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Chapter 1 Introduction 

1.1 Background 

Reliable quantitative information on the spatial and temporal distribution of 

precipitation is essential for hydrologic and climatic applications, which range from 

real-time flood forecasting to evaluation of regional and global atmospheric model 

simulations. Therefore, accurate measurement of precipitation at a range of spatial and 

temporal resolutions is invaluable for a variety of scientific applications. However, 

accurately measuring precipitation has been a challenge to the research community 

predominantly because of its high variability in space and time. There are primarily 

three major types of techniques of precipitation measurement: (1) surface-based in-situ 

precipitation gauges, (2) weather radars, and (3) space-based meteorological satellites.  

1.1.1 Gauges 

To measure the liquid rain, rain gauges provide perhaps the best available point 

measurements. A rain gauge collects rainfall directly in a small orifice and measures the 

water depth, weight, or volume. A various types of rain gauges have been developed 

such as weighing gauges, tipping-bucket gauges, distrometers, capacitance gauges, and 

others, among which, tipping-bucket gauges are mostly used for ground-based rainfall 

measurements by National Weather Service (Humphrey et al. 1997) and also used in 

rainfall processing of products from Next Generation Weather Radar (NEXRAD) radar 

systems (Young et al. 1999). The tipping bucket rain gauge networks around the globe 

are deployed to provide ground validation products for the Tropical Rainfall Measuring 

Mission (TRMM) satellite (Simpson et al. 1988). However, several studies showed that 

the gauge data are corrupted by both random and systematic errors (Sevruk and Lapin, 
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1993). The systematic error is the most significant source of error and includes losses 

due to wind, wetting, evaporation, and splashing. Also, rain gauges suffer from poor 

spatial coverage and lack areal representation over land, which becomes particularly 

problematic for intense rainfall with high spatial variability (Zawadzki 1975).  

Ground measurement for solid precipitation is more challenging. The World 

Meteorological Organization (WMO) conducted a comprehensive study of the accuracy, 

reliability, and repeatability of automatic solid precipitation measurement methods. The 

report highlighted a number of challenges, including blockage of the gauge orifice by 

snow capping the gauge or accumulating on the side of the orifice walls; undercatch of 

snow due to the formation of updrafts over the gauge orifice; the unknown role of 

turbulence on gauge catch; and the large variability in gauge catch efficiency for a given 

gauge and wind speed (Goodison et al. 1998). Measurement errors for solid 

precipitation frequently range from 20% to 50% (Rasmussen, et al. 2012), as big as the 

first-guess radar estimates.   

1.1.2 Ground Weather radar (single-pol, Dual-pol, MRMS) 

The development of weather radar after World War II has dramatically 

increased our ability of measuring high-resolution precipitation data in space and time. 

Weather radar has proven its value to the nation since the installation of the current 

Weather Surveillance Radar – 1988 Doppler (WSR-88D) network (NEXRAD). The U.S. 

NEXRAD network consists of 159 S-band (2.8 GHz) radars. The 10 cm wavelengths of 

S-band radar are much larger than the diameter of the droplets or ice particles, so the 

Rayleigh scattering occurs at this frequency. Shorter wavelengths are useful for smaller 
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particles, but the signal is more quickly attenuated. So a S-band radar is preferred but is 

more expensive than a 5-cm C-band radar and 3-cm X-band radar. 

In conventional rainfall estimation using single-polarimetric radar accuracy is 

often limited by frozen or partially frozen hydrometeors (e.g., hail, wet snow, graupel) 

as well as non-meteorological scatterers (e.g., ground clutter, birds, insects). 

Polarimetric weather radar can significantly improve QPE by identifying rain echoes 

from other hydrometeor types and as such is a very powerful tool for PR validation 

(Chandrasekar et al. 2008). Park et al. (2009) developed a polarimetric radar 

Hydrometeor Classification Algorithm (HCA) that discerns 10 different classes of radar 

echo: 1) ground clutter or anomalous propagation, 2) biological scatterers, 3) dry 

aggregated snow, 4) wet now, 5) crystals of various orientations, 6) graupel, 7) big 

drops, 8) light and moderate rain, 9) heavy rain, and 10) a mixture of rain and hail. The 

polarimetric HCA, which includes an automated detection of the bright band, also plays 

a fundamental role in the polarimetric QPE through a rainfall estimation scheme that 

varies according to hydrometeor type (Giangrande et al. 2008b). Polarimetric radar has 

also been used to observe winter storm events. Ibrahim (1998) present a comparison of 

polarimetric radar observations and in-situ 2D-video disdrometer observations in winter 

precipitation to study microphysical properties of snow. Trap et al, (2010) uses 

polarimetric radar to observe winter storms with both snow and mixed-phase 

precipitation in Oklahoma. Also in Oklahoma, Zhang et al, 2010 deployed a 2D video 

disdrometer to observe winter precipitation events and calculated polarimetric radar 

variables for comparison with a polarimetric weather radar data in Norman, Oklahoma 
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(KOUN). Polarimeric weather is becoming a powerful tool of frozen precipitation 

estimation. 

In Norman, Oklahoma, a project built upon data collected by the NEXRAD 

network is NOAA’s Multi-Radar/Multi-Sensor (MRMS) system (previous National 

mosaic QPE (NMQ) system), developed by researchers at the National Severe Storms 

Laboratory (NSSL) and the University of Oklahoma (OU). The MRMS system 

combines information from all ground-based radars comprising the National Weather 

Service’s NEXRAD network, mosaics reflectivity data onto a common 3D grid, 

estimates surface rainfall accumulations and types, and blends the estimates with 

collocated rain gauge networks to arrive at accurate, ground-based estimates of rainfall. 

Based on the significant research already performed on the ground-based MRMS data 

in regards to data quality (Lakshmanan et al. 2007), data mosaicking techniques (Zhang 

et al. 2005), rainfall estimation (Vasiloff et al. 2007), the system has been generating 

high-resolution national 3-D reflectivity mosaic grids (31 levels) and a suite of severe 

weather and QPE products at a 1-km horizontal resolution and 5-minute update cycle 

since June 2006 (Zhang et al. 2011). Since July 2013, the MRMS has accommodated 

the recent dual-polarization upgrade of NEXRAD radars. Currently, the MRMS data are 

disseminated across government agencies and universities in real-time and have been 

utilized in applications including data assimilation, Numerical Weather Prediction 

(NWP) model verification and aviation product development (e.g., icing severity). A 

web-based display and rain gauge-based validation system has also been built around 

the datasets and is freely accessible on the Internet (http://nmq.ou.edu). 
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Despite these recent advances, reliable ground-based precipitation 

measurements are difficult to obtain over all regions of the world, including many 

mountainous regions (e.g., Intermountain West of the US), due to the lack of adequate 

ground radar coverage from intervening terrain blockages (see Fig. 1.1). The limitations 

of rain gauges and weather radar systems highlight the attraction of space-based 

meteorological satellites to obtain seamless regional and global precipitation 

information from the vantage point for weather forecasting, modeling the hydrological 

cycle, and climate studies. 

Figure 1.1 Two-dimensional effective WSR-88D radar coverage at a constant 
height at 1km, 2km, and 3km Above Ground Level from left to right, respectively 
(from Maddox et al., 2002). 

 

1.1.3 Spaceborn Radar (TRMM, GPM) 

One of the main advantages of satellite QPE is their ability to provide 

information over areas where sparse or no in-situ observations are available such as in 

remote areas, mountainous regions, and the vast oceanic surface. The first 

meteorological satellite was launched in 1960 and since then a plethora of sensors have 

been developed and launched to observe the atmosphere (Gruber et al. 2008). 

The NASA Tropical Rainfall Measuring Mission (TRMM) was launched in 

1997. Onboard is the Precipitation Radar (PR), which is the first quantitative space-

borne weather radar dedicated to measuring tropical precipitation from space (Simpson 
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et al. 1998). The PR operating at Ku band (13.8 GHz) often suffers attenuation that is 

corrected by a combination of the surface reference and Hitschfeld-Bordan methods 

(Iguchi et al. 2000). Compared to horizontally scanning NEXRAD radars, TRMM-PR is 

much less impacted by mountain blockage and beam broadening effects in the vertical 

direction (Kummerow et al., 2000).   

Since the launch of TRMM, we have witnessed the unprecedented development 

of a number of high-resolution, space-borne quantitative precipitation estimates (QPE) 

with quasi-global coverage at sub-daily sampling frequencies (3-hour or half-hourly) 

and relatively high spatial resolutions (25 km or down to geostationary satellite pixel 

resolution, 4 km). These satellite-based, high-resolution precipitation products have 

been developed by combining information from the high-sampling geostationary 

infrared (IR), and the superior-quality data from the Low-Earth-Orbiting passive 

microwave (MW) and space-borne weather radar (Hsu et al. 1997; Sorooshian et al. 

2000; Kidd et al. 2003; Hong et al. 2004; Joyce et al. 2004; Turk and Miller 2005; Hong 

et al. 2007; Huffman et al. 2007). Benefited from the success of the TRMM program, 

Global Precipitation Measurement (GPM) spacecraft was launched in Feb. 2014. With a 

multi-satellite constellation, the GPM spacecraft carries a dual-frequency Phased Array 

Radar (Ku-Ka band) to provide measurements of 3-D precipitation structures and 

microphysical properties to serve as a space-based precipitation microphysics 

observatory for improved understanding of precipitation processes and retrieval 

algorithms (Petersen et al., 2008). However, verification and refinement of satellite 

precipitation retrievals requires ground-validation datasets. 



7 
 

Even though the internal and external calibration of spaceborne radars confirms 

that the PR/DPR functions properly and has good performance in quantitatively 

measuring the three-dimensional structure of precipitation (Kozu et al. 2001), cross 

validation with ground radars (GR) – in particular, those with polarimetric capability – 

is of vital importance to understanding spaceborne radar measurements and derived 

products.  

1.2 Objectives 

Accurately measuring precipitation at high spatiotemporal resolution over a 

large area has been a challenge to the research community predominantly because of its 

high variability in space and time. Ground weather radar with polarimetric capability 

can improve QPE by identifying different hydrometeor types and retrieving particle size 

distributions. Also, ground polarimetric radars provide a very powerful tool to validate 

PR measurements and derived products (Chandrasekar et al. 2008). 

Despite the recent advances of GR network such as the polarimetric upgrade, it 

is still difficult to obtain seamless coverage of ground QPE, particularly in the 

Intermountain West of the U.S. due to inadequate radar coverage from intervening 

terrain blockages (Maddox et al. 2002); thus, highlights the attraction of satellites 

(TRMM and GPM) to obtain regional and global precipitation information. To achieve 

the most possible accurate precipitation, the efforts are made to capitalize the ground- 

and space-based precipitation measurements.  

1.3 Outline of the Dissertation 

This dissertation consists of five Chapters: the first Chapter is the introductive 

Chapter which describes the problem and raises the objectives, Chapters 2 to 4 are the 
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three main Chapters followed by Chapter 5 which is an overall summary of this 

dissertation.  

Chapter 2 introduces ground-based polarimetric weather radar, which is 

arguably the most powerful validation tool that provides physical insight into the 

development and interpretation of space-borne weather radar algorithms and 

observations. This study aims to compare and resolve discrepancies in hydrometeor 

retrievals and reflectivity observations between the NOAA/National Severe Storm 

Laboratory (NSSL) “proof of concept” polarimetric WSR-88D radar (KOUN) and the 

space-borne precipitation radar (PR) onboard NASA’s Tropical Rainfall Measuring 

Mission (TRMM) platform. An intercomparison of PR and KOUN melting layer 

heights shows a high correlation coefficient of 0.88 with relative bias of 5.9%. A 

resolution volume matching technique is used to compare simultaneous TRMM PR and 

KOUN reflectivity observations. The comparisons reveal an overall bias <0.2% 

between PR and KOUN. The bias is hypothesized to be from non-Raleigh scattering 

effects and/or errors in attenuation correction procedures applied to Ku-band PR 

measurements. By comparing reflectivity with respect to different hydrometeor types 

(as determined by KOUN’s Hydrometeor Classification Algorithm), we find the bias is 

from echoes classified as rain/hail mixture, wet snow, graupel and heavy rain, 

respectively.  This Chapter also discusses the quantitative frozen precipitation 

estimation by polarimetric radars. The polarimetric signatures of snow provide valuable 

insights into its microphysical processes/properties and thus potentially improve radar 

snow estimation.   
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Chapter 3 proposes an approach that identifies and corrects for the vertical 

profile of reflectivity (VPR) by using Tropical Rainfall Measuring Mission (TRMM) 

precipitation radar (PR) measurements in the region of Arizona and southern California, 

where ground-based Next Generation Radars (NEXRAD) find difficulties in making 

reliable estimation of surface precipitation amounts due to complex terrain and limited 

radar coverage. A VPR Identification and Enhancement (VPR-IE) method based on the 

modeling of the vertical variations of the equivalent reflectivity factor using a 

physically-based parameterization is employed to obtain a representative VPR at S-band 

from the TRMM PR measurement at Ku-band. Then the representative VPR is 

convolved with ground radar beam sampling properties to compute apparent VPRs for 

enhancing NEXRAD Quantitative Precipitation Estimation (QPE). The VPR-IE 

methodology is evaluated with several stratiform precipitation events during the cold 

season and compared to two other statistically-based correction methods, i.e., TRMM 

PR-based rainfall calibration and a range ring-based adjustment scheme. The results 

show that the VPR-IE has the best overall performance and provides much more 

accurate surface rainfall estimates than the original ground-based radar QPE but limited 

to TRMM/PR observation availability. 

In Chapter 4 discussed how to implement the VPR-IE concept into the MRMS 

(previous NMQ) system in real-time. Climatological VPRs from 11 years of TRMM PR 

observations for different stratiform/convective rain types, seasons, and surface rain 

intensities have been characterized. Then, these representative profiles are used to 

adjust ground radar-based precipitation estimates in the NMQ system based on different 

precipitation structures. A comprehensive evaluation of the newly developed 
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Climatological VPR-IE (CVPR-IE) method is conducted on winter events (January, 

February, and December) in 2011. The statistical analysis reveals that the CVPR-IE 

method provides a clear improvement over the original radar QPE in the NMQ system 

for the study region. Compared to physically-based VPRs from real-time PR 

measurements, climatological VPRs have limitations in representing precipitation 

structure for individual events.  

The last Chapter is the overall summary and conclusions of all chapters. The 

prospects in the GPM era are also discussed.  

1.4 Hypotheses 

The following hypotheses are made in this dissertation: 

1. An intercomparison of PR and KOUN hydrometeor retrievals and 

reflectivity observations between the KOUN polarimetric WSR-88D 

radar and TRMM PR is conducted. The bias is hypothesized to be 

from non-Rayleigh scattering effects and/or errors in attenuation 

correction procedures applied to Ku-band PR measurements. This 

research motivates and invites synergistic development of 

multisensory rainfall algorithms using coordinated observations from 

space and ground. 

2. The intercept α in the power-law relation S = αZβ increases with 

height and decreasing temperature. The dynamic Z-S relationship is 

desired in quantitative frozen precipitation estimate. 
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3. Reliable ground-based precipitation measurements are difficult to 

obtain over all regions of the world, including many mountainous 

regions, due to the lack of adequate ground radar coverage from 

intervening terrain blockages. The physically-based VPR_IE method 

integrates TRMM/PR products (4-km precipitation quantity, types, 

and 250-meter VPR) into the NMQ ground-based rainfall estimation 

system to improve the precipitation estimation at surface. 

4. The temporal resolution of TRMM limits the application of VPR-IE 

method operationally. In order to implement the VPR-IE concept into 

the NMQ system in real-time, climatological VPRs from 11 years of 

TRMM PR observations are used to adjust ground radar-based 

precipitation estimates in the NMQ system based on different 

precipitation structure. The comprehensive evaluation of the method 

reveals that the method provides a clear improvement over the original 

ground radar QPE in the NMQ system. 
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Chapter 2 Ground Polarimetric Weather Radar 

Polarimetric weather radars have shown significant potential in contributing to 

the research fields of hydrometeor classification, remote sensing of storm microphysics, 

quantitative frozen precipitation estimation (Zhang et al, 2010). Polarimetric weather 

radar can significantly improve QPE by identifying rain echoes from other hydrometeor 

types and as such is a very powerful tool for PR validation (Chandrasekar et al. 2008). 

