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ABSTRACT 

In this work, Computational Fluid Dynamics (CFD) and Fluid Structure 

Interaction (FSI) methods were used to study two separate problems: red blood cell 

damage in flow and the hemodynamics of diseased renal arteries; specifically, those with 

renal artery stenoses or aneurysms.   

The study of red blood cell trauma was motivated by deficiencies in the current 

empirical models used for hemolysis estimation.  Using CFD, classic hemolysis 

experiments performed in capillary tubes for laminar flow and a Couette viscometer for 

turbulent flow were re-examined.  The results of the capillary tube simulations indicated 

that the extensional stresses present in the flow contributed to hemolysis, with a threshold 

value of approximately 3000 Pa for exposure times on the order of microseconds being 

indicative of hemolysis.  In the turbulent Couette viscometer simulations, where 

experimental exposure times were five minutes, it was found that Kolmogorov Length 

Scales of the same order of magnitude as the size of a red blood cell were indicative of 

hemolysis, with some dependence on the median Kolmogorov Length Scale in the flow.  

The results of an inter-laboratory FDA study are also reported. 

Simulations of diseased renal arteries were also performed, which included 

simulations of stenoses and aneurysms of varying geometries.  Initially, this work was 

done solely with CFD, however FSI was eventually incorporated into the renal artery 

aneurysm simulations.  The results of this study indicate that the uncertain relationship 

between renal artery aneurysms and renin-dependent hypertension is possibly related to 

transient occlusions of the artery that occur when high pressure within the aneurysm 

causes the aneurysm and underlying vessel wall to deform into the blood stream.
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CHAPTER 1: INTRODUCTION 

 1.1 Hemolysis 

  1.1.1 Significance 

Interest in the rheology of the erythrocyte in the mid-20
th

 Century grew out of an 

appreciation of the role of the red cell in diseases like sickle cell anemia and also the 

susceptibility of red blood cells (RBCs) to hemolysis in medical devices emerging at the 

time.  Cell damage observed even today with prosthetic heart valves (Ge, 2008; Simon, 

2007), cardiopulmonary bypass (Kang, 2010), and artificial kidneys contributes to 

anemia, along with the toxic effects associated with free hemoglobin in the circulatory 

system (Polaschegg, 2009).  The cause of mechanical trauma to blood cells has been 

attributed to large frictional forces or shear stresses (Leverett, 1972), which are associated 

with the flow of blood through such devices. 

Factors and conditions resulting in hemolysis were established by using well-

defined flow systems in the laboratory. Such work led to an understanding that hemolysis 

depends on both exposure time and on the magnitude of the shear stress, when data 

generated by various techniques at different labs were considered in aggregate (Leverett, 

1972; Nevaril, 1969; Sutera, 1975).  Inversely related, short exposures to high stresses or 

long exposures at lower stresses cause cell destruction (Giersiepen, 1990). 

  1.1.2 Estimation Methods 

 Many investigators sought to develop mathematical expressions to predict the 

fraction of cells lysed based on this theoretical relationship between shear stress and 

exposure time (Arvand, 2005; Bludszuweit, 1995; Chan, 2002; Giersiepen, 1990; Song, 

2003).  A power-law equation typically related free hemoglobin to the product of stress 
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and exposure time, each raised to a power determined from a fit to experimental data.   

While these equations have been helpful in understanding mechanical trauma, empirical 

models of hemolysis as a function of shear stress and exposure time have fallen short 

over the years in fully characterizing lethal damage to RBCs. Results from application of 

correlations to predict hemolysis quantitatively have been disappointing, and for various 

reasons some researchers have proposed amendment of the power law model or the use 

of entirely different models (Arvand, 2005; Behbahani, 2009; Chen, 2010; Goubergrits, 

2004; Grigioni, 2005; Gu, 2005; Kataoka, 2006; Kim, 2009; Paul, 2003). 

One of the problems with these empirical models relates to the cell's exposure.  

Differences in the nature of shear stress exposure in controlled laboratory conditions 

compared to the reality of clinical settings contribute to inaccuracies of the power-law 

model of hemolysis estimation.  The clinical situation in blood contacting devices has 

been described as localized regions of high stress, "hot spots", with very short exposure 

times (Zhao, 2006).  Grigioni et al. cited the fact that prior estimations were derived using 

experimental set-ups that yielded a constant, uniform shear – which did not take into 

account repetitive transient loading on the cells, a common scenario in many blood 

contacting devices (Grigioni, 2004).  Some investigators have recognized the potential 

importance of the history of mechanical loading in blood trauma and its combination with 

resistance of cells to accumulated damage (Chan, 2002; Yeleswarapu, 1995). As such, the 

inability of current power-law models to account for the past shear history of a cell adds 

to the inaccuracy of their predictions (Grigioni, 2004; Gu, 2005), where, for example, 

sub-hemolytic trauma to cells can leave them more susceptible to rupture when subjected 

to shear yet again.  Antaki also discussed the utility of power law models and concluded 
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that they are unable to capture the effects of subtle features of the blood contacting 

geometry, which have been shown to largely affect hemolysis (Antaki, 2008). Previous 

researchers have attempted to use current blood damage power-law models to estimate 

hemolysis from Computational Fluid Dynamics (CFD) results, often using a Lagrangian 

approach (Gu, 2005; Mitoh, 2003; Yano, 2003), where damage was calculated along 

multiple streamlines in the domain of interest.  These conventional models provide poor 

estimates of hemolysis when compared to experimental hemolysis data in the same flow 

system, thus these investigators have illustrated the inaccuracy of current models for 

hemolysis prediction.  These shortcomings are important because they compromise the 

validity of catastrophic damage estimates made by engineers working on the design, 

development and improvement of life-saving medical devices (Girdhar, 2008; Zhang, 

2008).   

In 2009, a total of 28 groups across the country participated in an FDA Critical 

Path Initiative titled ―Standardization of Computational Fluid Dynamic Techniques Used 

to Evaluate Performance and Blood Damage Safety in Medical Devices.‖ These groups 

performed numerical simulations to predict stress levels and hemolysis in a model flow 

with features known to cause hemolysis, particularly turbulent blood flow through a 

sudden contraction or sudden expansion.  As a part of that group, simulations were 

performed on the given nozzle geometry (Figure 1.1).  A total of 10 scenarios were 

simulated, representing the two different orientations and flow in both the laminar and 

turbulent regimes.  The results obtained from this investigation prompted the study of two 

other experimental systems at the University of Oklahoma, in an effort to further 

elucidate the effects of flow on red blood cell damage.   
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The first of these was a set of classical hemolysis experiments in capillary tubes 

by Keshaviah (Keshaviah, 1974).  Keshaviah studied hemolysis in small diameter 

capillary tubes with an emphasis on the effect of entrance geometry.  His experimental 

procedure was to force diluted washed RBCs into a capillary, varying the ratio of the 

larger antechamber diameter to the capillary diameter, as well as the fundamental 

geometry of the entrance (i.e., sharp edged versus tapered).  In this work, the capillary 

experiments performed by Keshaviah were recreated using computational fluid dynamics 

(CFD).  An example of one of the experimental geometries simulated can be found in 

Figure 1.2. 

The initial aim of this analysis was to ascertain the critical level of shear stress 

required for cell lysis. In the absence of a consistent finding, the effects of extensional 

flow at the capillary entrance were explored.   Results from this analysis provided 

evidence that hemolysis in this laminar shearing flow can be more closely related to 

extensional stresses than shear stresses, and indicate that new models should consider 

extensional stress as well as exposure history for accurate hemolysis predictions. 

 The nature of steady elongational flow is such that it is difficult to study 

experimentally with adjacent fluid elements separating at an exponential rate (Bird, 

1987). McGraw, in a thesis supervised by Frattini, was the first to examine the 

deformation of the erythrocyte in a miniaturized extensional flow rheometer under a 

microscope (McGraw, 1992).  They obtained larger cell deformations for extensional 

flows, aspect ratios of 2.0 to 5.9 , than those observed for a shearing flow at comparable 

stress levels (Chien, 1992). Just recently, Lee et al. examined red cell deformability in a 

microfluidic device where both extensional and shear flow effects were compared.  
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Deformability as gauged by the Deformability Index, DI = (L-B)/(L+B) where L and B 

are semiaxial lengths of the deformed cell, was found to be 0.51 and 0.29 at 3.0 Pa for 

extensional and shearing flows, respectively (Lee, 2009).  Taking the greater deformation 

into account and the fact that extensional flows of liquids more readily result in drop 

breakup, Lee noted the insufficiency of existing hemolysis models that focus only on 

shear stress.   

Lee’s observation of relative deformability for extensional and shear stresses is 

particularly notable in light of an elegant analysis incorporating the stress tensor to 

characterize mechanical trauma of the red cell (Arora, 2004). In this work, Arora et al. 

obtained the following equation for hemolysis: 
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where f1 and f2 are constants, Hb is hemoglobin concentration, t is exposure time, μblood is 

the viscosity of blood, and DI is a distortion index synonymous with the deformability 

index defined by Lee et al.  Ultimately, the tensor analysis by this group is based only on 

shear stress, but, interestingly, the final expression (Equation 1.1) includes as a key 

dynamic factor the ―distortion index‖ of the cell.  According to Lee, DI approaches 

constant values of 0.6 and 0.55 as stress increases for extensional and shear flows, 

respectively.  If the Arora equation also reflects the dependence on DI for extensional 

flows, then the small difference in DI above suggests 40% greater likelihood of 

hemolysis in extensional flow compared to a shearing flow.   

 Others have reported cell damage in the presence of extensional flow 

(Gregoriades, 2000; Lokhandwalla, 2001; Mollet, 2008). Lokhandwalla and Sturtevant, 
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for example, noted the presence of extensional flow with hemolysis from shock wave 

lithotripsy (Lokhandwalla, 2001).  When working with hamster ovary cells, Mollet et al. 

found that high levels of cell damage were seen in areas of high extensional stress 

(Mollet, 2008).  Although ovarian cells are much different from red blood cells, it would 

not be unreasonable to assume the same mechanisms might affect RBCs and ovarian cells 

alike.  To date, no one has provided evidence that extensional stresses in a typical flow 

cause hemolysis.  Some studies have speculated that extensional stress may be related to 

membrane breakup, however this work is the first to provide a link between a threshold 

value of extensional stress and red cell hemolysis. 

 Finally, in addition to the nozzle geometry and the capillary geometry, 

simulations were used to model flow in a Couette viscometer (Sutera, 1975).  In work 

performed by Sutera et al., hemolysis related to shear stress was investigated using a 

viscometer with a rotating inner cylinder, in which turbulence could be achieved.  Sutera 

found a critical shear stress of 2500 – 3000 dynes/cm
2
 for exposure times of 2 minutes. 

The experimental geometry from Sutera’s work is illustrated in Figure 1.3.  The 

simulation of this experimental work allowed for a closer examination of hemolysis 

occurring in turbulent flow, so that both laminar and turbulent regimes were examined in 

the hemolysis portion of this work. 

  

1.2 Renovascular Hypertension 

Secondary hypertension afflicts millions of adults in the United States with 

underlying causes often being associated with the kidney.  It is well-established that 

altered geometry and flow of the renal artery can lead to renin-dependent hypertension.  
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This was notably illustrated in experiments by Goldblatt, who induced renin-dependent 

hypertension in dogs by placing clamps on the renal arteries (Goldblatt, 1934).  

Clinically, the potential to alter systemic blood pressure in a similar way by changing the 

vessel structure occurs with renal artery stenoses (Harman, 2003; Serter, 2007), 

transplanted renal artery complications (Al-Harbi, 1998) and congenital defects (e.g. 

elongated renal arteries) (Kem, 2005).  It is thought that this renovascular hypertension 

frequently is caused by a malfunction in the renin-angiotensin-aldosterone system 

(RAAS), in which unwarranted vasoconstrictors are released, causing systemic 

hypertension. Not only can this system failure lead to hypertension, but persistently high 

levels of angiotensin II and aldosterone can also lead to vascular and myocardial 

remodeling, abnormal endothelial functioning, inflammation and plaque susceptibility 

(Hackman, 2007).  

 Hormonal imbalances of the RAAS, like those occurring with stenoses, have been 

linked to mechanical factors.  It is well known that flow across a constriction or stenosis 

causes a localized drop in pressure.    In the case of the stenotic renal artery, 

juxtaglomerular cells in the afferent arteriole of the kidney respond to changes in arterial  

blood pressure (Phillips, 2005) (i.e., baroreceptors) and register lower than normal values, 

which are incorrectly interpreted as low systemic pressure. An average pressure loss as 

small as 10 mm Hg or a peak pressure loss of 20 mm Hg across a renal artery stenosis is 

considered hemodynamically relevant by physicians, meaning that this level of pressure 

loss is capable of causing a malfunction in the RAAS (Jaff, 2001; Yim, 2004). 
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1.2.1 Renal Artery Stenosis 

Generally, arterial stenosis is defined as a constriction or narrowing of the artery, 

and is capable of causing physiologically significant pressure losses as blood flows 

through an artery.  This change in pressure can have adverse implications for the 

functioning of many of the body’s systems.  Carotid artery stenosis is a severe example of 

an arterial constriction; it can cause insufficient perfusion and can give rise to a transient 

ischemic attack (Caplan, 2008).  A second example is renal artery stenosis - the most 

common cause of renovascular hypertension, a leading cause of end-stage renal disease 

in dialysis patients and an independent predictor of cardiovascular complications such as 

myocardial infarction (White, 2009).   

 How a stenosis leads to a large pressure loss can be understood from principles of 

fluid dynamics and laboratory experiments with model stenoses (Young, 1979; Shalman, 

2001).  Young et al. developed a correlation relating the pressure drop across a stenosis to 

blood vessel dimensions, flow characteristics, and stenosis dimensions for a blunt 

geometry (Young, 1979).  Shalman et al., used a summation of pressure drops across the 

axisymmetric, converging, straight, and diverging portions of a stenosis as a method for 

estimating the pressure drop across an atherosclerotic coronary artery (Shalman, 2001).    

Yim et al. adapted the stenosis model used by Shalman for comparison to Computational 

Fluid Dynamics (CFD) calculations based on MR angiography and phase contrast MR 

data from a renal artery with stenosis and experimental measurements using a glass 

model (Yim, 2004).   

Here, the hemodynamics of various stenosis geometries have been investigated 

using CFD, specifically stenoses comparable in size to a renal artery stenosis (Kem, 
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2005).  The goal of these simulations was to elucidate the effects of various geometric 

properties of stenoses on the pressure loss across a stenotic renal artery.  The 

characteristic dimensions and geometries simulated are shown in Figure 1.4.  The conical 

stenosis of Yim’s work, the blunt stenosis of Young’s work and a more physically 

realistic elliptical stenosis were all simulated.  This work is different from previous 

computational studies of arteries such as the coronary or carotid, where the goal of the 

work has been to assess the effect of wall-shear-stress on the development of 

atherosclerotic plaque.  In addition, the flow conditions in the renal artery are unlike 

those present in other arteries of different dimensions conveying much smaller volumes 

of blood to the heart or brain.  The pressure loss through the renal artery under pathologic 

conditions is a significant factor for the development of secondary systemic hypertension, 

and an improved understanding of how the pressure loss is related to changes in arterial 

structure could allow physicians to make better decisions about surgical intervention 

using only advanced imaging techniques. 

  1.2.2 Renal Artery Aneurysm 

In addition to renal artery stenosis, renal artery aneurysms have also been shown 

to be related to renovascular hypertension.  As an additional type of geometry alteration, 

renal artery aneurysms may alter flow sufficiently to affect the pressure difference 

between the entrance to the renal artery and the baroreceptors in the kidney. Renal artery 

aneurysms are an expansion of the lumen of the renal artery.  The incidence of renal 

artery aneurysms has been reported as up to 0.1% (Serter, 2007).  Although this is not an 

extremely high figure compared to other types of hypertension, it equates to over a 

quarter of a million persons in the United States alone, with 70% or more exhibiting 
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hypertension. Additionally, renal artery aneurysms are being diagnosed more frequently 

in recent years due to the increased use of non-invasive imaging techniques (Tham, 1983; 

Gallagher, 2008).  It is important that we understand their pathophysiology because the 

associated hypertension is potentially curable. 

 Hypertension frequently co-exists in the presence of renal artery 

aneurysms.  In a study involving 168 aneurysmatic patients, Henke et al. found 73% 

exhibited chronic high blood pressure (Henke, 2001).  Four other investigations, ranging 

in size from 19 to 67 patients, have reported similar incidences of 69-100% (Hubert, 

1980; Lumsden, 1996; Bastounis, 1998; Hupp, 1992). Table 1.1 gives a summary of prior 

studies involving renal artery aneurysms in which most patients exhibited hypertension, 

the physician performed some sort of clinical intervention, and the hypertension was 

subsequently eliminated or decreased.  There are two basic types of aneurysm - saccular 

and fusiform.  It has been reported that most renal artery aneurysms are saccular, with 

one large center study showing 79% saccular and 21% fusiform renal artery aneurysms.  

The most common aneurysm location was the bifurcation of the main renal artery (60%) 

(Henke 2001). 

Though clearly connected, there is much debate as to how renal artery aneurysms 

relate to hypertension, with no mechanism as yet established to explain the relationship.  

One interpretation of this correspondence involves renal artery aneurysm being caused by 

(not causative of) hypertension, though the fact that surgical intervention eliminates or 

mitigates hypertension in most cases strongly suggests a cause and effect relationship 

with hypertension being secondary to the presence of the aneurysm.  In line with this 

latter sequence, it has been proposed that renal artery aneurysms lead to hypertension 
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through mechanical kinking or twisting, thereby forcing altered blood flow, renal 

embolization, or external compression of the aneurysm (Hartman, 2003).  Such 

explanations, while certainly plausible, lack evidence through formal studies.   

