

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

KALMAN FILTER BASED TECHNIQUES FOR ASSIMILATION OF

RADAR DATA

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

NUSRAT YUSSOUF
Norman, Oklahoma

2010

KALMAN FILTER BASED TECHNIQUES FOR ASSIMILATION OF
RADAR DATA

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

 Dr. S. Lakshmivarahan, Chair

 Dr. Sudarshan Dhall

 Dr. John K. Antonio

 Dr. Thordur Runolfsson

 Dr. David J. Stensrud

© Copyright by NUSRAT YUSSOUF 2010
All Rights Reserved.

Acknowledgements

 First of all, I thank my employer Cooperative Institute for Mesoscale

Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms

Laboratory (CIMMS/OU/NSSL) for supporting me to pursue a Ph.D degree as a “part-

time” student while still working full-time.

 I thank my graduate research advisor, Dr. S. Lakshmivarahan for his continuous

encouragement and support on my path toward a Ph.D. Professor Varahan spent many

hours of his time teaching me several techniques on data assimilation that make up the

foundation of this work. His Dynamic Data Assimilation book was also very helpful for

this research endeavor.

I want to thank my doctoral committee members, Dr. John Antonio, Dr.

Sudarshan Dhall, Dr. Thordur Runolfsson, and Dr. David Stensrud for serving on my

committee. I am deeply grateful to Dr. Stensrud for his guidance, patience and support

throughout this process. He taught me how to conduct research and write manuscripts.

 My deepest thanks to my husband, Zahed Siddique and children, Raiyan and

Ridwan. Zahed has always been very helpful and this work would not have been possible

without his support. Thanks to my parents, Nargis Akhter and M. M. Yussouf for their

unconditional love and encouragement.

 Finally, and most importantly, I thank Almighty Allah for bringing me this far by

His grace.

iv

Table of Contents

Acknowledgements... iv

Table of Contents...v

List of Tables ... viii

List of Figures .. ix

Abstract ..xv

Chapter 1 Introduction ..1

 1.1 Motivation and Background ...1

 1.2 Outline ..6

Chapter 2 Methods for Data Assimilation Based on Kalman Filter9

 2.1 Introduction...9

 2.2 The Filtering Problem...10

 2.2.1 The Kalman Filter ..11

 2.2.2 The Extended Kalman Filter: Ist and 2nd Order13

 2.3 Information Filter: A Dual Formulation of Kalman Filter..............................15

 2.3.1 The Information Filter..16

 2.3.2 The Extended Information Filter ...18

 2.3.3 The Square-Root Information Filter ..20

 2.3.3.1 The Extended Square-Root Information Filter23

v

 2.4 The Ensemble Kalman Filter ..29

 2.4.1 Stochastic Method..32

 2.4.2 Deterministic Method and its Variants ..33

 2.4.2.1 The Ensemble Kalman Square-Root Filter35

 2.5 Summary ..38

Chapter 3 Data Assimilation using Ensemble Square-Root Filter: Impact of High

Temporal Frequency Observations ..39

 3.1 Introduction...39

 3.2 Description of the COMMAS Model ...40

 3.3 Observations ..46

 3.3.1 The Truth Simulations ...46

 3.3.2 Radar Emulator Design and Observations Generation47

 3.4 Experimental Design...56

 3.4.1 60-min Assimilation...60

 3.4.2 15-min Assimilation...61

 3.5 Results ..62

 3.5.1 Analyses...63

 3.5.2 Forecasts ..69

 3.6 Summary ..70

Chapter 4 Data Assimilation using Ensemble Square-Root Filter : Perfect and

Imperfect Model Experiment ...77

 4.1 Introduction...77

vi

 4.2 Experimental Design...79

 4.2.1 Perfect Model Experiment ...84

 4.2.2 Imperfect Model Experiment...87

 4.3 Results ..87

 4.3.1 Analyses...88

 4.3.2 Forecasts ..90

 4.4 Summary ..98

Chapter 5 Data Assimilation using Extended Information Filter100

 5.1 Introduction...100

 5.2 Description of Lorenz Model..101

 5.3 Experimental Details ..103

 5.3.1 Sparse Observation (m = n) Network108

 5.3.2 Moderately Densed Observation (m = 2n) Network108

 5.3.3 Highly Densed Observation (m = 4n) Network.................109

 5.4 Results ..109

 5.5 Computational Speed ..114

 5.6 Summary ..118

Chapter 6 Summary and Future Work ..119

References ..124

Appendix A ..131

Appendix B ..169

vii

List of Tables

Table 3.1 Radar Emulator Control Parameters. ...48

Table 4.1 The intercept and the density parameters of the precipitation particles for

the Truth_LFO and Truth_10ICE simulations...81

Table 4.2 List of ensemble members with the values of intercept parameters and

densities of rain, hail/graupel and snow particles from the LFO

microphysics scheme. ..86

Table 5.1 Estimation of the computational cost of EKF..115

Table 5.2 Estimation of the computational cost of EIF ...116

Table 5.3 Approximate computational run time based on a PC of 3.4 GHz Intel

Pentium 4 with 2GB of RAM for the three sets of experiments using both

EKF and EIF ..117

viii

List of Figures

Figure. 3.1 Schematic illustration of the a) vertical resolution volume and b) the

horizontal resolution of radar beam. Points 1 through 8 approximate a

weight of 0.50, points 9 through 12 approximate a weight of 0.84 and center

point 13 approximates a weight of 1.0 for the simplified volume averaging

technique. The effective beamwidth (EBW) is 1.39 and vertical beamwidth

(VBW) is 0.89 ..51

Figure 3.2 Radar scan angles for VCP 11 scanning mode. There are 14 elevation

angles in this mode and the beam width is 0.89. ...53

Figure 3.3 Synthetic radar observations created from (a) the truth run (model

reflectivity contours in dBZ and the horizontal wind vectors in ms-1 at 5.053

km above ground, and the synthetic radar observations of b) reflectivity

(dBZ) and c) doppler velocity (ms-1) at 7.5o elevation angle in spherical

radar coordinates at t = 39 min. ...55

Figure 3.4 Synthetic a) WSR-88D and b) PAR radar observations using VCP 11

scanning mode during a 5-min interval staring at 2100 UTC and ending at

2105 UTC. PAR scans a complete volume of observations every minute,

while WSR-88D scans 3 or 2 elevation angles every minute with a complete

volume scan every 5 minutes. ...57

Figure 3.5 Temperature perturbations (bubbles) of ensemble members 2, 14, 21 and

35 1.4 km above the ground. The bubbles are added to a 40x40 km wide

portion of the 100x100 km domain..59

ix

Figure 3.6 Schematic illustration of the EnSRF experiment for 60-min assimilation.......61

Figure 3.7 Schematic illustration of the EnSRF experiment for 15-min assimilation.......62

Figure 3.8 The rms errors of ensemble mean analyses vs. time(s) for the 60-min

assimilation experiment starting at t = 25 min and ending at t = 84 min for

(a) u (ms-1), (b) v (ms-1), (c) w (ms-1), (d) t (K) and (e) total precipitation

mixing ratios (g kg-1) for PAR (black lines) and WSR-88D (gray lines)

observations assimilation. Values are averaged over the domain at grid

points where the total precipitation mixing ratios (sum of qr, qh and qs) is

greater than 0.10 g kg-1. Note that 300s = 5...64

Figure 3.9 Reflectivity and vertical vorticity at 4.076 km above ground at the 60-

min assimilation time (t = 84 min) from (a and b) truth run and ensemble

mean analyses from (c and d) PAR observations and (e and f) WSR-88D

observation assimilation...65

Figure 3.10 Same as in Figure 3.8 but for the experiment with 15-min assimilation

period starting at t = 25 min and ending at t = 39 min...67

Figure 3.11 Same as in Figure 3.9 but for a 15-min assimilation period for

reflectivity and vertical velocity contours at the last assimilation cycle

 (t = 39 min) 5.053 km above ground. ..68

Figure 3.12 The rms errors of ensemble mean forecast from the 60-min assimilation

experiment during the 35-min forecast period starting for (a) u (ms-1), (b) v

(ms-1), (c) w (ms-1), (d) t (K) and (e) q (g kg-1). Values are averaged over the

domain where the total precipitation (sum of qr, qh, qi and qs mixing ratios)

is greater than 0.10 g kg-1. Details are shown in the legend.71

x

Figure 3.13 Reflectivity contours at 3.18 km AGL for (a) truth and 15-min

ensemble mean forecasts from (b) PAR observations assimilation and (c)

WSR-88D observations assimilation from the 60-min assimilation

experiment…..72

Figure 3.14 The rms errors of ensemble mean forecast from the 15-min assimilation

experiment during the 1-h forecast period for (a) u (ms-1), (b) v (ms-1), (c) w

(ms-1), (d) t (K) and (e) q (g kg-1). Values are averaged over the domain

where the total precipitation (sum of qr, qh and qs mixing ratios) is greater

than 0.10g kg-1. Details are shown in the legend. ..73

Figure 3.15 Reflectivity contours for (a and d) truth and forecasts from the 15-min

assimilation experiment from (b and e) PAR observations assimilation and

(c and f) WSR-88D observations assimilation. (b) and (c) are 5 min

ensemble mean forecast while (e) and (f) are 20 min ensemble mean

forecasts……. ..74

Figure 4.1 Potential temperature (K) at t = 35 min of the simulation at the lowest

model level (100 m AGL) (a and b), reflectivity (dBZ; c and d) 2.6 km AGL

at t = 1 hr and vertical vorticity (s-1; e and f) at 3.1 km AGL at t = 1.5 hr

from the truth simulation using the LFO and 10 ICE microphysics scheme.........82

Figure 4.2 Schematic illustration of the EnSRF experiment for 35-min assimilation.......84

xi

Figure 4.3 The rms errors of ensemble mean analyses vs. time(sec) during the 30-

min assimilation period from the perfect and imperfect model experiment

starting at t = 25 min and ending at t = 54 min for w (m s-1) (a and b), t (K)

(c and d) and total precipitation (rain, snow, hail/graupel) mixing ratios

 (g kg-1) (e and f) for the control (black lines) and muliparameter (gray lines)

ensemble system. Values are averaged over the domain at grid points where

the total precipitation mixing ratios (sum of qr, qh and qs) in the truth run is

greater than 0.10g kg-1… ...89

Figure 4.4 The rms errors of ensemble mean forecast vs. time(sec) during the 1-h

forecast period from the perfect and imperfect model experiment starting at t

= 55 min and ending at t = 115 min for w (m s-1) (a and b), t (K) (c and d)

and total precipitation (rain, snow, hail/graupel) mixing ratios (g kg-1) (e and

f) for the control (black lines) and muliparameter (gray lines) ensemble

system. Values are averaged over the domain at grid points where the total

precipitation mixing ratios (sum of qr, qh and qs) in the truth run is greater

than 0.10g kg-1. ..91

Figure 4.5 Values of equitable threat score (ETS) for reflectivity values exceeding

35 dBZ threshold for a) Perfect and c) Imperfect Model experiments and

the precipitation (rain, snow and hail/graupel) mixing ratios exceeding 1.0 g

kg-1 threshold for c) Perfect and d) Imperfect Model experiments as

function of forecast time (sec). Details are shown in legends…92

xii

Figure 4.6 The maximum mean hail diameter (mm) at the lowest model level (100m

AGL) during the1-h forecast period from the truth (thick black line) and the

40 ensemble members (different shades of gray lines) for a)

Perfect_Control, b) Imperfect_Control c) Perfect_MP and d) Imperfect_MP

assimilation experiment… ...94

Figure 4.7 Same as in Figure 4.6 but for minimum potential temperature (K) at the

lowest model level (100m AGL)..96

Figure 4.8 The ground-relative 1-h accumulated rainfall (mm) amounts of the

supercell storm from a) Truth_10ICE and the ensemble mean forecasts of 1-

h accumulated rainfall (mm) from b) Imperfect_Control and c)

Imperfect_MP assimilation experiment.. ...97

Figure 5.1 Latitude circle of the Lorenz 96 model with 40 grid points (N = 40).103

Figure 5.2 Values of ensemble members (blue) and the truth (green) at grid point 30

(or variable 30) at start time...105

Figure 5.3 The 100 ensemble members (blue lines), truth run (green line) and the

ensemble mean (red line) after integrating the model for 14400 time steps.106

Figure 5.4 The covariance P0 of the model (contours) after integrating the model for

14400 time steps. ...106

Figure 5.5 Location of observations (green circle) and model grid points (red circle)

for (a) m = n, (b) m = 2n and (c) m = 4n experiments. Here m is the number

of observations and n is the number of model grid points..108

Figure 5.6 The expected value of the innovations for both EKF (in black line)

and EIF (in gray line) at 40 observation location from the m=n experiment.110

()kE r

xiii

Figure 5.7 The truth run (in green), observation locations (black starts), model

forecast (in blue) and the analysis (in red) after the first assimilation cycle.111

Figure 5.8 The rms error for the (a, b) EKF and (c,d) EIF forecast and analyses

during data assimilation period for the sparse observation (m = n) network.

The blue line indicates the model forecast error and the red line indicates the

analyses error. ..112

Figure 5.9 Same as in Figure 5.8 but for the moderately densed observation (m =

2n) network…. ...113

Figure 5.10 Same as in Figure 5.8 but for the highly densed observation (m = 4n)

network…….. ..114

xiv

Abstract

 The Ensemble Square Root Filter (EnSRF) data assimilation technique is applied

to examine the impact of assimilating high temporal frequency radar observations over a

shorter assimilation period. To reduce the heavy computation cost of assimilating large

number of radar observations using EnSRF technique, synthetic radar observations are

generated at coarser spatial resolution. Two sets of experiment are conducted with

identical settings based on perfect model framework where model error does not play a

role. One experiment assimilates radar observations, in which a volume scan is conducted

every 5 min, while the other experiment assimilates observations, in which a volume scan

is conducted every 1 min. Results indicate that assimilating observations at 1-min

intervals over short 15-min period yields significantly better analyses and forecasts than

those produced using observations at 5-min intervals. However, the very good

performance obtained from perfect model experiments is not expected in real-world

experiments where models unavoidably have errors. Therefore to account for model

error, another two sets of experiments are conducted using both a perfect and an

imperfect model framework and the EnSRF data assimilation technique. In addition, the

value of using a range of intercept and density parameters for hydrometeor categories in

different ensemble members within the same microphysics scheme also is examined.

Results show that the EnSRF system performs reasonably well with the imperfect model

assumption. Results also indicate that in the presence of model error, a combination of

different hydrometeor density and intercept parameters leads to improved forecasts over

experiments that use a constant, hydrometeor intercept and density parameter.

xv

 While the EnSRF data assimilation technique shows promise in radar data

assimilation, one limitation of EnSRF technique is that it assimilates observations

serially, making it computationally very expensive when the number of observations is

very large. Thus in an effort to explore efficient data assimilation method, the feasibility

of the information filter as an alternate to the EnSRF data assimilation technique when

the number of observations is very large is examined. The extended information filter

(EIF) is implemented using the Lorenz 96 model and the performance of EIF in

assimilating both low and high spatial resolution observations are compared with the

benchmark extended Kalman filter (EKF) assimilation technique. Results indicate that

both EKF and EIF produce similar results for different spatial resolution observation

assimilation. The computational time for the EIF is larger than that of the EKF filter as

expected due to the higher computational cost of matrix inversion in EIF technique.

However, the increment in computational cost for EIF technique is much smaller than

that of EKF technique for increased number of observation assimilation.

xvi

Chapter 1

Introduction

1.1 Background and Motivation

 The numerical weather prediction (NWP) models are used in meteorology to

study a variety of atmospheric processes and to predict the future atmospheric states. The

NWP models represents the atmosphere in a three-dimensional grids with nx, ny and nz

points in the x, y and z directions giving rise to ng= nxnynz grid points. Moreover, at each

grid point there are L physical variables, such as pressure, temperature, wind in three

dimension, moisture etc., that must be represented. For a small grid of nx=100, ny=100

and nz=50 points, there is a total of ng=5x105 grid points, and thus a total of n = ng L

variables that must be defined in a model. The prediction of future atmospheric states is

accomplished as an initial value problem where the “best” initial atmospheric state using

dynamic data assimilation techniques. After the initialization, the three-dimensional

NWP models are integrated forward in time to make a prediction. Thus the challenge of

data assimilation is to find an estimate of the initial atmospheric state based upon an

optimal statistical combination of available atmospheric observations and an estimate of

atmospheric state provided by a previous model forecasts (also known as background).

With the rapid increase in the number and types of atmospheric observations (e.g. remote

sensors, fixed and mobile radars, surface in-situ instruments, satellite observations,

rawinsondes, and aircraft observations), computationally it is very challenging to

assimilate these observations into the model. Numerical methods that are commonly used

for this purpose are the Optimal Interpolation or OI method, variational methods in three

1

and four dimensions (3D-VAR and 4D-VAR), Kalman filtering and the Ensemble

Kalman filtering (EnKF) methods.

 One of the research goal at the National Severe Storms Laboratory (NSSL)

located in Norman, Oklahoma is to improve the accuracy of severe weather forecasts

(e.g. hail, tornado, thunderstorms etc.) and to increase the warning lead time of severe

weather events. Longer warning lead times are expected to help save lives, reduce

damages and injuries, provide improved local flood warnings and positively impact air

traffic and surface transportation routing. To increase the warning lead time, it is essential

that the model be initialized with a very accurate representation of ongoing convective

weather. The only key instrument that observes the 3-D volumetric scans of severe

weather events every ~5 minutes at high spatial resolution are the Weather Surveillance

Radar – 1988 Doppler (WSR-88D). In recent years, researchers found that assimilating

the WSR-88D radar observations using ensemble square-root Kalman (EnSRF), a variant

of EnKF data assimilation techniques shows promise in initializing storm-scale1 NWP

models (Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004a, b; Tong and

Xue 2005; Xue et al. 2006; Dowell and Wicker 2009; Aksoy et al. 2009). These studies

assimilate either synthetic or real WSR-88D Doppler radar reflectivity or radial velocity

observations of thunderstorms. Results indicate that by assimilating radar reflectivity and

radial velocity observations, the filter is able to retrieve the unobserved variables, such as

temperature and the full three-dimensional wind field, successfully. In contrast, model

simulations without radar data assimilation create the thunderstorm in an ad hoc manner

using a warm bubble, but are unable to generate the quickly developed observed storm

1 Storm-scale is a scale of sizes of individual thunderstorms.

2

characteristics, and often diverge from observations. Indeed, data assimilation is a key

element in producing reasonable predictions of observed thunderstorms.

 While the EnSRF technique shows promise in storm-scale assimilation, one

limitation of EnSRF is that it assimilates observations serially, making it computationally

very expensive when the number of observations is very large. Therefore to limit the

number of observations, radar observations are either objectively analyzed to coarser

resolution (Dowell et al. 2004a, b; Dowell and Wicker 2009, Aksoy et al. 2009) or

synthetic radar observations are generated at coarser resolution (Snyder and Zhang 2003;

Zhang et al. 2004; Tong and Xue 2005; Xue et al. 2006; Caya et al. 2005). Based on

recent studies (Snyder and Zhang 2003; Zhang et al. 2004; Xue et al. 2006; Caya et al.

2005) it appears reasonable to expect that at least 10 radar scans are needed to produce

reasonable analyses of storms. However, part of the challenge in using ~5-min radar

observations to initialize thunderstorms in numerical models is that a number of storm

features evolve on a timescale of minutes and are poorly sampled by ~5-min data. Xue et

al. (2006) and Lei et al. (2007) show that the assimilation of synthetic 1-min radar data

leads to analyses that more closely approach the truth solution than the analyses created

using synthetic 5-min radar data. Moreover, with the advent of the emerging Phased

Array Radar (PAR; Forsyth and coauthors 2004;Weber et al. 2007, Yu et al. 2007, Zrnić

et al. 2007) technology as a potential replacement candidate of the aging WSR-88D in the

next 10-15 years, it is possible to scan a thunderstorm phenomena in less than a minute

(Heinselman et al. 2008). Since accurate analyses require approximately 10 radar scans,

the amount of time needed to obtain these scans from the WSR-88D is at least 45 min.

However, the PAR can produce 10 radar scans in less than 10 min. Thus, it is reasonable

3

to expect that PAR observations can generate accurate storm analyses very quickly using

a shorter assimilation period. A shorter assimilation window also is highly desirable in

an operational environment if these analyses are to be used to increase warning lead times

for severe weather warnings.

 One major sources of error in storm-scale data assimilation and forecasts is the

microphysical parameterization scheme used to represent the microphysical

characteristics of the storms in the NWP model (Dowell et al. 2004a, b; Gilmore et al.

2004; van den Heever and Cotton 2004; Snook and Xue 2008; Tong and Xue 2008a).

Microphysics refers to the model emulation of cloud and precipitation processes that

remove excess atmospheric moisture directly resulting from the dynamically driven

forecast wind, temperature, and moisture fields. The most commonly used type of

microphysical scheme in storm-scale modeling is a single-moment bulk microphysics

scheme (Lin et al. 1983; Tao and Simpson 1993; Schultz 1995; Straka and Mansell 2005;

Hong and Lim 2006) that uses predefined precipitation particle densities and the intercept

parameters (microphysical parameters) and predicts only the particle mixing ratios. The

determination of suitable values for the microphysical parameters in storm scale data

assimilation is very difficult due to the unavailability of in situ microphysics

observations. Several observational studies indicate that the particle densities and the

intercept parameters can vary widely among storms and even within a single storm (Gunn

and Marshall 1958; Houze et al. 1979, 1980; Mitchell 1988; Pruppacher and Klett 2000;

Cifelli et al. 2000; Brandes et al. 2007). Several experimental studies also show that the

selection of microphysical parameters in storm-scale modeling has profound impact on

the analyses and forecasts of severe weather events, and an arbitrary selection of those

4

parameters may lead to significant error (Gilmore et al. 2004; van den Heever and Cotton

2004; Snook and Xue 2008). One approach to account for the uncertainty in a storm-scale

EnSRF data assimilation system is to vary the microphysical parameters within the same

microphysics scheme among the ensemble members. The hope is that by using a variety

of realistic precipitation particle parameters, an ensemble is more likely to span the truth.

 As mentioned earlier, while the EnSRF data assimilation technique shows

promise for radar observation assimilation, numerous challenges exist. From the

computational point of view, data assimilation using EnSRF method is efficient when the

number of observations is smaller. When the number of observations exceeds the number

of model states, the EnSRF method becomes computationally inefficient. Therefore, one

major challenges of radar data assimilation is the heavy computational demands of

assimilating radar observations in true radar resolution. Moreover, observations of the

same storm are available from more than one radar. Xue et al. (2006) examined the

impact of assimilating radars observations of the same storm from multiple radars and

conclude that it is generally true that the larger the number of observations the better the

analyses. Therefore the implementations of EnSRF become exceedingly time consuming

as the dimension of the number of the observations increases. The question is how to

handle this huge amount of observations efficiently in data assimilation?

 A survey of literatures on data assimilation suggests that if the number of

observation is very large in dimension compared to the model state, the information form

of the filter (Maybeck 1979; Mutambara 1998; Lewis et al. 2006; Simon 2006; Kaminski

et al. 1971; Dyer and McReynolds 1969; Bierman 1977) may be computationally more

efficient than the traditional Kalman filter. While the traditional Kalman filter calls for

5

inverting the matrix in observation space, the information filter calls for the inversions of

the model space. Moreover, the information filter is algebraically equivalent to Kalman

filter. The information filter has been around for years, but to our knowledge the

information filter data assimilation method is not yet examined in atmospheric data

assimilation. Therefore, another focus of this dissertation is to evaluate the applicability

of Information filter as an atmospheric data assimilation technique.

1.2 Outline

 Mathematical formulations of the data assimilation techniques implemented in

this research are presented in Chapter 2. The standard formulation of the Kalman filter

(KF), extended Kalman filter (EKF), information filter (IF), extended information filter

(EIF) and the extended square root information filter are given. The framework for the

ensemble Kalman filter (EnKF), a suboptimal solution to reduce the huge computational

cost for large dimensional problems are discussed and the formulation of the Ensemble

Square Root Filter (EnSRF) is presented.

In Chapter 3, the EnSRF data assimilation technique is applied to examine the

impact of high temporal frequency observation assimilation over a shorter assimilation

period. The synthetic radar observations are generated at a coarser spatial resolution to

reduce the computation cost of ingesting the data into the model using EnSRF. A

description of the model used for the study is discussed followed by the algorithm

developed to create synthetic radar observations. Two sets of experiment are conducted

with identical settings based on the assumption of a perfect model in which both the truth

simulation and the ensemble data assimilation system use the same microphysics scheme

and constant microphysics parameter. One experiment assimilates synthetic WSR-88D

6

observations, in which a volume scan is conducted every 5 min, while the other

experiment assimilates synthetic PAR observations, in which a volume scan is conducted

every 1 min. The results obtained from the EnSRF analyses and forecasts are then

compared and discussed. This chapter is the basis for the paper Yussouf and Stensrud

(2010a).

 The experiments conducted in Chapter 3 are based on perfect model framework

using constant intercept and density parameters of precipitation particle categories.

However, model error is a critical factor and needs to be incorporated into the data

assimilation system. Therefore, to examine the potential value of assimilating radar

observations using a range of intercept and density parameters across the ensemble

members within the same microphysics scheme, two sets of radar observations

assimilation experiments are conducted using both perfect and imperfect model

framework and are presented in Chapter 4. The WSR-88D radar observations are created

at a coarser resolution as in Chapter 3 and assimilated using the EnSRF technique. The

results are compared to quantify the value of using different microphysical parameters

within the same microphysics scheme. A manuscript, Yussouf and Stensrud, 2010b based

on this chapter is currently under review.

 Given the high spatial resolution of the radar observations and the advent of new

radar and other remote sensing technology, it is highly likely that the observation

dimensionality exceeds the dimensionality of the model state vector, indicating that

EnSRF data assimilation method may be computationally very expensive; suggesting

efficient filter designs need to be tested. In Chapter 5, the feasibility of information filter

as a method for high density observations assimilation is examined. Both extended

7

information filter (EIF) and extended Kalman filter (EKF) are implemented using the 40

dimensional Lorenz 96 nonlinear models and the performance of EIF in assimilating low

and high density observations are compared with the benchmark EKF assimilation

technique.

 A summary of the dissertation and suggestions for future work are contained in

Chapter 6.

8

Chapter 2

Methods of Data Assimilation Based on Kalman Filter

2.1 Introduction

Even though the Kalman filter is developed in early sixties (Kalman 1960;

Kalman and Bucy 1961), the meteorological research community started using this

method for data assimilation in the 80’s. The mathematical equations presented in this

chapter are the building blocks of the data assimilation techniques used in this study and

mainly follows Lewis et al. (2006); Lakshmivarahan and Stensrud (2009); Mutambara

(1998); Simon (2006); Dyer and McReynolds (1969); Kaminski et al. (1971); Maybeck

(1979) and Whitaker and Hamill (2002).

Let n
kx R∈ denotes the true state of a dynamical system, e.g., the atmospheric

system, at time k. It is assumed that kx is not directly observable but values of (a

known function of

kz

kx) called observation is available for some subset of values of k. Let

 { |1 }k iF z i k= ≤ ≤ (2.1)

denote the set of all observations during the interval [1, k]. Let
^
kx denote the estimate of

kx at time k. The problem of computing (a)
^
kx given is called the filtering problem,

(b)

kF

^
kx given for some k < N is called the smoothing problem and (c) given

for some s≥1 is called the prediction problem. While the filtering and prediction problem

use only the past and present information, smoothing uses all the past, present and the

future information.

NF
^

xk s+ Fk

9

 In this research study, we are interested in the filtering problem. The Kalman

filter and the extended Kalman filter formulation is given in Section 2.2 followed by the

formulation of information filter, the extended information filter and the extended square

root information filter in Section 2.3. The framework for the ensemble Kalman filter and

the formulation of the ensemble square-root filter is given in Section 2.4 followed by the

summary in Section 2.5.

2.2 The Filtering Problem

 There are at least two distinct ways to formulate the filtering problem: first as a

linear, unbiased and minimum variance formulation that gives raise to the so called

covariance form of the Kalman filters. Second, is using the classical Bayesian

formulation with the least square cost function leading to the so called information filters

(Lewis et al. 2006, Chapter 17). The numerical accuracy of the covariance form can be

increased by using the square-root of the covariance. Moreover, to reduce the

computation burden of propagating the covariance forward in time, reduced rank

approximation of the filter can be used. The derivation of the filter equations consist of

two main steps: the forecast step using the model and the data assimilation step using the

model forecast and observations. Here we consider the discrete time, continuous space

filtering and prediction problems.

10

2.2.1 The Kalman Filter

 The Kalman filter is a recursive linear minimum variance estimator when the

model is linear and the observations are linear functions of the state. Let nxnM R∈ denote

the state transition matrix and the linear dynamics of evolution of the states is given by

 1k k k 1kx M x w+ += + , (2.2)

where is the sequence of Gaussian white noise representing model error where

 and is a symmetric and positive definite matrix. It is assumed

that the initial state is

kw

(0,)k kw N Q∼ nxn
kQ R∈

0 0

^
(,)0x N x P∈ and satisfies the following conditions:

a. 0x is with known mean vector
^

0 0() 0E x x m= = and known covariance matrix

. 0 0 0 0 0() [()()]TCov x E x m x m P= − − = 0

 b. The model error is unbiased, that is () 0kE w = for all k and is temporally

uncorrelated, that is

[]T
k j kE w w Q= if j = k

 = 0 otherwise.

c. The model error and the initial state kw 0x are uncorrelated

 0[]T
kE w x 0= for all k.

Let denote the observation of the system (2.2) and the observations are linear

function of the state:

m
kz R∈

 k k kz H x vk= + , (2.3)

where is a matrix known as the observation operator (or the H operator) that

maps the model state variables onto the observations, is the sequence of the Gaussian

mxnH R∈

kv

11

white noise representing measurement noise , and (0,)k kv N R∼ mxm
kR R∈ is a symmetric

and positive definite matrix with the following properties:

a. has mean zero: kv () 0kE v = .

b. is temporally uncorrelated: kv

[]T
k j kE v v R= if j = k.

 = 0 otherwise.

where is a symmetric and positive definite matrix. k
mxmR R∈

c. is uncorrelated with the initial state kv 0x and the model error , that is kw

0[]T
kE x v 0= for all k>0.

[]T
k jE v x 0= for all k and j.

It is assumed that the model noise , the observation noise and the initial condition kw kv 0x

are mutually uncorrelated. In the forecast step, starting from an optimal estimate
^

1kx − at

time k-1, the model (2.2) is used to produce a forecast f
kx at time k. In the data

assimilation step, this forecast f
kx is linearly combined with the observation to

produce the optimal estimate

kz

^

kx .

 Given a linear dynamical model, the equations for the Kalman filter are as follows

(Chapter 27, Lewis et. al 2006):

Model Forecast Step:

^

1
f

k k kx M x+ = (2.4)

 1

^
f T

kk k kP M P M Q 1k+ += + . (2.5)

Data Assimilation Step:

^

1 1 1 1 1[f
k k k k k k 1]fx x K z H x+ + + + + += + − (2.6)

12

 1
1 1 1 1 1 1 1[f T f T

k k k k k k kK P H H P H R]−+ + + + + + += +

1]

 (2.7)

^

1 1 1[f
k k kP I K H Pk+ + + += − . (2.8)

 However it is found that round-off errors in the calculation of the covariance

matrices 1
f

kP + and from
^

1kP + (2.5) and (2.8) of the Kalman filter resulting from large

condition number can cause loss of symmetry and/or positive definiteness. This in turn

can lead to numerical inaccuracy, filter divergence and instability. Further investigations

shows that the effect of round-off errors can be mitigated by performing the filter

computations using the square root version of the covariance matrix. The square root

filtering increases the numerical precision of Kalman filtering by reducing the condition

number of the matrices involved in the computation (Lewis et al. 2006). This in turn can

help prevent filter divergence and instability. However, this improved performance from

the square root filter is obtained at the cost of greater computational cost.

2.2.2 The Extended Kalman Filter: Ist and 2nd Order

 If the dynamic model is nonlinear and the observations are non-linear function of

the state, the evolution of the states is given by

 1 ()k k 1kx M x w+ += + , (2.9)

and the observation is given by

 ()k kz h x vk= + . (2.10)

The major impediments in formulating the equations for the nonlinear problem

are the difficulty of computing
^

()kM x in the forecast step and in the data

assimilation step. The only solution is to formulate an approximation to the moment

^
()kh x

13

dynamics. Thus the extended Kalman filter (EKF) is a linear estimate of the nonlinear

system obtained from the linearization of the nonlinear state and observations equations.

