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Abstract

The promise of multi-class communication networks is gradually becoming a

reality. The term multi-class means that the network provides different classes of

service that can support diverse application requirements and heterogeneous users

demand. This dissertation focuses on establishing an equitable price for each class of

service in multi-class networks, considering fairness among the classes and economic

efficiency. We adopt a game-theoretic approach to the problem in order to take into

account the interdependence among users’ service choices.

We investigate subsidy-free prices for each class of service under two distinct

service architectures: in multi-class priority-based networks, traffic from each class

is assigned priority level in the queue; in multi-class DiffServ networks, network

resource is allocated to each class. In both cases, classes of traffic having longer average

waiting time receive monetary compensations from other classes and the subsidy-free

price for each class of service is developed based on inter-class compensations. This

work provides a framework to set subsidy-free price or sustainable price for each

class of service which is assumed crucial to network providers if they are to survive

the competition in the market place.

We further consider market-clearing prices for each class of service in a competitive

market in which each user endowed with an initial budget will purchase bandwidth

from each class of the network resource to maximize his or her utility function.

A competitive equilibrium is reached when the total bandwidth is allocated, each

user spends all his or her budget, and the utility functions are independently and

simultaneously maximized. Our research shows that such equilibrium always exists

and, under fixed bandwidth supply for each class of service, the equilibrium is also

unique. Furthermore, we discuss how to adjust the initial endowment of each user

to meet his or her individual bandwidth constraint, either from constraint on the

access network or from the limitation of the user equipment. Under this bandwidth

constraint condition, the proposed competitive equilibrium yields the price for each

class of service, the budget redistribution and the bandwidth allocation among all

users. We also develop an iterative algorithm for budget allocation to satisfy each

user’s bandwidth constraint. The presented competitive market model provides a

solution for pricing a multi-class network and allocating network resource among

users. And we find this solution achieves higher social utilization, better individual

satisfaction and the QoS of each class.

xii



Another advanced topic in communication networks is net neutrality, which has

become the subject of fierce debate among the stakeholders of public telecommunica-

tion services. Broadband access providers argue that preservation of the integrity of

the network services requires them to use discriminatory traffic management practices

to slow down certain applications or to purge certain packets that would compromise

the integrity of the network. We propose a solution based on the idea of inter-

user compensations that could control network congestion and yet maintain fairness

among heavy and light users without violating net neutrality. Users consuming less

network resource will receive compensations from heavy users. Our research pro-

vides a method for broadband access providers to shape the traffic characteristics of

users and thus controlling network congestion and maintaining network performance

without inflicting discriminatory treatment on network traffic.

xiii



CHAPTER 1

Introduction: Pricing and Communication Networks

The tremendous surge in the use of the Internet for business and entertainment is

among the most important social phenomena of the last several decades. The devel-

opment of cost-effective optical networking technologies and the wide acceptance of

Internet Protocols as the platform for communication, further enhanced by the imagi-

native edge software glue of World Wide Web 2.0 (or 3.0), have provided a converged

network that supports a multitude of applications. This has raised users’ expectation

for the network’s ability to provide applications with different quality of service (QoS)

requirements. The demand for applications that deliver voice, video, image, and text,

often in real-time mode, leads to network service differentiation and controllable QoS

in the Next Generation Network [1].

Multi-service networks can support diverse application requirements, and there is

a clear need for incentives to be offered to customers to encourage them to choose the

service that is most appropriate for their needs, thereby discouraging over-allocation

of resources. Pricing is commonly assumed to be an effective solution to this end.

The relation between QoS and price of services in a communication network is a

major theme of this dissertation. We focus on a study of establishing equitable prices

for each class of service in multi-class networks, taking into account fairness among

the classes and economic efficiency. While the network pricing schemes are often

dominated by the network providers’ policies and market forces, our study will

provide an important input for actual pricing.

Communication network services have changed the way we engage in social life,

business and politics. The pricing of these services, therefore, plays an important

role. Although a tariff must be charged by the service provider to recover costs and

remain solvent, pricing has other important roles such as shaping users’ demand,

controlling network congestion. In order to understand pricing’s other roles, we

need first consider the characteristics of communication networks and communication

services. In this chapter, we begin with the network’s externality characteristics and

then present special features of communication services. Section 1.2 states the role of

pricing in communication networks, and Section 1.3 lists recent research on pricing

communication networks. Section 1.4 contains a statement of the problem and a

summary of contributions of this dissertations. Finally, we finish the chapter with a
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description of the organization of this dissertation.

1.1 Characteristics of Communication Networks

1.1.1 Network Externalities

Network externality is the notion to describe that a network’s value increases with

its size. Metcalfe’s Law [2], which is named after the inventor of Ethernet, describes

that the value of a network increases by the square of the number of its users. The

foundation of this law is the observation that in a communication network with n
users, each can make n − 1 connections with other users. The total value of the

network is proportional to n(n − 1), that is, approximately, n2. This makes a large

user base a competitive advantage because each of the large network’s users can

communicate with a greater number of other users.

During the Internet bubble of the late 1990s, entrepreneurs, venture capitalists, and

engineers believed in the steady commercial growth of the Internet; and Metcalfe’s

Law gave a quantitative explanation for the Internet boom’s various reasons, like

“first move advantage,” “Internet time” and “network effects”. At that time, many

companies invested heavily in new fiber infrastructures not only at a backbone level

but also at the metropolitan level. Dense Wavelength Division Multiplexing made

it possible to transport up to 160 light waves on a single strand of fiber with a

combined bit rate into the range of tera-bits per second [3]. Ethernet technologies and

the Internet Protocol made the connectivity services to be supported on these fiber

infrastructure very inexpensive. A fact that is likely responsible for an overinvestment

in the telecommunication infrastructure during the 1990s [4].

One fundamental flaw underlying Metcalfe’s law is the assignment of equal value

to all connections. For example, in a large network such as the Internet, there are

millions of potential connections between users. In general, connections are not all

used with the same intensity and most of them are not used at all. As a result,

assigning equal value to all connections is not justified and a revision of Metcalfe’s

law is proposed in [5], based on the assumption that not all connections are equally

valuable to the users. The assignment of value to each connection is based on the

ZIPF’s Law [6]. It says, for example, that in a long English language text, the most

popular word, “the,” usually accounts for 7 percent of all word occurrences; the

second-place word, “of,” makes up 3.5 percent; the third-place word, “and,” accounts

for “2.8” percent. In other words, the sequence of word occurrence frequencies

2



corresponds closely with the 1
k sequence, (1, 1

2 ,
1
3 ...). This logic can be extended to a

communication network with n users. For each user, the value of connections will be

proportional to 1+ 1
2 + 1

3 + ...+ 1
n−1 , which approaches roughly to log(n). There are other

n − 1 users who get similar value from the network and the value of the network is

proportional to nlog(n) in the revised metcalfe’s law.

The revised metcalfe’s law shows that the value of the network grows faster than

its size in linear terms and has a form of nlog(n). This growth, which is faster than the

linear growth, helps explain the occasional Internet successes we have experienced.

On the other hand, the nlog(n) valuation, which is smaller than the Metcalfe’s square

growth (n2), describes a slower growth in the value of dot-com companies and explains

the Internet bubble from another angle.

In this section, we have reviewed the network externalities: the value of the

network increases as nlog(n), where n is as its user base. This is faster than the linear

growth. Since the cost of the network is, at most, linear to its user base, a network

provider has a great incentive to price its services attractively to expand the user base

so as to increase the value of the network.

1.1.2 Communication Services

When a communication network is built, the construction cost is largely a fixed cost

and the variable operating cost is extremely small compared to the fixed cost. This

is somewhat similar to information goods that are costly to produce but cheap to

reproduce. The first copy of a software product bears all the development cost, and

it is a sunk cost. All additional copies can be produced at almost zero marginal

cost. Similarly, once a network is built, the marginal cost of providing a unit of

communication service can be almost zero, especially when there is no congestion.

And it is well-known that a competitive market drives prices toward marginal costs.

As a result, there is a danger for the communication industry that the prices of

communication services can be driven close to zero.

Returning to the subject of communication services, it should be noted that they

can sell at both low and high prices. For example, there are hundreds of web sites

providing email services, and it seems they cannot charge users because there are

many nearly equivalent sites providing similar service. Such a service is termed as

commodity, which has little pricing flexibility. Providers of a commodity service would

find it more profitable to concentrate on differentiating their services by providing

3



value-added features like security for which some users may be willing to pay for this

feature. Besides the fact that different applications require different QoS as discussed

in the beginning of this chapter, avoiding becoming a commodity is another reason

for the communication networks to support service differentiation. The reason is that

if a good is not a commodity, it can sell at a price that reflects its value to users, rather

than its production cost, that is, its marginal cost. From a regulatory perspective, it

can be noted that as long as network operators offer equal treament to users’ traffic

within each class of transport service, the service differentiation across classes does

not violate the net neutrality [7].

A special feature of communication services is their reliance on statistical multi-

plexing. This is because the data traffic is often bursty and sporadic, and the network

does not need to reserve bandwidth for users equal to their maximum demand.

Therefore, statistical multiplexing produces economy of scale, that is, the size of the

user base increases more than proportionately to the raw quantity of the network

resource for identical performance. This fact shows that the value of the network

should increase much faster than the investment of building the network because

of the economy of scale. Besides network externality, statistical multiplexing is also

incentive for network provider to price its services attractively so as to expand its user

base.

Another special feature of the communication services is that the performance

obtained by any network user is not only determined by his own traffic and service

choice but also by other users’ traffic and service choices. While this is also true

for Internet best effort (single grade QoS) networks, in multi-service networks this

interdependence is much more complex because priority service traffic may cause

performance variation to all others, even when the aggregate traffic load remains con-

stant. This interdependence among users can be addressed through a game theoretic

framework in which each user makes a service choice and traffic volume or through-

put rate that maximizes his or her utility while taking into consideration all the other

users’ choices. This dissertation shows that such a delicate balance is achievable by

applying the principles of game theory.

In this section, we have discussed features of telecommunication services: the

marginal cost of the communication services is close to zero, and in order to recover

the huge sunk cost and be profitable, service differentiation provides an avenue.

Statistical multiplexing produces economy of scale for communication networks; the

interdependence among users from a usage and pricing perspective can be effectively

4



addressed using a game-theoretic framework.

1.2 The Role of Pricing in Communication Networks

One obvious role of pricing is for network providers to recover the capital invest-

ment plus extra revenue and become profitable in the market place. As discussed

in Section 1.1.1, the network externalities effect prompts the network providers to

increase the value of the network by reducing price to attract more demand. Network

providers can also increase prices to control congestion and smooth bursty customer

demand. Therefore, pricing can be viewed as a control mechanism to shape users’

demand.

However, some commentators like David Isenberg believe that future networks

will be overprovisioned [8]. By taking advantage of the reduced cost of new technolo-

gies, overprovisioning can solve the problem of congestion, and network providers

don’t need to use pricing to control traffic. Overprovisioning might be reasonable

for the backbone of the network because it consists of a fairly small number of links.

But there is substantially less fiber installed in the access part of a network, which

connects users to the core network. The core network infrastructure is shared by all

users, but the access network is used by much fewer users. Some experts believe that

it would take 20 to 30 times as much time and expense to overprovision an access

part of the network as it has taken to build the fiber infrastructure in the backbone [4].

Although AT&T and Verizon have the fiber to home services like Uverse and FIOS

respectively [9], these services are only provided in a limited number of metropolitan

cities.

In addition, it is always hard for any network operator to predict demand. Just as

it was overestimated in the 90s, it may now be underestimated. There are increasing

amounts of traffic on the network generated by programs and devices connected to

the Internet, rather than by humans. These programs and devices can ultimately

greatly outnumber human users, network traffic has the potential to grow extremely

rapidly. The question is how fast will the demand outgrow the supply. In addition,

capacity cannot be provided in arbitrarily small increments. Because the demand is

not accurately predictable and capacity expansion cannot be provided in “real-time”

in response to every increase in demand, pricing can serve an important role by in-

creasing stability and reducing quality fluctuations. As the network transport service

market will be constantly in a transient phase, we believe that pricing will always

5



play an important role in safeguarding the network performance while equitably ad-

dressing users’ needs. Without effective pricing schemes, a network provider won’t

have enough incentive to invest, and, therefore, overprovisioning may never happen

in the market place. Without enough network capacity, internet innovations will be

restricted and will adversely affect users’ experience. Thus, in addition to being a

control mechanism, pricing is also an important factor in keeping the information

industry economically viable.

Pricing can produce the right incentives for users to choose levels of service in

service differentiated networks most appropriate for them so as to help ensure that

users do not waste important resource that they do not value. For example, one

user with an email application should not require the same QoS transport service as

another user with a Voice over IP application. Pricing can provide the right incentives

by appropriately charging higher QoS transport service. While the proposed imple-

mentations vary in studies [10, 11, 12, 13, 14, 15], the basic idea is that the appropriate

pricing policy will provide incentives for users to behave in ways that improve overall

network performance.

Pricing can be further viewed as a signal from the network operator to user base

that there are incentives to use the network efficiently. Pricing information that is

signaled to the edges of the network can play a significant role in providing rational

end-users with the appropriate incentive to control their traffic. This is very similar

to the Transmission Control Protocol (TCP) in the Internet. When TCP receives a

congestion signal from the network, it reduces the sending rate; otherwise it increases

the sending rate. However, a user might cheat by rewriting the protocol to disobey

the TCP and send at a greater rate than it should. This would not be an issue if the

congesting traffic were to be charged more [16]. Use of this contrivance provides

stability and robustness to the network.

In this section, we have talked about using pricing as a means of shaping users’

demand and described its role in signaling. By increasing price, an operator can

reduce demand, reduce congestion, and ensure that services are provided to the users

most willing to pay.
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1.3 Related Works on Pricing for Communication Networks

1.3.1 Pricing for Regulated Telecommunication Services

Providers of services like telephony offered in the Public Switched Telephone Network

(PSTN) are considered common carriers. Pricing of such services is generally subject

to regulation. Traditionally, there has been very little competition in such markets.

With the advent of Internet services like VoIP, email, etc., the market place for these

services has changed much; however, it is still interesting to review the traditional

regulatory pricing scheme for network operators.

In a highly regulated, monopoly environment, telecommunication providers could

maximize their profits by raising prices to inefficiently high levels at the expense of

users’ welfare and reduced demand for telecommunication services. Because of the

traditionally high barriers to enter the telecommunication industry, the monopoly

situation tends not to be a temporary phenomenon. In order to protect users from

monopoly pricing, federal and state policymakers enforce rate regulation on incum-

bents.

Like any other public utility, an incumbent has made a regulatory pact with the

government in which the company is given an opportunity to earn a “reasonable rate

of return” on its overall regulated investment. Under a rate-of-return regime, federal

and state regulation gives dominant local incumbents opportunities to charge retail

rates sufficient to cover their anticipated expense plus a reasonable return on their net

investment [17].

The rate-of-return regulation tends to give these incumbents incentives to “gold

plate” their assets, that is, to spend more than is efficient or necessary simply to

increase the rate, thus to increase profits. In the 1980s and 1990s, federal and state

regulators sought to address these problems by adopting a price cap scheme for retail

rate regulation of the incumbents. A price cap analysis starts with the retail rates

calculated in a given year under the traditional rate-of-return regulation. In the suc-

ceeding years, however, retail rates were not determined by the rate-of-return process

but by mathematical adjustments designed to reflect the following two factors. The

first is driven by technological and other innovations resulting in industry-wide in-

creases in efficiency; the second by fluctuations in inflation and other macroeconomic

variables. This price cap approach, unlike the traditional rate-of-return regime, re-

wards the incumbents for efficiency over time by allowing them to keep much of the

extra profit they generate as a result of cutting unnecessary costs. Right now, the retail
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Table 1.1: Arguments for and against flat rates and usage-dependent pricing

Advantages Disadvantages

FLAT RATE •Easy to implement •Unfair to light users

•Little billing overhead •May lead to service overuse

USAGE-DEPENDENT •Increased fairness •Adverse response from users

•Can be used for congestion control •Billing complexity

•Reduced usage

rates of most incumbents are under the regulation of price cap.

1.3.2 Pricing Internet Services

Internet access has always been categorized under U.S. law as an information service,

not as a telecommunications service. Thus it has not been subject to common car-

rier regulations [18]. In this non-monopolized market, network providers compete

against one another for users, and this competition theoretically keeps the price of

service at reasonably efficient levels. The most widely used pricing schemes for the

Internet services include access-rate dependent charges, usage-dependent charges, or

a combination of both [19]. An access-rate dependent charge has the following two

forms: unlimited use, or limited time of the connection and charging a per-minute

fee for additional connection time. Similarly, the access and usage-dependent charg-

ing scheme allows a fixed access fee for a defined usage to be transmitted, and then

imposes per-unit volume charge for additional use. A brief summary of the main

advantages and disadvantages of flat rate and usage-dependent rate are presented in

Table 1.1.

An access-rate dependent flat rate is the method used in the United States to charge

for Internet use. Light users (e.g., email, occasional web browsing) may, therefore,

subsidize the heavy users (e.g., multimedia applications, frequently downloading

of large files) [20]. In addition, the unbridled consumption may lead to overuse of

the network resources. However, because users have strong preference for flat rate

pricing, despite the above disadvantages, service providers still stick to a flat rate

model in order to avoid losing customers to a competitor [21].
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Usage-dependent pricing can be a solution for the problem of fairness and service

overuse. However, this policy makes it difficult for users to budget for a network

expense, not only because it is hard for users to predict their own traffic statistics, but

also because the Internet is an interactive experience and users are not fully in control

of their usage. These evidences makes Internet users not react favorably to a usage-

dependent pricing scheme [22]. Furthermore, for network providers, the additional

costs in billing may be substantial and must be offset by the gains brought by usage-

based pricing. In traditional telephony, more than half of what users pay for a call goes

to cover the cost of providers’ accounting system [23], and this is in a circuit-switched

system in which there is no need to count how many packets traverse the network.

Finally, usage-dependent pricing tends to discourage the use of the Internet which is

in contrast to the network externality discussed in Section 1.1.1.

Well-known proposals for Internet pricing rely on a centralized optimization pro-

cess to maximize the total users utilities [16, 24, 25, 26, 27]. Kelly [16] forms a dis-

tributed flow control algorithm using the gradient ascent method from optimization

theory which continuously informs the selfish users prices according to the network

condition. Selfish users, who seek to maximize their own net benefit, are given the

prices that have the right incentives to globally optimize the social benefits. An Explicit

Congestion Notification (ECN)-based marking has been proposed in [28] to convey

congestion information back to the end points. The resulting system converges to an

optimal system state as long as all utility functions are strictly concave. Instead of

only marking the packets during periods of congestion, [29] has proposed assigning

each packet a price to reflect the congestion of the network. However, it is not clear

whether all these theoretical results hold in the presence of transmission delay at the

scale of a large network. In addition, all these schemes assume network services are

best-effort and rely on a pure market mechanism to maximize social benefits.

The Internet, a single-service or best-effort service network, cannot support the

performance needs of heterogeneous applications unless it is extremely overpro-

visioned [30]. Moving from a single-service to multiple-service architecture adds

new dimensions to the pricing issue. It is obvious that a flat rate would no longer

provide adequate incentives for users’ choice of services, and therefore service-class-

dependent, congestion-sensitive approaches must also be investigated. The next sub-

section reviews some of the progress made in pricing of multi-service communication

networks.
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1.3.3 Recent Literature on Pricing Multi-service Communication Networks

A number of articles have been published on telecommunication engineering and eco-

nomics investigating the subject of pricing for multi-service networks. We summarize

some of these studies.

Pricing based on network resource consumption has been considered in [32, 33,

34, 35, 36, 37]. A study [32] has proposed a pricing algorithm in a DiffServ envi-

ronment based on the cost of providing different levels of services and on long-term

average user resource demand of a service class. The network service is dynamically

priced based on the level of service, usage, and congestion-sensitive parameters. The

study [36] has presented a mechanism that introduced a priority system with the

objective of providing a higher and a lower quality of service to two customer groups.

The non-priority traffic carries a lower price tag and a lower quality of service. An

important characteristic of the proposed pricing schemes is that the overall revenue

associated with the network would remain constant as long as the total demand is con-

fined within a relatively large bound, termed the region of operation, for the network.

Like the region of operation defined in [36], in order to make sure the prices for higher

QoS are larger than prices for lower QoS, [32] also assumes the long-term demand

for higher QoS traffic is lower than demand for lower QoS traffic. Reference [34] has

proposed that users be charged a price per unit of effective bandwidth used. Assum-

ing that the network knows its capacities and virtual path routing, as well as users’

benefit function and traffic stream characterization, the paper has discussed the role

of pricing in meeting users’ needs, network resource allocation, and contract negotia-

tion to form a complete connection provisioning process. Reference [35] has studied

a network that offers its bandwidth and buffers for rent. The network periodically

adjusts prices based on monitored user requests for resources with the objective of

maximizing social welfare. Users reserve resources based on individual traffic pa-

rameters and delay requirements so as to maximize their utilities subject to budget

constraints.

Microeconomic supply-demand principles have been applied to network traffic

management problems. The studies in [38, 39, 40] rely on a centralized optimization

process to maximize the total user utility. Kelly [38] has described a system in which

users reveal how much they are prepared to pay per unit time. Then the network

determines allocated rates so that the rate per unit charge are proportionally fair. The

author has determined that the optimum system in this case is achieved when users’

choices of charges and the network’s choice of rates are in equilibrium. Reference [39]
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has studied the efficiency of using one bit to carry streams with differential QoS re-

quirements in an attempt to maximize network revenue. In [41, 42], the resource

is priced to reflect demand and supply. The method in [41] relies on well-defined

source model and cannot adapt well to changing traffic demands; while the scheme

in [42] also takes into account network dynamics (sessions join or leave) and source

traffic characteristics, and allows different equilibrium prices over different time pe-

riods. An economic equilibrium model is proposed in [40] which describes utility

maximization by users and revenue optimization by service providers. In the pres-

ence of competing providers, the equilibrium prices reduce to the marginal costs.

Study [43] has borrowed the framework described in [29] and calculates a price for

each packet based on its bandwidth consumption, service level and buffer occupancy.

Reference [44] adjustes bandwidth and buffer allocations among classes to guarantee

the target delay and loss.

Several studies have demonstrated through experiments or simulations that service-

class sensitive pricing results in higher network performance. Reference [45] has pro-

posed a Paris Metro Pricing (PMP) scheme which partitions the network into logically

separated classes with different prices for each. It is expected that the higher-priced

class will have less load and will provide better service. The behavior of PMP under

equilibrium conditions is considered and compared with a uni-class pricing system

in [46, 47]. Study [48] has analyzed the equilibrium of such a system using non-

cooperative game theory. Reference [49] has considered a similar framework based

on queuing theory and experiments. All of the above works consider the impact of

differential pricing on the relative performance of the system as a result of user self

selection process. References [50, 51] have used simulations to study the problem of

customer decisions in a two-priority network, where a fixed per unit price is associ-

ated with each priority class. These studies have concluded that, through the use of

class-dependent pricing, it is possible to set prices so that all users are more satisfied

with the resultant cost/benefit provided by the network.

