# FERTILIZATION AND ITS EFFECT ON THE ESTABLISH-

## MENT OF DRIP IRRIGATED WINDBREAKS

IN WESTERN OKLAHOMA

By

## ROGER LEIGH STEWART

Bachelor of Science in Agriculture

Oklahoma State University

Stillwater, Oklahoma

1977

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1983



## FERTILIZATION AND ITS EFFECT ON THE ESTABLISH-

## MENT OF DRIP IRRIGATED WINDBREAKS

IN WESTERN OKLAHOMA

Thesis Approved:

ones er Thesis

Dean of the Graduate College

#### ACKNOWLEDGMENTS

I would like to express my deepest thanks to my wife, Dee Demling, whose encouragement, editorial expertise, and hard work helped make this volume possible.

My deep thanks also to my parents for their unceasing love and encouragement.

My gratitude and appreciation go to: Dr. Tom Hennessey for allowing research to travel to western Oklahoma; Dr. Carl Whitcomb for sharing his knowledge and expertise; Dr. Ron McNew for his assistance in analysis and interpretation of the data; and Max Craighead for his inspiring enthusiasm and interest in windbreaks.

I also wish to thank the four landowners, Mr. and Mrs. Orlin Trego, Mr. Charles Christian, Mr. and Mrs. Neil Barney, and Mr. and Mrs. Duane Schanbacher, who allowed their trees to be our guinea pigs; and Phil Simms, Southern Plains Range Research Station Director, for his assistance in Woodward. Also, thanks to Norm Smola, SCS, and Pat McDowell and Donna Hull, Oklahoma Forestry Division, for their cooperation.

. Special thanks go to Floyd Brown for his computer help; Ed Lorenzi, Matt Selby, Greg Campbell, and John Redman for their help in the field work.

Finally, I would like to express my sincere thanks to Steve "P" Jiracek, Bob Heinemann, and especially "the Great" Ksontini, for their strong moral support. Mustapha, I really appreciated the opportunity of your presence.

Na Gode, Allah!

iii

## TABLE OF CONTENTS

| Chapter | r      |                              |        |      |             |    |    |    |     |     |    |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   | P | age                  |
|---------|--------|------------------------------|--------|------|-------------|----|----|----|-----|-----|----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------------------|
| ۱.      | INTRO  | DUCTI                        | ON     | •    | •           | •  | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 1                    |
| 11.     | LITER  | ATURI                        | E RE   | EVI  | EW          |    | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 6                    |
|         |        | Drip<br>Ferti                |        |      |             |    |    |    |     |     |    |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 6<br>11              |
| 111.    | PROCE  | DURES                        | 5.     | •    | •           | •  | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 15                   |
| ١٧.     | RESUL  | TS .                         | •••    | •    | •           | •  | •  | •  | •   | •   |    | •   | • | • | • | • | • | • | • | • | • | • | • | • |   | • | • | 21                   |
|         |        | Site<br>Site<br>Site<br>Site | 2<br>3 | •    | •<br>•<br>• | •  | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 21<br>26<br>31<br>37 |
| ۷.      | DISCU  | SSIO                         | ۱.     | •    | •           | •  | •  | •  | •   | •   | •  | •   | • | • |   | • |   | • | • | • | • | • | • | • | • | • | • | 44                   |
| VI.     | CONCL  | USION                        | NS A   | AN D | R           | EC | ом | ME | INC | DA1 | [] | ONS | 5 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 50                   |
| LITERA  | TURE C | ITED                         | •      | •    | •           | •  | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 52                   |
| APPEND  | IX A - | FIGU                         | JRES   | 5    | •           | •  | •  | •  | •   | •   | •  | •   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 63                   |
| APPEND  | IX B - | ΤΑΒΙ                         | ES     |      |             |    |    |    |     |     |    | •   |   | • |   |   | • | • |   |   |   |   |   |   |   |   | • | 93                   |

A.

# LIST OF TABLES

| Table |                                                                                                                                                | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ١.    | Soil Characteristics by Site                                                                                                                   | 94   |
| 11.   | Chemical Formulation of Fertilizer Types                                                                                                       | 98   |
| 111.  | 1982 Drip Irrigation Water Usage by Site                                                                                                       | 100  |
| ١٧.   | Precipitation Totals for 1978 Through 1982 by Site                                                                                             | 101  |
| ۷.    | Survival Rates by Site, Species, Fertilizer Treat-<br>ment                                                                                     | 102  |
| ۷١.   | Mean Foliar Nitrogen Concentrations by Site                                                                                                    | 104  |
| VII.  | Statistical Analysis of Foliar Nitrogen Concentra-<br>tion                                                                                     | 107  |
| VIII. | Mean Percent Increase in Height and Diameter by Site, Species, and Fertilizer Treatment                                                        | 112  |
| 1X.   | Statistical Analysis of Mean Percent Increase in<br>Height and Diameter by Site, Species and Fertili-<br>zer Treatment                         | 117  |
| х.    | Statistical AnalysisDuncan Multiple Range Test of<br>Mean Percent Increase in Height and Diameter by<br>Site, Species and Fertilizer Treatment | 129  |

v

## LIST OF FIGURES

| Figu | re                                                                                                                                                | Page |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.   | Diagram of a Drip Irrigation System                                                                                                               | 64   |
| 2.   | Site Locations                                                                                                                                    | 65   |
| 3.   | Schematic View of Fertilizer Treatment Design (High,<br>Medium, and Low)                                                                          | 66   |
| 4.   | Schematic View of Fertilizer Treatment Design (High and Low)                                                                                      | 67   |
| 5.   | Explanation of Identification Tag Code                                                                                                            | 68   |
| 6.   | Mean Percent Increase in Height by Fertilizer –<br>Site 1, Russian-olive, the First Growing Sea-<br>son After Fertilization                       | 69   |
| 7.   | Mean Percent Increase in Diameter by Fertilizer -<br>Site 1, Russian-olive, the First Growing Sea-<br>son After Fertilization                     | 70   |
| 8.   | Mean Percent Increase in Height by Fertilizer –<br>Site 1, Juniper, the First Growing Season<br>After Fertilization                               | 71   |
| 9.   | Mean Percent Increase in Diameter by Fertilizer -<br>Site 1, Juniper, the First Growing Season<br>After Fertilization                             | 72   |
| 10.  | Mean Percent Increase in Height by Fertilizer –<br>Site 1, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization   | 73   |
| 11.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 1, Austrian Pine, The First and Second<br>(estimate) Growing Season After Fertilization | 74   |
| 12.  | Mean Percent Increase in Height by Fertilizer –<br>Site 2, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization   | 75   |
| 13.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 2, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization | 76   |

Figure

| Figu | re                                                                                                                                                | Page |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 14.  | Mean Percent Increase in Height by Fertilizer -<br>Site 2, Arborvitae, the First Growing Season<br>After Fertilization                            | . 77 |
| 15.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 2, Arborvitae, the First Growing Season<br>After Fertilization                          | . 78 |
| 16.  | Mean Percent Increase in Height by Fertilizer -<br>Site 5, Russian-olive, the First Growing Sea-<br>son After Fertilization                       | . 79 |
| 17.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 5, Russian-olive, the First Growing Sea-<br>son After Fertilization                     | . 80 |
| 18.  | Mean Percent Increase in Height by Fertilizer -<br>Site 3, Russian-olive, the First Growing Sea-<br>son After Fertilization                       | . 81 |
| 19.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 3, Russian-olive, the First Growing Sea-<br>son After Fertilization                     | . 82 |
| 20.  | Mean Percent Increase in Height by Fertilizer –<br>Site 3, Juniper, the First Growing Season<br>After Fertilization                               | . 83 |
| 21.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 3, Juniper, the First Growing Season<br>After Fertilization                             | . 84 |
| 22.  | Mean Percent Increase in Height by Fertilizer -<br>Site 3, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization   | . 85 |
| 23.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 3, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization | . 86 |
| 24.  | Mean Percent Increase in Height by Fertilizer –<br>Site 4, Russian-olive, the First Growing Sea-<br>son After Fertilization                       | . 87 |
| 25.  | Mean Percent Increase in Diameter by Fertilizer -<br>Site 4, Russian-olive, the First Growing Sea-<br>son After Fertilization                     | . 88 |
| 26.  | Mean Percent Increase in Height by Fertilizer –<br>Site 4, Juniper, the First Growing Season<br>After Fertilization                               | . 89 |

-

# Figure

| 27. | Mean Percent Increase in Diameter by Fertilizer<br>Site 4, Juniper, the First Growing Season<br>After Fertilization                             | • | • | • | • | • | 90 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|----|
| 28. | Mean Percent Increase in Height by Fertilizer -<br>Site 4, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization |   |   |   |   |   | 91 |
| 29. | Mean Percent Increase in Diameter by Fertilizer<br>Site 4, Austrian Pine, the First and Second<br>(estimate) Growing Season After Fertilization |   | • |   |   |   | 92 |

Page

#### CHAPTER I

## INTRODUCTION

Windbreaks and shelterbelts have played a very important role in Oklahoma history. Thousands of miles, consisting of more than 29 million trees, were planted in the "Dust Bowl" days of the 1930's and early 1940's to aid in the stabilization of the agricultural lands of western Oklahoma (31). But since this massive campaign of the Prairie states Forestry Project (1935-1942), interest in windbreak/shelterbelt plantings has declined to the point where the total amount of acreage removed annually exceeds that being planted (116, 120).

There are several probable reasons for this decline in interest throughout the Great Plains. The first is that we are several generations of landowners past the "Dust Bowl" days of the 1930's; as some of the ownerships have changed so have the attitudes toward windbreaks. Today, the traditional 10-15 row windbreaks are seen as a nuisance which not only take up vital crop acreage, but are also thought to be a habitat for crop-threatening insects and disease. Because of this change in attitude, most of the old windbreaks planted in the 1930's are in very poor condition due to a lack of management. Their usefulness is overshadowed by their appearance. Also, many farmers, most economists, and some technical agriculturists claim that soil management systems such as strip cropping, stubble mulching, minimum and no tillage eliminate the need for windbreaks and shelterbelts (113).

A second reason for the decline in windbreak/shelterbelt interest is the wide spread use of center-pivot irrigation systems for some crops. Use of these systems has brought about the removal of windbreaks that are in the way of the pivoting watering system.

Thirdly, because of recent world-wide grain shortages, landowners were encouraged to maximize production; thus, land occupied by windbreaks/shelterbelts (i.e., non-income generating) was cleared to allow crop production.

Finally, due to the energy crisis, the need for more efficient use of fuel has lead to the removal of tree rows to allow more manueverability by combines and other farm machinery.

Modern technology has shown that two or three row windbreaks are just as effective as ones consisting of 15-20 rows (32, 64). But there remains the basic problem of changing landowners attitudes on the usefulness of windbreaks, specifically field windbreaks. This is indeed a hard task to do, particularly when windbreak research has failed to keep pace with the improvements in agricultural research and practices. There is information available on the benefits of windbreaks and shelterbelts, however, the majority of this information is over twenty years old. Shelterbelts (also called field windbreaks) are important in crop production since they decrease wind velocities from 33 to 50 percent, to a distance of 15 times the height of the shelterbelt (33, 64, 5, 104). This wind speed reduction increases soil moisture and reduces stress from evapotranspiration. Shelterbelts can increase crop yields from 5 to 25 percent on protected fields depending on the crop and the shelterbelt composition (5, 7, 11, 32, 75, 76, 85, 105).

Windbreaks and shelterbelts are also important to livestock.

Livestock eat less feed, have higher weight gains and less calf and lamb mortality when sheltered from the winter by windbreaks or shelterbelts (3, 32, 35, 96, 104, 123, 127). Dairy cows produce more when protected from winter's effects (32, 127).

Windbreaks also provide a favorable environment for wildlife, providing shelter, nesting areas and food (32, 82, 85, 93, 106). More recently, research has focused on the benefits derived from farmstead windbreaks on energy consumption. A homestead with a typical windbreak composition of two rows of evergreens and one row of decidous trees planted on the north and northwest sides of the home can reduce winter home fuel consumption by 10 to 50 percent. In addition, the windbreak also controls snow drifting around the home and feedlots which allows easier accessibility to roads and livestock (73, 105, 130).

Until more current supporting evidence is given to field agents of the various governmental agencies, the widespread use of windbreaks and shelterbelts will remain minimal.

Historically, the mortality of newly planted windbreaks has been great. Many landowners, after trying year after year to establish a windbreak/shelterbelt, have finally given up after repeatedly experiencing seedling survival rates of less than 50 percent. But in 1978, the Soil Conservation Service (SCS), OSU Extension Service and the Oklahoma Forestry Division collectively (with other state and federal agencies) mounted a campaign to promote the planting of more windbreaks/shelterbelts in Oklahoma. Although this campaign was effective in re-educating the public on the importance of windbreaks, there was still the big problem of low seedling survival rates once they were planted.

The main obstacle to greater survival of seedlings in western

Oklahoma is the lack of soil moisture during the hot, dry summer months when peak evapo-transpiration demands occur. For hundreds of years, man has irrigated his crops and fields by means of a gravity fed watering system, but this has required a large amount of available surface water, such as rivers and streams. While this system is not applicable to western Oklahoma, the advent of sprinkler systems and center-pivot irrigation using subsurface water sources has become popular for crops and fields in this area (37, 113).

However, there are some problems involved with sprinkler systems. Not only are the costs per hectare limiting, there is a growing evidence that the underground aquifiers used for this irrigation are drying up (18, 131). Also, while these forms of irrigation are functional for agronomic crops, their usage on newly planted windbreaks is questionable. The linear forms and wide spacings of seedlings in windbreaks are not designed for use with these sprinkler systems. In addition, using these irrigation systems on windbreaks wastes water because they water not only the area around the trees, but also the area between the tree rows.

Therefore, another system of watering the windbreak trees was needed to assure survival, yet efficiently utilize the water available. Such a system, called drip irrigation, has been developed. Drip irrigation is a relatively new concept of irrigation for windbreaks, although its use for crops and orchards has been an effective and efficient means of providing water. Most of the preliminary work with drip irrigation dealt with turning arid lands into productive farmland. Israel was the leader in the development of drip systems in the 1960's. Since that time, the concept has spread world-wide, and in California it is a mainstay in the production of many crops.

It wasn't until 1976 that the idea of drip irrigating windbreaks formed in Oklahoma; the first drip systems for this purpose were established in 1978 (103). Since then, the word has spread with the help of the SCS, Oklahoma Forestry Division, and Agricultural Stabilization and Conservation Service cost-sharing. SCS records indicate an increase in survival rates with drip systems of two to three fold. The typical survival rate of a windbreak planting in western Oklahoma without irrigation is 30 to 50 percent. With the drip system, survival rates are normally above 90 percent, and have been recorded as high as 100 percent. Similar data has been collected for much of the Great Plains area as well (26, 94, 103, 111).

The objective of this study was to quantify the effects of various types of fertilizers on the survival and growth of drip irrigated windbreaks and shelterbelts in western Oklahoma. It was hypothesized that the effect of supplemental fertilization would (1) decrease the overall amount of water and time needed for tree establishment under a drip system and (2) shorten the interval between initial establishment and the formation of an actively functioning windbreak.

Even though it is expected to take at least two to three years to study the total effectiveness of the fertilization program, this thesis will deal with the first year growth response by fertilized trees in newly planted, drip irrigated windbreaks and shelterbelts in western Oklahoma.

#### CHAPTER II

## LITERATURE REVIEW

#### Drip Irrigation

Considerable research has been conducted on crop and orchard production using drip (or trickle) irrigation to determine its effects on water requirements and on plant development and growth, but there has been little, if any, research in this area related to windbreaks and none has been done in Oklahoma. The following is a summary of drip irrigation studies.

#### History

Drip irrigation is the application of a controlled amount of water at a slow rate to a point adjacent to the plant being irrigated (17, 92). It has only recently been used in windbreak establishment, but was developed in Israel in the 1930's (84). Only with the development of suitable rubber tubing and plastics in the 1960's did drip system technology flourish (84, 95). The first systems were originally perforated plastic lines which were installed entirely underground, but due to frequent clogging, the lines were placed above ground and an adapter (emitter) was designed to control the rate of water discharge pressure (37, 50, 95).

In the United States, drip irrigation techniques were first used in greenhouses to aid in nursery production in the 1960's. It was first

used in orchards and row crops in California in 1968. Within five years 16,200 hectares were drip irrigated and by 1978 over 162,000 hectares were under drip irrigation (41, 95). Even though drip irrigation was a standard agricultural practice in regions with either low rainfall amounts or a limited supply of useable water, drip irrigation was not used in windbreak establishment until the late 1970's. In Oklahoma drip irrigation was first used for this purpose in 1978. However, there has been no scientific information on its performance to this date (26, 80, 103).

#### Design

Different theoretical design models have been developed to discover the proper combination of emitter spacing, discharge rate and irrigation frequency for various climates, crop and soil conditions (21, 23). These models are a good basis for developing a proper design but differences between theory and actual field data must be considered when designing a functional drip system (60, 84).

The components of a typical drip irrigation system are (1) a main pipeline, usually polyethylene and/or polyvinyl chloride (PVC) plastic with a diameter of 15 to 30 centimeters. It is usually installed underground and extends from a water source to the area irrigated, (2) a control center (head) with control valve or hydrant pressure regulators and gauges, and filters, (3) manifold and lateral lines (usually flexible PVC pipe with a diameter of 12 to 16 millimeters) placed above ground which allow 5.6 to 7 kilograms per square centimeter of water pressure, and (4) emitters which can be classified as either low pressure (applying 2 to 6 liters per hour at 0.14 to 0.35 kilograms per square centimeter) or high pressure emitters (4 or more liters per hour at 1.0 kilograms per square centimeter) (30, 36, 37, 45, 50, 51, 55, 72, 92, 95, 110, 117, 125).

#### Advantages

The principle advantage of a drip system over a conventional sprinkler or furrow irrigation system is the more efficient use of water. Applying the water directly to the plant area eliminates the watering of areas between the plants. In drip irrigated apple orchards only 35 to 65 percent of the total area of the orchard was wetted during the summer (17). Comparisons of drip to furrow and sprinkler irrigation on green pepper production indicated that, given a necessary rate of water to sustain a desired yield, the drip systems saved about one-third the water to sustain a desired yield, the drip systems saved about one-third the water required as compared to the furrow or sprinkler irrigation under experimental conditions. Under field conditions, for an annual crop such as peppers, the water savings under a drip system could be up to 50 percent due to the greater evaporative rates and the effects of wind on sprinklers and to the inequalities of application and infiltration of furrow irrigation (11). Similar results were reported on gourds and watermelons. The water use efficiency with drip irrigation was doubled compared to overhead sprinkling of furrow irrigation (99).

Much work has been done on equations to determine the proper amount of water required by various species of plants under a drip system (4, 24, 34, 37, 46, 65). However, no research has been published concerning the most efficient use of water by windbreak species. The SCS recommends a watering rate for windbreaks in western Oklahoma of 20 liters per week for the first growing season and 40 liters per week for each subsequent season. It is recommended that the system be run long enough to wet an area around the plant 45 centimeters in diameter (118). However, in Kansas watering rates of only 4 liters per week for the first year and 8 liters per week for each subsequent year are recommended (110). A survey in Nebraska showed that in actuality landowners were watering an average of 16 to 56 liters per week (111).

Another advantage of drip irrigation is the plant's ability to better utilize the available soil moisture. Until 1971 little information was available on the mechanisms involved in plant development, specifically root distribution, as influenced by drip watering (38). In arid areas as well as areas having heavy rainfall amounts, a reasonable design objective is to wet minimum of 33 percent and 20 percent, respectively, of the potential root volume of a widely spaced plant (37, 52). In general, the wetting profile is in the shape of an onion but with drip irrigation the profile can vary depending on the discharge rate of the water and the soil properties. On any given soil, the higher the discharge rate, the narrower the wetting front; with a given discharge rate, the finer the soil, the wider the wetting front (37, 58, 60, 89, 107).

The majority of the active root system of a plant is concentrated in the area wetted by the drip system (37, 38, 39, 59, 89, 96). Moreover, once the plant matures, the total root area may be concentrated only in the wetted area, but these roots are more efficient in water and nutrient uptake (9, 19, 20, 129).

The third major advantage of drip irrigation is that higher rates of saline water can be utilized (37). Salts accumulate at the periphery of the wetting front and are continuously leached out of the root zone

by additional irrigation. Care must be taken when using saline water to apply more water than needed by the plant to insure leaching does occur (37, 47, 98, 114, 126).

The fourth advantage of drip irrigation is the significant reduction in energy cost. Drip system pumping pressures range from 0.35 to 1 kilogram per square centimeter, compared to conventional irrigation (sprinkler) pressures of 3 to 8 kilograms per square centimeter (37, 92, 95). The lower pressure means less power is needed to drive the system. Although this point may seem minute to landowners with only a few hectares of windbreak trees, it is a considerable savings to those landowners with thousands of hectares in crop and orchard production.

Another advantage is the increased survival rates in the establishment of trees. This is particularly true on disturbed sites such as steep slopes and on mining spoils (1, 2, 14). An increase in survival rates has also been reported in windbreak plantings. In Colorado, an increase from 55 to 95 percent was reported and in Nebraska there was an increase from 40 to 50 percent to 90 to 100 percent with the drip system (94, 111). These findings are similar to those observed for Oklahoma (26, 103).

The final advantage of drip irrigation is the increase in yields and growth rates for plants under drip irrigation. In crop production, drip irrigation maintained or increased yield while utilizing substantially lower amounts of water than the conventional irrigation systems (24, 37, 43, 44, 97, 128). Tomato yields doubled using a slightly lower than average amount of water with a drip system (88). Trunk diameter increases on various ornamental tree species nearly doubled that of non-drip irrigated trees (81). In orchards, the trend of higher yields continued.

There was concern that with daily watering an increase in fertilization would be necessary to maintain nutrient levels in the trees (25, 28, 57, 68, 81, 101). This indicates a need for studying the interaction between drip irrigation and fertilization.

#### Fertilization

Fertilization with drip systems can be done two ways. The first method is by applying the fertilizer through the drip system itself. This is accomplished by using mineral fertilizers dissolved in a holding tank which is attached to the head of the drip system (Appendix A, Figure 1) (37, 42, 53). The most common forms of soluble nutrients used in drip systems are potassium nitrate, ammonium nitrate, potassium chloride, and orthophosphoric acid (8, 10, 37, 40, 48, 49, 53, 77). The second method is broadcast or band applied fertilizers (28, 54, 63, 69, 70, 77, 78).

Optimum application of fertilizer and the conclusions are varied. In crop or orchard production, where daily irrigation is a prerequisite, fertilizer application through the system is more efficient than broadcast or band applications. This is particularly true with nitrogen, a mobile nutrient. With phosphorus, a rather immobile nutrient, fertilization through the system may cause accumulation of phosphorus solely around the emitters (8, 10, 49, 53, 54, 63, 77, 78, 102, 109).

Fertilizing through a drip system may cause emitter clogging. The pH rises and precipitation of soluble calcium and magnesium with amonia injection may clog lines or emitters (53). Also, if the water contains appreciable amounts of calcium phosphate, fertilizers react with the calcium to form precipitate which can also clog emitters (37, 40, 53, 87). In addition microbial activity may occur with fertilization which can also block emitters (79).

Fertilization through a drip system requires more equipment and maintenance to keep the system functional. With mass crop and fruit production fertilization through the drip system may be justifiable, but to a landowner establishing a drip irrigated windbreak, a broadcast application around the trees once or twice a year may be more time and cost efficient.

Fertilizers can be either broadcast or placed in the area affected by a drip system. They can be grouped into two major descriptive categories: (1) readily soluble fertilizers and (2) slow release fertilizers. Readily soluble fertilizers such as those used through the drip system dissolve when they come in contact with water, allowing the nutrients to become immediately available to the plant. With continuous amounts of water being applied, the nutrients (nitrogen specifically) may be leached out beyond the root zone becoming unavailable to the plant (13, 112, 124).

Slow release fertilizers release nutrients slowly and continuously over a length of time. This is accomplished by coating the fertilizer with either a wax or a molten sulfur, or by compressing the fertilizer into pellet or tablet form (27, 66, 67, 74, 91, 115).

Comparisons between the readily soluble and slow release fertilizers on crops, showed a greater initial uptake of nitrogen with the readily soluble fertilizers. With the slow release fertilizers there was a greater amoung of nitrogen available in the root zone which, over several years of application, produced greater yields (61, 66, 90). Studies with tree seedlings on acid forest soils showed high levels of readily soluble

fertilizers with high rates of soluble salts, such as amonium nitrate and urea, sharply reduced growth. However, sulfur coated urea, a slow release fertilizer, increased dry weight matter after nine months (15). The growth response of the seedlings is also partially dependent on the soil. A comparison of slow release and readily soluble fertilizers on mining sites showed an increased growth response to the slow release fertilizer which appeared in either the first or second growing seasons, depending on the species, and lasted through the fourth growing season. With the readily soluble fertilizer, increased growth response did not appear until the third growing season and was short-lived; some species had no response (29). A sulfur coated urea study on Monterey pine (Pinus radiata D. Don) showed the slow release fertilizer was more effective on strongly weathered clay soils than urea (a readily soluble fertilizer) for increasing height growth of the trees after three years. On more fertile pumice soil no response to either of the fertilizers was found (67).

Little literature has been found on the fertilization of windbreaks. In 1962 Bagley (6) studied the affects of fertilization on newly planted seedlings and found no significant differences in survival or initial growth. He stated that soil moisture may be a more important factor than fertilization. Van Haverbeke (122) conducted a similar study and concluded there was no significant growth or survival response to the fertilizer. Past fertilizer practices and continued fertilizer applications to the crops around the windbreak trees may have been a factor in the study.

No research has been reported on the effect of fertilization on drip

irrigated windbreaks. This study has been designed to obtain this information.

#### CHAPTER III

### PROCEDURES

In order to locate prospective windbreak planting sites, letters and questionnaires were mailed to Oklahoma district office of the Soil Conservation Service (SCS) and the Oklahoma Forestry Division (OFD), the primary agencies involved with windbreak plantings in Oklahoma. The criteria for selection of sites included geographic location, soil type, species composition, size of planting, planting dates, past history of weed control, and presence or absence of a drip system. Sites located through responses from these agencies and other sites found by personal contacts were grouped by species composition and age to facilitate the selection. Four privately owned sites were chosen. All four of the sites were in northwest Oklahoma. Sites 1, 2 and 3 are in Woodward County and Site 4 is in Alfalfa County (Appendix A, Figure 2). All of the windbreak plantings had one row of Russian-olive (Elaeagnus angustifolia L.) and one row of Austrian pine (Pinus nigra Arnold); Sites 1, 3 and 4 had a row of juniper (Juniperus virginiana L.) while Site 2 had oriental arborvitae (Thuja orientalis L.) instead of the juniper.

There are some age variations between the sites at the time of the fertilizer application. Plants at Site 3 had finished the second "on site" growing season, while the rest of the trees had finished one growing season. In addition, a fire on Site 2 destroyed all treated species; the site was replanted in April, 1982.

Soil samples were taken on all sites before the application of

fertilizer. Ten to fifteen cores were bored randomly on each site, and samples were extracted at the surface and at the depths of 30 centimeters and 60 centimeters. Samples from each depth were mixed and a composite sample of each depth was submitted to the Oklahoma State Soil Testing Laboratory for analysis of soil pH, NO<sub>3</sub>-nitrogen, phosphorus, potassium, calcium, magnesium, iron, zinc, manganese, and boron. Soil surveys indicated soil types ranging from a loamy sand to a find silt loam (Appendix B, Table I).

The surface application method of fertilization was chosen for this study. While it is more labor intensive than fertigation (application of nutrients via the drip system) it is a simpler means of providing a more complete complement of nutrients. It also requires less expenditures for the maintenance of the drip system.

Three types of fertilizers which are available to landowners were chosen for use in this study. Two of the three types were slow-release formula fertilizers that, under normal rainfall conditions, dissolve slowly, allowing the nutrients to become available to the tree over a period of several months. One is a tablet, tradename Agriform, which has the N-P-K formulation of (20-10-5) and the other is a sulfur-coated urea with a formulation of (24-4-10). The third type of fertilizer tested was a mixture of ammonium nitrate (34-0-0) and the common garden type fertilizer (10-20-10), yielding a blended N-P-K formulation of (24-8-4). This is a readily soluble mixture that becomes available immediately to the tree. Table II (Appendix B) provides an analysis of these fertilizers.

Soil testing revealed nitrogen was the most limiting macronutrient in the soil at all the sites (Appendix B, Table I). Nitrogen, being

mobile in the soil, is easily leached out of the root zone when there is an abundant amount of moisture, as is the case with an operating drip system. This is the principle reason why a comparison between the slowrelease and the readily-soluble fertilizers was made.

Using these three different types of fertilizers with varying compositions of the major nutrients (nitrogen, phosphorus, and potassium) created a problem of balancing each treatment with the other. Nitrogen levels of each fertilizer type were balanced in order that each tree would receive an equal amount of that nutrient as specified by the experimental design.

Another comparison made in this study was between the various rates of fertilizers applied to the trees. The test plots were designed to have a low, medium and high rate of fertilizer equivalent to 8.4, 16.8, and 33.6 grams of actual nitrogen, respectively. Where there was not a sufficient number of trees at some sites to test all three rates the medium rate was eliminated and testing was done for only the low and high rates. In all plots there was a control tree which received no fertilizer.

Due to the linear arrangement of the windbreaks a split-plot design was used. Each ten tree replication was divided into three rates of fertilizer, which were then subdivided into the three types of fertilizer and the control. The location of each fertilizer rate and type, including the control, was randomly selected. Figures 3 and 4 (Appendix A) are schematic views of the treatments using (1) low, medium and high and (2) low and high. Each tree was numbered and tagged (Appendix A, Figure 5).

The treatments were applied in the fall of 1981 when the drip

systems were not being used. This allowed the fertilizer to breakdown naturally under normal rain/snow fall conditions, and be available for root growth in the fall and for the initiation of shoot growth in the early spring.

Site 2, destroyed by fire originally, had only two species under treatment, Russian-olive and arborvitae. The Russian-olive resprouted, but the collected data was lost due to die-back. The landowner had another windbreak with the same species composition approximately a quarter of a mile from the original site, so the Russian-olive from this additional site was treated in the spring of 1982. The arborvitae were replanted in the same holes as the burned trees and no further fertilizer treatments were done. On this same site the landowner planted a row of Austrian pine in early April just east of the arborvitae row to replace a row which had died in 1981. Treatments were carried out on this row several weeks after planting. The newly planted bare root arborvitae were not treated with fertilizer in order to minimize the chance of fertilizer burn. Since the Austrian pine was planted as containerized stock and the drip system was operational at the time of planting, these trees were fertilized.

To determine fertilizer effectiveness, measurements of tree height in centimeters and stem diameters at root crown in millimeters were taken. Readings were originally taken in November, 1981, while trees were dormant, but due to inconsistencies in collection of data, measurements were retaken early in 1982, again while the trees were still dormant. A plastic marker was placed in the ground next to the tree to facilitate a consistent measurement location of 10 centimeters above the root crown. This was necessary because soil filled in around the trees

and changed the depth at which the stem was exposed. The stem diameter was measured to the nearest tenth of a millimeter using a stainless steel millimeter caliper. Tree height was measured on the south side of the tree from the top of the plastic marker (10 centimeters above the root crown) to the dominant terminal bud using a meterstick and was recorded to the nearest five-tenths of a centimeter. Stem diameter measurements were taken in a consistent manner with the caliper facing the tree row. In November, 1982, after the first growing season following application of fertilizers, height and diameter measurements were taken using the methods previously described.

In order to relate the height and diameter measurements of the trees to the applied treatments, foliar samples of randomly selected plots were taken and analyzed using all species and fertilizer types on all sites. Only trees receiving the high and low rates in each plot were sampled. Nitrogen levels were analyzed using the modified macro-Kjeldhal method (22). Statistical analyses were computed to determine the analysis of variance between the fertilizer types and rates for each species on each site. The data used was the percent difference between the initial measurement and the measurement after one growing season for the height in centimeters and the root crown diameter in millimeters. The nitrogen concentration from the foliar analysis was statistically analyzed to determine differences, if any, between the fertilizer treatments for each species at each site. Results of the analysis producing an observed significance level (OSL) of  $p \leq 0.05$  were considered statistically significant.

Although water was no longer a limiting factor for the trees due to the use of drip systems, the problem of working with four different

landowners had to be addressed. Three of the four landowners had similar systems using the same type of emitters, the fourth owner used a system that emitted twice the amount of water in a given time (Appendix B, Table III). To monitor the amounts of water used by each landowner, notebooks were given to the landowners to record the length of each watering period. Rainfall totals were also recorded so that total levels of added moisture would be quantified for each site (Appendix B, Table IV).

In anticipation of problems with insect defoliation on Site 2, a spraying schedule of Sevimol-4 at 1.5 liters to 400 liters of water during the months of July and August was designed for the landowner to minimize damage. A weed control plan was also discussed with the landowners.

#### CHAPTER IV

### RESULTS

#### Site 1

#### General Description

۰.

This site is a homestead windbreak planting in Woodward, Oklahoma (Appendix A, Figure 2) with one short row of Russian-olive (<u>Elaeagnus</u> <u>angustifolia</u> L.) as the southern row, with a row of juniper (<u>Juniperus</u> <u>virginiana</u> L.) and Austrian pine (<u>Pinus nigra</u> Arnold) to the north, respectively. The windbreak rows surround the house on the east, south and southwest sides of the property. The trees were planted in the spring of 1981; the Russian-olive were planted as bare root stock from the Oklahoma state tree nursery while the juniper and pine were planted as containerized stock from the Colorado state nursery.

The trees were planted in sprigged bermuda grass which was regularly mowed. The grass competed with the trees for the moisture from the drip system, but in mid-summer, 1982, glyphosate (Roundup) was applied to the area around each tree, using wick applicators. There were no follow up treatments but grass was pulled from around each tree in November, 1982, when measurements were taken. The landowners also had the property commercially sprayed with glyphosate for weed control.

There was no major insect damage, although red spiders were numerous on the juniper during the summer of 1982.

Watering rates and rainfall totals are given in Tables III and IV (Appendix B).

#### Russian-olive

<u>Survival</u>. Two out of 30 Russian-olive died the first year after treatment (93.33% survival). One of the two dead trees was treated with a low rate of SCU (sulfur coated urea) while the other was a control (Appendix B, Table V).

<u>Height Growth</u>. The percent change in height from the initial measurement to each additional measurement was calculated. The additional measurement was taken in November, 1982, one growing season after fertilization. The mean percent increase in growth for each fertilizer rate and type is shown in Appendix A, Figure 6 and in Appendix B, Table VIII. The results show that out of the three high and low treatments only the high rate of SCU and the low rate of the RSM (readily soluble mixture) had a percent increase in height growth greater than or equal to the control.

Statistical analysis indicates no significant interaction of fertilizer rates and types, although there appears to be differences between plot locations (Appendix B, Table IX).

<u>Root Crown Diameter Growth</u>. The percent change in diameter was calculated from the initial measurement to the additional measurement, as with height. The results of the means (Appendix A, Figure 7 and Appendix B, Table VIII) show that only the high rate of SCU and both rates of the RSM had a percent increase in diameter greater than or equal to the control. There were no statistical differences in the mean increase in diameter although there was indication of differences in plot location.

Foliar Nitrogen Content. Leaf samples of the low and high rates of each fertilizer type were taken in September, 1982, to determine if the percent nitrogen in the foilage showed a significant difference in treatments due to nutrient uptake by the plant. A significant interaction of fertilizer rate and type was found. The low rate RSM and high rate AGT (Agriform tablet) were significantly higher than the low rate SCU; in comparison to the control, they were significant at the 0.10 level (Appendix B, Tables VI and VII).

## Juniper

<u>Survival</u>. Eight juniper out of 60 died during the first year after fertilizer treatment (86.67% survival). Of the eight trees, two were treated with low rate SCU, one with medium rate AGT, one with high rate AGT, one with high rate SCU and three with high rate RSM (Appendix A, Table V).

<u>Height Growth</u>. The mean percent increases in height for all of the fertilizer treatments were above the control (Appendix B, Table VIII and Appendix A, Figure 8).

Statistical analysis indicated significant differences between the medium rate SCU and the high rate RSM to the control at the OSL  $\leq$  0.05 level, while the high rate AGT and high rate SCU were significantly different than the control at the OSL  $\leq$  0.10 level (Appendix B, Table IX). There also appeared to be differences in plot location (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The mean percent increase in diameter for all the fertilizer treatments were also above the control (Appendix A, Figure 9 and Appendix B, Table VII).

However, statistical analysis indicated only the high rate of SCU to be significantly different from the control at the OSL  $\leq$  0.05 level (Appendix B, Table IX).

Foliar Nitrogen Content. The foliar analysis showed only the low rate SCU had a higher percent of nitrogen than the control. This level was almost equivalent to the control, while two other treatments (low rate AGT and low rate RSM) were significantly lower than the control (Appendix B, Tables VI and VII).

#### Austrian Pine

<u>Survival</u>. Twenty-four out of 65 Austrian pine were dead after one year of the fertilizer treatment (63.08% survival). Mortality was highest with the RSM fertilizer (16 of the 24). A breakdown of mortality by fertilizer rate and type shows five low rate RSM, one medium rate AGT, five medium rate RSM, two high rate AGT, four high rate SCU, all six of the high rate RSM, and one control (Appendix B, Table V).

<u>Height Growth</u>. The results indicated differences in mean increases in growth, with the medium rates of both AGT and SCU below the control. The low and medium rates of the RSM were also below the control but only one tree per rate was still alive. Besides the high rate RSM, which were all dead, only the high rate SCU was significantly different than the control (Appendix A, Figure 10 and Appendix B, Tables VII and IX).

An additional measurement was taken in May, 1983, after bud break and candle elongation, to estimate the response in the second year after fertilization. There was a larger increment of growth for all of the fertilizer treatments compared to the control, which increased in growth 65 percent. The low rates of AGT, SCU and RSM (one tree only) increased 140 percent, 97 percent and 72 percent, respectively. The medium rates of AGT, SCU and RSM (one tree only) increased 81 percent, 86 percent and 105 percent, respectively. The high rate AGT increased 88 percent and the high rate SCU increased 81 percent. The high rate RSM were all dead (Appendix A, Figure 10).

However, the statistical analysis of the mean increase in growth from the initial measurement to the additional measurement indicated no significant differences between the fertilizer treatments and the control (Appendix B, Tables VIII and IX).

<u>Root Crown Diameter</u>. All of the fertilizer treatments except the high rates of each type of fertilizer were above that of the control (Appendix B, Table VII and Appendix A, Figure 11). Except for the high rate RSM, where all trees were dead, there was no significant differences between fertilizer treatments and the control (Appendix B, Tables VII and IX).

An additional measurement estimating second year response was taken in May, 1983. The control treatment appeared to have a greater than or equal to percent increase except for the medium rate SCU (Appendix A, Figure 11 and Appendix B, Table VIII). Statistical analysis indicated no significant differences in any of the treatment.

<u>Foliar Nitrogen Content</u>. Foliar analysis indicated differences between the fertilizer treatments and the control. In all of the fertilizer treatments (except for high rate RSM where all trees were dead) the percent nitrogen was above the 1.00 percent level; the control had a mean percent nitrogen content level of 0.69 percent (Appendix B, Table VI). Statistical analysis revealed no significant differences at the  $OSL \leq 0.05$  level; the low rate of AGT and SCU were significant at the OSL < 0.10 level (Appendix B, Table VII).

### Site 2

#### General Description

This site was on the east and south sides of a love grass pasture approximately six miles south of Woodward, Oklahoma (Appendix A, Figure 2). The tree rows consisted of one row of ponderosa pine (<u>Pinus ponderosa</u> Law) to the south, one row of oriental arborvitae (<u>Thuja orientalis</u> L.) and one row of Russian-olive (<u>Elaeagnus angustifolia</u> L.) to the north, respectively. All of the planting stock was planted as bare root material from the Oklahoma state tree nursery and were planted in the spring of 1981. All the pine had died before fertilizer treatment in November, 1981, so only the arborvitae and Russian-olive were treated. In February, 1982, while the landowner was burning off his pasture, a shift in wind direction caused the fire to spread to the windbreak. All of the trees except for a few arborvitae were damaged or destroyed and adjustments to the fertilizer study had to be made. In April, 1982, the site was replanted replacing all of the dead arborvitae and all of the Russian-olive that had not resprouted. All of the pine were replaced

with containerized Colorado stock Austrian pine ( $\underline{P}$ . <u>nigra</u> Arnold). The replanting and treating of the Austrian pine not only allowed us to test fertilizer effects on newly planted seedlings, it also was a means to compare spring fertilizer application to fall fertilization as well as its effect on growth.

The nine replications of arborvitae were not retreated because the new trees were planted in the same holes as the old trees. One replication was added to the study and the trees were treated a week after planting. The treated Russian-olive were a total loss to the study, but the landowner had anothe windbreak with Russian-olive approximately a quarter of a mile from the original site. This site, designated as Site 5, was the same age as Site 2, although some Russian-olive were planted to replace dead ones. This site was treated with fertilizer in the spring of 1982, approximately a week after the replanting of Site 2.

Grasshoppers were a problem, particularly to the arborvitae. Although a spraying schedul was designed for the windbreak, the landowner sprayed only once during the summer of 1982. Considerable damage was also inflicted by gophers, rabbits, and field mice on the east side of the windbreak even though preventative measures (applying gopher poison around each tree) were taken.

Site 5, the additional Russian-olive site, was planted in a bermuda grass pasture. Although weeds were controlled by either hoeing around each tree or by applying glyphosphate, the Russian-olive on Site 5 were overtaken by the bermuda grass.

The love grass was kept mowed in strips around the trees on Site 2. Watering rates and rainfall totals are given in Tables III and IV (Appendix B).

### Austrian Pine

<u>Survival</u>. Seven out of 100 Austrian pine treated died their first growing season after being outplanted (93.00% survival). At least one was lost to rabbits or gophers. Table V (Appendix B) shows the mortality by fertilizer rates and types.

<u>Height Growth</u>. Statistical analysis indicated no significant differences between fertilizer treatments and the control (Appendix B, Table IX); however, for the first growing season after the fertilizer was applied, only the medium and high rate of SCU were below the increased growth of the control (Appendix A, Figure 12 and Appendix B, Table VIII).

An additional measurement was taken in May, 1983, in order to estimate the height growth response of a second growing season. There were no significant differences due to fertilizer treatments (Appendix A, Figure 12 and Appendix B, Tables VIII and IX).

<u>Root Crown Diameter</u>. The mean percent increase in root crown diameter was dramatic for all treatments. The lowest percent increase was 120 percent for the high rate RSM. The control increased by 134 percent while all other treatments were greater than the control (Appendix A, Figure 13 and Appendix B, Table VIII).

Statistical analysis indicated no significant differences (Appendix B, Table IX). An additional measurement was taken, as with height, to estimate the response of second year growing season. The increases in diameter were minor compared to those of the first year. The range of percent increases from the first year to the second year estimate was 9 to 31 percent with the control having a 28 percent increase (Appendix A, Figure 13 and Appendix B, Table VIII). No significant differences in treatments were found.

Foliar Nitrogen Content. Foliar analysis for nitrogen indicated a significant difference in percent nitrogen between the low rate SCU and the control only (Appendix B, Tables VI and VIII).

# Arborvitae

<u>Survival</u>. Seventeen out of 97 arborvitae treated died in the first growing season after being outplanted (82.47% survival). Four of the 17 were from the new replication which had been fertilized a week after planting (Appendix B, Table V).