Using the Taylor series expansion, and discarding the second and higher order moments,

the first order EKF is formulated as follows (Chapter 29, Lewis et. al 2006):

Model Forecast Step:

^

1 ()f
k kx M x+ = (2.11)

^ ^

1

^
() ()f T

kk M k M kP D x P D x Q 1k+ += +

)]f

+

1]

. (2.12)

Data Assimilation Step:

 (2.13)
^

1 1 1 1 1[(f
k k k k kx x K z h x+ + + + += + −

 (2.14) 1
1 1 1 1 1 1 1()[() ()]f T f f f T f

k k h k h k k h k kK P D x D x P D x R −
+ + + + + + +=

^

1 1 1[()f f
k k h kP I K D x Pk+ + += − + , (2.15)

where
^

()M kD x is the Jacobian of M(.) evaluated at
^

kx and 1(f
h kD x)+ is the Jacobian of h(x)

evaluated at 1
f

kx + .

The second order EKF equations can be obtained by discarding the third and

higher order moments (Chapter 29, Lewis et. al 2006):

 Model Forecast Step:

^

2
1

^1() (,)
2

f
kk kx M x M P+ = + ∂ (2.16)

^ ^

1

^
() ()f T

kk M k M kP D x P D x Q 1k+ += + . (2.17)

Data Assimilation Step:

14

^

2
1 1 1 1 1 1

1[() (,
2

f f
k k k k k kx x K z h x h P+ + + + + += + − − ∂)]f

+

1]

 (2.18)

 (2.19)
1

1
1 1 1 1 1 1()

()[()]f
k

f T f f f T
k k h k h k k kh x

K P D x D x P D R
+

−
+ + + + + +=

^

1 1 1[()f f
k k h kP I K D x Pk+ + += − + . (2.20)

 However, due to neglecting the third and higher order statistical moments in the

covariance evolution, the EKF data assimilation often encounters unbounded error

growth.

2.3 Information Filter: A Dual Formulation of Kalman Filter

The information filter is essentially a Kalman filter that is expressed in terms of

measures of information about the states rather than direct state estimates and its

covariance. The information filter is constructed from the information1 space and is

algebraically equivalent to the Kalman filter. The two key variables in the information

filter are the information matrix and the transformed state vector. The information matrix

is defined as the inverse of the covariance matrix, 1−= PY and the transformed state

vector is a product of the information matrix and the model state, . Thus

while the covariance matrix represents the uncertainty in the state estimate, the

information matrix represents the certainty in the information estimate (Mutambara 1998;

Simon 2006). However, there are two ways of formulating the information filter using the

information matrix: one using the model state space (Simon 2006) and the other one

using the transformed state vector (Mutambara 1998). Both formulations are given

below.

YxxPy == −1

1 The term information is employed in the Fisher sense, that is, a measure of the amount of information
about the random state x present in the set of observations z, up to time k.

15

2.3.1 The Information Filter

A. State Space Formulation:

 The linear Kalman filter can be written in terms of the model state vector and

information matrix (Simon 2006) as follows:

Model Forecast Step

^

1
f

k k kx M x+ =

 1

^
f T

kk k kP M P M Q 1k+ += + .

Applying the matrix inversion lemma to the above equation

11 1 1 1 1()T T 1TA C B D A A C B D A C D A

−− − − − − −⎡ ⎤+ = − +⎣ ⎦

and substituting , 1kA Q += kB P= and kC D M= = , the predicted information matrix 1
f

kY +

is:

 1 1
1 1 1

^
() ()f f T

kk k k k kY P M P M Q− −
+ + += = +

 1 1 1 1
1 1 1 1

^
[]f T

k k k k k k k k k kY Q Q M Y M Q M M Q 1
1

T− − − −
+ + + +⇒ = − + −

+

1

. (2.21)

Data Assimilation Step

^

1 1 1 1 1[]f f
k k k k k kx x K z H x+ + + + + += + −

 1 1 1
1 1 1 1

^
() ()f T

k k k kP P H R H− − −
+ 1k+ + + += + .

The updated information matrix 1

^
kY + is:

 1
11 1 1

^ ^
() f T

kk k kY P Y H R H−
+

1
1 1k k

−
+ + + +⇒ = = + + . (2.22)

Again, from the matrix inversion lemma,

16

 1 1 1 1[] [T T T T 1]A B A D A B DA ADA B− − − −+ = −+

1k+

1
1k

.

Assuming we get 1
1 1, ,f

k kD P A H B R−
+ += = =

 1 1 1
1 1 1 1 1 1[()]f T T

k k k k k kK P H R H H R− − −
+ + + + + += + −

+

1
1k

 1 1
1 1 1 1 1 1[]f T T

k k k k k kK Y H R H H R− − −
+ + + + + +⇒ = + +

1
1k

.

Therefore,

^

1
1 1 1() T

k k kK Y H R− −
+ + +⇒ = + . (2.23)

 While the standard Kalman filter equations require the inversion of an m x m

matrix, where m is the number of measurements, the state space formulation of the

information filter equations require at least a couple of n x n matrix inversions, where n is

the number of states. Therefore, if m >> n (i.e., there are significantly more

measurements than states variables) it may be computationally more efficient to use the

information filter rather than the Kalman filter. However, the m x m matrix inversion on

Rk is common to the standard Kalman filter or the information filter Kalman gain

equation. But if Rk is constant, then the inversion can be a part of the initialization

process, so the Kalman gain equation may not require this m x m matrix inversion after

all. The same thinking also applies to the inversion of Qk.

 If the initial uncertainty is infinite, the information filter is more mathematically

precise since can be set for the zero initial certainty case but cannot be set.

However, if the initial uncertainty is zero,

0 0Y = 0P = ∞

0 0P = can be set but 0Y = ∞ cannot be set.

This makes the standard Kalman filter more mathematically precise for the zero initial

uncertainty case.

17

B. Information Space Formulation:

 The linear Kalman filter can be written in terms of the transformed state vector

and the information matrix (Mutambara 1998) as follows:

Model Forecast Step:

 (2.24)
^ ^

1
1 ()f f

k k k ky Y M Y y−
+ = k

1
1

^
1

1 [()]f T
k k k k kY M Y M Q− −
+ = + +

1

. (2.25)

Data Assimilation Step:

^

1
1 1 1 1

f T
k k k k ky y H R z−
+ + + += + +

1

 (2.26)

^

1
1 1 1 1

f T
k k k k kY Y H R H−
+ + + += + + , (2.27)

where the predicted (updated) transformed state vector is 1
f

ky + (
^

1ky +) and the predicted

(updated) information matrix is 1
f

kY + (
^

1kY +)

2.3.2 The Extended Information Filter

 The extended information filter (EIF) is the extension of the linearized estimation

algorithm for the nonlinear systems similar to EKF. The EIF predicts and estimates the

information state and its associated information matrix for the nonlinear dynamic model

and observations.

A. State Space Formulation:

 The EIF can be written in terms of the model state vector and information matrix

(Simon 2006) as follows:

18

Model Forecast Step

^

1 ()f
k kx M x+ =

^ ^

1

^
() ()f T

kk M k M kP D x P D x Q 1k+ += +

^ ^

1 1
1 1 1

^
() [() ()]f f T

kk k M k M k kY P D x P D x Q− −
+ + += = + .

 (2.28)
^ ^ ^ ^

1 1 1 1
1 1 1 1

^
()[() ()] ()f T

k k k M k k M k k M k M k kkY Q Q D x Y D x Q D x D x Q− − − −
+ + + +⇒ = − + 1

1
T −

+

)]

1
f

k

Data Assimilation Step

^

1 1 1 1 1[(f f
k k k k kx x K z h x+ + + + += + −

 1 1 1
1 1 1 1

^
() () () ()f T f

k k h k k hP P D x R D x− − −
+ + + + += + .

The updated information matrix 1

^
kY + is:

 (2.29) 1 1
11 1 1 1

^ ^
() () (f T f f

kk k h k kY P Y D x R D x− −
++ + + +⇒ = = + 1)h k+

1
1k 1 1 1

1 1 1 1 1 1[() () ()] ()f T f f f
k k h k k h k h kK P D x R D x D x R− − −
+ + + + + += + −

+

1
1k

.

 1 1
1 1 1 1 1 1[() ()] ()f T f f T f

k k h k k h k h kK Y D x R D x D x R− − −
+ + + + + +⇒ = + +

1
1k

.

Therefore,

^

1
1 1 1() ()f

k k h kK Y D x R− −
+ + +⇒ = + . (2.30)

B. Information Space Formulation:

 The extended Information filter can be written in terms of the transformed state

vector and the information matrix (Mutambara 1998) as follows:

19

Model Forecast Step:

 (2.31)
^

1 ()f f
k k ky Y M x+ =

1^ ^ ^

1
1 [() ()]f T

k M k k M k kY D x Y D x Q
−

1
−

+ = ++

1]

1)

. (2.32)

Data Assimilation Step:

 (2.33)
^

1
1 1 1 1 1 1() [() ()f T f f f f

k k h k k k k h k ky y D x R z h x D x x−
+ + + + + + += + − +

^

1
1 1 1 1() (f T f f

k k h k k h kY Y D x R D x−
+ + + += + + . (2.34)

Remarks: A closer look into the above equations reveals that to implement the EIF in

transformed space, we need to compute the Jacobians
^

()M kD x and . Therefore

we also need the knowledge of

1(f
h kD x +)

^

kx and 1
f

kx + to implement the Jacobians in model space

indicating that we must implement EKF in parallel to compute 1
f

kY + , , and
^

1kY +

^

1ky + 1
f

ky + .

This is a serious limitation of implementing the EIF in transformed space.

2.3.3 The Square-Root Information Filter

 Let (x, P) be given where nx R∈ is a random vector and nxnP R∈ is its covariance.

It is assumed P is always symmetric positive definite (SPD). Let be the cholesky

factorization of P, where is a lower triangular matrix called the square root of P.

We know that the matrix

TP SS=

nxnS R∈

1Y P−= is called the information matrix. Clearly Y is SPD since

P is. Let be the cholesky square root factorization of Y. It can be verified that

and the inverse of a lower triangular matrix is lower triangular.

Hence . We also know that

TP = ΛΛ

1 1() ()T TS S S− −= = T−

1S −Λ = 1y P x Yx−= = is the transformed state vector. It is

20

well known that there are several equivalent ways to express the classical linear Kalman

filter equations:

(1) Covariance form using (x, P): Kalman (1960), Jazwinski (1970), Sorenson (1976),

Lewis et al. (2006), Maybeck (1979), Simon (2006), and Mutambara (1998).

(2) Square-root covariance form using (x, S): Maybeck (1979), Lewis et al. (2006),

Bierman (1977).

(3) Information form using (x, Y): Maybeck (1979), Simon (2006).

(4) Square-root information form using (x,Λ): Dyer and McReynolds (1969),

Bierman (1977).

(5) Transformed state information form using (y, Y): Kaminski et al. (1971),

Mutambara (1998).

 In this section we concentrate on the square root version of the information filters

using (x,). Golub (1965) was the first to use the notion of square root information and

orthogonal transformation to solve the linear least squares problem.

Λ

Golub’s method: Let be the observations. Let mz R∈

 z Hx v= + , (2.35)

where and . Then the least squares estimate is obtained by

minimizing

mxnH R∈ (0,)v N R∼

 1

2()
R

f x z Hx −= − . (2.36)

Let mxmRΓ∈ be an orthogonal transformation and let 1 () ()TR z z− = Λ Λ be the square

factorization. Thus, it can be verified that

2

2

() ()()

 () where ()

f x z z Hx

b z Hx b z z

= Λ −

= −Λ = Λ

21

 2(())b z Hx= Γ −Λ . (2.37)

Our goal is to choose such that Γ

~ ^

1

() and
0

n

n b
z H b

m n b

⎡ ⎤ ⎡Λ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ΓΛ = Γ = ⎢ ⎥
⎢ ⎥ ⎢

−
⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.38)

where nxnRΛ∈
∼

is an upper triangular matrix. Thus

2^

1

()
0

b
f x x

b

⎡ ⎤ ⎡ ⎤Λ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∼

2^ ~ 2

1b x b= −Λ + . (2.39)

Hence the least square estimate is given by the solution of the upper triangular system

^ ^ ^ ^

1or ()
^

x b x −Λ = = Λ b

])

. (2.40)

Solution of (2.40) is obtained by back substitution which takes steps. Now

consider

2()O n

[] [

~

~
0 () (

0

 () ()
 () ()

T
T

T T T

T T

z H z H

H z z H
H z z H

⎡ ⎤Λ⎢ ⎥⎡ ⎤
⎢ ⎥Λ = ΓΛ ΓΛ⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

= Λ Γ ΓΛ

= Λ Λ

 1TH R H−= . (2.41)

22

That is,

~ ~

1
T

TH R H−Λ Λ = . (2.42)

Hence the covariance of
^
x is given by

~ ~

1 1() ()
T

TH R H 1− − −Λ Λ = (2.43)

which matches the standard result (Lewis et al. (2006), Chapter 14).

 Thus the above method obtains (
^ ^
,x Λ), the estimate and the square root of its

information matrix from the input (, , ()z H zΛ).

Remark: The orthogonal transformation Γ can be realized in one of two ways: using

Gramm-Schmidt orthogonalization or Householder’s transformation. In our

computations, we use the Householder’s transformation (Lakshmivarahan and Dhall

1990).

 Dyer and McReynolds (1969) extended Golub’s idea to include the model and

derived the square root information version of the Kalman filter. In the following, we

extend Dyer and McReynolds algorithm to derive the extended square root information

version of the filter using (,x Λ) that is suitable for nonlinear systems.

Remark: Extended information from using (x, Y) is given in Simon (2006) and

extended transformed state information filter using (y, Y) is given in Mutambara

(1998).

2.3.3.1 The Extended Square-Root Information Filter:

 Let

 1
1 1() ()k k k 1kx M x Q w−
+ += + Λ + (2.44)

23

be the nonlinear dynamic model where , is the square

factorization of and is the covariance of the model noise at time k.

(0,)k nw N I∼ 1 () ()T
k k kQ Q− = Λ Λ Q

k

1
kQ−

kQ

Let

 , (2.45) 1()k k k kz H x z v−= + Λ

where and (0,)k mv N I∼ 1 () ()T
k k kR z− = Λ Λ z be the square root factorization of 1

kR− where

kR is the covariance of the observation noise at time k.

Clearly,

1 1 1

1

cov[()] [(())(())

 () () ()

T
k k k k k k

T T
k k k k

Q w E Q w Q w

Q E w w Q

− − −

− −

Λ = Λ Λ

= Λ Λ

]

k 1[() ()]T
k kQ Q Q−= Λ Λ = (2.46)

and

1 1 1

1

cov[()] [(())(())

 () () ()

T
k k k k k k

T T
k k k k

z v E z v z v]

z E v v z

− − −

− −

Λ = Λ Λ

= Λ Λ

 1[() ()]T
k kz z R−

k= Λ Λ = . (2.47)

Cox (1964) proved that the estimation of kx given is equivalent to

minimizing

1 2{ , ,..... }kz z z

^ 2f
k k kJ J v= + (2.48)

 where

2 2 21 ^ ^

1 1 1
1 1

[
k k

f
k i i

i i
J v w x x

−

= =

= + + Λ −∑ ∑] (2.49)

where () is the prior information on
^ ^

11,x Λ 1x , the initial state.

24

 Assume recursively that f
kJ is expressed as

2f f f f

k k k k kJ x d e= Λ − + (2.50)

much like as in Golub’s algorithm where 1()f f
k k

f
kx d−= Λ is the forecast and f

kΛ is the

square root of the information matrix of f
kx . That is, (,f f

k kx Λ) is given.

Analyis phase: Given (,f f
k kx Λ) and a new observation (), from 1, , (k k kz H z−Λ) (2.48) we

now obtain

^ 21()()f f f
k k k k k k k k kJ x d z z H x e−= Λ − + Λ − + (2.51)

with

 . (2.52) 1()[]k k k k kv z z H−= Λ − x

obtained from (2.45). Setting 1() f
k kz z b−

kΛ = ,

2

^ 2

1()

f f
fk k

k k f
k k k

d
J x

z H b−

⎛ ⎞ ⎛ ⎞Λ
= −⎜ ⎟ ⎜ ⎟

−Λ⎝ ⎠ ⎝ ⎠
ke+ . (2.53)

Let be the orthogonal transformation such that
^

kΓ

 (2.54)

^

^ ^

1

 where is a upper triangular
() 0

f
k k

nxn
k k

k k

n n
R

z H m m−

⎡ ⎤⎡ ⎤Λ Λ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ = Λ ∈⎢ ⎥ ⎢ ⎥⎢ ⎥−Λ ⎢ ⎥⎣ ⎦ ⎣ ⎦

and

^

^

f
k k

k
f

k k

d d

b b

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.55)

25

In view of (2.54) and(2.55), rewrite (2.53) as

2^^
^ 2

0
fkk

k k

k

dJ x
b

⎛ ⎞⎛ ⎞Λ ⎜ ⎟⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ke

2^ ^ ^

k k k kx d e= Λ − + (2.56)

where
2^ 22 f

k k ke b e= + .

Clearly () is obtained from
^ ^

,k kx Λ (2.56) by solving an upper triangular system

^ ^

k k kx dΛ = (2.57)

from

()

1^ ^ ^

^

^

^ ^ ^

1

()

 () 0
0

 () (())
()

 () (()) ()

 () () ()

T

k k k

kT

k

f
kT

T
k k k k k

k k

f T f T
k k k k k k
f T f T T
k k k k k k

f T
k k

P

z H
z H

z H z H

H z z H

P H

−

−

⎛ ⎞ = Λ Λ⎜ ⎟
⎝ ⎠

⎡ ⎤Λ⎢ ⎥⎡ ⎤
⎢ ⎥= Λ⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤Λ
⎡ ⎤ ⎢ ⎥= Λ Λ Γ Γ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥−Λ⎣ ⎦

= Λ Λ + Λ Λ

= Λ Λ + Λ Λ

= + 1
k kR H−

 ()
1^ 1 1f T

k k k k kP P H R H
−− −⎡ ⎤= +⎢ ⎥⎣ ⎦

 (2.58)

which proves that () is the correct analysis and its square root information matrix

(Lewis et al. 2006: Chapter 17) is the Bayesian formulation.

^ ^
,k kx Λ

26

Forecast phase: Given (
^ ^

,k kx Λ) our goal is to obtain (1, 1
f f

k kx + +Λ). Consider

^ 2

1 1
f

k k kJ J w+ += +

2 2^ ^ ^2

1k k k k kx d w e+= Λ − + + . (2.59)

But from the model equations (2.44) we get

 . (2.60) 1 1
1 1(()k k kx M x Q w− −
+ + += − Λ 1)k

Adding and subtracting
^

kx , we get

^ ^

1 1
1 1 1(()k k k k k)kx M x Q w x x− −
+ + += −Λ + −

^ ^

1 1
1 1(() ()k k k k kM x x x Q w− −

1)+ += + − −Λ + . (2.61)

Using the first-order Taylor expansion around
^

kx , we can approximate kx in (2.60) as

 1 1

^ ^ ^ ^
1 1

1() ()() ()(())k k k k k k kM M
x M x D x x x D x Q w− −

− −
1 1k+ +≈ + − − Λ + (2.62)

Assuming that the model M is smooth, it can be verified that

 1
1() ()MM

D x D x−
−= (2.63)

that is, the Jacobian of the inverse of M is the inverse of the Jacobian of M, provided that

the latter is non-singular. Hence, using (2.63) in(2.62), we get

^ ^ ^ ^

1 1 1 1
1 1() ()() ()(())k k M k k k M k k kx M x D x x x D x Q w− − − −

1+ +≈ + − − Λ + . (2.64)

Now substituting (2.64) in (2.59) and simplifying, we get

2 2^ ^ 21 1

1 1 1 1 1()f
k k M k k k k k kJ D x Q w d w e− −
+ + + + +⎡ ⎤= Λ −Λ − + +⎣ ⎦

^

1+ (2.65)

where
^

1 1()M M kD D x− −= for simplicity in notation, and

27

22 2^ ^ ^ ^ ^

1 1
1 ()k k k k M ke e M x D x− −
+

⎡ ⎤= + Λ −⎢ ⎥⎣ ⎦
, (2.66)

which is independent of 1kx + and 1kw + . We can rewrite (2.65) as

2

2^
1

1 1
1^ ^ ^

1 1 1
1

0 0

()

n
kf

k k
k

k M k k M k

I
w

J e
x

D Q D d

+
+ +

+
− − −

+

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥−Λ Λ Λ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.67)

Now, let fΓ be such that

^ ^

1 1 1 1
1

0

0()

n
f

k
k M k k M

I A B

D Q D− − − +
+

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥Γ = ⎢ ⎥⎢ ⎥ ⎢ ⎥Λ⎣ ⎦⎢ ⎥−Λ Λ Λ⎣ ⎦

 (2.68)

where is non-singular and nxnA R∈

1

^
1

0 k
f

k
k

b

dd

+

+

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥Γ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (2.69)

Combining (2.68) and (2.69) we readily see that

 2 2
1 1 1 1 1 1 1

f
k k k k k k k kJ Aw Bx b x d e+ + + + + + += + − + Λ − + 2

1+ (2.70)

Since A is non-singular, we can set for any 1kx +

 []1
1 1k kw A Bx b−

1k+ + += + (2.71)

there by annihilating the first term in (2.70). The optimal forecast is then obtained by

solving

 1 1 1k k kx d+ + +Λ = (2.72)

28

A little reflection reveals that 1k+Λ in (2.72) is not in general an upper triangular matrix.

This can be easily obtained by multiplying both sides of (2.72) by an orthogonal matrix

 such that 1k+Γ 1 1 1
f

k k k+ + +Γ Λ = Λ , upper triangular matrix and 1 1 1
f

k k kd d+ + +Γ = .

 Hence (2.72) becomes

 1 1 1
f f
k k k

fx d+ +Λ = +

1

 (2.73)

Hence () 1

1 1
f f

k k
f

kx d
−

+ += Λ +

1

 can be easily obtained by back substitution. This gives us the

pair (1,
f f

k kx d+ +) and the cycle continues.

2.4 The Ensemble Kalman Filter

 The implementation of the Kalman filter or the EKF in large dimensional

meteorological problems is not feasible due to the huge computational cost and also due

to the unbounded error growth caused by the closure problem (Evensen 1992). The

alternative is to implement reduced rank approximation of the full-rank covariance

matrix. There are two types of reduced-rank approximations. The first is the explicit

reduced-order filter (Lewis et al. 2006; Evensen 2007; Lakshmivarahan and Stensrud

2009). If at time k = 0, 0

^
x is the initial estimate of the unknown atmospheric state and

is the covariance of the estimate0

^
P 0

^
x . Then

1/2 1/2

0

0 0

^
[(1:) (1:)][(1:) (1:)]

^ ^
(1:) (1:),

T

T

P V r r V r r

S r S r

Λ Λ=

=

29

where 1/ 2
0

1

^
(1:)

r

i
i

S r iλ ν
=

=∑ Then

0 0

^ ^
(1:) nxrS S r R= ∈ is the rank r square root of . Thus

is called a full rank if r = n or a reduced rank square root if r < n. Rank r square root

of a matrix contains r largest eigenvalues and vectors of to get the maximum spread of

the ensemble. The second class of implicit reduced-order filters for nonlinear problems

where in the forecast

0

^
P

0

^
S

0

^
S

1
f

kx + , the estimate
^

1kx + and their covariances 1
f

kP + and respectively

are computed using the standard Monte Carlo framework as the sample moments of an

ensemble of size N much smaller compared to n, the dimension of the state space of the

model. The following section describes the creation of the ensemble using the Monte

Carlo framework.

^

1kP +

(a) Creation of Initial Ensemble

 To create an initial ensemble given (0

^
x , 0

^
S), we compute the initial (one-sided)

ensemble of size N where 1 < N < n. The i
th

 member of the initial ensemble (Lewis et al.

2006) is given by

 , (2.74)
^

0 0 0 0

^ ^
() ()i x S y iξ = +

where for 1 ≤ i ≤ N, and r < N Clearly, 0 0() , () (0,)ry i R y i N I∈ ∼ 0

^
x is the mean of this

initial ensemble . Let
^

0{ () :1 }i i Nξ ≤ ≤

 , (2.75)
^

0 0 0 0 0

^ ^ ^
() () ()a i i x S y iξ= − =

30

for 1 ≤ i ≤ N denote the anomaly associated with the i
th

 ensemble member and let
^

0 ()iξ

^ ^ ^ ^

0 0 0 0[(1), (2),..... ()] nxNA a a a N R= ∈ (2.76)

denote the n×N matrix of anomaly vectors. In ensemble filtering, the information about

the state and its covariance are extracted from the pair (0

^
x , 0

^
A). Let 1 (1,1.....1)T NR= ∈

denote a column vector all of whose elements are 1s. Since 0

^
x is the ensemble mean, it

can be verified that 0

^
A 1 = 0 and

 0 0
0 0

^ ^ ^ ^() ()
1

T
TA A S S

N
=

−
. (2.77)

That is,
^ ^

1/ 2
0 (1)S N A−= − 0 this is the scaled anomaly matrix. This relation shows that

there is a natural relation between ensemble methods and reduced rank filtering.

(b) Creation of Forecast Ensemble

 To create a forecast ensemble at time k, we assume inductively that the pair

(
^
kx ,

^
kA) is given, where

^
kA 1 = 0. For 1 ≤ i ≤ N, compute a deterministic forecast

ensemble

 , (2.78)
^

1

^ ^
() (() (())f

k k ki M i M x a iξ ξ+ = = + k

using the nonlinear model M(·) where is the i
^

()ka i
th

column of the anomaly matrix
^

kA .

Expanding (2.36) in a first-order Taylor series yields

 , (2.79) 1

^ ^ ^
() () () ()f

k k M ki M x D x a iξ + ≈ + k

31

where DM(x) is the Jacobian of M(x) with respect to x. Combining this expression with

the relation 0

^
A 1 = 0 indicates that the sample average of this forecast ensemble is given

by

 1

^
()f

k kx M x+ = . (2.80)

Define 1
f

kA + as the forecast anomaly matrix whose i
th

 column is given by 1()f
ka i+

 1 1 1() () ()f f f
k k ka i i x iξ+ + += − ≤ ≤, 1 i N . (2.81)

Then, the pair (1
f

kx + , 1
f

kA +) constitutes the forecast ensemble at time (k+1). It can be

verified that 1
f

kA + 1 = 0 and

 1/ 2
1 1(1) f f

k kN A S−
+ +− =

 ,

which is the rank q square root of 1
f

kP +

(c) Creation of Analysis Ensemble

 Given an ensemble forecast (1, 1
f f

k kx A+ +) and a new observation , the data

assimilation step computes the new analysis ensemble (

1kz +

^ ^

1,k k 1x A+ +). All the known

algorithms for ensemble filtering essentially differ in the details of this data assimilation

step and can be classified into two groups – stochastic and deterministic methods.

2.4.1 Stochastic Method

 Earlier studies of the application of ensemble filtering in geophysical problems

(Evensen 1994) indicates that if the same observation zk+1 are assimilated in each of the

forecast ensemble members, the resulting covariance and the spread of the ensemble is

32

less than the theoretical values dictated by the Kalman filter. As the filter evolves in time,

this reduction in covariance leads to the collapse of the ensemble and the spread shrinks

rapidly. However, assimilating perturbed observations can compensate this deficiency.

This scheme is first implemented by Houtemaker and Mitchell (1998) and later clarified

by Burgers et al. (1998). In this type of method, the i
th

member of the analysis ensemble

at time (k+1) is computed as

 , (2.82)
^

1 1 1 1 1 1() () [() ()]f
k k k k k ki i K z i Hξ ξ ξ+ + + + + += + − f i

where K is the Kalman gain in the square root form and is the i1()kz i+

th
perturbed

observation given by

 1 1 1() ()k k kz i z v i+ + += + . (2.83)

 The covariance of the analysis ensemble generated using (2.41) matches the

theoretical value given by the Kalman filter as N →∞ (Houtemaker and Mitchell 1998;

Burgers et al. 1998; Lewis et al. 2006). While the use of perturbed observations improves

the performance of the ensemble Kalman filter, side effects can occur due to sampling

errors, especially when N is small. Since ensemble sizes used in meteorological

applications typically are small, other strategies to compensate for the underestimation of

the analysis covariance are needed.

2.4.2 Deterministic Method and its Variants

 Ensemble filtering approaches designed without perturbed observations belongs

to the deterministic method. The ensemble square root filter (EnSRF) (Whitaker and

Hamill 2002), ensemble transform Kalman filter (ETKF) (Bishop et al. 2001) and the

33

ensemble adjusted Kalman filter (EAKF) (Anderson 2001) are examples of deterministic

method that do not require the observations to be perturbed. All these method have one

unifying theme that they all exploit combinations of ideas from square root of covariance

matrices along with the reduced rank approximations resulting from the small ensemble

size. The general idea behind this type of method is that given 1
f nxN

kA R+ ∈ , find a

transformation T such that

 , (2.84)
^

1 (f
kA T A+ = 1)k+

where
^

1kA + satisfies and
^

11 0kA + =

^ ^

1 1
1

()
1

T
fk k

k
A A P

N
+ +

+→
−

,

as the actual value as N increases. All the known algorithms of this type realize T(·) as a

linear transformation. Accordingly,
^

1kA + is obtained from 1
f

kA + either by a left

multiplication by a matrix

nxn
LT R∈ or by a right multiplication by NxN

RT R∈ . The

ETKF computes

^

1 1
f

k k RA A T+ += , (2.85)

whereas EAKF computes

^

1 1
f

k L kA T A+ += . (2.86)

Since NxN
RT R∈

and , ETKF requires less computations compared to EAKF

unless the EAKF is implemented in the sequential least squares framework in which case

the computational requirements are the same. However,

nxn
LT R∈

^

1kA + generated by EAKF

34

automatically satisfies . Clearly, one needs to impose additional conditions on T

to ensure that .

^

11 0kA + = L

^

11 0kA + =

2.4.2.1 The Ensemble Kalman Square-Root Filter

 The EnSRF proposed by Whitaker and Hamill (2002) is used extensively in

storm-scale radar data assimilation studies (Snyder and Zhang 2003; Zhang et al. 2004;

Dowell et al. 2004; Tong and Xue 2005; Xue et al. 2006; Aksoy et al. 2009). This method

also is used in this study to assimilate radar observations (see Chapters 3 and 4).

 Following Whitaker and Hamill (2002), the EnSRF algorithm uses nonlinear

forecast model and the observations also are a nonlinear function of the state while the

assimilation of observations is a linear. The observations are assimilated serially, one

observations after another, which is an approximation based on the assumption that

observation errors are uncorrelated in space and time. Therefore, the observation error

covariance matrix Rk+1 reduce to scalar (variance) each time an observation , 1 1j k kz z+ +∈ is

assimilated and so does the matrix 1 1
f T

k k kH P H+ + . We know, the Kalman gain equation

(2.7) is

1

1 1 1 1 1 1 1
f T f T

k k k k k k kK P H H P H R
−

+ + + + + + +⎡ ⎤= +⎣ ⎦ .

Now

 , 1 1 1 1 1 1 1 1(,) [, ()f T f f T f f
k k k k k k k kP H Cov x x H Cov x H x+ + + + + + + +≅ =]

⎤+ ⎦

and for one observation assimilation, (2.7) reduces to

 . (2.87)
1

1 1 1 1 1 , 1, () [()] ()f f f
k k k k k j kK Cov x H x Var H x Var z

−

+ + + + + +⎡ ⎤ ⎡= ⎣ ⎦ ⎣

35

Here 1 1(f
k k)H x+ + is the conversion of the model variables to the observation type. Now the

numerator (or the background error covariances) of the Kalman gain K is estimated from

the forecast ensemble as follows:

 1 1 1 1 1[, ()f T f f
k k k k kP H Cov x H x+ + + + +=]

1 1 1 1 1 1
1

1 [() ()][(()) ()
1

N
f f f f

k k k k k k
i

x i x N H x i H x
N + + + + + +

=

= − −
− ∑] . (2.88)

Here is the ensemble mean of the model variables converted to the

observation type i.e.

1 1()f
k kH x+ +

1 1()f
k kH x+ + = 1 1

1

1 ()
N

f
k k

i

H x i
N + +

=
∑ . The denominator is estimated as:

 1 1 1 1 1[(f T f
k k k k kH P H Var H x+ + + + +=)]

2______________

1 1 1 1
1

1 [(()) ()
1

N
f

k k k k
i

H x i H x
N + + + +

=

= −
− ∑]f , (2.89)

where

 1
1

1() ()
N

f
k

i
1

f
kx N x

N+
=

= ∑ i+ . (2.90)

 The covariance calculation in the numerator of K tends to be small at large

distances from the scalar observation and likely contains considerable sampling error due

to relatively small ensemble sizes (Houtekamer and Mitchell 2001). To overcome this

problem, an observation is allowed to update only state variables at nearby grid points by

multiplying K by a weight W that is a function of distance from the observation

(following Gaspari and Cohn 1999). This covariance localization function that defines W

decreases smoothly from 1 at the observation location to 0 at the edge of an elliptical

influence region of a particular radius.

