10% Increase
1)
Yw Lower Upper
v T
‘o
1, Straight line vs. Look to the Look to the
ellipse model model
Y =
2, Straight line vs. Look to the Look to the
circle model mode 1
Y =
3. Straight line vs.
parabola AZ C - éi w - 2\/w 0.467555 1.732452
Y = mX-A(X) 1/ 24 2+ " 4m
4M
4, Straight line vs. ‘ : 2
R. hype;b“a E'C - 2 yuB g rl L 0.641743  1.558256
X
5. Parabola vs. 2 2 .
straight line M c_ M w - 2w 0.683774  1,316228
28°  4A

2
Y=AX - MK+ C

* Appendix A

k2



TABLE II (CONTINUED)

Type of

No. Optimum Values Sensitivity Decision Range
the Model Xo’ Yo Expression for 10% Increase
Y ]
W Lower Upper
Y 1
o
6. Parabola vs.
. =pi§3b31§ ac %..(wz-z, W ) 0.573307 1.461277
7. Parabola vs. R. 3 /
hyperbola ZC + 1.889 1 sz +2 > 0.718677  1.347391
v=ax? + 2+ c ’
. X
g. C. parabola vs. K 3
st. line /35 c-3 /% %(w3 - 3w) 0.729300  1.2467986
y=ax3-M+¢C .
9. C. parabola vs 5 N 5
parabola 2 1{ 3
. B C -.5/6 86 < (w - 6w ) 0.625277  1.353781
= - —3» C —.:
Y—AX-B X+ C 36A2 6A
10. C. parabola vs. R.
4 4
hyperbola B AB3 1/ 3 3
v = AX3 +_)]%+ c Y C+1,741 Z(w + -‘;) 0.756132 1.26642
NS
11. Straight line vs. 3 3
2 28 2| 1 1
52 ~— , C+1.500 2BM — 2w+ = 0.74211 1,391932
X M 3 w2
T=m+ 4

QL



TABLE III

SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS
SUMMATION OF TWO DIFFERENT STANDARD CURVES (MAXIMIZ.*) MODELS

No. Type of Optimum Values Sensitivity Decision Range
the Model Xo’ Yo Expression for 10% Decrease
L}
’ Yy Lower Upper
7T |
o
1. Parabola vs. 2 2 .
straight line ( 25,0+ %ﬁ 2 v - w 0.467547  1.732422
»Y;A(X)I/Z—MX+C . 4M : .
2, Straight line vs. 2
bola M M -2
paras? 55 C*tax v - 0.683816  1.316189
Y=MX-AC“+C ,
3. Parabola vs. 3
parabola B B4 1 2>
Y=B(X)1/2-AX2+C 1—6;5’(: +3/4 \ ' Za 3 (4,, WoeW 0.573415 » 1.461205
4, Straight 1ine vs. 3
c. Pa’gb“a % , C+ -1}5 —;(3‘4 -w ) 0.729380  1.248141
Y=MX-AX"+C
5. Parabola vs. 5/ A .
C. parabola B2 B 1 ( 3
/ D = = byw=w
Y=B(X)1'2-AX3+C 5 :C+ 5/64 %A S N > 0.625325 1.353622
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TABIE IV
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS
SUMMATION OF THREE DIFFERENT STANDARD CURVES MODEL

No., Type of Optimum Values Sensitivity Decision Range
the Model Xo, Yo Expression for 10% Increase
Y
W Lower Upper
Y
o
1. Straight line and
parabola vs. R. Look to the 1 2 2
hyperbola model IYJE MXow +AXT W
2 .
X,w '
2, Straight line vs. 1 22
parabola and R. Look to the 7 (MXow - AX, w
hyperbola model .I ol
yoIR-AXD + 2 + B )
X Xow
3. Parabola vs. st. 1 3 2
line and R. Look to the 57 éxo wo- MXw
hyperbola model “oi
2
Y=AX"-MX + ;}i- + _B )
X w-

LL



. CHAPTER 1V

- INVENTORY MODELS

Introduction

There are many different definitions for inventory systems according
to the interesting points of view. Some people consider inventory systems
as systems of keeping records of the amounts of commodities in stock,
tﬁereforé making the problem one of where and when entries should be
wade. Other people look at inventory systems from the financial point
of,viéﬁ, therefore making their problem one concerning the turnover
and financing investments tied up in stocks. Other groups consider
inventory systems as systems to deal with what items to stock, when
v ‘to stock, how many to stock; therefore their problem is the labor
stability, utilization of equipment and facilities, and customer re-
lations., Because of this wide range of the inventory systemsf defini-
tions, it is necessary to define the inventory systems that will be
deait with in this dissertation. The following two definitions are
well suited to the purpose of this research project.

Ackoff's Definition (2): "By an inventory process Operations
Research has come to mean a process involving one or both ‘of the
following discussions: (a) how many (or much) to order (That is to
produce or purchase) and (b) when to or@er. These discussions involve
the balancing of inventory carrying costs against one or more of the

following: order or run set-up costs, shortage or delay costs and
cost associated with the level of production or purchasing."
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Definition: An inventory is the system in which the decision maker
is looking for the optimization of the decision variables normally
called controllable variables in the light of inventory independent
cost elements whose cost coefficients are mutually exclusive, These
cost elements may be any two or the three of the following:

(1) The cost of carrying or holding inventories.

(2) The cost of running out of units or incurring shortages.,

(3) The cost of replenishing the inventory system,

The Nature of the Costs

This part is devoted for elaborating the last definition for the pur-
pose of classifying the different independent cost elements in the inven-
tory system. The nature of the first cost element is the cost incurred in
carrying or hblding inventories and is equal to one or more of the following:

a. The coét of renting or providing warehouSe space

b. The cost incurred in the obsolescence risk

co The cost of warehouses® overheads such as the handling
- of equipment

d. The cost of the tied capital in stored units
e. The cost of insurance and taxes.
The second cost element is the cost incurred in suffering shortage of
units or running out of units. This may be one or more of the following:
a; The cost Incurred in the loss of sales
b. The coét incurred in the loss of good will

Ce ‘The cost incurred in the shut-off of the related operations
or the decrease in their productivities

d. The cost due to the facility being idle for the next set-up
manufacturing

e. The cost due to special administrative efforts.
The third cost element is the cost incurred in the procﬁrement and re-
plenishment functions. This may be one‘or more of the following:

a. The cost of ordering the lot size

b. The cost of the paper work an& the customs

¢c. The cost of the commission



d. The cost of receiving and inspecting the lot size

e, The cost associated with the payment of invoices,
Later it 1s referred to as the holding cost element or HC; the shortage
cost element as SC, and the procurement and replenishment cost element
as‘PC. Some models involve the three cost elements while others involve
‘only two of these three cost eleﬁents, These cost elements are indepen-

dent and their cost factors are mutually exclusive.

Types of the Inventory Models

The inventory models can be classified on>tﬁe basis of the number
and fype of cost elements as:

1, Models involving holding and shortage cost elements.

2, Models involving holding and procurement cost elements,

3. Models involving shqrtage and procurement cost elements.,

4, Models involving holding, shortage, and procurement cost
elements.,

The models with two cost elements like 1, 2, and 3 are apparent

in practice when the third absent cost element is not under the control

of the decision maker. The model 1 appears in practice when the procure~

ment cost is not charged on the inventory system or the replenishing

of the items occurs over prescribed constant periods, The model 2
appears in practice when the shortage cost factor is extremely high

and the processes cannot afford its occurance, The model 3 appears in
practice when ‘there are no spaces provided for the holding units or the
processes cannot afford to tie the capital in stOredvunits for a period
of time; Therenis another characteristic which distinguishes inventory

models from the point of their replenishment periods as:
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1. Purchasing models which have the replenishment periodsaré
approximately equal to zero., Some times they are called
instantaneous replenishment period models.

2. Manufactﬁring models which have the replenishment periods are

greater than zero.

Invéntory'Problem

The problem is to make an optimum decision for the inventory sys-
tem, These decisions are always made in the light of cost elements;
but they are rarely made in terms of costs or profits. They are
usually made in time and quantity as:

1. When to replenish in time units

2. How much or many to replenish in quantity units,

The time and quantity are the decisioﬁ'variables and are subject
:tdithe control of the decision maker, usually called controlléble
variables,

Alﬁhough‘finding the variables that give the optimum total cost
is the main purpose of the inventory problem, the research maker has
to pfovide the amount it will cost. Also the main purpose of this
reéearch is not only to provide the optimum variables and the optimum
objective function, but also to establish the rules for the decision
range for selecting the controllable va?iables in such a way fhat the
net increase or decrease in thé total oﬁjective function is insignificant

or negligible.

Seeking for Trade-Qff Solution

The objective function has an optimum solution if and only if the
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rates of the increasing cost elements are equal to the rates of the de-
creasing cost elements. This is the essence of the differentiation as
a mathematical technique to obtain the optimality. In industrial or

business situations, it is common to say the objective function has been

. traded-off instead of saying the objective function has an optimum solu-

tion. - Thus, the traded off .solutions for the decision models in inventory
systems are obtained through usiﬁg the differentiation for the continuous
functions., However, if the objective furnction is a function of more than
one decision variable, the partial derivative isvused provided the limits
exist. The objective function with one decision variable can be represented
by a curve in two dimenéions in space wﬁile the one with more than one
decision variable can be represented on a surface whose dimensions in

space are equal to the number of variables plus one.

Seeking for Trade~-Off Range

The decision maker is frequently required to set a policy that
will be flexible enough to meet the unpredictable situations in the
future and to meet the dynamic needs of periodic change. As a rule of
thumb, the total variable parts in the objective function is within plus
or minus 10 pér cent over or under its optimum value. The plus is
correspondent to the minimizing of the objective function and the
minus is correspondent to the maximizing of the objective function.

The solution for this predetermined allowance in the objective function
yields a range or a region for selecting the controllable variable or
variables, This range or a region is called the decision range or the
decision region. Looking back to the derived mathematical models in

Chapter III, these ranges are obtained.from the derived sensitivity ex-

pressions, which are the measurements of the sensitivity analyses of
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these models around their optiﬁum solutions ( thgir'trade-off solutions).
At thisvpoint, it is necessary to define the decision range or region.
Decision range or region
Definitidﬁ:' the decision range or region is that where the decision
maker can select a variable(s) in such a way that the yield in the objec-

tive function due to this selection is insignificant above or under its
mathematical optimum,

Building the Total Cost Inventory Function

The following discussions are for the purpose to build the total
cost equation of an inventory system, by analyzing the type of the
replenishment, the type of the demand, and the replenishment-demand

interactions.

Replenishment Patterns

Definition: The replenishment period is the length of time
during which the replenishment lot size Qy is belng added to the
inventory level as shown in the figure 3.

To discuss the situations of these five cases, let

T = the replenishment period-time units

R .= the average replenishment during the replenishment
period Tr-units

Q = the optimum lot size to be reblenished during the
replenishment period Tr-units

n,; = the power index of the replenishment curve.
Thus, five cases arise in Figure 3 as

a. The replenishment period is insignificant that is Tr = 0.

Therefore

L0

o]

R=~(—)—-— = QO
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which implies that the average replenishment units during the

replenishment period Tr are infinite, and the power index n, is
infinite,
The power index of the replenishment curve is n, = 1.0, which
implies a uniform replenishment during the replenishment period
T
T
Thus,
Qo
R = T = constant
T

The power index of the replenishment curve is nl::ﬁle, This

means that the rate of replenishment varies from time to time

within the replenishment period Tr and the larger portion of

the lot size occurs toward the end of the replenishment period.
The power ipdex of the replenishment curve is ni<::l.05 This
means that the rate of replenishment varies from time to time
within the replenishment period Tr and the larger portion of
the lot size occurs towards the bégiﬁning of the replenishment
period.

It is 3 batch replenishment or discontinuous replenishment.
Thus the genéral equation of the quantity replenished within

the replenishment period T is (for a to d)

T = Q T

r

where

Q(T) = the quantity in the inventory at any time T.
Q = the quantity in the inventory at the beginning
o . .
of the replenishment period Tr°
T_ = the replenishment period.
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SIH

Q(T) = Q

s

Demand Pattern

Definition: The demand period is the length of time during which
the level of inventory came to a point where a new replinishment is
starting to be added to the inventory level as in Figure 4.

To

Thus,

discuss the situations for these five cases, let

Td = the demand period
D = the average demand during the demand
iod
perio ?d
n, = the power index of the demand curve.

The demand size X is drawn once at the end of the period,

This means that n, is infinite and is called infinite demand

2

pattern.
The demand size X is drawn uniformly dutring the demand period

Td. This menas that the average demand during the demand

period Td is constant as

X

Ty

The demand size X is drawn through a curve with power index

D= = constant ,

nz::;i.o.. This means that the rate of demand varies from

time to time within the demand period T, and the larger portion

d

of the demand size X is drawn towards the beginning of the

. demand period,

The demand size X is drawn tﬁrough a curve with power index
n2<::1.0. This means that the rate of demand varies from time
to time within the demand period Td and the larger portion of

the demand size X is drawn towards the end of the demand period.
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e. The demand is a discrete demand or batch demand pattern.

The general equation of the quantity in the inventory at time T

within the demand period T, is (for a toc d)

d
» n
Q(T)=S-X 2 L [}
T
d
where
Q(T) = the quantity in the inventory at time T
.S = the level of the inventory at the beginning
of the demand period Td
X = the size of the demand to be withdrawn during
the demand period T&
Td = the demand period and is equal to T,
For (a)
1
T
= O
Q(T)=S-—X—T-d— i)
d
=85 ~-X,.
For (b)
1
Q(T)=S~x[-f—— n,=t.0
T
d
=S-X%—
d
= 5§ - DT .
For (c¢) and (d)
1
Q(T)=s-x%— R
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Replenishment and Demand Interaction

In this kind of models,one can generate different combinétions of
the replenishment demand interactions., For example

a. The power index of the replenishment curve n, is equal to the

1
power index of the demand curve n, and each equals 1.0.

b, The power index of the replenishment curve n, is equal to
the power index of the demand curve n, and each is less than
1.0,

c, The power indgx of the replenishment curve n, is equal to the
power index of the demand cufve n, and each 1s greater than
1.0.

d. - The power index of the replenishment curve n1 is less than 1.0,
while that of the demand curve n, is greater tﬁan 1.0,

2

e, The power index of the replenishment curve n, is greater than

1

1.0, while that of the demand curve n, is less than 1.0.

2

f. Or any.other combination.,

The following figures illustrate these cases.

In the figure 5, = ﬁz = 1,0, This model has the following
relations, The rates of the replenishment and the demand are constants.
Thus the rate of accumulation is also constant.

R = %Q (through the replenishment period)
r

(through the demand period without
d replinishment)

o
]
H[<

And the rate of accumulation is

L ok
T T
r \

(through the replenishment
d period) .

R-D=



Inventory Level Q(T)

Inventory Level Q(T)

Time T
T, ‘ Tq
v Tc
Figure (5).'! Uniform Replinishment and Demand Model
_wRA d c
Q
.
|
Time T

VR

Figure (6). Power Replinishment (nl<:l.0) and Demand (n2<:1g0)

Model
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Inventory Level Q(T)

Inventory Level Q(T)

Inventory Level Q(T)

Figure (9). Power Replinishment (n1:>l.0)

Model
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Time T
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Figure (7). Power Replinishment (nl:>l.0) and Demand (n2:>1.0)
Model d c
e
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Fiﬁugel(S), Power Replinishment (n1<:;.0) and Demand (n2:>100)
ode
d c g
b
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~~ X
S ! - I ¥
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< T
c

and Demand (n2<:l.0)
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And the quantity at any time is

QT) = S + R - DT, 0 LTKT, -

S+ (R - DT_ - E+ (R-D)T_ E - D(Txfr?]_

—

[s + (R-D)T;]E -1 +FD(T—Tr)

E+ (R-D)T;‘ D(T-T ), TrngTd.