Several opportunity cost-based mechanisms have been studied. Reference [52]

has addressed the impact of QoS on bandwidth requirements in IntServ networks

and proposes a scheme in which a service provider can develop compensatory and

fair prices for users with varying QoS. Since exclusive allocation of bandwidth to a spe-

cific flow has a performance penalty on delay and jitter to other flows, [52] has derived

the additional capacity required to maintain the desired performance of other flows

and has proposed a compensatory scheme that will fairly charge the specific flow re-

questing exclusive bandwidth. Reference [33] has developed a grade-of-service (GoS)
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based pricing scheme that results in efficient utilization of the network bandwidth

and buffers. Essentially, each traffic is charged an amount of money based on the QoS

degradation caused to other users sharing network resources. Price is, therefore, a

function of the network utilization as well as individual utilities. Reference [53] has

presented an approach based on the notion of cost in the context of providing services

with differentiated levels of quality. In [53], the authors have investigated the impact

of multiple traffic classes on the carrying capacity of a network with a prescribed

threshold of blocking probability in a DWDM ring network architecture.

Auction-based mechanisms have been studied in [12, 54, 55]. The smart market

model has been studied in [12], in which prior to transmission, users inform the net-

work of how much they are willing to pay for the transmission of a packet; packets are

admitted if their bids exceed the current cutoff amount, determined by the marginal

congestion cost imposed by an additional packet. Users do not pay the price they

actually bid, but rather the market-clearing price, which is always lower than the bids

of all admitted packets. However, this mechanism only provides a priority relative

to others and it does not promise quality of service. The Generalized Vickrey Action

(GVA) model in [54] supports multiple levels of QoS guarantees. But the optimal

solution requires substantial computation, which increases as polynomial-time with

the number of users. The Progressive Second Price auction (PSP) scheme in [55]

has extended the traditional, single, non-divisible object auction to the allocations of

arbitrary shares of the total available resource with associated bids.

A set of game-theoretic analyses have been proposed for QoS provision and net-

work pricing. In [56], packets are marked according to users’ QoS requirements and

the costs incurred to users are dependent on performance. The authors in [57] have

investigated the dimensioning of network capacity for different service classes. Ref-

erences [58, 59, 60] have studied a static pricing scheme based on the priority classes.

Reference [58] has described a method to predict each user’s service choice in the

game-theoretic framework given any price difference between services and an esti-

mate of users’ utility functions. Therefore, the service provider can determine the

price ranges that encourage users to exhibit behavior that is beneficial to both users

and providers. The work in [61] has generalized the idea in [12] to support auctions

for different service levels.

In this dissertation, we analyze desired prices for networks considering current

network infrastructure and multiple service classes under different contexts described

in Section 1.4.1. In order to properly take into account the interdependence among
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users’ service choices, we employ game-theoretic concepts.

1.4 Problem Statement and Summary of Contribution

1.4.1 Contexts for Deriving Prices

The work presented here is primarily motivated by the advent of networks that sup-

port more than one class of service. The need for a mechanism that makes profitable

and efficient use of existing resources leads to the importance of reasonable pricing

policy to be adopted by service providers.

In thinking about how price is determined, the first rationale is to set subsidy-

free prices or sustainable prices. Imagine that an incumbent firm wishes to protect

itself against competitors who might enter the market. If the incumbent is to be

secure against new entrants seducing away some of its users, the prices it charges for

different services must not involve any cross-subsidization. If the incumbent uses the

revenue from selling one service to subsidize the cost of producing another, then the

firm is in danger if a competitor produce only the first product and sell it for less.

However, in a communication network, a large part of the total cost is common cost,

and it is difficult to apportion that cost rationally among different services. Service

providers must figure a way to set prices to be subsidy-free and sustainable if they

are to survive the competition in the market place.

A second rationale for setting prices is driven by the objective to match supply

and demand in the market place. Supply and demand at given prices depend upon

the supplier’s technological capacities, the costs of the supply, and how users value

the services. If prices are set too low, there will be insufficient incentive to supply

and there is likely to be unsatisfied demand. On the other hand, if prices are set too

high, suppliers may over-supply the market and find there is insufficient demand at

the higher price. The right price should be “market-clearing,” that is, it should be the

price at which demand exactly equals supply.

The two rationales discussed above for setting prices do not necessarily lead to

the same prices. There is possibly no single recipe for setting prices that satisfies

all possible requirements. Pricing may also depend on the context. For example, a

monopoly supplier in a market sets price to maximize its profits. If this market is under

regulation, a regulator may arrange prices to maximize the social welfare, which not

only includes supplier’s benefits but also users’ welfare. This means that the task of

pricing requires a careful balance between customers’ need, their willingness to pay,
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the underlying principle of the technology as well as the regulatory environment.

In this dissertation, we model the communication system in a game-theoretic

framework to reflect the interdependence of each class of service. We first study the

desirable subsidy-free price for each class of service, and then investigate market-

clearing price for each class of service under competitive market model.

1.4.2 Distinguishing Characteristics of Our Approach

A well-engineered packet-switched network will make use of statistical multiplexing

gains to decrease capacity costs while still being capable of guaranteeing adequate

QoS. Therefore, resources that are not directly allocated to any user are typically

made available to all. The inclusion of this particular characteristic into our model

adds interdependence among users’ service choice and resource allocation among

different classes. We also recognize the fact that different applications have different

QoS objectives. We model such distinct objectives through a utility function which

will be discussed in Chapter 3.

As shown in Section 1.3.3, the bulk of the literature in multi-service network

pricing focuses on developing the desired price to maximize users’ utility, network

provider’s revenue, and social welfare [33, 34, 35, 39, 40]. Its objective is to keep the

system in equilibrium [58, 59, 60] or to maintain constant revenue [36, 37, 53, 52].

However, the subsidy-free pricing issue remains unexplored and part of the reason is

that it is difficult to apportion cost rationally among different classes of service. In this

dissertation, we try to investigate general guidelines for finding the price difference

among different classes of service which can be an important input for actual pricing

for service providers.

Our study of subsidy-free pricing for multi-service networks is largely inspired by

the pioneering work of Maniquet [62], who studied the monetary transfer between

agents in a queuing problem where each agent had a different unit waiting cost.

We extend the model described in [62] to multi-class communication networks, and

generalize it by adding the stochastic property of communication traffic. We also

propose a fair and efficient way to get the price differences among classes of service.

Further, we investigate the market-clearing prices for each class of service in a

multi-service network under the competitive economy model. The work of Ye [63] in

spectrum management using competitive economy serves as a major source for our

study. We use revenue as the utility function for the service provider and enhance
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Kelly’s utility function [16] by including a QoS parameter for users. Given the initial

endowment for each user, we show that a competitive equilibrium (price for each class

of service and bandwidth allocation among all users) for the competitive multi-class

network resource market always exists. And under this equilibrium, both individual

optimality and social economic efficiency are achieved in a way that all users’ utilities

are maximized simultaneously.

1.4.3 Summary of Contributions

The main contributions of this dissertation are the following:

• We investigate how, in multi-class priority-based networks, appropriate subsidy-

free prices for each class of service are calculated in order to protect a service

provider against entry by potential competitors.

• We investigate how, in multi-class DiffServ networks, appropriate subsidy-free

prices are calculated in order to protect the service provider against entry by

potential competitors.

• We show that, when the network utilization is high, the price difference between

high QoS and low QoS services increases rapidly, which gives users the incentive

to truthfully disclose their QoS requirements. This information is of great value

to the traffic management task.

• We demonstrate that the market-clearing price always exists for a multi-service

network and, with this price, both individual optimality and social economic

efficiency are achieved simultaneously.

• We further discuss how to adjust the initial budget for each user to meet their

bandwidth constraint (either from constraint on the access network or from

limitation of the user equipment).

• We propose a solution for network providers to control network congestion

and yet maintain fairness among heavy and light users without violating net

neutrality.

1.5 Structure of This Document

This dissertation is structured into ten chapters:
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1. Introduction - In this chapter, we motivate the research and provide related

work on pricing for multi-service networks.

2. Game Theory and its Applications to Communication Networks - This chap-

ter includes background information on Game Theory and its applications to

communication networks.

3. User, Network, and Pricing Model - Chapter 3 formally states our model of

user and network provider behavior. The model is made general enough to fit

the different network architectures discussed in the following chapters.

4. Subsidy-free Prices in Priority-based Networks - Networks in which service

differentiation is accomplished through the assignment of priorities are em-

ployed in this chapter. Rules for assigning positions for each class of traffic in

the queue and corresponding subsidy-free prices are investigated.

5. Subsidy-free Prices in Class-based Networks - Networks in which QoS for

each class is guaranteed through the allocation of resources are discussed in this

chapter. Analysis of the subsidy-free price for each class of service is presented.

6. Market-clearing Prices in Class-based Networks - This chapter investigates the

existence and uniqueness of market-clearing prices for multi-service class-based

networks. We further discuss how to adjust the initial budget for each user to

meet their bandwidth constraints.

7. A User-friendly Constant Revenue Model for Net Neutrality - Chapter 7 pro-

poses a solution for broadband access providers that would control network

congestion and yet maintain fairness among heavy and light users without

violating net neutrality. The broadband service provider’s revenue remains

constant under this proposal.

8. A Constant Revenue Model for Packet Switched Network - Chapter 8 presents

a mechanism that introduces a priority system with the objective of providing a

higher and a lower quality of service to the two customer groups. The nonprior-

ity traffic carries a lower price tag and a lower quality of service. An important

characteristic of the proposed pricing schemes is that the overall revenue associ-

ated with the network remains constant as long as the total demand is confined

within a relatively large bound, termed the region of operation, for the network.

16



9. A Two-step Quality of Service Provisioning in Multi-class Networks - This

Chapter proposes a novel distributed QoS provisioning architecture for multi-

class networks by two steps: inter-class resource allocation and intra-class flow

control. In the proposed architecture, the service provider only supports limited

number of classes. The inter-class network resource allocation is modeled as a

centralized optimization problem to maximize the social welfare while main-

taining the quality of service for each class as a whole. A distributed game

theoretic framework is proposed to regulate flow behavior within each class.

10. Summary and Future Work - This chapter summaries the dissertation and gives

the directions of future work.
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CHAPTER 2

Game Theory and its Applications to Communication Networks

Game theory has been used for years as an economic analysis tool to understand

and predict what will happen in economic contexts [65]. Because of the interdepen-

dence among users of communication networks, game theory also provides a useful

framework for modeling users’ decisions. In this chapter we discuss some of the

game-theoretic terminology and basic concepts that are relevant to the present work

and review some of their applications to communication networks.

2.1 A Brief Introduction to Game Theory

A game consists of a principal (e.g., the network service provider) and a finite set of

players (e.g., network users) N = {1, 2, ...,n}. The network service provider supports

M = {1, 2, ...,m} different QoS classes. Each player will then choose a strategy xi =

{xi1, xi2, ..., xim} with the objective of maximizing its payoff function ui, where xi j is the

amount of traffic from service j that user i consumes. The following terminology

applies to the classes of games we study:

• Player i’s strategy, i ∈ N, is a M-dimensional vector xi;

• A player’s strategy space Xi ⊆ RM is the set of strategies available to user i, thus

xi ∈ Xi;

• A joint strategy x is the vector containing the strategies of all players: x =

{x1, x2, ..., xn};

• The joint strategy space X is defined as the Cartesian product of the strategy

spaces of all players: X = ×i∈NXi;

• Each player’s payoff is a scalar-valued function of the joint strategy and we

denote this function by ui(x) : X � R.

Games can be differentiated into non-cooperative games and cooperative games.

In a non-cooperative game, each player chooses his or her strategy independently

while in a cooperative game, players are able to form binding commitments and

communications are always assumed to be allowed among players.
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2.1.1 Non-cooperative Games

Game theory attempts to predict the outcome of such a game or, when this is not

feasible, properties of the predicted outcome, such as its existence and uniqueness.

This leads to the important definition of the Nash Equilibrium in a non-cooperative

game, a joint strategy where no player can increase his or her payoff by unilaterally

changing his or her strategy.

Definition 2.1.1 Nash Equilibrium: Strategy x ∈ X is a Nash equilibrium if ui(x) ≥

ui(x∗i , x−i),∀x∗i ∈ Xi,∀i ∈ N, where x−i represents all components of vector x except its
ithcomponent.

The Nash equilibrium is considered to be a consistent predictor of the outcome of

the game, in the sense that if all players predict that a Nash equilibrium will occur,

then no player has an incentive to choose a different strategy [66]. In general, the

uniqueness or even the existence of a Nash equilibrium is not guaranteed; neither is

convergence to an equilibrium when the equilibrium exists.

A direct interpretation of Definition 2.1.1 is that the Nash equilibrium is a mutual

best response from each player to the other players’ strategies. In order to formally

state this result, we first define the best reply mapping [67]:

Definition 2.1.2 Best Reply Mapping: The best-reply mapping for player i is a point to
set mapping that associates each joint strategy x ∈ X with a subset of Xi according to the
following rule: ψi(x) = arg maxx∗i∈Xi

ui(x∗i , x−i). The best reply mapping for the game is then
defined as ψ(x) = ×i∈Nψi(x).

It is sometimes convenient to make use of the following alternate definition of

Nash equilibrium [67].

Definition 2.1.3 Nash Equilibrium: Strategy x is a Nash equilibrium if and only if x ∈ ψ(x).

We emphasize that the idea of the Nash equilibrium as a consistent predictor of the

outcome of the game does not necessarily require perfect knowledge on the part of the

players regarding other players’ payoff functions. Even without this knowledge, in a

quasi-static environment, players may converge to an equilibrium through a learning

process.

A desirable property of an equilibrium is that it is efficient. We use the concept

of Pareto optimality to determine the efficiency of a Nash equilibrium. In addition,
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if multiple equilibria exist but only one is Pareto optimal, then we consider it to be

superior to others. An equilibrium is Pareto optimal if there is no other joint strategy

which one or more players would prefer and to which all others would be indifferent.

Definition 2.1.4 Pareto Optimality: A strategy x is Pareto optimal if there does not exist
x′ ∈ X such that:

1. ui(x′) ≥ ui(x),∀i ∈ N; and

2. ui(x′) > ui(x) for at least one i ∈ N.

2.1.2 Cooperative Games

In 1950, Melvin Dresher and Merrill Flood at the RAND Corporation devised a game

(see Table 2.1 ) to illustrate that a non-cooperative game could have an equilibrium

outcome which is unique, but fails to be Pareto optimal [68].

Table 2.1: The original Prisoner’s Dilemma. A is “don’t confess”, B is “confess”.

Colin

A B

Rose A (0,0) (-2,1)

B (1,-2) (-1,-1)

• If one of them confesses and the other does not, the confessor will get a reward

(payoff +1) and his partner will get a heavy sentence (payoff -2);

• If both confess, each will get a light sentence (payoff -1);

• If neither confesses, both will go free (payoff 0).

In the years since 1950 this game has become known as the Prisoner’s Dilemma.

Strategy B is dominant for both players, leading to the unique equilibrium at BB.

However, this equilibrium is non-Pareto-optimal, since both players would do better

at AA.

Instead of choosing their strategies independently, when we assume that a player

can communicate and form a coalition (e.g., both promise to play strategy A), this is
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a cooperative game. Unlike the game we describe in Table 2.1 with only two players,

in our modern connected world, most economic, social and biology games involve

more than two player. The questions are:

• Which coalitions should form?

• How should a coalition divide its winnings among its members?

Before looking into these questions, we first define characteristic functions.

Definition 2.1.5 Characteristic Function: A game in characteristic function form is a set
of N players, together with a function v which for any subset S ⊆ N gives a number v(S).

The number v(S) is the amount that the players in S could win if they formed

a coalition and the function v is called the characteristic function of the game. To

calculate v(S), assume that the coalition S forms and then plays optimally against an

opposing coalition N − S.

There is an important relation among the values of different coalitions which holds

for games in characteristic function form: superadditive1.

Definition 2.1.6 Superadditive: A characteristic function form game (N, v) is called super-
additive if v(S ∪ T) ≥ v(S) + v(T) for any two disjoint coalitions S and T.

If two coalitions S and T, with no common members, decide to join together to

form S ∪ T, Definition 2.1.6 says that they can always assure themselves of at least

v(S) + v(T) because they can simply continue to do what they would do if they hadn’t

joined. And, they may often be able to do better than this by coordinating their

actions.

From Definition 2.1.6, we find that it is in all players’ interest to form a coalition

N and get v(N). Instead of asking about the possible results of actual coalitional

behavior, we consider one class of cooperative games and ask if there might be a single

payoff |N|-dimensional vector which could represent a fair distribution of payoffs

to all players. This payoff vector might not arise from the competitive behavior of

coalitions, but it would be the payoff vector an outside arbitrator might impose, taking

into account the relative strengths of the various coalitions. For example, in Neumann

and Morgensterm’s Divide the Dollar game, three players will be given a dollar if they

1This holds for all games in characteristic function form which rise from games in normal form.
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can decide how to divide the dollar among themselves by majority vote. We can see

that a likely outcome might be that one of the three two-person coalitions would form

and divide the dollar equally between its two members. As a result, we get one of

the three payoff vectors (1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ) or (0, 1

2 ,
1
2 ). An outside arbitrator considers the

symmetry of this game and decides the fair division is certainly ( 1
3 ,

1
3 ,

1
3 ). This is the

case in cost sharing of multi-service communication networks. We don’t prefer one

coalition to another, but would like a fair distribution of cost among different classes

of service.

In 1953, Lloyd Shapley gave a general answer to this fair division question and it

has come to be known as the Shapley Value of a cooperative game in characteristic

function form. We first look at three definitions which capture a fair distribution of

payoffs [68]. Here, we use payoff vector ϕ = (ϕ1,ϕ2, ...,ϕn) to denote the fair payoff to

each player.

Definition 2.1.7 Efficiency: The total gain is distributed:
∑

i∈N ϕi = v(N) and therefore
payoff allocation ϕ is Pareto optimal.

Definition 2.1.8 Symmetry: ϕ should depend only on v and should respect any symmetries
in v. That is, if plays i and j have symmetric roles in v, then ϕi = ϕ j.

Definition 2.1.9 Zero Player: If v(S) = v(S − i) for all coalitions S ⊆ N, that is, if player i
is a dummy who adds no value to any coalition, the ϕi = 0. Furthermore, adding a dummy
player to a game does not change the value of ϕ j for any other players j in the game.

Definition 2.1.10 Additivity: ϕ[v + w] = ϕ[v] + ϕ[w]

The above definition is about the sum of two games. Suppose that (N, v) and (N,w)

are two games with the same player set N. Then we can define the game v + w by

defining (v + w)(S) = v(S) + w(S) for all coalitions S. Now we have three games under

consideration and use ϕ[v],ϕ[w] and ϕ[v + w] to denote payoff vector for each game.

It means that if it is fair for player i to get ϕi[v] in v and ϕi[w] in w, it would seem fair

to get the sum of these two payoffs in the game v + w. For example, the cost sharing

of communication network with fixed cost and operation cost is the cost sharing of

the fixed cost plus the cost sharing of the operation cost.

Shapley has proved that there is one and only one method of assigning payoff

vector ϕ for a game (N, v) which satisfies all above definitions.
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Shapley Value: The Shapley Value of each player i in the cooperative game has

the following expression:

ϕi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[v(S) − v(S ∪ {i})] (2.1)

The meaning behind the Shapley value is that each player’s payoff depends on

the incremental cost for which he or she is responsible when provision of the services

accumulates in random order. Let’s illustrate it with an example.

Suppose there are three airplanes A,B,C sharing a runway. Airplane A requires

1km to land, Airplane B requires 2km and Airplane C requires 3km. When a runway of

3km is built, how much should each airplane pay? Before we applying Equation (2.1),

we look at their incremental cost in the six possible orders in Table 2.2 (cost is measured

in unites per kilometer):

Table 2.2: Cost sharing problem using the Shapley Value

Incremental cost

Order A B C

A,B,C v(A) − φ = 1 v(A,B) − v(A) = 1 v(A,B,C) − v(A,B) = 1

A,C,B v(A) − φ = 1 v(A,B,C) − v(A,C) = 0 v(A,C) − v(A) = 2

B,A,C v(A.B) − v(B) = 0 v(B) − φ = 2 v(A,B,C) − v(A,B) = 1

B,C,A v(A,B,C) − v(A,B) = 0 v(B) − φ = 2 v(B,C) − v(B) = 1

C,A,B v(A,C) − v(C) = 0 v(A,B,C) − v(A,C) = 0 v(C) − φ = 3

C,B,A v(A,B,C) − v(B,C) = 0 v(B,C) − v(C) = 0 v(C) − φ = 3

Total 2 5 11

Therefore, based on the Shapley value Equation (2.1), each airplane should be

responsible for ( 2
6 ,

5
6 ,

11
6 ), respectively. Let’s calculate this problem by treating it as

sum of three games. The first kilometer is shared by all airplanes and so its cost

should be (1
3 ,

1
3 ,

1
3 ); the second kilometer is shared by airplane B and C and their cost

should be (0, 1
2 ,

1
2 ); the last kilometer is used only by airplane C and the allocated cost

should be (0, 0, 1). Based on the Definition 2.1.10, the cost sharing of this runway is

the sum of above vector and the result is (2
6 ,

5
6 ,

11
6 ).

23



2.2 Game Theory in Communication Networks

Although the original applications of game theory tended to be in the field of eco-

nomics, over the years its usefulness has been recognized in other disciplines such as

biology, political science and philosophy. Recently, game theory has been applied to

numerous networking problems.

• Spectrum Management: In a communication system where multiple users share

a common frequency bank such as cognitive radio, each user’s performance,

measured by a Shannon utility function, depends on not only the power alloca-

tion (across spectrum) of its own, but also those of other users in the system. This

spectrum management problem can be formulated either as a non-cooperative

game [63, 69, 70] or as a cooperative utility maximization problem [71, 72].

In [63], each user is given an initial budget to purchase its own transmit power

spectra (taking others as given) in order to maximizing its Shannon utility or

payoff function, which includes the effects of interference. It has proved that

an equilibrium always exists for a discrete version of the problem, and, under a

weak-interference condition or the Frequency Division Multiple Access (FDMA)

policy, the equilibrium can be computed in polynomial time.

• Flow Control: Papers [73, 74] study the issue of flow control using a game-

theoretic framework. Reference [73] defines each flow’s utility function as its

transmission rate and the QoS it receives and model this interdependence under

a game-theoretic framework. Instead of using edge routers to shape incoming

flows, this paper has assumed that flows in the network are responsible and has

proved there exists an Pareto optimal equilibrium. In [73], each user’s objective

is to maximize the average throughput subject to an upper bound on average

delay. Since users share a network of quasi-reversible queues, each user’s strat-

egy affects all other users’ performance and the authors have determined the

existence of an equilibrium for such a system.

• Congestion Control: Reference [75] considers the problem of whether a given

switch service rule will lead to an operating point that is fair and efficient or not

using game theory. In [75], users’ payoff function is defined as the amount of

traffic and received QoS provided by a switch and users are selfish to maximize

their payoff by varying the level of traffic.

• Routing: References [76, 77] have investigated routing issues in communication
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networks using the game theory model. Reference [76] has studied the exis-

tence of routing strategies of the network manager that drives the system to

an optimum operating point. Reference [77] has investigated how to partition

the traffic from a number of users among a number of parallel links to maxi-

mize their payoff function, which is defined as a measure of performance and

satisfaction.

• Pricing: Several multi-service network pricing schemes using game-theoretic

models are described in Section 1.3.3.

Game theory provides a powerful tool for studying the performance and QoS

issues in communication networks. In this dissertation, we study the pricing issue of

multi-service networks unde the game-theoretic framework.