36

 To account for the unperturbed observations, a α factor also is included in the

equation (Whitaker and Hamill 2002):

1

1
1 1 1 1 11 ()f T

k k k k kR H P H Rα
−

−
+ + + + +

⎡ ⎤= + +⎣ ⎦ . (2.91)

The ensemble mean and the members are updated according to the following equations:

_____________^

1 1 , 1 1() () ()f
k k j k k kx N x N WK z H x+ + + + 1

f
+

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
 (2.92)

______________^ ^

1 1 1 1 1 1 1 1() () (() ()) () (())f f f f
k k k k k k k kx i x N x i x N WK H x H x iα+ + + + + + + +

⎡ ⎤
= + − + −⎢ ⎥

⎣ ⎦
, (2.93)

where over bar indicates the ensemble mean and i is an index to identify a particular

ensemble member. Again, Hk+1 is the observation operator that maps model state to the

observation type and locations. The ensemble
^

1()kx i+ calculated from (2.93) then becomes

the prior ensemble for the assimilation of the next observation and the algorithm

continues until all observations are processed at time k+1.

To summarize, the data assimilation procedure for the EnSRF is as follows:

1) First create an initial ensemble of model states at time k = 0.

2) Advance the ensemble to a make forecasts to the first observations time k = 1.

3) Assimilate observations serially using (2.92) and (2.93) until all the observations

valid at time k = 1 are assimilated.

4) Advance the ensemble to make a forecast to the next observations time k = 2.

5) Repeat step 3 and 4 until all available observations are assimilated.

37

2.5 Summary

 This chapter presents the mathematical formulation of the data assimilation

techniques that are implemented in Chapters 3, 4 and 5 of this research endeavor. The

chapter begins with the mathematical formulations of the traditional Kalman filter and

information filter data assimilation technique followed by the derivations of the variants:

EKF and EIF. While the traditional Kalman filter operates by updating the mean and its

covariance, the ensemble Kalman filter approach approximates a finite number of

members and the filtering algorithm is applied to every ensemble members from which

the required mean and the variance are computed as the standard sample moments. One

variant of the ensemble Kalman filter, which is widely used for large scale data

assimilation, is the EnSRF data assimilation technique and the formulation of the EnSRF

is presented at the end of this chapter. The EnSRF is implemented in Chapter 3 and

Chapter 4 of this dissertation to assimilate radar observations in NWP model. However,

the technique assimilates observations serially as shown earlier. Therefore, while the

EnSRF data assimilation technique shows promise for radar observation assimilation, the

technique is computationally very expensive when the number of observations to

assimilate increases. To answer this question, the EIF is implemented in Chapter 5 of this

dissertation using the simple Lorenz model and compared against the benchmark EKF

data assimilation technique.

38

Chapter 3

Data Assimilation using Ensemble Square-Root Filter:

Impact of High Temporal Frequency Observations

3.1 Introduction

 In this chapter, the EnSRF data assimilation technique described in Chapter 2 is

used to assimilate high temporal frequency synthetic radar observations. The EnSRF data

assimilation technique has shown great promise in assimilating radar observations into

NWP model and is widely used by the storm-scale data assimilation research community

(Snyder and Zhang 2003; Dowell et al. 2004a, b; Tong and Xue 2005; Jung et al. 2008a

and b). However, the EnSRF technique assimilates observations serially, therefore the

technique is computationally feasible when the size of observation vector m is less than

the size of model state n (m < n). Past literature (Snyder and Zhang 2003; Zhang et al.

2004; Dowell et al. 2004; Xue et al. 2006) also suggests that reasonable analyses of an

ongoing severe weather event can be incorporated into the NWP model from assimilating

approximately 10 volume scans of WSR-88D radar observations. However, part of the

challenge in using ~5-min WSR-88D radar observations to initialize thunderstorms in

numerical models is that a number of storm features evolve on a timescale of minutes and

are poorly sampled by ~5-min data. Since accurate analyses require approximately 10

radar scans, the amount of time needed to obtain these scans from the WSR-88D is at

least 45 min. However, the PAR can produce 10 radar scans in less than 10 min. Thus, it

is reasonable to expect that PAR observations can generate accurate storm analyses very

quickly using a shorter assimilation period.

39

 Therefore, in an attempt to evaluate the value of PAR observation assimilation for

a shorter period of time, a set of observing system simulation experiments (OSSEs; Lord

et al. 1997) within a perfect model framework are conducted using the EnSRF data

assimilation technique. However, to reduce the computational expense of assimilating

huge number of observations using EnSRF, synthetic radar observations are generated at a

coarser 1 km range resolution instead of the 0.25 km interval available from the

operational radars. One experiment assimilates 3 volumes of WSR-88D radar

observations and another experiment assimilates 15 volumes of PAR observations during

the short 15-min period. The analyses and the forecasts from WSR-88D and PAR

observation assimilations are then compared to determine the accuracy of the storm

represented in the analyses and forecast. This chapter is the basis for the paper Yussouf

and Stensrud (2010a).

Description of the storm-scale model used in this study is given in Section 3.2 for

the generation of the observations in Section 3.3. The experimental design is described in

Section 3.4. Section 3.5 presents the results obtained from the EnSRF analyses and

forecasts, followed by a summary in Section 3.6.

3.2 Description of the COMMAS Model

 The NWP model used for this study is the Collaborative Model for Multiscale

Atmospheric Simulation (COMMAS; Wicker and Wilhelmson 1995) model. The

COMMAS is a three-dimensional model which was developed in the early 1990s to study

the dynamics of supercells and tornados. Over the years the model has changed

considerably in terms of equation set and numerical algorithms. The prognostic variables

40

for this model include the three velocity components (u, v, and w), pressure in the form of

the perturbation Exner function (π), potential temperature1 (θ), mixing coefficient (km),

water-vapor mixing ratio (qv), cloud-water mixing ratio (qc), and hydrometeor mixing

ratio (q1………r), where r, the number of hydrometeor categories depends on which of

several options in COMMAS are chosen for the precipitation-microphysics scheme. For

this study, the Gilmore et al. (2004) version of the Lin et al. (1983) precipitation-

microphysics scheme is used. This scheme includes one rain category and three ice

classes: thus q1…..4 = qr (rain), qi (cloud ice crystals), qs (snow), and qh (hail graupel). The

moist processes represented in the model are cloud condensation, cloud and rain

evaporation, autoconversion of cloud to rain, ice-crystal initiation, vapor deposition and

sublimation for ice species, freezing, melting, accretion, aggregation, rain shedding by

wet hail/graupel and precipitation fallout (Gilmore et al. 2004).

 This model is a three-dimensional grid with nx, ny and nz points in the x, y, and z

directions giving rise to ng = nxnynz grid points. At each grid points, all these prognostic

variables are represented as dependent variables of x, y and z. The integration process can

be denoted by 1 ()k kx M x+ = where n
kx R∈ denotes the n real vector called the model

state at time k = 0, 1, 2, 3…. and the n-dimensional Euclidean space Rn is called the

model space. The mapping : n nM R R→ denoted by

is a vector valued nonlinear function of the

vector

1 2() (() , () ,. ())T
k k k n kM x M x M x M x=

kx defining the state transition rule of the model. When the PDEs are approximated

using the finite differencing schemes, errors are introduced resulting from the finite grid

1 The temperature a parcel of dry air would have if brought adiabatically (i.e., without transfer of heat or
mass) to a standard pressure level of 1000 mb.

41

length, truncation in the spectral expansion and other approximations and simplifications.

These errors introduce an additional term into the equations 1 1()k k kx M x w+ += + . It is

generally assumed that has mean n
kw R∈ () 0kE w = and covariancecov . It is a

sequence of Gaussian white noise representing model error where and

 .

()kw Q= k

(0,)k kw N Q∼

nxn
kQ R∈

 The PDEs in this model include three momentum equations, the pressure and

thermodynamic equations, six moisture and water equations, the turbulent kinetic energy

(TKE) as well as the Smagorinsky mixing scheme equations (Wicker and Scamarock

2002; Coniglio et al. 2006).

The momentum equations are

_ _

3()i
p ijk j k k i i

i

du C f u u
dt x

B Dπθ δ∂
= − −∈ − + +

∂
 (3.1)

_

_

_ 0.61 v v l i
l i

B g q q qθ θ

θ
q

⎡ ⎤− ⎛ ⎞⎢ ⎥= + − + +⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

∑ ∑ (3.2)

 2
3

ji
i m i

i i i

uuD K
x x x

δ j E
⎡ ⎤∂⎛ ⎞∂∂

= + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
. (3.3)

 The ui (i = 1, 2, 3) are the velocities u, v and w respectively, θ is the potential

temperature, π is the perturbation Exner function used for the pressure (which is the

deviation of pressure from the initial unperturbed state), ql, qi and qv are the mixing

ratios of liquid, ice and vapor hydrometeors, Cp is the specific heat at constant pressure.

42

Bars over the individual variables refer to the initial undisturbed state which is function

of z only. These equations include the Coriolis force, with f being the Coriolis parameter.

The operator d/dt denotes the substantial derivative given by

i
i

d u
dt t x

∂ ∂
≡ +
∂ ∂

.

Buoyancy effects (B) from hydrometeor loading are accounted for in the summations

over the liquid and ice hydrometeor mixing ratios, respectively. The terms denoted by Di

represent the subgrid turbulent mixing, Km is the momentum eddy mixing coefficient and

E is the subgrid-scale kinetic energy.

 The equation for thermodynamic and hydrometeor equations are given by

 d D M
dt θ θ
θ
= + , (3.4)

where Mθ refers to microphysical terms and Dθ to turbulence terms.

m
i i

D K
x xθ

θ⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

_

_

()1 iT ii
qi qi

V qdq D M
dt z

ρ

ρ

∂
= − + +

∂
, (3.5)

where and , , , , ,i v c r i sq q q q q q q= h
i

qi m
i i

qD K
x x
⎛ ⎞∂∂

= ⎜ ⎟∂ ∂⎝ ⎠
.

43

The first term on the right hand side of (3.4) represents the hydrometeor fallout and the

Mqi represent the microphysical terms. The term VT represents terminal velocity. The

model includes multiple options for precipitation microphysical schemes. The LFO

scheme used in this study has a terminal velocity for all liquid and ice hydrometeors,

except cloud water.

 The pressure equation is

_

2

_ _

()s i

i
p v

C u F
t xC

π
ρπ

ρθ

∂∂
+ =

∂ ∂
. (3.6)

As in most cloud-scale models the TFπ term is set to zero as it primarily changes the

mean pressure within the domain that impacts the dynamical solution minimally.

The parameterization of the turbulent mixing coefficient is represented using a

prognostic turbulent kinetic energy (TKE) equation to represent the energy associated

with the subgrid scale eddies. The TKE equation represents the effects of buoyancy,

shear, diffusion and dissipation and is expressed as:

1/2 1/2

[] [] 2
2 2
m r m

m
i i

C l PC l C EdE dEshear buoy K
dt x x l

⎡ ⎤∂
= − + −⎢ ⎥∂ ∂⎣ ⎦ 2

e (3.7)

1/ 2
m mK C E l= .

44

Here Km is the momentum eddy mixing coefficient, E is the subgrid-scale kinetic energy

and . The length scale is computed as the cube root of the computational

grid volume or as a function of distance from the lower boundary.

1/3(l x y z= Δ Δ Δ)

k

 The numerical integration scheme closely follows that of Wicker and Skamarock

(2002). The 3rd order Runge-Kutta time-split (RK3) scheme is chosen (Wicker and

Skamarock, 2002) for time integration while 5th and 3rd order finite difference

approximations are used for the spatial derivatives in horizontal and vertical directions,

respectively. If the model equation is 1 ()kx M x+ = , the RK3 integration takes the form of

3 steps to advance a solution kx to k kx Δ+ :

* ()

3k k k
kx x M xΔ

= +

** *()

2k k k
kx x M xΔ

= +

 **()k k k kx x kM xΔ Δ+ = + ,

where is the model timestep. The model incorporates a vertically stretched grid and

supports open and periodic lateral boundary conditions.

kΔ

 The COMMAS modeling system software is written in Fortran-77, Fortran-90

and Python scripts. The model outputs are written in netCDF format. The model supports

VIS5D, NCAR graphics and NCL for graphics.

45

3.3 Observations

3.3.1 The Truth Simulation

 The model domain for the truth simulation is 100 km long in the horizontal (x and

y) and 18 km tall in the vertical (z) direction. The resolution in the horizontal direction is

x yΔ = Δ = 1 km and the domain is vertically stretched with zΔ =100 m vertical spacing at

the bottom to =700 m vertical spacing at the domain top. Thus nzΔ x= ny = 100 and nz =

45 grid points. Hence ng = nx ny nz = 4.5 x 105 and the number of variables L = 10. The

origin of the Cartesian coordinates (x, y, z) is at the lower left corner (southwest) corner

of the domain. The model is initialized with the classic Weisman-Klemp analytic

sounding (Weisman and Klemp, 1982) in a horizontally homogeneous environment. This

initial sounding (vertical u, v , θ, and qv profiles) with a high shear produce split storms

which are the model equivalent of the observed supercells. An ellipsoidal thermal bubble

(temperature perturbations) with 10 km radius in the horizontal direction and 1.4 km

radius in the vertical direction is placed at the center of the domain to initiate a supercell

thunderstorm at t = 0 min. A temperature excess of 2.5 K is specified at the center of the

bubble and decreases gradually to 0 K at the edge. The model time step (Δk) for the

simulation is 6 sec. The simulation is allowed to evolve through 2 hours of model time.

The ellipsoidal thermal bubble develops into a convective cell within the first 30 minutes

of the simulation and the first echo is seen by the radar emulator at around k = 25 min.

Over the next 30 min, the convective cell splits into two cells, one moving right towards

the southeast and the other moving towards the northwest. During the second hour of the

simulation, the right-moving cell tends to dominate the system with a few short lived

smaller cells developing in between the two main cells. Since the storms naturally move

46

out of the 100 x 100 km domain in this time period, the domain grid is translated at u =

17 and v = 7 ms-1 to keep the main storm near the center of the model domain.

 The simulated truth is run on a SGI machine (Altix 3700BX2 system) with 64

processors, 64 GB of RAM and operates on Linux environment (SUSE Linux Enterprise

Server 10). The time required to run the truth is 1 hour.

3.3.2 Radar Emulator Design and Observations Generation

 The most significant difference between the PAR and the WSR-88D is the

antenna. While the phased array antenna forms a beam electronically by controlling the

phase of 4,352 transmit/receive elements, the WSR-88D’s parabolic antenna forms a

beam from a feedhorn. Thus the steering of the beam in PAR is done electronically from

a stationary pane while it is accomplished mechanically, by rotating and elevating the

antenna for WSR-88D. The electronic steering of the beam from PAR provided higher

temporal frequency observations than the WSR-88D. Thus while PAR takes less than a

minute to scan a complete volume of the severe weather events, the conventional WSR-

88D takes about 5 minutes to scan the same event. Therefore while 88D takes 5 minutes

to get a complete picture of the atmosphere, PAR captures 5 snapshots of the developing

weather events during the same 5-min period The PAR and WSR-88D antennas share

three similarities: wavelength (S-band: 9.4-cm vs. 10-cm, respectively), range resolution

(both 250 m), and the PAR can mimic WSR-88D VCP scan.

 A radar emulator is created in this study using Fortran-90 programming language

to generate artificial WSR-88D and PAR observations from the truth run. Simulation of

radar observations also are done in several studies (Xue et al., 2006; Tong and Xue,

47

2008a and b; Jung et al. 2008a and b; Lei et al. 2008). The input to the radar emulator is

the 3-D gridded model variables from the simulated supercell storm which is stored in

netCDF format. The model output of the truth is in Cartesian coordinates and the

emulator scans the data in a conical surface in spherical coordinates. To allow for PAR

and WSR-88D radar antenna, the behavior of the radar emulator is controlled by

specifying radar parameters (eg. beamwidth, range and azimuthal intervals, etc) and

scanning strategy (Table 3.1). While in reality the radar reflectivity and radial velocity

observations are generated from averaging radar pulses, the radar emulator in this study

constructs the reflectivity and radial velocity values by averaging reflectivity and wind

components from the three-dimensional, gridded model data within the beamwidth area

using a simplified version of a volume averaging technique (Wood et al. 2009). The radar

observations are created on a spherical coordinate system centered on the radar. The code

for the radar emulator is given in the Appendix A.

Table 3.1. Radar Emulator Control Parameters

Control Paramters
Radar Location
Radar Type (PAR or WSR-88D)
Volume Coverage Pattern (VCP) Modes
Beamwidth
Effective Beamwidth
Sampling Interval (Range and Azimuthal)

 The observation operator H in (2.3) for reflectivity follows the relationships of

Smith et al. (1975) and is as follows:

 er eh esZ Z Z Z= + + , (3.8)

48

where Zer, Zes, and Zeh are the equivalent reflectivity factors for rain, snow, and hail,

respectively (in mm6

m-3) and Z is the mean reflectivity factor. The conversion of the

model variables into these reflectivity components goes as follows:

 The rain component is calculated from

 , (3.9) 1.75 0.75 1.75
0() () ()er w r a rZ c p N qπ − −= ρ

ρ

where c = 7.2 x 10
20

, ρw is the density of water in kg m-3, N0r is the intercept parameter

in mm-4

in the assumed inverse exponential drop-size distribution, ρa is the air density in

kg m-3, and qr is the rainwater mixing ratio in g kg-1.

 The snow component of reflectivity (Zes) is defined to be

 (3.10) 2 2 1.75 0.75 1.75()(/)() () ()es iw s r s os a sZ c k N qρ ρ πρ ρ− −=

 for temperatures below freezing (dry snow) and

 (3.11) 1.75 0.75 1.75
0() () ()es s s a sZ c p N qπ − −=

for temperatures above freezing (wet snow), where Kiw = (0.21/0.93) is the ratio of the

dielectric constants for ice and water, ρs is the density of snow in kg m-3, N0s is the

intercept parameter for the distribution of snow in mm-4, qBs is the snow mixing ratio in

kg kg and the other quantities are the same as for Z-1

er.

 The hail component of reflectivity is calculated from

 (3.12) 2 2 1.75 0.75 1.75()(/)() () ()eh iw h r h oh a hZ c k N qρ ρ πρ ρ− −=

49

where ρh

is the density of hail in kg m-3, N0h

is the intercept parameter for the

distribution of hail in

mm-4, and qh is the hail mixing ratio in kg kg-1. The reflectivity

0 0 0(, ,)Z r θ φ located within the radar sampling volume centered at range r0, elevation θ 0

and azimuth φ 0 is expressed as

 0 0 0(, ,)
ijk ijk

vol

ijk
vol

Z
Z r

ω
θ φ

ω
=
∑
∑

 (3.13)

and the corresponding radial velocity (0 0 0(, ,)v r θ φ) as,

 0 0 0(, ,)
ijk ijk ijk

vol

ijk ijk

V Z
v r

Z
vol

ω
θ φ

ω
=
∑
∑

 (3.14)

where ijkZ and are the model reflectivity and radial velocity respectively, at model

grid point (i,j,k), and

ijkv

ijkω is the beam weighting function. The radial velocity at

model grid points are calculated from

ijkV

 sin() cos() cos() cos() () sinijk ijk ijk ijk TV u v w Vφ θ φ θ= + + + θ (3.15)

where uijk, vijk and wijk are the model grid point wind components and VT is the terminal

fall speed of hydrometeors. Now, the mean reflectivity and Doppler velocity values in

(3.14) and (3.15) at the center range, azimuth and elevation of the effective resolution

volume within the beamwidth is approximated by computing the weighted mean of

50

Figure 3.1 Schematic illustration of the a) vertical resolution volume and b) the

horizontal resolution of the radar beam. Points 1 through 8 approximate a weight of 0.50,

points 9 through 12 approximate a weight of 0.84 and center point 13 approximates a

weight of 1.0 for the simplified volume averaging technique. The effective beamwidth

(EBW) is 1.39 and the vertical beamwidth (VBW) is 0.89.

51

individual doppler velocity and reflectivity values over 13-points within the resolution

volume as shown in a schematic illustration in Figure 3.1.

 The 8 outer points within the volume carry a constant weight of 0.50, the 4 points

in the inner ellipsoid has a weight of 0.84 while the center point has a weight of 1.0. A

trilinear interpolation of the model grid points are used to obtain these 13 points in the

resolution volume. Finally, the mean radar reflectivity factor Z is converted to

logarithmic radar reflectivity in units of dBZ using

 1010logdBZ Z= (3.16)

 To account for the measurement and sampling errors for radial velocity and

reflectivity observations , random numbers are drawn from a Gaussian distribution of

zero mean and standard deviations of 2 ms

kv

-1
and 2 dBZ, respectively, and are added to the

observations. The WSR-88D and PAR antenna half-power beamwidth is assumed to be

0.89o with 1.0o azimuth interval and a 1.39o effective beamwidth. The Volume Coverage

Pattern (VCP) 112 precipitation mode scanning strategy is used to scan the weather. The

VCP 11 mode (Figure 3.2) consists of 14 elevation angles or sweeps, so each volume

scans contains 14 sets of observations at different angles.

 The radar reflectivity observations assimilated include 0 dBZ (non-precipitating)

observations. A full volume scan on average contains about 3-4 times as many non-

precipitation observations as the supercell storm is isolated in nature. Previous studies

(Tong and Xue 2005; Aksoy et al. 2009) shows that assimilating clear air reflectivity

observations (0 dBZ) helps to suppress the spurious convective cells around the main

storm. The radial velocity observations are assimilated only where the observed

2 The VCP 11 elevation angles are : 0.05o, 1.45 o, 2.40 o, 3.30 o, 4.30 o, 5.20 o, 6.20 o, 7.50 o, 8.70 o, 10.0 o,
12.0 o, 14.0 o, 16.70 o and 19.50o

52

H
ei

gh
t (

km
) A

bo
ve

 R
ad

ar
 L

ev
el

Horizontal Range (km)

Figure 3.2 Radar scan angles for VCP 11 scanning mode. There are 14 elevation angles

in this mode and the beam width is 0.89.

53

reflectivity values are greater than 10 dBZ. Radial velocity below 10 dBZ does not

provide useful storm information and thus this threshold helps in reducing the number of

radial velocity observations. A snapshot of radar reflectivity and radial velocity

observations at 7.5Po elevation angle (which is about 5.05 km above the ground) created

using the radar emulator is shown in Figure 3.3. The radar is located at the southwest

corner, outside of the computational domain of Fig 3.3a. The radar emulator captures the

main feature of the storm (Figure 3.3b) even though small scale details are missing when

compared to the reflectivity from the truth run (Figure 3.3a). The snapshot of the radial

velocity (Fig 3.3b) at the same elevation angle shows that the wind is moving away from

the radar.

 While the radar data from the radar emulator is generated as realistic as possible,

it is however distinct from the real radar observations. The real WSR-88D radar

observations have a range gate spacing of 250 m for radial velocity and 1 km for

reflectivity while the range gate spacing for PAR for both radial velocity and reflectivity

are 1 km. To reduce the heavy computational burden of assimilating observation using

EnSRF data assimilation technique, the reflectivity and radial velocity observations are

created at a coarser 1.0-km range sampling interval instead of the 0.25 km interval

available from both WSR-88D and PAR radars so that the number of observations m is

less than the number of model state n. To assimilate the WSR-88D observations,

synthetic radar observations are generated for 2-3 sweeps every minute rather than

assuming the entire volume is collected simultaneously. Out of the 14 sweeps, the lower

12 sweeps of observations are generated 3 sweeps per minute for the first 4 min with the

remaining upper 2 sweeps valid for the fifth minute of the volume scan. Observations for

54

Figure 3.3 Synthetic radar observations created from (a) the truth run (model reflectivity

contours in dBZ and the horizontal wind vectors in ms-1 at 5.053 km above ground, and

the synthetic radar observations of b) reflectivity (dBZ) and c) doppler velocity (ms-1) at

7.5o elevation angle in spherical radar coordinates at t = 39 min.

55

PAR complete volume scan is available every 1 min, the WSR-88D observations are

available every 5 minutes, with 2-3 elevations every minute (Figure 3.4).

3.4 Experimental Design

 In this study, a 40 member ensemble is used to assimilate the PAR and WSR-88D

observations. The domain size and grid resolution of the ensemble members are identical

to the truth run. The domain of the ensemble also moves at u = 17 and v = 7 ms-1

following the truth run to keep the storm inside the domain. The cutoff radius for

covariance estimation of the filter is 4 km in both horizontal and vertical directions. The

reflectivity and radial velocity observations are assimilated in the filter serially. Each

time an observation is assimilated, the ensemble mean and each of the ensemble members

are updated for each model variable at each grid point within 4 km of that observation

location. The 40 member ensemble forecast runs are distributed among a number of

processors using the shared memory parallelization via OpenMP (Open Multi-

Processing).

Initializing the Ensemble:

 Each member of the 40 member ensemble is initialized from the same classic

Weisman-Klemp sounding in a horizontally homogeneous environment as in the truth. To

facilitate the development of storms, 7 thermal bubbles (ellipsoidal θ perturbations) at

random locations within the 30 km to 70 km portion of the domain in x and y directions

and within 0.25 to 2.25 km in z direction are introduced at the initialization time (k = 0)

56

Figure 3.4 Synthetic a) WSR-88D and b) PAR radar observations using VCP 11 scanning

mode during a 5-min interval staring at 2100 UTC and ending at 2105 UTC. PAR scans

a complete volume of observations every minute, while WSR-88D scans 3 or 2 elevation

angles every minute with a complete volume scan every 5 minutes.

57

to each ensemble member. The region where the bubbles are added includes the region

where the synthetic radar echoes are seen later. The bubbles are 7.5 km radius in the

horizontal direction and 2.0 km radius in the vertical direction. The magnitude of the θ

perturbations at the center of the ellipsoid is 1.5 K and the magnitude decreases to 0 at the

edge. Each perturbation is positive, and the perturbations are additive in locations where

they overlapped. The ensemble members thus differ from each other in the location and

magnitude of the thermal bubbles but have an identical base environment. The bubbles

for 4 different ensemble members are shown in Figure 3.5. This method of initialization

is very helpful as the thermal bubbles initiate convective cells and produce the covariance

information needed for the ensemble to successfully assimilate the radar data. Many of

the cells are spurious in that they are outside the domain of radar observations and

survive throughout the assimilation. However, the assimilation of clear air observations

(0 dBZ) suppresses the unwanted spurious convective cells around the main supercell.

 The data assimilation procedure for the EnSRF is as follows:

1) First create an initial 40 member ensemble of model states at time k = 0 min.

2) Advance the ensemble to a make forecasts to the first observations time k = 25

min. During this time, the ellipsoidal θ perturbations (within the 40 x 40 km wide

and 2 km tall portion of the domain) initiate convective cells in the ensemble

members.

3) Assimilate observations serially using (2.50) and (2.51) until all the observations

valid at time k = 25 min are assimilated.

4) Advance the ensemble to make a forecast for 1 min to the next observations time

at k =26 min.

58

Figure 3.5 Temperature perturbations (bubbles) of ensemble members 2, 14, 21 and 35 at

1.4 km above the ground. The bubbles are added to a 40x40 km wide portion of the

100x100 km domain.

59

5) Repeat step 3 and 4 until all available observations are assimilated.

6) After assimilating all the observations, the ensemble members are set to make

forecasts.

 The model variables updated by the filter are u, v, w, θ, qv, qc, qr, qi, qs and qh.

Comparable assimilation results are obtained whether the filter is allowed to update km

and π or not. Therefore, to reduce computational time, these two variables are not

updated. One aspect of the EnSRF data assimilation scheme is the tendency for ensemble

spread to become too small. This is due to limited ensemble size and model errors. To

help maintain the storm and ensemble spread in the model during the assimilation cycles,

a random number of thermal bubbles (ellipsoidal θ perturbations) are added to the

members near the storm locations where the difference between the observed and

ensemble mean reflectivity field exceeds 30 dBZ. The thermal perturbations have a

temperature excess of 1.5 K at the center of the ellipsoid that decrease to zero at a

horizontal radius of 7.5 km and vertical radius of 2 km. A 5-min interval is used between

the thermal perturbations for WSR-88D observations assimilation to correspond roughly

to the time between complete volumetric radar scans. For PAR observations assimilation

the time interval is 2-min.

3.4.1 60-min Assimilation

 The first experiment assimilates 12 volume scans of storm observations from a

WSR-88D radar. It takes 1 h for a WSR-88D to produce the 12 volume scans, while

during this time period PAR can produce 60 volume scans of observations of the same

storm (Fig 3.6). After 60 min of data assimilations starting at k = 25 mins and ending at k

60

= 85 mins, the ensemble members are set free to make a forecast for the next 35 minutes.

During the first volume scan, the radars are located inside the model domain, southwest

relative to the storm. However the storm motion is away from the radar, such that the

radars are located outside the computational domain to the west-southwest of the

supercell during the last volume scan. The objectives of this experiment are to evaluate if

the analyses obtained from assimilating observations for a relatively longer period of time

(60-min) perform as expected and to verify that the EnSRF system is stable.

Figure 3.6 Schematic illustration of the EnSRF experiment for 60-min assimilation.

3.4.2 15-min Assimilation

 Unlike the previous experiment, this experiment assimilates radar observations for

a 15-min period starting at t = 25 min and ending at t = 39 min. During this 15-min

assimilation period, 15 volume scans of PAR observations and 3 volume scans of WSR-

88D observations are assimilated. After 15 min of data assimilation, the ensemble

members are used to produce a 50 min forecast. After initializing the ensemble members

at k = 0, the members are integrated forward in time for k = 25 min before the

assimilation of the first observations. The 40 ensemble members from the last

assimilation cycle are set to make an ensemble of forecasts for 50 min. A schematic

illustration of the time frame of the experiment is shown in Figure 3.7. The radar is

located at x = 3.6 km and y = 4.9 km off of the southwest corner of the domain during the

61

first volume scan. The initialization and other ensemble configuration details are identical

to the previous experiment.

Figure 3.7 Schematic illustration of the EnSRF experiment for 15-min assimilation.

3.5 Results

 The accuracy of the analyses and forecasts from PAR and WSR-88D observation

assimilations are evaluated using both statistical and graphical comparison of the

ensemble mean analyses and forecasts to the truth run. Since the objective is to evaluate

how well the supercell is captured in the analyses and determine accurate forecasts when

using the analyses as initial conditions, the analyses and forecasts errors are calculated

only in areas where there is precipitation. To do this, values are averaged over only those

model grid points where the total precipitation mixing ratio (sum of rain qr, snow qs, ice

qi and hail qh mixing ratios) is greater than 0.10 g kg-1. Statistical measures include the

root-mean-square error (rms) of the unobserved variables of u, v, w, t and total

precipitation mixing ratios calculated as the difference between the truth and the

ensemble mean analyses.

 2

1

1 (
N

i i
i

)RMSE F O
N =

= −∑ (3.16)

62

here Fi is the ensemble mean analyses, Oi is the observation, i is the index for the number

of model grid points.

The ultimate goal of storm-scale data assimilation is to increase warning lead

times by obtaining more accurate short term forecasts of severe storms events. Thus, to

evaluate the accuracy of the forecasts from both PAR and WSR-88D observation

assimilation, the 40 analyses from the last assimilation cycles are used as the initial

conditions for each of the ensemble members and short-term forecasts are produced. The

ensemble mean forecasts are then compared with the truth run.

3.5.1 Analyses

A. 60-min Assimilation

 The rms errors of the ensemble mean analyses from assimilating PAR

observations have a larger decrease in the rms errors for u, v, w wind components,

temperature and total precipitation mixing ratios compared to the WSR-88D observation

assimilation during the first 30-min of the assimilation period (Figure 3.8). This result is

not surprising as the PAR assimilation is using 5 times more observations over the same

time interval. By the end of the 60-min assimilation cycle, the magnitude of the rms

errors from both assimilations become close to each other. Horizontal plots of reflectivity

and vertical vorticity at the last assimilation cycle (t = 84 min) from PAR and WSR-

88D observation assimilation shows that both observations capture the split supercell

structure and the developing hook echo rather accurately (Figure 3.9).

 The maximum reflectivity and vertical vorticity and its extent also are comparable

between the two and closely match the truth. The 60-min long assimilation cycle

63

Figure 3.8 The rms errors of ensemble mean analyses vs. time(s) for the 60-min

assimilation experiment starting at t = 25 min and ending at t = 84 min for (a) u (msP-1),

(b) v (ms-1), (c) w (ms-1), (d) t (k) and (e) total precipitation mixing ratios (g kg-1) for

PAR (black lines) and WSR-88D (gray lines) observations assimilation. Values are

averaged over the domain at grid points where the total precipitation mixing ratios (sum

of qr, qh and qs) is greater than 0.10g kg-1. Note that 300s = 5.