The presence of a renal artery aneurysm can lead to serious health complications 

such as hypertension, hemorrhagic shock and transient ischemic attack. The risk of 

hemorrhagic stroke is not considered to be great with renal artery aneurysms unless the 

aneurysm is very large or subjected to changes in blood flow that may induce rupture, 

such as in pregnancy or blunt trauma. These two morbidities, renovascular hypertension 

and rupture, associated with renal artery aneurysm are the most commonly discussed in 

clinical case studies on renal artery aneurysms.  Currently, when renal artery aneurysms 

are diagnosed, usually either incidentally or in an attempt to diagnose uncontrolled 

hypertension, the decision whether or not to surgically intervene is made based on a few 

factors.  For women who are pregnant or are of childbearing age, an aneurysm of any size 

is considered dangerous because of the risk of rupture.  In other situations, however, the 

decision is not so clear and is typically based on the size of the aneurysm.  Currently, 

there is not a consensus among physicians concerning when a renal artery aneurysm 

should be removed or excluded, or simply monitored, with estimates of the critical 

aneurysm size ranging from 0.5 - 1.5 cm in diameter (Henke 2001).  

Because of their close relationship to renovascular hypertension, a computational 

investigation of the effect of renal artery aneurysms on renovascular hemodynamics was 

undertaken.  Initially this was done using a 2D, rigid wall model and when interesting 

results arose, this model was extended to a 3D, fluid structure interaction model in which 

the flow was allowed to influence the distensible artery walls and vice versa.  The 
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geometries investigated in the 2D rigid wall simulations are shown in Figure 1.5, and 

included A) a fusiform aneurysm of the main branch, B) a wide-neck, saccular aneurysm 

of the main branch, C) a saccular aneurysm of the main artery and D) a saccular 

aneurysm of the main branch.  Similar aneurysms were modeled in 3D – the details of 

these geometries can be found in Chapter 5.   

  

1.3 Using CFD to Study Hemodynamics 

CFD is a powerful analysis tool, which has been widely used to assess the effect 

of wall-shear-stress on the development of atherosclerotic plaque in the aorta and renal 

arteries (Buchanan, 2003; Liang, 2006; Steinman, 2002; Taylor, 1998), to model normal 

and pathologic coronary arteries as well as carotid arteries (Shalman, 2001; Goubergrits, 

2009; Suo, 2008; Wentzel, 2005; Nguyen, 2008) and to assess the effects of 

hemodynamics in cranial aneurysms (Castro, 2006; Dempere-Marco, 2006; Hoi, 2006; 

Shojima, 2004). CFD has also been used by multiple investigators to assess the role of 

fluid dynamics in red blood cell trauma – in both experimental flow loops, and in blood 

contacting devices (Zhao, 2006; Gu, 2005; Mitoh, 2003; Yano, 2003; Kameneva, 2004).  

The advantage of using CFD to investigate both the macro effects of blood flow on 

arterial wall movement, and the micro effects of stresses on red blood cells is that CFD 

allows for the investigation of many geometries and flow conditions, and is also able to 

provide certain details about the flow that are difficult to obtain experimentally.  In this 

work, the power of CFD has been used to augment the current understanding of certain 

aspects of the effect of flow on red blood cells, and to provide novel insights into the 

effect of hemodynamics on multiple aspects of renovascular health. 
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 1.4 Motivation 

  1.4.1 Hemolysis Estimation 

Interest in mechanical trauma remains high as evidenced by the FDA Critical Path 

Initiative.  Currently, an estimation of hemolysis from computations can vary widely 

depending on the choices and assumptions made by the user performing the simulation. 

Specifically, the numerical method, the type of computational mesh, the order of 

convergence and the turbulence model chosen are among the factors that are important to 

the simulation outcome.  Using experimental measurements by three different 

laboratories as the basis for validating the computational results, the FDA sought to 

identify the most accurate model.  Preliminary results of this analysis have been 

presented and the wide variation in results for flow calculations and hemolysis 

estimations indicates the need for both new physical insights and numerical approaches 

(Hariharan, 2010; Stewart, 2009). 

The ongoing problems with predicting hemolysis during flow suggest a 

continuing need to re-examine the theoretical basis for mechanical trauma.  Keshaviah 

concluded that hemolysis in his experiments was related to the structure of the entrance to 

the capillary.  For example, a tapered entrance caused only 0.1% hemolysis while a blunt 

entrance region at the same flow conditions resulted in a much higher level of cell 

damage at 5.9%.  These findings suggested that examination of the entrance region with 

CFD might lead to new insights into mechanism(s) of catastrophic damage to 

erythrocytes during flow.  With CFD, the nature of the flow in the entrance region of 

Keshaviah’s experimental setup was examined more closely.  The effect of turbulence on 

red blood cell damage is also receiving continued scrutiny, and an investigation of the 
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turbulent Couette viscometer work of Sutera with CFD allowed for a renewed and 

detailed study of the effects of this type of flow as well. 

  1.4.2 Renovascular Disease Simulation 

 It is widely accepted in the literature that a hemodynamic effect due to the 

presence of a renal artery stenosis can lead to renin-dependent hypertension.  However, 

parametric numerical studies of stenoses of a comparable size to renal artery stenosis did 

not represent physiologically realistic stenosis shapes, and lacked investigation into some 

parameters that might be influential.  Although renal artery aneurysms would not be 

expected to have the same hemodynamic effect as a constriction, there is evidence that 

some effect of the fluid flow on the renin-angiotensin-aldosterone system occurs in this 

case as well.  A better understanding of this phenomenon is greatly needed, and would be 

very beneficial to physicians in their clinical decision making.  Computational modeling 

can provide a better idea of the hypertension related pathology of renal artery stenosis 

and renal artery aneurysms, and ultimately lead to better patient care. 

 

Portions of this chapter have been reproduced from the following sources: 

 Down LA, Papavassiliou DV, O’Rear EA. Significance of Extensional 

Stresses to Red Blood Cell Lysis in a Shearing Flow. Annals of Biomedical 

Engineering. 2011; 39: 1632 – 1642. 

 

 Heflin LA, Street CB, Papavassiliou DV, O’Rear EA. A Computational 

Investigation of the Geometric Factors Affecting the Severity of Renal 

Arterial Stenoses. Journal of Biorheology. 2009: 23: 102-110. 

 

 Heflin LA, Street CB, Papavassiliou DV, Kem DC, Wu DH, O’Rear EA. 

Transient Stenotic-Like Occlusions as a Possible Mechanism for 

Renovascular Hypertension due to Aneurysm. Journal of the American 

Society of Hypertension. 2009; 3:192-200. 
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1.5 Nomenclature 

B – cell semiaxial length II 

DI – deformability index 

f1 and f2 – constants 

Hb – hemoglobin concentration 

 L – cell semiaxial length I 

 t – exposure time (s) 

 blood – viscosity of blood 
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Figure 1.3. Sutera et al.’s turbulent Couette viscometer geometry.  For simulation 

simplicity, only 1/16
th

 of the viscometer geometry was modeled.
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Figure 1.4. Stenosis geometries.  A) Characteristic stenosis dimensions. B) Characteristic 

shape of elliptical stenosis.  C) Characteristic shape of Shalman ―conical‖ type stenosis. 

D) Characteristic shape of Young ―blunt‖ type stenosis.
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Figure 1.5. Renal artery aneurysm geometries.  A) Fusiform aneurysm of the main 

branch.  B) Wide-necked, saccular aneurysm of the main branch.  C) Saccular aneurysm 

of the main artery.  D) Saccular aneurysm of the main branch.  D) Characteristic 

diameters of the branches of the renal artery modeled in 2D.
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Table 1.1. Large center and case studies that indicate a relationship between renal artery 

aneurysms and renovascular hypertension.  These cases indicate that renal artery 

aneurysms are related to a curable form of renovascular hypertension. 

 



 31 

 

CHAPTER 2: COMPUTATIONAL METHODS 

 2.1 General Procedure 

The simulations completed in both Fluent and COMSOL were performed using a 

dual Pentium Xeon PC.  Simulation time varied from a few seconds for the 2D 

simulations, to a week for the 3D FSI simulations, depending on the mesh density and 

required convergence criteria. 

While the details of the modeling varied depending on the methods used and the 

situation being modeled, in general the set up was similar for all cases.  Initially, a 

geometry representative of either the desired biology or the desired experimental set up 

was created (using either Gambit or the built-in geometry creation environment in 

COMSOL).  This computational domain was then discretized into a mesh.  The type of 

boundary conditions to be used were specified for the domain, and, in the case of the 

Fluent simulations, the discretized mesh was imported from Gambit into Fluent.  For 

those cases that required turbulence modeling, the k-e turbulence model was specified.  

The specific boundary conditions were set (for example, the magnitude of the mass flow 

rate of fluid entering the domain). 

When setting up the solution parameters, the discretization method was specified 

as well as the convergence criteria.  For all Fluent simulations, either the first or second 

order upwind discretization scheme was used.  Convergence was considered to be 

achieved when the residuals of all equations were below a specified level.  The final step 

before simulation was initialization, where initial estimates of key parameters were 

specified.  The simulation was then begun, the residuals were monitored, and once they 

reached the specified convergence criteria, the simulation was concluded. 
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 2.2 Modeling Turbulent Flow 

 The standard k-ε turbulence model in Fluent is a semi-empirical model derived 

from transport equations for the turbulence kinetic energy and the dissipation rate of 

turbulent kinetic energy.  The turbulence kinetic energy, k = 1/2 iiuu , and the dissipation 

rate of turbulent kinetic energy, ε = 
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where ui is the fluctuation of velocity in the i direction, with the overbar denoting time 

average; ν is kinematic viscosity; ρ is density; μ is viscosity; μt is turbulent viscosity; Gk 

is the generation of turbulence kinetic energy due to mean velocity gradients; the model 

constants are C1ε = 1.44, C2ε = 1.92, and Cμ = 0.09 , and the turbulent Prandtl numbers for 

k and ε are  k = 1.0 and  = 1.3 (ANSYS Fluent 12 Theory Guide). 

For the capillary tube, stenosis, and aneurysm simulations, the k-ε turbulence 

model was used for simulations where the Reynolds number was above a critical 

Reynolds number. The Reynolds number distinguishes laminar (Re < 2000), transition 

(Re 2000 – 2500) and turbulent flows (Re > 2500), and is generally given as: 



D
Re

  (2.4)
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for flow in a tube where  is the bulk velocity in the tube, D is the tube diameter,  is the 

fluid density, and  is the fluid viscosity.  For the renal artery stenosis simulations, this 

critical Reynolds number was determined by comparing the Reynolds number in the 

unobstructed artery to data from Azuma, et al., which gives the critical Reynolds number 

for an axisymmetric, streamlined stenosis as a function of percent area reduction (Azuma, 

1976).  For all simulations where the Reynolds number did not reach this critical value, 

the simulation was performed using the laminar solver. 

 For flow such as in the Couette viscometer, with the inner cylinder rotating and  

the outer cylinder stationary, turbulence is determined by a dimensionless parameter  

called the Taylor number:  

Ta 
iR1

1/2h3/2


 (2.5) 

where i is the angular speed of the inner cylinder, Ri is the radius of the inner cylinder,  

h is the gap width, and  the kinematic viscosity of the fluid (Sutera, 1975).  The Taylor  

number describes the various flow regimes that can occur in this type of viscometer,  

including Taylor vortices, wavy Taylor vortices, modulated wavy vortices, and turbulent  

Taylor vortices.  Taylor vortices are large, counter-rotating toroidal vortices, stacked  

vertically in the z-direction in the flow (Bird, 2007).  For this definition of the Taylor  

number, the flow is known to become turbulent at a Taylor number greater than 400.  For  

all of the rotational rates of interest simulated here, the flow was in the turbulent Taylor  

vortex regime, and the realizable k- turbulence model was used.  The realizable k-  

model uses a similar equation for k (i.e. equation 2.1) to the standard k- model, but the  

equation for  is different: 
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where: C1  max 0.43,
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,S  2SijSij  and C1=1.44, C2=1.9, k=1.0 and 

=1.2. (ANSYS Fluent 12 Theory Guide). 

  

2.3 Modeling Fluid Structure Interaction 

For finite element analysis, COMSOL uses a weighted residual formulation.  The 

software discretizes the solution domain into finite elements and assumes a shape 

function representing the physical behavior of an element, developing an approximate 

solution to the governing differential equations.  COMSOL uses a weak finite element 

formulation, the Galerkin finite element method, to solve the set of ordinary differential 

equations obtained from discretization of the domain. 

COMSOL uses a partitioned approach for solving a fluid structure interaction 

problem, meaning the equations that govern the fluid flow and the displacement of the 

solid are solved separately.  The velocities and the forces at the boundary between the 

fluid and the solid are matched, thus coupling the solid displacement and the fluid flow.  

The software iteratively solves the Navier-Stokes equations of motion, a complex set of 

nonlinear partial differential equations, for the blood flowing in the artery, and Hooke’s 

Law for the displacement of the arterial wall.  

Hooke’s law states generally that for linear elastic materials, strain is directly 

proportional to stress: 

  E  (2.7) 
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where  is tensile stress, E is the constant of proportionality called Young’s modulus and 

 is the strain.  When working in three dimensions, an elasticity tensor, characterized by 

the Young’s modulus and the Poisson’s ratio for an isotropic material, is used to relate 

the stress tensor and the strain tensor.  The Young’s modulus is a material property that 

describes the stiffness of an elastic material.  It is the ratio of stress to strain and can be 

determined for a material experimentally.  The Poisson’s ratio is a material characteristic 

related to the expansion or contraction of a particular material due to compression or 

stretching, respectively.  It is described as the ratio of contraction to extension (or 

transverse strain to axial strain) occurring when a material is stretched.  A perfectly 

incompressible material would have a Young’s modulus of 0.5.  For this work, the 

material is also assumed to have a linear strain-displacement relationship. 

For fluid structure interaction studies, COMSOL uses an Arbitrary Lagrangian-

Eulerian (ALE) formulation for the mesh, which is a combination of the fully stationary 

Eulerian form, typically used for the simulation of fluids, and the Lagrangian form, a type 

of mesh typically used for the simulation of solids, which is allowed to move with the 

solid domain.  In the ALE formulation the mesh can move arbitrarily to optimize the 

shape of the elements in the mesh.  The spatial coordinates of the mesh nodes at a given 

time after the initial configuration are determined using a mesh smoothing function that 

relates the spatial coordinate system to the coordinates of the mesh nodes attached to the 

material, which may have moved depending on the problem boundary conditions.  In this 

work, Winslow smoothing was used to determine the spatial coordinates of the deformed 

mesh (COMSOL User’s Guide). 
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 2.4 Computational Domain 

  2.4.1 Grid Generation 

 For both the finite volume (Fluent) and the finite element (COMSOL) techniques 

used in this work, the computational domain must be discretized into small volumes or 

elements over which the calculations are made.  It is important that the elements not be 

highly skewed (i.e. large aspect ratios) in order to obtain a stable solution.  For all two-

dimensional simulations a quadrilateral mesh was used.  For 3D simulations conducted in 

Fluent, a hexahedral mesh was used and for all simulations performed in COMSOL a 

tetrahedral mesh was used.  Examples of the hexahedral mesh used in 3D Fluent 

simulations and the tetrahedral mesh used in COMSOL are shown in Figures 2.1 and 2.2. 

For the meshes used in Fluent, the initial mesh was created using a uniform 

element size, then subsequently refined in regions of high velocity gradient for increased 

accuracy.  For most meshes used in COMSOL, the program generated a non-uniform 

mesh with smaller elements concentrated near fluid-solid boundaries and in regions with 

small geometric features.  Each type of simulation performed required a different grid, so 

the details of each of these grids are discussed in their respective chapters.  

2.4.2 Boundary Conditions 

   2.4.2.1 Fluent 

 For the work completed in Fluent, either a velocity inlet or a mass flow inlet was 

specified.  A velocity inlet boundary condition is used to set the flow velocity at flow 

inlets.  When a velocity inlet boundary condition is set, the total pressure is not fixed but 

will adjust in response to the calculated static pressure to the value required to provide 

the specified velocity.  In this work, two techniques were used to describe the velocity at 
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the inlet.  The first, and most simple, method was to set the magnitude of the velocity 

normal to the boundary, which created a flat, constant velocity at the inlet.  The second 

was to use a user defined function to describe the velocity at the inlet.  For the two-

dimensional studies, simulations were completed with two types of user defined 

velocities: a parabolic inlet velocity in one case, and a time-dependent pulsatile velocity 

in the other.  Using the velocity given, Fluent calculates the mass flow into the 

computational domain and the flux of momentum through the inlet. 

 Similar to the velocity inlet, the mass flow boundary condition can be used to set 

the mass flow rate at the inlet, allowing the total pressure to adjust in order to meet the 

requirements of the specified inlet condition.  In this work, the mass flow was specified 

normal to the boundary.  For inlets specified using a mass flow boundary condition, the 

software calculates a velocity for each face on the inlet, and this velocity is used to 

calculate the flux of momentum into the computational domain. 

 Two types of outlet boundary conditions were used: a pressure outlet condition 

and an outflow outlet condition.  For a pressure outlet condition, the static (gauge) 

pressure at the outlet boundary is specified.  During computation, Fluent uses the given 

static pressure at the outlet boundary and extrapolates the other flow conditions from the 

interior of the domain.  An outflow boundary condition can be used when the precise 

details of the exit flow are unknown prior to simulation.  With this outlet boundary type, 

the only condition specified at the outlet is the percentage of flow through the boundary, 

and the specific flow conditions at the outlet are extrapolated from the interior of the 

domain.  
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A periodic boundary condition can be used when the geometry of interest and the 

anticipated flow solution have a periodically repeating character.  That is, the flow across 

two planes in the geometry is identical.  For the turbulent couette viscometer simulations, 

rotationally periodic boundaries were used so that the size of the computational domain 

could be reduced.  For periodic boundary conditions, Fluent assumes that the flow at a 

periodic boundary is the same as that in the cells adjacent to its matching periodic 

boundary. 