And

#

Q(T)

The following four figures explain the last mentioned four cases.
For these last four figures, the rates of replenishment and demand
are varied with the time. Thus, the rate of accumulation alsc varied

with time. Therefore the quantity in the inventory at any time is

L
Q(T) = 8 + Qo 1/ %_
r

— — —_—

s+q VI || L
- 0 T T,

n —"r_ 'n2 1
[sq /r 7T
r d

~ b -

and

Q(T)

It
["‘m‘-‘
+
o

(e}
-
i
=
S R

In these models, if the replenishinent is instantanecus that is
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Tr-g 0, then the quantity in the inventory at zero time will be X + QO
and is represented by the point d. Therefore the demand curve will
follow the curve df instead of abf. If there is no demand during the
replenishing period Tr the replenishment curve follows the curve ac

instead of ab. If these situations exist, the above equations will

change.

Optimality -and ‘Dimensional Parameters

- Annual Analysis

Lot Size Q
”~

Time T

< One Year

Figure (10). . Annual Analysis
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Thus,

Therefore,

sC

HC

PC

TC

= ( total demand per vear

[

~fquantity units per year

94

the demand - units per yeaf

the holding cost factor - dollars per item per
year _

the procurement cost factor - dollars per order
the shortége cost factor - dollars per unit per year
the holding cost - dollars per year

the procurement cost - dollars per year
the shortage cost - dollars per year.

(average‘holding amount) (holding cost factor)

Q .
2~ Cn
(Quantity units) (dollars per quantity unit per year)
dollars per year.

(number of replenished units per year) (procurement
_cost factor)

order lot size ) . Cp

D
—— « C
Q P

quantity units per order,. dollars per order

dollars per year.

HC + PC
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dollars per year.

=£—— L] +-—D—- @
2 "% T ¢
Differentiate with respect to Q, equate the result to zero, solve

for the optimum lot size Qo’ and again substitute with Qo in TC equation

to obtain the optimum total cost TCO.

dic _ b _ D_g
aQ 2 Q2 P
C
0.—_-_.11__.]2_.’0
2 )
Q" P
2DC
%= [T
h
| ,chz p2C 2ch
. TC, per year = ZE; 2DCp + —55%;——
= 2DChCp

Periodic Analysis:

. l"d
\m\({;ﬂ L— .- one perio

Lot Size @

Time T

Figure (11). Perodic Analysis



Thus, the total

TC per period=
Thus,

and

TC, per peri6d

L2 e D
>~ Ch t 5 G,
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Let
D' = the rate of demand - units per period
Ch' = the holding cost factor - dollars per unit per unit
of time
K = the number of periods per year.
" Thus,
HC = (the average holding amount)(holding cost factor)
- 9
= 2%
= (quantity units)(dollars per unit per period)
= dollars per period
PC = (the procurement cost factor)(sharing of one period)
- 1
p ~ number of periods in a cycle
= C . et
P30
Dl
Dl
=~ , C .
Q P

cost per period is

p
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2c!

Oo
]
'C‘L\
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2p'c !

(D'K)

¢! xK

h

N

Ch

and

TC0 per period

But

5

CD

'ra

2n'c, ‘c !
p

TCO per year =

The same results are obtained as
one can conclude the optimum lot size.
ferent dimensional parameters however

has to be multiplied by the number of

total cost per year.

It

number of periods per year x TC per
period °

[opte 1ot
K /2D Ch Cp

/E(D'K)(Ch'K)Cp'

IZDCth

in Annual Analysis. Therefore,
QO does not affect by the dif-
the optimum total cost per period

periods to obtain - the optimum
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Cyclic Analysis
The time of the cycle is not known because this is the variable
that the researcher is looking to optimize. Thus let us use the same

cost parameters as in periodic analysis. Thus

= - '
TC per cycle > X TC X Ch + Cp

" As PC is not a constant it is also a function of the number of cycles in

the planned period (assume the planned period = one year). Thus

TC per: year = TC per cycle x cycles per year

Q ' D
= — + e,
TC per year 2 x TC X Ch Cp R
QDT
= —fct+-2g¢

2Q h Q p

But
C, 'T. is the holding cost factor per cycle (Ch“)
in dollars per unit per cycle
and
Ch'TC —%~ is the holding cost factor per year (Ch) in
dollars per unit per year. '
Therefore

TC per year = Q. c, + 2 c

which is the same function as in Annual Analysis before and the optimum

values are the same as in Annual Analysis.
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Uniform Demand, Purchasing or Infinite Replinishment Models

Models Involving Holding and Shortage Costs

This model has the characteristics of instantaneous replenishment
period, uniform demand or usage, and prescribed cycle periods and/or
the constant procurement cost for the whole planned period, The holding
and shortage cost elements are subject to the control of the decision
maker, however, the procurement cost is not under the control of the
decision maker, VThe replica of this kind‘of model is the supplying
of retain warehouses at constant intervals of time without previous
requests. Another important assumption for all the models in Chapter
IV is the mutual exclusiveness and independence of the cost parameters
and the cost elements respectively,

Let |

Q = the inventory amount to be replenished every
prescribed cycle period ~ units

S = the maximum inventory quantity level during
the cycle - units '

Th = the holding time units per every cycle - time units
Ts = the shortage time units per every cycle - time units
Tc = the cycle time - time units

HC = the holding cost per year - dollars per year

SC =>the shortage cost per year - dollars per year

C_ = the procurement cost factor - dollars per order
D = the demand or the usage - units per year

C, = the holding cost factor - dollars per unit quantity
per year

C_ = the shortage cost factor - dollars per unit quantity
per year



Thus, the cost elements are

and

HC

i

dollars per year,

]

sC

dollars per year.

(average holding amount) (holding cost factor)

(average shortage amounts) (shortage cost factor)

100

(quantity units)(dollars per unit quantity per year)

(quantity units)(dollars per unit quantity per year)

This model is illustrated in the following diagram, Fig., 4-11

Inventory Level S
>

N

e

\

el

jtr o

|

B
3
0

////////////X/

\ re
VLSS L LS <9 /7////////&(

e N

s Th w~a—Ts~¢~

\

Figure (12). Purchasing, Uniform Demand, and Holding and

Shortage Costs Elements Model

Time T
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Since the optimality cannot be attained except the shortage amount
is positive; then, by definition the shortage amount is always a positive

amount in the preceeding models in this chapter. The holding units occur

during the holding time Th while the shortage units occur during the

T T
shortage time Ts' " Dimensionless multipliers - and-ﬁfi are
c c
S

-multiplied by > and g5:~§ respectively in order to obtain the average
of the holding amount and the average of the shortage amount. The

shortage units are negative in the diagram, however,

TC = HC + SC
T T
-_:....'_-e(_s..)_c +._..S.._&_—_§.'C
T 2 h 2 s
c c
T T
=2 b g 48 8 ¢
T h 2 T s
c c
T Ts
At this point, the values of these multipliers T and T in terms
c c

of the interesting variables S and Q can be obtained from the similarity

of two triangles ABC and ADE (Figure 12).

I-B‘:_

I
Q

and

o
L
i
92}

L= |
L

Substitute these two values in the total cost functisn. Thus,
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~o S Q- 8)
TC = 95 O + g c, -
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If the procurement cost is not subject to the control of the decision

maker, the model does not involve the procurement cost element.

the TC before one can obtain,

C ‘QC c
h 2 S S , o2
TC(8) = 5+ S+ -C8+55" S

Follow the same procedure as in the illustrated example pp.

dIc _ 28
TR (ch + cs) +0 - C
SO
0= 6— (Ch + CS)
'CS
S =Q
o Ch + CS
2
C, +¢C C c
. _h s o2 s _S
¢, = 2Q Q (c, +¢ )2 + Q3
S .
CS
-CQ
s Ch + CS
CS2 C, CS2
= Q + Q5 -Q
2(C, + c.) 2 ¢, +C,
C82 CS
= Q + Q ==
2(c, ¥ ) 2

Expanding

14-21 as
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[}
+

LH

Ch + CS

- C + C + C

Assume an error w has been associated with So’in such a way that

and

w = zero or a positive value.

Thus, the corresponding wvalue Yw, due to this error w, will be
2
c - Ch + Cs Q2 c 2 QC
w 2qQ

S -
4
(Ch + CS) 2

]
ID
o] O
)
L
+
~~
O} €
+1
ol N
&
~
(@]

) 2
) QCS Ch + CS +w CS - ZwCS
2 ‘ Ch + CS

QCS - 2
= ————————-z(ch T Cs) C, +C, +twe, - 2uC



2
) QCth (Ch + Cs + w Cg = ZwCS)
2(C, + C_) C

Therefore, the sensitivity expression is

TCW 1 2
.__...TCO = '(':'; (ch + CS) + Cs(w - 2w) | .

The reader has to notice that if w = 1,00, this expression yields
1,00, however, the expression is not a general one.
If one looks to the total cost function TC(S) he can say that it
is similar to the mathematical model - parabola versus straight line
model., This is not true because Q and S are not independent variables.
They are related in a linear manner although Q is predetermined, That is
vhy the sensitivity expression is not a general one and varies from
one model to another according to different parameters.
Example: A grocery store estimates that the shortage cost factor
for a certain item is ”25‘dollars per item per year; the holding
cost factor, 5 dollars per item per year; and the demand, 1200 units
per year. If the replenishment is done at the first day of every
month and instantaneously, what is the range for the level of in-
ventory at the beginning of each month for an ailowance of a 10

per cent increase in the total cost above its optimum?

By substitution

q = %9 = 100 units.
c_

S = Q st s st

0 Ch + CS



w

- 2w + .98

_ 25 _ .
= 100_ 05 T35 = 83 units. -
' ¢ C
TC = Q h s
o 2 cC,.+¢C
h s
_ 100 5x 25 _
=5 IT5 - 208.33 dollars/year.
TC (C. +C + 2¢ 2wC )
W = 1.10 ‘ h s v s v s
TCo Ch
2
05+ 25+ 25w - 50w

1.10 = B

1.10 = 6 + 5w2 -~ 10w

[l
o

The upper and lower limits of the decision rangé

of this quadratic function as

’ 2 - Ji - 3.92 _
wu,l = 2 - 1014

are the solutions

Q5T
14,895

These results imply that the model is very sensitive, only 14 per

105

cent in lower range and upper range for not more than 10 per cent increase

in the total cost above its optimum.

Example:

tions are:

For another item in the same grocery store the estima-

C

h

20 dollars per item per year, CS

= 25 dollars per

item per year, and the other estimates are the same. What is the

inventory level range at the beginning of each month for allowing
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an increase of 10 per cent in the total cost function above its op-
timum?

By substitution

S = 100 20

o ic 44 units.

100 20 X 25

TC = > 73 = 555.56 dollars/year
T _ 20+ 25 + 256” - s0w _ 40
TC 20 *
o
2,25 + 1.25W2 ~ 2.50w = 1.10
2
w - 2w+ 0,92=0 .

The lower- and upper limits of the decision range are

2 -‘Vé'- 3.68

1 2

= 0,767

£
]
!

and

2+ Y4 - 3,68

u , 2

= 1,233,

£
i
1

This model is legs sensitive than the preceding example and its range

is wider.
Ch

- These two examples emphasize that as the ratio of e is very
s

high the model is insensitive and as the ratio is small the model is

sensitive.

Model Involving Holding and Procurement Costs

For this model the shortage units are not allowed because the
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shortage cost factor is extremely high. The replica of this model ap-
pears in procuring essential spare-parts for the continuous production
and assembly lines and in procuring the essential medicines for the hos-

pitals. The model can be represented in the following diagram Figure 13.

Lot Size Q

/

~
XY

N
fE—rolo —>=

Time T
O
H.
[
®
10
o
—
o
[
1o
£
Lot Size Q

Figure (13). Purchasing, Uniform Demand, and Holding and Procurement
Cost Elements Model
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Using the same notations as in the.annual analysis, the total cost

function per year is

TC

HC + RC

The R. H. S. of the total cost equation is a summation of an in-
creasing straight line and a rectangular hyperbola with the variable
Q. Thus applying the results of the similar mathematical model in

Chapter III as

and

TC = /4MB .

j

Where

j=n

By substitution, these results can be obtained

2DC
Q% =/ "
° h
T™VC = /2DC,C - .
o h™p

For an error w_> 0 associates with Qo’ the sensitivity expression
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will be
TVCw - w2 + -1
'TVC l 2w
o
where
!TVCol = the absolute value of the optimum total variable
cost to be consistent with the directions of the

axes,

And the decision range is

2DC 2DC
0.6837736 —L< q < 1.3162279 —L
Ch >ty Ch

Example: An assembly depaftment estimates its deﬁand of an essen-
tial spare part by 1,000 units per year; the proéurement~cost féctgr,
100 dollars per order; and the holding cost factor, 5 dollars per
unit per year. What are the economical lot size, the economical
total cost, and the decision range for the assumed predetermined
allowance of a 10 per cent increase in the total variable cost
above its optimum?

As the spare part is essential, the shortage units are not

"allowed to occur. Thus

f
I

2 x 1,000 x 100
5

200 units

4



TvE =/2Dcc =/2x100x5x100
o p h

AN

= 1000 dollars/year

and the decision range is

0.6837736 (200)<_Q_<_1.3162279 (200)
137<Q <263 .

Models Involving Shortage and Procurement Costs

For this model, the holdiﬁg units are not allowed due to space
consideration. “The replica of this model appears in the agencies or
the offices téking the customers' orders and supplying them later,
The delaying of these items will lose a portion of the total demand
in the next periodaor~1osing the good will, The trade off relation
is between the shortage cost and the érocurement cost elements, The
illustration of thisvmodel is as in the following diagram Figure 14.
Here, again, the assumption of the shortage units to be positive
is essential for the trade off relationship. Thus, the total cost

equation is

The R, H. S. of this total cost équation is a summation of an
- increasing straight line and a rectangular hyperbola. Thus, as

before

110
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(a)

Time T
) N

> & N N A \\ .
I

ot

)

F]

o

[

1o
(b)

(&

=

o

W

o

&
i Q C
g D¢ +Q Ch 2 h
o Q

|
D
Q%
Lot Size (Q)

Figure (14). Purchasing, Uniform Demand, and Shortage and Pro-
curement Cost Elements Model '
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2DC

L

) o
- wn
o

TVC = /2DC C .
o s

For an error w::>0 associates with Qo’ the sensitivity expression is

TVCw w2 + 1
i TVC_ ' = Tow

where

ITVCQ| = the absolute value of the optimum total
varlable cost to be consistent with the
original direction of the axes.

And the decision range is

2pC 2DC
0.6837736 -C-_-ESQW<1.3162279 2.
] S

Example: An agency estimates that the demand from a certain item
is 300 items per year; the procurement cost factor, 10 dollars per
lot size; and the shortage cost factor, 5 dollars per item per year.

What is the optimum policy? What is the decision range if 10 per

cent increase is allowed in the tétal variable cost above its

optimum? i

i
H

By substitution, the following results are obtained
i ‘
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TVC = /[/2DC C =.2x500x5x10 = 223.61 dollars per
° P s year

and the decision range is

0.6837736 (45)’<QW<1.3162279 (45)
31<QW<59 .

