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AN INVESTIGATION OF PROBABILISTIC DISPATCHING 
PROCEDURES FOR MINIMIZING PENALTY COSTS 

IN A JOB-SHOP

CHAPTER I

THE JOB-SHOP PROBLEM

If it is assumed that a job is a single piece of 
work and a facility is a machine or group of similar 
machines, then a job-shop may be defined. Rowe (48) defined 
a job-shop by contrasting it to a flow-shop or production- 
shop in which all jobs are processed by the same facilities 
in the same order. Sisson (49) characterized a job-shop by 
the fact that the sequence of operations performed on any 
one job is independent of the sequence required for any 
other job. Conway and Maxwell (12) characterized a job-shop 
as a network of queues. Gere (l8) stated in his Ph.D. 
thesis that a job-shop connotes a large number of jobs with 
diverse routings which compete for time on common machine 
facilities. Although all of these definitions are compat
ible, Gere's definition will be accepted for the purposes of 
this paper.
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In a job-shop, the jobs to be processed usually 

have certain attributes associated with them. For Job i 
these attributes would include a due-date, d^ , which is 
the time at which Job i should be completed; a time 
available, r^ , which is the earliest time at which 
processing may begin on the job; a routing which is the 
sequence of facilities that must process a job; and the 
expected processing-time, , of each Job i on each
Facility j in its routing. For most job-shop investiga
tions, the facilities are assumed, for simplicity, to 
consist of a single machine.

The job-shop problem is to determine the sequence 
in which the available jobs should be processed at each 
facility so as to optimize some measure of effectiveness 
of the schedule generated by the sequencing decisions made 
at each facility. There is no single measure of schedule 
effectiveness which is accepted as best for the job-shop 
problem. Many measures of effectiveness for job-shop 
problems have been suggested and used to make comparative 
evaluations of schedules generated by the various techniques 
of making sequencing decisions in a job-shop. Most of the 
measures of effectiveness for job-shop schedules which have 
been utilized are a function of the following parameters 
(13) :

1. C , the completion-time of Job i.
2. F. , the flow-time of Job i.1



3. lateness of Job i.
4. T. , the tardiness of Job i.1 ’
5- , the earliness of Job i.

Lateness, tardiness, and earliness are three dif
ferent ways of comparing the actual completion-time of a 
job with its due-date. Lateness is the algebraic differ
ence of completion-time and the due-date of each job, 
regardless of the sign of the difference. Tardiness is 
the length of time a job finishes after its due-date and 
considers only those jobs that are completed after their 
due-dates. Earliness is the length of time a job finishes 
before its due-date and considers only those jobs completed 
before their due-dates. In nearly all of the work published 
on the job-shop scheduling problem, very simple measures of 
effectiveness have been used. These are usually mean com
pletion-time, mean flow-time, maximum flow-time, mean late
ness, maximum lateness, mean tardiness, or maximum tardiness.

Many techniques have been proposed and investigated 
for optimizing these measures of effectiveness of a job-shop 
schedule.

These techniques include:
1. Total enumeration and comparative evaluation 

of all feasible schedules.
2. The generation of a sample of feasible sched

ules and the comparative evaluation of these 
schedules.
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3. The solution of the job-shop problem by 

formulating it as an integer programming 
problem.

4. The application of branch-and-bound tech
niques to the job-shop problem.

5. The application of graphical techniques 
to the job-shop problem.

6. The use of priority sequencing rules.



CHAPTER II 

PREVIOUS INVESTIGATIONS

Almost all of the investigations that have been 
made to date were concerned with a highly restrictive 
problem called a simple job-shop problem. These restric
tions are (13):

1. Each machine is continuously available 
for assignment.

2. Jobs are strictly-ordered sequences of 
operations, without assembly or partition.

3. Each operation can be performed by only 
one machine in the shop.

4. There is only one machine of each type in 
the shop.

5. Once an operation is started on a machine 
it must be completed before another oper
ation can begin on that machine.

6. A job may be in process on at most one 
machine at a time.

7. Each machine can handle at most one job 
at a time.
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A special case of the simple job-shop problem is the shop
with only one facility or machine. Smith (51) showed in
1956 that the mean flow-time for the n-job, 1-machine
problem is minimized by the shortest processing time first
(SPT) priority sequencing rule. Jackson (28) showed in
1955 that for n jobs and 1 machine, both maximum job
lateness and maximum job tardiness are minimized by
sequencing the jobs in order of nondecreasing due-dates.
For n jobs and 1 machine, the minimum job lateness and the
minimum job tardiness are maximized by sequencing jobs in
the order of nondecreasing slack-time (13). If is
defined to be the flow-time of Job i through the facility,
U. is defined to be a weighting factor for Job i, and P.

n
is the required processing-time of Job i, then T  U.F. ,

i=l  ̂ ^
the total weighted flow-time of all jobs, is minimized by 
sequencing the jobs so that the ratio of the processing-time 
divided by the weighting factor, P\/U^ , is nondecreasing 
(51)» Also, mean weighted lateness and mean weighted 
waiting-time are minimized by P\/U^ ratio sequencing (39)» 

In 1964 Lawler (35) published a dynamic programming 
formulation of the n-job, 1-machine scheduling problem 
where each job has associated with it a deferral cost which 
is monotonically nondecreasing with time. Lawler stated 
that this method may be used to solve problems with up to 
approximately I5 jobs. The solution of problems with more 
than 15 jobs requires a prohibitive amount of computation.
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In 1968 an algorithm was published by Moore (42) 

which sequences n jobs through a single facility so as to 
minimize the number of late jobs. This algorithm is 
computationally feasible for a large number of jobs. The 
algorithm was extended to produce a schedule which minimized 
the maximum deferral cost when each job has associated with 
it a continuous monotone nondecreasing deferral cost func
tion. It is interesting to note that in January of 1970, 
William L. Maxwell published a paper (38) which developed 
Moore’s algorithm from an integer programming formulation of 
the n-job, 1-machine scheduling problem.

Another special case of the job-shop problem for 
which a solution is known is the n-job and 2-machine flow- 
shop problem. Johnson (33) and (34), Jackson (29), Mitten 
(40), and others have investigated this problem. Johnson 
(33) gave an algorithm for sequencing n-jobs, all simulta
neously available, in a 2-machine flow-shop so as to 
minimize the maximum flow-time. Johnson also considered a 
special 3-machine case in which the second machine is 
completely dominated by either the first or third machine. 
For this special 3-machine case, an algorithm is given 
which minimizes the maximum flow-time. This paper is 
perhaps the best known and most referenced in the literature 
on sequencing. Jackson (29) has shown that the 2-machine 
job-shop problem with the restriction that each job can have 
at most two operations can be solved by a generalization of
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Johnson's 2-machine flow-shop algorithm. This is the only- 
true job-shop problem for which a simple algorithm for a 
global solution is known. A graphical procedure for the 
2-job flow-shop problem was given by Akers (1). This same 
approach has been applied to the 2-job job-shop problem by 
Akers and Firedman (2) and discussed more completely and 
formally by Hardgrave and Nemhauser (23). The graphical 
procedure is practical for only very small problems.

Approximate methods for the sequencing of n-jobs 
through a flow-shop with m machines have been developed by 
Palmer (46) and Campbell, Dudek, and Smith (?)• The 
objective of the Palmer algorithm is to minimize the total 
time required to complete all jobs. This is accomplished 
by computing what Palmer called a slope index which is used 
to make sequencing decisions. This algorithm gives priority 
to those jobs having the strongest tendency to progress from 
short process times to long process times in the sequence 
of processes. The Campbell, Dudek,and Smith Algorithm is an 
extension of the Johnson Algorithm for the n-job, 2-machine 
flow-shop (33). This method requires a reasonable amount 
of calculation and can be used to solve large problems.

A general algorithm for the solution of the n-job, 
m-machine flow-shop problem has been given by Smith and 
Dudek (50). The algorithm is a partially enumerative 
combinatorial procedure for minimizing flow-time. Compu
tational experience with this algorithm indicates that
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problems with greater than 10 jobs require excessive compu
tation time precluding finding optimal solutions (?)%

Some special cases of the job-shop scheduling prob
lem can be modeled as integer programming problems. The 
pioneering work in this area was done by Bowman (5)9 Wagner 
(53)9 and Manne (37). All three of these researchers have 
presented a somewhat restricted integer programming formu
lation of the job-shop scheduling problem. However, due to 
the large size of the integer programming problems which 
resulted from the proposed formulations for even a small 
job-shop problem and the limitations of algorithms for the 
solution of integer programming problems, this work has not 
led to a practical method for solving job-shop problems.
As an example of the size of the resulting integer program
ming problem, a job-shop with 4 machines and 10 jobs 
requires 220 variables and 390 restraint equations (13).
One significant research effort has employed integer pro
gramming for the solution of scheduling problems. This 
study by Wagner and Story (52) and Wagner and Giglio (21) 
was for the 3-machine flow-shop with six jobs. It was 
found in this investigation that the number of iterations 
required for the solution of these problems by integer 
programming often was of the same order of magnitude as the 
total number of permutations. 720, of the jobs.

An integer programming formulation of the job-shop 
scheduling problem which appears to be an improvement upon
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previously suggested models has been made by Pritsker, 
Watters, and Wolfe (4?). Their model is a zero-one integer 
programming formulation which is more general than previous 
models, and it provides some computational advantages over 
previous models by reducing the number of variables and 
equations required for the formulation. However, models 
such as this will not become a practical means for obtaining 
optimal solutions to scheduling problems until considerable 
improvement is made in the algorithms available for the 
solution of integer programming problems.

Branch-and-bound techniques for obtaining solutions 
to machine scheduling problems have been suggested by a 
number of researchers. Ignall and Schrage (27) suggested a 
method which they applied to flow-shop problems with 2 and 
3 machines. Brooks and White (6) and Greenberg (22) have 
presented similar techniques for the implicit enumeration 
of all feasible solutions of a job-shop scheduling problem. 
All of the above studies reached similar conclusions^con
cerning the feasibility of branch-and-bound techniques for 
problems of realistic size. However, branch-and-bound 
techniques can be used to solve scheduling problems of very 
small dimension. As an example, the largest problem that 
Greenburg (22) attempted consisted of 3 jobs and 2 machines. 
A series of nineteen linear programming problems had to be 
solved to obtain the solution to this scheduling problem.
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A more recent branch-and-bound method for the 

solution of machine scheduling problems has been proposed 
by Charlton and Death (8). They discussed the underlying 
graphical nature of machine-scheduling problems and proposed 
a branch-and-bound method based upon the graphical nature of 
the problem. Due-dates were handled by constraints. The 
method was called general. However, it fails to produce a 
feasible schedule if it is not possible to satisfy all due- 
date constraints which is the usual case in practical sched
uling problems. The solution was presented for a 2-job, 2- 
machine scheduling problem where the objective was to 
minimize maximum flow-time. Charlton and Death concluded 
that the method was not feasible for problems of a stochas
tic nature or for deterministic problems of a practical 
size. They suggested that alternative methods such as 
simulation must be used for these type problems.

The possibility of solving the job-shop problem 
using an analogue computer was investigated by Zimmermann 
and Pfaffenzeller ($4). The 3-machine, 3-job problem was 
investigated and it was concluded that the computational 
feasibility of larger problems is doubtful.

Still another approach to solving the job-shop 
problem is to generate all possible schedules. However, 
this is impossible because there are infinitely many 
schedules for the job-shop problem since idle-time can be 
inserted into any given schedule in infinitely many ways.
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It is not necessary to generate all feasible schedules 
though because there are sets of schedules which dominate 
all other schedules. For the infinite set of all schedules 
that possess identically the same ordering of the operations 
on each machine, there is a unique schedule called a Usemi- 
active schedule" (4$) which dominates all other schedules in 
the set for any regular measure of performance. A "regular 
measure of performance" is a value to be minimized that can 
be expressed as a function of the job completion-times and 
which increases only if at least one of the job completion- 
times increases. Thus, only a finite number of schedules 
must be considered because there is only one semiactive 
schedule for each ordering of the operations, and there are, 
of course, only a finite number of orderings. Unfortunately 
the number is still very large so that solution by exhaus
tive enumeration and comparison is not feasible even for 
relatively small problems and large computers. A slight 
reduction in the number of schedules which must be examined 
when solving a job-shop problem by exhaustive enumeration is 
possible by restricting attention to active scheduleso An 
"active" schedule is a schedule in which it is not possible 
to perform a left-shift on any operation (20). A "left- 
shift" of an operation is any decrease in the time at which 
the operation starts that does not require an increase in 
the starting-time of any other operation. It is sufficient 
to consider only the set of active schedules which is
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usually a small and proper subset of the set of semiactive 
schedules. However, there is still a very large number.
A third subset of all possible schedules is the set of non
delay schedules. A "nondelay" schedule is a schedule such 
that there is no instance in which a job is delayed when 
the machine that is to process the next operation is avail
able and idle (4$). Nondelay schedules are a subset of the 
active schedules, but not a dominating subset. It is not 
true that for every problem there is an optimal schedule 
among the nondelay schedules. However, nondelay schedules 
are easy to generate and there is strong empirical evidence 
that nondelay schedules are on the whole better than the 
remainder of the active schedules (13)* Therefore, if a 
sampling approach is taken to solving the job-shop problem 
such as Heller (24) used, it may be advantageous to sample 
from the nondelay schedules rather than from the active 
schedules even though the infinitesimal probability of an 
optimal solution may be forfeited.

