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1. INTRODUCTION

There are tens of thousands of controllers employed in the process industries. Most of these

are proportional-integral (PI) controllers. Estimates indicate that 66% to 88% of industrial

controllers have performance problems (Harris et al. 1999). Often these problems fail to

attract the attention of the personnel who could investigate and improve performance of the

controller. Even a 1% improvement in controller performance represents millions of dollars

in potential savings to the process industries (Chaudhary et al. 2005). In the United States

alone, estimates show that losses to the petrochemical industry from poor monitoring and

control exceeds $20 billion per year (Venkatasubramanian 2006). Controller performance

assessment therefore has significant economic incentives.

1.1 Types of controller performance assessment

1.1.1 Performance assessment objectives

For purposes of this thesis, two distinct types of controller performance assessment are

identified. The first type, which we will refer to as “engineering analysis methods,” are the

techniques employed by control engineers to identify undesirable dynamic characteristics

such as valve stiction, improper controller tuning, and excessive controller action.

Engineering analysis methods focus on short-term response characteristics to individual

set-point changes and process disturbances.

Engineering analysis methods calculate performance indexes from highly sampled

(Ts ≈ 1 second) closed-loop process data, as the data contain all the information about

the performance of a controller. Commercial products that can perform the engineering
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analysis have evolved in the recent years and are being continuously improved. These

include products by ABB (Loop Performance ManagerTM), Honeywell (Loop ScoutTM),

Expertune (Plant TriageTM), ISC (PROBEwatchTM), Matrikon (Process DoctorTM), PAS

(Control WizardTM), ProControl Technology (PCT Loop OptimiserTM) and ASPEN

(PIDWatchTM).

The second type of methods used for controller performance assessment are “business

analysis methods.” They address management’s view of control systems as assets to be

managed. These techniques utilize a longer-term (weeks or months) view of controller

performance with a business emphasis on continuous quality improvement, identification of

best practices, and allocation of limited resources for control system maintenance. Business

analysis methods are implemented using statistical process control (SPC) and “six-sigma”

principles.

The focus of this thesis is on the characterization and analysis of data used by business

analysis methods for controller performance assessment.

1.1.2 Performance assessment input data characteristics

The key variable for both the engineering and the business types of performance assessment

when applied to feedback control is the controller error, given by the difference between

the measured process variable (PV) and the set-point (SP).

e(k) = PV(k) - SP(k) (1.1)

For single-input-single-output (SISO) loops, a well performing loop should reject

disturbances and the process variable should closely follow the set-point. The variability

in the controller error in such a case will be a direct indicator of controller performance

(Thornhill et al. 1999). For a multivariable control loop, however, the characteristics of the

2



controller error can be different due to the presence of various factors including interactions

between loops and constraints on certain variables.

An important distinction between the engineering analysis methods and the business

analysis methods is in the use of closed-loop actuating error variability in different

contexts to answer different questions. Engineering analysis techniques are very powerful

tools to help the control engineer to assess controller performance. Business analysis

methods based on SPC techniques, on the other hand, are tools to help management

assess the performance of controllers from a business perspective. SPC-based techniques

provide key process performance indicators that facilitate comparison of similar controller

configurations within sites, or within units at the same site, and are ultimately aimed at

establishing the best practices.

Engineering analysis methods are used for continuous performance assessment on a

loop-by-loop basis using high-fidelity closed-loop data collected at the same rate as the

controller. Business analysis methods, on the other hand, are used for assessing the

performance of complex control configurations, such as multivariable controllers. Business

analysis methods use archived closed-loop data collected over an extended period of

time such as an year (Herman 1989) with the intention of identifying opportunities for

continuous improvement.

The business analysis methods do not require high frequency sampling like the

engineering analysis methods but require closed-loop data over long periods of time such

as a year. Use of archived closed-loop data is best suited for this purpose as it is impractical

to set up a data collection system over long periods of time over which statistical process

control analysis is done.

The SPC techniques involve strong assumptions about randomness and the normality

of data. Since archived closed-loop data are not collected to test any specific statistical

hypothesis, they may contain unexpected features and unsuspected correlations between

variables. If data historians compress the data for archival, data characteristics may be

3



compromised upon regeneration. It is important to address all of these assumptions because

SPC metrics derived from archived process data are used to make important decisions about

the control system performance.