Park et al. (2009) developed a polarimetric radar Hydrometeor Classification Algorithm 

(HCA) that discerns 10 different classes of radar echo: 1) ground clutter or anomalous 

propagation, 2) biological scatterers, 3) dry aggregated snow, 4) wet now, 5) crystals of 

various orientations, 6) graupel, 7) big drops, 8) light and moderate rain, 9) heavy rain, 

and 10) a mixture of rain and hail. The polarimetric HCA, which includes an automated 

detection of the bright band, also plays a fundamental role in the polarimetric QPE 

through a rainfall estimation scheme that varies according to hydrometeor type 

(Giangrande et al. 2008b).   

The objective of this chapter is to illustrate the strengths of ground polarimetric 

radar as a powerful tool for PR validation and quantitative frozen precipitation estimates. 

The first part of this chapter was done in my Masters period.   

2.1 Cross validation statistic results 

2.1.1 Data 

In this study, we use the National Severe Storm Laboratory’s (NSSL) prototype 

polarimetric radar for the ongoing upgrade of the NEXRAD national network and 

NASA’s TRMM Precipitation Radar (PR). As research radar, KOUN has been 

collecting data on an event-by-event, non-continuous basis since 2002.  We identify 28 
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instances (events) that correspond to coincident overpasses by TRMM PR (Fig. 2.1) and 

then establish the following criteria for comparing data: 1) the maximum time 

discrepancy between TRMM PR and KOUN observations are less than 3 minutes; 2) 

TRMM PR and KOUN meteorological echo overlapping areas are larger than 5000 km2 

within 150 km of KOUN; and 3) KOUN data are collected in a conventional volume 

coverage pattern. Application of these criteria reduces the number of coincident 

overpasses to 20. The event descriptions and times are listed in Table 2.1.  Note that P1 

and P2 refer to the first and second coincident overpass on the same day. The sixth 

column lists a subjective quality control flag for each event. Comments supplied here 

mention details such that the TRMM overpass has no bright band detected during event 

10 because of intense convection lacking stratiform precipitation, but the reflectivity 

product has good quality. There are two additional cases (events 11 and 15) that have 

meteorological echoes located at far range from KOUN, which will yield greater 

uncertainty in the KOUN measurements.  
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Figure 2.1 Study region showing KOUN location and 50km, 100km and 150km 
range rings. 

 

Table 1. Description of events used in PR-KOUN comparisons. Times are in UTC. 
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2.1.2 Spaceborne Radar and Ground Radar Matching Methods 

Diverse approaches have been developed to match up PR and GR observations. 

These approaches can be divided into three categories: 1) comparing the maps of echoes 

and rain rates to calculate how much area of echoes PR lost (Schumacher and Houze 

2000), 2) resampling PR and GR data to a common 3-dimensional Cartesian grid 

centered on the GR site (Anagnostou et al. 2001; Bolen and Chandrasekar 2000; Liao 

and Meneghini 2009; Wang and Wolff 2009), and 3) matching PR and GR to the same 

resolution volume by determining the intersection of the individual PR and GR rays 

(Bolen and Chandrasekar 2003; Morris and Schwaller 2009). The resolution volume 

matching technique is the algorithm adopted for GPM Ground Validation System 

Validation Network (VN) Software available on NASA’s site 

(http://opensource.gsfc.nasa.gov/projects/GPM/index.php). Our study uses this software 

package for matching PR and KOUN reflectivity observations. We select each PR ray 

and KOUN ray within 150 km range from the KOUN site. By assuming standard 

atmospheric refraction, we calculate the height above ground where the PR ray 

intersects the KOUN rays. Also, we calculate the vertical beam width of KOUN and 

horizontal beam width of PR at this range. Within each PR-KOUN ray intersection, we 

average all PR bins but perform an inverse distance weighted average of the KOUN 

bins (see Fig. 2.2). Reflectivity data are averaged in linear units and then convert to dB. 

See Morris and Schwaller (2009) for additional details on the resolution volume 

matching technique between PR and GR.  
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Figure 2.2 Schematic of resolution volume matching technique of ground-based 
KOUN and space-borne TRMM Precipitation Radar (PR). The purple area shows 
the intersections between KOUN and PR sweeps. 

 

2.1.3 Cross-Validation indices 

We select four statistical indices for the evaluating TRMM PR observations 

using KOUN as the reference. The Pearson correlation coefficient (CC) is used to assess 

the agreement between PR and KOUN observations. Relative bias (Bias in %) is used to 

assess the systematic bias of PR observations. The mean absolute error (MAE) 

measures the average magnitude of the error. The root mean squared error (RMSE) also 

measures the average error magnitude but gives greater weight to the larger errors.  

MAE and RMSE are in units of km for melting layer height comparisons and in dB for 

reflectivity comparisons. 
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In (1) PR and KOUN represent the arithmetic mean of the PR and KOUN 

observations, respectively. 

2.1.4 Comparison Results  

a. Melting layer height comparisons 

Scattering properties detected by polarimetric radar enables the classification of 

echoes based on their inferred sizes, shapes, phases, and orientations. TRMM PR is 

capable of retrieving melting layer heights which can then be used to segregate 

precipitation into frozen, liquid, and mixed categories. Accurate depiction of the 

melting layer height or bright band is very important for accurate quantitative 

precipitation estimation, because reflectivity is known to be sensitive to large, wetted 

hydrometeors within this zone. PR bright band height data are directly extracted from 

TRMM product 2A23.  The melting layer heights are recorded as a function of latitude 

and longitude and then remapped to a 2D Cartesian grid having 2-km horizontal 

resolution. For KOUN, the approximate melting layer height for each event is computed 

by averaging the heights of all bins classified by the HCA as ‘wet snow’ (typical of 
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radar bright bands) for elevation angles 4⁰ ~ 10⁰	
  (Giangrande et al. 2008a; Park et al. 

2009).  The use of radar data exclusively from these higher elevation angles provides a 

more accurate estimate of the melting layer height than would be possible from data 

collected at lower elevation angles. These bins are stored in spherical coordinates 

centered on KOUN as a function of range, azimuth, and elevation angle.  The heights of 

the wet snow bins are then calculated assuming a 4/3 Earth radius model to account for 

standard beam refraction. Then, the spherical coordinates are remapped to the same 2D 

Cartesian grid containing the TRMM PR melting layer heights, thus enabling their 

intercomparison.  As such, we do not need to employ the 3D volume matching 

technique described in section 2b for melting layer heights. It is noted that event 10 is a 

Mesoscale Convective System (MCS) case with intensive convection but lacking an 

extensive stratiform region, so no bright band is detected from this event (as noted in 

Table 2.1). Melting layer height comparisons are thus made for the remaining 19 events. 

Figure 2.3 shows results from the melting layer height comparison. The colored 

data density scatter plot in Fig. 2.3a and the histograms in Fig. 2.3b indicate there is 

good overall agreement with a relative bias of 5.94% and correlation coefficient of 0.88.  

Both plots show there is more scatter with the KOUN-detected melting layer heights 

than from TRMM PR. The wider range of KOUN melting layer heights is caused by the 

relatively coarse vertical resolution from horizontally scanning platforms compared to 

the vertical scanning of TRMM PR, which has a height resolution of 0.25 km.  For 

KOUN, the vertical resolution depends on range and elevation angle of beams that 

intercept the melting layer.  We find that TRMM PR typically has a single value for 
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melting layer height within a nominal 2-km grid cell, whereas KOUN provides a range 

of heights due to radar beams increasing in altitude with range within the grid cell.  

 

 

Figure 2.3(a) Scatterplot with colored data density of KOUN and TRMM PR 
melting layer heights for 19 events. The correlation coefficient, bias ratio, MAE, 
RMSE, and sample size are shown in the embedded text.  (b) Histograms of KOUN 
and TRMM PR melting layer heights for data shown in Fig. 2.3a. 
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In order to assess a potential bias between the TRMM PR and KOUN melting 

layer heights, we compute event-averaged melting layer heights to minimize the 

impacts due to different scanning orientations. The majority of events shown in Fig. 

2.4a lie very close to the one-to-one line, although there are three events where TRMM 

melting layer heights are 1-1.5 km lower than that detected by KOUN. These points 

were associated with events 12, 18, and 19, which are all strong convective warm 

season events during the month of June (see Table 1).  In these events, the melting layer 

is hardly discernible with <12 data pairs. The histogram of the difference in TRMM PR 

and KOUN melting layer heights in Fig. 2.4b also shows the majority of points are 

close to 0-km difference, indicating very little to no bias in detected melting layer 

heights between the two instruments. In summary, the melting layer height comparison 

reveals differences that are primarily explained from sampling differences between the 

two instruments rather than systematic offsets that might have pointed to algorithmic 

errors.   
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Figure 2.4 Scatterplot of event-averaged melting layer heights from KOUN and 
TRMM PR. (b) Histogram of melting layer height difference of data shown in Fig. 
2.4a. 
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b. Reflectivity comparisons  

Using KOUN as a reference, reflectivity (Z) comparisons between the PR and 

KOUN can be used to assess the PR’s performance. For each event shown in Table 1, 

KOUN Z data are compared to a neighboring NEXRAD radar in Twin Lakes, OK, 

KTLX which is known to have a stable calibration to within 1 dB as shown in Ryzhkov 

et al. (2005) and Giangrande and Ryzhkov (2005).  KOUN differential reflectivity 

(ZDR) is also manually calibrated for each event to within 0.2 dB by examining dry 

aggregated snow above the melting layer at elevation angles between 4.5 and 6˚.  Here, 

the true or intrinsic ZDR is known to be approximately 0.3 dB.  Out of the 20 events 

shown in Table 1, we compare 18 events which all have sufficient overlapping areas of 

coincident data coverage. Fig. 2.5 shows the mean reflectivity bias for each event with 

95% confidence intervals provided as vertical error bars. Although the biases are within 

a 2 dB range, there are discrepancies that warrant additional investigation. 
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Figure 2.5 Reflectivity bias between PR and KOUN for each event. Event details 
are provided in Table 2.1. 

 

Figure 2.6 shows reflectivity comparisons between KOUN and TRMM PR 

subject to subsequently applied quality control procedures.  Figures 2.6a and 2.6b show 

a colored data density scatterplot and histograms for reflectivity data with no quality 

control. A major advantage of polarimetric radar is its capability of distinguishing non-

meteorological from meteorological echoes. Non-meteorological echoes identified by 

the HCA, which contaminate radar observations, have been removed from the KOUN 

and PR comparisons in Figs. 2.6c and d. Also, due to PR’s low sensitivity of 18 dB or 

lower (NASDA 1999), only Z >18 dBZ are used in comparing values in Figs. 2.6e and f. 
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Figure 2.6 Scatterplots with colored data density and histograms of KOUN and 
TRMM PR reflectivity.  (a) and (b) reflectivity and attenuation-corrected PR 
reflectivity with no additional quality control; (c) and (d) same as (a) and (b) but 
non-meteorological echoes based on KOUN’s hydrometeor classification algorithm 
(HCA) have been removed; (e) and (f) same as (c) and (d) but applied a 
minimum18 dBZ threshold. 

We can see substantial improvements in the reflectivity comparisons following 

the removal of non-meteorological echoes and application of the 18 dBZ threshold in 

the plots and statistics. The CC improves from 0.78 to 0.89 following removal of non-

meteorological echoes, while the RMSE decreases from 6.47 to 4.40 dB. In Fig. 2.6a, 
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there is a separate cluster of points for which KOUN shows values of Z from 55 to 70 

corresponding to a much larger range of PR Z values. These points are associated with 

non-meteorological KOUN echoes, most likely due to ground clutter. In Fig. 2.6c, this 

cluster has been effectively removed following application of the HCA, with only a few 

points left.  The histogram in Fig. 2.6d no longer contains the discrepancy in the 

occurrence of Z in the range of 55-70 dBZ.   

The best results are shown in Fig. 2.6e and f with both non-meteorological 

echoes removed and the 18-dBZ threshold applied. Although remaining differences are 

slight, about as small as can be expected between two independent remote-sensing 

instruments, it is possible that remaining discrepancies could be related to difficult-to-

discern random factors, such as spatial and temporal volume mismatches or non-

uniform beam-filling effects (NUBF).  It is also possible that the discrepancies may be 

due to systematic, non-random effects such as errors in the PR attenuation correction 

scheme and differences in backscattered radiation between PR and KOUN at 2.17- and 

10.7-cm wavelength, respectively (Bolen and Chandrasekar 2000; Liao and Meneghini 

2009; Schumacher and Houze 2000; Wang and Wolff 2009). These potential non-

random factors are elucidated in following section with the aid of HCA results. 

2.2 HCA analysis 

Non-Rayleigh scattering effects are significant for TRMM PR at a frequency of 

13.8 GHz. But for KOUN S-band radar, nearly all hydrometeors in our dataset satisfy 

the Rayleigh approximation. Due to different backscattering cross sections measured by 

the radars, PR Z can be up to 2 dB higher than KOUN for rain measurements in the 

range of 40-50 dBZ (Bolen and Chandrasekar 2000). However, other types of 
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hydrometeors (e.g., dry aggregated snow, wet snow, mixture of rain and hail) have 

different backscattering cross sections at Ku and S band potentially resulting in 

systematic discrepancies between PR and KOUN observations. 

The difference in Z at S and Ku bands for different hydrometeors is simulated 

and shown in Fig. 2.7. The radar reflectivity factor Z is given as 

 

Z = !!

!! !! ! N D σ!dD,
!
!              (2.5) 

where Kw=(m2-1)/(m2+2) and m is the complex refractive index of water 

(Doviak and Zrnic, 1993). We choose 0.93 for |Kw|2. N(D) is the particle size 

distribution, which is simulated by mono dispersion model using number concentration 

of 1/m3. The σb is the back scattering cross section of hydrometeors which is simulated 

using the T-matrix method (Waterman 1971, Vivekanandan et al. 1991) at different 

radar wavelengths λ. As seen in Fig. 2.7, Z values at Ku and S band are approximately 

equal for all hydrometeor types for Z < 30 dBZ, with the exception of wet snow, which 

has lower Z at Ku band. As Z increases above 30 dBZ, all hydrometeors except liquid 

water have lower reflectivity at Ku band because of non-Raleigh scattering effect. For 

liquid water, the simulated reflectivity gradually deviates for Z in the range of 40-50 

dBZ, which conforms to results shown in Bolen and Chandrasekar (2000). Beyond 50 

dBZ, the deviation becomes more severe.  Liao and Meneghini (2009) also show that 

PR underestimates in heavy rain.  
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Figure 2.7 Relationships between reflectivity factors at S and Ku bands for liquid 
water, hail and dry snow. Backscatter cross sections are simulated using T-matrix 
method at S and Ku bands, where reflectivity calculations assume a mono-
dispersed drop size distribution. 

 

The HCA discerns eight different classes of hydrometeors based on polarimetric 

characteristics of the radar echoes. The previous analysis indicates PR and KOUN 

retrieve comparable melting layer heights, thus we can confidently classify different 

hydrometeor classes exclusively based on the KOUN HCA. During the PR-KOUN 

volume matching procedure, we calculate the percentage of each hydrometeor class in 

each volume. The final hydrometeor class is assigned to a bin if a particular 

hydrometeor type has the highest percentage in a volume and the percentage exceeds 

50%. We then group all KOUN-PR reflectivity data with respect to the different 

hydrometeor types.  
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The reflectivity comparisons classified by different hydrometeor types are 

shown in Fig. 2.8. The scatterplots with colored data density and histograms for 

reflectivity in rain/hail mixture, wet snow, graupel, and heavy rain show they have an 

obvious negative bias at Ku band, which is in good qualitative agreement with 

simulated results shown in Fig. 2.7. The reflectivity comparison of light and moderate 

rain types (Figs. 2.8f1 and 2.8f2) also conforms to expectations shown in Fig. 2.7 with 

very little bias between Ku- and S-band reflectivity. However, for dry snow, 

simulations indicate PR Z should be less then KOUN especially for values of Z > 25 

dBZ. Figures 2.8g1 and 2.8g2 do not reveal this discrepancy in the observations with a 

relative bias of only 1.92%. Liao and Meneghini (2009) also show that simulated 

reflectivity at S band should be higher than at Ku band for snow by assuming the Gunn-

Marshall (1958) snow particle-size distribution with a snow density of 0.3 g cm-3. 