The properties of active and nondelay schedules 
were studied by Bakhru and Rao (4). They used a set of 11 
problems with 10 jobs and 6 facilities each. Each job had 
exactly 6 operations, one on each machine, in a randomly 
determined order. For each of these 11 problems a random 
sample of 50 active schedules and a random sample of 50 
nondelay schedules were generated. Using either mean flow
time or maximum flow-time as measures of effectiveness, the
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nondelay schedules were better than the active schedules. 
This suggested that if a "good" schedule is to be found by 
selecting the best of a sample of randomly generated 
schedules, it would be more efficient to sample from the 
population of nondelay schedules.

Active and nondelay schedules have also been 
investigated by Jeremiah, Lalchandani, and Schrage (32).
In this study, instead of generating a sample of schedules 
at random, scheduleable operations were selected according 
to some attribute of the jobs and/or machines. The results 
of this study provided additional evidence that nondelay 
schedules are superior to active schedules.

The area of investigation that has received the 
most attention for the simple n-job, m-machine job-shop 
problem is that of experimental investigation. With the 
advent of the digital computer, it became possible to 
simulate the jobs, machines, and scheduling procedures of 
a job-shop. Some of the earliest investigators to recognize 
the potential of the digital computer and to use it as a 
tool for investigating the job-shop were Jackson, Nelson, 
and Rowe at UCLA (30) and (31) and Baker and Dzielinski at 
IBM (3). Since then there have been a large number of 
experimental investigations of the job-shop conducted. The 
best known of these and the most extensive are the works of 
R. W. Conway (10) and (11), E. LeGrande (36), and Y. R.
Nanot (43).
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Most of the investigations conducted have compared 

the relative effectiveness of various dispatching rules by 
means of a job-shop simulation. A computer program that 
produces a schedule by the use of a dispatching procedure 
is called a "job-shop simulation" (13). A "dispatching 
procedure" is a method which includes a "priority" 
mechanism, a numerical attribute of a job, to select a job 
to be processed next from among the jobs competing for 
machine assignment (13). Some researchers define "priority 
sequencing rule" to have the same meaning as "dispatching 
procedure." The dispatching procedures which have been 
investigated to date include but are not limited to:

1. Random.
2. First-come, first-served.
3. Last-come, first-served.
4. Shortest processing-time for imminent 

operation (SPT).
3. Least slack where slack is defined as

the due-date minus remaining expected 
processing-time minus current date.

6. Least slack/remaining operation (S/0).
7. Truncated SPT: jobs which have become

critical take precedence.
8. Linear combination of SPT and S/0.
9. Look ahead: select job which will go

to shortest queue.
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10. Fewest remaining operations.
11. Longest imminent operation.
12. Least work remaining.
13. Most work remaining.
14. Weighted random combinations of rules.
Most of this work has focused on minimizing the

make-span of all jobs. That is, there have been a number 
of attempts to determine which rule minimizes the mean 
flow-time of all jobs or minimizes the maximum flow-time 
of all jobs or minimizes the mean number of jobs in the 
shop. Not nearly as much work has been done on meeting 
due-dates. Conway's investigations (10), (11) considered 
a job-shop with the following characteristics:

1. Nine machine groups each having a single 
machine .

2. Poisson job arrival process.
3 . Exponential service times with a mean of 

1.0.
4. Shop utilization level of approximately

5 . Random job routing.
6. 10,000 jobs.

Conway (10) compared many dispatching rules and 
combinations of rules and determined that when due-dates 
were not considered, the shortest-processing-time rule 
dominated the other rules. He also concluded that there
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is no basis to believe that highly precise estimates of 
processing-time are required for scheduling purposes.
These investigations showed that the shortest-processing
time rule is the best rule known for minimizing the mean 
flow-time of jobs through a simple job-shop. The shortest- 
processing-time rule minimizes the mean of the completion
time distribution of the jobs. This study also showed that 
good results could be obtained by a linear combination of 
the shortest-processing-time rule and a look ahead rule.
The least slack/remaining operation rule was found to mini
mize the number of jobs tardy (jobs with positive lateness). 
Also a linear combination of shortest-processing-time and 
least slack/remaining operation was very effective at mini
mizing the number of jobs tardy.

Conway (11) compared the performance of various 
priority dispatching rules for meeting due-dates. He 
concluded that the performance of a job-shop in meeting due- 
dates is a function of how the due-dates were assigned as 
well as the dispatching rule used. He concluded that gener
ally the least slack/remaining operation rule is the best of 
the standard due-date rules although for very heavy shop 
loads, the shortest-processing-time rule performed as well 
as the least slack/remaining operation rule. In general the 
least slack/remaining operation rule was found to produce 
schedules which exhibited the smallest value of lateness 
variance. Also the least slack/remaining operation rule
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minimized the number of jobs tardy.

LeGrande of Hughes Aircraft also performed extensive 
investigations of the job-shop and the performance of 
various sequencing rules using actual operating data in a 
computer simulation (36). One hundred and fifteen machine 
groups and 3000 jobs were simulated. The utilization level 
was approximately 60-70 per cent. LeGrande's study 
confirmed most of the results of Conway’s investigations.

Nanot (43) compared priority sequencing rules by 
simulating job-shops with 2 , 4, and 8 machine groups each 
with a single machine. He assumed Poisson job arrivals and 
exponential service times. Shop utilization varied from 60 
to 95%» Due-dates were not considered. The results of 
this study are consistent with those of Conway and LeGrande.

A modified shortest-processing-time rule was inves
tigated by Eilon and Cotterill (15) in which each machine 
had two queues. One queue consisted only of jobs with zero 
or negative slack. The second queue contained jobs with 
positive slack. The queue with zero and negative slack 
jobs had priority over the other queue. Both queues were 
sequenced using the shortest-processing-time rule. This 
procedure provided slightly better results than the shortest- 
processing-time rule without the modification.

The use of expediting has been simulated by 
Hottenstein (26). Expediting was found to increase the 
average time a job spends in the shop and reduce the
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variability of shop performance.

Probabilistic dispatching, in which some attribute 
of the machine or job is used to randomize the selection 
of the next job to be processed from the set of all sched- 
uleable jobs, has been investigated by Jeremiah, Lalchandani, 
and Schrage (32) and Nugent (45)- With some randomness in 
the process of selecting the next job to be scheduled, 
different schedules will be generated when the same 
selection process is repeatedly applied to the same problem. 
The results of these studies indicate that probabilistic 
dispatching generates slightly better schedules for minimiz
ing maximum flow-time or minimizing mean flow-time than does 
deterministic dispatching, but the improvement is not very 
great and considerable effort is required.

Heuristic procedures have been employed in studies 
by Fisher and Thompson (1?) and by Crabill (l4 ) . Both 
studies were rather limited. The former employed probabil
istic learning combinations of simple job-shop sequencing 
rules while the latter used a job-at-a-time adjusting 
procedure to improve flow-times. Gere (19) also employed 
several adjusting procedures which depended on conditions 
of the machines and jobs. Conclusions drawn were that an 
unbiased random combination of scheduling rules is usually 
somewhat better than any of them taken separately, learning 
is possible, and combinations of rules are usually more 
effective than the individual rules employed separately.



CHAPTER III 

RESEARCH PROGRAM 

Outline of Program

Since no method is currently available which will 
find optional solutions to job-shop scheduling problems 
which are of reasonable dimension, there exists a real 
need for a method of generating "good" schedules. Shortest- 
processing-time and least slack/remaining operation 
sequencing rules and certain combinations of these and 
other simple rules have been found to be fairly effective 
for such things as minimizing mean flow-time or number of 
jobs late. However, there is room for improvement here.
Also there is a need for a method which produces good 
schedules that considers not only due-dates but also the 
cost of delay for the jobs being processed. It is common 
in defense contracts to have an incentive clause which 
specifies a bonus for early completion of a job and/or a 
penalty cost for late completion. Since these costs are a 
function of the shop schedule, they can be reduced by 
improving the schedule. There are relatively few published 
papers on the problem of sequencing jobs in a job-shop so

20



21
as to complete as many jobs as possible by the specified 
due-dates and only a fraction of these papers consider the 
delay costs of the jobs to be processed. Some papers that 
do consider the cost of delay of the jobs being processed 
as well as due-dates have already been identified. These 
were McNaughton (39), Lawler (35)9 Moore (42), Maxwell 
(38), and Pritsker, Watters, and Wolfe (4?). Two additional 
papers of interest have been published by Fabrycky and 
Shamblin (I6 ) and Holt (25).

Fabrycky and Shamblin (16) have developed the only 
dispatching procedure published to date which does not 
assume that either deterministic flow-times or processing- 
times are known for each job and each facility which 
processes the job. This dispatching procedure is a function 
of job due-dates and flow-time distributions for the 
facilities. Each facility is assumed to have a flow-time 
distribution which is normally distributed with a known mean 
and standard deviation. Penalty and bonus costs are not 
considered by the dispatching rule. When two or more jobs 
are competing for the same facility, this dispatching rule 
assigns highest priority to the job which has the lowest 
probability of being completed by its due-date. This dis
patching rule was compared to the first-come, first-served 
rule and found to produce better schedules. However, the 
first-come, first-served rule has been shown to compare 
unfavorably with the shortest-processing-time, least
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slack/remaining operation, and other rules which are among 
the better rules available. Therefore, an evaluation of 
this rule should include a comparison of this rule with one 
of the more effective rules which considers due-dates such 
as least slack/remaining operation.

Holt (25) suggested that the cost of delaying jobs 
held in queue while the selected job is being processed 
should be considered. That is, for each job in a queue 
available for processing, compute the total delay costs for 
all other jobs in the queue if delayed for the processing
time of the job being considered. Then select that job 
with the smallest total delay cost. If is the total
cost of delay caused by processing Job i on Machine j ,

is the processing-time of Job i on Machine j , is
the cost per unit time for delaying Job i, and q^ is the 
set of all jobs available for processing on Machine j , then

=ij = "ij I  “
k=q. 
k/ i

k

A cost estimate such as this could be computed for each of 
the jobs available for processing when a machine becomes 
available and this cost could be used as a priority number 
where the lowest number is given preference. This type of 
rule has not been implemented or tested experimentally nor
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has a good method for computing been developed, but
some interesting properties are apparent. If the processing
time of a job is very short, it would not delay the remain
ing jobs very long and would have a low total cost of delay. 
Therefore, some similarities should exist between this rule 
and the shortest-processing-time rule. However, if a job 
had a very high delay cost, the total cost of delay would 
be minimized by processing this job immediately and delaying 
the other jobs. Therefore, it appears that a rule of this 
type would exhibit some of the properties necessary for a 
dispatching procedure which generates "good" schedules.

The works of Fabrycky and Shamblin (l6) and Holt 
(25) are of interest because although they have not provided 
a feasible method of generating "good" schedules for a job- 
shop where due-dates and delay costs should be considered, 
they have definitely taken a step in that direction. Of 
particular significance is the use of a flow-time probabil
ity distribution by Fabrycky and Shamblin to compute the 
probability of a job being completed by its due-date and the 
suggestion by Holt that sequencing rules might well consider 
the cost of delaying competing jobs for the processing-time 
of the job being processed first.

In this dissertation, three stochastic dispatching 
procedures are proposed which are designed to sequence jobs 
in a manner which tends to minimize the total cost of 
processing all jobs to completion. Costs which are
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considered by the sequencing rules are penalty cost func
tions for tardiness and bonus functions for earliness.
Penalty and bonus functions are assumed to be linear for 
the purposes of this paper. However, any monotonically 
nondecreasing functions can be used with these dispatching 
procedures.

All dispatching procédures developed assume that 
the processing-time distribution of each machine is known. 
Processing-time was chosen as a basis for the development 
of these procedures instead of flow-time because flow-time 
is sensitive to shop loading which is frequently very 
unstable in a true job-shop. Since processing-time is not 
a function of shop loading, historical processing-time data 
can be used with much greater confidence than can historical 
flow-time data. Any distribution can be used for processing- 
times. However, it is assumed for the purposes of this 
paper that the processing-time distributions are approx
imately normal.

One of the dispatching procedures developed is based 
on an expected savings formulation while the other proce
dures are based on expected cost formulations. The expected 
savings dispatching procedure was compared to the expected 
cost procedures on small job-shop problems with manual 
simulations, and the expected savings procedure was found to 
be much weaker in its ability to discriminate among compet
ing jobs than the expected cost procedures. Therefore,
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simulation programs were developed for the experimental 
testing of only the expected cost dispatching procedures.

Dispatching procedures such as the ones presented 
in this paper must in some way be verified as to their 
ability to generate "good" schedules. If the schedules 
produced by these dispatching procedures could be compared 
to known optimal solutions of a number of problems of 
reasonable size and complexity, then this would demonstrate 
the effectiveness of these procedures. However, if optimal 
solutions to these problems were readily available for 
comparison, then there would be no need for the development 
of the dispatching procedures as the problem would already 
be solved. While optimal solutions to problems of 
reasonable size are not easily found, optimal solutions can 
be found for very small restricted problems by either total 
enumeration of all feasible schedules or the use of 
mathematical programming techniques. Because some small 
problems can be solved through the use of integer program
ming techniques, the job-shop scheduling problem with 
penalty and bonus costs is formulated as an integer pro
gramming problem. However, in order to do this, the 
assumption must be made that the processing-time of a job 
on a machine is known and is deterministic. This of 
course is an unrealistic assumption but a necessary one if 
the problem is to be formulated as an integer programming 
problem. There are no computationally feasible stochastic
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integer programming techniques currently available.