 Symmetry boundary conditions can be used when the geometry of interest and the 

anticipated flow solution display bilateral symmetry.  During computation, Fluent 

assumes zero flux of all values across the symmetry plane.  There is no normal velocity 

and are no normal gradients of any variable at a symmetry boundary.  For axisymmetric 

problems performed in 2D, an axis boundary condition is defined as the centerline in the 

axisymmetric geometry.  No flow conditions are defined at an axis boundary condition. 

 All boundaries not specified as inlet, outlet, periodic or symmetric boundaries are 

considered wall boundaries.  For all simulations in this work, a no-slip boundary 

condition was used at the walls, meaning the velocity of the wall and the fluid at the wall 

is the same.  For the turbulent couette viscometer simulations, a moving wall was 

specified, wherein the angular velocity of the wall was set.   

   2.4.2.2 COMSOL 

 For all simulations conducted in COMSOL, a velocity inlet was used to specify 

the flow into the domain.  Similar to the analogous boundary condition in Fluent, a 

constant velocity normal to the inflow boundary is specified at the inlet.  A pressure 

outlet was used for all simulations as well, and is specified by a value for the pressure at 
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the outlet.  A no slip wall condition was applied at all fluid boundaries not specified as an 

inlet or an outlet.  A symmetry boundary was specified at the plane of symmetry in the 

desired geometry in order to reduce the size of the computational domain. 

 For the structural mechanics portion of the simulation, a fixed boundary constraint 

was added.  A fixed boundary constrains the displacements in all directions to zero. 

 In order to couple the fluid and solid mechanics, a fluid-solid interface boundary 

is defined at all boundaries where the modeled fluid and solid come into contact.  This 

boundary condition defines the fluid load on the solid and the way in which the 

displacement of the solid affects the fluid velocity.  The fluid-solid interface boundary 

condition specifies that the force and velocity at the fluid-solid boundary are matched for 

the fluid and the solid. 

  2.4.3 Mechanical Properties for Fluid Structure Interaction 

For the 3D fluid structure interaction simulations that included the arterial wall, 

specification of the mechanical properties of the artery and aneurysm was necessary.  The 

renal arteries carry approximately 25% of the total cardiac output - approximately 600 

ml/min through each artery (Cooney 1976).  An arterial wall is typically composed of 

three layers: the intima, media and adventitia.  The intima is the innermost layer and 

contains the endothelial cells.  The media contains the smooth muscle cells, and the 

adventitia, the outermost layer, is mainly composed of collagen fibers and other 

substances.  The size of these three layers relative to each other varies according to the 

size of the artery.  The renal artery is considered a medium sized artery, with a smaller 

amount of elastin in the media compared to other larger elastic arteries (Fung 2004). In 

order to complete the fluid structure interaction simulations successfully, a few 
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simplifying assumptions were made.  First, while it is understood that arterial walls are in 

fact viscoelastic materials, the arterial and aneurysmal wall were both treated as linear 

elastic materials in order to simplify computation.  Simulations were performed using 

three different arterial Young’s moduli – 1 x 10
4
, 1 x 10

5
 and 1x 10

6
 Pa.  These values 

were chosen to represent the evident variation in material properties surrounding 

aneurysms and to correspond to a range of Young’s modulus values from the literature.  

Most investigators assume that arterial wall tissue is an almost incompressible material, 

thus the Poisson’s ratio for both the artery and the aneurysm was chosen as 0.499 

(Balocco 2010).  The thickness of the arterial wall was also an important parameter for 

the model, and a value of 1 mm was chosen for most simulations.  This thickness was 

determined based on other investigators who have estimated arterial wall thickness as 

approximately 20% of the inner diameter of the vessel (Bazilevs, 2010). 

Determining the mechanical properties of the aneurysm wall proved to be more 

difficult, as very little information on the structure of renal artery aneurysms is reported 

in the literature.  Due to this, data from cerebral aneurysms was used because of it’s 

relative abundance and the idea that cerebral aneurysms (and the arteries from which they 

grow) more closely resemble renal arteries and renal artery aneurysms than other highly 

reported aneurysms, such as abdominal aortic aneurysm.  Cerebral aneurysms are similar 

in size to renal artery aneurysms, ranging from a few to tens of millimeters (Zhao, 2011) 

while renal artery aneurysms average 15 mm in size (Henke, 2001).  Many reports in the 

literature state that the vessel wall is extremely thinned in an aneurysm (Zhao 2011; 

Ferguson, 1972), with ranges reported from 20 – 500 microns (Challa, 2007; Balocco, 

2010; Kyriacou, 1996).  As such, most simulations were performed with an aneurysm 
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wall of 0.5 mm (the top of the range), while some simulations with a thinner wall were 

performed for comparison.  These estimates of aneurysm wall thickness are difficult to 

verify – there is currently no method to measure aneurysm wall thickness in vivo (Zhao, 

2011; Balocco, 2010), so measurements are typically made after aneurysm rupture, in 

which case the aneurysm wall is thought to be thinned even more (Balocco, 2010; 

Kyraicou, 1996), with the thinnest portion of the wall occurring at the rupture site.  The 

Young’s modulus of aneurysms compared to the arteries from which they grew are 

thought to be stiffer (Ferguson, 1972; Humphrey, 1995), however, some investigators 

have shown that these properties vary throughout the aneurysm (Balocco, 2010; Chall, 

2007).  Because of these factors, aneurysms were simulated with Young’s moduli of 1 x 

10
5
, 1 x 10

6
 and 1 x 10

7
Pa, with some simulations incorporating a varying Young’s 

modulus over the aneurysm sac. 

Anisotropy is a well know characteristic of arterial wall tissue (Fung, 2004), with 

the mechanical properties of the arterial wall usually being characterized as transversely 

orthotropic, with different properties in the axial and circumferential directions 

(Humphrey, 1995).  The values of the circumferential and axial Young’s moduli are 

difficult to determine, and these measurements, to the best of the author’s knowledge, do 

not exist in the literature for renal arteries.  As such, in order to investigate the effect of 

orthotropicity, simulations were performed where the axial Young’s modulus was an 

order of magnitude lower than the circumferential, and vice versa.  These values of the 

axial and circumferential Young’s moduli are consistent with other assumed differences 

in magnitude used in other computational structural mechanics investigations of cerebral 

aneurysms (Kyriacou, 1996).  Anisotropy may not be as important a characteristic for the 
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aneurysm wall as for the arterial wall, as it is known that the collagenous tissue of the 

aneurysm wall remodels in response to the changing stresses in the wall (Zhao, 2011) and 

some investigators have speculated that the aneurysm wall would not be expected to be 

more anisotropic than the artery from which it grew because as the aneurysm deforms 

from the more cylindrical shape of the artery to the more spherical shape of the aneurysm 

sac the stresses in the spherical shape would be expected to be more uniform (Kyriacou, 

1996).  In this case, through remodeling, the aneurysm wall might even be expected to 

become more isotropic, or differently anisotropic.   
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2.5 Nomenclature 

C1 - 1.44 

C2 - 1.9 

C2 - 1.92 

C - 0.09 

Gk – generation of turbulence kinetic energy due to mean velocity gradients 

k – turbulence kinetic energy 

ui – fluctuation of velocity in the i direction 

S – modulus of the mean rate-of-strain tensor 

 - dissipation rate of turbulent kinetic energy 

 - viscosity 

t – turbulent viscosity 

 - kinematic viscosity 

 - density 

k – turbulent Prandtl number for k = 1.0 

 – turbulent Prandtl number for  = 1.3 for standard k-, 1.2 for realizable k- 
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Figure 2.1. Example 3D meshes.  A) An example hexahedral mesh used in 3D Fluent 

simulations.  B) An example tetrahedral mesh used in 3D COMSOL simulations. 
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Figure 2.2. Example hexahedral mesh used in 3D Fluent simulations.  
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CHAPTER 3: HEMOLYSIS ESTIMATION 

 3.1 Introduction to Hemolysis Simulations 

 As mentioned previously, in this study of hemolysis three different types of 

simulations were undertaken in order to investigate the effects of different types of flow 

on the stresses applied to RBCs.  Initially, this portion of the project was motivated by the 

announcement of the FDA Critical Path Initiative, which had the goal to ―accelerate the 

safety assessment of medical devices in the preclinical stage, with particular attention 

paid to blood damage, and to standardize CFD techniques for such use.‖  This 

collaborative study asked groups around the nation to perform CFD studies using a 

standardized nozzle geometry, and report back such results as the velocities, stresses 

present, and estimates of hemolysis.  This call to contribute to the development of better 

CFD practices and hemolysis estimations from CFD by the FDA underscored the lack of 

standardized simulation models that have been validated with experimental results in this 

area, and, in addition to the FDA model, prompted further study with the two subsequent 

models.  In order to continue the study of hemolysis in laminar flow, the experimental 

work of Keshaviah in glass capillary tubes was reproduced computationally (Keshaviah, 

1974).  Because of Keshaviah’s conclusion that entrance effects dominated the damage to 

red blood cells, this portion of the work focused on determining which features of the 

flow were most consistently related to the entrance of the capillary.  Finally, to study the 

effects of turbulence on flow related cellular damage, the turbulent Couette viscometer 

work of Sutera et al. (Sutera, 1975), where cells were exposed to stress for five minutes, 

was reproduced using a three dimensional model. 
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It has been shown that the forces associated with blood flow cause hemolysis. 

From basic fluid mechanics it is known that these forces will be high near the wall and 

will decrease toward the centerline in the capillary tube model.  As such, our approach 

for the capillary simulations was an ―all or nothing‖ assumption in which there exists a 

hemolysis zone near the wall of the capillary, where the higher stresses existed, and a 

core region where cells passed without overt cell damage (Figure 3.1A). In this 

conceptualization, all cells and only cells in the hemolysis zone experience failure of the 

cell membrane. The boundary between these two regions was determined so that the 

fraction of the volumetric flow rate passing through the hemolysis zone corresponded to 

the observed percent hemolysis reported by Keshaviah. Thus, the spatial location of the 

threshold streamline or pathline varied with experimental conditions (e.g., an experiment 

that resulted in more hemolysis would have a larger hemolysis zone) while stresses at the 

boundary between the hemolysis and hemolysis-free regions would presumably be 

similar in all cases. Figure 3.1B is an illustration of the stress profile that a cell traveling 

along the threshold streamline would experience – a constant low shear stress while 

traveling through the large chamber, followed by a sharp increase in stress over a period 

of microseconds as the flow is constricted to enter the capillary, and finally a constant 

stress while the cell travels through the capillary.  In order to analyze the flow results for 

the effects of the flow-induced stresses, the shear stress and the extensional components 

of the stress tensor were calculated for blood treated as a Newtonian fluid.  The shear 

stress is given by (Bird, 2007): 




















rz

zr
rz   (3.1) 
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where  is the dynamic viscosity of blood, r is the radial velocity and z is the axial 

velocity.  The radial and axial directions are shown in Fig. 1.2A.  The equations for the 

extensional components of the stress tensor are (Bird, 2007): 















r

r
rr 2   (3.2) 
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zz 2   (3.3) 

These variables were calculated in the entire flow domain as well as along a threshold 

streamline that originated at the inlet of the flow field. 

A similar ―all-or-nothing‖ concept was used in the analysis of the turbulent 

Couette viscometer results.  For this set-up, the percent of the fluid volume corresponding 

to the percent hemolysis was isolated by an isosurface of the parameter of interest and an 

attempt to find a threshold value of the investigated parameters on this surface was made.  

In addition to investigating the rate of turbulent kinetic energy dissipation present in the 

turbulent Couette viscometer simulations, an additional parameter that has been proposed 

as a possible predictor of hemolysis was investigated – the Kolmogorov Length Scale 

(KLS) (Kameneva, 2004)..  The KLS is the smallest length scale in turbulent flow and is 

defined as: 

4

1
3















  (3.4) 

where  is the kinematic viscosity and  is the rate of turbulent kinetic energy dissipation 

(Tennekes and Lumley, 1972).  The Kolmogorov Length Scale has been proposed as a 

possible parameter for hemolysis estimation instead of typically reported Reynolds 
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stresses because they are the smallest turbulence scales, which if they are on the order of 

magnitude of the size of a RBC would be able to affect the cell - as opposed to Reynolds 

stresses, which can be related to much larger length scales. 

  

3.2 FDA Critical Path Initiative  

  3.2.1 Geometry and Flow Conditions 

 The nozzle geometry was specified by the FDA, and is shown in Figure 1.1.  The 

entrance and exit tube diameters were 0.012 m, the diameter of the throat was 0.004 m 

and the length of the throat was 0.04 m.  Simulations were run using both orientations of 

the nozzle geometry: (1) a sudden contraction with a conical diffuser and (2) a gradual 

contraction with a sudden expansion.  For each orientation, 5 simulations were 

completed, representing Reynolds numbers of 500, 2000, 3500, 5000 and 6500.  

For momentum, the 1
st
 order upwind interpolation scheme was used; for pressure, 

the standard Fluent interpolation; and for pressure-velocity coupling, the SIMPLE 

scheme was used.  The specified fluid for all simulations was considered Newtonian, 

with a viscosity of 0.0035 Pa-s and a density of 1056 kg/m
3
.  For those simulations 

performed in the turbulent regime, the turbulent k- model was used, with the default 

model parameters. 

3.2.2 Computational Domain 

   3.2.2.1 Boundary Conditions 

 Based on the Reynolds number for the specified flow rate, either the 

laminar or turbulent k- model was used.  A mass-flow inlet and an outflow outlet were 

specified for both of the simulation orientations (sudden expansion and sudden 
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contraction).  A symmetry boundary condition was specified at the midplane, so that 

modeling of only half of the experimental geometry was required.  All walls were given a 

no-slip boundary condition. 

3.2.2.2 Grid 

The experimental nozzle geometry was created in Gambit 2 as a 3D, hexahedral 

grid.  The mesh was imported as a 3D model into Fluent 6.  700,000 grid cells were 

required to achieve grid independence, with smaller cells concentrated near the walls of 

the nozzle.  This led to an average cell size of 4 x 10
-2

 mm
3
.  The grid used for both the 

sudden expansion and the sudden contraction orientations is shown in Figure 2.2. 

 

3.3 FDA Critical Path Initiative Results 

  3.3.1 Velocity 

A plot of the velocity magnitude contours and velocity vectors for both 

orientations at all Reynolds numbers is given in Figures 3.2 and 3.3.  The acceleration of 

the fluid in the contraction is shown for both cases, as well as the jet present after the 

sudden expansion, in that orientation. For the conical diffuser orientation, the maximum 

velocity in the constriction ranges from 0.5 m/s for the Re number 500 case to 6.4 m/s for 

the Re number 6500 case.  A similar range of 0.6 to 5.8 m/s is found in the constriction 

for the sudden expansion orientation.  For the conical diffuser orientation, the 

acceleration of the fluid at the entrance of the contraction is more rapid than for the 

sudden expansion orientation.  For the sudden expansion, a recirculation zone is found 

directly following the expansion on either side of the jet. 
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3.3.2 Shear Stresses 

 The shear stress contours for the sudden contraction and the sudden expansion at 

the simulated Reynolds numbers is given in Figures 3.4 and 3.5.  It is clear that the 

stresses increase as the Reynolds number increases for both orientations, with the highest 

stresses present near the wall of the contraction and on the edge of the jet in the case of 

the sudden expansion.  In the conical diffuser orientation the maximum shear stress, 

occurring near the walls of the constriction, ranged from 9.5 to 190 N/m
2
.  For the sudden 

expansion orientation, this maximum shear stress ranged from 12.5 to 280 N/m
2
.  The 

maximum shear stresses are higher in the sudden expansion orientation for all Reynolds 

numbers. 

  3.3.3 Reynolds Stresses 

The Reynolds stress contours for the sudden contraction and the sudden 

expansion at the simulated Reynolds numbers are given in Figures 3.6 and 3.7.  It is clear 

that the stresses increase as the Reynolds number increases for both orientations, with the 

highest stresses present near the wall of the contraction and on the exterior of the jet, with 

an increasingly large ―plume‖ of Reynolds stresses in the jet of the sudden expansion as 

Reynolds number is increased.  The maximum Reynolds stress for each case ranges from 

12.5 to 1700 N/m
2
 for the conical diffuser orientation, and from 12.5 to 850 N/m

2
 for the 

sudden expansion orientation.  The highest Reynolds stresses are found at the sharp 

contraction of the conical diffuser orientation.  Reynolds stresses have been proposed by 

some as a comparable stress to shear stress in laminar flow for hemolysis estimation in 

turbulent flow (Giersiepen, 1990; Hanle, 1987; Nygaard, 1992; Schoephoerster, 1991), 

however support for this measure as an appropriate predictor of cell damage is lacking; 
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which might be explained by the underlying differences in the mechanism for momentum 

transfer. 

  

3.4 Capillary Tube Geometries and Computational Domain 

  3.4.1 Geometries and Flow Conditions 

The dimensions of the capillary tube were 0.035 cm inner diameter and 2.8 cm 

length for all simulations. The flow equations were solved using the implicit formulation 

and the laminar solver available in Fluent, because all capillary Reynolds numbers were 

within the laminar regime.  For momentum, the 1
st
 order upwind interpolation scheme 

was used; for pressure, the standard Fluent interpolation; and for pressure-velocity 

coupling, the SIMPLE scheme was used. 

Twenty-one experiments were reproduced computationally, representing different 

entrance geometries, flow rates and fluid viscosities.  See Table 3.1 for a summary of 

these conditions.  Four different two-dimensional models were created, representing the 

variations in contraction ratio (for a sharp contraction) as well as the tapered contraction 

that was also investigated experimentally by Keshaviah. The contraction ratio is the ratio 

of the larger chamber diameter to the capillary tube diameter (see Figure 1.1 for a 

contraction ratio of 3:1).  Specifically, these included a contraction ratio of 27:1 with 

flows ranging in Re between 700 and 1050, a contraction ratio of 3:1 with flows ranging 

from Re  875 to 1255, a contraction ratio of 2:1 with flows ranging from Re  925 to 1230, 

as well as simulations with more than double the viscosity of those previously discussed 

and a contraction ratio of 27:1, with flows ranging from Re 200 to 400.  The specified 

fluid for all simulations was considered Newtonian, with a viscosity of 0.005 Pa-s for 
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most simulations and a viscosity of 0.013 Pa-s for simulations of Keshaviah’s higher 

viscosity experiments with dextran.   