Modelg Involving Holding, Shortage, and Procurement Costs

This model appears widely in business and industrial fields and is
represented in the following diagram Figure (15).

The total cost function is

TC = HC + SC + RC

2 ' 2

S (Q - 5) D
= — + —
2Q Ch | Q CS + ) Cp

which is aifunction of S and Q, Thus, differentiate partially with
respect to each Q and S, equate each of these partial derivatives to
zero, solve for the optimum economic order Qo and the optimum inventory
level at the beginning period of the cycle So’ and finally substitute
with these two optimum values in TC equation to obtaln the optimum to-
tal cost TCo'

91C 28 2(Q - S)( ~1)
(9s) " % * 2 ®s

o
i

SoCh -i(Q - So) Cs



Total Cost TC

Inventory Level S
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AN

\

NN T

Lot Size Q

Figure (15). Uniform Demand, Purchasing, and Holding, SHort-
age, and Procurement Cost Elements Model
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- C
8 = Q»gch SR
2 2 '
8. Iy _ _ Soc + 20x2(Q-8) - (Q-8)"x2 . _ 2
1 VEZ_ c 4 DCJ N 4Q2-4Q5-20%+4Q5-252 c
T T2 2 h P B 2 8
Q 4Q .

(@]

2
_ 1158 » s
_-Q2 5 (ch+cs)+DC£]+2

-1 2 .
0= z[s (c, +C)+ 2Dcp:] +C, .
o L

Substitute with the value of So in the last equation. Thus,

=]

2

Cc
= . Llo 2B __ . T )42
0=- =50 (g (ch+cs)+~1)cp + Cg
Q h s
2
Lo =- s +C
Q2 p Ch+cs s
o
—CZ+CC +02
- h:s s
ch+CS
Q= 2-qu (Ch+cs)
o c *

h'x cs



and

Q

TC

o

o

2
Cy
/éDc
NE
s
2
Q

S

i/
i/

o Cs Ch

c, +C
C
S
+
c_+C
Cy
2 2
Q

-+

S
2q (c +c_)* 230[}-‘2—
Qo h' s v

znquch+cs)

'4ChCS

+ DC
P

2
DC_(Cy+C,)

Chcs

2Dcp(ch + cs)

4Cth

[:chcs (ch+csi]
2
! (cﬁ+cs)

2.2

DC
D

Cth

DC_(C,*C) € gs

2c,c_ (€, +C)°

+
2

2(C

DC C,C_
phg

DC C.C
p h's

Z(CH+CS)

+

Z(CH+CS)

H+es)
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TC =
o

(Ch+cs)

C
. / P h/ c, +C_
; Ch
TC = /2DC C o[ ———emmem .
o P s Ch + CS

The last term in the lst relation is due to allowing shortage units

while the last term in the 2nd relation is due to allowing holding units
for both the optimum values of lot size and total cost.
Assume an errdr w1 has been associated with the optimum lot size

Qo in such a way that

Q

W

15 w1Qo

and

w, = zero or a positive value.

Thus the error w, associates with the optimum inventory level at the be-

2
- 'ginning of the cycle So can be obtained from the linear relation derived

before as

C
8

S = (Q.) v
o (e} Ch + CS

c

s
Sw2 = (le) C. +C
h s
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C
s

| wy(8 ) = )R 53 .
s h

But, the error vy in estimating the optimum lot size Qo is

. /D' Cpl (Chl + csl)
w. = le - 3'_CD (Chp + CS)
1 q, (ch? cs')
(Ch + CS)

and the error v, in estimating the optimum inventory level ét'the

beginning period of the cycle is

[ ¢ 7]
S
leo C
Vo = Q (ch"f‘cé') .
.(ch +¢C) _J'

1f there are no errors in the estimates of CS' and Ch','that is the

estimates of Cs' and C, ' are equal to the exact values C, and C

h h

respectively, thus

On the other hand if there are errors in the estimates of Cs' and C !,

h
then
w = Kw,
2 1
X ]
where Cs
. C !
_ _ " h
K = constant = - CTY+c?T .
h 8
C, +¢C
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and the values with the primes indicate the estimate values.
‘The value of the total cost due to the error wl'is obtained by

substituting Qw'= leo in the TC fuﬁction. Thus,

W 1
TCw = ( —E—-+ 2w) (TCO)
and the sensitivity expression is
TCw - w2 + 1
ITCJ 2w

where

,T04 = the absolute value of tﬁe optimum total

cost to be consistent with the original

directions of the axes,

Example: The procurement and inventory department in a company
estimates the holding cost factor for an item by 4 dollars per
unit per year; the shortage cost factor, 16 dollars per unit
pér year; setting cost factor, 40 dollars per lot size; and the
demand, 10,000 units per year. What is the optimum ﬁolicy and
the decision range policy for 10 per cent increase in the total
variable cost above its optimum?

By using the. results of the above model, one can obtain

21)cp(ch + )

Qﬂ
° Ch?s.

2x10,000x10 & + 16 _ 500 irems
Zx16
1

c
S

o= % T TFa
s

h



= (500)( & ) = 400 items

TVC
o

2 x 10,000 x 4 x 16 x 40
(4 + 16)

iJ/&O,OOO x 16 x 16 = 1600 dollars/year.

The decision range is
0.6837736Q°fE;lefE;1.3162279Q°

342<q_, <658 units.

120

Example: The PID in the preceeding example can control the parameters

h
this policy?

C s ng and Cp' What are the limits on the demand fluctuation for

Thus,

= (.68377)2= 467856 .

e
—3
:

I

And,

Ulq.
—_—
]

(1.31623)2 = 1.7424

Thus,
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0.46786 (10,000)<_p*'<1.7424 (10,000)
4676 p*<17,424 units.

Therefore, ;he demand can fluctuate between 4676 and 17424‘un1ts
per year while the net increase in the total variable cost éver’its
optimum is not more than 10 per cent. This quite wide range of
demand makes the model insensitive to the change in the demand

within the above limits.

Power Demand - Purchasing or Infinite Replinishment Models

‘Model Involving Holding and Shortage Costs

The same assumptions as in the similar model with uniform demand
except that the raté of demand varies from time to time during the
‘cycle. This model can be illustrated in the following diagram.

The amount in the inventory at any time T is

QT) =5 - Q

And the total cost equation is
TC = HC + SC .

‘The total holding units per cycle can be obtained by integration
from zero to Th time units. The average amount carried in the inventory
is obtained by dividing the result of the integration by the total cycle

time TC time units as
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Power index of demand curve n2<:i.0

~—— —— —  Power. index of demand curve n£:>l.0

.Inventory Level S

\\ Time

— e — — ——

Figure (16). Purchasing, Powef-bemand, Holding and Shortage
Costs Model '
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T

. h :
1 :
Il'(S) = -T—c- f Q(T)dr .

(o}

Where

Il(S) = the average amount carrying in the inventory.

The shortage units per cycle (positive amounts) can also be ob-

tained by integration from T _ to Tc time units. The average amount

h
of shortage is obtained by dividing the result of integration by the

total cycle time Tc time units as
T

[+
“1,(8) = i f Q(T)dT .

Th.
Where

IZ(S) = the positive amount of shortage in the inventory.

Let us clear these integrations first as follows,

Th
, _ 1 :
ORE S Q(T)dr
a
T, 1
1 T n
=T [S-Qo(;f—)z dT
[+ : [+
[o]
1 14+ 1 T
n
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T, -:g n
_ 1 h,n 2
’TETh'QoTh(T ) 2n+;I'
ci c o2

But from the diagram of the model Figure 4-15 the following relation

can be obtained as

UT =T

]
o
"
[7]
1
=
~
l
A d

h) o* T

Thus,

Substituting with the value of T, in Il(S) as

h

n2 n -

1 S 2 S
1.(8) = =—| ST (=) - QT (=)
1 Tc c Qo n2+1 o'c Qo
1

2 | ®2




125

n v
=s('s—-)2 2%
Qo n2 + 1
n
‘ 2
S 1
=5 () :
Q0 n, +1
The average shortage amount is
T
c
1
-IZ(S)=—-[ - Q(T) dt
T
cT
h
Tc 1
-1 T n
Th
T
U S U
1 1. n ns 2
== |ST-Q(gx)"2 T 37
c c 2
L -z,
1 2 )
T T, [S(TC'Th) atl (T) .
liyy L+
Ty - or
Q (T, T2 ThZ) .
Using the relation derived before as
n
2
Th=Tc(%-)' .
o
Thus,
n 1
N S : ) ;| Py
I,(8) == [S|T-T (5-) |-=—=7 (7))
2 T | e et Qg n+l ° T,



1 1,
n n S n 2
Qo Tc 2 - Tc 2 ( 6; ) 2
n J
B s - 2 n 2 S nati-
-S-S(a‘;) i S (6;_)
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o
"y n, g 2
=8 - 8(% - — - S( =
(Qo) n2+1 Qo (Qo)
- n
2 : n n
_ 5 - 2 2
=5-8¢( Qo ) (l n2+l ) nzfl Qo
n
2 n.+l-n n
_ S5 2 2 2
=8 -5¢( Qo ) ( n2 + 1 ) n2+1 Qo
s 2
- s S(Q-(;) + 1n,Q
-0 n, +1 *

Therefore, the total cost function is

Where

Thus,

the
per

the
per

TC = Il(S) Ch + 12 (s) Cs .

holding cost facﬁor - dollars per unit

year.

shortage cost faétor - dollars per unit

year.

!
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n

. ‘ s

| " oc S *myQ ]
TC=8 (=) :1 - ls - —=2 c.
nz n2+ 1 -J s

oolm

which is a function of the inventory level S.
If n, = 1.00, that is a model with uniform demand then the total

cost function yields to

2
: S
S2 : Qo Qo
TC = Ea; Ch + 1|85 - 5 | Cs
=—§—2.C - S___S_%-}?.o. C
2Qo h Qo 2 s
2 25 - s2+q 2
==>_c . : 2 |c
2Qo h ZQo s
2 ' 2
=.2_S._C +Sg0.;_§>;.c .
Qo h ZQO s

which is the same result derived before for the similaf model with uni-
" form demand.
Returning to our model with the power demand index n, the total

cost function is . n

"¢ s—s)'2+ Q
TC =8 () h+l,.(Q° "2% 4l ¢,
Q, nzfl l__ n, + 1 s

The trade-off solution and trade-off decision range are obtained
through the &ifferentiation of TC function and the derivation of the
seesitivity exbression respectively. Thus, differentiate with respect
to s, equate the result te zero, solve for the optimum level of inventory
So,‘and substitute with So in the TC function to obtain the optimum total

cost TC as
o
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n2 . n2
drc s e, 1 s
as = (ptDCg=) Thgm (o)
0 2 o
Cs
- .
,n2+1 8
S "2
0=(-Q—-) (Ch'i'CS)--CS
o
S =

Assume an error w has been associated with So in such a way that
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and
w = zero or a positive value.

The corresponding value TCW will be

[
O

w C . +C n +1
h s 2 .

n, 2 CS ‘
oA We - Q R
2 h
n
2 CS n2+1
=QC T w +
oS Ch CS n2 + 1
n
2
+ n2+1 Qo s
n
2 CS Wn2+1 g -
= Q% C¥C o+ 1
h s 2
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The sensitivity expression of this model is

RO o
o S

TC, = the absolute value of the optimum total cost,

where

If n2 = 1.00, the case when the model has a uniform demand, the

sensitivity expression yields to

2
TC, W ~w-w)C, + C +C_

TCo Ch +'CS - Cs

2
(Ch+C§) + Cs (y -2w)

%

¢ % 2
l+ ==+ (v - 2w)

¢ G

which is the same result as in the purchasing model with uniform demand,

If either uniform demand or power demand model involves an addition

PC as a constant element, then the total cost function is

TC = HC + SC + PC,

This total cost function is a function of S only due to the assdmp-

DC
tion PC = -—QB = constant which consequently implies Q and Tc are constants.
C.+C 2+1 n '
rc="L-_8+8_ 4 2 cq-cs+2¢
n2+1 Q 2 n2+1 s s Q p
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If n, = 1 that is the model has a uniform demand, then

C.+C_ 2 '
_ _h s S 1 : D
'I.‘C——---—--2 ----Q+2QCs CsS+QCp._

This model is similar to the parabola versus the straight line model

in Chapter III., Thus

1
.TCO-—-EQ
TVC =

(o]

and the decision range is

c
S

Cs+ch

c
0.6837736 Q = <Sw<1.3162278 Q

C
5
If n, = 2,00, that is the cubical parabola versus the straight

line model, Applying the results of the similar model Chapter III,

thus
. - 2qC
o Ch+Cs
3
TC = - 2Q %  4Dg +2¢cq
37 (i) Q@ p 3 s

and the decision range is

2QC . 2QC
0.7293004 ——==2<s < 1,2479858 5§,
Ch+Cs___.w___ CH+CS
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The total cost function is

Where

1,(5)

and

The value of

TC = HC + PC.

(average amount held) (holding cost factor).

I:B + 11(3)] c,

the average amount' in inventory above the
buffering stock level B '

the procurement cost per year

D
Y

the demand-units per year

the lot size units

the buffering stock units,

Il(S) can be obtained by calculating the area under

the demand curve and divide this area by Tc' Using the integration

as

- T
_ e
. 1
1,08 = ;r-:f Q(T)dT
v o -
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T ﬁ%+1 n
1 ST - —2_. _¢ % 2
Tc c n n2+1
T N
c
n
2
=5-Q n2+l *

But from the diagram of the model figure 4-16 the following relations

can be obtained as

T —x
= =B=2§ - £ 431
Q(T=T ) = B=S Q (3 y M2
c
S=Q+ B
thus,
)
Il(S) =Q+ B -Q %1
2 :
And
: n
= —2 lg.+2
TC = EQ + B) - Q n2+l],ch + ) Cp
n,+1l-n
) 2" D
= BCp + n 1 ¢, *3 %
QC
= b D
“h

Which is the equation of a straight line with slope M = | and the

‘ 2

intercept on the y-axis is BCh; and a rectangular hyperbola with parameter
B = DCP. By applying the .results of the similar mathematical model, the

following results are obtained by substitution
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o 2DC n+1
Q = B, 2
9 . Ch 2
1

= + /2 e
TC0 BCh DChCp (n2+l)
TVC =TC - BC, = 2pC,C ° 1
o o h h'p n2+1
and the sensitivity expression is
ey L il
lTVC I 2w
o
where
lTVCol ‘= the absolute value of the total variable

cost to be consistent with the directions
of the original axes. .

And the decision range is

2DC (n2+1)

___BE;_——ifE;Q&fEEIf3162279

20C_(n,+1)
0.6837736 —P .

h

The buffering stock units do not affect the location of the optimum

lot size Qo but it does affect the location of the optimum total cost,

ht

Example: Solve the example given at the end of the similar purchasing

that is it shifts the curve of total cost up by the value BC

model with uniform demand for n, = 3.00 and B = 50 units.

2

By substitution one can obtain

2DC (n_+1)
—p 2 7
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;://2x1002x100x4 — 400 units
N LT
o n, +1
2
:y/gflgggiéilgg = 500 dollars/year

TC = 500 + BC
0 h

= 500 + 50 x 5

750 dollars/year.

And the decision range for 10 per cent increase in the total variable

cost above.its optimum is

0.6837736Qo<::Qw<::1.3162279Qo

z73<::bg<::525.