The primary method of verifying the validity of 
the expected cost dispatching procedures is experimental 
verification. This is the only practical means of testing 
the performance of the dispatching rules on a number of 
problems of reasonable size. Simulation programs were 
developed which simulate the activity of a job-shop which 
uses the expected cost dispatching procedures to determine 
the order of processing for the competing jobs at each 
facility in the shop. Also, a simulation program was 
developed which simulates the performance of the job-shop 
using the least slack/remaining operation rule to make 
sequencing decisions. The least slack/remaining operation 
rule was chosen because it has been shown to be the best 
performing of the simple due-date rules, and it has been 
extensively simulated and compared to many other dispatching 
rules by a large number of researchers (10), (11), (36), and
(15). It should be pointed out that the least slack/remain
ing operation rule assumes known deterministic processing- 
times and known due-dates. It does not consider the distri
bution of processing-times nor penalty or bonus costs.
Since there is no rule currently available which does con
sider these things, the least slack/remaining operation rule 
is the best choice because it has demonstrated good perform
ance and is well known. If the expected cost dispatching 
rules exhibit an ability to generate schedules which are
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significantly better than schedules generated by the least 
slack/remaining operation rule in terms of the total cost 
of processing all jobs to completion, then the effectiveness 
of the expected cost dispatching rules will be verified.

In addition to the verification of the expected cost 
dispatching procedures by comparison to optimal solutions of 
very small problems and by comparison to the least slack/re
maining operation rule by means of simulations for larger 
problems, one of the expected cost rules is proven to be 
optimal in some special cases. This does not imply that 
this expected cost procedure produces optimal solutions for 
all problems. However, it does indicate that the procedure 
generates schedules which are likely to be optimal.

Although the primary purpose of this paper is the 
development and verification of effective probabilistic 
sequencing rules for minimizing the total costs of process
ing all jobs to completion in a job-shop, the simulations 
developed are general enough to handle a wide variety of 
problems without the usual simplifying assumptions of the 
simple job-shop. Such flexible simulations have not 
previously been available, and they can be an extremely 
valuable management and research tool.

Integer Programming Formulation

An integer programming formulation of a simple 
job-shop problem with due-dates and linear penalty cost
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functions is presented because integer programming tech
niques can be used to generate optimal schedules for small 
job-shop problems with certain simplifying assumptions.
The notation used will follow Manne (37)* The assumptions 
made in this formulation are:

1. Jobs are strictly ordered sequences of 
operations.

2. Assembly is not allowed.
3. Partition is not allowed.
4. Each operation can be performed by only one 

facility in a shop.
5. Once an operation is started on a facility, 

it must be processed through to completion.
6. A job may be in process on at most one 

facility at a time.
7. Each job has a due-date associated with it.
8. Each job has associated with it a penalty 

cost for delay directly proportional to 
the tardiness of the job.

9. The processing-time of each job on all 
applicable facilities is deterministic and 
known.

10. A facility may process only one job at a 
time.

11. All jobs are immediately available for 
processing.
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12. All facilities are continuously available.
In order to formulate this problem, the following

parameters and variables are defined:
Parameters

= Processing-time of Job i on Machine k.
r. = 1 if Job i has its j-th operation on 

Machine k.
r. = 0  otherwise.
d. = Due-date of Job i.X
M = A very large constant,
m = Number of machines,
n = Number of jobs.
W . = Penalty cost in dollars per day for

tardiness of Job i.
Variables

= Starting time of Job i on Machine k.
Y. = 1 if Job i precedes Job j on Machine k

(not necessarily directly).
Y. = 0  otherwise.

The constraints can now be written.
Noninterference constraints:

(M+Pjk' ?ijk + <?ik - Tjk' = Pjk (1»)

Constraint (la) prevents Jobs i and j from being 
processed simultaneously on Machine k if Job j precedes 
Job i .

The number of inequalities is m • (^) = - - .
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(M+P.%)(l-Y..t) + (Tjk-T.^) > Pit (lb)

Constraint (lb) prevents Jobs i and j from being 
processed simultaneously on Machine k if Job i precedes 
Job j .

The number of inequalities is m • (” ) = m"^^
Because jobs are strictly ordered sequences of 

operations, there must be operation precedent constraints.
The starting“time of the j-th operation on the i-th 

job can be written as:

m
Au ^ i j k  ^ i k  " ^ i j l  ^ i l  ^ i j 2  ^ i 2  + •** + ^ i m
k=l

The processing-time of the j-th operation on the i-th job 
can be written as:

m
. jk  ̂ik “ *ijl ‘il  ̂ ‘ij2 * i2 *** ‘ijm * imE r.., P., =r... P., + r . . „ P . „ +  ... + r . .  P.ij] - - - _ _ _ "

k=l

For all but the last operation on a job, the starting-time 
plus the processing-time must be less than or equal to the 
starting-time of the next operation.

m m  m
Z! ^ijk '̂ ik ^ ^ijk ^ik ~ I] ^i,j + l,k ^ik 
k=l k=l k=l

The number of inequalities is (m-l)n
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Constraints on Variable :

^ik = ° <3)

The number of inequalities is m * n .
Constraints on Variable Y... :^ J

Y. .. = 0 or 1 (4)1 J K

The number of inequalities is m ' (g) = m^^^  ̂̂

The solution to this problem must satisfy constraints (1), 
(2), (3)i and (4) above.

The objective is to minimize the total penalty cost 
of processing all jobs to completion. To write an objective 
function for total penalty cost, let C^ be the completion
time of Job i , and for simplicity of notation, assume that 
each job is processed by exactly m-machines* The jobs must 
be processed by each machine. However, any ordering of the 
operations is possible.

C^ can be written as the starting-time of the last 
operation on Job i plus the processing-time of the last 
operation on Job i. The last operation will always be the 
m-th operation if each job is processed by all machines.

The starting-time of the last operation can be 
written as:

m
imk ^ik ^iml ^il  ̂ ^im2 ^i2 ^ ••• +

k=l



32
The processing-time of the last operation can be written as

m
imk ^ik ^iml ^il ^im2 ^i2  ̂  ̂ ^imm ^im

k=l 

therefore,

m m
'i ^  ^imk ^ik X! r . , P ., imk ik

k=l k=l

for i = l ,  2, ...,n

Let I. = tardiness of Job i.1
Then I . = O if C . 2 d .1 1 1

I. = C. - d. if C. =• d.I l l  1 1
Therefore, can be written as:

I. = Maximum (O, C. - d.) 1 1 1

Z, the total penalty for all jobs is

n
Z =

i=l

n
Z = ^  Cmax(0,C^-d^)] (5)

i=l

and the objective is to minimize Z subject to constraints 
(1) , (2), (3), and (4).

Most integer programming algorithms are for the 
solution of integer programming problems with linear
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constraints and linear objective functions. Therefore, it 
is undesirable to leave the objective function in the non
linear form shown in equation (5)* It is possible through 
the use of additional constraints to replace equation (5) 
with an equivalent linear objective function. To do this, 
require that:

- 0 for all i (6)

There are n such inequalities.
Also require that:

I. % C. - d . for all i 1 1  1

which can be rewritten as

m
î - I] ^imk^^ik ^ik^ “ ^i 

k=l

for all i . There are n such inequalities. 
With the addition of inequalities (6) and (7), the objective 
function becomes:

n
Minimize Z =

i=l
T  I. W. (8)Z_j 1 1

Therefore, the linear integer programming formulation of the 
simple job-shop problem with due-dates and linear penalty 
cost functions is the minimization of the objective function 
in equation (8) subject to constraints (l), (2), (3), (4), 
(6), and (?)• If a simple job-shop problem with 20 jobs and
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6 facilities is formulated in this manner, the formulation 
would require 2420 variables and 7000 constraints. A 
problem of this size cannot be solved by currently avail
able integer programming techniques. Only a few seconds of 
computer time are required to generate feasible schedules 
for problems with 20 jobs and 6 machines if simulation 
techniques are used.

The integer programming formulation presented here 
can be extended to incorporate bonus costs by rewriting the 
objective function so as to include the bonus. Equation 
(5) then becomes:

n n
Z = > Cmax(0,C.-d.)]W. - ) [max(0,d .-C.)]B. (5')

L f 1 1  1 X X  X
i=l i=l

where is the bonus per unit of time that Job i is com
pleted early. In order to rewrite this objective function 
as a linear function, the following theorem will be needed.

Theorem: maximum (0,-A) = A - maximum (0,A)
Proof: To prove this theorem, three cases

must be considered:
A < 0, A = 0, A = » 0  .

1. A < 0: maximum (0,-A) = A
A - maximum (0,A) = A - 0 = A
Therefore, maximum (0,-A) = A
- maximum (0,A)
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2. A = 0; maximum (0,-A) = 0

A - maximum (0,A) = 0 - 0 = 0  

Therefore, maximum (0,-A) = A
- maximum (0,A)

3. A ^ 0: maximum (0,-A) = 0
A - maximum (0,A) = A - A = 0 
Therefore, maximum (0,-A) = A
- maximum (0,A)

Using this theorem. Equation (5*) may be rewritten;

n
Z = ^  [max(0,C^-d^)]

i=l

n
[(C^-d^) - max(0,C^-d^)]

i = l

n n
Z = Y  (W. + B.)max(0,C. - d.) - ) B.(C. - d .)/ I I X  X X  / I X X  X

i=l i=l

The objective function can now be written as:

n n
Minimize Z =

i=l i=l
y  (W. + B.)I. - y  B.(c. - d.) (8')
* ■ 1 X X  i_— I X X  X

if constraints (6) and (7) are still required. Thus the 
linear integer programming formulation of the simple job- 
shop problem with penalty and bonus cost functions is the 
minimization of (S’) subject to constraints (1), (2), (3),
(4); (6), and (7).
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The assumption that each job must be processed by 

all m machines can also be relaxed. This is done by:
1. Setting = 0 if Job i is not processed

by Machine k .
2. Letting m^ be the number of operations on 

Job i and restricting the range of the second

ijksubscript on r . .. so that j = 1, 2, . .. ,
m .1

Dispatching Procedures

Three stochastic dispatching procedures for sched
uling jobs in a job-shop so as to minimize the total cost 
of processing all jobs to completion have been developed. 
All three of these dispatching procedures assume known 
processing-time distributions for each shop facility. All 
procedures have as parameters the due-dates of the jobs, 
the penalty costs for tardiness, the bonus payments for 
earliness, the required technological processing sequence 
for each job, and the processing-time distributions for the 
shop facilities. For the purposes of this dissertation, it 
is assumed that the processing-time distributions are 
approximately normal.

One of the dispatching procedures investigated uses 
an expected savings formulation to determine processing 
priorities for competing jobs. The other dispatching pro
cedures investigated use expected cost formulations for the
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determination of processing priorities. The objective of 
the expected savings dispatching procedure is to sequence 
competing jobs in a manner which will maximize expected 
savings for the sequence and in so doing minimize the 
total cost of processing all jobs to completion. The 
objective of the expected cost procedures is to sequence 
competing jobs in a way which minimizes expected costs for 
the sequence and in so doing minimizes the total cost of 
processing all jobs to completion.

Expected Savings Formulation

This procedure for the dispatching of competing 
jobs is based upon the difference between two expected cost 
calculations. Whenever a facility of the shop becomes 
available for processing, the expected savings per day for 
processing each job immediately and not delaying it is 
computed for all jobs competing for that facility. The 
jobs are assigned to the facility for processing in the 
order of non-increasing expected savings. The job with the 
greatest expected savings would be processed first. Each 
time a facility completes the processing of a job and is 
available for processing another job, the expected savings 
for the immediate processing of each competing job is 
recomputed. This is necessary because in a real shop or 
in a simulation time is constantly changing, and expected 
savings is a function of time. Also, new jobs may have
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joined the facility’s queue, and expected savings must be 
computed for the new arrivals as well as the jobs which 
were previously delayed.

In order to compute the expected savings per day 
which would result if Job i were processed immediately 
instead of being delayed for one day, let

= {set of machines in the technological processing 
sequence of Job i which have not yet processed
Job i.^

= Expected processing-time of Job i on Machine j.

= Standard deviation of the processing-time of Job 
i on Machine j .

d. = Due date of Job i.1
= Penalty cost per day for tardiness of Job i.

= Bonus per day for earliness of Job i.

= Total expected processing-time of Job i.
p = Pooled standard deviation of total processing

time of Job i.

0^^ = Probability of a job being D days tardy.

= Probability of a job being D days early.

EC^ = Expected cost of processing Job i immediately.

EC^ = Expected cost of processing Job i if it is delayed
for one day.
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A e C^ = Expected savings per day for processing

Job i immediately instead of delaying it.

X - fKjj =  ^  , the standard normal deviate for

a job D days early or tardy.

T  ^Ij-Q = I f(x) dx where f(x) is the standard
-CO

normal distribution with a mean of 0.0 and 
a standard deviation of 1.0.

The expected cost formulation for Job i is

00 CO
1  “  D “ - I  ëlg D
D=1 D=1

which is the penalty per day tardy multiplied by the 
expected number of days tardy minus the bonus per day early 
times the expected number of days early.

Expected savings per day may now be defined as:

A e C. = EC. ' - EC.1 1 1

which is the expected cost of Job i if processing is delayed
for one day minus the expected cost of Job i if processing
begins immediately.

A e C^ is computed for each job competing for a 
facility available for the processing of these jobs. The 
job with the greatest expected savings per day, A E C . , is
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processed first. This is done for each shop facility as 
the facilities complete jobs already in progress and become 
available for the processing of additional jobs.

