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Abstract 

 

 The Ensemble Square Root Filter (EnSRF) data assimilation technique is applied 

to examine the impact of assimilating high temporal frequency radar observations over a 

shorter assimilation period. To reduce the heavy computation cost of assimilating large 

number of radar observations using EnSRF technique, synthetic radar observations are 

generated at coarser spatial resolution. Two sets of experiment are conducted with 

identical settings based on perfect model framework where model error does not play a 

role. One experiment assimilates radar observations, in which a volume scan is conducted 

every 5 min, while the other experiment assimilates observations, in which a volume scan 

is conducted every 1 min. Results indicate that assimilating observations at 1-min 

intervals over short 15-min period yields significantly better analyses and forecasts than 

those produced using observations at 5-min intervals.  However, the very good 

performance obtained from perfect model experiments is not expected in real-world 

experiments where models unavoidably have errors. Therefore to account for model 

error, another two sets of experiments are conducted using both a perfect and an 

imperfect model framework and the EnSRF data assimilation technique. In addition, the 

value of using a range of intercept and density parameters for hydrometeor categories in 

different ensemble members within the same microphysics scheme also is examined. 

Results show that the EnSRF system performs reasonably well with the imperfect model 

assumption. Results also indicate that in the presence of model error, a combination of 

different hydrometeor density and intercept parameters leads to improved forecasts over 

experiments that use a constant, hydrometeor intercept and density parameter.   

xv 



 While the EnSRF data assimilation technique shows promise in radar data 

assimilation, one limitation of EnSRF technique is that it assimilates observations 

serially, making it computationally very expensive when the number of observations is 

very large. Thus in an effort to explore efficient data assimilation method, the feasibility 

of the information filter as an alternate to the EnSRF data assimilation technique when 

the number of observations is very large is examined. The extended information filter 

(EIF) is implemented using the Lorenz 96 model and the performance of EIF in 

assimilating both low and high spatial resolution observations are compared with the 

benchmark extended Kalman filter (EKF) assimilation technique. Results indicate that 

both EKF and EIF produce similar results for different spatial resolution observation 

assimilation. The computational time for the EIF is larger than that of the EKF filter as 

expected due to the higher computational cost of matrix inversion in EIF technique. 

However, the increment in computational cost for EIF technique is much smaller than 

that of EKF technique for increased number of observation assimilation. 

xvi 



   

Chapter 1 

Introduction 

 

1.1 Background and Motivation 

 The numerical weather prediction (NWP) models are used in meteorology to 

study a variety of atmospheric processes and to predict the future atmospheric states. The 

NWP models represents the atmosphere in a three-dimensional grids with nx, ny and nz 

points in the x, y and z directions giving rise to ng= nxnynz grid points. Moreover, at each 

grid point there are L physical variables, such as pressure, temperature, wind in three 

dimension, moisture etc., that must be represented. For a small grid of nx=100, ny=100 

and nz=50 points, there is a total of ng=5x105 grid points, and thus a total of n = ng L 

variables that must be defined in a model. The prediction of future atmospheric states is 

accomplished as an initial value problem where the “best” initial atmospheric state using 

dynamic data assimilation techniques. After the initialization, the three-dimensional 

NWP models are integrated forward in time to make a prediction. Thus the challenge of 

data assimilation is to find an estimate of the initial atmospheric state based upon an 

optimal statistical combination of available atmospheric observations and an estimate of 

atmospheric state provided by a previous model forecasts (also known as background).  

With the rapid increase in the number and types of atmospheric observations (e.g. remote 

sensors, fixed and mobile radars, surface in-situ instruments, satellite observations, 

rawinsondes, and aircraft observations), computationally it is very challenging to 

assimilate these observations into the model. Numerical methods that are commonly used 

for this purpose are the Optimal Interpolation or OI method, variational methods in three 
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and four dimensions (3D-VAR and 4D-VAR), Kalman filtering and the Ensemble 

Kalman filtering (EnKF) methods.  

 One of the research goal at the National Severe Storms Laboratory (NSSL) 

located in Norman, Oklahoma is to improve the accuracy of severe weather forecasts 

(e.g. hail, tornado, thunderstorms etc.) and to increase the warning lead time of severe 

weather events. Longer warning lead times are expected to help save lives, reduce 

damages and injuries, provide improved local flood warnings  and positively impact air 

traffic and surface transportation routing. To increase the warning lead time, it is essential 

that the model be initialized with a very accurate representation of ongoing convective 

weather. The only key instrument that observes the 3-D volumetric scans of severe 

weather events every ~5 minutes at high spatial resolution are the Weather Surveillance 

Radar – 1988 Doppler (WSR-88D). In recent years, researchers found that assimilating 

the WSR-88D radar observations using ensemble square-root Kalman (EnSRF), a variant 

of EnKF data assimilation techniques shows promise in initializing storm-scale1 NWP 

models (Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004a, b; Tong and 

Xue 2005; Xue et al. 2006; Dowell and Wicker 2009; Aksoy et al. 2009). These studies 

assimilate either synthetic or real WSR-88D Doppler radar reflectivity or radial velocity 

observations of thunderstorms. Results indicate that by assimilating radar reflectivity and 

radial velocity observations, the filter is able to retrieve the unobserved variables, such as 

temperature and the full three-dimensional wind field, successfully. In contrast, model 

simulations without radar data assimilation create the thunderstorm in an ad hoc manner 

using a warm bubble, but are unable to generate the quickly developed observed storm 

                                                 
1 Storm-scale is a scale of sizes of individual thunderstorms.  
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characteristics, and often diverge from observations. Indeed, data assimilation is a key 

element in producing reasonable predictions of observed thunderstorms.  

 While the EnSRF technique shows promise in storm-scale assimilation, one 

limitation of EnSRF is that it assimilates observations serially, making it computationally 

very expensive when the number of observations is very large. Therefore to limit the 

number of observations, radar observations are either objectively analyzed to coarser 

resolution (Dowell et al. 2004a, b; Dowell and Wicker 2009, Aksoy et al. 2009) or 

synthetic radar observations are generated at coarser resolution (Snyder and Zhang 2003; 

Zhang et al. 2004; Tong and Xue 2005; Xue et al. 2006; Caya et al. 2005). Based on 

recent studies (Snyder and Zhang 2003; Zhang et al. 2004; Xue et al. 2006; Caya et al. 

2005) it appears reasonable to expect that at least 10 radar scans are needed to produce 

reasonable analyses of storms. However, part of the challenge in using ~5-min radar 

observations to initialize thunderstorms in numerical models is that a number of storm 

features evolve on a timescale of minutes and are poorly sampled by ~5-min data.  Xue et 

al. (2006)  and  Lei et al. (2007) show that the assimilation of synthetic 1-min radar data 

leads to analyses that more closely approach the truth solution than the analyses created 

using synthetic 5-min radar data. Moreover, with the advent of the emerging Phased 

Array Radar (PAR; Forsyth and coauthors 2004;Weber et al. 2007, Yu et al. 2007, Zrnić 

et al. 2007) technology as a potential replacement candidate of the aging WSR-88D in the 

next 10-15 years, it is possible to scan a thunderstorm phenomena in less than a minute 

(Heinselman et al. 2008).  Since accurate analyses require approximately 10 radar scans, 

the amount of time needed to obtain these scans from the WSR-88D is at least 45 min. 

However, the PAR can produce 10 radar scans in less than 10 min. Thus, it is reasonable 
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to expect that PAR observations can generate accurate storm analyses very quickly using 

a shorter assimilation period.  A shorter assimilation window also is highly desirable in 

an operational environment if these analyses are to be used to increase warning lead times 

for severe weather warnings.   

 One major sources of error in storm-scale data assimilation and forecasts is the 

microphysical parameterization scheme used to represent the microphysical 

characteristics of the storms in the NWP model (Dowell et al. 2004a, b; Gilmore et al. 

2004; van den Heever and Cotton 2004; Snook and Xue 2008; Tong and Xue 2008a). 

Microphysics refers to the model emulation of cloud and precipitation processes that 

remove excess atmospheric moisture directly resulting from the dynamically driven 

forecast wind, temperature, and moisture fields. The most commonly used type of 

microphysical scheme in storm-scale modeling is a single-moment bulk microphysics 

scheme (Lin et al. 1983; Tao and Simpson 1993; Schultz 1995; Straka and Mansell 2005; 

Hong and Lim 2006) that uses predefined precipitation particle densities and the intercept 

parameters (microphysical parameters) and predicts only the particle mixing ratios. The 

determination of suitable values for the microphysical parameters in storm scale data 

assimilation is very difficult due to the unavailability of in situ microphysics 

observations. Several observational studies indicate that the particle densities and the 

intercept parameters can vary widely among storms and even within a single storm (Gunn 

and Marshall 1958; Houze et al. 1979, 1980; Mitchell 1988; Pruppacher and Klett 2000; 

Cifelli et al. 2000; Brandes et al. 2007).  Several experimental studies also show that the 

selection of microphysical parameters in storm-scale modeling has profound impact on 

the analyses and forecasts of severe weather events, and an arbitrary selection of those 
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parameters may lead to significant error (Gilmore et al. 2004; van den Heever and Cotton 

2004; Snook and Xue 2008). One approach to account for the uncertainty in a storm-scale 

EnSRF data assimilation system is to vary the microphysical parameters within the same 

microphysics scheme among the ensemble members. The hope is that by using a variety 

of realistic precipitation particle parameters, an ensemble is more likely to span the truth.  

 As mentioned earlier, while the EnSRF data assimilation technique shows 

promise for radar observation assimilation, numerous challenges exist. From the 

computational point of view, data assimilation using EnSRF method is efficient when the 

number of observations is smaller. When the number of observations exceeds the number 

of model states, the EnSRF method becomes computationally inefficient. Therefore, one 

major challenges of radar data assimilation is the heavy computational demands of 

assimilating radar observations in true radar resolution. Moreover, observations of the 

same storm are available from more than one radar. Xue et al. (2006) examined the 

impact of assimilating radars observations of the same storm from multiple radars and 

conclude that it is generally true that the larger the number of observations the better the 

analyses. Therefore the implementations of EnSRF become exceedingly time consuming 

as the dimension of the number of the observations increases. The question is how to 

handle this huge amount of observations efficiently in data assimilation?   

 A survey of literatures on data assimilation suggests that if the number of 

observation is very large in dimension compared to the model state, the information form 

of the filter  (Maybeck 1979; Mutambara 1998; Lewis et al. 2006; Simon 2006; Kaminski 

et al. 1971; Dyer and McReynolds 1969; Bierman 1977) may be computationally more 

efficient than the traditional Kalman filter. While the traditional Kalman filter calls for 
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inverting the matrix in observation space, the information filter calls for the inversions of 

the model space. Moreover, the information filter is algebraically equivalent to Kalman 

filter. The information filter has been around for years, but to our knowledge the 

information filter data assimilation method is not yet examined in atmospheric data 

assimilation. Therefore, another focus of this dissertation is to evaluate the applicability 

of Information filter as an atmospheric data assimilation technique.  

 

1.2 Outline 

 Mathematical formulations of the data assimilation techniques implemented in 

this research are presented in Chapter 2. The standard formulation of the Kalman filter 

(KF), extended Kalman filter (EKF), information filter (IF), extended information filter 

(EIF) and the extended square root information filter are given. The framework for the 

ensemble Kalman filter (EnKF), a suboptimal solution to reduce the huge computational 

cost for large dimensional problems are discussed and the formulation of the Ensemble 

Square Root Filter (EnSRF) is presented. 

In Chapter 3, the EnSRF data assimilation technique is applied to examine the 

impact of high temporal frequency observation assimilation over a shorter assimilation 

period. The synthetic radar observations are generated at a coarser spatial resolution to 

reduce the computation cost of ingesting the data into the model using EnSRF. A 

description of the model used for the study is discussed followed by the algorithm 

developed to create synthetic radar observations. Two sets of experiment are conducted 

with identical settings based on the assumption of a perfect model in which both the truth 

simulation and the ensemble data assimilation system use the same microphysics scheme 

and constant microphysics parameter. One experiment assimilates synthetic WSR-88D 
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observations, in which a volume scan is conducted every 5 min, while the other 

experiment assimilates synthetic PAR observations, in which a volume scan is conducted 

every 1 min. The results obtained from the EnSRF analyses and forecasts are then 

compared and discussed. This chapter is the basis for the paper Yussouf and Stensrud 

(2010a).  

 The experiments conducted in Chapter 3 are based on perfect model framework 

using constant intercept and density parameters of precipitation particle categories. 

However, model error is a critical factor and needs to be incorporated into the data 

assimilation system. Therefore, to examine the potential value of assimilating radar 

observations using a range of intercept and density parameters across the ensemble 

members within the same microphysics scheme, two sets of radar observations 

assimilation experiments are conducted using both perfect and imperfect model 

framework and are presented in Chapter 4. The WSR-88D radar observations are created 

at a coarser resolution as in Chapter 3 and assimilated using the EnSRF technique. The 

results are compared to quantify the value of using different microphysical parameters 

within the same microphysics scheme. A manuscript, Yussouf and Stensrud, 2010b based 

on this chapter is currently under review.  

 Given the high spatial resolution of the radar observations and the advent of new 

radar and other remote sensing technology, it is highly likely that the observation 

dimensionality exceeds the dimensionality of the model state vector, indicating that 

EnSRF data assimilation method may be computationally very expensive; suggesting 

efficient filter designs need to be tested.  In Chapter 5, the feasibility of information filter 

as a method for high density observations assimilation is examined. Both extended 
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information filter (EIF) and extended Kalman filter (EKF) are implemented using the 40 

dimensional Lorenz 96 nonlinear models and the performance of EIF in assimilating low 

and high density observations are compared with the benchmark EKF assimilation 

technique. 

 A summary of the dissertation and suggestions for future work are contained in 

Chapter 6.  
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Chapter 2 

Methods of Data Assimilation Based on Kalman Filter 

 

2.1 Introduction 

Even though the Kalman filter is developed in early sixties (Kalman 1960; 

Kalman and Bucy 1961), the meteorological research community started using this 

method for data assimilation in the 80’s. The mathematical equations presented in this 

chapter are the building blocks of the data assimilation techniques used in this study and 

mainly follows Lewis et al. (2006); Lakshmivarahan and Stensrud (2009); Mutambara 

(1998); Simon (2006); Dyer and McReynolds (1969); Kaminski et al. (1971); Maybeck 

(1979) and Whitaker and Hamill (2002). 

Let n
kx R∈  denotes the true state of a dynamical system, e.g., the atmospheric 

system, at time k.  It is assumed that kx  is not directly observable but values of  (a 

known function of

kz

kx  ) called observation is available for some subset of values of k. Let  

 { |1 }k iF z i k= ≤ ≤  (2.1) 

denote the set of all observations during the interval [1, k]. Let 
^
kx  denote the estimate of 

kx  at time k. The problem of computing (a) 
^
kx given  is called the filtering problem, 

(b) 

kF

^
kx  given  for some k < N is called the smoothing problem and (c) given  

for some s≥1 is called the prediction problem.  While the filtering and prediction problem 

use only the past and present information, smoothing uses all the past, present and the 

future information.  

NF
^

xk s+ Fk
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 In this research study, we are interested in the filtering problem. The Kalman 

filter and the extended Kalman filter formulation is given in  Section 2.2 followed by the 

formulation of information filter, the extended information filter and the extended square 

root information filter in  Section 2.3. The framework for the ensemble Kalman filter and 

the formulation of the ensemble square-root filter is given in Section 2.4 followed by the 

summary in Section 2.5.   

 

2.2 The Filtering Problem  

 There are at least two distinct ways to formulate the filtering problem: first as a 

linear, unbiased and minimum variance formulation that gives raise to the so called 

covariance form of the Kalman filters. Second, is using the classical Bayesian 

formulation with the least square cost function leading to the so called information filters 

(Lewis et al. 2006, Chapter 17). The numerical accuracy of the covariance form can be 

increased by using the square-root of the covariance. Moreover, to reduce the 

computation burden of propagating the covariance forward in time, reduced rank 

approximation of the filter can be used. The derivation of the filter equations consist of 

two main steps: the forecast step using the model and the data assimilation step using the 

model forecast and observations. Here we consider the discrete time, continuous space 

filtering and prediction problems. 
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2.2.1 The Kalman Filter  

 The Kalman filter is a recursive linear minimum variance estimator when the 

model is linear and the observations are linear functions of the state.  Let nxnM R∈ denote 

the state transition matrix and the linear dynamics of evolution of the states is given by 

  

 1k k k 1kx M x w+ += + , (2.2) 

where  is the sequence of Gaussian white noise representing model error where 

 and   is a symmetric and positive definite matrix. It is assumed 

that the initial state is

kw

(0, )k kw N Q∼ nxn
kQ R∈

0 0

^
( , )0x N x P∈  and satisfies the following conditions: 

a. 0x  is with known mean vector 
^

0 0( ) 0E x x m= =  and known covariance matrix 

. 0 0 0 0 0( ) [( )( ) ]TCov x E x m x m P= − − = 0

  b.  The model error is unbiased, that is ( ) 0kE w =  for all k and is temporally 

uncorrelated, that is  

[ ]T
k j kE w w Q=    if j = k 

             = 0   otherwise. 

c. The model error and the initial state kw 0x are uncorrelated 

 0[ ]T
kE w x 0=  for all k.  

Let  denote the observation of the system (2.2) and the observations are linear 

function of the state: 

m
kz R∈

 k k kz H x vk= + , (2.3) 

where  is a matrix known as the observation operator ( or the H operator) that 

maps the model state variables onto the observations, is the sequence of the Gaussian 

mxnH R∈

kv
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white noise representing measurement noise , and (0, )k kv N R∼ mxm
kR R∈  is a symmetric 

and positive definite matrix with the following properties: 

a.  has mean zero: kv ( ) 0kE v = . 

b.  is temporally uncorrelated: kv

[ ]T
k j kE v v R=   if j = k. 

          = 0   otherwise. 

where  is a symmetric and positive definite matrix. k
mxmR R∈

c.  is uncorrelated with the initial state kv 0x  and the model error , that is kw

0[ ]T
kE x v 0=  for all  k>0. 

[ ]T
k jE v x 0=  for all  k and j. 

It is assumed that the model noise , the observation noise  and the initial condition kw kv 0x  

are mutually uncorrelated. In the forecast step, starting from an optimal estimate 
^

1kx −  at 

time k-1, the model (2.2) is used to produce a forecast f
kx at time k. In the data 

assimilation step, this forecast f
kx  is linearly combined with the observation  to 

produce the optimal estimate

kz

^

kx .  

 Given a linear dynamical model, the equations for the Kalman filter are as follows 

(Chapter 27, Lewis et. al 2006): 

Model Forecast Step: 

 
^

1
f

k k kx M x+ =  (2.4) 

 1

^
f T

kk k kP M P M Q 1k+ += + . (2.5) 

Data Assimilation Step: 

 
^

1 1 1 1 1[f
k k k k k k 1]fx x K z H x+ + + + + += + −  (2.6)  
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 1
1 1 1 1 1 1 1[f T f T

k k k k k k kK P H H P H R ]−+ + + + + + += +

1]

 (2.7) 

 
^

1 1 1[ f
k k kP I K H Pk+ + + += − . (2.8) 

 However it is found that round-off errors in the calculation of the covariance 

matrices 1
f

kP +  and from 
^

1kP + (2.5) and (2.8) of the Kalman filter resulting from large 

condition number can cause loss of symmetry and/or positive definiteness. This in turn 

can lead to numerical inaccuracy, filter divergence and instability. Further investigations 

shows that the effect of round-off errors can be mitigated by performing the filter 

computations using the square root version of the covariance matrix. The square root 

filtering increases the numerical precision of Kalman filtering by reducing the condition 

number of the matrices involved in the computation (Lewis et al. 2006). This in turn can 

help prevent filter divergence and instability. However, this improved performance from 

the square root filter is obtained at the cost of greater computational cost.  

 

2.2.2 The Extended Kalman Filter: Ist and 2nd Order 

 If the dynamic model is nonlinear and the observations are non-linear function of 

the state, the evolution of the states is given by 

 1 ( )k k 1kx M x w+ += + , (2.9) 

and the observation is given by  

 ( )k kz h x vk= + . (2.10) 

The major impediments in formulating the equations for the nonlinear problem 

are the difficulty of computing 
^

( )kM x in the forecast step and in the data 

assimilation step. The only solution is to formulate an approximation to the moment 

^
( )kh x

13 



dynamics. Thus the extended Kalman filter (EKF) is a linear estimate of the nonlinear 

system obtained from the linearization of the nonlinear state and observations equations. 

Using the Taylor series expansion, and discarding the second and higher order moments, 

the first order EKF is formulated as follows (Chapter 29, Lewis et. al 2006):  

Model Forecast Step: 

 
^

1 ( )f
k kx M x+ =  (2.11) 

 
^ ^

1

^
( ) ( )f T

kk M k M kP D x P D x Q 1k+ += +

)]f

+

1]

. (2.12) 

Data Assimilation Step: 

  (2.13) 
^

1 1 1 1 1[ (f
k k k k kx x K z h x+ + + + += + −

  (2.14) 1
1 1 1 1 1 1 1( )[ ( ) ( ) ]f T f f f T f

k k h k h k k h k kK P D x D x P D x R −
+ + + + + + +=

 
^

1 1 1[ ( )f f
k k h kP I K D x Pk+ + += − + , (2.15) 

where 
^

( )M kD x is the Jacobian of M(.) evaluated at 
^

kx and 1( f
h kD x )+  is the Jacobian of h(x) 

evaluated at 1
f

kx + . 

The second order EKF equations can be obtained by discarding the third and 

higher order moments (Chapter 29, Lewis et. al 2006):   

 Model Forecast Step: 

 
^

2
1

^1( ) ( , )
2

f
kk kx M x M P+ = + ∂  (2.16) 

 
^ ^

1

^
( ) ( )f T

kk M k M kP D x P D x Q 1k+ += + . (2.17) 

Data Assimilation Step: 
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^

2
1 1 1 1 1 1

1[ ( ) ( ,
2

f f
k k k k k kx x K z h x h P+ + + + + += + − − ∂ )]f

+

1]

 (2.18) 

  (2.19) 
1

1
1 1 1 1 1 1( )

( )[ ( ) ]f
k

f T f f f T
k k h k h k k kh x

K P D x D x P D R
+

−
+ + + + + +=

 
^

1 1 1[ ( )f f
k k h kP I K D x Pk+ + += − + . (2.20) 

 However, due to neglecting the third and higher order statistical moments in the 

covariance evolution, the EKF data assimilation often encounters unbounded error 

growth. 

 

2.3   Information Filter: A Dual Formulation of Kalman Filter  

The information filter is essentially a Kalman filter that is expressed in terms of 

measures of information about the states rather than direct state estimates and its 

covariance. The information filter is constructed from the information1 space and is 

algebraically equivalent to the Kalman filter. The two key variables in the information 

filter are the information matrix and the transformed state vector. The information matrix 

is defined as the inverse of the covariance matrix, 1−= PY and the transformed state 

vector is a product of the information matrix and the model state, . Thus 

while the covariance matrix represents the uncertainty in the state estimate, the 

information matrix represents the certainty in the information estimate (Mutambara 1998; 

Simon 2006). However, there are two ways of formulating the information filter using the 

information matrix: one using the model state space (Simon 2006) and the other one 

using the transformed state vector (Mutambara 1998).  Both formulations are given 

below. 

YxxPy == −1

                                                 
1 The term information is employed in the Fisher sense, that is, a measure of the amount of information 
about the random state x present in the set of observations z, up to time k.  
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2.3.1 The Information Filter 

A. State Space Formulation: 

 The linear Kalman filter can be written in terms of the model state vector and 

information matrix (Simon 2006) as follows: 

Model Forecast Step 

 
^

1
f

k k kx M x+ =  

 1

^
f T

kk k kP M P M Q 1k+ += + .  

Applying the matrix inversion lemma to the above equation     

 
11 1 1 1 1( )T T 1TA C B D A A C B D A C D A

−− − − − − −⎡ ⎤+ = − +⎣ ⎦  

and substituting , 1kA Q += kB P=  and kC D M= = , the predicted information matrix 1
f

kY +  

is: 

 1 1
1 1 1

^
( ) ( )f f T

kk k k k kY P M P M Q− −
+ + += = +  

 1 1 1 1
1 1 1 1

^
[ ]f T

k k k k k k k k k kY Q Q M Y M Q M M Q 1
1

T− − − −
+ + + +⇒ = − + −

+

1

. (2.21) 

Data Assimilation Step 

 
^

1 1 1 1 1[ ]f f
k k k k k kx x K z H x+ + + + + += + −  

 1 1 1
1 1 1 1

^
( ) ( )f T

k k k kP P H R H− − −
+ 1k+ + + += + . 

The updated information matrix 1

^
kY +  is:  

 1
11 1 1

^ ^
( ) f T

kk k kY P Y H R H−
+

1
1 1k k

−
+ + + +⇒ = = + + . (2.22) 

Again, from the matrix inversion lemma,  
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 1 1 1 1[ ] [T T T T 1]A B A D A B DA ADA B− − − −+ = −+

1k+

1
1k

. 

Assuming  we get 1
1 1, ,f

k kD P A H B R−
+ += = =

 1 1 1
1 1 1 1 1 1[( ) ]f T T

k k k k k kK P H R H H R− − −
+ + + + + += + −

+

1
1k

 

 1 1
1 1 1 1 1 1[ ]f T T

k k k k k kK Y H R H H R− − −
+ + + + + +⇒ = + +

1
1k

. 

Therefore,  

 
^

1
1 1 1( ) T

k k kK Y H R− −
+ + +⇒ = + . (2.23) 

 While the standard Kalman filter equations require the inversion of an m x m 

matrix, where m is the number of measurements, the state space formulation of the 

information filter equations require at least a couple of n x n matrix inversions, where n is 

the number of states. Therefore, if m >> n (i.e., there are significantly more 

measurements than states variables) it may be computationally more efficient to use the 

information filter rather than the Kalman filter. However, the m x m matrix inversion on 

Rk is common to the standard Kalman filter or the information filter Kalman gain 

equation. But if Rk is constant, then the inversion can be a part of the initialization 

process, so the Kalman gain equation may not require this m x m matrix inversion after 

all. The same thinking also applies to the inversion of Qk. 

 If the initial uncertainty is infinite, the information filter is more mathematically 

precise since  can be set for the zero initial certainty case but cannot be set. 

However, if the initial uncertainty is zero, 

0 0Y = 0P = ∞

0 0P = can be set but 0Y = ∞  cannot be set. 

This makes the standard Kalman filter more mathematically precise for the zero initial 

uncertainty case. 
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B. Information Space Formulation: 

 The linear Kalman filter can be written in terms of the transformed state vector 

and the information matrix (Mutambara 1998) as follows:  

Model Forecast Step: 

  (2.24) 
^ ^

1
1 ( )f f

k k k ky Y M Y y−
+ = k

1
1 

^
1

1 [ ( ) ]f T
k k k k kY M Y M Q− −
+ = + +

1

. (2.25) 

Data Assimilation Step: 

 
^

1
1 1 1 1

f T
k k k k ky y H R z−
+ + + += + +

1

 (2.26) 

 
^

1
1 1 1 1

f T
k k k k kY Y H R H−
+ + + += + + , (2.27) 

where the predicted (updated) transformed state vector is 1
f

ky +  (
^

1ky + ) and the predicted 

(updated) information matrix is 1
f

kY +  (
^

1kY + ) 

 

2.3.2 The Extended Information Filter 

 The extended information filter (EIF) is the extension of the linearized estimation 

algorithm for the nonlinear systems similar to EKF. The EIF predicts and estimates the 

information state and its associated information matrix for the nonlinear dynamic model 

and observations.  

 

A. State Space Formulation: 

 The EIF can be written in terms of the model state vector and information matrix 

(Simon 2006) as follows: 
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Model Forecast Step 

 
^

1 ( )f
k kx M x+ =   

 
^ ^

1

^
( ) ( )f T

kk M k M kP D x P D x Q 1k+ += +   

 
^ ^

1 1
1 1 1

^
( ) [ ( ) ( ) ]f f T

kk k M k M k kY P D x P D x Q− −
+ + += = + . 

  (2.28) 
^ ^ ^ ^

1 1 1 1
1 1 1 1

^
( )[ ( ) ( ) ] ( )f T

k k k M k k M k k M k M k kkY Q Q D x Y D x Q D x D x Q− − − −
+ + + +⇒ = − + 1

1
T −

+

)]

1
f

k

Data Assimilation Step 

  
^

1 1 1 1 1[ (f f
k k k k kx x K z h x+ + + + += + −

 1 1 1
1 1 1 1

^
( ) ( ) ( ) ( )f T f

k k h k k hP P D x R D x− − −
+ + + + += + . 

The updated information matrix 1

^
kY +  is:  

  (2.29) 1 1
11 1 1 1

^ ^
( ) ( ) (f T f f

kk k h k kY P Y D x R D x− −
++ + + +⇒ = = + 1)h k+

1
1k 1 1 1

1 1 1 1 1 1[( ) ( ) ( )] ( )f T f f f
k k h k k h k h kK P D x R D x D x R− − −
+ + + + + += + −

+

1
1k

. 

 1 1
1 1 1 1 1 1[ ( ) ( )] ( )f T f f T f

k k h k k h k h kK Y D x R D x D x R− − −
+ + + + + +⇒ = + +

1
1k

. 

Therefore,  

 
^

1
1 1 1( ) ( )f

k k h kK Y D x R− −
+ + +⇒ = + . (2.30) 

 

B. Information Space Formulation: 

 The extended Information filter can be written in terms of the transformed state 

vector and the information matrix (Mutambara 1998) as follows:  
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Model Forecast Step: 

  (2.31) 
^

1 ( )f f
k k ky Y M x+ =

 
1^ ^ ^

1
1 [ ( ) ( ) ]f T

k M k k M k kY D x Y D x Q
−

1
−

+ = ++

1]

1)

. (2.32) 

Data Assimilation Step: 

  (2.33) 
^

1
1 1 1 1 1 1( ) [ ( ) ( )f T f f f f

k k h k k k k h k ky y D x R z h x D x x−
+ + + + + + += + − +

 
^

1
1 1 1 1( ) (f T f f

k k h k k h kY Y D x R D x−
+ + + += + + . (2.34) 

Remarks: A closer look into the above equations reveals that to implement the EIF in 

transformed space, we need to compute the Jacobians 
^

( )M kD x  and . Therefore 

we also need the knowledge of 

1( f
h kD x + )

^

kx and 1
f

kx + to implement the Jacobians in model space 

indicating that we must implement EKF in parallel to compute 1
f

kY + , , and
^

1kY +

^

1ky + 1
f

ky + . 

This is a serious limitation of implementing the EIF in transformed space.  

 

2.3.3  The Square-Root Information Filter 

 Let (x, P) be given where nx R∈ is a random vector and nxnP R∈ is its covariance. 

It is assumed P is always symmetric positive definite (SPD). Let be the cholesky 

factorization of P, where  is a lower triangular matrix called the square root of P. 

We know that the matrix 

TP SS=

nxnS R∈

1Y P−= is called the information matrix. Clearly Y is SPD since 

P is. Let be the cholesky square root factorization of Y. It can be verified that 

and the inverse of a lower triangular matrix is lower triangular. 