<u>Height Growth</u>. The mean percent increase in height was minimal. The control increased in height only 5 percent from its original height, while the trees planted in treated holes increased in height from 17 percent (medium rate AGT and high rate RSM) to 48 percent (high rate AGT). There was no statistical difference although there was some indication of interaction within the treatment heights (Appendix A, Figure 14 and Appendix B, Tables VIII and IX).

<u>Root Crown Diameter</u>. The percent increase in root crown diameter was much greater than that of height. The control increased in diameter by 51 percent, whereas all of the other treatment percent increases except the high rate RSM (49% increase) were above the control (Appendix A, Figure 15 and Appendix B, Table VIII). Statistical analysis indicated no significant differences between fertilizer treatments and the control (Appendix B, Table IX). Foliar Nitrogen Content. Foliar analysis indicated virtually no differences between the fertilizer treatments and the control. There was only 0.165 percent difference between all treatments with the control having the highest percent nitrogen (2.0498%) with the exception of the high rate AGT, which had 2.0702 percent nitrogen level (Appendix B, Table VI). Statistical analysis indicated a significant difference between plot locations but no difference between the fertilizer treatments (Appendix B, Table VII).

# Russian-olive (Site 5)

<u>Survival</u>. Thirty-two out of 80 Russian-olive died after the first growing season, eight months after fertilizer treatment (60.00% survival) (Appendix B, Table V). There were 16 newly planted seedlings in the study plots replacing the trees that had died before the study began. Fifteen out of those 16 died. There appeared to be no trends to relate mortality with fertilizer type. The main reason for low survival on this site was the lack of maintenance. When fertilizer was applied in mid-April of 1982, an area was cleared around each tree. In July, 1982, the bermuda grass was encroaching this cleared area. At that time glyophosate was wick applied around each tree to deter the bermuda grass. When leaf samples were taken in September, 1982, the trees were in very poor condition even though the drip system was operational. By the time additional measurements were taken in November, 1982, it was apparent that the bermuda grass had overrun the windbreak. Rabbits were also a problem to the Russian-olive.

Height Growth. The mean percent height growth was small. The

percent increase of the control (31%) was higher than most of the fertilizer treatments. Only the low rate SCU (43% increase) and the medium rate AGT (34%) were larger than the control (Appendix A, Figure 16 and Appendix B, Table VIII). The statistical analysis indicated no significant differences between treatments and the control (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The results found the percent increases in the control was 40 percent while the medium rate SCU had a percent increase of 119 percent and the high rate RSM had an 88 percent increase in diameter. All of the other treatments were similar to the control (Appendix A, Figure 17 and Appendix B, Table VIII).

There were no significant statistical differences between the fertilizer treatments and the control (Appendix B, Table IX).

Foliar Nitrogen Content. Foliar nitrogen content was not analyzed because of insufficient plant tissue remaining on the trees.

# Site 3

#### General Description

This site was a farmstead windbreak planted to the north and curving to the west of the home, separating the living area from a wheat field. This was the only site to have the windbreak to the north of the area to be protected. The tree rows consisted of a row of juniper (Juniperus virginiana L.) to the north, with Austrian pine (Pinus nigra Arnold), black locust (Robinia pseudoacacia L.) and Russian-olive (Elaeagnus angustifolia L.) to the south, respectively. The trees were planted in the spring of 1980. The Russian-olive and black locust were planted as bare root stock from the Oklahoma state tree nursery, while the juniper and pine were planted as containerized stock from Colorado. During the summer of 1982 the drip system was operational on the juniper and pine only, except when severe drought conditions existed and water was given to the Russian-olive and black locust. Watering rates and rainfall totals are given in Tables III and IV (Appendix B).

There are two major problems on Site 3. The first was the stunted growth of the pine caused by the continual clipping of the terminal buds by the landowner's two pet sheep. This problem was remedied in the summer of 1982. The second problem was weed control. The landowner disked between the rows, which was very effective, but the area around the trees was highly overgrown with weeds. The use of a pre-emergent herbicide was discussed but was not followed through and the pines were overshadowed by weeds.

#### Russian-olive

<u>Survival</u>. There was no mortality in the 71 Russian-olive planted on this site (100% survival) (Appendix B, Table V).

<u>Height Growth</u>. All of the trees had finished their second on-site growth season when fertilizer treatments were administered. The height growth for the two growing seasons before fertilization was good. The shortest tree was 52 centimeters in height and the tallest tree was 2.16 meters.

The mean increase in height growth for the third growing season, one year after fertilization, showed the control increased growth 54 percent; all the fertilizer treatments except the low rate AGT (49%) were greater than 54 percent (Appendix A, Figure 18 and Appendix B, Table

VIII). No significant differences were found between fertilizer treatments and the controls at the OSL  $\leq$  0.05 level; however, at the OSL  $\leq$  0.10 level there were significant differences between the low rates of the SCU and RSM and the control (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The mean percent increase in diameter for the control (77%) increased more than all of the fertilizer treatments except for the medium rate RSM which increased 82 percent (Appendix A, Figure 19 and Appendix B, Table VIII).

Statistical analysis of the results were similar to the height growth increases. The only significant differences to the control were at the OSL  $\leq$  0.10 level for the low rates of SCU and RSM (Appendix B, Table IX).

<u>Foliar Nitrogen Content</u>. Foliar analysis indicated no significant differences between fertilizer treatments and the control (Appendix B, Table VII). The control had the greatest amount of foliar nitrogen with 2.9640 percent (Appendix B, Table VI).

#### Juniper

<u>Survival</u>. There was no mortality in the 91 juniper planted on this site (100% survival) (Appendix B, Table V).

<u>Height Growth</u>. The height for the drip irrigated juniper after two growing seasons and before fertilizer treatment was good. The shortest height was 57.0 centimeters whereas the tallest height was 1.515 meters. In the third growing season (the first year after fertilization) the low rate AGT (57% increase) and all of the high rates (AGT 57%, SCU 61%, and RSM 68%) were above the 55 percent increased growth of the control (Appendix A, Figure 20 and Appendix B, Table VIII).

Statistical analysis indicated no significant differences between the fertilizer treatments and the control, but within fertilizer treatments there were significant differences. All were between the high rate RSM and five of the other fertilizer treatments. There was a significant difference between the percent increased growth of the low rates SCU and RSM and the percent increase growth of the high rate RSM. The difference between the smaller increased growth for all the medium rates of each fertilizer type and the larger percent increased growth of high rate RSM was highly significant at the OSL  $\leq$  0.01 level (Appendix B, Table IX). There were highly significant differences in plot locations along the windbreak row (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The mean percent increase in diameter varied little between fertilizer treatments and the control. The range in mean percent increase was 52 percent for the high rate RSM to 73 percent for the low rate RSM, while the control increased 61 percent (Appendix A, Figure 21 and Appendix B, Table VIII).

Statistical analysis indicated similar results with no significant differences between the fertilizer treatments and the control. There was a significant difference within the fertilizer treatments. The percent increased diameter growth of the low rate RSM was significantly larger than that of the high rate RSM (Appendix B, Table IX). Statistical analysis also indicated significant differences among plot locations in the windbreak row.

Foliar Nitrogen Content. Foliar analysis indicated all of the

fertilizer treatments except for the low rate RSM had percent nitrogen levels above the control. The percent nitrogen of the control was 1.4690 percent. The highest percent nitrogen was 1.8284 percent for the high rate RSM (Appendix B, Table VI). There were no significant differences between fertilizer treatments and the control although the percent nitrogen of the low rate SCU and high rate RSM were significantly greater than the percent nitrogen of the low rate RSM (Appendix B, Table VII).

#### Austrian Pine

<u>Survival</u>. Ten out of 80 pine died after the third growing season (one year after fertilization) for an 87.50 percent survival rate. All ten trees had been grazed by sheep although there was possibly a connection to the fertilizer treatment. The relationship of mortality to fertilizer treatment was the following: at the low rate, two SCU and one RSM dead; at the medium rate, one AGT and two RSM dead; at the high rate, three RSM dead; and one control dead (Appendix B, Table V).

<u>Height Growth</u>. The mean percent increase in height growth for the first three growing seasons was greatly influenced by the terminal bud grazing of the sheep. However, data for the third growing season (the first year after fertilization) indicated differences in height increase between the fertilizer treatments and the control. The percent increase for the control was 21 percent with all the rates of the AGT. The high rate SCU and the low and high rates RSM showed responses which were greater than or equal to the increased growth of the control (Appendix A, Figure 22 and Appendix B, Table VIII).

There were no significant differences between the percent increase of the fertilizer treatments and the control. However, the analysis

indicated significant differences within the fertilizer treatments. The low rate AGT increased in growth compared to the low, medium and high rates of SCU and the medium rates of RSM (Appendix B, Table IX).

An additional measurement was taken to give an estimate of the response of the fourth growing season "which was free from grazing." This measurement was taken in May, 1983, after terminal bud elongation. The data indicated tremendous growth increases from the previous year. All of the fertilized treatments had at least tripled in the percent increase in growth from the previous year. The AGT low, medium and high rates showed increased percent growth of 78 percent, 63 percent and 48 percent, respectively; the SCU low, medium and high rates had an increased percent growth of 51 percent, 46 percent and 18 percent, respectively, and the RSM low, medium and high rates had increased percent growth of 67 percent, 53 percent and 24 percent, respectively. The control increased in percent growth by only 21 percent (Appendix A, Figure 22).

There were significant differences between the low rate AGT and the control, while within fertilizer treatments the significant differences were with the low rate AGT and the medium rate SCU, high rate SCU, and the high rate RSM. There were also significant differences with the medium rate AGT and the high rate SCU and RSM as well as with the low rate RSM and the high rate of SCU and RSM (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The data for the mean percent increase in diameter for the third growing season (first year after fertilization) indicated all of the fertilizer treatments, excep the low and medium rate of SCU, had nearly tripled the percent increase of the control (Appendix A, Figure 23 and Appendix B, Table VII).

Statistical analysis indicated the percent increase in growth of

the medium rate of SCU was significantly higher than all the other fertilizer treatments except for the low and high rates of the RSM. The percent increase in diameter for the medium rate SCU was significantly (OSL < 0.01) higher than the control (Appendix B, Table IX).

The additional measurement taken in May, 1983, to estimate the response of the fourth growing season (the second year after fertilization), found less difference within fertilizer treatments, although the three times difference was still apparent between the fertilizer treatments and the control (Appendix A, Figure 23 and Appendix B, Table VIII). The medium rate SCU and the control were the only treatments that were statistically different (Appendix B, Table IX).

Foliar Nitrogen Content. Foliar analysis indicated a very low level of percent nitrogen. The low rate AGT had the highest nitrogen level with 1.049 percent, which was significantly higher than the 0.8556 percent and the 0.8605 percent for the high rates of AGT and SCU, respectively. The control had a 0.9876 percent nitrogen level (Appendix B, Tables VI and VII).

#### Site 4

#### General Description

This site was a three row windbreak planted to the south and west of a workshed-barn and a future homesite in Cherokee, Oklahoma. The rows were Russian-olive (<u>Elaeagnus angustifolia</u> L.) to the south and juniper (<u>Juniperus virginiana</u> L.) and Austrian pine (<u>Pinus nigra</u> Arnold) to the north, respectively. The trees were planted in the spring of 1981. The Russian-olive were planted as bare root stock and the juniper

and pine were planted as containerized stock, all from the Colorado state nursery. A different type of drip system was used on this site. Only one hose, alternating from row to row, was used. The system also used a different type of emitter which allowed an average of four times more water to be applied in a given period of time (Appendix B, Table III). This higher rate of water caused puddling due to the fine texture of the soil on this site.

The site was disked between the rows and hand hoed within the rows. There were some problems. The landowner had the tendency to disk closely against the trees, especially the Russian-olive and juniper. Not only did this root prune the trees, it piled additional soil close to the trees, particularly the pines. When the pine were initially measured they were buried 10 to 15 centimeters above the root crown. The soil was cleared from the pines and bark mulch and wood shingles were added to keep the soil from settling back.

At this site the water application schedule for the 1982 growing season was lost, therefore, only rainfall amounts were recorded (Appendix B, Table III).

# Russian-olive

<u>Survival</u>. One tree out of 62 Russian-olive died after the growing season (one year after fertilization) giving a 98.39 percent survival rate. The treatment of this tree was low rate AGT and was in the first replication closest to the road (Appendix B, Table V).

<u>Height Growth</u>. Initial measurements taken after one growing season and before the fertilization treatments showed good growth. The smallest tree was 46 centimeters while the tallest tree was 1.33 meters. For

the second growing season (one year after fertilization) the mean percent increase in height for all treatments was approximately 74 percent while the percent increase in growth for the control was slightly higher (85%) (Appendix A, Figure 24 and Appendix B, Table VIII). There were no significant differences found in the percent increase in height although there was indication of significant differences within the replication locations (Appendix B, Table IX).

<u>Root Crown Diameter</u>. The percent increase in growth for the control of 81 percent was a larger percent increase than most of the fertilizer treatments except for the high rate AGT (84%), the low rate SCU (90%) and the medium rate SCU (107%) (Appendix A, Figure 25 and Appendix B, Table VIII).

Statistical analysis indicated no significant differences between the fertilizer treatments and the control although there was an indication of significant differences within plot locations (Appendix B, Table IX).

Foliar Nitrogen Analysis. Foliar analysis indicated no significant differences in the percent nitrogen between the fertilizer treatments and the control. Only the low rate AGT (3.5075%) was lower than the control (3.5402%). The highest mean percent nitrogen was found in the high rate AGT (4.0290%). There was also an indication of significant differences (OSL < 0.01) within plot locations.

#### Juniper

<u>Survival</u>. One out of 55 junipers died after the second growing season (one year after fertilization) with a 98.18 percent survival rate

(Appendix B, Table V). The tree was a low rate AGT treatment but was the first tree in the row, closest to the road. There were indications the roadbed had been sprayed with a herbicide during the second growing season.

<u>Height Growth</u>. This species was treated with only the low and high rates of each fertilizer type to allow more replications to be studied. The mean percent increases in height varied between all treatments but no significant differences were found between the control and the fertilizer treatments (Appendix B, Table IX). The average percent increase for all treatments was 110 percent while the control increased 115 percent in the height growth. The lowest percent increase in growth was found in the low rate AGT (73%). The low rates of SCU and RSM and the high rate SCU all had percent increases in growth above the control (Appendix A, Figure 26 and Appendix B, Table VIII).

<u>Root Crown Diameter</u>. The mean percent increases in diameter were all well above 100 percent. The percent increase for the control was 167 percent; only the low rate SCU had a higher percent increase (170%). The lowest percent increase in growth (124%) was the high rate RSM (Appendix A, Figure 27 and Appendix B, Table VIII). However, none of the differences were statistically significant (Appendix B, Table IX).

Foliar Nitrogen Content. Foliar analysis indicated that the control had the highest nitrogen content (1.8094%). The lowest nitrogen content was the high rate AGT with 1.6307% (Appendix B, Table VI). There were no significant differences in percent nitrogen between fertilizer treatments and the control at the OSL  $\leq$  0.05 level; however, at the 0.10

level there were significant differences between the control and the low rate AGT and the high rates of AGT and RSM (Appendix B, Table VII).

Pine

<u>Survival</u>. Ten out of 49 Austrian Pine died by the end of the second growing season (one year after fertilization) with a 79.59 percent survival rate. There was no real trend between mortality and fertilizer treatment although six out of the ten trees were treated at high rates (Appendix B, Table V).

<u>Height Growth</u>. The average percent increase in height for all treatments was approximately 95 percent. This was influenced by the large percent increase of growth by the high rate AGT (127%) and the low rate SCU (101%). The increase in growth for the control was 88 percent. The lowest increase in growth was 74 percent for the high rate SCU and the low rate RSM (Appendix A, Figure 28 and Appendix B, Table VIII). There was no significant differences between fertilizer treatments and the control although within fertilizer treatments the percent increase growth of the high rate AGT was significantly larger than that of the low rate RSM. There was also significant differences between plot locations (Appendix B, Table IX).

An additional measurement was taken in May, 1983, to estimate the growth increase response for the third growing season (the second year after fertilization). The results showed a dramatic percent increase in growth. The control increased in growth by 131 percent while the smallest increase in growth from the previous season was 117 percent by the high rate SCU. The largest increases in growth from the previous season's growth were 192 percent and 180 percent by the low rate RSM and

the high rate AGT, respectively (Appendix A, Figure 28). However, there was no significant difference in increased height growth between fertilizer treatments and the control although there was a significant difference between plot locations (Appendix B, Table IX).

Root Crown Diameter. The mean percent increases in diameter for all the fertilizer treatments were larger than the control. The increase in growth for the control was 47 percent while the largest increase in diameter growth was 71 percent for the low rate AGT (Appendix A, Figure 29 and Appendix B, Table VIII). Statistical analysis indicated no significant differences between the fertilizer treatments and the control (Appendix B, Table IX). An additional measurement was also completed for an estimate of the response of the third growing season diameter growth (the second year after fertilization). The result indicated much more varied differences than for the second growing season data. The control increased diameter growth by only 17 percent while all the fertilizer treatment increases were greater than the control. The highest increase in diameter growth from the previous year was 39 percent from the high rate SCU (Appendix A, Figure 19). The differences in percent increase in growth for the high rate SCU and the low rate AGT were significantly larger than that of the control. There was also indication of significant differences between plot locations (Appendix B, Table IX).

Foliar Nitrogen Content. Foliar analysis indicated that only the high rate AGT had a higher nitrogen content (1.8355%) than the control (1.8750%). The lowest nitrogen content was found in the low rate RSM (1.5608%) (Appendix B, Table VI). While there was no significant differences between fertilizer treatments and the control, there were

significant differences within the fertilizer treatments. The high rate AGT had a significantly higher percent nitrogen than the low rates of SCU and RSM (Appendix B, Table VII).

# CHAPTER V

#### DISCUSSION

#### Site l

In general, there were few significant differences in increased growth or increased percent foliar nitrogen levels. There are several hypotheses for this lack of response. One reason may be the age of the trees. The trees were planted in the spring of 1981, and even though adequate moisture was present, the roots may not have been sufficiently. developed to provide for efficient nutrient uptake. This may have been especially true for the pine. In May 1983, the area around selected pines was excavated to observe root development. The roots appeared to be concentrated around the containerized core with little or not root development ten centimeters away from this planting core. Therefore, any nutrient uptake was probably from mass flow to the roots. This, however, did not inhibit the detrimental fertilizer effects which occurred. The mean percent increase diameter for the pine at the high rate for all fertilizer types combined was significantly lower than the increase at the low fertilizer rate for all types combined (Appendix B, Table X). This detrimental effect is also reflected in the fact that all of the trees treated with the high rate RSM were dead. This pattern was observed by Bengtson (16) on certain southern pine seedlings subjected to high rates of nitrogen and phosphorus fertilizer.

The larger Russian-olive at the time of fertilization suggested a

more developed root system to better utilize the fertilizer, but no significant fertilizer trends were established. This may be because Russian-olive is a nitrogen fixing species.

Zimmerman (132) studied fertilizer treatments of hardwood seedlings on mine spoils and found no significant response to slow release fertilizers after one year. Davidson and Sowa (29) found similar responses to slow release fertilizers on various conifer species planted on mine spoils. They did find significant growth responses to fertilizer treatments after the second year, but the height differences after four years were relatively small.

The effects of the drip watering system may be another reason for low fertilizer response. In May, 1983, soil tests were taken in the drip area for each type of fertilizer, on the high rate treatments only. The results of these soil tests showed no apparent increases in nitrate levels in the soil although the phosphorus level in the 0-10 centimeter depth increased dramatically. The nitrogen, a relatively mobile nutrient, may have leached out of the root zone (Appendix B, Table I). The Salinity of the soil was also investigated but the total soluble salts were all in the normal range.

The management of the area could have also effected fertilizer response. The area around the trees was not kept clean of competing vegetation and the trees were subject to rodent and man-made damage.

### Site 2

There were no significant differences found for increased height, diameter, or foliar nitrogen content with respect to fertilizer treatments.

The replanting of this site in the spring of 1982 allowed data to be collected for newly planted seedlings. Although no significant differences were indicated, in general, to fertilizer treatments, the growth responses of the seedlings was an interesting phenomenon. The pine, which were planted as containerized stock, grew very little in height, but they more than doubled in diameter. This may indicate the first growing season was primarily one of root establishment although excavation showed no lateral spread of the root system more than a few centimeters away from the containerized core. An estimate of the second growing season which would be one year after fertilization revealed no significant differences in fertilizer treatments, but the percent increase in height was much greater than that for diameter. The arborvitae were bare root stock planted in an already fertilized area. There were some observed height growth responses although the trees were damaged by grasshoppers. There were no significant differences within fertilizer rates but the mean increase in diameter growth for each fertilizer rate (fertilizer types combined within each rate) was significantly larger than the control. This was the same for types as well. The mean increase in diameter growth for each fertilizer type (rates combined within each type) was significantly larger than the control (Appendix B, Table X). Therefore, residual fertilizer did have an effect on growth response on bare rooted, newly planted arborvitae on this site.

The additional Russian-olive (Site 5) was a virtual waste of time and effort. Most of the trees were in poor condition throughout the 1983 growing season. The main reason for the poor condition of the trees was not because of the fertilizer treatments but rather the lack of care and maintenance at this particular site. All of the Russian-olive were

surrounded by a dense mat of bermuda grass runners which competed heavily for the available water from the drip system. In the pine and arborvitae rows, love grass competition was kept away from the trees, although some of the trees were buried by drifting sand due to sandy soil conditions. Rodents were also a problem on both Sites 2 and 5 at this location.

# Site 3

The oldest trees of all four sites were on this site. The trees were planted in the spring of 1980. They had completed their second growing season before fertilization. It was presumed that the root systems of these trees were more developed than on the other sites, therefore the response to fertilizer might have been expected to have been more apparent. For the Russian-olive the only significant response to fertilizer treatment was that the control had a significantly larger percent increase in diameter growth than the low fertilizer rate (all types combined) (Appendix B, Table X). Again this may have been due to the nitrogen fixation process of Russian-olive. For the juniper the only significant response was for the high fertilizer rate (all types combined) (Appendix B, Table X). The nitrogen analysis indicated, however, that the low rate of SCU and the high rate of RSM were significantly greater than the percent nitrogen of the low rate RSM (Appendix B, Table VII). Just how the growth and the percent nitrogen responses relate to one another in this case is not clear. A possible reason for the lack of further response by the juniper to the fertilizer treatments may have been due to the weed competition around each tree. During the summer of 1982 the weeds were as tall as the juniper.

The growth of the Austrian pine on this site was an interesting case

to study. Ther terminal buds on most of the pine had been continually clipped by sheep for the first three growing seasons. The problem was eliminated in the summer of 1982 but no further height growth occurred until candle elongation in the spring of 1983, due to the determinant pattern of shoot growth in this species. Measurements were taken for the 1982 growing season with the only significant response being that of the AGT treatment (all rates combined), showing a larger increase in height growth when compared to the SCU treatment (Appendix B, Table X). The measurements taken in May, 1983, estimating the growth of the first growing season free from grazing pressure, indicated several significant growth responses to fertilizer treatments. Similar to the response of pine at Site 1, the low rate (all types combined) had a significantly larger height growth response than the high rate of fertilizer. The pattern of significant differences between AGT and SCU was continued and the height growth increase of the AGT high rate was also significantly higher than the control. The diameter growth increase measured in May, 1983, estimating the 1983 growing season growth, indicated that the medium rate (all types combined) had a significantly higher percent increase in growth than the control. The percent increase in diameter growth of the AGT (all rates combined) was significantly larger than the control (Appendix B, Table X).

Therefore, Austrian pine, after three growing seasons in the field, had some significant response to fertilizer treatments. One may conclude that the root systems of the pine were developed sufficiently to utilize the fertilizer.

Care must be taken to prevent further animal damage and to control week competition.

# Site 4

For the 1982 growing season (one year after planting) no significant growth response to fertilizer treatments was indicated. However, all species grew exceptionally well. This growth response may be explained by the fact that this site had the best soil type of all the four sites studied. Another reason may be weed elimination due to the very good maintenance provided. The area between the tree rows was disked regularly and the area around the trees hoed keeping weed competition to a minimum.

The growth of the pines was arrested the first growing season (1981) because of soil accumulation which buried approximately half of the total seedling. This problem was remedied during the spring of 1982 by placing mulch and wood shingles around each tree. In May, 1983, an additional measurement was taken on the pine to estimate the increased growth of the second growing season after fertilization. The results indicated a dramatic increase in height growth compared to the previous season, but there were no significant differences indicated. The diameter growth, although having much smaller percentages of increased growth, indicated significantly higher growth responses between the high fertilizer rates (all types combined) and the control (Appendix B, Table X).

#### CHAPTER VI

# CONCLUSIONS AND RECOMMENDATIONS

Fertilization of newly-planted, one, two, and three year old windbreak plantings under drip irrigation had never been previously assessed. Therefore, the information gained from this study is beneficial. In fact, there has been little to no information reported on survival rates and growth response of windbreak plantings influenced by a drip watering system.

Here are several conclusions that can be made from this study:

1. Survival rates of windbreak plantings in Western Oklahoma using drip irrigation with additional fertilization were from 80 to 100 percent.

2. The response to fertilization varied depending on the species. The Russian-olive was the least affected while the Austrian pine was more sensitive to fertilizer application. Therefore, care must be taken in applying high rates of readily soluble fertilizer on clay soils.

3. In general, the statistical analysis indicated little, if any, <u>significant</u> effects of the fertilizer treatments, compared to the control, but the error term in the analysis was very high indicating that the development of a better model may be needed.

4. A one year period after fertilization, particularly for one and two year old plantings, may not be enough time to fully evaluate the effects of the fertilizer treatments.

5. Weed control is just as important to growth and development as fertilizer.

6. A more controlled research area, such as the Southern Plains Range Research Station in Woodward, Oklahoma, would facilitate experimental procedure.

Much more research needs to be conducted to establish definitive conclusions regarding the effects of fertilization on drip irrigated windbreaks. This research needs to be conducted on land that is under the control of the researcher. This would provide a much greater basis for experimentation and minimize damage to experimental plots.

Research is also needed to study not only fertilization effects but also to examine more basic factors such as the determination of optimum watering rates; the effects on physiological processes including root development; the effects of weed control; the role of planting stock (containerized versus bare root); the degree of species variation; and finally, the overall plant growth and development compared to non-drip irrigated plantings. This research needs to be conducted over a period of time sufficient to monitor the effects at all stages of windbreak development.

# LITERATURE CITED

- Aldon, E. F., D. Cable, and Scholl. 1977. "Plastic Drip Irrigation Systems for Establishing Vegetation on Steep Slopes in Arid Climates." <u>Seventh International Agricultural Plastics</u> Congress Proc., pp. 107-112.
- (2) Aldon, E. F. and H. W. Springfield, and W. E. Sowards. 1976. "Demonstration Test of Two Irrigation Systems for Plant Establishment on Coal Mine Spoils." Fourth Symp. on Surf. Min. and Reclam. NCA/BCR Coal Conf. Proc., pp. 201-214.
- (3) Atchison, F. D. 1976. "Windbreaks for Livestock Protection in the Great Plains." <u>Shelterbelts on the Great Plains Symp</u>. GPAC Pub. No. 78, pp. 101-103.
- (4) Aljibury, F. K., A. W. Marsh, and J. Huntamer. 1974. "Water Use With Drip Irrigation." <u>Second International Drip Irrigation</u> Congress Proc., pp. 341-435.
- (5) Babb, M. F., J. Kraus, B. L. Wade, and W.J. Zaumeyer. 1941. "Drought Tolerance of Snapbeans." J. Agr. Res., 62: 543-553.
- (6) Bagley, W. T. 1962. "Tree Response to Fertilizer Applied at Planting." J. Soil and Water Conservation, 17(3):117-119.
- (7) Bagley, W. T., and F.A. Gowen. 1960. "Growth and Fruiting of Tomatoes and Snapbeans in the Shelter Area of a Windbreak." Fifth World Forestry Congress Proc., pp. 1667-1670.
- (8) Bar-Yosef, B. 1977. Trickle Irrigation and Fertilization of Tomatoes in Sand Dunes: "Water, N, and P Distributions in the Soil and Uptake by Plants." <u>Agronomy Journal</u>, 69:486-491.
- (9) Bar-Yosef, B. and M. R. Sheikholslami. 1976. "Distribution of Water and Ions in Soils Irrigated and Fertilized from a Trickle Source. Soil Sci. Soc. Am. J., 40:575-582.
- (10) Bar-Yosef, F., C. Stammers, and B. Sagiv. 1980. "Growth of Trickle-Irrigated Tomato as Related to Rooting Volumr and Uptake of N and Water. Agronomy Journal, 72:815-822.
- (11) Bates, C. G. 1911. 'Windbreaks: Their Influence and Value.''
  U.S. Forest Service Bul. No. 86.

- (12) . 1945. "The Windbreak as a Farm Asset." U.S.D.A. Farmers Bul. No. 1405 (rev.).
- (13) Bauder, J. W. and R. P. Schneider. 1979. "Nitrate-Nitrogen Leaching Following Urea Fertilization and Irrigation." <u>Soil</u> <u>Sci. Soc. Am. J., 43:348-352.</u>
- (14) Bengson, S. A. 1977. 'Drip Irrigation to Revegetate Mine Wastes in an Arid Environment.'' J. Range Management, 30(2): 142-147.
- (15) Bengtson, G.W. 1968. "The Use of Slow Release Fertilizers." Comb. Proc. Int. Plant Propag. Soc., 24:221-229.
- (16) . 1976. "Comparative Response of Four Southern Pine Species to Fertilization: Effects of P, NP, and NPKMgS Applied at Planting." Forest Science, 22:487-493.
- (17) Bernstein, L. and L. E. Francois. 1973. "Comparisons of Drip, Furrow, and Sprinkler Irrigation." Soil Science, 115:73-86.
- (18) Bertrand, A. R. 1981. "Challenges to Agriculture in the Southern Great Plains--And How We Can Meet Them." Proc. Thirty-Third Annual Meeting of the Forestry Committee Great Plains Agricultural Council. GPAC Pub. No. 102, pp. 109-117.
- (19) Black, J. D. F. and P. D. Mitchell. 1974. "Changes in Root Distribution of Mature Pear Trees in Response to Trickle Irrigation." Second International Drip Irrigation Congress Proc., pp. 437-438.
- (20) Black, J. D. F. and D. W. West. 1974. 'Water Uptake By an Apple Tree with Various Proportions of the Root System Supplied with Water.'' <u>Second International Drip Irrigation Congress</u> Proc., pp. 432-436.
- Brandt, A., E. Bresler, N. Diner, I. Ben-Asher, J. Heller, and
   D. Goldberg. 1971. "Infiltration from a Trickle Source: I Mathematical Models." Soil Sci. Soc. Am. J., 35:675-682.
- (22) Bremner, J. M. "Total Nitrogen." <u>Methods of Soil Analysis: Part</u> <u>11. Chemical and Microbiological Properties</u>. Am. Soc. of Agronomy, Agronomy Series No. 9:1035-1037.
- Bresler, E., J. Heller, N. Diner, I. Ben-Asher, A. Brandt, and D. Goldberg. 1971. "Infiltration From a Trickle Source: II. Experimental Data and Theoretical Predictions." <u>Soil</u> <u>Sci Soc. Am. J.</u>, 35:683-689.
- (24) Bucks, D. A., L. J. Erie, and O. F. French. 1974. "Trickle Irrigation Management for Cotton and Cabbage." <u>Second Inter-</u> national Drip Irrigation Congress Proc., pp. 351-356.

- (25) Cole, P. J. and M. R. Till. 1974. "Response of Mature Citrus Trees on Deep Sandy Soil to Drip Irrigation." <u>Second Inter-</u> national Drip Irrigation Congress Proc., pp. 521-526.
- (26) Craighead, M. R. Personal Communication. OSU Extension Service, 016 Ag Hall, Stillwater, Oklahoma, Summer 1981.
- (27) Dahnke, W. C., L. E. Engelbert, and M. D. Groskopp. 1963. "Controlling Release of Fertilizer Constituents by Means of Coating and Capsules." Agronomy J., 55:242-244.
- (28) Dan, C. 1974. "The Irrigation of Olives by Drip and Other Irrigation Methods." <u>Second International Drip Irrigation Con-</u> gress Proc., pp. 491-496.
- (29) Davidson, W. H. and E. A. Sowa. 1982. Conifers Growing on Anthracite Minesoils Respond to Fertilization." <u>1982 Symp. on</u> <u>Surface Mining Hydrology, Sedimentology and Reclamation</u>, pp. 115-118.
- (30) Davis, S. and W. J. Pugh. 1974. "Dripper Flow Consistency." Second International Drip Irrigation Congress Proc., pp. 281-286.
- (31) Droze, W. H. 1977. <u>Trees</u>, Prairies, and People. Denton, Texas: Texas Women's University Press.
- (32) Ferber, A. E. 1974. 'Windbreaks for Conservation.'' U.S.D.A., Soil Conservation Service, Ag. Info. Bul., No 339.
- (33) Ferber, A. E., A. L. Ford, and S. A. McCrory. 1955. 'Good Windbreaks Help Increase South Dakota Crop Yields.' <u>South</u> Dakota Ag. Expt. Station Cir., No. 118.
- (34) Fereres, E. et. al. 1982. "Drip Irrigation Saves Money in Young Almond Orchards." California Agriculture, 36:12-13.
- (35) Fewin, R. J. 1976. 'Windbreaks for Livestock Protection in the Southern Great Plains.' <u>Shelterbelts on the Great Plains</u> Symp. GPAC Pub. No. 78, pp. 104-106.
- (36) Gilaad, Y. L. Krystal, and K. Zanker. 1974. "Hydraulic and Mechanical Properties of Drippers." <u>Second International</u> Drip Irrigation Congress Proc., pp. 311-316.
- (37) Goldberg, D., B. Gornat, D. Rimon. 1976. Drip Irrigation. Israel: Drip Irrigation Scientific Publications.
- (38) Goldberg, D., B. Gornat, and Y. Bar. 1971. "The Distribution of Roots, Water and Minerals as a Result of Trickle Irrigation." J. Amer. Hort. Sci., 96:645-648.

- (39) Goldberg, D. M. Rinot, and N. Karic. 1971. "Effect of Trickle Irrigation Intervals on Distribution and Utilization of Soil Moisture in a Vineyard." <u>Soil Sci. Soc. Amer. Proc</u>., 35:127-130.
- (40) Grobbelaar, H. L. and F. Lourens. 1974. "Fertilizer Applications with Drip Irrigation." Second International Drip Irrigation Congress Proc., pp. 411-415.
- (41) Gustafson, C. D., A. W. Marsh, R. L. Branson, and S. Davis. 1974. "Drip Irrigation--Worldwide." <u>Second International Drip</u> <u>Irrigation Congress Proc.</u>, pp. 17-22.
- (42) Hairston, J. E., J. S. Schepers, and W. L. Colville. 1981. "A Trickle Irrigation System for Frequent Application of Nitrogen to Experimental Plots." <u>Soil Sci. Soc. Amer. J</u>., 45:880-882.
- (43) Hall, B.J., 1974. "Staked Tomato Drip Irrigation in California." Second International Drip Irrigation Congress Proc., pp. 480-485.
- (44) \_\_\_\_\_\_. 1974. "Spring Cucumber Drip vs. Furrow Irrigation." Second International Drip Irrigation Congress Proc., pp. 486-490.
- (45) Handley, D., H. J. Vaux Jr., and N. Pickering. 1983. "Evaluating Low-Volume Irrigation Systems for Emission Uniformity." California Agriculture, 37:10-12.
- (46) Hoore, E. R., K. V. Garzoli, and J. Blackwell. 1974. "Plant Water Requirements as Related to Trickle Irrigation." <u>Second International Drip Irrigation Congress Proc.</u>, pp. 323-328.
- (47) Hoffman, G. J., S. L. Rawlins, J. D. Oster, and S. D. Merrill. 1979. "Salinity Management for High Frequency Irrigation." <u>Second International Drip Irrigation Congress Proc</u>., pp. 372-375.
- (48) Isobe, M. 1974. "Investigations in Sugar Cane Fertilization by Drip Irrigation in Hawaii." Second International Drip irrigation Congress Proc., pp. 406-410.
- (49) Kafkafi, U. and B. Bar-Yosef. 1980. "Trickle Irrigation and Fertilization of Tomatoes in Highly Calcareous Soils." <u>Agronomy J.</u>, 72:893-897.
- (50) Karmeli, D. and S. W. Smith. 1977. "Aerosol Emitters for Trickle Irrigation." Submitted to International Agricultural Plastics Congress Proc., 6 pp.

- (51) Keese, W. and L. New. 1977. 'Guidelines for Planning and Operating Orchard Drip Irrigation Systems.' <u>Texas Ag. Ext. Service</u>, Bul. No. AENG 7-3.
- (52) Keller, J. and D. Karmeli. 1974. "Trickle Irrigation Design for Optimal Soil Wetting." Second International Drip Irrigation Congress Proc., pp. 240-245.
- (53) . 1978. "Chapter 8: Filtration, Fertilization and Trickle System Maintenance." <u>Trickle Irrigation Design</u>. Glendora, California: Rainbird Sprinkler Manufacturing Corporation, pp. 104-113.
- (54) Keng, J. C. W., T. W. Scott, and M. A. Lugo-Lopez. 1979. ''Fertilizer Management with Drip Irrigation in an Oxisol.'' Agronomy J., 71:971-980.
- (55) Kenworthy, A. L. and C. Kesner. 1974. "Trickle Irrigation in Michigan Orchards: Controlling Rate of Flow with Flow Regulating Valves and Microtubes." <u>Second International Drip</u> Irrigation Congress Proc., pp. 275-280.
- (56) Laher, M. and Y. Avnimelech. 1980. "Nitrification Inhibition in Drip Irrigation Systems." Plant and Soil, 55:35-42.
- (57) Layne, R. E. C., C. S. Tan, and J. M. Fulton. 1981. "Effect of Irrigation and Tree Density on Peach Production." J. Amer. Soc. Hort. Sci. 106:151-156.
- (58) Levin, I., R. Assaf, and B. Brando. 1974. "Soil Moisture Distribution and Depletion in an Apple Orchard Irrigated by Tricklers." <u>Second International Drip Irrigation Congress Proc.</u>, pp. 252-255.
- (59) \_\_\_\_\_. 1979. "Soil Moisture and Root Distribution in an Apple Orchard Irrigated by Tricklers." Plant and Soil, 52:31-40.
- (60) Levin, I., P. C. van Rooyen, and F. C. van Rooyen. 1979. "The Effect of Discharge Rate and Intermittent Water Application by Point-Source Irrigation on the Soil Moisture Distribution Pattern." Soil Sci. Soc. Amer. J., 43:8-16.
- (61) Liegel, E. A. and L. M. Walsh. 1976. "Evaluation of Sulfur Coated Urea (SCU) Applied to Irrigated Potatoes and Corn." <u>Agronomy J.</u>, 68:457-463.
- (62) Lindsey, K. E., G. Sultemeier, and J. E. Bennett. "Investigations of Soil-Plant-Water Relations in Irrigated Orchards and Vineyards in West Texas. III. Drip Irrigated and Flood Irrigated Pecans." From Personal Communication. Texas Ag. Extension Service, Fort Stockton, Texas, August 19, 1981.

- (63) LaCascio, S. J., J. M. Myers, and F. G. Martin. 1977. "Frequency and Rate of Fertilization with Trickle Irrigation for Strawberries." J. Amer. Soc. Hort. Sci., 102:456-458.
- (64) Loucks, W. L. 1982. "Windbreaks Save Money." <u>Kansas State Coop</u>. <u>Ext</u>., Bul. C-645.
- (65) Marsh. A. W. et at. 1974. 'Water Use by Drip and Sprinkler Irrigated Avocados Related to Plant Cover, Evaporation and Air Temperature.'' <u>Second International Drip Irrigation</u> <u>Congress Proc.</u>, pp. 346-350.
- (66) Matocha, J. E. 1976. ''Ammonia Volatilization and Nitrogen Utilization from Sulfur Coated Ureas and Conventional Nitrogen Fertilizers.'' <u>Soil Sci. Soc. Amer. J.</u>, 40:597-601.
- (67) Mead, D. J., R. Ballard, and M. Mackenzie. 1975. "Trials with Sulfur Coated Urea and Other Nitrogenous Fertilizers on <u>Pinus radiata</u> in New Zealand." Soil Sci. Soc. Proc., 39: 978-980.
- (68) Middleton, J. E., E. L. Proebsting, S. Roberts, and R. H. Emerson. 1974. "Tree and Crop Response to Drip Irrigation." <u>Second</u> <u>International Drip Irrigation Congress Proc.</u>, pp. 468-473.
- (69) Miller, R. J., D. E. Rolston, R. S. Rauschkolb, and D. W. Wolfe. 1976. "Drip Application of Nitrogen Is Efficient." <u>Cali-</u> fornia Agriculture, 30:16-18.
- (70) \_\_\_\_\_. 1981. "Labeled Nitrogen Uptake by Drip Irrigated Tomatoes." Agronomy J., 73:265-270.
- (71) Mitchell, P. J. 1981. "Landscaping to Cut Fuel Costs." <u>Okla-</u> homa State Coop. Ext. Fact Sheet No. HORT 4-5.
- (72) New, L. 1981. 'Drip Irrigation for Home Gardens, Trees, and Lawns.'' <u>Texas Coop. Ext.</u> Bul. From Personal Communications with K. E. Lindsey. Texas Ag. Extension Service, Fort Stockton, Texas, Aug. 19, 1981.
- (73) Nickerson, D. 1982. "Living Snowfence." Proc. Thirty-Fourth Annual Meeting of the Forestry Committee Great Plains Agricultural Council. GPAC Pub. No. 106, pp. 169-181.
- (74) Nommik, H. 1973. "The Effect of Pellet Size on the Ammonia Loss From Urea Applied to Forest Soil." <u>Plant and Soil</u>, 39:390-318.
- (75) Ogbuehi, S. N. and J. R. Brandle. 1981. "Influence of Windbreak Shelter on Soybean Production Under Rainfed Conditions." Agronomy J., 73:625-628.

- (76) . 1982. "Influence of Windbreak Shelter on Soybean Growth, Canopy Structure, and Light Relations." Crop Science, 22:269-273.
- (77) O'Neill, M K., B. R. Gardner, And R. L. Roth. 1979. 'Orthophosphoric Acid as a Phosphorus Fertilizer in Trickle Irrigation.'' Soil Sci. Soc. Amer. J., 43:367-372.
- (78) Onken, A. B. et al. 1979. "Irrigation System Effects on Applied Fertilizer Nitrogen Movement in Soil." <u>Soil Sci. Soc. Amer.</u> J., 43:376-372.
- (79) Pelleg, D. 1974. "Formation of Blockages in Drip Irrigation Systems: Their Prevention and Removal." <u>Second Interna-</u> tional Drip Irrigation Congress Proc., pp. 203-208.
- (80) Phillips, D. 1980. "Drip Life into New Windbreaks." Progressive Farmer, 95(2): 72.
- (81) Ponder, H. G. and A. L. Kenworthy. 1976. 'Trickle Irrigation of Shade Trees Growing in the Nursery: Influence on Growth.'' J. Amer. Soc. Hort. Sci., 101:100-103.
- (82) Popowski, J. 1976. "Role of Windbreaks for Wildlife." <u>Shelter-belts on the Great Plains Symp</u>. GPAC Pub. No. 78, pp. 110-111.
- (83) Rauschkolb, R. S. et al. 1976. "Phosphorus Fertilization with Drip Irrigation." Soil Sci. Soc. Amer. J., 40:68-72.
- (84) Rawitz, E. and D. Hillel. 1974. "The Progress and Problems of Drip Irrigation in Israel." <u>Second International Drip</u> Irrigation Congress Proc., pp. 23-28.
- (85) Read, R. A. 1964. "Tree Windbreaks for the Central Great Plains." U.S.D.A. Forest Service. Agricultural Handbook No. 250.
- (86) Robbins, C. 1976. "Economics of Windbreaks and Our Cattle Industry." <u>Shelterbelts on the Great Plains Symp</u>. GPAC Pub. No. 78, pp. 107-109.
- (87) Rolston, E. D. and R. S. Rauschkolb. 1974. "Use of Glycerophosphate For Fertilization Through Trickle Irrigation Systems." <u>Second International Drip Irrigation Congress Proc.</u>, pp. 416-421.
- (88) Rose, J. L. 1982. "Trickle Irrigation Boosts Tomato Yields." Agricultural Research, 30:10-11.
- (89) Roth, R. L. 1974. "Soil Moisture Distribution and Wetting Pattern from a Point Source." Second International Drip Irrigation Congress Proc., pp. 246-251.