3.4.2 Computational Domain 

   3.4.2.1 Boundary Conditions 

The boundary conditions were specified as a mass flow rate inlet condition and as 

an outflow outlet condition at the capillary exit.  The centerline of the capillary was 

specified as the axis, about which the model was symmetric.  A no-slip boundary 

condition was applied at the walls. 

  3.4.2.2 Grid 

To set up the computational model, a two-dimensional representation of the 

capillary tube and entrance geometry was created and fitted with a quadrilateral grid 

using the mesh-generation software Gambit 2.  The mesh was then imported to the CFD 

package Fluent 6 as a two-dimensional, axisymmetric model.  For each model, an initial 

simulation was run using the mesh created in Gambit.  After this initial simulation, the 

mesh was refined in regions of high velocity gradient and then refined globally until the 

velocity magnitude at multiple points in the domain did not change significantly (percent 

difference < 3%) with additional decreases in grid cell size.    The average number of 

nodes for grid-independent results for the simulated capillaries was approximately 

710,000, with smaller mesh cells concentrated near the entrance of the capillary and in 

other regions where high gradients of velocity would be expected.  This method of grid 

refinement led to an average computational cell size at the entrance of the capillary on the 

order of magnitude of 5 x 5 μm, with smaller cells concentrated closer to the capillary 

wall.  The size of the smallest grid cells is smaller than the size of a red blood cell, thus 
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the assumption of a Newtonian fluid does not hold at this scale for the flow of red blood 

cells.  However, this level of refinement was only required in order to resolve the sharp 

corner of the capillary entrance and not the bulk flow, allowing for the assumption of 

Newtonian behavior for the majority of the flow. 

 

3.5 Capillary Tube Results 

  3.5.1 Maximum Shear Stress Along Threshold Streamline 

 Because most investigators consider the shear stress to be one of two major 

factors in hemolysis, the first parameter investigated was rz.  When the shear stress is 

calculated for the entire domain, it is clear that as the fluid enters the capillary tube from 

a larger chamber an area of high velocity gradients and shear stresses develops at the 

corner of the contraction (Figure 3.8).  This area of higher shear is also observed when 

the shear stress is plotted along the specified threshold streamline – as evidenced by a 

sharp spike in shear stress magnitude at the capillary entrance (Figure 3.1).  When the 

maximum shear stress along the threshold streamline for all cases is plotted (varying 

Reynolds number, contraction ratio, and viscosity), no uniform threshold value of stress 

is observed (Figure 3.9).  In Figure 3.9, a linear regression of the shear stress data versus 

percent hemolysis is shown.  In the presence of a threshold shear stress value, the slope of 

shear stress versus hemolysis should be zero, however, the large slope of this regression 

line indicates that the peak value of shear stress does not yield a threshold stress value 

that applies for all experimental scenarios. 
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3.5.2 Maximum Gradient of Shear with Respect to Displacement 

Along a Streamline 

 The second parameter investigated as a possible cause of cell lysis was the 

gradient of the shear stress with respect to displacement along a given streamline. A large 

gradient in shear stress might give rise to a tension sufficient to rupture the cell 

membrane. This analysis also does not yield a threshold value that was common for all 

experimental scenarios, as seen in Figure 3.10.  Instead, a nonlinear relationship with 

hemolysis was observed and, although hemolysis levels are much higher in the higher 

viscosity simulations, the gradient of the shear stress along the threshold streamline is 

much smaller in magnitude than that for the lower viscosity experiments. 

3.5.3 Maximum Extensional Components of Stress Tensor on 

Threshold Streamline 

 The final factors investigated as possible predictors of hemolysis in this flow were 

the extensional components of the stress tensor. Like shear stress, these components 

exhibited spikes in magnitude in the entrance to the capillary tube.  The extensional 

stresses also vary depending on location within the domain – the magnitude is nearly zero 

in most of the entrance chamber and the capillary while close to the wall at the entrance it 

is as much as an order of magnitude larger than the maximum value on the threshold 

streamline.  Unlike shear stress and the shear stress gradient, the extensional stresses 

yield a consistent threshold for hemolysis. When either the maximum radial or axial 

extensional stress is found along the specified threshold streamline, and these data are 

compared across all simulated experiments, little variation in the maximum value of 

extensional stress with hemolysis is seen (Figure 3.11).   
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The extensional components of the stress tensor are significant in the entrance 

region of the capillary and similar in magnitude to rz (Figure 3.12).  From the Figure 

3.12, it is clear that the radial extensional component is near zero everywhere except the 

entrance, where a large spike in stress magnitude occurs.  In comparison, the shear stress 

magnitude is small in the entrance chamber and peaks during the contraction, then levels 

off in the capillary tube at a value of the same order of magnitude as the peak.  This 

indicates that, if lysis were correlated to shear stress only, the damage would not be 

associated with the entrance region, contrary to Keshaviah's conclusions. 

Shear stress and exposure time have been reported for years as the major factors 

contributing to hemolysis, but alone in power law models have not served as an adequate 

framework for broadly understanding cell damage in the laboratory or clinic. 

Alternatively or in combination, extensional stress may be a significant factor 

contributing to failure of the RBC membrane.  Zhao et al. examined the deformability of 

the RBC in a constricted microchannel where cells were subjected to a shear stress up to 

5000 Pa (Zhao, 2006).  They found that a maximum RBC elongation index (i.e., the same 

quantity termed as deformability index in Lee et al.) of approximately 0.5 was reached at 

a shear stress of 123 Pa in the entrance to the constriction.  Zhao et al. did not observe 

cell rupture in their experiments, however it appears that a chamber with a well-rounded 

capillary entrance was used, which would lower stress levels at the entrance of the 

constriction.  Using conditions from the worst-case hemolysis experiment by Keshaviah 

(27:1 contraction ratio, highest flow rate), an additional simulation with a well-rounded 

entrance (as defined in Vennard, 1961) was performed.  It was found that the extensional 

stresses along the threshold streamline decreased significantly, below a level that 
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hemolysis would be expected based on the results presented here (axial stresses were 

reduced by 1/2, radial stresses were reduced by an order of magnitude).  The importance 

of constriction inlet geometry on hemolysis level has been observed elsewhere (Umezu, 

1995), and is a valid reason for the lack of cell rupture seen by Zhao et al.  The fact that 

Zhao et al. did not observe cell rupture, even at shear stresses of 5000 Pa, tends to support 

our conclusion that shear stress was not the determining factor for hemolysis in 

Keshaviah's experiments, where shear stresses of the same order of magnitude were 

present.     

The significance of the entrance region to hemolysis is reiterated in the 

comparison shown in Figure 3.13.  With a flow rate nearly twice as large, shear stresses 

for fully developed flow in the capillary region of Figure 3.13A with a tapered entrance 

must be greater than those of the capillary of Figure 3.13B with the sharp contraction.  

Cell damage, however (as measured by hemoglobin loss) was more than 3 times as great 

(6% vs. 1.8%) for the abrupt 27:1 contraction when compared to the gradual entrance.  

Thus, something unique to the capillary orifice seems to be causing hemolysis in this 

flow system.  Also underlining the effect of the entrance region, it was determined that 

the maximum shear stress along the threshold streamline is not significantly larger than 

the shear stress experienced by the fluid while in the capillary – a fact that does not fit 

well with the conclusion that entrance effects are the predominant cause of blood cell 

trauma in this system, especially when one considers the exposure time to be orders of 

magnitude larger within the capillary. In contrast, extensional stresses exist only in the 

neighborhood of the capillary orifice.  That is, they are unique to the entrance and they 

are similar in magnitude to shear stress. 
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The more cogent evidence from this study in support of extensional stress comes 

from the "all-or-nothing" threshold analysis, in which a series of threshold streamlines 

were calculated for a series of experimental scenarios.  Maximum shear stress fails to 

exhibit a threshold value consistent with the level of hemolysis (Figure 3.9). Moreover, 

the magnitude of the maximum shear stress on the threshold decreases markedly as 

hemolysis increases!  On the other hand, the peak values of the extensional stresses rr 

and zz along the threshold streamline remain relatively constant when plotted against 

level of hemolysis (Figure 3.11).  When comparing the four parameters studied, one can 

look at the spread of the data for each in an attempt to determine which has the 

characteristics of an appropriate threshold value.  The spread is a measure of how close 

all collected data points are to the average value of those data points and is defined as the 

range of values divided by the mean of all values.  The spread for the peak gradient of the 

shear and the peak shear stress, 2.00 and 0.85 respectively, was larger than that for the 

peak radial and axial extensional stresses, with values of 0.43 and 0.55 respectively. 

The analysis of each variable discussed thus far is based on the assumption that 

there is a threshold magnitude of any given variable and that this threshold magnitude is 

experienced by a cell traveling along a streamline chosen to correspond to the assumed 

boundary between the hemolysis zone and the hemolysis free zone.  Assuming that there 

is a constant threshold value of any given variable, it would be expected for plots of the 

maximum magnitude of this variable found on the threshold streamline versus the percent 

hemolysis to yield a horizontal line – i.e. the maximum value of the variable on the 

threshold streamline and percent hemolysis should have no correlation because the 

percent hemolysis is taken into account when choosing the threshold streamline.  One 
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measure of the correlation between two variables is the coefficient of determination, or r
2
.  

The coefficient of determination, r
2
, is a measure of how well the data can be predicted 

by the regression and is equal to the sum of the squared differences between the actual 

data values and the average of all data values (the total sum of squares) minus the sum of 

the squared differences between the actual data values and the estimated values from the 

regression, normalized by the total sum of squares (Excel 2007 User's Guide).  In the 

absence of randomly distributed points, correlation coefficients r
2
 near zero suggest a 

constant function relationship. Linear regression yielded r
2
 values for rr and zz of 0.20 

and 0.16, which compared to 0.75 for rz.  We believe these results make a strong case for 

hemolysis by extensional flow. The maximum value of the angular component of the 

stress tensor on the threshold streamline was also analyzed but yielded a significantly 

lower magnitude, approximately a quarter of the value of the other components, and an r
2
 

value of 0.92, thus this component was not considered further. It is difficult to tell 

whether rr or zz might be more important than the other for this flow; in some cases, zz 

is slightly larger, but cells experience large values of rr first and the exposure time is 

longer while in other cases the reverse is true.  In any case, onset of damage in 

Keshaviah’s experiments occurs at stress levels of approximately 3000 Pa with exposure 

times on the order of microseconds. The level is comparable to the magnitude of stress 

reported for jets with a similar exposure time, where shear stresses were assumed to be 

responsible (Leverett, 1972). It is also well above stresses on the order of 10 Pa applied 

by Lee in his microfluidics system, for which he specifically noted the absence of cell 

rupture with extensional flow (Lee, 2009). 



 62 

 

These findings do not eliminate shear stress as playing an important role in 

hemolysis, but they do indicate that extensional components must be considered for 

accurate predictions.  Extensional flow is a feature common to contractions and 

expansions, geometries notably relevant to many clinical situations and to the FDA 

Critical Path Initiative. While the present investigation dealt with laminar flows, it 

perhaps raises the issue as to whether extensional components in turbulence might also be 

contributing to clinical instances of hemolysis, an area that is also undergoing 

reexamination (Antiga, 2009; Kameneva, 2004). 

  3.5.4 Illustrated Mechanism of Damage Due to Elongational Flow 

Since extensional flow more effectively increases DI, and DI has been related to 

cell damage, the findings in this work are consistent with extensional flows contributing 

to hemolysis.  It is not clear whether shear stress is a necessary element or not.  Results 

from the literature on red cell rheology do help to suggest a mechanism by which shear 

stress and extensional stress might work in concert.  The motion of an RBC in a shearing 

flow field is unusual.  Rather than rotating, the cell membrane revolves around the 

cytoplasm in a manner characterized as ―tank treading.‖ (Fischer, 1978).  Fischer 

deduced the motion of the red cell membrane from videomicroscopy images of cells 

during flow in a device called the rheoscope, essentially a specially constructed cone and 

plate viscometer (Fisher, 1980).  Increases in the shear rate result in a higher frequency of 

revolution with the same basic velocity profile for the membrane.  Described in Cartesian 

components after Fischer, the velocity components in the membrane (Figure 3.14) are vx 

= fC(y) and vy = 0 where f is the tank-tread frequency and C(y) represents the 
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circumference parallel to the x-axis.  This velocity profile describes a shearing flow 

within the two dimensional structure of the red cell membrane.   

Observations in micropipette deformation experiments led to the characterization 

of the red cell membrane as essentially a two dimensional fluid (Evans, 1979), and, since 

dilation of only a few percent results in rupture, it can be characterized as a two 

dimensional incompressible fluid.   As such, flow in the membrane must satisfy the two 

dimensional continuity equation:   

0









yx

yx   (3.5) 

 Note that Fischer’s velocity profile for the erythrocyte membrane given 

above satisfies the mathematical constraint of continuity. Moreover, with vy identically 

equal to zero in a shearing flow, it follows that vx must be a constant at any given value 

of y to satisfy the continuity equation. A cell entering a region with an extensional flow 

component in the direction of translation, will encounter a gradient of vx and, constrained 

by continuity, it dilates with the prospect of failure.  This is precisely the situation with 

the complex flow in the entrance region of the capillary.  This mechanism could possibly 

also explain hemolysis due to changes in the permeability of the red blood cell 

membrane, attributed to the opening of pores in the cellular membrane through which 

hemoglobin can leak.  An implicit assumption to this analysis is that the two dimensional 

incompressible fluid character observed at the very low deformation rate of the 

micropipette experiments and at the intermediate deformation rates of the rheoscope 

apply at the high deformation rates of the capillary tube. 
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3.6 Turbulent Couette Viscometer Geometry and Computational Domain 

 3.6.1 Geometries and Flow Conditions 

The Couette viscometer simulation geometry was created based on the gap width 

of 2.07 mm given in Sutera et al.’s work.  This geometry can be seen in Figure 1.3.  To 

reduce computational time, only the gap, and not the conical or top portions of the 

viscometer, was modeled.  For these simulations, the procedure was to begin the 

simulation with a slowly rotating inner wall (so that the flow would be in the laminar 

regime), and to slowly increase the rotational rate of the wall until the shear stress values 

obtained experimentally were achieved.  A number of simulations were completed 

because of this process of ramping up the rotational rate of the wall, but data was 

extracted for only seven rotational rates, corresponding to the shear values investigated in 

Sutera’s work.  The shear stress levels investigated were 1500, 2000, 2500, 3500, 4500 

dynes/cm
2
.  Once the rotational rate was high enough that turbulence would be 

anticipated, the realizable k- turbulence model and enhanced wall functions were 

employed.  

For momentum, the 1
st
 order upwind interpolation scheme was used; for pressure, 

the standard Fluent interpolation; and for pressure-velocity coupling, the SIMPLE 

scheme was used.  The specified fluid for all simulations was considered Newtonian, 

with a viscosity of 0.001 Pa-s and a density of 998. 

3.6.2 Computational Domain 

   3.6.2.1 Boundary Conditions 

 Using the given dimensions from Sutera’s work, a three-dimensional model of 

1/16
th

 of the experimental geometry was created.  The model was specified as symmetric 
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in the z-direction, with symmetry boundary conditions at the top and bottom of the 

domain, and rotationally periodic, with periodic boundary conditions on both sides of the 

simulation domain.  The inner and outer walls of the viscometer were given a no-slip 

boundary condition.  The simulation was begun by specifying a rotational velocity of the 

inner wall such that the flow would remain laminar, followed by slowly increasing the 

rotational rate of the inner wall until the resulting shear stress was equal to the 

experimental values given by Sutera, et al.  At this point, the flow was in the turbulent 

regime. 

   3.6.2.2 Grid 

 As previously mentioned, 1/16
th

 of the experimental geometry was created in 

Gambit 2.  The geometry was then fit with a hexahedral grid.  This grid was imported 

into Fluent and subsequently refined.  The number of grid cells was 33,600, with an 

average grid cell size of 4 x 10
-3

 mm
3
.  

  

3.7 Turbulent Couette Viscometer Results 

 Flow in a Couette viscometer with inner cylinder rotating and outer cylinder  

stationary can be characterized by a dimensionless parameter called the Taylor number,  

mentioned in Chapter 2.  For the rotational rates used in the simulation of Sutera’s work,  

the Taylor number ranged from approximately 5000 to 10,000; well above the transition  

Taylor number of 400.  Thus, the flow for all simulations was in the turbulent Taylor  

vortex regime.   Each of the vortices observed in the simulation results contained an 

assumed equal portion of the flow; therefore in order to perform an all-or-nothing 

analysis of the stresses present similar to that for the capillaries, it was necessary to create 
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iso-surfaces of the desired variables so that the percent of the volume contained by the 

created iso-surface corresponded to the percent hemolysis.  The maximum turbulent 

kinetic energy dissipation and Kolmogorov Length Scales were examined using these 

surfaces and throughout the entire domain. 

  3.7.1 Turbulent Kinetic Energy Dissipation Rate 

 Initially, because some investigators have put forth turbulent kinetic energy 

dissipation as a possible predictor of hemolysis in turbulent flow, isosurfaces were 

created such that the percentage of the volume outside the isosurface was equal to the 

percent hemolysis and the maximum turbulent kinetic energy dissipation on these 

isosurfaces was determined.  Figure 3.15 shows the percent hemolysis versus this 

maximum turbulent kinetic energy dissipation rate, however no correlation between these 

values is observed. 