Only limited work has been done so far in characterizing archived closed-loop data that

are used in SPC-based performance analysis of regulatory and advanced control loops. The

premise of this work is that characterization of archived closed-loop data will result in a

better understanding and interpretation of quality SPC metrics that are derived from such

data.

1.2 Contribution of this work

The main contribution of this work is the characterization of closed-loop archived data

used for SPC-based controller performance analysis with emphasis on trends in actuating

error variability over long periods of time. Since most of these performance measures are

stochastic in nature, statistical tools should be used to detect statistically significant changes

in controller performance. The statistical nature of actuating error distributions and their

conformity to the Gaussian model was studied. To answer this, it was necessary to develop

a graphical user interface (GUI) tool using MATLABTM to automate the analysis.

Statistics to quantify closed-loop data characteristics observed in normal probability

plots, quantile-quantile plots, and autocorrelation function have been proposed. Qualitative

visual characteristics like “heavytailedness” and “peakedness” in histograms of error

distributions are also presented. Variability trends in actuating error time series can be

identified using simple statistical techniques that are easy to automate.

Trends in actuating error variability are indicative of changing controller performance.

Identification of changing performance is the first step for continuous improvement. This

work aims to provide a platform for further diagnosis of the causes for changing controller

performances and thus opportunities for real business improvement.
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1.3 Thesis outline

The organization of the rest of the thesis is as follows

• Chapter 2 describes closed-loop performance analysis and the important role of

controller error as the key closed-loop performance variable with emphasis on

performance assessment using a minimum variance benchmark, and extension of

SISO performance measures to MIMO loops. An introduction to the application of

SPC based analysis using closed-loop data is then presented.

• Chapter 3 presents an introduction to the data analysis tools used in this work for

closed-loop data characterization. The goal of the data-analysis tools is to enable

detection and interpretation of the variability trends observed in closed-loop data.

• Chapter 4 presents the results of closed-loop data characterization studies on

industrial data obtained from a petroleum refinery. In this chapter, statistics that

describe the variability trends through histograms, normal probability plots, quantile-

quantile plots and autocorrelation function have been developed. In addition, effects

of controller mode changes are also discussed.

• Chapter 5 contains conclusions from this work and recommendations for future work.
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2. BACKGROUND AND LITERATURE SURVEY

2.1 Closed-loop data

Almost all process industries now employ Distributed Control Systems (DCS) as regulatory

control hardware. The closed-loop data available through the DCS are usually collected and

saved in a separate hardware system referred to as the plant historian. To manage the large

demand for storage space, data are usually compressed for archival in the plant historian

(Thornhill et al. 2004). Estimates indicate that most chemical process plants require over

one hundred gigabytes of storage space to archive one years worth of data (Huang and Shah

1999).

The amount of closed-loop data available for analysis continues to increase with

advances in computers and networks. Properly archived data can be a tremendous source

of information. The challenge now is extracting useful information from these closed-loop

data. All the information about the performance of a controller is contained in the closed-

loop plant data.

A typical industrial process plant has hundreds of control loops. Instrument technicians

generally maintain and service these loops, but rather infrequently. Routine maintenance of

such loops at optimal settings can save millions of dollars a year (Chaudhary et al. 2005).

The development of quality measures of performance for such control loops is therefore an

important area of industrial interest. This type of controller performance monitoring also

falls in the realm of enterprise asset management. This is from a viewpoint that controllers,

whether PID type or advanced, should be treated like other capital assets and monitored on

a routine basis.
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The goal of engineering analysis methods is to ensure that control systems perform

according to their specifications. This means that controlled variables meet their operating

targets such as specifications on output variability, effectiveness in constraint enforcement

or proximity to optimal control.

On the other hand, the goal of business analysis methods is to provide opportunities for

real business improvement. This is achieved using key process indicators which are fueled

by the back propagation of business objectives.

In order to further clarify the distinction between the engineering analysis methods and

the SPC-based business analysis methods, and for the sake of completeness, a discussion

on engineering analysis techniques and types of performance problems addressed by those

techniques are presented in section 2.2

2.2 Engineering analysis methods for performance assessment

2.2.1 SISO performance measures

This section provides a brief review of engineering analysis methods used to identify

undesirable dynamic characteristics such as valve stiction, improper controller tuning, and

excessive controller action.