- (90) Sander, D. H. and W. J. Moline. 1980. "Sulfur Coated Urea and Urea Compared as Nitrogen Sources for Irrigated Corn." <u>Soil</u> <u>Sci. Soc. Amer. J.</u>, 44:777-782.
- (91) Sarigumba, T. I., W. L. Pritchett, and W. H. Smith. 1976. "Urea and Ammonium Sulfate Fertilization of Potted Slash Pine Under Two Soil Moisture Regimes." <u>Soil Sci. Soc. Amer. J.</u>, 40:588-593.
- (92) Schwab, D. and D. Barefoot. 1981. "Trickle Irrigations for Lawns, Gardens and Small Orchards." <u>Oklahoma State Coop</u>. Ext. Fact Sheet No. 1511.
- (93) Schwilling, M. D. 1982. "Nongame Wildlife in Windbreaks." Proc. Thirty-Fourth Annual Meeting of the Forestry Committee Great Plains Agricultural Council. GPAC Pub. No. 106, pp. 258-262.
- (94) Sharman, D. 1981. "Drip Irrigation Increases Tree Survival and Growth." <u>Colorado Rancher-Farmer</u>. From Personal Communication with R. H. Mickelson. Akron, Colorado, August 6, 1981.
- (95) Shoji, K. 1977. "Drip Irrigation." <u>Scientific American</u>, 237: 62-68.
- (96) Siberbush, M., B. Gornat, and D. Goldberg. 1979. "Effect of Irrigation From a Point Source (Trickle) on Oxygen Flux and on Root Extension in the Soil." Plant and Soil, 52:507-514.
- (97) Singh, N. T., S. S. Grewal, and A. S. Josan. 1974. "Drip vs. Furrow Irrigation Trials in Potato Under Subtropical Conditions." <u>Second International Drip Irrigation Congress</u> Proc., pp. 515-520.
- (98) Singh, S. D., J. P. Gupta, and P. Singh. 1978. 'Water Economy and Saline Water Use by Drip Irrigation.'' <u>Agronomy J</u>., 70:948-954.
- (99) Singh, S. D. and P. Singh. 1978. 'Value of Drip Irrigation Compared With Conventional Irrigation for Vegetable Production in a Hot Arid Climate.'' Agronomy J., 70:945-947.
- (100) Slosser, J. E. and E. P. Boring, III. 1980. "Shelterbelts and Boll Weevils; a Control Strategy Based on Management of Overwintering Habitat." Environ. Ento., 9:1-6.
- (101) Smith, M. W. and A. L. Kenworthy. 1979. "The Response of Fruit Trees in Michigan to Trickle Irrigation." <u>Soil Sci. and</u> <u>Plant Analysis</u>, 10:1371-1380.
- (102) Smith, M. W., A. L. Kenworthy, and C. L. Bedford. 1979. "The Response of Fruit Trees to Injection of Nitrogen Through a Trickle Irrigation System." J. Amer. Soc. Hort. Sci., 104: 311-313.

- (103) Smola, N. E. Personal Communication. Soil Conservation Service, Stillwater, Oklahoma, August, 1981.
- (104) Stoekeler, J. H. 1962. "Shelterbelt Influence on Great Plains Field Environment and Crops." <u>U.S.D.A. Prod. Res. Rpt</u>. No. 62.
- (105) Stoekeler, J. H. and E. J. Dortignac. 1941. "Snowdrifts as a Factor in Growth and Longevity of Shelterbelts in the Great Plains." Ecology, 22:117-124.
- (106) Strormer, F. A. and G. L. Valentine. 1981. "Management of Shelterbelts for Wildlife." <u>Proc. Thirty-Third Annual Meeting</u> of the Forestry Committee Great Plains Agricultural Council.
- (107) Struentker, A. 1974. 'Moisture Profiles and Salinization of Soils Under Drip Irrigation in the Republic of South Africa.'' <u>Second International Drip Irrigation Congress Proc</u>., pp. 258-264.
- (108) Submatic Irrigation Systems Catalog. 1982. Lubbock, Texas.
- (109) Taylor, B. K. and F. G. Goubran. 1974. "Effects on Localized Phosphate Treatments and Solution pH on the Growth and Function of Apple Roots." <u>Second International Drip Irrigation</u> Congress Proc., pp. 395-399.
- (110) Thomas, J. G., D. A. Starkey, R. G. Aslin. 1981. 'Drip Irrigation for Windbreak Plantings.'' <u>Kansas State Coop. Ext</u>. Bul. No. C-634.
- (111) Ticknor, K. A. 1982. "Effect of Drip Watering Systems on Establishment and Growth of Trees and Shrubs in Nebraska." Proc. <u>Thirty-Fourth Annual Meeting of the Forestry Committee Great</u> Plains Agricultural Council, GPAC Pub. No. 106, pp. 245-257.
- (112) Timmons, D. R. and A. S. Dylla. 1981. "Nitrogen Leaching as Influenced by Nitrogen Management and Supplemental Irrigation Level." J. Environ. Qual., 10:421-426.
- (113) Troeh, F. R., J. A. Hobbs, and R. L. Donahue. 1980. <u>Soil and</u> <u>Water Conservation</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., pp. 407-414.
- (114) Tscheschke, P., J. F. Alfaro, J. Keller, and R. J. Hanks. 1974. "Trickle Irrigation Soil Water Potential as Influenced by Management of Highly Saline Water." <u>Soil Science</u>, 117:226-231.
- (115) TVA/NFDC. 1981. "Sulfur Coated Urea Abstracts." <u>TVA/NFDC</u> Bul. No. Y-168.

- (116) U.S. Department of Agriculture-Soil Conservation Service. 1980. Field Windbreak Removal in Five Great Plains States 1980 to 1975. U.S. Government Printing Office: 1980-626-893/2247.
- (117) Soil Conservation Service (Kansas). 1980. Drip Systems for Windbreaks. U.S. Government Printing Office: 1980-767-552.
- (118) \_\_\_\_\_\_ Soil Conservation Service (Oklahoma). 1979. <u>Operat-</u> ing Your Drip Watering System. SCS Job Sheet 1979-Wood-OK-9.
- (119) U.S. Department of Commerce. 1982, 1983. <u>Climatological Data</u>, <u>Annual Summary</u>. Ashville, N.C.: National Oceanic and Atmospheric Administration National Climatic Center, Vol. 90:13, Vol. 91:13.
- (120) U.S. General Accounting Office. 1975. Action Needed to Discourage Removal of Trees That Shelter Cropland in the Great Plains. Washington, D.C.: RED-75-375.
- (121) VanCleve, K. and T. A. Moore. 1978. "Cumulative Effects of Nitrogen, Phosphorus, and Potassium Fertilizer Additons on Soil Respiration, pH, and Organic Matter Content." <u>Soil Sci.</u> Soc. Amer. J., 42:121-124.
- (122) Van Haverbeke, D. F. 1977. "Conifers for Single Row Field Windbreaks." U.S.D.A.-Forest Service Research Paper, RM-196.
- (123) Vinke, L., and W. F. Dickson. 1933. 'Maintenance of Beef Cows for Calf Production.'' Montana Expt. Sta. Bul., No. 275.
- (124) Volz, M. G. et al. 1976. "Soil Nitrate Loss During Irrigation: Enhancement by Plant Roots." Agronomy J., 68:621-627.
- (125) Walker, W. R. and S. W. Smith. 1976. "Trickle Irrigation for Orchard Crops." Colorado Coop. Ext., Bul. No. 4.703.
- (126) West, D. W., I. F. Merrigan, J. A. Taylor, and G. M. Collins. 1979. "Soil Salinity Gradients and Growth of Tomato Plants Under Drip Irrigation." Soil Science, 127:281-291.
- (127) Wiles, D. K. 1982. "Value of a Windbreak." Proc. Thirty-Fourth Annual Meeting of the Forestry Committee Great Plains Agricultural Council, GPAC Pub. No. 106, pp. 263-264.
- (128) Willardson, L. S., G. W. Bohn, and M. J. Huber. 1974. "Cantaloupe Response to Drip Irrigation." <u>Second Internation Drip</u> Irrigation Congress Proc., pp. 474-479.
- (129) Willoughby, P. and B. Cockroft. 1974. "Changes in Root Patterns of Peach Trees Under Trickle Irrigation." <u>Second Interna-</u> tional Drip Irrigation Congress Proc., pp. 439-442.

- (130) Woodruff, N. P. 1954. "Shelterbelt and Surface Barrier Effect on Wind Velocities, Evaporation, House Heating, and Snow Drifting." Kansas Agr. Expt. Sta., Tech. Bul. No. 77.
- (131) Wyatt, A. W. 1981. "Ground Water: How Much, How Long?" Proc. <u>Thirty-Third Annual Meeting of the Forestry Committee Great</u> Plains Agricultural Council, GPAC Pub. No. 102, pp. 141-146.
- (132) Zimmerman, L. J. 1981. "The Use of Slow Release Fertilizer Tablets and Individual Tree Mulches to Aid the Establishment of Hardwoods on Surface Mine Spoil." (Unpub. M.S. thesis, University of Kentucky, 1981).

# APPENDIX A

FIGURES

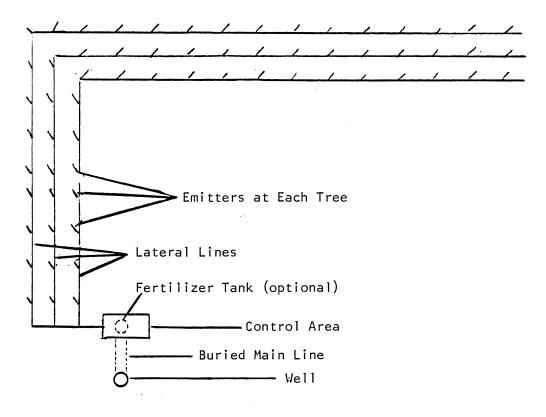
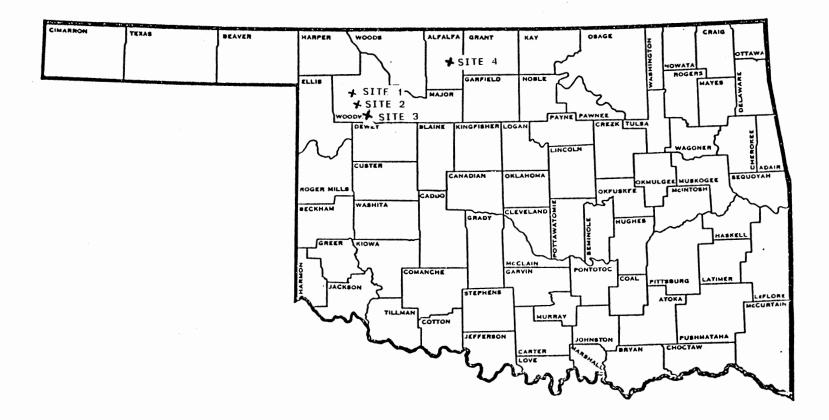
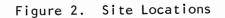





Figure 1. Diagram of a Drip Irrigation System





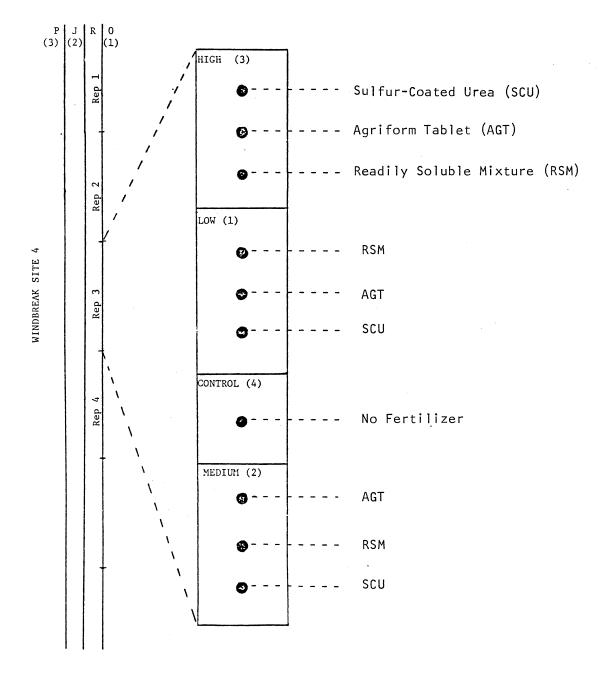



Figure 3. Schematic View of Fertilizer Treatment Design (High, Medium and Low)

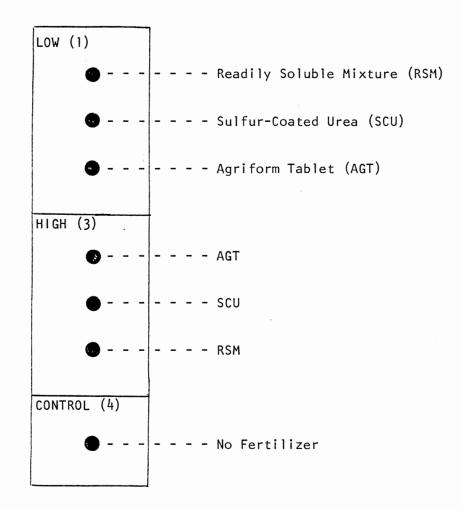



Figure 4. Schematic View of Fertilizer Treatment Design (High and Low)

Example: 41332 First digit is the site of the windbreak Second digit is the tree species number: 1 - Russian-olive (Elaeagnus angustifolia) 2 - Juniper (Juniperus virginiana) 3 - Austrian Pine (Pinus nigra) 4 - Arborvitae (Thuja orientalis) Third digit is the replication block number Fourth digit is the rate of the fertilizer: 1 - Low rate (2 tablets, 35 grams) 2 - Medium rate (4 tablets, 70 grams) 3 - High rate (8 tablets, 140 grams) 4 - No fertilizer Fifth digit is the type of fertilizer: 1 - Agriform Table (20-10-5) 2 - Sulfur Coated Urea (24-4-10) 3 - Quick Release Mixture (34-0-0 + 10-2-10) or (24-3-4)

Figure 5. Explanation of Identification Tag Code

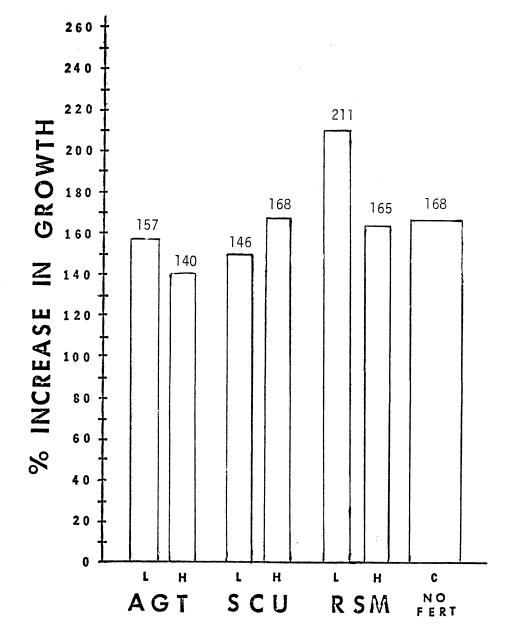



Figure 6. Mean Percent Increase in Height by Fertilizer Site 1, Russian-olive, the First Growing Season After Fertilization

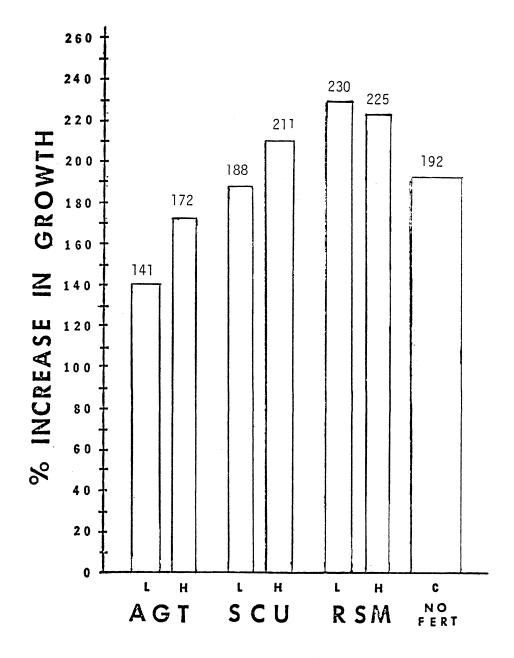



Figure 7. Mean Percent Increase in Diameter by Fertilizer Site 1, Russian-olive, the First Growing Season After Fertilization.

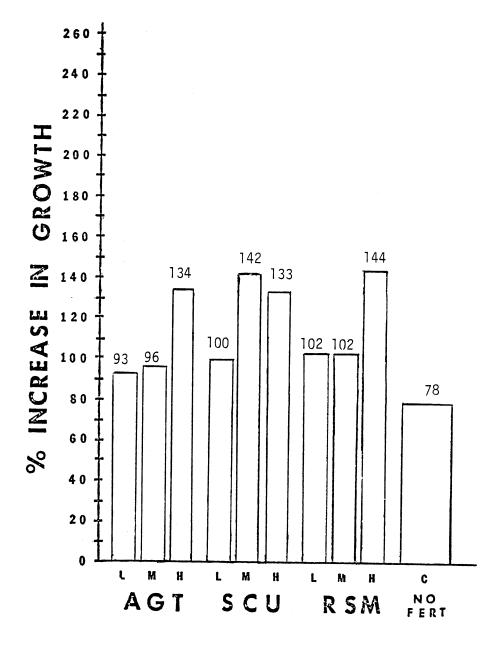
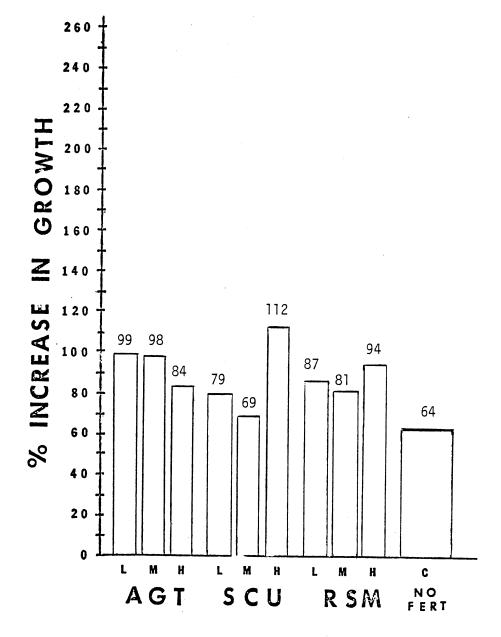




Figure 8. Mean Percent Increase in Height by Fertilizer Site 1, Juniper, the First Growing Season After Fertilization



-

Figure 9. Mean Percent Increase in Diameter by Fertilizer Site 1, Juniper, the First Growing Season After Fertilization

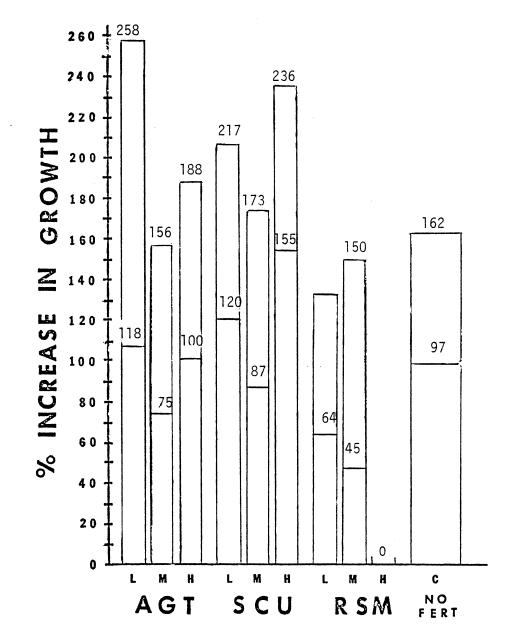



Figure 10. Mean Percent Increase in Height by Fertilizer Site 1, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

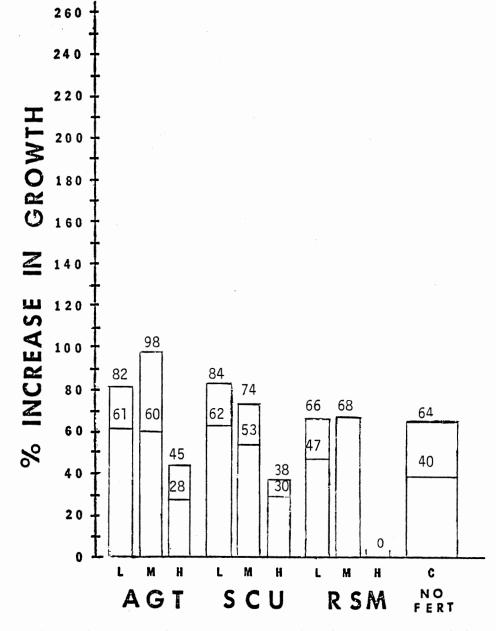



Figure 11. Mean Percent Increase in Diameter by Fertilizer Site 1, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

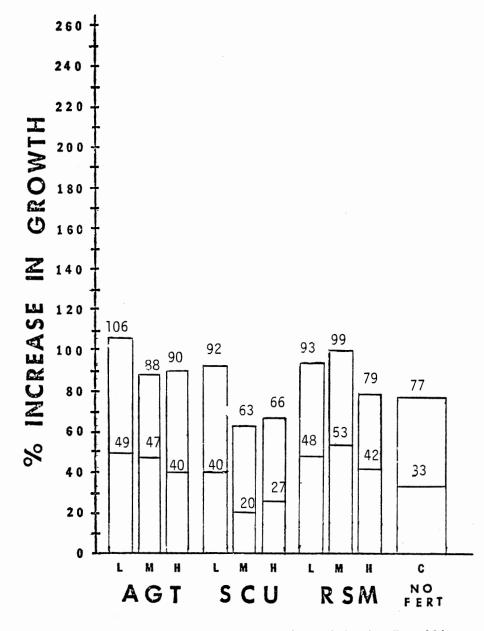



Figure 12. Mean Percent Increase in Height by Fertilizer Site 2, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

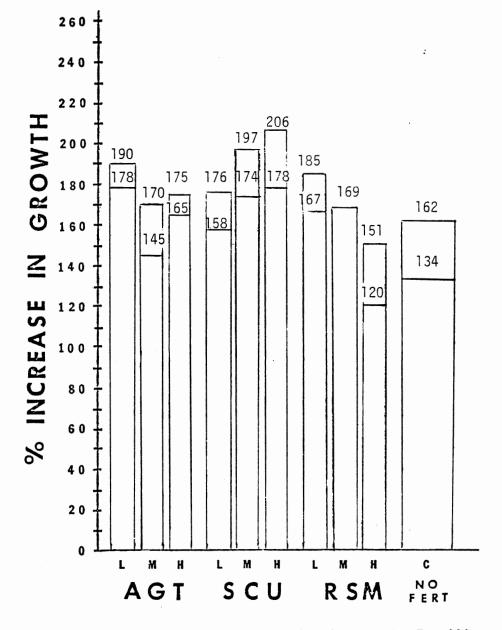



Figure 13. Mean Percent Increase in Diameter by Fertilizer Site 2, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

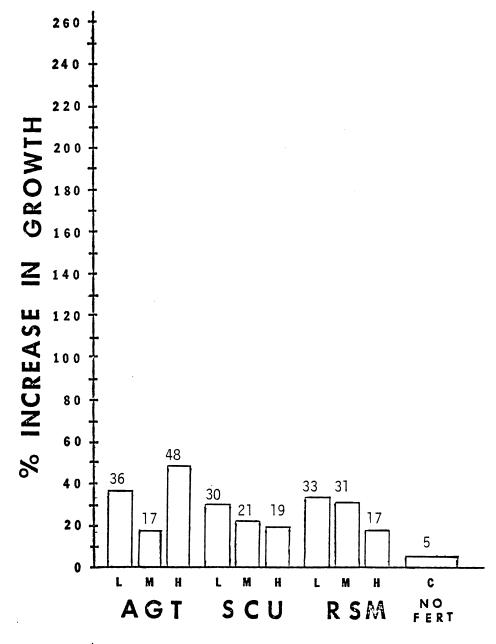



Figure 14. Mean Percent Increase in Height by Fertilizer Site 2, Arborvitae, the First Growing Season After Fertilization




Figure 15. Mean Percent Increase in Diameter by Fertilizer Site 2, Arborvitae, the First Growing Season After Fertilization

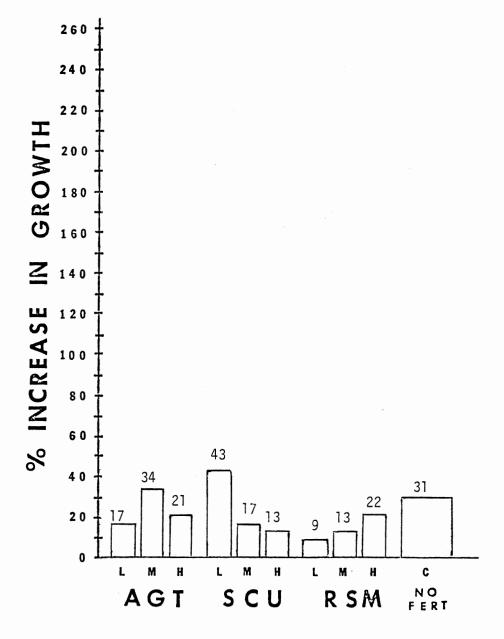



Figure 16. Mean Percent Increase in Height by Fertilizer Site 5, Russian-olive, the First Growing Season After Fertilization

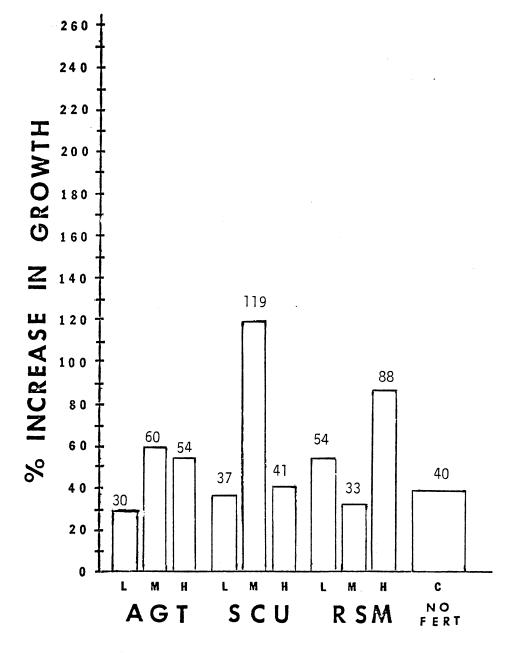



Figure 17. Mean Percent Increase in Diameter by Fertilizer Site 5, Russian-olive, the First Growing Season After Fertilization

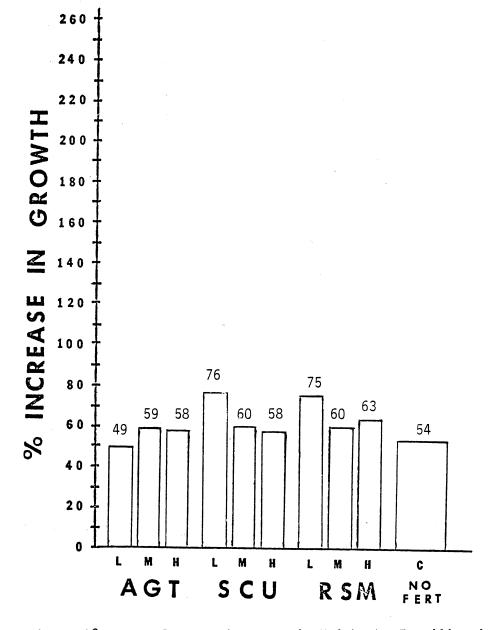



Figure 18. Mean Percent Increase in Height by Fertilization Site 3, Russian-olive, the First Growing Season After Fertilization

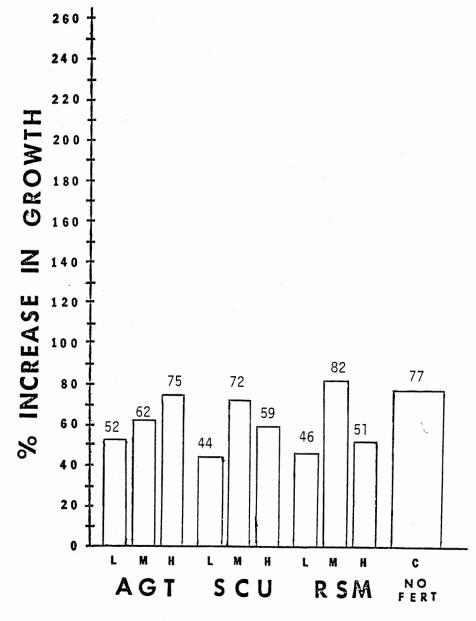



Figure 19. Mean Percent Increase in Diameter by Fertilizer Site 3, Russian-olive, the First Growing Season After Fertilization

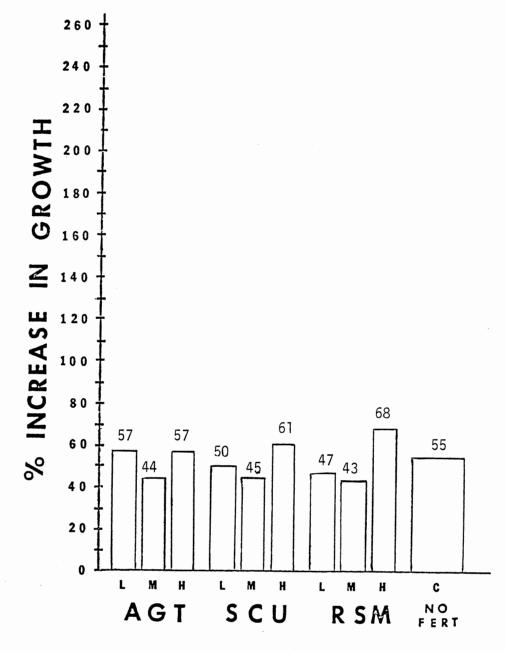



Figure 20. Mean Percent Increase in Height by Fertilizer Site 3, Juniper, the First Growing Season After Fertilization

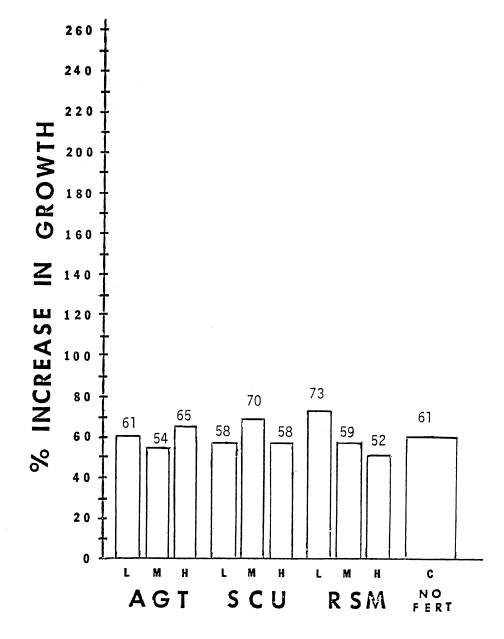



Figure 21. Mean Percent Increase in Diameter by Fertilizer Site 3, Juniper, the First Growing Season After Fertilization

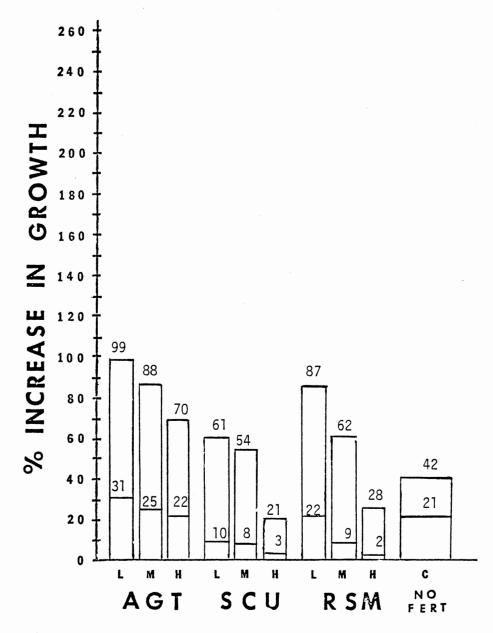



Figure 22. Mean Percent Increase in Height by Fertilizer Site 3, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

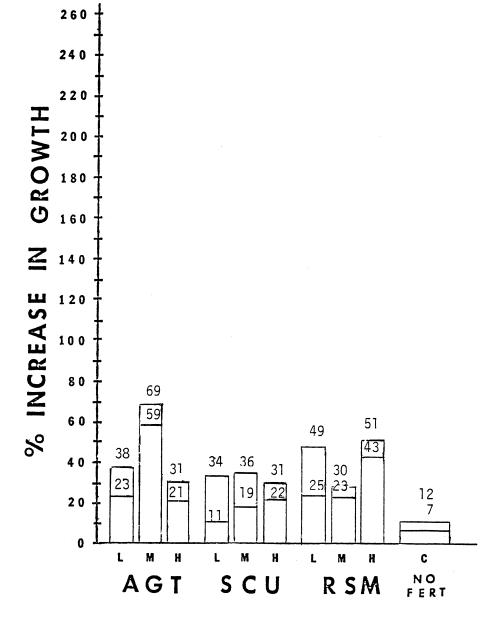



Figure 23. Mean Percent Increase in Diameter by Fertilizer Site 3, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

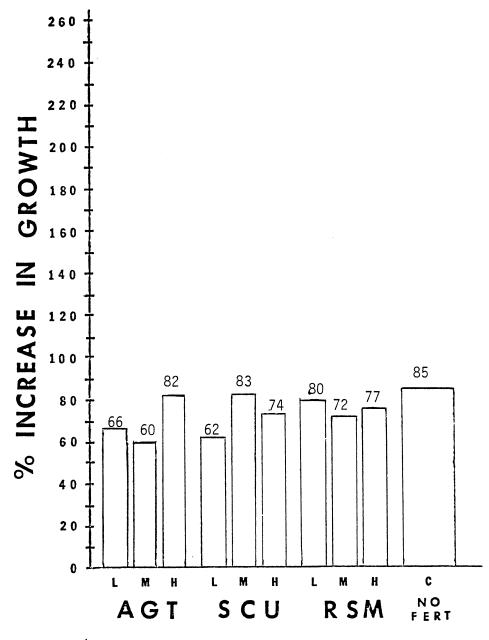



Figure 24. Mean Percent Increase in Height by Fertilizer Site 4, Russian-olive, the First Growing Season After Fertilization

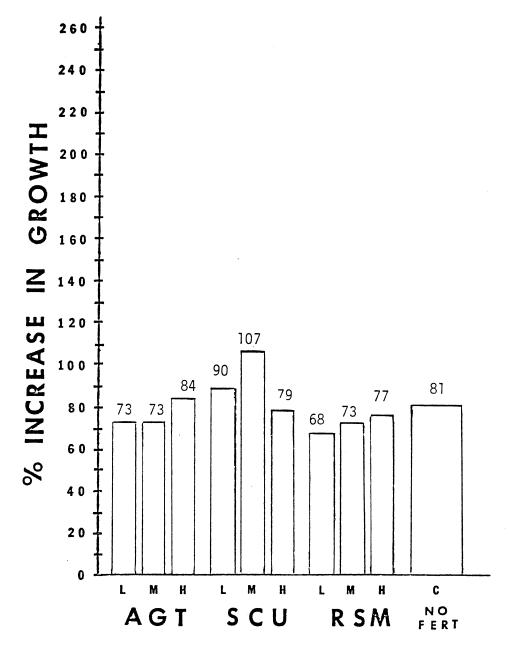



Figure 25. Mean Percent Increase in Diameter by Fertilizer Site 4, Russian-olive, the First Growing Season After Fertilization

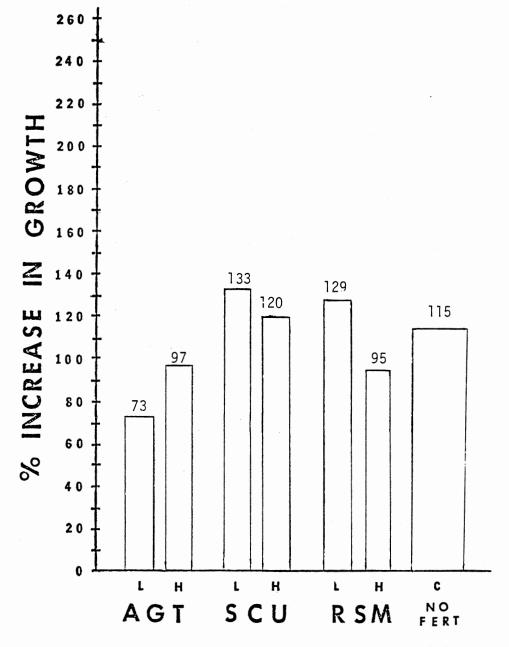



Figure 26. Mean Percent Increase in Height by Fertilizer Site 4, Juniper, the First Growing Season After Fertilization

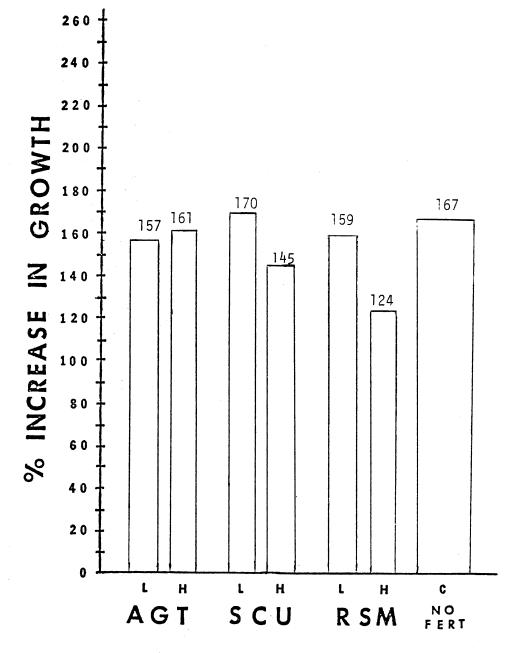



Figure 27. Mean Percent Increase in Diameter by Fertilizer Site 4, Juniper, the First Growing Season After Fertilization

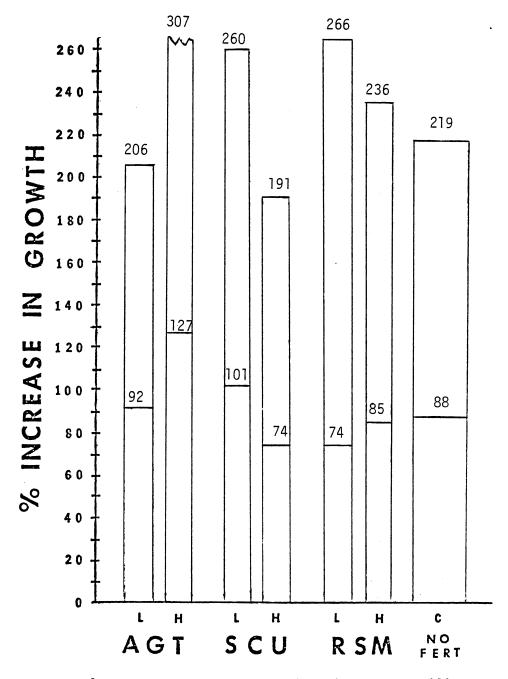



Figure 28. Mean Percent Increase in Height by Fertilizer Site 4, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

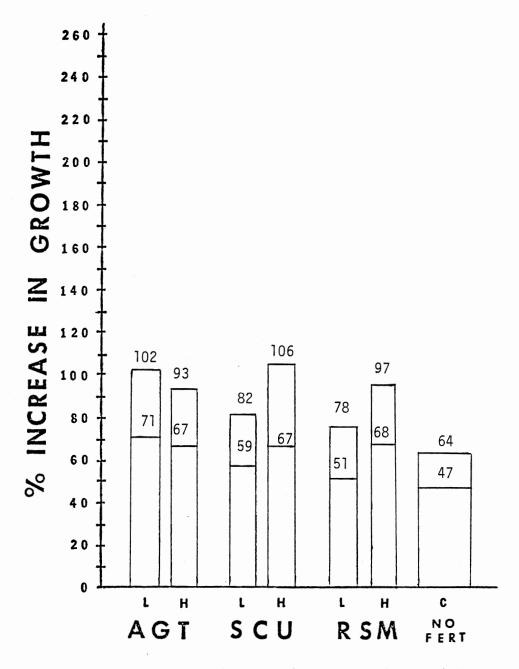



Figure 29. Mean Percent Increase in Diameter by Fertilizer Site 4, Austrian Pine, the First and Second (Estimate) Growing Season After Fertilization

APPENDIX B

TABLES

## TABLE I

-

.

