
311

A Comparative Study on
the Solution Techniques for Fiber
Orientation in Two-Dimensional

Converging and
Diverging Flows

B. N. RAO, S. AKBAR AND M. C. ALTAN
School of Aerospace and Mechanical Engineering

University of Oklahoma
Norman, OK 73019 

ABSTRACT: The two-dimensional steady flow of both infinite and finite aspect ratio
(length to diameter ratio) fibers suspended in a Newtonian fluid is investigated numeri-
cally. Forty-five-degree convergent and divergent channel geometries are considered for
the analysis. Due to symmetry, only half the channel geometry is considered and the ori-
entation field is assumed to be planar. The analysis is carried out for the creeping flows
where the inertia terms are neglected. Numerical grid generation is used to generate the
mesh, and the transformed governing equations in terms of the stream function are solved
in the computational domain using a finite difference scheme. In this study, several solu-
tion strategies for solving the orientation field are investigated. The orientation of individ-
ual fibers are assumed to be governed by Jeffery’s equation. The orientation field, which
can be expressed in different forms (i.e., a unit vector, tensorial quantities, or an orienta-
tion distribution function), is specified by solving the orientation equations along particle
paths. A tracing technique is implemented to obtain these particle paths for each grid point
in the flow domain. The solution of the orientation field is obtained by using two basic
techniques. First, a large number of fibers are considered, and by using analytical expres-
sions developed to describe the orientation state of one fiber, a statistical orientation distri-
bution function is generated. Second, tensorial quantities (both second- and fourth-order
orientation tensors) are employed to solve for the orientation field. In order to overcome
the closure problem occurring in the resulting orientation equations, quadratic approxima-
tions are used. Maximum orientation angles are reported from both the techniques, and
their accuracies are investigated. The maximum orientation angles (i.e., preferred orienta-
tion) obtained from the second- and fourth-order tensorial solutions are observed to be
identical. On the other hand, the degree of fiber alignments that are specified by the indi-
vidual tensor components differ considerably. Comparison of the solution techniques
shows that the accuracy of the preferred angle obtained from statistical solution is depen-
dent on the number of fibers considered. In addition, the calculations for the finite fiber
aspect ratio revealed some discrepancies between the statistical and tensorial results at the
regions of rapid fiber tumbling.
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INTRODUCTION

HE MECHANICAL PROPERTIES of short fiber composites are highly dependentTon microstructural characteristics such as the fiber volume concentration,
fiber geometry, and the orientation distribution of the fibers. The fiber orientation
structure in these materials, apart from being affected by volume concentration
and aspect ratio of the fibers, is influenced by the processing conditions used in
their manufacture. Experimental evidence has shown that reinforced thermo-
plastics have the highest strength in the preferred orientation direction of the
fibers. Although the strength characteristics of these composites can be deter-
mined from micro-mechanical constitutive models, in order to use these models,
a prior knowledge of the fiber orientation field is necessary. Thus, if the fiber ori-
entation can be predicted for a given set of processing conditions, manufacturing
short fiber composites with the optimum mechanical properties will become pos-
sible.

Jeffery [1], in 1922, studied the motion of an ellipsoidal particle immersed in
a homogeneous flow of a Newtonian fluid, and developed an expression describ-
ing the particle motion and the forces acting on the suspended particle. Since
then, several constitutive models [2-6] have been developed from which the flow
induced orientation can be predicted for the dilute or semiconcentrated suspen-
sions. In general, these constitutive models treat the suspension as a continuum
and express the bulk stresses generated in the suspensions as:

where Q ; and uP are the stress contributions from the suspending fluid and the
particles respectively, g is the viscosity of the suspending fluid, u,, is the velocity
gradient tensor, q5, is the fiber volume fraction, S,, and S,,k, are the second- and
fourth-order tensors which account for the orientation distribution of fibers, and
A, B, C are the material constants that depend on the particle geometry. A de-
tailed discussion on various constitutive models and equations for the material
constants can be found in Tucker’s recent publication [7].

In a complex flow, if the spatial stress gradients due to fibers are very small
compared to spatial viscous stress gradients, then the fluid behavior is Newtonian
(i.e., the presence of fibers does not alter the flow kinematics). Consequently, the
implementation of an anisotropic model is not needed and the sole use of Jeffery’s
equation is sufficient to characterize the orientation field. As the expression of af,
indicates, the particle stress contribution linearly varies with the fiber volume
fraction 0, and therefore, in any flow there exists a critical particle volume frac-
tion below which the suspension can be regarded as Newtonian. For such cases,
Givler et al. [8] solved the planar fiber orientation field of complex two-
dimensional flows by numerically integrating Jeffery’s orientation equation along