As an example of how this procedure is applied to 
an actual problem, consider a machine scheduling problem 
with two jobs and two machines. Technological ordering 
requires that both jobs must be processed by both machines 
in the order 1-2. For simplicity assume that the day the 
jobs become available for processing is day one.

TABLE 1 
JOB CHARACTERISTICS

Job Machine Sequence B^ d^

1 1 - 2  10 20 6
2 1 - 2  5 10 5

TABLE 2
PROCESSING-TIME DISTRIBUTIONS

Job Sil Si2

1 2 .707 1 .707
2 3 .707 2 -707
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At the beginning of this manual simulation both 

Job 1 and Job 2 are competing for processing on Machine 1. 
There are no jobs competing for processing at this time on 
Machine 2. Therefore, Machine 2 will initially be idle.
To make a decision as to which job should be processed 
first on Machine 1, A e C^ and A e C^ are computed. If 
A e C^ =- A  ECg , then Job 1 is processed first since it 
offers the greatest savings. If AEC^ < A  EC^ , then Job 
2 is processed first. If A  = A  EC^ , the job to be 
processed first c@n be chosen randomly or on some other 
basis such as earliest due-date.

In order to compute A  EC^ and A  EC^ , the total 
expected processing-time of processing each job to 
completion and the pooled standard deviation of the total 
processing-time distribution for each job must be computed

:. = y  X.. and S.P = ~\l Y  S? .1 L-, ij 1  ̂ Z_. ij
j 6 M . j C M

Therefore,

^1 ■ ^11 * ^12 - 2  + 1 - 3

%2 = %21 + *22 = 3 + 2 = 5

= A/®i i+^12 = V(-707)^ + (.707)2 = 1.0
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= "\/s21+S22 = '\Ji-707)^ + (.707)2 = 1.0

Recall that A EC, = EC ' - EC,

OO OO
and EC.L X

D=1 D=1

OO
-1 = Pl I  O^D ° E  “

To determine EC^ the expected number of days tardy,
CO

D = 1

and the expected number of days early,
OO

I  » '
D = 1

if Job 1 is processed immediately must first be computed

TABLE 3
EXPECTED NUMBER OF DAYS TARDY FOR 
JOB 1 IF PROCESSED IMMEDIATELY

r  f°/q = j  f(x)dx
-OO

^ D =  ^D" 7o_i a „ D

0 ^  = 3 .999 --— — — —

1 = 4 1.000 .001 .0011

OO
^  CXpD = .001
D=1
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TABLE 4
EXPECTED NUMBER OF DAYS EARLY FOR 

JOB 1 IF PROCESSED IMMEDIATELY

® ®"D~ ”7p ^D~ I ^'(x)dx ^D~ To+l ^D°
-oo

0 ¥ = 3 .999 .022 .000

1 .977 .136 .136

2 ¥ - .841 .341 .682

3 ¥ - .500 .341 1.023

4 .159 .136 .544

5 ¥ - .023 .022 .110

6 ¥ = - 3 .001 .001 .006

7 -1-3 .000 —  —  — — -----

oo
9^D = 2.501

D=1
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The expected cost of processing Job 1 immediately, EC^ , 
can now be computed.

oo oo
1

D=1 D=1
-1 = '’l I  - =1 I

= (20)(.001) - (10)(2.501) 

= - 24.99

To determine EC^' , the expected number of days 
tardy and the expected number of days early if Job 1 is 
delayed for one day must first be computed. This is done 
in the same manner that these computations were performed 
for the immediate processing of Job 1 except that the time 
until the due-date is reduced by one day.

TABLE 5
EXPECTED NUMBER OF DAYS TARDY FOR 

JOB 1 IF DELAYED FOR ONE DAY

D ^D / d CXd « dD

0 2 .977 — — — — — —
1 3 .999 .022 .022
2 4 1.000 .001 .002

CK)
Y  = .024
D=1
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TABLE 6
EXPECTED NUMBER OF DAYS EARLY FOR

JOB 1 IF DELAYED FOR ONE DAY

D 00 0d“

0 2 .977 .136 .000
1 1 .841 .341 .341
2 0 .500 .341 .682
3 -1 • 159 .136 .408
4 -2 .023 .022 .088
5 -3 .001 .001 .005
6 -4 .000 -- ---

OO
Z  = 1-524
D = 1

The expected cost of processing Job 1 if delayed for one 
day, EC^' , can now be computed.

oo oo
GC,'

D=1 D=1

oo oo
•l' " I’l Z  D -

= (20)(.024) - (10)(1.524)

= - 14,76

Therefore, the expected savings per day for not delaying 
Job 1 is:
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A e C ĵ = EC^' - EC^

= - 14.76 - (-24.99)

= + 10.23

AECg is computed in the same manner as A  EC^ except 
that the characteristics of Job 2 are substituted for those 
of Job 1 in the computations.

A e C^ = ECg' - ECg

00 00= '’2 E E "
D=1 D=1

TABLE 7
EXPECTED NUMBER OF DAYS TARDY FOR 

JOB 2 IF PROCESSED IMMEDIATELY

D ^0 « d“

0 0 .500 — — — — — —
1 1 .841 .341 .341
2 2 .977 .136 .272
3 3 .999 .022 .066
4 4 1.000 .001 .004

OQ

D=1
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TABLE 8
EXPECTED NUMBER OF DAYS EARLY FOR

JOB 2 IF PROCESSED IMMEDIATELY

D ^D / d

0 0 .500 .341 .000
1 -1 .159 .136 .136
2 -2 .023 .022 .044
3 -3 .001 .001 .003
4 -4 .000 — — — ---

00

I  = .183
D=1

The expected cost of processing Job 2 immediately is :

00 00
I  0 - I  & D  0
D=1 D=1

(10)(.683) - (5)(.183)

5.915

The computation of EC^' proceeds in the same manner as 
the computation of EC^ except that the time until the 
due-date is reduced by one day.
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TABLE 9
EXPECTED NUMBER OF DAYS TARDY FOR

JOB 2 IF DELAYED FOR ONE DAY

0 -1 .159 — — — — — —
1 0 .500 .341 .341
2 1 .841 .341 .682
3 2 .977 .136 .408
4 3 .999 .022 .088
5 4 1.000 .001 .005

oo
^  a^jD = 1.524
D=1

TABLE 10
EXPECTED NUMBER OF DAYS EARLY FOR 

JOB 2 IF DELAYED FOR ONE DAY

D / d

0 -1 .159 .136 .000
1 -2 .023 .022 .022
2 -3 .001 .001 .002
3 -4 .000 — — — — — —

oo
^  0jjD = .024
D=1
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The expected cost of processing Job 2 if delayed for one 
day is :

oo CO
ECg' ' ■’2 I  I  '>

D=1 D=1

= (1 0)(1 .5 2 4) - (5)(.0 2 4)
= 1 5 . 1 2

Therefore, the expected savings per day for not delaying 
Job 2 is :

A s C g  = ECg' - ECg

= 15.12 - 5.915 

9.205

Since 1 0 . 2 3 =" 9 * 2 0 5 , A EC^ =* A EC^ and the processing 
of Job 1 immediately and the delay of Job 2 will result in 
greater expected savings than the immediate processing of 
Job 2 and the delay of Job 1. Therefore, Jobs 1 and 2 
would be processed by Machine 1 in the order 1-2. This 
delays Job 2 for the processing-time of Job 1. Because of 
the small size of this problem, the decision to process 
Jobs 1 and 2 in the sequence 1-2 on Machine 1 determines a 
unique schedule. No other sequencing decisions are neces
sary .

To evaluate this schedule is not a simple under
taking since the processing-times of the jobs are stochastic.
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One way would be to formulate the total expected costs of 
all feasible schedules for this problem and compare them. 
Although this might be possible for this 2-job, 2-machine 
problem, it would not be a practical method of evaluating 
the schedules of more complex problems. To enumerate all 
feasible schedules and compute their total penalty costs, 
it is assumed that a job is processed by a machine for a 
period of time equal to the mean of the processing-time 
distribution. This same assumption will be made later so 
that expected cost schedules can be compared to least 
slack/remaining operation schedules.

Machine 1 i ^  -i-------------1
Machine 2 < i-

>■ TIME
2

Ô Ï 2 3 5 5 5

Illustration 1.--Expected Savings Schedule

Job 1 is processed for two days on Machine 1. Then at the 
completion of Job 1 on Machine 1, Job 2 begins processing 
on Machine 1, and Job 1 begins processing on Machine 2. At 
the end of Day 3» Job 1 completes processing on Machine 2, 
and since Job 1 was not due until Day 6, it is completed 
three days early. Job 2 completes processing on Machine 1 
at the end of Day 5* It then begins processing on Machine 
2 which has been idle for two days. Job 2 completes its 
processing on Day 7 which is two days tardy since it was
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due on Day 5^ Therefore, the total actual cost of this 
schedule is:

TC - (Number of days Job 1 is tardy)
(Number of days Job 1 is early)

+Pg (Number of days Job 2 is tardy)
-Bg (Number of days Job 2 is early)

TC = (20)(0) - (10)(3) + (10)(2) - (5)(0)
TC = * 10

It is easy to demonstrate that this is an optimal 
schedule for this problem. This is done by total enumer
ation of all feasible schedules. That schedule which has 
the smallest total actual cost is the optimal schedule.
For this problem there are only two feasible schedules 
which must be considered. One of these schedules is the 
one obtained by the application of the expected savings 
dispatching procedure which has a total actual cost of 10 
The other schedule is obtained by processing the jobs in 
the sequence 2-1 on Machine 1. This uniquely determines 
the remainder of the schedule This schedule is

, , Job 2 Job 1Machine 1 '-------------1-------- 1

Machine 2--------------- '-------------'2 1
0

Illustration 2.- Alternate Schedule

TIME
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Job 2 is completed on Day 5 which is its due-date, 

and Job 1 is completed on Day 6 which is its due-dateo 
Since both jobs are completed exactly on time, there is no 
penalty or bonus cost. Therefore, the total actual cost 
of this schedule is zero.

TC = 0

However 5 the schedule generated by the expected savings 
procedure had a total actual cost of -10 -10 < 0 .
Therefore, the schedule obtained by the expected savings 
procedure is optimal for this problem. It is interesting 
to note that the optimal schedule had one job tardy while 
the non-optimal schedule completed both jobs exactly on 
time. This is because bonus and penalty costs were 
considered and the objective is the minimization of these 
costs, not the maximization of the number of jobs completed 
on time,

Expected Cost Formulation 1(EC)

This is an expected cost dispatching proc,edure 
which IS designed to sequence competing jobs at each 
facility in the shop so as to minimize the total cost of 
processing all jobs to completion. This procedure computes 
the expected cost of processing to completion each job com
peting for an available facility under the assumption that 
the job will be processed to completion without any delays. 
Jobs are then sequenced for processing in the order of
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non-increasing expected costs. Each time a shop facility 
becomes available for assignment, the expected cost pro
cedure is applied to the jobs available for processing on 
that facility. Jobs are assigned to the available facility 
in the order of non-increasing expected costs.

This procedure was chosen because it appears to 
have characteristics not unlike the earliest due-date and 
least slack sequencing rules except that this procedure is 
probabilistic and the value of the jobs is weighted by 
penalty and bonus costs for tardiness and earliness. The 
expected costs are computed in the same manner as in the 
expected savings dispatching procedure.

As an example of the application of this procedure 
to a small problem consider a machine scheduling problem 
with 3 jobs and 1 machine. The problem is to determine the 
best sequence to process the jobs in order to minimize the 
total cost of processing all jobs to completion. Assume 
that the day the jobs become available for processing is 
Day 1.

TABLE 11 
JOB CHARACTERISTICS

Job Machine Sequence ®i d . 1

1 1 0 2 5
2 1 0 5 3
3 1 0 3 4
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TABLE 12 
PROCESSING-TIME DISTRIBUTIONS

Job ^il ^ii

1 3 1
2 3 1
3 3 1

At the beginning of this manual simulation all 
three jobs are available for processing on Machine 1, and 
Machine 1 is available. To determine the sequence that 
these jobs should be processed, compute the expected cost 
of processing each job:

o o CO

D=1 D=1

since there is only one machine, X. = X., and S. = S ..’ X xl X xl

Since B^ is zero for each job, there is no need 
to compute the expected number of days early.

COI
D = 1
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TABLE 13
EXPECTED NUMBER OF DAYS TARDY FOR
JOB 1 IF PROCESSED IMMEDIATELY

D r/jj= / f(x)dx 
-oo

^ D ~  ^D" ^D-1 «D°

0 .977 —  —  — —  —  —

1 ¥ = 3 .999 .022 .022

2 Z ^ i = 4 1.000 .001 .002

oo
^  O p D  = .024
D=1

oo
EC^ = P^ ^  0( ̂  D = (2)(.024) = .048 

D=1
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TABLE l4
EXPECTED NUMBER OF DAYS TARDY FOR 
JOB 2 IF PROCESSED IMMEDIATELY

D 4 « D OCpD

0 0 • 500 — — — — — —
1 1 .841 .341 .341
2 2 .977 .136 .272
3 3 .999 .022 .066
4 4 1.000 .001 .004

oo
^  (X pD = .683
D=1

CO
= Pg ^  (X g D = (5)(.683) = 3.415

D=1
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TABLE 15
EXPECTED NUMBER OF DAYS TARDY FOR
JOB 3 IF PROCESSED IMMEDIATELY

D ^  D a „ D

0 1 .841 — —  — —  —  —

1 2 .977 .136 .136
2 3 .999 .022 .044
3 4 1.000 .001 .003

CO
I = .183
D=1

00
= ’’3 I  ■> = (3)(.183) = .549

D=1

3.415 > .549 .024

EC^ > EC^ => EC^
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Because Job 2 has the highest expected cost, it is 

processed first. If Job 2 is processed first, it would be 
completed on Day 3* At this time a decision would have to 
be made as to which of the two remaining jobs to process 
next. Another expected cost computation would be made for 
Jobs 3 and 1. If any other jobs had joined the queue, an 
expected cost computation would be made for them also. In 
order to compute the expected costs the time until the due- 
dates must be reduced by three days, the expected process
ing-time of Job 2.