Hence . We also know that 

TP = ΛΛ

1 1( ) ( )T TS S S− −= = T−

1S −Λ = 1y P x Yx−= =  is the transformed state vector. It is 
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well known that there are several equivalent ways to express the classical linear Kalman 

filter equations: 

(1) Covariance form using (x, P): Kalman (1960), Jazwinski (1970), Sorenson (1976), 

Lewis et al. (2006), Maybeck (1979), Simon (2006), and Mutambara (1998).  

(2) Square-root covariance form using (x, S): Maybeck (1979), Lewis et al. (2006), 

Bierman (1977). 

(3) Information form using (x, Y): Maybeck (1979), Simon (2006). 

(4) Square-root information form using (x,Λ ): Dyer and McReynolds (1969), 

Bierman (1977).  

(5) Transformed state information form using (y, Y): Kaminski et al. (1971), 

Mutambara (1998).   

 In this section we concentrate on the square root version of the information filters 

using (x, ). Golub (1965) was the first to use the notion of square root information and 

orthogonal transformation to solve the linear least squares problem.  

Λ

Golub’s method: Let  be the observations. Let  mz R∈

 z Hx v= + , (2.35) 

where and . Then the least squares estimate is obtained by 

minimizing 

mxnH R∈ (0, )v N R∼

 1

2( )
R

f x z Hx −= − . (2.36) 

Let mxmRΓ∈ be an orthogonal transformation and let 1 ( ) ( )TR z z− = Λ Λ be the square 

factorization. Thus, it can be verified that  

                                          
2

2

( ) ( )( )

       ( )   where ( )

f x z z Hx

b z Hx b z z

= Λ −

= −Λ = Λ
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 2( ( ) )b z Hx= Γ −Λ . (2.37) 

Our goal is to choose such that  Γ

 

~ ^

1

( ) and  
0

n

n b
z H b

m n b

⎡ ⎤ ⎡Λ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ΓΛ = Γ = ⎢ ⎥
⎢ ⎥ ⎢

−
⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.38) 

where nxnRΛ∈
∼

is an upper triangular matrix. Thus 

                                            

2^

1

( )
0

b
f x x

b

⎡ ⎤ ⎡ ⎤Λ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∼

 

 
2^ ~ 2

1b x b= −Λ + . (2.39) 

Hence the least square estimate is given by the solution of the upper triangular system 

 
^ ^ ^ ^

1or ( )
^

x b x −Λ = = Λ b

])

. (2.40) 

Solution of (2.40) is obtained by back substitution which takes steps. Now 

consider  

2( )O n

                               

[ ] [

~

~
0 ( ) (

0

                          ( ) ( )
                          ( ) ( )

T
T

T T T

T T

z H z H

H z z H
H z z H

⎡ ⎤Λ⎢ ⎥⎡ ⎤
⎢ ⎥Λ = ΓΛ ΓΛ⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

= Λ Γ ΓΛ

= Λ Λ

 1TH R H−= . (2.41) 
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That is,  

 
~ ~

1
T

TH R H−Λ Λ = . (2.42) 

Hence the covariance of 
^
x is given by 

 
~ ~

1 1( ) ( )
T

TH R H 1− − −Λ Λ =  (2.43) 

which matches the standard result (Lewis et al. (2006), Chapter 14).  

 Thus the above method obtains (
^ ^
,x Λ ), the estimate and the square root of its 

information matrix from the input ( , , ( )z H zΛ ).  

Remark: The orthogonal transformation Γ can be realized in one of two ways: using 

Gramm-Schmidt orthogonalization or Householder’s transformation. In our 

computations, we use the Householder’s transformation (Lakshmivarahan and Dhall 

1990).  

 Dyer and McReynolds (1969) extended Golub’s idea to include the model and 

derived the square root information version of the Kalman filter. In the following, we 

extend Dyer and McReynolds algorithm to derive the extended square root information 

version of the filter using ( ,x Λ ) that is suitable for nonlinear systems.  

Remark: Extended information from using (x, Y) is given in Simon (2006) and 

extended transformed state information filter using (y, Y) is given in Mutambara 

(1998).  

 

2.3.3.1  The Extended Square-Root Information Filter:  

 Let  

 1
1 1( ) ( )k k k 1kx M x Q w−
+ += + Λ +  (2.44) 
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be the nonlinear dynamic model where , is the square 

factorization of and is the covariance of the model noise at time k.  

(0, )k nw N I∼ 1 ( ) ( )T
k k kQ Q− = Λ Λ Q

k

1
kQ−

kQ

Let 

 , (2.45) 1( )k k k kz H x z v−= + Λ

where and (0, )k mv N I∼ 1 ( ) ( )T
k k kR z− = Λ Λ z be the square root factorization of 1

kR−  where 

kR is the covariance of the observation noise at time k.  

Clearly,  

                      
1 1 1

1

cov[ ( ) ] [( ( ) )( ( ) )

                        ( ) ( ) ( )

T
k k k k k k

T T
k k k k

Q w E Q w Q w

Q E w w Q

− − −

− −

Λ = Λ Λ

= Λ Λ

]

k 1[ ( ) ( )]T
k kQ Q Q−= Λ Λ =  (2.46) 

and 

                             
1 1 1

1

cov[ ( ) ] [( ( ) )( ( ) )

                        ( ) ( ) ( )

T
k k k k k k

T T
k k k k

z v E z v z v ]

z E v v z

− − −

− −

Λ = Λ Λ

= Λ Λ
 

 1[ ( ) ( )]T
k kz z R−

k= Λ Λ = . (2.47) 

Cox (1964) proved that the estimation of kx  given is equivalent to 

minimizing  

1 2{ , ,..... }kz z z

 
^ 2f
k k kJ J v= +  (2.48) 

 where  

 
2 2 21 ^ ^

1 1 1
1 1

[
k k

f
k i i

i i
J v w x x

−

= =

= + + Λ −∑ ∑ ]  (2.49) 

where   ( ) is the prior information on 
^ ^

11,x Λ 1x , the initial state. 
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 Assume recursively that f
kJ is expressed as 

 
2f f f f

k k k k kJ x d e= Λ − +  (2.50) 

much like as in Golub’s algorithm where 1( )f f
k k

f
kx d−= Λ  is the forecast and f

kΛ is the 

square root of the information matrix of f
kx . That is, ( ,f f

k kx Λ ) is given. 

Analyis phase: Given ( ,f f
k kx Λ ) and a new observation ( ), from 1, , (k k kz H z−Λ ) (2.48) we 

now obtain 

 
^ 21( )( )f f f
k k k k k k k k kJ x d z z H x e−= Λ − + Λ − +  (2.51) 

with  

 . (2.52) 1( )[ ]k k k k kv z z H−= Λ − x

obtained from (2.45). Setting 1( ) f
k kz z b−

kΛ = , 

 
2

^ 2

1( )

f f
fk k

k k f
k k k

d
J x

z H b−

⎛ ⎞ ⎛ ⎞Λ
= −⎜ ⎟ ⎜ ⎟

−Λ⎝ ⎠ ⎝ ⎠
ke+ . (2.53) 

 

Let be the orthogonal transformation such that  
^

kΓ

  (2.54) 

^

^ ^

1

  where  is a upper triangular
( ) 0

f
k k

nxn
k k

k k

n n
R

z H m m−

⎡ ⎤⎡ ⎤Λ Λ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ = Λ ∈⎢ ⎥ ⎢ ⎥⎢ ⎥−Λ ⎢ ⎥⎣ ⎦ ⎣ ⎦

and 

 

^

^

f
k k

k
f

k k

d d

b b

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.55) 

25 



In view of (2.54) and(2.55), rewrite (2.53) as  

                                             

2^^
^ 2

0
fkk

k k

k

dJ x
b

⎛ ⎞⎛ ⎞Λ ⎜ ⎟⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ke  

 
2^ ^ ^

k k k kx d e= Λ − +  (2.56) 

where  
2^ 22 f

k k ke b e= + . 

Clearly ( ) is obtained from 
^ ^

,k kx Λ (2.56) by solving an upper triangular system  

 
^ ^

k k kx dΛ =  (2.57) 

from 

( )

1^ ^ ^

^

^

^ ^ ^

1

( )

      ( ) 0
0

      ( ) ( ( ) )
( )

      ( ) ( ( ) ) ( )

      ( ) ( ) ( )

      

T

k k k

kT

k

f
kT

T
k k k k k

k k

f T f T
k k k k k k
f T f T T
k k k k k k

f T
k k

P

z H
z H

z H z H

H z z H

P H

−

−

⎛ ⎞ = Λ Λ⎜ ⎟
⎝ ⎠

⎡ ⎤Λ⎢ ⎥⎡ ⎤
⎢ ⎥= Λ⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤Λ
⎡ ⎤ ⎢ ⎥= Λ Λ Γ Γ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥−Λ⎣ ⎦

= Λ Λ + Λ Λ

= Λ Λ + Λ Λ

= + 1
k kR H−

 

 ( )
1^ 1 1f T

k k k k kP P H R H
−− −⎡ ⎤= +⎢ ⎥⎣ ⎦

 (2.58) 

which proves that ( ) is the correct analysis and its square root information matrix 

(Lewis et al. 2006: Chapter 17) is the Bayesian formulation.  

^ ^
,k kx Λ
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Forecast phase: Given (
^ ^

,k kx Λ ) our goal is to obtain ( 1, 1
f f

k kx + +Λ ). Consider 

                                         
^ 2

1 1
f

k k kJ J w+ += +  

 
2 2^ ^ ^2

1k k k k kx d w e+= Λ − + + . (2.59) 

But from the model equations (2.44) we get 

 . (2.60) 1 1
1 1( ( )k k kx M x Q w− −
+ + += − Λ 1)k

Adding and subtracting
^

kx , we get 

                                     
^ ^

1 1
1 1 1( ( )k k k k k )kx M x Q w x x− −
+ + += −Λ + −  

 
^ ^

1 1
1 1( ( ) ( )k k k k kM x x x Q w− −

1)+ += + − −Λ + . (2.61) 

Using the first-order Taylor expansion around
^

kx , we can approximate kx  in (2.60) as 

 1 1

^ ^ ^ ^
1 1

1( ) ( )( ) ( )( ( ) )k k k k k k kM M
x M x D x x x D x Q w− −

− −
1 1k+ +≈ + − − Λ +  (2.62) 

Assuming that the model M is smooth, it can be verified that  

 1
1( ) ( )MM

D x D x−
−=  (2.63) 

that is, the Jacobian of the inverse of M is the inverse of the Jacobian of M, provided that 

the latter is non-singular.  Hence, using (2.63) in(2.62), we get 

 
^ ^ ^ ^

1 1 1 1
1 1( ) ( )( ) ( )( ( ) )k k M k k k M k k kx M x D x x x D x Q w− − − −

1+ +≈ + − − Λ + . (2.64) 

Now substituting (2.64) in (2.59) and simplifying, we get 

 
2 2^ ^ 21 1

1 1 1 1 1( )f
k k M k k k k k kJ D x Q w d w e− −
+ + + + +⎡ ⎤= Λ −Λ − + +⎣ ⎦

^

1+  (2.65) 

where 
^

1 1( )M M kD D x− −= for simplicity in notation, and 
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22 2^ ^ ^ ^ ^

1 1
1 ( )k k k k M ke e M x D x− −
+

⎡ ⎤= + Λ −⎢ ⎥⎣ ⎦
, (2.66) 

which is independent of 1kx +  and 1kw + . We can rewrite (2.65) as  

 

2

2^
1

1 1
1^ ^ ^

1 1 1
1

0 0

( )

n
kf

k k
k

k M k k M k

I
w

J e
x

D Q D d

+
+ +

+
− − −

+

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥−Λ Λ Λ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.67) 

Now, let fΓ be such that  

 
^ ^

1 1 1 1
1

0

0( )

n
f

k
k M k k M

I A B

D Q D− − − +
+

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥Γ = ⎢ ⎥⎢ ⎥ ⎢ ⎥Λ⎣ ⎦⎢ ⎥−Λ Λ Λ⎣ ⎦

 (2.68) 

where is non-singular and  nxnA R∈

 
1

^
1

0 k
f

k
k

b

dd

+

+

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥Γ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (2.69) 

Combining (2.68) and (2.69) we readily see that 

 2 2
1 1 1 1 1 1 1

f
k k k k k k k kJ Aw Bx b x d e+ + + + + + += + − + Λ − + 2

1+  (2.70) 

Since A is non-singular, we can set for any 1kx +  

 [ ]1
1 1k kw A Bx b−

1k+ + += +  (2.71) 

there by annihilating the first term in (2.70). The optimal forecast is then obtained by 

solving 

 1 1 1k k kx d+ + +Λ =  (2.72) 
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A little reflection reveals that 1k+Λ  in (2.72) is not in general an upper triangular matrix. 

This can be easily obtained by multiplying both sides of (2.72) by an orthogonal matrix 

 such that 1k+Γ 1 1 1
f

k k k+ + +Γ Λ = Λ , upper triangular matrix and 1 1 1
f

k k kd d+ + +Γ = . 

 Hence (2.72) becomes 

 1 1 1
f f
k k k

fx d+ +Λ = +

1

 (2.73) 

Hence ( ) 1

1 1
f f

k k
f

kx d
−

+ += Λ +

1

 can be easily obtained by back substitution. This gives us the 

pair ( 1,
f f

k kx d+ + ) and the cycle continues.  

 

2.4 The Ensemble Kalman Filter 

 The implementation of the Kalman filter or the EKF in large dimensional 

meteorological problems is not feasible due to the huge computational cost and also due 

to the unbounded error growth caused by the closure problem (Evensen 1992). The 

alternative is to implement reduced rank approximation of the full-rank covariance 

matrix. There are two types of reduced-rank approximations. The first is the explicit 

reduced-order filter (Lewis et al. 2006; Evensen 2007; Lakshmivarahan and Stensrud 

2009). If at time k = 0, 0

^
x  is the initial estimate of the unknown atmospheric state and 

is the covariance of the estimate0

^
P 0

^
x . Then 

  
1/2 1/2

0

0 0

^
[ (1: ) (1: )][ (1: ) (1: )]

^ ^
(1: ) (1: ),

T

T

P V r r V r r

S r S r

Λ Λ=

=

29 



where 1/ 2
0

1

^
(1: )

r

i
i

S r iλ ν
=

=∑  Then 
 

0 0

^ ^
(1: ) nxrS S r R= ∈ is the rank r square root of  . Thus 

is called a full rank if r = n or a reduced rank square root if r < n. Rank r square root 

of a matrix contains r largest eigenvalues and vectors of to get the maximum spread of 

the ensemble. The second class of implicit reduced-order filters for nonlinear problems 

where in the forecast

0

^
P

0

^
S

0

^
S

1
f

kx + , the estimate 
^

1kx + and their covariances 1
f

kP + and respectively 

are computed using the standard Monte Carlo framework as the sample moments of an 

ensemble of size N much smaller compared to n, the dimension of the state space of the 

model. The following section describes the creation of the ensemble using the Monte 

Carlo framework.  

^

1kP +

 

(a) Creation of Initial Ensemble 

 To create an initial ensemble given ( 0

^
x , 0

^
S  ), we compute the initial (one-sided) 

ensemble of size N where 1 < N < n. The i
th

 member of the initial ensemble (Lewis et al. 

2006) is given by  

 , (2.74) 
^

0 0 0 0

^ ^
( ) ( )i x S y iξ = +

where  for 1 ≤ i ≤ N, and r < N Clearly, 0 0( ) , ( ) (0, )ry i R y i N I∈ ∼ 0

^
x  is the mean of this 

initial ensemble . Let  
^

0{ ( ) :1 }i i Nξ ≤ ≤

 , (2.75) 
^

0 0 0 0 0

^ ^ ^
( ) ( ) ( )a i i x S y iξ= − =
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for 1 ≤ i ≤ N denote the anomaly associated with the i
th

 ensemble member  and let  
^

0 ( )iξ

 
^ ^ ^ ^

0 0 0 0[ (1), (2),..... ( )] nxNA a a a N R= ∈  (2.76) 

denote the n×N matrix of anomaly vectors. In ensemble filtering, the information about 

the state and its covariance are extracted from the pair ( 0

^
x , 0

^
A ). Let 1 (1,1.....1)T NR= ∈  

denote a column vector all of whose elements are 1s. Since 0

^
x  is the ensemble mean, it 

can be verified that 0

^
A 1 = 0 and  

 0 0
0 0

^ ^ ^ ^( ) ( )
1

T
TA A S S

N
=

−
. (2.77) 

That is, 
^ ^

1/ 2
0 ( 1)S N A−= − 0  this is the scaled anomaly matrix. This relation shows that 

there is a natural relation between ensemble methods and reduced rank filtering.   

 

(b) Creation of Forecast Ensemble 

 To create a forecast ensemble at time k, we assume inductively that the pair 

(
^
kx ,

^
kA ) is given, where 

^
kA 1 = 0. For 1 ≤ i ≤ N, compute a deterministic forecast 

ensemble  

 , (2.78) 
^

1

^ ^
( ) ( ( ) ( ( ))f

k k ki M i M x a iξ ξ+ = = + k

using the nonlinear model M(·) where  is the i
^

( )ka i
th 

column of the anomaly matrix 
^

kA . 

Expanding (2.36) in a first-order Taylor series yields  

 , (2.79) 1

^ ^ ^
( ) ( ) ( ) ( )f

k k M ki M x D x a iξ + ≈ + k
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where DM(x) is the Jacobian of M(x) with respect to x. Combining this expression with 

the relation 0

^
A 1 = 0 indicates that the sample average of this forecast ensemble is given 

by  

 1

^
( )f

k kx M x+ = . (2.80) 

Define 1
f

kA +  as the forecast anomaly matrix whose i
th

 column  is given by  1( )f
ka i+

 1 1 1( ) ( ) ( )f f f
k k ka i i x iξ+ + += − ≤ ≤,   1 i N . (2.81) 

Then, the pair ( 1
f

kx + , 1
f

kA + ) constitutes the forecast ensemble at time (k+1). It can be 

verified that 1
f

kA + 1 = 0 and  

 1/ 2
1 1( 1) f f

k kN A S−
+ +− =

 , 

which is the rank q square root of 1
f

kP +  

 

(c) Creation of Analysis Ensemble   

 Given an ensemble forecast ( 1, 1
f f

k kx A+ + ) and a new observation , the data 

assimilation step computes the new analysis ensemble (

1kz +

^ ^

1,k k 1x A+ + ). All the known 

algorithms for ensemble filtering essentially differ in the details of this data assimilation 

step and can be classified into two groups – stochastic and deterministic methods.   

 

2.4.1 Stochastic Method  

 Earlier studies of the application of ensemble filtering in geophysical problems 

(Evensen 1994) indicates that if the same observation zk+1 are assimilated in each of the 

forecast ensemble members, the resulting covariance and the spread of the ensemble is 
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less than the theoretical values dictated by the Kalman filter. As the filter evolves in time, 

this reduction in covariance leads to the collapse of the ensemble and the spread shrinks 

rapidly. However, assimilating perturbed observations can compensate this deficiency. 

This scheme is first implemented by Houtemaker and Mitchell (1998) and later clarified 

by Burgers et al. (1998).  In this type of method, the i
th 

member of the analysis ensemble 

at time (k+1) is computed as  

 , (2.82) 
^

1 1 1 1 1 1( ) ( ) [ ( ) ( )]f
k k k k k ki i K z i Hξ ξ ξ+ + + + + += + − f i

where K is the Kalman gain in the square root form and  is the i1( )kz i+

th 
perturbed 

observation given by  

 1 1 1( ) ( )k k kz i z v i+ + += + . (2.83) 

 The covariance of the analysis ensemble generated using (2.41) matches the 

theoretical value given by the Kalman filter as N →∞ (Houtemaker and Mitchell 1998; 

Burgers et al. 1998; Lewis et al. 2006). While the use of perturbed observations improves 

the performance of the ensemble Kalman filter, side effects can occur due to sampling 

errors, especially when N is small.  Since ensemble sizes used in meteorological 

applications typically are small, other strategies to compensate for the underestimation of 

the analysis covariance are needed.   

 

2.4.2 Deterministic Method and its Variants 

 Ensemble filtering approaches designed without perturbed observations belongs 

to the deterministic method. The ensemble square root filter (EnSRF) (Whitaker and 

Hamill 2002), ensemble transform Kalman filter (ETKF) (Bishop et al. 2001) and the 
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ensemble adjusted Kalman filter (EAKF) (Anderson 2001) are examples of deterministic 

method that do not require the observations to be perturbed. All these method have one 

unifying theme that they all exploit combinations of ideas from square root of covariance 

matrices along with the reduced rank approximations resulting from the small ensemble 

size. The general idea behind this type of method is that given 1
f nxN

kA R+ ∈ , find a 

transformation T such that  

 , (2.84) 
^

1 ( f
kA T A+ = 1)k+

where
^

1kA + satisfies  and  
^

11 0kA + =

 
^ ^

1 1
1

( )
1

T
fk k

k
A A P

N
+ +

+→
−

, 

as the actual value as N increases. All the known algorithms of this type realize T(·) as a 

linear transformation. Accordingly, 
^

1kA +  is obtained from 1
f

kA +  either by a left 

multiplication by a matrix 
 

nxn
LT R∈ or by a right multiplication by NxN

RT R∈ . The  

ETKF computes  

 
^

1 1
f

k k RA A T+ += , (2.85) 

whereas EAKF computes  

 
^

1 1
f

k L kA T A+ += . (2.86) 

Since NxN
RT R∈

 
and , ETKF requires less computations compared to EAKF 

unless the EAKF is implemented in the sequential least squares framework in which case 

the computational requirements are the same. However, 

nxn
LT R∈

^

1kA +  generated by EAKF 
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automatically satisfies . Clearly, one needs to impose additional conditions on T  

to ensure that .  

^

11 0kA + = L

^

11 0kA + =

 

2.4.2.1 The Ensemble Kalman Square-Root Filter 

 The EnSRF proposed by Whitaker and Hamill (2002) is used extensively in 

storm-scale radar data assimilation studies (Snyder and Zhang 2003; Zhang et al. 2004; 

Dowell et al. 2004; Tong and Xue 2005; Xue et al. 2006; Aksoy et al. 2009). This method 

also is used in this study to assimilate radar observations (see Chapters 3 and 4).  

 Following Whitaker and Hamill (2002), the EnSRF algorithm uses nonlinear 

forecast model and the observations also are a nonlinear function of the state while the 

assimilation of observations is a linear.  The observations are assimilated serially, one 

observations after another, which is an approximation based on the assumption that 

observation errors are uncorrelated in space and time. Therefore, the observation error 

covariance matrix Rk+1 reduce to scalar (variance) each time an observation , 1 1j k kz z+ +∈  is 

assimilated and so does the matrix 1 1
f T

k k kH P H+ + . We know, the Kalman gain equation  

(2.7) is  

 
1

1 1 1 1 1 1 1
f T f T

k k k k k k kK P H H P H R
−

+ + + + + + +⎡ ⎤= +⎣ ⎦ .  

Now 

 , 1 1 1 1 1 1 1 1( , ) [ , ( )f T f f T f f
k k k k k k k kP H Cov x x H Cov x H x+ + + + + + + +≅ = ]

⎤+ ⎦

and for one observation assimilation, (2.7) reduces to 

 . (2.87) 
1

1 1 1 1 1 , 1, ( ) [ ( )] ( )f f f
k k k k k j kK Cov x H x Var H x Var z

−

+ + + + + +⎡ ⎤ ⎡= ⎣ ⎦ ⎣
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Here 1 1( f
k k )H x+ +  is the conversion of the model variables to the observation type. Now the 

numerator (or the background error covariances) of the Kalman gain K is estimated from 

the forecast ensemble as follows: 

              1 1 1 1 1[ , ( )f T f f
k k k k kP H Cov x H x+ + + + += ]

 
_______________

1 1 1 1 1 1
1

1 [ ( ) ( )][ ( ( )) ( )
1

N
f f f f

k k k k k k
i

x i x N H x i H x
N + + + + + +

=

= − −
− ∑ ] . (2.88) 

Here is the ensemble mean of the model variables converted to the 

observation type i.e.  

_______________

1 1( )f
k kH x+ +

_______________

1 1( )f
k kH x+ + =  1 1

1

1 ( )
N

f
k k

i

H x i
N + +

=
∑ . The denominator is estimated as: 

                      1 1 1 1 1[ (f T f
k k k k kH P H Var H x+ + + + += )]

 
2______________

1 1 1 1
1

1 [ ( ( )) ( )
1

N
f

k k k k
i

H x i H x
N + + + +

=

= −
− ∑ ]f , (2.89) 

where   

 1
1

1( ) ( )
N

f
k

i
1

f
kx N x

N+
=

= ∑ i+ . (2.90) 

 The covariance calculation in the numerator of K tends to be small at large 

distances from the scalar observation and likely contains considerable sampling error due 

to relatively small ensemble sizes (Houtekamer and Mitchell 2001). To overcome this 

problem, an observation is allowed to update only state variables at nearby grid points by 

multiplying K by a weight W that is a function of distance from the observation 

(following Gaspari and Cohn 1999). This covariance localization function that defines W 

decreases smoothly from 1 at the observation location to 0 at the edge of an elliptical 

influence region of a particular radius.  
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 To account for the unperturbed observations, a α  factor also is included in the 

equation (Whitaker and Hamill 2002):  

 
1

1
1 1 1 1 11 ( )f T

k k k k kR H P H Rα
−

−
+ + + + +

⎡ ⎤= + +⎣ ⎦ . (2.91) 

The ensemble mean and the members are updated according to the following equations: 

 
_____________^

1 1 , 1 1( ) ( ) ( )f
k k j k k kx N x N WK z H x+ + + + 1

f
+

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
 (2.92) 

 
______________^ ^

1 1 1 1 1 1 1 1( ) ( ) ( ( ) ( )) ( ) ( ( ))f f f f
k k k k k k k kx i x N x i x N WK H x H x iα+ + + + + + + +

⎡ ⎤
= + − + −⎢ ⎥

⎣ ⎦
, (2.93) 

where over bar indicates the ensemble mean and i is an index to identify a particular 

ensemble member. Again, Hk+1 is the observation operator that maps model state to the 

observation type and locations. The ensemble
^

1( )kx i+  calculated from (2.93) then becomes 

the prior ensemble for the assimilation of the next observation and the algorithm 

continues until all observations are processed at time k+1.  

To summarize, the data assimilation procedure for the EnSRF is as follows: 

1) First create an initial ensemble of model states at time k = 0.  

2) Advance the ensemble to a make forecasts to the first observations time k = 1.  

3) Assimilate observations serially using (2.92) and (2.93) until all the observations 

valid at time k = 1 are assimilated.  

4) Advance the ensemble to make a forecast to the next observations time k = 2.  

5) Repeat step 3 and 4 until all available observations are assimilated. 
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2.5  Summary 

 This chapter presents the mathematical formulation of the data assimilation 

techniques that are implemented in Chapters 3, 4 and 5 of this research endeavor. The 

chapter begins with the mathematical formulations of the traditional Kalman filter and 

information filter data assimilation technique followed by the derivations of the variants: 

EKF and EIF. While the traditional Kalman filter operates by updating the mean and its 

covariance, the ensemble Kalman filter approach approximates a finite number of 

members and the filtering algorithm is applied to every ensemble members from which 

the required mean and the variance are computed as the standard sample moments. One 

variant of the ensemble Kalman filter, which is widely used for large scale data 

assimilation, is the EnSRF data assimilation technique and the formulation of the EnSRF 

is presented at the end of this chapter. The EnSRF is implemented in Chapter 3 and 

Chapter 4 of this dissertation to assimilate radar observations in NWP model. However, 

the technique assimilates observations serially as shown earlier. Therefore, while the 

EnSRF data assimilation technique shows promise for radar observation assimilation, the 

technique is computationally very expensive when the number of observations to 

assimilate increases. To answer this question, the EIF is implemented in Chapter 5 of this 

dissertation using the simple Lorenz model and compared against the benchmark EKF 

data assimilation technique. 
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Chapter 3 

Data Assimilation using Ensemble Square-Root Filter:  

Impact of High Temporal Frequency Observations 

 

3.1 Introduction 

  In this chapter, the EnSRF data assimilation technique described in Chapter 2 is 

used to assimilate high temporal frequency synthetic radar observations. The EnSRF data 

assimilation technique has shown great promise in assimilating radar observations into 

NWP model and is widely used by the storm-scale data assimilation research community 

(Snyder and Zhang 2003; Dowell et al. 2004a, b; Tong and Xue 2005; Jung et al. 2008a 

and b). However, the EnSRF technique assimilates observations serially, therefore the 

technique is computationally feasible when the size of observation vector m is less than 

the size of model state n (m < n).   Past literature (Snyder and Zhang 2003; Zhang et al. 

2004; Dowell et al. 2004; Xue et al. 2006) also suggests that reasonable analyses of an 

ongoing severe weather event can be incorporated into the NWP model from assimilating 

approximately 10 volume scans of WSR-88D radar observations.  However, part of the 

challenge in using ~5-min WSR-88D radar observations to initialize thunderstorms in 

numerical models is that a number of storm features evolve on a timescale of minutes and 

are poorly sampled by ~5-min data. Since accurate analyses require approximately 10 

radar scans, the amount of time needed to obtain these scans from the WSR-88D is at 

least 45 min. However, the PAR can produce 10 radar scans in less than 10 min. Thus, it 

is reasonable to expect that PAR observations can generate accurate storm analyses very 

quickly using a shorter assimilation period.  
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  Therefore, in an attempt to evaluate the value of PAR observation assimilation for 

a shorter period of time, a set of observing system simulation experiments (OSSEs; Lord 

et al. 1997) within a perfect model framework are conducted using the EnSRF data 

assimilation technique.  However, to reduce the computational expense of assimilating 

huge number of observations using EnSRF, synthetic radar observations are generated at a 

coarser 1 km range resolution instead of the 0.25 km interval available from the 

operational radars. One experiment assimilates 3 volumes of WSR-88D radar 

observations and another experiment assimilates 15 volumes of PAR observations during 

the short 15-min period. The analyses and the forecasts from WSR-88D and PAR 

observation assimilations are then compared to determine the accuracy of the storm 

represented in the analyses and forecast. This chapter is the basis for the paper Yussouf 

and Stensrud (2010a). 

Description of the storm-scale model used in this study is given in Section 3.2 for 

the generation of the observations in Section 3.3. The experimental design is described in 

Section 3.4.  Section 3.5 presents the results obtained from the EnSRF analyses and 

forecasts, followed by a summary in Section 3.6. 