Controller performance is frequently characterized by comparing the actual process

output variance to the output variance of an optimal controller such as the minimum

variance controller. Astrom proposed the minimum variance control (MVC) principle and

use of autocorrelation to characterize short-term controller performance (Astrom 1967,

Harris 1989). Harris proposed the use of closed-loop data to evaluate and diagnose

controller performance using the minimum variance controller as a benchmark.

The Harris Index (HI) compares the ratio of the variance of the actuating error signal to

the minimum variance achievable by an ideal controller and is denoted as:

HI =
Current error variance

Minimum achievable variance
(2.1)
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The HI indicates best possible control when HI approaches one and no control when

HI is large. A modified version of the Harris index that is normalized between 0 and 1 is

given by equation 2.2.

CLPM = 1−
1

HI
(2.2)

where: CLPM = Closed-loop performance metric

HI = Harris Index

CLPM = 0 indicates optimal control; CLPM = 1 indicates no control. The advantage of

Harris index is that it does well in indicating loops that have oscillation problems.

The major disadvantage of the HI or CLPM is that the process time delay or dead time

must be known for the loop. Since processes change during operation, this is a major

limitation of any minimum variance control benchmark.

Hagglund has proposed a method in the time domain, which considers integrated error

(IE) between all zero crossings of the signal (Hagglund 1995). If the IE is large enough, a

counter is increased. An oscillation is indicated if this counter exceeds a certain threshold.

In order to quantify the critical value of the counter above which the change in the counter

is statistically significant, the author used ultimate frequency of the loop in question. This

method is appealing as it is able to quantify the size of the oscillation. However, it assumes

that the loop oscillates at its ultimate frequency which is not always true. Further, the

ultimate frequency may not always be known for a loop.

Hagglund also proposed an idle index for detecting sluggish loops (Hagglund 1999).

This idle index value depends heavily on on the data pre-treatment.

Kuehl and Horch proposed a data pretreatment procedure using noise filtering for

improving the idle index, which is however, limited to detecting sluggishness (Kuehl and

Horch 2005).

Ko and Edgar suggested an index that computes the ratio of the actual variance and the

minimum achievable variance using a PI controller (Ko and Edgar 1998). This approach
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assumes that a process model is available. A limitation of this method is that the models

need to be updated periodically.

Kadali proposed the use of Linear Quadratic Gaussian (LQG) benchmark as a more

appropriate tool for assessing the performance of controllers (Kadali and Huang 2002).

Calculation of the LQG benchmark requires a complete knowledge of the process model,

which is often a demanding requirement.

Li et al. proposed the use of a chi-squared, goodness-of-fit statistic to compare the

distribution of a performance index within a window of data to a reference run length

distribution in order to determine the performance of a controller (Li et al. 2004). A

statistically significant change in any section of the distribution, not just an average value,

is indicative of a significant change in controller performance.

Srinivasan and Rengaswamy proposed a qualitative pattern recognition approach for

stiction diagnosis. Stiction in control valves leave distinct qualitative shapes in the

controller output (OP) and controlled process variable (PV) data. To classify the patterns

that evolve due to stiction, a pattern recognition approach using dynamic time warping

(DTW) technique was proposed (Srinivasan and Rengaswamy 2005)

Thornhill and Hagglund proposed a set of procedures to detect and diagnose

oscillating loops using off-line data (Thornhill and Hagglund 1997, Thornhill et al. 2003).

They combine techniques of controller performance assessment along with operational

signatures (OP-PV plots) and spectral analysis of the controller error for diagnosis. These

techniques, though not completely automated, can differentiate oscillation caused by poor

controller tuning, process nonlinearities, or external disturbances. Inferred loop signatures

that are based on spectral analysis or from plots of controller output (OP) versus process

variable (PV) have to be manually identified.

Recently Paulonis and Cox of Eastman Chemical Company improved the above

technique and developed a large scale system to identify and troubleshoot poorly

performing control loops (Paulonis and Cox 2003).
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Xia and Howell proposed the use of signal-to-noise ratio indices for the process variable

and the output, their ratio R, and the variability in R (σR) to facilitate the status monitoring

of PI/PID loops and isolation of the problem loop (Xia and Howell 2003). The major

limitation of this statistic is that it assumes regulatory control and fails when there are

frequent set-point changes.