To find the net increase in the total cost follow as

TVC - TC - BC
W h

w I eme———
e~ 10 = T¢ TEG
o o h

1.10TC_ - 275 = TC - 500
o W
EEE = 1,10 - 25
TC ' TC.
o o

_1.10 x 750 - 25
B 750

825 - 25 .
=350 = 1.067.
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This last calculation shows the net increase in the total cost
function (including the cost of the buffering.stoéks).is only 6.7
per cent EorreSponding to 10 per cent increase in tﬁe total variable
cost above their optima.

The same results can be obtainedvfor'the model with shortage_and
procurement cost elements - power demapd pétterns. The only difference

is to substitute CS instead of Ch.

Model Involving Holding, Shortage and Procurement Costs

The same assumptions as in the similar model with uniform demand.

This model is represented in the following diagram Figure (17).

1ot Size Q

Time

Power ;ndex of demand curve n2<::1.00

—— = ~—— Power index-of déﬁand cu .
| ] | mand ¢ rve nz::>1.00

Figure (17). Power Demand, Purchasing, and Holding Shortage and
Procurement Cost Eléments Model
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The average values of the holding and the shortage units derived
in the previous model are used for this model. Thus the total cost

function is

TC

= HC + SC + RC
n,
ats S )
=—9-.——-—C +-2—-_3___S C +EC
n, + 1 h n, + 1 Q p
s& >
, ¥ 1(C +C ) + ————QC - SCs + Q Cp.

The total cost function is a function of two variables S and Q but these
two variables are related in a linear relatiomnship as it will be shown
later.

Differentiate partially with respect fo S anva; equate each of
the partial derivative to zero to obtain the optimum values So and Q ,
and again suBstitute with these two optimum values in TC equation to
obtain the optimum total cost TC, as | |

n

2
+1 S :
'aTc My
( ) -‘n2+l oz (Ch +-Cs) - C,

Q = constant
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n CD
+CS 2 . D
n +1 2

TC
o]

2
+CsQon2+l + Q
n
y Cs 1 nz
=Q°S C, *C n"']-_]'-’-(:Qon+1
h 2

CD

+ P
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= 2
CsQo n +1 +
2
CD
2
Qc
n
n2 g CS D
= QoCs n_+1 1 - Cc +C o Cp
2 _ s o
. pJ
) (n2+1)DC£ _ e 2 M, )
2 C ~ 2
ne 1- s ® (nytD)
2°s - C,+C
h s
) c,
1 - .
Ch+ Cs
Yo— Tt
N
p _2 S CnhtCs -
n.,+1) DC
(n, p

- Assume that errors Wy and w, have been associated with Qoﬂand S°

respectively in such a way that



. and

W,» W, are zeros or positive values,

By the same method as in the previous models the sensitivity

expression is

TVCw w + 1 W + 1
- 2
‘TVCO' 2w2 w

where

ITVC I = the absolute value of the optimum total variable
° cost to be consistent with the directions of the
axes, . :

The decision ranges are
0.683773690fE;Qw1fE§1.3}62279Q0

“and

0.683773§SofE§Sw2<::1.316227980

' C i : C
0.6837736Q, E—$E;<::Sw’<::l.3162279Qo 5 jch .
S — f — . S

140



The same results obtained in the previous purchasing model with uni-

form

and

Thus,

If n, = 1.00, that is the model has a uniform demand

2
. .c.s
50 ch+c
20C_
Q, 3 e C_
Cs( C +C )

2DC C.+C
- p.[/_h s
ch Cs
CH+CS-CS
TC, = 2DCPCS ( —E;;E;—- )

c

‘ s
- 2DCth CS+C

h

demand.

The relation between the two errors are

le ? leo

Sw2 = WZS0 .

Q

S S
Sw VZ So

141



Example: Solve the previous example at the end of the similar

“model with uniform demand for n, = 3.

By substitution in the results of the above model one can

obtain

(n2+1)DCR

_ [ 4x10,000x40
%16 1- 716
20
/100,000 =/ 462916
"/ 3x .072

= 686 units

TC =
o

. | 3
4x3 =
=[5 (10,000 (40) (16)| L - [ 55

1162 dollars per year.

142
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And the decision range is

(0.6837736)686<Qw<1. 3162279 (686)
469<Qw<904

and

435 <Sw<840 .
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Uniform Demand - Manufacturing or
Finite Replenishment Models

Lot Size Q

N B
: D
[+~
Q ‘ S
E Ry
Time T
|
—= T]_»—-T2 < T3 S T4 /
—=— T, s

Figure (18). Uniform. Demand - Manufacturing or Finite
Replinishment Model
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model can be represented in the following diagram, Figure (18).

the rate of Ehe_manufaéturing during the manufacturing

periods Tl and T2

the rate of the demand and it is less than R

the rate of the accumulation duriﬁg the manufacturing

periods Tl + T2

the manufacturing time periods while the shortage units
are occurred that is the inventory level is less than or
equal to zero units.

the manufacturing time periods while the holding units
are occurred that is the inventory level is greater than

‘zero units

theymanufacturing time periods

the remaining time periods of the cycle - when the replenish-
ment rate is zero

the time periods of one cycle
the lot size

the maximum inventory level and it occurs at the end
of the last manufacturing period

the maximum amount replenished and it occurs at the end

of the last manufacturing period

the maximum positive'shortage level and it occurs at
the beginning of manufacturing period.

the symmetry of the triangles in Figure 4-18 the following

can be obtained

R= -—L
T+,
R-D= —2_ .,
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Thus
I, +1T, R R-D °
And
_ _R-D
E Q-——R
=Q (1 -3)
_ E-S
T, =3
S
I, =37
S
I;=73
and
E-S
Iy=7% -

Models Involving Holding and Shortage Costs

Assume that this model involves a procurement cost as a constant,
DC

that is -62 is constant which consequently implies that Q and Tc

are constants. Thus, the total cdst function is
TC = HC + SC + PC.

The holding cost HC can be obtained by using the preceeding relations

discussed at the beginning of the manufacturing models as
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HC = (average holding amount) (holding cost factor)

The shortage cost HC can also

lations discussed at the beginning of the manufacturing models as

SC

be obtained by using the preceeding re-

]

It

T2+T3

T
c

(117

( (¢ )

| 1
@)+ T (5 ()

N w

S
( R-D *

(Y1)
(=317

D
IE-BICH

52 1

2 Q(L-D/R) Ch

(average shortage amount)(shortage cost

factor)

E-S ( T1+T4

2 T
c

)(C,)

E-S . 1
- (@, + T4)( f: )(Cs)

E-S

( E-S , E-§
2 R-D D

E-5)° 1 o
7 Q(I-D/R) s

D
+E2) (50
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Therefore, the total cost equation is

2 2
S (E-S) D
= S + =C .
TC = 3= C, ECstgC

According to the assumption, this TC function is a function of S only,
Thus, expand the function and inspect its. right hand side and apply
the results of the similar mathematical model in Chapter III as

2
S E D
= 2. (C + 2¢C += - .
TC = 35 (G +C) + 5 C_ o sC_

This is similar to the parabola versus the straight line model, Thus,

Cs
S = ——m——m—
+
o o (Cs Ch)
Eo Cs2 E D
= o — - = - C
e, 7 eHy 2%t %
h s
2
Eo CS
TVC = - = ———r
o 2 (Ch+CS)

For an error w::>0 associates with So’ the sensitivity expression is

TVC
—_—
’TVC ‘
o
where
ITVCol = the absolute value of the optimum total variable

" cost to be consistent with the directions Qf the
original axes.

And the decision range is

c : C
y S p S
0.6837736E _ G} <::sw<::1.;162278E0(CS+Ch) .

'

If this model has a procurement cost element which is not under the con-

tol of the decision maker, that is Q and TC are not constants, results
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Let

L]
]

= manufacturing periods in time units

T = the remaining periods of the cycle in time units
and

T + T

the cycle periods in time units.

Thus, the total cost equation can be obtained by using the preceeding

relations at the beginning of manufacturing models as

TC = HC + PC

" This is similar to the mathematical model - the straight line versus

the rectangular hyperbola in Chapter III. One can find that

2DC 1 -
Q= c, / (1-D/R)
TC, = frch j 2pc, C f/(1 - D/R)

for an error w 0 associates with Qd -the sensitivity expression is
1 . ,

-TVCw - w2+1
IIVC°| B 2w

where

ITVC l = the absolute value of the opt imum total
variable cost.
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Assume an error has been associated with E° in such a way that

t=
il

w_E
where
w, = zero or a positive value,

3

The corresponding value in TC due to this error is TCw as

Cth 1
TC. = w.E D(1-D/R)C
w3 370 Z(Cﬁ+cs) w3Eo p
DC Chc
. (1-D/R)

3 2(ch+cs)

. Decc '
+— —R21E (i-D/R)
L2 2(C5+Cs)

o %% /Ry (wy+ 1)
2(Ch+CS) Vg
2DC Chcs ' : w3 1
= T(Cc.¥C) (-D/R) (3 + 35,
h s 3
The sensitivity expression is
TVC 2
Wq } LA +1
‘TVCol 2w3

where
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and the decision range is

0.6837736Q°<Qw<1.3162279Q0

C

2nC | 2D -
-——P7—Ch BT SQWSL3162279 ——7——-Ch T .

Models Ynvolving Shortage and Procurement Costs

0.6837736

Results similar to the preceeding model can be obtained with

the only difference C_ is to be substituted instead of C,+

Models Involving Holding, Shortage, and Procurement Costs

The diagram of this model is similar to the Figure 4-18. The
total cost equation is

TC = HC + SC + PC

2 2
=5 (E-8)" D |
*ES%tTE %TT 5%

52 | E-5)> D(1-D/R
= 25— C +.$_:_l_ cC + D(1-D/R) C
2E h 2E s E P
5 .
_s° E D(1-D/R)
= 5= (C+C ) + 5 C_ - SC_ - = cp,

This TC equation is a fﬁnction of S and E. Thus, differentiate partially
the TC equation with respect to each S and E, equate each partial derivative
to zero, solve for the optimum value So %nd Eo’ and finally substitute

" with these two optimum values Sd and Eoﬁin TC to obtain the optimum

'total cost TCo as
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"OTCY _ 28 ‘N
(,as —-CS+2E(Ch+Cs)—0
E = constant
_ Cy
S =E
o o] Cs + Ch
.. 2 - - A..,-.
orc.) % s D(1-D/R) . _.
('EE) =37 -~ Gt - E Cp"o
S = constant
thus,
| Cs So2 D
— & =——o (C_ + C ) + ————— C .
2 2(°"h s Eoz(l-D/R) P
Substitute with the value of So in the last equation, Thus
c E2 c,’ D(1-D/R)
2s= 5 sz(ch+cs)+_; cp
- 2R (Cs+Ch) _
c 2 + C,. C C 2
- 2D(1-D/R) e s h's s
2 P (c_ + Ch)
B
o
- Chcs
CS+Ch

thus




Thus,

 [anc 'c'+c | o
— P . h s 1
Q=) C, C, (1-D/R)

c +CS 2 C

(@]

s
+ 2 Eo

8

' s
= E SR - S T A
v o» 2(Ch+CS> 2

(Ch+CS)
1 D
+ E; [(1-1)711) Cp:l

2 .
c _(c,+C )-c “}
Eo[ s h s s ]+ i:l— [D(l-D/R)cpJ
2(c,+C ) o
h's 1
[m] * E;[D“'D’R’Cp]

DC (c +C )(1 D/R)C c 2
(c ¢ ) 4(c +C )

2 s

2Dcp (€. +C) (1-D/R)

+ /D (1 D/R) cp

i;//DC C

1"D/R L
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TVC = TC

lTVC ' = the absolute value of the optimum
° total variable cost.

And the decision range is

' - 2pC (C,+C ) (1-D/R)
2DC” (C, +C_) (1-D/R) (G,
0.6837736 —RB—B 8 oy <1.3162279 — .
C.C ~ S c.C
h's — "3 1Cs

This médel is a general model for all models with a uniform replenish-
ment and a uniform demand patterns excluding the models involved holding
and shortage costs as variable elements in the_;otél cost fﬁnction. it
is easily to generate all other models from this general modél as
follows: |

For the general model the optimum values are

L o - zncp /ch+cs . 1
o CEJ/ C, (1-D/R)

or

vAnd

TC

or
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Ch
=[/2DC C LI (l-D/R) N
p s Cﬂﬂs

The last square roots in these two relations are due to the effect of
manufacturing or finite replenishment models over éhe infinite replenish-.
ment or purchasing models. If R approaches s the lést square roots
will equal 1,00 and the optimum values are for the purchasing models.
1f the model does not allow shortage units or holding units then

each median square root will equal 1.00 in the first two relations or
in the second twb reiations respectively. If the model has an infinite
replenishment and it does not allow shortage units or holding units
then the last square root is equal to 1,00 and each of the median
square roots in the first two relations or the second two relations

is equal to 1.00. By applying these different combinations one can

easily come to the same results derived before.

Factors Introducing Errors

If one assumes that there are errors occuriﬁg in estimating or
calculating the variébles, he would desire to know the parameters which
introduce these errors, lLet us assume that there are errors Wis Wo, and
LAY which have been associated with the oﬁtimum lot size Qo’ tﬁe optimum
inventory level at the beginning of the cycle period So’ and the maximum

amount replenished during the cycle Eo respectively. Thus for the

general model

1 [} t
_ S!l _ /bt qP Cy Csa €y +Cs (L-D'/R®)
v C_CY C_YTCHC (1-D/R)



=156

i °%*C  @-p/r)_
- 4 | 1] 1
2 c, ¢’ (1-D /R")
! ! t
. Ewgy _ /ot C'C G C '+ (1-D/R)
- = T T N /pi ..
3 E, D cp C,' €, GFC, (1-D /RY)

Where the parameter with prime indicates the over estimated or
the under estimated value while the parameter without prime indicates
exact estimated value,

By inspecting these ratios under the square roots one can conclude
that the parameters introduce these errors are thé demand, the procure=-
ment cost factor, the holding cost factor, the shortage cost factor,
the sum of the holding and shoftage cost factors, and the ratio of the rate
of the demand over the rate of ﬁanufacturing subtracted from 1,00. For-
tuhately these ratios are tending to balance each other if the estimator
is consistent with his estimates that is the estimator is overestimating
for all pa;ameters or underestimating for all parameters, Sometimes
if these ratios are well balanced the final calculation yields to the
optimum lot size éo and the optimum total cost TCo regardless of the errors
in estimating the parameters inside the i##entory system, Thgt is to
say there are errors inside the inventory system but due to the con-
sistency in the estimating of the ratios of the parameters are well

‘balanced and yields to an output optimum policy.



CHAPTER V
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In the summary, sensitivity analysis of decision3models, repre-
sented in continuous mathematical equations, are obtained through the
using of the matheﬁatical techniques, differentiation, or partial
derivati&e, and transformation. The differentiation or the partial
derivative is used for providing the optimum solution if it exists.
The transformation is used to eliminate the constant term or terms from
the original equation due to the fact that the curvature of the curve
or the shape of the surface is only affected by the variable parts in
the equation., General sensitivy expression for any decision model can
now be obtained by eliminating this constant term or terms by dividing
and the transformed function by the absolute transformed optimum value

YO' or TCy' or TPOf . The absolute value is used as a devisor to
be consistent with the original directions of the axes,

Chapter III discussed groups of mathematical models or decision
models. Each model in the first group can be represented as a one
standard curve. In the second group each model can be represented as
a summation of two different standard curves, the first curve is an
increasing function while the second is a decreasing one.