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016jtc.sagepub.comDownloaded from 

http://jtc.sagepub.com/


313

the streamlines. On the other hand, if stress gradient contributions from the par-
ticles are comparable or larger than the suspending fluid contributions, the sus-
pension exhibits non-Newtonian characteristics with directional dependent prop-
erties (i.e., anisotropic) which necessitates the simultaneous solution of the flow
and orientation fields by using a proper constitutive model.
A few numerical solutions to the above described coupled problem (i.e., ac-

counting the affect of particles on the flow field by utilizing an anisotropic consti-
tutive model) have recently been reported. Papanastasiou and Alexandrou [9]
worked on the isothermal extrusion of nondilute fiber suspensions. They utilized
Dinh-Armstrong constitutive equations and resulting nonlinear integro-
differential equations were solved with a streamlined finite element technique.
Lipscomb et al. [5] utilized a similar constitutive equation proposed by Evans
[3], and solved the orientation field in a sudden contraction using a finite element
method. Later, Chiba et al. [10], using a finite difference technique, confirmed
and extended Lipscomb’s work considering the effects of fluid inertia. Rosenberg
et al. [11] investigated nonrecirculating flows of fiber suspensions and reported
results for falling-ball rheometry. Phan-Thien and Graham [6] proposed a new
constitutive model that suggests a new functional form for the material coefficient
A shown in Equation (1). In their work, flow past a sphere is investigated and
comparisons with experimental data showed good agreement. Altan et al. [12]
obtained numerical solutions of planar fiber orientation in a straight channel us-
ing Dinh-Armstrong’s constitutive equations. In this work a finite difference tech-
nique is used and the effect of fibers on the flow profile is investigated. Apart
from the numerical solutions, researchers have also carried out experiments
which have served as a suitable measure for comparison with the numerical
results. Goldsmith and Mason [13] performed a series of experiments to in-

vestigate the orientation of rigid ellipsoids and the stresses acting on the particles
in shear flow. Vincent and Agassant [14] investigated orientation of short fibers
(copper and glass) suspended in corn syrup in diverging flows. Lipscomb et al.
[5] conducted experiments on the flow of chopped-glass fiber suspensions
through axisymmetric contractions and found excellent agreement with the com-
puted results.

In processing of polymers, flows are characterized by low Reynolds numbers,
where the viscous effects are dominant compared to the inertial effects. For such
cases, the creeping flow equations become the governing equations of flow. For
the simultaneous solution of the flow and orientation fields, first, it is convenient
to compute the orientation of the fibers assuming that the stresses generated due
to presence of fibers are zero. Then, the orientation field computed from the
Newtonian solution is coupled back to the governing equations of flow to solve
the anisotropic flow of fiber suspensions. In this work, the orientation field,
which can be expressed in different forms (i.e., a unit vector, tensorial quantities,
or an orientation distribution function), is obtained by solving the orientation
equations along particle streamlines. Along these particle paths, average velocity
gradients and the time periods during which these velocity gradients are effective
are used to calculate the orientation of fibers. It is necessary that small intervals
be used to compute the orientation field, because the orientation of the fibers is
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affected only by the local velocity gradients. Our aim in this paper is to present
and investigate the accuracies of the various solution techniques for the solution
of orientation field in a Newtonian fluid where the particles do not alter the flow
kinematics. For suspensions with higher volume fractions, these solution tech-
niques can be utilized in conjunction with the anisotropic constitutive models for
the accurate representation of the flow behavior.

In this paper, the two-dimensional steady flow of both infinite and finite aspect
ratio fibers suspended in a Newtonian fluid is investigated numerically. Since the
effect of the fibers on the velocity field is neglected, the orientation results are
valid below a critical fiber volume concentration where the suspension exhibits
Newtonian flow characteristics. Forty-five-degree convergent and divergent chan-
nel geometries are considered for the study. The analysis is carried out for creep-
ing flows where the inertia terms are neglected. In order to describe orientation
field (assumed to be planar) throughout the flow domain, several solution strate-
gies and their accuracies are investigated. Two basic techniques are considered
for the solution of the orientation field. First, a large number of fibers, each start-
ing from different initial orientation are considered. By suitably choosing the ini-
tial orientation angles of individual fibers, it is possible to impose a meaningful
initial orientation condition, ranging from random to complete alignment. Start-
ing from the specified initial orientations, the orientation vector for each fiber is
solved along the streamlines generating a statistical distribution function. In
these solutions, analytical expressions developed by Akbar and Altan [15] are
used and the maximum orientation angles (preferred orientation) throughout the
converging and diverging channels are reported. Second, tensorial quantities are
used to solve the orientation field. The orientation evolution equations for
second- and fourth-order orientation tensors are employed. Similarly, the maxi-
mum orientation angle is computed from the second- and fourth-order orienta-
tion tensor components. For the flow geometries, the orientation angle results ob-
tained using the second-order tensors, fourth-order tensors, and the statistical
solution utilizing the orientation distribution of the numerous fibers are com-
pared. The orientation angles obtained from the second- and fourth-order solu-
tions are identical whereas the degree of fiber alignments differ considerably.
Comparison with the statistical results show that the accuracy of the statistical
solution is dependent on the number of fibers considered. Satisfactory results
are obtained for ninety fibers in the statistical solution. However, considering
only nine fibers revealed slight errors in the orientation predictions. Hence, de-
pending on the available computational resources and desired accuracy level, one
can prefer to trace different numbers of particles for the simulation of fiber sus-
pensions.