  3.7.2 Kolmogorov Length Scale 

 Some researchers have speculated that the Kolmogorov length scale, a parameter 

related to the rate of energy dissipation, and the smallest length scale in turbulent flow, 

may be related to hemolysis of cells in turbulent flow (Kameneva, 2004).  The 

Kolmogorov Length Scale is the smallest length scale in turbulent flows – i.e., the size of 

the smallest eddies in the flow.  The proposed mechanism through which hemolysis in 

turbulent flows might be related to the Kolmogorov Length Scale, is that if length scales 

approaching the size of a red blood cell were present, these eddies might lead to cell 

rupture.  In Figure 3.16, it can be seen that Kolmogorov Length Scales are small in the 

Couette viscometer, and in parts of the domain (on the outer edges of the vortices) are of 

the size of a red blood cell.  These results compare well to the results of others who have 
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investigated Kolmogorov length scales in heart valves.  Ellis et al. found a KLS of 7 

microns near the hinge region of prosthetic heart valves (Ellis, 1998).  Travis et al. and 

Liu et al. found scales ranging from 36 – 72 microns and 25 – 47 microns, respectively, 

in other regions of the valve – which is of the same order of magnitude as some of the 

results found here (Travis, 2002; Liu, 2000).  Additionally, Jones calculated the 

Kolmogorov length scales for four different experimental systems in which hemolysis 

was studied and found a range of 1.6 – 11 microns for the average KLS (Jones, 1995).  

Initially, isosurfaces of KLS were created in the hopes that a threshold KLS would 

emerge, so that hemolysis could be predicted by determining the volume of a flow 

encompassed by the threshold KLS, and that that volume would correspond to percent 

hemolysis.  Assuming the system is well-mixed, if such a threshold existed, it would be 

expected for a plot of percent volume encompassed by the KLS isosurface versus gap 

shear to fall on the same curve as the percent hemolysis versus gap shear data of Sutera 

for the threshold KLS.  In Figure 3.17, however, it is clear that this is not the case – KLS 

isosurfaces of multiple KLSs were created, however the percent volume they enclose 

does not correspond to percent hemolysis for any KLS.   

 The lack of evidence for a threshold KLS motivated the study of the entire range 

of KLS in the flow, not just on the surface encompassing the volume that corresponds to 

percent hemolysis.  A few statistical methods of looking at the overall Kolmogorov 

Length Scales in the flow were used, however it was found that only the median KLS had 

a correlation with percent hemolysis, with the median KLS becoming smaller as 

hemolysis increases, and the median KLS becoming larger as hemolysis decreases, up to 

the point were KLS are larger than the size of the cell and no hemolysis would be 
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expected.  This correlation is shown in Figure 3.18.  The Kolmogorov Length Scales 

present in the FDA CPI nozzle geometry were also plotted for the entire domain.  It can 

be seen from Figure 3.19 that KLS length scales of the size of a red blood cell are present 

in the FDA nozzle.  Publication of the results of an interlaboratory hemolysis study using 

the FDA nozzle are forthcoming, and may show this same dependence on median 

Kolmogorov Length Scale in the prediction of hemolysis. 

 The Couette viscometer simulations were performed using the realizable k- 

turbulence model in Fluent.  Although this model has improvements over the standard k- 

model, some of the inherent deficiencies common to all k- models as semi-empirical 

models are still present.  One of these weaknesses involves the use of user-defined 

constants for parameters that can vary in reality.  In order to have better confidence in the 

Kolmogorov length scale results presented here, other turbulence models should be used 

and compared.  The use of Direct Numerical Simulation (DNS) would allow for a much 

more complete characterization of the flow in Sutera’s Couette viscometer. 

  

3.8 Conclusions 

 It is clear from the FDA Critical Path Initiative that there is still ample room and 

need for investigation of hemolysis related to flow.  Simulations of laminar capillary 

entrance blood flow yield evidence that the hemolysis seen in this type of flow is related 

to the extensional components of the stress tensor. This, in combination with an available 

mechanism for rupture due to extensional stresses, leads to the conclusion that 

extensional stresses can be a significant cause of RBC trauma.  This work proposes a 

threshold value of the extensional stresses for hemolysis of 3000 Pa for exposure times 
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on the order of microseconds. While this explanation does not eliminate the possibility 

that some hemolysis is caused by shear stress, there is sufficient indication that 

extensional stresses should be taken into account in blood trauma models.  In addition, 

there is an indication that hemolysis in turbulent flows may be related to the Kolmogorov 

Length Scale, with scales on the order of the size of a RBC seen in turbulent flows known 

to produce hemolysis.  Some dependence on the median Kolmogorov Length Scale for 

flow in a turbulent Couette viscometer has been shown, however much more work needs 

to be completed to prove the reliability of this parameter as an indicator of hemolysis. 

 

 

Portions of this chapter have been reproduced from the following source: 

 Down LA, Papavassiliou DV, O’Rear EA. Significance of Extensional 

Stresses to Red Blood Cell Lysis in a Shearing Flow. Annals of Biomedical 

Engineering. 2011; 39: 1632 – 1642. 

 

  



 70 

 

3.9 Nomenclature 

 - rate of turbulent kinetic energy dissipation  

 - Kolomogorov length scale 

 - dynamic viscosity of blood 

 - kinematic viscosity 

r – radial velocity 

z – axial velocity 
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 Figure 3.1.  A) Contours of velocity magnitude at the corner of a 27 to 1 contraction (Re 

= 1055; μ = 0.005 Pa-s).  Flow is from left to right. The threshold streamline is shown, 

and the hemolysis and hemolysis free zones are illustrated.  The volumetric flow rate 

passing through the area between the threshold streamline and the vessel wall as a 

percentage of the total volumetric flow is equal to the percent hemolysis for this 

experiment. The boundaries are not shown, but are similar to those given in Figure 1. B) 

The expected shear stress profile along the threshold streamline, with the large increase in 

shear stress magnitude at the entrance highlighted.  CFD simulations indicate that there is 

a large peak in shear stress at the entrance followed by a constant shear stress value in the 

capillary. The peak in shear stress occurs at a streamline length, s = 0.45 cm, which 

corresponds to z = 0.1038 cm. 
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Figure 3.2. Velocity vectors and contours of velocity magnitude for the conical 

diffuser orientation of the FDA CPI nozzle.



 76 

 

 
Figure 3.3. Velocity vectors and contours of velocity magnitude for the sudden 

expansion orientation of the FDA CPI nozzle.
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Figure 3.4. Contours of shear stress magnitude for the conical diffuser orientation of 

the FDA CPI nozzle. 
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Figure 3.5. Contours of shear stress magnitude for the sudden expansion orientation 

of the FDA CPI nozzle. 
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Figure 3.6. Contours of Reynolds stress magnitude for the conical diffuser 

orientation of the FDA CPI nozzle. 
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Figure 3.7. Contours of Reynolds stress magnitude for the sudden expansion 

orientation of the FDA CPI nozzle. 
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 Figure 3.8.  Contours of shear stress magnitude at the entrance of a sharp contraction 

(CR = 27:1; Re = 1055; μ = 0.005 Pa-s).  High shear stresses are seen at the corner of 

the contraction, and a plume of elevated shear stress magnitude is seen to extend into 

the capillary. CR: Contraction Ratio. 
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Figure 3.9.  Peak shear stress on threshold streamline versus percent hemolysis.  The 

slope of the trendline shows the lack of a consistent threshold peak shear stress across 

investigated parameters.  Hemolysis threshold streamline is chosen such that the 

"hemolysis zone" shown in Figure 2 encompasses a fraction of the flow equal to the 

percent hemolysis from Keshaviah's data. CR: Contraction Ratio. 
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Figure 3.10.  Peak gradient of shear stress with respect to displacement along a 

streamline on the threshold streamline versus percent hemolysis.  The data does not 

indicate a constant threshold value for the gradient of the shear stress, and lower 

gradients are observed for the higher viscosity experiments, even though hemolysis is 

higher.  CR: Contraction Ratio. 
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Figure 3.11.  A) Peak radial stress tensor component on threshold streamline versus 

percent hemolysis for various contraction ratios and viscosities.  B) Peak axial stress 

tensor component on threshold streamline versus percent hemolysis for various 

contraction ratios and viscosities.  For both plots, a regression of the data is shown – 

for both extensional components, the slope of the regression is smaller than that for 

the shear stress. 
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Figure 3.12.  Comparison of rz and rr along the threshold streamline for a single 

experimental scenario (Re = 1055; μ = 0.005 Pa-s).  This plot shows that rr has a 

sharp peak at the entrance of the capillary and then drops to zero once in the capillary, 

while the shear stress peaks at the entrance, but then maintains a value of the same 

order of magnitude as the peak through the capillary.  This indicates that the effect of 

τrr is concentrated at the entrance of the capillary, while that of rz likely would be an 

important effect throughout the capillary, contrary to the entrance-effect conclusions 

of Keshaviah. 
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Figure 3.13.  Contours of shear stress magnitude for (A) a tapered geometry with a 

high volumetric flow rate and (B) a 27 to 1 sharp contraction with a low flow rate.  

For (A) Re = 1173; μ = 0.005 Pa-s; For (B) CR = 27:1; Re = 706; μ = 0.005 Pa-s 
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Figure 3.14:  Velocity components in the red blood cell membrane (seen from above) 

according to Fischer:  vx = fC(y) and vy = 0 where f is the tank-tread frequency. 
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Figure 3.15:  Percent hemolysis versus maximum rate of turbulent kinetic energy 

dissipation on the threshold iso-surface (i.e. percent volume isolated by iso-surface = 

percent hemolysis).  No threshold value for  is apparent. 
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Figure 3.16:  Kolmogorov Length Scales for two gap shear values and, 

correspondingly, two levels of hemolysis.  Length scales of the size of a RBC are 

found at both rotational rates, with a larger portion of the flow exposed to smaller 

KLS in the case with more hemolysis. 

 

4% Hemolysis 

Gap Shear: 1000 dynes/cm2 

85% Hemolysis 

Gap Shear: 4500 dynes/cm2 
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Figure 3.17: Percent hemolysis/Percent volume isolated by KLS iso-surface versus 

gap shear stress.  If a threshold KLS were evident, Sutera’s data would fall on the 

same curve as the data points for one of the Kolmogorov Length Scales, however it 

does not. 
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Figure 3.18: Percent hemolysis versus median Kolmogorov Length Scale.  The plot 

shows a dependence of hemolysis on median KLS, with smaller median KLS values 

indicating more hemolysis.  The size range for a RBC is shown for comparison. 

 

RBC Disc Radius 
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Figure 3.19: Kolmogorov Length Scales for the FDA CPI nozzle geometry in the 

sudden expansion orientation, at Re = 5000.  Kolmogorov Length Scales on the same 

order of magnitude as the size of a RBC are seen. 
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CHAPTER 4: RENAL ARTERY STENOSIS 

 4.1 Introduction to Stenoses 

The effect of a stenosis on pressure loss has been studied in geometries similar in 

size to renal artery stenosis, resulting in empirical equations put forth by Young et al. and 

Shalman et al. (as modified by Yim, et al.) for steady flows.  Young et al. developed the 

following correlation, which relates the pressure drop across a stenosis to blood vessel 

dimensions, flow characteristics, and coefficients dependent on stenosis geometry 

(Young, 1979): 
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where Δp is the pressure drop across the artery, ρ is the density of blood, Uo is the 

average blood velocity in the unobstructed artery, Kv and Kt are coefficients dependent 

on stenosis shape and geometry, Re is the Reynolds number in the unobstructed artery, 

Ao is the cross-sectional area of the unobstructed artery, and A1 is the minimum cross-

sectional area. Young et al. state that the coefficients Kv and Kt can be determined for 

different geometries by fitting experimental pressure drop measurements using a least 

squares regression.  For the blunt plug stenosis geometry studied by Young et al., the 

average Kt is 1.52, and Kv is given by the following equations (Young, 1979): 
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Where D is the unobstructed artery diameter, Ls is the stenosis length, and D1 is the 

minimum diameter. Seeley and Young applied the above correlation to previous data 
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from a smooth stenosis and found that good agreement was achieved if the correlation 

was modified by replacing the term A0/A1 with A0/A1a (Seeley, 1976): 
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 (4.4) 

The Reynolds number used in the arterial simulations was 675, within the range of 

Young’s correlation, which was developed for a Reynolds number range from 

approximately 50 to 1000. 

An additional correlation was developed by Yim et al.  The following equations 

give the pressure drop estimation used by Yim et al. which is a modified version of that 

proposed by Shalman (Yim, 2004).  
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where Q is the blood volumetric flow rate, A0 and A1 are defined as above, A3 is the 

cross-sectional area of the artery distal to the stenosis, ν is the kinematic viscosity of 

blood, L1-2 is the length of the converging section of the artery, I1-2 is a shear force 

integral defined by equation (9), and β is a coefficient between 0.85 and 1.  In contrast to 

the Young model, these expressions apply for a stenosis of an axisymmetric, conic 

converging and diverging shape.   
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4.2 Renal Artery Stenosis Geometries and Computational Domains 

  4.2.1 Stenosis Geometries 

 Three types of stenosis geometries were studied – a blunt stenosis to mimic 

Young’s work, a conical stenosis to mimic Yim’s work, and an elliptical stenosis (as a 

better model of physiologically realistic stenoses).  The geometries considered are shown 

in Figure 1.4.  The length of the renal artery for all cases was 50 mm, the diameter was 5 

mm, and the length of the stenosis was 5 mm in all simulations except in the study of 

stenosis length, in which the length was varied from 2.5 to 5 mm. 

4.2.2 Computational Domain 

 4.2.2.1 Boundary Conditions 

The model parameters of artery diameter and flow rate were chosen to be 

comparable to a typical renal artery (Kem, 2005).  Simulation conditions were steady, 

laminar or turbulent flow (determined based on a critical Reynolds number), with a total 

blood flow rate of 10 mL/s.  The critical Reynolds number for transition to turbulent flow 

was related to the Reynolds number in the un-occluded artery and the percent occlusion, 

based on the data of Azuma and Fukushima (Azuma, 1976). The artery was modeled with 

rigid walls, which is not representative of arterial walls in general, but may be used in the 

case of stenosis, in which the artery wall is stiffened (Giannattasio, 2001; Bortolotto, 

1999; London, 2005). 

The fluid specified was blood, with a viscosity of 0.004 Pa s and a density of 1060 

kg/m
3
. The blood was assumed to be Newtonian, which is a common assumption 

(Perktold, 1991; Frauenfelder, 2006; Ku, 1997) for vessels that are large compared to the 

size of a red blood cell (Nguyen, 2008; Yamaguchi, 2006).  The symmetric stenoses were 



 97 

 

modeled using the 2D axisymmetric solver in order to simplify the calculations and save 

computational time.  In addition to the 2D steady flow simulations, additional simulations 

were performed using a pulsatile velocity profile at the inlet in order to compare transient 

results to those found with steady flow.  3D simulations were used, first, to investigate 

the effect of eccentricity (the deviation of the center of the stenosis from the centerline of 

the artery) and, secondly, the effect of the axial location of the stenosis when the entire 

system (abdominal aorta, renal arteries, renal artery branches) is taken into account. For 

2D simulations, the inlet boundary condition was specified as a constant velocity and the 

outlet boundary condition was specified as an outflow condition.  For 2D transient 

simulations, the inlet boundary condition was given as the pulsating velocity profile taken 

from Skalak and Chien (Skalak, 1987), and the outlet was specified as an outflow.  For 

3D simulations of only the artery, the same steady flow boundary conditions used in 2D 

were set; however, for 3D simulations that included a section of abdominal aorta, the 

renal arteries, and first generation renal artery branches, the inlet condition was a mass 

flow rate (88.3 g/s) and the outlets were all given outflow conditions with the constraint 

that 10.6 g/s passed through each one of the two renal arteries.  See Figure 4.1 for an 

illustration of the 3D system geometry. 

   4.2.2.2 Grid 

 For both 2D and 3D simulations, the geometry and mesh were created in Gambit 

2, then imported into Fluent 6 for simulation.  For 2D simulations, each mesh was created 

as a quadrilateral grid.  For 3D simulations, all grids were hexahedral.  Each grid was 

refined in regions of high velocity gradient and then refined globally until the percent 

difference for the pressure loss and velocity profile at multiple cross sectional cuts 
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between a more and less refined simulation solution was less than 3%.  In addition, the 

outlet boundary condition was changed in order to verify that the solution was 

independent of this condition; the simulation solution did not change when the outlet 

boundary condition was varied. 

  

4.3 Two-Dimensional Steady Flow Results 

The pressure loss along the length of the artery was calculated as the absolute 

value of average pressure at the artery outlet minus average pressure at the artery inlet. 

The pressure loss for an artery as described above but lacking any constriction was 

modeled using the 2D, axisymmetric, laminar solver, in order to validate the simulations 

for the most basic geometry. Excellent agreement between these simulations and 

theoretical pressure loss for tube flow prompted the extension of the simulation 

conditions to more complicated geometries.   

  4.3.1 Effect of Stenosis Axial Position 

The effect of the stenosis axial location on the pressure loss through an artery was 

investigated in two ways.  First, a long artery was modeled and given a flat entrance 

velocity profile, which was allowed to fully develop before reaching the end of the artery 

through the inclusion of a sufficient entrance length.  The axial location of an 80% 

stenosis (% stenosis = 1 – D1
2
/D

2
) was varied along the length of the artery so that the 

flow entering the stenosis varied from a flat velocity profile to a fully developed, 

parabolic profile.  The results of these simulations showed no dependence of pressure 

loss on the development of flow at the stenosis entrance.  The variation of axial position 

was then reexamined by introducing the abdominal aorta and the main renal artery branch 
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into the system, thus giving the model a more realistic entrance velocity profile as well as 

outlet conditions (Figure 4.1).  The results of these simulations indicated only a slight 

dependence of pressure loss on axial position, from 24.6 to 22.2 mm Hg, for an 80% 

stenosis, and none for the less severe cases studied (Figure 4.2).  Varying the stenosis 

length from 2.5 mm to 5 mm had a similarly small effect on the pressure loss across the 

stenotic artery, changing the value only up to 10% of the total pressure loss, or 2 mm Hg.   

The simulations investigating the effect of stenosis axial location on pressure loss 

led to two interesting results.  The first, indicated by simulations of a long, straight artery, 

is that the development of flow does not have an effect on the pressure loss through the 

artery.  For these simulations, the stenosis was placed close to the entrance of the artery 

where the flow profile is still generally flat and then moved progressively farther from the 

entrance until the stenosis was situated beyond the entrance length for the artery, at which 

distance the flow is fully developed.  No significant difference in the pressure loss 

through the artery was seen for the developing and fully developed regions. 