  

3.2 Description of the COMMAS Model 

 The NWP model used for this study is the Collaborative Model for Multiscale 

Atmospheric Simulation (COMMAS; Wicker and Wilhelmson 1995) model. The 

COMMAS is a three-dimensional model which was developed in the early 1990s to study 

the dynamics of supercells and tornados. Over the years the model has changed 

considerably in terms of equation set and numerical algorithms. The prognostic variables 
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for this model include the three velocity components (u, v, and w), pressure in the form of 

the perturbation Exner function (π), potential temperature1 (θ), mixing coefficient (km), 

water-vapor mixing ratio (qv), cloud-water mixing ratio (qc), and hydrometeor mixing 

ratio (q1………r), where r, the number of hydrometeor categories depends on which of 

several options in COMMAS are chosen for the precipitation-microphysics scheme. For 

this study, the Gilmore et al. (2004) version of the Lin et al. (1983) precipitation-

microphysics scheme is used. This scheme includes one rain category and three ice 

classes: thus q1…..4 = qr (rain), qi (cloud ice crystals), qs (snow), and qh (hail graupel). The 

moist processes represented in the model are cloud condensation, cloud and rain 

evaporation, autoconversion of cloud to rain, ice-crystal initiation, vapor deposition and 

sublimation for ice species, freezing, melting, accretion, aggregation, rain shedding by 

wet hail/graupel and precipitation fallout (Gilmore et al. 2004).  

 This model is a three-dimensional grid with nx, ny and nz points in the x, y, and z 

directions giving rise to ng = nxnynz grid points. At each grid points, all these prognostic 

variables are represented as dependent variables of x, y and z. The integration process can 

be denoted by 1 ( )k kx M x+ =  where n
kx R∈  denotes the n real vector called the model 

state at time k = 0, 1, 2, 3…. and the n-dimensional Euclidean space Rn is called the 

model space. The mapping : n nM R R→  denoted by 

is a vector valued nonlinear function of the 

vector 

1 2( ) ( ( ) , ( ) ,. . . . . ( ) )T
k k k n kM x M x M x M x=

kx defining the state transition rule of the model. When the PDEs are approximated 

using the finite differencing schemes, errors are introduced resulting from the finite grid 
                                                 
1 The temperature a parcel of dry air would have if brought adiabatically (i.e., without transfer of heat or 
mass) to a standard pressure level of 1000 mb. 
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length, truncation in the spectral expansion and other approximations and simplifications. 

These errors introduce an additional term into the equations 1 1( )k k kx M x w+ += + . It is 

generally assumed that  has mean n
kw R∈ ( ) 0kE w =  and covariancecov . It is a 

sequence of Gaussian white noise representing model error where  and 

 .   

( )kw Q= k

(0, )k kw N Q∼

nxn
kQ R∈

 The PDEs in this model include three momentum equations, the pressure and 

thermodynamic equations, six moisture and water equations, the turbulent kinetic energy 

(TKE) as well as the Smagorinsky mixing scheme equations (Wicker and Scamarock 

2002; Coniglio et al. 2006).  

The momentum equations are  

 
_ _

3( )i
p ijk j k k i i

i

du C f u u
dt x

B Dπθ δ∂
= − −∈ − + +

∂
 (3.1) 

 
_

_

_ 0.61 v v l i
l i

B g q q qθ θ

θ
q

⎡ ⎤− ⎛ ⎞⎢ ⎥= + − + +⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

∑ ∑  (3.2) 

 2
3

ji
i m i

i i i

uuD K
x x x

δ j E
⎡ ⎤∂⎛ ⎞∂∂

= + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
. (3.3) 

 The ui ( i = 1, 2, 3) are the velocities u, v and w respectively, θ  is the potential 

temperature, π  is the perturbation Exner function used for the pressure ( which is the 

deviation of pressure from the initial unperturbed state ),  ql, qi and qv are the mixing 

ratios of liquid, ice and vapor hydrometeors, Cp is the specific heat at constant pressure. 
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Bars over the individual variables refer to the initial undisturbed state which is function 

of z only. These equations include the Coriolis force, with f being the Coriolis parameter. 

The operator d/dt denotes the substantial derivative given by  

i
i

d u
dt t x

∂ ∂
≡ +
∂ ∂

. 

Buoyancy effects (B) from hydrometeor loading are accounted for in the summations 

over the liquid and ice hydrometeor mixing ratios, respectively. The terms denoted by Di 

represent the subgrid turbulent mixing, Km is the momentum eddy mixing coefficient and 

E is the subgrid-scale kinetic energy.  

 The equation for thermodynamic  and hydrometeor equations are given by  

  

 d D M
dt θ θ
θ
= + , (3.4) 

where Mθ  refers to microphysical terms  and Dθ to turbulence terms. 

m
i i

D K
x xθ

θ⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 

 

_

_

( )1 iT ii
qi qi

V qdq D M
dt z

ρ

ρ

∂
= − + +

∂
, (3.5) 

where  and , , , , ,i v c r i sq q q q q q q= h
i

qi m
i i

qD K
x x
⎛ ⎞∂∂

= ⎜ ⎟∂ ∂⎝ ⎠
. 
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The first term on the right hand side of (3.4) represents the hydrometeor fallout and the 

Mqi represent the microphysical terms. The term VT represents terminal velocity. The 

model includes multiple options for precipitation microphysical schemes. The LFO 

scheme used in this study has a terminal velocity for all liquid and ice hydrometeors, 

except cloud water.  

 The pressure equation is   

 
_

2

_ _

( )s i

i
p v

C u F
t xC

π
ρπ

ρθ

∂∂
+ =

∂ ∂
. (3.6) 

As in most cloud-scale models the TFπ term is set to zero as it primarily changes the 

mean pressure within the domain that impacts the dynamical solution minimally. 

The parameterization of the turbulent mixing coefficient is represented using a 

prognostic turbulent kinetic energy (TKE) equation to represent the energy associated 

with the subgrid scale eddies. The TKE equation represents the effects of buoyancy, 

shear, diffusion and dissipation and is expressed as: 

 
1/2 1/2

[ ] [ ] 2
2 2
m r m

m
i i

C l PC l C EdE dEshear buoy K
dt x x l

⎡ ⎤∂
= − + −⎢ ⎥∂ ∂⎣ ⎦ 2

e  (3.7) 

1/ 2
m mK C E l= . 
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Here Km is the momentum eddy mixing coefficient, E is the subgrid-scale kinetic energy 

and . The length scale is computed as the cube root of the computational 

grid volume or as a function of distance from the lower boundary. 

1/3(l x y z= Δ Δ Δ )

k

 The numerical integration scheme closely follows that of Wicker and Skamarock 

(2002). The 3rd order Runge-Kutta time-split (RK3) scheme is chosen (Wicker and 

Skamarock, 2002) for time integration while 5th and 3rd order finite difference 

approximations are used for the spatial derivatives in horizontal and vertical directions, 

respectively. If the model equation is 1 ( )kx M x+ = , the RK3 integration takes the form of 

3 steps to advance a solution kx  to k kx Δ+ : 

 
* ( )

3k k k
kx x M xΔ

= +  

 
** *( )

2k k k
kx x M xΔ

= +  

 **( )k k k kx x kM xΔ Δ+ = + , 

where  is the model timestep. The model incorporates a vertically stretched grid and 

supports open and periodic lateral boundary conditions.  

kΔ

 The COMMAS modeling system software is written in Fortran-77, Fortran-90 

and Python scripts. The model outputs are written in netCDF format. The model supports 

VIS5D, NCAR graphics and NCL for graphics. 
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3.3   Observations 

3.3.1  The Truth Simulation 

 The model domain for the truth simulation is 100 km long in the horizontal (x and 

y) and 18 km tall in the vertical (z) direction. The resolution in the horizontal direction is 

x yΔ = Δ = 1 km and the domain is vertically stretched with zΔ =100 m vertical spacing at 

the bottom to =700 m vertical spacing at the domain top. Thus nzΔ x= ny = 100 and nz = 

45 grid points. Hence ng = nx ny nz = 4.5 x 105 and the number of variables L = 10. The 

origin of the Cartesian coordinates (x, y, z) is at the lower left corner (southwest) corner 

of the domain. The model is initialized with the classic Weisman-Klemp analytic 

sounding (Weisman and Klemp, 1982) in a horizontally homogeneous environment. This 

initial sounding ( vertical u, v , θ, and qv profiles) with a high shear produce split storms 

which are the model equivalent of the observed supercells. An ellipsoidal thermal bubble 

( temperature perturbations) with 10 km radius in the horizontal direction and 1.4 km 

radius in the vertical direction is placed at the center of the domain to initiate a supercell 

thunderstorm at t = 0 min. A temperature excess of 2.5 K is specified at the center of the 

bubble and decreases gradually to 0 K at the edge. The model time step (Δk) for the 

simulation is 6 sec. The simulation is allowed to evolve through 2 hours of model time. 

The ellipsoidal thermal bubble develops into a convective cell within the first 30 minutes 

of the simulation and the first echo is seen by the radar emulator at around k = 25 min. 

Over the next 30 min, the convective cell splits into two cells, one moving right towards 

the southeast and the other moving towards the northwest. During the second hour of the 

simulation, the right-moving cell tends to dominate the system with a few short lived 

smaller cells developing in between the two main cells.   Since the storms naturally move 
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out of the 100 x 100 km domain in this time period, the domain grid is translated at u = 

17 and v = 7 ms-1 to keep the main storm near the center of the model domain.   

 The simulated truth is run on a SGI machine (Altix 3700BX2 system) with 64 

processors, 64 GB of RAM and operates on Linux environment (SUSE Linux Enterprise 

Server 10). The time required to run the truth is 1 hour.  

 

3.3.2 Radar Emulator Design and Observations Generation 

 The most significant difference between the PAR and the WSR-88D is the 

antenna. While the phased array antenna forms a beam electronically by controlling the 

phase of 4,352 transmit/receive elements, the WSR-88D’s parabolic antenna forms a 

beam from a feedhorn. Thus the steering of the beam in PAR is done electronically from 

a stationary pane while it is accomplished mechanically, by rotating and elevating the 

antenna for WSR-88D. The electronic steering of the beam from PAR provided higher 

temporal frequency observations than the WSR-88D. Thus while PAR takes less than a 

minute to scan a complete volume of the severe weather events, the conventional WSR-

88D takes about 5 minutes to scan the same event. Therefore while 88D takes 5 minutes 

to get a complete picture of the atmosphere, PAR captures 5 snapshots of the developing 

weather events during the same 5-min period The PAR and WSR-88D antennas share 

three similarities: wavelength (S-band: 9.4-cm vs. 10-cm, respectively), range resolution 

(both 250 m), and the PAR can mimic WSR-88D VCP scan.  

 A radar emulator is created in this study using Fortran-90 programming language 

to generate artificial WSR-88D and PAR observations from the truth run. Simulation of 

radar observations also are done in several studies (Xue et al., 2006; Tong and Xue, 
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2008a and b; Jung et al. 2008a and b; Lei et al. 2008). The input to the radar emulator is 

the 3-D gridded model variables from the simulated supercell storm which is stored in 

netCDF format. The model output of the truth is in Cartesian coordinates and the 

emulator scans the data in a conical surface in spherical coordinates. To allow for PAR 

and WSR-88D radar antenna, the behavior of the radar emulator is controlled by 

specifying radar parameters (eg. beamwidth, range and azimuthal intervals, etc) and 

scanning strategy (Table 3.1). While in reality the radar reflectivity and radial velocity 

observations are generated from averaging radar pulses, the radar emulator in this study 

constructs the reflectivity and radial velocity values by averaging reflectivity and wind 

components from the three-dimensional, gridded model data within the beamwidth area 

using a simplified version of a volume averaging technique (Wood et al. 2009). The radar 

observations are created on a spherical coordinate system centered on the radar. The code 

for the radar emulator is given in the Appendix A. 

Table 3.1. Radar Emulator Control Parameters 

Control Paramters 
Radar Location 
Radar Type (PAR or WSR-88D) 
Volume Coverage Pattern (VCP) Modes 
Beamwidth 
Effective Beamwidth 
Sampling Interval (Range and  Azimuthal) 

 

 The observation operator H in (2.3) for reflectivity follows the relationships of 

Smith et al. (1975) and is as follows:  

 er eh esZ Z Z Z= + + , (3.8) 
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where Zer, Zes, and Zeh are the equivalent reflectivity factors for rain, snow, and hail, 

respectively (in mm6
 
m-3) and Z is the mean reflectivity factor. The conversion of the 

model variables into these reflectivity components goes as follows:  

 The rain component is calculated from  

 , (3.9) 1.75 0.75 1.75
0( ) ( ) ( )er w r a rZ c p N qπ − −= ρ

ρ

where c = 7.2 x 10
20 

, ρw is the density of water in kg m-3, N0r is the intercept parameter 

in mm-4
 
in the assumed inverse exponential drop-size distribution, ρa is the air density in 

kg m-3, and qr is the rainwater mixing ratio in g kg-1.  

 The snow component of reflectivity (Zes) is defined to be 

  (3.10) 2 2 1.75 0.75 1.75( )( / )( ) ( ) ( )es iw s r s os a sZ c k N qρ ρ πρ ρ− −=

 for temperatures below freezing (dry snow) and  

  (3.11) 1.75 0.75 1.75
0( ) ( ) ( )es s s a sZ c p N qπ − −=

for temperatures above freezing (wet snow), where Kiw = (0.21/0.93) is the ratio of the 

dielectric constants for ice and water, ρs is the density of snow in kg m-3, N0s is the 

intercept parameter for the distribution of snow in mm-4, qBs is the snow mixing ratio in 

kg kg and the other quantities are the same as for Z-1
 

er.  

 The hail component of reflectivity is calculated from  

  (3.12) 2 2 1.75 0.75 1.75( )( / )( ) ( ) ( )eh iw h r h oh a hZ c k N qρ ρ πρ ρ− −=
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where ρh 
 
is the density of hail in kg m-3, N0h 

 
is the intercept parameter for the 

distribution of hail in
 
mm-4, and qh is the hail mixing ratio in kg kg-1. The reflectivity 

0 0 0( , , )Z r θ φ  located within the radar sampling volume centered at range r0, elevation θ 0 

and azimuth φ 0 is expressed as 

 0 0 0( , , )
ijk ijk

vol

ijk
vol

Z
Z r

ω
θ φ

ω
=
∑
∑

 (3.13) 

and the corresponding radial velocity ( 0 0 0( , , )v r θ φ ) as,  

 0 0 0( , , )
ijk ijk ijk

vol

ijk ijk

V Z
v r

Z
vol

ω
θ φ

ω
=
∑
∑

 (3.14) 

where ijkZ  and  are the model reflectivity and radial velocity respectively, at model 

grid point (i,j,k), and 

ijkv

ijkω  is the beam weighting function. The radial velocity  at 

model grid points are calculated from   

ijkV

 sin( ) cos( ) cos( ) cos( ) ( ) sinijk ijk ijk ijk TV u v w Vφ θ φ θ= + + + θ  (3.15) 

where uijk, vijk and wijk are the model grid point wind components and VT is the terminal 

fall speed of hydrometeors. Now, the mean reflectivity and Doppler velocity values in 

(3.14) and (3.15) at the center range, azimuth and elevation of the effective resolution 

volume within the beamwidth is approximated by computing the weighted mean of   
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Figure 3.1  Schematic illustration of the a) vertical resolution volume and b) the 

horizontal resolution of the radar beam.  Points 1 through 8 approximate a weight of 0.50, 

points 9 through 12 approximate a weight of 0.84 and center point 13 approximates a 

weight of 1.0 for the simplified volume averaging technique. The effective beamwidth 

(EBW) is 1.39 and the vertical beamwidth (VBW) is 0.89. 
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individual doppler velocity and reflectivity values over 13-points within the resolution 

volume as shown in a schematic illustration in Figure 3.1.   

 The 8 outer points within the volume carry a constant weight of 0.50, the 4 points 

in the inner ellipsoid has a weight of 0.84 while the center point has a weight of 1.0.  A 

trilinear interpolation of the model grid points are used to obtain these 13 points in the 

resolution volume. Finally, the mean radar reflectivity factor Z is converted to 

logarithmic radar reflectivity in units of dBZ using     

 1010logdBZ Z=  (3.16) 

 To account for the measurement and sampling errors for radial velocity and 

reflectivity observations , random numbers are drawn from a Gaussian distribution of 

zero mean and standard deviations of 2 ms

kv

-1 
and 2 dBZ, respectively, and are added to the 

observations. The WSR-88D and PAR antenna half-power beamwidth is assumed to be 

0.89o with 1.0o azimuth interval and a 1.39o effective beamwidth. The Volume Coverage 

Pattern (VCP) 112 precipitation mode scanning strategy is used to scan the weather. The 

VCP 11 mode (Figure 3.2) consists of 14 elevation angles or sweeps, so each volume 

scans contains 14 sets of observations at different angles.   

 The radar reflectivity observations assimilated include 0 dBZ (non-precipitating) 

observations. A full volume scan on average contains about 3-4 times as many non-

precipitation observations as the supercell storm is isolated in nature. Previous studies 

(Tong and Xue 2005; Aksoy et al. 2009) shows that assimilating clear air reflectivity 

observations (0 dBZ) helps to suppress the spurious convective cells around the main 

storm. The radial velocity observations are assimilated only where the observed  

                                                 
2 The VCP 11 elevation angles are : 0.05o, 1.45 o, 2.40 o, 3.30 o, 4.30 o, 5.20 o, 6.20 o, 7.50 o, 8.70 o, 10.0 o, 
12.0 o, 14.0 o, 16.70 o and 19.50o
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Figure 3.2 Radar scan angles for VCP 11 scanning mode. There are 14 elevation angles 

in this mode and the beam width is 0.89. 
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reflectivity values are greater than 10 dBZ. Radial velocity below 10 dBZ does not 

provide useful storm information and thus this threshold helps in reducing the number of 

radial velocity observations. A snapshot of radar reflectivity and radial velocity 

observations at 7.5Po elevation angle (which is about 5.05 km above the ground) created 

using the radar emulator is shown in Figure 3.3. The radar is located at the southwest 

corner, outside of the computational domain of Fig 3.3a. The radar emulator captures the 

main feature of the storm (Figure 3.3b) even though small scale details are missing when 

compared to the reflectivity from the truth run (Figure 3.3a). The snapshot of the radial 

velocity (Fig 3.3b) at the same elevation angle shows that the wind is moving away from 

the radar.  

 While the radar data from the radar emulator is generated as realistic as possible, 

it is however distinct from the real radar observations. The real WSR-88D radar 

observations have a range gate spacing of 250 m for radial velocity and 1 km for 

reflectivity while the range gate spacing for PAR for both radial velocity and reflectivity 

are 1 km. To reduce the heavy computational burden of assimilating observation using 

EnSRF data assimilation technique, the reflectivity and radial velocity observations are 

created at a coarser 1.0-km range sampling interval instead of the 0.25 km interval 

available from both WSR-88D and PAR radars so that the number of observations m is 

less than the number of model state n. To assimilate the WSR-88D observations, 

synthetic radar observations are generated for 2-3 sweeps every minute rather than 

assuming the entire volume is collected simultaneously. Out of the 14 sweeps, the lower 

12 sweeps of observations are generated 3 sweeps per minute for the first 4 min with the 

remaining upper 2 sweeps valid for the fifth minute of the volume scan. Observations for  
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Figure 3.3 Synthetic radar observations created from (a) the truth run (model reflectivity 

contours in dBZ and the horizontal wind vectors in ms-1 at 5.053 km above ground, and 

the synthetic radar observations of b) reflectivity (dBZ) and c) doppler velocity (ms-1) at 

7.5o elevation angle in spherical radar coordinates at t = 39 min.
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PAR complete volume scan is available every 1 min, the WSR-88D observations are 

available every 5 minutes, with 2-3 elevations every minute (Figure 3.4).  

 

3.4 Experimental Design 

 In this study, a 40 member ensemble is used to assimilate the PAR and WSR-88D 

observations.  The domain size and grid resolution of the ensemble members are identical 

to the truth run. The domain of the ensemble also moves at u = 17 and v = 7 ms-1 

following the truth run to keep the storm inside the domain. The cutoff radius for 

covariance estimation of the filter is 4 km in both horizontal and vertical directions. The 

reflectivity and radial velocity observations are assimilated in the filter serially. Each 

time an observation is assimilated, the ensemble mean and each of the ensemble members 

are updated for each model variable at each grid point within 4 km of that observation 

location. The 40 member ensemble forecast runs are distributed among a number of 

processors using the shared memory parallelization via OpenMP (Open Multi-

Processing).  

 

Initializing the Ensemble: 

 Each member of the 40 member ensemble is initialized from the same classic 

Weisman-Klemp sounding in a horizontally homogeneous environment as in the truth. To 

facilitate the development of storms, 7 thermal bubbles (ellipsoidal θ perturbations) at 

random locations within the 30 km to 70 km portion of the domain in x and y directions 

and within 0.25 to 2.25 km in z direction are introduced at the initialization time (k = 0)  
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Figure 3.4 Synthetic a) WSR-88D and b) PAR radar observations using VCP 11 scanning 

mode during a 5-min interval staring at 2100 UTC and ending at 2105 UTC.  PAR scans 

a complete volume of observations every minute, while WSR-88D scans 3 or 2 elevation 

angles every minute with a complete volume scan every 5 minutes.  
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to each ensemble member. The region where the bubbles are added includes the region 

where the synthetic radar echoes are seen later. The bubbles are 7.5 km radius in the 

horizontal direction and 2.0 km radius in the vertical direction. The magnitude of the θ 

perturbations at the center of the ellipsoid is 1.5 K and the magnitude decreases to 0 at the 

edge. Each perturbation is positive, and the perturbations are additive in locations where 

they overlapped. The ensemble members thus differ from each other in the location and 

magnitude of the thermal bubbles but have an identical base environment. The bubbles 

for 4 different ensemble members are shown in Figure 3.5. This method of initialization 

is very helpful as the thermal bubbles initiate convective cells and produce the covariance 

information needed for the ensemble to successfully assimilate the radar data. Many of 

the cells are spurious in that they are outside the domain of radar observations and 

survive throughout the assimilation. However, the assimilation of clear air observations 

(0 dBZ) suppresses the unwanted spurious convective cells around the main supercell. 

 The data assimilation procedure for the EnSRF is as follows: 

1) First create an initial 40 member ensemble of model states at time k = 0 min.  

2) Advance the ensemble to a make forecasts to the first observations time k = 25 

min. During this time, the ellipsoidal θ perturbations (within the 40 x 40 km wide 

and 2 km tall portion of the domain) initiate convective cells in the ensemble 

members. 

3) Assimilate observations serially using (2.50) and (2.51) until all the observations 

valid at time k = 25 min are assimilated.  

4) Advance the ensemble to make a forecast for 1 min to the next observations time 

at k =26 min.  

58 



 

 

 

Figure 3.5 Temperature perturbations (bubbles) of ensemble members 2, 14, 21 and 35 at 

1.4 km above the ground. The bubbles are added to a 40x40 km wide portion of the 

100x100 km domain. 
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5) Repeat step 3 and 4 until all available observations are assimilated. 

6) After assimilating all the observations, the ensemble members are set to make 

forecasts. 

 The model variables updated by the filter are u, v, w, θ, qv, qc, qr, qi, qs and qh. 

Comparable assimilation results are obtained whether the filter is allowed to update km 

and π or not. Therefore, to reduce computational time, these two variables are not 

updated. One aspect of the EnSRF data assimilation scheme is the tendency for ensemble 

spread to become too small. This is due to limited ensemble size and model errors. To 

help maintain the storm and ensemble spread in the model during the assimilation cycles, 

a random number of thermal bubbles (ellipsoidal θ perturbations) are added to the 

members near the storm locations where the difference between the observed and 

ensemble mean reflectivity field exceeds 30 dBZ.  The thermal perturbations have a 

temperature excess of 1.5 K at the center of the ellipsoid that decrease to zero at a 

horizontal radius of 7.5 km and vertical radius of 2 km. A 5-min interval is used between 

the thermal perturbations for WSR-88D observations assimilation to correspond roughly 

to the time between complete volumetric radar scans. For PAR observations assimilation 

the time interval is 2-min.  

  

3.4.1 60-min Assimilation 

 The first experiment assimilates 12 volume scans of storm observations from a 

WSR-88D radar. It takes 1 h for a WSR-88D to produce the 12 volume scans, while 

during this time period PAR can produce 60 volume scans of observations of the same 

storm (Fig 3.6). After 60 min of data assimilations starting at k = 25 mins and ending at k 
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= 85 mins, the ensemble members are set free to make a forecast for the next 35 minutes. 

During the first volume scan, the radars are located inside the model domain, southwest 

relative to the storm. However the storm motion is away from the radar, such that the 

radars are located outside the computational domain to the west-southwest of the 

supercell during the last volume scan. The objectives of this experiment are to evaluate if 

the analyses obtained from assimilating observations for a relatively longer period of time 

(60-min) perform as expected and to verify that the EnSRF system is stable.  

 

 
Figure 3.6 Schematic illustration of the EnSRF experiment for 60-min assimilation. 

 

3.4.2 15-min Assimilation 

 Unlike the previous experiment, this experiment assimilates radar observations for 

a 15-min period starting at t = 25 min and ending at t = 39 min. During this 15-min 

assimilation period, 15 volume scans of PAR observations and 3 volume scans of WSR-

88D observations are assimilated. After 15 min of data assimilation, the ensemble 

members are used to produce a 50 min forecast. After initializing the ensemble members 

at k = 0, the members are integrated forward in time for k = 25 min before the 

assimilation of the first observations. The 40 ensemble members from the last 

assimilation cycle are set to make an ensemble of forecasts for 50 min. A schematic 

illustration of the time frame of the experiment is shown in Figure 3.7.  The radar is 

located at x = 3.6 km and y = 4.9 km off of the southwest corner of the domain during the 
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first volume scan. The initialization and other ensemble configuration details are identical 

to the previous experiment. 

 

 

 
Figure 3.7 Schematic illustration of the EnSRF experiment for 15-min assimilation. 

 

3.5  Results 

 The accuracy of the analyses and forecasts from PAR and WSR-88D observation 

assimilations are evaluated using both statistical and graphical comparison of the 

ensemble mean analyses and forecasts to the truth run. Since the objective is to evaluate 

how well the supercell is captured in the analyses and determine accurate forecasts when 

using the analyses as initial conditions, the analyses and forecasts errors are calculated 

only in areas where there is precipitation. To do this, values are averaged over only those 

model grid points where the total precipitation mixing ratio (sum of rain qr, snow qs, ice 

qi and hail qh mixing ratios) is greater than 0.10 g kg-1. Statistical measures include the 

root-mean-square error (rms) of the unobserved variables of u, v, w, t and total 

precipitation mixing ratios calculated as the difference between the truth and the 

ensemble mean analyses.   

 2
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here Fi is the ensemble mean analyses, Oi is the observation, i is the index for the number 

of model grid points. 

The ultimate goal of storm-scale data assimilation is to increase warning lead 

times by obtaining more accurate short term forecasts of severe storms events. Thus, to 

evaluate the accuracy of the forecasts from both PAR and WSR-88D observation 

assimilation, the 40 analyses from the last assimilation cycles are used as the initial 

conditions for each of the ensemble members and short-term forecasts are produced. The 

ensemble mean forecasts are then compared with the truth run.  

  

3.5.1  Analyses  

A. 60-min Assimilation 

 The rms errors of the ensemble mean analyses from assimilating PAR 

observations have a larger decrease in the rms errors for u, v, w wind components, 

temperature and total precipitation mixing ratios compared to the WSR-88D observation 

assimilation during the first 30-min of the assimilation period (Figure 3.8). This result is 

not surprising as the PAR assimilation is using 5 times more observations over the same 

time interval. By the end of the 60-min assimilation cycle, the magnitude of the rms 

errors from both assimilations become close to each other. Horizontal plots of reflectivity 

and vertical vorticity  at the last assimilation cycle ( t = 84 min) from PAR and WSR-

88D observation assimilation shows that both observations capture the split supercell 

structure and the developing hook echo rather accurately (Figure 3.9). 

 The maximum reflectivity and vertical vorticity and its extent also are comparable 

between the two and closely match the truth. The 60-min long assimilation cycle  
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Figure 3.8 The rms errors of ensemble mean analyses vs. time(s) for the 60-min 

assimilation experiment starting at t = 25 min and ending at t = 84 min for (a) u (msP-1), 

(b) v (ms-1), (c) w (ms-1), (d) t (k) and (e) total precipitation mixing ratios (g kg-1) for 

PAR (black lines) and WSR-88D (gray lines) observations assimilation.  Values are 

averaged over the domain at grid points where the total precipitation mixing ratios (sum 

of qr, qh and qs) is greater than 0.10g kg-1. Note that 300s = 5. 
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Figure 3.9  Reflectivity and vertical vorticity at 4.076 km above ground at the 60-min 

assimilation time (t=84 min) from (a and b) truth run and ensemble mean analyses from 

(c and d) PAR observations and (e and f) WSR-88D observation assimilation. 
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suppresses almost all spurious convection in the ensemble members through the 

assimilation of non-precipitating observations for both PAR and WSR-88D observation 

assimilation. Overall, the results from this experiment supports the conclusion drawn in 

earlier studies that 10 or more volume scans of radar observation assimilation generates 

very accurate analyses of  severe storm events (Tong and Xue 2005; Xue et al. 2006 ).  

 

B. 15-min Assimilation  

 The rms errors from both PAR and WSR-88D observation assimilations are seen 

to decrease rapidly for all variables (Figure 3.10). However, the faster volume scan of 

PAR observation generates significantly smaller rms error compared to the WSR-88D 

assimilation for all variables.  The increase and decrease (zig-zag pattern) in the error 

curve from assimilating WSR-88D observations are more distinct than the PAR error 

curve and corresponds to the error from assimilating observations during the 5-min long 

volume scans. The reflectivity and vertical velocity structure of the supercell storm in 

mid-levels from PAR observation assimilation more closely resembles the truth than that 

of the WSR-88D observation assimilation (Figure 3.11). The PAR ensemble-mean 

analyses captures the location, structure and the strength of the two main precipitation 

cores as in the truth, while the WSR-88D analyses fail to capture the high-reflectivity 

core of the northern cell and barely captures the high-reflectivity core of the southern 

cell.  In addition, while a number of spurious cells still surround the main supercell in the 

WSR-88D analyses, the more frequent observations assimilation from PAR suppresses 

most of the spurious convection. This result reinforces the conclusion that the frequent 

assimilation of 0 dBZ reflectivity observations is indeed very helpful in suppressing  
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Figure 3.10 Same as in Figure 3.8 but for the experiment with 15-min assimilation period 

starting at t = 25 min and ending at t = 39 min. 

 

67 



 

68 

 
 

Figure 3.11  Same as in Figure 3.9 but for a 15-min assimilation period for reflectivity 

and vertical velocity contours at the last assimilation cycle (t=39 min) 5.053 km above 

ground. 
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spurious convection. Furthermore, the two strong updrafts in excess of 16 ms-1 from the 

northern and southern cells (Figure 3.11b) in the truth are well represented in the PAR 

analyses (Figure 3.11d), while the WSR-88D analyses (Figure 3.11f) fail to capture the 

location, structure and the strength of the updrafts. While the maximum updraft from the 

WSR-88D assimilation is 14.28 ms-1, the maximum updraft from PAR observation 

assimilation and the truth is 31.26 and 28.02 ms-1, respectively. Similar results also are 

found for other variables at other vertical levels of the model domain. These results 

clearly show the benefit of assimilating faster volume scan observations for capturing the 

split supercell structure of the storm in the analyses resulting in a more accurate depiction 

of severe weather events.   