TABLE 16
EXPECTED NUMBER OF DAYS TARDY FOR 
JOB 1 IF DELAYED FOR THREE DAYS

D Jo (X D OC pD

0 -1 .159 — — — — — —

1 0 .500 .341 .341

2 1 .841 .341 .682

3 2 .977 .136 .408

4 3 .999 .022 .088

5 4 1.000 .001 .005

ECi = (2)(1.524)

00
1
D=1 

= 3.048

= 1.524
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■ TABLE 17 
EXPECTED NUMBER OF DAYS TARDY FOR
JOB 3 IF DELAYED FOR THREE DAYS

D ^D 7 d « D a „ D

0 kzl- 1 ■ -2 .023 --- — — —

1 -1 .159 .136 .136

2 0 .500 .341 .682

3 1 .841 .341 1.023

4 2 .977 .136 .544

5 3 .999 .022 .110

6 Zzl- 1 - 4 1.000 .001 .006

OO

D=1

EC^ = (3)(2.501) = 7.503

7.503 > 3.048

EC^ > EC^
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Because Job 3 has the higher expected cost, it is 

processed next. It would be completed on Day 6. Job 1 
would then be processed beginning on Day ?• It would be 
completed on Day 9» No expected cost computation is 
necessary to assign Job 1 to Machine 1 on Day 7, because 
it has no competition for the facility. Therefore, the 
sequence for processing the jobs given by the expected 
cost dispatching procedure is 2-3-1.

Job 1 
Job 2 *-
Job 3

Ô  I 2 3 5 5 S 7 5 9*

Illustration 3«--Gantt Chart for 2-3-1 Schedule

For this schedule. Job 2 is completed on Day 3 
with no cost since it was due on Day 3. Job 3 is completed 
on Day 6 at a cost of (3)(2)=6 since it was due on Day k. 
Job 1 is completed on Day 9 at a cost of (2)(4)=8 since it 
was due on Day 5* Therefore, the total cost of the 2-3-1 
schedule is 0+6+8=14.

There are five other possible sequences for 
processing these three jobs. To determine if the 2-3-1 
sequence is optimal, these schedules may be enumerated and 
a total cost computed for each of them. Then that schedule 
with the smallest total cost is the optimal schedule.
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TABLE 18
FEASIBLE SEQUENCES AND THEIR COSTS

Sequence Cost

1-2-3 30
1-3-2 36
2-1-3 17
2-3-1 14
3-1-2 32
3-2-1 23

For this problem the optimal processing sequence is 2-3-1 
which has an actual cost of l4. This is the same sequence 
that was generated by the expected cost procedure.

Expected Cost Formulation 2 (TEC)

This expected cost dispatching procedure is based 
on the same expected cost formulation as the previously 
discussed expected cost procedure. However, this procedure 
considers both the expected cost of the job which is to be 
immediately processed and the expected costs of those jobs 
which must be delayed for at least the processing-time of 
the job to be processed immediately. A procedure which 
takes into account all of these expected costs will be 
computationally less efficient than the two procedures 
already discussed. However, the magnitude of the
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computations is still very reasonable if a digital computer 
is used, and significantly improved schedules are produced.

To define the manner in which the expected cost 
computations are made for this procedure, let J = ^set of 
all jobs available for processing on the facility being 
considered^. Also, let TEC^ equal the expected cost of 
processing Job i immediately, plus the sum of the expected 
costs of processing all other jobs competing for this 
facility if delayed for the expected processing-time of 
Job i .
As before the expected cost formulation is :

oo oo

D=1 D=1

An equation can now be written for TEC^ .

TEC. = EC. + / EC ’1 1 ^  r
r Ç  J
r / i

where EC^ is the expected cost of processing Job i
immediately on the facility under consideration. EC^' is
the expected cost of processing Job r if delayed for the 
expected processing-time of Job i on the facility for which 
this calculation is being made. EC^' is summed for all 
jobs competing for processing except Job i which is being
considered for immediate processing.
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In order to apply this dispatching procedure to a 

job-shop problem, TEC^ is computed for all iC J . Then 
the jobs are assigned to the available facility in the 
order of nondecreasing TEC^ . That is, the job with the 
smallest TEC^ is the first to be processed. This 
procedure is applied to all the facilities of the shop.
Each time a facility completes processing a job and becomes 
available for the processing of another job, this total 
expected cost dispatching procedure is used to determine 
which job should be processed. This continues until all 
jobs have been processed to completion.

It should be noted that for all the dispatching 
rules if there is only one job competing for a facility 
when that facility becomes available, then that job must 
be assigned to the facility and no total expected cost 
calculation is necessary. Also, if there are no jobs 
competing for a facility when it becomes available, the 
facility remains idle until a job arrives for processing.

To illustrate the application of this dispatching 
rule the same example problem will be solved as was used 
to illustrate the first expected cost dispatching rule.
This example simplifies the hand calculations since the 
bonus per day is zero for all jobs. This eliminates the 
need for computing the expected number of days early.
Also, all jobs have the same processing-time distributions. 
However, the penalty costs and due-dates are random. There
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is only one machine in this shop, and all three jobs are 
processed by this machine. The machine can process only 
one job at a time.

To determine the sequence in which the jobs should 
be processed, TEC^ will be computed for i = 1,2,3, and 
the job with the smallest TEC^ will be processed first. 
Then, when this job is completed TEC^ will be computed 
for the remaining two jobs, and the job with the smaller 
TEC^ will be processed next. At the completion of this 
job the remaining job will be processed, and the schedule 
will be complete. If the problem contained a larger number 
of jobs and machines, the algorithm would be applied in the 
same manner at each machine as it becomes available for 
processing. The jobs would move from facility to facility 
according to their required technological processing 
sequence as a job completed processing on one facility and 
become available for processing on another.

TABLE 19 
PROBLEM CHARACTERISTICS

Processing Time
Machine Distributions

Job Sequence B. P. d. X., S.,^ 1 1 1  il il

1 1 0 2 5 3 1
2 1 0 5 3 3 1
3 1 0 3 4 3 1
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Determination of TEC^ ;

TEC^ = EC^ + ECg' + ECg'

In Expected Cost Formulation 1, EC^ , the expected cost 
of Job 1 if processed immediately, was found to be .048.

EC^ = .048

ECg' and EC^' , the expected costs of processing Jobs 2
and 3j if delayed for the expected processing-time of Job
1, must be computed.

oo oo
EC2

D=1 D=1

where = 0 and the probabilities are computed assuming
that Job 2 has been delayed for 3 days
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TABLE 20
EXPECTED NUMBER OF DAYS TARDY FOR
JOB 2 IF DELAYED FOR THREE DAYS

0 Oz3_ 1 ■ -3 .001 — — — — — —

1 -2 .023 .022 .022

2 -1 .159 .136 .272

3 0 .500 .341 1.023

4 1 .841 .341 1.364

5 • 2 .977 .136 .680

6 âzl- 1 - 3 .999 .022 .132

7 4 1.000 .001 .007

oo
CX pD = 3.500

D=1

oo
ECg' = Pg Y! D ° (5)(3̂ 5) = 17.5

D=1
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TABLE 21
EXPECTED NUMBER OF DAYS TARDY FOR
JOB 3 IF DELAYED FOR THREE DAYS

0 -2 .023 — — — — — —
1 -1 .159 .136 .136
2 0 .500 .341 .682
3 1 .841 .341 1.023
4 2 .977 .136 .544
5 3 .999 .022 .110
6 4 1.000 .001 .006

OO
OfgD = 2.501

D=1

oo
E C 3 ’ = P] cXp D = (3)(2.501) = 7.503

D = 1

TEC ^ = .048 + 17.5 + 7.503 = 25.051

Determination of TEC^ :

TECg = ECg + EC^' + ECj'
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In Expected Cost Formulation 1, EC^ , the expected cost 
of Job 2 if processed immediately was found to be 3.41$.

ECg = 3.415

EC^' and EC^• , the expected cost of processing Jobs 1
and 3 if delayed for the expected processing-time of Job 
2, must be computed.

TABLE 22
EXPECTED NUMBER OF DAYS TARDY FOR 
JOB 1 IF DELAYED FOR THREE DAYS

D 4 « D « dD

0 -1 .159 — — — — — —
1 0 .500 .341 .341
2 1 .841 .341 .682
3 2 .977 .136 .408
4 3 .999 .022 .088
5 4 1.000 .001 .005

oc
^  a ^ D  = 1.524
D=1

oo
ECf’ = Pi ^  0( g D = (2)(1.524) = 3.048 

D = 1
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Since the expected processing-times of Job 1 and Job 2 are 
equal, the expected cost of Job 3 if delayed for the 
expected processing-time of Job 2 will be equal to the 
expected cost of Job 3 if delayed for the expected process
ing-time of Job 1.

ECj' = 7.503 

TECg = 3.415 + 3.048 + 7.503 

= 13.966

Determination of TEC^ :

TECj = EC^ + EC^' + ECg'

In Expected Cost Formulation 1, EC^ , the expected cost of 
Job 3 if processed immediately was found to be .549.

EC^ = .549

Since the expected processing-times of Jobs 1, 2, and 3 are 
all equal to 3, EC^' is equal to the value of EC^' 
found in the computation of TEC^ , and EC^' is equal to 
the value of EC^' found in the computation of TEC^ .

EC^' = 3.048

ECg' = 17.5

TECj = .549 + 3.048 + 17.5 

= 21.097 

13.966 < 21.097 ^ 25.051

TECg < TECg TEC^



70
Because Job 2 has the lowest total expected cost, 

it would be processed first. If Job 2 is processed first, 
it would be completed on Day 3» At this time a decision 
has to be made as to which of the two remaining jobs to 
process next. Therefore, another total expected cost 
computation must be made for Jobs 1 and 3. The job with 
the smaller TEC would be processed beginning on Day 4.

Determination of TEC^ :

TEC^ = ECĵ  + EC^'

In this case, EĈ  ̂ is the same as the EC^ computed in
the previous TEC^ computation.

EC^ = 3.048

EC^' is the expected cost of Job 3 if delayed for the 
expected processing-time of Job I which began processing 
on Day 4.
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TABLE 23
EXPECTED NUMBER OF DAYS TARDY FOR

JOB 3 IF DELAYED FOR SIX DAYS

D ■̂ D 4

0 -5 .000 —  —  — —  —  —

1 -4 .000 .000 .000
2 -3 .001 .001 .002
3 -2 .023 .022 .066
4 -1 .159 .136 .544
5 0 .500 .341 1.705
6 1 .841 .341 2.046
7 2 .977 .136 .952
8 3 .999 .022 .176
9 4 1.000 .001 .009

OO

^  0(j^D = 5.500
D=1

CO

D=1
= C%Q D = (3)(5 .500) = 16.5

TEC^ = 3.048 + 16.5 = 19.543

Determination of TEC^

TECj = EC^ + EC^'
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In this case, EC^ is the same as the EC^ computed in 
the first TEC^ computation.

EC^ = 7.503

EC^' is the expected cost of Job 1 if delayed for the 
expected processing-time of Job 3 which began processing 
on Day 4.

TABLE 24
EXPECTED NUMBER OF DAYS TARDY FOR 

JOB 1 IF DELAYED FOR SIX DAYS

^D ?D ^  D ^  D^

0 -4 .000 — — — ---
1 -3 .001 .001 .001
2 -2 .023 .002 .004
3 -1 .159 .136 .408
4 0 .500 .341 1.364
5 1 .841 .341 1.705
6 2 .977 .136 .816
7 3 .999 .022 .154
8 4 1.000 .001 .008

00
^D = 4.46c

D=1
00

EC^' = OCp D = (2) (4.460) = 8.920
D=1
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TECj = 7.503 + 8.921

= 16.424
16.424 <  19.543

TECj C  TEC^

Since Job 3 has the smaller total expected cost, 
it would be processed before Job 1. The processing of Job 
1 would begin as soon as the processing of Job 3 is com
pleted. The total expected cost schedule then is to 
process the jobs in the sequence 2-3-1. It was shown in 
the illustration of the first expected cost procedure that 
the 2-3-1 sequence is optimal for this problem with a mini
mum total cost of l4. Therefore, the total expected cost 
procedure also generated an optimal schedule for this prob
lem.

Simulation Programs

Simulation programs^ have been developed for the 
expected cost stochastic dispatching procedures and the 
deterministic least’ slack/remaining operation dispatching 
procedure. All of the simulation programs accept the same 
input data although not all of the input data is used by 
each of the dispatching procedures. The simulations 
developed all have the same assumptions, capabilities, and

The programs, flow charts, sample data, and sample 
output are available in the University of Oklahoma School of 
Industrial Engineering Research Report TS-71-1.
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limitations except for the dispatching procedure employed 
to determine the sequence In which the queue of jobs 
competing for each facility Is to be processed.