Secondly, the model was extended to include the abdominal aorta, the renal 

arteries, and the main renal artery branches, in order to create more physiologically 

realistic entrance and outlet conditions.  The axial position of a stenosis along the renal 

arteries was then varied.  The results of these simulations show that as the stenosis is 

moved farther from the artery inlet, and thus closer to the artery branch, the pressure loss 

decreases only slightly.  The blood velocity profile at the entrance of the renal artery for 

these simulations was significantly different than that for a straight renal artery with a flat 

velocity profile.  Given the artery length, however, the flow is not allowed to develop 

before the entrance to the renal artery branches, so it may be that the decrease in pressure 
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loss is due to end effects rather than the velocity profile, such as truncation of the stenosis 

jet when the stenosis is near the artery branch. 

4.3.2 Effect of Stenosis Shape and Percent Stenosis 

 Simulations with stenoses ranging from 45-90% stenosis were modeled in order 

to investigate the critical percent stenosis associated with malfunction of the renin-

angiotensin-aldosterone system in the kidney.  Three geometries were modeled; an 

elliptical stenosis, a blunt stenosis mimicking Young’s geometry, and a conical stenosis 

mimicking Shalman’s geometry.  Figure 4.3 shows that as the percent stenosis increases, 

the pressure loss across the artery increases and that the threshold for hemodynamic 

relevance (i.e., ΔP > 10 mm Hg) is reached for percent stenosis greater than 

approximately 75%. 

 The results of simulating all three geometries at the critical stage of occlusion 

show that the blunt geometry gives a consistently higher pressure loss than the other two 

structures, followed by Shalman’s structure, with the elliptical structure giving the lowest 

pressure losses as a function of percent stenosis (Figure 4.3).  

A goal of this work was to probe the ―rule of thumb‖ regarding the critical percent 

stenosis to ascertain pathologically relevant pressure losses in the renal artery.  This rule 

of thumb has been found to be approximately 75-80% stenosis, and some studies have 

indicated a difference in patient outcome for those suffering from severe (75-80%) 

stenosis compared to moderate stenosis (Balk).  In addition to this critical percent 

stenosis, an average pressure drop of 10 mm Hg is commonly given as the threshold for 

physiologically relevant pressure loss in the renal artery; this value was verified through 

this work.  From Figure 4.3, it is apparent that the threshold pressure loss of 10 mm Hg is 
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reached at approximately 75% stenosis, and that the range of critical percent stenosis is 

marked by a dramatic increase in arterial pressure loss. This result serves to confirm both 

the percent stenosis ―rule of thumb‖ as well as the threshold pressure loss, both used by 

physicians. 

The simulation results for the geometries of Young and Shalman give similar 

values and follow the same trend as the calculated values from their respective 

correlations.  The discrepancy between the simulation results for Young’s geometry 

compared to the theoretical results could be due to the nature of the constant Kt, which is 

an average value derived from experiments using multiple stenosis geometries and ranges 

from 1.52 to 1.83 depending on the geometry used.  The simulation results consistently 

gave a larger pressure drop than Young’s correlation for a blunt stenosis, with the 

discrepancy becoming larger after the critical percent stenosis is reached and achieving a 

maximum of 60 mm Hg at 90 percent stenosis.  Shalman’s correlation also gives a 

smaller pressure loss through a conical stenosis when compared to the computed results, 

although the difference is less for this correlation with a maximum discrepancy of 10 mm 

Hg.  The best agreement was found when comparing the elliptical stenosis to Young’s 

correlation using the modified area term for smooth stenoses.  This result strengthens the 

conclusion that the area reduction of a stenosis is the most significant parameter for 

predicting pressure loss. 

When the results of the blunt stenosis, conical stenosis and an elliptical stenosis 

are compared in Figure 4.3, it is evident that the stenosis structure has an effect on 

pressure loss.  The dependence of pressure loss on stenosis structure is not surprising 

when one considers known effects of constriction geometry from classical fluid 
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mechanics.  For example, the pressure loss measured across an orifice plate will be higher 

than that across a Venturi meter of the same minimum diameter, because of the fluid 

behavior in a tapered constriction (Venturi meter) as opposed to a sharp contraction 

(orifice plate).  Typically, the severity of a stenosis is given by the percent stenosis based 

on the area of occlusion as calculated at the narrowest point of the constriction.  This, 

however, does not capture the difference in pressure losses occurring due to a gently 

converging conical stenosis (Shalman) compared to the sudden contraction of the blunt 

stenosis (Young).  By characterizing a stenosis by percent occlusion only, a significant 

amount of information about the possible pressure losses due to the stenosis is lost.  The 

results in Figure 4.3 help to emphasize this point.  There is little question that a physician 

should intervene for the blunt geometry, while it is less clear in the case of the other 

stenosis structures.   One can conclude that the variation in structure for commonly 

occurring arterial stenoses is significant through visual examination of patient images 

(e.g., MRI) from multiple stenosis case studies (Douis, 2008; Pheiffer, 2004; Han, 2005; 

Serter, 2007), and that description of stenosis severity based only on percent stenosis is 

insufficient.   

  

4.4 Two-Dimensional Time-Dependent Results 

  4.4.1 Effect of Stenosis Shape on Peak Pressure Loss 

Results from these steady flow simulations were also compared to the results for 

pulsatile blood flow.  This was done in order to establish that using steady flow, as 

opposed to pulsatile flow, would still lead to correct conclusions.  The results of 

simulating a 75% occluded elliptical, a 75% occluded Shalman-type and a 75% occluded 
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Young-type stenosis using a pulsatile inlet velocity are shown in Figure 4.4.  From this 

plot it is evident that the use of a pulsatile inlet condition leads to the same conclusions as 

using a steady flow: that hemodynamically significant pressure losses are present at 75% 

occlusion and that the stenosis structure has a significant impact on the pressure loss with 

the blunt stenosis being the most severe.  Comparing, for example, the peak pressure 

drops for either the steady or unsteady computation, we find the Shalman structure to 

have a slightly higher pressure drop peak than the elliptical structure, both of which are 

about half the loss for the blunt geometry examined by Young.  This comparison 

confirms that the use of steady flow in other simulations yields reliable results. 

  

4.5 Three-Dimensional CFD Results – Effect of Stenosis Eccentricity 

The effect of stenosis eccentricity was investigated using a 3D model also (Figure 

4.5).  Eccentricity is the degree to which a stenosis is non-symmetric in the axial plane.  

Here, eccentricity is defined as the distance between the stenosis axial center and the 

artery axial center divided by the stenosis radius.  This definition means the upper limit of 

eccentricity increases with the extent of occlusion. In other words, the smaller the 

stenotic lumen, the closer its center can approach the wall of the artery.  The simulations 

carried out were for a 50% and an 80% occluded elliptical stenosis.  The results of 

varying the degree of asymmetry for these stenoses showed that there was no dependence 

on eccentricity (Figure 4.6). 

The investigation of the effect of stenosis eccentricity did not show a dependence 

of the pressure loss through an artery on this parameter.  This result serves to indicate that 

the principal cause of increased pressure loss by a stenosis is through the reduction of the 
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area available to flow.  The percent stenosis is the governing parameter for stenosis 

severity when referring to pressure losses. 

 

4.6 Conclusions 

The process of atherosclerosis causes the formation of plaques in the circulatory 

system that lead to a variety of cardiovascular diseases.  Computational fluid dynamics 

has been used to increase our understanding of the deposition process in coronary arteries 

(Wada, 2002) and the effects of flow through stenoses in the coronary, carotid and renal 

arteries.   Alteration of flow in the renal artery causes a pressure loss that sabotages the 

hormonal control of the systemic blood pressure by the kidney.  Clearly, the 

hemodynamic effects of altered artery geometry can have a significant impact on health, 

and an increased understanding of these effects is important. 

 CFD offers a powerful and versatile alternative to physical flow field 

experimentation, and has proved an acceptable method for modeling arterial stenoses.  

The results obtained in this study through simulation were reasonable and displayed good 

agreement with expected theoretical trends.  The pressure loss through a renal artery, 

modeled along with the aorta and renal branches, is related only slightly to the axial 

position of the stenosis along the artery – decreasing as the stenosis is moved farther 

away from the artery entrance by approximately 10% of the maximum pressure loss.  

This dependence was not, however, seen for a single straight artery.  It was shown that 

the eccentricity of a stenosis does not have an effect on the pressure loss, indicating that 

the percent stenosis is the most significant parameter for stenosis severity.  Additionally, 

investigation of the relationship between percent stenosis and arterial pressure loss 
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indicates a critical percent stenosis for the renal artery of approximately 75%.  This 

critical percent stenosis is indicated by a pressure loss consistent with the threshold 

hemodynamically relevant average pressure loss of 10 mm Hg previously proposed as 

well as a drastic increase in pressure loss for percent stenosis > 75%.  The pressure losses 

across a stenotic artery were also found to depend on the structure of the stenosis.  When 

comparing conical, blunt, and elliptical structures, it was found that the blunt structure led 

to a higher pressure loss and that this discrepancy is exacerbated once the critical percent 

stenosis is reached.  Percent occlusion appears to have a more significant impact on the 

pressure loss than structure, however – for the most severe case, a 10% increase in 

percent stenosis leads to a four-fold increase in pressure loss but for the highest percent 

occlusion a change in structure leads to only a two-fold increase in pressure loss.  

Clearly, there is a critical degree of occlusion for a renal artery stenosis, but other factors 

including immediate stenosis structure are important. 

 

 

Portions of this chapter have been reproduced from the following sources: 

 Heflin LA, Street CB, Papavassiliou DV, O’Rear EA. A Computational 

Investigation of the Geometric Factors Affecting the Severity of Renal 

Arterial Stenoses. Journal of Biorheology. 2009: 23: 102-110. 

 



 106 

 

4.7 Nomenclature 

A0 – cross-sectional area of unobstructed artery 

A1 – minimum cross-sectional area  

A3 – cross-sectional area of artery distal to stenosis 

D – unobstructed artery diameter 

D1 – minimum diameter 

I1-2 – shear force integral 

Kv and Kt – coefficients dependent on stenosis shape and geometry 

L1-2 – length of the converging section of the artery 

Ls – stenosis length 

Q – blood volumetric flow rate 

Re – Reynolds number 

U0 – average blood velocity in the unobstructed artery 

 - coefficient between 0.85 and 1 

p – the pressure loss across the artery  

 - kinematic viscosity of blood 

 - density of blood 
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Figure 4.1.  3D model of abdominal aorta, renal arteries and renal branches with an 80% 

stenosis located at 0.9 normalized axial position.  The insets show the velocity profile as 

blood enters the renal artery from the abdominal aorta and the velocity profile in and 

immediately after the stenosis.  The velocity profile entering the renal artery is drastically 

different from the flat velocity profile given in previous, renal artery only simulations. 
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Figure 4.2. Pressure loss versus axial location for a renal artery.  In this system, the 

abdominal aorta, the renal arteries, and the main renal artery branch are simulated in 

order to achieve a more realistic inlet velocity profile and outlet conditions. Simulation 

conditions are: steady flow; elliptical stenosis; blood viscosity, 0.004 Pa s; blood density, 

1060 kg/m
3
; blood flow rate through renal artery, 10 mL/s; renal artery diameter, 5 mm; 

renal artery length, 50 mm; for 50% stenosis, laminar model; for 64% and 80% stenosis, 

turbulent k-ε model. 
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Figure 4.3. Pressure loss versus percent stenosis.  Results show a clear critical percent 

occlusion near 75% stenosis.  Simulation conditions are: steady flow; blood viscosity, 

0.004 Pascal second; blood density, 1060 kg/m
3
; blood flow rate through renal artery, 10 

mL/second; up to 50% stenosis, laminar model; higher than 50% stenosis, turbulent k-ε 

model. 
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Figure 4.4. Pressure loss versus time for one pulse.  Results show that hemodynamically 

significant pressure loss occurs for a 75% stenosis and that the stenosis structure is 

important in determining the pressure loss across a constriction.  Simulation conditions 

are: unsteady flow; blood viscosity, 0.004 Pascal second; blood density, 1060 kg/m
3
; 

75% stenosis; turbulent k-ε model. 
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Figure 4.5. Velocity profiles in and immediately following an 80% stenosis placed at the 

center of a 5 cm renal artery.  Starting from the top image, the stenosis is moved 

progressively closer to the center of the artery in these 3D simulations until the stenosis 

and the artery are co-axial (eccentricity = 0). Eccentricity = [Distance between the axial 

center of the artery and the axial center of the stenosis]/[Stenosis radius]. 
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Figure 4.6. Pressure loss versus stenosis eccentricity.  Eccentricity is defined as the 

distance between the axial center of the artery and the axial center of the stenosis divided 

by the stenosis radius. This definition means the upper limit of eccentricity increases with 

the extent of occlusion. In other words, the smaller the stenotic lumen, the closer its 

center can approach the wall of the artery.  Simulation conditions are: steady flow; 

elliptical stenosis; blood viscosity, 0.004 Pascal second; blood density, 1060 kg/m
3
; blood 

flow rate through renal artery, 10 mL/second; for 50% stenosis, laminar model; for 80% 

stenosis, turbulent k-ε model.  
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CHAPTER 5: RENAL ARTERY ANEURYSM IN TWO-DIMENSIONS 

 5.1 Renal Artery Aneurysm Geometries and Computational Domain 

  5.1.1 Renal Artery Aneurysm Geometries 

Various saccular and fusiform aneurysm geometries were also examined in silico.  

According to Henke et al. (Henke, 2001), the single most common site for a renal artery 

aneurysm or RAA is at the primary or main bifurcation of the renal artery.  Saccular 

RAA were modeled by a protuberance out of the Y-juncture, both with and without a 

neck, for three different values of the aneurysm radius (ranges of 4.175-8.125 mm and 

6.5-13 mm, respectively).  Simulations of fusiform aneurysms (radii 6.5-19.5 mm) at the 

main bifurcation were also conducted.   In order to determine if aneurysm location on the 

renal artery has a noteworthy effect on the pressure difference, we examined a saccular 

aneurysm of the main artery for four different radii (6.5-15.5 mm).  Table 5.1 is an 

illustration of the different geometries where the dimensions for each of the cases studied 

are provided. 

 The previously described aneurysms were modeled to give an indication of the 

effects of typical structures and locations.  Currently, a link between RAA structure and 

hypertension has not been established.  It is quite possible that some aneurysm 

geometries do not result in hypertension.  As a result, a patient-specific study, in which 

the subject had a large RAA of known geometry definitely associated with severe 

hypertension was modeled, using the geometry described in Degertekin et al. 

(Degertekin, 2006).  In this case, the patient had a large saccular renal artery aneurysm of 

the main renal artery.  The aneurysm was treated using a stent graft, and the patient’s 
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hypertension was greatly diminished.  An image of this aneurysm is shown in figure 5.1, 

as well as the 2D model of the aneurysm geometry.  

  5.1.2 Computational Domain 

   5.1.2.1 Boundary Conditions 

 The simulation conditions were steady, laminar flow, blood flow rate of 10 ml/s 

(Cooney, 1976), constant velocity at inlet, and constant pressure outlets for all outlets.  

The physical properties of the blood applied in the simulations were blood viscosity of 

0.004 Pa·s and blood density of 1060 kg/m
3
. For vessels that are large compared to red 

blood cells, blood can be treated as a Newtonian fluid (Ku, 1997; Yamaguchi, 2006) as 

shown in models by many investigators (Perktold, 1991; Rindt, 1996; Frauenfelder, 2006; 

Nguyen, 2008).  The renal artery in these simulations was modeled as a 5 mm diameter, 

smooth wall tube with a length of 50 mm (Kem, 2005).  

   5.1.2.2 Grid 

 The aneurysm geometries of interest were created initially in Gambit 2, as a 2D 

model, fitted with a quadrilateral mesh, and exported into Fluent 6.  After preliminary 

simulation in Fluent, the initial mesh was adapted in regions of high velocity gradient, 

followed by additional global refinements after subsequent simulation.  The number of 

grid cells required for grid independence varied slightly depending on the size or location 

of the aneurysm. 
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5.2 Two-Dimensional Steady Results 

The simulation conditions were initially validated by modeling straight tubes 

without an aneurysm and comparing the results to those calculated using the Hagen-

Poiseuille equation. 

  5.2.1 Effect of Aneurysm on Arterial Pressure Loss 

 The pressure gradient through the renal artery was calculated as the difference 

between the average pressure at the outlets and the average pressure at the inlet of the 

computational domain.  Pressure losses for normal and pathologic renal arteries were 

determined from computation.  The pressure gradient for a normal renal artery was quite 

small at 0.9 mm Hg.  Simulations carried out with various RAA incorporated into the 

renal artery model included the assumption that the weakened walls and the RAA do not 

deform significantly with time.  For any of the simulations with nondeformable saccular 

or fusiform RAA interposed at the main bifurcation, the pressure loss did not vary 

significantly from that for a normal renal artery (Table 5.1).  Similarly, there was again 

no significant change in the pressure loss for the simulation interposing a saccular 

aneurysm on the main artery, compared to a control artery.  Thus, values found for the 

pressure loss in all cases were small (~1 mm Hg), regardless of the location or size of the 

nondeformable aneurysm.  These values are well below the assumed threshold of 10 mm 

Hg suggested by Yim et al. (Yim, 2004).   Since eighty percent of all renal artery 

aneurysms are saccular and the most common single location for these is the main 

bifurcation, the values above were not expected.   

 The results clearly showed that the geometry and location of a nondeformable 

aneurysm alone could not affect the pressure loss along a renal artery to the point of 
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causing significant differences relative to the pressure loss along a typical renal artery. 

This led to the hypothesis that some other phenomenon associated with the aneurysm 

may be causing a large pressure difference.  A plausible explanation could be a blockage 

occurring due to a bending of the weakened artery wall at the aneurysm, such as the 

geometry depicted in Figures 5.2-C and D. 