2.3 Chapter Summary

This chapter has introduced background information of game theory: The Nash Equi-

librium in non-cooperative games and the Shapley Value in cooperative games. Fur-

ther, it has reviewed its application in communication networks including spectrum

management, flow control, congestion control and routing problems.

In the next chapter, we will introduce network and pricing models used in this

dissertation.
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CHAPTER 3

Users, Network, and Pricing Model

In multi-service networks, performance of each class of service and users’ satisfaction

will be directly influenced by all users’ service choices. In best-effort (single QoS)

networks, it is also true that individual performance is affected by the characteristics

of aggregate traffic, however, this interdependence among users is even more compli-

cated in multi-service networks. In this dissertation, traffic from each class of service

has different sensitivity to delay (disutility to average delay). The network resource

allocation among all classes is modeled as a cooperative game to minimize the total

disutility.

In addition, since each user’s satisfaction (utility) is influenced not only by the

network provider’s pricing policy but also by all other users’ service choices, we

model this interdependence among users’ service choices through a non-cooperative

game-theoretic framework. The service provider sets price for each class of service

to maximize its revenue. Users purchase service from service provider to maximize

their utility functions independently under their budget constraints. The operating

point is determined by the equilibrium where the price for each class of service is

market-clearing price.

In this chapter, our basic assumptions regarding users’ behaviors, as well as their

utility functions and service provider’s objective, are discussed in Section 3.1. Sec-

tion 3.2 contains assumptions made about the network, while in Section 3.3 we discuss

a general pricing model. We close with a brief summary of this chapter in Section 3.4.

3.1 Users and Network Provider Models

The pricing game we study in this dissertation has one principal, the network provider,

and a finite set of players, network users. The principal sets a price for each class of

service; based on these prices, each user decides on service choices. Users do not co-

operate with one another when deciding on an optimal strategy (hence characterizing

a non-cooperative game), but rather each user acts individually striving to maximize

their own payoff functions (utility functions).
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3.1.1 Utility Functions for Users

Network users’ preferences are modeled through utility functions, which describe

how sensitive users are to changes in QoS and/or amount of network resource made

available to them. In the context of this dissertation, it is useful to think of utility as

users’ willingness to pay for a certain resource available to them.

Through users’ actions, we can sometimes assess their willingness to pay for certain

improvements in quality. A complete characterization of actual utility function is

unlikely in practice. However, it is generally reasonable to assume that user i’s utility

function ui possesses the following properties:

Assumption 3.1.1 Allocated bandwidth and QoS: ui depends on the bandwidth allocated
to user i and its received QoS.

In data communication networks, a user’s utility not only depends on the allocated

bandwidth but also depends on the received network QoS. For example, a 2 Mbps

bandwidth with the average delay 50 ms has better utility for most users than the

same bandwidth with 500 ms average delay.

Assumption 3.1.2 Monotonicity: ui is a monotonic function of its variables.

This assumption is also quite intuitive. For instance, one would expect the utility

to be monotonically increasing with bandwidth and monotonically decreasing with

the QoS parameter, such as the average delay. In general, we don’t assume strict

monotonicity, since there may exist a point beyond which further increase in the QoS

or bandwidth does not yield any additional benefit for the user. An example of this is

the case of a constant bit rate application like VoIP – availability of bandwidth greater

than that constant rate typically does not result in any improved performance.

Assumption 3.1.3 Concaveness: ui is concave function of its variables.

This assumption arises from a diminishing returns argument. We expect a user’s

marginal utility to decrease with the bandwidth and QoS. It means that the more band-

width and better quality, the less the user is willing to pay for further improvement.

This assumption is also consistent with [78].

Combinations of above assumptions are adopted in many pricing studies that

employ the concept of utility functions, including [16, 11, 33, 32, 79].
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The well-known utility function in data communication networks, proposed by

Kelly [16], has the form ui = wi log(xi), where wi is user’s willingness to pay and xi

is the allocated bandwidth. Although this utility function fits into our assumptions

about utility Assumption 3.1.2 and 3.1.3, it does not take QoS as a parameter into

consideration for the utility function. Here, we redefine user’s utility as a function of

the allocated bandwidth and the QoS of the network as follows:

u =
β

Tnow
log(

x
x̃

) (3.1)

where β > 0 is the weighting factor and it describes the flow’s relative sensitivity

to the QoS parameter based on the fact that applications exhibit varying degree

of sensitivity to QoS parameters (here we use delay as the QoS parameter for the

network). For example, real-time voice and video are very sensitive to delay; packets

that do not arrive within some delay bound cannot be used for playback and are

in effect considered lost (although there are ways to make these applications less

sensitive to such losses using coding or extra buffer). On the other hand, traditional

data applications such as email service, file transfer are typically not very sensitive to

delay. Thus, we use β to denote applications’ QoS sensitivity characteristic.

In this dissertation, we consider both elastic and inelastic users as defined by

Shenker [31]. Traditionally, real-time voice and video applications that employ con-

stant bit rate coding with no tolerance to eventual packet losses require a fixed amount

of bandwidth for adequate QoS. There are numerous ways in which real-time applica-

tions can be made tolerant of changes in available bandwidth through proper coding

and interpolation of the received data; however, some minimum bandwidth is nev-

ertheless often required. Although traditional data applications are elastic in nature

and tend to be tolerant of variations in delay and can take advantage of even mini-

mal amount of bandwidth, to guarantee users’ network experience, we still assume

a minimum bandwidth requirement. Here in Equation (3.1) we use x̃ to denote this

minimum bandwidth requirement. Notice that we use the present average delay Tnow

to represent the QoS parameter of network. The reason for this choice is that users

always keep record of the present network situation such as Round Trip Time, packet

loss rate, etc. We can easily calculate Tnow from these information.

3.1.2 Utility Functions for Network Provider

Our model treats the network provider as a monopolist, a common assumption em-

ployed by most recent pricing studies discussed in Section 1.3.3.

28



In order to deter future competitors, it is better for network provider to set up

subsidy-free price for each class of service. Due to the statistical multiplexing char-

acteristic of networks as discussed in Section 1.1.2, each class of traffic will incur a

waiting cost ci based on related delay. The utility function for the network is then

defined as the sum of costs incurred by all classes and the network provider try to

minimize this total waiting cost:

us =

n∑
i=1

ci (3.2)

Alternatively, the network provider may use revenue as its utility function [11, 38].

When we use a vector p to denote the price of each class of service and vector s denote

the supply of each class of service, the utility function for the service provider in this

situation is defined as:

us = p × s (3.3)

In this section, we have discussed the general forms of utility functions of both

users and service provides.

3.2 Network Model

Here, we consider two different network models. The first model consists of a single

source-destination pair common to all users. The study of a single queue is appli-

cable to local and metropolitan area networks (e.g., Expedited Forwarding Per-Hop

behavior traffic [80]), which are sometimes modeled as a single server with a queue

that is distributed among all stations. This common source-destination model is also

employed in [58, 76, 11].

Unlike in the first model, the network maintains a single priority-based queue for

all classes of services; in the second DiffServ model, each class has a promised QoS and

maintains a separate queue. The network resource is allocated among these classes

using scheduling schemes like Weighted Round Robin (WRR), Class-based Queuing

(CBQ) [81] and dynamic WRR [82]. This class-based network structure has been used

in [32, 36, 73, 82].

Routing is assumed to be fixed and independent of the pricing policy and such

simplifying assumptions free us from routing concerns. In a real commercial network,

we find that routing will not play a fundamental role in the pricing issue since it is
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unlikely that the service provider will ask users to pay different prices depending on

the actual route, given same QoS level.

A non-preemptive priority-based multi-class system (single queue) will be used in

chapter 4 and the class-based DiffServ network architecture (seperate queue for each

class) will be examined in chapters 5, 6 and 9.

3.3 Pricing Model

The amount charged for network services may be a function of the combination of

several factors, most notably as follows.

• Access cost: A charge for accessing the network services.

• Service type: In networks with multiple service categories, each class of service

will be priced differently to reflect the QoS it provides.

• Usage charge: the usage charge is determined by the level of service provided

to user and actual amount of traffic consumed by user. Usage-based charge

component can be used to discourage over-consumption and provide better

network performance.

• Time-of-day sensitive charge: The time of consumption network is relevant

when implementing time-of-day pricing. The main objective of time-of-day

pricing is to produce the smoothing of traffic by encouraging users to shift their

demand to times when the network is more lightly loaded.

Table 3.1: Pricing mechanisms employed in various studies

[51] [58] [79] [32] [36]

Access cost 5 5

Service type 5 5 5 5

Usage charge 5 5 5 5

Time-of-day sensitive charge 5

In Table 3.1, we list components of pricing scheme of some studies on network

pricing as discussed in Chapter 1. We combine the factors discussed above into a
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general pricing policy model and the charge Pi j of class of service j to user i according

to the following expression:

P j = c j + p j(t) ∗ xi j (3.4)

In Equation (3.4), c j is a fixed access charge assigned to service j and xi j is the

amount of service j consumed by user i. The unit price of service j, p j, is dependent

on time t and this makes the model general enough to encompass time-of-day pricing.

In this dissertation, we attempt to find the desired price vector p = (p1, p2, ..., p j, ..., pm)

for service provider that supports m classes of services under pricing contexts de-

scribed in Section 1.4.1.

3.4 Chapter Summary

A user’s preferences are modeled through a utility function which is expressed in

terms of the QoS parameter such as delay and the allocated bandwidth. These utility

functions are assumed to be monotonic and concave. Each user will independently

choose a strategy with the objective of maximizing his or her own utility function

under his or her budget constraint.

The network service provider is assumed to be a monopolist with the aim of either

minimizing the total waiting cost or maximizing its revenue. We also discussed two

different network models used in this dissertation and a general form of pricing policy.

In the next two chapters, we discuss the subsidy-free price for each class of service

under different network models as discussed in Section 3.2.
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CHAPTER 4

Subsidy-free Prices in Priority-based Networks

Some of the simplest types of multi-service networks are those in which the distinction

among service classes is accomplished exclusively through the assignment of different

service priorities on a per-packet basis. In this chapter, we study the desirable subsidy-

free price of each class of service on such priority-based networks taking into account

the fairness among classes and economic efficiency requirements (minimizing the

waiting cost associated with all classes of service) [83].

This chapter considers price differences among different classes as a cooperative

queuing problem. Each class of service has a different waiting cost per unit of time

(waiting cost factor). A cooperating queue is organized to minimize the total waiting

cost of all classes while monetary compensations are set up for those classes which

have to wait longer time. It is reasonable to assume this queuing problem as a transfer

utility game and solve it by applying the Shapley Value. We consider the total cost

of a coalition as the total waiting cost its members (classes) would incur if they had

the power to be served first. The waiting cost associated with each class corresponds

to the Shapley Value of the queuing game. In this chapter, we also find the solutions

associated with the Shapley Value which satisfy many fairness properties like any

classes which are served before another class are responsible to compensate the latter

for their waiting cost; the sum of all compensation transfers is equal to zero.

Using Shapley Value to deal with the cost sharing queuing problem has been

considered in [62, 84, 85, 86, 87]. In [62], the author has studied monetary transfer

between agents based on a model where each agent has a different unit waiting cost.

For such a model, this paper has characterized the Shapley Value rule using classical

fairness axioms. Reference [84] has interpreted the worth of a coalition of agents in

a different manner for the same model as in [62], and derived a different rule. It has

also characterized this different rule using similar fairness axioms. In [85, 86], the

queuing problem is studied from a strategic point of view under the assumption that

all agents have identical unit waiting cost. The study in [87] is also based on the same

model described in [62], and has considered cost sharing when both unit waiting cost

and processing time of agents are present.

In this chapter, we extend the model described in [62] to multi-class communication

networks and add the stochastic property of the communication network to it. We
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also propose a fair and efficient way to get the price difference among different classes

of service.

The rest of this chapter is organized as follows. The model adopted for priority ser-

vice is discussed in Section 4.1. The queuing games and the Shapley Value are studied

in Section 4.2. In Section 4.3, we define the fairness axioms and check our results with

these axioms. An illustrative example is given in Section 4.4, and Section 4.5 captures

our conclusions.

4.1 Problem Statement and the Model

The network model proposed in this chapter is depicted in Fig. 4.1. The packet

switched network is represented by a single communication server with a defined

capacity c and a non-preemptive priority scheme is assumed. There are n different

classes of service in the network. The packet length for all classes is considered to have

the same statistics, and an exponential distribution with the average packet length

equal to 1
µ is assumed.

1...2......i......n...1

1

i Class i packets

Figure 4.1: FIFO non-preemptive priority schedule

The set of classes are denoted as N = {1, ...,n}. σ : N � N is priority ordering of n
classes of service and σi denotes the priority of class i. Each class i is distributed with

Poisson arrivals and identified by two parameters: (λi, θi). λi is the average arrival
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rate and θi is the waiting cost factor for class i. A queuing problem is defined by a

list q = (N, λ, θ) ∈ Q, where Q is the set of all possible lists. Given an ordering σ, the

waiting cost incurred by class i is given by:

vi(σ) = λiwiθi (4.1)

where wi is the average waiting time of class i packets given the ordering σ.

The total waiting cost incurred by packets from all classes given an ordering σ can

be written as:

v(N, σ) =

n∑
i=1

vi(σ) =

n∑
i=1

λiwiθi (4.2)

Kleinrock [88] presents closed-form results for the waiting time in a non-preemptive

priority discipline for a single M/G/1 queue, which we can apply here. We use x̄i, x̄i
2

to denote the first two moments of service time for class i packets. We have already

assumed that all packets have identical statistical distribution with the average packet

length 1
µ , therefore, x̄i = 1

µc , x̄i
2 = 2

(µc)2 ,∀i = 1, ...,n.

First, we define:

w0 =

N∑
i=1

λix̄2
i

2
=

∑n
i=1 λi

(µc)2 (4.3)

We also define λi = x̄i
∑i

j=1 λi =
∑i

j=1 λi

µc , and λ0 = 1. The waiting time for packets in

class i is [88]:

wi =
w0

(1 − λi−1)(1 − λi)
(4.4)

Here we define an allocation for a queuing problem q = (N, λ, θ) ∈ Q as ψ(σ, t),
where σ is an ordering, and ti is the transfer related to class i packets. Given an

ordering σ and a transfer ti, the waiting cost share for class i packets is defined as,

ui = vi(σ) − ti = λiθiwi − ti (4.5)

Here we define an efficient allocation as follows. An allocation ψ(σ, t) is efficient for

queuing problem q = (N, λ, θ) ∈ Q whenever it minimizes the total cost of waiting

minimize v(N, σ) and the algebraic sum of transfer is equal to 0,
∑n

i=1 ti = 0.

An efficient ordering σ∗ for the queuing problem q = (N, λ, θ) ∈ Q is the one which

minimizes the total waiting cost v(N, σ∗) incurred by packets from all classes. It means

that v(N, σ∗) ≤ v(N, σ),∀σ. For notational simplicity, we will write the total waiting
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cost in the efficient ordering of classes from N as v(N), whenever it is not confusing.

In some cases, we will deal with only a subset classes S ⊆ N. The ordering σwill then

be defined on the classes in S only, and we will write the total waiting cost from an

efficient ordering of classes in S as v(S).

The following lemma shows that classes are ordered in decreasing θ is an efficient

ordering.

Lemma 4.1.1 For any S ⊆ N, let σ∗ be an efficient ordering of classes in S. For every i , j,
i, j ∈ S, if σ∗i > σ

∗

j, then θi < θ j.

proof:

Assume that the statement of the lemma is not true. This means that we can find

two consecutive classes i, j ∈ S(σi = σ j + 1) such that θi > θ j. We can then define a new

ordering σ by interchanging i and j in σ∗ as shown in Fig. 4.2.

12...j-1jii+1

12...j-1iji+1

...n

...n

Figure 4.2: Ordering of n classes

As shown in (4.4), the average waiting time for classes in S\{i, j} is not changed

from ordering σ∗ to σ. And based on (4.1), the costs to classes in S\{i, j} also remains

unchanged. Therefore, the difference between total costs in σ∗ and σ is given by,

v(S, σ∗) − v(S, σ) = λiwσ∗

i θi + λ jwσ∗

j θ j − (λ jwσ
jθ j + λiwσ

i θi) (4.6)
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As shown in Fig. 4.2, we can get the average waiting time for class i, j packets in

ordering σ∗ and σ as follows:

wσ∗

i =
w0

(1 − λ j−1 −
λ j

µc )(1 − λ j−1 −
λ j

µc −
λi
µc )

wσ∗

j =
w0

(1 − λ j−1)(1 − λ j−1 −
λ j

µc )

wσ
i =

w0

(1 − λ j−1)(1 − λ j−1 −
λi
µc )

wσ
j =

w0

(1 − λ j−1 −
λi
µc )(1 − λ j−1 −

λi
µc −

λ j

µc )

Now, we take the above equations into (4.6), we get:

v(S, σ∗) − v(S, σ) =
λiλ j(θi − θ j)(1 − λ j−1

−
λi
µc + 1 − λ j−1

−
λ j

µc )

(1 − λ j−1)(1 − λ j−1 −
λi
µc )(1 − λ j−1 −

λ j

µc )(1 − λ j−1 −
λi
µc −

λ j

µc )

We have already assumed that σ∗ is an efficient ordering, and we get v(S, σ∗) −
v(S, σ) ≤ 0, this give us θi ≤ θ j, which is a contradiction.

Thus, we prove Lemma 4.1.1.

Notice that the efficient queuing problem is independent of the transfer and is

unique when all classes have different unit waiting cost. And we can rewrite that an

allocation ψ(σ, ti) is efficient for the queuing problem q = (N, λ, θ) ∈ Q whenever σ is

an efficient ordering and
∑n

i=1 ti = 0.

Until now, in (4.5), we can calculate the actual waiting cost for each class vi(σ)

based on efficient ordering as described in Lemma 4.1.1. In the next section, we will

consider the waiting cost share problem as a cooperative game and set up the waiting

cost share for each class ui using the Shapley value. For each class, if we know the

actual waiting cost vi(σ) and waiting cost share ui, based on (4.5), we can find the

transfer ti for each class.

The inequality ti > 0 shows that class i will receive compensation and ti < 0 shows

it will compensate other classes. After getting the transfer ti between different classes,

we are able to define the price difference ∆pi j between class i and j as follows.

∆pi j =
ti

λi
−

t j

λ j
(4.7)
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4.2 Waiting Cost Sharing Using the Shapley Value

As discussed in Section 4.1, we solve the waiting cost share queuing problem by

treating it as a cooperative game. In this section, we first define the coalitional cost of

this game and then analyze the solution based on Shapley Value of the corresponding

game.

Given a queue q ∈ Q, the waiting cost of a coalition of S ⊆ N classes in the queue

is defined as the cost incurred by the classes in S if they have the power to be served

first in the queue and use an efficient ordering in S.

And, the cost of a coalition S ⊆ N is as:

v(S) = v(S, σ) =
∑
i∈S

λiwiθi (4.8)

where σ = σ(S) is an efficient ordering considering classes in S only. In [62], the

author also studied another equivalent way to define the worth of a coalition using

the dual function of the cost function. Other ways to define the worth of a coalition is

addressed in [84] which assumed that a coalition of classes are served after the classes

not in the coalition.

The marginal contribution of class i ∈ N to a coalition S in v(S), i < S is a sum of

the costs associated with each member of S. Indeed, those classes having a higher

unit waiting cost θ than class i impose a waiting cost on it, and those having a lower

unit waiting cost θ than class i have to wait additional units of time. That is the

marginal contribution is composed of the cost of waiting of class i itself, and the cost

its existence imposes on those classes who follow it in the new queue. Formally, for

q = (N, λ, θ) ∈ Q,S ⊂ N, i ∈ N\S, the marginal contribution of class i is :

v(S ∪ {i}) − v(S) = v(S ∪ {i}, σ′) − v(s, σ) =
∑

i∈S∪{i}

λiwσ′

i θi −

∑
i∈S

λiwσ
i θi (4.9)

where σ′ = σ(S ∪ {i}), σ = σ(S) are efficient orderings considering classes in S ∪ {i} and

S respectively.

The Shapley Value (waiting cost share) of class i is defined as a weighted sum of

the class’s marginal contribution to coalitions. Based on the definition of the Shapley

Value as described in Section 2.1.2, for all q = (N, λ, θ) ∈ Q, i ∈ N, the payoff assigned

to class i is given by:
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ui = SVi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[v(S ∪ {i}) − v(S)] (4.10)

The Shapley Value allocation rule says that classes are ordered using an efficient

ordering and transfers (compensations) are assigned to classes such that the cost share

of each class is equal to its Shapley Value. Based on the efficiency property of Shapley

Value described in Section 2.1.2, the total gain is distributed among N players, that is∑
i∈N SVi = minimum v(N, λ, θ).

Another way to write the Shapley Value formula is as follows [89],

SVi =
∑

S⊆N:i∈S

∆(S)
|S|

(4.11)

where ∆(S) = v(S) if |S| = 1 and ∆(S) = v(S) −
∑

T⊂S ∆(T). This gives ∆({i}) = v({i}) =

λiw{i}i θi, ∀i ∈ N, w{i}i is the waiting time for class i when class i packets have the power

to be served first in the queue. For any i, j ∈ N, that is |S| = 2 we have,

∆(S) = ∆{i, j} = v({i, j}) − v({i}) − v({ j}) = λiw
{i, j}
i θ j + λ jw

{i, j}
j θ j − λiw{i}i θi − λ jw

{ j}
j θ j

We assume θi ≥ θ j and consider (4.4), we have,

∆(S) = ∆{i, j} = v({i, j}) − v({i}) − v({ j}) = λ jθ j(w
{i, j}
j − w{ j}j )

If |S| = 3, say S = {i, j, k} then,

∆(S) = ∆{i, j, k} = v({i, j, k}) − ∆({i, j}) − ∆({ j, k}) − ∆({i, k}) − ∆({i}) − ∆({ j}) − ∆({k})

If we further assume θi ≥ θ j ≥ θk, we have,

∆(S) = ∆{i, j, k} = λkθk(w
{i, j,k}
k − w{i,k}k − w{ j,k}k + w{k}k )

It is easy to use induction to show that when S = {1, 2, ...,n}with θ1 ≥ θ2 ≥ ... ≥ θn,

σ1 = 1, σ2 = 2, ..., σn = n (we will use i to denote the position of each class i in the queue

instead of σi for simplicity) ∆(S) is:

∆(S) = ∆{1, 2, ...,n} = λnθnw∆(S)
n (4.12)

where w∆(S)
n =

∑
T⊆S,n∈T(−1)|T|wT

n , when |S| is even, and w∆(S)
n =

∑
T⊆S,n∈T(−1)|T+1|wT

n , when

|S| is odd. We can see that the ∆(S) only depends on the lowest priority class, that is

λnθnw∆(S)
n .
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Now, we are ready to consider SVi =
∑

S⊆N:i∈S
∆(S)
|S| in more detail. Given a length of

a set |S|,S ⊆ N, i ∈ S, there are
( i−1
|S|−1

)
situations where class i is the lowest priority class

in set S. Denote Ai as the set of S satisfies the aforementioned situations. Similarly,

for class j which has the position j > i, there are
( j−2
|S|−2

)
situations where class j is the

lowest priority class in S. Denote B j as the set of S satisfies the situations.Therefore,

we can rewrite (4.11) as:

SVi =
∑

S⊆N,i∈S

∑
S′∈Ai

λiθiw
∆(S′)
i +

∑n
j=i+1

∑
S′∈B j

λ jθ jw
∆(S′)
j

|S|
(4.13)

Using (4.13), we can also show the efficiency property of the Shapley Value, i.e.,∑n
i=1 SVi =

∑n
i=1 λiθiw{1,...,n}i =

∑n
i=1 vi(σ) = v(N, σ).