However, their quantitative bias for snow Z between S-band and Ku-band does not 

clearly agree with the expected bias shown in the simulation.  It is possible that 

assumptions used in the simulations such as the dry snow density and particle size 

distribution differ from observations, an area inviting future research. 
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Figure 2.8 Scatterplots with colored data density in the first column and 
histograms in the second column for reflectivity observed for different 
hydrometeors as determined from KOUN HCA: (row a) rain/hail mix, (row b) wet 
snow, (row c) graupel, (row d) heavy rain, (row e) big drops, (row f) moderate rain, 
and (row g) dry snow. 

A simple bar chart in Fig. 2.9 gives an overview of the PR reflectivity bias as a 

function of the different hydrometeor types. Rain/hail mixture, wet snow, graupel, 

heavy rain, and big drops show the largest negative biases, respectively, while moderate 
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rain observations are unbiased and dry snow indicates a positive PR bias. Differences in 

scattering between Ku and S band are the main reason to explain the discrepancies, as 

confirmed in the T-matrix simulations. Simulating multi-frequency reflectivity values 

for dry snow is an area inviting future research.   

 
Figure 2.9 Bias (%) of TRMM PR reflectivity observations relative to KOUN for 
different hydrometeor types as discriminated by the dual-polarization HCA 

 

A method to identify potential attenuation correction errors applied to TRMM 

PR reflectivity data is to compare vertical profiles of reflectivity from PR to KOUN, 

where KOUN is again the reference. A hybrid correction scheme combining the surface 

reference technique and the Hitschfeld and Bordan method is used in the PR attenuation 

correction (Iguchi et al. 2000). The magnitude of the correction increases with path 

length, thus it is informative to compare reflectivity profiles in the vertical, path-

integrated direction.  Figure 2.10 shows the profiles of 18 overpasses for convective, 

stratiform, and all rain types combined. The rain type classification is made exclusively 

according to PR observations, which is from the TRMM 2A23 product. To reveal the 
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magnitude of estimated attenuation losses, the PR measured reflectivity (Zm; 

uncorrected reflectivity from 1C21) is shown in the profiles along with corrected PR 

reflectivity (Zc; attenuation corrected reflectivity from 2A25) and the reference 

reflectivity from the KOUN ground radar (ZG). The profiles are computed at 9 vertical 

layers from 1.5 – 13.5 km with 1.5-km spacing for values of Z >18 dBZ.  As the path 

length increases from the top down in Fig. 2.10a, the gap between the Zm and Zc curves 

gradually increases which illustrates PR suffers significant attenuation losses. In 

comparing Zc to ZG in stratiform rain from 3 - 4.5 km, we see there is a large 

discrepancy in the presumed melting layer (Fig. 2.10b). The hydrometeors within the 

melting layer are primarily wet snow and from results shown in Fig. 2.9 we can see 

TRMM PR underestimates S-band reflectivity due to the effect of non-Rayleigh 

scattering. But at the lowest height of 1.5 km, Zc and ZG converge indicating the 

attenuation correction for stratiform rain performs well at the surface. The same 

convergence of Zc and ZG values is also noted in convective precipitation at the surface 

level. As shown in Fig. 2.10c for all rain types combined, due to mismatches in 

resolution volumes and/or different back scatter cross sections between PR and KOUN, 

the reflectivity profiles have slight discrepancies, but at the surface level the 

measurements agree quite well.  To summarize, our analysis shows close 

correspondence between corrected TRMM PR near-surface reflectivity observations 

and KOUN data, thus indicating no systematic biases were caused by the TRMM 

attenuation correction procedures. 
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Figure 2.10 Mean vertical reflectivity profiles for (a) convective, (b) stratiform, 
and (c) all rain types as determined by TRMM 2A23. ZG is reflectivity from 
KOUN, Zm is measured reflectivity from TRMM 1C21 with no attenuation 
correction, and Zc is attenuation-corrected TRMM 2A25. 

 

2.3 Snow estimation by ground polarimetric radar 

The polarimetric weather radar not only significantly improves quantitative 

liquid precipitation estimation, but also a potential powerful tool for frozen precipitation 

estimation. This section discusses estimation of Snow Water Equivalent (SWE) from 

the polarimetric weather radar measurements.   

2.3.1 Motivation 

Snow is a significant contributor to high-altitude/latitude regional water budgets, 

and thus is of critical importance to our society. Snow can also cause potentially 

hazardous driving conditions, and rapidly melting snowpack may result in flooding. 

Despite its importance, accurate estimation of snow remains challenging. Snow gauges 

are assumed to provide the ‘ground truth’ of snow measurements and the measurement 

errors are often ignored for automated systems; however, the measurement errors 

frequently range from 20% to 50% due to undercatch in windy conditions (Rasmussen, 
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et al. 2012). Snow Water Equivalent (SWE) measured at ground has significant errors 

and representative issues, perhaps as big as the first-guess radar estimates. 

For large-scale weather monitoring and climate studies, remote sensing of snow 

is highly desirable but is even more challenging. The installation of the current Weather 

Surveillance Radar – 1988 Doppler (WSR-88D) network (NEXRAD) has dramatically 

increased our ability to accurately estimate liquid precipitation data over large spatial 

domains. In conventional precipitation estimation radar reflectivity factor Z is directly 

related to the precipitation rate R. In general, liquid precipitation events are studied 

more thoroughly than frozen precipitation events. Dramatic variability in snowflake 

physical properties and scattering properties introduce high uncertainties in Z-Snowfall 

rate relations. The traditional Z-S relation derivation uses a single wavelength much 

longer than the snowflake particle sizes so that the scattering is within Rayleigh 

scattering region. And the traditional approaches can be roughly divided to two 

categories, one easier way is to directly relate radar reflectivity measurements to the 

observed snowfall rate from nearby snow gauges. Super and Holroyd, (1998) developed 

Snow Accumulation Algorithm (SAA) for WSR-88D radars dry snow measurements by 

comparing the snow gauge accumulation. The algorithm is an equation of Z=aSb. S is 

the liquid water equivalent (mm/h). Different a,b values are assigned along with a 

correction factor adjusting radar range-dependent errors. The other approach is linking 

Snowfall rate and radar reflectivity factor by considering snow Particle Size 

Distributions (PSD). Sekhon and Srivastava (1970) proposed a relation of Z and S by 

considering the measured snow PSDs. The Z-S relation the NMQ system adopts is 
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Z=75R2, which is from the “Guidance on selecting Z-R relationships” reported in Radar 

Operations Center (1999).  

 

 

 

Table 2. Summary of Z(S) relations for dry snow listed in literature and utilized by 
the WSR-88D network in the US. 
Source Z(S) relation for dry snow  

Gunn and Marshall 1958 Z = 448 S2 

Sekhon and Srivastava 1970 Z = 399 S2.21 

Ohtake and Henmi 1970 Z = 739 S1.7 

Puhakka 1975 Z = 235 S2 

Koistinen et al. 2003 Z = 400 S2 

Huang et al. 2010 Z = (106 – 305) S1.11 – 1.92 

Szyrmer and Zawadzki 2010 Z = 494 S1.44 

WSR-88D, Northeast Z = 120 S2 

WSR-88D, Great Lakes Z = 180 S2 

WSR-88D, North Plains / Upper Midwest Z = 180 S2 

WSR-88D, High Plains Z = 130 S2 

WSR-88D, Inter-mountain West Z = 40 S2 

WSR-88D, Sierra Nevada Z = 222 S2 

 

A variety of Z-S relations have been derived. Ryzhkov et al (2015), provides a 

table showing different Z-S relationships. Considering the complexity of snow habits, it 

is not surprising to have many significantly different Z-R relations from storm to storm. 

Generally, in Z=aSb , parameter b is relatively stable range around1.11~2, while 

parameter a has a dramatically large variation in value from 40 to 739. Large number of 
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studies ( e.g., Thurai et al., 2007; Zhang et al, 2011) have investigated the 

characteristics of the size distribution using polarimetric radars or dual frequency radar 

measurements.  

A dual (or triple) frequency approach is another way to improve radar retrievals. 

By comparing in situ observations and radar measurements, clear improvements are 

observed by using dual frequency techniques. Gosset and Sauvageot (1992) utilized a 

dual-wavelength method to differentiate supercooled water from ice by using a 

wavelength couple of 3.2 cm and 0.86 cm. By using concurrent 35- and 94- GHz radars 

located at Chilbolton, England, Holgan et al. (2000) measured crystal size in cirrus 

clouds and found that density is the most important uncertainty source. A lot of dual 

frequency approaches combine spaceborne radar sensors and ground based radar 

sensors to allow one frequency in Rayleigh regime (S, C, X band) and the other in the 

Mie regime( e.g. Ku, Ka in GPM, and W band in Cloudsat). 

Due to these dynamic factors, applying a single Z-S rate relationship to retrieve 

snow rate can result in large estimation errors. Since 2013 the NEXRAD network has 

been upgraded with dual-polarization technology. Compared to single–polarized radars, 

the polarimetric technology reduces fundamental and limiting errors in reflectivity-to-

precipitation rate conversion by accounting for hydrometeor phase (liquid, melting, or 

frozen) and changes in particle size distributions within individual storm systems and 

between meteorological regimes (Bringi and Chandrasekar, 2001; Ryzhkov, et al. 2005; 

Zhang et al. 2011). The polarimetric signatures of snow provide valuable insights into 

its microphysical processes/properties and thus can potentially improve radar snow 

estimation. To link the polarimetric radar signatures aloft and precipitation near the 
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surface, scans from the “Range-Height Indicator” can be used to show the vertical 

structure of a precipitation system but only in selected azimuthal directions. To 

represent the general structure of the precipitation system and reduce the noisiness of 

the key polarimetric variables ZDR, Phidp, and RhoHV, Kumjian et al. (2013) and 

Ryzhkov et al. (2013) suggest azimuthal averaging of polarimetric variables at high 

elevation angles to obtain the so-called high-resolution quasi-vertical profiles (QVPs) of 

polarimetric variables. 

Given both the limitations of snow measurements and the capabilities offered by 

polarimetric radars, we propose a novel snow retrieval method, which utilizes high 

polarimetric radar data at high elevation angles to estimate the liquid water equivalent 

of dry snow above the freezing level and then assumes that the rain rate near the surface 

is equal to the liquid water equivalent of dry snow aloft. This assumption based on 

hypothesis of the mass conservation (confirmed by Zhang et al. 2012) is appropriate for 

situations where depositional growth of snow above the melting layer or evaporation of 

rain below it is not significant. Our procedure is to minimize the difference between (i) 

the calculated snow water equivalent from the reflectivity measured by the WSR-88D 

ground radar and (ii) the measured hourly rain accumulation from rain gauges on 

ground. Moreover, we develop the Z-SWE relations for snow generated by different 

microphysical processes aided by polarimetric radar signals. 

2.3.4 Methodology 

a. Generate QVP of the polarimetric radar variables from selected events 

Long duration stratiform raining events with melting layers below (this assumes 

the surface precipitation liquid) 2.5 km will be selected. Sounding data will be used to 
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filter out events with low near-surface relative humidity in order to ensure the mass flux 

conservation assumption (i.e. limited evaporation) holds. The quasi-vertical profiles 

(QVPs) of the polarimetric radar variables used in this study are obtained by azimuthal 

averaging of the radar data collected during standard conical scans at antenna elevation 

angles at 19.5°. The high elevation ensures a high vertical resolution and minimizes 

radar beam broadening (Ryzhkov et al. 2015). Quality control of the polarimetric data 

will be performed before calculating the QVPs in order to remove non-meteorological 

radar echoes such as ground clutter, biological scattering, etc. All reflectivity 

measurements less than -10 dBZ are removed before averaging, also only correlation 

coefficient greater than 0.9 are calculated to generate QVPs. 

 

 

 Figure 2.11. Conical volume representing azimuthally averaged quasi-vertical 
profiles of polarimetric radar variables in the dry snow region. The radar 
variables will be related to rain gauge measurements on the ground to derive Z-
SWE relation. The parameters in Z-SWE relation will be constrained by dual-
polarimetric data and environmental variables obtained from sounding data or 
other remote sensors. 
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b. Calibrate the Z-SWE relationship 

As discussed above, in Z-SWE relation, S=αZβ, β value is relatively stable, 

around 0.64. So we fix β as 0.64 and calibrate α value. The parameter α is calibrated to 

minimize the difference between calculated SWE from the radar reflectivity and the 

matched rain gauge measurements. 

The polarimetric radar measurements and gauge measurements are matched up 

spatially and temporally. The azimuthally averaged QVPs represent observations from a 

conical volume (Fig. 2.11). The values of QVPs at a specific height indicate the 

averaged measurements from that height. As illustrated in Fig. 2.11, QVPs at 3 km 

height are the averaged measurements from the circle with a diameter of 16.5 km. To 

match radar measurements with gauges, we also average all gauge measurements 

located within the 16.5km-diameter circle. The radar and gauge observations must also 

be temporally matched/scaled because QVPs represent quasi-instantaneous observations 

while gauge measurements are hourly based. To temporally scale the two measurements, 

we calculate hourly averages of the QVPs. One assumed Z-S relation, e.g., S=0.01Z0.63, 

is applied at the radar observation scale, and then the instantaneous snow rates are 

accumulated to hourly scale. We use the rain gauge measurements as the reference to 

calculate the bias of SWE in ground radar-based estimation. After determining the 

estimation bias, we then calibrate parameter α at each pixel on QVPs. 

2.3.3 Case study results 

a. QVP examples 

The QVPs of Z, ZDR, ρhv, and ΦDP generated from the KCLE WSR-88D radar 

(Cleveland, Ohio) data collected at elevations of 19.5° on Dec. 5, 2014 to Dec. 6, 2014, 
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totally 19 hours. Figure 2.12 from MRMS system provides the storm and the 

environmental information of this event. The Fig. 2.12(a) is the hourly radar rainfall 

accumulation which illustrates a massive rainfall event with an average rainfall rate 

around 0.15 inch/hr. The surface precipitation type is stratiform according to MRMS 

Precipitation Type product (Fig. XXc). Fig. XXb shows the freezing level height from 

the Rapid Refresh (RAP) numerical weather model is about 2.5 km around KCLE radar, 

which means the precipitation at surface level is liquid rain. The Fig. 2.12d is the 

relative humidity from Pittsburgh sounding observations east of KCLE radar. The 

relative humidity is greater than 90% from surface up to 6.5 km height. The high 

relative humidity depresses the evaporation rate thus ensures the mass conservation 

assumption. 
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Figure 2.12. Dec. 5, 2014 event information from MRMS. (a) Hourly accumulation 
of rainfall estimated by ground radars; (b) Freezing level height estimated by RAP 
model; (c) Surface Precipitation Type; (d) Relative Humidity from Pittsburg 
Sounding observation station.  

 

Fig. 2.13 illustrates the QVP evolution during 19 hours and reveals the internal 

structure of the storm. Notable are abrupt variations of the height of the melting layer 

with time marked by enhanced Z, ZDR, and ΦDP as well as depressed ρhv, which can be 

effectively monitored using this height vs time format. In the first several hours, melting 

layer reveals clear ‘fingerprints’ as detected by polarimetric variables, ZDR and ρhv is not 

captured by the QVPs of Z. The polarimetric variables are more sensitive to the phase 

change caused by the hydrometeor melting process. Analysis of the thermodynamic 



45 
 

output of the RAP shown in Fig. 2.12b reveals that the freezing level height at 9:00 

UTC on Dec. 6, 2014 is around 2.5 km, which is consistent with the freezing level 

height revealed by radar QVPs . After 0500UTC on Dec. 6, the storm top height 

increases as melting layer height decreases compared to the first half time of the storm. 

Deeper storm is associated with more active ice nucleation, which would induce more 

precipitation.  The QVP clearly exhibits the episode of riming associated with weak 

embedded convection at the second half time of the storm. All three attributes of riming 

are evident in the QVP plots: enhanced Z, depressed ZDR above the freezing level, and 

downward excursion of the melting layer in terms of ZDR and ρhv. 
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Figure 2.13. The height vs time representation of quasi-vertical profiles of Z, ZDR, 
ρhv, and ΦDP retrieved from the KCLE WSR-88D radar data collected at elevation 
19.5° during the stratiform rain event in Cleveland, OH on 5 Dec 2014 and 6 Dec. 
2014. 