These simulations were developed to provide a 
means of comparing the expected cost dispatching procedures 
presented In this paper to the least slack/remalnlng oper
ation procedure which Is well known. The least slack/re
malnlng operation procedure has been simulated by several 
researchers (10), (11), (36), and (15) and has been found 
to be one of the better of the due-date rules. Since the 
least slack/remalnlng operation rule has been compared to 
a great many other dispatching procedures, a comparison of 
the performance of the expected cost procedures to the 
performance of the least slack/remalnlng operation rule 
provides a means of verifying the validity of the proposed 
expected cost procedures.

The least slack/remalnlng operation rule Is used to 
determine the sequence In which competing jobs should be 
processed. The rule requires known deterministic process- 
Ing-tlmes and a due-date for all jobs. To use the rule, 
the following computation Is made for all competing jobs:

» , ,Processlng-tlmes of the^
Slack Due-Data - ( Regaining Operations >
Operation Number of Remaining Operations

Then the jobs are sequenced for processing in the order of 
nondecreasing slack/remalnlng operation.
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To develop sequencing rules and simulations, certain 

assumptions must be made about the jobs to be processed and 
the facilities of the shop. For each job the following 
assumptions are made:

1. Jobs are strictly ordered sequences of 
operations.

2. Assembly is allowed.
3. Partition is not allowed.
4. Each operation can be performed by only 

one facility in the shop.
5. Once an operation is started on a facility, 

it must be processed through to completion 
without interruption.

6. A job may be in process on at most one 
facility at a time.

7. Each job has a due-date associated with it.
8. Each job has associated with it a penalty 

cost directly proportional to the tardiness 
of the job.

9. Each job has associated with it a bonus 
which is directly proportional to the 
earliness of the job.

10. For each job, an estimate of the expected
processing-time of the job on all applicable 
facilities is assumed to be known.
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11. For each job, the processing cost per unit of 

time for the job on all applicable facilities 
is assumed to be known.

12. For each job, the proportion of the capacity 
of the facility required for the processing 
of that job is assumed known.

13. A job may already be in process at the 
beginning of the simulation.

14. A job may be delayed for processing until 
some predetermined time.

For each facility the following assumptions are made:
1. A facility may, depending upon its capacity 

limitations, process jobs simultaneously.
2. Each facility is continuously available for 

assignment.
3 . For each facility, the processing-time dis

tribution is assumed to be normal with known 
mean and standard deviation.

If the above assumptions for jobs and facilities 
are compared with those stated on page 5, of this paper for 
the simple job-shop, it is readily seen that the simulations 
developed are much more general than those reported in the 
literature. This is desirable because then the simulation 
programs can be effectively utilized as a management tool as 
well as a means of evaluating and comparing the performance 
of various sequencing rules.
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Until recently there was really no need for a 

simulation which would allow the manager of a job-shop 
to accurately simulate his particular shop because the 
information required to construct an accurate simulation 
was not available and was too expensive to collect. How
ever, today many companies either have or are in the 
process of developing comprehensive management information 
systems. This is due in no small part to the availability 
of large scale random access storage devices at a reason
able cost and to the recent development of terminal devices 
for data collection which are easy to operate, flexible, 
and inexpensive.

If a shop is operating under a given dispatching 
procedure, then the shop may be simulated to predict the 
kind of performance that can be expected under existing 
conditions. If the predicted performance is not satisfac
tory, the manager may then simulate various possible solu
tion alternatives such as additional facilities, additional 
shifts, overtime, or subcontracting. In this way, the 
manager can compare the cost and performance of these 
alternatives. Thus comprehensive simulations such as these 
can be a valuable management tool.

Experimental Results

To verify the validity of the proposed expected 
cost dispatching procedure, thirty-eight machine scheduling
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problems were simulated using the expected cost dispatching 
procedures and the least slack/remaining operation procedure 
to sequence the jobs. Ten flow-shop problems and twenty- 
eight job-shop problems were simulated. The number of jobs 
ranged from 3 to 20, and the number of facilities ranged 
from 1 to 6. All jobs had a required technological sequence 
in which they had to be processed by the facilities, a due- 
date, and a linear penalty cost function for tardiness.
All facilities had a processing-time distribution that was 
assumed to be approximately normal with known mean and 
variance.

Three job-shop simulations were used to determine 
the relative cost performance of the two expected cost 
dispatching procedures and the least slack/remaining- ' : - 
operation dispatching procedure. One job-shop simulation 
which will be referred to as the EC simulation simulates 
the behavior of a job-shop which uses the expected cost 
formulation 1 dispatching procedure to sequence competing 
jobs. This procedure processes that job first which has 
the highest expected cost if processed to completion 
without delay. The definition of expected cost for this 
procedure is:

CO oo
Du

D=1 D=1
A second job-shop simulation which will be referred 

to as the TEC simulation simulates the performance of a
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job-shop which uses the expected cost formulation 2 
dispatching procedure to sequence competing jobs. This 
procedure processes that job first which has the least 
total expected cost where total expected cost is defined 
as :

TEC. = EC. + ) EC '1 1 r
r e  j
r 9̂ i

The third job-shop simulation which will be 
referred to as the S/O simulation simulates the activities 
of a job-shop in which the least slack/remaining operation 
dispatching procedure is used to determine the processing 
sequence of the jobs. This procedure processes that job 
first which has the least slack/remaining operation which 
is defined as :

_ . /Processing-Times of Remaining^
Sl.ok  ̂ ' Operations____________________ >
Operation Number of Remaining Operations

Of the ten flow-shop problems simulated, three had 
3 jobs and 1 machine; six had 3 jobs and 2 machines; and 
one had 6 jobs and 2 machines. For the problems with 3 jobs 
and 1 machine, the processing-time distribution for that 
machine had a mean of 2.0 and a standard deviation of 0.5. 
For the problems with 3 jobs and 2 machines, Machine 1 had 
a processing-time distribution with a mean of 1.0 and a
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standard deviation of 0.3, and Machine 2 had a distribution 
with a mean of 2.0 and a standard deviation of 0.6. For 
the problem with 6 jobs and 2 machines, both Machine 1 and 
Machine 2 had a processing time distribution with a mean of
2.0 and a standard deviation of 0.6.

For these flow-shop problems the schedules gener
ated by the EC , TEC , and S/0 simulations were compared
to each other and to the optimum schedule for each problem.
The optimum schedule which minimizes the total penalty cost 
of all jobs was found by the total enumeration of all 
feasible schedules and the computation of total penalty 
costs for each schedule with the assumption that each job 
requires an amount of time for processing on a machine 
which is equal to the mean of that machine's processing
time distribution. It was found that the TEC simulation 
produced an optimal schedule for all of the flow-shop 
problems. The EC simulation produced schedules for which 
the mean total penalty costs were 26% greater than the mean 
total penalty costs for the TEC schedules, and the S/0 
simulation produced schedules for which the mean total 
penalty costs were 6l% greater than the mean total penalty 
costs of the TEC schedules and 28% greater than the mean 
total penalty costs of the EC schedules. A summary of 
the normalized costs of the schedules generated by the 
three dispatching procedures is given in Table 25*
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TABLE 25
FLOW-SHOP PROBLEMS

Problem Jobs Facilities Normalized 
TEC EC

Costs
S/0

3105 3 1 1.00 1.25 1.25
2 3 1 1.00 1.00 1.00
3 3 1 1.00 l.Bo 2.20

3201 3 2 1.00 1.00 1.00
3202 3 2 1.00 1.00 2.00
3203 3 2 1.00 1.05 1.09
3204 3 2 1.00 1.22 1.45
3205 3 2 1.00 2.00 2.00
3206 3 2 1.00 1.00 1.00
3212 6 2 1.00 3.06

Mean Costs 1.00 1.26 l.6l
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A total of twenty-eight job-shop problems were 

simulated. These were true job-shop problems in that the 
required technological processing sequences of the jobs 
were random. Twenty-seven of these problems had 6 jobs 
and 3 machines, and one problem had 20 jobs and 6 machines, 
The first nineteen problems in Table 29 had the processing
time distributions in Table 26.

TABLE 26 
PROCESSING-TIME DISTRIBUTIONS

Machine X S

1 1.0 0.3
2 2.0 0.6
3 3.0 0.9

The next six problems in Table 29 had the processing-time 
distributions shown in Table 27*

TABLE 27 
PROCESSING-TIME DISTRIBUTIONS

Machine X S

1 2.0 0.6
2 2.0 0.6
3 2.0 0.6
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The last problem in Table 29, problem number 5000, had the 
processing-time distributions shown in Table 28.

TABLE 28 
PROCESSING-TIME DISTRIBUTIONS

Machine X s
1 1.35 0.59
2 1.89 0.99
3 2.47 1.37
4 1.40 0.66
5 2.27 l.l8
6 3.10 1.23

Three of these 6 x 3  job-shop problems had equal 
due-dates and equal penalties ; three problems had equal 
due-dates and random penalties; three problems had random 
due-dates and equal penalties; and the remainder of the 
problems had random due-dates and random penalties. The 
expected cost dispatching procedures produced schedules 
with substantially lower costs than the least slack/remain
ing operation schedules except in the case of equal due- 
dates and equal penalties. Without any difference in due- 
dates or penalties, the performance of the expected cost 
dispatching procedures was equal to the performance of the
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least slack/remaining operation procedure. These problems 
are numbers 5» 9, and 109 in Table 29*

Optimal schedules for the 6-job and 3-machine job- 
shop problems investigated here are not known nor is there 
a practical means available for finding the optimal 
solutions. Therefore, the evaluation of the performance 
of the TEC and the EC simulations is made by comparing 
the costs of the TEC and the EC schedules to the costs 
of the s/0 schedules. This does not demonstrate optimality 
of these techniques, but it does demonstrate that substan
tial improvements over the S/0 schedules are obtained by 
using one of the expected cost procedures. An examination 
of the summary of the normalized schedule costs for the 
6-job, 3-machine problems in Table 29 reveals that the mean 
total cost of the S/0 schedules are 51% greater than the 
mean total costs for the TEC schedules and 15% greater 
than the mean total costs for the EC schedules. A 
detailed analysis of the 20-job, 6-machine problem is found 
in Table 30. For this problem the S/0 schedule has a 53% 
higher penalty cost, three times as many jobs tardy, and a 
13% greater total flow time than the TEC schedule. The 
total number of days tardy for all jobs is the same for 
both the S/0 and the TEC schedules.
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TABLE 29 

JOB-SHOP PROBLEMS

Problem Jobs Facilities Normalized Costs
TEC EC S/0

5 6 3 1.00 1.00 1.00
9 6 3 1.00 1.00 1.00

109 6 3 1.00 1.00 1.00
10 6 3 1.00 2.19 3.50
6 6 3 1.00 1.81 3.12

210 6 3 1.00 1.33 1.6l
7 6 3 1.00 1.00 1.00

11 6 3 1.00 1.00 1.00
211 6 3 1.00 1.07 1.07
12 6 3 1.00 1.27 1.00

112 6 3 1.00 1.35 1.27
213 6 3 1.00 1.00 1.74
312 6 3 1.00 1.35 1.73
412 6 3 1.00 1.33 1.57
512 6 3 1.00 1.08 1.01
612 6 3 1.00 1.00 1.57
712 6 3 1.00 1.07 1.25
812 6 3 1.00 1.32 1.32
912 6 3 1.00 1.18 1.86

2212 6 3 1.00 1.46 2.46
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TABLE 29--Continued

Problem Jobs Facilities Normalized Costs 
TEC EC S/0

2312 6 3 1.00 1.65 1.65
2412 6 3 1.00 1.25 1.25
2612 6 3 1.00 1.53 1.76
2712 6 3 1.00 .98 1.06
2812 6 3 1.00 1.02 1.02
5000 20 6 1.00 1.53

Mean Costs 1.00 1.31 1.51
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TABLE 30

ANALYSIS OF 20-JOB, 6-FACILITY PROBLEM

Job
Due-
Date

Penalty
Cost

Days
Tardy

S/0
Penalty
Cost

TEC
Days Penalty 
Tardy Cost

1 20 125 5 625
2 28 125 1 125
3 20 125 6 750
4 12 125
5 16 50
6 20 50 3 150
7 20 50 16 800
8 4 125
9 4 125

10 12 125
11 4 125
12 8 200
13 l6 200
14 20 200 4 800
15 28 125 3 375
16 12 125 4 500
17 20 125 1 125 9 1125
18 l6 125 5 625
19 8 125
20 28 125 1 125
Total Penalty Cost 3700 2425
Total Days Tardy 29 29
Total Jobs Tardy 9 3
Total Flow-Time 330 292
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Two 6 x 3  job-shop problems not included in Table 

29 were found where the TEC procedure did not produce 
schedules with costs equal to or less than the S/0 proce
dure. However, this was for only two out of the thirty- 
eight problems which were simulated, and it was found that 
schedules equal to or better than the S/0 schedules could 
be obtained from the TEC procedure simply by increasing 
the standard deviation of the processing-time distributions. 
Therefore, the TEC procedure is somewhat sensitive to the 
standard deviation of the processing-time distributions.
This sensitivity seems small and not too important since 
even when an inferior schedule was produced by the TEC 
procedure there was less than a 10% difference in the total 
actual costs of the TEC and the S/0 schedule.

From the experimental investigation of the TEC 
and the EC procedures for sequencing jobs, it is obvious 
that these are very effective dispatching procedures. In 
fact the S/0 procedure produces job-shop schedules that 
have 51% higher mean costs than the TEC procedure and 15% 
higher mean costs than the EC procedure. The S/0 proce
dure requires less computation than either the EC or the 
TEC procedures, but the improvement in schedules is suffi
cient to justify the additional computational effort. Also, 
in an actual application of dispatching procedures such as 
these, the priorities would probably be computed using a 
digital computer and provided to the shop. The computer
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time required for the computation of the expected cost 
priorities for the problems simulated was insignificant.