64

Figure 3.9 Reflectivity and vertical vorticity at 4.076 km above ground at the 60-min

assimilation time (t=84 min) from (a and b) truth run and ensemble mean analyses from

(c and d) PAR observations and (e and f) WSR-88D observation assimilation.

65

suppresses almost all spurious convection in the ensemble members through the

assimilation of non-precipitating observations for both PAR and WSR-88D observation

assimilation. Overall, the results from this experiment supports the conclusion drawn in

earlier studies that 10 or more volume scans of radar observation assimilation generates

very accurate analyses of severe storm events (Tong and Xue 2005; Xue et al. 2006).

B. 15-min Assimilation

 The rms errors from both PAR and WSR-88D observation assimilations are seen

to decrease rapidly for all variables (Figure 3.10). However, the faster volume scan of

PAR observation generates significantly smaller rms error compared to the WSR-88D

assimilation for all variables. The increase and decrease (zig-zag pattern) in the error

curve from assimilating WSR-88D observations are more distinct than the PAR error

curve and corresponds to the error from assimilating observations during the 5-min long

volume scans. The reflectivity and vertical velocity structure of the supercell storm in

mid-levels from PAR observation assimilation more closely resembles the truth than that

of the WSR-88D observation assimilation (Figure 3.11). The PAR ensemble-mean

analyses captures the location, structure and the strength of the two main precipitation

cores as in the truth, while the WSR-88D analyses fail to capture the high-reflectivity

core of the northern cell and barely captures the high-reflectivity core of the southern

cell. In addition, while a number of spurious cells still surround the main supercell in the

WSR-88D analyses, the more frequent observations assimilation from PAR suppresses

most of the spurious convection. This result reinforces the conclusion that the frequent

assimilation of 0 dBZ reflectivity observations is indeed very helpful in suppressing

66

Figure 3.10 Same as in Figure 3.8 but for the experiment with 15-min assimilation period

starting at t = 25 min and ending at t = 39 min.

67

68

Figure 3.11 Same as in Figure 3.9 but for a 15-min assimilation period for reflectivity

and vertical velocity contours at the last assimilation cycle (t=39 min) 5.053 km above

ground.

69

spurious convection. Furthermore, the two strong updrafts in excess of 16 ms-1 from the

northern and southern cells (Figure 3.11b) in the truth are well represented in the PAR

analyses (Figure 3.11d), while the WSR-88D analyses (Figure 3.11f) fail to capture the

location, structure and the strength of the updrafts. While the maximum updraft from the

WSR-88D assimilation is 14.28 ms-1, the maximum updraft from PAR observation

assimilation and the truth is 31.26 and 28.02 ms-1, respectively. Similar results also are

found for other variables at other vertical levels of the model domain. These results

clearly show the benefit of assimilating faster volume scan observations for capturing the

split supercell structure of the storm in the analyses resulting in a more accurate depiction

of severe weather events.

3.5.2 Forecasts

A. 60-min Assimilation

 Figure 3.12 shows the rms errors from the ensemble mean forecasts averaged over

the domain where the total precipitation mixing ratio exceeds 0.10g kg-1 during the 35-

min forecast period. The rms error grows rapidly during the forecast period from both

PAR and WSR-88D observation assimilation as expected. While the rapidly growing

forecasts rms errors from PAR observations assimilation are smaller than that of the

forecasts WSR-88D observations for the first few minutes, the errors from the PAR

observations exceeds the WSR-88D errors and remains larger for the rest of the forecast

period. This is true for all the variables shown in Figure 3.12. The basic structure and the

evolution of the storm, including the split storm cells and the hook echoes from the

ensemble mean 15-min forecasts (Figure 3.13) are rather accurate. However, the 15-min.

70

forecasts reflectivity contours at 3.1 km AGL from both PAR (Fig 3.13 b) and WSR-88D

(Fig 3.13 c) observation assimilation more closely matches each other than to the truth

(Fig 3.13 a). Similar results also are seen from other variables (not shown).

B. 15-min Assimilation

 The rms errors of the ensemble mean forecasts show that the rms errors grow

rapidly during the forecast period from both PAR and WSR-88D observation assimilation

as expected (Figure 3.14). However the forecast errors from PAR observation

assimilation are significantly smaller than the forecast errors from WSR-88D observation

assimilation for the entire 50-min forecast period. The reflectivity contours from the

truth simulation and 5-min forecast at 6.1 km AGL and 20-min forecasts at 2.1 km from

PAR and WSR-88D observation assimilation indicate that the forecasts from PAR

observation assimilation maintains the strength, split storm cell structure and location of

the two main precipitation core more closely to the truth than that of the WSR-88D

forecasts (Figure 3.15). Thus, the more accurate analyses from the PAR observation

assimilation yields better forecasts compared to the WSR-88D forecasts.

3.6 Summary

 The EnSRF data assimilation method is implemented to assimilate radar

observations for a shorter assimilation period using the perfect model framework. The

synthetic reflectivity and radial velocity WSR-88D and PAR observations are created

from a truth simulation of a supercell storm at a coarser 1 km range resolution. The

71

Figure 3.12 The rms errors of ensemble mean forecast from the 60-min assimilation

experiment during the 35-min forecast period starting for (a) u (ms-1), (b) v (ms-1), (c) w

(ms-1), (d) t (k) and (e) q (g kg-1). Values are averaged over the domain where the total

precipitation (sum of qr, qh , qi and qs mixing ratios) is greater than 0.10g kg-1. Details are

shown in the legend.

72

Figure 3.13 Reflectivity contours at 3.18 km AGL for (a) truth and 15-min ensemble

mean forecasts from (b) PAR observations assimilation and (c) WSR-88D observations

assimilation from the 60-min assimilation experiment.

73

Figure 3.14 The rms errors of ensemble mean forecast from the 15-min assimilation

experiment during the 50-min forecast period for (a) u (ms-1), (b) v(ms-1), (c) w(ms-1), (d)

t(k) and (e) q (g kg-1). Values are averaged over the domain where the total precipitation

(sum of qr, qh and qs mixing ratios) is greater than 0.10g kg-1. Details are shown in the

legend.

74

Figure 3.15 Reflectivity contours for (a and d) truth and forecasts from the 15-min

assimilation experiment from (b and e) PAR observations assimilation and (c and f)

WSR-88D observations assimilation, (b) and (c) are 5 min ensemble mean forecast while

(e) and (f) are 20 min ensemble mean forecasts.

75

analyses and forecasts from both radar observations assimilation experiments are

compared and presented.

The results indicate that both PAR and WSR-88D observation assimilation over a

60-min assimilation period produce qualitatively similar analyses of the supercell and

match closely to the truth. However, results from assimilating radar observations for a

shorter assimilation period of 15-min show that PAR observations provide more accurate

analyses and forecasts of the depiction of supercell compared to the WSR-88D data.

Results also indicate that the more frequent PAR observations assimilation is able to

suppress most of the spurious cells in regions around the storm during the shorter 15-min

assimilation period with more accurate depiction of the two precipitation cores and

generates smaller rms errors for unobserved variables of winds, temperature and

precipitation mixing ratios compared to those from the WSR-88D observation

assimilation. There is a rapid increase in rms errors in both PAR and WSR-88D ensemble

mean forecasts during the 50-min forecast period, but the errors for PAR observation

assimilation are consistently smaller than for WSR-88D observation assimilation. These

results signify the benefits of more frequent data coverage in a shorter period of time on

the quality of the storm analyses and forecast, i.e. the more complete the storm

observations, the better analyses and forecasts. However caution is warranted as the

results obtained from this study may be too optimistic since the experiments are based on

a perfect model assumption where model error does not play a role. To present the impact

of model error in radar data assimilation, imperfect model experiments are conducted in

the next chapter and compared with the perfect model data assimilation results.

76

Moreover, the value of using a variety of intercept and density parameters within the

same microphysics scheme also is examined.

Chapter 4

Data Assimilation Using Ensemble Square-Root Filter:

Perfect and Imperfect Model Experiment

4.1 Introduction

 The experiments conducted in Chapter 3 are based on perfect model assumption

where both the truth simulation and the ensemble members for the data assimilation

experiments use the same LFO microphysics scheme with predefined constant parameters

for precipitation particles. Since both the truth and the ensemble experiment use the same

microphysics scheme, model errors do not play a role. However, such a good

performance obtained in Chapter 3 is not expected in real-world experiments where the

forecast model unavoidably has errors. Therefore to evaluate the impact of model error in

EnSRF radar data assimilation, experiments need to be conducted under imperfect-model

scenarios to account for model error.

 One of the major sources of error in storm-scale data assimilation and forecasts is

the microphysical parameterization scheme used in the model to represent the

microphysical characteristics of the storms (Dowell et al. 2004; Gilmore et al. 2004; van

den Heever and Cotton 2004; Dowell and Dowell 2009; Snook and Xue 2008; Tong and

Xue 2008a). Microphysics schemes represent a number of different phase changes of

water species and a number of different interactions between cloud and precipitation

particles, requiring many assumptions to make these schemes both realistic and

computationally affordable (Stensrud 2007). The most commonly used type of

microphysical scheme in storm-scale modeling is the single-moment bulk microphysics

77

scheme (Lin et al. 1983; Tao and Simpson 1993; Schultz 1995; Straka and Mansell 2005;

Hong and Lim 2006) that predicts only the particle mixing ratios of the hydrometeors. A

single-moment scheme uses constant values for the intercept parameters and the densities

of hydrometeors in the calculation of hydrometeor size distributions, and these intercept

and density parameters are defined in the experiments somewhat arbitrarily. However,

several observational studies indicate that the particle densities and the intercept

parameters of hydrometeor distributions can vary widely among storms and even within a

single storm (Gunn and Marshall 1958; Houze et al. 1979, 1980; Mitchell 1988;

Pruppacher and Klett 2000; Cifelli et al. 2000; Brandes et al. 2007). Several sensitivity

studies also demonstrate the impact of the variations of particle parameters on storm

structure, intensity and precipitation characteristics (Gilmore et al. 2004; van den Heever

and Cotton 2004; Snook and Xue 2008). Thus, applying predefined constant parameters

for precipitation particles in storm-scale model cannot adequately represent the highly

uncertain thunderstorm precipitation characteristics and can lead to significant errors in

the analyses and forecasts of severe storms.

 However, determination of suitable values for the microphysical parameters in

storm scale data assimilation is very difficult due to the unavailability of in situ

microphysics observations. Since the selection of microphysical parameters in storm-

scale modeling has profound impact on the analyses and forecasts of severe weather

events, and an arbitrary selection of those parameters may lead to significant error, one

approach to account for the uncertainty in a storm-scale ensemble modeling system is to

vary the microphysical parameters within the same microphysics scheme among the

78

ensemble members. The hope is that by using a variety of realistic precipitation particle

parameters, an ensemble is more likely to span the truth.

 Therefore in an effort to explore the impact of model errors and also the variations

in parameters within the same microphysics scheme in storm-scale forecasting, OSSEs

are conducted applying both initial condition variations and a range of different

realizations of the intercept and density parameters using an EnSRF data assimilation

technique. The first set of experiments is based on the assumption of a perfect model in

which both the truth simulation and the ensemble system use the same microphysics

scheme. The second set of experiments is based on imperfect model assumptions in

which the microphysics scheme for the truth simulation and the microphysics scheme for

the assimilation system are different. Thus, the imperfect model assumption includes

error in the forecast models from the microphysical parameterization. This chapter is the

basis for the paper Yussouf and Stensrud (2010b) that is currently in review.

 The experimental design of this study is described in Section 4.2. Section 4.3

presents the results obtained from the EnSRF analyses and forecasts, followed by a final

discussion in Section 4.4.

4.2 Experimental Design

 Two simulations of a splitting supercell storm similar to the truth run in Chapter 3

are generated using two different microphysics schemes. The domain and the

initialization of the 2-h long truth runs are inherited from Chapter 3. Synthetic radial-

velocity and reflectivity WSR-88D observations are then constructed from these truth

79

solutions using the same radar emulator as in Chapter 3. The ensemble design for this

study also is inherited from Chapter 3 with some modifications presented in this section.

A. The two truth simulations and synthetic radar observations

The first truth simulation applies the Gilmore et al. (2004) version of the Lin-

Farley-Orville (Lin et al. 1983) single-moment bulk microphysics scheme (Truth_LFO).

The LFO scheme contains three ice categories (ice crystals, snow and hail/graupel) and

calculates the mixing ratios of six water species: water vapor, cloud water, cloud ice, rain,

snow and hail/graupel. In the LFO scheme, the term hail is used to represent high density

graupel, ice pellets, frozen rain and hailstone. The second truth simulation applies the 10-

ICE (Straka and Mansell, 2005) single-moment bulk microphysics scheme

(Truth_10ICE). It has the same two water particle categories (cloud water and rain) as the

LFO scheme, but includes ten ice categories (i.e., 6 graupel and hail categories, 3 ice

categories and snow) that are characterized by habit, size and density. The extra ice

hydrometeor categories that are included in the 10ICE scheme better represent the range

of precipitation ice characteristics in a deep convective storm. Both LFO and 10-ICE

microphysics schemes assumes a monodisperse particle size distribution for cloud water

and cloud ice and approximate an inverse exponential form (Marshall and Palmer 1948)

for the particle size distributions of rain and ice categories as follows:

0() x xD

x xn D n e λ−= (4.1)

where x is rain or ice categories, D is the particle diameter (m), n is the number of

particles per unit volume (m-4), λ is the slope parameter that defines the decrease in

particle counts as diameter increases (m-1) and n0x is the intercept parameter that defines

80

the maximum number of particles per unit volume at D = 0 size. The slope parameter

varies with mixing ratio and is given by

 0x x
x

x

n
q

πρλ
ρ

⎛
= ⎜
⎝ ⎠

⎞
⎟

 (4.2)

where ρx is the density of the particle, ρ is the air density, and qx is the mixing ratio. From

(4.1) and (4.2), it is obvious that the particle size distribution is strongly influenced by the

selected values of n0x and ρx. The values of the density and the intercept parameters used

for the truth simulation from the two microphysics scheme are given in Table 4.1.

Table 4.1 The intercept and the density parameters of the precipitation particles for the

Truth_LFO and Truth_10ICE simulations.

LFO Scheme 10 ICE Scheme
Catagory Intercept

m-4
Density
kg m-3

Catagory Intercept
m-4

Density
kg m-3

Hail/Graupel 4x104 900 Graupel (low) 4.0x105 300
Snow 3x106 100 Graupel (medium) 2.0x105 500
Rain 8x106 1000 Graupel (high) 1.0x105 700
Ice - - Frozen drops 4.0x105 800

 Small hail 4.0x104 800
 Large hail 1.0x103 900
 Snow 8x106 100
 Rain 8x106 1000
 Rimed ice 1.0x108 300
 Plate ice - 900
 Column ice - 900
 Cloud droplets - 1000

 The truth runs from the two microphysics schemes produce a similar supercell

storm, but with differences in the location, strength and structure of the storm (Figure

4.1). The cold pool at the lowest model level from Truth_10ICE (Figure 4.1b) is colder

than the cold pool from Truth_LFO (Figure 4.1a). The high-reflectivity core of the

81

Fig 4.1 Potential temperature (K) at t = 35 min of the simulation at the lowest model

level (100 m AGL) (a and b), reflectivity (dBZ; c and d) 2.6 km AGL at t = 1 hr and

vertical vorticity (s-1; e and f) at 3.1 km AGL at t = 1.5 hr from the truth simulation

using the LFO and 10 ICE microphysics scheme.

82

southern cell from the Truth_LFO (Figure 4.1c) is more intense than the reflectivity core

of the southern cell from Truth_10ICE (Figure 4.1d) and the mid-level vertical vorticity

fields also differ from each other (Figure 4.1 e and f). Similar differences also are found

for other variables at other vertical levels of the model domain and at other simulation

times.

B. The ensemble configuration and OSSE design

As mentioned earlier, the 40-member ensemble for the experiment is similar to

the ensemble in Chapter 3. To facilitate the development of storms, 3 thermal bubbles

(1.5 K maximum ellipsoidal θ perturbations) are introduced at the initialization time (t =

0) to each ensemble member following Synder and Zhang (2003), and Dowell et al.

(2004a, b). These bubbles have 7.5 km (2.0 km) radius in the horizontal (vertical)

direction are placed at random horizontal locations within 10 km of the domain center

and between 0.25 to 2.25 km in z direction.

 After initializing the ensemble members at t = 0, the members are integrated

forward in time for 25 min before assimilation of the first observations. A 30 min long

assimilation period starts at t = 25 min and ends at t = 54 min. During this assimilation

period, 6 volume scans of WSR-88D observations are assimilated. The radar is located at

x = -3.6 km and y = -4.9 km from the southwest corner of the domain during the first

volume scan. The observations valid within 1 min of the current time are assimilated

followed by advancing the ensemble members 1 min to the next observation time. No

additional localized perturbations (Dowell and Wicker 2009) or covariance inflations

(Snyder and Zhang 2003; Dowell et al. 2004a; Tong and Xue 2005) are added to the

83

members to maintain the ensemble spread during the assimilation cycles. After the 30

min of data assimilation, all of the 40 ensemble members from the last assimilation cycle

are used to produce a 1-h long ensemble of forecasts (Figure 4.2). Two sets of

experiments are implemented in this study to assess the benefits of a multi-parameter

ensemble system.

Figure 4.2 Schematic illustration of the EnSRF experiment for 35-min assimilation.

4.2.1 Perfect Model Experiment

 The ensemble members use the LFO microphysics scheme and the synthetic

WSR-88D reflectivity and radial velocity observations assimilated are generated from the

Truth_LFO. Two experiments are conducted using these identical background

environments. The first ensemble (Perfect_Control) uses the same constant intercept and

density parameters for the hydrometeor categories for all ensemble members as in the

Truth_LFO. The values of the parameters for the Truth_LFO and Perfect_Control

experiments are the same typical values used in Lin et al. (1983) as listed in Table 1 and

these values generate an intense storm with high density hail. The ensemble members in

the Perfect_Control experiment thus have the identical base environment and

microphysics scheme as in the truth but differ from each other in the location and

magnitude of the thermal bubbles. Here we are assuming that the model is perfect and the

84

environmental condition is perfectly represented thereby giving the ensemble data

assimilation and forecast system the best chance to produce excellent results.

The second ensemble (Perfect_MP) also uses the LFO microphysics scheme but

instead of using constant precipitation particle intercept and density parameters, each

ensemble member uses different values for these parameters. Thus, the ensemble

members in the Perfect_MP experiment differ from each other not only in the location

and magnitude of the thermal bubbles but also differ in intercept and density parameters

within the same LFO microphysics scheme. The parameters varied include the intercept

parameters for rain (n0r), snow (n0s) and hail/graupel (n0h) and the bulk densities of snow

(ρs) and hail/graupel (ρh). These values are varied within their typical uncertainty range

based on past observational studies reported in the literature. The intercept parameter n0r

is varied between the range 3.98x106 and 3.16x107, n0h between 4.50x103 and 4.00x105

and n0s between 1.0 x106 and 1.58x107 m-4. The density ρs is varied between 20 and 400

and ρh between 400 and 900 kg m-3. The lists of parameter values assigned to the 40

ensemble members in the multi parameter (MP) experiment are shown in Table 4.2. The

mean of the intercept and density values from the 40 ensemble members differ from the

values assigned in the truth run as listed at the bottom of Table 4.2. The use of a variety

of density and intercept parameters across the ensemble members result in supercell

storms that are different from each other in terms of structure, strength and intensity.

85

Table 4.2 List of ensemble members with the values of intercept parameters and densities

of rain, hail/graupel and snow particles from the LFO microphysics scheme.

Ensemble
Members

Hail/graupel
intercept
n0h (m-4)

Density of
hail/graupel
ρh (kg m-3)

Snow intercept
n0s (m-4)

Density of
snow

ρs (kg m-3)

Rain
intercept
n0r (m-4)

1 4.00 x 104 900 3.00 x 106 100 8.00 x 106

2 4.50 x 103 900 1.04 x 107 50 7.14 x 106

3 5.07 x 103 800 6.77 x 106 100 5.19 x 106

4 5.70 x 103 500 2.18 x 106 350 1.22 x 107

5 6.41 x 103 700 1.89 x 106 400 6.09 x 106

6 7.22 x 103 600 8.38 x 106 250 9.32 x 106

7 8.12 x 103 800 7.27 x 106 150 2.70 x 107

8 9.14 x 103 900 3.84 x 106 50 2.30 x 107

9 1.03 x 104 400 1.76 x 106 200 4.43 x 106

10 1.16 x 104 500 1.43 x 106 300 1.09 x 107

11 1.30 x 104 600 1.07 x 106 400 8.38 x 106

12 1.47 x 104 700 2.89 x 106 250 7.53 x 106

13 1.65 x 104 800 5.10 x 106 150 5.77 x 106

14 1.86 x 104 900 8.99 x 106 300 3.16 x 107

15 2.09 x 104 400 1.38 x 107 100 8.83 x 106

16 2.35 x 104 500 2.51 x 106 300 4.20 x 106

17 2.65 x 104 600 2.34 x 106 100 3.00 x 107

18 2.98 x 104 700 1.53 x 106 150 1.96 x 107

19 3.35 x 104 800 7.80 x 106 200 1.76 x 107

20 3.77 x 104 900 1.33 x 106 100 1.58 x 107

21 4.24 x 104 400 4.12 x 106 350 2.18 x 107

22 4.78 x 104 500 4.43 x 106 100 1.50 x 107

23 5.37 x 104 600 5.48 x 106 250 2.56 x 107

24 6.05 x 104 700 3.58 x 106 400 1.35 x 107

25 6.80 x 104 800 1.00 x 106 20 6.42 x 106

26 7.66 x 104 400 1.28 x 107 300 3.98 x 106

27 8.62 x 104 500 5.88 x 106 200 2.42 x 107

28 9.70 x 104 900 1.15 x 106 50 1.28 x 107

29 1.09 x 105 400 1.24 x 106 350 4.67 x 106

30 1.23 x 105 700 2.03 x 106 50 2.07 x 107

31 1.38 x 105 800 9.65 x 106 350 1.04 x 107

32 1.56 x 105 900 1.19 x 107 200 5.48 x 106

33 1.75 x 105 500 1.64 x 106 250 9.82 x 106

34 1.97 x 105 600 6.31 x 106 400 1.67 x 107

35 2.22 x 105 700 1.11 x 107 100 1.15 x 107

36 2.49 x 105 800 4.75 x 106 300 2.84 x 107

37 2.81 x 105 900 2.70 x 106 150 1.86 x 107

38 3.16 x 105 400 1.48 x 107 50 7.94 x 106

39 3.55 x 105 700 1.58 x 107 400 4.92 x 106

40 4.00 x 105 900 3.33 x 106 300 6.77 x 106

Average 9.00 x 104 675 5.45 x 106 214 1.33 x 107

LFO_Truth 4.00 x 104 900 3.00 x 106 100 8.00 x 106

10ICE_Truth 1.00 x 105 700 8.00 x 106 100 8.00 x 106

86

4.2.2 Imperfect Model Experiment

 Unlike the previous experiment, the synthetic reflectivity and radial velocity

observations assimilated by the ensemble members are generated from the Truth_10ICE

run. The ensemble members in the first ensemble (Imperfect_Control) use the LFO

microphysics scheme with the same constant precipitation particle parameters as in the

Perfect_Control experiment. The ensemble members in the second MP ensemble

(Imperfect_MP) also use the LFO microphysics scheme but with the same variety in the

intercept and density parameters as in Perfect_MP (Table 4.2). The initialization and

other ensemble configuration details are identical to the previous experiment. The

imperfect model experiment explores the performance of the EnKF system for the same

storm event in the presence of model errors in the different microphysics scheme.

 The ultimate goal of storm-scale data assimilation is to obtain accurate short-term

forecasts of severe storms events. To evaluate the accuracy of the ensemble forecasts

from assimilating WSR-88D observations over a 30-min period, the 40 analyses from the

last assimilation cycles are used as the initial conditions for each of the ensemble

members and 1-h short-term forecasts are produced.

4.3 Results

 The accuracy of the analyses and forecasts for both perfect and imperfect model

assimilation experiments, when using fixed or varied microphysics scheme parameters in

the ensemble system, are compared with the truth runs. The evaluation criteria include

statistical comparisons between the truth and the ensemble system. Statistical measures

87

include root-mean-square error of the unobserved variables and equitable threat scores

(ETSs: Wilks 2006). The ETS is calculated from the contingency table that gives discrete

joint sample distribution of ensemble mean forecasts and the reference simulation in

terms of cell count. An ETS of 1 denotes a perfect forecast while the forecast accuracy

decreases as the ETS decreases towards zero. Various plots of ensemble maximum values

are used to determine whether or not the ensembles capture the range of values found in

the truth runs.

4.3.1 Analyses

 To evaluate how well the supercell is captured by the ensemble system during the

30- min assimilation period, the rms errors of u, v and w wind components, temperature,

and total precipitation (rain, snow and hail/graupel) mixing ratios from the ensemble

mean analyses for both perfect and imperfect model assimilation experiments are

examined (Figure 4.3). The rms errors from both experiments are seen to decrease

rapidly for all variables as more observations are assimilated. At the end of the

assimilation period, the rms errors for winds and temperature variables for the control and

multi-parameter ensembles from both Perfect (Figures 4.3a and c) and Imperfect (Figures

4.3b and d) model experiments are very similar. However, while the rms errors of total

precipitation mixing ratio from the Perfect_MP are larger than that of the Perfect_Control

(Figure 4.3e), the rms errors of the Imperfect_MP are significantly smaller than that of

the Imperfect_Control (Figure 4.3f) throughout the 30 minute assimilation period. Thus,

in the presence of model error, the Imperfect_MP is able to capture the true precipitation

mixing ratios better and hence produce smaller rms errors.

88

Figure 4.3 The rms errors of ensemble mean analyses vs. time(sec) during the 30-min

assimilation period from the perfect and imperfect model experiment starting at t = 25

min and ending at t = 54 min for w (m s-1) (a and b), t (k) (c and d) and total precipitation

(rain, snow, hail/graupel) mixing ratios (g kg-1) (e and f) for the control (black lines) and

muliparameter (gray lines) ensemble system. Values are averaged over the domain at

grid points where the total precipitation mixing ratios (sum of qr, qh and qs) in the truth

run is greater than 0.10g kg-1.

89

4.3.2 Forecasts

 The rms errors of the ensemble mean forecasts during the 1 hour forecast period

for perfect and imperfect model assimilation experiments are shown in Figure 4.4. The

quality of the forecast in both plots deteriorates rapidly with time as expected. However,

in the perfect model experiment, the Perfect_Control yields smaller rms errors compared

to the Perfect_MP for the winds, temperature and total precipitation (Figures 4.4a, c and

e). The smaller rms errors from the Perfect_Control are expected since the ensemble uses

identical intercept and density parameters of the hydrometeor categories for all ensemble

members as in Truth_LFO. In the absence of model error from the perfect model

assumption, the EnKF only has to correct the initial condition errors. In the imperfect

model experiment, the rms errors for winds and temperature variables (Figures 4.4 b and

d) from the Imperfect_MP are very similar to the rms errors from the Imperfect_Control

during the first 40-mins of the forecast period but yield smaller rms errors during the

remaining 20 min of the forecasts. Moreover the Imperfect_MP generates smaller rms

error than that of the Imperfect_Control for total precipitation mixing ratio (Figure 4.4f)

throughout the 1-h forecast period. Therefore the variations in the microphysical

parameters have a larger impact on the microphysical fields than on wind and

temperature fields.

To quantify the forecast accuracy from the ensemble mean forecasts, the ETS is

calculated by comparing the ensemble mean forecast with the truth for reflectivity values

exceeding a 35 dBZ threshold and for precipitation (rain, snow and hail/graupel) mixing

ratios exceeding a 1.0 g kg-1 threshold. Results indicate that for the perfect model

assimilation experiment, the ETS for the Perfect_Control is larger than that of the

90

Figure 4.4 The rms errors of ensemble mean forecast vs. time(sec) during the 1-h forecast

period from the perfect and imperfect model experiment starting at t = 55 min and ending

at t = 115 min for w (m s-1) (a and b), t (k) (c and d) and total precipitation (rain, snow,

hail/graupel) mixing ratios (g kg-1) (e and f) for the control (black lines) and

muliparameter (gray lines) ensemble system. Values are averaged over the domain at

grid points where the total precipitation mixing ratios (sum of qr, qh and qs) in the truth

run is greater than 0.10g kg-1.

91

Figure 4.5 Values of equitable threat score (ETS) for reflectivity values exceeding 35

dBZ threshold for a) Perfect and c) Imperfect Model experiments and the precipitation

(rain, snow and hail/graupel) mixing ratios exceeding 1.0 g kg-1 threshold for c) Perfect

and d) Imperfect Model experiments as function of forecast time (sec). Details are shown

in legends

92

Perfect_MP (Figures 4.5a and b) for the entire forecast period for both reflectivity and

total precipitation mixing ratios. In contrast, for the imperfect model assimilation

experiment, the Imperfect_MP yields a higher ETS throughout the 1-h forecast period

compared to that of the Imperfect_Control (Figures 4.5 c and d) for both threshold

values.

The maximum mean hail diameter (mm) at the lowest model level from anywhere

in the model domain during the 1-h forecast period for the perfect and imperfect model

assimilation experiments indicate that the truth value is often on the edge of the

Perfect_Control ensemble (Figure 4.6a). Results from the Imperfect_Control show that

the truth lies outside the ensemble envelope after 65 min and the ensemble members tend

to overpredict the hail diameter (Figure 4.6b). In contrast, the MP ensembles (Figures

4.6c, d) capture the truth well within the ensemble members and also yield larger spread

even though no additional methods are used to maintain the spread during observation

assimilation period for both perfect and imperfect model assimilation experiments. The

MP results also show how variations in hydrometeor parameters can dramatically change

the prediction of hail size.

 The large differences between the control and MP ensembles for maximum hail

size would seem to indicate differences in storm structure. Yet all the MP storms are

splitting supercells and have reflectivity values within 10 dBZ of the truth runs. Instead,

these results highlight the variety of hydrometeor combination that can produce a given

value of reflectivity, and, therefore, the sensitivity of the forecasts to the assumed

microphysical parameters. It may be that these parameters can be estimated during the

93

data assimilation process, as done by Tong and Xue (2008a, b), but there is no guarantee

that these estimated parameters will produce an accurate storm forecast.

Figure 4.6 The maximum mean hail diameter (mm) at the lowest model level (100m

AGL) during the 1-h forecast period from the truth (thick black line) and the 40 ensemble

members (different shades of gray lines) for a) Perfect_Control, b) Imperfect_Control c)

Perfect_MP, and d) Imperfect_MP assimilation experiment.

94

The ability of the EnKF to forecast the important variables in the convective

storm environment is illustrated by comparing the forecast time series of the minimum

cold pool temperature (Figure 4.6) from each ensemble member for both perfect and

imperfect model assimilation experiments. Not surprisingly, the ensemble members from

the control runs for both perfect and the imperfect model experiment provide insufficient

ensemble spread, with the truth falling outside the ensemble envelope for different

forecast periods, indicating that methods to artificially increase the spread are needed. In

contrast, the MP experiments not only improve the ensemble spread, but also capture the

truth well within the envelope of the ensemble members. The spread obtained from the

MP ensemble not only represents the uncertainty from the initial conditions, but also the

uncertainty from the various microphysical processes.

The ground relative total rainfall (mm) accumulated from the moving supercell

storm valid at the end of 1-h forecast period is shown in Figure 4.7. The accumulated

rainfall amounts from the Imperfect_MP ensemble mean forecast (Fig 4.7c) more closely

resemble the truth (Figure 4.7a) than the rainfall amounts from the Imperfect_Control

(Figure 4.7b) experiment. The Imperfect_Control produces higher rainfall amounts from

the northern and the southern storms cells when compared to the truth 10ICE run.

These results highlight the importance of using an MP ensemble in the presence of model

error. Using a combination of different density and intercept parameters of the

hydrometeor category can significantly improve the analyses and forecasts over

experiments using constant intercept and density parameters for the hydrometeor

categories. This is especially true when examining the extreme values of the model fields

that would be most helpful in determining and identifying potential hazards.

95

Figure 4.7 Same as in Figure 4.6 but for minimum potential temperature (K) at the lowest

model level (100m AGL).