 

b. Evaluation of SWE estimated from current MRMS Z-SWE relation 

The Z-SWE relation the MRMS system adopts is Z=75R2, which is from the 

“Guidance on selecting Z-R relationships” reported in Radar Operations Center (1999). 

The MRMS system (http://nmq.ou.edu) is fully automated and has been operational 
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since 2006 by incorporating data from more than 140 WSR-88D radars and about 31 

Canadian C-band weather radars within the latitude band (20N – 55N) of North 

America, thereinafter MRMS region (Zhang et al. 2011). Q3 (Next-generation QPE), a 

key component in the MRMS system, performs automated precipitation classification 

and generates a suite of mosaic QPE products at 1-km horizontal resolution and 5-

minute update cycle including hybrid scan reflectivity (HSR), surface precipitation 

phase, rain/snow rate, etc. The snow rates are obtained by applying Z=75R2 to the 

mosaicked HSR field at eat snow grid point. The evaluation of snow estimates in 

MRMS has been conducted by validating against snow gauges on ground. However, 

snow gauges have dramatic uncertainty in measuring snow, and are sparse and unevenly 

distributed, the evaluation of MRMS snowfall product with snow gauge measurements 

as a reference is inaccurate. In this study, we calculate the SWE by applying Z=75R2 (or 

S=0.1155 Z0.5) to QVP of reflectivity above the melting layer, accumulate the calculated 

snow water rate to hourly and compare the hourly accumulated radar SWE to the 

matched rain gauge measurements. Fig. 2.14 shows the height vs. time representation of 

calculated radar SWE for this event. The colored circles plotted on 3 km and 4 km 

indicate the rain gauge measurements on ground from one HADS gauge for this event. 

For the first four hours, no rain indicated by rain gauge measurements due to the 

evaporation under the melting layer as implied by the layer of low relative humidity 

shown in Fig. 2.19b. The radar estimates for the 5th hour matches good with rain gauges. 

But starting at the 7th hour, the radar estimates shows underestimation. With the storm 

height increases, the underestimation of radar estimates is more severe. Compared to the 

radar estimates at 3 km height, the estimates at 4 km have larger underestimation. The 
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decrease of particle concentrations with height due to aggregation processes will 

significantly affect the parameter α. The parameter α in current MRMS system is a fixed 

constant, which cannot vary with changes in snow particle size distribution and will 

thus result in an underestimation or overestimation when converting from Z to SWE. 

 
Figure 2.14. The height vs. time representation of vertical profile of hourly radar 
SWE calculated by using Z=75R2. The colored circles indicate the rain gauges 
measurements on ground. 

Fig. 2.15. Shows a comparison of hourly rainfall from radar data and rain gauge 

measurements. The circles in the figure indicate the ground radar estimates are 

calculated from reflectivity at 3 km height, while the filled circles are from 4 km height. 

Most points seem to be plagued by underestimation. The statistic shows the bias ratio is 

~-35% for 3 km but ~-53% for 4 km. The decrease of particle concentrations with 

height due to aggregation processes will significantly affect the parameter α.  
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Figure 2.15. Scatterplot of 1-h radar precipitation estimates at 3 km height (circles) 
and at 4 km height (filled circles). 

 

To minimize the difference between radar precipitation estimates and the gauge 

measurements, we times a coefficient with α in S= α Z0.5. Thus,  

𝑆 = (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  ×  α)  𝑍!.!  ………………………..(2.6) 

The coefficients applied to the old Z-SWE relation are show in Fig. 2.16. Fig. 

2.16a shows after applying a coefficient of 1.53, the bias ratio is zero. The appropriate 

Z-SWE relation for radar measurements at 3 km is S = 0.1776 Z0.5. Similarly, we 

applied a coefficient for 4 km measurements and the coefficient valus is 2.12, bigger 

than the coefficient for 3 km. The new α value is 0.2445 for 4 km radar data.  
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Figure 2.16. Shows radar reflectivity measurements from heights of (a) 3 km and 
(b) 4 km. The circles indicate the improvements of radar snow estimates by using 
calibrated α values in Z-S relation. 
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c. The value of α varies with polarimetric variables and environmental variables. 

The parameter α is associated with microphysical processes, which can be 

constrained by polarimetric radar data and the environmental variables. So our goal is to 

figure out how the PSD affects parameter α, which can be expressed as a function of 

polarimetric variables and environmental variables: 

α = f (Zdr, RhoHV, PhiDP,temperature and relative humidity)….…(2.7) 

The environmental variables, e.g. temperature and relative humidity, are from 

RAP model downloaded from NCDC website 

(http://nomads.ncdc.noaa.gov/data/rap130). Ryzhkov (2015) suggested β value in S= 

αZβ is 0.64. So I tried S=0.03Z0.64 as my first guess to calculate radar SWE rate and then 

accumulated to 1 hour to compare with rain gauge. The results are shown in Fig. 2.17. 

Compared to S = 0.1776 Z0.5 shown in Fig. 2.14, S=0.03Z0.64 yields more 

underestimation.  

 

Figure 2.17. The height vs. time representation of vertical profile of hourly radar 
SWE calculated by using S=0.03R0.64. The colored circles indicate the rain gauge 
measurements on ground. 
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To eliminate the bias of radar estimates, we apply different α at different height 

for different time. The height vs. time representation of vertical profile of α value is 

shown in Fig. 2.18. At the height of 3 km, the value of α changes from 0.02 at the 9th 

hour to 0.16 at the 13th hour. The change of α reflects different microphysics processes 

in the storm. The relation between α value and environment variables as well as the 

polarimetric radar measurements is discussed as follows. 

 
Figure 2.18. The height vs. time representation of vertical profile of α value 

 

The profiles of environmental variables are shown in Fig. 2.19. The temperature 

has less variation with time compared to the relative humidity. In the first four hours, 

the relative humidity drops as low as 30% at about 3 km altitude. Evaporation likely 
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occurs at this height, which causes no precipitation at surface level consistent with rain 

gauge measurements. In the 10th hour, the relative humidity shows a high value at 8 km 

height associated with deep storm depth shown in QVP of reflectivity figure in Fig. 2.13.  

 
Figure 2.19. The height vs. time representation of vertical profiles of temperature 
(left) and relative humidity (right) from RAP model. 

 

The change of α with height, temperature and relative humidity is shown in Fig. 

2.20. The α value increases as the height AGL increases and decreases as the 

temperature increases. The parameter α is the most sensitive to temperature. Ryzhkov et 

al, (2015) discussed α is almost entirely dependent on the intercept of the exponential 

size distribution of snow N0, which depend on the snow habit and temperature (Ryan 

2000; Heymsfield et al. 2002; Woods et al. 2008). N0 generally increase with height and 

decreasing temperatures. The primary reason for decreasing of N0 with increasing 

temperature and decreasing altitude is aggregation of ice crystals and snowflakes. Our 

study is consistent with the results found in Ryzhkov et al, (2015). Higher α value is 

associated with deeper storm depth at the same height or temperature. The α shows the 

same value when the relative humidity is almost 100%. 
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Figure 2.20. The change of α with height, temperature and relative humidity. The 
color indicates the scan time. 

 

Figure 2.21 shows α changing with radar ZDR. It’s interesting to find α shows 

different relations with ZDR values. The green, yellow and red points shown in Fig. 2.21 

from the deep storm shows high α values with low ZDR. The primary reason for these 

low ZDR and high α is riming of ice crystals and snowflakes. The Fig. 2.22 shows the 

relation between α and ρhv as well as ΦDP. But neither of ρhv and ΦDP show any patterns. 
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Figure 2.21. The change of α with ZDR. The color indicates the scan time. 

 

 

 

Figure 2.22. Left: The change of α with ρhv. Right: The change of α with ΦDP. The 
color indicates the scan time.  
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Chapter 3 VPR_IE methods 

Studies of various physical processes related to water cycle, which are of 

interest to scientific communities of meteorology, hydrology, environment, ecology, 

agriculture, etc., often require reliable quantitative precipitation estimation 

(QPE). Therefore, accurate measurement of precipitation at a range of spatial and 

temporal resolutions is invaluable for a variety of scientific applications. Weather radar 

has proven its value to the nation since the installation of the current Weather 

Surveillance Radar – 1988 Doppler (WSR-88D) network (NEXRAD). Based on data 

measured by the NEXRAD network, the National Mosaic and the next-generation 

quantitative precipitation estimation (Q2) system (NMQ; Vasiloff et al. 2007; Zhang et 

al. 2011) is a real-time test bed comprising high-resolution (1 km, 5 min) multisensor 

precipitation products. A web-based display and rain gauge-based validation system has 

been built for the datasets and is freely accessible on the Internet. However, due to the 

lack of adequate ground radar (GR) coverage from intervening terrain blockages 

(Maddox et al. 2002), reliable ground-based precipitation measurements are difficult to 

obtain in mountainous regions.   

For ground-based volume-scanning weather radars, an important error source 

which can lead to significant systematic error in radar rainfall estimates, is attributed to 

inaccurate calibration of the radar (Smith et al. 1996). Another major error source, 

particularly in complex terrain, comes from the lack of representativeness of reflectivity 

sampled aloft to surface precipitation. Reflectivity varies with height due to evaporation 

at low levels as well as processes of melting, aggregation, and drop break-up. This 

problem is exacerbated in complex terrain where ground radars must rely on scans at 
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higher elevation angles to observe precipitating systems, in which radar observations of 

cloud top are used for QPE. Furthermore, the radar beam broadens with range and could 

be too wide to accurately resolve the vertical structure of precipitation.  

To mitigate radar QPE errors associated with nonuniform vertical profiles of 

reflectivity (VPRs), a variety of studies have investigated different approaches to derive 

representative VPRs for improving QPE. The representative VPRs in previous studies 

include: 1) climatological VPR (Joss and Lee 1995); 2) retrieved VPR from radar 

observations at different distances and different altitudes (Koistinen 1991; Joss and Lee 

1995; Germann and Joss 2002; Andrieu and Creutin 1995; Vignal et al. 1999; Vignal et 

al. 2000; Vignal and Krajewski 2001, Zhang and Qi 2010); 3) parameterized VPR 

(Kitchen et al. 1994; Fabry and Zawadzki 1995; Kitchen 1997; Smyth and Illingworth 

1998; Matrosov et al. 2007; Tabary 2007). All of these approaches rely on radar data or 

other surface observations to obtain the VPRs. However, in mountainous regions (e.g., 

the analysis region of this study), radar measurements near the surface are less 

ubiquitous and the complete VPRs might not be fully obtained. Some observational 

limitations of ground-based radar can be mitigated by spaceborne radar whose 

measurements are much less impacted by mountain blockages and beam broadening 

effects in the vertical direction (Iguchi et al. 2000). The spaceborne precipitation radar 

(PR) onboard the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, 

launched in late 1997, is the first weather radar to estimate rainfall over the tropics and 

subtropics from space (Simpson et al. 1996). PR operates at Ku band with a frequency 

of 13.8 GHz and scans across a 215-km wide footprint, with vertical and horizontal 

resolutions of 250 meters and 4.3 kilometers, respectively, at nadir. Considering that 
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precipitating systems typically extend several kilometers in the vertical direction, PR’s 

vertical resolution of 250 meters ensures fine observations suitable for studying the 

vertical structures of storms. Although the precipitation attenuates Ku-band PR 

observations more than S-band ground radar’s, PR’s signal processing algorithms 

developed by the PR science team (Iguchi et al. 2000, 2009) have shown good 

performance in correcting for attenuation losses in precipitation. Gabella (2006) has 

used the radar reflectivity calculated for the lowest PR pulse volume, the so-called 

NearSurfZ from product 2A25, to mitigate GR’s range-dependent bias in the island of 

Cyprus.  

3.1 Concept of VPR_IE 

3.1.1 Overview 

The VPR-IE methodology to correct the ground radar based QPE for VPR sampled 

from space is summarized in Fig. 1. Note that we follow the formalism from Andrieu 

and Creutin (1995) and Vignal et al. (1999) and use a normalized VPR (i.e., ratios of 

reflectivities at different heights vs. the reflectivity at a reference height). In doing so, it 

becomes implicitly assumed that the reflectivity factor Z(x, h) at location x and altitude 

h can be expressed as the product of its value at the reference level ( , supposed to be 

1 km MSL) and the normalized VPR value at the given altitude (see eq. 1 in Kirstetter 

et al., 2010). The VPR for a given precipitation type (e.g., stratiform) is assumed to be 

homogeneous over the domain of estimation (i.e. over the study area for a given TRMM 

overpass). Although the TRMM-PR can accurately resolve the vertical reflectivity 

variations (owing to its sampling geometry and vertical resolution), it does not match 

h0
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with WSR-88D radars due to the frequency difference. For instance, the reflectivity of 

the bright band peak is higher at S band than at Ku band.  

In order to use the information from TRMM-PR data for ground-radar correction, we 

first identify the vertical distribution of hydrometeors and PSD from the TRMM-PR 

measurements and fit the Ku-band VPR with a physically-based model (Fig. 2). This 

model is then used to simulate the corresponding S-band VPR (Fig. 2b). Finally, this 

simulated VPR is convolved with ground radar sampling properties to compute 

apparent GR VPRs used for surface QPE computation (Fig. 2c). The projection of 

ground radar measured reflectivity onto the ground level using the S-band VPR applies 

a three-dimensional radar beam propagation model by assuming the beam refraction of 

standard atmospheric conditions and accounting for the earth curvature effect as 

described by Pellarin et al. (2002), Delrieu et al. (2009) and Kirstetter et al. (2010).  

 

Figure 3.1. Illustration of using spaceborne radar measured representative VPR to 
improve the near-surface QPE based on ground-radar. 
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3.1.2 Physically-based VPR model 

This section describes a VPR identification method based on a VPR model with 

several physically-based parameters. The VPR model proposed by Kirstetter et al. 

(2012) and derived from Boudevillain and Andrieu (2003) aims at representing the 

vertical evolution of the equivalent radar reflectivity factor: 

  (3.1) 

, where  is the altitude,  is the backscattering cross-section of a hydrometeor 

which depends on the equivalent diameter D and the complex refractive index ; 

the refractive index depends on the phase of the hydrometeors and on the radar 

wavelength .  is the number of particles with diameters between and 

 per unit diameter range and per unit air volume at altitude ;  is a constant 

depending on the refractive index for liquid water mw. Equation (1) indicates that the 

equivalent radar reflectivity factor profile depends on (i) the phase of the hydrometeors, 

which drives their dielectric properties and scattering cross-sections through a given 

scattering model (T-matrix, Mie, Rayleigh), (ii) the PSD and (iii) the radar wavelength.  

The atmospheric column is divided into three vertical layers. The upper layer 

contains particles of frozen water with air inclusions. In the lowest layer, the 

precipitation particles are raindrops. The intermediate layer is the melting layer in 

which particles are composed of a mixture of ice, air and liquid water. These three 

layers are defined by their altitude boundaries. The top of the precipitating cloud, 

provided by the radar echo top, is denoted as . The interface between solid and 
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melting layers (the freezing level for stratiform precipitation) is denoted as .  is 

the melting layer’s vertical extension. A reference level close to the ground denoted as 

 is considered the bottom of the liquid layer. The temperature is assumed to decrease 

with altitude at the moist adiabatic lapse rate. The scaling formalism initially proposed 

by Sempere Torres et al. (1994) is used to describe the relationship between the PSD 

(assumed as gamma) and the equivalent radar reflectivity factor in the liquid phase, and 

to infer the PSD in the other layers. 