Optimality in Special Cases

It can be shown that in some special cases of the 
job-shop problem the TEC dispatching procedure always 
produces an optimal schedule. An optimal schedule is 
defined as a feasible schedule for which the true expected 
total penalty cost is less than or equal to the true 
expected total penalty costs of all feasible schedules.
To demonstrate the optimality of the TEC procedure, a 
special case of the job-shop problem with 2 jobs and 1 
machine is considered. The proof consists of computing 
the true expected value of the total penalty costs for all 
feasible schedules, determining the schedule which has 
minimum expected cost and sufficient conditions for this 
minimum, and proving that the TEC procedure will always 
produce the schedule with minimum true expected total 
penalty cost under these conditions.

Special Case I

Consider a job-shop problem with 2 jobs and 1 
machine where the processing-time distribution of the 
machine is approximately normally distributed with a mean 
X and a standard deviation S . The jobs are both 
immediately available for processing, and each job has a
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due-date and a penalty cost per day tardy. Let both jobs 
have the same due-date, d , and let the penalty cost per day 
tardy for Job 1 be greater than the penalty cost per day 
tardy for Job 2, > Pg . The two jobs may be processed
either in the sequence 1-2 or in the sequence 2-1. These 
are the only feasible schedules for this problem. There
fore, the sequence with the smaller expected value of the 
total penalty cost for all jobs is optimal for this problem.

Proof that Sequence 1-2 is Optimal.--The job that 
is processed first, regardless of which job it is, will have 
a processing-time distribution with mean X and standard 
deviation S . The processing-time distribution of the job 
that is processed last will have a mean;

X + X = 2X 

and a standard deviation:

'\/s^ +

The expected value of the total penalty costs for the jobs 
processed in the sequence 1-2 is:

ECi -2 = EC^ + ECg'

where

oo
ECi

D=1
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oo
ECg" = '’2 I  ■> « o '

D = 1
and

d+D d+D
(X J f(X; X, S^) dx ; CX ̂  ' = J f(X; 2X, 2S^) dx

d+D—1 d+D—1

with D defined as the number of days tardy for a job. 
Therefore, the expected value of the total penalty costs 
for the processing sequence 1-2 is:

oc 00

D=1 D=1

' A. WSJ

1-2  ̂^1 X.' D ^2 ° ̂  D

00 d+D
BCl-% X

D=1 d+D-1
^_2 = ^  D I f(X; X, S^) dx

00 d + D+ Pg Yi ° f f(X; 2X, 2S^) dx 
D=1 d+D-1

In the same manner the expected value of the total penalty 
costs of the sequence 2-1 is:

BCa.i = ECj + EC^'

2-1 = ”2 I  ° “ d'
D=1 D=1



92

oo d + D
EC2_i = ^2 Z  ° S^) dx

D=1 d+D-1

OO d+D
+ ^  D J f(X; 2X, 2S^) dx

D=1 d+D—1

If EC^ 2 S ECg » then the sequence 1-2 is optimal for 
this problem.

BCi_2 - BCg.i

00 oo oc oo1 + ̂2 I “«d’ = ̂2 Z " "l I
D=1 D=1 D=1 D=1

OO oo
” ’i-*’2> E  DO=n= (Pi-Pg) E  (10)

D=1 D=1

It was assumed that ^ ^2 ’ therefore Pĵ  - Pg ^ 0 and
inequality (lO) becomes:

oo oo
^  d c x d S ^  Da„'
D=1 D=1

which when expanded gives :

« 1  + 2  0 ( g  + 3 C X 3  + . .. =  + 2 0 ( 2 '  + 3 C X 3 '  + ...

(11)
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This inequality can be rewritten as: 

oo CO oo oo oo cx>

D'̂  *** “ d '"̂ *•* (12)
D=1 D=2 D=3 D=1 D=2 D=3

Inequality (12) can be shown to be true by showing that the 
following inequalities are all true:

oo oo

D=1 D=1

CO oo

I  « D  = I  « D '  
D=2 D=2

oo CO

(13.2)

^  “ d = T. ^ d '  (13-3)
D=3 D=3

If (13.1), (13.2), (13.3), ... can all be shown to be true, 
then this implies that ^ — EC^ ^ and schedule 1-2 is
optimal.

CXp and CX g ' are both functions which have 
parameters d, X, and S . The validity of (13.1), (13.2), 
(13.3), ... depends on the relative values of these
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parameters. Since it will be shown that the TEC procedure 
always produces the 1-2 sequence for this special case of 
the job-shop problem, sufficient conditions will be deter
mined for the optimality of the 1-2 processing sequence.
This is done by requiring that (13.1), (13.2), (13.3), 
are all true and determining the conditions which are suf
ficient to prove that (13.1), (13.2), (13.3), ... are true. 
These same conditions then will be sufficient for schedule
1-2 to be optimal.

Rewrite inequalities (13.1), (13.2), (13.3), ... and 
require that they are true.

oo oo

I f(X; X, S^) dx 2 I f(X; 2X, 25^) dx (l4.l)

oo oo
J f(X; X, S^) dx - J f(X; 2X, 28^) dx (14.2)

d+1 d+1
oo oo

j f(X; X, S^) dx J f(X; 2X, 25^) dx (l4.3)
d+2 d+2

The standard normal deviate of the lower limit of the left 
integral of (l4.1), (l4.2), (l4.3), ... is:

Zf = for k = 0, 1, 2, 3, ...
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The standard normal deviate of the lower limit of the right 
integral is:

Z = for k = 0, 1, 2, 3, ...
V2 S

If — Zg for k = 0, 1, 2, 3i ...1 this implies that
(l4.l), (14.2), (l4.3), ... are true. Require that:

^1 -  ^2

d+k-X Ü k = 0, 1, 2, ...
® ^^2 s

multiply both sides by S

V T  d + Vi" k - Vi* X - d + k - 2 X for k = 0, 1, 2,...
(15)

It is obvious that :

Vi”k — k for k = 0, 1, 2, ... (I5 .I)

Therefore, (I5) will be true if it is required that:

V T d  - V i ”Y - d - 2 Y (15.2)

Vi" d - d - V ^  X - 2 X

( V T  - 1) d - ( V T  - 2) X

». ( V  2 - 2 ) Ya —  7=. A
( V T  - 1)

V IMultiply by ——
V 2
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d r:

d -
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2-2 V~2 i =
/  )2 - 1/2 ;

2(1 - 1^2)
_V~2(V~2‘ - 1)

2(1 - VT)
-V^(l - aT2)_

- X

Therefore, inequality (I5 .2 ) will always be true if it is 
required that:

d - - X

It has already been shown that:

^|~2 k ^ k for k = 0 , 1 , 2 , ... (I5 .I)

Therefore, if inequalities (I5 .I) and (15*2) are added 
together the result is inequality (I5 ):

Vi" d +\p2 k X ^ d  + k -  2 X  (15)

for k = 0, 1, 2, ... and d ^ X

Therefore :

^ Zg for k = 0 , 1, 2 ,
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oo oo
J  f(X; X, S^) dx J f(X; 2X, 2S^) dx
d+k d+k

for k = 0, 1, 2, ... and d ^  - V~^ X

Therefore inequalities (l4.I), (l4.2), (l4.3), ... are all 
true, which implies that;

EC^_2 - E C g f o r  d ^ - V~2 X

and sequence 1-2 is optimal for this special case since it 
minimizes the expected value of the total penalty cost.

If d ^ - V~2 X , then it is not necessarily true
that EC^ g — ECg_^ . The requirement that d ^ - ~̂ /~2 X

is a sufficient condition for EC^ g E C g . Necessary
conditions have not been determined.

Proof that the TEC Procedure is Optimal.--It has 
been shown that for Special Case I the processing sequence 
1-2 is optimal if d ^ - V~^ X . The TEC procedure can 
be proven to be optimal by showing that it always produces 
the 1-2 processing sequence for Special Case I when 
d - - X .

The TEC procedure does not use the true expected
cost of processing all jobs to completion to determine
priorities for the jobs. Instead, it uses an approximation 
to the true expected cost. This is done because the true 
expected cost of processing all jobs to completion in a job-
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shop with two or more facilities is too complicated to be 
feasible for use in a dispatching procedure. For the TEC 
dispatching procedure to produce optimal schedules, it is 
not necessary that the procedure use true expected costs 
to determine the sequence in which the jobs will be 
processed. As long as the TEC procedure produces the 
same processing sequence that would have been obtained had 
the true expected cost been used, the TEC dispatching 
procedure is optimal.

The approximate total expected cost of the process
ing sequence 1-2 as defined by the TEC procedure is:

oo oo

TBCl-z X
D=1 D=1

•1-2 = %  D » + ^2 o' D

OO d+D
TEC^g = D J f(X; X, S^) dx

D=1 d+D-1

CO d+D
+ Pg D I f(X; 2X, S^) dx

0=1 d+D-1

The total expected cost for the 2-1 processing sequence as 
defined by the TEC procedure is:

oo oo

™ S - 1  = ’’2 I  “ « D  * ^  I
D=1 D=1
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oo d+D
TECg.i = Pg D j f(X; X, S^) dx

D=1 d+D-1

oo d+D
+ Pi ^  D j f(X; 2X, S^) dx 

D=1 d+D-1

If TEC^ g < T E C g f o r  d ^ - /̂~2 X then the TEC 
procedure will always produce an optimal schedule for a 
problem with the assumptions of Special Case I.

TECi.2 -= TECj.i

OO oo oo ooEl I + Eg I °«d' ' Ej I D(Xg + P, Y. E«d'
D=1 D=1 D=1 D=1

oo oo(El - P2> Y ““d ' - Eg) I “«d’
D=1 D=1

It was assumed that , therefore P̂  ̂ - P^ ^ 0

oo oo

D=1 D=1

which when expanded gives :

OC, + 20C„ + 3(Xn + ^ • + 20(„' + 3CX,
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This inequality can be rewritten as:

oo CO oo oo oo oo
D D D  ̂ ^ D ' D ' ■*■ D ' ■*■ * * '

D = 1 D=2 0=3 0=1 0=2 0=3
(18)

Inequality (l8) can be shown to be true by showing that the 
following inequalities are all true:

oo oo

0=1 0=1

CO oo
E  (^D ' E ( ^ d ' (19-2)
0=2 0=2

oo oo
E  (^D '  E  ®(d' (19-3)
0=3 0=3

If (19.1 ), (19.2 ), (19.3), ••• can all be shown to be true, 
then this implies that TEC^ ^ TECg_^ and proves the 
TEC procedure to be optimal for this special case of the 
job-shop problem.
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Inequalities (19.1), (19.2), (19.3), ... can be rewritten 
as :

oo oo

J  f(X; X, S^) dx « j f(X; 2X, S^) dx (20.1)
d d

CO oo
j f(X; X, X^) dx < J  fix-, 2X, S^) dx (20.2)
d+1 d+1

OO oo
J f(X; X, S^) dx ̂  j f(X; 2X, ) dx (20.3)
d+2 d+2

Show that (20.1), (20.2), (20.3), are true. The stand
ard normal deviate of the lower limit of the left integral 
is :

Zi = d+k-X for k = 0, 1, 2, ...

The standard normal deviate of the lower limit of the right 
integral is :

Zg = for k = 0, 1, 2, ...

If Z^ Zg for k = 0, 1, 2, ... this implies that
(20.1), (20.2), (20.3 ), ... are true.
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> Zg for k = 0, 1, 2,

^ ^ =- d + k - 2X for k = 0, 1, 2,

Multiply both sides by S .

d + k -  X =* d + k -  2X for k = 0, 1, 2, ...

Add X - d - k to both sides.

0 =» - X for k = 0, 1, 2, ...

Multiply both sides by -1

X ^ 0 for k = 0, 1, 2, ...

X is the mean of the processing time distribution for the 
machine in this special case. Jobs cannot be processed in 
a negative amount of time or in zero time. Therefore:

X =* 0 for k = 0, 1, 2, ...

and

Z2̂ -S. Z^ for k — Oj 1) 2y ...

which implies that:

oo oo
J f(X;X,S^)dx «= J f(X;2X,S^) dx for k = 0, 1, 2, ...
d+k d+k

and inequalities (20.1), (20.2), (20.3), ••• are true.
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Therefore, this implies that:

TECi_2 - TECg,!

and the TEC procedure always produces an optimal sequence 
for Special Case I for d — - X

Special Case II

The conditions of Special Case II are the same as 
Special Case I except for due-dates and penalties.
Consider a job-shop problem with 2 jobs and 1 machine where 
the processing-time distribution of the machine is approx
imately normally distributed with a mean X and a standard 
deviation S . The jobs are both immediately available for
processing, and each job has a due-date and a penalty cost
per day tardy. Let the due-date of Job 1 be earlier than
the due-date of Job 2, d^ -= dg , and let the two jobs have
equal penalty costs, P . The two jobs may be processed 
either in the sequence 1-2 or the sequence 2-1. The 
sequence with the smaller expected value of total penalty 
cost for all jobs is optimal for this problem.