In the last group, each model can be represented as a summation
of three different standard curves; one of them is an increasing

function and the others are decreasing ones and vice versa. The
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assumption of one increasing function and the other(s) is (are)
decreasing one(s) and vice versa is important for providing the
optimality. The management is not only interested in the optimum
values but they are also interested in the sensitivity of these ﬁodels
around these optimum values. Tables I, II, III, IV, ‘are the summary
of the mathematical models and their sensitivity expressions. They
show that general sensivity expressions are achieved; three for the
one standard curve models, nine for summation of two standard curves
models, five for summation of two standard curves models, and three for
summation of three standard durves models. The third table is referred
to maximization while the others are referred to minimization.
Chapter IV seeks the application of the Chapter IIT models in
decision making process areas. Although the application is devoted
to the inventory models but it can also be. applied in other areas such
as the replacement and the retirement models, the queuing models and
S0 on.
One can itemize the decision models into the following conclu-
sions:
a. Most of the ordinary decision models have the characteristics
that the upper ranges of the decision models are flatter than
" in the lower ranges.
b. Quadratic functions' decision models have equal decision range
limits from the optimum values.
c. Decision models, containing one of their summation curves as
a third degree equation or more have the characteristic that
the lower ranges are flatter than in the upper ranges, and

sometimes the sensitivity in the upper ranges is very high.
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The flatness is reduced if the other curve(s) in the models
is (are) rectangular hyperbolas or reciprocal of quadratic
functions.

Although the decision range is varied from one model to
another, all of them are very satisfactory for the same pre-
determined allowance increase or decrease above or under the
optimum.

Care and caution have to be exercised in handling the holding
and shortage cost elements models in the inventory system.
The sensitivity expression is a special one and vefy sensi-
tive especially when the ratio of the holding cost factor
over tﬁe shortage cost factor is high.

Appendices A and B provide complete evaluations and decision
ranges for + 10 per cent above or under the optimum of the

variable parts in the decision model,

The following recommendations are suggested for further studies

and investigations:

a.

b,

Sensitivity analysis for discrete decision models.
Sensitivity analysis for more than one independent.éecision
variable,

Application of the sensitivity analysis upon the replacemernt
and the retirement models.

Application of the sensitivity analysis upon the queuing
models.

Application of the sensitivity analysis upon the linear

programming models.

Finally, the sensitivity analysis emphasizes that there is a wide
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range for making decision around ﬁhe optimum.value while the net yield
in the objective function is insignificant. This fact fortuﬁately
meets the management's dynamic needs and liquidates the enormous
problems facing the management in searching the exact parameters and
consequently the mathematical optimum point as it was mentioned in

Chapter I.
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APPENDIX A
COMPLETE EVALUATION OF MINIMIZATION
OR COST FUNCTIONS AND THE LIMITS
OF DECISION RANGES FOR 107% INCREASE
IN THE TOTAL VARIABLE COST ELEMENTS
ABOVE ITS OPTIMUM VALUE
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APPENDIX A
COMPUTER PROGRAMS
FOR
MINIMIZATION OR COST FUNCTIONS

In Chapter III - models as a summation of two different standard.
curves - nine minimization or cost functions had been derived and it
was shown that these functions after transformation'(if needed) are
functions of the error w which was associated with the optimum value
of independent variable X, .  The transformation was used only when the
function contained a constant term. vThe representations of a constant
term in the decision models are the buffering stock cost in the
inventory models, the first period maintenance or operating cost in
the gradient maintenance or operating cost throughout the asset life
for the retirement or replacement models, the unit variable cost of the
linear relationship in the marginal or incremental production models
and so on.

These nine minimization or cost functions are evaluated on the
digital computer (Computer Program I) for an error w varying from 0.05
to 3.95 with an incremental error w = 0,05, At w = 1.0 which is cor-
responding to the mathematical optimum point (minimum point) (X, Yo),
the value of the transformed dependent variable (total variable cost
elements) is the optimum ome (Y, ' or TVC,') its absolute optimum value

(¥,' or TVCO') and this is equal to + 1.00. The value of + 1,00 refers

)
to a positive optimum transformed value (Y,') or a positive optimum of
the total variable profit elements (TVPO'), otherwise the value is -
1.00.

The limits of the minimization or the cost functions' decision

ranges were obtained for a predetermined allowance of 10% increase in
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the total variable elements of the cost function above its optimum
(Yo' or TVC,') through the Computer Program II and by using a sub-
routine program,

The complete evaluations of these cost functions are given in
Tables V to XIII. The limits of cést functions' decision rénges are
given in Table XIV,

The graphs of these minimization or cost functions are drawn in

Figure 19 through 27.
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I. COMPUTER PROGRAM FOR EVALUATING
MINIMIZATION OR COST FUNCTIONS

Abouel-Nour

EVALUATION OF 9 FORMULAE FROM .05 to .4. IN INCREMENTS OF ,005
C-ARRAY IS LOWER STRADDLE OF ROOT, D-ARRAY IS UPPER STRADDLE
SLIM= STARTING VALUE FOR EVALUATION

ADD = INCREMENT FOR EVALUATION

NIT= No. EVALUATIONS TO BE MADE

NF= NO. FORMULAE

DIMENSION C(2,10),D(2,10),W(99),Y(99)

READ (1,101)SLIM,ADD,NIT,NF

WRITE (3, 101), SLIM, ADD, NIT, NF

FORMAT(2F10 5,215)

DO 2 J=1,9

READ (1, 102) (C(I 1, D(1,J),1=1,2)

WRITE (3,102) (C(I, J),D(I, J) 1=1,2)

FORMAT (4F5.3)

DO 3 J=1,NF

IF(I-1)3L, 31,32

W(I)=0.05

GO TO 33

W(I)=W(I-1)+ADD

WW=W (1)

SRTW=SQRT (WW)

EVALUATE THE FUNCTIONS, PRINT OUTPUT, FIND ROOT
Go 1T0(5,6,7,8,9,10,11,12,13),J

Y(I)=WW -2.%SRTW

GO TO 4

Y(I)= ((WW*WW)+1)/(2.0% WW)

GO TO 4

Y(I) = WW *WW -2, % WW

GO TO 4

Y(I)=(WW * WW)/3.0-( 4.0/3.0)* SRTW
GO TO 4

Y(I)= (WW WW)/3.0 + 2./ (3%UWW)

GO TO 4

Y(I)= 5% WWs%3 - 1,5%WW

GO TO 4

Y(I)= -1.2%SRTW + (WW%*3)/5.

GO TO 4

Y(I)= WWx*3/4 + 3,0/ (4.0%WW)

GO TO 4

Y(I)= (2.0/3.0)*wW + 1. 0/ (3. Oxww*WW)
CONTINUE

GO TO(14,15,16,17,18,19, 20, 21 22),J
"WRITE HEADINGS AND OUTPUT ;
WRITE (3,114)

FORMAT ('l SENSITIVITY ANALYSIS OF STRAIGHT LINE VS. PARABOLA MODEL
1'//20X,"' FUNCTION... Y= W-2%¥SQRT(W)' ..10X,'ERROR W', 10X'TOTAL
2VALUE ') :



23
30
15
115

16
116

17
117

18
118

19
119

20
120

21
121

22
122

3
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WRITE (3, 30) (W(K),Y(K),K=1,NIT)

FORMAT (5X,F10.5,12X,F12.6)

GO TO 3
WRITE(3,115) ' ,

FORMAT('1l SENSITIVITY ANALYSIS OF STRAIGHT LINE VS. RECTANGULAR HY
LPERBOLA MODEL'//20X, 'FUNCTION... Y=(W#W+1)/2u' / /10X, "ERROR
2W',10%,' TOTAL VALUE')

GO TO 23
WRITE (3,116)

FORMAT('l SENSITIVITY ANALYSIS OF PARABOLA VS. STRAIGHT LINE MODE
11.',//20X, '"FUNCTION ... Y=WAW - 2’ //10X,' ERROR W', 10X, 'TOTA
1L VALUE')

GO TO 23
WRITE (3,117)

FORMAT('1l SENSITIVITY ANALYSIS OF PARABOLA VS. PARABOLA MODEL',//
120X, ' FUNCTION... Y =(W*W)/3-(4/3)*SQRT(W)'//10X'ERROR W', 10X'TOTAL
2VALUE')

GO TO 23
WRITE(3,118)

FORMAT('l SENSITIVITY ANALYSIS OF PARABOLA VS. RECTANGULAR HYPERBO
1LA MODEL'//20X' FUNCTION... Y = (W*W)/3 + 2/3W',//10X,' ERROR W', 10
2X,' TOTAL VALUE')

GO TO 23
WRITE (3, 119)

FORMAT(*1 SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS, STRAIGHT LI
INE'// 20X' FUNCTION... Y= .5W#*3 - 1,5W '//10X'ERROR W', 10X'TOT
2AL VALUE')

GO TO 23
WRITE (3, 120)

FORMAT ('l SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS. PARABOLA'//

120X, "' FUNCTION... Y= -1.2%SQRT(W)+ W**3/5.'// 10X,'ERROR W', 10X 'T
20TAL VALUE')

GO TO 23

WRITE (3, 121)

FORMAT ('1 SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS. RECTANGUIAR
1 HYPER BOLA®' // 20X,'FUNCTION... Y+ Wx%3/4 + 3/4W' // 10X, 'ERROR W

2', 10X'TOTAL VALUE')

GO TO 23

WRITE (3, 122) -
FORMAT ('1 STRAIGHT LINE VS. RECIPROCAL OF QUADRATIC FUNCTION'//20X
1, '"FUNCTION... 2/3 W + 1/3w*W'// 10X'ERROR W', 10X, 'TOTAL VALUE')

GO TO 23 ‘

CONTINUE

STOP
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II. COMPUTER PROGRAM FOR OBTAINING LIMITS OF MINIMIZATION
OR COST FUNCTIONS' DECISION RANGES FOR A PREDETERMINED
ALLOWANCE 107, INCREASE ABOVE ITS OPTIMUM

Aboue l-Nour

FUNCTION F (X, JFW)

Go To (1,2,3,4,5,6,7,8,9),JFW
F=X-2.%SQRT (X)+1.10

GO TO 10

F=X*X-2.,2%X+1,0

GO TO 10

F=X*X-2.%X+.9

GO TO 10

F=X*X-4,%SQRT (X)+2.7

GO TO 10

F=X#*%3 - 3,3%X +2

GO TO 10

F= X*%3-3%X+1.8

GO TO 10
F=X#%%3-6.%SQRT (X) + 4.5
GO TO 10

F=X*%4 - 4,4%X + 3.0

GO TO 10

F=2.%X#%3 - 3,3%X*X + 1.0

. RETURN

END

COMPIIATION

DIMENSION C(2,10),D(2,10)

DO 2 J=1,9

READ (1,102) (C(I,J),D(I,J),I=1,2)
WRITE (3,102) (C(I,J),D(I,J),I=1,2)
FORMAT (4F5,3)

DO 3 J=1.9

DO 26 I=1,2

A=C(1,J)

B=D(I,J)

N1=5

N2=50

El=.0005

E2=.0005

JX=J

CALL RTFIND(A,B,X,Y,E1,E2,NL,N2,N, JX)
WRITE (3,25) X,Y,N,J

FORMAT (//' LIMIT =',E15.8,' Y=',E15.8,'

115)
CONTINUE
STOP
END

N=',110, '"FORMUIA NO.',
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BEGIN COMPILATION
SUBROUTINE RTFIND(A,B,X,Y,E1l,E2,N1,N2,N, JFW)
JFW=JFW : :
N=0

. F1=F (A, JFW)
F2=F (B, JFW)

IF (F1*¥F2)1,11,20
IF(F1)2,3,3
2 FM=Fl
XM=A
FP=F2
XP=B
GO TO 4
3 FM=F2
XM=B
FP=F 1
XP=A
4 N=M1
IF (N-N1)5,5,21

5  C=FP*( XP-XM)/(FP~FM)

X=XP-C

Y=F (X, JFW)

IF(ABS(C)-E1)6,6,8

IF (ABS(Y)-E2)7,7,8

RETURN

1F(Y)9, 10,10

FM=Y

XM=X
10 FP=Y

XP=X
11  IF(F1)12,13,12
12 X=B
Y=F2
GO TO 7
13 X=A
Y=P1
GO TO 7
20 WRITE(3,300)
300 FORMAT(' NO STRADDIE')
X1=A
X2=B
GO TO 24
21  IF(FM-Y)22,23,22
22 F2=FM
X2=XM
GO TO 24
23  F2=FP
X2=XP
24 N=0
. Fl=y
X1=X
25 N=N+1
IF (N-N2)26, 26,30

—

O o~



.26

27
28

30
301

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

LiMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

LIMIT

C=( (X1-X2)/ (P1-F2) )*F1

X=X1-C
Y=F (X, JFW)

IF (ABS(C)-E1)27,27,28

F2=F1
X2=X1
Fl=Y
X1=X

GO TO 25

WRITE (3,301)Y,X,N
FORMAT (' CONVERGENCE INCOMPLETE.

- IF(ABS(Y)-E2)7,7,28

1 FOR '15,' ITERATIONS')

GO TO 7
END

0.46755546E
0.17324524E
0.64174318E
0.15582561E
0.68377364E
0.13162279E
0.57330710E
0.14612770E
0.71867669E
0.13473911E
0.72930038E
0.12479858E
0.62527692E
0.13537807E
0.75613230E
0.12664232E
0.74211115E

0.13919315E

00
0l
00
0l
00
01
00
01
00
0l
00
01
00
0l
00
01

00

o1

-0.49471855E-05
:0.35762787E-06
0.0
-0.95367432E-06
-0,71525574E-06
-0.59604645E-06
-0.95367432E-06

-0.95367432E-06

-0.43773651E-03

-0.25177002E-03
~-0,95367432E-06
~0.26035309E~03

-0,95367432E-06

-0.21934509E-04

-0.99182129E-04
0.95367432E-06
0.0

0.0

LFORMULA
1FORMULA
LFORMULA
1IFORMULA
LFORMULA
1FORMULA
LFORMULA
LFORMULA
IFORMULA
LFORMULA
LFORMULA
1FORMULA
LFORMULA

1FORMULA

. 1FORMULA

3FORMULA
SFORMULA

S5FORMULA

NO.
NO.
NO.
NO.
NO.
No.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.

NO.
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TABLE V

SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

?