THEORY

Description of Orientation State

ORIENTATION VEC7DR
The orientation vector p is defined as a unit vector which represents the orien-
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tation of a single fiber. This unit vector is taken to coincide with the axis of revo-
lution of the fiber geometry.
The rotation of a rigid fiber with the bulk fluid motion can be expressed in

terms of orientation vector components. In the case of planar (2-D) representa-
tion of fiber orientation, the orientation vector components pl and p2 are related
to the orientation angle 0 as

where, the angle 0 is measured from the x axis. Therefore any change in the ori-
entation angle would manifest itself in a change of the orientation vector compo-
nents or vice-versa. This was shown by Jeffery’s equation for the motion of an
ellipsoid of revolution immersed in a viscous medium as

where p, represents the time rate of change in the orientation vector compo-
nents, and 5~,, and A,~ are the vorticity and strain rate tensors respectively.

In the above equations, i, j = 1,2, and summation is implied over repeated in-
dices. The parameter X is a function of the fiber aspect ratio ap, and is given as

Equation (3) takes into account the effect of flow kinematics on a rigid inexten-
sible fiber, which is unable to follow the bulk fluid rotation affinely.
The solution to Jeffery’s equation with the initial condition p, = ply has been

shown in Reference [4] to be

where E,,’s are the components of a strain tensor defined as
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Equations (6) and (7) constitute a simple solution to the Jeffery’s equation where
the fiber is subjected to a homogeneous flow field characterized by 52,, and A,~.
This solution is valid for both two- and three-dimensional flows and orientation
fields. For infinite aspect ratio fibers (slender fibers) X = I, and Equation (7)
reduces to

where x, and x° are the fluid particle coordinates at times t and t° respectively.
Hence, the orientation vector components can be easily calculated from the

flow kinematics and initial fiber orientation using Equation (6). To describe a
rheologically meaningful orientation state, same analysis can be used for numer-
ous fibers in the domain, generating a statistical distribution function. However,
this representation may lead to an inaccurate description of the orientation state
if the number of fibers considered are not high enough.

DISTRIBUTION FUNCTION
The orientation distribution function *(,p,t) provides a complete and accurate

representation of the fiber orientation state. It gives the probability of having a
fiber at a certain orientation p at any time t. Equivalently, it can also be defined
in terms of the orientation angle as the probability of finding a fiber in a certain
angular interval between ~1 and02 at any time t.

For two-dimensional (planar) representation of fiber orientation state, the ori-
entation distribution function should satisfy certain conditions. Since one end of
a fiber is not distinguishable from the other, the distribution function has a period
of ~, or

It also satisfies the normalization condition

which implies that the area under a distribution function curve is always unity.
An explicit equation for the orientation distribution function is obtained by

solving the governing equation for distribution function given as

where i = 1,2 and p, is given by Equation (3). The governing equation for ori-
entation distribution function is a form of the Fokker-Planck equation used for
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homogeneous flows with negligible Brownian motion. For planar orientations,
the analytical solution to Equation (11) can be expressed as I

where A,, is called the deformation gradient tensor and is the inverse of the strain
tensor E,,. The analytical solution for orientation distribution function given in
Equation (12) is only valid for random initial orientation of fibers. Using this ini-
tial condition, the normalization condition is obtained as

Equation (12) has been used in Reference [16] to evaluate the orientation distribu-
tion function for various two- and three-dimensional flow fields for infinite aspect
ratio fibers.
The analytical solution of the Fokker-Planck equation as given in Equation (12)

is not available for nonrandom initial orientations. This severely restricts the ap-
plicability of the distribution function for complex flows where the solution of the
orientation state along a streamline is required.

ORIENTATION TENSORS

Although the statistical orientation distribution function provides a complete
and accurate description of the orientation state, it has been shown that the orien-
tation state of fibers in a suspension can be described with reasonable accuracy
with tensors [17]. A number of researchers [5,6,12] have used these tensors in the
numerical computation of the orientation of fibers successfully. Even though the
accuracy of the orientation description improves when a higher order tensor is
used [17], second- and fourth-order tensors were found to be adequate for the
present analysis. The second- and the fourth-order (i.e., S’J and Si,k,, respec-
tively) orientation tensors are defined as

The order of the indices is not important since the orientation tensors are com-
pletely symmetric. An important property of orientation tensors is that the higher
order tensors contain the lower order ones. Thus, the lower order orientation ten-
sors can be written in terms of the higher order orientation tensors. For example,
any second-order tensor component can be expressed in terms of fourth-order
components as
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In addition, the trace of the second-order tensor is unity

The eigenvectors and eigenvalues of the second-order tensor indicate the princi-
pal orientation direction of the fiber and the degree of alignment in that direction.
The magnitude of the preferred orientation angle is computed from the compo-
nents of the second-order orientation tensor.