96

Figure 4.8 The ground-relative 1-h accumulated rainfall (mm) amounts of the supercell

storm from a) Truth_10ICE and the ensemble mean forecasts of 1-h accumulated rainfall

(mm) from b) Imperfect_Control and c) Imperfect_MP assimilation experiment.

97

4.4 Summary

The goal of this study is to evaluate the potential value of using a range of

intercept and density parameters within the same microphysics scheme in the presence of

model error. Two truth simulations of a splitting supercell storm are generated using LFO

and 10ICE microphysics schemes in an identical storm environment. Two sets of OSSEs

are conducted from both a perfect and an imperfect model framework using an EnKF

data assimilation technique with 1) constant intercept and density parameters for the

hydrometeors in all ensemble members and 2) a range of different values of the intercept

and density parameters for the hydrometeors in the different ensemble members.

Synthetic WSR-88D reflectivity and radial velocity observations are created from the

truth runs using a realistic volume averaging technique and these observations are

assimilated into the ensemble system over a 30-min period. The 40 ensemble analyses at

last assimilation cycle are then used to make 1 h forecasts.

 Results show that the EnKF system performs reasonably well with the imperfect

model assumption. It is found that a multi-parameter ensemble within the imperfect

model framework (Imperfect_MP) generates more accurate forecasts of ensemble mean

precipitation mixing ratios and accumulated rainfall compared to that of the control

imperfect model ensemble (Imperfect_Control). This conclusion does not always apply

for the perfect model assumption where model error does not play a role. Moreover the

1-h forecast time series of the 40 ensemble members for lowest cold pool temperature at

100 m AGL indicates that the truth almost always lies within the envelope of ensemble

members for the perfect and imperfect MP ensembles, whereas the truth more often lies

on the edge or outside the ensemble envelope for the perfect and imperfect control

98

ensemble. The MP ensembles also yield larger ensemble spread than the control

experiments. The results from this study support the idea that the microphysical

parameter diversity across the ensemble members may be beneficial to a storm-scale

ensemble forecasting system.

 Caution is warranted as the results obtained in these studies are based on synthetic

radar observations. In real observation assimilation, the model error can potentially be

larger than that considered in this study. Moreover the selection of density and intercept

parameters as shown in Table 4.2 is far from optimal. Thus the possibility of using multi-

parameter ensemble in storm-scale data assimilation system should be tested on a broader

range of experiments using real radar observations of severe weather events with careful

selection of these highly uncertain microphysical parameters so that these values are

representative of the various storm systems. Due to our limited understanding, it is likely

that even the use of more sophisticated microphysics parameterization schemes will face

challenges in some storm environments. This is not necessarily a deficiency but instead

represents the reality of microphysics parameterization. Using a variety of realistic

intercept and density parameters, the ensemble is more likely to span the observations

and provide improved short range forecasts for a wide range of storm systems.

99

Chapter 5

Data Assimilation Using Extended Information Filter

5.1 Introduction

 The previous two chapters apply the EnSRF data assimilation technique to

assimilate high spatial resolution radar observations to NWP model and the results

obtained are promising. However, the computational time for EnSRF methods scales

linearly with the number of observation. Thus from the computational point of view, the

algorithm for EnSRF method is efficient when the number of observations to assimilate is

smaller. When the number of observations is very large as in the case with radar data, the

EnSRF method becomes exceedingly time consuming. With the advent of new radar and

other remote sensing technology, it is highly likely that the observation dimensionality

exceeds the dimensionality of the model state vector. Therefore, efficient filter designs

for efficient assimilation of these observations needs to be explored. One possible

candidate for this purpose is the information form of the filter which is algebraically

equivalent to Kalman filter. While the traditional Kalman filter calls for inverting the

matrix in observation space, the information filter calls for the inversions of the model

space. Therefore, the information form of the filter may be computationally more

efficient than the traditional Kalman filter when the number of observations is very large

in dimension compared to the model state (m > n). Even though the information filter has

been around for years, to our knowledge the applicability of the information filter as data

assimilation technique for high frequency measurements has not yet been tested for

atmospheric models. The information filter is not widely used and is not widely covered

100

in the literature. Thus, this chapter explores the possibility of information filter as an

efficient data assimilation technique for large observation system. As a first step, the

information filter is implemented using a low dimensional simple atmospheric model,

and its performance is compared with the Kalman filter as a benchmark. The model used

for this purpose is the Lorenz 96 model (L96) which is a simple non-linear model

(Lorenz 1996; Lorenz and Emanuel 1998; Lorenz 2005, 2006), computationally cheap

and shares many characteristics with the realistic atmospheric models. This model is

widely used as a test bed for examining the data assimilation schemes in meteorological

community (Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004; Fertig et al.

2007; Nokano et al. 2007; Leutbecher et al. 2007; Ambadan and Tong 2009). Therefore,

we apply the information filter to a simple Lorenz model as this is useful for initial

testing of new ideas, before complex high-dimensional models and real observations are

used. Since the Lorenz model is nonlinear, the extended form of the information filter

(EIF) is implemented and is compared with the extended Kalman filter (EKF). The EIF

experiments conducted in this chapter uses the state space formulation (Simon 2006).

5.2 Description of Lorenz Model

 The L96 model is a one-dimensional atmospheric model introduced by E. Lorenz

in 1995 to explain the dynamics of weather at fixed latitude. The model consists of 40

ordinary differential equations, with the dependent variables representing values of some

atmospheric quantity at 40 sites spaced equally about a latitude circle. The equations

contain quadratic, linear, and constant terms representing advection, dissipation, and

101

external forcing. The model contains N variables x1, …, xN, which may be thought of as

atmospheric variables in N sectors of a latitude circle and is governed by

 2 1 1 1
n

n n n n n
dx x x x x x
dt − − − + F= − + − + (5.1)

for n = 1, . . . , N. To make (5.1) meaningful for all values of n, x−1 = xN−1, x0 = xN, and

xN+1 = x1 are defined so that the variables form a cyclic chain, and the values can be

assumed as some unspecified scalar meteorological quantity, like the temperature, at N

equally spaced sites extending around a latitude circle (Figure 5.1). The model does not

simulate the atmosphere’s latitudinal or vertical extent. The constant F is positive and is

known as the forcing term, t is the time.

The model is formulated as one of the simplest possible systems that treat all

variables alike. However there are certain properties in the model that are similar to many

atmospheric models and are as follows (Lorenz and Emanuel 1998):

1. The two nonlinear terms are intended to simulate advection. These two terms are

quadratic and together conserve the total energy, defined as (x2
1 + · · · + x2

N)/2.

2. The linear terms represents mechanical or thermal dissipation and decreases the

total energy.

3. The constant term represents external forcing and prevents the total energy from

decaying to zero.

 The variables are scaled so that the coefficients of the quadratic and linear terms

are unity. The time unit is thus the dissipative decay time, which is assumed to equal 5

days. Numerical integration of this model indicates that small errors (differences between

102

solutions) tend to double in about 2 days. Further details of the model and its behaviors

can be found in Lorenz (2005, 2006) and Lorenz and Emmanuel (1998).

Figure 5.1 Latitude circle of the Lorenz 96 model with 40 grid points (N = 40).

5.3 Experimental Details

 The Lorenz model is computationally stable with a time step of 0.05 units which

equals 6 h (Lorenz and Emanuel 1998). A unit time Δt = 1 is associated with 5 days. Thus

for the Lorenz 96 model, a “year” consists of twelve 30-day months, or 72 time units, or

2880 time steps. Similar to Lorenz and Emanuel (1998), N = 40, F = 8 and a fourth-order

Runge–Kutta time integration scheme with a time step of 0.05 non-dimensional units or 6

h is used to run the model to create initial conditions. The model and the experiments

conducted in this chapter is implemented using MATLAB software and the codes are

listed in appendix B. Extensive testing of the simulation of the model is conducted to

validate the code and to make sure that the performance of the model is similar to that

found in Lorenz (1996), Lorenz and Emanuel (1998), and Lorenz (2005, 2006).

103

Creating the initial condition for the truth and the model state:

 The initial state of the model (0 0

^ ^
,x P) and the ‘truth’ are obtained by integrating the L96

model for a long period of time starting from an arbitrary start-up value. For the truth run,

random numbers from a uniform distribution between 0 and 1 are assigned to each of the

40 variables, and an initial perturbation of 0.008 is added to the 20th variable (x20). The

model is then integrated forward in time for 10 years or 14400 steps similar to Lorenz

(1996). The final values which are more or less free of transient effects are taken as the

true initial values for the assimilation experiments. Observations (zk) are created from the

truth run by adding Gaussian noise with zero mean and specified standard deviation. The

climatological mean (limcμ) and the standard deviation (limcσ) for the 10 years truth run

are 2.3432 and 3.6385 respectively.

 For creating the model initial condition (0 0

^ ^
,x P), an ensemble of 100 model

members is used. The first ensemble member starts with the identical setting as in the

truth run and the remaining 99 ensemble members are generated from the first ensemble

member by adding additional random perturbation (with 0 mean and 0.0001 standard

deviation) in one additional randomly selected variable (or grid points). A plot of the 100

ensemble members for grid point 30 at the start time is shown in Figure 5.2 that indicates

104

Figure 5.2 Values of ensemble members (blue) and the truth (green) at grid point 30 (or

variable 30) at start time.

that additional perturbations are added to ensemble members 86, 93 and 99. The

remaining ensemble members and the truth have identical values for grid point 30.

The 100 ensemble members are then integrated forward in time for 10 years

similar to the truth run. The 100 ensemble members and the truth at the end of 10 year

time integration is shown in Figure 5.3. The small initial perturbations to the different

states of the ensemble at the start time evolve with time and the ensemble members at

the end of the integration period are chaotic. Finally the ensemble members at the end of

the 10 year simulated period are averaged to obtain the model initial condition 0

^
x . The

initial ensemble covariance matrix at the end of the l0 year simulation period is

obtained from the ensemble members. The contour plot of P

0

^
P

0 is shown in Figure 5.4a.

The covariance plots clearly show the strong variance of the grid points along the

diagonal and small covariances among the grid points.

105

Figure 5.3 The 100 ensemble members (blue lines), truth run (green line) and the

ensemble mean (red line) after integrating the model for 14400 time steps.

-1.05474

-1.05474

-1.05474

-1.05474

-1.05474

-1.05474

-1
.05474

-1
.05474

-1.05474

-1
.05474

-1.05474

-1
.05474

-1.05474

-1.05474

-1.05474

-1.05474-1
.0

54
74

-1 .05474

-1
.0

5474
-1

.0
547

4

-1.05474

-1.05474

-1 .05474

-1
.0

54
74

-1 .05474

-1
.0

54
74

-1
.05474

-1.05474

1.25999

1.25999

1.25999

1.25999

1.25999

1.25999

1.25999

1.25999

1.25999
1.25999

1.25999

1.25999

1.25999

1.25999

1.25999

1.
25

99
9

1.2
5999

1.25999

1.2
5999

1.25999

1.25999

1.2
5999

1.
25

99
91.25999

3.57472

3.57472

3.57472

3.57472
3.57472

3.57472

3.57472

3.57472

5.88945

5.88945

5.88945

5.88945

5.88945

5.88945

5.88945

5.88945

8.20419

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 5.4 The covariance P0 of the model (contours) after integrating the model for

14400 time steps.

106

Data Assimilation Experiments:

 The assimilation experiment is initialized at time k = 0 and the initial value of the

mean and covariance of the model is assigned to 0

^
x and respectively. It is assumed

that the observations are available at every time step and are assimilated by the model

every time step for the next 500 time steps. For the assimilation experiment, the time step

is assumed to be 0.01 to secure stability. The model error standard deviation

0

^
P

Qσ is

assumed as Qσ = 0.3 and the model error covariance Q is represented by a diagonal

matrix Q = 2
QIσ , where I is the identity matrix.

 The observation error standard deviation is taken as lim0.25R cσ σ= (i.e. the

observation error standard deviation is 25% of the climatological standard deviation). The

observational error covariance matrix is assumed as R = 2
RIσ . We also assume that the

observation and model error covariance matrices Q and R and the H operator are constant

over time. The observations yo are computed at each assimilation cycle from the truth run

by adding uncorrelated Gaussian random noise 0 mean and Rσ standard deviation.

 At each time step, observations are created from the truth run and are assimilated

into the model to create analysis. After the assimilation, the analysis is integrated

forward in time to the next time step and the cycle goes on. Three sets of experiments are

conducted based on observation density on the 40-dimensional model. Each set of

experiments is conducted using two combination of Qσ and Rσ , namely

lim0.3, =0.25Q R cσ σ σ= and lim lim0.25 , =0.25Q c R cσ σ σ σ= . Also to ensure fairness, the

107

assimilation experiments for EKF and EIF are carried out using identical settings. The

experiments are as follows:

5.3.1 Sparse Observation (m = n) Network

 It is assumed that the observations are available at every grid point (Figure 5.1a).

Since each of the model grid points (state variable) are observed directly, the

observational operator H is assumed to be identity.

Figure 5.5 Location of observations (green circle) and model grid points (red circle) for

(a) m = n, (b) m = 2n and (c) m = 4n experiments. Here m is the number of observations

and n is the number of model grid points.

5.3.2 Moderately Densed Observation (m = 2n) Network

 In addition to observations at every site, observations also are available in

between every two sites (Figure 5.5b). Thus, there are 80 observations in total. The H

operator includes a linear interpolation from the model grid to the location of the

observation site in between two model grid point.

108

5.3.3 Highly Densed Observation (m = 4n) Network

 In addition to observations at every site, three observations also are available in

between every two sites (Figure 5.5c) and are equally spaced. Thus, there are 160

observations in total. The H operator includes a linear interpolation from the model grid to

the location of each observation in between two model grid point.

5.4 Results

 To guarantee that there is no inadequacy of the model to explain the observations

and the filter is working as it should, the term ()f
k k k kr z H x= − known as the innovation

or the residual is calculated for both the EKF and EIF experiments. For all experiments

100 samples with each sample run consisting of a 500 assimilation cycle is conducted to

calculate . The resultant for both EKF and EIF are ~0.0. Thus both filters are

working as they should.

()kE r ()kE r

109

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

EKF
EIF

Figure 5.6 The expected value of the innovations for both EKF (in black line) and

EIF (in gray line) at 40 observation location from the m=n experiment.

()kE r

 Moreover from Figure 5.7, it is also seen that with observation assimilation cycle

the model forecast more closely converges to the truth. The accuracy of the EKF and EIF

are evaluated using the root-mean-square error (rms) of the analyses and forecasts and are

calculated as the difference between the truth and the analyses and forecasts. The rms

error is defined as

()2

1

1 n
true

i i
i

E X X
n =

= −∑

where n = 40 is the number of grid points, Xi is the ith variable for the forecast and

analyses, and Xtrue is the “true” state from which the observations were sampled.

110

 The EKF and EIF rms error for lim0.30, =0.25Q R cσ σ σ= and

lim lim0.25 , =0.25Q c R cσ σ σ σ= using the sparse observation (m = n) network, moderately

densed observation (m = 2n) network and highly densed observation (m = 4n) network as

shown in Figure 5.8, Figure 5.9 and Figure 5.10 respectively. The rms errors from both

EKF and EIF are very similar to each other. The initial rms error from the model forecast

reduces from ~3.75 to ~0.50 after the first assimilation cycle and both the analyses and the

forecast rms errors varies with the range of ~0.50-1.0 for the rest of the assimilation

period. These results support the theory that the information filter is algebraically

equivalent to the Kalman filter.

 After 1 st assimilation step

5 10 15 20 25 30 35 40
-15

-10

-5

0

5

10

15

Truth
Forecast

Analysis
Observations

Grid points

Figure 5.7 The truth run (in green), observation locations (black starts), model forecast (in

blue) and the analysis (in red) after the first assimilation cycle.

111

 a) lim0.3, =0.25Q R cσ σ σ= b) lim lim0.25 , =0.25Q c R cσ σ σ σ=

R
M

S
Er

ro
r (

EK
F)

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
 c) lim0.3, =0.25Q R cσ σ σ= d) lim lim0.25 , =0.25Q c R cσ σ σ σ=

R
M

S
Er

ro
r (

EI
F)

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

 Time in Days Time in Days

Figure 5.8 The rms error for the (a, b) EKF and (c,d) EIF forecast and analyses during

data assimilation period for the sparse observation (m = n) network. The blue line

indicates the model forecast error and the red line indicates the analyses error.

112

 a) lim0.3, =0.25Q R cσ σ σ= b) lim lim0.25 , =0.25Q c R cσ σ σ σ=
R

M
S

Er
ro

r (
EK

F)

0 5 10 15 20 250.5

1

1.5

2

2.5

3

3.5

4

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

 c) lim0.3, =0.25Q R cσ σ σ= d) lim lim0.25 , =0.25Q c R cσ σ σ σ=

R
M

S
Er

ro
r (

EI
F)

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

 Time in Days Time in Days

Figure 5.9 Same as in Figure 5.8 but for the moderately densed observation (m = 2n)

network

113

 a) lim0.3, =0.25Q R cσ σ σ= b) lim lim0.25 , =0.25Q c R cσ σ σ σ=

R
M

S
Er

ro
r (

EK
F)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

 c) lim0.3, =0.25Q R cσ σ σ= d) lim lim0.25 , =0.25Q c R cσ σ σ σ=

R
M

S
Er

ro
r (

EI
F)

0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

 Time in Days Time in Days

Figure 5.10 Same as in Figure 5.8 but for the highly densed observation (m = 4n) network

5.5 Computational Speed

 Following Lewis et al. (2006), we quantify the amount of work needed to perform

one complete iteration of forecast and analyses step for EKF and EIF. The complexity is

calculated in terms of the number of floating point operations (flops). To multiply two

matrices and nxmA R∈ mxrB R∈ it takes 2mnr flops (mnr multiplications and mnr

additions). While it is true that in general multiplication takes more time than addition, to

simplify the process of estimating the cost, it is useful to assume a unit cost model where

114

the unit of cost (measured in time) is equal to the maximum of the cost of performing a

single operation of addition, subtraction multiplication and division. Using this

convention, the total cost in terms of the number of flops as a function of the size of the

problem is listed in Table 5.1 for EKF and in Table 5.2 for EIF.

 Table 5.1: Estimation of the computational cost for EKF.

Item Operation Type of Computation Cost
1

f
kx + ^

()k kM x Matrix-vector multiply 2n2

1
f

kP + ^ ^

1

^
() ()T

kM k M kD x P D x Qk++
Two matrix-matrix
multiply + a matrix add

4n3+n2

1 1 1
f T

k k k k 1H P H R+ + + ++ Two matrix-matrix
multiply + a matrix add

4n2 2m+m1kK +

1
1 1 1 1[]f T

k k k kH P H R −
+ + + ++ Inverse of a matrix (1/3)m3

1
1 1 1 1 1 1[f T f T

k k k k k kP H H P H R]−+ + + + + ++ One matrix-matrix
multiply

2m2n

Total Cost of 1kK + 4n2 2m+2m n+
(1/3)m3+m2

1 1k kI K H+ +− One matrix-matrix
multiply and add
identity matrix

2n2m+n ^

1kP +

1 1[] 1
f

k k kI K H P+ + +− matrix-matrix multiply 2n3

Total Cost of
^

1kP + 2n3+2n2 2m+n

Matrix-vector multiply 2nm+m
1 1 1

f
k kz H x+ +− k+

and a vector add
^

1kx +

Matrix-vector multiply 2nm
1 1 1 1[]f

k k k kK z H x+ + + +−

1 1 1 1[]f
k k k k k 1

fx K z H x+ + + ++ − Vector add n
+

4nm+n+m ^

1kTotal Cost of + x

Total Cost: 6n3+4n2+6n2m+2m2n+(1/3)m3 2+m +4mn+n+m

115

Table 5.2: Estimation of the computational cost for EIF

Item Operation Type of Computation Cost
1

f
kx + ^

()k kM x Matrix-vector multiply 2n2

1
1kQ−
+ Inverse of a matrix (1/3)n3

1
f

kY +
^ ^

1
1

^
() ()T

k M k k M kY D x Q D x−
++

Two matrix-matrix
multiply + a matrix add

4n3+n2

^ ^
1 1
1

^
[() (T

k M k k M kY D x Q D x− −
++)]

Inverse of a matrix (1/3)n3

^ ^
1 1 1
1 1 1

^
1
1

^
()[() ()]

()

T
k k M k k M k k M k

T
M k k

Q Q D x Y D x Q D x

D x Q

− − −
+ + +

−
+

− +
^

1−
Three matrix-matrix
multiply + a matrix add

6n3+n2

Total Cost of 1
f

kY + (32/3)n3+2n2

1

^
kY +

1
1kR−
+ Inverse of a matrix (1/3)m3

 1
1 1 1

f T
k k kY H R H−
+ + ++ 1k+ Two matrix-matrix

multiply + a matrix add
2m2n+2n2m
+n2

Total Cost of Y 1

^
k+

(1/3)m3+2m2

n+2n2 2m+n
^

1
1()kY −
+ Inverse of a matrix (1/3)n3

1kK +

^
1 1

1 1() T
k kY H R− −
+ + 1k+ One matrix-matrix

multiply
2n2m

Total Cost of 1kK + (1/3)n3+2n2m

Matrix-vector multiply
anda vector add

2nm+m
1 1 1

f
k kz H x+ +− k+ ^

1kx +

Matrix-vector multiply 2nm
1 1 1 1[]f

k k k kK z H x+ + + +−

1 1 1 1[]f
k k k k k 1

fx K z H x+ + + ++ − Vector add n
+

4nm+n+m ^

1k+ Total Cost of x
Total Cost: 11n3+5n2+4n2m+2m2 3n+(1/3)m +4mn+n+m

 From the above two tables, it is obvious that the cost of EKF is smaller than EIF

when n and m are equal.

116

 The approximate computational time of EKF and EIF for the three sets of

experiments is listed in Table 5.3. The computational times are based on a PC of 3.4 GHz

Intel Pentium 4 with 2GB of RAM. The total computational time is larger for the EIF

than for EKF for all experiments. This is expected since the state space formulation of

EIF involves several matrix inversions and thus the computationally demanding matrix

inverse contributes a significant component of the computation time for EIF compared to

that of EKF. Moreover, as expected the computation time is longer as the number of

observations are increased for both EKF and EIF. This is in agreement with the

computational complexities of EKF and EIF as shown in Table 5.1 and Table 5.2

respectively. However, while the computational time for EKF grows by a factor of ~3.27

as the number of observations m increases from 80 to 160, the computation time for EIF

grows by a factor of ~1.07. Therefore, the computation time for EIF is less effected with

the addition of observations compared to the EKF.

Table 5.3: Approximate computational run time (on 3.2GHz Intel Xeon processor) for the

three sets of experiments using both EKF and EIF.

EKF EIF , RσQσ
m=n m=2n m=4n m=n m=2n m=4n

lim0.30, =0.25Q R cσ σ σ= 0.6030 1.1541 3.7827 7.362 7.5459 8.0517

lim lim0.25 , =0.25Q c R cσ σ σ σ= 0.7301 1.2296 3.5680 7.3967 7.5470 7.9880

117

5.6 Summary

 Both EKF and EIF are implemented in this chapter using a 40 dimensional L96

model. To generate the truth run, the model with random start-up values is integrated

forward in time. In addition, to calculate the model initial condition 0

^
x and the initial

ensemble covariance matrix , a 100 member ensemble is created by taking the start-up

values of the truth run and adding small perturbations to random grid points and is

integrated forward in time. Both the truth run and the 100 member ensemble is stopped

after 14400 time steps to model initial condition (

0

^
P

0 0

^ ^
,x P) are created.

0 0

^ ^
,x P Both the filters are initialized using the same initial conditions () and the

observation assimilation experiments are conducted. The truth run and the model are run

in parallel and at every time step observations are created from the truth run and

assimilated into the model. The filter experiments are conducted for 500 time steps. The

performance of both filters is then compared. Results clearly indicate that both EKF and

EIF produce similar rms errors for the three different experiments conducted using three

different observation resolutions. This essentially supports the theory that the information

filter is algebraically equivalent to the Kalman filter. The computational time for the EIF

is larger than that of the EKF filter as expected due to the large computational cost of

matrix inversion of the EIF techniques. However, the increment in computational cost for

EIF is much smaller than that of EKF for increased number of observation assimilation.

118

Chapter 6

Summary and Future Work

The Ensemble Kalman filtering technique introduced about a decade ago has

become very popular within the meteorological community as an effective data

assimilation technique. The EnSRF technique, a variant of Ensemble Kalman filtering

technique shows promise in initializing storm-scale NWP models using radar

observations for thunderstorm prediction. Studies suggests that the assimilation of WSR-

88D radar observations in storm-scale NWP models using EnSRF data assimilation

techniques can produce reasonable analyses and forecast of storms from assimilating

observations for about an hour. However, severe weather events can evolve very rapidly

and the weather forecasters may not have the flexibility to assimilate radar observations

for an hour to make a forecast. With the advent of the new PAR technology, it is now

possible to obtain a snapshot of the storms in less than a minute as compared to the

operational WSR-88D radar that takes about 5 minutes to scan the same weather

phenomena.

Thus to quantify the value of assimilating PAR observations for a shorter period

of time, the EnSRF data assimilation technique is applied to assimilate radar observations

into the storm-scale model in Chapter 3. A realistic radar emulator is developed and

artificial WSR-88D and PAR reflectivity and radial velocity observations are generated

from a simulated supercell storm. Both WSR-88D and PAR samples the weather at high

spatial resolution. However, the computational time of the EnSRF algorithm scales

linearly with the number of observations. Therefore, to reduce the heavy computational

119

burden of assimilating high spatial resolution radar observation, synthetic observations

are generated at a coarser 1-km range resolution instead of the 0.25 km interval available

from the radar. The experiments are conducted based on perfect model assumption where

both the truth run and the ensemble use the same microphysics scheme, that is the model

error do not play any role. One experiment assimilates 3 volumes of WSR-88D radar

observations and another experiment assimilates 15 volumes of PAR observations during

the short 15-min assimilation period. Finally, the analyses and short-term (less than 1

hour) forecasts from WSR-88D and PAR observations assimilation are compared. In

general, the high-temporal frequency PAR observation assimilations using EnSRF

technique is very promising. Results indicates that PAR observations assimilation

provide more accurate analyses and forecasts of the storm compared to the WSR-88D

assimilation. Thus assimilating high temporal frequency radar data for a shorter period of

time may improve short-term forecasting and warnings of severe weather events with the

possibility of increasing warning lead time.

The experiments conducted in Chapter 3 are based on perfect model assumption.

However, in real world scenario, model errors play an important role in data assimilation

and forecasts and needs to be incorporated in the experiments. In Chapter 4, the impact of

model error in radar data assimilation is conducted based of imperfect model assumption.

In addition the potential value of using a range of intercept and density parameters within

the same microphysics scheme in the presence of model error also is explored in Chapter

4. Two reference simulations of a splitting supercell storm are generated using LFO and

10ICE microphysics schemes in an identical storm environment. Two sets of OSSEs are

conducted from both a perfect and an imperfect model framework using the EnSRF data

120

assimilation technique using both constant and a range of different intercept and density

parameters for the hydrometeors in the ensemble members. Synthetic WSR-88D

reflectivity and radial velocity observations at coarser resolution are created from the

truth runs using the same radar emulator as in Chapter 3 and these observations are

assimilated into the ensemble system over a 30-min period. The 40 ensemble analyses at

last assimilation cycle are then used to make 1 h forecasts. Results show that the EnSRF

system performs reasonably well with the imperfect model assumption. It is found that a

multiparameter ensemble within the imperfect model framework generates more accurate

forecasts of ensemble mean precipitation mixing ratios and accumulated rainfall

compared to that of the control imperfect model ensemble. This conclusion does not

always apply for the perfect model assumption where model error does not play a role.

Moreover the 1-h forecast time series of the 40 ensemble members for maximum hail

diameter and the lowest cold pool temperature at 100 m AGL indicates that the truth

almost always lies within the envelope of ensemble members for the perfect and

imperfect MP ensembles, whereas the truth more often lies on the edge or outside the

ensemble envelope for the perfect and imperfect control ensemble. The MP ensembles

also yield larger ensemble spread than the control experiments. The results from this

study support the idea that the microphysical parameter diversity across the ensemble

members may be beneficial to a storm-scale ensemble forecasting system.

 Both Chapter 3 and Chapter 4 apply the EnSRF data assimilation technique to

assimilate radar observations to NWP model. However, due to computational time

limitation of the EnSRF algorithm, the synthetic radar observations are sampled at a

coarser resolution. The large number of radar observations sampled by the radar and the

121

benefits of assimilating radar observations of the same storm from multiple radars clearly

indicate that the number of observations likely will be very high and the EnSRF data

assimilation method may not be an efficient data assimilation method for storm-scale

modeling. Thus in an effort to test more efficient data assimilation technique, the novel

information filter data assimilation method is implemented using the simple 40

dimensional Lorenz 1996 model in Chapter 5. There are several variants of the

information filter in the literature. Chapter 5 of this dissertation explores the extended

form of the information filter (EIF) using the state space formulation (Simon 2006) and is

compared against the benchmark extended Kalman filter data assimilation technique

(EKF). The EIF is used to assimilate three different densities of radar observations.

Results indicate that while the rms errors from both EKF and EIF are comparable as

shown in Chapter 5, the computational cost of EIF is much higher than that of the EKF.

This is due the heavy computation demand of matrix inversion. However, as the number

of observations m increases from 80 to 160, the computational time for EKF grows by a

factor of ~3.27, while for EIF the increment is by a factor of ~1.09. The results obtained

clearly indicate that the information filter may be computationally cheaper than that of

the Kalman filter when numbers of observations are very high.

 Assimilation of high density radar and other remote sensing observations in storm

scale modeling is an active area of research. The plan for future works includes the

assimilation of real radar observations into the model within realistic storm environment.

A broader range of experiments using real radar observations of severe weather events

will be conducted using multi-parameter ensemble in storm-scale data assimilation

system. Careful selection of these highly uncertain microphysical parameters so that these

122

values are representative of the various storm systems will be tested. There are several

versions of the information filter and we have implemented the state space formulation of

the information filter in this study. This study represents only a first step in this direction.

There are other formulations of the information filter as discussed in Chapter 2 which

leads to the question, which formulation is better? One limitation of transformed state

space formulation (Mutbambara 1998) of EIF is that it requires parallel implementation

of EKF to obtain the transformed state vector and the information matrix. This poses a

very good theoretical question: can we develop an extended nonlinear information filter

while totally remaining within the transformed space? This is a difficult problem and will

be pursued in the near future.

123

References

Aksoy, A., D. Dowell, and C. Snyder, 2009a: Ensemble Kalman filter assimilation of
 real radar observations: A multi-case comparative study of storm-scale
 forecasts and analyses. Mon. Wea. Rev., 137, 1805-1824.

Ambadan, J.T., and Y. Tang, 2009: Sigma-Point Kalman Filter Data Assimilation
 Methods for Strongly Nonlinear Systems. J. Atmos. Sci., 66, 261–285.

Anderson, B.D.O, and J. B. Moore, 1979: Optimal Filtering. Prentice Hall, Inc.
 Englewook Cliffs, N. J.

Anderson J. L., 2001: An ensemble adjustment filters for data assimilation, Monthly

Weather Review, 129, 2884-2903.

Bierman, G. J., 1977: Factorization methods for discrete sequential estimation,
 Academic Press, 241 pp.

Bishop C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the

ensemble transform Kalman filter. Part I: Theoretical aspects, Monthly Weather
Review, 129, 420–436.

Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A
 statistical and physical description of hydrometeor distributions in Colorado
 snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634–
 650.

Burgers G., J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in ensemble
 Kalman filter, Monthly Weather Review, 126, 1719-1724.

Businger, P. and G. H. Golub, 1965: Linear least squares solution by householder
 transformations. Numer. Math, 7, 269-276.

Caya, A., J. Sun, and C. Snyder, 2005: A Comparison between the 4DVAR and the
 Ensemble Kalman Filter Techniques for Radar Data Assimilation. Mon. Wea.
 Rev., 133, 3081–3094.

Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T.
 May, 2000: Drop-size distribution characteristics in tropical mesoscale
 convective systems. J. Appl. Meteor., 39, 760–777.

Coniglio, M.C., D.J. Stensrud, and L.J. Wicker, 2006: Effects of upper-level shear on
 the structure and maintenance of strong quasi-linear mesoscale convective
 systems. J. Atmos. Sci., 63, 1231-1252.

124

Cox, H. C. 1964: On the estimation of state variables and parameters for noisy
 dynamic systems. IEEE Trans. On A. C., AC-9, 5-12.

Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble
 forecasting and data assimilation. J. Atmos. Oceanic Technol.

Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N.A. Crook, 2004a: Wind and
 temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell:
 Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005.

Dowell, D. C., L. J. Wicker, and D. J. Stensrud, 2004b: High resolution analyses of
 the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and
 forecast experiments. Preprints, 22nd Conf. Severe Local Storms, Hyannis,
 MA, Amer. Meteor. Soc.