Horch presented a simple, practical approach to distinguish oscillating loops caused

by external disturbances and stiction (Horch 1999). This approach is based on cross-

correlation between the controller output (OP) and the process output (PV).

Horch and Issakson also proposed a technique to identify stiction using nonlinear filters

(Horch and Isakkson 1998). The method assumed that information such as mass of the

stem, diaphragm area, and so on for each valve is readily available. Since in a typical

process industry facility there can be hundreds or thousands of control loops, it may be

nearly impossible to build/maintain the required database of control valves, making this

technique difficult to implement.

Chaudhary et al. used higher order statistics for detecting nonlinearity in data and have

extended the method for diagnosing stiction by fitting an ellipse of the OP-PV plot and

inferring the stiction from an assumed stiction model (Chaudhary et al. 2005). However,

the success of this approach lies in correctly identifying the oscillation period and its start

and end point in the OP-PV data.

Huang et al. showed that the minimum feedforward plus feedback control variance

can be estimated from routine operating data, and can then be used as a benchmark for

performance assessment of feedforward and/or feedback controllers (Huang et al. 2000).

Bezergianni and Georgakis proposed a relative variance index that compares actual

control to both minimum-variance control and open loop control (Bezergianni and

Georgakis 2000).
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Jain and Lakshminarayanan proposed a novel filter-based method to address the

shortcomings of the minimum variance benchmarking and to provide a realistic

performance measure using closed-loop data (Jain and Lakshminarayanan 2005).

Tabe et al. presented an application of acoustic spectral PCA to the monitoring of

fermentation process equipment (Tabe et al. 1998). Thornhill et al applied principal

component analysis (PCA) of the power spectra of data from chemical processes (Thornhill

et al. 2002).

Harris et al. reported plant wide control loop assessment in which they found the

spectral analysis of the univariate trends to be useful (Harris et al. 1996b).

Ingimundarson et al. proposed closed-loop monitoring using loop tuning and an

extended horizon performance index similar to that used by Thornhill et al. (Ingimundarson

and Hagglund 2005, Thornhill et al. 1999). In this method the user selects a prediction

horizon and an alarm limit based on loop tuning rather than from the process characteristics.

Thornhill et al. discussed the impact of compression on data-driven process analysis

(Thornhill et al. 2004). They observed that data compression using the swinging door

method changes the statistical properties of the data. The non-orthogonality is not

maintained because the reconstructed error is strongly correlated with reconstructed signal.

This could be an important observation which questions the use of archived data for

analysis. The use of archived data very much depends on the method used for archival

and reconstruction.

Huang and Shah (Huang and Shah 1999) developed a filtering and correlation algorithm

(FCOR) to estimate the minimum variance.

A summary of recent work in the area of engineering analysis methods for controller

performance assessment has been published by Qin (Qin 1998).
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2.2.2 MIMO performance measures

The extension of performance assessment to multivariable systems has been studied by

Harris (Harris et al. 1996a) and Huang and Shah (Huang and Shah 1996). Assessment of

minimum variance performance bounds arising from dead times requires the knowledge of

the interactor matrix. The interactor matrix allows a multivariate transfer function to be

factored into two terms, one having zeros located at infinity and another containing finite

zeros.

For the multivariate case, it can be shown that the multivariate minimum variance

performance can be estimated from routine operating data if the interactor matrix is known

(Harris et al. 1999). It is important to note that the interactor matrix is:

• not always unique.

• cannot always be constructed from the knowledge of the SISO delay structure.

Huang and Shah used a performance index using a multivariate extension of the FCOR

algorithm (Huang and Shah 1996).

The presence of process and controller interactions significantly complicates the

analysis and diagnosis in multivariable situations. There has been limited work in

diagnosis for the multivariate case. In many cases, multivariable controllers are used where

constraints are important. The definition and computation of an appropriate multivariable

performance index in these situations remains unresolved.