 

3.5.2  Forecasts  

A. 60-min Assimilation 

 Figure 3.12 shows the rms errors from the ensemble mean forecasts averaged over 

the domain where the total precipitation mixing ratio exceeds 0.10g kg-1 during the 35-

min forecast period. The rms error grows rapidly during the forecast period from both 

PAR and WSR-88D observation assimilation as expected. While the rapidly growing 

forecasts rms errors from PAR observations assimilation are smaller than that of the 

forecasts WSR-88D observations for the first few minutes, the errors from the PAR 

observations exceeds the WSR-88D errors and remains larger for the rest of the forecast 

period. This is true for all the variables shown in Figure 3.12. The basic structure and the 

evolution of the storm, including the split storm cells and the hook echoes from the 

ensemble mean 15-min forecasts (Figure 3.13) are rather accurate. However, the 15-min. 
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forecasts reflectivity contours at 3.1 km AGL from both PAR (Fig 3.13 b) and WSR-88D 

(Fig 3.13 c) observation assimilation more closely matches each other than  to the truth 

(Fig 3.13 a). Similar results also are seen from other variables (not shown). 

 

B. 15-min Assimilation 

 The rms errors of the ensemble mean forecasts show that the rms errors grow 

rapidly during the forecast period from both PAR and WSR-88D observation assimilation 

as expected (Figure 3.14). However the forecast errors from PAR observation 

assimilation are significantly smaller than the forecast errors from WSR-88D observation 

assimilation for the entire 50-min forecast period.  The reflectivity contours from the 

truth simulation and 5-min forecast at 6.1 km AGL and 20-min forecasts at 2.1 km from 

PAR and WSR-88D observation assimilation indicate that the forecasts from PAR 

observation assimilation maintains the strength, split storm cell structure and location of 

the two main precipitation core more closely to the truth than that of the WSR-88D 

forecasts (Figure 3.15).  Thus, the more accurate analyses from the PAR observation 

assimilation yields better forecasts compared to the WSR-88D forecasts.  

 

3.6   Summary 

 The EnSRF data assimilation method is implemented to assimilate radar 

observations for a shorter assimilation period using the perfect model framework. The 

synthetic reflectivity and radial velocity WSR-88D and PAR observations are created 

from a truth simulation of a supercell storm at a coarser 1 km range resolution. The  
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Figure 3.12 The rms errors of ensemble mean forecast from the 60-min assimilation 

experiment during the 35-min forecast period starting  for (a) u (ms-1), (b) v (ms-1), (c) w 

(ms-1), (d) t (k) and (e) q (g kg-1). Values are averaged over the domain where the total 

precipitation (sum of qr, qh , qi and qs mixing ratios) is greater than 0.10g kg-1. Details are 

shown in the legend. 
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Figure 3.13  Reflectivity contours at 3.18 km AGL for (a) truth and 15-min ensemble 

mean forecasts from (b) PAR observations assimilation and (c) WSR-88D observations 

assimilation from the 60-min assimilation experiment. 
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Figure 3.14 The rms errors of ensemble mean forecast from the 15-min assimilation 

experiment during the 50-min forecast period for (a) u (ms-1), (b) v(ms-1), (c) w(ms-1), (d) 

t(k) and (e) q (g kg-1). Values are averaged over the domain where the total precipitation 

(sum of qr, qh and qs mixing ratios) is greater than 0.10g kg-1. Details are shown in the 

legend. 
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Figure 3.15  Reflectivity contours for (a and d) truth and forecasts from the 15-min 

assimilation experiment from (b and e) PAR observations assimilation and (c and f) 

WSR-88D observations assimilation, (b) and (c) are 5 min ensemble mean forecast while 

(e) and (f) are 20 min ensemble mean forecasts. 
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analyses and forecasts from both radar observations assimilation experiments are 

compared and presented.  

The results indicate that both PAR and WSR-88D observation assimilation over a 

60-min assimilation period produce qualitatively similar analyses of the supercell and 

match closely to the truth. However, results from assimilating radar observations for a 

shorter assimilation period of 15-min show that PAR observations provide more accurate 

analyses and forecasts of the depiction of supercell compared to the WSR-88D data. 

Results also indicate that the more frequent PAR observations assimilation is able to 

suppress most of the spurious cells in regions around the storm during the shorter 15-min 

assimilation period with more accurate depiction of the two precipitation cores and 

generates smaller rms errors for unobserved variables of winds, temperature and 

precipitation mixing ratios compared to those from the WSR-88D observation 

assimilation. There is a rapid increase in rms errors in both PAR and WSR-88D ensemble 

mean forecasts during the 50-min forecast period, but the errors for PAR observation 

assimilation are consistently smaller than for WSR-88D observation assimilation. These 

results signify the benefits of more frequent data coverage in a shorter period of time on 

the quality of the storm analyses and forecast, i.e. the more complete the storm 

observations, the better analyses and forecasts. However caution is warranted as the 

results obtained from this study may be too optimistic since the experiments are based on 

a perfect model assumption where model error does not play a role. To present the impact 

of model error in radar data assimilation, imperfect model experiments are conducted in 

the next chapter and compared with the perfect model data assimilation results. 
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Moreover, the value of using a variety of intercept and density parameters within the 

same microphysics scheme also is examined.   

 



Chapter 4 

Data Assimilation Using Ensemble Square-Root Filter:  

Perfect and Imperfect Model Experiment  

 

4.1 Introduction  

 The experiments conducted in Chapter 3 are based on perfect model assumption 

where both the truth simulation and the ensemble members for the data assimilation 

experiments use the same LFO microphysics scheme with predefined constant parameters 

for precipitation particles. Since both the truth and the ensemble experiment use the same 

microphysics scheme, model errors do not play a role. However, such a good 

performance obtained in Chapter 3 is not expected in real-world experiments where the 

forecast model unavoidably has errors. Therefore to evaluate the impact of model error in 

EnSRF radar data assimilation, experiments need to be conducted under imperfect-model 

scenarios to account for model error.  

 One of the major sources of error in storm-scale data assimilation and forecasts is 

the microphysical parameterization scheme used in the model to represent the 

microphysical characteristics of the storms (Dowell et al. 2004; Gilmore et al. 2004; van 

den Heever and Cotton 2004; Dowell and Dowell 2009; Snook and Xue 2008; Tong and 

Xue 2008a). Microphysics schemes represent a number of different phase changes of 

water species and a number of different interactions between cloud and precipitation 

particles, requiring many assumptions to make these schemes both realistic and 

computationally affordable (Stensrud 2007). The most commonly used type of 

microphysical scheme in storm-scale modeling is the single-moment bulk microphysics 
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scheme (Lin et al. 1983; Tao and Simpson 1993; Schultz 1995; Straka and Mansell 2005; 

Hong and Lim 2006) that predicts only the particle mixing ratios of the hydrometeors. A 

single-moment scheme uses constant values for the intercept parameters and the densities 

of hydrometeors in the calculation of hydrometeor size distributions, and these intercept 

and density parameters are defined in the experiments somewhat arbitrarily. However, 

several observational studies indicate that the particle densities and the intercept 

parameters of hydrometeor distributions can vary widely among storms and even within a 

single storm (Gunn and Marshall 1958; Houze et al. 1979, 1980; Mitchell 1988; 

Pruppacher and Klett 2000; Cifelli et al. 2000; Brandes et al. 2007). Several sensitivity 

studies also demonstrate the impact of the variations of particle parameters on storm 

structure, intensity and precipitation characteristics (Gilmore et al. 2004; van den Heever 

and Cotton 2004; Snook and Xue 2008). Thus, applying predefined constant parameters 

for precipitation particles in storm-scale model cannot adequately represent the highly 

uncertain thunderstorm precipitation characteristics and can lead to significant errors in 

the analyses and forecasts of severe storms.  

 However, determination of suitable values for the microphysical parameters in 

storm scale data assimilation is very difficult due to the unavailability of in situ 

microphysics observations. Since the selection of microphysical parameters in storm-

scale modeling has profound impact on the analyses and forecasts of severe weather 

events, and an arbitrary selection of those parameters may lead to significant error, one 

approach to account for the uncertainty in a storm-scale ensemble modeling system is to 

vary the microphysical parameters within the same microphysics scheme among the 
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ensemble members. The hope is that by using a variety of realistic precipitation particle 

parameters, an ensemble is more likely to span the truth.  

 Therefore in an effort to explore the impact of model errors and also the variations 

in parameters within the same microphysics scheme in storm-scale forecasting, OSSEs 

are conducted applying both initial condition variations and a range of different 

realizations of the intercept and density parameters using an EnSRF data assimilation 

technique. The first set of experiments is based on the assumption of a perfect model in 

which both the truth simulation and the ensemble system use the same microphysics 

scheme. The second set of experiments is based on imperfect model assumptions in 

which the microphysics scheme for the truth simulation and the microphysics scheme for 

the assimilation system are different. Thus, the imperfect model assumption includes 

error in the forecast models from the microphysical parameterization. This chapter is the 

basis for the paper Yussouf and Stensrud (2010b) that is currently in review.  

 The experimental design of this study is described in Section 4.2.  Section 4.3 

presents the results obtained from the EnSRF analyses and forecasts, followed by a final 

discussion in Section 4.4.   

 

4.2 Experimental Design 

 Two simulations of a splitting supercell storm similar to the truth run in Chapter 3 

are generated using two different microphysics schemes.  The domain and the 

initialization of the 2-h long truth runs are inherited from Chapter 3. Synthetic radial-

velocity and reflectivity WSR-88D observations are then constructed from these truth 
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solutions using the same radar emulator as in Chapter 3.  The ensemble design for this 

study also is inherited from Chapter 3 with some modifications presented in this section. 

 

A. The two truth simulations and synthetic radar observations 

The first truth simulation applies the Gilmore et al. (2004) version of the Lin-

Farley-Orville (Lin et al. 1983) single-moment bulk microphysics scheme (Truth_LFO). 

The LFO scheme contains three ice categories (ice crystals, snow and hail/graupel) and 

calculates the mixing ratios of six water species: water vapor, cloud water, cloud ice, rain, 

snow and hail/graupel. In the LFO scheme, the term hail is used to represent high density 

graupel, ice pellets, frozen rain and hailstone. The second truth simulation applies the 10-

ICE (Straka and Mansell, 2005) single-moment bulk microphysics scheme 

(Truth_10ICE). It has the same two water particle categories (cloud water and rain) as the 

LFO scheme, but includes ten ice categories (i.e., 6 graupel and hail categories, 3 ice 

categories and snow) that are characterized by habit, size and density. The extra ice 

hydrometeor categories that are included in the 10ICE scheme better represent the range 

of precipitation ice characteristics in a deep convective storm. Both LFO and 10-ICE 

microphysics schemes assumes a monodisperse particle size distribution for cloud water 

and cloud ice and approximate an inverse exponential form (Marshall and Palmer 1948) 

for the particle size distributions of rain and ice categories as follows: 

 
0( ) x xD

x xn D n e λ−=  (4.1) 

where x is rain or ice categories, D is the particle diameter (m), n is the number of 

particles per unit volume (m-4), λ is the slope parameter that defines the decrease in 

particle counts as diameter increases (m-1) and n0x is the intercept parameter that defines 
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the maximum number of particles per unit volume at D = 0 size. The slope parameter 

varies with mixing ratio and is given by 

 0x x
x
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 (4.2) 

where ρx is the density of the particle, ρ is the air density, and qx is the mixing ratio. From 

(4.1) and (4.2), it is obvious that the particle size distribution is strongly influenced by the 

selected values of n0x and ρx.  The values of the density and the intercept parameters used 

for the truth simulation from the two microphysics scheme are given in Table 4.1.  

 
Table 4.1 The intercept and the density parameters of the precipitation particles for the 

Truth_LFO and Truth_10ICE simulations. 

LFO Scheme 10 ICE Scheme 
Catagory Intercept

m-4
Density 
kg m-3

Catagory Intercept 
m-4

Density 
kg m-3

Hail/Graupel 4x104 900 Graupel (low) 4.0x105 300 
Snow 3x106 100 Graupel (medium) 2.0x105 500 
Rain 8x106 1000 Graupel (high) 1.0x105 700 
Ice - - Frozen drops 4.0x105 800 

   Small hail 4.0x104 800 
   Large hail 1.0x103 900 
   Snow 8x106 100 
   Rain 8x106 1000 
   Rimed ice 1.0x108 300 
   Plate ice - 900 
   Column ice - 900 
   Cloud droplets - 1000 

 

 The truth runs from the two microphysics schemes produce a similar supercell 

storm, but with differences in the location, strength and structure of the storm (Figure 

4.1). The cold pool at the lowest model level from Truth_10ICE (Figure 4.1b) is colder 

than the cold pool from Truth_LFO (Figure 4.1a). The high-reflectivity core of the  
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Fig 4.1  Potential temperature (K) at t = 35 min of the simulation at the lowest model 

level (100 m AGL) (a and b), reflectivity (dBZ; c and d) 2.6 km AGL at t = 1 hr  and 

vertical vorticity (s-1; e and f) at 3.1 km AGL at t = 1.5 hr from the truth  simulation 

using the LFO and 10 ICE microphysics scheme. 
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southern cell from the Truth_LFO (Figure 4.1c) is more intense than the reflectivity core 

of the southern cell from Truth_10ICE (Figure 4.1d) and the mid-level vertical vorticity 

fields also differ from each other (Figure 4.1 e and f). Similar differences also are found 

for other variables at other vertical levels of the model domain and at other simulation 

times.  

 

B. The ensemble configuration and OSSE design 

As mentioned earlier, the 40-member ensemble for the experiment is similar to 

the ensemble in Chapter 3. To facilitate the development of storms, 3 thermal bubbles 

(1.5 K maximum ellipsoidal θ perturbations) are introduced at the initialization time (t = 

0) to each ensemble member following Synder and Zhang (2003), and Dowell et al. 

(2004a, b). These bubbles have 7.5 km (2.0 km) radius in the horizontal (vertical) 

direction are placed at random horizontal locations within 10 km of the domain center 

and between 0.25 to 2.25 km in z direction.  

 After initializing the ensemble members at t = 0, the members are integrated 

forward in time for 25 min before assimilation of the first observations. A 30 min long 

assimilation period starts at t = 25 min and ends at t = 54 min. During this assimilation 

period, 6 volume scans of WSR-88D observations are assimilated. The radar is located at 

x = -3.6 km and y = -4.9 km from the southwest corner of the domain during the first 

volume scan. The observations valid within 1 min of the current time are assimilated 

followed by advancing the ensemble members 1 min to the next observation time.  No 

additional localized perturbations (Dowell and Wicker 2009) or covariance inflations 

(Snyder and Zhang 2003; Dowell et al. 2004a; Tong and Xue 2005) are added to the 
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members to maintain the ensemble spread during the assimilation cycles. After the 30 

min of data assimilation, all of the 40 ensemble members from the last assimilation cycle 

are used to produce a 1-h long ensemble of forecasts (Figure 4.2). Two sets of 

experiments are implemented in this study to assess the benefits of a multi-parameter 

ensemble system. 

 

 

Figure 4.2 Schematic illustration of the EnSRF experiment for 35-min assimilation. 

 

4.2.1  Perfect Model Experiment 

 The ensemble members use the LFO microphysics scheme and the synthetic 

WSR-88D reflectivity and radial velocity observations assimilated are generated from the 

Truth_LFO.  Two experiments are conducted using these identical background 

environments. The first ensemble (Perfect_Control) uses the same constant intercept and 

density parameters for the hydrometeor categories for all ensemble members as in the 

Truth_LFO. The values of the parameters for the Truth_LFO and Perfect_Control 

experiments are the same typical values used in Lin et al. (1983) as listed in Table 1 and 

these values generate an intense storm with high density hail. The ensemble members in 

the Perfect_Control experiment thus have the identical base environment and 

microphysics scheme as in the truth but differ from each other in the location and 

magnitude of the thermal bubbles. Here we are assuming that the model is perfect and the 
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environmental condition is perfectly represented thereby giving the ensemble data 

assimilation and forecast system the best chance to produce excellent results.  

The second ensemble (Perfect_MP) also uses the LFO microphysics scheme but 

instead of using constant precipitation particle intercept and density parameters, each 

ensemble member uses different values for these parameters. Thus, the ensemble 

members in the Perfect_MP experiment differ from each other not only in the location 

and magnitude of the thermal bubbles but also differ in intercept and density parameters 

within the same LFO microphysics scheme. The parameters varied include the intercept 

parameters for rain (n0r), snow (n0s) and hail/graupel (n0h) and the bulk densities of snow 

(ρs) and hail/graupel (ρh). These values are varied within their typical uncertainty range 

based on past observational studies reported in the literature. The intercept parameter n0r 

is varied between the range 3.98x106 and 3.16x107, n0h between 4.50x103 and 4.00x105 

and n0s between 1.0 x106 and 1.58x107 m-4. The density ρs is varied between 20 and 400 

and ρh between 400 and 900 kg m-3. The lists of parameter values assigned to the 40 

ensemble members in the multi parameter (MP) experiment are shown in Table 4.2. The 

mean of the intercept and density values from the 40 ensemble members differ from the 

values assigned in the truth run as listed at the bottom of Table 4.2. The use of a variety 

of density and intercept parameters across the ensemble members result in supercell 

storms that are different from each other in terms of structure, strength and intensity.  
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Table 4.2 List of ensemble members with the values of intercept parameters and densities 

of rain, hail/graupel and snow particles from the LFO microphysics scheme. 

 
Ensemble 
Members 

Hail/graupel 
intercept  
n0h (m-4) 

Density of 
hail/graupel 
ρh (kg m-3) 

Snow intercept 
n0s (m-4) 

Density of 
snow 

ρs (kg m-3) 

Rain 
intercept  
n0r (m-4) 

1 4.00 x 104 900 3.00 x 106 100 8.00 x 106

2 4.50 x 103 900 1.04 x 107 50 7.14 x 106

3 5.07 x 103 800 6.77 x 106 100 5.19 x 106

4 5.70 x 103 500 2.18 x 106 350 1.22 x 107

5 6.41 x 103 700 1.89 x 106 400 6.09 x 106

6 7.22 x 103 600 8.38 x 106 250 9.32 x 106

7 8.12 x 103 800 7.27 x 106 150 2.70 x 107

8 9.14 x 103 900 3.84 x 106 50 2.30 x 107

9 1.03 x 104 400 1.76 x 106 200 4.43 x 106

10 1.16 x 104 500 1.43 x 106 300 1.09 x 107

11 1.30 x 104 600 1.07 x 106 400 8.38 x 106

12 1.47 x 104 700 2.89 x 106 250 7.53 x 106

13 1.65 x 104 800 5.10 x 106 150 5.77 x 106

14 1.86 x 104 900 8.99 x 106 300 3.16 x 107

15 2.09 x 104 400 1.38 x 107 100 8.83 x 106

16 2.35 x 104 500 2.51 x 106 300 4.20 x 106

17 2.65 x 104 600 2.34 x 106 100 3.00 x 107

18 2.98 x 104 700 1.53 x 106 150 1.96 x 107

19 3.35 x 104 800 7.80 x 106 200 1.76 x 107

20 3.77 x 104 900 1.33 x 106 100 1.58 x 107

21 4.24 x 104 400 4.12 x 106 350 2.18 x 107

22 4.78 x 104 500 4.43 x 106 100 1.50 x 107

23 5.37 x 104 600 5.48 x 106 250 2.56 x 107

24 6.05 x 104 700 3.58 x 106 400 1.35 x 107

25 6.80 x 104 800 1.00 x 106 20 6.42 x 106

26 7.66 x 104 400 1.28 x 107 300 3.98 x 106

27 8.62 x 104 500 5.88 x 106 200 2.42 x 107

28 9.70 x 104 900 1.15 x 106 50 1.28 x 107

29 1.09 x 105 400 1.24 x 106 350 4.67 x 106

30 1.23 x 105 700 2.03 x 106 50 2.07 x 107

31 1.38 x 105 800 9.65 x 106 350 1.04 x 107

32 1.56 x 105 900 1.19 x 107 200 5.48 x 106

33 1.75 x 105 500 1.64 x 106 250 9.82 x 106

34 1.97 x 105 600 6.31 x 106 400 1.67 x 107

35 2.22 x 105 700 1.11 x 107 100 1.15 x 107

36 2.49 x 105 800 4.75 x 106 300 2.84 x 107

37 2.81 x 105 900 2.70 x 106 150 1.86 x 107

38 3.16 x 105 400 1.48 x 107 50 7.94 x 106

39 3.55 x 105 700 1.58 x 107 400 4.92 x 106

40 4.00 x 105 900 3.33 x 106 300 6.77 x 106

Average 9.00 x 104 675 5.45 x 106 214 1.33 x 107

LFO_Truth 4.00 x 104 900 3.00 x 106 100 8.00 x 106

10ICE_Truth 1.00 x 105 700 8.00 x 106 100 8.00 x 106
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4.2.2 Imperfect Model Experiment 

 Unlike the previous experiment, the synthetic reflectivity and radial velocity 

observations assimilated by the ensemble members are generated from the Truth_10ICE 

run. The ensemble members in the first ensemble (Imperfect_Control) use the LFO 

microphysics scheme with the same constant precipitation particle parameters as in the 

Perfect_Control experiment. The ensemble members in the second MP ensemble 

(Imperfect_MP) also use the LFO microphysics scheme but with the same variety in the 

intercept and density parameters as in Perfect_MP (Table 4.2). The initialization and 

other ensemble configuration details are identical to the previous experiment. The 

imperfect model experiment explores the performance of the EnKF system for the same 

storm event in the presence of model errors in the different microphysics scheme.  

 The ultimate goal of storm-scale data assimilation is to obtain accurate short-term 

forecasts of severe storms events. To evaluate the accuracy of the ensemble forecasts 

from assimilating WSR-88D observations over a 30-min period, the 40 analyses from the 

last assimilation cycles are used as the initial conditions for each of the ensemble 

members and 1-h short-term forecasts are produced. 

 

4.3   Results 

 The accuracy of the analyses and forecasts for both perfect and imperfect model 

assimilation experiments, when using fixed or varied microphysics scheme parameters in 

the ensemble system, are compared with the truth runs. The evaluation criteria include 

statistical comparisons between the truth and the ensemble system. Statistical measures 
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include root-mean-square error of the unobserved variables and equitable threat scores 

(ETSs: Wilks 2006). The ETS is calculated from the contingency table that gives discrete 

joint sample distribution of ensemble mean forecasts and the reference simulation in 

terms of cell count. An ETS of 1 denotes a perfect forecast while the forecast accuracy 

decreases as the ETS decreases towards zero. Various plots of ensemble maximum values 

are used to determine whether or not the ensembles capture the range of values found in 

the truth runs.  

 

4.3.1  Analyses 

 To evaluate how well the supercell is captured by the ensemble system during the 

30- min assimilation period, the rms errors of u, v and w wind components, temperature, 

and total precipitation (rain, snow and hail/graupel) mixing ratios from the ensemble 

mean analyses for both perfect and imperfect model assimilation experiments are 

examined (Figure 4.3).  The rms errors from both experiments are seen to decrease 

rapidly for all variables as more observations are assimilated. At the end of the 

assimilation period, the rms errors for winds and temperature variables for the control and 

multi-parameter ensembles from both Perfect (Figures 4.3a and c) and Imperfect (Figures 

4.3b and d) model experiments are very similar. However, while the rms errors of total 

precipitation mixing ratio from the Perfect_MP are larger than that of the Perfect_Control 

(Figure 4.3e), the rms errors of the Imperfect_MP are significantly smaller than that of 

the Imperfect_Control (Figure 4.3f) throughout the 30 minute assimilation period. Thus, 

in the presence of model error, the Imperfect_MP is able to capture the true precipitation 

mixing ratios better and hence produce smaller rms errors. 
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Figure 4.3 The rms errors of ensemble mean analyses vs. time(sec) during the 30-min 

assimilation period from the perfect and imperfect model experiment starting at t = 25 

min and ending at t = 54 min for w (m s-1) (a and b), t (k) (c and d) and total precipitation 

(rain, snow, hail/graupel) mixing ratios (g kg-1) (e and f) for the control (black lines) and 

muliparameter (gray lines) ensemble system.  Values are averaged over the domain at 

grid points where the total precipitation mixing ratios (sum of qr, qh and qs) in the truth 

run is greater than 0.10g kg-1. 
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4.3.2  Forecasts 

 The rms errors of the ensemble mean forecasts during the 1 hour forecast period 

for perfect and imperfect model assimilation experiments are shown in Figure 4.4. The 

quality of the forecast in both plots deteriorates rapidly with time as expected. However, 

in the perfect model experiment, the Perfect_Control yields smaller rms errors compared 

to the Perfect_MP for the winds, temperature and total precipitation (Figures 4.4a, c and 

e). The smaller rms errors from the Perfect_Control are expected since the ensemble uses 

identical intercept and density parameters of the hydrometeor categories for all ensemble 

members as in Truth_LFO. In the absence of model error from the perfect model 

assumption, the EnKF only has to correct the initial condition errors. In the imperfect 

model experiment, the rms errors for winds and temperature variables (Figures 4.4 b and 

d) from the Imperfect_MP are very similar to the rms errors from the Imperfect_Control 

during the first 40-mins of the forecast period but yield smaller rms errors during the 

remaining 20 min of the forecasts. Moreover the Imperfect_MP generates smaller rms 

error than that of the Imperfect_Control for total precipitation mixing ratio (Figure 4.4f) 

throughout the 1-h forecast period. Therefore the variations in the microphysical 

parameters have a larger impact on the microphysical fields than on wind and 

temperature fields.  

To quantify the forecast accuracy from the ensemble mean forecasts, the ETS is 

calculated by comparing the ensemble mean forecast with the truth for reflectivity values 

exceeding a 35 dBZ threshold and for precipitation (rain, snow and hail/graupel) mixing 

ratios exceeding  a 1.0 g kg-1 threshold. Results indicate that for the perfect model 

assimilation experiment, the ETS for the Perfect_Control is larger than that of the 
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Figure 4.4 The rms errors of ensemble mean forecast vs. time(sec) during the 1-h forecast 

period from the perfect and imperfect model experiment starting at t = 55 min and ending 

at t = 115 min for w (m s-1) (a and b), t (k) (c and d) and total precipitation (rain, snow, 

hail/graupel) mixing ratios (g kg-1) (e and f) for the control (black lines) and 

muliparameter (gray lines) ensemble system.  Values are averaged over the domain at 

grid points where the total precipitation mixing ratios (sum of qr, qh and qs) in the truth 

run is greater than 0.10g kg-1. 
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Figure 4.5 Values of equitable threat score (ETS) for reflectivity values exceeding 35 

dBZ threshold for  a) Perfect and c) Imperfect Model experiments and the precipitation 

(rain, snow and hail/graupel) mixing ratios exceeding 1.0 g kg-1 threshold  for  c) Perfect 

and d) Imperfect Model experiments as function of forecast time (sec). Details are shown 

in legends 
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Perfect_MP (Figures 4.5a and b) for the entire forecast period for both reflectivity and 

total precipitation mixing ratios.  In contrast, for the imperfect model assimilation 

experiment, the Imperfect_MP yields a higher ETS throughout the 1-h forecast period 

compared to that of the Imperfect_Control (Figures 4.5 c and d) for both threshold 

values.  

The maximum mean hail diameter (mm) at the lowest model level from anywhere 

in the model domain during the 1-h forecast period for the perfect and imperfect model 

assimilation experiments indicate that the truth value is often on the edge of the 

Perfect_Control ensemble (Figure 4.6a). Results from the Imperfect_Control show that 

the truth lies outside the ensemble envelope after 65 min and the ensemble members tend 

to overpredict the hail diameter (Figure 4.6b). In contrast, the MP ensembles (Figures 

4.6c, d) capture the truth well within the ensemble members and also yield larger spread 

even though no additional methods are used to maintain the spread during observation 

assimilation period for both perfect and imperfect model assimilation experiments. The 

MP results also show how variations in hydrometeor parameters can dramatically change 

the prediction of hail size. 

 The large differences between the control and MP ensembles for maximum hail 

size would seem to indicate differences in storm structure. Yet all the MP storms are 

splitting supercells and have reflectivity values within 10 dBZ of the truth runs. Instead, 

these results highlight the variety of hydrometeor combination that can produce a given 

value of reflectivity, and, therefore, the sensitivity of the forecasts to the assumed 

microphysical parameters. It may be that these parameters can be estimated during the 
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data assimilation process, as done by Tong and Xue (2008a, b), but there is no guarantee 

that these estimated parameters will produce an accurate storm forecast. 

 

 

Figure 4.6 The maximum mean hail diameter (mm) at the lowest model level (100m 

AGL) during the 1-h forecast period from the truth (thick black line) and the 40 ensemble 

members (different shades of gray lines)  for a) Perfect_Control, b) Imperfect_Control c) 

Perfect_MP, and d) Imperfect_MP assimilation experiment.   
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The ability of the EnKF to forecast the important variables in the convective 

storm environment is illustrated by comparing the forecast time series of the minimum 

cold pool temperature (Figure 4.6) from each ensemble member for both perfect and 

imperfect model assimilation experiments.  Not surprisingly, the ensemble members from 

the control runs for both perfect and the imperfect model experiment provide insufficient 

ensemble spread, with the truth falling outside the ensemble envelope for different 

forecast periods, indicating that methods to artificially increase the spread are needed. In 

contrast, the MP experiments not only improve the ensemble spread, but also capture the 

truth well within the envelope of the ensemble members. The spread obtained from the 

MP ensemble not only represents the uncertainty from the initial conditions, but also the 

uncertainty from the various microphysical processes. 

The ground relative total rainfall (mm) accumulated from the moving supercell 

storm valid at the end of 1-h forecast period is shown in Figure 4.7. The accumulated 

rainfall amounts from the Imperfect_MP ensemble mean forecast (Fig 4.7c) more closely 

resemble the truth (Figure 4.7a) than the rainfall amounts from the Imperfect_Control 

(Figure 4.7b) experiment.  The Imperfect_Control produces higher rainfall amounts from 

the northern and the southern storms cells when compared to the truth 10ICE run. 

These results highlight the importance of using an MP ensemble in the presence of model 

error. Using a combination of different density and intercept parameters of the 

hydrometeor category can significantly improve the analyses and forecasts over 

experiments using constant intercept and density parameters for the hydrometeor 

categories. This is especially true when examining the extreme values of the model fields 

that would be most helpful in determining and identifying potential hazards.  
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Figure 4.7 Same as in Figure 4.6 but for minimum potential temperature (K) at the lowest 

model  level (100m AGL). 
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Figure 4.8  The ground-relative 1-h accumulated rainfall (mm) amounts of the supercell 

storm from a) Truth_10ICE and the ensemble mean forecasts of 1-h accumulated rainfall 

(mm) from b) Imperfect_Control and c) Imperfect_MP assimilation experiment. 

97 



4.4   Summary 

The goal of this study is to evaluate the potential value of using a range of 

intercept and density parameters within the same microphysics scheme in the presence of 

model error. Two truth simulations of a splitting supercell storm are generated using LFO 

and 10ICE microphysics schemes in an identical storm environment. Two sets of OSSEs 

are conducted from both a perfect and an imperfect model framework using an EnKF 

data assimilation technique with 1) constant intercept and density parameters for the 

hydrometeors in all ensemble members and 2) a range of different values of the intercept 

and density parameters for the hydrometeors in the different ensemble members. 