éﬁ’T —2 [
%l

PARAROLA VERSUS STRAIGHT LINE MODEL

172

Error Value Error Value
w vy ' w Yy !
W W
%] %]

0.05 -0.,397214 2.10 -0.798280
0.10 ~0.532455 2,15 ~-0,782580
0.15 -0.624597 2.20 -0.766484
0,20 -0.694427 2,25 -0.750007
0.25 -0,750000 2,30 -0.733157
0,30 -0.795445 2,35 -0.715949
0.35 -0.833215 2,40 -0,698394
0.40 -0.864910 2.45 -0.,680503
0.45 -0.891640 2,50. -0.662286
0.50 -0.914213 2.55 -0.643752
0.55 -0,933240 2,60 -0.624911
0.60 ~0,949193 2.65 «0,605773
0.65 -0:972451 2,70 -0.586345
0.70 =-0,973319 2,75 -0.566634
0.75 -0,982051 2.80 ~0,546651
0.80 -0,988854 2.85 -0.526399
0.85 -~0.993908 2.90 -0.505889
0.90 -0.997366 2.95 -0.485126
0.95 -0.,99359 3.00 -0.464114
1.00 -1.00000 3.05 -0.442863
1.05 -0.999389 3.10 -0,421376
1.10 -0,997617 3.15 =0.399661
1.15 =0.,994760 3.20 =0,377723
1.20 -0.990890 3.25 -0.,355567
1.25 -0.986068 3.30 -0,333196
1.30 -0.980351 3.35 -0.310616
1.35 =-0,973790 3.40 -0,287833
1.40 ~0.966432 3.45 -0,264852
1.45 -0,958320 3.50 -0.241675
1.50 -0.949491 3.55 -0.218307
1.55 -0,949981 3.60 ~0,194751
1.60 =0,929824 3.65 -0.171014
1.65 =-0,919047 3.70 =0,147096
1.70 -0.907683 3.75 -0.123004
1.75 -0.,895753 3.80 -0.098739
1.80 -0.883285 3.85 -0,074304
1.85 -0.,870297 3.90 =0,049705
1.90 ~-0,856812 3.95 -=0,024943
1,95 -0.842851

2.00 -0,828431

2,05 -0,813569



TABLE VI
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

STRAIGHT LINE VERSUS RECTANGULAR HYPERBOLA MODEL

173

?
Eﬂ_ _ wz+l
|YO"| T 2w
Error Value Error Value
w vy ! W v !
v W
% %]
0.05 10.024999 2.10 1.288088
0.10 5.049997 2,15 1.307550
0.15 3.408332 2.20 1.327265
0.20 2.599998 2.25 1.347214
0.25 2.124999 2,30 1.367382
0.30 1.816667 2,35 1.387756
0.35 1.603572 2,40 1.408323
0.40 1.449999 2.45 1.429071
0.45 1.336111 2.50 1.449989
0.50 1.250000 2.55 1.471067
0.55 1.184091 2,60 1.492296
0.60 1.133333 2.65 1.513667
0.65 1.094231 2.70 1.535173
0.70 1.064285 2.75 1.556806
0.75 1.041666 2.80 1.578558
0.80 1.,025000 2.85 1.600426
0.85 1.013235 2.90 1.622400
0.90 1,005555 2.95 1.644477
0.95 1.001316 3,00 1.666652
1.00 1.,000000 3.05 1.688920
1.05 1.001190 3.10 1.711275
1.10 1.004544 3,15 1.733714
1.15 1.009781 3.20 1.756234
1.20 1.016665 3.25 1.,778830
1.25 1.024999 3,30 1.801498
1.30 1.034614 3,35 1.824237
1.35 1.045368 3.40 1.847041
1.40 1.057140 3.45 1.869909
1.45 1.069825 3.50 1.892838
1.50 1.083330 3.55 1.915826
1.55 1.097577 3.60 1.938869
1.60 1.112496 3.65 1,961967
1.65 1.128026 3.70 1,985115
1.70 1.144114 3.75 2.008313
1,75 1.160709 3,80 2.031558
1.80 1.177773 3.85 2.054849
1.85 1.195265 3.90 2.078182
1.90 1,213152 3.95 2,101559
1.95 1.231404
2.00 1.249993
2.05 1.268895



TABIE VII
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

PARABOLA VERSUS STRAIGHT LINE MODEL

174

Error Value Error Value
w y'! W v !
< LA
1% 1 %o
0.05 -0.097500 2.10 0.209961 "
0.10 ~-0.190000 2,15 0,322457
0.15 -0.277500 2.20 0.439953
0.20 -0.360000 2.25 0.562449
0.25 -0.437500 2,30 0.689945
0.30 -0.510000 2,35 0,822441
0.35 -0.577500 2.40 0.,959937
0.40 ~-0.640000 2:45 1.102432
0.45 -0.697500 2.50 1.249928
0.50 -0.750000 2,55 1,402423
0.55 ~0.797499 2.60 1.559918
0.60 -0.839999 2,65 1.722413
0.65 -0,877499 2,70 1.889908
0.70 -0.910000 2,75 2,062403
0.75 ~-0.937499 2.80 2.239897
0.80 «-0.960000 2.85 2.422392
0.85 -0.977499 2.90 2.609886
0.90 -0,990000 2,95 2,802380
0.95 ~-0.,997499 3.00 2,999874
1.00 -1.000000 3.05 3.202368
1,05 -0.997500 3.10 3.409861
1.10 -0.990001 3,15 3,622355
1.15 -0.977502 3.20 3.839848
1,20 -0.960002 3,25 4,062341
1.25 -0,937503 3.30 4,289834
1.30 -0.910004 3.35 4,522326
1.35 -0.877505 3.40 4,759819
1.40 -0.840006 3.45 5.002312
1.45 -0.797507 3.50 5.249804
1.50 -0,750009 3.55 5.502296
1.55 -0.697511 3.60 5,759789
1.60 ~-0.640013 3.65 6.022280
1.65 -0.577515 3.70 6.289772
1,70 -0.510016 3.75 - 6.,562263
1,75 -0.437519 3.80 6.839755
1.80 -0,360022 3.85 7.122246
1.85 -0,277524 3.90 7.409738
1.90 -0,190027 3.95 7.702229
1.95 -0.097529
2,00 -0.000032
2,05 0.102464



TABLE VIII

SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

PARABOLA VERSUS PARABOLA MODEL

175

' -0.50§224

]
v w4
|Yo“| T3 3
Error Value Error Value
w y ! W vy !
7. s
% %]
0.05 ‘=0,297309 2.10 -0.462199
0.10 ~0.418303 2,15 -0,414233
0.15 -0.508897 2.20 -0,364338
0.20 -0,582951 2,25 -0.312521
0.25 -0,645833 2,30 -0.258789
0.30 -0.700296 2,35 -0,203152
0.35 -0,747977 2.40 -0,145617
0.40 ~-0,789940 2,45 -0,086190
0.45 -0,826927 2.50 -0,024880
0.50 -0,859475 2.55 0.038307
0.55 -0,887993 2.60° 0.103366
-0.60 -0,91279% 2.65 0.170290
0.65 -0,934133 2.70 0.239073
220,70 -0,952212 2,75 0,309712
. 0.75 -0,967200 2,80 .0,382198
0.80 -0.979236 2.85 0.456532
0.85 -0,988438 2.90 0.532703
0.90 ~0,994910 2,95 00.610710
0.95 -0.998738 3,00 ° 0.690550
1.00 -0.999999 3.05 0.772215
1.05 -0,998758 3.10 0.855703
1.10 -0,995077 3.15 0.941011
1,15 -0,989006 3,20 1,028135
1,20 -0,980593 3,25 1.117070
1.25 -0.969878 3.30 1.207814
1.30 -0,956901 3.35 1,300364
1.35 -0,941695 3.40 1,394718
1,40 -0.924289 3,45 1.490870
1.45 -0,904715 3.50 1.588819
1.50 ~-0,882996 3.55 1.688562
1,55 -0,859156 3.60 1.790096
1.60 -0,833219 3.65 1.893418
1.65 -0.805202 3.70 1,998528
1,70 -0,775127 3.75 2,105419
1.75 -0,743008 3.80 2.214093
1.80 -0,708863 3.85 2.324547
1.85 -0.672706 3.90 2.436777
1,90 -0,634550 3.95 2.550781
1.95 ~0,594409
2.00 -0,552298
2.05



TABLE IX

SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

PARABOLA VERSUS RECTANGULAR HYPERBOLA MODEL

176

vy ! 2
woo_w .2
|§;Tl T 737 3w
Error Value Error Value
W Y ' w v !
W ¥
B B
0.05 13.334167 2,10 1,787437
0,10 6.670002 2,15 1.850886
0+15 4,451946 2,20 1.916337
0.20 3.346667 2.25 1.983768
0.25 - 2.687501 2,30 2,053158
0.30 2.252223 2,35 2,124490
0.35 1.945597 2.40 2,197743
0.40 1.720000 2.45 2.272906
0.45 1.548982 2.50 2.349961
0.50 1.416668 2.55 2.428898
0.55 1.312955 2,60 2,509702
0.60 1,231111 2,65 2.592361
0.65 1.166474 2,70 2.676867
0.70 1,115715 2,75 2.763208
0.75 1.076389 2.80 2,851377
0.80 1.046666 2,85 2.941364
0.85 1.025146 2,90 3.033162
0,90 1.010740 2,95 3.126762
0.95 1.002587 3.00 3.222161
1.00 1.000000 3,05 3.319348
1,05 1,002419 3,10 3.418320
1.10 1.009393 3.15 3.519071
1.15 1.020542 3,20 3,62159%
1.20 1,035554 3.25 3,725886
1,25 1.054164 3,30 3,831942
1.30 1.076151 3,35 3,939757
1.35 1.101323 3,40 4.,049328
1.40 1,129519 3.45 4,160649
1.45 1.160598 3.50 4,273719
1.50 1.194438 3.55 4 ,388534
1.55 1.230933 3,60 4.505089
1.60 1.269991 3.65 4.623382
1.65 1,311530 3.70 4, 743410
1.70 1.355479 3,75 4,865171
1.75 1,401773 3.80 4,988662
1.80 1.450356 3.85 5,113880
1.85 1.501179 3.90 5.240824
1.90 1.554193 3495 5.369490
1.95 1.609363
2.00 1.666647
2.05 1.726015



TABIE X

SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS

CUBICAL PARABOI.A VERSUS STRAIGHT LINE MODEL

177

Yy ! 3
w_oo_¥» 3
5] 2 7"
Error Value Error Value
W y ! W y !
- L
Yo Yo |
0.05 -0.074937 2.10 1.480410
0.10 -0, 149500 2,15 1.744087
0.15 -0,223312 2,20 2,023888
0.20 -0,296000 2.25 2,320189
0.25 -0.367187 2,30 2.633366
0.30 «0,436500 2.35 2,963791
0.35 -0.503562 2,40 3.311840
0.40 -0, 568000 2,45 3.677888
0.45 -0,629437 2.50 4,062312
0.50 -0,687500 2,55 4465481
0.55 -0,741812 2.60 4,887774
0.60 -0,792000 2.65 5.,329575
0.65 -0,837687 2.70 5,791243
0.70 -0.878499 2,75 6.273159
" 0.75 -0,914061 2,80 .6.775705
0.80 -0,944000 2.85 7.299248
0.85 -0,967937 2.90 7.844160
0.90 -0,985500 2,95 8.,410831
0.95 -0,996312 3.00 8.999620
1,00 -0,999999 3.05 9,610909
1,05 ~-0,996188 3.10 106.245070
1.10 -0.984501 3,15 10,902485
1.15 -0,964564 3.20 11,583521
1,20 -0.936003 3.25 12,288551
1425 -0,898442 3.30 13,017965
1.30 ~0,851506 3.35 13,772114
1.35 -0.794821 3.40 14,551394
1.40 -0,728010 3,45 15.356171
1445 -0,650701 3.50 16,186813
1.50 -0,562516 3.55 17.043732
1.55 -0.463082 3.60 17.927261
1.60 -0.352024 3.65 18.837784
1.65 -0.,228966 3.70 19,775681
1,70 -0.093534 3,75 20,741333
1.75 0.054648 3,80 21.,735107
1.80 0.215956 3.85 22,757385
1.85 0.390761 3.90 23,808517
1.90 0.579442 3.95 24,888916
1,95 0.782372
2,00 0.999928
2,05 1.232480



178

TABLE XI
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS
CUBICAL PARABOLA VERSUS PARABOLA MODEL

Yy ' 3
W% 6~
|Y "| 5 5
0
Exror Value Error Value
w . vy! w vy !
W W
%] %]
0.05 -0,268303 ' 2,10 0.113196
0.10 <0.379273 2,15 0.228086
0.15 =0.464083. 2,20 0.349665
0.20 «0,535056 2,25 0.478072
0.25 -0.,596875 2,30 0.613452
0,30 =0,651867 2,35 0.755947
0.35 - =0,701354 2,40 0,905700
0.40 -0,746146 2.45 1.062854
0,45 -0.786759 2,50 145227554
0.50 =0.823528 2.55 1.399941
0.55 -0.,8356668 2.60 1.,580163
0.60 -0.886316 2,65 1.768366

65 -0.912546 2.70 1.964690
70 =«0.935391 2.75 2.169283
75 -0.954855 2.80 2,382292
80 ~-0,970912 2.85 2.603860
85 =0.983520 2.90 - 2.834131
90 -0,992620 2.95 3.073257
95 -0.998139 3,00 3.,321380
00 ~0,999999 3.05 3.578646
05 ~0,998108 3,10 3.845202
10 -0,992370 3,15 4,121197
15 ~0,982681 3.20 4.406775
20 -0,968934 3,25 4,702080
25 -0,951016 3,30 5.007269
30 ~0,928813 3.35 5.322478
35 -0,902202 3.40° 5.,647861
40 -0,871063 3.45 - 5,983561
45 -0,835271 3.50 6.329729
50 «0.794700 . 3655 6.,686513
55 ~-0.749221 3,60 7.054058
60 -0,698703 3.65 7.432508
65 -0,643014 3.70 7.822021 - -
70 -0.582022 3.75 8.222735
75 -0.,515592 3.80 8.634804
80 -0.443588 3,85 . 9.058372
85 -0,365874 3.90 9.,493589
90 -0.282310 3,95 9,940605
95 -0.,192760

00 -0,097088

05 0,004851



TABLE XiT

SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS
CUBICAL PARABOILA VERSUS RECTANGULAR HYPERBOLA MODEL

Y ?
w

51T

3
Yo+

3

179

Exrror Value Error Value
w v ! w v !
w W
%] 7
0.05 15.000031 2,10 2,672337
0.10 7.500252 2,15 2.833369
0.15 5.000845 2,20 3.002841
0.20 3,752002 2,25 3.180915
0.25 3.003907 2,30 3.367757
0.30 2,506751 . 2,35 3.563530
0.35 2.153577 2,40 3.768406
0,40 '1,891001L 2.45 3.982551
0.45 1,689448 2.50 4,206140
0.50 1.531250 2.55 4,439342
0.55 1.405231 2.60 4,682331
0,60 1.304000 2.65 4,935288
0.65 1.222503 2.70 5.,198381
0,70 1,157179 2,75 5.471788
0.75 1.105469 2.80 5.755691
0.80 1.065500 2.85 6,050261
0.85 1.035884 2.90 6.355680
0.90 1.015583 2,95 6,672132
0.95 1.003818 3.00 6,999788
1.00 1.000000 3.05 7.338834
1,05 1.003691 3,10 7.689447
1.10 1,014566 3.15. 8.051814
1.15 1,032391 3.20 8.,426111
1.20 1,056997 3.25 8.812520
1.25 1.088277 3.30 9,211230
1.30 1.126168 3.35 9.622416
1.35 1,170642 3.40 10.046263
1.40 1,221705 3.45 10.482953
l.45 1.279387 3.50 10.932675
1.50 1,343738 3.55 11.395611
1.55 1.414825 3,60 11,871940
1.60 1,492733 3.65 12.361846
1.65 1,577557 3.70 12,865520
1.70 1.669403 3.75 13.383142
1.75 1.768388 3.80 13,914896
1.80 1.874637 3,85 14.460966
1.85 1.988277 3.90 15.021541
1.90 2,109448 3.95 15.596805
1.95 2,238292
- 2,00 2.374954
2,05 2.519583
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TABILE XI1II
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS
STRAIGHT LINE VERSUS RECIPROCAL OF QUADRATIC FUNCTION MODEL