Governing Equations

FLOW EQ UATIONS
Since the flow is assumed to be steady and the inertia terms are neglected in

this analysis, the flow is governed by the biharmonic equation. In Cartesian coor-
dinates (x,y), the governing equation can be written as

where 4, is the stream function defined by u = 8§/8y; v = - 8§/8x. Here, u
and v are the components of the velocity vector in the x and y direction respec-
tively. For arbitrary shaped geometries, boundary conditions become difficult to
implement if a regular Cartesian grid is used. To overcome this difficulty, a grid
generation technique is used to transform the above equation to a computational
space (tr¡) and solve the transformed equation in the computational domain. The
reader is referred to Reference [18] for a complete treatment on numerical grid
generation. After transformation, the governing equation becomes

where
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The metrics ~x, ~x etc. are defined in the Appendix. Clearly, these metrics are
functions of the generated grid and are evaluated numerically. The governing
equation given in Equation (18) is discretized using a finite difference scheme and
solved for the stream function in a computational plane ~-77.

ORIENTATION EQUATIONS
As stated earlier, most constitutive models assume that the orientation of in-

dividual fibers is governed by the Jeffery’s equation given by Equation (3). In
order to obtain the orientation equations, the definitions of the second- and
fourth-order orientation tensors are used as a starting point. Taking the derivative
of Equation (14) with respect to time and using Equation (3), the second- and the
fourth-order orientation evolution equations can be written with the indicial no-
tion :

The components of the orientation tensors are obtained from the solution of the
resulting orientation equations. Since calculation of the orientation tensors only
requires solving the above ordinary differential equations, the tedious computa-
tion of the orientation distribution function is totally avoided. It can easily be
seen that three orientation equations result from Equation (22) and five from
Equation (23). Although, three and five equations result from Equations (22) and
(23) respectively, using the property S&dquo; = 1, the number of independent com-
ponents can be reduced to two in the case of a second-order tensor and to four
in the case of a fourth-order tensor. However, these equations cannot be solved
readily due to the unknowns appearing in the form of higher order tensors.
Specifically, Equation (22) contains the unknown fourth-order orientation tensor
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S,l~:1, while Equation (23) contains the unknown sixth-order orientation tensor
S’Jklrs’ In order to solve this problem, a quadratic closure approximation is used.
With the help of these approximations, the unknowns are reduced in terms of
lower order tensors:

Altan [12] has successfully used quadratic closure approximations to solve the
anisotropic flow of fiber suspensions in a two-dimensional straight channel.
Lipscomb [5] has also used the same approximation in order to obtain solutions
for the flow of dilute suspensions in a sudden contraction. By means of the qua-
dratic closure approximation and the properties of orientation tensors defined
earlier the second-order evolution equation becomes

Also, the resulting evolution equations for the fourth-order orientation tensor are
given by
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The second- and the fourth-order orientation tensor components are obtained
from these ordinary differential Equations (25-32) which are solved along the
particle paths using the Livermore Solver for Ordinary Differential Equations
(LSODE).

SOLUTION TECHNIQUES

Solution Technique for Biharmonic Equation
The transformed governing equations are solved using a finite difference

scheme in the computational domain (~, 11). The stream function is represented
explicitly which enables it to be solved iteratively using a Gauss-Seidel technique
with SOR (Successive Over Relaxation) to speed up convergence. In order to
solve Equation (18), a set of fictitious nodes is necessary around the domain of
interest so that the boundary conditions are satisfied. The boundary conditions
for the stream function calculation for both the channel geometries are the same
except at the inlet of the channel. Because of symmetry, only half of the channel
geometry is considered as shown in Figures 3 and 7. On the channel centerline,
the velocity gradients with respect to y is zero. On the channel wall, no-slip
boundary condition is imposed, and at the channel exit, fully developed flow is
assumed. The boundary condition at the inlet is dependent on the channel geom-
etry. In the case of a convergent channel, radial velocity is specified at the inlet.
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The radial velocity, Vn is given by

where Q is the volume flow rate, () is the density of the fluid, r and 9 are variables
in the radial and angular directions respectively, and a (forty-five degrees for the
considered geometry) is the angle of convergence. In the divergent channel ge-
ometry, a parabolic velocity profile given by

is specified at the inlet. Here, Mmax is the maximum velocity and is equal to
unity. After the expansion, a straight channel is used long enough to ensure a
fully developed velocity profile at the exit.

Solution Technique for Orientation Evolution Equations
In order to extract the orientation information in terms of the second- and

fourth-order tensor components, it is necessary to solve the orientation Equations
(25-32) at each nodal point in the flow domain along particle streamlines. There-
fore, a tracing technique is implemented to trace the stream function value from
every single nodal point in the domain back to the inlet, thus specifying indivi-
dual particle paths. Along each particle path corresponding to a single nodal
point, average velocity gradients and the time spent in the interval defined by ad-
jacent mesh points are computed. This information is employed in the LSODE
and the procedure is repeated, constantly updating the orientation information
until the whole path is traversed up to the nodal point of interest. This procedure
is not valid for the nodes on the channel wall where the velocity vector is zero,
and for the nodes on the inlet of the channel, where a random initial orientation
is specified using the definition of the second- and fourth-order orientation ten-
sors. Hence, using Equation (14), the following values are obtained for the
second-order orientation tensor at the inlet:

For the fourth-order tensor components
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On the wall boundary, the orientation of the fibers is specified to be aligned with
the channel wall.