SOIL CHARACTERISTICS BY SITE

| Woodward<br>ver granu- |
|------------------------|
|                        |
| 2                      |
|                        |
|                        |
|                        |
|                        |
|                        |
| <u>Fe</u> <u>Zn</u>    |
| .80 0.64               |
| .30 0.23               |
| .50 5.11               |
| ppm                    |
|                        |
|                        |
| Fe Zn                  |
| .30 1.62               |
| .90 0.29               |
| ppm                    |
|                        |
|                        |
|                        |
| <u>Fe</u> <u>Zn</u>    |
| .40 0.66               |
| 3.60 0.4 <i>1</i>      |
| ppm                    |
|                        |
|                        |
|                        |
| F.a. 7-                |
| <u>Fe</u> <u>Zn</u>    |
| +.20 0.70              |
|                        |
|                        |

TABLE I (Continued)

Site 2 Soil Type: Pratt loamy fine sand (PfC) Soil Texture: Coarse Soil Test: Nov. 1981 (Total Site) pH: 7.4 Nutrient <u>P</u> Depth Ν K Ca Mg Fe Zn 5 54 158 0 cm 1945 124 10.5 1.35 4 30 cm 147 29 1770 144 25.9 0.42 4 60 cm 19 135 1872 149 12.6 2.91 kg/ha / ppm May 1983 (High Rate AGT) pH: 7.5 Nutrient <u>P</u> Depth Ν K Ca Mg Fe Zn 4 26 108 1489 81 5.6 0-10 cm 3.53 10-25 cm 2 22 1279 61 90 5.2 0.38 1 kg/ha ppm (High Rate SCU) pH: 7.5 Nutrient N <u>P</u> Depth K Ca Mg Fe Zn 0-10 cm 3 35 87 1411 63 4.3 3.49 10-25 cm 3 21 84 1414 4.4 63 0.57 kg/ha 1 ppm (High Rate RSM) pH: 7.9 Nutrient Ρ K Depth Ν Ca Mg Fe Zn 4 46 0-10 cm 106 1242 58 5.2 3.16 2 24 10-25 cm 87 1333 63 5.1 0.42 kg/ha 1 ppm

| Site 3           |                                                                                                       |               |                 |                   |                               |                   |   |                          |                      |
|------------------|-------------------------------------------------------------------------------------------------------|---------------|-----------------|-------------------|-------------------------------|-------------------|---|--------------------------|----------------------|
| Soil Type:       | QuinlanWoodward loam (QwC2) possibly mixed with Woodward<br>loam (WoC) or Pratt fine sandy loam (PbB) |               |                 |                   |                               |                   |   |                          |                      |
| Soil<br>Texture: | Fine                                                                                                  |               |                 |                   |                               |                   |   |                          |                      |
| Soil Test:       | <u>Nov. 1981</u><br>pH: 8.1                                                                           | (Total        | Site)           |                   |                               |                   |   |                          |                      |
|                  |                                                                                                       |               |                 |                   | Nutrient                      | t                 |   |                          |                      |
|                  | Depth                                                                                                 | <u>N</u>      | <u>P</u>        | K                 | Ca                            | Mg                |   | Fe                       | Zn                   |
|                  | 0 cm<br>30 cm<br>60 cm                                                                                | 9<br>15<br>30 | 111<br>52<br>17 | 485<br>340<br>251 | 4394<br>4974<br>5096<br>kg/ha | 224<br>197<br>296 | 1 | 4.8<br>6.8<br>4.4<br>ppm | 0.97<br>0.67<br>2.12 |
|                  | <u>May 1983</u>                                                                                       | (Not Av       | ailable)        |                   |                               |                   |   |                          |                      |

| TABLE ! ( | Continued) |
|-----------|------------|
|-----------|------------|

| Soil Type: Dale silt loam 0 to 1% slope. A fine silt loam, with fr<br>Soil<br>Texture: Fine<br>Soil<br>Test: Nov. 1981 (Total Site)<br>pH: 6.4<br>$\frac{Depth}{0 \text{ cm}} = \frac{N}{3} = \frac{F}{157} = \frac{Nutrient}{839} = \frac{Nutrient}{1352} = \frac{Mg}{297} = \frac{F}{40.8}$ | <u>Zn</u><br>1.48<br>3.37<br>1.51 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| Texture: Fine<br>Soil<br>Test: Nov. 1981 (Total Site)<br>pH: 6.4<br>$\frac{Depth}{0 \text{ cm}} = \frac{N}{3} + \frac{P}{57} + \frac{K}{39} + \frac{Nutrient}{1352} + \frac{Mg}{297} + \frac{Fe}{40.8}$                                                                                       | 1.48<br>3.37                      |  |  |
| Test: <u>Nov. 1981</u> (Total Site)<br>pH: 6.4<br><u>Depth N P K Ca Mg Fe</u><br>0 cm 3 157 839 1352 297 40.8                                                                                                                                                                                 | 1.48<br>3.37                      |  |  |
| <u>Depth</u> <u>N</u> <u>P</u> <u>K</u> <u>Ca</u> <u>Mg</u> <u>Fe</u><br>0 cm 3 157 839 1352 297 40.8                                                                                                                                                                                         | 1.48<br>3.37                      |  |  |
| <u>Depth</u> <u>N</u> <u>P</u> <u>K</u> <u>Ca</u> <u>Mg</u> <u>Fe</u><br>0 cm 3 157 839 1352 297 40.8                                                                                                                                                                                         | 1.48<br>3.37                      |  |  |
| 0 cm 3 157 839 1352 297 40.8                                                                                                                                                                                                                                                                  | 3.37                              |  |  |
|                                                                                                                                                                                                                                                                                               | 3.37                              |  |  |
| 30 cm 21 81 735 1705 425 40.7                                                                                                                                                                                                                                                                 | 1.51                              |  |  |
| 60 cm 152 70 522 2565 553 14.1                                                                                                                                                                                                                                                                |                                   |  |  |
| kg/ha / ppm                                                                                                                                                                                                                                                                                   |                                   |  |  |
| <u>May 1983</u> (High Rate AGT)<br>pH: 5.45                                                                                                                                                                                                                                                   |                                   |  |  |
|                                                                                                                                                                                                                                                                                               |                                   |  |  |
| Depth N P K Ca Mg Fe                                                                                                                                                                                                                                                                          | Zn                                |  |  |
| 0-10 cm 21 166 463 1177 244 27.2                                                                                                                                                                                                                                                              | 1.53                              |  |  |
| 10-25 cm 2 137 479 1376 354 13.1<br>kg/ha / ppm                                                                                                                                                                                                                                               | 1.10                              |  |  |
| (High Rate SCU)                                                                                                                                                                                                                                                                               |                                   |  |  |
| pH: 5.7                                                                                                                                                                                                                                                                                       |                                   |  |  |
| Nutrient                                                                                                                                                                                                                                                                                      |                                   |  |  |
| Depth N P K Ca Mg Fe                                                                                                                                                                                                                                                                          | Zn                                |  |  |
| 0-10 cm 9 139 537 996 267 15.8<br>10-25 cm 3 99 535 1696 475 11.0                                                                                                                                                                                                                             | 0.89                              |  |  |
|                                                                                                                                                                                                                                                                                               | 1.00                              |  |  |
| kg/ha / ppm                                                                                                                                                                                                                                                                                   |                                   |  |  |
| (High Rate RSM)                                                                                                                                                                                                                                                                               |                                   |  |  |
| pH: 5.35                                                                                                                                                                                                                                                                                      |                                   |  |  |
| Nutrient                                                                                                                                                                                                                                                                                      |                                   |  |  |
| Depth N P K Ca Mg Fe                                                                                                                                                                                                                                                                          | Zn                                |  |  |
| 0-10 cm 6 158 433 1062 251 20.0                                                                                                                                                                                                                                                               | 1.14                              |  |  |
| 10-25 cm 5 112 528 1331 336 12.2<br>kg/ha / ppm                                                                                                                                                                                                                                               | 1.26                              |  |  |
| kg/ha / ppm                                                                                                                                                                                                                                                                                   |                                   |  |  |

| TAB | LE | 11 |
|-----|----|----|
|-----|----|----|

## CHEMICAL FORMULATION OF FERTILIZER TYPES

.

•

| Agriform Tablet (AGT)                                                                | (20-10-5)       |
|--------------------------------------------------------------------------------------|-----------------|
| Composition                                                                          |                 |
| Total Nitrogen (N)                                                                   | 20.00%          |
| 7.0% Soluble Nitrogen<br>13.0% Water Insoluble Nitrogen                              |                 |
| Available Phosphoric Acid (P <sub>2</sub> 0 <sub>5</sub> )                           | 10.00%          |
| Soluble Potash (K <sub>2</sub> 0)                                                    | 5.00%           |
| Calcium (Ca)                                                                         | 2.60%           |
| Sulfur (S)                                                                           | 1.60%           |
| Iron (Fe)                                                                            | 0.35%           |
| Derived from: Ureaformaldehyde, Calcium Phospha<br>Sulfate, Ferrous Sulfate          | ates, Potassium |
| Sulfur Coated Urea (SCU)                                                             |                 |
| Composition                                                                          | (24-4-10)       |
| Total Nitrogen (N)                                                                   | 24.00%          |
| 0.80% Ammoniacal Nitrogen<br>23.20% Urea Nitrogen                                    |                 |
| Available Phosphoric Acid (P <sub>2</sub> 0 <sub>5</sub> )                           | 4.00%           |
| Soluble Potash (K <sub>2</sub> 0)                                                    | 10.00%          |
| Sulfur (S)                                                                           | 16.00%          |
| Derived from: Sulfur Coated Urea, Sulfur Coated<br>phate, Sulfur Coated Muriate of P |                 |
| The nitrogen, phosphorus, and potassium have bee                                     | n coated to     |

provide 20.40% slow release nitrogen, 3.40% slow release phosphorous, and 8.5% slow release potassium.

> . .

TABLE II (Continued)

| Readily Soluble Mixture (RSM)                              | (24-8-4)* |
|------------------------------------------------------------|-----------|
| (Mixture of 34-0-0 + 10-20-10)                             |           |
| Composition Mixture                                        |           |
| Total Nitrogen (N)                                         | 24.00%    |
| 24.00% Ammoniacal Nitrate                                  |           |
| Available Phosphoric Acid (P <sub>2</sub> 0 <sub>5</sub> ) | 8.00%     |
| Soluble Potash (K <sub>2</sub> 0)                          | 4.00%     |

\*To match the 24% nitrogen in the SCU treatment, a mixture of 58.30 parts of 10-20-10 to 41.70 parts of 34-0-0 were blended together.

## TABLE III

## 1982 DRIP IRRIGATION WATER USAGE BY SITE

| Site 1                                        | Schedule                                                 |                      |            |         |
|-----------------------------------------------|----------------------------------------------------------|----------------------|------------|---------|
|                                               | Water Rate                                               | Aug                  | Sept       | Oct     |
| Russian-Olive<br>Juniper<br>Austrian Pine     | l.75 liters/hour<br>3.96 liters/hour<br>3.50 liters/hour | 122 hrs              | 89 hrs     | 48 hrs  |
| Lateral drip lines wo<br>dole emitters.       | ere 12.7 mm in diameter,                                 | the emitter          | rs were Si | ubmatic |
| Site 2                                        |                                                          |                      |            |         |
|                                               |                                                          | Apr                  | May        | July    |
| Austrian Pine<br>Arborvitae<br>Russian-Olive  | 5.00 liters/hour<br>5.10 liters/hour                     | 133 hrs <sup>*</sup> | 24 hrs     | 70 hrs  |
| There were no record<br>September, and Octobe | ed watering times in the<br>er.                          | months of .          | June, Augu | ust,    |
| Lateral drip lines wo<br>dole emitters.       | ere 12.7 mm in diameter,                                 | the emitte           | rs were Su | ubmatic |
| Site 3                                        |                                                          |                      |            |         |
|                                               |                                                          | Ju                   | ly Au      | ug      |
| Russian-Olive                                 | Not used                                                 | 12 H                 | nrs** 100  | hrs     |
| Juniper<br>Austries Disc                      | 2.10 liters/hour                                         | Sep                  | ot Od      | ct      |
| Austrian Pine                                 | 2.40 liters/hour                                         |                      |            | hrs     |
| Lateral drip lines we<br>dole emitters.       | ere 12.7 mm in diameter,                                 | the emitter          | s were Su  | ubmatic |
| Site 4                                        |                                                          |                      |            |         |
| Russian-Olive<br>Juniper<br>Austrian Pine     | 16.6 liters/hour<br>16.6 liters/hour<br>16.6 liters/hour | Not avail            | able       |         |
|                                               | e (19 mm in diameter), t<br>o the lateral line by mi     |                      | were Stup  | ору     |

\*Operational for newly-planted seedlings.

\*\*Pine only.

Note: Schedules were recorded by the landowner.

| Year   | Site 1                | Site 2                | Site 3                | Site 4                |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1978   | 585.22 mm             | 585.22 mm             | 545.85 mm             | 682.24 mm             |
| 1979   | 803.15 mm             | 803.15 mm             | 722.12 mm             | 637.86 mm             |
| 1980   | 636.27 mm             | 636.27 mm             | 598.17 mm             | 530.87 mm             |
| 1981   | 592.33 mm             | 592.33 mm             | 588.26 mm             | 867.41 mm             |
| 1982   | 667.51 mm             | 667.51 mm             | 710.44 mm             | 636.31 mm             |
|        | (300.70 mm<br>in May) | (300.70 mm<br>in May) | (259.84 mm<br>in May) | (297.67 mm<br>in May) |
| Normal | 615.70 mm             | 615.70 mm             | 615.95 mm             | 685.04 mm             |

PRECIPITATION TOTALS FOR 1978 THROUGH 1982 BY SITE

# TABLE V

| <u>Site l</u>   | Russian-Olive                                                                                                                     | Juniper                                                                                                              | <u>Austrian Pine</u>                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Total No. Trees | 30                                                                                                                                | 60                                                                                                                   | 65                                                                                         |
| Number Dead     | 2                                                                                                                                 | 8                                                                                                                    | 24                                                                                         |
| By Treatment    | Low SCU 1<br>Control 1                                                                                                            | Med AGT 1<br>High AGT 1<br>Low SCU 2<br>High SCU 1<br>High RSM 3                                                     | Med AGT 1<br>High AGT 2<br>High SCU 4<br>Low RSM 5<br>Med RSM 5<br>High RSM 6<br>Control 1 |
| Survival Rate   | <u>93.33</u> %                                                                                                                    | <u>86.67</u> %                                                                                                       | 63.08%                                                                                     |
| Sites 2 and 5   | Russian-Olive<br>(Site 5)                                                                                                         | Arborvitae<br>(Site 2)                                                                                               | Austrian Pine<br>(Site 2)                                                                  |
| Total No. Trees | 80                                                                                                                                | 97                                                                                                                   | 100                                                                                        |
| Number Dead     | 32                                                                                                                                | 17                                                                                                                   | 7                                                                                          |
| By Treatment    | Low AGT 3<br>Med AGT 4<br>High AGT 3<br>Low SCU 3<br>Med SCU 3<br>High SCU 5<br>Low RSM 3<br>Med RSM 1<br>High RSM 4<br>Control 3 | Med AGT 2<br>High AGT 3<br>Low SCU 1<br>Med SCU 2<br>High SCU 2<br>Low RSM 3<br>Med RSM 1<br>High RSM 2<br>Control 1 | Low AGT 1<br>High AGT 1<br>Low SCU 1<br>High SCU 1<br>High RSM 2<br>Control 1              |
| Survival Rate   | 60.00%                                                                                                                            | 82.47%                                                                                                               | <u>93.00</u> %                                                                             |
|                 |                                                                                                                                   |                                                                                                                      |                                                                                            |

# SURVIVAL RATES BY SITE, SPECIES, FERTILIZER TREATMENT

Site 3 Russian-Olive Juniper Austrian Pine Total No. Trees 74 91 80 Number Dead 0 0 10 By Treatment \_ \_ \_ ---Med AGT 1 Low SCU 2 Low RSM 1 Med RSM 2 High RSM 3 Control 1 Survival Rate 100% 87.50% 100% Site 4 Russian-Olive Juniper Austrian Pine Total No. Trees 62 49 55 Number Dead 1 1 10 By Treatment Low AGT Low AGT 1 1 Low SCU 1 High SCU 3 2 Low RSM High RSM 3 Control 1 Survival Rate <u>98.39</u>% <u>98.18</u>% <u>79.59</u>%

TABLE V (Continued)

# TABLE VI

#### MEAN FOLIAR NITROGEN CONCENTRATIONS BY SITE

#### Legend

# Fertilizer Treatments

FR = Fertilizer Rate FT = Fertilizer Type AGT = Agriform Tablet SCU = Sulfur Coated Urea RSM = Readily Soluble Mixture FR FT 1 = Low Rate AGT 1 2 = Low Rate SCU 1 3 = Low Rate RSM 1 3 1 = High Rate AGT 3 2 = High Rate SCU3 3 = High Rate RSM Ĩ4

4 = Control

# Species

- l = Russian-Olive 2 = Juniper 3 = Austrian Pine
- 4 = Arborvitae

Mean Percent Foliar Nitrogen

MNITRC = Mean Nitrogen Concentration

| Means                                                                                                                                                                                                                                                                                | Means                                                                                                          | Means                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR FT N MNITRC                                                                                                                                                                                                                                                                       | FR FT N MNITRC                                                                                                 | FR FT N MNITRC                                                                                                                                                                                                                                            |
| Site = 1 Species = 1                                                                                                                                                                                                                                                                 | Site = 1 Species = 2                                                                                           | Site = 1 Species = 3                                                                                                                                                                                                                                      |
| 1       1       3       3.47400000         1       2       2       3.30450000         1       3       3.76100000         3       1       3       3.76200000         3       2       3       3.47933333         3       3       3.50933333         4       4       2       3.37300000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           | 1       1       3       1.30266667         1       2       4       1.28025000         1       3       1       1.46200000         3       1       3       1.14366667         3       2       2       1.03600000         4       4       3       0.68933333 |
| Site = 2Species = 31161.377333331251.500200001361.409000003161.453500003261.427333333361.1851666744101.31700000                                                                                                                                                                      | Site = 2Species = 41161.908833331252.035200001342.036250003162.070166673261.947333333371.992714294492.04977778 |                                                                                                                                                                                                                                                           |
| Site = 3 Species = 1                                                                                                                                                                                                                                                                 | Site = 3 Species = $2$                                                                                         | Site = 3 Species = 3                                                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                      |

TABLE VI (Continued)

| Means                | Means                  | Me          | eans        |  |
|----------------------|------------------------|-------------|-------------|--|
| FR FT N MNITRC       | FR FT N MNITRC         | FR FT N     | MNITRC      |  |
| Site = 4 Species = 1 | Site = 4 Species = $2$ | Site = $4$  | Species = 3 |  |
| 1 1 4 3.50750000     | 1 1 3 1.68333333       | 116         | 1.66716667  |  |
| 1 2 4 3.60775000     | 1 2 4 1.77525000       | 125         | 1.6200000   |  |
| 1 3 4 3.82575000     | 1 3 5 1.71160000       | 134         | 1.5607500   |  |
| 3 1 4 4.02900000     | 3 1 3 1.63066667       | 3 1 6       | 1.8355000   |  |
| 3 2 4 3.97025000     | 3 2 5 1.68160000       | 3 2 2       | 1.64800000  |  |
| 3 3 3 3.93533333     | 3 3 5 1.66940000       | 3 3 3       | 1.6736666   |  |
| 4 4 4 3.54025000     | 4 4 5 1.80940000       | <u>4</u> 45 | 1.7650000   |  |

TABLE VI (Continued)

# TABLE VII

# STATISTICAL ANALYSIS OF FOLIAR NITROGEN CONCENTRATIONS BY SITE

|                                                                                                                                                                       | Legend                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Fertilizer Treatments                                                                                                                                                 | Species                                                                 |
| <pre>FR = Fertilizer Rate FT = Fertilizer Type AGT = Agriform Tablet SCU = Sulfur Coated Urea</pre>                                                                   | l = Russian-Olive<br>2 = Juniper<br>3 = Austrian Pine<br>4 = Arborvitae |
| RSM = Readily Soluble Mixture                                                                                                                                         | Mean Percent Foliar Niti                                                |
| <pre>1 1 = Low Rate AGT<br/>1 2 = Low Rate SCU<br/>1 3 = Low Rate RSM<br/>3 1 = High Rate AGT<br/>3 2 = High Rate SCU<br/>3 3 = High Rate RSM<br/>4 4 = Control</pre> | MNITRC = Mean Nitrogen Conce                                            |

litrogen

oncentration

,

•

•

.

|               |             |         |                                                                                                |                                                                                                              |                                                                                                                            | •                                                                   |                                                    |                                                                                                         |             |
|---------------|-------------|---------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------|
|               |             |         |                                                                                                |                                                                                                              | SITE-1 SPECI                                                                                                               | ES-1                                                                |                                                    |                                                                                                         |             |
| DEPENDEN      | IT VAR      | IABLE   | : MNITRC                                                                                       |                                                                                                              |                                                                                                                            |                                                                     |                                                    |                                                                                                         |             |
| SOURCE        |             |         | DF                                                                                             | SUM OF SQUARES                                                                                               | MEAN SQUARE                                                                                                                | F VALUE                                                             | PR > F                                             | R-SQUARE                                                                                                | c.v.        |
| NODEL         |             |         |                                                                                                | 0.58513726                                                                                                   | 0.07314216                                                                                                                 | 1.68                                                                | 0.2167                                             | 0.573868                                                                                                | 5.8638      |
| ERROR         |             |         | 10                                                                                             | 0.43450042                                                                                                   | 0.04345004                                                                                                                 |                                                                     | ROOT MSE                                           |                                                                                                         | MNITRC MEAN |
| CORRECTE      | D TOT       | AL      | 18                                                                                             | 1.01963768                                                                                                   |                                                                                                                            |                                                                     | 0.20844674                                         |                                                                                                         | 3.54273684  |
| SOURCE        |             |         | DF                                                                                             | TYPE I SS                                                                                                    | F VALUE PR                                                                                                                 | 5 F                                                                 |                                                    |                                                                                                         |             |
| PLOT<br>FR+FT |             |         | 2<br>6                                                                                         | 0.05788618<br>0.82725108                                                                                     |                                                                                                                            | i351<br>1553                                                        |                                                    |                                                                                                         |             |
|               |             |         |                                                                                                |                                                                                                              | LEAST SQUARES ME                                                                                                           | ANS                                                                 |                                                    |                                                                                                         |             |
|               | FR          | FT      | MNI TRC<br>LSMEAN                                                                              |                                                                                                              | S   T   PROB >   T  <br>SMEAN-O I/J 1                                                                                      | HO: LSMEAN(I)=<br>2 3                                               |                                                    | 67                                                                                                      |             |
|               | 1 1 1 3 3 4 | 1231234 | 3.47400000<br>3.26837529<br>3.76100000<br>3.76200000<br>3.47933333<br>3.50933333<br>3.36082984 | 0.12034678<br>0.15162799<br>0.12034678<br>0.12034678<br>0.12034678<br>0.12034678<br>0.12034678<br>0.12034678 | 0.0001 1<br>0.0001 2 0.3131<br>0.0001 3 0.1226<br>0.0001 4 0.1215<br>0.0001 5 0.9756<br>0.0001 5 0.8397<br>0.0001 7 0.5718 | 0.0291<br>0.0291<br>0.0289 0.9954<br>0.3014 0.1289<br>0.2416 0.1700 | 0.9954 0.1289<br>0.1277<br>0.1277<br>0.1685 0.8636 | 0.8397 0.5718<br>0.2416 0.6801<br>0.1700 0.0656<br>0.1685 0.0650<br>0.8636 0.5541<br>. 0.4607<br>0.4607 |             |

#### SITE=1 SPECIES=2

| DEPENDENT VARIABLE:                    | MNITRC                                                                                         |                                                                                                              |                                                                                                                            |                                                                                             |                                          |                                                                            |             |
|----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------|
| SOURCE                                 | DF                                                                                             | SUM OF SQUARES                                                                                               | MEAN SQUARE                                                                                                                | F VALUE                                                                                     | PR > F                                   | R-SQUARE                                                                   | C.V.        |
| MODEL                                  | •                                                                                              | 0.57819939                                                                                                   | 0.06424438                                                                                                                 | 1.60                                                                                        | 0.2023                                   | 0.489789                                                                   | 12.8864     |
| ERROR                                  | 15                                                                                             | 0.60230661                                                                                                   | 0.04015377                                                                                                                 |                                                                                             | ROOT MSE                                 |                                                                            | MNITRC MEAN |
| CORRECTED TOTAL                        | 24                                                                                             | 1.18050600                                                                                                   |                                                                                                                            |                                                                                             | 0.20038407                               |                                                                            | 1.55500000  |
| SOURCE                                 | DF                                                                                             | TYPE I SS                                                                                                    | F VALUE PR 2                                                                                                               |                                                                                             |                                          |                                                                            |             |
| ₽LOT<br>FR+FT                          | 3                                                                                              | 0. 13397679<br>0. 44422261                                                                                   | 1.11 0.37<br>1.84 0.15                                                                                                     |                                                                                             |                                          |                                                                            |             |
|                                        |                                                                                                |                                                                                                              | LEAST SQUARES MEA                                                                                                          | NS                                                                                          |                                          |                                                                            |             |
| FR FT                                  | MNI TRC<br>LSMEAN                                                                              |                                                                                                              | 3 >  T  PROB >  T <br>SMEAN=0 1/J 1                                                                                        | HO: LSMEAN(I)=<br>2 3                                                                       |                                          | 67                                                                         |             |
| 1 1<br>1 2<br>3 1<br>3 2<br>3 3<br>4 4 | 1.43050000<br>1.74944626<br>1.41225000<br>1.47400000<br>1.56000000<br>1.53771729<br>1.75850000 | 0.10019203<br>0.11823184<br>0.10019203<br>0.10019203<br>0.10019203<br>0.10019203<br>0.14784930<br>0.10019203 | 0.0001 1<br>0.0001 2 0.0574<br>0.0001 3 0.8992<br>0.0001 4 0.7631<br>0.0001 5 0.3752<br>0.0001 6 0.5573<br>0.0001 7 0.0352 | 0.0574 0.8992<br>0.0460<br>0.0958 0.6692<br>0.2404 0.3136<br>0.2893 0.4931<br>0.9542 0.0274 | 0.0958 0.2404<br>0.6692 0.3136<br>0.5530 | 0.2893 0.9542<br>0.4931 0.0274<br>0.7262 0.0630<br>0.9024 0.1816<br>0.2354 |             |

#### SITE=1 SPECIES=3

|                                          | DEPENDENT VARIAB | LE: MNITRC         |                          |                                        |                                                 |                  |
|------------------------------------------|------------------|--------------------|--------------------------|----------------------------------------|-------------------------------------------------|------------------|
|                                          | SOURCE           | DF                 | SUM OF SQUARES           | MEAN SQUARE                            | F VALUE PR > F                                  | R-SQUARE C.V.    |
|                                          | MODEL            | 8                  | 1.31839458               | 0. 16479932                            | 1.38 0.3437                                     | 0.611162 30.6644 |
|                                          | ERROR            | 7                  | 0.83879917               | Q. 11982845                            | ROOT MSE                                        | MNITRC MEAN      |
|                                          | CORRECTED TOTAL  | 15                 | 2.15719375               |                                        | 0.34616247                                      | 1.12887500       |
|                                          | SOURCE           | DF                 | TYPE I SS                | F VALUE PR >                           | ,                                               | -                |
|                                          | PLOT<br>FR*FT    | 3                  | 0.46286305<br>0.85553153 | 1.29 0.351<br>1.43 0.321               |                                                 |                  |
|                                          |                  |                    |                          | LEAST SQUARES MEANS                    |                                                 |                  |
| 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | FR. F            | T MNITRC<br>LSMEAN |                          | 3 >  T  PROB >  T   <br>LSMEAN=O I/J 1 | HO: LSMEAN(I)=LSMEAN(J)<br>2 3 4                | 5 6              |
| 1. s.,                                   | 1 1              | 1.33151282         | 0.21288432<br>0.17308123 | 0.0004 1 0                             | 0.8571 0.9734 0.3615 0.24<br>0.8784 0.3922 0.28 |                  |
|                                          |                  |                    |                          |                                        |                                                 |                  |

| FR. | FT | MNITRC     | STD ERR    | PROB >  T   |    |        | HO: LSM | EAN(I)=L | SMEAN(J) | _      |        |
|-----|----|------------|------------|-------------|----|--------|---------|----------|----------|--------|--------|
|     |    | LSMEAN     | LSMEAN     | HO:LSMEAN=O | 1/ | J 1    | 2       | 3        | 4        | 5      | •      |
| 1   | 1  | 1.33151282 | 0.21288432 | 0.0004      | 1  |        | 0.8571  | 0.9734   | 0.3615   | 0.2401 | 0.0666 |
| 1   | 2  | 1.28025000 | 0.17308123 | 0.0001      | 2  | 0.8571 |         | 0.8784   | 0.3922   | 0.2838 | 0.0797 |
| 1   | Э  | 1.34607885 | 0.37706905 | 0.0091      | з  | 0.9734 | 0.8784  |          | 0.4857   | 0.3553 | 0.1806 |
| 3   | 1  | 1.03267308 | 0.20924501 | 0.0017      | 4  | 0.3615 | 0.3922  | 0.4857   |          | 0.7278 | 0.3384 |
| 3   | 2  | 0.91277885 | 0.26511129 | 0.0108      | 5  | 0.2401 | 0.2838  | 0.3553   | 0.7278   |        | 0.5695 |
| 4   | 4  | 0.71817949 | 0.21288432 | 0.0119      | 6  | 0.0666 | 0.0797  | 0.1806   | 0.3384   | 0.5695 |        |

# SITE-2 SPECIES-3

| NERAL LINEAR MODELS PROCEDURE |
|-------------------------------|
|-------------------------------|

| ABLE :  | MNITRC                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                          |                                                        |
|---------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
|         | DF                                                                                            | SUN OF SQUARES                                                                                                                                         | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR > F                                                                      | R-SQUARE                                                 | c.v.                                                   |
|         | 16                                                                                            | 1.22931181                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7683199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0157                                                                      | 0.590038                                                 | 12.7208                                                |
|         | 28                                                                                            | 0.85413419                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3050479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROOT HSE                                                                    |                                                          | MNITRC MEAN                                            |
| L       | 44                                                                                            | 2.06344600                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 17465621                                                                 |                                                          | 1.37300000                                             |
|         | DF                                                                                            | TYPE I SS                                                                                                                                              | F VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR > F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                          |                                                        |
|         | 10<br>6                                                                                       | 0.73776208<br>0.49154973                                                                                                                               | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                          |                                                        |
|         |                                                                                               |                                                                                                                                                        | LEAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SQUARES MEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                          |                                                        |
| FT      | MNI TRC<br>LSMEAN                                                                             | STD' ERR<br>LSMEAN                                                                                                                                     | PROB > [T]<br>HQ:LSMEAN=O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROB >  T <br>I/J 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                          | 7                                                      |
| 1231234 | 1.46568581<br>1.60211281<br>1.49735248<br>1.46864128<br>1.4725555<br>1.22422876<br>1.34451915 | 0.08286104<br>0.08989844<br>0.08286104<br>0.08342049<br>0.0836354<br>0.0836354                                                                         | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>2 0.2117<br>3 0.7558<br>4 0.9773<br>5 0.9474<br>6 0.0267<br>7 0.2396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.334<br>0.3347<br>0.2318 0.782<br>0.2454 0.811<br>0.0015 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 0.2318 0.2454<br>0.7828 0.8117<br>8 0.9697<br>7 0.9697<br>2 0.0240 0.0221 | 0.0015 0.<br>0.0132 0.<br>0.0240 0.<br>0.0221 0.<br>0.   | 2396<br>0226<br>1408<br>2389<br>2247<br>2539           |
|         | L                                                                                             | 16<br>28<br>44<br>DF<br>10<br>6<br>FT MNITRC<br>L\$MEAN<br>1 1.46564128<br>1 1.46564128<br>1 1.46564128<br>1 1.46564128<br>2 1.4725556<br>3 1.22422875 | DF         SUN OF SQUARES           16         1.22931181           28         0.85413419           28         0.85413419           44         2.08344600           DF         TYPE I SS           10         0.73776208           6         0.49154973           FT         MNI TRC<br>LSMEAN         LSMEAN           1         1.46364581         0.08286104           2         1.60211281         0.08286104           1         1.4636412         0.0899844           2         1.47255555         0.08342049           2         1.47255555         0.08342049           3         1.2242287         0.0836354 | DF         SUN OF         SQUARES         HEAR           16         1.22931181         0.0           28         0.85413419         0.0           28         0.85413419         0.0           44         2.06344600         2.42           0         0.73776206         2.42           6         0.491547206         2.42           FT         MNITRC         STD <sup>-</sup> ERR         PR08 >  T            1         1.46566121         0.08286104         0.0001           2         1.46566121         0.08286104         0.0001           3         1.47352555         0.08246104         0.0001           1         1.46566120         0.08286104         0.0001           3         1.47255555         0.08342049         0.0001           3         1.22422875         0.08286134         0.0001 | DF         SUM OF SQUARES         MEAN SQUARE           16         1.22931181         0.07683199           28         0.85413419         0.03050479           28         0.85413419         0.03050479           44         2.06344600         2.42           DF         TYPE I SS         F VALUE         PR > F           10         0.73776208         2.42         0.0321           6         0.49154973         2.42         0.0321           LEAST SQUARES MEA           FT         MNITRC         STO'ERR         PROB > [T]         PROB > [T]           1         1.4656128         0.08286104         0.0001         1         1/J         1           2         1.4656128         0.08286104         0.0001         1         2.117           3         1.42654128         0.08342049         0.0001         1         0.7558           1         1.46564128         0.08342049         0.0001         1         0.9773           2         1.47255555         0.08342049         0.0001         1         0.9773           3         1.22422875         0.08342049         0.0001         0.9773           3         1.224228 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                      | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

#### SITE-2 SPECIES-4

GENERAL LINEAR MODELS PROCEDURE

|               |             |         |                                                                                                |                                                                                                | SENERAL CINES                                                      | IN MODELS PRO                                                             | JUEDUKE                                       |                                                                                                                                                                             |                                                          |                                                          |                                                          |            |
|---------------|-------------|---------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------|
| DEPENDENT     | VARIAB      | LE: M   | NITRC                                                                                          |                                                                                                |                                                                    |                                                                           |                                               |                                                                                                                                                                             |                                                          |                                                          |                                                          |            |
| SOURCE        |             |         | DF                                                                                             | SUM OF SQUARES                                                                                 | MEAN                                                               | SQUARE                                                                    | F VALUE                                       | PR                                                                                                                                                                          | F                                                        | R-SQU                                                    | RE                                                       | c.v.       |
| MODEL         |             |         | 18                                                                                             | 3.54411694                                                                                     | 0.1                                                                | 9689539                                                                   | 3.03                                          | 0.0                                                                                                                                                                         | 060                                                      | 0.6946                                                   | <b>606</b>                                               | 12.6995    |
| ERROR         |             |         | 24                                                                                             | 1.55822353                                                                                     | 0.0                                                                | 6492598                                                                   |                                               | ROOT                                                                                                                                                                        | SE                                                       |                                                          | -                                                        | ITRC MEAN  |
| CORRECTED     | TOTAL       |         | 42                                                                                             | 5. 10234047                                                                                    |                                                                    |                                                                           |                                               | 0.25480                                                                                                                                                                     | 577                                                      |                                                          | 2                                                        | 2.00641860 |
| SOURCE        |             |         | DF                                                                                             | TYPE I SS                                                                                      | F VALUE                                                            | PR > F                                                                    |                                               |                                                                                                                                                                             |                                                          |                                                          |                                                          |            |
| PLOT<br>FR+FT |             |         | 12<br>6                                                                                        | 3.06274017<br>0.48137677                                                                       | 3.93<br>1.24                                                       | 0.0021                                                                    |                                               |                                                                                                                                                                             |                                                          |                                                          |                                                          |            |
|               |             |         |                                                                                                |                                                                                                | LEAST                                                              | SQUARES MEA                                                               | NS                                            |                                                                                                                                                                             |                                                          |                                                          |                                                          |            |
|               | FR          | FT      | MNI TRC<br>LSMEAN                                                                              | STD ERR<br>LSMEAN                                                                              | PROB >  T <br>HO:LSMEAN=O                                          | PROB >  T <br>I/J 1                                                       | HO: LSMEAN                                    | I(1)=LSMEAN(J)<br>3 4                                                                                                                                                       | 5                                                        | 6                                                        | 7                                                        |            |
|               | 1 1 2 2 2 4 | 1231234 | 1.86632030<br>2.06124155<br>2.01832831<br>1.90025158<br>1.82365947<br>1.88139732<br>2.20453667 | 0.12776322<br>0.13601823<br>0.15229413<br>0.12267995<br>0.12525172<br>0.11830873<br>0.09420444 | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 | 1<br>2 0.2345<br>3 0.3745<br>4 0.8238<br>5 0.7856<br>6 0.9191<br>7 0.0631 | 0.8162<br>0.3263 0.<br>0.1512 0.<br>0.2600 0. | 3745         0.8238           8162         0.3263           0.5004         0.5004           2864         0.6236           4278         0.8985           3434         0.0998 | 0.7856<br>0.1512<br>0.2864<br>0.6236<br>0.6905<br>0.0335 | 0.9191<br>0.2600<br>0.4278<br>0.8985<br>0.6905<br>0.0624 | 0.0631<br>0.4279<br>0.3434<br>0.0998<br>0.0335<br>0.0624 |            |

#### SITE-3 SPECIES-1

| DEPENDENT VARIABLE:                    | MNITRC                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                                           |             |
|----------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|-------------|
| SOURCE                                 | DF                                                                                             | SUM OF SQUARES                                                                                                                                        | MEAN SQUARE                                                                                                                                                                                                                                                                                                                                                                                                     | VALUE PR > F                                       | R-SQUARE                                                                  | C.V.        |
| MODEL                                  | 10                                                                                             | 0.95886770                                                                                                                                            | 0.00588677                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53 0.1994                                        | 0.433911                                                                  | 8.9807      |
| ERROR                                  | 20                                                                                             | 1.25095714                                                                                                                                            | 0.06254786                                                                                                                                                                                                                                                                                                                                                                                                      | ROOT MSE                                           |                                                                           | MNITRC MEAN |
| CORRECTED TOTAL                        | 30                                                                                             | 2.20982484                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25009570                                         | 1                                                                         | 2.78480645  |
| SOURCE                                 | DF                                                                                             | TYPE I SS                                                                                                                                             | F VALUE PR > F                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                           |             |
| PLOT<br>FR+FT                          | 4                                                                                              | 0.63896908<br>0.31989863                                                                                                                              | 2.55 0.0707<br>0.85 0.5455                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                                           |             |
|                                        |                                                                                                |                                                                                                                                                       | LEAST SQUARES MEANS                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                           |             |
| FR FT                                  | MNI TRG                                                                                        | STD ERR PROB ><br>LSMEAN HO:LSME                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | 5 6 7                                                                     |             |
| 1 1<br>1 2<br>1 3<br>3 2<br>3 3<br>4 4 | 2.76700000<br>2.81100000<br>2.65384283<br>2.88540805<br>2.65075588<br>2.71320000<br>2.96040805 | 0.11184620         0.           0.12718421         0.           0.12718421         0.           0.12718421         0.           0.11184620         0. | 0001         1         0.7837           0001         2         0.7837           0001         3         0.5117         0.3648           0001         4         0.4925         0.6655           0001         5         0.5004         0.3554           0001         5         0.5004         0.3554           0001         5         0.7373         0.5434           0001         7         0.2670         0.3882 | 0.2146 0.20<br>0.9865 0.2087<br>0.7297 0.3214 0.71 | 54 0.5434 0.3882<br>65 0.7297 0.1052<br>87 0.3214 0.6824<br>0.7162 0.1020 |             |

#### SITE-3 SPECIES-2

| DEPENDEN      | NT VAR | IABLE | MNITRC     |              |             |       |            |        |        |          |        |            |        |             |
|---------------|--------|-------|------------|--------------|-------------|-------|------------|--------|--------|----------|--------|------------|--------|-------------|
| SOURCE        |        |       | DF         | SUM OF SQUAR | RES         | MEAN  | SQUARE     | F      | VALUE  | 1        | PR > F | R          | SQUARE | с. v.       |
| MODEL         |        |       | 10         | 0.41795      |             | 0.0   | 4179596    |        | 1.49   |          | 0.2047 | <b>o</b> . | 382504 | 10.3635     |
| ERROR         | •      |       | 24         | 0.67473      | 514         | 0.0   | 2811396    |        |        | RO       | OT MSE |            |        | MNITRC MEAN |
|               |        |       |            |              |             |       |            |        |        |          |        |            |        |             |
| CORRECTE      | ED TOT | AL    | 34         | 1.092694     | 174         |       |            |        |        | 0.16     | 767219 |            |        | 1.61791429  |
|               |        |       |            |              |             |       |            |        |        |          |        |            |        |             |
| SOURCE        |        |       | DF         | TYPE I       | SS FV       | LUE   | PR         | > F    |        |          |        |            |        |             |
| PLOT<br>FR•FT |        |       | 4          | 0.18569      |             | . 65  | 0.1        |        |        |          |        |            |        |             |
| *****         |        |       | •          |              |             |       | •          |        |        |          |        |            |        |             |
|               |        |       |            |              | LEAS        | r sou | ARES ME    | ŃS     |        |          |        |            |        |             |
|               | FR     | FT    | MILITRC    | STD ERR      | PROB > 11   | PD    | 08 > 17    |        | FAN(T) | SMEAN(J) |        |            |        |             |
|               |        | ••    | LSMEAN     | LSMEAN       | HO:LSMEAN-O |       | <b>U</b> 1 | 2      | 3      | 4        | 5      | 6          | 7      |             |
|               | 1      | 1     | 1.58680000 | 0.07498528   | 0.0001      | 1     |            | 0.3082 | 0.2698 | 0.8127   | 0.5048 | 0.2005     | 0.8258 |             |
|               | 1      | 2     | 1.69920000 | 0.07498528   | 0.0001      | 2     | 0.3082     |        | 0.0401 | 0.4307   | 0.7190 | 0.7854     | 0.2185 |             |
|               | 1      | 3     | 1.46900000 | 0.07498528   | 0.0001      | Э     | 0.2698     | 0.0401 |        | 0.1836   | 0.0834 | 0.0221     | 0.3733 |             |
|               | 3      | 1     | 1.61420000 | 0.07498528   | 0.0001      | 4     | 0.8127     |        | 0.1836 |          | 0.6656 | 0.2922     | 0.6482 |             |
|               | 3      | 2     | 1.66060000 | 0.07498528   | 0.0001      | 5     | 0.5048     | 0.7190 |        | 0.6656   |        | 0.5287     | 0.3773 |             |
|               | 3      | 3     | 1.72840000 | 0.07498528   | 0.0001      | 6     | 0.2005     | 0.7854 |        | 0.2922   | 0.5287 |            | 0.1369 |             |
|               | 4      | 4.    | 1.56520000 | 0.07498528   | 0.0001      | 7     | 0.8258     | 0.2185 | 0.3733 | 0.6482   | 0.3773 | 0.1369     |        |             |
|               |        |       |            |              |             |       |            |        |        |          |        |            |        |             |

#### SITE=3 SPECIES=3

DEPENDENT VARIABLE: MNITRC

| SOURCE                                        | DF                                                                                            | SUN OF SQUAR                                                                                   | ES I                                                     | MEAN SQUARE                                                               |                                                          | F VALUE |                                                          | PR > F                                                   | R-                                                       | SQUARE                                                   | <b>c.v</b> . |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|---------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------|
| MODEL                                         | 10                                                                                            | 0.231821                                                                                       | 45                                                       | 0.02318215                                                                |                                                          | 1.16    |                                                          | 0.3658                                                   | •                                                        | 356739                                                   | 15,1418      |
| HODEL                                         |                                                                                               | 0.20.02                                                                                        |                                                          | 0.02510215                                                                |                                                          |         |                                                          | 0.3030                                                   | <b>U</b> .                                               | 356735                                                   | 13.1418      |
| ERROR                                         | 21                                                                                            | 0.418013                                                                                       | . 104                                                    | 0.01990538                                                                |                                                          |         | RO                                                       | OT MSE                                                   |                                                          |                                                          | MNITRC MEAN  |
| CORRECTED TOTAL                               | 31                                                                                            | 0.649834                                                                                       | 149                                                      |                                                                           |                                                          |         | 0.14                                                     | 108644                                                   |                                                          |                                                          | 0.93176562   |
| SOURCE                                        | DF                                                                                            | TYPE I                                                                                         | SS F VAI                                                 |                                                                           | > F                                                      |         |                                                          |                                                          |                                                          |                                                          |              |
| PLOT<br>FR+FT                                 | :                                                                                             | 0.099416<br>0.132404                                                                           |                                                          |                                                                           | 9211<br>1904                                             |         |                                                          |                                                          |                                                          |                                                          |              |
|                                               |                                                                                               |                                                                                                | LEAST                                                    | SQUARES MEA                                                               | NS                                                       |         |                                                          |                                                          |                                                          |                                                          |              |
| FR FT                                         | MNITRC<br>LSMEAN                                                                              |                                                                                                | PROB > [T]<br>HO:LSMEAN+O                                | PROB > [T]<br>I/J 1                                                       | HO: LSP<br>2                                             |         | SMEAN(J)<br>4                                            | 5                                                        | 6                                                        | 7                                                        |              |
| 1 1<br>1 2<br>1 3<br>2 1<br>3 2<br>3 3<br>4 4 | 1.04920000<br>0.93621873<br>0.95476221<br>0.8556000<br>0.86050000<br>0.95208829<br>0.89760000 | 0.06309577<br>0.07173637<br>0.07173637<br>0.06309577<br>0.06309577<br>0.07173637<br>0.06309577 | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 | 1<br>2 0.2502<br>3 0.3342<br>4 0.0416<br>5 0.0466<br>6 0.3210<br>7 0.1041 | 0.2502<br>0.8574<br>0.4083<br>0.4369<br>0.8777<br>0.6901 | 0.8574  | 0.0416<br>0.4083<br>0.3111<br>0.9567<br>0.3240<br>0.6427 | 0.0466<br>0.4369<br>0.3350<br>0.9567<br>0.3486<br>0.6818 | 0.3210<br>9.8777<br>0.9793<br>0.3240<br>0.3486<br>0.5745 | 0.1041<br>0.6901<br>0.5560<br>0.6427<br>0.6818<br>0.5745 |              |