Process control performance assessment measures have tended to compare the total

closed-loop variance relative to minimum variance control. With the exception of

Desborough and Harris, and Vishnubotla et al., little has been done on understanding the

decomposition of closed-loop variance (Desborough and Harris 1993, Vishnubotla et al.

1997). The multivariate performance assessment measures are non-trivial generalizations

of the univariate measures. The diagnosis of multivariate systems has not been thoroughly
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investigated. The interactive nature of these systems means that this will be a non-trivial

task (Kesavan and Lee 1998).

2.3 Business analysis methods for controller performance assessment

The closed-loop performance metrics discussed in section 2.2 are derived from short-term

characteristics of the data. This section provides an introduction to the statistical process

control type of quality metrics used by business for performance assessment.

SPC analysis is based on the Shewhart’s concept of two-fold variability: ‘chance’ cause

variability, which is a random variability inherent in the process, and ‘assignable’ cause

variability, which is caused by an external factor. Using an appropriate control chart, for

example, we can determine if the variability observed is chance cause or assignable cause.

In a period that is void of any assignable causes, a major function of SPC based analysis

is to use a process capability index (PCI) to compare the actual performance of a process

to specified or desired performance. The PCIs are defined as:

Cp =
US L−LS L

6σ
(2.3)

and

Cpk = min
{US L−µ

6σ
,
µ−LS L

6σ

}
(2.4)
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Where,

Cp : capability ratio defined as the ratio of

spread between the specification limits to the natural process limits

Cpk : is the capability ratio defined as

the distance to the nearest specification (in sigma units) divided by 3.0

US L : upper specification limit

LS L : lower specification limit

µ : mean of the process

σ : standard deviation of the process

The capability ratios assume that the process variable follows a normal distribution so

that there is a 99.97% chance that process variable value is within 3sigma units on either

side of the mean. The conformity to a normal distribution is an important consideration in

the interpretation of the capability ratios.

When Cp < 1, the process is not capable and produces some non-conforming product.

An improved Cp thus indicates an improved process. From equation 2.3 it is obvious that

the capability is inversely proportional to the variability in the process. Therefore, the

key to continuous process improvement of a process devoid of assignable causes lies in

reducing the variability inherent in the process.

Shunta presents the application of SPC in the following manner: “statistical metrics

(process capability and process performance) derived from closed-loop data determine

which of the key variables do not meet the desired performance. The statistics provide

a basis to determine if the control strategy needs to be modified or the process changed to

gain the improvements” (Shunta 1995).
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Tucker et al. introduced an algorithmic statistical process control (ASPC) model in

which SPC is used as a monitoring tool that obviates the need for APC for a polymerization

application (Tucker et al. 1993). Tucker et al, in the same paper, also point out that

the ASPC analysis needs an efficient data compression algorithm that facilitates good

regeneration of the closed-loop data.

Lin proposed a process “in-capability” index based on a large sample approach as

opposed to a process capability index (Lin 2006). This technique is only applicable when

the underlying distribution is assumed to be normal.

Shore described a new approach using a family of distributions and moment-based

fitting procedures to approximate an unknown source distribution and then incorporate the

fitted distribution in quality metric calculations (Shore 1998). Such an approach would

eliminate the need for normal approximation but would mean that a source distribution has

to be fitted for each closed-loop series.

Ding proposed the use of the first four moments of the closed-loop PV data to

numerically derive a cumulative distribution function that can be used for process capability

index analysis (Ding 2004).

Lant and Steffens used closed-loop data from a wastewater treatment plant for

benchmarking studies (Lant and Steffens 1998). The authors define benchmarking as a

“measure” of process control practice, relative to absolute performance measure (world

class quality). Such benchmarks can be used to answer questions like:

• How good is my process control?

• Is it worth improving the control technology?

Process capability or performance is inversely proportional to actuating error variability.

This means that error variability trends indicate varying controller performance. The SPC

based quality metrics are thus used as performance indicators of a control system. They

are equally applicable to simple SISO loops and to complex multivariable loops. These
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techniques utilize a longer-term (weeks or months) view of controller performance with a

business emphasis on continuous quality improvement, identification of best practices, and

allocation of limited resources for control system maintenance.