After the solution of S,, and S,,kl along the particle pathlines for each node,
maximum orientation angle is calculated. From second-order orientation tensor
S,&dquo; the principal orientation directions can be calculated as:

Similarly, from fourth-order orientation tensor

Each one of the equations above defines two particular values of angle 2ø, one
of which defines the maximum orientation angle 0,,,.,x and the other, the mini-
mum orientation angle ømm. In fact, (amax and Ømm specify the eigenvectors of S’l
which can be utilized to construct an orientation ellipse.
One other important parameter to analyze is the degree of fiber alignment

along the maximum orientation angle ømax. For the second-order tensor S,, the
k degree of alignment along Ømax can be expressed as:

From À¡ and using X, + À2 = 1, the degree of alignment, À2, along the mini-
mum orientation angle, Ømm, can also be calculated.

In a similar manner, from the fourth-order orientation tensor

For random orientation state, À1 = X, = 0.5 whereas for perfect alignment
B,=1;B,=0.

In this study, only the orientation angles are depicted as orientation results.
Therefore at the nodal points of the flow domains, the direction of line segments
of equal length indicates the maximum orientation angle ømax. ·

Solution Technique for Discrete Fibers

For any two-dimensional flow field the velocity gradient tensor can be specified
as
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where c, Ct, and c, are constants, and the trace of the tensor should be zero to sat-

isfy the conservation of mass. This velocity gradient tensor can be used to repre-
sent various kinds of homogeneous flows by changing the values of velocity gra-
dients. Hence the flow kinematics can be altered and the subsequent effect
incorporated in terms of the equivalent strain tensor.
The strain tensor evaluated from Equation (7) is utilized in Equation (6) for

calculation of orientation vector components. The initial orientation vector com-
ponents are related to the corresponding orientation angle, Øo, by

Once the orientation vector components are known at any instant, the orientation
angle, 0, can be calculated as

where the angle, 0, is measured from the x axis. Using this technique, the analyt-
ical solution of fiber orientation has been shown by solving the system of four
first-order coupled differential equations obtained from Equation (7) [15].
To calculate the strain tensor in terms of velocity gradients, the four coupled

differential equations have to be solved with the initial condition E = I (unit ten-
sor). Three categories of solutions can be identified for the system of differential
equations depending on w2 shown below, which appears as a coefficient in the
differential equations

where A, = c, + C2 and A2 = ci - c2. Depending on the value of w2, the fol-
lowing three categories of solutions for the strain tensor are possible:

When w2 = 0
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These three categories of solutions represent the effect of flow kinematics on fiber
orientation and using them in Equation (6) would give the orientation vector
component. Substituting X = 1 simplifies these equations for the infinite aspect
ratio fibers and the three different E,,’s represent the strain tensors for simple
shear, planar elongation, and rotation dominant flows respectively.
Using the strain tensor equations above with Equation (6), a number of fibers,

each starting from different orientation, are traced along the particle paths for all
the grid points. At the inlet, random fiber orientation is implemented by consid-
ering a number of discrete fibers oriented with equal angular intervals between
0 and tor. In this study, nine and ninety fibers are utilized in the solution. There-
fore, at the inlet, the angular intervals between nine and ninety fibers become x/9
and x/90 respectively. After being subjected to a local velocity gradient, a new
set of fiber orientations are calculated describing a statistical orientation distribu-
tion. Obviously, as the number of fibers is increased, more accurate representa-
tion of the orientation distribution will be obtained. From such an orientation dis-

tribution, the preferred angle is taken to be the midpoint of the smallest angular
interval within a particular set of fiber orientations.

RESULTS

For both converging and diverging channels, orientation results are obtained
from four different methods, using:

(1) Second-order orientation tensors

(2) Fourth-order orientation tensors

(3) Statistical orientation distribution by tracing nine fibers
(4) Statistical orientation distribution by tracing ninety fibers

For these four methods, two different fiber aspect ratios are considered:
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Converging Channel Geometry
A forty-five-degree convergent channel as shown in Figure I is chosen for the

analysis. All lengths are non-dimensionalized with respect to the straight channel
width, and the total channel length is selected to be ten. Due to the high exten-
sional velocity gradients, the grid lines are concentrated towards the contraction
of the channel as shown in Figure 2. Figure 3 provides a comparison of the veloc-
ity profiles at the contraction of the channel for the various grid sizes. After nu-
merous runs with different grid sizes and convergence criteria, a mesh size of
37 X 21 and a relative convergence criteria of 10-6 are found to yield accurate
results.
The orientation results are presented as graphs showing the variation of the

maximum orientation angles across the channel width at different sections of the
channel as in Figures 4a-4c and 6a-6c, and the variation of orientation angles
along the channel length as in Figures 4d and 6d. In addition, Figures 5a-5c and
7a-7c, show the preferred fiber orientations throughout the domain of interest.
Tracing ninety fibers in the statistical solution is found to adequately represent
the orientation field while considering only nine fibers gave some discrepancies.
A further increase in the number of fibers did not yield results drastically
different from those obtained for ninety fibers. Maximum orientation angle,
Ømm is calculated as explained before, and comparison of the results obtained
from the second- and fourth-order orientation tensor solutions [i.e., from Equa-
tions (37) and (38)] revealed identical 0,,,ax values for all the grid points. Hence,
one can conclude that both evolution equations for the second- and fourth-order
orientation tensor yields correct orientation angles despite the quadratic closure
and approximation. Of course this conclusion can be drawn considering the fact

Figure 1. Converging channel geometry.
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Figure 2. Mesh chosen for the converging channel. Mesh size: 37 x 21.