Synthetic WSR-88D reflectivity and radial velocity observations are created from the 

truth runs using a realistic volume averaging technique and these observations are 

assimilated into the ensemble system over a 30-min period. The 40 ensemble analyses at 

last assimilation cycle are then used to make 1 h forecasts.   

 Results show that the EnKF system performs reasonably well with the imperfect 

model assumption. It is found that a multi-parameter ensemble within the imperfect 

model framework (Imperfect_MP) generates more accurate forecasts of ensemble mean 

precipitation mixing ratios and accumulated rainfall compared to that of the control 

imperfect model ensemble (Imperfect_Control). This conclusion does not always apply 

for the perfect model assumption where model error does not play a role.  Moreover the 

1-h forecast time series of the 40 ensemble members for lowest cold pool temperature at 

100 m AGL indicates that the truth almost always lies within the envelope of ensemble 

members for the perfect and imperfect MP ensembles, whereas the truth more often lies 

on the edge or outside the ensemble envelope for the perfect and imperfect control 
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ensemble. The MP ensembles also yield larger ensemble spread than the control 

experiments. The results from this study support the idea that the microphysical 

parameter diversity across the ensemble members may be beneficial to a storm-scale 

ensemble forecasting system.    

 Caution is warranted as the results obtained in these studies are based on synthetic 

radar observations. In real observation assimilation, the model error can potentially be 

larger than that considered in this study. Moreover the selection of density and intercept 

parameters as shown in Table 4.2 is far from optimal. Thus the possibility of using multi-

parameter ensemble in storm-scale data assimilation system should be tested on a broader 

range of experiments using real radar observations of severe weather events with careful 

selection of these highly uncertain microphysical parameters so that these values are 

representative of the various storm systems.  Due to our limited understanding, it is likely 

that even the use of more sophisticated microphysics parameterization schemes will face 

challenges in some storm environments. This is not necessarily a deficiency but instead 

represents the reality of microphysics parameterization.  Using a variety of realistic 

intercept and density parameters, the ensemble is more likely to span the observations 

and provide improved short range forecasts for a wide range of storm systems.    

  

   

99 



 

Chapter 5 

Data Assimilation Using Extended Information Filter 

 

5.1 Introduction  

 The previous two chapters apply the EnSRF data assimilation technique to 

assimilate high spatial resolution radar observations to NWP model and the results 

obtained are promising. However, the computational time for EnSRF methods scales 

linearly with the number of observation. Thus from the computational point of view, the 

algorithm for EnSRF method is efficient when the number of observations to assimilate is 

smaller. When the number of observations is very large as in the case with radar data, the 

EnSRF method becomes exceedingly time consuming. With the advent of new radar and 

other remote sensing technology, it is highly likely that the observation dimensionality 

exceeds the dimensionality of the model state vector. Therefore, efficient filter designs 

for efficient assimilation of these observations needs to be explored.  One possible 

candidate for this purpose is the information form of the filter which is algebraically 

equivalent to Kalman filter. While the traditional Kalman filter calls for inverting the 

matrix in observation space, the information filter calls for the inversions of the model 

space. Therefore, the information form of the filter may be computationally more 

efficient than the traditional Kalman filter when the number of observations is very large 

in dimension compared to the model state (m > n). Even though the information filter has 

been around for years, to our knowledge the applicability of the information filter as data 

assimilation technique for high frequency measurements has not yet been tested for 

atmospheric models. The information filter is not widely used and is not widely covered 
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in the literature. Thus, this chapter explores the possibility of information filter as an 

efficient data assimilation technique for large observation system. As a first step, the 

information filter is implemented using a low dimensional simple atmospheric model, 

and its performance is compared with the Kalman filter as a benchmark. The model used 

for this purpose is the Lorenz 96 model (L96) which is a simple non-linear model 

(Lorenz 1996; Lorenz and Emanuel 1998; Lorenz 2005, 2006), computationally cheap 

and shares many characteristics with the realistic atmospheric models. This model is 

widely used as a test bed for examining the data assimilation schemes in meteorological 

community (Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004; Fertig et al. 

2007; Nokano et al. 2007; Leutbecher et al. 2007; Ambadan and Tong 2009).  Therefore, 

we apply the information filter to a simple Lorenz model as this is useful for initial 

testing of new ideas, before complex high-dimensional models and real observations are 

used. Since the Lorenz model is nonlinear, the extended form of the information filter 

(EIF) is implemented and is compared with the extended Kalman filter (EKF). The EIF 

experiments conducted in this chapter uses the state space formulation (Simon 2006). 

 

5.2 Description of Lorenz Model 

 The L96 model is a one-dimensional atmospheric model introduced by E. Lorenz 

in 1995 to explain the dynamics of weather at fixed latitude. The model consists of 40 

ordinary differential equations, with the dependent variables representing values of some 

atmospheric quantity at 40 sites spaced equally about a latitude circle. The equations 

contain quadratic, linear, and constant terms representing advection, dissipation, and 
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external forcing. The model contains N variables x1, …, xN, which may be thought of as 

atmospheric variables in N sectors of a latitude circle and is governed by 

 2 1 1 1
n

n n n n n
dx x x x x x
dt − − − + F= − + − +  (5.1) 

for n = 1, . . . , N.  To make (5.1) meaningful for all values of n, x−1 = xN−1, x0 = xN, and 

xN+1 = x1 are defined so that the variables form a cyclic chain, and the values can be 

assumed as some unspecified scalar meteorological quantity, like the temperature, at N 

equally spaced sites extending around a latitude circle (Figure 5.1). The model does not 

simulate the atmosphere’s latitudinal or vertical extent. The constant F is positive and is 

known as the forcing term, t is the time.  

The model is formulated as one of the simplest possible systems that treat all 

variables alike. However there are certain properties in the model that are similar to many 

atmospheric models and are as follows (Lorenz and Emanuel 1998): 

1. The two nonlinear terms are intended to simulate advection. These two terms are 

quadratic and together conserve the total energy, defined as (x2
1 + · · · + x2

N)/2. 

2. The linear terms represents mechanical or thermal dissipation and decreases the 

total energy. 

3. The constant term represents external forcing and prevents the total energy from 

decaying to zero. 

 The variables are scaled so that the coefficients of the quadratic and linear terms 

are unity. The time unit is thus the dissipative decay time, which is assumed to equal 5 

days. Numerical integration of this model indicates that small errors (differences between 
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solutions) tend to double in about 2 days. Further details of the model and its behaviors 

can be found in Lorenz (2005, 2006) and Lorenz and Emmanuel (1998). 

 

Figure 5.1 Latitude circle of the Lorenz 96 model with 40 grid points (N = 40). 

5.3    Experimental Details   

 The Lorenz model is computationally stable with a time step of 0.05 units which 

equals 6 h (Lorenz and Emanuel 1998). A unit time Δt = 1 is associated with 5 days. Thus 

for the Lorenz 96 model, a “year” consists of twelve 30-day months, or 72 time units, or 

2880 time steps. Similar to Lorenz and Emanuel (1998), N = 40, F = 8 and a fourth-order 

Runge–Kutta time integration scheme with a time step of 0.05 non-dimensional units or 6 

h is used to run the model to create initial conditions. The model and the experiments 

conducted in this chapter is implemented using MATLAB software and the codes are 

listed in appendix B. Extensive testing of the simulation of the model is conducted to 

validate the code and to make sure that the performance of the model is similar to that 

found in Lorenz (1996), Lorenz and Emanuel (1998), and Lorenz (2005, 2006).   
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Creating the initial condition for the truth and the model state: 

 The initial state of the model ( 0 0

^ ^
,x P ) and the ‘truth’ are obtained by integrating the L96 

model for a long period of time starting from an arbitrary start-up value. For the truth run, 

random numbers from a uniform distribution between 0 and 1 are assigned to each of the 

40 variables, and an initial perturbation of 0.008 is added to the 20th variable (x20). The 

model is then integrated forward in time for 10 years or 14400 steps similar to Lorenz 

(1996).  The final values which are more or less free of transient effects are taken as the 

true initial values for the assimilation experiments. Observations (zk) are created from the 

truth run by adding Gaussian noise with zero mean and specified standard deviation. The 

climatological mean ( limcμ ) and the standard deviation ( limcσ ) for the 10 years truth run 

are 2.3432 and 3.6385 respectively.  

 For creating the model initial condition ( 0 0

^ ^
,x P ), an ensemble of 100 model 

members is used. The first ensemble member starts with the identical setting as in the 

truth run and the remaining 99 ensemble members are generated from the first ensemble 

member by adding additional random perturbation (with 0 mean and 0.0001 standard 

deviation) in one additional randomly selected variable (or grid points). A plot of the 100 

ensemble members for grid point 30 at the start time is shown in Figure 5.2 that indicates 
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Figure 5.2 Values of ensemble members (blue) and the truth (green) at grid point 30 (or 

variable 30) at start time. 

 
that additional perturbations are added to ensemble members 86, 93 and 99. The 

remaining ensemble members and the truth have identical values for grid point 30. 

The 100 ensemble members are then integrated forward in time for 10 years 

similar to the truth run. The 100 ensemble members and the truth at the end of 10 year 

time integration is shown in Figure 5.3. The small initial perturbations to the different 

states of the ensemble at the start time evolve with time and the ensemble members at 

the end of the integration period are chaotic. Finally the ensemble members at the end of 

the 10 year simulated period are averaged to obtain the model initial condition 0

^
x . The 

initial ensemble covariance matrix at the end of the l0 year simulation period is 

obtained from the ensemble members. The contour plot of P

0

^
P

0 is shown in Figure 5.4a. 

The covariance plots clearly show the strong variance of the grid points along the 

diagonal and small covariances among the grid points. 
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Figure 5.3 The 100 ensemble members (blue lines), truth run (green line) and the 

ensemble mean (red line) after integrating the model for 14400 time steps. 
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Figure 5.4 The covariance P0 of the model (contours) after integrating the model for 

14400 time steps. 
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Data Assimilation Experiments: 

 The assimilation experiment is initialized at time k = 0 and the initial value of the 

mean and covariance of the model is assigned to 0

^
x and  respectively.  It is assumed 

that the observations are available at every time step and are assimilated by the model 

every time step for the next 500 time steps. For the assimilation experiment, the time step 

is assumed to be 0.01 to secure stability. The model error standard deviation 

0

^
P

Qσ  is 

assumed as Qσ  = 0.3 and the model error covariance Q is represented by a diagonal 

matrix Q = 2
QIσ , where I is the identity matrix.  

 The observation error standard deviation is taken as lim0.25R cσ σ= (i.e. the 

observation error standard deviation is 25% of the climatological standard deviation). The 

observational error covariance matrix is assumed as R = 2
RIσ . We also assume that the 

observation and model error covariance matrices Q and R and the H operator are constant 

over time. The observations  yo are computed at each assimilation cycle from the truth run 

by adding uncorrelated Gaussian random noise 0 mean and Rσ  standard deviation.  

 At each time step, observations are created from the truth run and are assimilated 

into the model to create analysis. After the assimilation, the analysis is integrated 

forward in time to the next time step and the cycle goes on. Three sets of experiments are 

conducted based on observation density on the 40-dimensional model. Each set of 

experiments is conducted using two combination of Qσ  and Rσ , namely 

lim0.3, =0.25Q R cσ σ σ= and lim lim0.25 , =0.25Q c R cσ σ σ σ= . Also to ensure fairness, the 
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assimilation experiments for EKF and EIF are carried out using identical settings. The 

experiments are as follows: 

 

5.3.1  Sparse Observation (m = n) Network 

 It is assumed that the observations are available at every grid point (Figure 5.1a). 

Since each of the model grid points (state variable) are observed directly, the 

observational operator H is assumed to be identity. 

 

 

 

Figure 5.5 Location of observations (green circle) and model grid points (red circle) for 

(a) m = n, (b) m = 2n and (c) m = 4n experiments. Here m is the number of observations 

and n is the number of model grid points. 

 

5.3.2  Moderately Densed Observation (m = 2n) Network 

  In addition to observations at every site, observations also are available in 

between every two sites (Figure 5.5b). Thus, there are 80 observations in total. The H 

operator includes a linear interpolation from the model grid to the location of the 

observation site in between two model grid point. 
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5.3.3  Highly Densed Observation (m = 4n) Network 

  In addition to observations at every site, three observations also are available in 

between every two sites (Figure 5.5c) and are equally spaced. Thus, there are 160 

observations in total. The H operator includes a linear interpolation from the model grid to 

the location of each observation in between two model grid point. 

 

5.4  Results 

 To guarantee that there is no inadequacy of the model to explain the observations 

and the filter is working as it should, the term ( )f
k k k kr z H x= −  known as the innovation 

or the residual is calculated for both the EKF and EIF experiments. For all experiments 

100 samples with each sample run consisting of a 500 assimilation cycle is conducted to 

calculate .  The resultant  for both EKF and EIF are ~0.0. Thus both filters are 

working as they should.  

( )kE r ( )kE r
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Figure 5.6 The expected value of the innovations  for both  EKF (in black line) and 

EIF (in gray line) at 40 observation location from the m=n experiment. 

( )kE r

 Moreover from Figure 5.7, it is also seen that with observation assimilation cycle 

the model forecast more closely converges to the truth. The accuracy of the EKF and EIF 

are evaluated using the root-mean-square error (rms) of the analyses and forecasts and are 

calculated as the difference between the truth and the analyses and forecasts.  The rms 

error is defined as  

( )2

1

1 n
true

i i
i

E X X
n =

= −∑
 

where n = 40 is the number of grid points, Xi is the ith variable for the forecast and 

analyses, and Xtrue is the “true” state from which the observations were sampled. 
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 The EKF and EIF rms error for lim0.30, =0.25Q R cσ σ σ=  and 

lim lim0.25 , =0.25Q c R cσ σ σ σ=  using the sparse observation (m = n) network, moderately 

densed observation (m = 2n) network and highly densed observation (m = 4n) network as 

shown in Figure 5.8, Figure 5.9 and Figure 5.10 respectively. The rms errors from both 

EKF and EIF are very similar to each other. The initial rms error from the model forecast 

reduces from ~3.75 to ~0.50 after the first assimilation cycle and both the analyses and the 

forecast rms errors varies with the range of  ~0.50-1.0 for the rest of the assimilation 

period. These results support the theory that the information filter is algebraically 

equivalent to the Kalman filter.  

 After 1 st assimilation step 
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Figure 5.7 The truth run (in green), observation locations (black starts), model forecast (in 

blue) and the analysis (in red) after the first assimilation cycle.  
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Figure 5.8 The  rms error for the (a, b) EKF and (c,d) EIF forecast and analyses during 

data assimilation period for the sparse observation (m = n) network. The blue line 

indicates the model forecast error and the red line indicates the analyses error. 
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Figure 5.9 Same as in Figure 5.8 but for the moderately densed observation (m = 2n) 

network 
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Figure 5.10 Same as in Figure 5.8 but for the highly densed observation (m = 4n) network 

 

5.5  Computational Speed 

 Following Lewis et al. (2006), we quantify the amount of work needed to perform 

one complete iteration of forecast and analyses step for EKF and EIF. The complexity is 

calculated in terms of the number of floating point operations (flops). To multiply two 

matrices  and nxmA R∈ mxrB R∈  it takes 2mnr flops ( mnr multiplications and mnr 

additions). While it is true that in general multiplication takes more time than addition, to 

simplify the process of estimating the cost, it is useful to assume a unit cost model where 
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the unit of cost (measured in time) is equal to the maximum of the cost of performing a 

single operation of addition, subtraction multiplication and division. Using this 

convention, the total cost in terms of the number of flops as a function of the size of the 

problem is listed in Table 5.1 for EKF and in Table 5.2 for EIF. 

 

 Table 5.1:  Estimation of the computational cost for EKF. 

Item Operation Type of Computation Cost 
1

f
kx +  ^

( )k kM x  Matrix-vector multiply 2n2

1
f

kP +  ^ ^

1

^
( ) ( )T

kM k M kD x P D x Qk++  
Two matrix-matrix 
multiply + a matrix add 

4n3+n2

1 1 1
f T

k k k k 1H P H R+ + + ++  Two matrix-matrix 
multiply + a matrix add 

4n2 2m+m1kK +  

1
1 1 1 1[ ]f T

k k k kH P H R −
+ + + ++  Inverse of a matrix (1/3)m3

1
1 1 1 1 1 1[f T f T

k k k k k kP H H P H R ]−+ + + + + ++  One matrix-matrix 
multiply 

2m2n 

Total Cost of 1kK +  4n2 2m+2m n+ 
(1/3)m3+m2

1 1k kI K H+ +−  One matrix-matrix 
multiply and add 
identity matrix 

2n2m+n ^

1kP +  

1 1[ ] 1
f

k k kI K H P+ + +−  matrix-matrix multiply 2n3

Total Cost of 
^

1kP +  2n3+2n2 2m+n

Matrix-vector multiply  2nm+m 
1 1 1

f
k kz H x+ +− k+  

and a vector add 
^

1kx +  

Matrix-vector multiply 2nm 
1 1 1 1[ ]f

k k k kK z H x+ + + +−  

1 1 1 1[ ]f
k k k k k 1

fx K z H x+ + + ++ − Vector add n 
+  

4nm+n+m ^

1kTotal Cost of +  x

Total Cost: 6n3+4n2+6n2m+2m2n+(1/3)m3 2+m +4mn+n+m 
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Table 5.2:  Estimation of the computational cost for EIF 

Item Operation Type of Computation Cost 
1

f
kx +  ^

( )k kM x  Matrix-vector multiply 2n2

1
1kQ−
+  Inverse of a matrix (1/3)n3

1
f

kY +  
^ ^

1
1

^
( ) ( )T

k M k k M kY D x Q D x−
++  

Two matrix-matrix 
multiply + a matrix add 

4n3+n2

^ ^
1 1
1

^
[ ( ) (T

k M k k M kY D x Q D x− −
++ )]  

Inverse of a matrix (1/3)n3

^ ^
1 1 1
1 1 1

^
1
1

^
( )[ ( ) ( )]

( )

T
k k M k k M k k M k

T
M k k

Q Q D x Y D x Q D x

D x Q

− − −
+ + +

−
+

− +
^

1−  
Three matrix-matrix 
multiply + a matrix add 

6n3+n2

Total Cost of 1
f

kY +  (32/3)n3+2n2

1

^
kY +  

1
1kR−
+  Inverse of a matrix (1/3)m3

 1
1 1 1

f T
k k kY H R H−
+ + ++ 1k+  Two matrix-matrix 

multiply + a matrix add 
2m2n+2n2m 
+n2

 
Total Cost of Y 1

^
k+  

(1/3)m3+2m2

n+2n2 2m+n
^

1
1( )kY −
+  Inverse of a matrix (1/3)n3

1kK +  

^
1 1

1 1( ) T
k kY H R− −
+ + 1k+  One matrix-matrix 

multiply 
2n2m 

Total Cost of 1kK +  (1/3)n3+2n2m 

Matrix-vector multiply 
anda vector add 

2nm+m 
1 1 1

f
k kz H x+ +− k+  ^

1kx +  

Matrix-vector multiply 2nm 
1 1 1 1[ ]f

k k k kK z H x+ + + +−  

1 1 1 1[ ]f
k k k k k 1

fx K z H x+ + + ++ − Vector add n 
+  

4nm+n+m ^

1k+  Total Cost of x
Total Cost: 11n3+5n2+4n2m+2m2 3n+(1/3)m +4mn+n+m 

 

 From the above two tables, it is obvious that the cost of EKF is smaller than EIF 

when n and m are equal.  
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 The approximate computational time of EKF and EIF for the three sets of 

experiments is listed in Table 5.3. The computational times are based on a PC of 3.4 GHz 

Intel Pentium 4 with 2GB of RAM. The total computational time is larger for the EIF 

than for EKF for all experiments. This is expected since the state space formulation of 

EIF involves several matrix inversions and thus the computationally demanding matrix 

inverse contributes a significant component of the computation time for EIF compared to 

that of EKF. Moreover, as expected the computation time is longer as the number of 

observations are increased for both EKF and EIF. This is in agreement with the 

computational complexities of EKF and EIF as shown in Table 5.1 and Table 5.2 

respectively. However, while the computational time for EKF grows by a factor of ~3.27 

as the number of observations m increases from 80 to 160, the computation time for EIF 

grows by a factor of ~1.07. Therefore, the computation time for EIF is less effected with 

the addition of observations compared to the EKF.   

 

Table 5.3: Approximate computational run time (on 3.2GHz Intel Xeon processor) for the 

three sets of experiments using both EKF and EIF. 

EKF EIF  , RσQσ
m=n m=2n m=4n m=n m=2n  m=4n 

lim0.30, =0.25Q R cσ σ σ= 0.6030 1.1541 3.7827 7.362 7.5459 8.0517 

lim lim0.25 , =0.25Q c R cσ σ σ σ= 0.7301 1.2296 3.5680 7.3967 7.5470 7.9880
 

 

 

 

 

117 



 

5.6  Summary 

  Both EKF and EIF are implemented in this chapter using a 40 dimensional L96 

model. To generate the truth run, the model with random start-up values is integrated 

forward in time. In addition, to calculate the model initial condition 0

^
x  and the initial 

ensemble covariance matrix , a 100 member ensemble is created by taking the start-up 

values of the truth run and adding small perturbations to random grid points and is 

integrated forward in time. Both the truth run and the 100 member ensemble is stopped 

after 14400 time steps to model initial condition (

0

^
P

0 0

^ ^
,x P ) are created.  

0 0

^ ^
,x P Both the filters are initialized using the same initial conditions ( ) and the 

observation assimilation experiments are conducted. The truth run and the model are run 

in parallel and at every time step observations are created from the truth run and 

assimilated into the model. The filter experiments are conducted for 500 time steps. The 

performance of both filters is then compared. Results clearly indicate that both EKF and 

EIF produce similar rms errors for the three different experiments conducted using three 

different observation resolutions. This essentially supports the theory that the information 

filter is algebraically equivalent to the Kalman filter. The computational time for the EIF 

is larger than that of the EKF filter as expected due to the large computational cost of 

matrix inversion of the EIF techniques. However, the increment in computational cost for 

EIF is much smaller than that of EKF for increased number of observation assimilation. 
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Chapter 6 

Summary and Future Work 

 

The Ensemble Kalman filtering technique introduced about a decade ago has 

become very popular within the meteorological community as an effective data 

assimilation technique.  The EnSRF technique, a variant of Ensemble Kalman filtering 

technique shows promise in initializing storm-scale NWP models using radar 

observations for thunderstorm prediction. Studies suggests that the assimilation of WSR-

88D radar observations in storm-scale NWP models using EnSRF data assimilation 

techniques can produce reasonable analyses and forecast of storms from assimilating 

observations for about an hour. However, severe weather events can evolve very rapidly 

and the weather forecasters may not have the flexibility to assimilate radar observations 

for an hour to make a forecast. With the advent of the new PAR technology, it is now 

possible to obtain a snapshot of the storms in less than a minute as compared to the 

operational WSR-88D radar that takes about 5 minutes to scan the same weather 

phenomena.   

Thus to quantify the value of assimilating PAR observations for a shorter period 

of time, the EnSRF data assimilation technique is applied to assimilate radar observations 

into the storm-scale model in Chapter 3. A realistic radar emulator is developed and 

artificial WSR-88D and PAR reflectivity and radial velocity observations are generated 

from a simulated supercell storm. Both WSR-88D and PAR samples the weather at high 

spatial resolution. However, the computational time of the EnSRF algorithm scales 

linearly with the number of observations.  Therefore, to reduce the heavy computational 
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burden of assimilating high spatial resolution radar observation, synthetic observations 

are generated at a coarser 1-km range resolution instead of the 0.25 km interval available 

from the radar. The experiments are conducted based on perfect model assumption where 

both the truth run and the ensemble use the same microphysics scheme, that is the model 

error do not play any role. One experiment assimilates 3 volumes of WSR-88D radar 

observations and another experiment assimilates 15 volumes of PAR observations during 

the short 15-min assimilation period. Finally, the analyses and short-term (less than 1 

hour) forecasts from WSR-88D and PAR observations assimilation are compared. In 

general, the high-temporal frequency PAR observation assimilations using EnSRF 

technique is very promising. Results indicates that PAR observations assimilation 

provide more accurate analyses and forecasts of the storm compared to the WSR-88D 

assimilation.  Thus assimilating high temporal frequency radar data for a shorter period of 

time may improve short-term forecasting and warnings of severe weather events with the 

possibility of increasing warning lead time.  

The experiments conducted in Chapter 3 are based on perfect model assumption. 

However, in real world scenario, model errors play an important role in data assimilation 

and forecasts and needs to be incorporated in the experiments. In Chapter 4, the impact of 

model error in radar data assimilation is conducted based of imperfect model assumption. 

In addition the potential value of using a range of intercept and density parameters within 

the same microphysics scheme in the presence of model error also is explored in Chapter 

4. Two reference simulations of a splitting supercell storm are generated using LFO and 

10ICE microphysics schemes in an identical storm environment. Two sets of OSSEs are 

conducted from both a perfect and an imperfect model framework using the EnSRF data 
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assimilation technique using both constant and a range of different intercept and density 

parameters for the hydrometeors in the ensemble members. Synthetic WSR-88D 

reflectivity and radial velocity observations at coarser resolution are created from the 

truth runs using the same radar emulator as in Chapter 3 and these observations are 

assimilated into the ensemble system over a 30-min period. The 40 ensemble analyses at 

last assimilation cycle are then used to make 1 h forecasts. Results show that the EnSRF 

system performs reasonably well with the imperfect model assumption. It is found that a 

multiparameter ensemble within the imperfect model framework generates more accurate 

forecasts of ensemble mean precipitation mixing ratios and accumulated rainfall 

compared to that of the control imperfect model ensemble. This conclusion does not 

always apply for the perfect model assumption where model error does not play a role.  

Moreover the 1-h forecast time series of the 40 ensemble members for maximum hail 

diameter and the lowest cold pool temperature at 100 m AGL indicates that the truth 

almost always lies within the envelope of ensemble members for the perfect and 

imperfect MP ensembles, whereas the truth more often lies on the edge or outside the 

ensemble envelope for the perfect and imperfect control ensemble. The MP ensembles 

also yield larger ensemble spread than the control experiments. The results from this 

study support the idea that the microphysical parameter diversity across the ensemble 

members may be beneficial to a storm-scale ensemble forecasting system.    

 Both Chapter 3 and Chapter 4 apply the EnSRF data assimilation technique to 

assimilate radar observations to NWP model. However, due to computational time 

limitation of the EnSRF algorithm, the synthetic radar observations are sampled at a 

coarser resolution. The large number of radar observations sampled by the radar and the 
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benefits of assimilating radar observations of the same storm from multiple radars clearly 

indicate that the number of observations likely will be very high and the EnSRF data 

assimilation method may not be an efficient data assimilation method for storm-scale 

modeling.  Thus in an effort to test more efficient data assimilation technique, the novel 

information filter data assimilation method is implemented using the simple 40 

dimensional Lorenz 1996 model in Chapter 5. There are several variants of the 

information filter in the literature. Chapter 5 of this dissertation explores the extended 

form of the information filter (EIF) using the state space formulation (Simon 2006) and is 

compared against the benchmark extended Kalman filter data assimilation technique 

(EKF). The EIF is used to assimilate three different densities of radar observations. 

Results indicate that while the rms errors from both EKF and EIF are comparable as 

shown in Chapter 5, the computational cost of EIF is much higher than that of the EKF. 

This is due the heavy computation demand of matrix inversion.  However, as the number 

of observations m increases from 80 to 160, the computational time for EKF grows by a 

factor of ~3.27, while for EIF the increment is by a factor of ~1.09. The results obtained 

clearly indicate that the information filter may be computationally cheaper than that of 

the Kalman filter when numbers of observations are very high.  

 Assimilation of high density radar and other remote sensing observations in storm 

scale modeling is an active area of research. The plan for future works includes the 

assimilation of real radar observations into the model within realistic storm environment. 

A broader range of experiments using real radar observations of severe weather events 

will be conducted using multi-parameter ensemble in storm-scale data assimilation 

system. Careful selection of these highly uncertain microphysical parameters so that these 
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values are representative of the various storm systems will be tested.  There are several 

versions of the information filter and we have implemented the state space formulation of 

the information filter in this study. This study represents only a first step in this direction. 