After we get SVi, the transfer ti for each class can be calculated as follows:

ti = vi(σ) − SVi = λiθiw{1,...,n}i − SVi (4.14)

Lemma 4.2.1 Using the Shapley Value as the waiting cost share for each class, the allocation
ψ(σ, t) is efficient.

proof:

We already stated the efficient allocation definition in Section 4.1: if an allocation

ψ(σ, t) for queuing problem q = (N, λ, θ) ∈ Q minimizes the total waiting cost v(N, σ)

and no transfer is lost (
∑n

i=1 ti = 0), then this allocation is efficient.

First, from the efficiency property of the Shapley value, we have
∑n

i=1 SVi = mini-

mize v(N, σ).

From (4.14), we know that:
∑n

i=1 ti =
∑n

i=1 vi(σ) −
∑n

i=1 SVi.

The σ in (4.14) is an efficient ordering and from Lemma 4.1.1,
∑n

i=1 vi(σ) is the

minimum system cost, minimum v(N, σ).

Therefore, we have,
∑n

i=1 ti =minimum v(N, σ)−minimum v(N, σ) = 0.

Thus, we prove Lemma 4.2.1.

Taking (4.14) into (4.7), we get the complete formation of price difference between

class i and class j as follows:

∆pi j =
λiθiw{1,...,n}i − SVi

λi
−

λ jθ jw{1,...,n}j − SV j

λ j
(4.15)
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We have thus developed the subsidy-free price difference between classes based on

the inter-class compensations. Since a network generally maintains a limited number

of classes of service, the calculation of waiting cost share SVi and actual waiting cost

ci for each class does not suffer from the scalability problem.

4.3 Axiomatic Characterization of the Shapley Value

As shown in Section 4.2, the price difference between classes directly depends on the

waiting cost share rule in the network, specifically, using the Shapley Value as the

waiting cost share for each class. In this section, we define several axioms on fairness

and characterize the Shapley Value using them.

Definition 4.3.1 The waiting cost sharing rule satisfies the efficiency rule if and only if for
all q = (N, λ, θ), ψ(σ, t) is efficient.

As shown in Lemma 4.2.1, when we use Shapley Value as the waiting cost sharing

for each class, ψ(σ, t) is efficient.

The next definition is as in literature. For example, two similar classes should be

compensated such that their cost shares are equal (equal treatment of equals).

Definition 4.3.2 The waiting cost sharing rule satisfies equal treatment of equals if and only
if for all q = (N, λ, θ) ∈ Q, ψ(σ, t), i, j ∈ N, then λi = λ j, θi = θ j =⇒ ui = u j.

Using Shapley Value as the waiting cost share for each class obviously satisfies

equal treatment of equals axiom from (4.10).

Assume that the impatience of class i increases. In this case, the total cost of

waiting may increase. The following axiom, called independence of preceding classes

impatience (IPAI), proposes that classes being served after class i be not affected by

the increase. Since those classes are served after class i, they do not impose any cost of

waiting to class i. Only the classes being served before class i impose a cost of waiting

to class i, so that they should bear the consequences of an increase in that waiting cost.

Definition 4.3.3 The waiting cost sharing rule satisfies independence of preceding classes
impatience (IPCI) if and only if for all q = (N, λ, θ), q′ = (N, λ, θ′) ∈ Q, ψ(σ, t), ψ(σ′, t′),
and for all i ∈ N, λi = λ′i , i ∈ N\k : θi = θ′i and θk < θ′k, then for all j ∈ N such that
σ j > σk : u j = u′j.
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The proof using Shapley Value as the waiting cost share for each class which

satisfies IPCI is given here.

Given that q = (N, λ, θ), q′ = (N, λ, θ′) ∈ Q, ψ(σ, t), ψ(σ′, t′), k ∈ N, and for all

i ∈ N\k : θi = θ′i and θk < θ′k, we get:

σk ≥ σ′k and for any j ∈ N\k, σ j > σk, θ j = θ′j, and have the same ordering.

From (4.13), given a length of a set |S|,S ⊆ N, j ∈ S, there are
( j−1
|S|−1

)
situations where

class j is the lowest priority class in set S. Denote A j as the set of S satisfies the

aforementioned situations. For class i which has the position i > j, there are
( i−2
|S|−2

)
situations where class i is the lowest priority class in S. Denote B j as the set of S
satisfies the situations. Therefore, we have:

SV j =
∑

S⊆N, j∈S

∑
S′∈A j

λ jθ jw
∆(S′)
j +

∑n
i= j+1

∑
S′∈Bi

λiθiw
∆(S′)
i

|S|

Similarly, given a length of a set |S|,S ⊆ N, j ∈ S, there are
( j′−1
|S|−1

)
situations where

class j′ is the lowest priority class in set S. Denote A′j as the set of S satisfies the

aforementioned situations. For class i′ which has the position i′ > j′, there are
( i′−2
|S|−2

)
situations where class i′ is the lowest priority class in S. Denote B j as the set of S
satisfies the situations. Therefore, we have:

SV′j =
∑

S⊆N, j′∈S

∑
S′∈A′j

λ′jθ
′

jw
′∆(S′)
j +

∑n
i′= j′+1

∑
S′∈B′i

λ′iθ
′

iw
′∆(S′)
i

|S|

We already have for all i ∈ N, λi = λ′i . For any j ∈ N, when σ j > σk,we have σ j = σ′j.

From (4.4), we have w j = w′j. In addition, when we look at (4.12) and we can also find

that w∆(S)
j = w′∆(S)

j ,S ⊆ N. Thus, we conclude that SV j = SV′j when σ j > σk and using

Shapley value as the waiting cost share for each class satisfies IPCI.

The last definition is consistent with the idea that if two classes are served before

a third one (all three classes have identical traffic load λ), then the former are equally

responsible for the waiting cost incurred by the latter. To capture this idea, we consider

that the network no longer charges the last class (the unit waiting cost θ is 0). Then it

is not necessary to change the queue. On the other hand, the transfer that had to be

allocated to the last agent has to be redistributed among the remaining agents. Equal

responsibility requires that it be redistributed equally among them all.
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Definition 4.3.4 Waiting cost sharing rule satisfies equal responsibility (ER) if and only if
for all q = (N, λ, θ),∈ Q, ψ(σ, t), if for all i ∈ N, λi = λ, q′ = (N, λ′, θ′) ∈ Q such that for all
i ∈ N: λ′i = λ, for all i ∈ N\n, θ′i = θi, θ′n = 0, there exists ψ(σ′, t′), such that for all i ∈M:

σ′i = σi, and

t′i = ti + tn
n−1 .

Using Shapley Value as the waiting cost share for each class satisfies ER. The proof is

given here.

Under Definition 4.3.4 , for all i ∈ N, λi = λ′i = λ, we have for |S| = i, i = 1, ...,n,

w∆(S) is a constant and it is not related to the elements in S. For example, |S1| = |S2| = 3,

and S1 = {i, j, k},S2 = {a, b, c} with θi ≥ θ j ≥ θk, θc ≥ θb ≥ θc, From the w∆(S) described

in (4.12), we have,

w∆(S1)
k = w{i, j,k}k − w{i,k}k − w{ j,k}k + w{k}k

w∆(S2)
c = w{a,b,c}c − w{a,c}c − w{b,c}c + w{c}c

For all i ∈ N, λi = λ, from (4.4) we get,

w∆(S1)
k = w∆(S2)

c =
w0

(1 − 2λ
µc )(1 − 3λ

µc )
−

w0

(1 − λ
µc )(1 − 2λ

µc )
−

w0

(1 − λ
µc )(1 − 2λ

µc )
+

w0

1 − λ
µc

For simplicity, in the following equation, we use w|S| to denote w∆(S) without

differentiating among S as long they have same size.

From (4.13), we have,

SVi =

n∑
|S|=1

λw|S|(
( i−1
|S|−1

)
θi +

∑n
j=i+1

( j−2
|S|−2

)
θ j)

i

In this case, the only difference between q = (N, λ, θ), ψ(σ, t) and q = (N, λ′, θ′), ψ(σ′, t′)
is θ′n = 0. Therefore the efficient ordering σ′ of q′ is same as the efficient ordering σ of

q (σ′i = σi, for i ∈ N).

Since θ′n = 0, the Shapley Value for SV′i is,

SV′i =

n−1∑
|S|=1

λw|S|(
( i−1
|S|−1

)
θi +

∑n−1
j=i+1

( j−2
|S|−2

)
θ j)

i
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From (4.5), we have,

ti = λθiwi − SVi

t′i = λθ′iw
′

i − SV′i

Since for i ∈ N, λi = λ′i = λ, we find wi = w′i = w0

(1− (i−1)λ
µc )(1− iλ

µc )
.

Therefore,

t′i − ti = SVi − SV′i =

n−1∑
|S|=1

λw|S|
( n−2
|S|−2

)
θn

|S|

From above equation we find that for i = 1, ...,n − 1, t′i − ti is equal to the identical

value
∑n−1
|S|=1

λw|S|( n−2
|S|−2)θn

|S| . In order to find out what this value stands for, we assumes that:

t′i = ti + x, i = 1, ...,n − 1. (4.16)

Since allocations ψ(σ, t), ψ(σ′, t′) are efficient,
∑n

i=1 ti = 0,
∑n−1

i=1 t′i = 0.

Summation of both side of (4.16),we get,

n−1∑
i=1

t′i =

n−1∑
i=1

ti + (n − 1)x

Therefore, we get x = tn
n−1 , and t′i = ti + tn

n−1 . Note that we also find tn
n−1 =∑n−1

|S|=1
λw|S|( n−2

|S|−2)θn

|S| .

Thus, we have proved that using Shapley Value as the waiting cost share for each

class satisfies ER axiom.

4.4 An Illustrative Example

This section presents a numerical example of the pricing scheme for the multi-class

priority-based network proposed in this chapter.

To emphasize the methodology, we simply assume that the network has two

different classes with the non-preemptive priority scheme. We use λ to denote the

total traffic in the network and k the percentage of traffic choosing class one service

which has θ1 as the waiting cost factor. Here, we assume θ1 > θ2. It means that

class one packets have higher priority based on Lemma 4.1.1, the efficient ordering is

σ = {1, 2}. Using (4.13), the waiting cost share for each class is as follows,
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SV1 = kλθ1w{1}1 +
(1 − k)λθ2(w{1,2}2 − w{2}2 )

2

SV2 = (1 − k)λθ2w{2}2 +
(1 − k)λθ2(w{1,2}2 − w{2}2 )

2

As described in Section 4.2, wS
i , i ∈ S is the average waiting cost of class i in an

efficient ordering of S assuming that S has the power to be served first. Using (4.4),

the average waiting time for each class in an efficient ordering can be calculated as:

w{1}1 = w{1,2}1 =
λ

µc(µc − kλ)

w{2}1 =
λ

µc(µc − (1 − k)λ)

w{1,2}2 =
λ

(µc − kλ)(µc − λ)

As defined in (4.5), we can calculate the transfer for each class as follows,

t1 = kλθ1w{1,2}1 − SV1 = −
(1 − k)λθ2(w{1,2}2 − w{2}2 )

2

t2 = (1 − k)λθ2w{1,2}2 − SV2 =
(1 − k)λθ2(w{1,2}2 − w{2}2 )

2

Using the definition in (4.7), the price difference between class one service and

class two service is,

∆p12 =
t2

(1 − k)λ
−

t1

kλ
=
θ2(w{1,2}2 − w{2}2 )

2k

For simplicity, we assume the network capacity c is equal to 100 and the average

length of packets in the network 1
µ = 1. The unit waiting cost for each class as θ1 = 1.5

and θ2 = 1. Fig. 4.3 describes wi,SVi, ti,∆p12, (i = 1, 2) profiles against change λ total

arrival rate in the network with fixed percentage of traffic choosing class one service

k. In Fig. 4.3(a), average waiting time for both class increases as the total average

arrival rate increases while class one packets experiences much lower average delay.

Fig. 4.3(b) shows the waiting cost share (Shapley value) for each class against the

increasing total traffic arrival rate. In Fig. 4.3(c), it describes the transfer of each

class, to be specifically, the amount class one packets should compensate the class two

packets. As shown in Section 4.1, total transfer is equal to 0, t1 + t2 = 0. Fig. 4.3(d)

shows that the price difference between the two classes increases as the total traffic in
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Figure 4.3: Profiles wi,SVi, ti,∆p12, (i = 1, 2) against changing λ (total arrival rate in the

network) with fixed k (percentage of traffic choosing class one service). (a) Average

waiting time wi, (i = 1, 2) for each class against λ. (b) Waiting cost share (Shapley

value) SVi, (i = 1, 2) for each class against λ. (c) Transfer ti, (i = 1, 2) for each class

against λ. (d) Price difference between the two classes ∆p12 against λ.
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Figure 4.4: Profiles wi,SVi, ti,∆p12, (i = 1, 2) against changing k (percentage of traffic

choosing class one service) with fixed λ (total arrival rate in the network). (a) Average

waiting time wi, (i = 1, 2) for each class against k. (b) Waiting cost share (Shapley

value) SVi, (i = 1, 2) for each class against k. (c) Transfer ti, (i = 1, 2) for each class

against k. (d) Price difference between the two classes ∆p12 against k.
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the network increases since class one packets needs to pay higher price for the better

service (lower average waiting time) when the network resource is in short.

Figures shown in Fig. 4.3 in under the situations with the fixed percentage of

traffic choosing class one service k. And Fig. 4.4 shows all the wi,SVi, ti,∆p12, (i = 1, 2)

profiles against changing k with a given total arrival rate in the network (λ). Fig. 4.4(a)

shows the average waiting time for both classes increase as the percentage of packets

choosing class one service (k). In Fig. 4.4(b), the waiting cost share (Shapley Value)

for each class increase as the percentage of traffic choosing that class increases. In

other words, the waiting cost share for class one is increasing with percentage of

traffic choosing class one (k) and the waiting cost share for class two is increasing

with percentage of traffic choosing class two (1 − k). Fig. 4.4(c) shows the amount

class one packets should compensate class two packets as a function of k with the

property t1 + t2 = 0. In Fig. 4.4(d), the price difference between the two classes is

minimized when each of the class has identical amount of traffic, i.e., λ1 = λ2. In

makes sense in a way that when the percentage of traffic choosing class one (k) is

small, the price difference between the two classes is higher since class one packets

enjoy little economic scale. And when the percentage of traffic choosing class one (k)

is large, the class one packets need to pay more to compensate class two packets since

class two packets experiencing much worse network quality (large average waiting

time).

4.5 Chapter Summary

In this chapter, we have investigated the problem of pricing multi-class priority-based

network services. Compensation is transfered from higher priority classes to lower

priority classes which experience longer average waiting time. In the model proposed

in this chapter, each class has Poisson arrivals and exponentially distributed packet

length with identical mean, but a different waiting cost factor. We present an efficient

ordering scheme by assigning each class its position in the queue, and then calculate

compensation for each class based on its waiting cost share which is its Shapley Value

in a cooperative game. We have also characterized the Shapley Value using different

intuitive fairness axioms. A numerical example illustrates how the analytical results

presented in the chapter can be used in a practical situation.

47



CHAPTER 5

Subsidy-free Prices in Class-based Networks

While priority networks are especially amenable to analysis thanks to existing results

from queuing theory, in practice most multi-service networks do not discriminate

among service classes solely through the tagging of packets with different priority

levels. Rather, these networks may attempt to meet QoS of each class of service

through resource allocation techniques. In this chapter, we will investigate subsidy-

free prices for each class of service in class-based DiffServ networks.

The network model adopted in this chapter assumes that the network maintains

separate queues for each class of service, and the network resource is allocated among

these classes in order to maximize some social utility or minimize network disutility.

Further, we establish the subsidy-free price for each class, based on the associated

network resource consumption [90]. The remainder of the chapter is organized as

follows. A discussion of the model used can be found in Section 5.1. The cooperative

game and the Shapley Value are studied in Section 5.2. In Section 5.3, we investigate

the pricing scheme. An illustrative example is given in Section 5.4 and Section 5.5

captures our conclusions.

5.1 Problem Statements and the Model

We consider a packet switched network with n classes of service as shown in Fig. 5.1.

The network is modeled as a queuing network with First in First out (FIFO) discipline.

The network resource c is allocated among the n classes and we use ci to denote the

resource allocated to class i. The packet length of all classes is considered to have an

exponential distribution with the average packet length equal to 1
µ .

The set of classes are denoted as N = {1, ...,n}. The traffic in each class i is distributed

with Poisson arrivals and identified by two parameters: (λi, θi). λi is the average

arrival rate and θi is the impatience per unit time for class i. Then, given a resource

allocation ĉ = (c1, c2, ..., cn), the disutility incurred by class i is given by:

vi(ci) = λiθidi (5.1)

where di is the average delay of class i packets.
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Figure 5.1: Network model in chapter 5

The total disutility incurred by packets from all classes due to an resource allocation

ĉ = (c1, c2, ..., cn) can be written as:

v(N) =

n∑
i=1

di(ci) =

n∑
i=1

λiθidi (5.2)

We have already assumed Poisson arrivals in each class with identical mean packet

length and exponential distribution. Therefore, the average delay for packets in class

i is [88]:

di =
1

µci − λi
(5.3)

Here we define an allocation as ψ(ĉ, t), where ĉ = (c1, c2, ..., cn) is the network

resource allocation to each class and t = (t1, t2, ..., tn) is the monetary transfer related to

each class. Given a network resource allocation ĉ and a transfer t, the disutility share

for class i, ϕi is defined as,

ϕi = vi(ci) + ti = λiθidi + ti (5.4)

An allocation ψ(ĉ, t) is efficient whenever it minimizes the total disutility incurred

by packets from all classes (i.e. minimum v(N)) and no transfer is lost (i.e.
∑n

i=1 ti = 0).

An efficient network resource allocation ĉ is the one which minimizes the total

disutility incurred by packets from all classes v(N).

Taking (5.3) into (5.2), the total disutility minimization problem becomes:
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minimizeĉ v(N) =

n∑
i=1

λiθidi =

n∑
i=1

λiθi

µci − λi
(5.5)

subject to the following constraints:

n∑
i=1

ci ≤ c (5.6)

λi ≤ µci, i = 1, ...n (5.7)

It can be observed that the −v(N) is a strictly concave function over a closed and

bounded set defined by (5.6) and (5.7). Therefore, a unique minimum always exists.

We now use Lagrangian multipliers to append constraints to the objective. Thus, we

can rewrite this minimization problem as:

minimizeĉ

n∑
i=1

λiθi

µci − λi
− γ0(

n∑
i=1

ci − c) +

n∑
i=1

γi(µci − λi) (5.8)

The necessary and sufficient Karush-Kuhn-Tucker (KKT) Conditions [91] applica-

ble to (5.8) are given by:

−λiθiµ

(µci − λi)2 − γ0 + γiµ = 0 (5.9)

γ0(
n∑

i=1

ci − c) = 0 (5.10)

γi(µci − λ) = 0, i = 1, ...,n (5.11)

Since a network generally maintains a limited number of classes of service, the

calculation of efficient network resource allocation ĉ does not suffer from the scalability

problem. So far, we have calculated vi(ci) in (5.4) based on efficient network resource

allocation ĉ. In the next section, we will consider the disutility share problem as a

cooperative game and set up the disutility share for each class ϕi using the Shapley

value.

5.2 Disutility Share for Each Class

Another way of solving the disutlity share ϕi for each class is by viewing the process

as a cooperative game. As stated in Section 5.1, each class tries to get more network
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resource to reduce its disutility as expressed in (5.1). This can be modeled as a

cooperative game and one can use the Shapley Value as the payoff (disutility share)

for each class. We first define the worth of a coalition and then compute the Shapley

value.

We define the worth of a coalition v(S), S ⊆ N as the sum of its members’ disutility

assuming they have the privilege to be allocated more network resource in an efficient

network resource allocation. The privilege will allow them to increase their network

resource allocation by increasing their impatience θ. Let’s look at the minimization

problem as described in (5.5); the larger the θi, the more the network resource that

will be allocated to class i. When there is a set N = {1, 2, ...,n}with θ1 > θ2 > ... > θn, a

coalition S ⊆ N means that its members will be given the |S| highest impatience, that

is, {θ1, θ2, ..., θ|S|}, by its original impatience order. At the same time, members in N\S
will have the |N| − |S| lowest impatience {θ|S|+1, ..., θn} by its original impatience order.

Therefore, we establish a new impatience θ′ = (θ′1, ..., θ
′

n). when there is a coalition S.

As an example, we assume that there are four different classes of service N =

{1, 2, 3, 4} with θ = {θ1 = 5, θ2 = 4, θ3 = 2, θ4 = 1}. When we consider a coalition

S = {2, 3}, its members class 2 and 3 will have the two highest impatience, that is {5, 4}.

By its original impatience order, θ2 > θ3, we then have θ′2 = 5, θ′3 = 4. Meanwhile,

members in the set N\S = {1, 4}will have the two lowest impatience {1, 2} and by their

original impatience order, θ1 > θ4, we thus have θ′1 = 2, θ′4 = 1. Thus, we establish a

new impatience θ′ = {θ′1 = 2, θ′2 = 5, θ′3 = 4, θ′4 = 1}when there is a coalition S = {2, 3}.

After establishing the new impatience θ′ when there is a coalition S, each class

will be allocated network resource in an efficient network resource allocation based

on their new impatience θ′ and the worth of this coalition S is defined as sum of its

members’ disutility as follows:

v(S) = v(S, ĉ′) =
∑
i∈S

λiθid′i =
λiθi

µc′i − λi
(5.12)

where ĉ′ is the efficient network resource allocation based on their new impatience θ′.

The marginal contribution of a class i ∈ N to a coalition S in v, i < S is:

v(S ∪ {i}) − v(S) = v(S ∪ {i}, ĉ′′) − v(S, ĉ′)

=
∑

i∈S∪{i}

λiθid′′i −
∑
i∈S

λiθid′i

=
∑

i∈S∪{i}

λiθi

µc′′i − λi
−

∑
i∈S

λiθi

µc′i − λi
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where ĉ′′ is the efficient network resource allocation when there is a coalition S ∪ {i},
while ĉ′ is the efficient network resource allocation when there is a coalition S.

The Shapley Value is defined as a weighted sum of the classes’ marginal contribu-

tion to coalitions. Let us recall the definition of the Shapley Value in Section 2.1.1. For

all i ∈ N, the payoff (disutility share) to class i is given by:

SVi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[v(S ∪ {i}) − v(S)] (5.13)

We have thus developed the disutility share for each class by using the correspond-

ing Shapley value.

5.3 Pricing Scheme

Given an efficient network resource allocation ĉ and a transfer ti, the disutility share

ϕi for class i is equal to vi(ĉ) + ti as shown in (5.4) in Section 5.1. And in Section 5.2, we

calculated the disutility share for each class in another way-by modeling this problem

as a cooperative game and using the corresponding Shapley Value as the disutility

share for each class. This means ϕi = SVi and we can then rewrite (5.4) as follows:

SVi = vi(ĉ) + ti (5.14)

Now we can calculate the monetary transfer ti for each class i from Equation (5.14)

as SVi− vi(ĉ). Equation (5.14) also shows that when the disutility share SVi of class i is

larger than its actual disutility vi(ĉ), class i packets will compensate others SVi − vi(ĉ)

because it has been allocated more network resource and experiences less average

delay. On the other hand, if the disutility share SVi of class i is smaller than its actual

disutility vi(ĉ), class i packets will receive compensations SVi − vi(ĉ) from others since

it has been allocated less network resource and experiences longer average delay.