SITE-4 SPECIES-1 DEPENDENT VARIABLE: MNITRC SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F R-SQUARE C.V. . 0.42510478 2.43 0.0547 0.562926 11.0948 HODEL 3.82594302 ERROR 17 0.17474051 ROOT MSE MNITRC MEAN 2.97058861 CORRECTED TOTAL 26 6.79653163 0.41801974 3.76770370 PR > F SOURCE DF TYPE I SS F VALUE PLOT FR\*FT 3 2.72789165 1.09805137 5.20 1.05 0.0099 LEAST SQUARES MEANS STD ERR PROB > [T] PROB > [T] HO: LSMEAN(I)=LSMEAN(J) LSMEAN HO:LSMEAN=0 I/J 1 2 3 4 FR FT MNITRC LSMEAN 5 6 7 3.50750000 3.60775000 3.82575000 4.02900000 3.97025000 3.92069444 3.54025000 0.20900987 0.20900987 0.20900987 0.20900987 0.20900987 0.24632050 0.20900987 
 0.0001
 1
 0.7386
 0.2967
 0.0956
 0.1359
 0.2181

 0.0001
 2
 0.7386
 0.4709
 0.1722
 0.2368
 0.3463

 0.0001
 3
 0.2967
 0.4709
 0.1722
 0.2368
 0.3463

 0.0001
 4
 0.3956
 0.1722
 0.5010
 0.6312
 0.7724

 0.0001
 5
 0.1359
 0.2368
 0.6312
 0.8448
 0.8799

 0.0001
 6
 0.2181
 0.3421
 0.3476
 0.1455
 0.1799

 0.0001
 7
 0.9131
 0.8221
 0.3476
 0.1450
 0.2551
 0.9131 0.8221 0.3476 0.1166 0.1640 0.2551 1113334 - 23 - 234

| DEPENDENT VAR         | IABLE   | MNITRC                                                                                         |                                                                                                |                                                          |                                                                     |                                              |                                      |                                                          |                                                          |                                                          |                                                          |             |
|-----------------------|---------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------|
| SOURCE                |         | DF                                                                                             | SUM OF SQUAR                                                                                   | RES                                                      | MEAN SQUAR                                                          | E                                            | F VALUE                              |                                                          | PR > F                                                   | R-                                                       | SQUARE                                                   | C.V.        |
| MODEL                 |         | 10                                                                                             | 0,206354                                                                                       | 413                                                      | 0.0206354                                                           | 1                                            | 1.66                                 |                                                          | D. 1638                                                  | о.                                                       | 466414                                                   | 6.4428      |
| ERROR                 |         | 19                                                                                             | 0.236072                                                                                       | 257                                                      | 0.0124248                                                           | 7                                            |                                      | ROO                                                      | DT MSE                                                   |                                                          |                                                          | MNITRC MEAN |
| CORRECTED TOT         | AL      | 29                                                                                             | 0.442426                                                                                       | 570                                                      |                                                                     |                                              |                                      | 0.11                                                     | 146691                                                   |                                                          |                                                          | 1.73010000  |
| SOURCE                |         | DF                                                                                             | TYPE I                                                                                         | SS F.V                                                   | LUE P                                                               | R > F                                        |                                      |                                                          |                                                          |                                                          |                                                          |             |
| PLOT<br>FR+FT         |         | 4<br>6                                                                                         | 0.094409                                                                                       |                                                          |                                                                     | . 1520<br>. 2308                             |                                      |                                                          |                                                          |                                                          |                                                          |             |
|                       |         |                                                                                                |                                                                                                | LEAST                                                    | SQUARES M                                                           | EANS                                         |                                      |                                                          |                                                          |                                                          |                                                          |             |
| FR                    | FT      | MNITRC<br>LSMEAN                                                                               | STD ERR<br>LSMEAN                                                                              | PROB > [T]<br>HO:LSMEAN=O                                |                                                                     | τ∦ HO:LS<br>1 2                              | MEAN(I)=L<br>3                       | SMEAN(J)<br>4                                            | 5                                                        | 6                                                        | 7                                                        |             |
| 1<br>1<br>3<br>3<br>4 | 1231234 | 1.64408378<br>1.76743750<br>1.71160000<br>1.64455437<br>1.78160000<br>1.66940000<br>1.80940000 | 0.06688230<br>0.05710980<br>0.04984952<br>0.06688230<br>0.04984952<br>0.04984952<br>0.04984952 | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 | 1<br>2 0.168<br>3 0.428<br>4 0.996<br>5 0.115<br>6 0.764<br>7 0.062 | 3 0.4704<br>0 0.1700<br>7 0.8538<br>8 0.2114 | 0.4704<br>0.4315<br>0.3332<br>0.5565 | 0.9960<br>0.1700<br>0.4315<br>0.1168<br>0.7690<br>0.0628 | 0.1157<br>0.8538<br>0.3332<br>0.1168<br>0.1280<br>0.6977 | 0.7648<br>0.2114<br>0.5565<br>0.7690<br>0.1280<br>0.0617 | 0.0622<br>0.5863<br>0.1814<br>0.0628<br>0.6977<br>0.0617 |             |

SITE=4 SPECIES=2

#### SITE=4 SPECIES=3

| DEPENDENT VARIABLE                                   | : MNITRC                                                                                       |                                                                                               |                                                                                                                            |                                                                                             |                                          |                                                                                             |             |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|-------------|
| SOURCE                                               | DF                                                                                             | SUM OF SQUARES                                                                                | MEAN SQUARE                                                                                                                | F VALUE                                                                                     | PR > F                                   | R-SOUARE                                                                                    | c.v.        |
| MODEL                                                | 11                                                                                             | 0.60362963                                                                                    | 0.05487542                                                                                                                 | 1.98                                                                                        | 0.0928                                   | 0.533510                                                                                    | 9.8413      |
| ERROR                                                | 19                                                                                             | 0.52780192                                                                                    | 0.02777905                                                                                                                 |                                                                                             | ROOT MSE                                 |                                                                                             | MNITRC MEAN |
| CORRECTED TOTAL                                      | 30                                                                                             | 1.13143155                                                                                    |                                                                                                                            |                                                                                             | 0.16667048                               |                                                                                             | 1.69358065  |
| SOURCE                                               | DF                                                                                             | TYPE I SS                                                                                     | F VALUE PR                                                                                                                 | > F                                                                                         |                                          |                                                                                             |             |
| PLOT<br>FR•FT                                        | 5                                                                                              | 0.34815142<br>0.25547821                                                                      | 2.51 0.0<br>1.53 0.2                                                                                                       |                                                                                             |                                          |                                                                                             |             |
|                                                      |                                                                                                |                                                                                               | LEAST SQUARES MEA                                                                                                          | NS                                                                                          |                                          |                                                                                             |             |
| FR FT                                                | MNI TRC<br>LSMEAN                                                                              |                                                                                               | >  T  PROB >  T <br>SMEAN=O I/J 1                                                                                          | HO: LSMEAN(1)=0<br>2 3                                                                      | LSMEAN(J)<br>4 5                         | 67                                                                                          |             |
| 1 1<br>1 2<br>1 3<br>1 3<br>2 1<br>3 2<br>3 3<br>4 4 | 1.66716667<br>1.59668439<br>1.55530188<br>1.83550000<br>1.73550252<br>1.70040649<br>1.75331460 | 0.06804294<br>0.07597516<br>0.08650632<br>0.06804294<br>0.1288625<br>0.10198364<br>0.07571626 | 0.0001 1<br>0.0001 2 0.4979<br>0.0001 3 0.3222<br>0.0001 4 0.0964<br>0.0001 5 0.6404<br>0.0001 6 0.7892<br>0.0001 7 0.4079 | 0.4979 0.3222<br>0.7186<br>0.0303 0.0197<br>0.3699 0.2627<br>0.4323 0.3068<br>0.1613 0.1029 | 0.0303 0.3699<br>0.0197 0.2627<br>0.4957 | 0.7892 0.4079<br>0.4323 0.1613<br>0.3068 0.1029<br>0.2843 0.4295<br>0.8237 0.9070<br>0.6854 |             |

#### TABLE VIII

#### MEAN PERCENT INCREASE IN HEIGHT AND DIAMETER BY SITE, SPECIES AND FERTILIZER TREATMENT

#### Legend

Fertilizer Treatments

FR = Fertilizer Rate
FT = Fertilizer Type

AGT = Agriform Tablet SCU = Sulfur Coated Urea RSM = Readily Soluble Mixture

- FR FT
- 1 1 = Low Rate AGT 1 2 = Low Rate SCU 3 = Low Rate RSM 1 2 1 = Medium Rate AGT 2 2 = Medium Rate SCU 2 3 = Medium Rate RSM 3 1 = High Rate AGT 3 2 = High Rate SCU 3 3 = High Rate RSM4 4 = Control

Species

- 1 = Russian-Olive
- 2 = Juniper
- 3 = Austrian Pine
- 4 = Arborvitae

#### Mean Percent Height Growth

- PCTH1M = One Growing Season After Fertilization PCTH2M = Second Growing Season After
  - Fertilization Estimate

Mean Percent Diameter Growth

```
PCTD1M = One Growing Season After
Fertilization
```

PCTD2M = Second Growing Season After Fertilization Estimate

|   |                                                |                                                | SITE=1                | SPECIES=1                                                                                                                             |                                                                                                                                 |
|---|------------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|   |                                                |                                                | м                     | EANS                                                                                                                                  |                                                                                                                                 |
|   | FR                                             | FŤ                                             | N                     | PCTH1M                                                                                                                                | PCTD 1M                                                                                                                         |
| • | 1<br>1<br>3<br>3<br>3<br>4                     | 1<br>2<br>3<br>1<br>2<br>3<br>4                | 3<br>4<br>4<br>4<br>4 | 157.336921<br>145.588419<br>210.678720<br>139.624541<br>168.042747<br>165.088352<br>167.596068                                        | 140.781574<br>188.382752<br>230.337809<br>172.446396<br>210.946383<br>224.785895<br>192.272006                                  |
|   |                                                |                                                | M                     | EANS                                                                                                                                  |                                                                                                                                 |
|   | FR                                             | FT                                             | Ņ                     | PCTH1M                                                                                                                                | PCTD 1M                                                                                                                         |
|   | 1<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>4 | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>4 | 5365644535            | 93.286576<br>100.498575<br>102.456708<br>95.933449<br>141.787212<br>102.097068<br>133.970730<br>133.042064<br>144.102313<br>77.574892 | 99.097462<br>78.768881<br>86.874841<br>97.944957<br>69.287412<br>81.116394<br>83.615545<br>112.266413<br>94.426046<br>63.543150 |

# SITE=1 SPECIES=3

# MEANS

| FR                                   | FT                                        | N                                    | PCTH1M                                                                                                               | PCTH2M                                                                                                                     | PCTD 1M                                                                                                                   | PCTD2M                                                                                                                     |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1<br>1<br>2<br>2<br>2<br>3<br>3<br>4 | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>4 | 6<br>6<br>1<br>6<br>1<br>4<br>3<br>7 | 117.541847<br>120.485732<br>64.285714<br>74.881925<br>87.340368<br>45.00000<br>100.378709<br>154.694264<br>96.911719 | 258.528139<br>216.561584<br>135.714286<br>156.326620<br>173.164983<br>150.000000<br>187.782954<br>235.863095<br>162.243094 | 60.9419284<br>62.3466944<br>46.7532468<br>59.5089321<br>53.4853625<br>67.500000<br>27.5546218<br>29.7509413<br>39.5842146 | 81.6412923<br>83.7981811<br>66.2337662<br>97.8616926<br>73.6399765<br>65.0000000<br>44.6013072<br>38.4924919<br>63.6775948 |

SITE=2 SPECIES=3

|                                           |                                                |                            |                                                                                                                                          | MEANS                                                                                                                           |                                                                                                                                          |                                                                                                                                          |
|-------------------------------------------|------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| FR                                        | FT                                             | N                          | PCTH1M                                                                                                                                   | PCTH2M                                                                                                                          | PCTD 1M                                                                                                                                  | PCTD2M                                                                                                                                   |
| 1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>4 | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>4 | 4 5 6 5 3 7 4 6 6 <b>8</b> | 49.1149889<br>39.8099839<br>48.2889895<br>46.7855750<br>19.9404762<br>52.9947090<br>40.0518341<br>26.9535862<br>42.0515572<br>32.5773278 | 106.249305<br>92.450886<br>92.785162<br>87.504033<br>62.688492<br>99.079365<br>90.437742<br>66.313797<br>78.804714<br>76.849150 | 178.457677<br>157.520593<br>167.458536<br>144.954979<br>173.737374<br>185.765617<br>165.432432<br>178.498606<br>119.783362<br>133.920354 | 189.945154<br>175.641637<br>184.908391<br>169.742253<br>197.087542<br>168.808779<br>174.815034<br>206.139976<br>150.895910<br>162.155628 |

SITE=2 SPECIES=4

|                                      |                                           | 1                                         | MEANS                                                                                                                      |                                                                                                                            |
|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| FR                                   | FT                                        | N                                         | PCTH1M                                                                                                                     | PCTD 1M                                                                                                                    |
| 1<br>1<br>2<br>2<br>2<br>3<br>3<br>3 | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>2 | 9<br>8<br>6<br>8<br>7<br>9<br>6<br>7<br>8 | 36.4407922<br>29.6239765<br>33.2498542<br>17.3309091<br>21.1882161<br>30.7015636<br>47.5813847<br>19.2296484<br>17.2821648 | 87.1591300<br>65.9024162<br>76.2730388<br>52.8169952<br>52.8072611<br>58.8252855<br>77.7613208<br>54.0072929<br>48.6320677 |
| 4                                    | 3<br>4                                    | 13                                        | 4.7845638                                                                                                                  | 50.8845913                                                                                                                 |

#### SITE=5 SPECIES=1

|    |      |   | MEANS      |            |
|----|------|---|------------|------------|
| FŔ | FT   | N | PCTH1M     | PCTD 1M    |
| 1  | 1    | 4 | 16.6553209 | 29.755264  |
| 1  | 2    | 4 | 42.7015203 | 36.566660  |
| 1  | 3    | 4 | 9.0883970  | 53.625962  |
| 2  | 1 I. | 4 | 34.2374511 | 59.899613  |
| 2  | 2    | 4 | 16.5166869 | 119.340861 |
| 2  | 3    | 6 | 12.9108559 | 33.035335  |
| 3  | 1    | 3 | 20.5647694 | 53.669799  |
| 3  | 2    | 2 | 13.2593213 | 41,009125  |
| з  | з    | 2 | 22.0354809 | 88.299320  |
| 4  | 4    | 3 | 31.2413624 | 40.193071  |

SITE=3 SPECIES=1 MEANS FR FT Ν PCTH1M PCTD 1M 1 1 7 48.8093156 51.8171845 7 1 2 76.1492482 43.5113100 1 з 7 74.9811021 45.9455150 58.8719312 59.6118787 61.7414029 72.0792509 12 7777777 2223334 3 1 59.6837028 82.3108736 58.4221954 75.4329739 23 58.3729401 59.3404061 63.1221796 50.9061951 4 8 53.6637251 77.4767675

#### SITE=3 SPECIES=2

MEANS FR FΤ Ν PCTH1M PCTD 1M 61.1489056 1 56.6471806 1 9 2 3 50.2808117 47.4635842 57.5594597 9 1 1 9 73.4045403 222333 1 9 43.6850622 54.1159125 2 9 45.4783761 70.4977954 9 9 3 43.2888223 58.7718790 1 2 57.3219043 64.7081409 9 61.4502825 57.9611295 34 9 67.7779311 51.9525678 4 9 60.8059800 55.2863693

#### SITE=3 SPECIES=3

#### MEANS

| 1 1 8 30.6498089 99.3415026 23.0178879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCTD2M                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1       2       6       10.1600810       61.0068370       10.7171673         1       3       6       21.9797178       87.2039014       24.6270352         2       1       6       25.1558851       88.3224507       58.9473672         2       2       7       7.8278743       53.7343126       19.3266279         2       3       5       8.7105039       61.6226104       22.9930324         3       1       6       21.6734908       69.8345544       21.0412503         3       2       5       2.9149476       20.7863258       22.3877945         3       3       4       2.3711188       28.5087218       43.2233971         4       4       5       20.7983778       42.3413105       7.3649036 | 37.8975177<br>33.6929599<br>48.6123574<br>69.1904675<br>36.3588075<br>30.3416643<br>30.8234158<br>30.8584606<br>50.5267070<br>11.6859893 |

|    |    | SITE=4 | SPECIES=1  |            |
|----|----|--------|------------|------------|
|    |    |        | MEANS      |            |
| FR | FT | N      | PCTH1M     | PCTD 1M    |
| 1  | 1  | 6      | 65.7860018 | 72.743999  |
| 1  | 2  | 5      | 62.3442959 | 89.764816  |
| 1  | 3  | 6      | 79.5842158 | 67.897436  |
| 2  | 1  | 5      | 59.9508117 | 72.652367  |
| 2  | 2  | 6      | 83.3612264 | 107.392078 |
| 2  | 3  | 6      | 71.6652868 | 72.727890  |
| 3  | 1  | 6      | 81.9532600 | 83.756334  |
| 3  | 2  | 6      | 74.1190254 | 79.022235  |
| 3  | 3  | 5      | 77.4774550 | 77.332081  |
| 4  | 4  | 6      | 84.5372569 | 80.978262  |

#### SITE=4 SPECIES=2

#### MEANS PCTH1M PCTD 1M FR FT Ν 1 1 3 3 3 4 6 72.751776 157.218846 1 2 3 8 6 133.301097 129.188121 170.217109 159.158286 1 2 3 4 8 97.110298 161.201834 145.039257 124.256974 167.228071 8 119.964326 95.293055 56 115.456434

# SITE=4 SPECIES=3

MEANS

| FR | FT | N | PCTH1M     | PCTH2M     | PCTD 1M    | PCTD2M     |
|----|----|---|------------|------------|------------|------------|
| 1  | 1  | 7 | 92.449619  | 205.523362 | 71.1699306 | 101.766145 |
| i  | 2  | 6 | 101.111111 | 260.015263 | 58.5149578 | 81.552581  |
| i  | 3  | 4 | 73.674242  | 265.882035 | 50.9170275 | 78.105548  |
| ġ. | 1  | 7 | 126.514706 | 306.769957 | 66.5411332 | 92.501569  |
| 3  | 2  | 4 | 74.018322  | 191.098733 | 66.6496159 | 106.004552 |
| 3  | 3  | 4 | 84.721592  | 236.413591 | 68.2524027 | 96.999592  |
| 4  | 4  | 6 | 88.087290  | 218.846620 | 46,6587927 | 63.959429  |

.

## TABLE IX

## STATISTICAL ANALYSIS OF MEAN PERCENT INCREASE IN HEIGHT AND DIAMETER BY SITE, SPECIES AND FERTILIZER TREATMENT

Legend

|                  | Fe | rtilizer Treatments                                              |
|------------------|----|------------------------------------------------------------------|
|                  |    | ertilizer Rate<br>ertilizer Type                                 |
| SCU              | =  | Agriform Tablet<br>Sulfur Coated Urea<br>Readily Soluble Mixture |
| FR               | FΤ |                                                                  |
| 1                | 1  | = Low Rate AGT                                                   |
| 1                | 2  | = Low Rate SCU                                                   |
| 1                | 3  | = Low Rate RSM                                                   |
| 2                | 1  | = Medium Rate AGT                                                |
| 2                |    | = Medium Rate SCU                                                |
| 2                | 3  | = Medium Rate RSM                                                |
| 3                | 1  | = High Rate AGT                                                  |
| 2<br>3<br>3<br>4 | 2  |                                                                  |
| 3                | 3  | = High Rate RSM                                                  |
| 4                | 4  | = Control                                                        |

# Species

- 1 = Russian-Olive
- 2 = Juniper
- 3 = Austrian Pine
- 4 = Arborvitae

#### Mean Percent Height Growth

PCTH1M = One Growing Season After Fertilization PCTH2M = Second Growing Season After Fertilization Estimate

Mean Percent Diameter Growth

PCTD1M = One Growing Season After Fertilization

PCTD2M = Second Growing Season After Fertilization Estimate

|               |                       |                                 |                                                                                                |                                                                                                      | SITE-1                                       | SPECIES 1                                                              |                                                      |                                   |                                                                            |              |
|---------------|-----------------------|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|--------------|
|               |                       |                                 |                                                                                                |                                                                                                      | ENERAL LINEAR                                | MODELS PROCE                                                           | DURE                                                 |                                   |                                                                            |              |
| DEPENDEN      | IT VAR                | TABLE                           | PCTH IN                                                                                        |                                                                                                      |                                              |                                                                        |                                                      |                                   |                                                                            |              |
| SOURCE        | 2                     |                                 | OF                                                                                             | SUM OF SQUARES                                                                                       | MEAN                                         | SQUARE                                                                 | F VALUE                                              | PR > F                            | R-SQUARE                                                                   | C.V.         |
| MODEL         |                       |                                 |                                                                                                | 85922.19988700                                                                                       | 9546.91                                      | 109856                                                                 | 1.53                                                 | 0.2161                            | 0.447058                                                                   | 47.7551      |
| ERROR         |                       |                                 | 17.                                                                                            | 106272.48842986                                                                                      | 6251.32                                      | 284882                                                                 |                                                      | ROOT MSE                          |                                                                            | PCTHIM MEAN  |
| CORRECTE      | O TOT                 | AL                              | 26                                                                                             | 192194.68831686                                                                                      |                                              |                                                                        |                                                      | 79.06530749                       |                                                                            | 165.56424653 |
| SOURCE        |                       |                                 | OF                                                                                             | TYPE I SS                                                                                            | F VALUE                                      | PR > F                                                                 |                                                      |                                   |                                                                            |              |
| PLOT<br>FR•FT |                       |                                 | 3                                                                                              | 74867.58881959<br>11054.61106741                                                                     | 3.99<br>0.29                                 | 0.0254                                                                 |                                                      |                                   |                                                                            |              |
|               |                       |                                 |                                                                                                |                                                                                                      | LEAST SQU                                    | ARES MEANS                                                             |                                                      |                                   |                                                                            |              |
|               | FR                    | FT                              | PCTH1M<br>LSMEAN                                                                               |                                                                                                      | B > [T] PRO                                  | DB >  ⊺  HO: I<br>J 1                                                  | SMEAN(I)=1<br>2 3                                    |                                   | 67                                                                         |              |
|               | 1113334               | 1<br>2<br>3<br>1<br>2<br>3<br>4 | 157.336921<br>163.280703<br>210.678720<br>139.624541<br>168.042747<br>165.088352<br>167.596068 | 39.532654<br>46.589679<br>39.532654<br>39.532654<br>39.532654<br>39.532654<br>39.532654<br>39.532654 | 0.0001 3<br>0.0026 4<br>0.0005 5<br>0.0006 6 | 0.9236<br>0.3534 0.448<br>0.7552 0.703<br>0.8504 0.938<br>0.8914 0.976 | 0.4486<br>6<br>4 0.2209<br>8 0.4561<br>57 0.4261     | 0.2209 0.4561<br>0.6178<br>0.6178 | 0.9767 0.9445<br>0.4261 0.4515<br>0.6545 0.6233<br>0.9585 0.9937<br>0.9647 |              |
|               |                       |                                 |                                                                                                |                                                                                                      | GENERAL LINEA                                | R MODELS PROCI                                                         | OURE                                                 |                                   |                                                                            |              |
| DEPENDEN      | NT VAI                | TABLE                           | : PCTD1M                                                                                       |                                                                                                      |                                              |                                                                        |                                                      |                                   |                                                                            |              |
| SOURCE        |                       |                                 | DF                                                                                             | SUM OF SQUARES                                                                                       | MEAN                                         | SQUARE                                                                 | F VALUE                                              | PR > F                            | R-SQUARE                                                                   | <b>C.V</b> . |
| MODEL         |                       |                                 | 9                                                                                              | 86600.82244256                                                                                       | 9622.3                                       | 1360473                                                                | 1.60                                                 | 0.1946                            | 0.457824                                                                   | 39.9341      |
| ERROR         |                       |                                 | 17                                                                                             | 102556.73444255                                                                                      | 6032.7                                       | 4908486                                                                |                                                      | ROOT MSE                          |                                                                            | PCTD1M MEAN  |
| CORRECTE      | ED TO                 | AL                              | 26                                                                                             | 189157.55688512                                                                                      |                                              |                                                                        |                                                      | 77.67077369                       |                                                                            | 194.49735205 |
| SOURCE        |                       |                                 | DF                                                                                             | TYPE I SS                                                                                            | F VALUE                                      | PR > F                                                                 |                                                      |                                   |                                                                            |              |
| PLOT<br>FR+FT |                       |                                 | 3                                                                                              | 62291.72384946<br>24309.09859310                                                                     | 3.44<br>0.67                                 | 0.0404<br>0.6741                                                       |                                                      |                                   |                                                                            |              |
|               | FR                    | FT                              | PCTD 1M<br>LSMEAN                                                                              |                                                                                                      |                                              | 1018 >  т  но:<br>/J 1                                                 | LSMEAN(I)=<br>2 3                                    |                                   | 67                                                                         |              |
|               | 1<br>1<br>3<br>3<br>4 | 1<br>2<br>3<br>1<br>2<br>3<br>4 | 140.781574<br>214.246194<br>230.337809<br>172.446396<br>210.946383<br>224.785895<br>192.272006 | 38.835387<br>45.767942<br>38.835387<br>38.835387<br>38.835387<br>38.835387<br>38.835387<br>38.835387 | 0.0001 3                                     | 0.2377<br>0.1214 0.79<br>0.5718 0.49<br>0.2186 0.99<br>0.1445 0.86     | 0.7919<br>19<br>56 -0.3066<br>68 0.7284<br>27 0.9207 | 0.4928<br>0.4928                  | 0.8627 0.7188<br>0.9207 0.4976<br>0.3540 0.7226<br>0.8041 0.7380<br>0.5616 |              |

#### SITE=1 SPECIES=2

| DE | PENDENT   | VARIABLE: PO            | CTH1M                  |                                  |          |           |                |                  |                  |          |        |          |        |              |
|----|-----------|-------------------------|------------------------|----------------------------------|----------|-----------|----------------|------------------|------------------|----------|--------|----------|--------|--------------|
| so | URCE      |                         | DF-                    | SUM OF SQUARES                   | ME       | AN SQUAR  | E              | F VALUE          |                  | PR > F   | 8      | -SQUARE  |        | <b>c</b> .v. |
| ма | DEL       |                         | 14                     | 50951.52076462                   | 3639     | . 3943403 | 3              | 1.77             |                  | 0.0920   | c      | 0.443574 |        | 40.6147      |
| ER | ROR       |                         | 31                     | 63914.32510901                   | 2061     | . 7524228 | ,              |                  | . 5              | OOT MSE  |        |          | PCTH   | IM MEAN      |
| ço | RRECTED   | TOTAL                   | 45                     | 114865.84587364                  |          |           |                |                  | 45.4             | 0652401  |        |          | 111.75 | 9831058      |
| sa | URCE      |                         | DF                     | TYPE I SS                        | F VALU   | E PI      | 2 > F          |                  |                  |          |        |          |        |              |
|    | 0T<br>•FT |                         | 5                      | 24001.05338765<br>26950.46737698 | 2.3      |           | .066 1<br>2094 |                  |                  |          |        |          |        |              |
|    |           |                         |                        |                                  | LEA      | ST SQUAR  | ES MEANS       |                  |                  |          |        |          |        |              |
| R  | FT        | PCTH 1M                 | STD ERR                | PROB >  T <br>HQ:LSMEAN*O        |          |           | PROB           | >  T  H          | O: LSMEA         | N(I)=LSM | EAN(J) |          |        |              |
|    |           |                         |                        |                                  | 1/J 1    | 2         |                | 4                | 5                | 6        | 7      | 8        | 9      | 1            |
|    | 1         | 90.447909               | 20.544374              | 0.0001                           | 1        |           | 0.6673         |                  |                  |          |        | 0.1247   |        | 0.762        |
|    | 2         | 91.122148               | 27.279910<br>18.537136 | 0.0022                           | 2 0.9843 |           | 0.7334         | 0.7977<br>0.9257 | 0.1346<br>0.1437 | 0.7641   | 0.1642 | 0.1836   | 0.1033 | 0.457        |
|    | 3         | 102.456708<br>99.832430 | 20.871212              | 0.0001                           | 3 0.6673 |           | 0.9257         | 0.9257           | 0.1430           |          | 0.1806 | 0.2058   | 0.1055 | 0.457        |
|    | 1         | 141.787212              | 18.537136              | 0.0001                           | 5 0.0731 |           | 0.1437         | 0.1430           | 0.1430           | 0.1926   | 0.9390 | 0.8633   | 0.6698 | 0.038        |
|    | 1         | 101.917585              | 23.506189              | 0.0001                           | 6 0.7181 | 0.7641    | 0.9857         | 0.9462           | 0.1926           | 0. 1920  | 0.2301 | 0.2624   | 0.1321 | 0.510        |
|    | ĩ         | 141.825708              | 23.476031              | 0.0001                           | 7 0.1124 | 0.1642    | 0.1978         | 0,1806           | 0.9990           | 0.2301   | 0.1001 | 0.8744   | 0.6931 | 0.058        |
|    | 2         | 136.941045              | 20.871212              | 0.0001                           | 8 0.1247 | 0.1836    | 0.2260         | 0.2058           | 0.8633           | 0.2624   | 0.8744 |          | 0.5756 | 0.062        |
|    |           | 156.002038              | 27.327950              | 0.0001                           | 9 0.0673 | 0.1033    | 0.1150         | 0.1055           | 0.6698           | 0.1321   | 0.6931 | 0.5756   |        | 0.034        |
|    | 3         |                         |                        |                                  |          |           |                |                  |                  |          |        |          |        |              |

| ,       | SITE-1 | SPECIES=2 |           |  |  |  |  |
|---------|--------|-----------|-----------|--|--|--|--|
| GENERAL | LINEAR | MODELS    | PROCEDURE |  |  |  |  |

| DEI | PENDENT | VARIABLE: PC | TD 1M     |                |    |         |           |        |         |          |          |        |          |        |          |
|-----|---------|--------------|-----------|----------------|----|---------|-----------|--------|---------|----------|----------|--------|----------|--------|----------|
| 50  | JRCE    |              | DF        | SUM OF SQUARES |    | ME      | AN SQUAR  | ε      | F VALUE |          | PR > F   |        | R-SQUARE |        | C.V.     |
| NO  | DEL     |              | 1 14      | 14098.89120483 |    | 1007    | .0636574  | 9      | 0.79    |          | 0.6713   |        | 0.263172 |        | 41.2455  |
|     |         |              |           | 39473.95211332 |    | 1070    | . 3532939 |        |         |          | ROOT MSE |        |          | PCTO   | IM MEAN  |
| ERI | ROR     |              | 31        | 384/3.95211332 |    | 14/3    | . 3332338 | •      |         |          |          |        |          |        |          |
| co  | RRECTED | TOTAL        | 45        | 53572.84331815 |    |         |           |        |         | 35.      | 68407620 |        |          | 86.5   | 162 1670 |
| 50  | RCE     |              | DF        | TYPE I SS      |    | F VALU  | e p       | R > F  |         |          |          |        |          |        |          |
|     |         |              | •••       |                |    |         |           |        |         |          |          |        |          |        |          |
| PL  |         |              | 5         | 3593.05259110  |    | 0.5     |           | . 7265 |         |          |          |        |          |        |          |
| FR  | •FT     |              |           | 10505.83861373 |    | 0.9     | <b>~</b>  |        |         |          |          |        |          |        |          |
|     |         |              |           |                |    | LEAST S | QUARES .  | EANS   |         |          |          |        |          |        |          |
| FR  | FT      | PCTD 1M      | STD ERR   | PROB >  T      |    |         |           | PROB   |         | O: LSMEA | N(I)=LSM | EAN(J) |          |        |          |
| **  |         | LSMEAN       | LSMEAN    |                | ÷  |         |           |        |         |          |          |        |          |        |          |
|     |         | CONCERN      |           |                | 1/ | J 1     | 2         | 3      | 4       | 5        | 6        | 7      | 8        | 9      | 10       |
| 1   | 1       | 99.725271    | 16.145411 | 0.0001         | 1  |         | 0.4944    |        | 0.9362  | 0.1715   | 0.5896   | 0.5438 | 0.4897   | 0.9097 | 0.1699   |
| 1   | 2       | 81.268253    | 21.438734 | 0.0007         | 2  | 0.4944  |           | 0.8302 | 0.4485  | 0.6471   | 0.8604   | 0.9072 | 0.2003   | 0.4830 | 0.5987   |
| 1   | 3       | 86.874841    | 14.567963 | 0.0001         | 3  | 0.5589  | 0.8302    |        | 0.5073  | 0.3998   | 0.9785   | 0.9220 | 0.1953   | 0.5431 | 0.3765   |
| 2   | 1       | 101.592634   | 16.402267 | 0.0001         | 4  | 0.9362  | 0.4485    | 0.5073 |         | 0.1509   | 0.5288   | 0.4847 | 0.5304   | 0.9629 | 0.1376   |
| 2   | 2       | 69.287412    | 14.567963 | 0.0001         | -5 | 0.1715  | 0.6471    | 0.3998 | 0.1509  |          | 0.4767   | 0.5208 | 0.0416   | 0.2057 | 0.9245   |
| 2   | 3       | 86.235888    | 18.473042 | 0.0001         | 6  | 0.5896  | 0.8604    | 0.9785 | 0.5288  | Q.4767   |          | 0.9481 | 0.2276   | 0.5503 | 0.4356   |
| 3   | 1       | 84.554351    | 18.449342 |                | 7  | 0.5436  | 0.9072    | 0.9220 | 0.4847  | 0.5208   | 0.9481   |        | 0.2026   | 0.5181 | 0.4765   |
| 3   | 2       | 115.914089   | 16.402267 | 0.0001         | 8  | 0.4897  | 0.2003    | 0.1953 | 0.5304  | 0.0416   | 0.2276   | 0.2026 |          | 0.6247 | 0.0387   |
| 3   | 3       | 102.833856   | 21.476488 | 0.0001         | 9  | 0.9097  | 0.4830    | 0.5431 | 0.9629  | 0.2057   | 0.5503   | 0.5181 | 0.6247   |        | 0.1880   |
| 4   | 4       | 67.190826    | 16.402267 | 0.0003         | 10 | 0.1699  | 0.5987    | 0.3765 | 0.1376  | 0.9245   | 0.4356   | 0.4765 | 0.0387   | 0.1880 |          |
|     |         |              |           |                |    |         |           |        |         |          |          |        |          |        |          |

|                                                                                                                                        |                                                                                                                                                                                                                                                                               | SITE-1 SPECIES-3                                                                                                                                          |                                                                                                                                                 |                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPENDENT VARIABLE: PCTHIM                                                                                                             |                                                                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                          |
| SOURCE DF                                                                                                                              | SUM OF SQUARES                                                                                                                                                                                                                                                                | MEAN SQUARE                                                                                                                                               | F VALUE PR > 1                                                                                                                                  | F R-SQUARE C.V.                                                                                                                                                                                                          |
| MODEL 14                                                                                                                               | 44689.50490889                                                                                                                                                                                                                                                                | 3192.10749349                                                                                                                                             | 1.26 0.295                                                                                                                                      | 9 0.414110 49.6109                                                                                                                                                                                                       |
| ERROR 25                                                                                                                               | 63227.41850045                                                                                                                                                                                                                                                                | 2529.09674002                                                                                                                                             | ROOT MSI                                                                                                                                        | E PCTH1M MEAN                                                                                                                                                                                                            |
| CORRECTED TOTAL 39                                                                                                                     | 107916.92340934                                                                                                                                                                                                                                                               |                                                                                                                                                           | 50.2901256                                                                                                                                      | 7 101.36911530                                                                                                                                                                                                           |
| SOURCE DF                                                                                                                              | TYPE I SS F                                                                                                                                                                                                                                                                   | VALUE PR > F                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                          |
| PLOT G<br>FR+FT 8                                                                                                                      | 17981.62810084<br>26707.87680806                                                                                                                                                                                                                                              | 1.18 0.3461<br>1.32 0.2791                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                          |
| FR FT PCTHIM<br>LSMEAN                                                                                                                 | STD ERR PROB >  T <br>LSMEAN HO:LSMEAN=O                                                                                                                                                                                                                                      | PROB >  T  HO: LS<br>I/J 1 2                                                                                                                              | MEAN(I)=LSMEAN(J)<br>3 4 5                                                                                                                      | 6789                                                                                                                                                                                                                     |
| 1 1 118.056561<br>1 2 121.000446<br>1 3 98.124554<br>2 1 75.396633<br>2 3 54.548844<br>3 1 97.366823<br>3 2 175.052255<br>4 9 6.911719 | 21.948410         0.0001           21.948410         0.0001           53.903919         0.0807           21.948410         0.0021           21.948410         0.0025           54.354079         0.3252           27.039199         0.0014           31.275253         0.0001 | 1 0.9200<br>2 0.9200<br>3 0.7302 0.6924<br>4 0.1542 0.1288<br>5 0.3082 0.2645<br>5 0.2806 0.2594<br>7 0.5370 0.4812<br>8 0.1320 0.1522<br>9 0.4732 0.4146 | 0.6924 0.1288 0.2645<br>0.6943 0.8569<br>0.6943 0.6715<br>0.8589 0.6715<br>0.5742 0.7204 0.5682<br>0.9898 0.2123 0.7759<br>0.2129 0.0116 0.0251 | 0.2806 0.5370 0.1320 0.4732<br>0.2594 0.4812 0.1522 0.4146<br>0.5742 0.9898 0.2129 0.9832<br>0.7204 0.5123 0.0116 0.4656<br>0.5682 0.7759 0.0251 0.7577<br>0.4883 0.0570 0.4688<br>0.4853 0.0570 0.4688<br>0.4680 0.0427 |

| CTH2M |                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF    | SUM OF SQUARES                   | MEAN S                                                                                                                                                                                                     | QUARE                                                                                                                                                                                                                                                                                     | F VALUE                                                                                                                                                                                                                                                                                                                                | PR > F                                                                                                                                                                                                                                                                                                                                                                           | R-SQUARE                                                                                                                                                                                                                                                                                                                                                                                                                               | c.v.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14    | 165560.96994519                  | 11825.783                                                                                                                                                                                                  | 56751                                                                                                                                                                                                                                                                                     | 1.32                                                                                                                                                                                                                                                                                                                                   | 0.2622                                                                                                                                                                                                                                                                                                                                                                           | 0.425578                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.0653                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25    | 223465.54847300                  | 8938.621                                                                                                                                                                                                   | 93892                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        | ROOT MSE                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                        | PCTH2M MEAN                                                                                                                                                                                                                                                                                                                                                                                                        |
| 39    | 389026.51841819                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        | 94.54428560                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 192.69062499                                                                                                                                                                                                                                                                                                                                                                                                       |
| DF    | TYPE I SS                        | F VALUE                                                                                                                                                                                                    | PR > F                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| :     | 95270.73750225<br>70290.23244295 | 1.75<br>0.98                                                                                                                                                                                               | 0.1450<br>0.4720                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •     | DF<br>14<br>25<br>39<br>DF<br>6  | DF         SUM OF SQUARES           14         165560.96994519           25         223465.54847300           39         389026.51841819           DF         TYPE I SS           6         95270.73750225 | DF         SUM OF SQUARES         NEAN S           14         165560.96994519         11825.783           25         223465.54847300         8938.621           39         389026.51841819           DF         TYPE I SS         F VALUE           6         95270.73750225         1.78 | DF         SUM OF SOUARES         MEAN SQUARE           14         165560.96994519         11825.78356751           25         223465.54847300         8938.62193892           39         389026.51841819           DF         TYPE I SS         F VALUE         PR > F           6         95270.73750225         1.78         0.1450 | DF         SUM OF SQUARES         MEAN SQUARE         F VALUE           14         165560.96994519         11825.78356751         1.32           25         223465.54847300         8938.62193892         39           39         389026.51841819             DF         TYPE I SS         F VALUE         PR > F           6         95270.73750225         1.78         0.1450 | DF         SUM OF SQUARES         MEAN SQUARE         F VALUE         PR > F           14         165560.96994519         11825.78356751         1.32         0.2622           25         223465.54847300         8938.62193892         ROOT MSE           39         389026.51841819         94.54428560           DF         TYPE I SS         F VALUE         PR > F           6         95270.73750225         1.78         0.1450 | DF         SUM OF SQUARES         MEAN SQUARE         F VALUE         PR > F         R-SQUARE           14         165560.96994519         11825.78356751         1.32         0.2622         0.425578           25         223465.54847300         8938.62193892         R00T MSE         94.54428560           39         389026.51841819         94.54428560         95270.73750225         1.78         0.1450 |

| FR              | FT        | PCTH2M                                                                                                                     | STD ERR                                                                                                             | PROB >  T                                                                    | PR     | 08 >  T                                                            | HO:                                          | LSM                             | EAN(1)=L                                                 | SMEAN(J) |                                                          |                                                          |                                                |                                                                    |                                                |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------|----------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|
|                 |           | LSMEAN                                                                                                                     | LSMEAN                                                                                                              | HO: LSMEAN .O                                                                | 1/     | J İİ                                                               |                                              | 2                               | 3                                                        | • 4      | 5                                                        | 6                                                        | 7                                              | 8                                                                  | 9                                              |
| 1 1 2 2 2 3 3 4 | 123123124 | 268.524660<br>226.558105<br>205.603102<br>166.323142<br>183.161505<br>207.786363<br>181.776334<br>286.700115<br>162.243094 | 41.262509<br>41.262509<br>101.338134<br>41.262509<br>41.262509<br>102.184425<br>50.832906<br>58.796761<br>35.734381 | 0.0001<br>0.0532<br>0.0005<br>0.0005<br>0.0002<br>0.0528<br>0.0015<br>0.0001 | 345678 | 0.4492<br>0.5634<br>0.0729<br>0.1304<br>0.5797<br>0.1750<br>0.7938 | 0.84<br>0.28<br>0.43<br>0.86<br>0.47<br>0.39 | 470<br>303<br>341<br>537<br>778 | 0.8470<br>0.7178<br>0.8363<br>0.9880<br>0.8308<br>0.4801 | 0.2803   | 0.4341<br>0.8363<br>0.7603<br>0.8219<br>0.9824<br>0.1449 | 0.8637<br>0.9880<br>0 7049<br>0.8219<br>0.8221<br>0.4934 | 0.4778<br>0.8308<br>0.8056<br>0.9824<br>0.8221 | 0.7938<br>0.3904<br>0.4801<br>0.0925<br>0.1449<br>0.4934<br>0.1736 | 0.2498<br>0.690C<br>0.9410<br>0.7048<br>0.6776 |