There are other formulations of the information filter as discussed in Chapter 2 which 

leads to the question, which formulation is better? One limitation of transformed state 

space formulation (Mutbambara 1998) of EIF is that it requires parallel implementation 

of EKF to obtain the transformed state vector and the information matrix. This poses a 

very good theoretical question: can we develop an extended nonlinear information filter 

while totally remaining within the transformed space? This is a difficult problem and will 

be pursued in the near future.   
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Appendix A 

Program listing for the radar emulator 

 

!---------------------------------------------------------------------- 
! 
! File Name: rad_volavg_lib.f90 
! Author: Nusrat Yussouf 
! This program contains a list of subroutines that are needed to create 
! synthetic radar observation using volume averaging technique. 
!  
!---------------------------------------------------------------------- 
 
!*************************************************************** 
!   SUBROUTINE  volavg  
!   This routine calculates a mean Doppler velocity value at  
!   the center range, azimuth and elevation of an angular     
!   beamwidth volume.                                         
!*************************************************************** 
 
   SUBROUTINE volavg(dopval,dbzval,rg,az,elv,samp_az,samp_rg,samp_el,& 
                      u,v,w,zmm,rho,xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,& 
                      iprt,spval,xorg,yorg,zorg,bw,ebw,dbz_thres,& 
                      pts_az,pts_el,pts_rg) 
 
!*************************************************************** 
!  Input variables:                                                               
!                                                                                    
!   rg             range from a Doppler radar to target                                
!   az             azimuth angle, measuring clockwise from the  north toward which the radar                     
!                    beam is pointing.                        
!   elv            elevation angle                                                      
!   samp_az    = 1 if smearing is done only in az direction,                        
!                     = 0 no smearing                                                                                                                      
!   samp_rg    = 1 if smearing is done only in rg direction,                        
!                     = 0 no smearing                                                      
!   samp_el     = 1 if smearing is done only in elv direction,                      
!                     = 0 no smearing                                                      
!   u,v,w            U, V and W wind component from the 3-D model                     
!   zdbz,rho       Reflectivity and density from 3-D model                        
!   xlvl,ylvl,zlvl Scalar grid positions in x,y,z directions from model   
!                           
!   xe,ye,ze       Staggered grid positions in x,y,z directions from model   
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!               
!   nx,ny,nz       Number of points in x,y and z direction in the model            
!   spval            missing data parameter                                         
!   iprt               if .true., then print out parameters for debugging                                                       
!   xorg,yorg,zorg distance from radar to lower, left corner of 3-D model 
!                       
!   bw             1-way half-power beamwidth                                     
!   ebw            6dB 1-way effective beamwidth                                  
!   dbz_thres   user specified reflectivity threshold                        
!                                                                                    
! Ouput variable:                                                                
!                                                                                    
!   dopval         mean (volume-weighted) Doppler velocity value                        
!   dbzval         mean (volume-weighted) reflectivity value                           
!*************************************************************** 
      
      use param_module   
      implicit none  
       
      real      :: u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),zmm(nx,ny,nz) 
      real      :: rho(nz),zlvl(nz),xlvl(nx),ylvl(ny),ze(nz) 
      real      :: xe(nx),ye(ny) 
      real      :: hgt_r,vt,xorg,yorg,zorg,xg_m,yg_m,zg_m 
      real      :: bw,ebw,dbz_thres,ures,vres,wres,zres,rhores 
      real      :: dopval,dbzval,rg,az,elv,spval  
      integer  :: itruth,count,samp_az,samp_rg,samp_el,nx,ny,nz  
      integer  :: num_az, num_el,num_rg,pts_az,pts_el,pts_rg 
 
!*************************************************************** 
!     local variables                                                                                                        
!     vbw            beamwidth in the vertical direction            
!     sigma**2   second central moment in deg**2 of the 2-way  antenna pattern 
!                       in the azimuth direction       
!     sigmb**2   second central moment in deg**2 of the 2-way  antenna pattern in the 
!                        elevation direction     
!     thetx           max off-axis angle in the azimuth direction    
!     dthet           off-axis angle interval in the azimuth    direction                                    
!     phi              off-axis angle in the elevation direction      
!     phix            max off-axis angle in the elevation direction  
!     dphi            off-axis angle interval in the elevation  direction                                                         
!     r1                 trailing edge of range weighting function at   
!                         which window is zero (w=0.0)                   
!     r2                 trailing edge of range weighting function at   
!                         which window is maximum (w=1.0)                
!     r3                 leading edge of range weighting function at  which window  
!                         is maximum                              
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!     r4         leading edge of range weighting function which window is zero (w=0.0)      
!     drg       range increment                                
!     ae         6/5 earth radius                               
!     gsum     numerator of the smoothed Doppler velocity     
!     fsum     denominator of the smoothed Doppler velocity    
!     rg_sub   range subpoint within the beamwidth volume     
!     az_sub   azimuth subpoint within the beamwidth volume   
!     el_sub    elevation subpoint within the beamwidth volume 
!     dopv       Doppler velocity (m/s)                          
!     zmm       reflectivity in  mm**6/m**3 before calculation 
!     Note that the above parameters are used in metric units   
!*************************************************************** 
       
      integer :: i,j, k, ii, jj, kk 
      real      :: sigma, sigmb, drg, dvbw, debw 
      real      :: vbw, vbw_x, ebw_x, r1, r2, r3, r4 
      real      :: sum_vr,sum_ref, sum_wtvr, sum_wtrfl 
      real      :: fall_spd, zdbzval ,x_sub,y_sub,z_sub 
      real      :: sin_sum, cos_sum, bb, f4,w2f4,varx,varz,wt, w2 
      real      :: az_sub, el_sub, phi_sub,rg_sub,thet_sub, tlint, lint 
          
     ! Initializing 
      
      count = 0 
      vbw = bw 
      sigma = ebw/sqrt(16.0*alog(2.0)) 
      sigmb = vbw/sqrt(16.0*alog(2.0)) 
         
     ! elevation angles in the resolution volume and no. of sub points 
 
      vbw_x = vbw*float(samp_el) 
      dvbw = 2.*vbw_x/float(pts_el-1) 
      if(samp_el.eq.0) then 
           num_el = 1 
      else 
           num_el = pts_el 
      end if 
 
     ! azimuthal angles in the resolution volume and no. of sub points 
     
      ebw_x = 1.5*ebw*float(samp_az) 
      debw = 2.*ebw_x/(pts_az-1) 
    
      if(samp_az.eq.0) then 
           num_az = 1 
 else 
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          num_az = pts_az 
 end if 
       
      r1 = rg - 0.13*float(samp_rg) 
      r2 = rg - 0.09*float(samp_rg) 
      r3 = rg + 0.09*float(samp_rg) 
      r4 = rg + 0.13*float(samp_rg) 
        
      if(samp_rg.eq.0) then 
           num_rg = 1 
           drg = 0.0 
      else 
           num_rg = pts_rg 
           drg=(r4-r1)/float(num_rg-1) 
      end if 
 
      sum_vr = 0.0 
      sum_wtvr = 0.0 
      sum_ref = 0.0 
      sum_wtrfl = 0.0 
 
    ! Calculate a mean Doppler velocity/reflectivity value at the center range (rg), 
    ! azimuth (az) and elevation (el) of the effective resolution volume within the        
     !beamwidth. Calculate slant range within the beamwidth volume.  
                    
      do jj = 1, num_rg 
        
      if(num_rg.eq.1) then 
          rg_sub = rg 
      else 
          rg_sub = r1 + float(jj-1)*drg 
      endif 
 
 
    ! Calculate range weighting function.  
 
        wt = 0.0 
        if(r1.lt.rg_sub.and.rg_sub.lt.r2) wt = (rg_sub-r1)/0.04 
        if(r2.le.rg_sub.and.rg_sub.le.r3) wt = 1.0 
        if(r3.lt.rg_sub.and.rg_sub.lt.r4) wt = (r4-rg_sub)/0.04 
 
        w2 = wt*wt 
 
     ! Calculate azimuth within the beamwidth volume.      
       
       do ii = 1, num_az 
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          if(num_az.eq.1) then 
            phi_sub = 0.0 
          else 
            phi_sub = -ebw_x + float(ii-1)*debw 
          endif 
      
          az_sub = az + phi_sub 
           
          if(samp_az.ne.0) then 
            varx = phi_sub*phi_sub/(2.*sigma*sigma) 
          elseif(samp_az.eq.0) then 
            varx = 0.0 
          endif 
 
      ! Calculate elevation within the beamwidth volume.  
  
       do kk = 1, num_el 
  
          if(num_el.eq.1) then 
              thet_sub = 0.0 
          else 
              thet_sub = -vbw_x + float(kk-1)*dvbw 
          endif 
 
          el_sub = elv + thet_sub 
            
          if(samp_el.ne.0) then 
              varz = thet_sub*thet_sub/(2.*sigmb*sigmb) 
          else 
              varz = 0.0 
          endif 
            
       ! Calculate height as a function of range and elevation.  
 
            z_sub = hgt_r(el_sub,rg_sub) 
 
       ! Calculate a two-way antenna pattern.  
 
            f4 = exp(-varx-varz) 
            w2f4 = w2*f4             
                    
     ! Calculate the sum of the beam's elevation angle to the data point and the angle 
     ! subtended by the verticals at the radar  and at the measurement point. 
                               
           bb = rg_sub*cos(el_sub*degtorad)/(ae + rg_sub*sin(el_sub*degtorad)) 
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           cos_sum = cos(el_sub*degtorad + atan(bb)) 
           sin_sum = sin(el_sub*degtorad + atan(bb)) 
 
     ! Calculate x and y as a function of range and azimuth.  
 
           x_sub = rg_sub*sin(az_sub*degtorad)*cos_sum 
           y_sub = rg_sub*cos(az_sub*degtorad)*cos_sum 
             
      ! Interpolate 3-D gridded data to radar target.  
           
        xg_m = (x_sub - xorg)*1000.0 
        yg_m = (y_sub - yorg)*1000.0 
        zg_m = (z_sub - zorg)*1000.0 
         
        ures = spval 
        vres = spval 
        wres = spval 
        zres = spval 
        rhores = spval 
         
     ! begin trilinear interpolation.  
 
        zres = tlint(zmm,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz- &  
                     1,0,0,xlvl,ylvl,zlvl,spval) 
        ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1, 0,0, xe,& 
                     ylvl, zlvl, spval) 
        vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1, 0,0,xlvl,& 
                     ye, zlvl, spval) 
        wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz, 0,0,xlvl,& 
                     ylvl, ze, spval) 
 
     ! linear interpolation in the vertical direction.  
 
        rhores = lint( rho, zg_m, nz-1, zlvl, spval) 
 
     ! Calculate values Doppler velocity, reflectivity factor, and  
     ! terminal fall speed of precipitation.               
 
        dopval = spval 
        dbzval = spval 
        fall_spd = spval 
 
    ! Sum up computed Doppler velocity & reflectivity factor within beamwidth volume.                            
 
        if(zres.ne.spval) then 
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              sum_ref = sum_ref + f4*w2*zres 
              sum_wtrfl = sum_wtrfl + f4*w2  
        if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval.and.& 
         rhores.ne.spval) then 
              fall_spd = vt(zres,rhores) 
              dopval = ures*sin(az_sub*degtorad)*cos_sum + &  
                       vres*cos(az_sub*degtorad)*cos_sum& + & 
                       (wres+fall_spd)*sin_sum 
             endif 
 
          if(dopval.ne.spval) then 
              sum_vr = sum_vr + f4*w2*zres*dopval 
              sum_wtvr = sum_wtvr + f4*w2*zres 
          endif 
       
         endif 
   
          count = count + 1 
           end do 
          end do 
        end do 
          
 
   ! Compute a mean Doppler velocity value (m/s) and return the result.  
 
       if(sum_wtvr.ne.0.0) then 
           dopval = sum_vr/sum_wtvr 
       else 
           dopval = spval 
        endif 
 
   ! Compute a mean reflectivity value (dBZ) and return the result.  
 
      if(sum_wtrfl.ne.0.0) then 
        zdbzval = sum_ref/sum_wtrfl 
        dbzval = 10.*alog10(zdbzval)   
         
        if(dbzval.lt.dbz_thres) then 
          dbzval = spval 
          dopval = spval 
        endif 
      else 
        dbzval = spval 
      endif 
 
   RETURN 
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   END SUBROUTINE VOLAVG 
 
 
!*************************************************************** 
!   SUBROUTINE  volavg  
!        This routine calculates a mean Doppler velocity value at the center range, azimuth  
!        and elevation of an angular  beamwidth volume.                                         
!*************************************************************** 
 
 SUBROUTINE volavg_simple(dopval,dbzval,rg,az,elv,u,v,w,zmm,rho,& 
        xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,iprt,spval,xorg,yorg,& 
        zorg,dbz_thres,phi,theta,wgt) 
 
!*************************************************************** 
!     Input variables:                                                               
!                                                                                                                                                               
!     rg              range from a Doppler radar to target                                 
!     az              azimuth angle, measuring clockwise from the north toward which the  
!                       radar beam is pointing                        
!     elv             elevation angle                                                      
!     u,v,w          U, V and W wind component from the 3-D model                    
!     zdbz,rho      Reflectivity and density from 3-D model                        
!     xlvl,ylvl,zlvl  Scalar grid positions in x,y,z directions from model           
!     xe,ye,ze        Staggered grid positions in x,y,z directions from model     
!     nx,ny,nz,       Number of points in x,y and z direction in the model            
!     spval             missing data parameter                                         
!     iprt                if .true., then print out the parameters for debugging                                                        
!     xorg,yorg,zorg  distance from radar to the lower, left corner of 3-D model     
!     dbz_thres       user specified reflectivity threshold                          
!                                                                                    
!     Ouput variable:                                                                                                                                 
!     dopval    mean (volume-weighted) Doppler velocity value                        
!     dbzval    mean (volume-weighted) reflectivity value                           
!*************************************************************** 
 
      use param_module   
      implicit none  
       
      real     :: u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),zmm(nx,ny,nz) 
      real     :: xlvl(nx),ylvl(ny),zlvl(nz),ze(nz),xe(nx),ye(ny)      
      real     :: rho(nz),hgt_r,vt,xg_m,yg_m,zg_m,dbz_thres 
      real     :: ures,vres,wres,zres,rhores,rg,az,elv  
      real     :: spval,dopval,dbzval,xorg,yorg,zorg 
      real     :: phi(13),theta(13),wgt(13) 
      real     :: az_sub,el_sub,rg_sub,f4 
      real     :: sum_vr,sum_ref, sum_wtvr, sum_wtrfl 
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      real     :: fall_spd, zmmval,x_rad,y_rad,z_rad 
      real     :: sin_sum, cos_sum, bb,lint, tlint 
      integer  :: nx,ny,nz, i, j, k       
      integer  :: pts(13),cnt, count, iwgt  
      logical  :: flag 
       
      sum_vr = 0.0 
      sum_wtvr = 0.0 
      sum_ref = 0.0 
      sum_wtrfl = 0.0      
      
 
   ! A mean Doppler velocity/reflectivity value at the center range  
   ! (rg),azimuth (az) and elevation (el) of the effective resolution  
   ! volume within the beamwidth can be approximated by computing the  
   ! weighted mean of individual Doppler velocity/reflectivity values  
   ! over the 13 points.  
                                                             
      cnt = 0 
      pts = 0 
      flag = .false. 
       
      do iwgt = 1, 13 
 
        rg_sub = rg  
        az_sub = az + phi(iwgt) 
        el_sub = elv + theta(iwgt) 
        z_rad = hgt_r(el_sub,rg_sub) 
 
    ! Calculate a two-way antenna pattern.  
 
        f4 = wgt(iwgt) 
  
   ! Write down the computed variables.   
 
        if(iprt) then 
          write(6,1) iwgt,az_sub,el_sub,rg_sub,f4 
        endif 
1     format(' iwgt=',i2,' az_sub,el_sub,rg_sub=',3f8.3,'f4=',f8.4) 
 
   ! Calculate the sum of the beam's elevation angle to the data  point and the angle  
   !subtended by the verticals at the radar  and at the measurement point.                                 
           
      bb =rg_sub*cos(el_sub*degtorad)/(ae+rg_sub*sin(el_sub*degtorad)) 
      cos_sum = cos(el_sub*degtorad + atan(bb)) 
      sin_sum = sin(el_sub*degtorad + atan(bb)) 

139 
 



 

      if(iprt)write(6,*) 'bb,cos_sum, sin_sum ', bb, cos_sum,sin_sum 
       
 
    ! Calculate x and y as a function of range and azimuth.  
 
      x_rad = rg_sub*sin(az_sub*degtorad)*cos_sum 
      y_rad = rg_sub*cos(az_sub*degtorad)*cos_sum 
 
 
     ! Interpolate 3-D gridded data to radar target.  
           
       xg_m = (x_rad - xorg)*1000.0 
       yg_m = (y_rad - yorg)*1000.0 
       zg_m = (z_rad - zorg)*1000.0 
         
       if(iprt)write(6,*) 'x_rad,xorg,xg_m',x_rad,xorg,xg_m 
       if(iprt)write(6,*) 'y_rad,yorg,yg_m',y_rad,yorg,yg_m 
       if(iprt)write(6,*) 'z_rad,zorg,zg_m',z_rad,zorg,zg_m 
         
      ures = spval 
      vres = spval 
      wres = spval 
      zres = spval 
      rhores = spval 
         
    !  begin trilinear interpolation.  
 
      zres = tlint(zmm,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz-1, 0, 0,& 
                   xlvl,ylvl,zlvl,spval) 
 
      ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1, 0,0, xe, & 
                   ylvl, zlvl, spval) 
 
      vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1, 0,0, xlvl, &  
         ye, zlvl, spval) 
 
      wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz, 0,0, xlvl,&   
                    ylvl, ze, spval) 
 
    ! linear interpolation in the vertical direction.  
        rhores = lint( rho, zg_m, nz-1, zlvl, spval) 
 
    ! Calculate values Doppler velocity, reflectivity factor, and terminal fall speed of  
    ! precipitation.                
 
        if(iprt) then 
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         write(6,*) 'ures, vres, wres, zres, rhores', ures, vres,wres, zres, rhores 
        endif 
 
        fall_spd = spval 
 
     ! calculate non-missing variable within the beam volume.  
  
      if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval.and. & 
         rhores.ne.spval.and.zres.ne.spval) then 
         fall_spd = vt(zres,rhores) 
         dopval = ures*sin(az_sub*degtorad)*cos_sum + &  
                  vres*cos(az_sub*degtorad)*cos_sum + & 
                  (wres+fall_spd)*sin_sum 
         cnt = cnt + 1 
         pts(iwgt) = 1 
         sum_ref = sum_ref + f4*zres 
         sum_wtrfl = sum_wtrfl + f4 
         sum_vr = sum_vr + f4*zres*dopval 
         sum_wtvr = sum_wtvr + f4*zres 
       
       endif       
 
     end do 
 
 !  Compute a mean Doppler velocity value (m/s) and return the result.  
 
     if (cnt .eq. 13 ) then 
          flag = .true. 
     else if ( cnt .ge. 9 ) then 
      if ( (pts(1).eq.1).and.(pts(2).eq.1).and.(pts(3).eq.1).and. & 
            (pts(4) .eq. 1).and.(pts(5).eq.1).and.(pts(9).eq.1) .and. & 
            (pts(10).eq.1).and.(pts(11).eq.1).and.(pts(13).eq. 1)) then  
            flag = .true. 
      else if ((pts(1).eq.1).and.(pts(8).eq.1).and.(pts(7).eq.1) .and.& 
            (pts(6).eq.1).and.(pts(5).eq.1).and.(pts(9).eq.1).and. & 
            (pts(12).eq.1).and.(pts(11).eq.1).and.(pts(13).eq.1)) then  
            flag = .true. 
      else if ((pts(7).eq.1).and.(pts(8).eq.1).and.(pts(1).eq.1).and. & 
            (pts(2).eq.1).and.(pts(3).eq.1).and.(pts(12).eq. 1) .and. & 
            (pts(9).eq.1).and.(pts(10).eq.1).and.(pts(13).eq. 1)) then  
            flag = .true. 
      else if ((pts(7).eq.1).and.(pts(6).eq.1).and.(pts(5).eq.1) .and.& 
            (pts(4).eq. 1).and.(pts(3).eq.1).and.(pts(12).eq.1) .and. & 
            (pts(11).eq.1).and.(pts(10).eq.1).and.(pts(13).eq.1)) then  
            flag = .true. 
        end if 
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      end if      
 
      if (flag) then  
       
        if(sum_wtvr.ne.0.0) then 
           dopval = sum_vr/sum_wtvr 
        else 
           dopval = spval 
        endif 
 
    ! Compute a mean reflectivity value (dBZ) and return the result.  
 
      if(sum_wtrfl.ne.0.0) then 
        zmmval = sum_ref/sum_wtrfl 
        dbzval = 10.*alog10(zmmval) 
        if(dbzval.lt.dbz_thres) then 
          dbzval = spval 
          dopval = spval 
        endif 
      else 
        dbzval = spval 
        dopval = spval 
      endif 
    else 
        dbzval = spval 
        dopval = spval 
     endif 
 
   RETURN 
   END SUBROUTINE volavg_simple 
 
!********************************************************************** 
!  SUBROUTINE setup    
!     This routine defines a sector of interest on ppi.  the input and  output data are listed.                            
!                                                                            
!     Variable descriptions:                                                 
!                                                                           
!     azmbeg      begining azimuth                                          
!     azmend      ending azimuth                                             
!     azmref      reference azimuth                                         
!     grid_x      perimeter size in the x-direction                        
!     grid_y      perimeter size in the y-direction                         
!     rngbeg      begining range                                            
!     rngend      ending range                                              
!     rngref      reference range                                           
!     xo,yo       reference center relative to the reference range and azimuth                                                 
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!********************************************************************** 
  SUBROUTINE setup(grid_x, grid_y, azmbeg, azmend, rngbeg, rngend, &  
              rngref, azmref,xo,yo) 
  
      use param_module  
      implicit none  
               
      real               :: grid_x, grid_y 
      real               :: azmbeg, azmend 
      real               :: rngbeg, rngend 
      real               :: rngref, azmref 
      real               :: xo, yo 
      character(LEN = 1) :: iprt 
       
! Calculate x- and y-positions of the grid origin relative to    
! the reference range and azimuth.                               
 
      xo = rngref*sin(azmref*degtorad) 
      yo = rngref*cos(azmref*degtorad) 
      grid_x = anint(grid_x) 
      grid_y = anint(grid_y) 
 
! Define a sector of interest.                      
! Compute begining and ending ranges and azimuths.  
 
      call set_up(xo,yo,grid_x,grid_y,azmbeg,azmend,rngbeg,rngend) 
 
! Nearest the whole number.   
 
      azmbeg = anint(azmbeg) 
      if(azmbeg.lt.0.0) azmbeg = 0.0 
      azmend = anint(azmend) 
      if(azmend.gt.360.0) azmend = 360.0 
      rngbeg = anint(rngbeg) 
      if(rngbeg.lt.0.0) rngbeg = 0.0 
      rngend = anint(rngend) 
 
      if((azmend-azmbeg).eq.360.) then 
        azmbeg = azmref - 180. 
        if(azmbeg.lt.0.0) azmbeg = azmbeg + 360. 
        azmend = azmref + 180. 
        if(azmend.gt.360.0) azmend = azmend - 360. 
      endif 
 
      iprt = 'n' 
      if(iprt.eq.'y') then 
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      write(6,25) 
   25 format(/) 
      write(6,19) grid_x, grid_y 
   19 format('   Grid size (km) in x- and y-directions: ',2f5.0) 
      write(6,27) 
   27 format('   Input data are given as:') 
      write(6,20) rngref 
   20 format('     Reference range (km): ',f7.2) 
      write(6,21) azmref 
   21 format('     Reference azimuth (deg): ',f6.1) 
      write(6,28) 
   28 format('   Output data are given as:') 
      write(6,22) xo, yo 
   22 format('     Perimeter center(xo,yo)(km)from the radar: ' 2f8.2) 
      write(6,23) azmbeg, azmend 
   23 format('     Begining and ending azimuths (deg): ',2f7.1) 
      write(6,24) rngbeg, rngend 
   24 format('     Begining and ending ranges (km): ',2f7.1) 
      endif 
 
  RETURN 
  END SUBROUTINE SETUP  
       
 
!  ******************************************************************** 
!  SUBROUTINE: set_up  
!       This routine computes beginning and ending ranges and azimuths of a sector scan.                            
!                                                                           
!       Variable descriptions:                                             
!                                                                           
!       adjazm      add a few more azimuths to the begining or ending azimuths (deg)                                    
!       adjrng      add some km to the begining and ending ranges           
!       degtorad    convert degress to radians                         
!       gx          array of x-distances (nm) from radar to the side of the perimeter                                        
!       gy          array of y-distances (nm) from radar to the side  of the perimeter                                       
!       pi          = 3.1415709                                             
!       prt         character that determines whether or not you want  to print out data                                       
!       px,py       x,y-locations (nm) of the perimeter's center from  the radar                                                  
!       range       range (nm) of corner from the radar                     
!       rmax        maximum distance (nm) of the perimeter's corner   from the radar                                       
!       rmin        minimum distance (nm) of the perimeter's corner   from the radar                                       
!       rtd         convert radians to degrees                              
!       semp        array of ranges (nm) of the perimeter's corner          
!       temp        array of angles (deg) of the perimeter's corner        
!       x_dist      distance of the perimeter along the x-axis              
!       y_dist      distance of the perimeter along the y-axis              
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!                                                                           
!     ******************************************************************** 
      
  SUBROUTINE set_up(px,py,x_dist,y_dist,azmbeg,azmend,rngbeg,rngend) 
        
      use param_module   
      implicit none   
 
      character(LEN = 1) :: prt 
      real               :: gx(2),gy(2),temp(4),semp(4) 
      logical            :: igo 
      real               :: rngbeg,rngend,azmbeg,azmend 
      real               :: px,py,x_dist,y_dist  
      integer            :: m, i, j 
      real               :: a, b, c 
      real               :: t, t2, s, rmin, rmax 
       
!  Compute four corners (km) of the perimeter.   
 
      gx(1) = px - 0.5*x_dist 
      gx(2) = px + 0.5*x_dist 
      gy(1) = py - 0.5*y_dist 
      gy(2) = py + 0.5*y_dist 
      rngbeg = 999. 
      rngend = 999. 
      azmbeg = 999. 
      azmend = 999. 
      igo = .false. 
 
!  If the radar is inside the perimeter, then get one full ppi scan.  
 
      if((gx(1)*gx(2).lt.0.0).and.(gy(1)*gy(2).lt.0.0)) then 
        azmbeg = 0.0 
        azmend = 359.0 
        rngbeg = 0.0 
      endif 
 
!  Compute angle of each corner of the perimeter.   
 
      m = 0 
      do i = 1, 2 
        do j = 1, 2 
          m = m + 1 
          temp(m) = atan2(gx(i),gy(j))*rtd 
          semp(m) = sqrt(gx(i)*gx(i) + gy(j)*gy(j)) 
        enddo 

145 
 



 

      enddo 
 
      do m = 1, 4 
        if(temp(m).lt.0.0) temp(m) = temp(m) + 360. 
      enddo 
 
      if(rngbeg.eq.0.0) go to 4 
 
!  Determine beginning and ending azimuths and ranges.   
 
      if(gx(1).ge.0.0) then 
        if(gy(1).gt.0.0) then 
          azmbeg = temp(2) 
          azmend = temp(3) 
        elseif(gy(1).le.0.0.and.gy(2).ge.0.0) then 
          azmbeg = temp(2) 
          azmend = temp(1) 
          igo = .true. 
          a = semp(2) 
          b = semp(1) 
          c = y_dist 
        elseif(gy(2).lt.0.0) then 
          azmbeg = temp(4) 
          azmend = temp(1) 
        endif 
      elseif(gx(2).le.0.0) then 
        if(gy(1).gt.0.0) then 
          azmbeg = temp(1) 
          azmend = temp(4) 
        elseif(gy(1).le.0.0.and.gy(2).ge.0.0) then 
          azmbeg = temp(3) 
          azmend = temp(4) 
          igo = .true. 
          a = semp(3) 
          b = semp(4) 
          c = y_dist 
        elseif(gy(2).lt.0.0) then 
          azmbeg = temp(3) 
          azmend = temp(2) 
        endif 
      elseif(gy(1).ge.0.0) then 
        if(gx(1).gt.0.0) then 
          azmbeg = temp(2) 
          azmend = temp(3) 
        elseif(gx(1).le.0.0.and.gx(2).ge.0.0) then 
          azmbeg = temp(1) 

146 
 



 

          azmend = temp(3) 
          igo = .true. 
          a = semp(1) 
          b = semp(3) 
          c = x_dist 
        elseif(gx(2).lt.0.0) then 
          azmbeg = temp(1) 
          azmend = temp(4) 
        endif 
      elseif(gy(2).le.0.0) then 
        if(gx(1).gt.0.0) then 
          azmbeg = temp(4) 
          azmend = temp(1) 
        elseif(gx(1).le.0.0.and.gx(2).ge.0.0) then 
          azmbeg = temp(4) 
          azmend = temp(2) 
          igo = .true. 
          a = semp(4) 
          b = semp(2) 
          c = x_dist 
        elseif(gx(2).lt.0.0) then 
          azmbeg = temp(3) 
          azmend = temp(2) 
        endif 
      endif 
  
    4 continue 
 
      rmax = -1.e10 
      rmin = +1.e10 
       
      do i = 1, 4 
        if(semp(i).ge.rmax) rmax = semp(i) 
        if(rngbeg.ne.0.0) then 
          if(semp(i).le.rmin) rmin = semp(i) 
        endif 
      enddo 
 
      if(rngbeg.ne.0.0) rngbeg = rmin 
      rngend = rmax 
 
      if(igo) then 
        s = 0.5*(a + b + c) 
        t2 = s*(s-a)*(s-b)*(s-c) 
        t = sqrt(t2) 
        rngbeg = 2.*t/c 
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      endif 
 
!  Adjust beginning and ending azimuths by adjusting a few more azimuths to them.                                  
 
      rngbeg = rngbeg - adjrng 
      if(rngbeg.lt.0.0) rngbeg = 0.0 
      rngend = rngend + adjrng 
      azmbeg = azmbeg - adjazm 
      azmend = azmend + adjazm 
 
!       Do you want to print out data of corners (km)?  prt = 'y' or 'n'                                
 
      prt = 'n' 
      if(prt.eq.'y') then 
        write(6,6) gx(1),gy(2) 
    6   format(1x,'x,y positions in the nw corner (km)= ',2f8.2) 
        write(6,7) gx(2),gy(2) 
    7   format(1x,'x,y positions in the ne corner (km)= ',2f8.2) 
        write(6,8) gx(2),gy(1) 
    8   format(1x,'x,y positions in the se corner (km)= ',2f8.2) 
        write(6,9) gx(1),gy(1) 
    9   format(1x,'x,y positions in the sw corner (km)= ',2f8.2) 
      endif 
 
  RETURN 
  END SUBROUTINE set_up 
 
        
!**************************************************************** 
! Function: hgt_r 
!     This function computes the height (km) of the data value.  
!     Input:  el   elevation angle (deg)                        
!                 rng  slant range (km) from radar                  
!     Output: computed hgt_r                                    
!**************************************************************** 
 
  REAL FUNCTION hgt_r(el,rng)        
 
       use param_module   
       implicit none   
       real :: el, ng 
        
       hgt_r = sqrt(rng*rng + ae*ae + 2.*ae*rng*sin(el*degtorad)) - ae 
       
  RETURN 
  END FUNCTION hgt_r 
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!********************************************************************** 
!  Function: vt    
!      This function computes the terminal fall speed of hydrometeors  (a negative quantity 
!      toward the ground).  Pecipitation is assumed to be liquid water.                                                            
!     zdbz     reflectivity factor (mm**6/m**3)                          
!     rho     density (kg/m**3)                                         
!********************************************************************** 
 
   REAL FUNCTION vt(zdbz,rho)       
 
       use param_module   
       implicit none          
       real :: zdbz, rho 
 
       vt = -2.6*zdbz**(0.107)*(1.2/rho)**0.4 
 
   RETURN 
   END FUNCTION vt 
     
 
 
!********************************************************************** 
! Subroutine: comp_wgt 
!      This subroutine approximates the mean values of Doppler velocity and reflectivity  
!      within a half-power beamwidth by computing the weighted mean of individual  
!       values over the 13 points. 
!********************************************************************** 
 
   SUBROUTINE comp_wgt(bw,ebw,phi,theta,wgt) 
 
      use param_module   
      implicit none   
       
      real    :: bw,ebw 
      real    :: phi(13),theta(13),wgt(13) 
      integer :: i 
 
      vbw = bw 
       
      do i = 1, 13 
 
        if(i.le.8) then 
          wgt(i) = 0.5 
          ang = (i-1)*45.*degtorad 
          phi(i) = 0.5*ebw*sin(ang) 
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          theta(i) = 0.5*vbw*cos(ang) 
        endif 
 
        if(9.le.i.and.i.le.12) then 
          wgt(i) = 0.84 
          ang = (i-9)*90.*degtorad 
          phi(i) = 0.25*ebw*sin(ang) 
          theta(i) = 0.25*vbw*cos(ang) 
        endif 
 
        if(i.eq.13) then 
          wgt(i) = 1.0 
          phi(i) = 0.0 
          theta(i) = 0.0 
        endif 
 
      enddo 
 
   RETURN 
   END SUBROUTINE comp_wgt 
      
 
 
!********************************************************************* 
! Subroutine: radar_calc 
!     This subroutine calculates the radar parameters from the input data.  
!********************************************************************* 
 