Let’s now consider
∑n

i=1 ti, from (5.14) we have,

n∑
i=1

ti =

n∑
i=1

SVi −

n∑
i=1

vi(ĉ)

From the Shapley value’s efficiency property, we know
∑n

i=1 SVi = minimum v(N).

We already stated that ĉ is an efficient network resource allocation and it means that∑n
i=1 vi(ĉ) = minimum v(N). From above equations, we observe that

∑n
i=1 ti = 0.

We can now state that the allocationψ(ĉ, t) is efficient when ĉ is an efficient network

resource allocation and ti is calculated using (5.14).
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After getting the transfer ti for each class based on (5.14), we are able to define the

price difference ∆pi j between class i and j as follows:

∆pi j =
ti

λi
−

t j

λ j
(5.15)

Let’s now take (5.1)(5.3)(5.14) into (5.15), and get:

∆pi j =
SVi −

λiθi
µci−λi

λi
−

SV j −
λ jθ j

µc j−λ j

λ j
(5.16)

where ĉ is an efficient network resource allocation and SVi is the Shapley Value

corresponding to the cooperative game.

We have thus developed the price difference between classes based on the inter-

class compensations.

5.4 An Illustrative Example

This section presents a numerical example of the pricing scheme for the class-based

network proposed in this chapter.

To emphasize the methodology, we simply assume that the network supports

two different classes. We use λ to denote the total traffic in the network and k the

percentage of traffic choosing class one service which has θ1 impatience per unit time.

Here, we assume θ1 > θ2. Using Equation (5.13), the waiting cost share for each class

is as follows,

SV1 =
v{1, 2}

2
+

v{1}
2
−

v{2}
2

SV2 =
v{1, 2}

2
+

v{2}
2
−

v{1}
2

As described in Section 5.2, v(S) is the sum of its members’ disutility in an efficient

network resource allocation assuming that its members have the |S| largest impatience.

Therefore, from (5.12) we get:

v{1, 2} = kλθ1d′1 + (1 − k)λθ2d′2 =
kλθ1

µc1 − kλ
+

(1 − k)λθ2

µc2 − (1 − k)λ
where ĉ = (c1, c2) is the efficient network resource allocation when θ′1 = θ1, θ′2 = θ2.

Further,

v{1} = kλθ1d′1 =
kλθ1

µc1 − kλ
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Figure 5.2: Profiles di,SVi, ti,∆p12, (i = 1, 2) against changing λ(total arrival rate in

the network) with fixed k(percentage of traffic choosing class one service). (a) Av-

erage delay di, (i = 1, 2) for each class against λ. (b) Disutility share (Shapley value)

SVi, (i = 1, 2) for each class against λ. (c) Transfer ti, (i = 1, 2) for each class against λ.

(d) Price difference between the two classes ∆p12 against λ.
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Figure 5.3: Profiles di,SVi, ti,∆p12, (i = 1, 2) against changing k (percentage of traffic

choosing class one service) with fixed λ (total arrival rate in the network). (a) Av-

erage delay wi, (i = 1, 2) for each class against k. (b) Disutility share (Shapley value)

SVi, (i = 1, 2) for each class against k. (c) Transfer ti, (i = 1, 2) for each class against k.

(d) Price difference between the two classes ∆p12 against k.
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where ĉ = (c1, c2) is the efficient network resource allocation when θ′1 = θ1, θ′2 = θ2.

And,

v{2} = (1 − k)λθ2d′2 =
(1 − k)λθ2

µc2 − (1 − k)λ

where ĉ = (c1, c2) is the efficient network resource allocation when θ′1 = θ2, θ′2 = θ1.

As defined in (5.14), we can now calculate the transfer for each class as follows,

t1 =
(1 − k)λθ2

2(µc
{θ′1=θ1,θ′2=θ2}

2 − (1 − k)λ)
−

(1 − k)λθ2

2(µc
{θ′1=θ2,θ′2=θ1}

2 − (1 − k)λ))

t2 =
(1 − k)λθ2

2(µc
{θ′1=θ2,θ′2=θ1}

2 − (1 − k)λ)
−

(1 − k)λθ2

2(µc
{θ′1=θ1,θ′2=θ2}

2 − (1 − k)λ))

where c{θ
′

1=θ1,θ′2=θ2}

2 is network resource allocated to class 2 in the efficient network

resource allocation when θ′1 = θ1, θ′2 = θ2; c{θ
′

1=θ2,θ′2=θ1}

2 is network resource allocated to

class 2 in the efficient network resource allocation when θ′1 = θ2, θ′2 = θ1.

Using the definition in (5.15), the price difference between class one service and

class two service is,

∆p12 =
θ2

2k(µc
{θ′1=θ1,θ′2=θ2}

2 − (1 − k)λ)
−

θ2

2k(µc
{θ′1=θ2,θ′2=θ1}

2 − (1 − k)λ)

For the numerical example, we assume that the network capacity c is equal to 100

and the average length of packets in the network 1
µ = 1. The unit waiting cost for each

class is θ1 = 10 and θ2 = 1. Fig. 5.2 depicts di,SVi, ti,∆p12, (i = 1, 2) profiles against

λ with a fixed k = 0.5. In Fig. 5.2(a), the average delay for both classes increases as

the total arrival rate increases while class one packets experience much lower average

delay. Fig. 5.2(b) shows the disutlity share (Shapley value) for each class against

λ. Fig. 5.2(c) describes the transfer for each class, specifically, the amount class one

packets should compensate the class two packets. As shown in Section 5.3, the total

transfer is equal to 0, t1 + t2 = 0. Fig. 5.2(d) shows that the price difference between
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the two classes increases as the total traffic in the network increases since class one

packets need to pay higher price for the better service (lower average delay) when the

network resource is short.

Fig. 5.2 has addressed a fixed percentage of traffic choosing class one service, i.e.,

k = 0.5. Fig. 5.3 shows all the corresponding profiles against k with a given λ = 75.

Fig. 5.3(a) shows that the average delay for class two increase as the percentage of

packets choosing class one service (k) increases. Due to economy of scale, the average

delay for class one packets slightly decreases as the percentage of traffic choosing class

one service increases. In Fig. 5.3(b), the disutility share (Shapley value) for each class

increases as the percentage of traffic choosing that class increases. In other words, the

waiting cost share for class one increases with percentage of traffic choosing class one

and the waiting cost share for class two increases with percentage of traffic choosing

class two. Fig. 5.3(c) shows the amount class one packets should compensate class two

packets as a function of k. In Fig. 5.3(d), the price difference between the two classes

is minimized when each of the classes has identical amount of traffic, i.e., λ1 = λ2.

This is also intuitive because that when the percentage of traffic choosing class one is

small, the price difference between the two classes is higher since class one packets

don’t have economy of scale. On the other hand, even when the class one traffic is

very high, the price difference is still large because despite the economy of scale, class

one packets enjoy a significantly higher Quality of Service (QoS).

5.5 Chapter Summary

In this chapter, we have established the subsidy-free prices for each class of service

in a class-based network using inter-class compensations. A lower QoS class will

receive compensations from other classes for experiencing longer average delay. In the

model proposed in this chapter, each class has a different level of impatience, arrival

rate, but exponentially distributed packet lengths with identical mean. We have

developed an efficient network resource allocation for each class and then computed

compensations among the classes based on the disutility share of each class. The

disutility share of a class is its Shapley Value in a cooperative game. We have then

proved that the allocation is efficient and presented a pricing scheme based on inter-

class compensations. The pricing scheme proposed in this chapter has nice fairness

property: the higher QoS service price is always higher than the lower QoS service

even when the higher QoS service enjoys a large economy of scale. Further, for any

given ratio of higher vs. lower QoS traffic, the price differential between the higher
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and lower QoS services increases as the total network demand increases. The price

difference is minimized when the higher QoS service demand is equal to the lower

QoS service demand for any given level of total traffic.
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CHAPTER 6

Market-clearing Prices in Class-based Networks

Class-based network architectures such as Diffserv [64] have become the most viable

solution for providing Quality-of-Service (QoS) over IP networks. In multi-class

networks, incentives are needed to be offered to users in order to encourage them to

choose the amount of bandwidth from each class that is most appropriate for their

needs, thereby discouraging over-allocation and maximizing the social welfare and

individual utility. In this chapter, we are particularly concerned about the market-

clearing price for each class of service under competitive market model [92].

The study of competitive economy equilibrium was first started by Walras [93] over

a hundred years ago. In this problem, each user participating in the market initially

has an endowment of some amount of each of n goods wi = (wi1, ...,win). Every agent

sells the entire initial endowment and buys a bundle of goods xi = (xi1, ..., xin) to

maximize his utility function ui(xi). Subject to the following constraint, xipT
≤ wipT,

Arrow and Debreu [94] have showed that there exists equilibrium prices p = (p1, ..., pn)

for the n goods such that the market is cleared (the demand of each of the goods equals

the supply) if the utility function of each agent ui were concave. Reference [95] has

provided an algorithm to compute this competitive economy equilibrium.

In modern networks, terminals/users no longer use one type of service. Instead,

they consume multiple services at the same time. For example, when a user is playing

an on-line game, he may also need to chat with another party or use text messaging.

It is natural for us to model a multi-class network as a competitive market where

agents are divided into two sets: users and the service provider. The service provider

supports n types of services and each service has a different QoS guarantee. Users

spend money to buy a bundle of n types of services and maximize their individual

utility. An equilibrium is a set of prices for n services so that the market is cleared and

each user’s utility is maximized. This model is a special case of Walras’ model when

money is also considered as a good.

For general concave and homogeneous utility functions, the equilibrium prob-

lem is reduced to a social utility maximization problem over a convex set defined

by the supply-demand linear constraints and the equilibrium prices derived from the

Lagrangian multipliers of these constraints [96, 97, 98]. References [63, 99] have inves-

tigated the competitive market equilibrium with non-homogeneous utility functions

59



which include goods purchased by other users. It means that each user’s utility func-

tion not only depends on his purchase action but also related to other users’ purchase

choices. This is also the case for communication networks in that the performance

obtained by any given network user is determined by all users’ traffic and service

choices.

In this chapter, we consider pricing, resource allocation and QoS provisioning in

a multi-class network under the competitive economy model. We use revenue as

the utility function for the service provider and enhance Kelly’s utility function by

including a QoS parameter for users. Given the initial endowment for each user, we

show that a competitive equilibrium (price for each class of service and bandwidth

allocation among all users) for the competitive multi-class network resource market

always exists. And under this equilibrium, both individual optimality and social

economic efficiency are achieved in a way such that all users’ utilities are maximized

simultaneously. In other words, this equilibrium is Pareto optimal. We further show

that under the fixed supply condition for each class of the service, this equilibrium is

unique which can be computed in polynomial time.

In addition, this chapter also discusses how to adjust the initial endowment for each

user to meet their bandwidth constraint (either from constraint on the access network

or from limitation of the user equipment). Under this constraint, the competitive

equilibrium is the price for each class of service, the budget redistribution and the

bandwidth allocation among all users. The equilibrium conditions are analyzed

and the existence of the equilibrium is also proved. A procedure to recompute the

equilibrium is proposed.

The rest of the chapter is organized as follows. Section 6.1 lists the mathematical

notations used in this chapter. In Section 6.2, we introduce our model of competitive

multi-class network resource market. In this section, both the service provider’s and

users’ utility functions are presented and investigated. Section 6.3 proves the existence

and uniqueness of the competitive equilibrium of this market. In Section 6.4, we

discuss how to adjust the users’ initial budget under each user’s bandwidth constraint.

Section 6.5 gives a numerical example resulting in the competitive equilibrium in

pricing and resource allocation in multi-class networks, and Section 6.6 captures the

conclusions of this chapter.

60



6.1 Problem Statements and Mathematical Notations

Mathematical notations used in this chapter are described in this section. We use Rn

to denote the n-dimensional Euclidean space and Rn
+ to denote the subset of Rn where

each coordinate is non-negative. We also use R and R+ to represent the set of real

numbers and the set of non-negative real numbers. Throughout this chapter, for a

vector x, x > 0 means that every component of x is larger than 0. Other comparative

notations <,≥,≤ are extended in a similar manner.

We assume the network provides n services. Each class of service has a different

QoS guarantee and is suitable for different applications. There are m users sharing the

network resource. We use X ∈ Rmn
+ to denote the set of ordered m-tuples X = (x1, ..., xm)

and use X̄ ∈ R(m−1)n
+ to denote the set of ordered (m−1)-tuples X̄ = (x1, ..., xi−1, xi+1, ..., xm),

where xi = (xi1, ..., xin) ∈ Xi ∈ Rn
+ for i = 1, ...,m. For each user i, we use ui(xi, x̄i) to

denote his utility function where xi ∈ Xi and x̄i ∈ X̄i. It means that user i’s utility

depends on his own action xi, as well as actions made by all other users x̄i.

The following definitions [100] will be used in the proof of the existence and

uniqueness of competitive equilibrium.

Definition 6.1.1 For a twice-differentiable function ui: Rn
+ � R+, if ∇xiui is positive and

∇
2
xi

ui is negative, we have ui as a monotonically increasing function and concave with respect
to xi.

Definition 6.1.2 A function ui: Rn
+ � R+ is concave if for any x, y ∈ Rn

+ and any 0 ≤ a ≤ 1,
we have ui(ax+(1−a)y) ≥ aui(x)+(1−a)ui(y). And it is strictly concave, if ui(ax+(1−a)y) >

aui(x) + (1 − a)ui(y) for 0 < a < 1.

6.2 Competitive Multi-class Network Resource Market

In the competitive multi-class network resource market, as stated in Section 6.1, the

network supports n types of services and there are m users in the network. There are

three types of entities in the market: users, service provider and market.

Each user i is endowed a monetary budget wi(> 0) and uses it to purchase some

amount of each of n services xi = (xi1, ..., xin) from an open market so as to maximize its

own utility ui(xi, x̄i), where x̄i represents the amount of services obtained by all other

users. The budget wi for each user can represent the budgets for users to pay for ser-

vices as in [32]. As noted in Section 6.1, in this chapter xi j is used to denote the amount
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of service j that user i purchases; xi = (xi1, ..., xin) is a n dimensional vector which

shows some amount of each of n services user i purchase; x̄i = (x1, ..., xi−1, xi+1, ..., xm)

is an (m − 1) × n vector and represents the amount of each of n services obtained by

all other users except user i.

We now consider the network service provider. It sets up the network and allocates

limited network resource to n types of services from a convex and compact set C to

maximize its utility.

The third entity, the market, sets unit prices p = (p1, ..., pn) for n types of services.

Each type of service has a different QoS guarantee and p j can be interpreted as the

unit price for service j. For example, p1 = 1 and p2 = 2 simply means that users can

use one unit service 2 to trade for two units of service 1.

Then, user i’s (i = 1, ...,m) individual utility maximization problem is as follows.

maximizexiui(xi, x̄i) (6.1)

subject to the following constraints:

xipT
≤ wi (6.2)

xi ≥ 0

Equation (6.2) shows that the total payment for the purchased n types of services

should not exceed his or her endowed budget wi.

As discussed in Section 3.1.1, we redefine user’s utility as a function of the allocated

bandwidth and the QoS of the network as follows:

u =
β

Tnow
log(

x
x̃

) (6.3)

where β > 0 is the weighting factor and it describes the flow’s relative sensitivity

to the QoS parameter. We use the present average delay Tnow to represent the QoS

parameter of network. x̃ is the minimum bandwidth requirement. Here we use the

present average delay since users always keep record of the present network situation

like Round Trip Time, packet loss rate, etc.

Then user i’s utility in a multi-class network is the sum of utilities from each class

of service as follows:

ui(xi, x̄i) =

n∑
j=1

βi j

T jnow

log(
xi j

x̃i j
) (6.4)

where βi j is a weighting factor and shows user i’s relative sensitivity to bandwidth

and QoS in service class j; x̃i j is user i’s minimum bandwidth requirement for class j
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service. It is assumed that the network has an overall resource that exceeds the sum

of the minimum bandwidth requirements.

As we stated before, the network supports n classes of service. Within each class j,
we assume that the traffic follows the Poisson distribution and this poissonian arrival

discipline is generally considered to be a good model for the aggregate traffic from a

large number of independent users [88]. For simplicity, we further assume that the

length of all packets in the network is exponentially distributed with average length

equal to 1
µ . The network is modeled as a queuing network with First in First out

(FIFO) discipline. Therefore, the actual QoS parameter delay for each class j, T jnow is

calculated using M/M/1 queuing model as follows:

T jnow =
1

µc j −
∑m

k=1,k,i xkj
(6.5)

where c j is the allocated resource for class j.

Together with (6.4) and (6.5), we can derive a more explicit description of each

user i’s utility as follows.

ui(xi, x̄i) =

n∑
j=1

βi j(µc j −

m∑
k=1,k,i

xkj) log(
xi j

x̃i j
) (6.6)

In order to keep different QoS for each class, we have the maximum possible

arrival rate s j for each class as follows:

T jSLA =
1

µc j − s j
(6.7)

where T jSLA is the QoS agreed to by service provider and users in Service Level Agree-

ment for class j. Vector s = (s1, ..., sn) represents maximum possible arrival rate for each

class in the network. For simplicity, in the following analysis, we further assume the

average message lengths are equal to 1 ( 1
µ = 1). Therefore, numerically, the message

arrival rate is the same as bandwidth.

The service provider’s individual utility maximization problem is represented as:

maximizesus(s, p) = spT (6.8)

subject to the constraint:

s ∈ S (6.9)

where s is a feasible set of available bandwidth supply in each class.
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A competitive market equilibrium is a point which we denoted as [p, s, x1, ..., xm]

where s = (s1, ..., sn) and s j is the total amount of bandwidth available for class j, and

p = (p1, ..., pn) ∈ Rn
+ and p j is the unit price for class j set by the market; such that:

1 (User optimality) xi is a maximizer of (6.4) given x̄i and p for every i.

2 (Service provider optimality) s is a maximizer of (6.8) given p.

3 (market efficiency) p ≥ 0,
∑m

i=1 xi j ≤ s j, p j(
∑m

i=1 xi j − s j) = 0 for all j.

The last condition implies that for class j, when the supply is larger than the

demand, the equilibrium price for class j is equal to 0.

6.3 Equilibrium Characteristics

In Section 6.2, we have given out assumptions about user’s utility in data communi-

cation networks and our proposed utility function in a multi-class network. In this

section, we will investigate the existence and uniqueness of the competitive equilib-

rium of the multi-class network resource market.

Theorem 6.3.1 Using the utility functions defined in (6.6) and (6.8), the multi-class network
resource market has a competitive equilibrium.

proof:

From the proof given in [94], if the utility function ui(xi, x̄i) of each agent is con-

tinuous and concave in xi ∈ Rn
+ for every x̄i ∈ R(m−1)n

+ , and each agent’s strategy set

Xi ∈ Rn
+ is a closed convex, the existence of a competitive equilibrium is guaranteed.

First, we check the monotonicity of the utility function ui(xi, x̄i). The partial deriva-

tive of ui(xi, x̄i) is:

(∇xiui(xi, x̄i)) j =
βi j

xi j
(µc j −

m∑
k=1,k,i

xkj) > 0 (6.10)

Then, we check the concavity of the utility function ui(xi, x̄i) using the second

partial derivative of ui(xi, x̄i), we have,

(∇2
xi

ui(xi, x̄i)) j = −
βi j

x2
i j

(µc j −

m∑
k=1,k,i

xkj) < 0 (6.11)

From (6.10) and (6.11), we find that each user’s utility function is monotonically

increasing and is concave with respect to each variable xi j, given x̄i based on Definition

6.1.1.
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Now, we will check the monotonicity and concavity of service provider’s utility

function us as described in (6.8) as follows.

∇s jus = p j (6.12)

∇
2
s j

us = 0 (6.13)

From (6.12) and (6.13), we also find that the service provider’s utility function is

also monotonically increasing and concave with respect to each variable s j (although

us is not strictly concave with respect to the variable s j).

We note that xi is bounded under the linear constraint (6.2). It is a closed and

convex set. Since the network has fixed limited network resource, the supply for each

class of service s is also a closed and convex set.

Until now, we have proved that all agents’(users and service provider) utility

functions are continuous and concave with respect to its variables (either xi or s j).

xi ∈ Rn
+ and s ∈ Rn

+ are both closed and convex sets. We claim that this competitive

multi-class network resource market has an equilibrium. Thus, we prove Theorem

6.3.1.

We note that if p and s are fixed and the users are the only agents in the game, the

equilibrium problem reduces to a Nash Equilibrium problem. By allowing p and s
to change in the game, we can potentially achieve a more efficient equilibrium point.

And each competitive equilibrium is Pareto optimal [94].

Now considering the optimality conditions of (6.6) and (6.8), we can find the

following conditions using the Lagrangian multiplier. In other words,

maximizexiui(xi, x̄i) − λ(xipT
− wi) + γxT

i (6.14)

where λ ≥ 0 and γ ≥ 0 are Lagrangian multipliers. Note that λ is a scalar and γ is a

vector.

From the KKT [91] condition, we have:

∇xiui(xi, x̄i) − λpT + γT = 0 (6.15)

λ(xipT
− wi) = 0 (6.16)

γxi = 0 (6.17)

Since the Lagrangian multiplier γ ≥ 0, take it into (6.15), we have:

∇xiui(xi, x̄i) ≤ λpT (6.18)
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From (6.16) and (6.18), we get the following inequality:

(∇xiui(xi, x̄i)Txi)p ≥ wi∇xiui(xi, x̄i) (6.19)

Together with the constraints in (6.6) and (6.8), we have the complete necessary

and sufficient conditions for a competitive equilibrium as follows:

(∇xiui(xi, x̄i)Txi)p ≥ wi∇xiui(xi, x̄i)

xipT
≤ wi

m∑
i=1

xi j ≤ s j,∀ j (6.20)

spT
≤

m∑
i=1

wi

xi, p, s j ≥ 0,∀i, j

Now, multiplying xi ≥ 0 to both sides of (6.19), we have xipT
≥ wi for all i, and

together with (6.20), we have:

m∑
i=1

wi ≥ spT =

n∑
j=1

s jp j ≥

n∑
j=1

m∑
i=1

xi jp j =

m∑
i=1

xipT
≥

m∑
i=1

wi,

This means that every inequality in this sequence must be equal. Thus, we have

the following characterization of a competitive equilibrium.

Theorem 6.3.2 Every competitive Equilibrium in multi-class network resource market has
the following properties:
1 (Supply is equal to demand),

∑m
i xi j = s j,∀ j;

2 (All users’ budgets go to provider), spT =
∑m

i wi;
3 (Every user only purchases the most valuable class of service resource), if xi j > 0, then:

(∇xiui(xi, x̄i)Txi)p j − wi(∇xiui(xi, x̄i)) j = 0.

proof:

We have already showed the properties 1 and 2 above. We will only prove property

3 here.

From the KKT condition (6.17), if xi j > 0, we have, γ = 0.