  

5.3 Two-Dimensional Deformed Steady Flow Results 

  5.3.1 Effect of Deformation on Arterial Pressure Loss 

 In the second phase of this study, calculations were performed where it was 

assumed that deformation of the weakened walls had occurred.  An examination of the 

pressure acting on the inner surface of the distal aneurysm-artery wall cusp in the static 

case (i.e., the undeformed cusp, Figure 5.2B) supports the hypothesis of deflection of the 

weakened vessel walls into the lumen of the renal artery.  Pressure on the inner surface of 

the aneurysm cusp is greater than the pressure on the opposing surface (i.e., the inner wall 

of the artery adjacent to the aneurysm).  Higher pressure in the aneurysm can be 

understood from Bernoulli’s Law — flow stagnates inside the aneurysm, so the pressure 

goes up.  For the saccular aneurysm of the main branch (Figure 5.2), it was assumed that 

the walls could deform and that the pressure gradients across the cusp would cause forces 

that would tend to push the cusp into the lumen of the artery.  Initial deflection into the 

path of the flowing blood yields an even greater pressure difference across the cusp 

(Figure 5.2C) and, thus, a greater driving force for occlusion.  This data demonstrates that 

this type of blockage can lead to exaggerated pressure gradients.  The pressure gradient, 

as a function of percent occlusion for both saccular aneurysm locations (main renal artery 
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and renal artery bifurcation), is given in Table 5.1.  Figure 5.3 is a plot of the change in 

pressure across the artery with increasing percent occlusion.  As the percent occlusion 

(i.e., one minus the ratio of the unblocked lumen area over the total lumen area of the 

artery) increases, the gradient increases.  For the saccular aneurysm of the main artery 

(see Figure 5.2), approximately 60% occlusion leads to the pathologically relevant 

threshold value of 10 mm Hg.  Figure 5.4 is a summary of the proposed mechanism for 

this aneurysm geometry. 

Simulations of blood flow in virtual representations of RAA do not demonstrate a 

significant pressure loss in the renal artery when the walls of the aneurysm and artery are 

fixed.  This is true even when the simulations mimicked common aneurysm geometries 

known to be associated with hypertension.   Assuming that hemodynamics is an 

important factor in renin-dependent hypertension, some other phenomenon must be 

contributing.   Further simulations were carried out in which a deformed cusp was 

imposed. Eliminating the fixed wall constraint seems reasonable, because it is self-

evident that the RAA walls are weakened and they are known to collapse when unloaded 

(Kyriacou, 1996).  Importantly, the pressure values obtained from CFD indicate that the 

associated forces will act so as to initiate deflection of the wall into the artery.  

Penetration of the cusp into the flow of the artery leads to a greater force inducing 

deflection, and consequently, greater partial occlusion.  As a result of the presence of a 

constriction at the deflected cusp, CFD calculations demonstrate that a pathologically 

significant drop in pressure can occur. The results of the CFD simulations could be 

verified clinically through the use of miniaturized pressure guide wires, which have been 

used to provide reliable pressure measurements in the renal artery.  However, advances in 
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medical imaging are probably needed to verify the mechanism of occlusion.  Gross et al. 

(Gross, 2001) presented data from a study on renal artery stenoses, in which the pressure 

gradient across each of 46 stenoses was measured directly.  The measured magnitude and 

trend of the pressure gradients for differing percent stenosis from Gross et al. compare 

favorably with the values obtained in this study, and serve to validate the computational 

results. 

There is a report in the medical literature with observations consistent with this 

analysis (Stansby, 1991).  Stansby et al. described the case of a hypertensive renal artery 

aneurysm patient who underwent captopril-renography where evidence of a stenosis was 

found.  However, upon arteriography and during surgery, no stenosis was found.  After 

aneurysm resection, another captopril-renogram was performed and no evidence of a 

stenosis was observed.  This case indicates that an aneurysm-associated constriction 

could be present, but could go undetected during arteriography or surgery. 

A variety of surgical techniques are currently used to treat renal artery aneurysms.  

Common types of treatment include excising the aneurysm, exclusion with a stent graft, 

renal artery bypass and aneurysm embolization.  Excepting embolization, these 

treatments would not only exclude the aneurysm, but also halt any hemodynamic effects 

that would lead to a constriction.  For example, a stent graft placed across the aneurysm 

opening would not only stop blood from flowing into the aneurysm, but would keep the 

wall of the aneurysm-artery intersection from deflecting into the blood stream.  In the 

case-study examined in this work, the patient was treated with a 5.0x26.0 mm Jostent 

Graftmaster stent.  Our simulation of this pathologic aneurysm was altered to include this 

stent (with dimensions as specified by the manufacturer), and the results indicated that 
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the stent would inhibit the formation of an occlusion and that the stent itself had no effect 

on the pressure loss in the artery.  Embolization of renal artery aneurysms is successful in 

ameliorating hypertension through a different mechanism.  Because embolization 

precludes blood flow into the aneurysm, the Bernoulli effects that lead to high pressure in 

the aneurysm and subsequent arterial occlusion are not present.  In these ways, the 

surgical treatments now in use may not only be preventing aneurysm rupture, but could 

also be alleviating renovascular hypertension by eliminating the occlusion.  

Deformations occurring for the fusiform aneurysm and the wide-necked saccular 

aneurysm of the main bifurcation were not modeled, because it was not anticipated that 

these geometries would lead to deformation into the blood stream.  Figure 5.5 is an 

illustration of the forces acting on the aneurysm wall for the A) fusiform aneurysm, B) 

wide-necked saccular aneurysm and C) saccular aneurysm with neck, imposed on the 

contours of pressure calculated from these simulations.  The pressure within the fusiform 

and mild saccular aneurysms would tend to force the walls of the aneurysm out 

uniformly.  In contrast, for the saccular aneurysm with neck, it can be seen how the 

pressure could force the aneurysm/artery intersection into the blood stream.  An 

interesting outcome of this study is a prediction of the types of aneurysms that would be 

prone to causing hypertension.  Fusiform and wide-necked saccular aneurysms (Figure 

5.5) are not expected to form occlusions.  Further investigation is required to determine if 

the ~70% of renal artery aneurysm patients who suffer from hypertension have aneurysm 

geometries that would tend to occlude blood flow. 

 The structure of the artery-aneurysm intersection appears to play a vital role in 

the hemodynamic pressure difference through the artery.  This sort of phenomenon may 
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not be apparent in clinical cases due to the limitations of current medical imaging.  This 

occlusion also might not be observed in autopsy studies due to the flow-induced nature of 

the deflection.  The results imply that the mechanism through which a RAA causes 

hypertension is probably related to an associated constriction or other distortion of the 

renal artery, where, similar to a stenosis, an occlusion of 60% or greater is capable of 

inducing hypertension. 

  

5.4 Conclusions 

The variety in shape, size and location of RAA implies that some general 

phenomenon is causing altered hemodynamics in the artery. This work demonstrates that 

deflection of a cusp is a plausible mechanism consistent with the principles of fluid 

mechanics and the known properties of RAAS.   This work does not take into account 

mechanical kinking or twisting of the blood vessel due to the presence of an aneurysm, 

therefore, that possibility cannot be eliminated. Currently, there appears to be no 

evidence in support of or opposed to a hypothesis based on kinking or twisting.  This sort 

of event would alter the hemodynamics within the artery, so it is fundamentally 

consistent with geometric factors leading to a loss of renal artery pressure and resultant 

renovascular hypertension.   

An understanding of the underlying mechanism could prove valuable. Improved 

detection provides the option of earlier intervention.   There is however much debate as to 

which renal artery abnormalities require medical intervention (Hubert, 1980; Lumsden, 

1996; Bastounis, 1998; Hupp, 1992).  Knowledge of the mechanism(s) that lead to 
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secondary hypertension might not only influence when to intervene, but might also help 

guide clinicians in the specific mode or details of surgery. 

Clearly, there is an association between renal artery aneurysms and hypertension.  

This work illustrates that the presence of an aneurysm alone does not lead to renin-

dependent hypertension.  In addition, the study shows that a constriction associated with 

a renal artery aneurysm has the potential to induce hypertension.  This analysis also 

predicts certain types of RAA are more prone to causing hypertension.  Since the detailed 

configuration of the geometric structure of the vessel at the renal artery-renal artery 

aneurysm intersection appears to be critical in the determination of the hemodynamic 

pressure drop, high resolution imaging techniques should be used to elucidate this 

structure.  Determining renal artery abnormalities of concern is an important goal that 

would assist physicians in clinical decision making.  In order to extend this study and 

increase the validity of the transient-occlusion hypothesis, simulations incorporating the 

distensibility of the arterial wall have been undertaken, as discussed in the following 

chapter. 

 

 

 

Portions of this chapter have been reproduced from the following sources: 

 Heflin LA, Street CB, Papavassiliou DV, Kem DC, Wu DH, O’Rear EA. 

Transient Stenotic-Like Occlusions as a Possible Mechanism for 

Renovascular Hypertension due to Aneurysm. Journal of the American 

Society of Hypertension. 2009; 3:192-200. 
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Figure 5.1. (A) Saccular aneurysm of the renal artery
 
(Degertikin)*; (B) 2D mesh 

representative of pathologic geometry given in Degertikin, et al. (dimensions 33 x 31 

mm). 



 129 

 

 

Figure 5.2. Possible progression of occlusion of the renal artery by aneurysm cusp.  

Pressure values in A, B, C and D are mm Hg  A) Saccular renal artery aneurysm of the 

main bifurcation; B) Close-up showing higher pressure inside the aneurysm when 

compared to pressure in arterial branches; C) Initial deflection of the aneurysm cusp into 

the blood stream – the pressure difference across the cusp is larger than before 

deformation; D) Aneurysm cusp occluding the arterial branches with high pressure on the 

upstream side of the cusp - up to a 5 mm Hg pressure difference across the cusp. 
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Figure 5.3. Increase in pressure loss across the renal artery with increasing percent 

occlusion for the saccular aneurysm of both the main artery and the main branch.  The 

dashed line shows where the physiologically relevant pressure loss is reached. 
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Figure 5.4. Illustration of the proposed mechanism of occlusion for the saccular 

aneurysm of the main renal artery. 
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Figure 5.5. The effect of geometry on the predicted correlation between aneurysms and 

hypertension.  A) Pressure inside the fusiform aneurysm would tend to force the walls of 

the aneurysm outward, B) Similar to the fusiform aneurysm, the walls of the mild 

saccular aneurysm would be forced outward; C) The forces acting on the walls of the 

saccular aneurysm with neck would tend to deform the aneurysm lip into the blood 

stream. 
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Table 5.1 Calculated pressure losses for renal arteries with various aneurysms.
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Table 5.2.  Calculated pressure losses for various aneurysms with imposed occlusions.
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CHAPTER 6: RENAL ARTERY ANEURYSM IN THREE-DIMENSIONS 

 6.1 Introduction to Three-Dimensional RAA Model 

  6.1.1 Aneurysm Fluid Structure Interaction Literature Review 

 Fluid structure interaction (FSI) simulations are increasingly being used to 

investigate the dynamics of aneurysms in various vascular systems, however to date the 

study of renal artery aneurysms in this manner is lacking.  In other systems, for example, 

fluid structure interaction has been used to study the wall motion of cerebral aneurysms 

(Balocco, 2010) and aortic aneurysms (Wang, 2011), as well as in the prediction of 

aneurysm rupture, such as in abdominal aortic aneurysms (Xenos, 2010).  In this work, 

the capabilities of FSI are used in a different way – to understand the influence of the 

aneurysm on the native artery as opposed to simply the outward movement or pulsation 

of the aneurysm wall, as previous studies have typically investigated. 

  6.1.2 Three-Dimensional Aneurysm Geometries 

 The aneurysm geometries investigated in this fluid-structure interaction portion of 

the work are similar to those discussed previously that were modeled using rigid-wall, 2D 

CFD.  The length and diameter of the artery were unchanged from the previously 

discussed RAA geometries, however the angle of the branch and the width of the 

branching arteries were changed to reflect the average values determined from 

measurement of multiple images from patients with RAA (Bastounis, 1998; Bisshops, 

2001; Degertekin, 2006; Douis, 2008; Gallagher, 2008; Gill, 2001; Henke, 2001; Kem, 

2005; Mounayer, 2000; Pfeiffer, 2004; Pfeiffer, 2003; Tan, 2001; Uta, 2008; White, 

2009).  The simulated geometries are shown in Figures 6.1 and 6.2.  Figure 6.1 is a plot 

of the saccular aneurysm of the main artery model.  The typical aneurysm diameter was 
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1.5 cm (the average size of renal artery aneurysms that are surgically removed), though 

this value was varied for comparison. Initially, the aneurysm geometry was created by 

simply intersecting a spherical aneurysm with a cylindrical artery, a geometry that has 

been used by others as an approximation of an aneurysm with a neck in cerebral 

aneurysm models (Balocco, 2010).  After these simulations, a better neck approximation 

was created by reducing the aneurysm opening from an elliptical shape to a more circular 

shape on the downstream edge (see inset of Figure 6.1).  This created more surface area 

on which the pressure inside the aneurysm could act, in order to induce deflection of the 

cusp into the flowing blood in the artery.   

 The second geometry investigated was a saccular aneurysm of the main renal 

artery branch (Figure 6.2), a combination of both the most common type of aneurysm and 

the most common location.  In order to approximate an aneurysm with a neck, the 

geometry was created to mimic an aneurysm that is sitting tightly against the arterial 

branch, with a shared wall between the aneurysm sac and the artery.  In reality, the wall 

of a saccular aneurysm overlaps the wall of the artery from which it formed in a more or 

less laminated structure.  The shared wall of the saccular aneurysm model used here is an 

approximation of the double-layered arrangement of the real aneurysm and arterial walls, 

and represents the region where these overlap.  This approximated aneurysm neck is 

shown in Figure 6.2.  The shared wall of the aneurysm and the artery is highlighted in 

Figure 6.2E; this is the region in which the mechanical properties of the vessel wall were 

varied.  An aneurysm of the average 1.5 cm size was used, with the center of the 

aneurysm being placed on the axis line of the arterial branch.  Initially, the aneurysm was 

modeled with a cusp on both the upper and lower branches, meaning there was a shared 
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wall between the aneurysm sac and both branches of the renal artery.  Subsequently, an 

asymmetrical aneurysm similar to one found in the literature (Trunfio, 2008) was 

modeled by removing the lower shared wall between the aneurysm and the artery – this 

sort of aneurysm could be classified as an asymmetrical wide-necked aneurysm.  

  6.1.3 Computational Domain 

   6.1.3.1 Boundary Conditions 

 For all simulations, a velocity inlet was specified at the entrance of the renal 

artery.  A constant velocity profile was set at the artery inlet.  The outlets were specified 

as pressure outlets.  The inlet velocity for the steady state simulations was 0.5 m/s, which 

is the average velocity of blood entering the renal artery if a 600 ml/min flowrate is 

assumed, and the pressure specified at the outlets was 0 Pa.  At all boundaries between 

the fluid and the solid, a fluid-solid interface boundary condition was specified.  The 

solid boundaries at the inlet and outlet of the artery were given a fixed boundary 

condition. 

   6.1.3.2 Grid 

 For all simulations, an unstructured tetrahedral mesh was created for the desired 

geometry.  For most simulations, the mesh was more refined near fluid-solid boundaries 

and in regions with small geometric features.  Initially, a healthy renal artery was 

modeled, and it was found that the deformation of the arterial wall was of the correct 

order of magnitude, approximately 5% of the artery diameter, accepted as the 

approximate deformation of arterial walls in vivo (Bertram). 

In some cases, convergence was difficult to achieve with this sort of mesh, and a 

more uniform mesh was created.  A uniform mesh is recommended for moving mesh 
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cases in which convergence is difficult, since such a mesh is known to behave better for 

simulations with large deformations.  The average number of grid cells for all simulations 

was approximately 100,000 cells.   

  

6.2 Saccular Renal Artery Aneurysm of Main Artery Results 

  6.2.1 Effect of Aneurysm Geometry 

 The initial aneurysm geometry of a sphere intersecting a cylinder did not lead to 

very large deformations of the artery surrounding the aneurysm, as can be seen in Table 

6.1.  Even when some geometric properties, such as the distance between the aneurysm 

and artery center, were changed, the deformation did not increase to a value considered 

capable of causing any effect on the pressure loss in the artery, remaining at a maximum 

deflection of tenths of a milimeter.  For most cases, the arterial wall thickness was 1 mm, 

but some simulations with a wall thickness of 0.5 mm were performed in order to see the 

effect of reduced wall thickness, however deflection remained similarly small even with a 

thinner wall. The basic spherical geometry was the simplest possible approximation of an 

aneurysm with a neck, but once no significant deformations were seen, a ―cusp‖ was 

added on the downstream edge of the aneurysm.  This cusp was created to more closely 

resemble the circular opening that appears to be present in saccular aneurysms with a 

neck.  Again, the difference between this and the original geometry can be seen in the 

inset of Figure 6.1.  With the addition of this cusp, the deflection of the arterial wall into 

the blood flow increased by an order of magnitude, although for this particular 

configuration the deformations still did not appear significant enough to cause a large 

pressure loss across the artery.  The geometry of the cusp also seems to have a significant 
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effect on the amount of deformation, with a longer cusp leading to larger deflection.  This 

is clear in Table 6.1, where the simulations with cusp Young’s moduli of 1 x 10
4
 Pa and 1 

x 10
5
 Pa both exhibited a larger deformation when the cusp length was increased. The 

longer cusp provides a larger area for the high pressure within the aneurysm to act on, 

allowing for a larger deflection of the cusp. 