?
I S
IYo l 3 3w2
Error Value Error Value
W Y ! w !
_ W : W
%] %]
(.05 133,366714 , 2,10 1.475574
0.10 33.400024 ! 2,15 1.505432
0.15 14.914841 2.20 1.535524
0,20 8.466679 2.25 1.565830
0.25 5.500008 2,30 1.596332
0.30 3.903709 2.35 1.627011
0.35 2.954428 2,40 1.657855
0.40 2,350003 2.45 1.688850
0.45 1.946093 2.50 1.719984
0.50 1.666669 2,55 1,751245
0.55 1.,468596 2.60 1.782625
0.60 1.325927 2,65 1.814116
0.65 1.222289 2,70 1,845706
0.70 1,146939 2.75 1.877392
0.75 1.092593 2,80 1.909164
0,80 1,Q54167 2.85 1,941018
0.85 1,028023 2,90 1.972948
0.90 1,011522 2,95 2,004949
0.95 1.002678 3.00 2,037015
1.00 1.000900 3.05 2.069144
1.05 1.002342 3.10 2,101330
1.10 1.008815 3.15 2,133571
1.15 1.018713 3,20 2,165862
1,20 1.031480 3.25 2.198200
125 1.046664 3,30 2,230584
1,30 1.063903 - 3.35 2.263010
1.35 1.082896 3.40 2.295476
1.40 1.103398 3.45 2.327979
1.45 14125204 3.50 2.360518
1.50 1.148144 3.55 . 2.393089
1.55 1.172071 3.60 2,425693
1.60 1.196869 3.65 2.458325
1,65 1.,222429 3.70 2,490987
1.70 1.248666 3,75 2.523674
1.75 1.275502 3.80 2,556387
1.80 1.302872 3.85 2,589125
1.85 1330719 3.90 2.621884
1.90 1.358993 3,95 2.654666
1.95 1.387651
2,00 1.416656
2.05 1.445973



107 INCREASE IN THE TOTAL VARIABIE COST ELEMENTS ABOVE ITS

TABLE XIV
LIMITS OF MINIMIZATION OR COST FUNCTIONS' DECISION RANGES

FOR

OPTIMUM (¥_')

Y:Ax3am+c

No. Type of Optimum Values Decision Range
the Model Xo’ Yo for 10% Increase
Lower - Upper
. i. Straight line vs. 2 9
' parabola A c -4 0.467555 1.7324
- 1/2 2’ " T &M - s -7 Szxo
Y = MX - B(X) +C 4M
2, Straight line vs. : B 1/2 1/2
rectangular hyperbola (;‘E) s C = 2(MB) 0.641743X° 1.558256X°
B N .
= = 4
Y MX + X C
3 Parabola vs. straight 2
line M M
2 25 ° C - Za N 0.683774X 1.316228%
Y=Aa"-M+C ° e
4, Parabola vs. parabola B 2/3 3 B4 1/3
y = AXZ _ B(X)1/2 +c (-4—& s C = Z(H) 0.573307X° 1.l+61277Xo
5 Parabola vs., Rect B 1/3 . 1/3
. a . v D - 2 |
hyperbola (3P - C - 1.889(aB2) ) 0.718677X 1.347391X
2 B
= =+
Y AX© + X C
6. Cubical parabola vs. " 1/2 2 M3 1/2 :
éstralght llpe (EK s C = 3 EK) 0.729300X° 1.247986Xo

8t



TABLE XIV (CONTINUED)

No. Type of Optimum Values Decision Range
the Model Xo, Yo for 10% Increase
Lower Upper
7. Cubical parabola vs. B 2/5 5 56 1/5
’ parabola (6—) y C == (=~ : 0.625277X 1,353781X
3 1/2 A 6 "6A [¢] [¢)
Y=AX -BX) " +¢C
8. Cubical parabola vs. [y 4 5 114 :
Rect. hyperbola &(ﬁ) , C+ 1.74 (aB°) 0.756132x  1.26642K
1= +2+¢ .
X
9, Straight line vs.
= 28, /3 3 omy >
== = (2BM
%2 G s C+ 5 (2B 0.74211X 1.391932X

8T



183

W

fﬂ -
[»]

A = Lower. limit = 0.467555 X,
B = Upper limit = 1.732452 X,
<

2X

Decision Variable (X)

2,0

N

Error (w)

Decision Range for an
Allowance +10%

YW
——r=—09
Yol

v !

0...

o= -1.0

Figure (19). Cost (Minimization) Functions Straight Line vs

Parabola Model
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A = Lower limit = 0.641743 X
. B = Upper limit = 1.558256 X,
Y [
ey
]
Yol
Decision Range for an
Allowance +10%
Y Yy
[
B
o //
‘ 1.00 _yo- 'Y_w'i= 1,10
Xo‘ 2)30 ]m ="1.0 ®Decistion Variable (X)
N 1 1
1.0 2.0 3.0 Error (w)

Figure (20). Cost (Minimization) Function Straight Line vs R.
Hyperbola Model



A = Lower limit =

0.573307 Xg
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Y B = Upper limit = 1.461277 X,

¥ 8

i

-]

ol

Y
W
Y
o
‘ Decision Range for an
k Allowance +10%
A B
2)(0 3)(0 Decision Variable (X)
;' ~ 7 ;
1.0 2, 3.0 Error (w)

Y ! vy !
o = - w L -
T 1.0 T 3.90
o o

=0,9

-1.0 & \

Figure (21).
Line Model

Cost. (Minimization) Function-Parabola vs Straight
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A = Lower limit
.Upper limit

n 4

0.573307 X,
1.461277 X,

<
=
[

N Deciston Range for an
h Allowance + 10%

2)(o / 3X° Decision Variable (X)
1

L
1
2,0 3.0 Error (W)

o ' W
Yalhau - 1.0 il 0.90
o o
-.9:;; /

-1.0Y

Figure ,(22)a Cost (Minimization) Fuﬁction—Parabola vs Parabola
Model ' :
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>
i

= Lower limit
= Upper limit

0.7186767 X,
1.3473911 X,

[v~]
\

]

\’\"\’ Decision Range for an
| .| Allowance +10%

A

f¥= 1.0 ¥
Y == = 1.10
Y
1% 1%
4 . Decision variable (X)
{ :
i i L ‘ JI 5
1.0 2.0 * Error (w)

Figure (23). Cost. (Minimization) Function-Parabola vs
Rectangular Hyperbola



= Lower. limit
Upper- limit

w P
I
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0.7293004 X,
1.2479858 X,

Decision Range for an
| Allowance +10%

Y
W
Yo
. XX}\ X 3X Decision Variable(X)
I NN " :l =+
) .0\ 2,0 3.0 Error (w)
A, B
o ¥ Y ¥
= - 1.0 = -0.90
T : Y
o o

Figure (24).
vs Straight Line

Cost (Minimization) Function-Cubical Parabola,
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A = Lower limit = 0.6252769 X,
¥ B = Upper -limit = 1,3537807 X,
Y 1
T
‘ oi )
Y
v o
w
3
qu’/ )i" pDecision Variable (X)
i 3.0 Error (w)
Y ]
-~0,90 w
-1.0 v lm = ~,90
I?%ii-ho
o

Figure (25), Cost (Minimization) Function - Cubical Parabola -
vs Parabola Model
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A = Lower limit = 0.7561323 X,
v ~ B = Upper limit = 1.2664232 X,
Y 3
e
[¥o
- Y
Y w
\ o
A B -
: N Decision Range for an
\ Allowance +107
¥ ! ,?—r’ = 1,10
L A
o
| X | 2 ‘ X Decision Variable (X)
| ° | A Lo
i ] 1 ] -
1,0 2,0 3.0 BError (w)

Figure (26). Cost (Minimization) Function = Cubical Parabola vs
Rectangular Hyperbola
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Y A = Lower limit = 0.7421112 X,
B = Upper limit = 1.3919315 X,
Y 4
L
o
Yo
Y
Y w
o
g Decision Range for an
Allowance ~10%
A B
~_Yw',
- -Y:r': 1.10
7 = 1.0
| R
] X 2X 3xX Decision Variable (X)
lo 4 0o i ]
o _ 7 70 ETEor (W)

Figure (27). Cost (Minimization) Function ~Straight Line vs
Reciprocal of Q. Function



APPENDIX B
COMPLETE EVALUATION OF MAXTMIZATION
OR PROFIT FUNCTIONS AND THE LIMITS
OF DECISION RANGES FOR 10% DECREASE
IN THE TOTAL VARIABIE PROFIT ELEMENTS
UNDER ITS OPTIMUM VALUE
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APPENDIX B
COMPUTER PROGRAMS
FOR
MAXIMIZATION OR PROFIT FUNCTIONS

In Chapter III - models as a summation of two different standard
curves - minimization models can be transferred to maximization models
if one can multiply the cost function by -1 provided that each standard
curve in the cost function can be represented as an increasing or a
decreasing function. Thus, the models contain rectangular hyperbola
or . the inverse of the quadratic function which are always decreasing
functions are excluded from this idea. Therefore, there are five
models out of the nine studied models that can be applied to this idea.
The Computer Program III evaluated these five maximization functions
for w = 0.05 till w = 3.95 with an increment w = 0.05. At w = 1.00,
which is corresponding to the mathematical optimum point (maximum point)

(X., Y), the value ofvthe transformed dependent variable (total vari-

o “o
able profit elements) is the optimum one (Yo' of TPCO') over its abso-
lute optimum value (Yo' or TPCO') and this is equal to + 1.00. The
value of + 1,00 refers to a positive optimum transformed value (Yo') or
a positive optimum total variable profit element (TVP,') otherwise the
value if -1,00.

The limits of the maximization or profit functions' decision
ranges were obtained for a predetermined allowance of 10% decrease in
the total variable profit elements of the profit or maximization

' or TVPOG) through the Computer Program

function under its optimum (Yo
IV and by using a subrouting program.

The complete evaluation of these profit functions is given in

Tables XV to XIX. The limits of the profit functions' decision ranges
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are given in Table XX. The graphs of these maximization or profit

functions are drawn in Figures 28 through 32,



[eNeNe+Ne+Re]

101

31

32

33

10

11

12
13

14
114

- 115

116
117

118

23
30
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ITII. COMPUTER PROGRAM FOR EVALUATING
* MAXTMIZATION OR PROFIT FUNCTIONS

Abouel-Nour

C~-ARRAY IS LOWER STRADDLE OF ROOT, D-ARRAY IS UPPER STRADDLE
SLIM= STARTING VALUE FOR EVALUATION

ADD = INCREMENT FOR EVALUATION

NIT= NO., EVALUATIONS TO BE MADE

NF= NO. FORMULAE

DIMENSION C (2,10),D(2,10),W(99),Y(99)

" READ (1,101)SLIM, ADD, NIT, NF

WRITE (3, 101)SLIM, ADD, NIT, NF
FORMAT (2F 10,5, 215)

DO 3 J=1,NF

DO 4 I=1,NIT

IF(I-1)31,31,32

W(1)=0.05

GO TO 33

W(I)=W(I-1)+ADD

WW=w (1)

SRTW=SQRT (WW)

EVALUATE THE FUNCTIONS, PRINT OUTPUT, FIND ROOT
GO T0(5,6,7,8,9,10,11,12,13),J
Y(I)=-Ww+ 2,%SRTW

GO TO 4

Y(I) = ~WW *WW + 2, * WW

GO TO 4 ’
Y(I)=(~WW*WW)/3.0+( 4.0/3.0)*SRTW
GO TO 4

Y(I)=-.5% WWx*3 + 1,5%WW

GO TO &4

. Y(I)= '=1.2%SRTW-(WW**3)/5,

.GO TO 4

GO TO 4

GO TO 4

GO TO 4

CONTINUE :

Go TOo(14,15,16,17,18,19,20,21,22),J

WRITE HEADINGS AND OUTPUT

WRITE (3, 114)

FORMAT ('l MAXIMIZATION OR PROFIT FUNCTIONS',////'PARABOIA VERSUS
1 STRAIGHT LINE = ~WH2%SQRT (W) ')

FORMAT('l STRAIGHT LINE VERSUS PARABOLA Y=-WHH2W')

FORMAT (*1 PARABOIA VERSUS PARABOLA Y=-W*W/3+4 /3%SQRT (W) ')
FORMAT ('l STRAIGHT LINE VERSUS CUBICAL PARABOLA Y=-(W¥*3)/2+1
1 .5u") .

FORMAT ("1 PARABOLA VERSUS CUBICAL PARABOLA  Y=1.2%SQRT (W)-W&*3
1/5%) '

WRITE (3,30) (W(K),Y(K),K=1,NIT)

FORMAT (5X,F10,5,12X,F12.6)

GO TO 3 .
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15 WRITE(3,115)
GO TO 23

16 = WRITE(3,116)
GO TO 23

17 WRITE (3, 117)
GO TO 23

18 WRITE(3,118)
GO TO 23

19 GO TO 23

20 GO TO 23

21 GO TO 23

22 GO TO 23

3 CONTINUE
STOP
END

IV. COMPUTER PROGRAM FOR OBTAINING LIMITS OF
MAXIMIZATION OR PROFIT FUNCTIONS' DECISION
RANGES FOR A PREDETERMINED. ALLOWANCE 107
DECREASE UNDER ITS OPTIMUM

Abouel~Nour

BEGIN COMPILATION
DIMENSION C(2,10),D(2,10)
DO 2 J=1,5
READ(1,102) (C(I,J),D(I,J),I=1,2)
2  WRITE (3,102) (C(I,J), D(I D,I=1, 2)
102  FORMAT (4F5.3)
D0 3 J=1,5
24 DO 26 I=1,2
A=C(I,J)
B=D(I,J)
N1=5
N2=50
E1l=,0005
E2=,0005
JX=3
CALL RTFIND(A,B,X,Y,E1,E2,Nl, N2 N, JX)
26  WRITE(3,25) X,Y,N, J
25 FORMAT(//' LIMIT =',E15.8,' ¥=',E15.8,' N="',110, 'FORMULA NO.'
115) g : -
3 CONTINUE
STOP
END

BEGIN COMPILATION
FUNCTION F (X, JFW)
GO TO (1,2,3,4,5),JFW
1  F=X-2.%SQRT(X)+.9
GO TO 10
2 F=X#X-2,%X+.9
GO TO 10



BEGIN

O 0~ o

.10

11
12

13

20
300

F=X#*X-2,%X+.9

'~ GO TO 10
F=(X*X~4.*SQRT (X)) /3.+.9

GO TO 10

"F=(X#%3-3,%X)/2.+.9

GO TO 10

F=(X**3-6. *SQRT(X))/S +, 9

RETURN
END

COMPILATION
SUBROUTINE RTFIND(A,B,X,Y,EL, E2 N1, N2, N,JFW)

JFW=JFW
N=0
F1=F (A, JFW)
F 2=F (B, JFW)

1F (F1*¥F2)1, 11,20

1F (F1)2, 3,3
FM=F1
XM=A
FP=F2
XP=B
GO TO 4
FM=F2
XM=B
FP=F1
XP=A
N=N+1

. 1F(N-N1)5,5,21
C=FP* (XP-XM)/ (FP-FM)

X=XP-C
Y=F (X, JFW)

IF(ABS(C)~E1)6,6,8
IF (ABS(Y)-E2)7,7,8

RETURN
IF(Y)9,10,10
FM=Y

XM=X

GO TO 4

FP=

XP=X

GO TO 4
IF(F1)12,13,12
X=B .