Now take this γ = 0 into (6.15), we have, ∇xiui(xi, x̄i) − λpT = 0.
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Together with (6.16), we get the property 3 as follows, (∇xiui(xi, x̄i)Txi)p j−wi(∇xiui(xi, x̄i) j =

0.

Thus, we prove Theorem 6.3.2.

We notice that the necessary and sufficient equilibrium conditions (6.20) are all

linear, except (6.19):

(∇xiui(xi, x̄i)Txi)p ≥ wi∇xiui(xi, x̄i)

We further assume the multi-class network has fixed bandwidth supply for each

class, that is S = {s} is unique. We can now prove the uniqueness of the competitive

equilibrium as follows.

We already have the partial derivative of ui(xi, x̄i) from (6.10) as,

(∇xiui(xi, x̄i)) j =
βi j

xi j
(µc j −

m∑
k=1,k,i

xkj),∀ j

Multiply xi to both sides of above equation, we find:

∇xiui(xi, x̄i)Txi =

n∑
j=1

βi j(µc j −

m∑
k=1,k,i

xkj) (6.21)

From the equilibrium property 1 of the Theorem 6.3.2, we have,
∑m

i=1 xi j = s j,∀ j.
Take it into (6.10) and (6.21), we get the following equations:

(∇xiui(xi, x̄i)) j =
βi j

xi j
(µc j − s j + xi j),∀ j

∇xiui(xi, x̄i)Txi =

n∑
j=1

βi j(µc j − s j + xi j)

Now, we take the above two equations into (6.19) and write this nonlinear inequal-

ity using the logarithmic transformation as:

log(wi) ≤ log(p j) + log(
xi j

βi j(µc j − s j + xi j)
) + log(

n∑
j=1

βi j(µc j − s j + xi j)) (6.22)

We have already assumed that s is unique and, in Section 6.2, we defined the

relationship between s j and c j in (6.7), therefore, the vector c is also fixed. We also

find that the function on the right side of (6.22) is a strictly concave function in xi j and

p j. The left hand side of (6.22) is a constant, therefore, (6.22) is a convex inequality.

Based on the property of convex inequality in [101], we can now state the following

theorem.
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Theorem 6.3.3 In a multi-class network, with a fixed network resource for each class, the
competitive equilibrium set is convex and the equilibrium can be computed in polynomial time.

To show the uniqueness of this solution, we proceed as follows.

From property 3 of Theorem 6.3.2, when xi j > 0, we have:

log(wi) = log(p j) + log(
xi j

βi j(µc j − s j + xi j)
) + log(

n∑
j=1

βi j(µc j − s j + xi j))

Let [x1, p1] and [x2, p2] be two distinct competitive equilibriums. Since the equi-

librium set is convex, the point [0.5x1 + 0.5x2, 0.5p1 + 0.5p2] is also an equilibrium, so

that:

log(wi) = log(0.5p1
j +0.5p2

j )+log(
0.5x1

i j + 0.5x2
i j

βi j(µc j − s j + 0.5x1
i j + 0.5x2

i j)
)+log(

n∑
j=1

βi j(µc j−s j+0.5x1
i j+0.5x2

i j))

∀x1
i j, x

2
i j, satisfy either x1

i j > 0 or x2
i j > 0,

As showed before, the right side of above equation is strictly concave in p and x.

From definition 6.1.2, we have,

log(0.5p1
j +0.5p2

j )+log(
0.5x1

i j + 0.5x2
i j

βi j(µc j − s j + 0.5x1
i j + 0.5x2

i j)
)+log(

n∑
j=1

βi j(µc j−s j+0.5x1
i j+0.5x2

i j)) >

0.5(log(p1
j ) + log(

x1
i j

βi j(µc j − s j + x1
i j)

) + log(
n∑

j=1

βi j(µc j − s j + x1
i j)))+

0.5(log(p2
j ) + log(

x2
i j

βi j(µc j − s j + x2
i j)

) + log(
n∑

j=1

βi j(µc j − s j + x2
i j))) ≥

0.5 log(wi) + 0.5 log(wi) = log(wi)

∀x1
i j, x

2
i j, satisfy either x1

i j > 0 or x2
i j > 0.

Thus, we must have p1 = p2, and x1 = x2, which imply that the equilibrium point

is unique. We can now state,

Theorem 6.3.4 In a multi-class network, with fixed network resource for each class, the
competitive price equilibrium p = (p1, ..., pn) and resource allocation x = (x1, ..., xm) is unique.
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6.4 Budget Allocation in Competitive Network Resource Market

In data communication networks, the bandwidth constraint exists either because of

the limitation of the user equipment or the access speed of the network. In almost

all cases, either the speed of the access network or the speed limitation of the user’s

equipment is predefined. Therefore, the bandwidth constraint for each user is fixed.

In this section, we consider how to adjust the initial budget to satisfy each user’s

bandwidth constraint.

Assume there is a budget agent who adjusts budget for each user to satisfy their

access bandwidth constraint bi and we assume that
∑

i bi ≥
∑

j s j. That means that

the total users’ bandwidth constraint is higher or equal to the total available network

bandwidth supply. A competitive market equilibrium [w, p, x1, ..., xm] must satisfy:

1 (User optimality) xi is a maximizer of (6.4) given x̄i, w and p for every i.

2 (Service provider optimality) s is a maximizer of (6.8) given p.

3 (Market efficiency) p ≥ 0,
∑m

i=1 xi j ≤ s j, p j(
∑m

i=1 xi j − s j) = 0 for all j.

4 (Budget adjustment) given x, w is a minimizer of:

minimizewi

∑
i

(max{0,
∑

j

xi j − bi})wi; s.t.
∑

i

wi = m,w ≥ 0 (6.23)

Equation (6.23) says that if user i’s access bandwidth constraint is broken, that is∑
j xi j−bi ≥ 0, then the budget agent will allocate less budget to user i. And any budget

allocation is optimal if
∑

j xi j ≤ bi for all i. That means every user’s access bandwidth

constraint is met.

Since the budget adjustment problem is a bounded linear optimization problem

and all other maximizations are identical as described in Section 6.3, we can state the

following theorem.

Theorem 6.4.1 The multi-class network resource market has a competitive equilibrium which
satisfies access bandwidth constraint and each competitive equilibrium has the following
properties.
1 (Supply is equal to demand),

∑m
i xi j = s j,∀ j;

2 (All users’ budgets go to provider), spT =
∑m

i wi;
3 (Each user’s bandwidth constraint is met),

∑
j xi j ≤ bi,∀i;

4 (Every user only purchases the most valuable class resource), if xi j > 0, then:

(∇xiui(xi, x̄i)Txi)p j − wi(∇xiui(xi, x̄i)) j = 0.
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As already shown in Section 6.3 that in a multi-class network, with a fixed network

resource for each class, the competitive price equilibrium [p, x1, ..., xm] is unique and

can be calculated in polynomial time. We use the following iterative algorithm for

budget allocation to satisfy the bandwidth constraint:

Algorithm 6.4.2 Initialize budget assigned to each user wi = 1, i = 1, ...,m;

repeat
Compute competitive economy equilibrium [x1, ..., xm, p] under s = (s1, ..., sn) and w =

(w1, ...,wm).

Obtain the allocated bandwidth to each user i,
∑

j xi j;

Calculate average bandwidth surplus, avgs =
∑

i(bi−
∑

j xi j)
m ;

Update wi = wi +
(bi−

∑
j xi j)−avgs

k , i = 1, ...,m.
Until bi −

∑
j xi j ≥ error tolerance, i = 1, ...,m.

In each iteration, the unique competitive equilibrium is derived given network

resource for each class s j and budget for each user wi. The user budget is reassigned

according to the bandwidth shortage of each user in the equilibrium solution. The idea

of comparing the user’s bandwidth surplus with average surplus means less budget

allocation to the users with lower bandwidth surplus while keeping the total budget

unchanged. Here, k is a scalar parameter. We can adjust k to get to the competitive

equilibrium with bandwidth constraint with different pace.

6.5 An Illustrative Example

This section presents a numerical example about the pricing and resource allocation

in a multi-class network resource market as described in this chapter. We will show

the competitive equilibrium properties of this market.

We assume the network supports three different service classes (n = 3) with the

capacity c=100. The service class 1 supports real time gaming and the QoS parameter

average delay defined in SLA as T1SLA = 0.04s; the service class 2 and service class 3 are

designed to carry interactive streaming service and non-interactive streaming service

respectively with T2SLA = 0.1 and T3SLA = 0.2. To emphasize the method, we assume

there are three users (m = 3) competing for the network resource. Based on the utility

function proposed in (6.4), the utility functions for the users are,

u1 = (µc1−x21−x31) log(
x11

4
)+ (µc2−x22−x32) log(

x12

2
)+ (µc3−x23−x33) log(

x13

5
) (6.24)
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Class 1 Class 2 Class 3

T1SLA = 0.04s T2SLA = 0.1s T3SLA = 0.2s
c1 = 45 c2 = 30 c3 = 25

s1 = 20 s2 = 20 s3 = 20

Table 6.1: Resource allocation among classes

u2 = 1.1(µc1−x11−x31) log(
x21

4
)+(µc2−x12−x32) log(

x22

2
)+(µc3−x13−x33) log(

x23

5
) (6.25)

u3 = 1.2(µc1−x11−x21) log(
x31

4
)+(µc2−x12−x22) log(

x32

2
)+(µc3−x13−x23) log(

x33

5
) (6.26)

As shown in (6.24) (6.25) (6.26), all three users have the minimum bandwidth

requirement for class 1 service as ˜x11 = ˜x21 = ˜x31 = 4, class 2 as ˜x12 = ˜x22 = ˜x32 = 2

and class 3 as ˜x13 = ˜x23 = ˜x33 = 5. The weighting factors of the first user for different

class service as β11 = β12 = β13 = 1. The second user and the third user have higher

weighting factors for class one service and identical weighting factors for class two

and three services as, β21 = 1.1, β31 = 1.2, β22 = β23 = β32 = β33 = 1.

As proven in Section 6.3, when the network resource allocation among classes

is fixed, the market has an unique competitive equilibrium. We further assume the

network allocate 45% of network resource to class 1 service, 30% to class 2 service and

25% to class 3 service. To satisfy the QoS agreement in each class’s SLA, based on the

Equation (6.7), the available network resource for each class is 20 as shown in Table

9.1. We also assume the average length of packets in the network 1/µ = 1 and the

initial endowments for each users as w1 = 8; w2 = 10; w3 = 12. Then the competitive

solution is as follows.

p1 = 0.8294253; p2 = 0.3939162; p3 = 0.2766585;

x11 = 5.1842; x12 = 5.6658; x13 = 5.3071;

x21 = 6.6393; x22 = 6.7135; x23 = 6.6822;

x31 = 8.1765; x32 = 7.6207; x33 = 8.0107;

The above results show that under competitive equilibrium:

1 Each user spent all the budget: wi =
∑3

j=1 p jxi j,∀i = 1, 2, 3;

2 All users budget goes to service provider:
∑3

i=1 wi =
∑3

j=1 p js j;

3 Demand is equal to supply for each class bandwidth: s j =
∑3

i=1 xi j,∀ j = 1, 2, 3;

4 Each class’s QoS is well-maintained: D j = 1
µc j−

∑3
i=1 xi j

= T jSLA ,∀ j = 1, 2, 3.
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From the solution we also get the total bandwidth for the first user is x1 =
∑3

j=1 x1 j =

16.1571, the second user is x2 =
∑3

j=1 x2 j = 20.0349 and the third user is x3 =
∑3

j=1 x3 j =

23.8080. we can also calculate the utility for the first user as u1 = 35.7132, for the

second user as u2 = 59.5291 and for the third user as u3 = 83.9198; and therefore the

social utility has the value u1 + u2 + u3 = 179.1621.

Now consider each of them has a bandwidth constraint b1 = 15, b2 = 20, b3 = 30.

From the above example, if the budget agent sets w1 = 8; w2 = 10; w3 = 12, the

bandwidth allocation can not satisfy the bandwidth constraint. By the algorithm

proposed in Section 6.4, we can adjust the initial budget endowments and get the

competitive results as follows. In this example, we set the error tolerance as 0.01.

w1 = 7.474; w2 = 9.984; w3 = 12.542;

p1 = 0.829419; p2 = 0.393402; p3 = 0.277179;

x11 = 4.8997; x12 = 5.2783; x13 = 4.8115;

x21 = 6.6319; x22 = 6.7182; x23 = 6.6398;

x31 = 8.4684; x32 = 8.0035; x33 = 8.5487;

As shown above, when we adjust the initial budget endowments to w1 = 7.474,w2 =

9.984 and w3 = 12.542, on the competitive equilibrium, the bandwidth allocation for all

three users allocated bandwidth satisfy their bandwidth constraints: x1 =
∑3

j=1 x1 j =

14.9894 ≤ b1 = 15, x2 =
∑3

j=1 x2 j = 19.99 ≤ b2 = 20 and x3 =
∑3

j=1 x3 j = 25.0206 ≤ b3 =

30.

6.6 Chapter Summary

This chapter has considered multi-class network resource in a competitive market

where each user endowed with an initial budget will purchase bandwidth from each

class of the network resource to maximize its utility function. After defining utility

functions for users in a multi-class network, we have proved that there exists a

unique competitive equilibrium [p, x1, ..., xm] when we fix the available bandwidth for

each class. This competitive equilibrium can be calculated in polynomial time. For

bandwidth constraint due to users’ equipment or the speed of the access network, the

proposed algorithm adjusts the initial budget for each user to satisfy their respective

constraints. Further, we have proved that a competitive equilibrium [w, p, x1, ..., xm],

under bandwidth constraints, always exists for the multi-class resource network as

long as the sum of the total bandwidth constraints is equal to or exceeds the total
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bandwidth supply. Since the competitive equilibrium is Pareto optimal, the proposed

solution achieves both higher social utilization and better individual satisfaction than

the Nash equilibrium.
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CHAPTER 7

A User-friendly Constant Revenue Model for Net Neutrality

The recent lawsuit between Comcast and BitTorrent has brought widespread attention

and the net neutrality debate has polarized the major stakeholders, hardening their

respective stands. On August 17, 2007, Comcast was reported to prevent BitTorrent

users from seeding files [102]. Later, Comcast’s limiting of Bit Torrent applications was

further confirmed in a study conducted by the Electronic Frontier Foundation [103].

At the same time, Comcast argued that it considered choking BitTorrent traffic as a

way to let the network traffic remain available for everyone. In January 2008, FCC

Chairman Kevin Martin stated that the FCC was going to investigate complaints

that Comcast “actively interferes with Internet traffic as its subscribers try to share

files online” [104]. On August 21, 2008, the FCC issued an order which stated that

Comcast’s network management was unreasonable and that Comcast must terminate

the use of its discriminatory network management by the end of the year. In December

2009 Comcast admitted no wrongdoing in its proposed settlement of up to 16 million

dollars and decided to appeal the FCC’s ruling with the US DC Court of Appeals to

protect its rights, claiming that the FCC’s decision was not based on any existing legal

standards. The Court of Appeals sided with Comcast in its April 7, 2010 decision,

pointing out that FCC has never been given by the Congress the authority to control

the Internet network management, and agreed that there were no legal grounds for

making Comcast stop its practice [105]. The court’s decision means that broadband

service providers are now free to manage their networks as they wish and this could

prompt more discrimination on the Internet.

Net neutrality was first proposed by Columbia Law School professor Tim Wu,

and is used to signify the idea that “maximally useful public information network

aspires to treat all content, sites and platforms equally” [7]. While a formal process for

the implementation of the principle does not exist, net neutrality usually means that

broadband service providers charge consumers only once for the Internet access and

do not favor one content provider over another, and do not charge content providers

for sending varying amounts of information over broadband lines to end users [106].

Simply put, the network neutrality principle is that all Internet traffic should be

treated equally, a philosophy which network neutrality proponents (online content

providers like Google, Microsoft and others) claim would preserve the principles on

which the Internet was founded. Tim Berners-Lee, the founder of the World Wide
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Web, also favors keeping net neutrality in place, since “the Internet is the basis of a

fair competitive market economy” [107].

However, Broadband service providers like at&t, Verizon, and Comcast, among

others, view net neutrality as being unfair to: (a) broadband service providers them-

selves and (b) light network users (compared to heavy users with the same access

charge). Opponents also believe that prioritization of bandwidth is necessary for

future innovation on the Internet [108]. The broadband service providers argue it is

the service providers who have put their resources which they have to maintain and

upgrade for their customers. They also argue that heavy-duty users and popular con-

tent providers (like Google, Skype) get a relatively “free ride” on their network which

costs billions of dollars to build [109]. Lack of additional sources of revenue might

act as a disincentive for broadband service providers to upgrade their infrastructure

which, in turn, will affect the service providers’ plans of increasing capacities. Fur-

ther, it is estimated that 80% of Internet traffic is caused by 5% of the user population.

This 5% is causing all the traffic using P2P applications such as BitTorrent which is

optimized, in many cases, to hog bandwidth. In order to keep network traffic flowing

for all consumers, broadband service providers argue it is reasonable for them to use

network traffic management practices to slow down P2P application performances.

Broadband service providers claim that, under net neutrality, the incentive to

expand the capacity and the capabilities of the existing infrastructure for the next

generation of broadband services is much lower compared to the case when they are

allowed to charge the online content providers for preferential treatment. Study [110],

however, shows that the incentive for the broadband service provider to expand under

net neutrality is unambiguously higher than under the no net neutrality regime. This

is against the assertion of the broadband service providers that under net neutrality,

they have limited incentive to expand. Results presented in [111] also indicate that

non net neutrality networks are not always more favorable in terms of social welfare

compared to net neutrality networks.

Although it seems reasonable for broadband service providers to choke certain

applications which overwhelm the network in order for traffic flowing for everyone,

people are afraid that broadband service providers will slow down or even block

services and applications, they consider undesirable, freely. Especially under the

situation that broadband and content providers are merging and turning to digital

content distribution (e.g., Comcast bought NBC Universal on Jan, 2010), without net

neutrality, as Lawrence Lessig and Robert W. McChesney said, the Internet would
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start to look like cable TV: A handful of massive companies would controlling access

and distribution of content, deciding what you get to see and how much it would

cost [112]. In this chapter, we propose a solution for broadband service providers to

control network congestion and maintain fairness among all consumers [113].

We propose the concept of inter-user compensations among users based on their

usage of network resource. Users consuming less network resource will receive com-

pensations from other users. One notable characteristic of this scheme is that the

algebraic sum of all inter-user compensations is equal to zero which means that no

inter-user compensations are lost. While compensations are among the users, broad-

band service providers’ revenue are not affected by this scheme. In other words,

broadband service providers’ revenue remains constant under this model. We view

this characteristic as being important since the network users would see such a mech-

anism positively in as much as the network provider does not take advantage of them

by increasing its own profitability.

In this chapter, we assume that all users are responsible for the cost of the network

and we model this cost sharing problem as a cooperative game. The cost share asso-

ciated with each user corresponds to its Shapley Value of the cooperative game. We

consider that the total cost of a coalition as the network resource required to maintain

the desired QoS for the traffic in the coalition. The inter-user compensations are estab-

lished based on the difference between their cost share and the actual price they pay by

way of access fees to the broadband service provider. The broadband service provider

can use a scale parameter to these inter-user compensations. During the peak period,

the broadband service providers can increase these inter-user compensations to reg-

ulate the heavy users so as to control network congestion; otherwise, the broadband

service provider can reduce these inter-user compensations to keep the network load

at a desirable level. Another characteristic of this scheme is that the broadband service

providers control network congestion and maintain fairness among all users without

discriminatory treatment of any traffic flowing on the network. In other words, the

net neutrality is well-maintained.

The rest of chapter is organized as follows. In Section 7.1, we present the model.

The cooperative game and cost share are also studied in this section. Section 7.2

investigates the inter-user compensations scheme. We present an illustrative example

in Section 7.3. We also discuss the application of this mechanism. Section 7.4 captures

our conclusions.
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7.1 Problem Statement and the Model

The network is modeled as a queuing network with First in First out (FIFO) discipline.

Users in the network are denoted by a set as N = {1, ...,n}, and we use |N| to denote the

length of the set or the number of users in the network. The most prevalent pricing

scheme in communication networks is access-rate dependent flat-rate charge. For

example, Verizon offers DSL Internet service which includes a starter package ($19.99

per month for download speeds up to 1.0 Mbps); power package ($29.99 per month for

download speeds up to 3.0 Mbps) and turbo package ($39.99 per month for download

speeds up to 10.0 Mbps). To emphasize our inter-user compensations mechanism, we

further assume that all users choose the same package. Our mechanism can be easily

extended to multiple packets of service when we consider inter-user compensations

within the subscribers of each package.

Although all users pay the same amount to access the Internet, the traffic generated

by each user is different. We use the average arrival rate λi to denote user i’s traffic,

and all users’ traffic is assumed to follow Poisson distribution. The average delay

D is used as the predefined QoS objective which is agreed to by network users and

the network provider in their service level agreement (SLA). We also assume that the

packet lengths of all packets in the network are exponentially distributed with the

average packet length of 1
µ .

Based on [88], the aggregate traffic from a number of independent users with

Possion distribution still follows the Poissonian arrival discipline. We use λ to denote

the aggregate traffic arrival rate. To maintain the required QoS D as described in

the SLA, the required network resource c can be calculated using the M/M/1 queuing

model as follows:

D =
1

µc − λ
(7.1)

We can rewrite (7.1) as:

c =
1

Dµ
+
λ
µ

(7.2)

From (7.2), we can find the total resource required to support the QoS promised

by the network provider for the aggregate traffic λ. This problem of resource alloca-

tion among users generating varying levels of traffic can be modeled as a joint cost

allocation problem and we can use the Shapley Value to solve it.

The Shapley Value has been used as a method of joint-cost allocation instead of
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the traditional accounting allocation bases since the 1970s [114]. The Shapley Value

was introduced by Shapley in 1953 as a method for each player to assess the benefits

he would expect from playing a game. It consistently produces a unique allocation

that virtually all researchers consider fair and equitable. This method distributes the

total gain of cooperation based upon the assumption that the cost of a participant in

a coalition is determined by the incremental cost attributed to that participant in the

coalition. Since the order in which participants join a coalition affects the incremental

payoff produced, the Shapley Value considers all orderings equally likely and weights

them equally. This generates an allocation solution that impartial observers would

consider fair and desirable [62].

To show its application to the problem of equitably assigning joint cost among

individual users, the total network resource c as described in (7.2) among all users,

we first define the worth of a coalition function c(S). After that, we will compute the

Shapley value. The coalition function c(S) describes the required network resource

to maintain the QoS for users in the coalition S,S ⊆ N when the users in S share the

network resource together. By (7.2), we find:

c(S) =
1

Dµ
+

∑
i∈S λi

µ
(7.3)

The incremental network resource used by a user i ∈ N to the coalition S, i < S is:

c(S ∪ {i}) − c(S) =
λi

µ
(7.4)

From (7.2) and (7.4) together, we can see the economy of scale in sharing the

network resource: To maintain the average delay D, the incremental network resource

required λi
µ for user i if users in S ∪ {i} sharing the resource together is smaller than

the required network resource 1
Dµ + λi

µ when user i was to be allocated the network

resource individually.