The liquid layer is defined between the reference level  and the melting layer 

(level ), where hydrometeors are liquid drops. Vertical variations of the 

equivalent radar reflectivity factor are assumed linear from  at  to  at , 

with a slope . In the solid layer, the hydrometeors are heterogeneous and described 

by a matrix of ice with inclusions of air. The “matrix inclusion” scheme (Klaassen, 

1988) is used to retrieve the refractive index of hydrometeors and calculate their 

dielectric properties. The composition of a solid particle is parameterized using a 

density factor , varying between 0 (light snow) to 1 (hail) to cover the entire range of 

mass density of hydrometeors:  

 with  and   (3.2) 

The density factor drives the composition of the particles through the ice volume 

fraction of the total particle volume (Boudevillain & Andrieu, 2003, Kirstetter et al., 

2012): 

    (3.3) 
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where  and  are the matrix fraction and the inclusion fraction, 

respectively. The density factor  is part of the calculation of the complex refractive 

index  through the composition of particles and drives therein the dielectric 

properties of the particles. It is supposed to remain constant in the solid phase and the 

melting layer. The form of the VPR in the solid layer therefore depends on the PSD 

defined at the top of the liquid layer and on . The melting layer is a transitional zone 

in which the backscattering properties of precipitation particles change rapidly. The 

possible enhancement of the measured reflectivity by the radar, the bright band, occurs 

in this zone. The present study uses the simple and convenient scheme proposed by 

Hardaker et al. (1995), which reproduced the high gradients of reflectivity with a 

reduced number of variables representative of the PSD, composition and dielectric 

properties in this zone. Assuming the PSD to be constant between solid particles and 

liquid raindrops ensures the continuity of the PSD at the solid/melting and 

melting/liquid transitions. Particles are composed of a mixture of liquid and solid water 

with inclusions of air. They are characterized by the melted mass fraction  increasing 

from 0 at the level  to 1 at the level . A two-step processing of the Klaassen 

(1988) concept and the “matrix inclusion” scheme are applied. By driving the density 

and the dielectric properties of the particles,  controls the enhancement of the bright 

band. Values of Dg of about 0.8 simulate very light snowflakes with large air inclusions. 

These particles are more characteristic of stratiform precipitation, and the model 

simulates an enhanced bright band. Values of  of about 1.0 simulate denser particles 

more often met in convective precipitation. This simple melting layer model could be 

fmat finc

Dg

m

Dg
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refined following the results of the series of papers devoted to the bright band 

description (Szyrmer and Zawadzki, 1999). 

 
Figure 3.2. Steps for incorporating TRMM-PR measurements into NMQ-QPE 
(VPR-IE method). The representative example of the VPR on December 8, 2009 is 
shown: (a) fit a physically based VPR model (5 parameters) on the Ku-band 
TRMM-PR reflectivity profiles; (b) convert the Ku-band VPR (dotted grey line) 
into S-band VPR (solid black line); (c) convolve the S-band VPR with the sampling 
properties of WSR-88D ground radars. On panel (c), apparent VPRs are 
simulated from the S-band VPR from (b) at various distances (from 20 to 240 km 
with an interval of 20 km) using the beam characteristics of WSR-88D radars. 

 

To summarize, the vertical variations of the equivalent reflectivity factor 

according to altitude can be represented using a model for the vertical variations of 

hydrometeors and PSD. These vertical variations of the equivalent reflectivity factor 

can finally be written , while  is the vector grouping 

the five parameters of the VPR model. Note that this set of parameters is relative to the 

microphysics only and do not depend on the radar wavelength. The VPR, defined as the 

equivalent reflectivity factor  with altitude, normalized by its value at the reference 

level  is expressed: . 

Ze (h;ϕ ) ϕ = Gl,hT ,hM ,ΔhE,Dg⎡⎣ ⎤⎦

Ze

Z0 z (h;ϕ ) = Ze (h;ϕ ) / Z0
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3.2 Implementation of VPR_IE 

For a given event, an optimization procedure adjusts the VPR model to each 

individual reflectivity profile from the 2A25 product. It uses a quadratic cost function 

that is minimized with respect to the parameterized profiles of reflectivity using a 

Gauss–Newton method (Kirstetter et al., 2010). During the optimization procedure, Ku-

band VPRs are simulated using the model to match with the TRMM-PR measurements. 

Figure 3.3 shows the histograms of parameters resulting from the fitting on TRMM-PR 

reflectivity profiles for the case of 8 December 2009.  The histograms of the parameters 

are typically unimodal, so that a representative VPR may be extracted for the whole 

stratiform region. The top of the precipitation presents more uncertainties than the other 

parameters; it may be due to real variations of the vertical extension of the rain field in 

the region linked to significant elevation differences as well as different PR beam filling 

conditions and relatively poor sensitivity of the radar (17 dBZ). The most probable 

values for the density parameter  are around 0.85, which is consistent with stratiform 

precipitation. The retrieved freezing level height is for most of cases within the range 

[2400-2600] m altitude, in accordance with the mean value extracted from the 2A25 

product. The histogram of the melting layer thickness is highly peaked around 850 m, 

which is realistic from long-term bright-band observation studies (Fabry et al., 1995). 

Finally, the histogram of the slope of the profile in liquid phase is peaked around 0. 

More research is needed to investigate the variability of these parameters and the 

corresponding vertical variations of hydrometeor and PSD. 

 

 

Dg
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Figure 3.3. Histograms of the five parameters of the physically based VPR model 
fit on TRMM-PR reflectivity profiles passing over Arizona at 01:35Z on 8 
December 2009: (a) the top of precipitation , (b) the density parameter , (c) hT Dg
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the freezing level height , (d) the melting layer thickness , and (e) the slope 
of the profile in liquid phase . 

 

Our goal is to identify a representative VPR for the whole stratiform region 

sampled conjointly by ground radar and the PR. The characteristics of this VPR differ 

from those of the ‘‘true’’ VPR sampled quasi-instantaneously at the PR pixel level 

because it is representative of a much larger domain. Kirstetter et al. (2010) addressed 

specifically the issue of VPR homogeneity by performing the VPR identification over 

areas of homogeneous rain types and consistent microphysical processes. Figure 3.3 

shows that while increasing the representativeness of the VPRs by focusing on the 

stratiform region (rain type information is from TRMM 2A23 product), the parameters 

retrieved from the individual 2A25 profiles present variability, which may be caused by 

microphysics variability inside the stratiform region, noise in the sampled radar 

reflectivity profiles and/or simplifications of the physically-based VPR model. A 

representative VPR for the whole stratiform region may be characterized by a unique 

set of parameters . We consider the median of each parameter 

distribution to identify . The corresponding VPRs at Ku-band and S-band for the 

representative case of 8 December 2009 are shown in Fig. 3.2b. 

We summarize the VPR-IE procedure below:  

• A physically-based VPR model serves to retrieve the vertical hydrometeor and 

PSD profiles from the TRMM-PR measurements by focusing on the stratiform 

region; 

hM ΔhE
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• This model is used to simulate the corresponding S-band VPR, because the 

model parameters do not depend on the radar wavelength;  

• This representative VPR is convolved with ground radar sampling properties to 

compute the apparent VPRs; 

• The correction is applied to the reflectivity at the corresponding ranges where 

the apparent VPRs are computed; 

•  The reflectivity field is converted into rainfall rate using Z-R relations: Z= 

200R1.6 for stratiform rain and Z=300R1.4 for convective rain. The rainfall rates 

are then accumulated to hourly rainfall amounts and compared to rain gauge 

observations. 

We assess the approach in the next section by comparing rainfall estimates from 

the VPR-IE method with respect to the conventional NMQ products and two additional 

correction methods.  

 

3.3 Case study of VPR_IE 

In the current study, we have chosen the region of Arizona and southern 

California (latitude is from 32°N to 37°N, longitude is from -115°to -110°) as the study 

area (Fig. 3.4). QPE in this region is challenging due to the sparseness of rain gauge 

networks, high spatial variability of precipitation due to orographic enhancements, 

relatively shallow precipitating clouds, and insufficient NEXRAD radar coverage. The 

digital elevation map in Fig. 3.4 shows the topography in this study area, which consists 
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of six smaller regions: the plateau region (the White Mountains, Mogollon Rim, and 

Kaibab Plateau of northern Arizona), the central region (the transition zone between the 

plateaus of the north and the desert of the south), the northwest region (also a transition 

zone between the plateau region and the lower desert), the southwest region (Phoenix 

and all of the lower desert), the southeast region, and northeast region (Colorado plateau 

system) (Sellers and Hill, 1974; Watson et al. 1993). The average altitude of the study 

area is about 1106 m, while the lowest elevation is only 3 m and the highest elevation is 

3657 m. The climatological statistics in this area indicates two peaks of precipitation 

each year – one in the winter caused by large-scale synoptic systems and the other one 

in the summer caused by the North American monsoon.  

Nearly half of the area has average rainfall of less than 250 mm per year.  The 

southwest region receives rainfall amounts of less than 125 mm per year. The northern 

plateau regions have an average rainfall of more than 500 mm per year (Sellers and Hill 

1974). Experience with more than 3 yr of radar data in the NMQ system indicates that 

the ground radar QPE has significant underestimation issues due to the poor sampling 

of precipitation. Figure 3.4 shows that some regions are as far as 100 km or even 200 

km from the nearest radar (e.g. 35°N and 113°W at more than 200 km from the nearest 

radar). For the six WSR-88D radars included in this study, the surrounding highlands 

cause partial or even complete beam blockage to radars (especially at lower elevation 

angles). At significant distances from the radar (e.g. more than 100 km) this hampers 

the sampling of precipitation close to the ground with the lower elevation angles. The 

radar beam might be too high and sample the ice region above the melting layer while it 

is raining at the surface, causing large errors in surface rainfall estimation because of 
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the vertical variations of reflectivity. In such conditions the radar beam may be too wide 

to accurately resolve the vertical structure of precipitation. This is particularly true in 

the case of strong vertical reflectivity gradients, e.g., linked to the bright band 

(Kirstetter et al. 2010). Figure 3.2c illustrates the effect of beam widening on the 

apparent GR VPRs, which degrades with range. It is clearly shown that the bright band 

becomes thicker and less intense with increasing range. The apparent VPR is defined as 

the VPR influenced by beam broadening. It is noted that due to earth curvature and the 

increase of beam altitude, the radar beam samples less often the lowest part of the VPR 

with increasing distance. This effect is aggravated by beam blockage due to surrounding 

highlands. 

The NMQ system (Zhang et al. 2011) combines information from ground-based 

radars comprising the National Weather Service’s NEXRAD network. Based on the 

significant research already performed on the ground-based NMQ data in regards to 

data quality (Lakshmanan et al. 2007), data mosaicking techniques (Zhang et al. 2005), 

rainfall estimation (Vasiloff et al. 2007), the system has been generating high-resolution 

national 3-D reflectivity mosaic grids (31 levels) and a suite of severe weather and QPE 

products at a 1-km horizontal resolution and 5-minute update cycle since June 2006. We 

have identified five TRMM PR overpasses that meet the following criteria: 1) the 

maximum time discrepancy between TRMM PR and NMQ data is less than 1 hour, 2) 

the overlapping area of TRMM PR and NMQ data is larger than 5000 km2, 3) the 

maximum rainfall rate measured by ground radar is greater than 10 mm/hr. These five 

overpasses, hereinafter referred to as events, have been chosen from five different 

winter days in 2009 and 2010, since Arizona’s climate exhibits precipitation peak 
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during the winter and the bright band is typically low during the cold season. The event 

descriptions and times are listed in Table 3.  

 

 

 

 

 

Table 3. Summary of the events. 
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Figure 3.4. An image showing the topography around the study area (black dashed 
box) and the locations of rain gauges (circles) and WSR-88D radar sites (white 
circles with cross). The inset black and white map shows the radar coverage at 3 
km above ground level.  

Hourly rain gauges from the Hydrometeorological Automated Data System 

(HADS; http://www.nws.noaa.gov.oh.hads/) and the Maricopa County mesonet have 

been used to evaluate the three different QPE methods by blending the PR with GR 

observations for five events (summarized in Table 1). It is worth noting that ground 

radars used for this study have different elevations. As shown in Fig. 3.4, the elevations 

of KICX, KFSX, KEMX KESX, KIWA, and KYUX radars are 3231, 2261, 1586, 1509, 

421, and 53 meters above mean sea level, respectively. Given a storm system in the cold 

season, the radar beam could overshoot cloud tops or intercept the melting layer at far 

ranges, especially for KICX, KFSX, KEMX, and KESX radars. According to the 

locations of rain gauges shown in Fig. 3.4, the QPE based on KFSX radar is most likely 

affected by the melting layer. Figure 3.5 shows a comparison of hourly rainfall from 

remote-sensing data and rain gauge measurements, with the three panels corresponding 
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to the three different methods of blending PR with GR observations. Data shown in this 

analysis is from all five events combined. The black dots in the figure indicate the GR 

QPE without any adjustment from PR. Most points seem to be plagued by either 

underestimation or overestimation. Considering the height of freezing level in the cold 

season and the position of radar beam in this complex terrain, overestimation is likely 

due to sampling in the bright band, while the underestimation is likely attributed to 

sampling frozen hydrometeors above the freezing level. The simple rainfall rate 

calibration method (Fig. 3.5a) shows some improvements of the QPE, although not 

significant. The correction using the rings-based range adjustment method (Fig. 3.5b) 

generally reduced the underestimation but resulted in erroneous overestimation.  This 

was due to the monotonic linear model used in the correction scheme where 

overestimation errors associated with the bright band and underestimation errors 

associated with radar sampling in the ice region could not be simultaneously accounted 

for.  The underestimation errors might have dominated the linear regression model and 

as a result the overestimation error did not get corrected but rather exaggerated. Figure 

3.5c shows the QPE result obtained with the VPR-IE method introduced in the last 

section. This method mitigates both overestimation and underestimation of rainfall, 

showing a much better agreement with gauge observations than the other two methods. 
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Figure 3.5. Scatterplots of 1-hour radar precipitation estimates before (black) and 
after (white) the corrections for all five events combined using the (a) rainfall rate 
calibration method (b) rings-based range adjustment and (c) VPR-IE method. 

Figure 3.6 provides hourly rainfall maps with and without applying the VPR-IE 

method (results using the other two methods are not shown) for each case study. For 

example, Fig. 3.6c shows a widespread stratiform precipitation on 8 December 2009, 

for which the freezing level was about 1800, 1800, 2100, 2500, 2600, 2800 meters 

above mean sea level (MSL) for the KICX, KESX, KFSX, KIWA, KYUX, and KEMX 

radars, respectively. Note that these freezing level heights are consistent with the 

histogram of the freezing levels from the VPR model approach (see Fig. 3.2c). For most 

rainy areas shown in this figure, the radar beam has overshot the melting layer. The 

measurements within the ice region led to underestimation of rainfall on the surface 

from the original NMQ QPE product at lower elevations (Fig. 3.6b1). After the VPR-IE 

method was applied (Fig. 3.6b2), the underestimation was mitigated, especially in areas 

100 km east of KESX and 50 km southeast of KFSX. Another example is 28 February 

2010, for which the freezing level was 2400-2600 meters within the area from 33.5°N to 

34°N in latitude and from -113° to -112° in longitude. KFSX’s radar beam intercepted 

the melting layer in this area, causing an overestimation of rainfall in the original NMQ 

QPE as shown in Fig. 3.6a4. The VPR-IE product (Fig. 3.6b4) reduced this apparent 

overestimation. On the other hand, similar to the analysis in Figs. 3.6a2 and 3.6b2, at the 

further range (e.g., >100 km) where radar beam has overshot the melting layer and 

samples in the ice region, the VPR-IE method has increased the estimate of rainfall, 

which was previously underestimated. 
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Figure 3.6. 1-hour radar estimates before (Column a) and after (Column b) 
adjustment using the VPR-IE method. 

 

From the five events shown in Fig. 3.6, three statistical indices have been 

calculated to evaluate the performance of the three correction methods. Relative bias 

(Bias in %) is used to assess the systematic bias of radar estimation. The mean absolute 

error (MAE) measures the average magnitude of the error. The root mean squared error 

(RMSE) is another way to quantify the average error magnitude, giving greater weights 

to larger errors. MAE and RMSE are in units of mm for the comparison of estimated 

rainfall amounts.                                       
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                            .          (3.4) 

                                           ..          (3.5) 

                                               (3.6) 

Here, R(i) and G(i) represent the ith matching pair of rainfall amounts estimated 

with radar reflectivity and observed by rain gauges, respectively. N represents the total 

number of data pairs for radar-based and rain gauge data matching. The following two 

criteria have been used for matching data: (i) the gauge location is within one of the 

0.01⁰×0.01⁰ radar grid cells used in NMQ/Q2, and (ii) both R(i) and G(i) are greater 

than zero.  