Dyer, P. and McReynolds, S., 1969: Extension of square-root filtering to include
 process noise. J. of Optimization Theory and Applications, 3, 444-459.

Evensen, G., 1992: Using the extended Kalman filter with a multi-layer
 quasigeostrophic ocean model. J. Geophys. Res., 97(C11), 17905-17924.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. J. Geophys.
 Res., 99(C5), 10143-10162.

Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. New York:
 Springer-Verlag.

Fertig E., J. Harlim, and B. R. Hunt, 2007: A comparative study of 4D-VAR and a 4D
 ensemble Kalman filter: Perfect model simulations with Lorenz-96. Tellus,
 59A, 96–101.

Forsyth, D. E., and Coauthors, 2004: The National Weather Radar Testbed (phased-
 array) becomes operational. Preprints, 20th Int.Conf. on Interactive
 Information and Processing Systems (IIPS) for Meteorology, Oceanography,
 and Hydrology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P1.1.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and
 three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.

Gilmore, M.S., J.M. Straka, and E.N. Rasmussen, 2004: Precipitation uncertainty due
 to variations in precipitation particle parameters within a simple microphysics
 scheme. Mon. Wea. Rev., 2004, 132, 2610-2627.

125

Golub, G. H., 1965: Numerical methods for solving linear least square problems.
 Numer. Math, 7, 206-216.

Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate
 snowflakes. J. Meteor., 15, 452–461.

Heinselman, P., D. Priegnitz, K. Manross, T. Smith, and R. Adams, 2008: Rapid

sampling of severe storms by the National Weather Radar Testbed Phased
 Array Radar. Wea. Forecasting, 23, 808-824.

Hong, S.-y. and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics
 scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.

Householder, A. S., 1964: Theory of matrices in numerical analysis. Waltham,
 Mass.: Blaisdell, ch.5.

Houtekamer P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble
 Kalman filter technique, Monthly Weather Review, 126, 796-811.

Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size
 distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36,
 156–162.

Houze, R. A., Jr., C.-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of
cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37, 754–
 773.

Jazwinski, A. H., 1970: Stochastic processes and filtering theory. Academic Press,
 NY.

Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar
 data for a convective storm using ensemble Kalman filter. Part I: Observation
 operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136,
 2228– 2245.

 Jung, Y., M. Xue, G. Zhang, and J. Straka, 2008b: Assimilation of simulated
 polarimetric radar data for a convective storm using ensemble Kalman filter.
 Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136,
 2246– 2260.

Kalman, R. E., 1960: A new approach to linear filtering and prediction problems.

Transactions of the American Society of Mechanical Engineering, Journal of
Basic Engineering, 82, 34-45.

Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction

theory. Transactions of the American Society of Mechanical Engineering,
Journal of Basic Engineering, 83, 95-108.

126

Kaminski P. G., A.E. Bryson Jr., and S. F. Schmidt 1971: Discrete Square Root
 Filtering: A Survey of Current Techniques. IEEE Tran. on Automatic Control,
 6, 727-735.

Lakshmivarahan S., and S. Dhall, 1990: Analysis and Design of Parallel Algorithms:
 Arithmetic and Matrix Problems. Mcgraw Hill Series in Supercomputing and
 Parallel Processing, 657 pp.

Lakshmivarahan S., and D. J. Stensrud, 2009: Ensemble kalman filter: an innovative
 approach for meteorological data assimilation. IEEE Control System
 Society, Special Issue, 29, 34-46.

Lei, T., M. Xue, T. Yu, and M. Teshiba, 2007: Study on the optimal scanning
 strategies of phase-array radar through ensemble Kalman filter assimilation of
 simulated data. 33rd Int. Conf. Radar Meteor., Cairns, Australia, Amer.
 Meteor. Soc., CDROM P7.1.

Leutbecher, M., R. Buizza, and L. Isaksen, 2007: Ensemble forecasting and flow-
 dependent estimates of initial uncertainty. In flow-dependent aspects of data
 assimilation, Workshop Proceedings, ECMWF, Shineld Park, Reading, UK,
 185-201.

Lewis J. M., S. Lakshmivarahan, and S. Dhall, 2006: Dynamic Data Assimilation: A
 Least Squares Approach. Cambridge, UK: Cambridge University Press, 654
 pp.

Lin, Y.-L., R.D. Farley, and H.D. Orville, 1983: Bulk parameterization of the snow
 field in a cloud model. J. Appl. Meteor., 22, 1065-1092.

Lord, S. J., E. Kalnay, R. Daley, G. D. Emmitt, and R. Atlas, 1997: Using OSSEs in
 the design of the future generation of integrated observing systems.
 Preprints, First Symp. on Integrated Observation Systems, Long Beach,
 CA, Amer. Meteor. Soc., 45–47.

Lorenz, E. N. 1996. Predictability—a problem partly solved. In Proceedings on
 predictability, held at ECMWF on 4–8 September 1995.

Lorenz E., 2005: Designing chaotic models. J. Atmos. Sci., 62, 1574–1587.

Lorenz E., 2006: Predictability—a problem partly solved. Predictability of Weather
 and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University
 Press, 40–58.

 Lorenz E., and K. A. Emmanuel, 1998: Optimal sites for supplementary weather
 observations: Simulation with a small model. J. Atmos. Sci., 55, 399–414.

127

Marshall, J.S., and McK. Palmer, 1948: The distribution of raindrops with size. J.
 Atmos. Sci., 5, 165-166.

Maybeck P. S., 1979: Stochastic Models: Estimation and Control. New York, NY:
 Academic Press.

Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow
 growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 3431–3451.

Morf, M. and T. Kailath, 1974: Square root algorithm for least square estimation,
 IEEE Transaction on Automatic Control, 20, 483-497.

Mutambara, G. O., 1998: Decentralized Estimation and Control for Multisensor
 Systems. CRC press.

Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data
 assimilation, Nonlin. Processes Geophysics., 14, 395-408.

Ott E., B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E. Kalnay,
 D.J. Patil, J.A. Yorke, 2004: A local ensemble Kalman filter for atmospheric
 data assimilation, Tellus, 56A, 415–428.

Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation.
 Reidel, 714 pp.

Schultz, P., 1995: An explicit cloud physics parameterization for operational
 numerical weather prediction. Mon. Wea. Rev., 123, 3331-3343.

Simon, D, 2006: Optimal State Estmation Kalman, H and Nonlinear Approaches,
 John Wiley and sons, 526 pp

Snook, N. and M. Xue, 2008: Effects of microphysical drop size distribution on
 tornadogenesis in supercell thunderstorms. Geophy. Res. Letters, 35, L24803,
 doi:10.1029/2008GL035866

Snyder, C. and F. Zhang, 2003: Assimilation of simulated Doppler radar observations
 with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.

Sorenson, H. W., 1976: An overview of filtering and stochastic control in dynamic
 systems, Control and Dynamic Systems: Advances in Theory and
 Applications, 12, Academic Press, New York.

Stensrud, D.J., 2007: Parameterization Schemes: Keys to Understanding Numerical

Weather Prediction Models. Cambridge University Press, 459 pp.

128

Straka, J.M., and E.R. Mansell, 2005: A Bulk Microphysics Parameterizaton with
Multiple Ice Precipitation Categories. J. Appl. Meteor., 44, 445–466.

Tao, W.-K. and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model
 description. Terres. Atmos. Ocean Sci., 4, 35-72.

Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar
 data with a compressible nonhydrostatic model: OSS experiments. Mon.
 Wea. Rev., 133, 1789-1807.

Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters
 and atmospheric state with radar data and ensemble Kalman filter. Part I:
 Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 1630-
 1648.

Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters
 and atmospheric state with radar data and ensemble Kalman filter. Part II:
 Parameter estimation experiments. Mon. Wea. Rev., 136, 1649-1668.

van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated
 supercell storms. J. Atmos. Sci., 61, 1596–1609.

Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok,
 2007: The next-generation multimission U.S. surveillance radar network. Bull.
 Amer. Meteor. Soc., 88, 1739−1751.

Weisman, M. L. and J. B. Klemp, 1982: The dependence of numerically simulated

convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110,
504-520.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without
 perturbed observations. Mon. Wea. Rev., 130, 1913-1924.

Wicker L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado
 development and decay within a three-dimensional supercell thunderstorm. J.
 Atmos. Sci, 52, 2675-2703.

Wicker L. J., and Skamarock, 2002: Time-splitting methods for elastic models using
 forward time schemes. Mon. Wea. Rev., 130, 2088-2097.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: Second

Edition. Academic Press, Boston, MA, 627 pp.

Wood, V. T., R. A. Brown, and D. Dowell, 2009: Simulated WSR-88D Velocity and

Reflectivity Signatures of Numerically-Modeled Tornadoes. J. Atmos.
Oceanic Technol. 26(5): 876.

129

Xue, M., M. Tong, and K.K. Droegemeier, 2006: An OSSE framework based on the
ensemble square root Kalman filter for evaluating the impact of data from
radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic
Technol., 23, 46-66.

Yu, T. Y., M. B. Orescanin, C. D. Curtis, D. S. Zrnic, and D. E. Forsyth, 2007: Beam

multiplexing using the phased-array weather radar. J. Atmos. Oceanic
Technol., 24, 616–626.

Yussouf, N., and D. J. Stensrud, 2008: Impact of high temporal frequency radar data
 assimilation on storm-scale NWP model simulations. Preprints, 24th
 Conference on Severe Local Storms, Savannah, GA, USA, Amer. Meteor.
 Soc., 9B.1.

Yussouf, N., and D. J. Stensrud, 2009: Impact of the variations of precipitation
 particle parameters within the same microphysics scheme in radar data
 assimilation using EnKF data assimilation technique. Preprints, 13th
 Conference on Mesoscale Processes, Saltlake City, UT, USA, Amer. Meteor.
 Soc., 18.2.

Yussouf, N., and D. J. Stensrud, 2010a: Impact of Phased Array Radar Observations

over a Short Assimilation Period: Observing System Simulation Experiments
Using Ensemble Kalman Filter. Mon. Wea. Rev., 138, 517-538.

Yussouf, N., and D. J. Stensrud, 2010b: Impact of the Variations of Microphysical

Parameters in Radar Data Assimilation using Perfect and Imperfect Model
Experiments. Mon. Wea. Rev., in review.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation
 availability on convective-scale data assimilation with an ensemble Kalman
 filter. Mon. Wea. Rev., 132, 1238-1253.

Zrnić, D. S., J. F. Kimpel, D. E. Forsyth, A. Shapiro, G. Crain, R. Ferek, J. Heimmer,
 W. Benner, T.J. McNellis, R. J. Vogt, 2007: Agile beam phased array radar
 for weather observations. Bull. Amer. Meteor. Soc., 88, 1753-1766

130

Appendix A

Program listing for the radar emulator

!--
!
! File Name: rad_volavg_lib.f90
! Author: Nusrat Yussouf
! This program contains a list of subroutines that are needed to create
! synthetic radar observation using volume averaging technique.
!
!--

!***
! SUBROUTINE volavg
! This routine calculates a mean Doppler velocity value at
! the center range, azimuth and elevation of an angular
! beamwidth volume.
!***

 SUBROUTINE volavg(dopval,dbzval,rg,az,elv,samp_az,samp_rg,samp_el,&
 u,v,w,zmm,rho,xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,&
 iprt,spval,xorg,yorg,zorg,bw,ebw,dbz_thres,&
 pts_az,pts_el,pts_rg)

!***
! Input variables:
!
! rg range from a Doppler radar to target
! az azimuth angle, measuring clockwise from the north toward which the radar
! beam is pointing.
! elv elevation angle
! samp_az = 1 if smearing is done only in az direction,
! = 0 no smearing
! samp_rg = 1 if smearing is done only in rg direction,
! = 0 no smearing
! samp_el = 1 if smearing is done only in elv direction,
! = 0 no smearing
! u,v,w U, V and W wind component from the 3-D model
! zdbz,rho Reflectivity and density from 3-D model
! xlvl,ylvl,zlvl Scalar grid positions in x,y,z directions from model
!
! xe,ye,ze Staggered grid positions in x,y,z directions from model

131

!
! nx,ny,nz Number of points in x,y and z direction in the model
! spval missing data parameter
! iprt if .true., then print out parameters for debugging
! xorg,yorg,zorg distance from radar to lower, left corner of 3-D model
!
! bw 1-way half-power beamwidth
! ebw 6dB 1-way effective beamwidth
! dbz_thres user specified reflectivity threshold
!
! Ouput variable:
!
! dopval mean (volume-weighted) Doppler velocity value
! dbzval mean (volume-weighted) reflectivity value
!***

 use param_module
 implicit none

 real :: u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),zmm(nx,ny,nz)
 real :: rho(nz),zlvl(nz),xlvl(nx),ylvl(ny),ze(nz)
 real :: xe(nx),ye(ny)
 real :: hgt_r,vt,xorg,yorg,zorg,xg_m,yg_m,zg_m
 real :: bw,ebw,dbz_thres,ures,vres,wres,zres,rhores
 real :: dopval,dbzval,rg,az,elv,spval
 integer :: itruth,count,samp_az,samp_rg,samp_el,nx,ny,nz
 integer :: num_az, num_el,num_rg,pts_az,pts_el,pts_rg

!***
! local variables
! vbw beamwidth in the vertical direction
! sigma**2 second central moment in deg**2 of the 2-way antenna pattern
! in the azimuth direction
! sigmb**2 second central moment in deg**2 of the 2-way antenna pattern in the
! elevation direction
! thetx max off-axis angle in the azimuth direction
! dthet off-axis angle interval in the azimuth direction
! phi off-axis angle in the elevation direction
! phix max off-axis angle in the elevation direction
! dphi off-axis angle interval in the elevation direction
! r1 trailing edge of range weighting function at
! which window is zero (w=0.0)
! r2 trailing edge of range weighting function at
! which window is maximum (w=1.0)
! r3 leading edge of range weighting function at which window
! is maximum

132

! r4 leading edge of range weighting function which window is zero (w=0.0)
! drg range increment
! ae 6/5 earth radius
! gsum numerator of the smoothed Doppler velocity
! fsum denominator of the smoothed Doppler velocity
! rg_sub range subpoint within the beamwidth volume
! az_sub azimuth subpoint within the beamwidth volume
! el_sub elevation subpoint within the beamwidth volume
! dopv Doppler velocity (m/s)
! zmm reflectivity in mm**6/m**3 before calculation
! Note that the above parameters are used in metric units
!***

 integer :: i,j, k, ii, jj, kk
 real :: sigma, sigmb, drg, dvbw, debw
 real :: vbw, vbw_x, ebw_x, r1, r2, r3, r4
 real :: sum_vr,sum_ref, sum_wtvr, sum_wtrfl
 real :: fall_spd, zdbzval ,x_sub,y_sub,z_sub
 real :: sin_sum, cos_sum, bb, f4,w2f4,varx,varz,wt, w2
 real :: az_sub, el_sub, phi_sub,rg_sub,thet_sub, tlint, lint

 ! Initializing

 count = 0
 vbw = bw
 sigma = ebw/sqrt(16.0*alog(2.0))
 sigmb = vbw/sqrt(16.0*alog(2.0))

 ! elevation angles in the resolution volume and no. of sub points

 vbw_x = vbw*float(samp_el)
 dvbw = 2.*vbw_x/float(pts_el-1)
 if(samp_el.eq.0) then
 num_el = 1
 else
 num_el = pts_el
 end if

 ! azimuthal angles in the resolution volume and no. of sub points

 ebw_x = 1.5*ebw*float(samp_az)
 debw = 2.*ebw_x/(pts_az-1)

 if(samp_az.eq.0) then
 num_az = 1
 else

133

 num_az = pts_az
 end if

 r1 = rg - 0.13*float(samp_rg)
 r2 = rg - 0.09*float(samp_rg)
 r3 = rg + 0.09*float(samp_rg)
 r4 = rg + 0.13*float(samp_rg)

 if(samp_rg.eq.0) then
 num_rg = 1
 drg = 0.0
 else
 num_rg = pts_rg
 drg=(r4-r1)/float(num_rg-1)
 end if

 sum_vr = 0.0
 sum_wtvr = 0.0
 sum_ref = 0.0
 sum_wtrfl = 0.0

 ! Calculate a mean Doppler velocity/reflectivity value at the center range (rg),
 ! azimuth (az) and elevation (el) of the effective resolution volume within the
 !beamwidth. Calculate slant range within the beamwidth volume.

 do jj = 1, num_rg

 if(num_rg.eq.1) then
 rg_sub = rg
 else
 rg_sub = r1 + float(jj-1)*drg
 endif

 ! Calculate range weighting function.

 wt = 0.0
 if(r1.lt.rg_sub.and.rg_sub.lt.r2) wt = (rg_sub-r1)/0.04
 if(r2.le.rg_sub.and.rg_sub.le.r3) wt = 1.0
 if(r3.lt.rg_sub.and.rg_sub.lt.r4) wt = (r4-rg_sub)/0.04

 w2 = wt*wt

 ! Calculate azimuth within the beamwidth volume.

 do ii = 1, num_az

134

 if(num_az.eq.1) then
 phi_sub = 0.0
 else
 phi_sub = -ebw_x + float(ii-1)*debw
 endif

 az_sub = az + phi_sub

 if(samp_az.ne.0) then
 varx = phi_sub*phi_sub/(2.*sigma*sigma)
 elseif(samp_az.eq.0) then
 varx = 0.0
 endif

 ! Calculate elevation within the beamwidth volume.

 do kk = 1, num_el

 if(num_el.eq.1) then
 thet_sub = 0.0
 else
 thet_sub = -vbw_x + float(kk-1)*dvbw
 endif

 el_sub = elv + thet_sub

 if(samp_el.ne.0) then
 varz = thet_sub*thet_sub/(2.*sigmb*sigmb)
 else
 varz = 0.0
 endif

 ! Calculate height as a function of range and elevation.

 z_sub = hgt_r(el_sub,rg_sub)

 ! Calculate a two-way antenna pattern.

 f4 = exp(-varx-varz)
 w2f4 = w2*f4

 ! Calculate the sum of the beam's elevation angle to the data point and the angle
 ! subtended by the verticals at the radar and at the measurement point.

 bb = rg_sub*cos(el_sub*degtorad)/(ae + rg_sub*sin(el_sub*degtorad))

135

 cos_sum = cos(el_sub*degtorad + atan(bb))
 sin_sum = sin(el_sub*degtorad + atan(bb))

 ! Calculate x and y as a function of range and azimuth.

 x_sub = rg_sub*sin(az_sub*degtorad)*cos_sum
 y_sub = rg_sub*cos(az_sub*degtorad)*cos_sum

 ! Interpolate 3-D gridded data to radar target.

 xg_m = (x_sub - xorg)*1000.0
 yg_m = (y_sub - yorg)*1000.0
 zg_m = (z_sub - zorg)*1000.0

 ures = spval
 vres = spval
 wres = spval
 zres = spval
 rhores = spval

 ! begin trilinear interpolation.

 zres = tlint(zmm,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz- &
 1,0,0,xlvl,ylvl,zlvl,spval)
 ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1, 0,0, xe,&
 ylvl, zlvl, spval)
 vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1, 0,0,xlvl,&
 ye, zlvl, spval)
 wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz, 0,0,xlvl,&
 ylvl, ze, spval)

 ! linear interpolation in the vertical direction.

 rhores = lint(rho, zg_m, nz-1, zlvl, spval)

 ! Calculate values Doppler velocity, reflectivity factor, and
 ! terminal fall speed of precipitation.

 dopval = spval
 dbzval = spval
 fall_spd = spval

 ! Sum up computed Doppler velocity & reflectivity factor within beamwidth volume.

 if(zres.ne.spval) then

136

 sum_ref = sum_ref + f4*w2*zres
 sum_wtrfl = sum_wtrfl + f4*w2
 if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval.and.&
 rhores.ne.spval) then
 fall_spd = vt(zres,rhores)
 dopval = ures*sin(az_sub*degtorad)*cos_sum + &
 vres*cos(az_sub*degtorad)*cos_sum& + &
 (wres+fall_spd)*sin_sum
 endif

 if(dopval.ne.spval) then
 sum_vr = sum_vr + f4*w2*zres*dopval
 sum_wtvr = sum_wtvr + f4*w2*zres
 endif

 endif

 count = count + 1
 end do
 end do
 end do

 ! Compute a mean Doppler velocity value (m/s) and return the result.

 if(sum_wtvr.ne.0.0) then
 dopval = sum_vr/sum_wtvr
 else
 dopval = spval
 endif

 ! Compute a mean reflectivity value (dBZ) and return the result.

 if(sum_wtrfl.ne.0.0) then
 zdbzval = sum_ref/sum_wtrfl
 dbzval = 10.*alog10(zdbzval)

 if(dbzval.lt.dbz_thres) then
 dbzval = spval
 dopval = spval
 endif
 else
 dbzval = spval
 endif

 RETURN

137

 END SUBROUTINE VOLAVG

!***
! SUBROUTINE volavg
! This routine calculates a mean Doppler velocity value at the center range, azimuth
! and elevation of an angular beamwidth volume.
!***

 SUBROUTINE volavg_simple(dopval,dbzval,rg,az,elv,u,v,w,zmm,rho,&
 xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,iprt,spval,xorg,yorg,&
 zorg,dbz_thres,phi,theta,wgt)

!***
! Input variables:
!
! rg range from a Doppler radar to target
! az azimuth angle, measuring clockwise from the north toward which the
! radar beam is pointing
! elv elevation angle
! u,v,w U, V and W wind component from the 3-D model
! zdbz,rho Reflectivity and density from 3-D model
! xlvl,ylvl,zlvl Scalar grid positions in x,y,z directions from model
! xe,ye,ze Staggered grid positions in x,y,z directions from model
! nx,ny,nz, Number of points in x,y and z direction in the model
! spval missing data parameter
! iprt if .true., then print out the parameters for debugging
! xorg,yorg,zorg distance from radar to the lower, left corner of 3-D model
! dbz_thres user specified reflectivity threshold
!
! Ouput variable:
! dopval mean (volume-weighted) Doppler velocity value
! dbzval mean (volume-weighted) reflectivity value
!***

 use param_module
 implicit none

 real :: u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),zmm(nx,ny,nz)
 real :: xlvl(nx),ylvl(ny),zlvl(nz),ze(nz),xe(nx),ye(ny)
 real :: rho(nz),hgt_r,vt,xg_m,yg_m,zg_m,dbz_thres
 real :: ures,vres,wres,zres,rhores,rg,az,elv
 real :: spval,dopval,dbzval,xorg,yorg,zorg
 real :: phi(13),theta(13),wgt(13)
 real :: az_sub,el_sub,rg_sub,f4
 real :: sum_vr,sum_ref, sum_wtvr, sum_wtrfl

138

 real :: fall_spd, zmmval,x_rad,y_rad,z_rad
 real :: sin_sum, cos_sum, bb,lint, tlint
 integer :: nx,ny,nz, i, j, k
 integer :: pts(13),cnt, count, iwgt
 logical :: flag

 sum_vr = 0.0
 sum_wtvr = 0.0
 sum_ref = 0.0
 sum_wtrfl = 0.0

 ! A mean Doppler velocity/reflectivity value at the center range
 ! (rg),azimuth (az) and elevation (el) of the effective resolution
 ! volume within the beamwidth can be approximated by computing the
 ! weighted mean of individual Doppler velocity/reflectivity values
 ! over the 13 points.

 cnt = 0
 pts = 0
 flag = .false.

 do iwgt = 1, 13

 rg_sub = rg
 az_sub = az + phi(iwgt)
 el_sub = elv + theta(iwgt)
 z_rad = hgt_r(el_sub,rg_sub)

 ! Calculate a two-way antenna pattern.

 f4 = wgt(iwgt)

 ! Write down the computed variables.

 if(iprt) then
 write(6,1) iwgt,az_sub,el_sub,rg_sub,f4
 endif
1 format(' iwgt=',i2,' az_sub,el_sub,rg_sub=',3f8.3,'f4=',f8.4)

 ! Calculate the sum of the beam's elevation angle to the data point and the angle
 !subtended by the verticals at the radar and at the measurement point.

 bb =rg_sub*cos(el_sub*degtorad)/(ae+rg_sub*sin(el_sub*degtorad))
 cos_sum = cos(el_sub*degtorad + atan(bb))
 sin_sum = sin(el_sub*degtorad + atan(bb))

139

 if(iprt)write(6,*) 'bb,cos_sum, sin_sum ', bb, cos_sum,sin_sum

 ! Calculate x and y as a function of range and azimuth.

 x_rad = rg_sub*sin(az_sub*degtorad)*cos_sum
 y_rad = rg_sub*cos(az_sub*degtorad)*cos_sum

 ! Interpolate 3-D gridded data to radar target.

 xg_m = (x_rad - xorg)*1000.0
 yg_m = (y_rad - yorg)*1000.0
 zg_m = (z_rad - zorg)*1000.0

 if(iprt)write(6,*) 'x_rad,xorg,xg_m',x_rad,xorg,xg_m
 if(iprt)write(6,*) 'y_rad,yorg,yg_m',y_rad,yorg,yg_m
 if(iprt)write(6,*) 'z_rad,zorg,zg_m',z_rad,zorg,zg_m

 ures = spval
 vres = spval
 wres = spval
 zres = spval
 rhores = spval

 ! begin trilinear interpolation.

 zres = tlint(zmm,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz-1, 0, 0,&
 xlvl,ylvl,zlvl,spval)

 ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1, 0,0, xe, &
 ylvl, zlvl, spval)

 vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1, 0,0, xlvl, &
 ye, zlvl, spval)

 wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz, 0,0, xlvl,&
 ylvl, ze, spval)

 ! linear interpolation in the vertical direction.
 rhores = lint(rho, zg_m, nz-1, zlvl, spval)

 ! Calculate values Doppler velocity, reflectivity factor, and terminal fall speed of
 ! precipitation.

 if(iprt) then

140

 write(6,*) 'ures, vres, wres, zres, rhores', ures, vres,wres, zres, rhores
 endif

 fall_spd = spval

 ! calculate non-missing variable within the beam volume.

 if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval.and. &
 rhores.ne.spval.and.zres.ne.spval) then
 fall_spd = vt(zres,rhores)
 dopval = ures*sin(az_sub*degtorad)*cos_sum + &
 vres*cos(az_sub*degtorad)*cos_sum + &
 (wres+fall_spd)*sin_sum
 cnt = cnt + 1
 pts(iwgt) = 1
 sum_ref = sum_ref + f4*zres
 sum_wtrfl = sum_wtrfl + f4
 sum_vr = sum_vr + f4*zres*dopval
 sum_wtvr = sum_wtvr + f4*zres

 endif

 end do

 ! Compute a mean Doppler velocity value (m/s) and return the result.

 if (cnt .eq. 13) then
 flag = .true.
 else if (cnt .ge. 9) then
 if ((pts(1).eq.1).and.(pts(2).eq.1).and.(pts(3).eq.1).and. &
 (pts(4) .eq. 1).and.(pts(5).eq.1).and.(pts(9).eq.1) .and. &
 (pts(10).eq.1).and.(pts(11).eq.1).and.(pts(13).eq. 1)) then
 flag = .true.
 else if ((pts(1).eq.1).and.(pts(8).eq.1).and.(pts(7).eq.1) .and.&
 (pts(6).eq.1).and.(pts(5).eq.1).and.(pts(9).eq.1).and. &
 (pts(12).eq.1).and.(pts(11).eq.1).and.(pts(13).eq.1)) then
 flag = .true.
 else if ((pts(7).eq.1).and.(pts(8).eq.1).and.(pts(1).eq.1).and. &
 (pts(2).eq.1).and.(pts(3).eq.1).and.(pts(12).eq. 1) .and. &
 (pts(9).eq.1).and.(pts(10).eq.1).and.(pts(13).eq. 1)) then
 flag = .true.
 else if ((pts(7).eq.1).and.(pts(6).eq.1).and.(pts(5).eq.1) .and.&
 (pts(4).eq. 1).and.(pts(3).eq.1).and.(pts(12).eq.1) .and. &
 (pts(11).eq.1).and.(pts(10).eq.1).and.(pts(13).eq.1)) then
 flag = .true.
 end if

141

 end if

 if (flag) then

 if(sum_wtvr.ne.0.0) then
 dopval = sum_vr/sum_wtvr
 else
 dopval = spval
 endif

 ! Compute a mean reflectivity value (dBZ) and return the result.

 if(sum_wtrfl.ne.0.0) then
 zmmval = sum_ref/sum_wtrfl
 dbzval = 10.*alog10(zmmval)
 if(dbzval.lt.dbz_thres) then
 dbzval = spval
 dopval = spval
 endif
 else
 dbzval = spval
 dopval = spval
 endif
 else
 dbzval = spval
 dopval = spval
 endif

 RETURN
 END SUBROUTINE volavg_simple

!**
! SUBROUTINE setup
! This routine defines a sector of interest on ppi. the input and output data are listed.
!
! Variable descriptions:
!
! azmbeg begining azimuth
! azmend ending azimuth
! azmref reference azimuth
! grid_x perimeter size in the x-direction
! grid_y perimeter size in the y-direction
! rngbeg begining range
! rngend ending range
! rngref reference range
! xo,yo reference center relative to the reference range and azimuth

142

!**
 SUBROUTINE setup(grid_x, grid_y, azmbeg, azmend, rngbeg, rngend, &
 rngref, azmref,xo,yo)

 use param_module
 implicit none

 real :: grid_x, grid_y
 real :: azmbeg, azmend
 real :: rngbeg, rngend
 real :: rngref, azmref
 real :: xo, yo
 character(LEN = 1) :: iprt

! Calculate x- and y-positions of the grid origin relative to
! the reference range and azimuth.

 xo = rngref*sin(azmref*degtorad)
 yo = rngref*cos(azmref*degtorad)
 grid_x = anint(grid_x)
 grid_y = anint(grid_y)

! Define a sector of interest.
! Compute begining and ending ranges and azimuths.

 call set_up(xo,yo,grid_x,grid_y,azmbeg,azmend,rngbeg,rngend)

! Nearest the whole number.

 azmbeg = anint(azmbeg)
 if(azmbeg.lt.0.0) azmbeg = 0.0
 azmend = anint(azmend)
 if(azmend.gt.360.0) azmend = 360.0
 rngbeg = anint(rngbeg)
 if(rngbeg.lt.0.0) rngbeg = 0.0
 rngend = anint(rngend)

 if((azmend-azmbeg).eq.360.) then
 azmbeg = azmref - 180.
 if(azmbeg.lt.0.0) azmbeg = azmbeg + 360.
 azmend = azmref + 180.
 if(azmend.gt.360.0) azmend = azmend - 360.
 endif

 iprt = 'n'
 if(iprt.eq.'y') then

143

 write(6,25)
 25 format(/)
 write(6,19) grid_x, grid_y
 19 format(' Grid size (km) in x- and y-directions: ',2f5.0)
 write(6,27)
 27 format(' Input data are given as:')
 write(6,20) rngref
 20 format(' Reference range (km): ',f7.2)
 write(6,21) azmref
 21 format(' Reference azimuth (deg): ',f6.1)
 write(6,28)
 28 format(' Output data are given as:')
 write(6,22) xo, yo
 22 format(' Perimeter center(xo,yo)(km)from the radar: ' 2f8.2)
 write(6,23) azmbeg, azmend
 23 format(' Begining and ending azimuths (deg): ',2f7.1)
 write(6,24) rngbeg, rngend
 24 format(' Begining and ending ranges (km): ',2f7.1)
 endif

 RETURN
 END SUBROUTINE SETUP

! **
! SUBROUTINE: set_up
! This routine computes beginning and ending ranges and azimuths of a sector scan.
!
! Variable descriptions:
!
! adjazm add a few more azimuths to the begining or ending azimuths (deg)
! adjrng add some km to the begining and ending ranges
! degtorad convert degress to radians
! gx array of x-distances (nm) from radar to the side of the perimeter
! gy array of y-distances (nm) from radar to the side of the perimeter
! pi = 3.1415709
! prt character that determines whether or not you want to print out data
! px,py x,y-locations (nm) of the perimeter's center from the radar
! range range (nm) of corner from the radar
! rmax maximum distance (nm) of the perimeter's corner from the radar
! rmin minimum distance (nm) of the perimeter's corner from the radar
! rtd convert radians to degrees
! semp array of ranges (nm) of the perimeter's corner
! temp array of angles (deg) of the perimeter's corner
! x_dist distance of the perimeter along the x-axis
! y_dist distance of the perimeter along the y-axis

144

!
! **

 SUBROUTINE set_up(px,py,x_dist,y_dist,azmbeg,azmend,rngbeg,rngend)

 use param_module
 implicit none

 character(LEN = 1) :: prt
 real :: gx(2),gy(2),temp(4),semp(4)
 logical :: igo
 real :: rngbeg,rngend,azmbeg,azmend
 real :: px,py,x_dist,y_dist
 integer :: m, i, j
 real :: a, b, c
 real :: t, t2, s, rmin, rmax

! Compute four corners (km) of the perimeter.

 gx(1) = px - 0.5*x_dist
 gx(2) = px + 0.5*x_dist
 gy(1) = py - 0.5*y_dist
 gy(2) = py + 0.5*y_dist
 rngbeg = 999.
 rngend = 999.
 azmbeg = 999.
 azmend = 999.
 igo = .false.