Figure 3. Variation of the u component of the velocity across the channel width for different
mesh sizes.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016jtc.sagepub.comDownloaded from 

http://jtc.sagepub.com/


328

Figure 4a. Variation of orientation angle across the channel width close to the inlet ot tne

converging channel at x = 1, for infinite aspect ratio fibers.

orientation angle (degrees)
Figure 4b. Variation of the onentation angle across the channel width at the contraction
section of the converging channel at x = 4, for infinite aspect ratio fibers.
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Figure 4c. Variation of orientation angle across the channel width at some distance from
the contraction section of the converging channel at x = 6, for infinite aspect ratio fibers.

Figure 4d. Variation of orientation angle along the channel length at the midpoint of the
channel width with infinite aspect ratio fibers.
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Figure 5a. Onentation angles of infinite aspect ratio ribers In me converging geometry uu-
tained by tracing nine fibers.

Figure 5b. Orientation angles of mfinite aspect ratio fibers In the converging geometry ob-
tained by tracing ninety fibers.
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Figure 5c. Orientation angles of infinite aspect ratio fibers obtained from the solution of
fourth-order orientation tensor S,~k~. *

-, ,,,,’&dquo;,..&dquo;’_&dquo;-. -..w .- %--,5 . ---/

Figure 6a. Variation of orientation angle across the channel width close to the inlet of the
converging channel at x = 1, for ap = 10.
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Figure 6b. Variation of orientation angle across the channel width at the contraction section
of the converging channel at x = 4, for ap = 10.

Figure 6c. Variation of orientation angle across the channel width at some distance from
the contraction section of the converging channel at x = 6, for ap = 10.
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Figure 6d. Variation of orientation angle along the channel length at the midpoint of the
channel width for an = 10.

,Figure 7a. Orientation angles of finite aspect ratio fibers (ap = 10) in the converging ge-
ometry obtained by tracing nine fibers.
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Figure 7b. Orientation angles of finite aspect ratio fibers (ap = 10) In the converging ge-
ometry obtamed by tracing ninety fibers.

Figure 7c. Orientation angles of finite aspect ratio fibers (ap = 10) obtained from the solu-
tion of fourth-order orientation tensor S’lkl’
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that for an nth-order tensor, the results should approach to exact values as n ap-
proaches infinity. Consequently, in this paper, only the results from the fourth-
order orientation tensors were used in the graphs and vector plots.

Figures 4a and 6a show the maximim orientation angles obtained close to the
inlet of the converging channel. Figure 4a depicts the results for infinite fiber
aspect ratio, while Figure 6a depicts the results for an aspect ratio of ten. Except
for a small difference in the orientation curves observed near the channel wall,
the orientation results in these two figures [Figures 4a and 6a] are seen to be
almost identical. Since the elongational component of the flow is dominant in the
converging section of the channel, the fibers try to align rapidly along the radial
lines and no tumbling is observed. Clearly, the solution obtained by tracing
ninety fibers is seen to approach to the fourth-order tensor solution whereas the
solution with nine fibers shows a zigzag pattern over the other two curves. For all
practical purposes, utilizing more than ninety fibers would only cause the statisti-
cal solution to give preferred orientations identical with those obtained from the
orientation tensors. Figures 4b and 4c depict the preferred orientation for infinite
aspect ratio fibers at the contraction and at some distance away from the contrac-
tion. Correspondingly, Figures 6b and 6c represent the preferred orientations for
the fibers with aspect ratio of ten. At the contraction, all the fibers enter the

straight channel more or less coincident with the radial lines (Figures 5 and 7).
However, from the comparison of Figures 4b and 6b, the orientation angles are
observed to be slightly different near the channel wall. In the straight channel
portion, the shear flow is prominent, and as expected, the fibers tend to align
themselves with the flow as seen in Figure 4c. Due to high shear rates existing
near the wall of the channel, the fibers close to the wall align themselves at a
quicker rate (Figure 5) compared to those close to the centerline of the channel.
On the other hand, the finite aspect ratio solution depicts fiber tumbling near the
channel wall, as seen in Figures 6c and 7. As shown in Figure 6c, the agree-
ment between the statistical and tensorial solutions is satisfactory except for one
node near the wall. A better illustration of the variation in orientation angles
along the channel length can be seen in Figures 4d and 6d. Note that the orienta-
tion angles in Figure 4d and 6d are obtained at the midpoints of the half channel
width throughout the domain. A close look at these two figures reveals that the
finite aspect ratio fibers align more rapidly compared to more stable infinite
aspect ratio fibers. Although not much difference in the orientation angles is visi-
ble in the straight channel part of the converging geometry, a careful examination
of Figures 5a, 5b and 5c in the converging portion of the channel shows some
difference in the orientation angles between the solutions obtained by tracing nine
fibers and the other two solutions. In contrast, Figures 7a, 7b and 7c depict the
orientation tensor results to be somewhat different from the other two results in
a region close to the wall. These discrepancies observed in Figures 7 and 6c are
mainly associated with the fibers that are rotating rapidly within a smaller length
scale than the mesh size. In other words, the fibers are subjected to relatively high
shear rates near the channel wall that result in rapid tumbling over much smaller
the negative to positive orientation could be attributed to the expanding and rap-
idly decelerating flow at the inlet of the diverging section, while the second cross-
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length scales. Therefore, with the fixed nonadaptive mesh, orientation predic-
tions may not be very accurate for such regions of high orientation gradients.