Proof that Sequence 1-2 is Optimal.--The job that 
is processed first will have a processing-time distribution 
with mean X and standard deviation S . The processing
time distribution of the job that is processed last will 
have a mean 2X and a standard deviation S .
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Let

f(x) = f(X; X, S^) 

f '(x) = f(X; 2X, 2S^)

The expected value of the total penalty cost for all jobs
processed in the sequence 1-2 is:

ECi_2 = EC^ + ECg'

EC
OO OO

1-2 = f “ « D  * P I
D=1 D = 1

dl+D
EC f(x)dx + P

D=1 d^+D-1

<2+» 

I ■ /D=1 dg+D-l
f '(x)dx

BCi-2 = P

d^+1 d^+2 di.3

If(x)dx + 2 / f(x)dx + 3 I f(x)dx +
d^+1 Id^+2

dg+l

i "
<2+2 42+3

J(x)dx+ 2 / f'(x)dx+ 3 / f'(x)dx+
<2+1

I<2+2
ECi _2 = P

L /

oo oo oo
f(x)dx + J  f(x)dx 4- [ f(x)dx + ...

d^+1 d^+2

oo oo oo
+ I f'(x)dx+ J  f*(x)dx+ f'(x)dx+ ...J dJ+2
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The expected value of the total penalty cost for all jobs 
processed in the sequence 2-1 is:

EC
oo CO

,-i = I OCX D + P OCX o'
D=1 D = 1

<2+0
EC, f(x)dx + P

D=1 dg+D-l

di+DI 0 /
D=1 d^+D-1

f'(x)dx

BCa_i = P
<2+1 da+2 <2+3

f(x)dx + 2 / f(x)dx + 3 ' f(x)dx + ..
dg+l *2+2

di+1 d^+2 di+3

J J+ I f*(x)dx+ 2 I f'(x)dx+ 3 1 f'(x)dx+
d^+1 d^+2

EC^.i = P
OC VO •*.

j^f(x) dx + J  f(x)dx+ J f(x)dx +
Ld, <2+1 <2+2

I
CO oo

/+ I f'(x)dx + I f'(x)dx + / f'(x)dx +
di.l d^+2
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If EC^ g Z ECg  ̂ , then the sequence 1-2 is optimal for
this problem.

ECi_2 : ECg.j

ECi_2 - ECg,! :  0 (30)

Since it was assumed that d^ d^ ,

Also,

oo oo dg

f(x)dx - f(x)dx = J f(x)dx 
‘'l ^2 ^1

oo oo ^2+1
J  f(x)dx - J  f(x)dx = J  f(x)dx

d^+1 dg+l d^+1

oo oo dg
J"f'(x)dx - J”f'(x)dx = - J~ f'(x)dx 
*̂ 2 *̂ 1 *̂ 1

oo oo d g +1
J~ f'(x)dx - J" f'(x)dx ~ ~ J~ f'(x)dx 

dg+1 d^+1 d^+1
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The penalty cost is never negative, P S  0 . Therefore 
(30) becomes:

^2 dg+l dg+2
ff'(x) + J' f(x)dx + J' f(x)dx + ...

di d^+1 d^+2

^2 *2+1 dg+2
J'f'(x)dx - J  f  (x)dx - J  f  (x)dx - ... — 0 (31)

d^ d^+1 d^+2

Inequality (31) will be true if the following inequalities 
are all true:

J f ( x ) d x -  J  f'(x)dx * 0 (32.1)
di d

I f(x)dx - f f*(x)dx — 0
d^+1 d^+1

(32.2)

d2+2 dg+2
J  f(x)dx - J  f'(x)dx Ü 0 (32.3)
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If f(x) ±  f'(x) for all d^+k ^ X Z d^+k where k=0 , 
1, 2, ... , then inequalities (32.1), (32.2), (32.3), 
will all be true. This would imply that - ECg_^
and sequence 1-2 is optimal. Therefore require that:

f(x) Z f'(x) (33)

and determine conditions which are sufficient for this 
inequality to be true. Inequality (33) may be rewritten 
as :

-(X-X)2
2S^

-(X-2X)2
2(2S^)

s ^/TtT -\T2 sVirf

Multiply by ~\l~̂  s V  ZTT .

-(X-X)2
2S^

V T

-(X-2X)2
4S2

Take the natural logarithm.

In V T (X-X)2
2S

-(X-2X)2
45%

Multiply by 4s‘

4S^ In VT - 2(X^ - 2XX + X^) - - (x̂  - 4xx + 4x2)

4s2 In V ^  - 2X2 ^ ^xX - 2x2 < _ x2 + 4XX - 4x2
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- 4s^ In l/T + 2X^

1^45^ In V a ” + 2X"

Therefore f(x) 2 f'(x) if it is required that;

X * + ■^4S^ In ~\pZ + 2X^ (34)

for dĵ  + k 15 X — dg + k where k=0,l,2,

The smallest value that X may take on is d^ . There
fore, (34) will always be true if it is required that:

d^ - + + (35)

Therefore,
f(x) ± f'(x)

where X is subject to restriction (35)«

This implies that inequalities (32.1), (32.2), (32.3), 
are all true and that:

BCl_2 =

for d^ - + y4S^ In Vs + 2X^ (35)

Therefore an optimal sequence for processing the jobs is
1-2 if condition (35) is satisfied. If condition (35) is 
not satisfied, no statement can be made about the optimality 
of sequence 1-2.
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Proof that the TEC Procedure is Optimal.--It has 
been shown that for Special Case II the processing sequence
1-2 is optimal if:

^ + Y  In + 2X"

The TEC procedure can be proven to be optimal by showing 
that it always produces sequence 1-2 for this restriction. 
Let

f(x) = f(X; X, S^)

f '(x) = f(X; 2X, S^)

Then the approximate total expected cost as defined by the 
TEC procedure is :

oo d^+D oo dg+D

T EC^g  = P ^  r f(x)dx + P X! \ f'(x)dx
D=1 d^+D-1 D=1 dg+D-l

oo dg+D oo d^+D
TEC2-1 = P / f(x)dx + P 2_. / f'(x)dx

D=1 dg+D-l D=1 d^+D-1

For this special case, the formulation of TEC is exactly
the same as for EC except that f'(x) has a variance of
2 2 S instead of 25 . Therefore, if inequality (33) can

be shown to be strictly true for: 

f'(x) = f(X; 2X, S^) 

f(x) = f(X; X, S^) ,
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this will imply that:

TEC j _2 -  TEC^. i

and that the TEC procedure is optimal since it always 
produces sequence 1-2.
Rewrite inequality (33) as a strict inequality and prove 
that it is still true under condition (35)-

f(x) < f  (x) (33')

-(X-X)^ -(X-2X)2
2S^ 2S^

 ̂ e <     e
S V ~ 27r  s V  27T

Multiply both sides by S V 27T and take the natural 
logarithm of both sides.

(X-X)2 (X-2X)2
25^ 2S^

Multiply by 2S^ .

- (X^-2XX+X^) < - (X^-43QC+4X^)

- X^ + 230C-X̂  < - X^ + 4XX-4X^

0 < 2DŒ - 3X^

X =• 0 since processing time is always greater than zero 
Therefore,

0 < 2X - 3X
2X » 3X

X > |x
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Therefore, f(x) < f'(x) if it is required that;

X =- -|x (36)

for d^+k X d^+k where k=0, 1, 2,

The smallest value that X may take on is d̂  ̂ . There
fore, (36) will always be true if it is required that:

d^ > |-X (37)

Therefore, if conditions (35) and (37) are both satisfied, 
the TEC procedure will always produce an optimal sequence 
That is,

BCl_2 - BC2-I

and

TECj__2 < TECg,!

(35)

dĵ  =• -|x (37)

Note that if ^  0 , condition (35) reduces to

^1
Therefore, the lower limit of (35) is approximately the

2same as the lower limit of (37) when S rü 0 . Very few 
problems would occur where one of these restraints on d^ 
was satisfied but not the other.
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Optimality in Less Restricted Problems

No general proof of optimality was found for the
2-job, 1-machine problem. In order to prove that the TEC 
procedure always produces optimal schedules, certain 
conditions had to be imposed on the problem. By requiring 
that the two jobs have equal due-dates and unequal penalty 
cost functions, the TEC dispatching procedure was shown 
to be optimal provided that:

d > - X .

By requiring that the two jobs have equal penalty costs and 
unequal due-dates, the TEC dispatching procedure was shown 
to be optimal if:

d^ - + In ^f2 + 2X^

and

Optimality of the TEC procedure was not shown when the two 
jobs have both unequal due-dates and unequal penalty cost 
functions.

These proofs were not extended to the more general 
cases where the number of jobs, n , is greater than two or 
the number of machines, m , is greater than one. If these 
proofs were extended to the n-job, 1-machine problem, it 
would require the computation of the true total expected
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penalty costs for n! possible processing sequences to 
determine the optimum schedule. Then it would be necessary 
to show that the TEC procedure always produces this 
schedule. For n =• 2 , this seems to be impractical due to 
the complexity of the expected cost computations and the 
large number of possible schedules.

The problem with more than one machine is more 
complex than the n-job, 1-machine problem. For example, 
when m=2 , the total number of technological orderings of 
the jobs is (4)” , and the number of feasible schedules is 
even larger.

Proofs of optimality for the job-shop problem with 
two machines have been previously found only in very special 
cases of the deterministic job-shop problem (29), (33), and
(42).

An alternate proof of the 2-job, 1-machine problem
of Special Case I was developed. It was proved that the
TEC dispatching procedure will always give an optimal 
sequence provided that X is sufficiently large with 
respect to S . This implies that there may be some desir
able relationship between X and S which will assure 
optimal or near optimal solutions to larger problems. This
was not thoroughly investigated. In addition, these proofs
for the 2-job, 1-machine problems can be made if the 
processing-time distribution is an exponential distribution 
instead of a normal distribution. Other processing-time
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distributions were not investigated.



CHAPTER IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
FOR ADDITIONAL RESEARCH

A survey of the vast amount of literature which has 
been published on the job-shop machine scheduling problem 
reveals that almost all research in this area has ignored 
the true stochastic nature of the problem. Invariably 
researchers have assumed that the processing-time of each 
job on each machine is deterministic and precisely known. 
This assumption has no basis whatever. In a real job-shop 
much of the work is one-of-a-kind and has never been done 
before. Even when items are to be processed in lots, the 
lots are typically very small. In either case, precise 
estimates of processing-time are almost never available, 
and the use of processing-time distributions which can be 
determined from past history would provide a much more 
accurate representation of a real job-shop.

Three dispatching procedures based on the probabil
istic nature of the processing-times in a job-shop have been 
investigated by this paper. Each of these procedures 
considers the processing-time distributions of the machines 
in the shop and attempts to sequence the jobs in such a

116
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manner that the total penalty and bonus costs for not 
meeting due-dates is minimized. Simulation programs were 
developed for the EC , TEC , and S/0 dispatching proce
dures. These simulations are very general and allow the 
simulation of more realistic problems than have been pre
viously reported.

Both flow-shop and job-shop problems were simu
lated using the TEC , EC , and S/0 procedures. The TEC 
procedure was demonstrated to be the most effective of the 
procedures investigated. The mean cost of the S/0 schedules 
was 51% greater than the mean cost of the TEC schedules 
and 15% greater than the mean cost of the EC schedules. 
Optimal schedules were found by the TEC procedure for all 
of the flow-shop problems simulated, and the TEC procedure 
produced schedules with costs equal to or less than those 
produced by the S/0 procedure for every job-shop problem. 
Also, the TEC procedure was proven to be optimal for some 
special cases of the job-shop problem with 2 jobs and 1 
machine.

In addition to the experimental results reported in 
this paper, a small number of problems were simulated using 
a Monte Carlo simulation where the time that a job is 
processed by a machine is a random sample drawn from the 
processing-time distribution of that machine. Ten replica
tions of each problem were made. The S/0 simulation was 
also provided the processing-times generated by the Monte
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Carlo simulation. The distribution of Monte Carlo total 
penalty costs were compared for the TEC and the S/0 
simulations and were found to be consistent with the 
findings of this dissertation.

Because the job-shop problem is so often viewed as 
a deterministic problem, it has often been formulated as 
an integer programming problem. Manne's integer program
ming formulation of the job-shop problem (37) has been 
extended to include an objective function which minimizes 
total penalty and bonus costs. This is significant since 
other integer programming formulations use constraints to 
require that jobs are completed by their due-dates. These 
formulations will not produce a feasible solution if it is 
not possible to meet all of the due-dates. A schedule 
which has some late jobs could be the schedule with minimum 
costs. The integer programming formulation presented in 
this dissertation will find the minimum cost schedule even 
if due-dates are not met.

The job-shop problem is so complex that no one to 
date has had any success in obtaining a general solution to 
the problem. However, additional research into the develop
ment of approximate solutions still seems promising. It may 
be possible to develop stochastic procedures which can be 
proven to be optimal for a more general problem than the
2-job, 1-machine problem. This should be investigated.
There is a relationship between X and S which insures
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optimality of the TEC dispatching procedure for certain 
problems. Additional analytical work on the nature of this 
relationship would be in order. An experiment could be 
designed to use analysis of variance techniques to determine 
the nature of this relationship if it cannot be determined 
analytically. Also, an extensive Monte Carlo simulation 
investigation of probability-based dispatching procedures 
should be conducted. It is recommended that future research 
in this area use a processing-time distribution such as the 
beta distribution instead of the normal distribution or the 
Poisson distribution.

An interesting application of the techniques inves
tigated in this paper would be the scheduling of jobs on a 
digital computer. In many ways this problem is similar to 
the job-shop problem. Many jobs are competing for limited 
resources. The core storage is limited; the number of jobs 
that the central processing unit can process simultaneously 
is limited; and the number of input-out units is also 
limited. Processing-times are not precisely known, and some 
jobs are more important than others. The requirement for 
the facilities of the computer varies from job to job.
Thus, this problem is definitely related to the job-shop 
problem, and similar scheduling techniques should be effec
tive .
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