! If the radar is inside the perimeter, then get one full ppi scan.

 if((gx(1)*gx(2).lt.0.0).and.(gy(1)*gy(2).lt.0.0)) then
 azmbeg = 0.0
 azmend = 359.0
 rngbeg = 0.0
 endif

! Compute angle of each corner of the perimeter.

 m = 0
 do i = 1, 2
 do j = 1, 2
 m = m + 1
 temp(m) = atan2(gx(i),gy(j))*rtd
 semp(m) = sqrt(gx(i)*gx(i) + gy(j)*gy(j))
 enddo

145

 enddo

 do m = 1, 4
 if(temp(m).lt.0.0) temp(m) = temp(m) + 360.
 enddo

 if(rngbeg.eq.0.0) go to 4

! Determine beginning and ending azimuths and ranges.

 if(gx(1).ge.0.0) then
 if(gy(1).gt.0.0) then
 azmbeg = temp(2)
 azmend = temp(3)
 elseif(gy(1).le.0.0.and.gy(2).ge.0.0) then
 azmbeg = temp(2)
 azmend = temp(1)
 igo = .true.
 a = semp(2)
 b = semp(1)
 c = y_dist
 elseif(gy(2).lt.0.0) then
 azmbeg = temp(4)
 azmend = temp(1)
 endif
 elseif(gx(2).le.0.0) then
 if(gy(1).gt.0.0) then
 azmbeg = temp(1)
 azmend = temp(4)
 elseif(gy(1).le.0.0.and.gy(2).ge.0.0) then
 azmbeg = temp(3)
 azmend = temp(4)
 igo = .true.
 a = semp(3)
 b = semp(4)
 c = y_dist
 elseif(gy(2).lt.0.0) then
 azmbeg = temp(3)
 azmend = temp(2)
 endif
 elseif(gy(1).ge.0.0) then
 if(gx(1).gt.0.0) then
 azmbeg = temp(2)
 azmend = temp(3)
 elseif(gx(1).le.0.0.and.gx(2).ge.0.0) then
 azmbeg = temp(1)

146

 azmend = temp(3)
 igo = .true.
 a = semp(1)
 b = semp(3)
 c = x_dist
 elseif(gx(2).lt.0.0) then
 azmbeg = temp(1)
 azmend = temp(4)
 endif
 elseif(gy(2).le.0.0) then
 if(gx(1).gt.0.0) then
 azmbeg = temp(4)
 azmend = temp(1)
 elseif(gx(1).le.0.0.and.gx(2).ge.0.0) then
 azmbeg = temp(4)
 azmend = temp(2)
 igo = .true.
 a = semp(4)
 b = semp(2)
 c = x_dist
 elseif(gx(2).lt.0.0) then
 azmbeg = temp(3)
 azmend = temp(2)
 endif
 endif

 4 continue

 rmax = -1.e10
 rmin = +1.e10

 do i = 1, 4
 if(semp(i).ge.rmax) rmax = semp(i)
 if(rngbeg.ne.0.0) then
 if(semp(i).le.rmin) rmin = semp(i)
 endif
 enddo

 if(rngbeg.ne.0.0) rngbeg = rmin
 rngend = rmax

 if(igo) then
 s = 0.5*(a + b + c)
 t2 = s*(s-a)*(s-b)*(s-c)
 t = sqrt(t2)
 rngbeg = 2.*t/c

147

 endif

! Adjust beginning and ending azimuths by adjusting a few more azimuths to them.

 rngbeg = rngbeg - adjrng
 if(rngbeg.lt.0.0) rngbeg = 0.0
 rngend = rngend + adjrng
 azmbeg = azmbeg - adjazm
 azmend = azmend + adjazm

! Do you want to print out data of corners (km)? prt = 'y' or 'n'

 prt = 'n'
 if(prt.eq.'y') then
 write(6,6) gx(1),gy(2)
 6 format(1x,'x,y positions in the nw corner (km)= ',2f8.2)
 write(6,7) gx(2),gy(2)
 7 format(1x,'x,y positions in the ne corner (km)= ',2f8.2)
 write(6,8) gx(2),gy(1)
 8 format(1x,'x,y positions in the se corner (km)= ',2f8.2)
 write(6,9) gx(1),gy(1)
 9 format(1x,'x,y positions in the sw corner (km)= ',2f8.2)
 endif

 RETURN
 END SUBROUTINE set_up

!**
! Function: hgt_r
! This function computes the height (km) of the data value.
! Input: el elevation angle (deg)
! rng slant range (km) from radar
! Output: computed hgt_r
!**

 REAL FUNCTION hgt_r(el,rng)

 use param_module
 implicit none
 real :: el, ng

 hgt_r = sqrt(rng*rng + ae*ae + 2.*ae*rng*sin(el*degtorad)) - ae

 RETURN
 END FUNCTION hgt_r

148

!**
! Function: vt
! This function computes the terminal fall speed of hydrometeors (a negative quantity
! toward the ground). Pecipitation is assumed to be liquid water.
! zdbz reflectivity factor (mm**6/m**3)
! rho density (kg/m**3)
!**

 REAL FUNCTION vt(zdbz,rho)

 use param_module
 implicit none
 real :: zdbz, rho

 vt = -2.6*zdbz**(0.107)*(1.2/rho)**0.4

 RETURN
 END FUNCTION vt

!**
! Subroutine: comp_wgt
! This subroutine approximates the mean values of Doppler velocity and reflectivity
! within a half-power beamwidth by computing the weighted mean of individual
! values over the 13 points.
!**

 SUBROUTINE comp_wgt(bw,ebw,phi,theta,wgt)

 use param_module
 implicit none

 real :: bw,ebw
 real :: phi(13),theta(13),wgt(13)
 integer :: i

 vbw = bw

 do i = 1, 13

 if(i.le.8) then
 wgt(i) = 0.5
 ang = (i-1)*45.*degtorad
 phi(i) = 0.5*ebw*sin(ang)

149

 theta(i) = 0.5*vbw*cos(ang)
 endif

 if(9.le.i.and.i.le.12) then
 wgt(i) = 0.84
 ang = (i-9)*90.*degtorad
 phi(i) = 0.25*ebw*sin(ang)
 theta(i) = 0.25*vbw*cos(ang)
 endif

 if(i.eq.13) then
 wgt(i) = 1.0
 phi(i) = 0.0
 theta(i) = 0.0
 endif

 enddo

 RETURN
 END SUBROUTINE comp_wgt

!***
! Subroutine: radar_calc
! This subroutine calculates the radar parameters from the input data.
!***

SUBROUTINE radar_calc(radar_lat,radar_lon,ini_grid_lat_deg, &
 ini_grid_lon_deg,range_interval,azim_interval,&
 nx,ny,nz,dx,dy,dz,map_proj,xmin,ymin,spval,nazm,&
 azm_beg,nrng,rng_beg,xorg,yorg,xradar,yradar,&
 rng_ref,azm_ref)

 use param_module
 real :: dx,dy,dz,xorg,yorg
 real :: rng_beg,rng_end,azm_beg,azm_end
 real :: rng_ref, azm_ref
 real :: xo, yo, grid_x, grid_y, grid_z
 real :: mid_x, mid_y
 real :: ini_grid_lat,ini_grid_lon,ini_grid_lon_deg,
 real :: grid_lat,grid_lon,grid_lon_deg,grid_lat_deg
 real :: ini_grid_lat_deg, mid_lon_deg
 real :: radar_lat,radar_lon,mid_lat,mid_lon,mid_lat_deg,
 real :: range_interval,azim_interval

150

 real :: xmin, ymin, xradar,yradar, gnd_rng
 integer :: nrng, nazm, map_proj
 integer :: nx,ny,nz

 ini_grid_lat = ini_grid_lat_deg * degtorad
 ini_grid_lon = ini_grid_lon_deg * degtorad

! model dimensions and model mid point distance

 grid_x = (nx-1)*dx/1000. ! in km
 grid_y = (ny-1)*dy/1000. ! in km
 grid_z = (nz-1)*dz/1000. ! in km
 mid_x = grid_x*1000.0/2.0 ! in m
 mid_y = grid_y*1000.0/2.0 ! in m

! Model SW corner lat/lon at current time (due to ugrid and vgrid motion)

 call xy_to_ll(grid_lat, grid_lon, map_proj, xmin, ymin, ini_grid_lat, ini_grid_lon)

! Model mid point lat/lon relative to SW lat/lon corner of the model

 call xy_to_ll(mid_lat, mid_lon, map_proj, mid_x, mid_y, grid_lat, grid_lon)

 mid_lat_deg = mid_lat * rtd
 mid_lon_deg = mid_lon * rtd
 grid_lat_deg = grid_lat * rtd
 grid_lon_deg = grid_lon * rtd

! Calculating the distance of model center point relative to radar location

 call ll_to_xy(xradar,yradar,map_proj,radar_lat,radar_lon,mid_lat,&
 mid_lon)

 xradar = xradar/1000.0 ! in km
 yradar = yradar/1000.0 ! in km

! Calculating the reference range and azimuth of radar relative to the model center point.

 rng_ref = sqrt(xradar**2 + yradar**2) ! in km

 if ((xradar.eq.0.0) .and. (yradar.eq.0.0)) then
 azm_ref = 0.0
 else if(yradar .gt. 0.0) then
 azm_ref = rtd*atan(xradar/yradar)
 else if (yradar .lt. 0.) then

151

 azm_ref= pii*rtd + rtd*atan(xradar/yradar)
 else if (xradar .gt. 0.) then
 azm_ref = 0.50*pii*rtd
 else
 azm_ref = 1.5* pii*rtd
 end if

 if (azm_ref .lt. 0.0) azm_ref =azm_ref + 2*pii*rtd

 xo = rng_ref*sin(azm_ref*degtorad) ! in km
 yo = rng_ref*cos(azm_ref*degtorad) ! in km

! Compute xorg, yorg, zorg defined as the distance of the lower, left
! corner of the model from the radar location.

 xorg = xo - grid_x/2. ! in km
 yorg = yo - grid_y/2. ! in km

! Call to determine beginning and ending ranges and azimuths of model grid from radar

 call setup(grid_x,grid_y,azm_beg,azm_end,rng_beg,rng_end,rng_ref,&
 azm_ref,xo,yo)

 nrng = (rng_end - rng_beg)/range_interval + 1

 if(azm_end.gt.azm_beg) then
 nazm = (azm_end - azm_beg)/azim_interval + 1
 else
 nazm = (azm_end + 360. - azm_beg)/azim_interval + 1
 endif

 if(nazm.le.0) then
 print*,'program is terminated bcz nazm <= 0'
 print*,'check to fix the problem!'
 stop
 endif

! Use an open statement to create a new formatted write file on unit 6
! with a file name 'dop_rad_simul.out'

 open(6,file='dop_rad_simul.out',status='unknown')

 write(6,*)'radar_la/lon deg= ',radar_lat*rtd, radar_lon* rtd
 write(6,*)'grid lat/lon of SW corner after moving from start= &
 ',grid_lat_deg,grid_lon_deg

152

 write(6,*) 'middle point of model grid lat/lon= ',mid_lat_deg,&
 mid_lon_deg
 write(6,*) 'distnce of domain middle point from SW corner mid_x/y &
 = ', mid_x, mid_y
 write(6,*) 'distance of radar relative to model center point &
 xradar/yradar = ', xradar, yradar
 write(6,*) 'xmin, ymin = ', xmin, ymin
 write(6,901) rng_ref
901 format(1x,'Reference Range (km) to Center Grid of Data ',/, &
 4x,'Volume, Relative to Radar...................',f6.1)
 write(6,902) azm_ref
902 format(1x,'Reference Azimuth (deg) to Center Grid of Data ',/, &
 4x,'Volume, Relative to Radar...................',f6.1)
 write(6,906) range_interval
906 format(1x,'Range Interval (km)............................',f7.2)
 write(6,9061) azim_interval
9061 format(1x,'Azimuth Interval (deg).........................',f6.1)
 write(6,9068) dbz_thres
9068 format(1x,'Reflectivity threshold (dbz)...................',f6.1)
 write(6,907) xo
907 format(1x,'X-Dist (km) Relative to Radar..................',f6.1)
 write(6,908) yo
908 format(1x,'Y-Dist (km) Relative to Radar..................',f6.1)
 write(6,909) dx/1000.0
909 format(1x,'Grid Spacing (km) in X-Direction...............',f6.1)
 write(6,910) dy/1000.0
910 format(1x,'Grid Spacing (km) in Y-Direction...............',f6.1)
 write(6,911) dz/1000.0
911 format(1x,'Grid Spacing (km) in Z-Direction...............',f6.1)
 write(6,912) grid_x
912 format(1x,'Grid Size (km) in X-Direction..................',f6.1)
 write(6,913) grid_y
913 format(1x,'Grid Size (km) in Y-Direction..................',f6.1)
 write(6,914) grid_z
914 format(1x,'Grid Size (km) in Z-Direction..................',f6.1)
 write(6,915) nx, ny, nz
915 format(1x,'Data Array Size (nx)...........................',i5,/,&
 1x,'Data Array Size (ny)...........................',i5,/, &
 1x,'Data Array Size (nz)...........................',i5)
 write(6,916) xorg
916 format(1x,'X-Origin in Lower, Left Corner of 3-D Model....',f6.1)
 write(6,917) yorg
917 format(1x,'Y-Origin in Lower, Left Corner of 3-D Model....',f6.1)
 write(6,919) rng_beg
919 format(1x,'Beginning Range (km)...........................',f6.1)

153

 write(6,920) rng_end
920 format(1x,'Ending Range (km)..............................',f6.1)
 write(6,921) azm_beg
921 format(1x,'Beginning Azimuth (deg)........................',f6.1)
 write(6,922) azm_end
922 format(1x,'Ending Azimuth (deg)...........................',f6.1)
 write(6,923) nrng
923 format(1x,'No. of Range Gates.................',i5)
 write(6,924) nazm
924 format(1x,'No. of Azimuth Gates...............',i5)

 close(6)

 RETURN
 END SUBROUTINE radar_calc

!***
! Subroutine: twrite
! Write data down to a output file.
!***

 SUBROUTINE twrite(nobs,nobs_x,dopv,dbz,azm,rng,elv,lu,zres_st,hgt_st)
 implicit none

 real :: elv
 real :: dopv(nobs_x), dbz(nobs_x)
 real :: rng(nobs_x), azm(nobs_x)
 real :: zres_st(nobs_x),hgt_st(nobs_x)
 integer :: lu ! file unit number
 integer :: nobs, nobs_x, i

 do i = 1, nobs
 write(lu,10) i, dopv(i), dbz(i), rng(i), azm(i), &
 elv,zres_st(i), hgt_st(i)
 enddo

10 format('i=',i6,' dopv=',f7.2,' dbz=',f7.2,' rng=',f8.3,' &
 azm=',f5.0,'elv=',f7.2,' zres=',f7.2,' hgt=',f7.2)

 RETURN
 END SUBROUTINE twrite

! **
! SUBROUTINE: SYNTHETIC_RADAR_OBS_VOL
! Author: Nusrat Yussouf

154

!
! This subroutine produces synthetic Doppler velocity and reflectivity observations
! from the truth model run using volumetric averaging and outputs the results to a file.
! Observations are produced as follows:
! **

SUBROUTINE SYNTHETIC_RADAR_OBS_VOL(obfile,obformat,runfile,time,secs,&
 days, refl_threshold_for_vr,dbz_thres, radar_loc_flag,&
 radar_lat_deg, radar_lon_deg,map_proj,rand_error_refl, &
 rand_error_vr, bias_error_refl,bias_error_vr, beamwidth,&
 eff_bw,azim_interval,range_interval,vcp_num,samp_az,&
 samp_rg,samp_el,pts_az,pts_el,pts_rg,radar_sample_flag,sweeps)

 use ens_module
 use ob_module
 use dart_module
 use random
 use param_module

 implicit none

 character(LEN = *) :: obfile ! name of observation file
 character(LEN = 120) :: runfile ! has namelists
 integer :: obformat ! observation format:
 ! 0=radar polar
 ! 1=radar PPI
 ! 2=DART
 integer :: time ! model time (seconds)
 integer :: secs,days ! Time in DART format
 !(Gregorian days and seconds)
 integer :: radar_loc_flag ! 1=location specified by
 ! radar_lat and radar_lon,
 ! 2=U observed, 3=V observed
 integer :: map_proj ! map projection (for relating
 ! lat, lon to x, y):
 ! 0 = flat earth
 integer :: start, end, tilt,obs_kind obs_cnt
 integer :: nrng, nazm samp_az, samp_rg, samp_el
 integer :: pts_az, pts_el, pts_rg
 integer :: radar_sample_flag,sweeps
 integer :: i,j,k,lu count
 integer :: nobs,n ,s ! number of valid observations
 integer :: nx,ny,nz, vcp_num, vr_count, dbz_count

 real :: dbz_thres ! lowest reflectivity for which

155

 ! Doppler obs. are produced
 real :: refl_threshold_for_vr ! lowest reflectivity
 ! (dbz) for which Doppler
 ! velocities are produced
 real :: radar_lat_deg ! radar latitude (deg)
 real :: radar_lon_deg ! radar longitude(deg)
 real :: rand_error_refl ! standard deviation of
 ! random reflectivity errors

 real :: rand_error_vr ! standard deviation (m/s) of
 ! random radial-velocity errors
 real :: bias_error_refl ! bias errors for reflectivity
 real :: bias_error_vr ! bias error for radial &
 ¡ velocity

! Local variables

 integer, parameter :: nobs_x = 70000
 integer, parameter :: max_obs = 100000
 integer, parameter :: itruth = -1
 real Nyquist_vel; parameter(Nyquist_vel=0.0) ! Nyquist velocity
 logical :: iprt,flag

 character(LEN = 5) :: ich5
 character(LEN = 4) :: ich4
 character(LEN = 3) :: ich3
 character(LEN = 3) :: jch3
 character(LEN = 35) :: file_name
 character(LEN = 1) :: iopn

 real, pointer :: xlvl(:)
 real, pointer :: xe(:)
 real, pointer :: ylvl(:)
 real, pointer :: ye(:)
 real, pointer :: zlvl(:)
 real, pointer :: ze(:)
 real, pointer :: pz(:)
 real, pointer :: tz(:)
 real, pointer :: u(:,:,:)
 real, pointer :: v(:,:,:)
 real, pointer :: w(:,:,:)
 real, pointer :: t3(:,:,:)
 real, pointer :: p3(:,:,:)
 real, pointer :: zdbz(:,:,:)
 real, allocatable :: rho(:)
 real, allocatable :: rf_true(:) ! error-free reflectivity

156

 ! observtions (dBZ)
 real, allocatable :: vr_true(:) ! error-free radial velocity
 ! observations (m/s), fallspeed
 ! component included
 real, allocatable :: azm(:) ! azimuth angle (radians during
 ! computation, deg during output)
 real, allocatable :: elev(:) ! elevation angle (radians during
 ! computation, deg during output)
 real, allocatable :: rng(:)

 real, allocatable :: drf_true(:,:,:) ! error-free reflectivity
 ! observtions (dBZ)
 real, allocatable :: dvr_true(:,:,:) ! error-free radial velocity
 ! observations (m/s), with
 ! fallspeed component
 real, allocatable :: drf(:,:,:) ! reflectivity observtions
 real, allocatable :: dvr(:,:,:) ! radial velocity
 ! observations (m/s),with
 ! fallspeed component
 real, allocatable :: drf_mod(:,:,:) ! reflectivity observations
 real, allocatable :: dvr_mod(:,:,:) ! radial velocity
 ! observations (m/s), with
 ! fallspeed component
 real, allocatable :: azmd(:,:,:) ! azimuth angle (radians
 ! during computation, deg
 ! during output)
 real, allocatable :: elevd(:,:,:) ! elevation angle (radians
 ! during computation, deg
 ! during output)
 real, allocatable :: rngd(:,:,:)
 real, allocatable :: zmm(:,:,:)

 real(kind=8), allocatable :: height(:,:,:)
 real(kind=8), allocatable :: olat(:,:,:)
 real(kind=8), allocatable :: olon(:,:,:)

 real :: dx,dy,dz,xorg,yorg,zorg,bw,ebw
 real :: rng_beg,rng_end,azm_beg,azm_end
 real :: rng_ref, azm_ref, azm_rad
 real :: xo, yo, grid_x, grid_y, grid_z, az,rg, elv,
 real :: dopval, dbzval, bb, cossum,sinsum
 real :: x_rg, y_rg, z_rg, xg_m, yg_m, zg_m
 real :: ures,vres,wres,zres,rhores
 real :: grid_alt ! grid origin altitude (m MSL)
 real :: xmin, ymin ! coordinates (m) of southwest corner of model
 real :: beamwidth, eff_bw, range_interval,azim_interval

157

 real :: hgt_r, mid_x, mid_y, lat, lon, radar_lat,radar_lon
 real :: rlat, rlon, rheight,error_variance
 real :: grid_lat,grid_lon, grid_lon_deg, grid_lat_deg
 real :: ini_grid_lat,ini_grid_lon, ini_grid_lon_deg
 real :: mid_lat, mid_lon, mid_lat_deg,mid_lon_deg, &
 ini_grid_lat_deg
 real :: xradar,yradar
 real :: phi(13),theta(13),wgt(13), zres_st(nobs_x),&
 hgt_st(nobs_x)
 real :: tlint, lint, rad_vel, fall_spd, vt

! Doppler Radar VCP

 real :: vcp11(14)
 real :: vcp12(14)
 real :: vcp15(20)
 real :: vcp16(14)
 real :: vcp17(25)
 real, allocatable :: nswp(:)

 data vcp11 /0.50,1.45,2.40,3.35,4.30,5.25,6.20,7.50,8.70,10.00,&
 12.00, 14.00,16.70,19.50 /
 data vcp12 /0.50,0.90,1.30,1.80,2.40,3.10,4.00,5.10,6.40, &
 8.00,10.00,12.50,15.60,19.50 /
 data vcp15 /0.50,1.45,2.40,3.35,4.30,5.25,6.20,7.20,8.20,9.20,&
 10.20,11.70,13.20,14.70,16.20,17.70,19.20,20.70,&
 22.2, 23.7 /
 data vcp16 /0.50,1.10,1.70,2.40,3.20,4.10,5.10,6.20,7.40,8.70,&
 10.10, 11.70, 13.50,15.50 /

! Output various information.

 write(*,*)
 write(*,*) 'RAD_VOL_PARAM'
 write(*,*) '-----------------'
 write(*,*) 'time = ', time
 write(*,*) 'obfile = ', obfile
 write(*,*) 'obformat = ', obformat
 write(*,*) 'map_proj = ', map_proj
 write(*,*) 'beamwidth = ', beamwidth
 write(*,*) 'effective beamwidth = ', eff_bw
 write(*,*) 'range interval = ', range_interval
 write(*,*) 'azim interval = ', azim_interval
 write(*,*) 'vcp number = ', vcp_num
 write(*,*) 'samp_az = ', samp_az

158

 write(*,*) 'samp_rg = ', samp_rg
 write(*,*) 'samp_el = ', samp_el
 write(*,*) 'pts_az = ', pts_az
 write(*,*) 'pts_el = ', pts_el
 write(*,*) 'pts_rg = ', pts_rg
 write(*,*) 'refl_threshold_for_vr = ', refl_threshold_for_vr
 write(*,*) 'dbz_thres = ', dbz_thres
 write(*,*) 'sweeps = ', sweeps

 bw = beamwidth
 ebw = eff_bw

 if (vcp_num .eq. 11) then
 tilt = 14
 allocate(nswp(tilt))
 nswp = vcp11
 end if
 if (vcp_num .eq. 12) then
 tilt = 14
 allocate(nswp(tilt))
 nswp = vcp12
 end if
 if (vcp_num .eq. 15) then
 tilt = 20
 allocate(nswp(20))
 nswp = vcp15
 end if
 if (vcp_num .eq. 16) then
 tilt = 14
 allocate(nswp(tilt))
 nswp = vcp16
 end if
 if (vcp_num .eq. 17) then
 tilt = 25
 allocate(nswp(tilt))
 nswp = vcp17
 end if

 CALL GET_VARIABLE(ens%g(itruth), 'NX', nx)
 CALL GET_VARIABLE(ens%g(itruth), 'NY', ny)
 CALL GET_VARIABLE(ens%g(itruth), 'NZ', nz)
 CALL GET_VARIABLE(ens%g(itruth), 'DX', dx)
 CALL GET_VARIABLE(ens%g(itruth), 'DY', dy)
 CALL GET_VARIABLE(ens%g(itruth), 'DZ', dz)
 CALL GET_VARIABLE(ens%g(itruth), 'LAT', ini_grid_lat_deg)

159

 CALL GET_VARIABLE(ens%g(itruth), 'LON', ini_grid_lon_deg)
 CALL GET_VARIABLE(ens%g(itruth), 'HGT', grid_alt)
 CALL GET_VARIABLE(ens%g(itruth), 'XG_POS', xmin)
 CALL GET_VARIABLE(ens%g(itruth), 'YG_POS', ymin)

 CALL GET_VARIABLE(ens%g(itruth),'XC',xlvl)
 CALL GET_VARIABLE(ens%g(itruth),'YC',ylvl)
 CALL GET_VARIABLE(ens%g(itruth),'ZC',zlvl)
 CALL GET_VARIABLE(ens%g(itruth),'XE',xe)
 CALL GET_VARIABLE(ens%g(itruth),'YE',ye)
 CALL GET_VARIABLE(ens%g(itruth),'ZE',ze)
 CALL GET_VARIABLE(ens%g(itruth),'THINIT',tz)
 CALL GET_VARIABLE(ens%g(itruth),'PIINIT',pz)
 CALL GET_VARIABLE(ens%g(itruth), 'U', u)
 CALL GET_VARIABLE(ens%g(itruth), 'V', v)
 CALL GET_VARIABLE(ens%g(itruth), 'W', w)
 CALL GET_VARIABLE(ens%g(itruth), 'DBZ', zdbz)

 radar_lat = radar_lat_deg * degtorad
 radar_lon = radar_lon_deg * degtorad

 allocate(rho(nz))
 call density(rho, nz, pz, tz)
 allocate(zmm(nx,ny,nz))

! Convert dbz to mm**6/m**3 before calculation.

 do k = 1, nz
 do j = 1, ny
 do i = 1, nx
 if(zdbz(i,j,k).ne.spval) then
 zmm(i,j,k) = 10.**(zdbz(i,j,k)/10.)
 endif
 enddo
 enddo
 enddo

 call radar_calc(radar_lat,radar_lon,ini_grid_lat_deg, &
 ini_grid_lon_deg,range_interval,azim_interval,nx,ny,nz,dx, &
 dy,dz,map_proj,xmin,ymin,spval, nazm,azm_beg,nrng,rng_beg, &
 xorg,yorg,xradar,yradar,rng_ref,azm_ref)

 zorg = grid_alt
 rheight = grid_alt + ze(1) ! in m

! allocate output observations

160

 allocate(vr_true(nobs_x))
 allocate(rf_true(nobs_x))
 allocate(rng(nobs_x))
 allocate(azm(nobs_x))
 allocate(elev(nobs_x))

 allocate(dvr_true(tilt,nazm,nrng))
 allocate(drf_true(tilt,nazm,nrng))
 allocate(dvr(tilt,nazm,nrng))
 allocate(drf(tilt,nazm,nrng))
 allocate(dvr_mod(tilt,nazm,nrng))
 allocate(drf_mod(tilt,nazm,nrng))
 allocate(rngd(tilt,nazm,nrng))
 allocate(azmd(tilt,nazm,nrng))
 allocate(elevd(tilt,nazm,nrng))
 allocate(height(tilt,nazm,nrng))
 allocate(olat(tilt,nazm,nrng))
 allocate(olon(tilt,nazm,nrng))

! initialization of observations

 dvr_true = spval
 drf_true = spval
 dvr_mod = spval
 drf_mod = spval
 dvr = spval
 drf = spval
 rngd = spval
 azmd = spval
 elevd = spval
 height = spval
 olat = spval
 olon = spval

! Call to produce simulated Doppler velocity and reflectivity
! values by scanning the radar across a 3-D reflectivity
! structure as a function of range, azimuth and elevation
! angles.

 obs_cnt = 0
 if (radar_sample_flag.eq.3) call comp_wgt(bw,ebw,phi,theta,wgt)

! PAR observations, entire volume scan every minute
 if (sweeps .eq. 0) then
 start = 1

161

 end = tilt

! WSR-88D observations, 2-3 sweeps every minute. Out of 14 sweeps
! the lower 12 sweeps are generated every 3 sweeps per minute for
! the first 4 min while the remaining upper 2 sweeps are valid at
! the last minute.

 else if (sweeps .eq. 1) then
 if (mod(time, 300) .eq. 0) then
 start = 1
 end = 3
 else if (mod(time, 300) .eq. 60) then
 start = 4
 end = 6
 else if (mod(time, 300) .eq. 120) then
 start = 7
 end = 9
 else if (mod(time, 300) .eq. 180) then
 start = 10
 end = 12
 else if (mod(time, 300) .eq. 240) then
 start = 13
 end = 14
 end if
 end if
 print *, time, start, end

 do k = start,end
 write(7, *) ' Elevation angle starts'
 elv = nswp(k)
 nobs = 0
 count = 0

 ! ** print statement **

 lu = 10
 write(ich5,23) elv
23 format(f5.2)

 if(ich5(1:1).eq.' ') ich5(1:1) = '0'

 write(ich3,24) ifix(rng_ref)
24 format(i3.3)

 write(ich4,26) time
26 format(i4)

162

 write(jch3,24) ifix(azm_ref)

 iprt = .false.
 if (iprt) open(6,file='debug'//ich5//'out',status='unknown')

 do i = 1, nazm
 az = azm_beg + (i-1)*azim_interval
 if(az.ge.360.) az = az - 360.

 do j = 1, nrng
 rg = rng_beg + j*range_interval - range_interval/2.
 dopval = spval
 dbzval = spval
 rad_vel = spval
 bb = rg*cos(elv*degtorad)/(ae + rg*sin(elv*degtorad))
 cossum = cos(elv*degtorad + atan(bb))
 sinsum = sin(elv*degtorad + atan(bb))

! Target distance from radar in x,y and z direction

 x_rg = rg*sin(az*degtorad)*cossum ! in km
 y_rg = rg*cos(az*degtorad)*cossum ! in km
 z_rg = hgt_r(elv,rg) ! in km

 count = count + 1

! Target distance from model southwest corner in x,y and z direction

 xg_m = (x_rg - xorg)*1000.0 ! in m
 yg_m = (y_rg - yorg)*1000.0 ! in m
 zg_m = (z_rg - zorg)*1000.0 ! in m

 zres = tlint(zdbz,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1, &
 nz-1,0,0,xlvl,ylvl,zlvl,spval)
 ures = tlint(u,xg_m,yg_m,zg_m,nx,ny,nz,nx,ny-1,nz-1,0,0,xe, &
 ylvl, zlvl, spval)
 vres = tlint(v,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny,nz-1,0,0, &
 xlvl,ye, zlvl, spval)
 wres = tlint(w,xg_m,yg_m,zg_m,nx,ny,nz,nx-1,ny-1,nz,0,&
 0,xlvl,ylvl, ze, spval)
 rhores = lint(rho, zg_m, nz-1, zlvl, spval)

 if(ures.ne.spval.and.vres.ne.spval.and.wres.ne.spval &
 .and.rhores.ne.spval) then
 fall_spd = vt(zres,rhores)