SUBROUTINE radar_calc(radar_lat,radar_lon,ini_grid_lat_deg, & 
                      ini_grid_lon_deg,range_interval,azim_interval,& 
                      nx,ny,nz,dx,dy,dz,map_proj,xmin,ymin,spval,nazm,&                   
                      azm_beg,nrng,rng_beg,xorg,yorg,xradar,yradar,& 
                      rng_ref,azm_ref) 
 
 
  use param_module   
  real      :: dx,dy,dz,xorg,yorg 
  real      :: rng_beg,rng_end,azm_beg,azm_end 
  real      :: rng_ref, azm_ref 
  real      :: xo, yo, grid_x, grid_y, grid_z 
  real      :: mid_x, mid_y 
  real      :: ini_grid_lat,ini_grid_lon,ini_grid_lon_deg,  
  real      :: grid_lat,grid_lon,grid_lon_deg,grid_lat_deg 
  real      :: ini_grid_lat_deg, mid_lon_deg 
  real      :: radar_lat,radar_lon,mid_lat,mid_lon,mid_lat_deg, 
  real      :: range_interval,azim_interval 

150 
 



 

  real      :: xmin, ymin, xradar,yradar, gnd_rng 
  integer   :: nrng, nazm, map_proj 
  integer   :: nx,ny,nz 
 
       
  ini_grid_lat = ini_grid_lat_deg * degtorad 
  ini_grid_lon = ini_grid_lon_deg * degtorad   
 
! model dimensions  and model mid point distance  
 
  grid_x = (nx-1)*dx/1000.    ! in km 
  grid_y = (ny-1)*dy/1000.    ! in km 
  grid_z = (nz-1)*dz/1000.    ! in km 
  mid_x  = grid_x*1000.0/2.0  ! in m  
  mid_y  = grid_y*1000.0/2.0  ! in m 
       
! Model SW corner lat/lon at current time (due to ugrid and vgrid motion)   
                 
  call xy_to_ll(grid_lat, grid_lon, map_proj, xmin, ymin, ini_grid_lat, ini_grid_lon) 
 
! Model mid point lat/lon relative to SW lat/lon corner of the model       
           
  call xy_to_ll(mid_lat, mid_lon, map_proj, mid_x, mid_y, grid_lat, grid_lon) 
      
  mid_lat_deg = mid_lat * rtd 
  mid_lon_deg = mid_lon * rtd 
  grid_lat_deg = grid_lat * rtd 
  grid_lon_deg = grid_lon * rtd 
            
! Calculating the distance of model center point relative to radar location 
 
  call ll_to_xy(xradar,yradar,map_proj,radar_lat,radar_lon,mid_lat,& 
                mid_lon) 
     
  xradar = xradar/1000.0  ! in km 
  yradar = yradar/1000.0  ! in km 
    
! Calculating the reference range  and azimuth of radar relative  to the model center point.  
 
   rng_ref = sqrt(xradar**2 + yradar**2)  ! in km 
   
   if ( (xradar.eq.0.0) .and. (yradar.eq.0.0) ) then 
            azm_ref = 0.0 
   else if(yradar .gt. 0.0) then 
            azm_ref = rtd*atan(xradar/yradar) 
   else if (yradar .lt. 0.) then 
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            azm_ref= pii*rtd + rtd*atan(xradar/yradar) 
   else if (xradar .gt. 0.) then 
            azm_ref = 0.50*pii*rtd 
   else 
            azm_ref = 1.5* pii*rtd 
   end if 
 
   if (azm_ref .lt. 0.0) azm_ref =azm_ref + 2*pii*rtd      
  
   xo = rng_ref*sin(azm_ref*degtorad)  ! in km 
   yo = rng_ref*cos(azm_ref*degtorad)  ! in km 
 
! Compute xorg, yorg, zorg defined as the distance of the lower, left    
! corner of the model from the radar location.                           
 
  xorg = xo - grid_x/2.  ! in km 
  yorg = yo - grid_y/2.  ! in km 
 
! Call to determine beginning and ending ranges and azimuths of model grid from radar  
 
 
  call setup(grid_x,grid_y,azm_beg,azm_end,rng_beg,rng_end,rng_ref,& 
             azm_ref,xo,yo) 
 
  nrng = (rng_end - rng_beg)/range_interval + 1 
 
  if(azm_end.gt.azm_beg) then 
        nazm = (azm_end - azm_beg)/azim_interval + 1 
  else 
        nazm = (azm_end + 360. - azm_beg)/azim_interval + 1 
  endif 
 
  if(nazm.le.0) then 
      print*,'program is terminated bcz nazm <= 0' 
      print*,'check to fix the problem!' 
      stop 
  endif 
 
! Use an open statement to create a new formatted write file on unit 6  
! with a file name 'dop_rad_simul.out'                                  
     
   open(6,file='dop_rad_simul.out',status='unknown') 
 
   write(6,*)'radar_la/lon deg= ',radar_lat*rtd, radar_lon* rtd 
   write(6,*)'grid lat/lon of SW corner after moving from start= &  
             ',grid_lat_deg,grid_lon_deg 
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   write(6,*) 'middle point of model grid lat/lon= ',mid_lat_deg,& 
               mid_lon_deg 
   write(6,*) 'distnce of domain middle point from SW corner mid_x/y & 
               = ', mid_x, mid_y         
   write(6,*) 'distance of radar relative to model center point &  
               xradar/yradar = ', xradar, yradar       
   write(6,*) 'xmin, ymin = ', xmin, ymin         
   write(6,901) rng_ref 
901   format(1x,'Reference Range (km) to Center Grid of Data    ',/, & 
            4x,'Volume, Relative to Radar...................',f6.1) 
      write(6,902) azm_ref 
902   format(1x,'Reference Azimuth (deg) to Center Grid of Data ',/, & 
           4x,'Volume, Relative to Radar...................',f6.1) 
      write(6,906) range_interval  
906   format(1x,'Range Interval (km)............................',f7.2) 
      write(6,9061) azim_interval 
9061  format(1x,'Azimuth Interval (deg).........................',f6.1) 
      write(6,9068) dbz_thres 
9068  format(1x,'Reflectivity threshold (dbz)...................',f6.1) 
      write(6,907) xo 
907   format(1x,'X-Dist (km) Relative to Radar..................',f6.1) 
      write(6,908) yo 
908   format(1x,'Y-Dist (km) Relative to Radar..................',f6.1) 
      write(6,909) dx/1000.0 
909   format(1x,'Grid Spacing (km) in X-Direction...............',f6.1) 
      write(6,910) dy/1000.0 
910   format(1x,'Grid Spacing (km) in Y-Direction...............',f6.1) 
      write(6,911) dz/1000.0 
911   format(1x,'Grid Spacing (km) in Z-Direction...............',f6.1) 
      write(6,912) grid_x 
912   format(1x,'Grid Size (km) in X-Direction..................',f6.1) 
      write(6,913) grid_y 
913   format(1x,'Grid Size (km) in Y-Direction..................',f6.1) 
      write(6,914) grid_z 
914   format(1x,'Grid Size (km) in Z-Direction..................',f6.1) 
      write(6,915) nx, ny, nz 
915 format(1x,'Data Array Size (nx)...........................',i5,/,& 
          1x,'Data Array Size (ny)...........................',i5,/, & 
          1x,'Data Array Size (nz)...........................',i5) 
      write(6,916) xorg 
916   format(1x,'X-Origin in Lower, Left Corner of 3-D Model....',f6.1) 
      write(6,917) yorg 
917   format(1x,'Y-Origin in Lower, Left Corner of 3-D Model....',f6.1) 
      write(6,919) rng_beg 
919   format(1x,'Beginning Range (km)...........................',f6.1) 
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      write(6,920) rng_end 
920   format(1x,'Ending Range (km)..............................',f6.1) 
      write(6,921) azm_beg 
921   format(1x,'Beginning Azimuth (deg)........................',f6.1) 
      write(6,922) azm_end 
922   format(1x,'Ending Azimuth (deg)...........................',f6.1) 
       write(6,923) nrng 
923     format(1x,'No. of Range Gates.................',i5) 
      write(6,924) nazm 
924     format(1x,'No. of Azimuth Gates...............',i5) 
 
     close(6) 
     
    RETURN 
    END SUBROUTINE radar_calc  
 
!********************************************************************* 
! Subroutine: twrite 
!     Write data down to a output file.   
!********************************************************************* 
 
  SUBROUTINE twrite(nobs,nobs_x,dopv,dbz,azm,rng,elv,lu,zres_st,hgt_st) 
      implicit none 
       
      real    ::  elv 
      real    ::  dopv(nobs_x), dbz(nobs_x) 
      real    ::  rng(nobs_x), azm(nobs_x) 
      real    ::  zres_st(nobs_x),hgt_st(nobs_x) 
      integer ::  lu     ! file unit number 
      integer ::  nobs, nobs_x, i 
      
      do i = 1, nobs 
        write(lu,10) i, dopv(i), dbz(i), rng(i), azm(i), &   
                     elv,zres_st(i), hgt_st(i) 
      enddo 
 
10 format('i=',i6,' dopv=',f7.2,' dbz=',f7.2,' rng=',f8.3,' &    
            azm=',f5.0,'elv=',f7.2,' zres=',f7.2,' hgt=',f7.2) 
 
  RETURN 
  END SUBROUTINE twrite 
 
 
! ********************************************************************     
! SUBROUTINE: SYNTHETIC_RADAR_OBS_VOL 
! Author:     Nusrat Yussouf 

154 
 



 

!  
!      This subroutine produces synthetic Doppler velocity and reflectivity observations  
!      from the truth model run using volumetric averaging and outputs the results to a file. 
!      Observations are produced as follows: 
! ********************************************************************     
   
SUBROUTINE SYNTHETIC_RADAR_OBS_VOL(obfile,obformat,runfile,time,secs,& 
          days, refl_threshold_for_vr,dbz_thres, radar_loc_flag,&  
          radar_lat_deg, radar_lon_deg,map_proj,rand_error_refl, & 
          rand_error_vr, bias_error_refl,bias_error_vr, beamwidth,&  
          eff_bw,azim_interval,range_interval,vcp_num,samp_az,&  
          samp_rg,samp_el,pts_az,pts_el,pts_rg,radar_sample_flag,sweeps)      
                                 
    use ens_module 
    use ob_module 
    use dart_module 
    use random 
    use param_module   
 
    implicit none 
     
    character(LEN = *)   :: obfile      ! name of observation file 
    character(LEN = 120) :: runfile     ! has namelists 
    integer    :: obformat     ! observation format: 
                                         ! 0=radar polar 
                                         ! 1=radar PPI 
                                         ! 2=DART 
    integer    :: time         ! model time (seconds) 
    integer    :: secs,days    ! Time in DART format  
                               !(Gregorian days and seconds) 
    integer    :: radar_loc_flag ! 1=location specified by    
                                 ! radar_lat and radar_lon,  
                                 ! 2=U observed, 3=V observed 
    integer    :: map_proj       ! map projection (for relating 
                                 ! lat, lon to x, y): 
                                 !   0 = flat earth 
    integer    :: start, end, tilt,obs_kind obs_cnt  
    integer    :: nrng, nazm samp_az, samp_rg, samp_el 
    integer    :: pts_az, pts_el, pts_rg 
    integer    :: radar_sample_flag,sweeps  
    integer    :: i,j,k,lu count  
    integer    :: nobs,n ,s ! number of valid observations  
    integer    :: nx,ny,nz, vcp_num, vr_count, dbz_count  
  
 
    real       :: dbz_thres  ! lowest reflectivity for which   
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                             ! Doppler obs. are produced 
    real       :: refl_threshold_for_vr ! lowest reflectivity  
                                        ! (dbz) for which Doppler  
                                        ! velocities are produced 
    real       :: radar_lat_deg         ! radar latitude (deg) 
    real       :: radar_lon_deg         ! radar longitude(deg) 
    real       :: rand_error_refl       ! standard deviation of 
                                        ! random reflectivity errors 
 
    real       :: rand_error_vr         ! standard deviation (m/s) of 
                                        ! random radial-velocity errors 
    real       :: bias_error_refl       ! bias errors for reflectivity 
    real       :: bias_error_vr         ! bias error for radial &  
                                        ¡ velocity    
 
!   Local variables 
 
     integer, parameter :: nobs_x = 70000 
     integer, parameter :: max_obs = 100000 
     integer, parameter :: itruth = -1 
     real Nyquist_vel; parameter(Nyquist_vel=0.0) ! Nyquist velocity  
     logical :: iprt,flag 
  
     character(LEN = 5) :: ich5 
     character(LEN = 4) :: ich4 
     character(LEN = 3) :: ich3  
     character(LEN = 3) :: jch3 
     character(LEN = 35) :: file_name 
     character(LEN = 1) :: iopn 
 
     real,    pointer  :: xlvl(:) 
     real,    pointer  :: xe(:) 
     real,    pointer  :: ylvl(:) 
     real,    pointer  :: ye(:) 
     real,    pointer  :: zlvl(:) 
     real,    pointer  :: ze(:) 
     real,    pointer  :: pz(:) 
     real,    pointer  :: tz(:) 
     real,    pointer  :: u(:,:,:) 
     real,    pointer  :: v(:,:,:) 
     real,    pointer  :: w(:,:,:) 
     real,    pointer  :: t3(:,:,:) 
     real,    pointer  :: p3(:,:,:) 
     real,    pointer  :: zdbz(:,:,:)   
     real, allocatable :: rho(:)  
     real, allocatable :: rf_true(:) ! error-free reflectivity  
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                                     ! observtions (dBZ) 
     real, allocatable :: vr_true(:) ! error-free radial velocity  
                                     ! observations (m/s), fallspeed  
                                     ! component included 
     real, allocatable :: azm(:)     ! azimuth angle (radians during  
                                     ! computation, deg during output) 
      real, allocatable :: elev(:)    ! elevation angle (radians during  
                                      ! computation, deg during output)  
      real, allocatable :: rng(:) 
 
      real, allocatable :: drf_true(:,:,:) ! error-free reflectivity  
                                           ! observtions (dBZ) 
      real, allocatable :: dvr_true(:,:,:) ! error-free radial velocity  
                                           ! observations (m/s), with 
                                           ! fallspeed component  
      real, allocatable :: drf(:,:,:)      ! reflectivity observtions 
      real, allocatable :: dvr(:,:,:)      ! radial velocity  
                                           ! observations (m/s),with  
                                           ! fallspeed component  
      real, allocatable :: drf_mod(:,:,:)  ! reflectivity observations 
      real, allocatable :: dvr_mod(:,:,:)  ! radial velocity  
                                           ! observations (m/s), with  
                                           ! fallspeed component 
      real, allocatable :: azmd(:,:,:)     ! azimuth angle (radians  
                                           ! during computation, deg  
                                           ! during output) 
      real, allocatable :: elevd(:,:,:)    ! elevation angle (radians  
                                           ! during computation, deg  
                                           ! during output)  
      real, allocatable :: rngd(:,:,:) 
      real, allocatable :: zmm(:,:,:) 
 
      real(kind=8), allocatable :: height(:,:,:) 
      real(kind=8), allocatable :: olat(:,:,:) 
      real(kind=8), allocatable :: olon(:,:,:) 
       
      real :: dx,dy,dz,xorg,yorg,zorg,bw,ebw 
      real :: rng_beg,rng_end,azm_beg,azm_end 
      real :: rng_ref, azm_ref, azm_rad  
      real :: xo, yo, grid_x, grid_y, grid_z, az,rg, elv,  
      real :: dopval, dbzval, bb, cossum,sinsum 
      real :: x_rg, y_rg, z_rg, xg_m, yg_m, zg_m 
      real :: ures,vres,wres,zres,rhores 
      real :: grid_alt   ! grid origin altitude (m MSL) 
      real :: xmin, ymin ! coordinates (m) of southwest corner of model  
      real :: beamwidth, eff_bw, range_interval,azim_interval 
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      real :: hgt_r, mid_x, mid_y, lat, lon, radar_lat,radar_lon 
      real :: rlat, rlon, rheight,error_variance 
      real :: grid_lat,grid_lon, grid_lon_deg, grid_lat_deg 
      real :: ini_grid_lat,ini_grid_lon, ini_grid_lon_deg     
      real :: mid_lat, mid_lon, mid_lat_deg,mid_lon_deg, & 
              ini_grid_lat_deg 
      real :: xradar,yradar 
      real :: phi(13),theta(13),wgt(13), zres_st(nobs_x),& 
              hgt_st(nobs_x)    
      real :: tlint, lint, rad_vel, fall_spd, vt 
 
       
! Doppler Radar VCP 
        
       real :: vcp11(14) 
       real :: vcp12(14) 
       real :: vcp15(20) 
       real :: vcp16(14) 
       real :: vcp17(25) 
       real, allocatable :: nswp(:) 
        
       data vcp11 /0.50,1.45,2.40,3.35,4.30,5.25,6.20,7.50,8.70,10.00,&  
                  12.00, 14.00,16.70,19.50 /  
       data vcp12 /0.50,0.90,1.30,1.80,2.40,3.10,4.00,5.10,6.40, & 
                  8.00,10.00,12.50,15.60,19.50 /   
       data vcp15 /0.50,1.45,2.40,3.35,4.30,5.25,6.20,7.20,8.20,9.20,& 
                  10.20,11.70,13.20,14.70,16.20,17.70,19.20,20.70,&   
                  22.2, 23.7 /  
       data vcp16 /0.50,1.10,1.70,2.40,3.20,4.10,5.10,6.20,7.40,8.70,& 
                   10.10, 11.70, 13.50,15.50 /      
        
!  Output various information. 
 
   write(*,*) 
   write(*,*) 'RAD_VOL_PARAM' 
   write(*,*) '-----------------' 
   write(*,*) 'time = ', time 
   write(*,*) 'obfile = ', obfile 
   write(*,*) 'obformat = ', obformat 
   write(*,*) 'map_proj = ', map_proj 
   write(*,*) 'beamwidth = ', beamwidth 
   write(*,*) 'effective beamwidth = ', eff_bw 
   write(*,*) 'range interval = ', range_interval 
   write(*,*) 'azim interval = ', azim_interval 
   write(*,*) 'vcp number = ', vcp_num 
   write(*,*) 'samp_az = ', samp_az 
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   write(*,*) 'samp_rg = ', samp_rg 
   write(*,*) 'samp_el = ', samp_el 
   write(*,*) 'pts_az = ', pts_az 
   write(*,*) 'pts_el = ', pts_el 
   write(*,*) 'pts_rg = ', pts_rg 
   write(*,*) 'refl_threshold_for_vr = ',  refl_threshold_for_vr 
   write(*,*) 'dbz_thres = ',      dbz_thres 
   write(*,*) 'sweeps = ',      sweeps 
    
   bw = beamwidth 
   ebw = eff_bw 
 
   if ( vcp_num .eq. 11) then 
        tilt = 14 
        allocate( nswp(tilt) ) 
        nswp = vcp11 
   end if 
   if ( vcp_num .eq. 12) then 
        tilt = 14 
        allocate( nswp(tilt) ) 
        nswp = vcp12 
   end if 
   if ( vcp_num .eq. 15) then 
        tilt = 20 
        allocate( nswp(20) ) 
        nswp = vcp15 
   end if 
   if ( vcp_num .eq. 16) then 
        tilt = 14 
        allocate( nswp(tilt) ) 
        nswp = vcp16 
   end if 
   if ( vcp_num .eq. 17) then 
        tilt = 25 
        allocate( nswp(tilt) ) 
        nswp = vcp17 
   end if 
 
 
  CALL GET_VARIABLE(ens%g(itruth), 'NX',       nx) 
  CALL GET_VARIABLE(ens%g(itruth), 'NY',       ny) 
  CALL GET_VARIABLE(ens%g(itruth), 'NZ',       nz) 
  CALL GET_VARIABLE(ens%g(itruth), 'DX',       dx) 
  CALL GET_VARIABLE(ens%g(itruth), 'DY',       dy) 
  CALL GET_VARIABLE(ens%g(itruth), 'DZ',       dz) 
  CALL GET_VARIABLE(ens%g(itruth), 'LAT',      ini_grid_lat_deg ) 
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  CALL GET_VARIABLE(ens%g(itruth), 'LON',      ini_grid_lon_deg) 
  CALL GET_VARIABLE(ens%g(itruth), 'HGT',      grid_alt) 
  CALL GET_VARIABLE(ens%g(itruth), 'XG_POS',   xmin) 
  CALL GET_VARIABLE(ens%g(itruth), 'YG_POS',   ymin) 
 
  CALL GET_VARIABLE(ens%g(itruth),'XC',xlvl) 
  CALL GET_VARIABLE(ens%g(itruth),'YC',ylvl) 
  CALL GET_VARIABLE(ens%g(itruth),'ZC',zlvl) 
  CALL GET_VARIABLE(ens%g(itruth),'XE',xe) 
  CALL GET_VARIABLE(ens%g(itruth),'YE',ye) 
  CALL GET_VARIABLE(ens%g(itruth),'ZE',ze) 
  CALL GET_VARIABLE(ens%g(itruth),'THINIT',tz) 
  CALL GET_VARIABLE(ens%g(itruth),'PIINIT',pz) 
  CALL GET_VARIABLE(ens%g(itruth), 'U',       u) 
  CALL GET_VARIABLE(ens%g(itruth), 'V',       v) 
  CALL GET_VARIABLE(ens%g(itruth), 'W',       w) 
  CALL GET_VARIABLE(ens%g(itruth), 'DBZ',    zdbz) 
   
  radar_lat = radar_lat_deg * degtorad 
  radar_lon = radar_lon_deg * degtorad 
 
  allocate( rho(nz) ) 
  call density(rho, nz, pz, tz)   
  allocate( zmm(nx,ny,nz) ) 
 
!     Convert dbz to mm**6/m**3 before calculation.  
 
     do k = 1, nz 
      do j = 1, ny 
         do i = 1, nx 
         if(zdbz(i,j,k).ne.spval) then 
              zmm(i,j,k) = 10.**(zdbz(i,j,k)/10.)  
          endif 
         enddo 
      enddo 
    enddo 
 
  call radar_calc(radar_lat,radar_lon,ini_grid_lat_deg, & 
       ini_grid_lon_deg,range_interval,azim_interval,nx,ny,nz,dx, &  
       dy,dz,map_proj,xmin,ymin,spval, nazm,azm_beg,nrng,rng_beg, & 
       xorg,yorg,xradar,yradar,rng_ref,azm_ref) 
 
  zorg = grid_alt 
  rheight = grid_alt + ze(1)  ! in m 
       
! allocate output observations 
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      allocate(vr_true(nobs_x))       
      allocate(rf_true(nobs_x))            
      allocate(rng(nobs_x))       
      allocate(azm(nobs_x))       
      allocate(elev(nobs_x)) 
       
      allocate(dvr_true(tilt,nazm,nrng)) 
      allocate(drf_true(tilt,nazm,nrng)) 
      allocate(dvr(tilt,nazm,nrng)) 
      allocate(drf(tilt,nazm,nrng)) 
      allocate(dvr_mod(tilt,nazm,nrng)) 
      allocate(drf_mod(tilt,nazm,nrng)) 
      allocate(rngd(tilt,nazm,nrng)) 
      allocate(azmd(tilt,nazm,nrng))  
      allocate(elevd(tilt,nazm,nrng)) 
      allocate(height(tilt,nazm,nrng)) 
      allocate(olat(tilt,nazm,nrng)) 
      allocate(olon(tilt,nazm,nrng)) 
 
! initialization of observations 
 
      dvr_true = spval 
      drf_true = spval 
      dvr_mod = spval 
      drf_mod = spval 
      dvr = spval 
      drf = spval 
      rngd = spval 
      azmd = spval 
      elevd = spval 
      height = spval 
      olat = spval 
      olon = spval 
 
!     Call to produce simulated Doppler velocity and reflectivity  
!     values by scanning the radar across a 3-D reflectivity       
!     structure as a function of range, azimuth and elevation      
!     angles.                                                      
 
      obs_cnt = 0  
      if (radar_sample_flag.eq.3) call comp_wgt(bw,ebw,phi,theta,wgt)  
 
!     PAR observations, entire volume scan every minute       
      if (sweeps .eq. 0) then 
        start = 1 
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        end = tilt 
 
!     WSR-88D observations, 2-3 sweeps every minute. Out of 14 sweeps  
!     the lower 12 sweeps are generated every 3 sweeps per minute for  
!     the first 4 min while the remaining upper 2 sweeps are valid at 
!     the last minute.   
 
      else if (sweeps .eq. 1) then 
        if ( mod(time, 300) .eq. 0 ) then  
            start = 1 
            end = 3 
        else if ( mod(time, 300) .eq. 60 ) then  
            start = 4 
            end = 6 
        else if ( mod(time, 300) .eq. 120 ) then  
             start = 7 
             end = 9 
        else if ( mod(time, 300) .eq. 180 ) then  
             start = 10 
             end = 12 
         else if ( mod(time, 300) .eq. 240 ) then  
             start = 13 
             end = 14 
         end if 
     end if 
     print *, time, start, end 
 
        do k = start,end 
           write(7, *) ' Elevation angle starts ...............' 
          elv = nswp(k) 
          nobs = 0 
          count = 0 
  
 ! **  print statement ** 
  
      lu = 10 
      write(ich5,23) elv 
23    format(f5.2) 
 
      if(ich5(1:1).eq.' ') ich5(1:1) = '0' 
 
      write(ich3,24) ifix(rng_ref) 
24    format(i3.3) 
 
      write(ich4,26) time 
26    format(i4) 
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      write(jch3,24) ifix(azm_ref) 
 
      iprt = .false. 
      if (iprt) open(6,file='debug'//ich5//'out',status='unknown') 
         
      do i = 1, nazm 
        az = azm_beg + (i-1)*azim_interval 
        if(az.ge.360.) az = az - 360. 
        
        do j = 1, nrng 
          rg = rng_beg + j*range_interval - range_interval/2. 
          dopval = spval 
          dbzval = spval 
          rad_vel = spval  
          bb = rg*cos(elv*degtorad)/(ae + rg*sin(elv*degtorad)) 
          cossum = cos(elv*degtorad + atan(bb)) 
          sinsum = sin(elv*degtorad + atan(bb)) 
 
!  Target distance from radar in x,y and z direction 
 
          x_rg = rg*sin(az*degtorad)*cossum ! in km 
          y_rg = rg*cos(az*degtorad)*cossum ! in km 
          z_rg = hgt_r(elv,rg)  ! in km 
         
          count = count + 1 
 
!   Target distance from model southwest corner in x,y and z direction           
 
          xg_m = (x_rg - xorg)*1000.0  ! in m 
          yg_m = (y_rg - yorg)*1000.0  ! in m 
          zg_m = (z_rg - zorg)*1000.0  ! in m 
 
          zres = tlint(zdbz,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1, & 
                       nz-1,0,0,xlvl,ylvl,zlvl,spval) 
          ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1,0,0,xe, & 
                       ylvl, zlvl, spval) 
          vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1,0,0, &  
                       xlvl,ye, zlvl, spval) 
          wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz,0,& 
                       0,xlvl,ylvl, ze, spval) 
          rhores = lint( rho, zg_m, nz-1, zlvl, spval) 
        
          if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval & 
                                   .and.rhores.ne.spval) then 
            fall_spd = vt(zres,rhores) 
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            rad_vel = ures*sin(az*degtorad)*cossum+ vres*cos &  
                      (az*degtorad)*cossum&+(wres+fall_spd)*sinsum 
          endif 
 
         if(zres.ne.spval) then 
             if(zres.ge.dbz_thres) then          
  
!     if interpolated reflectivity value (dbz) is at or above a  prescribed reflectivity  
!     threshold, then call to produce a mean Doppler velocity and reflectivity values at the  
!     center of the beamwidth volume.        
          if (iprt) then  
               write(6,*) 'Loop starts   ', count 
               write(6,*) rg, az, elv               
               write(6,*) 'x_rg,xorg,xg_m', x_rg,xorg,xg_m 
               write(6,*) 'y_rg,yorg,yg_m', y_rg,yorg,yg_m 
               write(6,*) 'z_rg,zorg,zg_m', z_rg,zorg,zg_m 
               write(6,*)'After interpol_3D_dbz, zres ',zres 
           end if 
            
           write(7,*) 'Loop starts ,zres, rg ', zres, rg 
            
            if(nobs.gt.nobs_x) then 
              write(6,925) 
925  format('Program is terminated bcz nobs > nobs_x.', & 
            ' You need to increase your nobs_x dimension',' in the main code.') 
              stop 
            endif 
 
         if (radar_sample_flag .eq. 2) then 
         
         call volavg(dopval,dbzval,rg,az,elv,samp_az,samp_rg,samp_el, &  
                      u,v,w,zmm,rho,xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz, & 
                      iprt, spval,xorg,yorg,zorg,bw,ebw,dbz_thres, &  
                      pts_az,pts_el,pts_rg ) 
           
          elseif (radar_sample_flag .eq. 3) then 
         
          call volavg_simple(dopval,dbzval,rg,az,elv,u,v,w,zmm,rho, & 
                      xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,iprt,spval, & 
                      xorg,yorg,zorg,dbz_thres,phi,theta,wgt) 
            
          endif 
           
       endif 
 
!     save the obs. for verification 

164 
 



 

       write(7,*) 'dbzval,dopval ', dbzval, dopval 
       if ((dopval.ne.spval).and.(dbzval.ne.spval).and. (dbzval.ge.dbz_thres))then 
            nobs = nobs + 1  
            rf_true(nobs) = dbzval 
            if (dbzval.gt.dbz_thres) then 
                  vr_true(nobs) = dopval 
            else  
                  vr_true(nobs) = 0.0 
            endif 
            rng(nobs) = rg 
            azm(nobs) = az   
            zres_st(nobs) = zres   
            hgt_st(nobs) = hgt_r(elv,rg)        
       end if 
                         
!     save the obs. for DART file 
          call xy_to_ll(lat,lon,map_proj,x_rg*1000,y_rg*1000,  radar_lat,radar_lon)  
          rngd(k,i,j) = rg 
          azmd(k,i,j) = az 
          elevd(k,i,j) = elv 
          height(k,i,j) = grid_alt + 1000.00 * hgt_r(elv,rg)   ! in m 
          olat(k,i,j) = lat 
          olon(k,i,j) = lon   
           
          if ((dbzval.ne.spval).and.(dbzval.ge.dbz_thres))then                           
               drf_true(k,i,j) = dbzval                           
               drf(k,i,j) = drf_true(k,i,j) + bias_error_refl + &  
                            rand_error_refl*random_normal()             
               drf_mod(k,i,j) = zres    
               obs_cnt = obs_cnt + 1 
          else  
               drf_true(k,i,j) = spval 
               drf(k,i,j) = spval 
               drf_mod(k,i,j) = spval  
           endif 
 
           If ((dopval.ne.spval).and. &   
               (dbzval.ge.refl_threshold_for_vr))then 
                dvr_true(k,i,j) = dopval 
                dvr(k,i,j) = dvr_true(k,i,j) + bias_error_vr + &  
                             rand_error_vr*random_normal() 
                dvr_mod(k,i,j) = rad_vel 
                obs_cnt = obs_cnt + 1 
           else  
                dvr_true(k,i,j) = spval 
                dvr(k,i,j) = spval 
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                dvr_mod(k,i,j) = spval  
           endif                
 
           endif  !zres ne spval 
        enddo 
        enddo         
 
      print*,'nobs',nobs 
       
      if(nobs.eq.0) then 
        print*,'prog is terminated bcz nobs = 0 in subr radar_scan' 
      endif 
 