Table 4. Statistical results of the three TRMM PR-based correction approaches. I 
is the rainfall rate calibration method; II is the rings-based range adjustment 
method; III is VPR-IE method. The method with the best performance according 
to the statistic is denoted in boldface. 

 

The statistics have been computed with hourly rainfall estimates and are shown 

in Table 4 for all five events. The “Q2” columns denote the results calculated from 
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original GR-only product of NMQ/Q2. The best statistical performances among the 

three methods are highlighted in bold. Generally speaking, the third method (i.e., VPR-

IE method) has the best overall performance compared to the other three approaches. 

The rings-based range adjustment (i.e., the 2nd method) has the least improvements. 

This result is likely due to the monotonic linear empirical relation for range adjustment 

(Eq. 3.3), which is insufficient to simultaneously correct for both overestimation in the 

melting layer and underestimation with increasing range when sampling in the ice 

region. However, it is interesting to see this method performs the best for Event #3 on 

22 Jan 2010, which was a widespread stratiform event with a freezing level from 2000 

to 3000 meters, gradually increasing in altitude from northwest to southeast within the 

analysis region. The KIWA radar was not working during this case and GR 

observations mainly came from KICX, KESX, KFSX, and KEMX radars. As a result, 

all GR observations were above the melting layer and were affected by beam 

overshooting, alone, rather than underestimation combined with overestimation by 

sampling in the bright band (Fig. 3.6a3). Significant underestimations of surface rainfall 

are indicated in Table 4 (underestimate by 58.04-85.9%) for all QPE approaches. The 

MAE and RMSE values are high as well. The VPR-IE does not show improvements 

over the rings-based range adjustment in this particular case where the variation of the 

freezing level from 2000 to 3000 m. This result implies that one representative VPR 

might not be sufficient to account for the variability of the vertical structure of 

precipitation in this region, warranting additional research.  

Events #2 and #4 on 8 December 2009 and 28 February 2010 demonstrate superior 

performance of the VPR-IE correction method. GR beam overshooting was a major 
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issue in the former event while the interception of the melting layer was more evident in 

the latter event. Table 4 shows effective mitigation of both underestimation and 

overestimation, with the Bias changing from -39.5% to -12.58% and from 29.55% to 

13.87%, respectively. The estimation errors (MAE, RMSE) are also reduced greatly. 

The simple rainfall rate calibration method I improved the bias over the uncorrected, 

radar-only method in both these cases, while the rings-based method II increased the 

bias up to 243% in Event #4.  

Systematic error of ground-based radar rainfall estimation, related to the VPR 

features combined with the geometric effects of the radar beam, creates the often-noted 

radar range dependence (Bellon et al., 2005; Krajewski et al. 2010). Figure 3.7 shows 

the range-dependent multiplicative bias ((radar – rain gauge) / rain gauge ratios) as a 

function of distance from the radar for Events #2 and #3. Considering the relative 

position of the rain gauge network to the radar sites, the observations evaluated in this 

figure mainly come from the KIWA radar for distances within 100 km of it and the 

KFSX radar. We recall the 8 December 2009 Event #2 corresponds to a freezing level 

height of 2500 meters at MSL while the KIWA radar altitude is 421 meters at MSL. For 

the uncorrected QPE, the contamination of the radar beam by the bright band leads to 

bias values exceeding 0 around  a range of 70 km, and the overshooting of the radar 

beam in the ice phase at distances greater than 100 km causes the far range 

underestimation (Andrieu and Creutin 1995). The VPR-IE using the TRMM-PR 

information mitigates significantly the range-dependent error. We recall that for the 22 

January 2010 Event #3 the KIWA radar data were not available so the range-dependent 

error is mainly for observations from the KFSX radar. Its altitude is 2261 meters above 
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MSL while the freezing level height was around 2600 meters above MSL, causing 

contamination of the radar beam by the bright band at close ranges. The unadjusted 

radar QPE consistently shows an overestimation relative to rain gauges up to 60 km, 

followed by an underestimation likely due to the ice phase sampling. The VPR-IE using 

the TRMM-PR information mitigates this range-dependent error.  

 

Figure 3.7. QPE error (multiplicative bias ((radar-raingauge)/raingauge ratios)) in terms 
of range for the 8 December 2009 case (left) and for the 22 January case (right).   
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Chapter 4 Real time climatological VPR_IE 

The VPR_IE approach demonstrates the benefits of integrating the TRMM/PR 

products into NEXRAD ground-based radar rainfall estimation system. However, the 

insufficient temporal resolution of TRMM limits the application of VPR-IE method 

operationally. In order to implement the VPR-IE concept into the MRMS system in 

real-time fashion, we have characterized Climatological VPRs from 11-year TRMM PR 

observations for different stratiform/convective rain types, seasons, and surface rain 

intensities, then integrated the suitable climatological VPR information to the NMQ 

system based on different precipitation structure. This Chapter gives a detailed 

description of the proposed real-time VPR-IE system, with performance evaluation in 

Arizona and south California where NEXRAD radar QPE is typically degraded by the 

lack of near-surface radar observations. The system’s promising performance and the 

potential error sources are discussed as well via a comprehensive evaluation on events 

in winter (January, February, and December) in 2011 in terms of radar beam height, 

radar quality index and proportional precipitation types. 

4.1 Climatological VPRs from TRMM/PR 

The VPR characteristics improve our understanding of the vertical structures of 

storms and provides for inferences of dominant microphysical processes. If a 

representative VPR is known for the different precipitation types, then surface rainfall 

can be much better estimated with ground radar observations, even for situations where 

the beam intercepts or overshoots the melting layer. This section gives a description of 

the spatially and temporally representative VPRs from more than 11 years TRMM/PR 

observation.  
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4.1.1 TRMM/PR more than 10 years observation 

For the past 15 years, scientists all over the world has been put much effort into 

generating state-of-the-art radar-precipitation products with TRMM PR (e.g., 

Meneghini et al. 2000, 2004; Iguchi et al. 2000, 2009; Schumacher and Houze 2003; 

Takahashi and Iguchi 2004; Seto and Iguchi 2007; Awaka et al. 2009). Three levels of 

algorithm are used to process TRMM products. Level 1 algorithm calculates the basic 

radar products, such as radar raw reflectivity and deals with data quality control and 

calibration. Level 2 algorithms generate the products associated with the radar signal 

processing and the physical processes of storms. Level 3 algorithms provide 3 hourly 

gridded dataset averaged from Level 1 and Level 2 products temporally and spatially. 

The datasets used for analyzing the climatological VPRs were from two Level 2 

products: PR qualitative algorithm (2A23) and PR profile algorithm (2A25). 2A23 data 

include products for brightband detection and quantification, and precipitation type 

classification (Awaka et al. 2007, 2009). 2A25 data provide range profiles of 

attenuation-corrected radar reflectivity and corresponding rainfall estimation 

(Meneghini et al. 2000, 2004; Iguchi et al. 2000, 2009). 

The TRMM science team has released several versions of data-processing 

algorithms since the launch of TRMM satellite in 1997. The latest version of TRMM 

algorithms, version 7 (TRMM V7), was released in September 2011 (TRMM 

Precipitation Radar Team 2011). Compared to the version 6 released in 2004, TRMM 

V7 have introduced improvements (e.g., Seto and Iguchi 2007; Awaka et al. 2009; 

Iguchi et al. 2009). For example, the 2A23 algorithm now better detects the bright band 

and shallow storms. It has also increased the rain type subcategories and refines the 
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classification. The 2A25 algorithm produces enhanced radar reflectivity profiles by 

improving path-integrated attenuation (PIA) estimation and refining the attenuation 

correction method. Rain estimation is now improved with the introduction of a new 

drop size distribution (DSD) model. Nonuniform beam filling (NUBF) correction was 

also reintroduced in V7.  

The data used to generate climatological VPRs are from 1 January 2000 to 26 

October 2011. According to the surface rain gauge measurements, the total number of 

rainy days in the analysis region is 1751. However, because of the mismatch of time 

and space between the PR scan and the evolution of storms, PR observed879 event, 

which are 3123 passes with total rainfall rate in the research area greater than 10 mm/hr. 

Cao et al (2013) gave a table to illustrate more details about the data availability (see 

table 5). The monthly analysis indicates there are many fewer precipitation events 

occurring in May and June than in July and August, which is attributed to the onset of 

the North American monsoon.  

Table 5. TRMM V7 data (2A23, 2A25) availability by month, where the numbers 
in the first row indicate the month. (from Cao et al., 2013, Table 1) 

 

4.1.2 Data processing 

VPRs vary with different storm types, different rain intensities and different 

seasons. To accurately depict the climatological VPRs characteristics, all VPRs 

observed by PR were broken down to different categories. We first separated all data to 

stratiform and convective rain types. V7 of 2A25 applies more than 30 subcategories for 
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the classification of rain types. In general, these 30 subcategories can be summarized to 

5 major types: “stratiform certain”, “stratiform maybe”, “convective certain”, 

“convective maybe”, and “others”. The stratiform type is identified when the bright 

band (BB) is clearly detected and the VPR reveals apparent features of stratiform 

precipitation. When the BB does not exist and the VPR reveals convective 

characteristics, the precipitation will be classified with the convective type. When the 

BB is not clearly detected the precipitation will be assigned as either convective maybe 

or stratiform maybe, with the latter distinction being tied to the precipitation structure. 

Cao et al., (2013) combined the convective maybe type into the convective type for the 

data analysis.  

Seasonal VPR variations are also considered. PR data collected in spring (March, 

April, May), summer (June, July, August), autumn (September, October, November), 

and winter (December, January, February) have been processed and composited 

separately. Considering that surface rainfall of different intensities may be related to 

different VPR features, the PR data have also been sorted into 24 categories with 

surface rainfall rate varying from 0.4 to 80 mm/hr. The mean VPR is created with VPRs 

having the surface rainfall rate with a 20% variation. For example, VPRs with rainfall 

rates 8-12 mm/hr are sorted and averaged to obtain representative VPR of 10 mm/hr. To 

reduce the dominant effect of high reflectivity values, the calculation of mean VPR is in 

the logarithm domain (dBZ). Figure 4.1 provides representative mean VPRs for 

stratiform precipitation that have been normalized by reflectivity at a reference height. 

The horizontal axis represents the ratio of reflectivity (dBZ) to the reference value 

observed 1 km below the height of the BB peak. Light precipitation has a larger ratio 
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within the melting layer and in the ice region above. This result suggests weaker 

stratiform precipitation is associated with lower aggregation rates of ice-snow particles 

above the freezing level and its relatively stronger BB signal may cause further 

contamination when estimating surface rainfall rates. In addition, the smaller ratios 

noted below the reference height with light stratiform precipitation indicates that 

evaporation rates are more influential on the rain slope. For stratiform precipitation with 

rainfall rates of greater than 7 mm/h, VPR ratios in the ice–snow aggregation region and 

melting layer are very similar, suggesting that the VPR structures for heavy stratiform 

rain tend to be less variable and are thus more predictable. Seasonal variations of 

stratiform VPRs for a given rainfall rate class are also slight and largely negligible. 

These results are encouraging for VPR correction methodologies for ground-based 

radars in that the local VPR, when normalized and segregated to the reference value 

below the BB, appear to be consistent from season-to-season for stratiform precipitation.  
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Figure 4.1. Normalized VPR shape for stratiform precipitation with different 
rainfall rates for (a) – (d) the four seasons (from Cao et al., 2013, Fig. 12) . 

 

4.2 Climatological VPR_IE implementation 

The current study proposes an enhanced VPR-IE scheme, which applies 

climatological VPR models to improve ground-radar QPE. The proposed VPR-IE 

scheme integrates the National Mosaic and Multi-sensor QPE (NMQ) system [17] and 

NASA’s TRMM-PR products. A real-time system of this VPR-IE scheme is being 

constructed at OU and is expected to provide near-real-time, CONUS-wide, enhanced 

QPE products to users and researchers in the radar, satellite, meteorology and hydrology 

communities. This section gives a detailed description of the proposed real-time VPR-
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IE system, with performance evaluation in Arizona where NEXRAD radar QPE is 

typically degraded by the lack of near-surface radar observations.  

Different physical processes are associated with the different state of 

hydrometeors at various heights in a precipitation system (Fig. 4.2). Solid particles 

above the 0 °C isotherm normally give a radar reflectivity much lower than liquid drops 

(below the melting layer) for the same water content. On the other hand, the melting 

layer is typically associated with BB signals (enhanced radar reflectivity). Therefore, 

overshooting (or intercepting) the melting layer by the radar beam may lead to an 

underestimation (or overestimation) of the near-surface precipitation. Given beam 

blockages in mountainous regions, this kind of overshooting (or intercepting) is 

common for ground radars. 

 

Figure 4.2. Illustration of using spaceborne radar measured representative VPR to 
improve the near-surface QPE based on ground-radar. Different physical 
processes associated with different state of hydrometeors at various heights are 
also shown in the figure. 

As illustrated in Fig. 4.2, the VPR measured by spaceborne radar reveals the 

complete vertical structure of precipitation, linking ground-radar measurements aloft to 

the near-surface precipitation. Given a representative VPR, the ground-radar QPE can 
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certainly be improved by considering the vertical structure of hydrometeor phase. This 

is the basis of the VPR-IE method. Correspondingly, characterizing the representative 

VPR is one of the major tasks for VPR-IE.  

Figure 4.3 shows the framework of the proposed real-time VPR-IE system. The 

VPR-IE system incorporates NMQ and TRMM products in real-time through the links 

connecting data servers at the National Severe Storms Laboratory (NSSL) and NASA 

Precipitation Processing Systems (PPS). As for VPR correction, 3D radar mosaic (S-

band 3D reflectivity) and TRMM-PR products (2A25 and 2A23) are the primary inputs. 

2A25 includes PR-measured Ku-band 3D reflectivity. 2A23 provides the 

precipitation type identification (stratiform or convective), detection of the melting 

layer, and quantities such as the height of BB peak, the height of freezing level, etc. The 

improved near-surface QPE is evaluated by rain gauge measurements and the results are 

provided to users via a web-based data delivery system.  

 
Figure 4.3. Framework of proposed VPR-IE system at OU. The major components 
associated with VPR correction are enclosed by dashed lines (from Cao et al., 
2014). 
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4.2.1 Ku-band to S-band conversion 

The scattering characteristics of hydrometeors at different frequencies may lead 

to different VPRs. In order to use Ku-band VPR to correct S-band VPR, a conversion 

from Ku-band to S-band should be applied. Our previous works have introduced two 

approaches: VPR model approach (Kirstetter, 2013) and empirical conversion (Cao, 

2013).  

Wen et al., (2013) has presented a physically-based VPR model, which assumes 

five parameters (cloud top, freezing level height, melting layer width, rain region VPR 

slope, and ice density factor) to compute a VPR. The model parameters are fitted from 

observed VPR using nonlinear regression. This method is computationally expensive 

for real-time data processing.  

Cao et al. (2013) have derived a set of empirical relations for hydrometeors of 

different types or phases (snow, ice/hail, raindrop, melting particle). Radar dual-

frequency ratio (DFR, unit in dB), which links Ku-band and S-band reflectivity (Z, unit 

in dBZ), can be computed from Ku-band reflectivity using polynomial relations. 

Coefficients a0…a4 have different values, depending on the type and phase of 

hydrometeors.  

…………………………………………(4.1) 

………..(4.2) 

The empirical conversion is computationally efficient and easily implemented. The 

detailed conversion procedure and the coefficients in empirical relations can be found in 

(Cao et al., 2013).  

 

Z(S) = Z(Ku)+DFR

DFR = a0 + a1Z(Ku)+ a2Z(Ku)
2 + a3Z(Ku)

3 + a4Z(Ku)
4
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4.2.2 Apparent VPR at Different Radar Ranges 

VPR measurements from ground radar may be degraded (i.e., having a worse 

vertical resolution) by the beam broadening effect, especially at far range(Tabary et al, 

2007; Matrosov et al, 2007; Zhang et al, 2007). Smoothing of the VPR may lead to an 

incorrect quantification of physical processes. The smoothed VPR is normally regarded 

as the apparent VPR (AVPR) (Zhang et al, 2010). Generally, VPR measurements from 

TRMM-PR are unaffected by the beam broadening effect in the vertical direction (Cao 

et al, 2013). The derived S-band VPR from TRMM-PR measurements (as addressed in 

section II.A) should be converted to the AVPR to match ground-radar measurements at 

different radar ranges (Wen et al, 2013). To obtain the AVPR, a Gaussian function is 

used by VPR-IE to smooth the representative VPR. Given a specific radar range, the 

width of the Gaussian function is determined by the 3-dB radar beam width.  