|                                                                                  |                                           |                                                                                                                                                                                                         |                                                                   |                                                                                                                 |                                                                                                                                                     | SITE=1                                                               | SPECIES                                                                      | -3                                                                 |                                      |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
|----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  |                                           |                                                                                                                                                                                                         |                                                                   |                                                                                                                 | GEI                                                                                                                                                 | ERAL LINEAR                                                          | MODELS P                                                                     | ROCEOUR                                                            | E                                    |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| DEPEND                                                                           | ENT                                       | VARIABLE: PCTO                                                                                                                                                                                          | 1M                                                                |                                                                                                                 |                                                                                                                                                     |                                                                      |                                                                              |                                                                    |                                      |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| SOURCE                                                                           |                                           |                                                                                                                                                                                                         | DF                                                                | SUM                                                                                                             | OF SQUARES                                                                                                                                          | MEAN                                                                 | SQUARE                                                                       |                                                                    | VALUE                                | P                                                                  | R > F                                                                                         | R-50                                                               | DUARE                                                    | <b>c.v</b> .                                                                                                                            |
| MODEL                                                                            |                                           |                                                                                                                                                                                                         | 14                                                                | 800                                                                                                             | 3.76711520                                                                                                                                          | 571.69                                                               | 765 109                                                                      |                                                                    | 0.71                                 | 0                                                                  | .7411                                                                                         | 0.2                                                                | 35671                                                    | 56.3480                                                                                                                                 |
| ERROR                                                                            |                                           |                                                                                                                                                                                                         | 25                                                                | 2001                                                                                                            | 3.63067302                                                                                                                                          | 800.54                                                               | 522692                                                                       |                                                                    |                                      | ROO                                                                | T MSE                                                                                         |                                                                    |                                                          | PCTD1M MEAN                                                                                                                             |
| CORREC                                                                           | TED                                       | TOTAL                                                                                                                                                                                                   | 39                                                                | 2801                                                                                                            | 7.39778622                                                                                                                                          |                                                                      |                                                                              |                                                                    |                                      | 28.293                                                             | 90795                                                                                         |                                                                    |                                                          | 50.21278912                                                                                                                             |
| SOURCE                                                                           |                                           |                                                                                                                                                                                                         | DF                                                                |                                                                                                                 | TYPE I SS                                                                                                                                           | F VALUE                                                              | PR >                                                                         | F                                                                  |                                      |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| PLOT<br>FR•FT                                                                    |                                           |                                                                                                                                                                                                         | . <b>6</b><br>8                                                   |                                                                                                                 | 1.31195777<br>2.45515744                                                                                                                            | 0.20                                                                 | 0.972<br>0.397                                                               |                                                                    |                                      |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| FR                                                                               | FT                                        | PCTD IN<br>L'SMEAN                                                                                                                                                                                      |                                                                   | D ERR<br>Smean                                                                                                  | PROB > [T]<br>HO:LSMEAN=O                                                                                                                           | PROB >  T <br>I/J 1                                                  | HO: LSME                                                                     | AN(I)=L<br>3                                                       | SMEAN(J)                             | 5                                                                  | 6                                                                                             | 7                                                                  | 8                                                        | 9                                                                                                                                       |
| 1<br>1<br>2<br>2<br>3<br>3<br>4<br>DEPENO<br>SOURCE<br>ERROR<br>CORREC<br>SOURCE | TED                                       | 60.4670083<br>61:8717742<br>34.3046701<br>53.0104424<br>67.0666983<br>26.1268544<br>24.3635257<br>39.5842146<br>VARIABLE: PCTD                                                                          | 12.34<br>30.32<br>12.34<br><b>30.5</b><br>15.21<br>17.59<br>10.69 | 70771<br>84738<br>84738<br>03433<br>25701<br>58824<br>40920<br>SUM<br>1497<br>4203                              | 0.0001<br>0.2687<br>0.0001<br>0.0002<br>0.0378<br>0.0938<br>0.0784<br>0.0011<br>0F SQUARES<br>8.57322815<br>4.01301843<br>2.58624658<br>TYPE I \$\$ | 4 0.9308<br>5 0.6520<br>6 0.8402<br>7 0.0767<br>8 0.0918<br>9 0.2129 | 0.3994<br>0.8635<br>0.5923<br>0.8739<br>0.0660<br>0.0605<br>0.1846<br>SQUARE | 0.3994<br>0.4491<br>0.5660<br>0.4538<br>0.8064<br>0.7715<br>0.8709 | 0.4491<br>0.7154<br>0.8062           | 0.5923<br>0.5660<br>0.7154<br>0.6681<br>0.1607<br>0.1764<br>0.4189 | 0.8739<br>0.4538<br>0.8062<br>0.6681<br>0.2431<br>0.2204<br>0.4043<br>R > F<br>.8098<br>T MSE | 0.0660<br>0.8064<br>0.0890<br>0.1607<br>0.2431<br>0.9379<br>0.4760 | 0.9379                                                   | O 2129<br>O.1846<br>O.8709<br>O.2450<br>O.4189<br>O.4043<br>O.4760<br>O.4760<br>O.4667<br>C.V.<br>56.7043<br>PCTD2M MEAN<br>72.31266224 |
| PLOT<br>FR•FT                                                                    |                                           |                                                                                                                                                                                                         | 6                                                                 |                                                                                                                 | 5.28730244<br>3.28592571                                                                                                                            | 0.17<br>0.98                                                         | 0.98<br>0.472                                                                |                                                                    |                                      |                                                                    |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| FR                                                                               | FT                                        | PCTD2                                                                                                                                                                                                   |                                                                   | TD ERR                                                                                                          | PROB >  T <br>HQ:LSMEAN=O                                                                                                                           | PROB >  T<br>I/J 1                                                   | 2                                                                            | 3                                                                  | ) 4                                  | 5                                                                  |                                                                                               |                                                                    |                                                          |                                                                                                                                         |
| 1<br>1<br>2<br>2<br>2<br>3<br>3<br>4                                             | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>4 | <ul> <li>81. 23244 19</li> <li>83. 389330</li> <li>52. 9788533</li> <li>97. 45284 11</li> <li>73. 231125</li> <li>57. 512209</li> <li>45. 4722594</li> <li>31. 10863 11</li> <li>63. 6775944</li> </ul> | 17.8<br>43.9<br>7 17.8<br>7 17.8<br>44.3<br>3 22.0<br>3 25.9      | 957857<br>957857<br>9509273<br>957857<br>957857<br>957857<br>957857<br>9179683<br>0465216<br>5004907<br>1982051 | 0.0001<br>0.2393<br>0.0004<br>0.2062<br>0.0497<br>0.2039<br>0.0004                                                                                  | 4 0.4995<br>5 0.7382<br>6 0.6178<br>7 0.1965<br>8 0.1055             | 0.5200<br>0.5578<br>0.6715<br>0.5864<br>0.1717                               | 0.5200<br>0.3491<br>0.6676<br>0.9427<br>0.8766<br>0.6596           | 0.3160<br>0.4030<br>0.0652<br>0.0355 | 0.6715<br>0.6676<br>0.3160<br>0.7406<br>0.3128<br>0.1704           | 0.5864<br>0.9427<br>0.4030<br>0.7406<br>0.7406                                                | 0.1717<br>0.8766<br>0.0652<br>0.3128<br>0.8103                     | 0.0920<br>0.6596<br>0.0355<br>0.1704<br>0.5965<br>0.6622 | 5 0.8203<br>5 0.1660<br>4 0.6900<br>5 0.8966<br>2 0.5055<br>0.2855                                                                      |

#### SITE+2 SPECIES+3

| DEPENDENT VARIABLE: P | PCTH 1M |                                |         |                  |         |             |          |             |
|-----------------------|---------|--------------------------------|---------|------------------|---------|-------------|----------|-------------|
| SOURCE                | DF      | SUM OF SQUARES                 | MEAN S  | QUARE            | F VALUE | PR > F      | R-SQUARE | c.v.        |
| MODEL                 | 21      | 15756.45825626                 | 750.307 | 53601            | 0.81    | 0.6932      | 0.346014 | 75.4000     |
| ERROR                 | 32      | 29780.63235333                 | 930.644 | 76104            |         | ROOT MSE    |          | PCTHIM MEAN |
| CORRECTED TOTAL       | 53      | 45537.09060959                 |         |                  |         | 30.50647081 |          | 40.45949812 |
| SOURCE                | DF      | TYPE I SS                      | F VALUE | PR > F           |         |             |          |             |
| PLOT<br>FR®FT         | 12<br>9 | 8881.28554652<br>6875.17270974 | 0.80    | 0.6521<br>0.6015 |         |             |          |             |

| FR                                        | FT                  | PCTH IM                                                                                                                                 | STD ERR<br>LSMEAN                                                                                                                        | PROB > [T]<br>HO:LSMEAN=O                                                                        |                |                                                                            |                                                             | PROB                                 | >  T  H                                                                                     | O: LSMEA                                                                                              | N(I)=LSM | EAN(J)                     |        |                                                |                                                                                              |
|-------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|----------------------------|--------|------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>4 | 1 2 3 1 2 3 1 2 3 4 | 41.5895860<br>37.2108709<br>44.1486935<br>46.2305144<br>5.5425254<br>53.2785148<br>25.8560614<br>24.1128393<br>49.1562867<br>33.4809741 | 17.0232183<br>15.5215866<br>14.3870581<br>15.4306666<br>19.5568606<br>13.3465332<br>18.2947172<br>14.1682020<br>14.3050567<br>12.1036902 | 0.0203<br>0.0225<br>0.0044<br>0.0053<br>0.7787<br>0.0004<br>0.1672<br>0.0985<br>0.0017<br>0.0093 | 8 0.3<br>9 0.7 | 8399<br>9041 0<br>8315 0<br>1456 0<br>5667 0<br>5086 0<br>3908 0<br>7180 0 | .7208<br>.6622<br>.1888<br>.4131<br>.6346<br>.5108<br>.5553 | 0.6124<br>0.4392<br>0.2856<br>0.7938 | 4<br>0.8315<br>0.6622<br>0.9141<br>0.0909<br>0.7030<br>0.4008<br>0.2521<br>0.8799<br>0.5222 | 5<br>0.1456<br>0.1888<br>0.1001<br>0.0909<br>0.0378<br>0.4353<br>0.4353<br>0.4184<br>0.0713<br>0.2386 | 0.0378   | 0.4392<br>0.4008<br>0.4353 | 0.9381 | 0 5553<br>0.7938<br>0.8799<br>0.0713<br>0.8137 | 10<br>0.7035<br>0.8535<br>0.5878<br>0.5222<br>0.2386<br>0.2960<br>0.7457<br>0.6245<br>0.4215 |

TABLE IX (Continued)

| DADALE         DF         DADAL         DF         DADALES         FALM BOOLE         FALM BOOLE         D.44         D.4773         D.4773 <thd.4773< th="">         D.4773         <thd.4773< th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thd.4773<></thd.4773<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           |                |           |                 |                 |                 |                                            |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|----------------|-----------|-----------------|-----------------|-----------------|--------------------------------------------|----------------------|
| Spunct         pr         trans source         P Autur         P > F         P = Source         Source           Source         21         22555.0012006         1112.84205326         0.44         0.6573         0.242344         42           Source         27         327.1168271712         122.4344464         30.718         22.4424464         30.718         22.4424464         30.718         22.4424646         30.718         22.4424646         30.718         22.4424646         30.718         22.4424646         30.718         22.4424646         30.718         22.4424646         30.718         22.442         32.4424646         30.718         22.442         32.442         32.718         22.442         32.718         22.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442         32.718         32.442 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>ECIES=3</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                |           |                 | ECIES=3         |                 |                                            |                      |
| Desci.         Diff         Diff <thdiff< th="">         Diff         Diff         <t< th=""><th></th><th></th><th>VARIABLE: PCI</th><th></th><th></th><th></th><th></th><th>80 × 5</th><th>E-SOLARE C.V.</th></t<></thdiff<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           | VARIABLE: PCI  |           |                 |                 |                 | 80 × 5                                     | E-SOLARE C.V.        |
| MADEL         1         LINE HOLD CONSCIPLE         MADEL         1         LINE HOLD CONSCIPLE         MADEL         PETHOR NO           SEGRECTED TOTAL         54         STOT ISE         122,34435466         ROOT HSE         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |           |                |           |                 |                 |                 |                                            |                      |
| EARD       33       4371,13971375       132,344304       H.C. 104       H.C. 104         SOURCE       DF       TYPE I 35       F VALUE       PF > F         PATT       12       1423,0019816       0.22       0.572       0.5778         FATT       12       1423,0019816       0.22       0.5778       0.477       0.4443047       85.41540         ILAST SOURCES HUNS         FATT       FORM SIGN PARSA       FORM SIGN PARSA         ILAST SOURCES HUNS         FORM SIGN PARSA       FORM SIGN PARSA         ILAST SOURCES HUNS         FORM SIGN PARSA       FORM SIGN PARSA       FORM SIGN PARSA         ILAST SOURCES HUNS         FORM SIGN PARSA       FORM SIGN PARSA         TYPE I 35       FORM SIGN PARSA         I 11       FORM SIGN PARSA       FORM SIGN PARSA         I 12       FORM SIGN PARSA       FORM SIGN PARSA         I 12       FORM SIGN PARSA         I 12       FORM SIGN PARSA       FORM SIGN PARSA         I 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |                | -         |                 |                 | 0.84            |                                            | PCTH2M MEAN          |
| CONTECTO TOTAL SI VERTO, THE J SS F VALUE PR > F<br>PAUT I VELASISSENT CONTENTS  VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VALUE PR > F<br>PAUT I VELASISSENT CONTENT F VELASI |    |           |                |           |                 | 1324.58433496   |                 |                                            | 85.41569241          |
| NUME         Diff         ITTER 1         ITTER 1         Diff         ITTER 1           PAUT         I         HARD CONSTR         Diff         Diff <thdiff< th=""> <thdiff< th=""> <thdiff< th=""></thdiff<></thdiff<></thdiff<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •  | CORRECTED | TOTAL          | 54        | 67077.18683384  |                 |                 | 30.33483887                                | 63.4150524           |
| Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure         Figure<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,  | SOURCE    |                | DF        | TYPE I SS       | F VALUE PR      | > F             |                                            |                      |
| LEAST SOUMERS MEMOR         FF       FT       DETEXAN       ESTO ENE NEOD > [7]       PROB > [7] HO: LSMEAN(1)+LSMEAN(2)         1       13       133.00244       20.744.05       30.024       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425       0.425 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |                |           |                 |                 |                 |                                            |                      |
| PT       PC (10)       ST0 ERB (10)       PROB > [1]       PROB > [1] HD; LSMEAN(1)-LSMEAN(1)]         1       112,247248       20,274.65       0,0001       1       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,0200       0,02000       0,0200       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | FR+FT     |                | •         | 8727.29492087   | 0.73 0.         |                 |                                            |                      |
| LENEAN LENEAN HOTELSHEAKED<br>1 1 1 13 338348 20 2744 (65 0 0001 1/0 1 0.5280 0.5280 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.289 0.239 0.239 0.289 0.239 0.239 0.289 0.239 0.239 0.289 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0.239 0                                                                                           |    |           |                |           |                 |                 |                 |                                            |                      |
| 1       11       33388       20.274.58       0.4608       0.1274.5       0.1274.5       0.1281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2281       0.2812       0.2826       0.1820       0.2831       0.1826       0.4831       0.1821       0.2831       0.1810       0.2831       0.1810       0.2831       0.1810       0.2831       0.1810       0.1826       0.4811       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810       0.1810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FI | FT        |                |           | HO:LSMEAN=O     |                 |                 |                                            |                      |
| 1       9       9.45744       17.16245       0.0001       1       0.4866       0.4866       0.7372       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1376       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  |           |                |           | 0.0001          | 0.5269 0        | .4808 0.3746 0. | 1217 0.7474 0.1661                         | 0.0895 0.2851 0.2239 |
| 2 2 67.56559 23.26793 2<br>2 1 77.561465 1 6.2792 0.0001 5 0.2774 0.7718 0.7180 0.5872 0.177 0.7240 0.7172 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.7240 0.727 0.728 0.7460 0.775 0.775 0.775 0.757 0.558 0.007 1.74 0.738 0.7460 0.775 0.775 0.778 0.728 0.7460 0.775 0.775 0.758 0.776 0.775 0.758 0.776 0.775 0.758 0.776 0.775 0.758 0.776 0.778 0.778 0.778 0.778 0.775 0.758 0.776 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0                                                                                            | 1  | 3         | 95.458744      | 17.163465 | 0.0001          | 0.4808 0.9469   | 0.8516 0.3      | 3121 0.6386 0.4375                         | 0.2834 0.6957 0.5730 |
| 2 3 105 54885 15 52556 0.0001 5 0.7474 0.7188 0.6870 0.472 0.157 0.2409 0.712 0.1573 0.6860 0.472 0.1573 0.6860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4860 0.475 0.4850 0.475 0.4860 0.475 0.4860 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.4850 0.475 0.474 0.4850 0.475 0.474 0.4850 0.475 0.474 0.4850 0.475 0.474 0.43111 40 0.4860 0.4875 0.475 0.474 0.43111 40 0.4860 0.4875 0.475 0.474 0.43111 40 0.4860 0.4875 0.475 0.474 0.43111 45 0.4860 0.4875 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475                                                                                                   |    | 2         | 67.568539      | 23.287392 | 0.0066          | 0.1217 0.3020 0 |                 | 3752 0.4972 0.5161<br>0.1572 0.8451        |                      |
| 3       71       45       50       0.00001       8       0.00001       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000       0.02000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | з  | - ī       | 73.608148      | 21.743529 | 0.0019 1        |                 |                 |                                            |                      |
| 4       4       42.233445       14.421683       0.0001 10 0.2239 0.5309 0.5300 0.5884 0.5996 0.7916 0.7975 0.6363 0.8590         DEPENDENT VARIABLE: PCTDIM         SQUACE       DF       SUM OF SOUARES       MEAN SOUARE       F VALUE       PR > F       R-SOUARE       40.         MODEL       21       65416.80720022       3115.18603758       0.79       0.7478       0.331113       40.         CORRECTED TOTAL       53       197872.6324884       4128.81019853       ROOT MSE       PCTD1M         SOURCE       DF       TYPE 1.55       F VALUE       PR > F       FCTD1M       158.80375         SOURCE       DF       TYPE 1.55       F VALUE       PR > F       FCTD1M       158.80375         SOURCE       DF       TYPE 1.55       F VALUE       PR > F       FCTD1M       158.80375         LEAST SOURCE NOTAL       53       19787.1837320       0.46       0.5040       0.5773       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.7893       0.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           |                |           |                 |                 |                 |                                            | 0.4915 0.6363        |
| SOURCE         DF         SUM OF SOURES         NEAN SOURE         F VALUE         PR > F         R-SOURE           MODEL         21         64418.00700022         3115.18605758         0.75         0.7478         0.331113         40.7           ERROR         32         132153.0262888         4120.81019655         R007 MSE         PCTD IN I           CORRECTED TOTAL         53         197572.0326881         4120.81019655         R007 MSE         PCTD IN I           SOURCE         OF         TYPE 4 SS         F VALUE         PR > F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4  | 4         |                |           |                 |                 |                 |                                            |                      |
| SOURCE         DF         SUM OF SOURES         NEAN SOURE         F VALUE         PR > F         P-SOURE           MODEL         21         64418.00720022         3115.18605758         0.75         0.7478         0.331113         40.7           CORRECTED TOTAL         53         197572.03240891         4129.81019655         RIODT MSE         PCTD IN I           SOURCE         OF         TYPE 4 SS         F VALUE         PR > F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                |           |                 |                 |                 |                                            |                      |
| MODEL     21     65418.0720922     3115.18603750     0.75     0.7478     0.331113     40       ERROR     32     132153.92628963     4129.81019655     ROOT MSE     PCTDIM       CORRECTED TOTAL     53     197572.83346851     64.26359331     158.8021       SOURCE     DF     TYPE 4 55     F VALUE     PR > F       PLOT     12     47587.181373200     0.646     0.5040       I     158.726422     35.860368     0.0001     1/4     0.6548     0.5340       I     158.72642     35.860368     0.0001     1/4     1     0.6546     0.5340     0.5730     0.572     0.965     0.798     0.798     0.996     0.990     0.4650     0.5740     0.5720     0.965     0.7980     0.7980     0.7980     0.7980     0.7980     0.7980     0.990     0.4650     0.5740     0.5230     0.5940     0.5240     0.5940     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.7930     0.5930     0.7930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930     0.5930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           | VARIABLE: PC   |           |                 |                 |                 |                                            |                      |
| ERROR     32     132153.8223858     4128.81018655     ROT MSE     PCD1M       CORRECTED TOTAL     53     197572.83348591     64.26359331     158.8021       SOURCE     DF     TYPE 1 SS     F VALUE     PR > F       PLOT     12     47597.8334859     0.362     0.564       J     12     17821.7386392     0.46     0.5040       J     12     1723.1382892     0.46     0.5040       J     157.726842     35.860368     0.6001     1/4     0.6546     0.6534     0.7985     0.7985     0.7985     0.7985     0.7985     0.7985     0.7985     0.6530     0.5950     0.4450     0.5770     0.6232     0.4450     0.5770     0.6232     0.4450     0.5770     0.6232     0.4450     0.7985     0.7985     0.798     0.4530     0.7970     0.7380     0.4653     0.7970     0.7380     0.4553     0.7970     0.7380     0.4553     0.7770     0.7380     0.4553     0.7770     0.738     0.4553     0.7770     0.738     0.4553     0.7770     0.738     0.4553     0.7770     0.738     0.7370     0.738     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | SOURCE    |                |           |                 |                 |                 |                                            |                      |
| CORRECTED TOTAL. 53 197572.83340591 44.26359931 158.4021<br>SOURCE DF TYPE 1 SS F VALUE PR > F<br>PLCT 12 47597.18137320 0.46 0.5040<br>FR+FT 2 CT01M STD ERR PR08 > [T] PR08 > [T] PR08 > [T] PC 1.55KEAN(1)+L5KEAN(1)]<br>L5KEAN DOLLSKEANO 100.55KEANO 0.566 0.5040 0.465 0.7450 0.7572 0.9865 0.4251 0.2818 0.1218 0.4513 0.2810 0.2810 0.4510 0.5550 0.4500 0.7470 0.7788 0.1850 0.4510 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810                                                                                      |    | MODEL     |                | 21        | 65418.90720922  |                 |                 |                                            |                      |
| CURRELIED TOTAL         DS         INTRACONDUCT         PR F           SOURCE         DF         TYPE I SS         F VALUE         PR > F           PLOTT         12         47397.16137300         0.96         0.5040           CLEAST SQUARES MEANS         FT         PCTO1M         STD ERR         PR08 > [T]         PP08 > [T] HO: LSMEAN(L)=LSMEAN(J)           I         1557.756442         35.860368         0.0001         1         1         105.776442         0.95580         0.9553         0.9553         0.9753         0.9550         0.9320         0.9120         0.9110         0.67540         0.7780         0.6653         0.9550         0.9220         0.9110         0.6750         0.7780         0.6653         0.7780         0.7820         0.1212         0.9110         0.6750         0.7780         0.7820         0.7820         0.1212         0.7220         0.1212         0.7230         0.7780         0.7830         0.7780         0.7830         0.7780         0.7830         0.7780         0.7820         0.1220         0.1212         0.7230         0.7780         0.7830         0.7780         0.7830         0.7780         0.7830         0.7780         0.7830         0.7780         0.7830         0.7782         0.7830 <t< th=""><th></th><th>ERROR</th><th></th><th>32</th><th>132153.92628969</th><th>4129.81019655</th><th>1</th><th>ROOT MSE</th><th>PCTD1M MEAN</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | ERROR     |                | 32        | 132153.92628969 | 4129.81019655   | 1               | ROOT MSE                                   | PCTD1M MEAN          |
| PLOT<br>FR*FT       12<br>12       47587.18137330<br>17821.72582592       096<br>0.48       0.5040<br>0.875         LEAST SQUARES MEANS         FR FT PCTO:M LSMEAN HOULSMEAN-OL LSMEAN(L)+LSMEAN(L)+LSMEAN(L)+LSMEAN(J)         1       1       155.720442       35.860368       0.0001       1/J       1       0.524       0.334       0.355       0.775       0.685       0.7298       0.627       0.528       0.516       0.516       0.7798       0.6520       0.7298       0.6270       0.528       0.516       0.516       0.7798       0.7798       0.7850       0.7298       0.6270       0.7280       0.5270       0.5290       0.7160       0.7798       0.7798       0.7860       0.7720       0.2230       0.7161       0.7798       0.7850       0.7790       0.7560       0.7720       0.2230       0.6471       0.7798       0.7798       0.7650       0.7720       0.7238       0.7720       0.7238       0.7720       0.7238       0.7720       0.7238       0.7720       0.7238       0.7720       0.7230       0.7230       0.7720       0.7230       0.7720       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230       0.7230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | CORRECTED | TOTAL.         | 53        | 197572.83349891 |                 |                 | 64.26359931                                | 158.80214074         |
| PRIFY     9     17821.72582992     0.48     0.8775       LEAST SQUARES MEANS       FR     FT     PCTD1M     STD     ERR     PR08 > [T]     PR08 > [T]     NO: LSMEAN(J)-LSMEAN(J)       1     1     155.726842     35.860368     0.0001     1     0.6548     0.8116     0.6110     0.6793     0.753     0.753     0.5225     0.5988     0.4450     0.7110     0.6523     0.9580     0.4450     0.5732     0.9562     0.5989     0.       1     1     155.726842     35.860368     0.0001     3     0.6110     0.6793     0.9580     0.4450     0.5732     0.9562     0.7339     0.6225     0.7389     0.3110     0.6225     0.7288     0.64650     0.5720     0.6327     0.7370     0.7288     0.64650     0.5720     0.6372     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.7370     0.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | SOURCE    |                | DF        | TYPE & SS       | F VALUE PR      | ! > F           |                                            |                      |
| LEAST SQUARES MEANS           FR FT PCID M LSMEAN LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEAN O LSMEA                                                                                                                                                                       |    |           |                |           | 47597.18137930  | 0.96 0.         | 5040            |                                            |                      |
| FR         FT         PCT01H<br>LSMEAN         STD_ERR         PR0B > [T]<br>H0:LSMEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | PR-PI     |                |           |                 | 0.40 0.         |                 |                                            |                      |
| LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN       LIMEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |           |                |           |                 |                 |                 |                                            |                      |
| 1       1       15.72642       35.660368       0.0001       1/0       0.6546       0.8116       0.392       0.6324       0.7953       0.8752       0.9965       0.29868       0.011         1       21.352.887703       26.697096       0.0001       2       0.6548       0.8116       0.5930       0.4550       0.7953       0.6252       0.7951       0.7952       0.9965       0.5180       0.5180       0.7188       0.5662       0.7901       0.7320       0.5233       0.5180       0.7788       0.7288       0.7980       0.7380       0.5662       0.7901       0.7320       0.5233       0.6450       0.7780       0.7288       0.9450       0.7572       0.5233       0.6417       0.         2       132.65524       41.197629       0.0002       7       0.8752       0.7378       0.7388       0.9450       0.7592       0.712       0.7235       0.7232       0.7371       0.7288       0.9453       0.6723       0.712       0.7245       0.7372       0.7292       0.7234       0.2345       0.7372       0.7245       0.7372       0.7245       0.7372       0.7245       0.7372       0.2345       0.7270       0.2345       0.7270       0.2345       0.7270       0.2345       0.7270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           |                |           |                 |                 | PROB > [T] HO:  |                                            | 8 9 10               |
| 1       3       145.064.138       30.3074.48       0.0001       2       0.6846       0.6993       0.4780       0.3935       0.73976       0.5622       0.7091       0.7386       0.7386       0.19970       0.7386       0.19970       0.7386       0.19970       0.7386       0.19970       0.7386       0.19970       0.7386       0.19970       0.1934       0.2934       0.32934       0.12934       0.32934       0.12934       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.19970       0.6417       0.1934       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394       0.2394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !  |           |                |           |                 |                 |                 | 0.6534 0.7953 0.8752                       | 0.9965 0.2988 0.5106 |
| 1       118, 113143       32, 505588       0, 0011       4       0, 3912       0, 6933       0, 4780       0, 7388       0, 7388       0, 6655       0, 8324       0, 3266       0, 8234       0, 3266       0, 8233       0, 6455       0, 9453       0, 7482       0, 6233       0, 6477       0, 6233       0, 6477       0, 6455       0, 9453       0, 7482       0, 6233       0, 6477       0, 0, 7483       0, 6455       0, 9453       0, 7482       0, 7483       0, 6475       0, 9453       0, 7482       0, 7483       0, 7482       0, 7483       0, 7482       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483       0, 7483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i  | 3         | 145.064138     | 30.307148 | 0.0001          | 3 0.8116 0.8110 | 0.4780 0        | 0.7978 0.5662 0.7091                       | 0.7820 0.3812 0.6478 |
| 2       3       166.852304       28.115224       0.0001       6       0.7953       0.4450       0.5652       0.1980       0.4655       0.9453       0.7592       0.1266         3       1       163.57895       35.28952       0.0001       7       0.8752       0.5743       0.0514       0.5754       0.5743       0.6455       0.9453       0.8712       0.2730       0.2345       0.2345       0.2354       0.5752       0.9453       0.8712       0.2730       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2366       0.28951       0.3074       0.4513       0.4613       0.6478       0.2706       0.2345       0.7692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 2         | 132.655254     |           |                 | 4 0.3912 0.6593 |                 | 0.4665 0.5720                              | 0.6293 0.6417 0.8951 |
| 3       2       155.913048       29.846116       0.0001       0.09555       0.2325       0.7320       0.2365       0.2326       0.7320       0.2365       0.2326       0.7320       0.2365       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2326       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.2345       0.4613       0.6847         DEPENDENT VARIABLE: PCTD2M       SUM OF SQUARES       MEAN SQUARE       F VALUE       PR * SQUARE         MODEL       21       75336.21893691       3587.43899700       0.486       0.6176       0.358095 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>6 0.7953 0.4450</th><th>0.5662 0.1980 0</th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                |           |                 | 6 0.7953 0.4450 | 0.5662 0.1980 0 |                                            |                      |
| 4       126.139248       25.497105       0.0001       9       0.2388       0.3459       0.3612       0.8110       0.1003       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513       0.4513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3  | 2         |                | 29.846116 | 0.0001          | 8 0.9965 0.6225 | 0.7820 0.3266 0 | 0.6293 0.7692 0.8712                       | 0.2345 0.4613        |
| SOURCE         DF         SUM OF SQUARES         MEAN SQUARE         F VALUE         PR > F         R-SQUARE           MODEL         21         75336.21893691         3587.43899700         0.88         0.6176         0.358095         36.           ERROR         33         135044.15621152         4092.24715792         R00T MSE         PCTD2M           CORRECTED TOTAL         54         210380.37514843         63.97067420         175.9552           SQURCE         OF         TYPE I SS         F VALUE         PR > F           PLOT         12         62778.92082753         1.28         0.2766           FR <ft< td="">         PCTD2M         STD ERR         PR08 &gt; [T]         PR08 &gt; [T] HO: LSMEAN(I)+LSMEAN(J)           I         1         182.976272         35.635601         0.0001         1         0.4860         0.6034         0.3770         0.6777         0.3777         0.777         0.1777         0.1777         0.1777         0.1777         0.1262         0.4690         0.6034         0.8323         0.6551         0.8303         0.4550         0.2627         0.3177         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777</ft<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ă  |           |                |           |                 |                 |                 | 0.8951 0.3074 0.4513                       |                      |
| SOURCE         DF         SUM OF SQUARES         MEAN SQUARE         F VALUE         PR > F         R-SQUARE           MODEL         21         75336.21893691         3587.43899700         0.88         0.6176         0.358095         36.           ERROR         33         135044.15621152         4092.24715792         R00T MSE         PCTD2M           CORRECTED TOTAL         54         210380.37514843         63.97067420         175.9552           SQURCE         OF         TYPE I SS         F VALUE         PR > F           PLOT         12         62778.92082753         1.28         0.2766           FR <ft< td="">         PCTD2M         STD ERR         PR08 &gt; [T]         PR08 &gt; [T] HO: LSMEAN(I)+LSMEAN(J)           I         1         182.976272         35.635601         0.0001         1         0.4860         0.6034         0.3770         0.6777         0.3777         0.777         0.1777         0.1777         0.1777         0.1777         0.1262         0.4690         0.6034         0.8323         0.6551         0.8303         0.4550         0.2627         0.3177         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777</ft<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |                |           |                 |                 |                 |                                            |                      |
| MODEL       21       75336.21693691       3587.43899700       0.88       0.6176       0.358095       36.         ERROR       33       135044.15621152       4092.24715792       R00T MSE       PCTD2M         CORRECTED TOTAL       54       210380.37514843       63.97067420       175.9552         SQURCE       OF       TYPE I SS       F VALUE       PR > F         PLOT       12       62778.92082753       1.28       0.2766         FR FT       PCTD2M       STD ERR       PR08 > [T]       PR08 > [T] HO: LSMEAN(J)       5       9         1       182.976272       35.635601       0.0001       1       0.4860       0.6024       0.3374       0.8026       0.4834       0.9939       0.902 0       0.322 0       0.3777       0.777       0.1         1       182.976272       35.635601       0.0001       1       0.4860       0.6044       0.3374       0.8026       0.4834       0.939       0.902 0       0.322 0       0.327 0       0.36540       0.4630       0.6331       0.3650       0.6267 0       0.327 0       0.6333       0.4834       0.939 0       .92777       0.777 0       0.326       0.3270 0       0.333       0.3469 0       .0377 0       0.626 0 <th< th=""><th></th><td></td><td>T VARIABLE: PO</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |           | T VARIABLE: PO |           |                 |                 |                 |                                            |                      |
| ERROR       33       135044.15621152       4092.24715792       R00T MSE       PCTD2M         CORRECTED TOTAL       54       210380.37514843       63.97067420       175.9552         SQURCE       OF       TYPE I SS       F VALUE       PR > F         PLOT       12       62778.92082753       1.28       0.376420         FR FT       PCTD2M       STD ERR       PR08 > [T]       PR08 > [T] HO: LSMEAN(I)+LSMEAN(J)         I       1       182.976272       35.635601       0.0001       1       0.4860       0.6034       0.3774       0.8026       0.1220       0.3777       0.1777       0.1777       0.1777       0.1777       0.1220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3220       0.3262       0.3277       0.777       0.3262       0.3277       0.5777       0.3262       0.3267       0.3262       0.3267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                |           |                 |                 |                 |                                            |                      |
| CORRECTED TOTAL         54         210380.37514843         63.97067420         175.9552           SQURCE         OF         TYPE I SS         F VALUE         PR > F           PLOT<br>FR*FT         12         62778.92082753<br>12557.29810938         1.28         0.2766<br>0.34         0.9542           FR         FT         PCTD2M<br>LSMEAN         STD ERR<br>LSMEAN         PROB > [T]<br>H0:LSMEANO         PROB > [T]<br>H0:LSMEANO         PROB > [T]<br>H0:LSMEANO         0.0001         1         2         3         4         5         6         7         8         9           1         182.976272         35.635601         0.0001         1         0.4860         0.6024         0.3374         0.8026         0.4834         0.9339         0.902         0.3220         0.3277         0.3777         0.3777         0.3777         0.3777         0.3777         0.3262         0.3267         0.3262         0.3262         0.3262         0.3262         0.3262         0.3262         0.3277         0.3262         0.3267         0.3262         0.3267         0.3262         0.3267         0.3262         0.3267         0.3262         0.3267         0.3262         0.3267         0.3262         0.3267         0.3267         0.3267         0.3267         0.3267         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |                |           |                 |                 |                 |                                            |                      |
| SQURCE         OF         TYPE I SS         F VALUE         PR > F           PLOT<br>FR*FT         12         62778.92082753<br>12557.29810938         1.28         0.2766           FR         FT         PCTD2M<br>LSMEAN         STD ERR<br>LSMEAN         PROB > [T]<br>H0:LSMEANO         PROB > [T]<br>H0:LSMEANO         PROB > [T]<br>H0:LSMEANO         0.34         0.9542           1         182.976272         35.635601         0.0001         1         2         4         5         6         7         8         9           1         182.976272         35.635601         0.0001         2         0.4860         0.60244         0.3374         0.8026         0.4834         0.9839         0.9022         0.3270         0.3777         0.777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1262         0.4597         0.6026         0.6591         0.8026         0.4597         0.6026         0.4597         0.6026         0.4597         0.6026         0.4597         0.6026         0.4597         0.6026         0.4597         0.2162         0.92767         0.2162         0.92767         0.2162         0.92767         0.2162         0.92767         0.2162         0.92767         0.2162         0.7077         0.8103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |           |                |           | •               | 4092.2471579    | 2               |                                            | PCTD2M MEAN          |
| PLOT<br>FR+FT         12         62778.92082753<br>12557.29810938         1.28         0.2766<br>0.8542           FR         FT         PCTD2M<br>LSMEAN         STD ERR<br>LSMEAN         PR08 > [T]         PR08 > [T] HO: LSMEAN(I)+LSMEAN(J)           I         1         182.976272         35.635601         0.0001         1         2         3         5         6         7         8         9           I         1         182.976272         35.635601         0.0001         1         0.4860         0.6044         0.3574         0.8026         0.4834         0.9839         0.902         0.3270         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.2062         0.8026         0.8030         0.6550         0.6283         0.4697         0.2062         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067         0.2067<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |                |           |                 | 54<br>5         |                 | 63.9/06/420                                | 175.95522207         |
| FR         FT         PCTD2M<br>LSMEAN         STD ERR<br>LSMEAN         PROB > [T]         PROB > [T] HO: LSMEAN(I)*LSMEAN(J)           1         1         182.976272         35.635601         0.0001         1         0.4860         0.6044         0.3574         0.8026         0.4834         0.9839         0.9022         0.320         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777         0.1777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |                | •••       |                 | •               |                 |                                            |                      |
| LSMEAN         LSMEAN         HO:LSMEAN         HO:LSMEAN         HO:LSMEAN         I/J         1         2         3         4         5         6         7         8         9           1         1         182.976272         35.635601         0.0001         1         0.4860         0.6044         0.3574         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.4834         0.993         0.902         0.322         0.377         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.797         0.8026         0.6551         0.6551         0.6551         0.6550         0.6550         0.6252         0.718         0.798         0.7072         0.7267         0.7         2         170.20776         0.7115 <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                | •         |                 |                 |                 |                                            |                      |
| LSMEAN         LSMEAN         HO:LSMEAN         HO:LSMEAN         HO:LSMEAN         I/J         1         2         3         4         5         6         7         8         9           1         1         182.976272         35.635601         0.0001         1         0.4860         0.6044         0.3574         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.8026         0.4834         0.993         0.902         0.322         0.377         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.777         0.797         0.8026         0.6551         0.6551         0.6551         0.6550         0.6550         0.6252         0.718         0.798         0.7072         0.7267         0.7         2         170.20776         0.7115 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           |                |           |                 |                 |                 |                                            |                      |
| 1         1         182.976272         35.635601         0.0001         1         0.4860         0.6044         0.3574         0.8026         0.4834         0.9839         0.9022         0.3220         0.1           1         2         151.281079         32.536536         0.0001         2         0.4860         0.8323         0.8044         0.7037         0.6655         0.5139         0.3777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.7777         0.777         0.7777         0.7777         0.7777         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7772         0.7792         0.5144         0.3459         0.7092 </th <th></th> <th>FR FT</th> <th></th> <th></th> <th></th> <th>I/J 1 2</th> <th></th> <th></th> <th>8 9 10</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | FR FT     |                |           |                 | I/J 1 2         |                 |                                            | 8 9 10               |
| 1         3         155.890476         30.167869         0.0001         3         0.6044         0.8323         0.6581         0.8303         0.8550         0.6253         0.4697         0.6089         0.1           2         1         142.903959         29.810494         0.0001         4         0.374         0.46404         0.5581         0.5816         0.7825         0.3942         0.2362         0.9767         0.           2         1         170.207776         40.931906         0.0002         5         0.8026         0.7037         0.8303         0.5616         0.7825         0.3942         0.2362         0.9767         0.           2         3         152.999907         27.987019         0.0001         6         0.4834         0.9565         0.8550         0.7825         0.5144         0.3459         0.7092         0.5           3         152.999907         27.987019         0.0001         6         0.4834         0.9565         0.8550         0.7825         0.7115         0.5144         0.3459         0.7092         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |           |                |           |                 | 0.4860          | 0.6044 0.3574 0 | .8026 0.4834 0.9839                        | 0.9022 0.3220 0.5162 |
| 2         2         170.207776         40.931906         0.0002         5         0.8026         0.7037         0.8303         0.5616         0.7115         0.7999         0.7072         0.5318         0.7           2         3         152.999907         27.987019         0.0001         6         0.4834         0.9665         0.8550         0.7825         0.7115         0.5144         0.3459         0.7092         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 1 3       | 159.890476     | 30.16796  | 9 0.0001        | 3 0.6044 0.8323 | 0.6581 0        | .8303 0.8550 0.6253                        | 0.4697 0.6089 0.8863 |
| 2 3 152,999907 27,987019 0.0001 6 0.4834 0.9665 0.8550 0.7825 0.7115 0.5144 0.3459 0.7092 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 2 2       | 170. 207776    | 40.93190  | 6 0.0002        | 5 0.8026 0.7037 | 0.8303 0.5616   | 0.7115 0.7999                              | 0.7072 0.5318 0.7412 |
| 3 1 183,981430 38,218282 0.COQ1 7 0.9839 0.5129 0.6253 0.3942 0.7999 0.5144 0.9286 0.3591 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 2 3       | 152.999907     | 27.98701  | 9 0.0001        | 7 0.9839 0.5129 | 0.6253 0.3942 0 | 0.7999 0.5144                              | 0.3459 0.7092 0.9795 |
| 3 2 188.188924 29.704691 0.0001 8 0.9022 0.3177 0.4697 0.2352 0.7072 0.3459 0.9286 0.2082 0.3<br>3 3 139.9194A 29.970279 0.0001 9 0.3220 0.7777 0.5699 0.9267 0.5318 0.7092 0.3591 0.2082 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 32        | 188.188924     | 29.70469  | 1 0.0001        | 9 0.3220 0.7777 | 0.4697 0.2362 0 | .7072 0.3459 0.9286<br>.5318 0.7092 0.3591 | 0.2082 0.3955        |
| 4 4 154.008651 25.348781 0.0001 10 0.5162 0.9486 0.8863 0.7816 0.7412 0.9795 0.5421 0.3955 0.7183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 4 4       |                |           |                 |                 | 0.8863 0.7816 0 |                                            |                      |