Diverging Channel Geometry
A diverging channel geometry as shown in Figure 8 is selected for the analysis.

All lengths are non-dimensionalized with respect to the width of the channel at
the inlet and the overall channel length is chosen to be twelve. A straight channel
is included after the diverging section for ease in satisfying the exit boundary
conditions. A mesh size of 45 x 31 with a relative convergence criteria of 10-6
is used in the computations. Due to the high velocity gradients near the inlet and
exit of the diverging section, grid concentration in these regions is found to be
necessary. In addition, the grid lines are concentrated near the channel wall as
shown in Figure 9 in an attempt to capture the possible fiber tumbling in detail.
Figures l0a and 12a show the variation of the orientation angle across the channel
width at the inlet of the diverging section for infinite and finite aspect ratio (i.e.,
a, = 10) fibers respectively. At this section, due to the effect of the shear rates
throughout the straight channel, the fibers near the channel wall started to align
along the flow direction. However, due to the zero shear and negative extensional
velocity gradients on the centerline, the preferred orientation angles are seen to
be perpendicular to the flow. Obviously, this is due to the diverging section
through which the fluid decelerates. The preferred orientations obtained by trac-
ing nine fibers are observed to be sufficiently accurate as shown in Figures
l0a-10e. Increasing the number of fibers from nine to ninety only improved the
results slightly. The effect of the diverging geometry is much more prominent in

Figure 8. Diverging channel geometry.
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Figure 9. Mesh chosen for the diverging channel. Mesh size: 45 x 31.

Figure 10a. Variation of onentation angle across the channel width at the beginning of the
diverging section at x = 4, for infinite aspect ratio fibers.
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Figure 10b. Variation of the orientation angle across the channel width midway through the
diverging section at x = 6, for infinite aspect ratio fibers.

VI Ivl I&dquo;&dquo;&dquo;&dquo;’’’’’’ , &dquo;&dquo;’I~’’’’’ wvy vvv~

Figure lOc. Variation of orientabon angle across the channel width at the end of the diverg-
ing section at x = 8, for infinite aspect ratio fibers.

’2’2 Q
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Figure 10d. Variation of orientation angle across the channel width at some distance from
the end of the diverging section at x = 10, for infinite aspect ratio fibers.

cnannei iengin, x

Figure 10e. Variation of orientation angle along the channel length at the midpomt of the
channel width, for the diverging channel with infinite aspect ratio fibers.
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Figure 11a. Orientation angles of infinite aspect ratio fibers in the diverging geometry ob-
tained by tracmg nine fibers.

Figure 11 b. Orientation angles of infinite aspect ratio fibers in the diverging geometry ob-
tained by tracing ninety fibers.
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Figure 11c. Orientation angles of infinite aspect ratio fibers obtained from the solution of
fourth-order orientation tensor Sllkl’

- .&dquo; - I

Figure 12a. Var~ation of orientation angle across the channel width at the beginning of the
diverging section at x = 4, for ap = 10.
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Figure 12b. Variation of orientation angle across the channel width midway through the
diverging section at x = 6, for ap = 10.

Figure 12c. Variation of orientation angle across the channel width at the end of the diverg-
ing section at x = 8, for ap = 10.
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Figure 12d. Variation of orientation angle across the channel width at some distance from
the end of the diverging section at x = 10, for ap = 10.

Figure 12e. Variation of orientation angle along the channel length at the midpomt of the
channel width of the diverging channel for ap = 10.
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Figures lOb and 10c [see also Figures lla-llc] which are obtained for infinite
fiber aspect ratios, and in Figures 12b and 12c [see also Figures 13a-13c], which
are obtained for fibers with aspect ratio of ten. At these sections, which are the
center and the exit of the diverging portion of the channel respectively, most
fibers close to the centerline orient themselves almost perpendicular to the flow
direction. Results for infinite aspect ratio fibers, as shown in Figures lOb-lOc, in-
dicate a rather smooth transition from a preferred orientation of - 90 at the cen-
terline to 45 at the wall. The results for fibers with an aspect ratio of ten, as
shown in Figures 12b-12c, indicate a similar transition; however, due to high
shear gradients throughout a narrow band near the channel wall, the finite aspect
ratio fibers are seen to tumble rapidly over relatively smaller length scales.