163

 rad_vel = ures*sin(az*degtorad)*cossum+ vres*cos &
 (az*degtorad)*cossum&+(wres+fall_spd)*sinsum
 endif

 if(zres.ne.spval) then
 if(zres.ge.dbz_thres) then

! if interpolated reflectivity value (dbz) is at or above a prescribed reflectivity
! threshold, then call to produce a mean Doppler velocity and reflectivity values at the
! center of the beamwidth volume.
 if (iprt) then
 write(6,*) 'Loop starts ', count
 write(6,*) rg, az, elv
 write(6,*) 'x_rg,xorg,xg_m', x_rg,xorg,xg_m
 write(6,*) 'y_rg,yorg,yg_m', y_rg,yorg,yg_m
 write(6,*) 'z_rg,zorg,zg_m', z_rg,zorg,zg_m
 write(6,*)'After interpol_3D_dbz, zres ',zres
 end if

 write(7,*) 'Loop starts ,zres, rg ', zres, rg

 if(nobs.gt.nobs_x) then
 write(6,925)
925 format('Program is terminated bcz nobs > nobs_x.', &
 ' You need to increase your nobs_x dimension',' in the main code.')
 stop
 endif

 if (radar_sample_flag .eq. 2) then

 call volavg(dopval,dbzval,rg,az,elv,samp_az,samp_rg,samp_el, &
 u,v,w,zmm,rho,xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz, &
 iprt, spval,xorg,yorg,zorg,bw,ebw,dbz_thres, &
 pts_az,pts_el,pts_rg)

 elseif (radar_sample_flag .eq. 3) then

 call volavg_simple(dopval,dbzval,rg,az,elv,u,v,w,zmm,rho, &
 xlvl,ylvl,zlvl,xe,ye,ze,nx,ny,nz,iprt,spval, &
 xorg,yorg,zorg,dbz_thres,phi,theta,wgt)

 endif

 endif

! save the obs. for verification

164

 write(7,*) 'dbzval,dopval ', dbzval, dopval
 if ((dopval.ne.spval).and.(dbzval.ne.spval).and. (dbzval.ge.dbz_thres))then
 nobs = nobs + 1
 rf_true(nobs) = dbzval
 if (dbzval.gt.dbz_thres) then
 vr_true(nobs) = dopval
 else
 vr_true(nobs) = 0.0
 endif
 rng(nobs) = rg
 azm(nobs) = az
 zres_st(nobs) = zres
 hgt_st(nobs) = hgt_r(elv,rg)
 end if

! save the obs. for DART file
 call xy_to_ll(lat,lon,map_proj,x_rg*1000,y_rg*1000, radar_lat,radar_lon)
 rngd(k,i,j) = rg
 azmd(k,i,j) = az
 elevd(k,i,j) = elv
 height(k,i,j) = grid_alt + 1000.00 * hgt_r(elv,rg) ! in m
 olat(k,i,j) = lat
 olon(k,i,j) = lon

 if ((dbzval.ne.spval).and.(dbzval.ge.dbz_thres))then
 drf_true(k,i,j) = dbzval
 drf(k,i,j) = drf_true(k,i,j) + bias_error_refl + &
 rand_error_refl*random_normal()
 drf_mod(k,i,j) = zres
 obs_cnt = obs_cnt + 1
 else
 drf_true(k,i,j) = spval
 drf(k,i,j) = spval
 drf_mod(k,i,j) = spval
 endif

 If ((dopval.ne.spval).and. &
 (dbzval.ge.refl_threshold_for_vr))then
 dvr_true(k,i,j) = dopval
 dvr(k,i,j) = dvr_true(k,i,j) + bias_error_vr + &
 rand_error_vr*random_normal()
 dvr_mod(k,i,j) = rad_vel
 obs_cnt = obs_cnt + 1
 else
 dvr_true(k,i,j) = spval
 dvr(k,i,j) = spval

165

 dvr_mod(k,i,j) = spval
 endif

 endif !zres ne spval
 enddo
 enddo

 print*,'nobs',nobs

 if(nobs.eq.0) then
 print*,'prog is terminated bcz nobs = 0 in subr radar_scan'
 endif

! Open a new output file and connect the file to a unit 'lu'.
! The file lists computed Doppler velocity, reflectivity, range, azimuth, and elevation.
 file_name='simul_'//ich4//'_rg'//ich3//'_az'//jch3//'_elv'//ich5//'.dat

 print*,'file_name ',file_name

 iopn = 'y'

 if(iopn.eq.'y') then

 open(lu,file=file_name,status='unknown')

 write(lu,25) rng_ref, azm_ref, elv
 25 format('Code name: dop_rad_simul.f',/,'rng_ref=',f4.0,' $
 azm_ref=',f4.0,' elv=',f6.2)

 call twrite(nobs,nobs_x,vr_true,rf_true,azm,rng,elv,lu,zres_st,&
 hgt_st)

 endif
 close(6)

 enddo

!Write synthetic obs to file

 print *, obs_cnt
 obformat = 0
 write(*,*) 'SYNTHETIC RADAR OBS FORMAT 0: DART time (secs,
 days)= ', secs, days

 open(unit=obfileunit,file=obfile,status='unknown')

166

 max_num_obs = obs_cnt
 num_copies = 2
 call write_DART_header(obfileunit)

 rlat = radar_lat
 rlon = radar_lon

 n = 0
 vr_count = 0
 dbz_count = 0

 do k = start,end
 do i = 1,nazm
 do j = 1, nrng

 if (drf_true(k,i,j).ne.spval) THEN
 n = n + 1
 dbz_count = dbz_count + 1
 obs_kind = obs_kind_reflectivity
 error_variance = rand_error_refl**2

 CALL WRITE_DART_OB(obfileunit,n,drf(k,i,j), &
 drf_true(k,i,j),olat(k,i,j), olon(k,i,j), height(k,i,j),&
 azmd(k,i,j),elevd(k,i,j),Nyquist_vel,dbz_count,rlat, &
 rlon,rheight,obs_kind,secs,days,error_variance,&
 range_interval,bw, ebw, azim_interval,drf_mod(k,i,j))
 endif

 if (dvr_true(k,i,j).ne.spval) then

 n = n + 1
 vr_count = vr_count + 1
 obs_kind = obs_kind_Doppler_velocity
 error_variance = rand_error_vr**2

 CALL WRITE_DART_OB(obfileunit,n,dvr(k,i,j), &
 dvr_true(k,i,j), olat(k,i,j),olon(k,i,j),height(k,i,j),&
 azmd(k,i,j),elevd(k,i,j),Nyquist_vel,vr_count,rlat,rlon,&
 rheight, obs_kind,secs,days,error_variance, &
 range_interval,bw,ebw,azim_interval,dvr_mod(k,i,j))
 end if

 enddo
 enddo
 enddo

167

 close(obfileunit)

 deallocate(vr_true)
 deallocate(rf_true)
 deallocate(rng)
 deallocate(azm)
 deallocate(height)
 deallocate(rho)
 deallocate(olat)
 deallocate(olon)
 deallocate(dvr_true)
 deallocate(drf_true)
 deallocate(dvr)
 deallocate(drf)
 deallocate(rngd)
 deallocate(azmd)
 deallocate(elevd)

 RETURN
 END SUBROUTINE synthetic_radar_obs_vol

! **

168

Appendix B

Program listing for EKF and EIF using Lorenz model

%%%
% File: lorenz.m
%
% Description: Simulate the Lorenz 96 model from the manuscript
% "Predictability: A problem partly solved".
% The model mimics the time evolution of an unspecified
% scalar meteorological quantity x, at J equidistant
% grid points along a latitude circle. A fourth-order
% Runge-Kutta time integration scheme with a timestep
% of 0.05 unit.
%
%%%
clc;
clear all;
close all;
format short;
%
% modelresolution is the number of points in the model around a circle.
modelresolution=40;
% forcing is the forcing term for the Lorenz 96 model.
forcing=8.;
% timestep is set to represent 0.25 days each time interval.
timestep=0.05;
% initial_model_perturbation is the initial perturbation given to the true solution
initial_truth_perturbation=0.008;
% initial perturbation given to the ensembles of the Lorenz 96 model.
perturbation_range=0.0001;
% Number of time steps to integrate the model to get the initial condition
init_time = 14400; % 10 years.
% Number of ensembles to create the initial X0 and P0
ens = 100;
% Plot identifier
figid = 1;
% Each state variable of the Lorenz model is initialized randomly from a uniform
% distribution between 0 and 1.
Truth=random('unif',0,1,[modelresolution,1])*forcing;
% Apply perturbation to truth
Truth(20)=Truth(20)+initial_truth_perturbation;
% Initialization of the ensemble of lorenz model

169

X=zeros(modelresolution,ens);
X(:,1) = Truth;
for i = 2:ens
 X(:,i)= X(:,1);
 indx = round(random('unif',1,40));
 X(indx, i) = X(indx,i) + perturbation_range*randn(1);
end
%
% Plot Ensemble members, Ensemble mean and truth at initial time
%
figure(figid);
figid = figid + 1;
plot(Truth(:),'g-','LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid points'); ylabel('Truth/Ens.mean/Ens.members');
title('Ensemble members,mean and truth at initial time (T = 0)')
axis([1 40 -10 10]);
hold on
plot(mean(X(:,2)),'b-','LineWidth',3);
plot(X(:,1),'k-','LineWidth',1);
for i = 2:ens
 plot(X(:,i),'k-','LineWidth',1);
end
hold off
%
% Plot the ensemble members and the truth at specified grid points
%
figure(figid);
figid = figid + 1;
y = 1:ens;
pt = 10;
plot(y,X(pt,:,1),'b-','LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid points'); ylabel('Truth/Ensemble members');
title(['Ensemble members and truth at T=0 at grid point', num2str(pt)])
hold on
plot(Truth(pt,1),'go','LineWidth',3);
hold off
%
figure(figid);
figid = figid + 1;
y = 1:ens;
pt = 20;
plot(y,X(pt,:,1),'b-','LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid points'); ylabel('Truth/Ensemble members');

170

title(['Ensemble members and truth at T=0 at grid point', num2str(pt)])
hold on
plot(Truth(pt,1),'go','LineWidth',3);
hold off
%
figure(figid);
figid = figid + 1;
y = 1:ens;
pt = 30;
plot(y,X(pt,:,1),'b-','LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid points'); ylabel('Truth/Ensemble members');
title(['Ensemble members and truth at T=0 at grid point', num2str(pt)])
hold on
plot(Truth(pt,1),'go','LineWidth',3);
hold off
%
% initialize the truth and the model state for filtering and for archiving.
X0 = zeros(modelresolution,1);
TR0 = zeros(modelresolution,1);
P0 = zeros(modelresolution,modelresolution);
Xf=zeros(modelresolution,ens);
Xf_timeseries=zeros(modelresolution,ens,init_time);
TR0_timeseries=zeros(modelresolution,init_time);
% Integrate the model and truth forward in time for init_time time-steps and store the
values
for i = 1:init_time
 [TR0]=model_fcst(Truth,timestep,forcing);
 for j = 1: ens
 [Xf(:,j)]=model_fcst(X(:,j),timestep,forcing);
 end
 Xf_timeseries(:,:,i) = X(:,:);
 TR0_timeseries(:,i) = Truth(:);
 Truth = TR0 ;
 X = Xf;
end
% climatological mean and standard deviation
mean_clim_grid = mean(TR0_timeseries,2);
std_clim_grid = std(TR0_timeseries,0,2);
mean_clim = mean(mean_clim_grid,1);
%Calculating Covariance
X0 = mean(Xf, 2);
err_temp_1 = zeros(modelresolution,1);
err_temp_2 = zeros(modelresolution,modelresolution);

171

for i = 1:ens
 err_temp_1(:) = Xf(:,i) - X0(:);
 err_temp_2 = err_temp_2 + err_temp_1*err_temp_1';
end
P0 = (1/(ens-1)) * err_temp_2;
%
% plot the final ensembles, truth and mean-ensemble
%
figure(figid);
figid = figid + 1;
plot(Xf(:,1),'b-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Ensembles / Mean / Truth');
title(['After Integrating',num2str(init_time),' time steps'])
axis([1 40 -15 15]);
hold on
plot(X0(:),'r-','LineWidth',3);
plot(TR0(:),'g-','LineWidth',3);
for i = 2:ens
 plot(Xf(:,i),'b-','LineWidth',1);
end
hold off
% plot the final P0
figure(figid);
figid = figid + 1;
[C,h] = contour(P0,10);
clabel(C,h);
title('Covariance P0 at the end of time steps')
colormap cool
%
%Write out the final values in a file.
%
fid = fopen('init.txt', 'wt');
fprintf(fid, '%8.4f\n', mean_clim);
fprintf(fid, '%8.4f\n', mean(std_clim_grid));
fprintf(fid,'\n');
for i = 1:modelresolution
 fprintf(fid, '%8.4f\n', X0(i));
end
fprintf(fid,'\n');
for i = 1:modelresolution
 fprintf(fid, '%8.4f\n', TR0(i));
end
fprintf(fid,'\n');
for i = 1:modelresolution
 fprintf(fid, '%8.4f ', P0(:,i));

172

 fprintf(fid,'\n');
end
fclose(fid)
%%%

%%%
% File: ekf.m
%
% Description: First Order Extended Kalman Filter
%
%%%
clc;
clear all;
close all;
format short;
%
% modelresolution is the number of points of the model around a sphere.
modelresolution=40;
% forcing is the forcing term for the Lorenz 96 model.
forcing=8.;
% timestep is set to represent 0.05 days each time interval.
timestep=0.01;
% obs_percent variable sets the number of observations relative to the
% model resolution.
obs_percent=100.;
%obs_percent=200.;
%obs_percent=400;
% approximate model error stdev
sig_q=0.3;
sig_obs_fac = 0.25;
% number of assimilation time steps.
assim_time = 500;
figid = 1;
%
% initialize the truth and the state for the Lorenz model
fid = fopen('C:\Experiments\init.txt', 'r');
mean_clim = fscanf(fid, '%g\n', [1,1]);
sig_clim = fscanf(fid, '%g\n', [1,1]);
fscanf(fid,'\n');
[X0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);
fscanf(fid,'\n');
[TR0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);
fscanf(fid,'\n');

173

[P0, number_of_values_read] = fscanf(fid,'%g\n',[40,40]);
fclose(fid);
% 100% represents observation at every model grid point. The number of
% observations is set based upon the modelresolution and obs_percent.
%
iobs = obs_percent/100.;
% Observations based on observation densities
switch iobs
% obs at every grid and at 3 additional points in between two grids
case 4.0
 obsloc=1:modelresolution*4; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 0.25:0.25:40;
% obs at every grid and at 1 additional points in between two grids
 case 2.0
 obsloc=1:modelresolution*2; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 0.5:.5:40;
 % obs at every gridpoint
 case 1.0
 obsloc=1:modelresolution; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 1:1:40;
otherwise
 disp('Unknown.');
end % select
%
% Initialize model and observation error covariance matrix.
nobs=size(obsloc,2);
R = sig_obs^2 * eye(nobs,nobs);% obs. error term
Q = sig_obs^2 * eye(modelresolution,modelresolution);
% observations vector holds the observations.
Z=zeros(nobs,1);
% H is the observation operator matrix which will transform from the
% model space into the observation space.
H=zeros(nobs,modelresolution);
% Kalman Gain
K=zeros(modelresolution,nobs);
% Creating the H operator
if (iobs == 4)
 mdim = 1;
 for i = 1:modelresolution-1
 H(mdim,i) = 1;
 H(mdim+1,i) = 0.75; H(mdim+1,i+1) = 0.25;
 H(mdim+2,i) = 0.50; H(mdim+2,i+1) = 0.50;
 H(mdim+3,i) = 0.25; H(mdim+3,i+1) = 0.75;

174

 mdim = mdim + 4;
 end
 i = modelresolution;
 H(mdim,i) = 1;
 H(mdim+1,i) = 0.75; H(mdim+1,1) = 0.25;
 H(mdim+2,i) = 0.50; H(mdim+2,1) = 0.50;
 H(mdim+3,i) = 0.25; H(mdim+3,1) = 0.75;

elseif (iobs == 2)
 ndim = 1;
 for mdim=1:nobs
 if (mod(mdim,2) ~= 0)
 H(mdim, ndim) = 1;
 ndim = ndim + 1;
 else
 if (ndim > modelresolution)
 H(mdim, 1) = 0.50;
 else
 H(mdim, ndim) = 0.50;
 end
 H(mdim, ndim-1) = 0.50;
 end
 end
else

 for iobs=1:nobs
 H(iobs, obsloc(iobs)) = 1;
 end
end
%
% Initialze for data archival
truth_timeseries = ones(modelresolution,assim_time);
Xf_timeseries =ones(modelresolution,assim_time);
Pf_timeseries=ones(modelresolution,modelresolution,assim_time);
Xhat_timeseries=ones(modelresolution,assim_time);
Phat_timeseries=ones(modelresolution,modelresolution,assim_time);
Z_timeseries=ones(nobs,assim_time);
%
% Extended Kalman Filter
eps_obs=R*randn(nobs,1);
tic % starts a stopwatch timer.
for t=1:assim_time
 if t == 1
 Xa0 = X0;
 Pa0 = P0;
 else

175

 Xa0 = Xa1;
 Pa0 = Pa1;
 TR0 = TR1 ;
 end
% Forecast Step I
 [TR1]=model_fcst(TR0,timestepforcing);
 [Xf1]=model_fcst(Xa0,timestep,forcing);
 M = jacobian_fcst(timestep, Xa0);
 Pf1 = M * Pa0 * M' + Q;

%Data assimilation step

 % Generate observations error and observations
 Z=H*TR1;
 Z = Z + eps_obs;
 % Assimilate observations using EKF
 inov = Z - H*Xf1; % innovation vector
 K = Pf1*H'*inv(R + H * Pf1 * H'); %Kalman gain
 Xa1 = Xf1 + K*inov; %analysis and analysis error covariance matrix
 Pa1 = (eye(modelresolution,modelresolution) - K*H) * Pf1;

 % Save the data
 truth_timeseries(:,t)=TR0(:);
 Pf_timeseries(:,:,t)=Pf1(:,:);
 Xf_timeseries(:,t)=Xf1(:);
 Z_timeseries(:,t)=Z(:);
 Xhat_timeseries(:,t) = Xa1(:);
 Phat_timeseries(:,:,t)=Pa1(:,:);

end % end of assim_time
% toc prints the elapsed time since tic was used.
time = toc % returns the elapsed time.

% rms error calculation
xf_err = zeros(assim_time,modelresolution);
rms_fcst = zeros(assim_time,1);
xa_err = zeros(assim_time,modelresolution);
rms_an = zeros(assim_time,1);
for i = 1:assim_time
 xf_err(i,:) = Xf_timeseries(:,i) - truth_timeseries(:,i);
 xf_err2(i,:) = xf_err(i,:) .* xf_err(i,:);
 rms_fcst(i) = sqrt(sum(xf_err2(i,:))/modelresolution);
 %
 xa_err(i,:) = Xhat_timeseries(:,i) - truth_timeseries(:,i);
 xa_err2(i,:) = xa_err(i,:) .* xa_err(i,:);
 rms_an(i) = sqrt(sum(xa_err2(i,:))/modelresolution);

176

end
%
figure(figid);
plot(truth_timeseries(:,1),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(1),' time steps of DA'])
hold on
plot(Xf_timeseries(:,1),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);
plot(Xhat_timeseries(:,1),'r-','LineWidth',1);
hold off
figid = figid + 1;
%
figure(figid);
plot(truth_timeseries(:,assim_time/2),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(assim_time/2),' time steps of DA'])
hold on
plot(Xf_timeseries(:,assim_time/2),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);
plot(Xhat_timeseries(:,assim_time/2),'r-','LineWidth',1);
hold off
figid = figid + 1;
%
figure(figid);
plot(truth_timeseries(:,assim_time),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(assim_time),' time steps of DA'])
hold on
plot(Xf_timeseries(:,assim_time),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);
plot(Xhat_timeseries(:,assim_time),'r-','LineWidth',1);
hold off
figid = figid + 1;
% plot average errors
figure(figid);
xtime= (1:assim_time) * timestep * 5;
plot(xtime',rms_fcst,'b-','LineWidth',1);
title('RMS Error During Data Assimilation')
xlabel('Time in Days'); ylabel('rms error');

177

hold on;
plot(xtime',rms_an,'r-','LineWidth',1);
hold off;
figid = figid + 1;
% Contour Plots of Phat
figure(figid);
[C,h] = contour(Phat_timeseries(:,:,assim_time),10);
clabel(C,h);
title(['Update Covariance after the last assimilation cycle'])
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool
figid = figid + 1;
%
figure(figid);
[C,h] = contour(Pf_timeseries(:,:,assim_time),10);
title(['Forecast Covariance before the last assimilation cycle'])
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool;
%%%

%%%
% File: eif.m
%
% Description: Extended Information Filter (State Representation)
% is implemented using the 40 dimensional Lorenz model.
%
%%%
clc;
clear all;
close all;
format short;
%
% modelresolution is the number of points of the model around a sphere.
modelresolution=40;
% forcing is the forcing term for the Lorenz 96 model.
forcing=8.;
% timestep is set to represent 0.05 days each time interval.
timestep=0.01;
% obs_percent variable sets the number of observations relative to the
% model resolution.
obs_percent=100.;
%obs_percent=200.;
%obs_percent=400;

178

% approximate model error stdev
sig_q=0.3;
sig_obs_fac = 0.25;
% number of assimilation time steps.
assim_time = 500;
figid = 1;
%
% initialize the truth and the state for the Lorenz model
fid = fopen('C:\Experiments\init.txt', 'r');
mean_clim = fscanf(fid, '%g\n', [1,1]);
sig_clim = fscanf(fid, '%g\n', [1,1]);
fscanf(fid,'\n');
[X0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);
fscanf(fid,'\n');
[TR0, number_of_values_read] = fscanf(fid,'%g\n',[40,1]);
fscanf(fid,'\n');
[P0, number_of_values_read] = fscanf(fid,'%g\n',[40,40]);
fclose(fid);
I0 = inv(P0);
%
% 100% represents observation at every model grid point. The number of
% observations is set based upon the modelresolution and obs_percent.
%
iobs = obs_percent/100.;
% Observations based on observation densities
switch iobs
 % obs at every grid and at 3 additional points in between two grids
 case 4.0
 obsloc=1:modelresolution*4; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 0.25:0.25:40;
 % obs at every grid and at 1 additional points in between two grids
 case 2.0
 obsloc=1:modelresolution*2; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 0.5:.5:40;
 % obs at every gridpoint
 case 1.0
 obsloc=1:modelresolution; % locations of obs.
 sig_obs =sig_obs_fac*sig_clim; % stdev of obs error
 Y = 1:1:40;
otherwise
 disp('Unknown.');
end % select
%

179

% Initialize model and observation error covariance matrix.
nobs=size(obsloc,2);
R = sig_obs^2 * eye(nobs,nobs);% obs. error term
Q = sig_obs^2 * eye(modelresolution,modelresolution);
IQ = inv(Q);
IR = inv(R);
% observations vector holds the observations.
Z=zeros(nobs,1);
% H is the observation operator matrix which will transform from the
% model space into the observation space.
H=zeros(nobs,modelresolution);
% Kalman Gain
K=zeros(modelresolution,nobs);
% Creating the H operator
if (iobs == 4)
 mdim = 1;
 for i = 1:modelresolution-1
 H(mdim,i) = 1;
 H(mdim+1,i) = 0.75; H(mdim+1,i+1) = 0.25;
 H(mdim+2,i) = 0.50; H(mdim+2,i+1) = 0.50;
 H(mdim+3,i) = 0.25; H(mdim+3,i+1) = 0.75;
 mdim = mdim + 4;
 end
 i = modelresolution;
 H(mdim,i) = 1;
 H(mdim+1,i) = 0.75; H(mdim+1,1) = 0.25;
 H(mdim+2,i) = 0.50; H(mdim+2,1) = 0.50;
 H(mdim+3,i) = 0.25; H(mdim+3,1) = 0.75;

elseif (iobs == 2)
 ndim = 1;
 for mdim=1:nobs
 if (mod(mdim,2) ~= 0)
 H(mdim, ndim) = 1;
 ndim = ndim + 1;
 else
 if (ndim > modelresolution)
 H(mdim, 1) = 0.50;
 else
 H(mdim, ndim) = 0.50;
 end
 H(mdim, ndim-1) = 0.50;
 end
 end
else

180

 for iobs=1:nobs
 H(iobs, obsloc(iobs)) = 1;
 end
end
%
% Initialze for data archival
truth_timeseries = ones(modelresolution,assim_time);
Xf_timeseries =ones(modelresolution,assim_time);
If_timeseries=ones(modelresolution,modelresolution,assim_time);
Xhat_timeseries=ones(modelresolution,assim_time);
Ihat_timeseries=ones(modelresolution,modelresolution,assim_time);
Z_timeseries=ones(nobs,assim_time);
%
% Extended Information Filter
tic % starts a stopwatch timer.
eps_obs=R*randn(nobs,1);
for t=1:assim_time
 if t == 1
 Xa0 = X0;
 Ia0 = I0;
 else
 Xa0 = Xa1;
 Ia0 = Ia1;
 TR0 = TR1;
 end

 % Forecast Step

 [TR1]=model_fcst(TR0,timestep,forcing);
 [Xf1]=model_fcst(Xa0,timestep,forcing);
 M = jacobian_fcst(timestep, Xa0);
 If1 = IQ - IQ*M*inv(Ia0 + M'*IQ*M)*M'*IQ;

%Data assimilation step

 % Generate observations error and observations
 Z=H*TR1;
 Z = Z + eps_obs;
 % Assimilate observations using EIF
 Ia1 = If1 + H' * IR * H; % analysis error covariance matrix
 K = inv(Ia1)*H'*IR; % Kalman gain
 inov = Z - H*Xf1; % innovation vector
 Xa1 = Xf1 + K*inov;

 % Save the data
 truth_timeseries(:,t)=TR0(:);

181

 If_timeseries(:,:,t)=If1(:,:);
 Xf_timeseries(:,t)=Xf1(:);
 Z_timeseries(:,t)=Z(:);
 Xhat_timeseries(:,t) = Xa1(:);
 Ihat_timeseries(:,:,t)=Ia1(:,:);
 end % end of assim_time
% toc prints the elapsed time since tic was used.
time = toc % returns the elapsed time.
%
% rms error calculation
xf_err = zeros(assim_time,modelresolution);
rms_fcst = zeros(assim_time,1);
xa_err = zeros(assim_time,modelresolution);
rms_an = zeros(assim_time,1);
for i = 1:assim_time
 xf_err(i,:) = Xf_timeseries(:,i) - truth_timeseries(:,i);
 xf_err2(i,:) = xf_err(i,:) .* xf_err(i,:);
 rms_fcst(i) = sqrt(sum(xf_err2(i,:))/modelresolution);
 %
 xa_err(i,:) = Xhat_timeseries(:,i) - truth_timeseries(:,i);
 xa_err2(i,:) = xa_err(i,:) .* xa_err(i,:);
 rms_an(i) = sqrt(sum(xa_err2(i,:))/modelresolution);
end
%
figure(figid);
plot(truth_timeseries(:,1),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(1),' time steps of DA'])
hold on
plot(Xf_timeseries(:,1),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);
plot(Xhat_timeseries(:,1),'r-','LineWidth',1);
hold off
figid = figid + 1;
%
figure(figid);
plot(truth_timeseries(:,assim_time/2),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(assim_time/2),' time steps of DA'])
hold on
plot(Xf_timeseries(:,assim_time/2),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);

182

plot(Xhat_timeseries(:,assim_time/2),'r-','LineWidth',1);
hold off
figid = figid + 1;
%
figure(figid);
plot(truth_timeseries(:,assim_time),'g-','LineWidth',1);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Grid Points'); ylabel('Truth / Observations /Forecast / Analyses');
title(['After ',num2str(assim_time),' time steps of DA'])
hold on
plot(Xf_timeseries(:,assim_time),'b-','LineWidth',1);
axis([1 40 -15 15]);
plot(Y',Z_timeseries(:,1),'k*','LineWidth',1);
plot(Xhat_timeseries(:,assim_time),'r-','LineWidth',1);
hold off
figid = figid + 1;
% plot average errors
figure(figid);
xtime= (1:assim_time) * timestep * 5;
plot(xtime',rms_fcst,'b-','LineWidth',1);
title('RMS Error During Data Assimilation')
xlabel('Time in Days'); ylabel('rms error');
hold on;
plot(xtime',rms_an,'r-','LineWidth',1);
hold off;
figid = figid + 1;
% Contour Plots of Phat
figure(figid);
Phat = inv(Ihat_timeseries(:,:,assim_time));
[C,h] = contour(Phat,10);
clabel(C,h);
title('Update Covariance after the last assimilation cycle')
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool
figid = figid + 1;
%
figure(figid);
Pf = inv(If_timeseries(:,:,assim_time));
[C,h] = contour(Pf,10);
title('Forecast Covariance before the last assimilation cycle')
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool;
%%%

183

%%%
% function Dm=jacobian(x)
%
% Input:
% x - Lorenz model(a vector)
%
% Return:
% Dm - jacobian of x
%
% File: jacobian.m
%
% Description: Compute Jacobian of RHS of L95 system, where x is the
% argument of the RHS
%
%%%

function Dm=jacobian(x)

n = size(x,1); % dimension of state space from row
% indices for the model's circular grid points
j=1:n;
jm1=j-1; jm1=jm1+n*(jm1<1);
jm2=j-2; jm2=jm2+n*(jm2<1);
jp1=j+1; jp1=jp1-n*(jp1>n);
%
Dm = -eye(n,n);
k = jp1;
mu=j+n*(k-1);
Dm(mu) = Dm(mu) + x(jm1)';
k = jm2;
mu=j+n*(k-1);
Dm(mu) = Dm(mu) - x(jm1)';
k = jm1;
mu=j+n*(k-1);
Dm(mu) = Dm(mu) + (x(jp1) - x(jm2))';
%
return
%%%

184

%%%
% function [xx]=model_fcst(x0,dt,scheme,F)
%
% Input:
% x0 - Lorenz model initial condition(a vector)
% dt - time step
% scheme - the numerical scheme to be used to forward the model in time
% F - Forcing parameter
%
% Return:
% xx - Lorenz model forecast after integrating forward in time one time step
%
% File: model_fcst.m
%
% Description: Integrate forward Lorenz 95 model by 1 timestep
%
%%%
function [xx]=model_fcst(x0,dt,scheme,F)

n=size(x0,1);

switch lower(scheme)
 % -------
 case 'euler'
 % -------
 [xx]=euler(dt,x,F);
 % -------
 case 'rk4'
 % -------
 [xx]=rk4(dt,x,F);
 otherwise
 disp('Unknown scheme.');

end
%
return
%
%%%

185

%%%
% function M =jacobian_fcst(dt,x0)
%
% Input:
% dt - time step
% x0 - Lorenz model(a vector)
%
% Return:
% M - Forecast covariance using euler scheme
%
% File: jacobian_fcst.m
%
%
% Description: Forecast covariance matrix using euler sheme
%
%%%
function M = jacobian_fcst(dt,x0)

n =size(x0,1); % dimension of state space

M=eye(n,n); % initialize propagator
%
x = x0;
A = jacobian(x);
M = (eye(size(A)) + dt * A) ;
%
return
%%%

186

%%%
% function [x1] = rk4(dt,x0,F)
%
% Input:
% dt - time step
% x0 - Lorenz model(a vector)
% F - Forcing
%
% Return:
% x1 - Lorenz model after integrating forward in time one time step
%
% File: rk4.m
%
%
% Description: Integrate forward Lorenz 95 model by 1 timestep
% using 4th order Runge-Kutta method
%
%%%

function [x1] = rk4(dt,x0,F)

n=size(x0,1);
xa=[x0(n-1); x0(n); x0; x0(1); x0(2)];

% indices in xa
nm=n-1;
jp1=4:4+nm;
jm1=2:2+nm;
jm2=1:1+nm;
%
% RHS(x0==xa):
% nonlinear advection + linear terms
%
L95= (xa(jp1) - xa(jm2)) .* xa(jm1) - x0 + F*ones(n,1);
k1 = dt*L95;
%
% RHS(x0 + 0.5*k1)
%
xx=x0 + 0.5*k1;
xa=[xx(n-1); xx(n); xx; xx(1); xx(2)];
L95= (xa(jp1) - xa(jm2)) .* xa(jm1) - xx + F*ones(n,1);
k2 = dt*L95;
%
% RHS(x0 + 0.5*k2)
%

187

xx=x0 + 0.5*k2;
xa=[xx(n-1); xx(n); xx; xx(1); xx(2)];
L95= (xa(jp1) - xa(jm2)) .* xa(jm1) - xx + F*ones(n,1);
k3 = dt*L95;
%
% RHS(x0 + k3)
%
xx=x0 + k3;
xa=[xx(n-1); xx(n); xx; xx(1); xx(2)];
L95= (xa(jp1) - xa(jm2)) .* xa(jm1) - xx + F*ones(n,1);
k4 = dt*L95;
%
% linear combination of k1,k2,k3 and k4
%
fac=1./6.;
x1=x0 + fac*(k1 + 2*k2 + 2*k3 + k4);
%
return
%%%

188

	Acknowledgement.pdf
	Acknowledgements

	ListofTables.pdf
	List of Tables

	ListFigures.pdf
	List of Figures

	Appendix_A.pdf
	Appendix A

	Appendix_B.pdf
	Appendix B