|             |        | ARIABLE: PCTH            |                          |                                    |                       | SQUARE           |                      | VALUE    | PR > F                         | R-1              | SQUARE           |                      | <b>c.v</b> .     |
|-------------|--------|--------------------------|--------------------------|------------------------------------|-----------------------|------------------|----------------------|----------|--------------------------------|------------------|------------------|----------------------|------------------|
| URCE        |        |                          |                          | M OF SQUARES                       |                       | 6750852          | •                    | 2.62     | 0.0008                         |                  | 516849           | 107                  | . 7678           |
| DEL         |        |                          |                          | 1689.28518736<br>1971.15896325     |                       | 1653385          |                      |          | ROOT MSE                       |                  |                  | PCTH1M               | MEAN             |
| ROR         | TED T  |                          |                          | 0660.44415061                      |                       |                  |                      |          | 25.92135286                    |                  |                  | 24.052               | 95579            |
| MMEL        |        |                          | •••                      |                                    |                       |                  |                      |          |                                |                  |                  |                      |                  |
| URCI        | E      |                          | DF                       | TYPE I SS                          | F VALUE               | PR               |                      |          |                                |                  |                  |                      |                  |
| .0T<br>1•FT |        |                          |                          | 1944 . 49055052<br>9744 . 79463684 | 3.66<br>1.61          |                  | 003<br>329           |          |                                |                  |                  |                      |                  |
|             |        | LEAS                     | T SQUARES MEA            | INS                                |                       |                  |                      |          |                                |                  |                  |                      |                  |
| R           | FT     | PCTH 1N<br>LSMEAN        | STD ERR<br>LSMEAN        | PROB >  T <br>HO:LSMEAN=O          |                       |                  |                      | >  T  HC | : LSMEAN(I)=LS                 | AEAN(J)          | 8                | . 9                  | 10               |
|             | 1      | 28.9117090               | 9.7598223                | 0.0044                             | 1/J 1                 | 2<br>0.4154      | 3<br>0.7622          | 0.2010   | 0.1547 0.7236                  |                  |                  |                      | 0.0533           |
|             | 23     | 18.5351691<br>33.1242451 | 10.2915970<br>11.7497073 | 0.0769                             | 2 0.4154<br>3 0.7622  | 0.3118           | 0.3118               |          | 0.1196 0.5376                  | 0.5258           | 0.0776           | 0.0962               | 0.0455           |
|             | 1 2    | 12.3802137<br>9.6832564  | 10.3201675               | 0.2352<br>0.3814                   | 4 0.2010<br>5 0.1547  | 0.6433           |                      | 0.8451   | 0.8451 0.3454 0.2646           | 0.0297           | 0.8027           | 0.9419               | 0.7157           |
| 1           | 3      | 24.5221056<br>42.7720577 | 9.7971748<br>11.7475616  | 0.0152                             | 6 0.7236<br>7 0.3214  | 0.6415           |                      |          | 0.2646<br>0.0297 0.1935        | 0.1935           | 0.1725<br>0.0168 | 0.2195               | 0.1158           |
| 1           | 2      | 6.1359916                | 10.9748657               | 0.5782                             | 8 0.0929              | 0.3669           | 0.0776               | 0.6509   | 0.8027 0.1725                  | 0.0168           |                  | 0.8524               | 0.9207           |
|             | 3      | 8.6782117<br>4.8029575   | 10.3176090<br>7.2520869  | 0.4037<br>0.5104                   | 9 0.1188<br>10 0.0533 | 0.4587<br>0.2822 | 0.0962<br>0.0455     |          | 0.9419 0.2195<br>0.7157 0.1158 |                  | 0.8524<br>0.9207 | 0.7628               | 0.7828           |
| EDEN        |        | ARIABLE: PCT             | D 1 M                    |                                    |                       |                  |                      |          |                                |                  |                  |                      |                  |
| OURC        |        |                          |                          | UM OF SQUARES                      | MEA                   | N SQUARE         | F                    | VALUE    | PR > F                         |                  | SQUARE           |                      | C.V.             |
| 00EL        |        |                          | 21 8                     | 3004 . 9349 1030                   | 4428.                 | 80642430         |                      | 2.24     | 0.0084                         | 0.               | 452286           |                      | 1.8969           |
| RROR        |        |                          | 57 11                    | 2628.18931607                      | 1975.                 | 93314590         |                      |          | ROOT MSE                       |                  |                  |                      | M MEAN           |
|             | CTED   | TOTAL                    | 78 20                    | 5633.12422637                      |                       |                  |                      |          | 44.45146956                    |                  |                  | 61.82                | 67 1029          |
| OURC        | E      |                          | DF                       | TYPE I SS                          | F VALUE               | PR               | > F                  |          |                                |                  |                  |                      |                  |
| LOT<br>R+F1 | ,      |                          |                          | 15460.68046630<br>17544.25444400   | 3.18                  | •••              | 0016<br>4616         |          |                                |                  |                  |                      |                  |
|             |        | LEA                      | ST SQUARES ME            | ANS                                |                       |                  |                      |          |                                |                  |                  |                      |                  |
| FR          | FT     | PCTD 1N<br>LSMEAN        | STD ERR<br>LSMEAN        |                                    |                       |                  | PROB                 | >  т  на | : LSMEAN(I)=LS                 | ÆAN(J)           |                  |                      |                  |
|             | 1      | 84.9989670               | 16.4549094               | 0.0001                             | I/J 1<br>1            | 2<br>0.2301      | 3<br>0.9067          | 4        | 5 6<br>0.0675 0.2174           | 7<br>0.9342      | 8                | 9<br>0.0632          | 10               |
| 1           | 2      | 58.6614894               | 17.3376011               | 0.0013                             | 2 0.2301              |                  | 0.3418               | 0.8976   | 0.4888 0.9972                  | 0.3253           | 0.6475           | 0.5056               | 0.5498           |
| 1           | 3      | 82.2013370<br>55.7266371 | 19.9558762<br>17.4315786 |                                    | 3 0.9067<br>4 0.1870  | 0.3418<br>0.8976 | 0.2852               |          | 0.1234 0.3251<br>0.5730 0.8966 | 0.9747<br>0.2707 | 0.1891           | 0.1238<br>0.5866     | 0.1383           |
| 2<br>2      | 2      | 42.3588979               | 18.5203299               | 0.0259                             | 5 0.0675<br>6 0.2174  | 0.4888<br>0.9972 |                      | 0.5730   | 0.4759                         |                  | 0.8195           | 0.9627               | 0.9008           |
| 2<br>3      | 3      | 58.5840940<br>83.0265047 | 16.5117889<br>19.9518416 |                                    | 6 0.2174<br>7 0.9342  | 0.3253           |                      |          | 0.1160 0.3086                  | 0.3086           | 0.6422<br>0.1748 | 0.1161               | 0.1299           |
| 3           | 2      | 47.9122034               | 18.5114277               | 0.0122                             | 8 0,1105<br>9 0.0632  | 0.6475           |                      |          | 0.8195 0.6422 0.9627 0.4925    | 0.1748<br>0.1161 | 0.8495           | 0.8495               | 0.9111           |
| 3<br>4      | 3<br>4 | 43.4648167<br>45.2897278 | 17.4227688<br>13.6600245 |                                    | 0 0.0726              | 0.5498           |                      |          | 0.9008 0.5472                  | 0.1299           | 0.9111           | 0.9362               | 0.9362           |
|             |        |                          |                          |                                    |                       |                  |                      |          |                                |                  |                  |                      | •                |
| 060         |        | T VARIABLE: P            |                          |                                    | SITE                  | 5 SPEC           | IES=1                |          |                                |                  |                  |                      |                  |
|             | RCE    | VARIADCE: P              | DF                       | SUM OF SQUARES                     | м                     | EAN SQUA         | RE                   | F VALUE  | PR >                           | F                | R-SQUAR          | E                    | c.v.             |
| MOD         |        |                          | 15                       | 6772.76208369                      |                       | 1.517472         |                      | 1.53     | 0.18                           | 2                | 0.53423          |                      | 79.2757          |
| ERA         |        |                          | 20                       | 5904.66777209                      |                       | 5.233388         |                      |          | ROOT MS                        |                  | -                | PCT                  | -                |
| -           |        | TOTAL                    | 35                       | 12677.42985578                     |                       |                  |                      |          | 17.1823569                     | -                |                  |                      | 674 18444        |
| sou         | IRCE   |                          | OF                       | TYPE I SS                          | F VAL                 | UE               | PR > F               |          |                                |                  |                  |                      |                  |
| PLO         | т      |                          | ;                        | 3623.45315876<br>3149.30892493     |                       |                  | 0.1066<br>0.3559     |          |                                |                  |                  |                      |                  |
|             | ••     | LE                       | AST SQUARES              |                                    |                       |                  |                      |          |                                |                  |                  |                      |                  |
| FR          | FT     | PCTHIN                   | STD E                    | R PROB >  T                        |                       |                  | PRO                  | B >  T   | HO: LSMEAN(I)+L                | SMEAN(J)         |                  |                      |                  |
| 1           |        | LSMEAN                   |                          |                                    | 1/J                   |                  | 2 3                  |          | 5<br>0.5843 0.775              | 6 5 0 928        |                  |                      | 9 1<br>5 0 545   |
| 1           | 2      | 41.4321806               | 9.31170                  | 0.0002                             | 2 0.085               | 3                | 0.0194               | 0.2623   | 0.0283 0.041                   | 9 0.1354         | 0.119            | 4 0.051              | 3 0.324          |
| 1 2         | 3      | 9.8201379                | 9.295534                 | 13 0.3034                          | 3 0.475               | 1 0.019          | 4<br>3 0.2003        | 0.2003   | 0.8683 0.639                   | 9 0.4729         | 0.730            | 9 0.987              | 9 0.213          |
| 2           | 2      | 11.9083925               | 9.328050                 | 0.2164                             | 5 0.584               | 3 0.028          | 3 0.8683             | 0.2487   | 0.768                          | 6 0.5681         | 0.829            | 2 0.880              | 8 0.269          |
|             | 3      | 15.4762810               |                          |                                    | 7 0.928               | 6 0.135          |                      | 0.6362   | 0.5687 0.723                   | 1                | 0.780            | 5 0.7060<br>0 0.5363 | 0.623            |
| 23          |        |                          |                          |                                    |                       |                  |                      |          |                                |                  |                  |                      |                  |
|             | 2      | 15.4090565<br>9.5766638  |                          |                                    | 8 0.832<br>9 0.565    |                  | 4 0.7009<br>3 0.9879 |          | 0.8292 0.996                   |                  |                  |                      | B 0.457<br>0.291 |

|           |            |                                                                                                                                 |                                                                                                                   |                                                                              |             | SIT                                                                                    | E=5 \$Pi                                                                                    | ECIES=1                                                                                     |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| DEP       | ENDEN      | T VARIABLE: PCI                                                                                                                 | DIM                                                                                                               |                                                                              |             |                                                                                        |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
| SOU       | RCE        |                                                                                                                                 | DF                                                                                                                | SUM OF SQUARES                                                               |             | ME                                                                                     | AN SQUAR                                                                                    | E                                                                                           | F VALUE                                                                                     | E                                                                                           | PR > F                                                                                      |                                                                                             | R-SQUARE                                                                                    |                                                                                             | C.V.                                                                                         |
| MOD       | EL         |                                                                                                                                 | 15 <sup>.</sup>                                                                                                   | 44938. 1734 1671                                                             |             | 2995                                                                                   | .8782277                                                                                    |                                                                                             | 0.58                                                                                        | 3                                                                                           | 0.8550                                                                                      | )                                                                                           | 0.304207                                                                                    | ,                                                                                           | 33.3617                                                                                      |
| ERR       | OR         |                                                                                                                                 | 20                                                                                                                | 02784.15811043                                                               |             | 5139                                                                                   | . 2079055                                                                                   | 52                                                                                          |                                                                                             |                                                                                             | ROOT MSE                                                                                    | 1                                                                                           |                                                                                             | PCTO                                                                                        | 1M MEAN                                                                                      |
| COP       | RECTE      | D TOTAL                                                                                                                         | 35                                                                                                                | 47722 33152714                                                               |             |                                                                                        |                                                                                             |                                                                                             |                                                                                             | 71                                                                                          | 68826893                                                                                    | 5                                                                                           |                                                                                             | 53.7                                                                                        | 5474863                                                                                      |
| 501       | RCE        |                                                                                                                                 | DF                                                                                                                | TYPE I SS                                                                    |             | F VALU                                                                                 | JE F                                                                                        | R > F                                                                                       |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
| PLC<br>FR |            |                                                                                                                                 | 6<br>9.                                                                                                           | 16045.44440585<br>28892.72901087                                             |             | 0.9<br>0.6                                                                             |                                                                                             | 0.7861<br>0.7627                                                                            |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
| FR        | FT         |                                                                                                                                 |                                                                                                                   |                                                                              |             |                                                                                        |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
| **        | .,         | PCTD 1M<br>LSMEAN                                                                                                               | STD ERR<br>LSMEAN                                                                                                 | PROB > [T]<br>HO:LSMEAN=O                                                    |             |                                                                                        |                                                                                             |                                                                                             | >  T  +                                                                                     |                                                                                             | N(I)=LSH                                                                                    |                                                                                             |                                                                                             |                                                                                             |                                                                                              |
|           | 1231231234 | 27.276513<br>31.603770<br>58.317499<br>65.568975<br>118.228664<br>29.941639<br>49.907301<br>13.181518<br>92.520921<br>27.428725 | 38.665991<br>38.850326<br>38.763041<br>38.918515<br>29.760128<br>44.816081<br>55.363607<br>55.391255<br>45.123174 | 0.4887<br>0.4255<br>0.1483<br>0.0065<br>0.3264<br>0.2787<br>0.8142<br>0.1104 | 11234567890 | 0.9345<br>0.5556<br>0.4809<br>0.0962<br>0.9569<br>0.6970<br>0.8352<br>0.3364<br>0.9926 | 2<br>0.9345<br>0.6123<br>0.5311<br>0.1119<br>0.9737<br>0.7523<br>0.7853<br>0.3533<br>0.9482 | 3<br>0.5556<br>0.6123<br>0.8929<br>0.2619<br>0.5742<br>0.8874<br>0.5073<br>0.6095<br>0.6024 | 4<br>0.4809<br>0.5311<br>0.8929<br>0.3228<br>0.4818<br>0.7876<br>0.4372<br>0.6793<br>0.5149 | 5<br>0.0962<br>0.1119<br>0.2619<br>0.3228<br>0.0921<br>0.2603<br>0.1315<br>0.6924<br>0.1308 | 6<br>0.9569<br>0.9737<br>0.5742<br>0.4818<br>0.0921<br>0.7138<br>0.7922<br>0.3422<br>0.9698 | 7<br>0.6970<br>0.7523<br>0.8874<br>0.7876<br>0.2603<br>0.7138<br>0.6010<br>0.5482<br>0.7265 | 8<br>0.8352<br>0.7853<br>0.5073<br>0.4372<br>0.1315<br>0.7922<br>0.6010<br>0.3263<br>0.8286 | 9<br>0.3364<br>0.3533<br>0.6095<br>0.6793<br>0.6924<br>0.3422<br>0.5482<br>0.3263<br>0.3263 | 10<br>0.9926<br>0.9482<br>0.6024<br>0.5149<br>0.1308<br>0.9698<br>0.7265<br>0.8286<br>0.3612 |

#### SITE-3 SPECIES-1

OEPENDENT VARIABLE: PCTHIM

| SOURCE          | DF            | SUM OF SQUARES                 | MEAN    | QUARE  | F VALUE | PR > F      | R-SQUARE  | c.v.        |
|-----------------|---------------|--------------------------------|---------|--------|---------|-------------|-----------|-------------|
| MODEL           | 16            | 9304.04394810                  | 581.502 | 74676  | 0.81    | 0.6684      | 0. 193572 | 43.8755     |
| ERROR           | 54            | 38761.00867412                 | 717.796 | 45693  |         | ROOT MSE    |           | PCTH1M MEAN |
| CORRECTED TOTAL | 70            | 48065.05262222                 |         |        |         | 26.79172366 |           | 61.06311630 |
| SOURCE          | OF            | TYPE I SS                      | F VALUE | PR > F |         |             |           |             |
| PLOT<br>FR•FT   | 7             | 4364.31820083<br>4939.72574727 | 0.87    | 0.5382 |         |             |           |             |
|                 | LEAST SQUARES | MEANS                          |         |        |         |             |           |             |

| FR                  | FT      | LSMEAN                                                                                                                                   | STD ERR<br>LSMEAN                                                                                                         | PROB > [T]<br>HO:LSMEAN=O                                                              |                                                                                                            |                                                                    | PROB                                                               | >  T  H                                                                                     | O: LŞMEA                             | N(I)=LSN                                                           | EAN(J)                     |                                                          |                                      |        |
|---------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------------|--------------------------------------|--------|
| 1 - 1 2 2 2 3 3 3 4 | 1231231 | 51.7653886<br>79.1093213<br>77.9411752<br>61.8320042<br>62.6437758<br>61.3822684<br>61.3822684<br>61.3330132<br>66.0822526<br>53.6637251 | 10.7405840<br>10.7405840<br>10.7405840<br>10.7405840<br>10.7405840<br>10.7405840<br>10.7405840<br>10.7405840<br>9.4723047 | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 | 2 0.0616<br>3 0.0731 (<br>4 0.4853 (<br>5 0.4539 (<br>6 0.4509 (<br>7 0.5049 (<br>8 0.5071 (<br>9 0.3220 ( | 0.9353<br>0.2329<br>0.2533<br>0.2553<br>0.2211<br>0.2199<br>0.3670 | 0.9353<br>0.2656<br>0.2679<br>0.2902<br>0.2527<br>0.2513<br>0.4113 | 4<br>0.4853<br>0.2329<br>0.2656<br>0.9590<br>0.9550<br>0.9751<br>0.9723<br>0.7678<br>0.5708 | 0.9960<br>0.9341<br>0.9314<br>0.8073 | 0.2553<br>0.2902<br>0.9550<br>0.9960<br>0.9301<br>0.9274<br>0.8112 | 0.2211<br>0.2527<br>0.9751 | 0.2513<br>0.9723<br>0.9314<br>0.9274<br>0.9973<br>0.7415 | 0.4113<br>0.7678<br>0.8073<br>0.8112 | 0.5365 |

| DEP        | ENDENT              | VARIABLE: PC                                                                                                                            | TDIM                                                                                                                                                                 |                                                                                        |                                                                                                     |                                                                                         |                                                                    |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                    |                                                                                             |                                                                                              |
|------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| sou        | RCE                 |                                                                                                                                         | DF                                                                                                                                                                   | SUM OF SQUARES                                                                         |                                                                                                     | MEAN SQUAR                                                                              | 8E                                                                 | F VALUE                                                                                     |                                                                                             | PR > F                                                                                      |                                                                                             | R-SQUARE                                                           |                                                                                             | <b>c.v</b> .                                                                                 |
| MOC        | EL                  |                                                                                                                                         | 16                                                                                                                                                                   | 29218.61444341                                                                         | 18                                                                                                  | 26.163402                                                                               | 71                                                                 | 1.31                                                                                        |                                                                                             | 0.2258                                                                                      |                                                                                             | 0.279498                                                           |                                                                                             | 59.9734                                                                                      |
| ERA        | OR                  |                                                                                                                                         | 54                                                                                                                                                                   | 75321.02396254                                                                         | 13                                                                                                  | 94 . 833777                                                                             | 8                                                                  |                                                                                             |                                                                                             | ROOT MSE                                                                                    |                                                                                             |                                                                    | PCTD                                                                                        | IM MEAN                                                                                      |
| COR        | RECTE               | TOTAL                                                                                                                                   | 70                                                                                                                                                                   | 104539.63840595                                                                        |                                                                                                     |                                                                                         |                                                                    |                                                                                             | 37.                                                                                         | 34747350                                                                                    |                                                                                             |                                                                    | 62.2                                                                                        | 7337921                                                                                      |
| SOL        | IRCE                |                                                                                                                                         | DF                                                                                                                                                                   | TYPE I SS                                                                              | FV                                                                                                  | LUE                                                                                     | PR > F                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                    |                                                                                             |                                                                                              |
| PLC<br>FR  |                     |                                                                                                                                         | 7                                                                                                                                                                    | 16336.15212326<br>12882.46232015                                                       |                                                                                                     |                                                                                         | D. 1347<br>D. 4318                                                 |                                                                                             |                                                                                             |                                                                                             |                                                                                             |                                                                    |                                                                                             |                                                                                              |
| FR         | FT                  | PCTD IN<br>LSMEAN                                                                                                                       | STD ERR<br>LSMEAN                                                                                                                                                    |                                                                                        |                                                                                                     |                                                                                         | PROB                                                               | i >  T  H                                                                                   | O: LSMEA                                                                                    | N(I)=LSM                                                                                    | EAN(J)                                                                                      |                                                                    |                                                                                             |                                                                                              |
| 1112223334 | 1 2 3 1 2 3 1 2 3 4 | 49.600066<br>41.2941321<br>43.7283370<br>59.5242249<br>69.8620729<br>80.0936956<br>73.2157960<br>57.1232281<br>48.6890171<br>77.4767675 | 14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>14.9722982<br>13.2043259 | 0.0017<br>0.0079<br>0.0051<br>0.0002<br>0.0001<br>0.0001<br>0.0001<br>0.0004<br>0.0020 | I/J<br>1<br>2 0.67<br>3 0.76<br>4 0.62<br>5 0.31<br>6 0.13<br>7 0.24<br>8 0.70<br>9 0.96<br>10 0.16 | 98 0.9034<br>11 0.3652<br>46 0.1582<br>25 0.0572<br>20 0.1156<br>78 0.4313<br>38 0.7125 | 0.9034<br>0.4323<br>0.1960<br>0.0741<br>0.1455<br>0.5051<br>0.8047 | 4<br>0.6211<br>0.3652<br>0.4323<br>0.6067<br>0.3074<br>0.4957<br>0.9047<br>0.5895<br>0.3725 | 5<br>0.3146<br>0.1582<br>0.1960<br>0.6067<br>0.6104<br>0.8672<br>0.5261<br>0.2936<br>0.7044 | 6<br>0.1325<br>0.0572<br>0.0741<br>0.3074<br>0.6104<br>0.7318<br>0.2549<br>0.1215<br>0.8962 | 7<br>0.2420<br>0.1156<br>0.1455<br>0.4957<br>0.8672<br>0.7318<br>0.4237<br>0.2245<br>0.8318 | 0.4313<br>0.5051<br>0.9047<br>0.5261<br>0.2549<br>0.4237<br>0.6743 | 9<br>0.9638<br>0.7125<br>0.8047<br>0.5895<br>0.2936<br>0.1215<br>0.2245<br>0.6743<br>0.1551 | 10<br>0.1683<br>0.0755<br>0.0967<br>0.3725<br>0.7044<br>0.8962<br>0.8318<br>0.3125<br>0.1551 |

|                     |            |                                                                                                                                          |                                                      |                                                                                                                      |                                                                                        | 51 T E                                                                                              | -3 SPECI                                                                                | ES-2                                                                         |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
|---------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| DEPEN               | DENT       | VARIABLE: PCT                                                                                                                            | 41M                                                  |                                                                                                                      |                                                                                        |                                                                                                     |                                                                                         |                                                                              |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| SOURC               |            |                                                                                                                                          | DF                                                   | SUM                                                                                                                  | OF SQUARES                                                                             | ME                                                                                                  | AN SQUARE                                                                               | ۴                                                                            | VALUE                                                              | P                                                        | R > F                                                                                       | R-                                                                                          | SQUARE                                                                                      |                                                                                                       | C.V.                                                     |
|                     | -          |                                                                                                                                          | 17                                                   | 1497                                                                                                                 | 70.08004997                                                                            | 880                                                                                                 | . 592944 12                                                                             |                                                                              | 3.27                                                               | c                                                        | .0002                                                                                       | ο.                                                                                          | 435535                                                                                      | 31                                                                                                    | .0499                                                    |
| MODEL               |            |                                                                                                                                          | 72                                                   | 1940                                                                                                                 | 01.61333491                                                                            | 265                                                                                                 | 46685187                                                                                |                                                                              |                                                                    | 800                                                      | T MSE                                                                                       |                                                                                             |                                                                                             | PCTH 1M                                                                                               | MEAN                                                     |
| ERROR               |            |                                                                                                                                          |                                                      |                                                                                                                      |                                                                                        |                                                                                                     |                                                                                         |                                                                              |                                                                    | 16.41                                                    | 544553                                                                                      |                                                                                             |                                                                                             | 52.868                                                                                                | 03245                                                    |
| CORRE               | CTED       | TOTAL                                                                                                                                    | 89                                                   | 3437                                                                                                                 | 71.69338488                                                                            |                                                                                                     |                                                                                         |                                                                              |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| SOURC               | E          |                                                                                                                                          | DF                                                   |                                                                                                                      | TYPE I SS                                                                              | F VALU                                                                                              | JE PR                                                                                   | > F                                                                          |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| PLOT<br>FR+F1       | r          | •                                                                                                                                        | 1                                                    |                                                                                                                      | 47.36058838<br>22.71946159                                                             | 4.4                                                                                                 |                                                                                         | 0002<br>0290                                                                 |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
|                     |            | LEAS                                                                                                                                     | ST SQUA                                              | RES MEANS                                                                                                            | 5                                                                                      |                                                                                                     |                                                                                         |                                                                              |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| FR                  | FT         | PCTH1M<br>LSMEAN                                                                                                                         |                                                      | TD ERR                                                                                                               | PROB > [T]<br>HO:LSMEAN=O                                                              |                                                                                                     |                                                                                         |                                                                              |                                                                    | MEANS FOR                                                |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| 1 1 1 2 2 2 3 3 3 4 | 1231231234 | 56.6471806<br>50.2808117<br>47.4635842<br>43.6850622<br>45.4783761<br>43.2888223<br>57.3219043<br>61.4502825<br>67.7779311<br>55.2863693 | 5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4 | 718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152<br>718152 | 0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 | I/J<br>1<br>2 0.41<br>3 0.23<br>4 0.09<br>5 0.15<br>6 0.08<br>7 0.93<br>8 0.53<br>9 0.15<br>10 0.86 | 92 0.7169<br>83 0.3968<br>33 0.5368<br>86 0.3692<br>08 0.3659<br>68 0.1532<br>47 0.0268 | 0.2392<br>0.7169<br>0.6268<br>0.7983<br>0.5912<br>0.2068<br>0.0749<br>0.0106 | 0.3968<br>0.6268<br>0.8174<br>0.9593<br>0.0823<br>0.0246<br>0.0027 | 0 5368<br>0.7983<br>0.8174<br>0.7780<br>0.1303<br>0.0426 | 6<br>0.0886<br>0.3692<br>0.5912<br>0.9593<br>0.7780<br>0.0739<br>0.0217<br>0.0023<br>0.1254 | 7<br>0.9308<br>0.3659<br>0.2068<br>0.0823<br>0.1303<br>0.0739<br>0.5953<br>0.1809<br>0.7933 | 8<br>0.5368<br>0.1532<br>0.0749<br>0.0246<br>0.0226<br>0.0217<br>0.5953<br>0.4162<br>0.4283 | 9<br>0.1547<br>0.0268<br>0.0106<br>0.6027<br>0.0052<br>0.0052<br>0.0023<br>0.1809<br>0.4162<br>0.1108 | 0.5198<br>0.3154<br>0.1382<br>0.2091<br>0.1254<br>0.7933 |
|                     |            | VARIABLE: PCT                                                                                                                            |                                                      |                                                                                                                      |                                                                                        |                                                                                                     | AN SOUARE                                                                               |                                                                              | VALUE                                                              |                                                          | <b>PR &gt; F</b>                                                                            | 8-                                                                                          | SQUARE                                                                                      |                                                                                                       | <b>c</b> . <b>v</b> .                                    |
| SOURC               | E          |                                                                                                                                          | DF                                                   | -                                                                                                                    | OF SQUARES                                                                             |                                                                                                     |                                                                                         |                                                                              |                                                                    |                                                          |                                                                                             |                                                                                             | 322248                                                                                      | 24                                                                                                    | 4025                                                     |
| MODEL               |            |                                                                                                                                          | 17                                                   | 151:                                                                                                                 | 22.05166087                                                                            | 889                                                                                                 | . 53245064                                                                              |                                                                              | 2.01                                                               |                                                          | 0.0213                                                                                      | 0.                                                                                          | 322240                                                                                      | -                                                                                                     |                                                          |
| ERROR               | 1          |                                                                                                                                          | 72                                                   | 3180                                                                                                                 | 04.67033199                                                                            | 44                                                                                                  | 1.73153239                                                                              |                                                                              |                                                                    | ROC                                                      | DT MSE                                                                                      |                                                                                             |                                                                                             | PCTD 1N                                                                                               | MEAN                                                     |
| CORRE               | CTED       | TOTAL                                                                                                                                    | 89                                                   | 469                                                                                                                  | 26.72199286                                                                            |                                                                                                     |                                                                                         |                                                                              |                                                                    | 21.017                                                   | 74 1022                                                                                     |                                                                                             |                                                                                             | 61.092                                                                                                | 63107                                                    |
| SOURC               | Ė          |                                                                                                                                          | DF                                                   |                                                                                                                      | TYPE I SS                                                                              | F VAL                                                                                               | JE PR                                                                                   | > F                                                                          |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |
| PLOT<br>FR+F1       | r          |                                                                                                                                          | ;                                                    |                                                                                                                      | 04.25676238<br>17.79489849                                                             | 3.:<br>0.:                                                                                          |                                                                                         | 0034<br>5010                                                                 |                                                                    |                                                          |                                                                                             |                                                                                             |                                                                                             |                                                                                                       |                                                          |

| FR | FT | PCTD1M     | STD ERR   | PROB > [T]  |     |        |        | PROB   | >  T  H | O: LSMEA | N(I)=LSM | EAN(J) |        |        |        |
|----|----|------------|-----------|-------------|-----|--------|--------|--------|---------|----------|----------|--------|--------|--------|--------|
|    |    | LSMEAN     | LSMEAN    | HO:LSMEAN=O |     |        |        |        |         |          |          |        |        |        |        |
|    |    |            |           |             | I/J | 1      | 2      | 3      | 4       | 5        | 6        | 7      | · 8    | 9      | 10     |
| 1  | 1  | 61.1489056 | 7.0058034 | 0.0001      | 1   |        | 0.7182 | 0.2201 | 0.4801  | 0.3485   | 0.8111   | 0.7205 | 0.7486 | 0.3564 | 0.9725 |
| 1  | 2  | 57.5594597 | 7.0058034 | 0.0001      | 2   | 0.7182 |        | 0.1141 | 0.7292  | 0.1957   | 0.9029   | 0.4729 | 0.9678 | 0.5732 | 0.7441 |
| 1  | 3  | 73.4045403 | 7.0058034 | 0.0001      | 3   | 0.2201 | 0.1141 |        | 0.0555  | 0.7701   | 0.1441   | 0.3830 | 0.1234 | 0.0337 | 0.2076 |
| 2  | 1  | 54.1159125 | 7.0058034 | 0.0001      | 4   | 0.4801 | 0.7292 | 0.0555 |         | 0.1026   | 0.6398   | 0.2886 | 0.6991 | 0.8278 | 0.5017 |
| .2 | 2  | 70.4977954 | 7.0058034 | 0.0001      | 5   | 0.3485 | 0.1957 | 0.7701 | 0.1026  |          | 0.2405   | 0.5608 | 0.2098 | 0.0653 | 0.3312 |
| 2  | 3  | 58.7718790 | 7.0058034 | 0.0001      | 6   | 0.8111 | 0.9029 | 0.1441 | 0.6398  | 0.2405   |          | 0.5509 | 0.9350 | 0.4935 | 0.8379 |
| 3  | 1  | 64.7081409 | 7.0058034 | 0.0001      | 7.  | 0.7205 | 0.4729 | 0.3830 | 0.2886  | 0.5608   | 0.5509   |        | 0.4981 | 0.2021 | 0.6949 |
| 3  | 2  | 57.9611295 | 7.0058034 | 0.0001      | 8   | 0.7486 | 0.9678 | 0.1234 | 0.6991  | 0.2098   | 0.9350   | 0.4981 |        | 0.5461 | 0.7748 |
| 3  | Э  | 51.9525678 | 7.0058034 | 0.0001      | 9   | 0.3564 | 0.5732 | 0.0337 | 0.8278  | 0.0653   | 0.4935   | 0.2021 | 0.5461 |        | 0.3745 |
| 4  | 4  | 60.8059800 | 7.0058034 | 0.0001      | 10  | 0.9725 | 0.7441 | 0.2076 | 0.5017  | 0.3312   | 0.8379   | 0.6949 | 0.7748 | 0.3745 |        |

|                          |        |                                | SITE-3 S     | PECIES=3         |         |             |          |             |
|--------------------------|--------|--------------------------------|--------------|------------------|---------|-------------|----------|-------------|
| DEPENDENT VARIABLE: PCTH | 1M     |                                |              |                  |         |             |          |             |
| SOURCE                   | DF     | SUM OF SQUARES                 | MEAN SO      | UARE             | F VALUE | PR > F      | R-SQUARE | c.v.        |
| MODEL                    | 16     | 8939.63546911                  | 621.2272     | 1682             | 1.69    | 0.0874      | 0.397962 | 117.4875    |
| ERROR                    | 41     | 15036.73090642                 | 366.7495     | 3430             |         | ROOT MSE    |          | PCTHIM MEAN |
| CORRECTED TOTAL          | 57     | 24976.36637552                 |              |                  |         | 19.15070584 |          | 16.30021141 |
| SOURCE                   | DF     | TYPE I SS                      | F VALUE      | PR > F           |         |             |          |             |
| PLOT<br>FR*FT            | 7<br>• | 4225.71741879<br>5713.91805032 | 1.65<br>1.73 | 0.1499<br>0.1127 |         |             |          |             |

|                   |                     | LEAS                                                                                                                                 | T SQUARES MEAN                                                                                                     | NS                                                                                               |         |                                                                              |                                                          |                                                                                             |                                                                    |                            |                                                                                             |        |                                                                                             |                                                                                             |                                                                                              |
|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| FR                | FT                  | PCTH1M<br>LSMEAN                                                                                                                     | STD ERR                                                                                                            | PROB >  T <br>HO:LSMEAN=O                                                                        |         |                                                                              |                                                          | PROB                                                                                        | >  T  +                                                            | 10: LSMEA                  | N(I)=LSN                                                                                    | EAN(J) |                                                                                             |                                                                                             |                                                                                              |
| 1 1 2 2 2 3 3 3 4 | 1 2 3 1 2 3 1 2 3 4 | 30.6498089<br>5.2704073<br>19.8481630<br>20.2662114<br>4.1296023<br>5.4968489<br>18.9508077<br>1.6238348<br>-0.6535082<br>20.1851115 | 6.7707970<br>8.3056445<br>8.2957881<br>8.3056445<br>7.6773621<br>9.1062489<br>9.0933934<br>10.1730727<br>9.0990897 | 0.0001<br>0.5292<br>0.0214<br>0.0191<br>0.5936<br>0.5494<br>0.0276<br>0.8592<br>0.9491<br>0.0321 | 3456789 | 0.0227<br>0.3190<br>0.3382<br>0.0132<br>0.0323<br>0.2810<br>0.0142<br>0.0142 | 0.1824<br>0.9157<br>0.9846<br>0.2284<br>0.7592<br>0.6435 | 3<br>0.3190<br>0.1998<br>0.9704<br>0.1498<br>0.2317<br>0.9364<br>0.1259<br>0.1138<br>0.9774 | 0.1824<br>0.9704<br>0.1398<br>0.2129<br>0.9070<br>0.1224<br>0.1073 | 0.1738<br>0.8262<br>0.6975 | 6<br>0.0323<br>0.9846<br>0.2317<br>0.2129<br>0.9047<br>0.2616<br>0.7575<br>0.6422<br>0.2387 | 0.1300 | 8<br>0.0142<br>0.7592<br>0.1259<br>0.1224<br>0.8262<br>0.7575<br>0.1498<br>0.8632<br>0.1435 | 9<br>0.0142<br>0.6435<br>0.1138<br>0.1073<br>0.6975<br>0.6422<br>0.1300<br>0.8632<br>0.1199 | 10<br>0.3616<br>0.2143<br>0.9774<br>0.9946<br>0.1644<br>0.2387<br>0.9163<br>0.1435<br>0.1435 |

#### SITE-3 SPECIES-3 DEPENDENT VARIABLE: PCTH2H **c**.v. R-SQUARE MEAN SQUARE F VALUE PR > F OF SUM OF SQUARES SOURCE 65.3220 0.381976 0.1176 45124.62549198 2820.28909325 1.58 16 MODEL PCTH2M MEAN ROOT MSE 73010.08379098 1780.73375100 41 FRROR 64.60111707 42.19874111 57 118134.70928295 CORRECTED TOTAL PR > F SOURCE DF TYPE I SS # VALUE 0.3940 13454.14291483 31670.48257714 1.08 PLOT FR+FT 7 LEAST SQUARES MEANS FOR EFFECT FR\*FT PROB > |T| HO: LSMEAN(I)\*LSMEAN(J) PRUB 7 2 3 4 5 6 7 0.0685 0.6317 0.5599 0.0440 0.1487 0.2196 0.2336 0.2687 0.8111 0.6653 0.6355 0.2336 0.9202 0.1403 0.3515 0.4644 0.2687 0.9202 0.1403 0.3515 0.4654 0.8111 0.1403 0.1698 0.6892 0.4673 0.8653 0.3351 0.3780 0.6892 0.7783 FR FT PCTH2N LSMEAN PROB > [T] HO:LSMEAN=0 STO ERR LSMEAN I/J 1 1 2 0.0885 3 0.6317 4 0.5599 5 0.0440 6 0.1487 7 0.2195 8 0.0026 9 0.0133 10 0.0417 8 9 10 0:0726 0.0133 0.0417 0:1430 0.3155 0.6653 0:0109 0.0435 0.1216 0:0150 0.0531 0.1454 0:1922 0.4026 0.8215 0:1233 0.2632 0.5639 0:0587 0.7578 0.3237 0:7224 0.5575 0.5575 0:2327 0.5575 0.5575 99.3415026 58.1465891 87.9464754 85.4622027 52.4678395 62.5383924 69.9196426 19.3444009 29.6961468 46.7914959 14.9195080 18.3015575 18.2798387 18.3015575 16.9171319 20.0656960 18.2795540 20.037668 22.4164512 20.0499206 0.0001 0.0028 0.0001 0.0005 0.0033 0.0004 0.3400 0.1926 0.0246 11122233334 1231231234 0.2336 0.2687 0.8111 0.8653 0.6355 0.1439 0.3155 0.6653 0.9202 0.1403 0.9202 0.1698 0.3351 0.3780 0.6892 0.4694 0.5319 0.4637 0.0452 0.0531 0.4026 0.1216 0.1454 0.8215 0.7783 0.1233 0.2632 0.5639 0.0587 0.1578 0.3738 0.7224 0.3227 0.5575

| DEPER        | DENT  | VARIABLE: PCTC | D 1 M      |                                |              |              |        |           |         |          |        |        |         |        |
|--------------|-------|----------------|------------|--------------------------------|--------------|--------------|--------|-----------|---------|----------|--------|--------|---------|--------|
| SOUR         | CE    |                | DF SI      | IN OF SQUARES                  | MEAN         | SQUARE       | F      | VALUE     | P       | R > F    | R-S    | QUARE  |         | C.V.   |
| MODE         |       |                | 16 11      | 8190.85803604                  | 1136.92      | 862725       |        | 1.47      | a       | . 1603   | 0.3    | 63873  | 111.    | 5519   |
| ERRO         |       |                | 41 3       | 1801.51099176                  | 775.64       | 660956       |        |           | ROO     | T MSE    |        |        | PCTD 1M | MEAN   |
|              | ECTED | TOTAL          | 57 4       | 9992.36902780                  |              |              |        |           | 27.850  | 43284    | •      |        | 24,9663 | 5619   |
| SOUR         | CE    |                | DF         | TYPE I SS                      | F VALUE      | PR >         | F      |           |         |          |        |        |         |        |
| PLOT<br>FR+F |       |                |            | 7919.03725217<br>0271.82078388 | 1.46<br>1.47 | 0.20<br>0.19 |        |           |         |          |        |        |         |        |
| FR           | FT    | PCTD 1M        | STD ERR    | PROB >  T                      |              |              | PROB   | i >  T  ⊬ | O: LSME | N(I)=LSM | EAN(J) |        |         |        |
|              |       | LSMEAN         | LSMEAN     | HO:LSMEAN+O                    | I/J 1        | 2            | 3      | 4         | 5       | 6        | 7      | . 8    | 9       | 10     |
| 1            | 1     | 23.0178879     | 9.8466150  | 0.0244                         | 1            | 0.4934       |        | 0.0208    | 0.8823  | 0.8872   | 0.9778 | 0.8759 | 0.3821  | 0.4632 |
| i            | ż     | 12.2483168     | 12.0787086 | 0.3165                         | 2 0.4934     |              | 0.3049 | 0.0046    | 0.5861  | 0.4439   | 0.4948 | 0.4415 | 0.1596  | 0.9335 |
| 1            | 3     | 29.1526682     | 12.0513746 | 0.0202                         | 3 0.6957     | 0.3049       |        | 0.0611    | 0.5946  | 0.8271   | 0.7277 | 0.8355 | 0.6069  | 0.2918 |
| .5           | 1     | 60.4785167     | 12.0787086 | 0.0001                         | 4 0.0208     | 0.0046       | 0.0611 |           | 0.0147  | 0.0450   | 0.0282 | 0.0490 | 0.2458  | 0.0062 |
| 2            | 2     | 20.8002630     | 11.1650119 | 0.0696                         | 5 0.8823     | 0.5861       | 0.5946 | 0.0147    |         | 0.7831   | 0.8655 | 0.7720 | 0.3192  | 0.5478 |
| 2            | 3     | 25.3734935     | 13.2430092 | 0.0624                         | 6 0.8872     | 0.4439       | 0.8271 | 0.0450    | 0.7831  |          | 0.9116 | 0.9897 | 0.4688  | 0.4194 |
| 3            | 1     | 23.4544804     | 12.0641867 | 0.0588                         | 7, 0.9778    | 0.4948       | 0.7277 | 0.0282    | 0.8655  | 0.9116   |        | 0.9008 | 0.4129  | 0.4604 |
| 3            | 2     | 25.6085291     | 13.2243138 | 0.0597                         | 8 0.8759     | 0.4415       | 0.8355 | 0.0490    | 0.7720  | 0.9897   | 0.9008 |        | 0.4963  | 0.4181 |
| 3            | Э     | 38.7188015     | 14.7944666 | 0.0124                         | 9 0.3821     | 0.1596       | 0.6069 | 0.2458    | 0.3192  | 0.4888   | 0.4129 | 0.4963 |         | 0.1510 |
| 4            | 4     | 10.8038615     | 13.2325978 | 0.4190                         | 10 0.4632    | 0.9335       | 0.2918 | 0.0062    | 0.5478  | 0.4194   | 0.4604 | 0.4181 | 0.1510  |        |

| DEPE                       | INDENT                               | VARIABLE: PCT                                                                                                | D2M                                                                                                         |                                                          |                                                                                              |                                                |                                                                         |                                                                    |                                                                         |                                                                         |                                                                         |                                                                         |                                                                                   |                                                                                    |
|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| SOUR                       | RCE                                  |                                                                                                              | DF                                                                                                          | SUM DE SQUARES                                           | MEAN                                                                                         | SQUARE                                         | F                                                                       | VALUE                                                              | P                                                                       | R > F                                                                   | R-S                                                                     | QUARE                                                                   |                                                                                   | C.V.                                                                               |
| MOOR                       | 1L                                   |                                                                                                              | 16                                                                                                          | 21312.59322215                                           | 1332.0                                                                                       | 3707638                                        |                                                                         | 1.32                                                               | a                                                                       | . 23 10                                                                 | 0.3                                                                     | 40181                                                                   | 83.                                                                               | 0275                                                                               |
| ERRO                       | R                                    |                                                                                                              | 41                                                                                                          | 41338.21603750                                           | 1008.2                                                                                       | 4917165                                        |                                                                         |                                                                    | ROO                                                                     | T MSE                                                                   |                                                                         |                                                                         | PCTD2M                                                                            | MEAN                                                                               |
| CORF                       | RECTED                               | TOTAL                                                                                                        | 57                                                                                                          | 62650.80925965                                           |                                                                                              |                                                |                                                                         |                                                                    | 31.752                                                                  | 93957                                                                   |                                                                         |                                                                         | 38.2438                                                                           | 6891                                                                               |
| sour                       | RCE                                  |                                                                                                              | DF                                                                                                          | TYPE I SS                                                | F VALUE                                                                                      | PR >                                           | F                                                                       |                                                                    |                                                                         |                                                                         |                                                                         |                                                                         |                                                                                   |                                                                                    |
| PLOT<br>FR-1               |                                      |                                                                                                              | 7<br>9                                                                                                      | 11719.32618527<br>9593.26703688                          | 1.66<br>1.06                                                                                 | 0.14<br>0.41                                   |                                                                         |                                                                    |                                                                         |                                                                         |                                                                         |                                                                         |                                                                                   |                                                                                    |
| FR                         | FT                                   | PCTD2M<br>LSMEAN                                                                                             | STD ERF                                                                                                     |                                                          |                                                                                              |                                                | PROB                                                                    | >  T  H                                                            | O: LSMEA                                                                | N(I)⇒LS₩                                                                | IEAN(J)                                                                 |                                                                         |                                                                                   |                                                                                    |
| 1<br>1<br>2<br>2<br>3<br>3 | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2 | 37,8975177<br>34,1462359<br>54,2418281<br>69,6437435<br>38,7370842<br>32,2380981<br>35,5515369<br>35,5291947 | 11.2263594<br>13.7712224<br>13.7548799<br>13.7712224<br>12.729495<br>15.0986692<br>13.7546656<br>15.0773540 | 0.0174<br>0.0003<br>0.0001<br>0.0041<br>0.0388<br>0.0134 | I/J<br>1<br>2 0.8338<br>3 0.3627<br>4 0.0814<br>5 0.9608<br>6 0.7651<br>7 0.8955<br>8 0.9004 | 0.2850<br>0.0597<br>0.7974<br>0.9219<br>0.9400 | 3<br>0.3627<br>0.2850<br>0.4112<br>0.3876<br>0.2682<br>0.3191<br>0.3390 | 0.0814<br>0.0597<br>0.4112<br>0.0894<br>0.0602<br>0.0733<br>0.0892 | 5<br>0.9608<br>0.7974<br>0.3876<br>0.0894<br>0.7315<br>0.8585<br>0.8653 | 6<br>0.7651<br>0.9219<br>0.2582<br>0.0602<br>0.7315<br>0.8666<br>0.8742 | 7<br>0.8955<br>0.9400<br>0.3191<br>0.0733<br>0.8585<br>0.8666<br>0.9991 | 8<br>0.9004<br>0.9441<br>0.3390<br>0.0892<br>0.8653<br>0.8742<br>0.9991 | 9<br>0.5936<br>0.4908<br>0.7970<br>0.3282<br>0.6222<br>0.4516<br>0.5325<br>0.5457 | 10<br>0.3136<br>0.4357<br>0.0770<br>0.0130<br>0.2932<br>0.5103<br>0.3894<br>0.4198 |
| 3                          | 34                                   | 48.7959466<br>18.7122373                                                                                     | 16.8675220                                                                                                  | 0.0061                                                   | 9 0.5936<br>10 0.3136                                                                        | 0.4908                                         | 0.7970<br>0.0770                                                        | 0.3282<br>0.01 <b>30</b>                                           | 0.6272                                                                  | 0.4516<br>0.5103                                                        | 0.5325<br>0.3894                                                        | 0.5457<br>0.4198                                                        | 0. 1741                                                                           | 0.1741                                                                             |