4.2.3 Climatological VPRs for VPR Correction  

The proposed VPR-IE system applies climatological VPRs derived from long-

term PR observations (Cao et al, 2013) to correct the radar QPE that has been degraded. 

Using the empirical conversion approach in (Cao et al, 2013b), the VPR statistics in 

(Cao et al, 2013a) have been repeated to obtain the S-band climatological VPRs for the 

proposed VPR-IE system (as shown in Fig. 4.4). The climatological VPR z(h) is 

represented by the ratio of VPR to the reflectivity value at a reference height h0.  

                                                        (4.3) 

where, Z is in linear units; h is the height of radar beam center. The h0 is assumed as 

1.5 km below the freezing level. As Fig. 4.4 shows, climatological VPRs are classified 

by different seasons and near-surface reflectivity values in dBZ.  

� 

z(h) = Z(h) Z(h0)
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Figure 4.4. S-band climatological VPRs. Y-axis denotes the height relative to the 
freezing level. 

 

4.2.4 Procedure for Real-time Implementation  

The procedure of real-time climatology-based VPR correction is shown in Fig. 4. 

Since climatological VPRs have been quantified for S-band, the Ku-to-S-band 

conversion is no longer required for real-time processing. However, given a specific 

location, the appropriate climatological VPR needs to be determined for constructing 

the representative VPR. Firstly, the current VPR-IE system only corrects the VPR for 

stratiform precipitation. The identification of stratiform is mainly based on the real-time 

NMQ product of precipitation type. Note that BB contamination sometimes can be 

misidentified as convective precipitation by NMQ. As a result, the VPR-IE system 

further examines the radar beam height and the freezing level to reduce this uncertainty. 

Secondly, the climatological VPRs have been quantified with the near-surface 

reflectivity, which correspond to different rain intensities. The VPR-IE system applies a 

self-consistency method, i.e., estimating the near-surface reflectivity with all the 
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climatological VPRs and then checking if the result is consistent with the assumed 

reflectivity category. The selected climatological VPR is then combined with the real-

time freezing level height to take into account the local variation of a storm as well as 

the underlying terrain. Considering the low revisit frequency of the TRMM satellite, the 

real-time freezing level data are adapted from NMQ. The VPR-IE system also updates 

the freezing level whenever the TRMM satellite passes over the region. Combining 

climatological VPRs and real-time freezing level data provides representative VPRs for 

different locations. Considering different radar ranges, representative VPRs are 

converted to the AVPRs, which are combined with ground-radar measurements to 

estimate the near-surface reflectivity. Consequently, the near-surface QPE can mitigate 

the underestimation (or overestimation) caused by pristine ice (or melting ice) signals in 

original ground-radar measurements. Although the spatial pattern of a VPR in an event 

may be different from the result of long-term statistics, the current VPR-IE system has 

ignored the spatial variability of VPRs and generally relies on the shape of the 

climatological VPR and the spatial pattern of the real-time freezing level height.  

4.3 Comprehensive Evaluation of CVPR_IE 

A variety of studies have investigated different approaches to obtain 

representative VPRs. There are generally two categories: (1) those rely on ground radar 

data or other surface observations to derive VPRs (Kitchen et al. 1994; Andrieu and 

Creutin 1995; Fabry and Zawadzki 1995; Vignal et al. 1999; Germann and Joss 2002; 

Tabary 2007; Borga et al. 2000; Kirstetter et al. 2010; Zhang and Qi 2010; Kirstetter et 

al. 2013). However, in mountainous regions, complete VPRs may be difficult to obtain. 

Another approach (2) investigates the vertical structure of precipitation using 
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spaceborne radar (Gabella, et al 2006; Wen et al 2013; Cao et al 2013a; Cao et al 

2013b), i.e., precipitation radar (PR) onboard National Aeronautics and Space 

Administration (NASA)’s Tropical Rainfall Measuring Mission (TRMM) satellite. 

Building on the works proposed by Kirstetter et al. (2012, 2013), Wen et al. (2013) 

proposed a concept of QPE enhancement, namely the VPR Identification and 

Enhancement (VPR-IE), which derives a representative, parameterized VPR using PR 

observations when a local PR pass is available.  

The VPR-IE method has been evaluated for several stratiform precipitation 

events in Arizona. The statistical analysis showed that VPR-IE effectively enhanced 

ground radar-based QPE but this improvement was limited to times in which there were 

PR overpasses.  Cao et al (2013a) summarized the statistical seasonal, spatial, intensity-

related, and type-related characteristics of the vertical structure of precipitation in the 

region of southern California, Arizona, and western New Mexico through the use of 

11+ years of TRMM PR observations. These climatological VPRs can now be 

integrated into a real-time multisensor scheme. 

4.3.1 Data and methodology 

Our study area is the Mountainous West region of the U.S. (Fig. 4.5), where 

ground weather radar QPE is challenging because of insufficient NEXRAD radar 

coverage and high spatial variability of precipitation due to orographic enhancements. 

In winter, the relatively shallow precipitating clouds make accurate QPE at the surface 

level even more difficult. VPR correction improves the surface precipitation estimation 

by considering the vertical structure of hydrometeors and thus linking surface 

precipitation to the radar measurements aloft. Wen et al. (2013) used a physically based 
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VPR model (Kirstetter et al. 2013) to identify and utilize PR-measured VPRs. The 

physically based VPR-IE method depends on the availability of PR measurements, 

which is limited to twice daily from the TRMM satellite orbits.  

 
Figure 4.5. An image showing the topography of the study area and the locations of 
rain gauges (white crosses) and WSR-88D radar sites (white circles with cross) 
with 100-km range rings. 

 

Cao et al. (2013) derived climatological VPRs from long-term PR measurements 

for different seasons, rain intensities and convective/stratiform rain types. Since the 

scattering of hydrometeors depends on frequency, the Ku band climatological VPRs 

derived from PR measurements have different features compared to S-band VPRs. A 

conversion from Ku band to S band needs to be applied when the TRMM-based VPR-

IE is implemented for ground based radar measurements. A radar dual-frequency ratio 
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was derived from Ku-band using a set of empirical relations for different hydrometeors 

(snow, ice/hail, rain, melting particles) and applied to link Ku-band reflectivity to S-

band reflectivity (Cao et al, 2013). The S-band climatological VPRs for the cool season 

are shown in Fig. 4.6. The climatological VPR is represented by the ratio of VPR to the 

reflectivity value at a reference height, which is set to 1.5 km below the freezing level. 

This reference height corresponds to liquid hydrometeors that have just melted. 

 
Figure 4.6. Climatological VPRs (already converted from Ku-band) for winter 
season from 11-year TRMM/PR observations. X-axis denotes the difference 
relative to the reflectivity measured at 1 km below freezing level.  Y-axis denotes 
the height relative to the freezing level.   

The procedure for real-time climatology-based VPR correction is shown in Fig. 

4.7. First, stratiform precipitation is identified based on the real-time NMQ precipitation 

type product. The CVPR-IE is developed for stratiform precipitation, but it is also 

applied to NMQ-identified convective echoes for situations where the radar beam 

height is sampling within the melting layer. Second, the surface rain intensity from 
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NMQ is used to select the appropriate climatological VPR. Third, the selected 

climatological VPR is then combined with the real-time freezing level height from 

NMQ to account for local storm structures and the underlying terrain effects. Fourth, 

representative VPRs are convolved with ground radar sampling properties (e.g., beam 

broadening with range) to compute the apparent VPRs (AVPRs) at different radar 

ranges. Finally, the correction is applied to the reflectivity field, which is then converted 

into rainfall rate using Z-R relations: Z=200R1.6 for stratiform rain and Z=300R1.4 for 

convective rain. The rainfall rates are then accumulated to hourly rainfall amounts and 

compared to rain gauge observations. The focus of this paper is on the assessment of the 

approach. More details of CVPR-IE are discussed in Cao et al. (2014). 

 

Figure 4.7. Procedure of real-time climatology-based VPR correction. 
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4.3.2 Results 

a. Verification statistics 

We select four statistical indices for evaluating CVPR-IE using rain gauges 

comprising the Hydrometeorological Automated Data System (HADS) network as the 

reference (Fig. 4.5). The Relative Bias (RB; in percent) is used to assess the systematic 

bias of radar estimations. Spearman’s rank correlation coefficient (CC) is used to assess 

the agreement between the radar estimates and gauge observations. The mean absolute 

error (MAE) measures the average magnitude of the error while the root-mean-squared 

error (RMSE) quantifies the average error magnitude, giving more weight to larger 

errors: 

𝑅𝐵 =    !(!)!   !(!)
!(!)

×  100%,                                                  (4.4) 

𝐶𝐶 = 1−   !   !"#!! ! !!"#!! !
!

! !!!!
,                                         (4.5) 

𝑀𝐴𝐸 =    ! ! !!(!)
!

,𝑎𝑛𝑑                                                      (4.6) 

𝑅𝑀𝑆𝐸 =    ! ! !!(!) !

!
                                                         (4.7) 

In (2), RankR(i) and RankG(i) represent the assigned rank value in the 

ascending order of the radar and gauge observation, respectively. Statistics are 

computed in Table 6 for hourly rainfall estimates after filtering out all points that have a 

frozen precipitation type according to the NMQ algorithm. Data pairs with nonzero 

values from both gauge and radar sources are considered as the correction is focused on 

quantitative measurement rather than detection.  
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Table 6. Statistical results of the climatological VPR_IE approach. The first row 
shows the statistics before CVPR_IE correction; the second row shows the 
statistics after CVPR_IE correction. 

 

The statistics show improvement with the CVPR-IE method according to all 

statistical indices except RMSE. To evaluate the significance of the improvement and 

minimize the impact of the sample representativeness, a bootstrap method is 

implemented by recomputing statistics on the basis of different samples. Efron (1979) 

introduced the bootstrap method with the idea that the sample values generated by 

resampling from the original sample repeatedly are the best guide to the true 

distribution. Based on these bootstrap samples, estimates of the statistical values (bias, 

CC, etc.) can be derived. Figure 4.8 shows the probability distribution of statistical 

parameters derived from 1000 groups of bootstrap samples. Note that a summary 

statistic fluctuates from sample to sample. In general, all statistical values have 

improvements with statistical significance after the CVPR-IE correction except RMSE. 

Relative bias (RB) has the largest improvement with the mode of the distribution of RB 

shifting from -46% to -40%. The mode of the CC distribution has shifted to higher 

values following correction and the MAE distribution has shifted to lower values, which 

means rainfall estimates are more consistent with rain gauge measurements after 

correction. Fig. 4.8d shows a slight trend of RMSE shifting towards lower values, but 

not significantly. Further analysis of improvements due to CVPR-IE concentrates on 

RB, CC and MAE. 
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Figure 4.8. The probability distribution of RB, CC, MAE and RMSE using 
bootstrapping method. 

 

The dependence of the distributions of the statistical values on sample size is 

shown in Fig. 4.9. Figure 4.9 shows the median of the distribution and the interquartile 

range for the statistics computed on the uncorrected radar data and then the CVPR-IE 

method. The breadth of the distributions of the statistics in Fig. 4.9 show a narrowing 

with larger sample sizes as expected. All statistical indices except RMSE show 
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improvements for all sample sizes. There is a consistent ~6% improvement in RB 

performance independent of sample size due to the correction method. It is notable that 

the consistent improvements are based on hourly scale. These improvements may 

amplify further if assessed at daily scale. Also, other uncertainties associated with radar 

calibration, Z-R relation, etc. may mask CVPR_IE’s performance. These uncertainties 

are discussed in the discussion section.  
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Figure 4.9. The statistics before and after CVPR_IE for a range of sampling sizes. 
The whiskers refer to the interquartile range. 

 

The statistics shown in Figs. 4.8 - 4.9 are aggregated over a large sample size 

and cannot highlight the improvement in skill for each data pair following correction. In 

order to evaluate if the radar estimates are in better agreement with gauge 

measurements in terms of occurrence of improvement after correction, we apply a 

difference method similar to Bellon (2006).  

Ii = |QPE_beforei – Gaugei| - |QPE_afteri - Gaugei|    (4.8) 

 , where i indicates the ith gauge-radar pair; QPE_before represents the raw, 

radar-based estimate while QPE_after is for the corrected QPE following the CVPR_IE 

application. If Ii >0, then the radar measurement after correction agrees better with 
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gauge measurements and the reverse is true for Ii<0. The occurrences of positive and 

negative values are counted and the results are plotted as a function of gauge-based 

rainfall accumulation in Fig. 4.10. The dashed line indicates that the improvement after 

correction is consistently better than the radar-only product when the surface hourly 

rainfall is less than 5 mm. It must be noted that the average stratiform rain rates are 

typically less than 4 mm/hr (Schumacher and Houze, 2003). Consistently higher 

occurrences of better performance due to CVPR-IE indicate good correction skill in 

stratiform regions since the correction method focuses on stratiform regions. In 

convective regions, where hourly rain rates are commonly greater than 4 mm/hr, the 

number of points for which the rainfall estimates has deteriorated after correction is 

similar to the occurrences for which the rainfall estimates have improved after 

correction. Stratiform and convective echoes have different VPR characteristics. VPRs 

in convective precipitation have less vertical variability without a bright band feature in 

relation to stratiform echoes. Thus, the current CVPR-IE focuses on stratiform 

precipitation and shows improvements over a majority of data pairs.  
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Figure 4.10. The occurrences of improved QPE after correction based on gauge 
measurements is denoted as dashed black line; the occurrences of worse QPE after 
correction is denoted as solid line. 

 

b. Verification with radar beam height 

Systematic errors in ground-based radar rainfall estimation, related to the VPR 

features combined with the geometric effects of the radar beam, creates the often-noted 

radar beam height dependence (Bellon et al. 2005).  Figure 7 shows statistics before and 

after correction as a function of radar sampling height.  The uncorrected QPE at near 

range shows high CC values and low MAE values indicating the radar QPE is highly 

consistent with rain gauge measurements. The CC and MAE worsen as radar beams 

approach and then intercept the melting layer. Both statistics either improve or stay 

constant for 2000 m above the melting layer before deteriorating again above this height. 

Reflectivity in the melting layer is not well correlated with surface rainfall rates. 

Regarding the RB, both uncorrected and CVPR-IE-corrected rainfall slightly 

underestimates gauge accumulations instead of overestimating it in the melting layer. 

The CVPR-IE correction technique detects the melting layer region and automatically 

subtracts an offset of reflectivity between the bright band and the liquid rain region as 

observed in the climatological VPRs (Fig. 4.11). The unusual underestimation in the 

melting layer region is further underestimated after the VPR correction is applied. We 

note that there is a negative RB (-50%) for the uncorrected rainfall at the reference level; 

i.e., where we expect the best accuracy in rainfall estimates. The method is designed to 

adjust radar estimates so that they represent rainfall at the reference level height. If the 

rainfall estimates are biased there, then the bias will propagate for corrections applied at 
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greater sampling heights. We discuss in the Discussion Section that such biases may be 

due to an inaccurate Z-R relationship, which tends to mask the improvement in the 

CVPR-IE method. The overshooting of the radar beam in the ice phase causes the CC to 

drop significantly for radar beam heights greater than 2000 m above the melting layer. 