Y=F2

GO TO 7

X=A

Y=F1

GO TO 7
WRITE (3, 300)

FORMAT (' NO STRADDIE")

X1=A
X2=B
GO TO 24
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21

22

23

24

25

26

27
28

30
301

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

LIMIT

IF (FM-Y) 22, 23,22

F2=FM
X2=XM
GO TO 24
F2=FP
X2=XP
N=0
Fl=Y
X1=x
N=N+1

IF (N-N2) 26, 26, 30

C=((X1-X2)/(f1-F2))*F1l

X=X1-C
Y=£ (X, JFW)

1F (ABS(C)-E1)27, 27, 28
IF (ABS(Y)-E2)7,7,28

F2=F1
X2=X1
Fl=Y
X1=X
GO TO 25

WRITE(3,301)Y,X,N

198

FORMAT (* CONVERGENCE INCOMPLETE. LAST F(X)= 'F10.6, AT X='F10.4,°
1 FOR "15,"' ITERATIONS')

GO TG 7
END

0.46754456F
0.17324514F
0,68381584E
0.13161860F
0.57341456E
0.14612637E
0.72938055E
0.12481413E
0.62532508E

0.13536224E

00

01

00

01

00 -

01

00

01

00

01

= 0.35762787E-06
=-0.59604645E-06
=-0,26941299E~04
=-0.27298927E~04
=-0.53346157E~04
=-0.56624413E-05
=-0.56385994E-04
= 0.35762787E-06
=-0.25570393E-04

=-0.95963478E-04

LFORMULA

1FORMULA

1FORMULA

1FORMULA

1FORMULA

1FORMULA

1FORMULA

3FORMULA

1FORMULA

1FORMULA

NO.

NO.

NO.

NO.

NO,

NO.

NOC.

NO.,

NO.

NO.



APPENDIX B - TABLES
SENSITIVITY ANALYSIS
FOR

MAXIMIZATION OR PROFIT FUNCTIONS
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TABLE Xy

SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS

PARABOLA VERSUS STRAIGHT LINE MODEL

Y ]
|§§W = 2\/5_- w

200

Error Valuye Error Value
w Yy ! W v !
w w
%] %1

0.05 0.397214 2,10 0.798280
0.10 0.532455 2.15 0.782580
0.15 0.624597 2,20 0.766484
0,20 0.694427 2.25 0.750007
0,25 0.750000 2,30 0.733157
0030 0.795445 2.35 0.715949
0,35 0.833215 2,40 0,698394
0.40 0.864910 2.45 0.680503
0.45 0.891640 2,50 0.662286
0.50 0.914213 2.55 ' 0.643752
0.55 0.933240 2.60 0.624911
0,60 0.949193 2,65 0.605773
0.65 0,962451 2.70 0.586345
0.70 0.973319 2.75 0.566634
0,75 0.982051 2.80 0.546651
0,80 0.988854 2,85 0.526399
0.85 0.993908 2.90 0.505889
0.90 0.997366 2,95 0.485126
0.95 0,999359 3,00 0.464114
1.00 1,000000 3.05 0,442863
1.05 0.999389 3.10 0,421376
1.10 0,997617 3.15 0.399661 .
1.15 0.994760 3,20 0.377723
1.20 0.990890 3.25 0,355567
1.25 0.986068 3.30 0.333196
1.30 0.980351 3.35 0,310616
1.35 0.973790 3.40 ' 0.287833
1.40 0.966432 3.45 0, 264852
1.45 0,958320 3,50 0.241675
1.50 0,949491 3.55 0.218307
1.55 0.939981 3.60 0,194751
1.60 0.929824 3.65 0.17101%
1.65 0.919047 3.70 0,147096
1.70 0.907683 3.75 0,123004
1.75 0.895753 3.80 0.098739
1.80 0.883285 3.85 0.074304
1.85 0.870297 3,90 0.049705
1.90 0.856812 3,95 0.024943
1.95 0.842851

2,00 0.828431

2,05 0.813569



TABIE I

SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS

Y

|§§Tl = 2w - w

STRAIGHT LINE VERSUS PARABOIA MODEL

201

Error Value Error Value
w v ' W v !
o v
% | % |
0,05 0,097500 2,10 -0,209961
0.10 0.190000 2,15 -0.322457
0.15 0.277500 2,20 -0,439953
0,20 0.360000 2.25 20.562449
0,25 0.437500 2.30 -0,689945
0.30 0,510000 2.35 ~ 40822441
0.35 0.577500 2,40 -0,959937
0.40 0.640000 2,45 -1,102432
0.45 0,697500 2.50 -1.249928
0.50 0,750000 2,55 «1,402423
0.55 0,797499 2,60 -1,559918
0.60 0.839999 2.65 =1,722413
0.65 0.877499 2,70 -1,889908
0.70 0,910000 2,75 ~2,062403
0.75 0.937499 2,80 =2,239897
0.80 0. 960000 2,85 -2.422392
0.85 0,977499 2,90 -2.609886
0,90 0.990000 2.95 -2,802380
0.95 0,997499 3.00 -2,999874
1.00 1,000000 3.05 -3,202368
1.05 0,997500 3,10 =3,409861
1,10 0,990001 3.15 -3,622355
1,15 0.977502 3.20 -3.839848
1.20 0,960002 3.25 -4,062341
1.25 0.937503 3,30 -4,289834
1,30 0.,910004 3,35 04.522326
1,35 0,877505 3.40 -4,759819
1.40 0.840006 3.45 -5,002312
L.45 0.797507 3.50 ~5,249804
1,50 0.750009 3.55 «5.502296
1.55 0.,697511 3.60 -5,759789
1.60 0.640013 3065 -6.022280 °
1.65 0,577515 3.70 -6.289772
1,70 0,510016 3.75 -6.562263
1.75 0.437519 3.80 «6,839755
1.80 0.360022 3.85 -7.122246
1.85 00277524 3,90 -7.409738
1.90 0.190027 3,95 ~7.702229
1,95 0,097529
2,00 0,000032
2,05 -0,102464



TABLE XVII

SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS

PARABOLA VERSUS PARABOLA MODEL

202

Error Value Error Value
w Y ! W Y !
(o] (o}
%] )
0,05 0.297309 2,10 0.462199
0,10 0.418303 2,15 0.414233
0.15 0.,508897 2,20 0.364338
0.20 0.582951 2,25 0.312521
0.25 0.645833 2,30 0.258789
0:30 0.700296 2,35 0.203152
0+35 0.747977 2.40 0.145617
0,40 0.789940 2.45 0.086190
0445 0.826927 2,50 0.024880
0.50 0.859475 2,55 -0,038307
0455 0.887993 2,60 -0.103366
0.60 0.912794 2.65 -0,170290
0.65 0.934133 2,70 -0,239073
070 0.952212 2,75 -0,309712
0,75 0.967200 2,80 -0,382198
0.80 0.979236 2,85 ~0,456432
0,85 0.988438 2,90 -0.532703
0.90 0.994910 2,95 -0,610710
0,95 0.998738 3,00 =0,690550
1,00 0.999999 3,05 -0,772215
1.05 0.998758 3.10 -0,855703
1,10 0.995077 3.15 =0,941011
1,15 0.989006 3,20 -1,028135
1,20 0,980593 3.25 -1,117070
1.25 0.969878 3.30 - -1,207814
1,30 0.956901 3.35 -1.300364
1.35 0.941695 3,40 ~-1.394718
1,40 0.924289 3,45 -1.490870
La&5, 0.904715 3.50 -1,588819
1,50 0.882996 3,55 -1.688562
1,55 0.859156 3,60 ~1,790096
1.60 0.833219 3.65 -1,893418
1,65 0.805202 3,70 -1,998528
1,70 0.775127 3,75 -2,105419
1,75 0743008 3,80 -2.214093
1.80 0.708863 3.85 «24324547
1.85 0.672706 3.90 -2.436777
1,90 0.634550 3.95 -2,550781
1,95 0.594409
2,00 0.552298
2.05 05508224
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TABLE XVIII
SENSITIVITY ANALYSIS OF MAXTMIZATION OR: PROFIT FUNCTIONS
STRAIGHT LINE VERSUS CUBICAL PARABOLA MODEL

y ! 3
w3,
,i:jﬁ 2 2
Error Value Error Value
w Y ! ’ W Y !
w W
B =]
o o,
.05 0.074937 2,10 -1.480410
¢.10 0.149500 2.15 =1,744087
0.15 0:223312 2,20 -2,023888
0.20 0.296000 2.25 -2,320189
0.25 0.367187 2,30 -2,633366
0.30 0.436500 2,35 =2,963791
0.35 , 0.503562 2,40 -3,311840
(.40 0.56800 2,45 -3.677888
0.45 0.629437 2.50 =4,062312
0.50 0,687500 2,55 -4 ,465481
0.55 0.741812 2,60 ' =4,887774
0.60 0.792000 2,65 =5,329575
0.65 ' 0.837687 2,70 -5,791243
0,70 0.878499 2,75 -6,273159
0.75 0.914061 2,80 =6,775705
0.80 0.944000 2,85 =7.,299248
0.85 0.,967937 2,90 -7.844160
0.90 0,985500 2.95 -8,410831
0.95 0.996312 3.00 -8.999620
1.00 0.999999 3.05 -9,610909
1.05 0.996188 3.10 =10, 245070
1,10 0.984501 3,15 -10.902485
1.15 0.964564 3.20 -11.583521
1.20 0.936003 3.25 =12,288551
1.25 0.898442 3.30 =13,017965
1.30 0.851506 3.35 -13,772114
1.35 0.794821 3.40 -14,.551394
1.40 0.7280L0 : 3,45 -15,356171
1.45 0.650701 : 3,50 -16,186813
1.50 0.562516 3,55 =-17.043732
1.55 ' 0,463082 3.60 =17.927261
1.60 0.352024 3.65 -18.837784
1.65 0.228966 3.70 -19,775681
1.70 0.093534 3.75 -20,741333
1.75 ~-0,054648 3,80 =21,735107
1,80 =0,215956 3.85 -22,757385
1.85 -0,390761 - 3.90 -~23,808517
1.90 -0.579442 - 3.95 -24,888916
1.95 -0,782372 f
2,00 -0,999928 -

2,05 -1.232480



TABLE XIX

SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS

PARABOLA VERSUS CUBICAL PARABOLA MODEL

204

Yy ! 3
w 6 w
|Yo"|‘5\/‘7"5
Error Value Error Value
w YU w YU
W : W
W ;I"'T
% | % |
6.05 6.268303 2,10 -0,113196
0.10 0.379273 2.15 -0.228086
0.15 0.464083 2,20 =0,349665
0.20 0.535056 2.25 -0.478072
0.25 0.596875 2,30 -0,613452
0.30 0.651867 2.35 =0,755947
0.35 0.701354 2.40 - =0,905700
0.40 0.746146 2,45 =1,062854
0.45 0.786759 2,50 -1,227554
0.50 0.823528 2,55 =1,399941
0.55 0.856668 2.60 =1,580163
0.60 0.886316 2,65 -1.768366
0.65 0.912546 2,70 -1,964690
0,70 0.935391 2,75 -2,169283
0.75 0.954855 2,80 -2,382292
0.80 0.,970912 2,85 -2.603860
0.85 0.983520 2.90 =2,834131
0.90 0.992620 2,95 =3,073257
0.95 0.998139 3.00 -3,321380
1,00 0.999999 3.05 -3,578646
1.05 0.998108 3,10 -3.845202
1,10 0.992370 3.15 -4,121197
1.15 0.982681 3.20 =4 ,406775
1,20 0.968934 3.25 -4.,702080
1.25 0.951016 3,30 -5.007269
1,30 0.928813 3.35 ~5,.322478
1.35 0.902202 3.40 -5,647861
1.40 £.8710C63 3.45 . =5,983561
1.45 0.835271 3.50 -6.329729
1,50 0.794700 3.55 . -6.686513
1,55 0.749221 3.60 ~-7.054058
1,60 0.698703 3,65 -7.432508
1,65 0.643014 3.70 =-7,822021
1,70 0.582022 3.75 -8,222735
1.75 0,515592 3.80 -8,634804
1.80, 0.443588 3.85 -9.058372
1.85 0.365874 3.90 ~9.493589
1.90 0.282310 3.95 =9,940605
1,95 0.192760
2,00 0.097088
‘2,05 -0.004851



"TABLE XX

LIMITS OF MAXIMIZATION OR PROFIT FUNCTIONS' DECISION RANCES

FOR

10% DECREASE IN THE TOTAL VARIABLE PROFIT ELEMENTS UNDER ITS OPTIMUM (YO')

No. Type of Optimum Values Decision Range
the Model Xo, Yo for 10% Decrease
Lover Upper
1. Parabola vs. straight a2 12 §
line —_—, C + ~— 0.467547X 1.732422%
1/2 4M 4 ° °
Y = B(X) -MK + C
2. Straight line wvs. M M2 . \
parabola =, C+ -~ 0.683816X 1.316189X
) 9 2A LA : o o
Y= MX - AX" + C° \
3. Parabola vs. parabola B 2/3 3 g4 1/3\
— + = -_— | . 4
v = B(X)1/2 _ AX2 +C (4A s C % ( ZA ) / 0 573415)(0 1 61205X°
4. Straight line vs. L 12 , 312
cubical pgrabola (ﬁ) , C+ 3 (-ﬁ /} 0.729380)(0 1.248141)(0
Y=MX - AXT + C
i i 6 1/5)
5. Parabola vs. cubical |3 2/5’ c o+ 5 ( B y 0.625325x% 1.353622%
parabola (a) 6 6A o o
1/2 3
Y = B(X) - AX + C

§0¢



A = Lower limit
= Upper limit
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0.4675446 X,
1.7324514 X,

N, Decision Range for an
Allowance -10%

o — e —
L
o

Decision Variable (X)

Error (w)

Figure (28). Profit (Maximization) Functior -Parabola vs Straight

Line Model
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= Lower limit =
Upper limit

W
n
i

1.3161860 X

Y
o
Y
w
p.
E ] Decision Range for an
A B Allowance «10%
. Y !
A o =
/’ \ Y ,Y l = 1,0
W = 09 o
o
| Yol
)(O ‘ 2){0 3){0 Decision Variable (X)
| . . .
L0 2.0 3.0 Error (w)

Figure (29). Profit (Maximization) Functiod -Straight Line vs
Parabola Model
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A = Lower limit = 0.5734146 X
‘Upper limit = 1.4612637 Xo

o]
I

(2] =
T 1.0
o

Yw'
lT—=o.9

Decision Range for an
I\ Allowance -10%

2X 3)(0 Decision Variable (X)

1.0 2.0 3.0 Exror (w)

Figure (30). Profit (Maximization) Function - Parabola vs
Parabola Model



209

A = Lower limit = 0.7293806 X,
Y B = Upper limit = 1.2481413 Xo
Y 1]
w
_Y_T
Yol
< K
\\\ Yy
A B
| \  . _ YO.
] = 1.0
| T
o = 0.9
l I IYO l
I i E’ Decision Range for an
, l J Allowance -10%
l X I 2X 3X Decision Variabie X)
| 2 e
1)..0 Zl.O 3'.0 Error (w)

Figure (31). Profit (Maximization) Function -Straight Line vs
Cubical Parabola Model
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0.6253251 X

Lower limit o
1.3536224 X -
(o] .

Uppet limit.

oA
[/

. Y L
o _
Y 'm = 1.0

l?§]=03

E j Decision Range for an -
Allowance ~10%

2 : 3}(o Decision Variable (X)

. 1.0 2,0 3.0 Error (w)

Figure (32). Profit (Maximization) Function —Parabola vs Cubical
Parabola Model
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