TABLE IX (Continued)

|              |       |                          |                                            |                                  | SITE-4                            | SPECIES   | j= 1                                            |                                     |                                         |                            |
|--------------|-------|--------------------------|--------------------------------------------|----------------------------------|-----------------------------------|-----------|-------------------------------------------------|-------------------------------------|-----------------------------------------|----------------------------|
| DEPER        | IDENT | VARIABLE: PCI            | 1H 1M                                      |                                  |                                   |           |                                                 | PR > F                              | R-SQUARE                                | <b>c</b> . <b>v</b> .      |
| SOUR         | CE    |                          | OF                                         | SUM OF SQUARES                   |                                   | SQUARE    | F VALUE                                         | 0. 1417                             | 0.338016                                | 34.6807                    |
| HODE         | L     |                          | 14                                         | 14305.38778847                   |                                   | 1341346   | 1.53                                            | ROOT MSE                            | 0.0000                                  | PCTHIM MEAN                |
| ERRO         |       |                          | 42                                         | 28016.23723840                   | 667.0                             | 5326758   |                                                 | 25.82737438                         |                                         | 74.47193776                |
| CORR         | ECTED | TOTAL                    | 56                                         | 42321.62502688                   |                                   |           |                                                 |                                     |                                         |                            |
| SOUR         | CE    |                          | DF                                         | TYPE I SS                        | F VALUE                           | PR        |                                                 |                                     |                                         |                            |
| PLOT<br>FR+F |       |                          | 5                                          | 10378.21728401<br>3927.17050446  | 3.11<br>0.65                      | 0.0       | 0177<br>7445                                    |                                     |                                         |                            |
| FR           | FT    | PCTH1N                   | STD 8                                      | ERR PROB >  T                    |                                   |           |                                                 | S MEANS FOR EFFE<br>O: LSMEAN(I)=LS |                                         |                            |
|              |       | LSMEAN                   | LSM                                        | EAN HOLLSMEAN-O                  | I/J 1                             | 2         | 3 4                                             | 5 6                                 | 7 8                                     | 9                          |
| 1            | 1 2   | 65.7860018<br>59.7129352 | 10.54398                                   | 349 0.0001                       | 1 2 0.7012                        | 0.7012    | 0.3601 0.8048                                   | 0.2452 0.6954                       | 0.2845 0.5792                           | 0.6237 0.21                |
| 1 2          | 3     | 79.5842158<br>61.8773646 | 10.54398                                   | 349 0.0001                       | 3 0.3601<br>4 0.8048              | 0.2131    | 0.2664<br>0.2664                                | 0.8013 0.5982 0.1790 0.5369         | 0.8745 0.7158                           | 0.7032 0.74                |
| 2            | 23    | 83.3612264<br>71.6652868 | 10.54398                                   | 814 0.0001                       | 5 0.2452<br>6 0.6954              | 0.1399    | 0.8013 0.1790 0.5982 0.5369                     | 0.4372                              | 0.9252 0.5387<br>0.4940 0.8701          | 0.5361 0.93                |
| 3            | 1 2   | 81.9532600<br>74.1190254 | 10.54398<br>10.54398                       |                                  | 7 0.2845                          | 0.1645    | 0.8745 0.2086 0.7158 0.4405                     | 0.9252 0.4940 0.5387 0.8701         | 0.6021                                  | 0.5960 0.86                |
| 3            | 3     | 73.5552657<br>84.5372569 | 11.6578                                    |                                  | 9 0.6237<br>10 0.2155             | 0.4068    | 0.7032 0.4835<br>0.7414 0.1568                  | 0.5361 0.9049<br>0.9375 0.3929      | 0.5960 0.9716                           | 0.48                       |
| EPEN         | DENT  | VARIABLE: PCT            | D1M                                        |                                  |                                   |           |                                                 |                                     |                                         |                            |
| OURC         | E     |                          | DF                                         | SUM OF SQUARES                   | MEAN                              | SQUARE    | F VALUE                                         | PR > F                              | R-SQUARE                                | C.V.                       |
| ODEL         |       |                          | 14                                         | 20182.84184110                   | 1441.6                            | 3156008   | 1.66                                            | 0.1013                              | 0.356844                                | 36.5797                    |
| RROR         |       |                          | 42                                         | 36376.48050712                   | 866.10                            | 0667874   |                                                 | ROOT MSE                            |                                         | PCTD1M MEAN                |
| ORRE         | CTED  | TOTAL                    | 56                                         | 56559.32234821                   |                                   |           |                                                 | 29.42969043                         |                                         | 80.45360925                |
| OURC         | E     |                          | DF                                         | TYPE I SS                        | F VALUE                           | PR        | > F                                             |                                     |                                         |                            |
| R.FT         |       |                          | 5                                          | 13755.84313899<br>6426.99870210  | 3.18<br>0.82                      | 0.0       |                                                 |                                     |                                         |                            |
| FR           | FT    | PCTD1M                   | STO E                                      | RR PROB >  T                     |                                   |           | PR08 > [T] H                                    | O: LSMEAN(I)=LSN                    | IEAN(J)                                 |                            |
|              |       | LSMEAN                   | LSME                                       |                                  | I/J 1                             | 2         | 3 4                                             | 5 6<br>0.0478 0.9992                | 7 8<br>0.5204 0.7136                    | 9 1                        |
| 1            | 12    | 72.743999<br>85.567084   | 12.0146<br>13.2838                         | 0.0001                           | 1 2 0.4780                        |           | 0.7769 0.8645 0.3295 0.6073                     | 0.2298 0.4774                       | 0.9200 0.7166<br>0.3560 0.5162          | 0.6095 0.799               |
| 12           | 3     | 67.897436<br>75.818854   | 12.0146                                    | 0.0001                           | 3 0.7769<br>4 0.8645              |           | 0.6606                                          | 0.0852 0.8638                       | 0.6599 0.8589                           | 0.9974 0.77                |
| 2 2          | 2     | 107.392078 72.727890     | 12.0146                                    |                                  | 5 0.0478<br>6 0.9992              |           | 0.0250 0.0852 0.7776 0.8638                     | 0.0477                              | 0.5198 0.7129                           | 0.8612 0.629               |
| 3            | 1 2   | 83.756334<br>79.022235   | 12.0146                                    | 0.0001                           | 7 0.5204                          | 0.9200    | 0.3560 0.6599<br>0.5162 0.8589                  | 0.1715 0.5198<br>0.1024 0.7129      | 0.7819                                  | 0.8616 0.90                |
| 3            | 3     | 75.879955                | 13.2838                                    | 0.0001                           | 8 0.7136<br>9 0.8619<br>10 0.6305 | 0.6095    | 0.6581 0.9974<br>0.4457 0.7747                  | 0.0858 0.8612<br>0.1276 0.6298      |                                         | 0.7773                     |
|              |       |                          |                                            |                                  |                                   |           |                                                 |                                     |                                         |                            |
|              |       |                          |                                            |                                  | SITE-4                            | SPECIES=: | 2                                               |                                     |                                         |                            |
| EPEN         | DENT  | VARIABLE: PCT            |                                            | SUM OF SQUARES                   | WFAN                              | SQUARE    | F VALUE                                         | PR > F                              | R-SQUARE                                | с. v.                      |
| OURC         | E     |                          | DF                                         | 34351.48763750                   | 2642.4                            | 212596    | 1.50                                            | 0.1695                              | 0.371426                                | 38.0543                    |
| ODEL         |       | · .                      | 13                                         |                                  |                                   | 3520944   |                                                 | ROOT MSE                            |                                         | PCTH1M MEAN                |
| RRQU         |       |                          | 33                                         | 58133.96191145                   | 1/81.8                            |           |                                                 | 41.97183829                         | • ·                                     | 110.29466009               |
| ORRE         | CTED  | TOTAL                    | 46                                         | 92485.44954895                   |                                   |           |                                                 |                                     |                                         |                            |
| OURC         | E     |                          | DF                                         | TYPE I SS                        | F VALUE                           | PR 3      |                                                 |                                     |                                         |                            |
| RIFI         | r     |                          | 7                                          | 14252.78576839<br>20098.70186910 | 1.90                              | 0.1       | 100                                             |                                     |                                         |                            |
|              |       | FR FT                    | PCTH                                       |                                  | PROB > [T]<br>HO:LSMEAN=C         |           | >  T  HO: LSMEA<br>1 2                          | 3 4                                 | 5 6                                     | 7                          |
|              |       | 1 1<br>1 2               | 64.3603<br>133.3010                        |                                  | 0.0009                            | 2 0.      | 0052 0                                          | .6643 0.0940 0                      |                                         | ). 32/3                    |
|              |       |                          |                                            |                                  | 0.0001                            | 3 0.      | 0224 0.6643                                     | 0.2646                              |                                         | 0.6063                     |
|              |       | 1 3                      | 123.2240                                   | 94 17.585821                     |                                   | 4 0.      | 1640 0.0940 0                                   | .2646 0                             | 0.2840 0.9465 0                         | .5672                      |
|              |       | 1 3<br>3 1<br>3 2<br>3 3 | 123.2240<br>97.1102<br>119.9643<br>98.7628 | 98 14.839286<br>26 14.839286     | 0.0001                            | 4 0.      | 1640 0.0940 0<br>0214 0.5295 0<br>2052 0 1673 0 | .2646 0                             | 0.2840 0.9465 0<br>0.3923 0<br>0.3923 0 | ),5672<br>),6809<br>),6590 |

TABLE IX (Continued)

| OEPENDENT     | VARIABL        | E: PC1 | ID.1M     |                                 |                           |       |                  |        |        |                  |        |          |                  |
|---------------|----------------|--------|-----------|---------------------------------|---------------------------|-------|------------------|--------|--------|------------------|--------|----------|------------------|
| SOURCE        |                |        | DF        | SUM OF SQUARES                  | MEAN                      | SQUAR | RE               | F VALU | E      | PR >             | F      | R-SQUAR  | έ C.V            |
| HODEL         |                |        | 13        | 17701.91999362                  | 1361.68                   | 61533 | 36               | 0.6    | 1      | 0.829            | 4      | 0. 19338 | 8 30.310         |
| ERROR         |                |        | 33        | 73834.08211190                  | 2237.39                   | 64276 | 3                |        |        | ROOT MS          | E      |          | PCTD1M MEA       |
| CORRECTED     | TOTAL          |        | 46        | 81536.00210551                  |                           |       |                  |        | 41     | 1.3011250        | 1      |          | 156.0549296      |
| SOURCE        |                |        | DF        | TYPE I SS                       | F VALUE                   | F     | PR > F           |        |        |                  |        |          |                  |
| PLOT<br>FR*FT |                |        | 7<br>6    | 11641.47333698<br>6060.44665664 | 0.74<br>0.45              |       | 0.6374<br>0.8387 |        | ,      |                  |        |          |                  |
|               |                |        |           |                                 |                           |       |                  |        |        | FFECT FR         |        |          |                  |
|               | , FR           | FT     | PCTD I    |                                 | PROB >  T <br>HO:LSMEAN=O | 1/.   | -                | 2      | 3      |                  | 5      | 6        | 7                |
|               | 1              | 1      | 152.79894 | 19.818744                       | 0.0001                    | 1     |                  | 0.5065 |        | 0.7480           | 0.7666 | 0.4948   | 0.6717           |
|               | - 1            | 2      | 170.21710 |                                 | 0.0001                    |       | 0.5065           |        | 0.4961 | 0.7055           | 0.2948 | 0.1759   | 0.8317           |
|               | - <b>1</b> * * | 3      | 152.37007 |                                 | 0.0001                    |       | 0.9877           | 0.4961 |        | 0.7356           | 0.7792 | 0.5038   | 0.6606           |
|               | 3              | 1      | 161.20183 |                                 | 0.0001                    | 4     | 0.7480           | 0.7055 | 0.7356 |                  | 0.4991 | 0.2986   | 0.8947<br>0.4548 |
|               | 3              | 2      | 145.03925 |                                 | 0.0001                    | 6     | 0.7666           | 0.2948 | 0.7792 | 0.4991<br>0.2986 | 0.6416 | V. 6416  | 0.2773           |
|               | 3 1            | 3      | 132.08989 | a 21.91085/                     | 0.0001                    |       | 0 940            | 0.1/59 | 0.0038 | 0.8947           | 0.4548 | 0.2773   | V                |

| DEPENDENT VARIABLE | PCTH1N |                                                   |              |                   |            |                      |            |          |              |
|--------------------|--------|---------------------------------------------------|--------------|-------------------|------------|----------------------|------------|----------|--------------|
| SOURCE             | DF     | SUM OF SQUARES                                    | . MEAN SQU   | ARE               | F VALUE    | PR > 1               | . R.       | -SQUARE  | <b>c.v</b> . |
| MODEL              | 12     | 59691.67291043                                    | 4974.30607   | 587               | 2.79       | 0.0146               |            | . 572707 | 44.5815      |
| ERROL              | 25     | 44535.55461725                                    | 1781.42218   | 469               |            | ROOT MS              |            |          | PCTHIM MEAN  |
| CORRECTED TOTAL    | 37     | 104227.22752768                                   |              |                   |            | 42.20689736          | <b>i</b> . |          | 94.67361333  |
| SOURCE             | DF     | TYPE I SS                                         | F VALUE      | PR > F            |            |                      |            |          |              |
| PLOT<br>FR*FT      | 6      | <b>4544</b> 1.24005680<br>1 <b>4250</b> .43285363 | 4.25<br>1.33 | 0.0044<br>0.2796  |            |                      |            |          |              |
| FR                 | FT     | PCTHIM STD ERR<br>LSMEAN LSMEAN                   |              | R08 >  T <br>/J 1 | HO: LSMEAN | (1)=LSMEAN(J)<br>3 4 | 5          | 6        | 7            |
| !                  |        | 2.449619 15.952708                                | 0.0001 1     |                   | 0.5628 0.3 | 2336 0.1436          | 0.9446 0   | .5143 0  | . 7802       |

SITE-4 SPECIES-3

| • | •                | 34.443013  | 13.332/08                                                                           | 0.0001                                                                                                                                                                                                                                                                                   | - 1                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 7802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|------------------|------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 2                | 106.333911 | 17.492966                                                                           | 0.0001                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                           | 0.5628                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 | 3                | 59.203930  | 22.077313                                                                           | 0.0128                                                                                                                                                                                                                                                                                   | Э                                                                                                                                                                                                                                                                                                                                                           | 0.2336                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 | 1                | 126.514706 | 15.952708                                                                           | 0.0001                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                           | 0.1436                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 | 2.               | 90.537294  | 22.097952                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 | 3                | ·74.447981 | 22.042342                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 | 4                | 99.126493  | 17.491262                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 1<br>3<br>3<br>4 |            | 1 2 106.333911<br>1 3 59.203930<br>3 1 126.514706<br>3 2 90.537294<br>3 3 74.447981 | 1         2         106.333911         17.49296           1         3         59.203930         22.077313           3         1         126.514706         15.952708           3         2         90.537294         22.097952           3         3         74.447981         22.042342 | 1         2         106.333911         17.452866         0.0001           1         3         59.203930         22.077313         0.0128           3         1         126.514706         15.952708         0.0001           3         2         90.537294         22.097952         0.0004           3         7.4.447981         22.042342         0.0024 | 1         2         106.333911         17.452866         0.0001         2           1         3         59.203930         22.077313         0.0128         3           3         1         126.514706         15.952708         0.0001         4           3         2         90.537294         22.097952         0.0004         5           3         74.447981         22.042342         0.0024         6 | 1         2         106         333911         17         493966         0.0001         2         0.5628           1         3         59.203930         22.077313         0.0128         3         2.333           3         1         126.514706         15.952708         0.0001         4         0.1436           3         2         90.537294         22.097952         0.0004         5         9.9446           3         74.447981         22.042342         0.0024         6         0.5143 | 1         2         106.333911         17.492966         0.0001         2         0.5628           1         3         59.203930         22.077313         0.0128         3         0.2336         0.1025           3         1         126.514706         15.952708         0.0001         4         0.4336         0.4021           3         2         90.537294         22.037952         0.0004         5         0.9446         0.5842           3         74.447981         22.042342         0.0024         6         0.5143         0.2726 | 1         2         106.333911         17.492965         0.0001         2         0.5628         0.1025           1         3         59.203930         22.077313         0.0128         0.2336         0.1025           3         1         126.514706         15.952708         0.0001         4         0.1435         0.4021         0.0206           3         2         90.537294         22.097952         0.0001         4         0.1436         0.4021         0.3026           3         74.447981         22.047342         0.0024         6         0.5143         0.2726         0.6125 | 1         2         106         333911         17.497966         0.0001         2         0.5628         0.1025         0.4021           1         3         59.201900         22.077313         0.0128         3         0.2336         0.1025         0.0206           3         1         126.514706         15.952708         0.0001         4         0.1436         0.4021         0.0206           3         2         90.537294         22.097952         0.0004         5         0.9446         0.5842         0.3420         0.1926           3         74.447981         22.047392         0.0004         5         0.9446         0.5842         0.3420         0.1926 | 1         2         106.333911         17.452966         0.0001         2         0.5628         0.1025         0.1025         0.4021         0.5842           1         3         59.203930         22.077313         0.0128         0.2336         0.1025         0.0206         0.3420           3         1         126.514706         15.552708         0.0001         4         0.1436         0.4021         0.5842           3         2         90.537294         22.097952         0.0001         4         0.1436         0.4021         0.0206         0.1988           3         74.447981         22.047342         0.0024         6         0.5143         0.2726         0.6325         0.6072         0.6042 | 1         2         106         333911         17.492966         0.0001         2         0.5628         0.1025         0.4021         0.5842         0.2143           1         3         59.203930         22.077313         0.0128         0.2336         0.1025         0.4021         0.5842         0.2726           1         126.514706         15.952708         0.0001         4         0.1436         0.4021         0.25642         0.2726           3         1         126.514706         15.952708         0.0001         4         0.1436         0.4021         0.2026         0.1588         0.6033           3         2         90.537294         22.097952         0.0004         5         0.9446         0.5842         0.3420         0.6943           3         74.447981         22.047342         0.0004         6         0.5143         0.2726         0.6325         0.0643 |

| OEPENDENT VARIABLE: | PCTH2M |                                   |              |                  |         |             |          |              |  |
|---------------------|--------|-----------------------------------|--------------|------------------|---------|-------------|----------|--------------|--|
| SOURCE              | DF     | SUM OF SQUARES                    | MEAN S       | OUARE            | F VALUE | PR > F      | R-SQUARE | c.v.         |  |
| MODEL               | 12     | 243853.72003606                   | 20321.143    | 33634            | 2.11    | 0.0554      | 0.503567 | 40.3603      |  |
| ERROR               | 25     | 240398.88893228                   | 9615.955     | 55729            |         | ROOT MSE    |          | PCTH2M MEAN  |  |
| CORRECTED TOTAL     | 37     | 484252.60896834                   |              |                  |         | 98.06097877 |          | 242.96373582 |  |
| SOURCE              | DF     | TYPE I SS                         | F VALUE      | PR > F           |         |             |          |              |  |
| PLOT<br>FR*FT       | 6      | 196852.39424472<br>44971.32579134 | 3.45<br>0.78 | 0.0128<br>0.5938 |         |             |          |              |  |
|                     |        |                                   |              |                  |         |             |          |              |  |

| FR | FT | PCTH2M     | STD FRR   | PRO8 > [T]  | PROB | > 11 | HO: LSM | EAN(I)=L | SMEAN(J) |        |        |        |
|----|----|------------|-----------|-------------|------|------|---------|----------|----------|--------|--------|--------|
|    |    | LSMEAN     | LSMEAN *  | HO:LSMEAN=O | 1/J  | i    | 2       | 3        | 4        | 5      | 6      | 7      |
| 1  | 1  | 205.523362 | 37.063566 | 0.0001      | 1.   |      | 0.2563  | 0.5762   | 0.0648   | 0.7375 | 0.8718 | 0.5026 |
| 1  | 2  | 269.421780 | 40.642111 | 0.0001      | 2 0. | 2563 |         | 0.6678   | 0.5034   | 0.5273 | 0.4247 | 0.6499 |
| 1  | 3  | 241.368163 | 51.293108 | 0.0001      | 30.  | 5762 | Q.6678  |          | 0.3113   | 0.8497 | 0.7299 | 0.9812 |
| 3  | 1  | 306.769957 | 37.063566 | 0.0001      | 4 0. | 0648 | 0.5034  | 0.3113   |          | 0.2193 | 0.1627 | 0.2568 |
| 3  | 2  | 226.983693 | 51.341059 | 0.0002      | 5 0. | 7375 | 0.5273  | 0.8497   | 0.2193   |        | 0.8768 | 0.8072 |
| 3  | 3  | 215.826330 | 51,211859 | 0.0003      | 6 0. | 8718 | 0.4247  | 0.7299   | 0.1627   | 0.8768 |        | 0.6845 |
| 4  | 4  | 242.941952 | 40.638151 | 0.0001      | 7 0. | 5026 | 0.6499  | 0.9812   | 0.2568   | 0.8072 | 0.6845 |        |

TABLE IX (Continued)

|                  |                        |             |                                      |                                                  |                                              | SITE-                                | 4 SPECIES-1                                  |                            |                                                           |                                      |                                                                  |
|------------------|------------------------|-------------|--------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|
| DEP              | ENDENT                 | VARIABL     | E: PCTD                              | M                                                |                                              |                                      |                                              |                            |                                                           |                                      |                                                                  |
| SOL              | RCE                    |             |                                      | DF                                               | SUM OF SQUARES                               | MEAN                                 | SQUARE                                       | F VALUE                    | PR > F                                                    | R-SQUARE                             | c.v.                                                             |
| MOC              |                        |             |                                      | 12                                               | 11226.60256038                               | 935.55                               | 021336                                       | 1.30                       | 0.2777                                                    | 0.384566                             | 43.5656                                                          |
| ERF              |                        |             |                                      | 25                                               | 17966.33991090                               | 718.6                                | 359644                                       |                            | ROOT MSE                                                  |                                      | PCTD IM MEAN                                                     |
| -                | RECTED                 | TOTAL       | •                                    | 37                                               | 29192.94247128                               |                                      |                                              |                            | 26.80771524                                               |                                      | 61.53410879                                                      |
| 501              | IRCE                   |             |                                      | DF                                               | TYPE I SS                                    | F VALUE                              | PR > F                                       |                            |                                                           |                                      |                                                                  |
| PLO              |                        |             |                                      | 6                                                | 8409.21864978                                | 1.95                                 | 0.1117                                       |                            |                                                           |                                      |                                                                  |
| FR               |                        |             |                                      | • .                                              | 2817.38391060                                | 0.65                                 | 0.6872                                       |                            |                                                           |                                      |                                                                  |
|                  |                        |             |                                      |                                                  |                                              |                                      |                                              |                            |                                                           |                                      |                                                                  |
|                  |                        | FR          | FT                                   | PCTD1                                            |                                              | PROB >  T <br>HO:LSMEAN=O            | PROB > [T]<br>I/J 1                          | HO: LSMEAN                 | (I)*LSMEAN(J)<br>3 4 5                                    | 6                                    | 7                                                                |
|                  |                        |             | 1 2 3                                | 71.169930<br>60.621169<br>54.357618              | 2 11.1106593                                 | 0.0001<br>0.0001<br>0.0007           | 1<br>2 0.4895<br>3 0.3405                    | 0.7258                     | 3405 0.7494 0.6358<br>7258 0.6971 0.9021<br>0.4878 0.6821 | 0.5298 0                             | ), 1058<br>), 3604<br>), 6453                                    |
|                  |                        | 3 3 4       | 1 2 3 4                              | 66.541133<br>62.870016<br>72.123899<br>45.940821 | 2 10.1323640<br>6 14.0355165<br>2 14.0001961 | 0.0001<br>0.0001<br>0.0001<br>0.0004 | 4 0.7494<br>5 0.6358<br>6 0.9564<br>7 0.1058 | 0.9021 0.0                 | 6821 0.8338<br>3829 0.7494 0.6387                         | 0.6387 0                             | ), 1829<br>), 3477<br>), 1589                                    |
| SO               | PENDENT<br>URCE<br>DEL | VARIABI     | LE: PCTD                             | 2M<br>DF<br>12                                   | SUM OF SQUARES                               |                                      | SQUARE<br>8404313                            | F VALUE                    | PR > F<br>0.0734                                          | R-SQUARE<br>0.486457                 | C.V.<br>35.7530                                                  |
| ER               | ROR                    |             |                                      | 25                                               | 24945.97291948                               | 997.8                                | 3891678                                      |                            | ROOT MSE                                                  |                                      | PCTD2M MEAN                                                      |
| co               | RRECTED                | TOTAL       |                                      | 37                                               | 48576.18143705                               |                                      |                                              |                            | 31.58858839                                               |                                      | 88.35223218                                                      |
| so               | URCE                   |             |                                      | DF                                               | TYPE I SS                                    | F VALUE                              | PR > F                                       |                            |                                                           |                                      |                                                                  |
| PL<br>FR         | 0T<br>•FT              |             |                                      | 6                                                | 16956.06025108<br>6674.14826650              | 2.83                                 | 0.0304<br>0.3820                             |                            |                                                           |                                      |                                                                  |
| FR               | FT                     |             | PCTD2M<br>LSMEAN                     |                                                  |                                              | B >  T <br>LSMEAN=O                  | PROB >  T<br>I/J 1                           |                            | IEAN(I)=LSMEAN(J<br>3 4                                   | ) 5                                  | 6 7                                                              |
| 1<br>1<br>1      | 1<br>2<br>3<br>1       | 86.<br>78.  | 766145<br>935463<br>438549<br>501569 | 13<br>16                                         | .939364<br>.092128<br>.523156<br>.939364     | 0.0001<br>0.0001<br>0.0001<br>0.0001 | 1<br>2 0.4105<br>3 0.2633<br>4 0.5881        | 0.4105<br>0.6865<br>0.7560 | 0.2633 0.5881<br>0.6865 0.7560<br>. 0.4966<br>0.4966      | 0.8362<br>0.3791<br>0.2652<br>0.5133 | 0.9144 0.0435<br>0.5584 0.2299<br>0.3788 0.5063<br>0.7320 0.1213 |
| 3<br>3<br>3<br>4 | 1<br>2<br>3<br>4       | 106.<br>99. | 026926<br>555182                     | 16<br>16                                         | . 538603<br>. 496983                         | 0.0001                               | 4 0.5881<br>5 0.8362<br>6 0.9144<br>7 0.0435 | 0.3791<br>0.5584           | 0.4966<br>0.2652 0.5133<br>0.3788 0.7320<br>0.5063 0.1213 | 0.7802                               | 0.7802 0.0551<br>0.1075<br>0.1075                                |
| 4                | 4                      | 64.         | 084910                               | 13                                               | .090853                                      | 0.0001                               | 0.0435                                       | 0.2299                     | 0.0003 0.1213                                             | 0.0551                               | 0.10/3                                                           |

## TABLE X

# STATISTICAL ANALYSIS--DUNCAN MULTIPLE RANGE TEST OF MEAN PERCENT INCREASE IN HEIGHT AND DIAMETER BY SITE, SPECIES AND FERTILIZER TREATMENT

| •                                                                                                 |                                                                                            |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                   | Legend                                                                                     |
| Fertilizer Treatments                                                                             | Mean Percent Height Growth                                                                 |
| FR = Fertilizer Rate<br>FT = Fertilizer Type                                                      | PCTH1M = One Growing Season After<br>Fertilization<br>PCTH2M = Second Growing Season After |
| FR                                                                                                | Fertilization Estimate                                                                     |
| l = Low<br>2 = Medium<br>3 = High                                                                 | Mean Percent Diameter Growth<br>PCTD1M = One Growing Season After                          |
| 4 = No Fertilizer<br><u>FT</u>                                                                    | Fertilization<br>PCTD2M = Second Growing Season After<br>Fertilization Estimate            |
| l = Agriform Tablet<br>2 = Sulfur Coated Urea<br>3 = Readily Soluble Mixture<br>4 = No Fertilizer | Statistical Information<br>Alpha Level = 0.05<br>Means with the same letter are not        |

Means with the same letter are not significantly different

| FR          | Mean                | FT          | Mean                | FR           | Mean               | FT         | Mean               |
|-------------|---------------------|-------------|---------------------|--------------|--------------------|------------|--------------------|
|             |                     |             | Site 1,             | Russian-Oliv | e                  |            |                    |
|             | PCT                 | ГН1М        |                     |              | PC                 | TD1M       |                    |
| 1           | 173.53a             | 1           | 148.48a             | 1            | 186.33a            | 1          | 156.61a            |
| 3<br>4      | 157.59a<br>167.60a  | 2           | 158.42a<br>187.88a  | 3<br>4       | 202.73a<br>192.27a | 2<br>3     | 201.28a<br>227.56a |
|             | MSE =               | 6251.       | 32                  |              | MSE =              | 6032.      | 75                 |
|             |                     |             | Site                | l, Juniper   |                    |            |                    |
|             | PCT                 | HIM         |                     |              | PC                 | TDIM       |                    |
| 1<br>2      | 98.76ab<br>115.92ab | 1<br>2      | 105.86ab<br>129.82a | 1            | 89.50a             | 1          | 94.26a             |
| 3           | 136.12a             | 3           | 129.02a<br>111.96ab | 2<br>3<br>4  | Cl.99a<br>98.26a   | 2<br>3     | 86.67a<br>86.85a   |
| 4           | 77.56b<br>MSE =     | 4<br>2061.7 | 77.57b              | 4            | 63.54a<br>MSE =    | 4<br>1273. | 63.54a             |
|             |                     |             |                     |              | 152 -              | 1275.      | ))                 |
|             |                     |             | Site                | 1, A. Pine   |                    |            |                    |
| ,           |                     | <u>'HIM</u> |                     |              |                    | TDIM       |                    |
| 1<br>2      | 114.80a<br>78.33a   | 1           | 97.25a<br>114.07a   | 1            | 60.50a<br>57.34a   | 1<br>2     | 52.06a<br>52.28a   |
| 2<br>3<br>4 | 123.66a<br>96.91a   | 3<br>4      | 54.64a<br>96.91a    | 2<br>3<br>4  | 28.47ь<br>39.58аь  | 3          | 57.13a             |
| т           |                     | 2529.1      |                     | <b>4</b>     |                    | 800.5      | 39.58a<br>4        |
|             | PCT                 | H2M         |                     |              | PC                 | TD2M       |                    |
| 1           | 229.71a             | 1           | 202.52a             | 1            | 81.45a             | 1          | 78.46a             |
| 2<br>3<br>4 | 163.61a<br>208.39a  | 2<br>3      | 203.06a<br>142.86a  | 2<br>3       | 84.16a<br>41.98a   | 2<br>3     | 70.67a<br>65.62a   |
| 4           | 162.24a<br>MSE =    | 4           | 162.24a             | 4            | 63.68a             | 4<br>1681. | 63.68a             |
|             | NSE -               |             |                     |              | MSE =              | 1001.      | 30                 |
|             |                     |             | Site                | 2, A. Pine   |                    |            |                    |
| ,           |                     | <u>'H1M</u> |                     |              |                    | TDIM       |                    |
| 1<br>2      | 45.68a<br>44.31a    | 2           | 45.43a<br>30.04a    | 1            | 167.08a<br>196.76a | 1<br>2     | 161.56a<br>169.99a |
| 2<br>3<br>4 | 35.89a<br>32.58a    | 3<br>4      | 48.05a<br>32.58a    | 3            | 153.21a            | 3          | 159.15a            |
| 4           | MSE =               |             |                     | 4            | 133.92a<br>MSE =   | 4<br>4129. | 133.92a<br>81      |

TABLE X (Continued)

.

| FR               | Mean                                                             | FT                              | Mean                                      |            | FR               | Mean                                              | FT                                          | Mean                                           |
|------------------|------------------------------------------------------------------|---------------------------------|-------------------------------------------|------------|------------------|---------------------------------------------------|---------------------------------------------|------------------------------------------------|
|                  |                                                                  |                                 | Sit                                       | e 2, A. Pi | ne               |                                                   |                                             |                                                |
|                  | PCTH                                                             | 12M                             |                                           |            |                  | PC                                                | <u>FD2M</u>                                 |                                                |
| 1<br>2<br>3<br>4 | 96.26a<br>87.92a<br>77.03a<br>76.85a<br>MSE =                    | 1<br>2<br>3<br>4<br>1 32 4 . 58 | 93.70a<br>74.87a<br>90.69a<br>76.85a<br>3 |            | 1<br>2<br>3<br>4 | 183.16a<br>174.46a<br>177.59a<br>162.16a<br>MSE = | 1<br>2<br>3<br>4<br>4092.2                  | 176.96a<br>193.31a<br>168.24a<br>162.16a<br>25 |
|                  |                                                                  |                                 | Site                                      | 2, Arborv  | itae             |                                                   |                                             |                                                |
| 1<br>2<br>3<br>4 | <u>PCTH</u><br>33.24a<br>23.47a<br>26.59a<br>4.78b<br>MSE = 6    | 1<br>2<br>3<br>4                | 32.70a<br>23.63a<br>26.70a<br>4.78b       |            | 1<br>2<br>3<br>4 | 76.93a<br>55.07a<br>58.75a<br>50.86a              | <u>rdim</u><br>1<br>2<br>3<br>4<br>1975 - 9 | 72.76a<br>57.95a<br>59.83a<br>50.86a<br>33     |
|                  |                                                                  |                                 | Site                                      | 3, Russian | -0live           |                                                   |                                             |                                                |
| 1<br>2<br>3<br>4 | PCTH<br>66.65a<br>59.39a<br>59.97a<br>53.66a<br>MSE = 7          | 1<br>2<br>3<br>4                | 55.37a<br>64.71a<br>65.93a<br>53.66a      |            | 1<br>2<br>3<br>4 | 47.09b<br>72.04ab<br>61.89ab<br>77.48a            | TDIM<br>1<br>2<br>3<br>4<br>1394.8          | 63.00a<br>58.31a<br>59.72a<br>77.48a<br>33     |
|                  |                                                                  |                                 | Si                                        | te 3, Juni | per              |                                                   |                                             |                                                |
| 1<br>2<br>3<br>4 | <u>PCTH</u><br>51.46ab<br>44.15b<br>62.18a<br>55.29ab<br>MSE = 2 | 1<br>2<br>3<br>4                | 52.55a<br>52.40a<br>52.84a<br>55.28a      |            | 1<br>2<br>3<br>4 | 64.04a<br>61.13a<br>58.21a<br>60.81a              | <u>TDIM</u><br>1<br>2<br>3<br>4<br>441.7    | 59.99a<br>62.01a<br>61.38a<br>60.81a<br>3      |
|                  |                                                                  |                                 | Si                                        | te 3, A. P | ine              |                                                   |                                             |                                                |
| 1<br>2<br>3<br>4 | <u>PCTH</u><br>21.90a<br>13.85a<br>10.27a<br>20.80a<br>MSE =     | 1<br>2<br>3<br>4                | 26.31a<br>7.24b<br>13.33ab<br>20.80ab     |            | 1<br>2<br>3<br>4 | 19.81a<br>33.55a<br>27.40a<br>7.36a               | <u>TDIM</u><br>1<br>2<br>3<br>4<br>775.69   | 33.20a<br>17.31a<br>29.04a<br>7.36a            |

TABLE X (Continued)

| FR               | Mean                                                 | FT                                       | Mean                                           | FR               | Mean                                                 | FT                               | Mean                                           |
|------------------|------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------|------------------------------------------------------|----------------------------------|------------------------------------------------|
|                  |                                                      |                                          | Site                                           | e 3, A. Pine     |                                                      |                                  |                                                |
|                  | PCT                                                  | H2M                                      |                                                |                  | PCT                                                  | D2M                              |                                                |
| 1<br>2<br>3<br>4 | 84.20a<br>67.46ab<br>42.46b<br>42.34b<br>MSE =       | 1<br>2<br>3<br>4<br>1780.7               | 87.18a<br>47.01b<br>63.02ab<br>42.34b<br>73    | 1<br>2<br>3<br>4 | 39.85ab<br>45.63a<br>36.09ab<br>11.69b<br>MSE =      | 1<br>2<br>3<br>4<br>1008.        | 45.16a<br>33.94ab<br>43.03a<br>11.69b<br>25    |
|                  |                                                      |                                          | Site 4,                                        | Russian-Olive    |                                                      |                                  |                                                |
|                  | PCT                                                  | H1M                                      |                                                |                  | PCT                                                  | DIM                              |                                                |
| 1<br>2<br>3<br>4 | 69.64a<br>72.35a<br>77.87a<br>84.54a<br>MSE =        | 1<br>2<br>3<br>4<br>667.05               | 69.78a<br>73.92a<br>76.17a<br>84.54a           | 1<br>2<br>3<br>4 | 76.04a<br>84.94a<br>80.20a<br>80.98a<br>MSE =        | 1<br>2<br>3<br>4<br>866.1        | 76.60a<br>92.20a<br>72.38a<br>80.98a<br>1      |
|                  |                                                      |                                          | Site                                           | e 4, Juniper     |                                                      |                                  |                                                |
| 1<br>3<br>4      | <u>PCT</u><br>113.90a<br>105.38a<br>115.46a<br>MSE = | <u>HIM</u><br>1<br>2<br>3<br>4<br>1761.6 | 86.67a<br>126.63a<br>113.78a<br>115.46a<br>54  | 1<br>3<br>4      | <u>PCT</u><br>163.00a<br>146.25a<br>167.23a<br>MSE = | <u>1</u><br>2<br>3<br>4<br>2237. | 159.49a<br>157.63a<br>143.29a<br>167.23a<br>40 |
|                  |                                                      |                                          | Site                                           | 4, A. Pine       |                                                      |                                  |                                                |
| 1<br>3<br>4      | <u>PCT</u><br>91.09a<br>101.37a<br>88.09a<br>MSE =   | <u>HIM</u><br>1<br>2<br>3<br>4<br>1781.4 | 109.48a<br>90.27a<br>79.20a<br>88.09a          | 1<br>3<br>4      | <u>PCT</u><br>61.48a<br>67.03a<br>46.66a<br>MSE =    | 1<br>2<br>3<br>4<br>718.6        | 68.86a<br>61.77a<br>59.59a<br>46.66a<br>54     |
|                  |                                                      |                                          | Site                                           | 4, A. Pine       |                                                      |                                  |                                                |
| 1<br>3<br>4      | <u>PCT</u><br>238.96a<br>257.13a<br>218.82a<br>MSE = | 1<br>2<br>3<br>4<br>9615.9               | 256.15a<br>232.45a<br>251.15a<br>218.82a<br>96 | 1<br>3<br>4      | <u>PCT</u><br>89.06ab<br>97.30a<br>63.60b<br>MSE =   | <u>1</u><br>2<br>3<br>4<br>997.8 | 97.13a<br>91.33a<br>87.55a<br>63.60a<br>4      |

TABLE X (Continued)

| FR | Mean   | FT    | Mean   | FR               | Mean   | FT          | Mean   |
|----|--------|-------|--------|------------------|--------|-------------|--------|
|    |        |       | Site   | 5, Russian-Olive |        |             |        |
|    | PCT    | HIM   |        |                  | PCT    | <u>rdim</u> |        |
| 1  | 22.82a | 1     | 24.12a | 1                | 39.98a | 1           | 47.24a |
| 2  | 20.03a | 2     | 26.34a | 2                | 65.37a | 2           | 70.56a |
| 3  | 18.90a | 3     | 13.16a | 3                | 59.95a | 3           | 49.11a |
| 4  | 31.24a | 4     | 31.24a | 4                | 40.19a | 4           | 40.19a |
|    | MSE =  | 295.2 | 3      |                  | MSE =  | 5193.       | 21     |
|    |        |       |        |                  |        |             |        |

TABLE X (Continued)

### VITA

#### Roger Leigh Stewart

### Candidate for the Degree of

Master of Science

### Thesis: FERTILIZATION AND ITS EFFECT ON THE ESTABLISHMENT OF DRIP IRRIGATED WINDBREAKS IN WESTERN OKLAHOMA

Major Field: Forest Resources

Biographical:

Personal Data: Born in Jeffersonville, Indiana, September 17, 1952.

- Education: Graduated from Norman High School, Norman, Oklahoma, in May, 1970; received the Bachelor of Science in Agriculture degree in Forestry from Oklahoma State University in 1977; completed requirements for the Master of Science degree at Oklahoma State University in July, 1983.
- Professional Experience: Forester for the Peace Corps in Niger, West Africa, 1978-80; graduate teaching assistant, Oklahoma State University, 1981-83.