The MAE decreases in this region, but only because the quantitative radar and gauge 

rainfall amounts are becoming quite light in this region. The significant decrease of the 

CC means that the data may not be correctable at these heights due to a very poor 

correlation with surface rainfall. This places an upper limit to which the CVPR-IE can 

be effective in shallow, stratiform rain. Overall, the CVPR-IE using the climatological 

PR information mitigates the underestimation above the freezing level by improving the 

RB by 30%. CC and MAE are slightly improved in the ice region.  
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Figure 4.11. The range-dependent statistics of beam height relative to freezing 
level. The dashed lines denote radar only rain estimation before correction; the 
black lines denote rain estimation after CVPR_IE; the gray line denotes rain gauge 
measurements on the ground. 
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c. Verification with RQI 

The NMQ system provides a Radar Quality Index (RQI) product to account for 

radar beam sampling characteristics (i.e., partial blockage, beam height relative to 

melting layer, and sampling volume) (Zhang, et al., 2011). The RQI field ranges from 

zero to unity, indicating the relative quality of the radar QPE from low to high. Sheng et 

al. (2013) evaluated daily NMQ rainfall accumulations and found that the bias was 

correlated with RQI values. Figure 4.12 shows the CVPR-IE correction skill as a 

function of the anticipated quality of the rainfall estimates. All statistics show a trend of 

improving values with increasing RQI. The trend of CC is a little more complicated 

with a linear increase up to an RQI of 0.4 and then no improvements thereafter.  For 

uncorrected radar QPE, the RB is lower than -80% and MAE is higher than 1.6 mm 

when RQI is less than 0.2. The low RQI score mainly corresponds to poor quality QPE 

caused by sampling well above the melting layer in the ice region. The improved 

performance of the CVPR-IE is more evident when RQI is low and becomes less 

significant with increasing RQI, i.e. when radar QPE is less affected by beam sampling 

problems. When RQI equals unity the radar beam samples rain close to the surface. We 

again note that the RB is negative even when RQI equals unity. This systematic 

underestimation is not associated with the variability of VPR and may come from other 

sources of uncertainty such as Z-R relationship and radar miscalibration.  
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Figure 4.12. Similar to Fig. 4.11. But statistics are along Radar Quality Index 
(RQI). 
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d. Verification with precipitation type 

CVPR-IE is applied to stratiform echoes on 5-min radar data, which is then 

accumulated to hourly scale to match the temporal resolution of rain gauges. After the 

accumulation process, other precipitation types, such as convective, hail or undefined 

precipitation type, may become prevalent at a given grid point and thus obscure the 

degree of correction that was made to the stratiform rain echoes. To address this, Fig. 

4.13 shows the statistics as a function of the number of occurrences stratiform echoes 

that were detected within the hour for each grid point. As the proportion of stratiform 

rain type increases, RB of both uncorrected and corrected QPE improves and the 

difference between them increases, indicating that the CVPR_IE functions most 

effectively with widespread, stratiform rain. CC stays relatively constant with 

increasing stratiform occurrences within the hour. After applying the CVPR-IE 

correction, CC is slightly improved relative to the uncorrected rainfall estimates. The 

increasing MAE values with increasing stratiform rain proportion is due to increasing 

rainfall accumulations. If stratiform rain did not occur, it is likely that precipitation was 

simply absent at that 5-min time step, thus resulting in lighter hourly accumulations. 

This inference is supporting by the trend of increasing rainfall accumulations in Fig. 

4.13d. There is no difference in MAE following correction using the CVPR-IE method.  
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Figure 4.13. Similar to Fig. 4.11. Statistics are along the stratiform precipitation 
proportion in one hour 
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Another precipitation type category defined in the NMQ system is called Bright 

Band (BB), which contains radar measurements of melting hydrometeors 800 meters 

below the top of the freezing level. As the proportion of the BB type increases, the RB 

generally increases, CC does not exhibit a clear trend, and MAE increases in 

correspondence with increasing precipitation amounts (Fig. 4.14). The corrected QPE 

shows improvements in all three statistics, especially when the BB occurrence is greater 

than 4.  
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Figure 4.14. Similar to Fig. 4.11. Statistics are with Bright Band precipitation 
proportion. 
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4.3.3 Discussion  

a. Limitation of Climatological VPR-IE 

As demonstrated in the previous section, CVPR-IE mitigates range-dependent 

errors to some extent. The improvement is mainly seen in RB while CC and MAE only 

have marginal improvements. Also, the improvement in RB is only around 6%, which is 

more limited than the improvements (~20%) made by the physically based VPR-IE 

(Wen et al., 2013). To examine the reasons behind these differences, CVPR-IE was 

applied to the cases investigated in Wen et al. (2013). The Absolute Error (|Radar - 

Gauge|), MAE, RMSE and CC are calculated for radar QPE after VPR-IE processing. 

To quantify the relative differences between the two different VPR-IE correction 

methods, the statistics are computed as a percent difference relative to the radar-only 

QPE as shown in Table 7. Improvements occur if there is a reduction in AE, MAE, 

RMSE and an increase in CC. The analysis is conducted for specific hours when PR 

overpasses are available since the physically-based VPR-IE method is limited by the 

temporal resolution of PR. In general, the physically-based VPR-IE method yields more 

improvements for all five events.  

Table 7. Relative changes of statistics due to CVPR-IE and physically based VPR-
IE. 

 

The CVPR-IE also improves upon the radar-only QPE but not drastically. The 8 

Dec 2009 event is demonstrated in further detail as an example to show the differences 

between the physical and climatological VPR correction methods. This is a widespread 



118 
 

stratiform event with heavy precipitation and a 0° C-level height of 2500 m. For most of 

the rainy areas shown in Fig. 4.15a, the radar beam has overshot the melting layer, 

which led to underestimation of rainfall on the surface. The physical VPR-IE induces 

the greatest increase of precipitation rate at ground (Fig. 4.15b). Rainfall estimates 

using the CVPR-IE correction is shown in Fig. 10c. Compared to Fig. 4.15a, the CVPR-

IE method increases rainfall estimates around KFSX but not sufficiently. Also, the 

underestimation within the area around 34.2° in latitude and -112.5° in longitude still 

remains after CVPR-IE by comparing to the gauge measurements on the ground. The 

reflectivity measured in this area is 25 dBZ. The corresponding climatological for this 

grid point is plotted in Fig. 4.16a, along with the physically-based VPR coming from 

actual PR measurements for the specific event. The physical VPR has a steeper slope in 

ice region, which provides larger correction on surface level reflectivity compared to 

the climatological one. The climatological VPR of 25 dB with a less steep slope in ice 

region limits the correction magnitude. For the rain areas 100 km east of KESX, where 

the beam height is around 1000 m relative to the freezing level (Fig. 4.16b), the 

correction of reflectivity using the physical VPR is more than 10 dB, while the 

climatological one is only ~5dB. The climatological VPR’s deviation from the 

physically-based VPR and its consequent effect on the correction skill exposes the 

limitation of a climatological VPR correction and emphasizes the importance of 

ingesting real time information from TRMM/PR or GPM DPR. Blending real time VPR 

information from other sources, e.g. TRMM/PR, GPM/DPR, with climatological VPRs 

can solve the VPR variability issue and make the VPR-IE method more robust. 
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Figure 4.15. Hourly precipitation accumulation from Event 8 Dec 2009. (a) Radar 
only QPE; (b) Gauge measurements from HADS and the Maricopa County 
mesonet; (c) Using physically-based VPR-IE approach; (d) Using climatological 
VPR-IE scheme approach. The red triangles denote the locations of WSR-88D 
radar sites 
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Figure 4.16. (a) Physically based VPR from Event 8 Dec 2009 (gray line) and 
climatological VPRs; (b) Beam height relative to the freezing level in meters. 

 

b. Z-R relation uncertainty 

All results up to now have shown underestimation both before and after 

application of the correction methodology. The RB improved by only 6% from -46% to 

-40% when considering gauge-radar pairs at all ranges from radar. Moreover, negative 

biases remained before and after correction for those bins measured well below the 

melting layer where the method assumes the radar-only estimates are trustworthy. The 

CVPR-IE method is essentially correcting data measured aloft to the radar-only rainfall 

estimates measured below the melting layer. If the rainfall estimates are biased in this 

region that is assumed to be trustworthy, then the bias will propagate to other bins. This 

underestimation may be due to an inappropriate Z-R relationship. Kirstetter et al. (2014) 

provides a new set of Z-R relationships within a paradigm of probabilistic precipitation 

rate estimates. After applying the newly proposed Z-R relationship, the RB of 

uncorrected rainfall estimates becomes -11.09% instead of the prior -46.43% (Table 1) 

using the default Z-R relation for stratiform precipitation in NMQ. After CVPR-IE 



121 
 

correction, the RB is improved to -0.10%. The improper former Z-R relationship 

masked the improvement of the CVPR-IE scheme, which could mitigate range-

dependent errors in reflectivity successfully.   
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Chapter 5 Overall conclusions and future work 

5.1 Summary and conclusions 

5.1.1 Summary of Chapter 2: Ground Polarimetric Weather Radar 

This Chapter provides a quantitative assessment of TRMM PR melting layer and 

reflectivity measurements as compared to a S-band polarimetric radar located in 

Norman, Oklahoma.  The KOUN ground-based radar is the prototype, proof-of-concept 

radar for the ongoing upgrade of the NEXRAD network.  KOUN is shown to be 

particularly useful in this analysis due to its ability to filter non-meteorological echoes 

and discriminate hydrometeor species, each of which has differing scattering 

characteristics at Ku- and S-band frequencies. The main findings are summarized as 

follows: 

1. Comparisons of TRMM PR and KOUN melting layer heights reveal a 

correlation coefficient of 0.88 and relative bias of 5.94%.  The differences 

are deemed to be due to the vertical vs. horizontal scanning and resolution 

volume differences rather than systematic offsets that might have pointed to 

algorithmic errors. 

2. NASA’s resolution volume matching technique is used to match and 

compare simultaneous TRMM PR and KOUN reflectivity observations. The 

results indicate a negligible bias (<0.2%) due to calibration differences 

between PR and KOUN. However, for Z >50 dBZ, reflectivity from KOUN 

is slightly higher than that from PR, likely due to non-Rayleigh scattering for 

Ku band of PR.  
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3. By comparing reflectivity with respect to different hydrometeor types (as 

determined by KOUN’s Hydrometeor Classification Algorithm), we find 

biases are primarily from rain/hail mixture, wet snow, graupel, and heavy 

rain, respectively.  These results agree with differences in simulated 

reflectivity differences at Ku and S band using the T-matrix method, with 

the notable exception of dry snow.  Assumptions for simulating reflectivity 

in dry snow need to be further investigated. 

4. Comparison of vertical reflectivity profiles shows that PR suffers significant 

attenuation, especially in convective rain and within the melting layer.  

However, TRMM PR observations correspond very closely with KOUN 

reflectivity measured nearest to the surface, thus indicating no systematic 

biases are caused by the TRMM attenuation correction procedures.  

5. The polarimetric signatures of snow provide valuable insights into the 

microphysical processes/properties. The QVP of polarimetric data is an 

efficient way to examine the temporal evolution of microphysical processes.  

6. The polarimetric signatures aloft in the ice parts can help us discriminate 

snow riming from aggregation by the enhancement of Z and the decrease of 

ZDR, and the saggy melting layer shape. 

7. The intercept α in the power-law relation S=αZβ increases with height and 

decreasing temperature. The α is almost entirely dependent on the intercept 

of the exponential size distribution of snow N0. The decreasing of N0 with 

increasing temperature and decreasing altitude is aggregation of ice crystals 

and snowflakes. 
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NASA has called for comprehensive sensor calibration and ground validation 

research to be conducted to ensure proper accuracy and precision of the space-borne 

QPE missions (Petersen and Schwaller 2008). With the upgrad of the U.S. national 

weather radar network to include polarimetric capabilities, the polarimetric algorithms 

developed on the prototype KOUN radar may be able to serve as the basis for a nation-

wide validation network using polarimetric NEXRAD data for NASA space QPE 

products.  This research motivates and invites synergistic development of multisensor 

rainfall algorithms using coordinated observations from space and ground. 

5.1.2 Summary of Chapter 3: VPR_IE methods 

In this Chapter, we have demonstrated the effective integration of the Ku-band 

TRMM PR products (radar reflectivity, precipitation type, and quantity at 4-km 

horizontal and 250-meter vertical resolutions) into the NMQ system to improve the S-

band ground-based radar rainfall estimation. Our major interest focuses on mountainous 

regions where beam blockages, overshooting, and intercepting the melting layer remain 

the major problems for ground radar-based QPE. This study proposes a VPR-IE method 

to improve the surface rainfall estimate in the Mountainous West region by 

synergistically integrating observations from spaceborne TRMM PR into NEXRAD-

based radar products. With the physically-based VPR model, the TRMM 3-D 

reflectivity profile (Ku-band) is used to derive a representative VPR at S-band within a 

specific region (e.g., a region of stratiform precipitation). Surface rainfall estimates, 

which were previously hampered by sampling within or above the melting layer, can be 

greatly improved through the incorporation of the TRMM-observed VPR data. 
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The VPR-IE method has been evaluated with several stratiform precipitation events 

in Arizona. Two other statistically-based correction methods, TRMM-based rainfall 

calibration and the rings-based range adjustment, have also been compared with the 

physically-based VPR method. The statistical analysis shows that the VPR-IE method 

has the best overall performance and provides much more accurate surface rainfall 

estimates than the original radar QPE in the current NMQ system for the study region  

5.1.3 Summary of Chapter 4: real time VPR_IE methods 

This study provides a quantitative assessment of a climatological VPR-IE 

technique for all winter events in 2011 over a study region in the Intermountain West of 

the US, where the climatological VPRs are derived from 11+ years of TRMM/PR 

observations.  The main results are summarized as follows: 

(1) The statistical analysis shows that the CVPR-IE method provides 

improvements over the original radar QPE in the current NMQ system.  

(2) The statistical significance of the correction skill is further examined using a 

bootstrapping method based on different sample sizes. The results show that the CVPR-

IE method improves radar surface rainfall measurement systematically.  

(3) The CVPR-IE mitigates radar underestimation for samples obtained in the 

ice region but the correction was not enough to remove all negative bias.  

(4) The statistics show improvements in radar QPE following application of the 

CVPR-IE were most effective for bins measured above the melting layer, bins with low 

radar quality index values, and for gauge-radar pairs that were dominated by stratiform 

precipitation type.  
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(5) Compared to a physically-based VPR from real time PR measurements, 

climatological VPRs have limitations in representing precipitation structures for each 

individual event. The physically-based VPRs, on the other hand, are updated on a twice 

daily basis corresponding to a satellite overpass. A hybrid VPR correction scheme 

incorporating both climatological and real time VPR information is desired to optimize 

skill in a real time system. 
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5.2 GPM era 

GPM mission is a joint mission led by NASA and Japan Aerospace Exploration 

Agency (JAXA) designed to monitor and study global precipitation measurements. The 

core satellite, launched on Feb. 27, 2014 from Japan, flies in non-sun-synchronous orbit 

(65° inclination on a 407-km-high circular orbit) to serve as a physics observatory to 

gain insights into precipitation systems and as a calibration reference to unify and refine 

precipitation estimates from a constellation of research and operational satellites 

involving passive microwave sensors (Hou et al, 2014). The core satellite carries the 

Ku/Ka-band DPR and a microwave radiometer (GMI). The DPR is expected to improve 

the single frequency radar capabilities of the TRMM PR, providing estimates of 

microphysical properties and vertical structure information of precipitating systems. 

The GMI with its 1.2-m antenna, is capable of providing measurements at the highest 

spatial resolution among all constellation radiometers, which is important for obtaining 

accurate fixes of storm centers for track predictions (Hou et al, 2014). The GPM 

constellation includes a number of satellites with GMI-like radiometers or microwave 

sounding instruments. The GPM core satellite sensors are used as a reference to inter-

calibrate the constellation radiometers, thus providing self-consistent radiometric 

observations across the constellation. The higher sensitivity of the DPR Ka-band radar 

(12 dBZ) relative to the TRMM radar and the high-frequency channels on the GMI give 

GPM new capabilities to take on the challenge of measuring light rains (i.e., <0.5 

mm/hr) and falling snow. 

The current VPR-IE schemes (both physically based and climatological) are 

restricted by the TRMM satellite coverage between 36 N and 36 S. With the recent 
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availability of Global Precipitation Measurement (GPM) Dual-frequency PR, the VPR-

IE approach is anticipated to become more robust when extended to higher latitude 

mountainous regions. Further, the refined DPR and GMI measurements by quantifying 

the microphysical properties of precipitating particles provide more insight information 

of storm vertical structure and storm evolve, which potentially constrains the 

representative VPRs and decreases its uncertainty.   
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