  6.2.2 Effect of Mechanical Properties 

 It was expected that the mechanical properties of the aneurysm wall would have a 

large effect on the deformation observed, so this parameter was varied.  While little has 

been reported about renal artery aneurysm walls, in cerebral aneurysms it is observed that 

the aneurysm wall is stiffer than the arterial wall, although the mechanical properties can 

vary around the aneurysm wall, especially in regions where rupture is likely (Ferguson, 

1972; Scott, 1972; Steiger, 1989).  The exact character and progression of the changes in 

wall properties during and after the formation of an aneurysm is not well understood, 

however, so it is possible that the arterial wall near the aneurysm is weakened compared 

to the artery and other portions of the aneurysm wall.  A reduction in the Young’s 

modulus of the cusp led to an increase in the computed deflection of the cusp into the 

blood flow, a phenomenon that makes sense considering the lessened resistance of the 

arterial wall to deformation with a reduced Young’s modulus.  These results can also be 

seen in Table 6.1 – for the aneurysm with a cusp Young’s modulus of 1 x 10
4
 Pa, the 

deformation is larger than that for 1 x 10
5
 Pa.  Additionally, a simulation was completed 

where the Young’s modulus of the aneurysm wall was reduced for comparison.  This 

decrease in Young’s modulus leads to a ―ballooning‖ of the aneurysm sac, in which the 

aneurysm pulled farther away from the artery and expanded in size.   
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 In the saccular aneurysm, it was observed that some of the deformation of the 

artery that occurred due to the aneurysm was a bulging of the arterial wall where the 

artery and aneurysm intersected.  Because of this, a simple anisotropic model was applied 

to the arterial solid in order to see if this affected the type of deformation observed.  This 

was accomplished by increasing the circumferential Young’s modulus by an order of 

magnitude.  However, the results of this simulation did not show a noticeable effect of 

the orthotropicity of the arterial wall on the deformation, with the magnitude of 

deformation being an intermediate value between those observed in isotropic simulations 

at the lower and higher Young’s moduli.  More investigation of the effect of the 

anisotropy of arterial tissue should be undertaken, however, using a more complicated 

material model. 

 This model of a saccular aneurysm of the main artery is similar to a case study 

from the literature in which a patient had curable, RAA-dependent hypertension 

(Degertikin, 2006).  The simulations of this similar geometry, however, did not display 

deformation capable of causing renin-dependent hypertension.  This is possibly due to the 

way in which the geometry of the intersection between the aneurysm and the artery was 

created in the simulation software; it has become clear that the details of this geometry 

greatly affect the calculated deformations, and current imaging techniques have not 

provided accurate characterization of this microstructure.  Additionally, it is possible that 

using a constant inlet velocity profile might obscure the effect of the hemodynamics on 

this type of aneurysm.  It is noted from the literature that the majority of saccular 

aneurysms occurring along the artery are situated on the top-side of the artery.  Because 

the renal artery intersects the descending aorta almost at a right angle, the velocity profile 
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of blood entering the renal artery would be expected to be far from flat.  The number of 

aneurysms located on the top of the artery may indicate an effect of this characteristic 

velocity profile on other regions of the artery – which might also affect how the 

hemodynamics would influence the movement of the aneurysm and arterial walls. 

  

6.3 Saccular Renal Artery Aneurysm of Main Branch Results 

  6.3.1 Effect of Mechanical Properties 

 Similar to the saccular aneurysm of the main artery, the deformation of a saccular 

aneurysm of the main branch depends largely on the mechanical properties of the 

diseased arterial wall.  A decrease in the Young’s modulus of the shared wall cusp for the 

saccular aneurysm of the main branch leads to a larger deformation of the cusp into the 

blood flow, in a direction consistent with the hypothesized mechanism for unnecessary 

activation of the RAAS as described in Chapter 5.  That is, the deflection of the cusp 

between the aneurysm and artery wall is such that the artery is partially occluded.  This 

held true for all cases in which the cusp Young’s modulus was decreased.  Compared to 

the cusp deflection seen for aneurysms located on the main artery, the deflection of the 

cusp of the aneurysm of the main branch is typically larger (see Table 6.2).  This larger 

magnitude of displacement reflects the higher pressure build up in the aneurysm located 

on the main branch compared to that on the artery, and also the effect of a larger cusp 

area for this location.  The progressive increase in cusp deflection with decreasing 

Young’s modulus can be seen for two cusp thicknesses in Figures 6.3 and 6.4.  The 

percent occlusion was measured at the point of maximum deflection for both the thick 

and thin cusp, and is plotted versus cusp Young’s modulus in Figure 6.5.  Clearly, as the 
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cusp Young’s modulus is decreased, the percent occlusion increases.  Additionally, a 

thinner cusp leads to a larger occlusion of the artery.  The thinnest and weakest cusp in 

this aneurysm geometry led to higher deflections than any other of the geometries 

investigated.  In addition to these mechanical property variations, simulations were 

performed in which the aneurysm sac had spatially varying properties, with a stiffer 

aneurysm cap and a weaker wall close to the artery (specified as distal Young’s modulus 

and proximal Young’s modulus, respectively, in Table 6.2).  This was done in order to 

assess how a variable aneurysm wall stiffness, which appears to be the physiological 

reality, would affect cusp deformation.  In Table 6.2 it can be seen that a lower proximal 

Young’s modulus leads to slightly larger deflection of the aneurysm cusp.  The percent 

occlusion for these simulations is also shown in Figure 6.5, and it is clear that a weaker 

aneurysm wall in the region near the cusp can lead to a larger occlusion of the artery.  

Figure 6.5 shows that, while the percent occlusion is becoming large for the weakest, 

thinnest aneurysm walls, the critical percent occlusion of approximately 70% is not yet 

reached.  Notable, however, is that these simulations were performed at the average blood 

velocity through the renal artery, so it remains possible that the peak velocity may further 

deform the aneurysm wall and cause a critical occlusion.  For the variable Young’s 

modulus case, however, if the aneurysm Young’s modulus is decreased further, the 

aneurysm wall again balloons, which does not allow an occlusion to form. 

 It is important to note that for this geometry the type of deformation appears to 

typically be of a nature to occlude the artery without leading to an expansion of the artery 

elsewhere.  This is in contrast to the aneurysm of the main artery, where large cusp 

deflection is typically coincident with a circumferential expansion of the artery 
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surrounding the aneurysm.  Because the pressure loss due to a constriction is dependent 

on the reduction of area available to flow, the aneurysm of the main branch appears to 

more readily lead to the type of deflection capable of causing a larger pressure loss, as 

opposed to the aneurysm of the main artery, where a compensatory circumferential 

expansion of the artery may occur.   

  6.3.2 Effect of Aneurysm Asymmetry 

 In a case study of a symptomatic renal artery aneurysm, Trunfio et al. describe a 

patient with a wide-necked renal artery aneurysm (Trunfio, 2008), with the appearance of 

an asymmetry in which one side of the aneurysm was wide open, with the other side 

appearing to fold over and sit on the artery wall.  A model mimicking this type of 

aneurysm was created by removing the shared wall cusp on the lower branch of the artery 

model.  This created an asymmetric flow, and this model showed similarly large 

deformation of the aneurysm cusp (Table 6.2).  When the thickness of the cusp was 

decreased, this deflection became larger.  Additionally, as the mechanical properties of 

this cusp were reduced, the deflection was again increased.  The fact that a thinner cusp 

leads to larger deflection makes sense, because a thinner wall would typically provide 

less resistance to deflection than a thicker wall.  It is apparent that reducing the cusp 

thickness has a large effect on the cusp deflection, similar to reducing the Young’s 

modulus.  This result underscores the importance of the microstructure of the aneurysm.  

Figures 6.6 and 6.7 show the increasing cusp deflection with decreasing cusp modulus for 

the asymmetric aneurysm geometries.  Clearly, this asymmetric geometry is only capable 

of leading to an occlusion of one branch of the artery.  In this case, the un-occluded 

branch may receive more flow in order to compensate for the increased resistance of the 
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upper branch, thus reducing the perceived difference in pressure loss caused by the 

constriction. Although this shift in flow may occur, symptomatic single branch stenoses 

are observed clinically, showing that this type of single branch deflection could lead to 

renin-dependent hypertension 

  

6.4 Conclusions 

 In this portion of the work, the hypothesis proposed in Chapter 5 was investigated 

using significantly more complicated Fluid-Structure-Interaction methods.  The results of 

these simulations show that the hemodynamics in a diseased renal artery can in some 

cases lead to occlusions similar to those known to induce renin-dependent hypertension.  

Although multiple simplifying assumptions were made in the simulation set-up, it is 

important to note that the computations were performed using accurate fluid velocities 

and arterial dimensions, as well as mechanical properties covering a range of values 

widely used in the modeling of arterial structural mechanics.  It is clear from the 

simulations that the microstructure of the intersection between the aneurysm and the 

artery is very important.  The mechanical properties of the diseased wall also greatly 

affect the degree of deformation, with a low Young’s modulus leading to more 

deformation and thus larger occlusions.  Additionally, the area of the aneurysm/artery 

cusp influences the degree of deformation, with a larger area leading to more 

deformation.  The thinnest aneurysm cusp was seen to lead to the largest deformations, 

again emphasizing that the specific structure of the aneurysm/artery intersection is vital. 

The saccular aneurysm located at the main branch lead to the largest occlusions – 

saccular aneurysms are the most common type of renal artery aneurysm and the main 
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branch of the artery is the most common location for an aneurysm (Henke, 2001).  This 

could indicate that the approximately 70% of renal artery aneurysm patients suffering 

from renovascular hypertension experience this co-morbidity through the mechanism 

described here.  The hypothesis proposed previously for stenotic-like occlusions due to 

renal artery aneurysm has been shown to be valid for some types of renal artery 

aneurysms. 
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Figure 6.1. Saccular Aneurysm of Main Artery Geometry.  The aneurysm is located in 

the middle of the artery, which has a length of 50 mm.  A 1.5 mm aneurysm is shown. 

Inset: Original (heavy line) and revised (light line) neck geometries. 
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Figure 6.2. Saccular aneurysm of the main branch geometry.  A) Cut-away view of 

artery and aneurysm.  B) Exterior view of artery and aneurysm.  It is clear that the 

aneurysm is resting tightly against the artery branch. C) and D) Two different 

perspectives of the entrance to the aneurysm, showing the opening in the artery wall that 

leads to the anerysm. E) Cut-away view of aneurysm, with cusp domain highlighted in 

red.   
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Figure 6.3. Decreasing Young’s 

modulus for symmetric saccular 

aneurysm of the main artery.  

The perspective on the left is 

looking down the upper branch, 

towards the occlusion.  From top 

to bottom, the cusp Young’s 

moduli are 1 x 10
5
, 5 x 10

4
, 1 x 

10
4
, 5 x 10

3
 and 1x 10

3
 Pa.  The 

deflection of the cusp increases 

with decreasing Young’s 

modulus 
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Figure 6.4. Decreasing 

Young’s modulus for 

symmetric saccular aneurysm 

of the main artery, thin cusp. 

The perspective on the left is 

looking down the upper 

branch, towards the 

occlusion.  From top to 

bottom, the cusp Young’s 

moduli are 1 x 10
5
, 5 x 10

4
, 1 

x 10
4
, 5 x 10

3
 and 1x 10

3
 Pa.  

The deflection of the cusp 

increases with decreasing 

Young’s modulus.
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Figure 6.5. Percent Occlusion versus cusp Young’s modulus for a symmetric aneurysm 

of the main branch.  The measured maximum percent occlusion increases with decreasing 

Young’s modulus, and also with a thinner wall.  Thick = 1 mm.  Thin = 0.5 mm. 
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Figure 6.6. Decreasing 

Young’s modulus for 

asymmetric saccular 

aneurysm of the main 

artery. The perspective 

on the left is looking 

down the upper branch, 

towards the occlusion.  

From top to bottom, the 

cusp Young’s moduli 

are 1 x 10
5
, 5 x 10

4
, 1 x 

10
4
,
 
 and 5 x 10

3 
Pa.  

The deflection of the 

cusp increases with 

decreasing Young’s 

modulus. 
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Figure 6.7. Decreasing 

Young’s modulus for 

asymmetric saccular 

aneurysm of the main 

artery, thin cusp. The 

perspective on the left is 

looking down the upper 

branch, towards the 

occlusion.  From top to 

bottom, the cusp 

Young’s moduli are 1 x 

10
5
, 5 x 10

4
, 1 x 10

4
 and 

7.5 x 10
3
 Pa.  The 

deflection of the cusp 

increases with decreasing 

Young’s modulus. 
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CHAPTER 7: CONCLUSIONS 

 7.1 Conclusions 

  7.1.1 Hemolysis 

 Interest in the accurate estimation of hemolysis from computational methods 

clearly remains high, as more and more investigators are using CFD estimations to 

establish safety of proposed blood contacting devices.  The simulations performed here 

show that hemolysis observed in laminar capillary entrance flow is related to the 

extensional components of the stress tensor.  A threshold value of the extensional stresses 

of 3000 Pa for exposure times on the order of microseconds is proposed based on the 

computational results of the simulated experimental work.  In addition to this evident 

threshold value, a mechanism based on accepted characteristics of red blood cells through 

which extensional flow would lead to hemolysis was developed.  The indication that 

extensional stresses are related to hemolysis does not exclude hemolysis due to shear 

stresses, however it does indicate that extensional stresses should be taken into account 

when estimating hemolysis with CFD.  In addition to the laminar flow simulations, 

modeling of a turbulent Couette flow viscometer experimental set-up was also completed, 

and suggested that hemolysis in a turbulent flow may be related to the Kolmogorov 

Length Scale for the flow, rather than the Reynolds stresses.  Hemolysis appears to have 

some dependence on the median Kolmogorov Length Scale in the turbulent Couette 

viscometer.  Additional research into this relationship should be pursued, as flows similar 

to that seen in the Couette viscometer are observed in some blood contacting devices, 

such as some centrifugal blood pumps. 
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7.1.2 Renovascular Hypertension 

Atherosclerosis in the renal arteries can lead to the formation of stenoses, which 

are known to cause renin-dependent hypertension.  This ability to unnecessarily induce 

the renin-angiotensin-aldosterone hormonal control system is considered to be related to 

the pressure loss caused by the constricted artery.  Through the use of computational fluid 

dynamics, it was possible to investigate the effect of stenosis shape on this pressure loss 

across the artery, as well as the effect of percent stenosis on this pressure loss.  Results 

from these simulations showed that the pressure loss across a stenosis is not strongly 

related to the axial position of the stenosis or the stenosis eccentricity.  The percent 

stenosis, as expected, has a large effect on the pressure loss across the stenosis, reaching a 

critical value at approximately 75%.  This confirms the rule of thumb generally accepted 

by physicians to indicate a hemodynamically significant stenosis.  This critical stenosis is 

characterized by a pressure loss of 10 mm Hg and a drastic increase in pressure loss with 

increasing percent stenosis.  The stenosis shape was also found to have a large effect on 

the calculated pressure loss, with a blunt stenosis leading to the largest losses, followed 

by a conical stenosis, and then an elliptical stenosis.  The difference in pressure loss 

between stenosis shapes increases after the critical percent stenosis is reached.  It is 

evident that the fraction of area occluded is the parameter most strongly related to 

pressure loss in stenoses, however the immediate structure of the stenosis also appears to 

have a significant effect. 

Renal artery aneurysms are additionally known to be related to renin-dependent 

hypertension, although currently no clinical understanding of this phenomenon is 

available.  In fact, there is much debate among physicians as to which aneurysms require 
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surgical intervention (Hubert, 1980; Lumsden, 1996; Bastounis, 1998; Hupp, 1992).   

Through the simulation of generalized renal artery aneurysm models, assuming rigid 

walls, it became clear that a renal artery aneurysm alone is not capable of causing a 

hemodynamically significant pressure loss.  High pressure within the aneurysm did, 

however, indicate that an aneurysm related occlusion might form and be responsible for a 

larger pressure loss across the artery.  Through the inclusion of a cusp in the rigid wall 

model, it became clear that a transient stenotic-like occlusion associated with a renal 

artery aneurysm might be capable of causing a large enough pressure loss to induce 

renin-dependent hypertension. 

This hypothesis was further investigated through the use of fluid-structure-

interaction simulations in which the fluid flow and distensibility of the arterial wall were 

coupled.  These simulations showed that, for some renal artery aneurysm geometries, the 

hypothesis that high pressure within the aneurysm can lead to an occlusion of the blood 

flow in the artery is plausible.  The saccular aneurysm of the main branch, a geometry 

that combines the most common location and aneurysm type, was seen to allow for the 

most deformation of the arterial wall.  The mechanical properties, specifically the 

Young’s modulus, were shown to have a large effect on the degree of arterial wall 

deformation, with a lower Young’s modulus allowing for greater deflection of the 

aneurysm cusp.  The area of the cusp was shown to have an effect as well, with a larger 

aneurysm cusp leading to larger deflection.  Perhaps one of the more significant 

conclusions from this work is that the aneurysm/artery intersection microstructure is vital 

to the calculated deformations, and thus greater resolution of this morphology is 

necessary for the accurate prediction of the deformations of the arterial wall. 
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 7.2 Suggested Future Work 

 There is much evidence to suggest that extensional stresses may be vital to the 

accurate estimation of red blood cell damage in flow.  Additional research should be 

undertaken not only to attempt the reproduction of these results in other systems, but also 

to improve the experimental measurement of hemolysis in the simulated systems.  Even 

very recently, the inaccuracy and lack of precision in results from the current methods of 

hemolysis measurement is high, and better measurements can only lead to better 

estimation of hemolsysis from computational methods.  The flow of blood in various 

systems should be modeled in order to determine whether extensional stresses are 

correlated to hemolysis in other systems. 

 By adding the fluid-structure-interaction simulations to the set of renal artery 

aneurysm models, it has been shown that the proposed mechanism through which renal 

artery aneurysms may lead to renovascular hypertenison is valid for some cases.  This 

model could be greatly improved, and more accurate estimates of the percent occlusion 

resulting from specific aneurysms attained, through the addition of accurate anisotropic, 

viscoelastic material models for the arterial wall.  In addition, through collaboration with 

physicians, a more accurate measurement of the microstructure of the aneurysm/artery 

intersection should be determined in order to incorporate this into the model, as the 

details of this geometry are clearly integral to the degree and type of deformation. 
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