! Open a new output file and connect the file to a unit 'lu'.  
! The file lists computed Doppler velocity, reflectivity, range, azimuth, and elevation.                              
 file_name='simul_'//ich4//'_rg'//ich3//'_az'//jch3//'_elv'//ich5//'.dat 
 
      print*,'file_name ',file_name 
 
      iopn = 'y' 
 
      if(iopn.eq.'y') then 
 
        open(lu,file=file_name,status='unknown') 
 
        write(lu,25) rng_ref, azm_ref, elv 
 25 format('Code name: dop_rad_simul.f',/,'rng_ref=',f4.0,'  $  
        azm_ref=',f4.0,' elv=',f6.2) 
  
       call twrite(nobs,nobs_x,vr_true,rf_true,azm,rng,elv,lu,zres_st,&  
                   hgt_st) 
 
        endif 
        close(6) 
 
        enddo 
 
!Write synthetic obs to file 
 
      print *, obs_cnt 
      obformat = 0 
      write(*,*) 'SYNTHETIC RADAR OBS FORMAT 0:  DART time (secs, 
                 days)= ', secs, days 
 
      open(unit=obfileunit,file=obfile,status='unknown') 
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      max_num_obs = obs_cnt 
      num_copies = 2 
      call write_DART_header(obfileunit) 
 
      rlat = radar_lat 
      rlon = radar_lon 
 
      n = 0 
      vr_count = 0 
      dbz_count = 0 
 
         do k = start,end 
         do i = 1,nazm 
          do j = 1, nrng 
 
          if (drf_true(k,i,j).ne.spval) THEN 
              n = n + 1 
              dbz_count = dbz_count + 1 
              obs_kind = obs_kind_reflectivity 
              error_variance = rand_error_refl**2 
 
             CALL WRITE_DART_OB(obfileunit,n,drf(k,i,j), & 
             drf_true(k,i,j),olat(k,i,j), olon(k,i,j), height(k,i,j),& 
             azmd(k,i,j),elevd(k,i,j),Nyquist_vel,dbz_count,rlat, & 
             rlon,rheight,obs_kind,secs,days,error_variance,& 
             range_interval,bw, ebw, azim_interval,drf_mod(k,i,j)) 
           endif 
       
          if (dvr_true(k,i,j).ne.spval) then   
                
              n = n + 1 
              vr_count = vr_count + 1 
              obs_kind = obs_kind_Doppler_velocity 
              error_variance = rand_error_vr**2 
 
              CALL WRITE_DART_OB(obfileunit,n,dvr(k,i,j), &  
              dvr_true(k,i,j), olat(k,i,j),olon(k,i,j),height(k,i,j),& 
              azmd(k,i,j),elevd(k,i,j),Nyquist_vel,vr_count,rlat,rlon,&  
              rheight, obs_kind,secs,days,error_variance, &  
              range_interval,bw,ebw,azim_interval,dvr_mod(k,i,j)) 
           end if 
       
       enddo 
       enddo 
       enddo 
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      close(obfileunit) 
        
      deallocate(vr_true) 
      deallocate(rf_true) 
      deallocate(rng) 
      deallocate(azm) 
      deallocate(height) 
      deallocate(rho) 
      deallocate(olat) 
      deallocate(olon) 
      deallocate(dvr_true) 
      deallocate(drf_true) 
      deallocate(dvr) 
      deallocate(drf) 
      deallocate(rngd) 
      deallocate(azmd) 
      deallocate(elevd) 
       
  RETURN 
  END SUBROUTINE synthetic_radar_obs_vol 
 
! ********************************************************************     
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Appendix B 

Program listing for EKF and EIF using Lorenz model  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File:                lorenz.m 
% 
% Description:    Simulate the Lorenz 96 model from the manuscript  
%                       "Predictability: A problem partly solved". 
%                        The model mimics the time evolution of an unspecified  
%                        scalar meteorological quantity x, at J equidistant  
%                        grid points along a latitude circle. A fourth-order  
%                        Runge-Kutta time integration scheme with a timestep  
%                        of 0.05 unit.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc; 
clear all; 
close all; 
format short; 
% 
% modelresolution is the number of points in the model around a circle.  
modelresolution=40; 
% forcing is the forcing term for the Lorenz 96 model.  
forcing=8.; 
% timestep is set to represent 0.25 days each time interval.  
timestep=0.05; 
% initial_model_perturbation is the initial perturbation given to the true solution 
initial_truth_perturbation=0.008; 
% initial perturbation given to the ensembles of the Lorenz 96 model.  
perturbation_range=0.0001; 
% Number of time steps to integrate the model to get the initial condition  
init_time = 14400; % 10 years. 
% Number of ensembles to create the initial X0 and P0 
ens = 100; 
% Plot identifier 
figid = 1; 
% Each state variable of the Lorenz model is initialized randomly from a uniform  
% distribution between 0 and 1.  
Truth=random('unif',0,1,[modelresolution,1])*forcing; 
% Apply perturbation to truth 
Truth(20)=Truth(20)+initial_truth_perturbation; 
% Initialization of the ensemble of lorenz model  
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X=zeros(modelresolution,ens); 
X(:,1) = Truth; 
for i = 2:ens 
   X(:,i)= X(:,1); 
   indx = round(random('unif',1,40)); 
   X(indx, i) = X(indx,i) + perturbation_range*randn(1);  
end 
% 
% Plot Ensemble members, Ensemble mean and truth at initial time 
% 
figure(figid); 
figid = figid + 1; 
plot(Truth(:),'g-','LineWidth',3); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid points'); ylabel('Truth/Ens.mean/Ens.members'); 
title('Ensemble members,mean and truth at initial time (T = 0)') 
axis([1 40 -10 10]); 
hold on 
plot(mean(X(:,2)),'b-','LineWidth',3); 
plot(X(:,1),'k-','LineWidth',1); 
for i = 2:ens 
   plot(X(:,i),'k-','LineWidth',1); 
end 
hold off 
% 
% Plot the ensemble members and the truth at specified grid points 
% 
figure(figid); 
figid = figid + 1; 
y = 1:ens; 
pt = 10; 
plot(y,X(pt,:,1),'b-','LineWidth',3); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid points'); ylabel('Truth/Ensemble members'); 
title(['Ensemble members and truth at T=0 at grid point', num2str(pt)]) 
hold on 
plot(Truth(pt,1),'go','LineWidth',3); 
hold off 
% 
figure(figid); 
figid = figid + 1; 
y = 1:ens; 
pt = 20; 
plot(y,X(pt,:,1),'b-','LineWidth',3); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid points'); ylabel('Truth/Ensemble members'); 
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title(['Ensemble members and truth at T=0 at grid point', num2str(pt)]) 
hold on 
plot(Truth(pt,1),'go','LineWidth',3); 
hold off 
% 
figure(figid); 
figid = figid + 1; 
y = 1:ens; 
pt = 30; 
plot(y,X(pt,:,1),'b-','LineWidth',3); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid points'); ylabel('Truth/Ensemble members'); 
title(['Ensemble members and truth at T=0 at grid point', num2str(pt)]) 
hold on 
plot(Truth(pt,1),'go','LineWidth',3); 
hold off 
% 
% initialize the truth and the model state for filtering and for archiving.  
X0 = zeros(modelresolution,1); 
TR0 = zeros(modelresolution,1); 
P0 = zeros(modelresolution,modelresolution); 
Xf=zeros(modelresolution,ens); 
Xf_timeseries=zeros(modelresolution,ens,init_time); 
TR0_timeseries=zeros(modelresolution,init_time); 
% Integrate the model and truth forward in time for init_time time-steps and store the 
values 
for i  = 1:init_time 
    [TR0]=model_fcst(Truth,timestep,forcing); 
    for j = 1: ens   
         [Xf(:,j)]=model_fcst(X(:,j),timestep,forcing); 
    end 
    Xf_timeseries(:,:,i) = X(:,:); 
    TR0_timeseries(:,i) = Truth(:); 
    Truth = TR0 ;  
    X = Xf; 
end 
% climatological mean and standard deviation 
mean_clim_grid = mean(TR0_timeseries,2); 
std_clim_grid = std(TR0_timeseries,0,2); 
mean_clim = mean(mean_clim_grid,1); 
%Calculating Covariance 
X0 = mean(Xf, 2); 
err_temp_1 = zeros(modelresolution,1); 
err_temp_2 = zeros(modelresolution,modelresolution); 
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for i = 1:ens 
    err_temp_1(:) = Xf(:,i) - X0(:); 
    err_temp_2 = err_temp_2 + err_temp_1*err_temp_1'; 
end 
P0 = ( 1/(ens-1) ) * err_temp_2; 
% 
% plot the final ensembles, truth and mean-ensemble 
% 
figure(figid); 
figid = figid + 1; 
plot(Xf(:,1),'b-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Ensembles / Mean / Truth'); 
title(['After Integrating',num2str(init_time),' time steps']) 
axis([1 40 -15 15]); 
hold on 
plot(X0(:),'r-','LineWidth',3); 
plot(TR0(:),'g-','LineWidth',3); 
for i = 2:ens 
   plot(Xf(:,i),'b-','LineWidth',1); 
end   
hold off 
% plot the final P0 
figure(figid); 
figid = figid + 1; 
[C,h] = contour(P0,10); 
clabel(C,h); 
title('Covariance P0 at the end of time steps') 
colormap cool 
% 
%Write out the final values in a file. 
% 
fid = fopen('init.txt', 'wt'); 
fprintf(fid, '%8.4f\n', mean_clim); 
fprintf(fid, '%8.4f\n', mean(std_clim_grid)); 
fprintf(fid,'\n'); 
for i = 1:modelresolution 
    fprintf(fid, '%8.4f\n', X0(i)); 
end 
fprintf(fid,'\n'); 
for i = 1:modelresolution 
    fprintf(fid, '%8.4f\n', TR0(i)); 
end 
fprintf(fid,'\n'); 
for i = 1:modelresolution 
    fprintf(fid, '%8.4f  ', P0(:,i)); 
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    fprintf(fid,'\n'); 
end 
fclose(fid) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File:           ekf.m 
% 
% Description:    First Order Extended Kalman Filter           
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
format short; 
% 
% modelresolution is the number of points of the model around a sphere.  
modelresolution=40; 
% forcing is the forcing term for the Lorenz 96 model.  
forcing=8.; 
% timestep is set to represent 0.05 days each time interval.  
timestep=0.01; 
% obs_percent variable sets the number of observations relative to the  
% model resolution. 
obs_percent=100.; 
%obs_percent=200.; 
%obs_percent=400; 
% approximate model error stdev 
sig_q=0.3;  
sig_obs_fac = 0.25; 
% number of assimilation time steps.   
assim_time = 500; 
figid = 1; 
% 
% initialize the truth and the state for the Lorenz model 
fid = fopen('C:\Experiments\init.txt', 'r'); 
mean_clim = fscanf(fid, '%g\n', [1,1]); 
sig_clim = fscanf(fid, '%g\n', [1,1]); 
fscanf(fid,'\n');  
[X0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);  
fscanf(fid,'\n');  
[TR0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);  
fscanf(fid,'\n');  
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[P0, number_of_values_read] = fscanf(fid,'%g\n',[40,40]);  
fclose(fid); 
% 100% represents observation at every model grid point. The number of 
% observations is set based upon the modelresolution and obs_percent.  
%  
iobs = obs_percent/100.; 
% Observations based on observation densities 
switch iobs 
% obs at every grid and at 3 additional points in between two grids 
case 4.0  
    obsloc=1:modelresolution*4;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;       % stdev of obs error 
    Y = 0.25:0.25:40; 
% obs at every grid and at 1 additional points in between two grids 
 case 2.0  
    obsloc=1:modelresolution*2;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;       % stdev of obs error 
    Y = 0.5:.5:40;  
 % obs at every gridpoint 
 case 1.0  
    obsloc=1:modelresolution;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;     % stdev of obs error 
    Y = 1:1:40; 
otherwise 
  disp('Unknown.'); 
end % select 
% 
% Initialize model and observation error covariance matrix. 
nobs=size(obsloc,2); 
R = sig_obs^2 * eye(nobs,nobs);% obs. error term 
Q = sig_obs^2 * eye(modelresolution,modelresolution); 
% observations vector holds the observations. 
Z=zeros(nobs,1); 
% H is the observation operator matrix which will transform from the  
% model space into the observation space. 
H=zeros(nobs,modelresolution); 
% Kalman Gain 
K=zeros(modelresolution,nobs); 
% Creating the H operator 
if (iobs == 4) 
   mdim = 1; 
   for i = 1:modelresolution-1 
       H(mdim,i) = 1; 
       H(mdim+1,i) = 0.75; H(mdim+1,i+1) = 0.25; 
       H(mdim+2,i) = 0.50; H(mdim+2,i+1) = 0.50; 
       H(mdim+3,i) = 0.25; H(mdim+3,i+1) = 0.75; 
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       mdim = mdim + 4; 
   end 
   i = modelresolution; 
   H(mdim,i) = 1; 
   H(mdim+1,i) = 0.75; H(mdim+1,1) = 0.25; 
   H(mdim+2,i) = 0.50; H(mdim+2,1) = 0.50; 
   H(mdim+3,i) = 0.25; H(mdim+3,1) = 0.75; 
    
elseif (iobs == 2 )  
    ndim = 1; 
    for mdim=1:nobs 
        if (mod(mdim,2) ~= 0)  
            H(mdim, ndim) = 1; 
            ndim = ndim + 1; 
        else 
            if (ndim > modelresolution) 
                H(mdim, 1) = 0.50; 
            else  
                 H(mdim, ndim) = 0.50; 
            end  
            H(mdim, ndim-1) = 0.50; 
        end 
    end 
else 
     
    for iobs=1:nobs 
        H(iobs, obsloc(iobs)) = 1; 
    end 
end 
% 
% Initialze for data archival 
truth_timeseries = ones(modelresolution,assim_time); 
Xf_timeseries =ones(modelresolution,assim_time); 
Pf_timeseries=ones(modelresolution,modelresolution,assim_time); 
Xhat_timeseries=ones(modelresolution,assim_time); 
Phat_timeseries=ones(modelresolution,modelresolution,assim_time); 
Z_timeseries=ones(nobs,assim_time); 
% 
% Extended Kalman Filter 
eps_obs=R*randn(nobs,1); 
tic % starts a stopwatch timer. 
for t=1:assim_time 
      if t == 1  
         Xa0 = X0; 
         Pa0 = P0; 
      else 
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         Xa0 = Xa1; 
         Pa0 = Pa1; 
         TR0 = TR1 ; 
      end 
% Forecast Step           I   
  [TR1]=model_fcst(TR0,timestepforcing); 
  [Xf1]=model_fcst(Xa0,timestep,forcing); 
  M   = jacobian_fcst(timestep, Xa0);         
  Pf1 = M * Pa0 * M' + Q;                  
  
%Data assimilation step 
    
  % Generate observations error and observations 
  Z=H*TR1; 
  Z = Z + eps_obs; 
  % Assimilate observations using EKF 
  inov = Z - H*Xf1;                  % innovation vector 
  K = Pf1*H'*inv( R + H * Pf1 * H'); %Kalman gain 
  Xa1 = Xf1 + K*inov; %analysis and analysis error covariance matrix 
  Pa1 = (eye(modelresolution,modelresolution) - K*H) * Pf1; 
   
  % Save the data 
  truth_timeseries(:,t)=TR0(:); 
  Pf_timeseries(:,:,t)=Pf1(:,:); 
  Xf_timeseries(:,t)=Xf1(:); 
  Z_timeseries(:,t)=Z(:); 
  Xhat_timeseries(:,t) = Xa1(:); 
  Phat_timeseries(:,:,t)=Pa1(:,:); 
  
end % end of assim_time 
% toc prints the elapsed time since tic was used. 
time = toc % returns the elapsed time. 
 
% rms error calculation 
xf_err = zeros(assim_time,modelresolution); 
rms_fcst = zeros(assim_time,1); 
xa_err = zeros(assim_time,modelresolution); 
rms_an = zeros(assim_time,1); 
for i = 1:assim_time 
   xf_err(i,:)   = Xf_timeseries(:,i) - truth_timeseries(:,i); 
   xf_err2(i,:)  = xf_err(i,:) .* xf_err(i,:); 
   rms_fcst(i) = sqrt(sum(xf_err2(i,:))/modelresolution ); 
   % 
   xa_err(i,:)   = Xhat_timeseries(:,i) - truth_timeseries(:,i); 
   xa_err2(i,:)  = xa_err(i,:) .* xa_err(i,:); 
   rms_an(i) = sqrt(sum(xa_err2(i,:))/modelresolution ); 
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end 
% 
figure(figid); 
plot(truth_timeseries(:,1),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(1),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,1),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 
plot(Xhat_timeseries(:,1),'r-','LineWidth',1); 
hold off 
figid = figid + 1; 
%  
figure(figid); 
plot(truth_timeseries(:,assim_time/2),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(assim_time/2),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,assim_time/2),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 
plot(Xhat_timeseries(:,assim_time/2),'r-','LineWidth',1); 
hold off 
figid = figid + 1; 
%  
figure(figid); 
plot(truth_timeseries(:,assim_time),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(assim_time),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,assim_time),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 
plot(Xhat_timeseries(:,assim_time),'r-','LineWidth',1); 
hold off 
figid = figid + 1; 
% plot average errors 
figure(figid); 
xtime= (1:assim_time) * timestep * 5; 
plot(xtime',rms_fcst,'b-','LineWidth',1); 
title('RMS Error During Data Assimilation') 
xlabel('Time in Days'); ylabel('rms error'); 
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hold on; 
plot(xtime',rms_an,'r-','LineWidth',1); 
hold off;  
figid = figid + 1; 
% Contour Plots of Phat 
figure(figid); 
[C,h] = contour(Phat_timeseries(:,:,assim_time),10); 
clabel(C,h); 
title(['Update Covariance after the last assimilation cycle']) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap cool  
figid = figid + 1; 
%     
figure(figid); 
[C,h] = contour(Pf_timeseries(:,:,assim_time),10); 
title(['Forecast Covariance before the last assimilation cycle']) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap cool; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File:               eif.m 
% 
% Description:  Extended Information Filter (State Representation) 
%                       is implemented using the 40 dimensional Lorenz model.  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
format short; 
% 
% modelresolution is the number of points of the model around a sphere.  
modelresolution=40; 
% forcing is the forcing term for the Lorenz 96 model.  
forcing=8.; 
% timestep is set to represent 0.05 days each time interval.  
timestep=0.01; 
% obs_percent variable sets the number of observations relative to the  
% model resolution. 
obs_percent=100.; 
%obs_percent=200.; 
%obs_percent=400; 
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% approximate model error stdev 
sig_q=0.3;  
sig_obs_fac = 0.25; 
% number of assimilation time steps.   
assim_time = 500; 
figid = 1; 
% 
% initialize the truth and the state for the Lorenz model 
fid = fopen('C:\Experiments\init.txt', 'r'); 
mean_clim = fscanf(fid, '%g\n', [1,1]); 
sig_clim = fscanf(fid, '%g\n', [1,1]); 
fscanf(fid,'\n');  
[X0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);  
fscanf(fid,'\n');  
[TR0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);  
fscanf(fid,'\n');  
[P0, number_of_values_read] = fscanf(fid,'%g\n',[40,40]);  
fclose(fid); 
I0 = inv(P0); 
% 
% 100% represents observation at every model grid point. The number of 
% observations is set based upon the modelresolution and obs_percent.  
%  
iobs = obs_percent/100.; 
% Observations based on observation densities 
switch iobs 
 % obs at every grid and at 3 additional points in between two grids 
 case 4.0  
    obsloc=1:modelresolution*4;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;       % stdev of obs error 
    Y = 0.25:0.25:40; 
 % obs at every grid and at 1 additional points in between two grids 
 case 2.0  
    obsloc=1:modelresolution*2;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;       % stdev of obs error 
    Y = 0.5:.5:40;  
 % obs at every gridpoint 
 case 1.0  
    obsloc=1:modelresolution;          % locations of  obs.  
    sig_obs =sig_obs_fac*sig_clim;     % stdev of obs error 
    Y = 1:1:40; 
otherwise 
  disp('Unknown.'); 
end % select 
% 
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% Initialize model and observation error covariance matrix. 
nobs=size(obsloc,2); 
R = sig_obs^2 * eye(nobs,nobs);% obs. error term 
Q = sig_obs^2 * eye(modelresolution,modelresolution); 
IQ = inv(Q); 
IR = inv(R); 
% observations vector holds the observations. 
Z=zeros(nobs,1); 
% H is the observation operator matrix which will transform from the  
% model space into the observation space. 
H=zeros(nobs,modelresolution); 
% Kalman Gain 
K=zeros(modelresolution,nobs); 
% Creating the H operator 
if (iobs == 4) 
   mdim = 1; 
   for i = 1:modelresolution-1 
       H(mdim,i) = 1; 
       H(mdim+1,i) = 0.75; H(mdim+1,i+1) = 0.25; 
       H(mdim+2,i) = 0.50; H(mdim+2,i+1) = 0.50; 
       H(mdim+3,i) = 0.25; H(mdim+3,i+1) = 0.75; 
       mdim = mdim + 4; 
   end 
   i = modelresolution; 
   H(mdim,i) = 1; 
   H(mdim+1,i) = 0.75; H(mdim+1,1) = 0.25; 
   H(mdim+2,i) = 0.50; H(mdim+2,1) = 0.50; 
   H(mdim+3,i) = 0.25; H(mdim+3,1) = 0.75; 
    
elseif (iobs == 2 )  
    ndim = 1; 
    for mdim=1:nobs 
        if (mod(mdim,2) ~= 0)  
            H(mdim, ndim) = 1; 
            ndim = ndim + 1; 
        else 
            if (ndim > modelresolution) 
                H(mdim, 1) = 0.50; 
            else  
                 H(mdim, ndim) = 0.50; 
            end  
            H(mdim, ndim-1) = 0.50; 
        end 
    end 
else 
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    for iobs=1:nobs 
        H(iobs, obsloc(iobs)) = 1; 
    end 
end 
% 
% Initialze for data archival 
truth_timeseries = ones(modelresolution,assim_time); 
Xf_timeseries =ones(modelresolution,assim_time); 
If_timeseries=ones(modelresolution,modelresolution,assim_time); 
Xhat_timeseries=ones(modelresolution,assim_time); 
Ihat_timeseries=ones(modelresolution,modelresolution,assim_time); 
Z_timeseries=ones(nobs,assim_time); 
% 
% Extended Information Filter 
tic % starts a stopwatch timer. 
eps_obs=R*randn(nobs,1); 
for t=1:assim_time 
    if t == 1  
       Xa0 = X0; 
       Ia0 = I0;  
    else 
       Xa0 = Xa1; 
       Ia0 = Ia1; 
       TR0 = TR1; 
    end 
 
  % Forecast Step 
         
     [TR1]=model_fcst(TR0,timestep,forcing); 
     [Xf1]=model_fcst(Xa0,timestep,forcing); 
     M   = jacobian_fcst(timestep, Xa0); 
     If1 = IQ - IQ*M*inv(Ia0 + M'*IQ*M)*M'*IQ;           
         
%Data assimilation step 
    
     % Generate observations error and observations 
     Z=H*TR1; 
     Z = Z + eps_obs; 
     % Assimilate observations using EIF 
     Ia1 = If1 + H' * IR * H; % analysis error covariance matrix 
     K = inv(Ia1)*H'*IR;      % Kalman gain  
     inov = Z - H*Xf1;        % innovation vector 
     Xa1 = Xf1 + K*inov; 
  
  % Save the data 
     truth_timeseries(:,t)=TR0(:); 
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     If_timeseries(:,:,t)=If1(:,:); 
     Xf_timeseries(:,t)=Xf1(:); 
     Z_timeseries(:,t)=Z(:); 
     Xhat_timeseries(:,t) = Xa1(:); 
     Ihat_timeseries(:,:,t)=Ia1(:,:); 
  end % end of assim_time 
% toc prints the elapsed time since tic was used. 
time = toc % returns the elapsed time. 
% 
% rms error calculation 
xf_err = zeros(assim_time,modelresolution); 
rms_fcst = zeros(assim_time,1); 
xa_err = zeros(assim_time,modelresolution); 
rms_an = zeros(assim_time,1); 
for i = 1:assim_time 
   xf_err(i,:)   = Xf_timeseries(:,i) - truth_timeseries(:,i); 
   xf_err2(i,:)  = xf_err(i,:) .* xf_err(i,:); 
   rms_fcst(i) = sqrt(sum(xf_err2(i,:))/modelresolution ); 
   % 
   xa_err(i,:)   = Xhat_timeseries(:,i) - truth_timeseries(:,i); 
   xa_err2(i,:)  = xa_err(i,:) .* xa_err(i,:); 
   rms_an(i) = sqrt(sum(xa_err2(i,:))/modelresolution ); 
end 
% 
figure(figid); 
plot(truth_timeseries(:,1),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(1),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,1),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 
plot(Xhat_timeseries(:,1),'r-','LineWidth',1); 
hold off 
figid = figid + 1; 
%  
figure(figid); 
plot(truth_timeseries(:,assim_time/2),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(assim_time/2),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,assim_time/2),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 

182 



plot(Xhat_timeseries(:,assim_time/2),'r-','LineWidth',1); 
hold off 
figid = figid + 1; 
%  
figure(figid); 
plot(truth_timeseries(:,assim_time),'g-','LineWidth',1); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses'); 
title(['After ',num2str(assim_time),' time steps of DA']) 
hold on 
plot(Xf_timeseries(:,assim_time),'b-','LineWidth',1); 
axis([1 40 -15 15]); 
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1); 
plot(Xhat_timeseries(:,assim_time),'r-','LineWidth',1); 
hold off 
figid = figid + 1;   
% plot average errors 
figure(figid); 
xtime= (1:assim_time) * timestep * 5; 
plot(xtime',rms_fcst,'b-','LineWidth',1); 
title('RMS Error During Data Assimilation') 
xlabel('Time in Days'); ylabel('rms error'); 
hold on; 
plot(xtime',rms_an,'r-','LineWidth',1); 
hold off;  
figid = figid + 1; 
% Contour Plots of Phat 
figure(figid); 
Phat = inv(Ihat_timeseries(:,:,assim_time)); 
[C,h] = contour(Phat,10); 
clabel(C,h); 
title('Update Covariance after the last assimilation cycle') 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap cool  
figid = figid + 1; 
%     
figure(figid); 
Pf = inv(If_timeseries(:,:,assim_time)); 
[C,h] = contour(Pf,10); 
title('Forecast Covariance before the last assimilation cycle') 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap cool; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function Dm=jacobian( x ) 
% 
% Input: 
% x - Lorenz model(a vector) 
% 
% Return:  
% Dm - jacobian of x          
% 
% File:           jacobian.m 
% 
% Description:    Compute Jacobian of RHS of L95 system, where x is the  
%                 argument of the RHS            
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function Dm=jacobian( x ) 
  
n = size(x,1);    % dimension of state space from row 
% indices for the model's circular grid points 
j=1:n; 
jm1=j-1;  jm1=jm1+n*(jm1<1); 
jm2=j-2;  jm2=jm2+n*(jm2<1); 
jp1=j+1;  jp1=jp1-n*(jp1>n); 
% 
Dm  = -eye(n,n); 
k  = jp1;    
mu=j+n*(k-1);     
Dm(mu) = Dm(mu) + x(jm1)'; 
k  = jm2;    
mu=j+n*(k-1);     
Dm(mu) = Dm(mu) - x(jm1)'; 
k  = jm1;    
mu=j+n*(k-1);     
Dm(mu) = Dm(mu) + ( x(jp1) - x(jm2) )'; 
% 
return 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xx]=model_fcst(x0,dt,scheme,F)  
% 
% Input: 
% x0 - Lorenz model initial condition(a vector) 
% dt - time step  
% scheme - the numerical scheme to be used to forward the model in time 
% F  - Forcing parameter 
% 
% Return:  
% xx - Lorenz model forecast after integrating forward in time one time step          
% 
% File:           model_fcst.m 
% 
% Description:    Integrate forward Lorenz 95 model by 1 timestep 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
function [xx]=model_fcst(x0,dt,scheme,F) 
  
n=size(x0,1); 
  
switch lower(scheme) 
  % ------- 
  case 'euler'  
  % ------- 
      [xx]=euler(dt,x,F); 
  % ------- 
  case 'rk4'  
  % ------- 
      [xx]=rk4(dt,x,F); 
    otherwise 
        disp('Unknown scheme.'); 
   
end 
% 
return 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function M =jacobian_fcst(dt,x0) 
% 
% Input: 
% dt - time step  
% x0 - Lorenz model(a vector) 
% 
% Return:  
% M - Forecast covariance using euler scheme          
% 
% File:           jacobian_fcst.m 
% 
% 
% Description:    Forecast covariance matrix using euler sheme            
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
function M = jacobian_fcst(dt,x0) 
  
n =size(x0,1);    % dimension of state space 
  
M=eye(n,n);       % initialize propagator 
% 
x  = x0;      
A  = jacobian( x ); 
M = (eye(size(A))  + dt * A) ; 
% 
return 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

186 



 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function [x1] = rk4(dt,x0,F)   
% 
% Input: 
% dt - time step  
% x0 - Lorenz model(a vector) 
% F  - Forcing 
% 
% Return:  
% x1 - Lorenz model after integrating forward in time one time step          
% 
% File:           rk4.m 
% 
% 
% Description:    Integrate forward Lorenz 95 model by 1 timestep 
%                 using 4th order Runge-Kutta method 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [x1] = rk4(dt,x0,F) 
  
n=size(x0,1); 
xa=[x0(n-1); x0(n); x0; x0(1); x0(2) ]; 
  
% indices in xa 
nm=n-1; 
jp1=4:4+nm;   
jm1=2:2+nm;   
jm2=1:1+nm;     
% 
% RHS(x0==xa): 
% nonlinear advection + linear terms 
% 
L95= (xa(jp1) - xa(jm2) ) .* xa(jm1) - x0 + F*ones(n,1); 
k1  = dt*L95; 
% 
% RHS(x0 + 0.5*k1) 
% 
xx=x0 + 0.5*k1; 
xa=[xx(n-1); xx(n); xx; xx(1); xx(2) ]; 
L95= (xa(jp1) - xa(jm2) ) .* xa(jm1) - xx + F*ones(n,1); 
k2  = dt*L95; 
% 
% RHS(x0 + 0.5*k2) 
% 
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xx=x0 + 0.5*k2; 
xa=[xx(n-1); xx(n); xx; xx(1); xx(2) ]; 
L95= (xa(jp1) - xa(jm2) ) .* xa(jm1) - xx + F*ones(n,1); 
k3  = dt*L95; 
% 
% RHS(x0 + k3) 
% 
xx=x0 + k3; 
xa=[xx(n-1); xx(n); xx; xx(1); xx(2) ]; 
L95= (xa(jp1) - xa(jm2) ) .* xa(jm1) - xx + F*ones(n,1); 
k4  = dt*L95; 
% 
% linear combination of k1,k2,k3 and k4 
% 
fac=1./6.; 
x1=x0 + fac*( k1 + 2*k2 + 2*k3 + k4 ); 
% 
return 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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