Therefore, for finite aspect ratio fibers, the statistical and the tensorial orientation
results do not agree well due to rapid fiber tumbling near the wall. Figures lOd
and 12d show the variation of the orientation angles across the channel width at
some distance from the diverging section. After the diverging section, the infinite
aspect ratio fibers near the wall tend to be rapidly aligned with the flow due to the
high shear rate. At this point all the fibers in the flow domain have negative pre-
ferred orientations due to the lasting effects of the diverging geometry. Figure 10d
indicates a very smooth transition of the orientation angle from -90° at the cen-
terline to 0 at the wall where the agreement between all the solution techniques
is excellent. In the case of finite aspect ratio fibers, due to high shear rates near
the channel wall, the fourth-order tensor solution is not in good agreement with
the analytical solutions in a region dominated by high shear as seen in Figures 12
and 13. However, the orientation variations are because of the rapid fiber tum-
bling and confined in a rather narrow band near the wall. Figures 10e and 12e il-
lustrate the variation of the orientation angle at the midpoints of the half channel
width along the channel length (i.e., x = 0 - 12). As is seen from the graphs,
there are two crossovers of the orientation angles from the negative side to the
positive and back in the diverging section of the channel. The first crossover from

Figure 13a. Orientation angles of finite aspect ratio fibers (ap = 10) in the diverging geom-
etry obtained by tracing nine fibers.
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Figure 13b. Orientation angles of finite aspect ratio fibers (ap = 10) in the diverging geom-
etry obtained by tracing ninety fibers.

Figure 13c. Orientation angles of finite aspect ratio fibers (ap = 10) In the diverging
geometry obtained from the solution of fourth-order orientation tensor S’lkl’
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the negative to rx),,itive Orientation could he attrihutcd to the expanding and rap-
idly dcceteratmg flow at the inlet of the diverging section, while the second ooss-
ovcr from the positive to negative orientation ns due to the cncct <>t the straight
channel at the exit c>I the diverging section.

CONCLUDING REMARKS

In this paper, various Solution stratcgics arc presented I<tr the ortcntation field
in a Newtonian hber suspension with both infinite and finite aspect ratto fibers.
Forty-iive-degree converging and diverging ch~tnncl geometries arc considered m
the analysis. In this work, the onentation field is charaetcrrrcd hy the maximum
anglo of orientation which is ohtamcd hy considering second-order orientation
tensors, fourth-order orientation tensors, stat<sticat orientation dtstnbutton hy
tracing nine fiben, and statistical orientation dtstnbutton hy tracing ninety fibers.
Random initial lthcr orientation is specified at the inlet ctt the channels. Only
maximrrm orientation angles arc reported from all the methods considered. The
orientation rcsults ohtirincd using the statistical orientation distribution tunctutn
reveal that the accuracy of the orientation description 1111p1OVeB with increase in
the number of fihers. The solution cthtamed by tracing only nine fibers gave
ntoatly satisfactory predictions. Although II1cre,I’,lI1g the numhcr ctf fibers to

ninety umproved the accuracy considerably, one also has to consider the increase
in the required computational time. Hence, the number of fibers utlliled in the
statistical solution can he decided based on the desired accuracy and the available

computational resources. The maximum orientation angles reported from the
sccond- and the tc>urth-order 01 ientation teiisor solutions are lound to he identi-
cal. Thus, it can be concluded that the results trrnn tensoriil quantities ditter only
in the degree of alignment, which m represented hy the relative magnitude ot the
eigenv~ilues o1~ the vccc>nd-ordcr tensors. However, predicting correct preferred
oricntation does not warrant correct prediction of rhcologtcal properties of the
fiber suspension if higher fiber concentration&dquo; are used. For such cases, the ac-
curaoes ctt these techniques m prcdtrtrng the theologic~il properties of the amso-
tropic suspcnstons need to be investigated

In the case of infinite aspect ratIo fibers, close agreement hetween the ten-
sorial solutions and the statistical Solution is observed m hoth the geometrtes
considered. For finite aspect ratio fibers, thc tensorial sotution is in good
agreement with the sUatistical solutions throughout most el the channel ex-

cept a rather narrow band near the channel wall where rapid liber tumhlmg
occurs.

Due to the high shear rates existing near the ch~tnncl wall, the details of the
local tumhling of finite aspect ratio fiber% could not be accuratcty described.
Specifically, m the regions of high velocity gradients, rapid liber tumblmg ukes
place on a length scale much Bmaller than the ovcrallllow c1 ocnwcms. Thereiorc,
capturing local fiber tumbling accurtrtcly wUh tersonahlc computational cltort
may require some sort of adaptive mesh generatIon tor the orientation predic-
tions which redistributes the nodal point% considering the orientation field

gradients.
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APPENDIX

The transformation 01 the governing equations horn the physteat clomam
(x,v) to the computational domam (t 1J) m pertormed usmg eakutus 01 v,iriat>lc,.

Partial dcrivativc, with icspect to Cartesian eoordtnates arc rotated to partial
derivatives with respect to curvilincai eootdmatcs by the chain rule of differ-
entiatton. The following reSLiltS were obtained tot the niettics of the trans-

formation

where the Jacobian J m given by

Also, using the chain rule of differentiation, the quantities
found to be:

All the ahove metric quantities itic calculated numerically using cc:ntral

dillercncing. One stdcd dtncrencc relations are used for the boundaries, In all the
difference relations, A~ and Aq :~r~ taken to hc equal to unity.
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