The Shapley Value is defined as a weighted sum of the user’s marginal contribution

to all possible coalitions [84]. For all i ∈ N, the Shapley Value to user i is given by:

SVi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[c(S ∪ {i}) − c(S)] (7.5)

As shown before, the term c(S ∪ {i}) − c(S) calculates the incremental network

resource attributed to user i in the coalition S. This incremental resource allocation

occurs for exactly those orderings in which the participant i is preceded by |S| other
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players in S ∪ {i} and followed by |N| − |S| − 1 players not in |S|. This means there

are exactly |S|!(|N| − |S| − 1)! orderings of interest. |N|! determines the total number of

coalition permutations that can be created from the participants. Taken together, the

expression |S|!(|N|−|S|−1)!
|N|! is the weighting factor that assigns equal share of the marginal

contribution generated to each coalition of interest. The network resource consumed

by the user i is thus weighted and summed for all possible coalitions where i appears in

S. Thus, each user i is allocated a value equal to its expected incremental contribution

across all possible coalitions. We have thus developed the desirable network resource

share for each class by using the corresponding Shapley value.

Take (7.4) into (7.5), we get a more clear expression of network resource share for

each user:

SVi =
1

|N|Dµ
+
λi

µ
(7.6)

From (7.6), the network resource attributed to each user i depends on their usage

λi: the larger the λi, the more the network resource consumed by user i. In addition,

(7.6) also shows the economy of scale in the network resource consumption. For

example, if user j’s traffic is equal to λ j = 2 ∗ λi, the network resource share for user j,
is smaller than 2 ∗ SVi; that is SV j = 1

|N|Dµ +
λ j

µ <
2

|N|Dµ + 2∗λi
µ .

7.2 Inter-user Compensations Scheme

From Section 7.1, we find out how much network resource is consumed by each user

using the Shapley Value in a joint-cost allocation circumstance. In the beginning of

Section 7.1, we also stated that all users pay the same amount to access the network.

In order to solve the cross-subsidization between light and heavy users, we propose

an Inter-user compensations scheme. Besides the fairness between light users and

heavy users, broadband service providers can also use the inter-user compensations

scheme to control the behavior of heavy users to further control congestion in the

network, flatten the peak hours of usage, and thus maintain the QoS.

The rational behind the flat rate access is that all users are supposed to consume

the same amount of network resource. From (7.2), the total network resource required

to maintain average delay D for all users is:

c(N) =
1

Dµ
+

∑n
i=1 λi

µ
(7.7)

Therefore, each user is assumed to consume a network resource equal to c(N)
|N| , that
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is,

ĉ =
c(N)
|N|

=
1

|N|Dµ
+

∑n
i=1 λi

|N|µ
(7.8)

Further, we define the inter-user compensation ti as the difference between actual

network resource it consumed, SVi and its allocated resource consumption ĉ:

ti = k ∗ (SVi − ĉ) = k ∗
|N| ∗ λi −

∑n
j=1 λ j

|N|µ
(7.9)

where k is a scale parameter discussed below.

Equation (7.9) shows that when SVi ≥ ĉ, user i consumed more network resource

than it paid for the service and therefore it will compensate others by an amount

equal to ti. And when SVi ≤ ĉ, user i consumed less network resource than it paid for

the service and therefore it will receive a compensation equal to ti from others. The

scale parameter k is used to to control the inter-compensation dynamically to further

control network congestion. For example, when total traffic on the network is heavy,

the broadband service provider can increase k to increase the compensation heavy

users give to light users in order to control heavy users’ usage. This mechanism

maintains fairness among users and solves the network congestion problem on an

equitable basis.

We can check the algebraic sum of inter-user compensations as follows:

n∑
i=1

= k ∗
n∑

i=1

(SVi − ĉ) = k ∗
n∑

i=1

|N| ∗ λi −
∑n

j=1 λ j

|N|µ
= 0 (7.10)

Equation (7.10) shows that sum of inter-user compensations is equal to zero and

no inter-user compensations are lost. Thus the inter-user compensation mechanism

is strictly among users. Broadband service providers use a scale parameter k to

control the actual amount by which the heavy users compensate the light users.

The circulation of the compensation is among the users only and the broadband

service provider is a neutral party in this mechanism. The proposed mechanism thus

guarantees the neutrality of the network. The broadband service provider’s revenue is

the same as before the proposed inter-user compensation mechanism was instituted.

The flat rate access fee remained unchanged.

When the required network resource c(N) to maintain the QoS is smaller than a

threshold cthreshold, the scale parameter k is set to 0. The threshold can be assumed as

a trigger for invoking the inter-user compensations mechanism. Broadband service
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providers can set this trigger point by observing the network traffic pattern. For ex-

ample, the threshold could be set at the point corresponding to the network utilization

of 0.5. When the total network load is low, the relatively heavy users should not be

punished for using the network resource, thus encouraging them to shift their load to

low usage periods.

When the required network resource c(N) to maintain the QoS exceeds the thresh-

old cthreshold, it signals the broadband service provider to control the heavy users’ usage

by setting the scale parameter k appropriately. We can assume k to be a function of

c(N), the larger the c(N), the larger the value of k. In considering setting the inter-

user compensation among users, the broadband service provider also needs to ensure

that the compensations light users receive should always be smaller than the price of

access.

7.3 An Example and Further Discussion

In this section, we first present a numerical example to show the inter-user compensa-

tion mechanism proposed in this chapter. Further, we discuss the application of this

mechanism in broadband networks.

We assume there are three users in the network and the QoS parameter D agreed

in the SLA is equal to 0.05s. The average length of packets in the network is equal to

1, that is 1
µ = 1. The average arrival for each user is: λ1 = 5;λ2 = 15;λ3 = 20. Based on

(7.7), the total network resource required to maintain average delay 0.05s is equal to:

c(1, 2, 3) =
1

Dµ
+
λ1 + λ2 + λ3

µ
= 60

The network resource share for each user can be calculated based on (7.6):

SV1 =
1

3 ∗Dµ
+
λ1

µ
= 11.67

SV2 =
1

3 ∗Dµ
+
λ2

µ
= 21.67

SV3 =
1

3 ∗Dµ
+
λ3

µ
= 26.66

Therefore, using (7.9) we can find the inter-user compensation as follows:

t1 = k ∗ (SV1 −
c(1, 2, 3)

3
) = −8.33 ∗ k

81



t2 = k ∗ (SV2 −
c(1, 2, 3)

3
) = 1.67 ∗ k

t3 = k ∗ (SV3 −
c(1, 2, 3)

3
) = 6.66 ∗ k

From the above, we find that user one will receive a compensation of 8.33 ∗k; while

users two and three will compensate user one by 1.67 ∗ k and 6.66 ∗ k respectively. The

total inter-user compensation is equal to 0.

When the total available network resource is large, let’s say the network capacity

is equal to 100, then network utilization at this moment is:

ρ =
λ1 + λ2 + λ3

µ ∗ 100
= 0.4

If the broadband network provider assume this network utilization is relatively

low, then they can set k = 0 without deterring more traffic from entering the network

and penalizing heavy users when such users don’t cause congestion.

However, if the network capacity is equal to 50, the network utilization becomes:

ρ =
λ1 + λ2 + λ3

µ ∗ 50
= 0.8

In this case, the broadband service provider will chose k (which is no longer zero)

appropriately in order to restrain the usage of users two and three so as to reduce the

network utilization to a desirable level.

One reason that Comcast argued in its appeal to FCC’s ruling with the US DC

Court of Appeals is that Comcast does not target traffic from specific applications.

Instead it begins to throttle traffic from heavy users. However, this also violates

the philosophy of net neutrality since all Internet traffic should be treated equally

by the neutral network. The proposed inter-user compensation scheme proposes an

acceptable economic concept to manage the network without trying to target any

specific entity within the network.

Since, in the proposed scheme, the broadband service provider is neutral and the

compensations are circulated among users, this mechanism should be much more

acceptable by the users as the traffic management scheme. It will also appeal to

broadband service providers. The service provider can set up the threshold point

and also the actual amount that the heavy users will pay light users. The service

provider can be guided by the traffic pattern on the network and its own strategy

to manage the network. For example, the service provider can trigger the inter-user
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compensations early but the compensations can be relatively small, or trigger the

inter-user compensations late with relatively larger amounts.

Implementation of this mechanism will inevitably add more work to the network

management system. However, from (7.9), the computational complexity of finding

the inter-user compensation is linear and it should be acceptable by the broadband

service provider.

7.4 Chapter Summary

In this chapter, we have proposed an inter-user compensations mechanism for a

broadband service provider to manage the network traffic while maintaining the

philosophy of net neutrality. Users consuming less network resource will receive

compensation from heavy users. All these compensations are among users only and

the broadband service provider keeps neutral in the process. The computational

complexity of calculating the inter-user compensations is linear and this mechanism

should be acceptable for the broadband service provider’s management system. The

broadband service provider’s revenue remains constant. The proposed mechanism

discourages heavy users during peak periods thus flattening the network usage.
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CHAPTER 8

A Constant Revenue Model for Packet Switched Network

The Quality of Service (QoS) offered by a Packet switched networks is characterized

by delay experienced by a packet as it transitions through the network. Such char-

acterization is always on a statistical basis that typifies the macro behavior of the

network to incident traffic. As is well known, unlike circuit switched networks where

all blocked calls are lost (and therefore characterized by the probability of blocking),

packet switched networks are characterized by their delay behaviour. The delay rises

rapidly as the level of average traffic load increases, making the network unstable

as the utilization of the network increases beyond, say, 80%. A wide variety of tech-

niques including Integrated Services, Differentiated Services and Multi-Protocol Label

Switching has been proposed and/or implemented in network to provide quality of

service (QoS).

This chapter proposes another approach to QoS by implementing a differentiated

pricing scheme by classifying customers into priority or non-priority groups. The

priority customers continue to be offered a higher QoS than the nonpriority customers.

Priority customers would pay a higher price for this privilege. Two pricing schemes

are considered. In both the cases considered, the higher priority services receive a

statistically guaranteed QoS while the lower priced services receive varying levels of

service. The pricing for the higher priority services varies depending upon the total

incident traffic and the fraction of customers choosing the higher priority service. The

two cases are differentiated depending on whether the pricing for the lower priced

service is kept fixed, or there is variable pricing for both the higher and lower priced

services.

A fundamental assumption in developing the pricing scheme for both the pricing

schemes is that the gross revenue of the network is kept constant while the network

is operating within a predefined range. As described in Chapter 7, we offer two

reasons for making this assumption. First, the clients of the network would view such

a pricing mechanism positively in as much as the network does not take advantage

of a high demand by increasing its own profitability. Second the cost associated

with a telecommunications network is largely fixed and independent of the level

of traffic requesting service. (This characteristic is quite unlike other distribution

networks such as the power grid where the largest cost component, namely fuel, can
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be adjusted depending on demand.) With a constant level of cost, it makes sense to

keep the revenue constant, targeting the profit to a fixed value consistent with realities

of a competitive marketplace.

As discussed, the approach we propose in this chapter aims to keep the revenue

for the network provider constant. Reference [115] has presented an approach similar

to ours but directed to a circuit switched environment. The approach taken in this

chapter addresses the packet switched environment. The remainder of the chapter is

organized as follows. Section 8.1 presents a network model on which the proposed

two pricing schemes are based. Section 8.2 presents details of the pricing strategy

proposed. Section 8.3 presents results of the analysis and an illustrative example

using the proposed model. Section 8.4 captures out conclusion.

8.1 Problem Statements and the Model

The network model proposed in this chapter is depicted in Fig. 8.1 The packet-

switched network is represented by a single communication server with a defined

capacity. An M/M/1 traffic model is assumed. The average packet arrival rate is

denoted by λ. We assume the capacity of the communications server to be C and the

average length of the packets 1
µ .

Incident 

Traffic 

),( µλ

Served 

Traffic  

λµ −
=
C

T
1

Figure 8.1: Network model in chapter 8
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Based on above network model, Fig. 8.2 shows the relationship between the mean

delay and the incident traffic as a function of the utilization factor. Fig. 8.2 assumes

the network parameters to be: C = 250, µ = 1.

Figure 8.2: Average delay vs. network utilization

As we can see from Fig. 8.2, the average delay increases rapidly when the network

utilization exceeds its design limit. For most applications in practice, the network

utilization is rarely allowed to exceed 0.8 because of the risk of indefinite queue

build up and the resultant instability. Since no common user network can maintain

a predefined QoS and avoid the negative impact of congestion as the traffic increases

indefinitely, its important to institute and manage a process that will control traffic.

There are multiple ways of accomplishing it. One way to avoid congestion is to simply

not accept new traffic while the network is in or tending toward a state of congestion.

The other way is to institute a differentiated pricing mechanism such that users are

motivated to control the originating traffic on their own based on the needs of the

application and their willingness to pay.

We adopt the latter approach in this chapter and, except under a very low or high

level traffic, have the network offer two tiers of service. The point at which the dif-

ferentiated services are introduced is indicated as point A in Fig. 8.2. A differentiated

pricing scheme introduced prior to the network reaching a traffic level corresponding

to point A will not accomplish its objective because the delay experienced by a packet
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will be only fractionally above the minimum possible delay. A mature network, in

general, will be operating well past point A. Fig. 8.2 assumes, somewhat arbitrarily,

that point A corresponds to a level of utilization equal to 0.3. The two-tier pricing

scheme is introduced at this point.

Admission control is introduced at point B when the network cannot provide the

guaranteed QoS to higher priority service if all the customers chose this service and

have the willingness to pay the higher price. At this point, the average delay for the

non-priority traffic would become indefinitely large. Fig. 8.2 assumes that the average

delay guaranteed for the priority traffic within the operating range of the network is

0.012 seconds which we assume to be a fair value based on ITU recommendation for

interactive stream applications [116].

Beyond the point A, customers have the option to choose priority service with

guaranteed end to end average delay, or non-priority service on a best effort basis. We

use q as the parameter representing the fraction of traffic that chooses priority. Fig. 8.3

illustrates that when the level of traffic reaches point A, the network introduces the

priority and nonpriority services as mentioned earlier. As shown in this figure, q ∗ λ
traffic chooses priority service and (1 − q) ∗ λ traffic chooses non-priority service.

Priority Service

Non-Priority  
Service 

),( µλ

),( µλq

),)1(( µλq−

Guaranteed 

Delay 

Served non -
priority traffic

Served priority 

traffic

 Best Effort Basis

)( PC

)( npC

CCC npp =+

Figure 8.3: Priority and non-priority services in the operating region
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8.2 Pricing Strategies

As stated in the beginning of this chapter, two pricing strategies are introduced in this

chapter. The common factor associated with each of the strategies is that the overall

revenue of the network remains constant.

8.2.1 Delay Analysis

In order to provide priority and non-priority services in the network, the network

capacity C is divided into two groups, Cp serving the priority traffic and Cnp serving

the non priority traffic. Obviously, we have:

C = Cp + Cnp (8.1)

We already know that q is the fraction of traffic choosing the priority service. In

order to keep the average delay for priority traffic as D, Cp can be evaluated from,

D =
1

µCp − qλ
(8.2)

The average delay for non-priority traffic T is:

T =
1

µCnp − (1 − q)λ
(8.3)

Using Equation (8.1), (8.2) and (8.3), we get:

T =
1

µC − λ − 1/D
(8.4)

An interesting observation from the Equation 8.4 is that the average delay T of

non-priority traffic is independent of q.

To keep the total revenue constant at R, different prices need to be charged to

priority and non-priority traffic, respectively. In following sections, we use P1p and

P1np to denote prices charged for priority traffic and non-priority traffic in pricing

strategy 1, while we use P2p and P2np to indicate prices charged for priority traffic and

non-priority traffic in pricing strategy 2.
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8.2.2 Pricing Strategy 1: Pricing Based on Resource Consumption by the Respec-
tive Service Categories

In this section, prices for priority traffic (P1p) and non-priority traffic (P1np) are cal-

culated dynamically based on their relative consumption the network resource. We,

therefore, have,

P1p ∗ qλ =
R ∗ Cp

C
(8.5)

And we can rewrite it as:

P1p =
R ∗ Cp

C ∗ qλ
(8.6)

Similarly, for non-priority group, we have:

P1np ∗ (1 − q)λ =
R ∗ Cnp

C
(8.7)

And we can rewrite it as:

P1np =
R ∗ Cnp

C ∗ (1 − q)λ
(8.8)

As can be seen from Equations (8.6) and (8.8), the total revenue generated by the

two service classes is constant at R, while the contribution made by each of the two

service classes is equal to their respective traffic volumes multiplied by the respective

prices. Additionally, for fairness in pricing, we must have the following inequality

satisfied,

P1p > P1np (8.9)

within the operating region of the network.

8.2.3 Pricing Strategy 2: Constant Non-priority Service Price

In the second pricing strategy, price for the non-priority service is kept constant at a

certain level (P2np), while the price for the priority service (P2p) is calculated based on

P2np, the parameter q and the overall revenue for network provider R.

The non-priority service price (P2np) is computed at point B since this is the point

at which the network is operating most efficiently. We have earlier defined the point

A somewhat arbitrarily. Point B at which the network must institute an admission

control mechanism to prevent the network from going into congestion can be defined

89



with a higher degree of specificity. We define it as the point beyond which the

network can no longer provide the guaranteed QoS to the higher priority service if all

the customers chose this service and were willing to pay the higher price associated

with the service.

We use λB to denote the arrival rate at point B, and qB to represent the percentage of

traffic choosing priority service at point B. We can then calculate the price for priority

service P1pB and non-priority service P1npB based on pricing strategy 1, developed in

Section 8.2.2. We use this P1npB as constant price for non-priority service. We thus

have,

P2np = P1npB (8.10)

P2p ∗ q ∗ λ + P2np ∗ (1 − q) ∗ λ = R; and we can rewrite it as:

P2p =
R − P2np ∗ (1 − q) ∗ λ

q ∗ λ
(8.11)

Just as in strategy 1, since the price for non-priority service cannot exceed that of

the priority service, we must have,

P2p > P2np (8.12)

8.3 An Illustrative Example

This section presents a numerical example based on pricing schemes proposed in

Section 8.2. We will develop pricing and delay profiles against the traffic load λ and

the fraction of priority traffic q in operating region.

We choose the following parameter for the network: C = 250, µ = 1, the guaranteed

delay for priority traffic D as 0.012 seconds [116]. We further assume that the revenue

R for the network provider is 275 for a 10 percent profit to make it competitive in

telecommunications industry.

Fig. 8.4 presents the resulting delay for both priority and non-priority traffic against

traffic load with different q.

It can be observed from Fig. 8.4 that the priority traffic, as required by our assump-

tion, always has a constant end-to-end average delay regardless of the network load

and percentage of traffic choosing priority service within the operating region. For
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Figure 8.4: Delay against arrival rate with different percentages priority traffic

the non-priority traffic, the average delay increases as the arrival rate increases. As

shown in Equation (8.4), it can be observed that the average delay for non-priority

traffic is identical regardless of q for any given network load.

8.3.1 Results for Pricing Strategy 1

Fig. 8.5 presents the resulting prices for both priority and non-priority traffic based on

their network resource consumption while keeping the overall revenue constant. The

percentage of traffic choosing priority (q) is parameterized for two values, q = 0.25

and q = 0.45.

It can be seen from Fig. 8.5 that prices for both priority and non-priority traffic

decrease as the network traffic load increase. For a given arrival rate λ, the price

for the priority traffic decreases as q increases while the opposite is the case for non-

priority traffic. This phenomenon reflects the economy of scale with increasing traffic

for the priority and non-priority service categories. Fig. 8.4 and Fig. 8.5 indicate that

a service category is more attractive when more people choose it since the price for

that category will be lower with the same latency.
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Figure 8.5: Prices for priority and non-priority traffic based on pricing strategy 1

8.3.2 Results for Pricing Strategy 2

Fig. 8.6 presents the resulting prices for both priority and non-priority traffic based on

the constant price for non-priority traffic while keeping the overall revenue constant.

As stated in Section 8.2.3, the constant non-priority service price is computed at

point B and we further assume the percentage of traffic choosing priority service at

point B, qB = 0.1. Using Equation (8.8) we can calculate this constant price for non-

priority traffic (P2np) and the price for priority service (P2p) can be computed from

Equation (8.11). The percentage of traffic choosing priority (q) is parameterized as

0.25 and 0.45 as in the previous case.

As can be seen in Fig. 8.6, the price for the non-priority traffic is kept constant in

the operating region. The price for priority traffic decreases as the traffic increases.

At any given arrival rate, prices for the priority service are lower with higher q.

8.3.3 Discussion of Results

In pricing strategy 1, priority traffic has a constant guaranteed delay and varying

prices, while both delay and price for non-priority traffic are changing based on

relative resource consumption. In pricing strategy 2, priority traffic has fixed delay

and varied prices, while non-priority traffic has fixed price and varied average delay.
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Figure 8.6: Prices for priority and non-priority traffic based on pricing strategy 2

We found that the price for priority servicer is relative higher in pricing scheme

2 than in pricing scheme 1 given identical λ and q. For example, when λ = 90 and

q = 0.25, the price for priority service is nearly 5 in pricing scheme 1 and 8 in pricing

scheme 2. It also can be seen that pricing scheme 1 shows relatively little variation in

priority prices both as a function of varyingλ and q. The reason for above phenomenon

is that in pricing scheme 2, constant price for non-priority traffic calculation is at the

most efficient network operating point B. As a result that non-priority traffic is taking

advantage of priority traffic in pricing scheme 2 in operating region.

8.4 Chapter Summary

This chapter has presented a two-tier pricing schemes for instituting priority and non-

priority services in a packet switched network. The pricing schemes are such that the

network generates constant revenue even with varying load and varying fraction of

customers choosing priority and non-priority services. The first pricing scheme is

based on the two service classes being priced on the basis of their respective resource

consumption. The other scheme keeps the price for the non-priority service fixed in

the operating region.

As expected, prices for both priority and non-priority service classes decrease
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with increasing overall traffic, validating the economy of scale principle. Prices for

priority traffic decrease with increasing q and the opposite is the case for non-priority

traffic except for scheme 2 when the price for non-priority traffic is kept constant. We

assume pricing scheme 1 is a fairer method than pricing scheme 2 since the prices

calculated in scheme 1 depend on the network resource consumption, namely cost.

However, since there is strong public preference for a constant pricing scheme for

telecommunications services [117], the constant price for non-priority traffic is still

very attractive to customers.
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CHAPTER 9

A Two-step Quality of Service Provisioning in Multi-class Networks

In this chapter, we investigate the resource allocation issue in a multi-class DiffServ

network. The scalability and efficient network resource consumption of class-based

networks compared to flow based network architectures like IntServ [119] has been

clearly established. In a class-based network, IP flows are classified and aggregated

into different forwarding classes which provide different QoS services according to

the Service-Level-Agreement (SLA) between the network provider and the end user

class.

In a common user network, the overall network resource is generally not dedi-

cated to a single class or a certain user but shared by multiple classes and all users.

Uncontrolled consumption of network resources might result in lower profit for the

service provider and reduced satisfaction to users since it will lead to deteriorated

throughput and unacceptable level of delay. In order to maximize the network uti-

lization while guaranteeing service levels for different classes as described in SLAs,

bandwidth allocation and flow control should be enforced.

Since class-based network architecture is stateless from a per flow perspective,

flow control should be enforced on the edge of network and the network resource

should be allocated on a per-class basis in the network core. Reference [82] has

considered an edge router for metering, policing and shaping the incoming flows

before aggregation into a limited number of classes. Recently, there are increasing

numbers of responsible applications which are able to adjust their transmission rate

according to the network condition. Unlike [82], we assume all flows are responsible

flows in this chapter. Responsible flows have also been considered in [32, 120, 16]. The

well-known resource scheduling schemes used in the core network include priority

queuing (PQ), Weighted Round- robin (WRR) and Class-Based Queuing (CBQ) [121,

81]. However, these schedulers all keep a static service weight regardless of the actual

number of aggregations in each class. Although dynamic schedulers like Fair WRR

[82] have been proposed, the change of service weight is done somewhat arbitrarily

without explicit network performance objective.

In this chapter, we model the network resource allocation among different classes

(inter-class) as a centralized optimization problem to maximize the social welfare

which is defined as the sum of all user utilities. For flow control in each class (intra-
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class), we develop a distributed game theoretic framework to regulate the individual

flow behavior, where each flow competes for resources within the class to maximize

its own performance.

Modeling the network resource allocation as a centralized maximization social

benefit problem on the basis of the knowledge of user utility functions has been con-

sidered in [16, 38, 122]. The maximization approach used in [38] solves the resource

allocation problem in the context of network providing best-effort service. This chap-

ter considers the resource allocation problem in a multi-class network environment

where each class has an explicit QoS guarantee. In addition, unlike the utility func-

tion used in [38] which is only related to the transmission rate, we take not only the

transmission rate but also the QoS parameter into the consideration for defining the

utility function. In order to solve the scalability problem, when the number of sources

becomes large, [38] forms a distributed flow control algorithm using gradient ascent

algorithm from optimization theory. Our approach to the resource allocation mech-

anism does not suffer from the same scalability problem since the network provider

only supports a limited number of classes. And the intra-class flow control mechanism

is enforced separately using the Nash arbitration/bargaining framework.

The remainder of this chapter is organized as follows. Section 9.1 describes the

network structure considered in this chapter. In Section 9.2, we introduce a game

theoretic framework to control the flow behavior. For each class, Nash Arbitration

Scheme (NAS) is computed and the characteristics of flows are explored. Section 9.3

shows dynamic network resources allocation among different classes to maximize

social welfare while keeping the QoS in each class at a predefined value. Admission

control conditions are also discussed. Section 9.4 gives a numerical example of the

proposed flow control and resource allocation architecture and Section 9.5 captures

the conclusions of this chapter.

9.1 Problem Statements and the Model

We consider a packet switched network with m classes as shown in Fig. 9.1. The

network is modeled as a queuing network with First in First out (FIFO) discipline.

The network resource C is allocated among the m classes in order to maximize so-

cial benefits which will be discussed in Section 9.3. Within each class, ni users (or

flows) share the allocated Ci and compete to maximize their individual performance

objectives (defined later).
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Figure 9.1: Network model in chapter 9

Di is used as the predefined QoS objective for class i which is agreed to by class

i users and the network provider in their SLA. Ti is the actual QoS experienced by

class i flows. We denote a flow j in class i as f lowi j : λi j ≥ λi jm,Ti ≤ Di, where λi j

describes this flow’s transmission rate and λi jm is the minimum rate requirement. We

also assume the packet length of all flows is exponentially distributed with average

length equal to 1/µ. Obviously, we have the actual average delay Ti for class i as:

Ti =
1

µCi − λi
(9.1)

where λi =
∑n

j=1 λi j as the total traffic in class i.

Each flow is trying to maximize its performance objective, which is expressed as

power given by Kleinrock in [123]: The weighted throughput of the system divided

by the corresponding average delay in the system. We extend Kleinrock’s definition

to a multi-class situation. As a result, the power for flow j in class i is as follows:

Pi j =
λ
αi j

i j

Tβi j

i

(9.2)

where αi j, βi j are the sensitivity parameters for flow j in class i. αi j describes the flow’s

sensitivity to the transmission rate and βi j denotes the flow’s tolerance to delay. We

can see that if αi j ≥ βi j, the flow is more sensitive to transmission rate, or in another

word, insensitive to delay, and vice versa. Without loss of generality, we assume
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0 < αi j ≤ 1, 0 < βi j ≤ 1.

Normally, flows within the same class have the same QoS and minimum band-

width requirement and, in our following analysis, we further assume flows belonging

to the same class have identical sensitivity parameters and minimum transmission

rate, that is: αi = αi j, βi = βi j, λim = λi jm, i = 1, ...,m; j = 1, ...,ni.

9.2 Intra-class Flow Control

Within each class i, every flow competes for the limited allocated network resource Ci

and tries to maximize its power. From (9.1) and (9.2), we can derive a more explicit

description of power as follows,

Pi j(λi) = λ
αi j

i j ∗ (µCi −

ni∑
j=1

λi j)βi j (9.3)

As stated before, ni is used to denote the number of flows in class i and vector

λi = (λi1, λi2, ..., λini) is the transmission rate for each flow in class i. We can see from

(9.3) that the power of f lowi j (Pi j) not only depends on its own transmission rate λi j

but also on transmission rates of other flows in that class. Therefore, it is natural for

us to model this problem as a n-party game.

The Pareto optimal point is a globally efficient solution and has better or at least

equal payoff for each player than the Nash equilibrium point. We further assume

that this game is cooperative and the Pareto optimality can be found. Let a vector

λ∗i = (λ∗i1, λ
∗

i2, ..., λ
∗

ini
) be the transmission rate for each flow in class i under Pareto

optimality. By the definition of Pareto optimality [124], the condition,

Pi j(λ∗i ) ≤ Pi j(λ∗i + ∆), j = 1, ...,ni (9.4)

can not be met (∆ is a non-zero vector). It means that the Pareto optimality represents

global maximization and it is impossible to find another point which leads to better

payoff for at least one player without degrading the payoff to others.

In general, in a game with n players, the Pareto optimal points form an n − 1

dimensional hypersurface and it means that there are an infinite number of points

which are Pareto optimal. As we said before, an optimal network operation point

should be a Pareto optimal point. The question here is: Which of these infinite Pareto

optimal points should we choose to operate the network?
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One way to find suitable Pareto-optimal points for operation is by introducing

further criteria. When we consider network resource sharing, one of the natural

criteria is the notion of fairness. The notion of fairness is not well defined. There are

many different ways to express it like proportional fairness [38], max-min fairness

[125], etc. In this chapter, we use the axioms of the fairness from game theory as

the fairness criteria [126]. Nash arbitration scheme (NAS) which encapsulates the

requirements of yielding Pareto optimality as well as satisfying the axioms of fairness

is proposed in this section to find the suitable Pareto optimal point for each class.

Stefanescu et al [127] characterize the NAS as follows.

Let f j : X � R, j = 1, 2, ...,n be concave upper-bounded functions defined on X
which is a convex and compact subset of Rn and f (x) = ( f1(x), ..., fn(x)).

Let U = {u ∈ Rn : ∃ x ∈ X, s.t. f (x) ≥ u} and X(u) = {x ∈ X : f (x) ≥ u}, X0 = X(u0) the

subset of strategies that enable the users to achieve at least their initial performance.

Then the NAS is given by the point which maximizes the following unique func-

tion,

maximizex

∏
j=1,...,n

( f j(x) − u0
j ) (9.5)

From (9.3), Pi j(λi) is defined on (λi1, λi2, ..., λini) and the transmission rate of each

flow j in class i should be smaller than the service rate of each class i, µCi, therefore,

we have 0 ≤ λi j ≤ µCi, for j = 1, ...,ni. Thus, Pi j(λi) is defined on a convex and compact

subset of Rni .

Now, we take the partial derivation and second partial derivation of Pi j(λi) to check

its concavity and upper-bound characteristics.

∇λi j(Pi j(λi)) =

λ
αi j−1
i j (µCi −

ni∑
j=1

λi j)βi j−1[αi j(µCi −

ni∑
k=1,k, j

λik) − (αi j + βi j)λi j]

From above equation, we find that when λi j ≤
αi j(µCi−

∑ni
k=1,k, j λik)

αi j+βi j
,Pi j is monotonically

increasing with respect to λi j, and when λi j ≥
αi j(µCi−

∑ni
k=1,k, j λik)

αi j+βi j
,Pi j is monotonically

decreasing with respect to λi j. Therefore, we say that Pi j is upper-bounded at λi j =
αi j(µCi−

∑ni
k=1,k, j λik)

αi j+βi j
given the ni − 1 vector (λi1, ..., λi(k−1), λi(k+1), ...., λini).
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Now, let’s check the second partial derivation of Pi j(λi).

∇
2
λi j

(Pi j(λi)) = λ
αi j−2
i j (µCi −

ni∑
j=1

λi j)βi j−2[αi j(αi j − 1)(µCi −

ni∑
j=1

λi j)+

βi j(βi j − 1)(µCi −

ni∑
j=1

λi j) − αi jβi jλi j(µCi −

ni∑
j=1

λi j)]

From (9.1), we know (µCi −
∑ni

j=1 λi j) ≥ 0 since delay can not be negative. And we

already assumed in Section 9.1 that the sensitive parameters α and β are defined as,

0 < α ≤ 1 and 0 < β ≤ 1. From above equation, we conclude that ∇2
λi j

Pi j(λi) < 0 and

Pi j is a concave function on λi j.

We also assume that each user has an initial arrival rate 0 and now we are ready to

calculate the suitable Pareto optimal by solving the following maximization problem,

maximizeλi

∏
j=1,...,ni

(Pi j(λi)) (9.6)

which leads to:

∇λi j(
∏

j=1,...,ni

(Pi j(λi))) = 0, j = 1, ...,ni (9.7)

And (9.7) is equivalent to:

αi j(µCi −

ni∑
j=1

λi j) − λi j(
ni∑

j=1

βi j) = 0, j = 1, ...,ni (9.8)

From (9.8), we obtain a linear system of equations with a unique solution as follows,

λ∗i j =
µCiαi j∑ni

j=1(αi j + βi j)
(9.9)

Given the assumption in Section 9.1 that all flows within the same class have

identical QoS requirement, the transmission rate for each flow in class i under NAS

therefore is:

λ∗i1 = λ∗i2 = ... = λ∗ini
=

µCi

ni(1 +
βi
αi

)
(9.10)

The actual system delay experienced by each flow can be calculated using (9.1):

Ti =
1 + αi

βi

µCi
(9.11)
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Equation (9.10) shows that under NAS, each flow has identical transmission rate.

In the definition of Power in Section 9.1, αi and βi are related to the QoS requirements

for each class. Equation (9.11) further exemplifies this statement in a way that the

parameter Ti is dependent on αi
βi

with a given class resource Ci. From (9.11), we also

find that the equilibrium Ti does not degrade by the increasing number of flows in

the class. Therefore, we can use βi
αi

as a QoS indicator of class i. The bigger βi
αi

is, the

smaller Ti becomes and the better QoS class i gets.

Under the game theoretic flow control framework described in this section, the

QoS of each class can be maintained no matter how many flows reside in them. With

this property, a fair and efficient inter-class resource allocation mechanism among

different classes is proposed in Section 9.3.

9.3 Inter-class Resource Allocation

The network resource is allocated dynamically among classes based on the network

situation to maximize the social benefit. Social benefit is the sum of the utility functions

of each user. The most well-known utility function as proposed by Kelly [38] has the

form Ui j = wi jlogλi j, where wi j is user’s willingness to pay and λi j is the transmission

rate.

In this chapter, we define a new utility function as follows:

Ui j =
βi

αi
logλi j (9.12)

Equation (9.12) describes that the utility’s relation to the QoS indicator βi
αi

and

the transmission rate λi j. This is consistent with the notion that the user’s utility is

proportional to the QoS and the logarithm of the transmission rate since the better the

QoS, the more utility the user gets. This utility function also fits into Kelly’s utility

function in a way that the better the QoS the more willingness to pay for the service.

The reason we use a logarithmic function lies in the marginal utility as a function of

transmission rate diminishing as the rate increases. This is consistent with [78].

In Section 9.2, we have shown that under NAS in each class, each flow converges

to the identical flow rate. As a result, the sum of all flows’ utility function in each

class i can be given as:

101



Ui = ni
βi

αi
logλi j = ni

βi

αi
log

µCi

ni(1 +
βi
αi

)
(9.13)

As assumed in Section 9.1, there are m classes in the network, therefore the social

benefits maximization problem becomes:

maximizeci

m∑
i=1

ni
βi

αi
logλi j =

m∑
i=1

ni
βi

αi
log

µCi

ni(1 +
βi
αi

)
(9.14)

subject to the following constraints:

m∑
i=1

Ci ≤ C (9.15)

Ti =
1 + αi

βi

µCi
≤ Di, i = 1, ...,m (9.16)

λi =
µCi

1 +
βi
αi

≥ niλim, i = 1, ...,m (9.17)

Inequality (9.15) states that the resource allocated among all m classes subject to

the total available network resource C. Inequality (9.16) holds that for each class, the

average delay experienced should be smaller than the promised parameter in SLA. It

has been shown in Section 9.2 that, under NAS, each flow within the same class has

the same transmission rate and (9.17) is used to maintain minimum bandwidth for

each flow.

We simplify the constraints (9.16) and (9.17), then get:

Ci ≥
1 + αi

βi

µDi
, i = 1, ...,m

and

Ci ≥
ni(1 +

βi
αi

)λim

µ
, i = 1, ...,m

Thus, constraints (9.16) and (9.17) can be simplified as a single constraint as follows,

Ci ≥ Cim, i = 1, ...,m (9.18)

where Cim = max(
1+

αi
βi

µDi
,

ni(1+
βi
αi

)λim

µ ).
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When
∑m

i=1 Cim ≥ C, the network is oversubscribed and by no means can provide

the promised QoS and minimum bandwidth requirement for each flow as defined

in SLA, and therefore admission control has to be introduced. As a result, for the

admission control, we have:

m∑
i=1

Cim ≤ C (9.19)

It can be observed that the expression in (9.14) is a strictly concave function over

a closed and bounded set defined by (9.15) and (9.18). Therefore a unique maximum

always exists. We now use Lagrangian multipliers to append constraints to the

objective. Thus, we can rewrite it as:

maximizeCi

m∑
i=1

ni
βi

αi
log

µCi

ni(1 +
βi
αi

)
− γ0(

m∑
i=1

Ci − C) +

m∑
i=1

γi(Ci − Cim) (9.20)

The necessary and sufficient Karush-Kuhn-Tucker (KKT) [91] conditions applica-

ble to (9.20) are given by:
niβi

Ciαi
− γ0 + γi = 0 (9.21)

γ0(
m∑

i=1

Ci − C) = 0 (9.22)

γi(Ci − Cim) = 0, i = 1, ...,m (9.23)

We denote the optimum network resource allocation among m classes as (C∗1,C
∗

2, ...,C
∗

m).

This centralized network resource allocation mechanism doesn’t suffer from the

scalability problem for the reason that the network provider only needs to maintain

a limited number of classes of service and our resource allocation is made among

classes. Furthermore, since the utility function we used in this section is logarithmic,

the solution obtained has the proportionally fair property as shown by Kelly in [38].

Thus, the resource allocation state in this chapter is an efficient and fair mechanism

from both intra-class and inter-class perspectives. The intra-class resource allocation is

modeled as a multi-party game. Each flow tries to maximize its power in a distributed

way. On the NAS, each flow has identical fraction of network resources and the QoS

is not impacted by the number of flows in the class. The inter-class resource allocation
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is based on maximizing social benefits while allowing each class to maintain its QoS

and minimum bandwidth requirement.

We can now make some observations regarding the admission control in each

class.

In class i, when the allocated resource C∗i satisfies the following equation:

µC∗i
1 +

βi
αi

= niλim (9.24)

the admission control is considered to begin in this class. Equation (9.24) suggests

that using the KKT condition (9.23), C∗i − Cim = 0. And together with (9.18), we have:

T∗i =
1 + αi

βi

µC∗i
≤ Di (9.25)

From (9.11) and (9.24), the average delay for class i can be rewritten as:

T∗i =
αi

βiniλim
(9.26)

Equations (9.25) and (9.26) show that in class i, the flows will receive the lower

delay T∗i than the SLA agreed delay Di and T∗i decreases with increasing number of

flows in this class for the scale efficiency. Admission control is considered when

(9.24) is first satisfied because the network load is becoming heavy when (9.24) is

met. Another reason is that since T∗i is already lower than Di, decreasing T∗i is not as

valuable as the increasing the transmission rate for flows in other classes. Therefore,

this is the point at which admission control for that class needs to be introduced.

9.4 An Illustrative Example

This section presents a numerical example about the network resource allocation and

flow control mechanisms proposed in this chapter. We will develop the QoS of each

class and allocated bandwidth of each flow profile using the proposed mechanisms.

For simplicity, we assume the network has three different service classes (m = 3)

with the capacity C = 100. The service class 1 is supposed to support real time

gaming and the QoS parameter average delay defined in SLA as D1 = 0.04s; while

each flow within this class has the identical bandwidth to delay weighting factor
α1
β1

= 0.9 and minimum transmission rate requirement λ1m = 1.8. Interactive streaming

service will be carried in class 2; the delay and transmission rate requirement is
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9

Number of flows in Class 1 n1 = 6 n1 = 7 n1 = 8 n1 = 9 n1 = 10 n1 = 11 n1 = 12 n1 = 13 n1 = 14

Number of flows in Class 2 n2 = 5 n2 = 6 n2 = 7 n2 = 8 n2 = 9 n2 = 10 n2 = 11 n2 = 12 n2 = 13

Number of flows in Class 3 n3 = 4 n3 = 5 n2 = 6 n3 = 7 n3 = 8 n3 = 9 n3 = 10 n3 = 11 n3 = 12

Allocated resource for class 1 C1 = 48.0 C1 = 47.5 C1 = 47.5 C1 = 47.5 C1 = 47.5 C1 = 47.5 C1 = 47.5 C1 = 49.4 C1 = 53.2

Allocated resource for class 2 C2 = 32.8 C2 = 32.7 C2 = 32.2 C2 = 32.0 C2 = 31.8 C2 = 31.6 C2 = 31.5 C2 = 30.3 C2 = 29.8

Allocated resource for class 3 C3 = 19.2 C3 = 19.8 C3 = 20.3 C3 = 20.5 C3 = 20.7 C3 = 20.9 C3 = 21.0 C3 = 20.3 C3 = 17.0

Table 9.1: Network resource allocation under different network scenarios

as D2 = 0.1s, λ2m = 1.2, the bandwidth to delay sensitive parameter as α2
β2

= 1.1.

The service class 3 is designed to support non-interactive streaming service and has

following parameters: D3 = 0.3s, λ3m = 0.8, α3
β3

= 1.5. We also assume the average

length of packets in the network 1
µ = 1.

Table 9.1 shows the network resource allocation among the three classes using the

mechanisms proposed in this chapter under different network scenarios.

For example, in scenario 1 when there are 6 flows in class 1, 5 flows in class 2 and 4

flows in class 3, class 1 will be allocated with 48.0%, class 2 will be allocate with 32.8%

and class 3 with 19.2% of the network resource.
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Figure 9.2: Delay experienced by each class under different network scenarios

Under the network resource allocation shown in Table 9.1, using the flow control

mechanism described in Section 9.2, Fig. 9.2 describes the average delay curve of each

class under different network scenarios shown in Table 9.1 and Fig. 9.3 presents how

the flow transmission rate in each class changes with the increasing number of flows

in the network.
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Figure 9.3: Flow rate in each class under different network scenarios

As can be seen from Fig. 9.2, even as the average delay of each class changes,

they all satisfy the SLA QoS agreement; the average delay of class 1 is less than 0.04s;

the average delay of class 2 is less than 0.1s; the average delay for class 3 is less than

0.3s. In Fig. 9.3, it can be observed that although the flow rate of each class decreases

as the number of flows increases, they all satisfy the minimum transmission rate

requirement in each class. The minimum flow rate in class 1 is 1.8; minimum flow

rate in class 2 is 1.2 and minimum flow rate in class 3 is 0.8.

In Fig. 9.3, the flow rate for class 1 is kept at the minimum rate 1.8 in scenarios

8 and 9. In Fig. 9.2, we find that the average delay for class 1 in scenario 8 and 9 is

decreasing. This gives a signal to consider admission control in class 1 as described

in Section 9.3.

Fig. 9.3 also shows the proportionally fair transmission rate of the resource al-

location mechanisms described in this chapter. The network resources allocation

mechanism doesn’t favor any special class but allocates the resources in a way to

maximize the social benefits. For example, in scenario 1, the flow rate in class 1 is

3.8, flow rate in class 2 is 3.4 and flow rate is class 3 is 2.8. All these flow rates are

above their minimum requirement by different percentages and the network utility is

maximized.
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9.5 Chapter Summary

In this chapter, we have presented a two-step mechanism to provide QoS in the multi-

class network environment. The inter-class resource allocation problem is modeled as

a centralized optimization problem to maximize the sum of all users’ utilities where

we define the utility as a function of each user’s transmission rate and the QoS it

received. This centralized optimization doesn’t suffer from the scalability problem

since the network only needs to maintain a limited number of classes. We use a game

theoretic framework to control the optimal rate within each class leading to the NAS

expected in a distributed manner. As shown in Section 9.4, these mechanisms assure

the QoS for each flow as described in the SLA. Further, the resource allocation to each

flow results in maximizing the social benefits of the network.
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CHAPTER 10

Summary and Future Work

In this dissertation, we have discussed pricing issues in multi-class communication

networks. Our work can be summarized as follows:

Firstly, we have discussed desirable subsidy-free prices for each class of service in

multi-class, priority-based networks. We have presented rules for assigning positions

for each class in the queue and classes of packets with lower priorities and longer

average waiting times receiving compensation from others. Price differences among

various classes are developed based on inter-class compensations.

Secondly, we have discussed desirable subsidy-free prices for each class of service

in class-based DiffServ networks. We have presented rules for allocating network

resources to each class. Classes of packets that allocated less network resource and

longer average delays receive monetary compensations from others. The inter-class

price differential is determined by the inter-class compensations.

Thirdly, we have considered the market-clearing prices in multi-class DiffServ

networks. We have proved that the market-clearing price always exists and both indi-

vidual optimality and socio-economic efficiency are achieved simultaneously under

this pricing scheme. Further, we have discussed how to adjust each user’s initial

budget to meet his or her bandwidth constraint.

Fourthly, we have provided a solution for network providers to manage the net-

work without violating net neutrality based on inter-user compensations. Users

consuming less network resource receive compensation from heavy users of network

resources. Broadband access providers can use such inter-user compensation to shape

the traffic characteristics of users without inflicting discriminatory treatment on net-

work traffic.

All the above methods are proved to be economically efficient, and we believe these

pricing methods can help network providers manage network traffic more effectively.

10.1 Directions for Future Work

Our work can be extended in several directions.

1. Extensions to multi-provider market. In this dissertation, we assume that
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there exist only one service provider in the market. We would like to relax

this assumption by considering multi-provider market scenarios. By doing this

we will use game theory to simulate the competition among different network

providers.

2. Advanced market clearing prices for each class of service. In Chapter 6, we

prove that there exist a unique equilibrium where demand of network resource

is equal to supply. One assumption in this chapter is that the network provider

already knows which classes of service each user requests. Such assumption

may not be practicable in reality beacuase it may be difficult for some network

providers to obtain such data. Nevertheless, these network providers may still

be able to estimate - from history record or survey - the probability distribution

of the user classes of service requests. We plan to develop a stochastic version

on the market clearing prices for each class of service.

3. In depth experimental investigation with various utility and cost functions.
Our methods in this dissertation apply to any kinds of utility and cost functions.

However, the effects of our methods may vary with the definition of the utility

or cost functions. We would like to look for alternative utility and cost functions,

and perform in-depth study on the impact of these functions using the methods

in the disseration.
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