2.4 Data characterization

Commercial softwares packages such as Aspen WatchTM or Loop ScoutTM implement

engineering analysis techniques to assess control loop performance. These techniques use

the same data as input to the controller. That is, the sample period of the data used by

these methods is the same as employed by the DCS (e.g., 1 second). The length of the

analysis period is on the order of the closed-loop time constant. Consequently, the analysis

may span performance over a 20 minute period and involve a data time series with 1200

measurements. Engineering analysis methods require use of actual rather than archived

process data.

Commericial products that can perform the engineering analysis are now beginning

to incorporate business analysis tools. Since the data required for the SPC-based business

analysis is a subset of the data already collected for engineering analysis, such an extension

is possible when data are available for long periods.

Among other products, AspenTech’s Aspen Watch TM and Expertune’s PlantTriageTM

provide options for user-defined “key performance indicators” (KPIs) in addition to in-

built simple KPIs such as percent-time the controller is in ON or average error variance.

Expertune’s PlantTriageTM also allows creating templates for benchmarking and an option

to mark the current or historical performance as a benchmark.

It should be noted that the KPIs and capability metrics generated should be interpreted

on an appropriate time scale (weeks or greater) although they can be generated for any

time scale using these products. This requires expensive data storage infrastructure and

subsequent maintenance.
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SPC-based techniques use a long time frame (days/months) to calculate quality metrics

from closed-loop data. The sample period for the process data used in this type of analysis

is much longer than that required for engineering analysis methods. Therefore, archived

process data can be used.

Techniques for evaluating process capability and performance indexes from closed-loop

data are in place. The problem of dealing with autocorrelated and non-normal data for SPC

analysis, however, is a concern (Shore 1998).

To date, no major efforts to characterize archived closed-loop data have been

undertaken. The data are readily available and there is no additional cost required in the

form of plant tests. It is thus an under utilized resource particularly for performing SPC

type of controller assessment. A fundamental tenet of SPC is that the key to achieving

process improvement lies in our ability to listen to the data.

2.5 Research Focus

The remainder of this thesis addresses the characterization of archived closed-loop plant

data for SPC-type analysis of controller performance assessment. Chapter 3 describes

the analytical tool created to characterize closed-loop plant data. Chapter 4 describes the

application of the analytical tool to numerous industrial data sets.

The results from this work can be applied for identifying variability bands in actuating

error time series. Methods to detect and interpret error variability bands using histograms,

normal probability plots, quantile-quantile plots and the autocorrelation function plots are

presented. Finally the effects of controller mode changes on the error distributions are

discussed.
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3. DATA ANALYSIS TECHNIQUES

Time series plots of closed-loop data immediately give an idea of the center, spread,

and certain patterns in the time series such as the presence of outliers or missing data.

Depending on the nature of the time series, the plots may also reveal features specific to

that time series such as zero-centering in actuating error or saturation in controller output.

For a more detailed study of variability, however, additional statistical tools have to be

used. This chapter presents a brief review of the data analysis tools used in this work for

closed-loop data characterization.

The statistical analysis techniques have been grouped into the following two categories

based on their data treatment:

1. Unordered Analysis: Analysis where the order in which the data occur is ignored.

Data grouping (e.g., histograms) or data sorting (e.g., normal probability plots) are

examples of unordered analysis techniques.

2. Ordered Analysis: The order of the data is not lost by grouping or sorting. The

autocorrelation function is an example of an ordered statistical analysis technique.

A graphical user interface (GUI) tool using MATLABTM, v7, R14 with the statistics

toolbox was developed at OSU for performing the data analysis. The tool uses

MATLABTM’s extensive plotting capabilities for visual presentation of analysis results.

The functionality of the tool is discussed in section 3.3 after an introduction to the statistical

analysis techniques employed by the tool.
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3.1 Unordered Analysis

Run charts, histograms, probability plots, X and MR control charts, Xbar and R

control charts, Xbar and s control charts, process capability analysis, and measurement

systems analysis are examples of statistical process control tools used for identification of

assignable causes and for continuous process improvement (Hart 2005). Stanton illustrates

the use of trend plots and histograms as effective tools in the analysis of process data

(Stanton 1990). Miller presents in-plant experiences using histograms and probability plots

coupled with Xbar and R, and Pareto charts for detecting assignable causes of process

variation (Miller 1989).

In this section, three unordered analysis techniques: histograms, normal-probability

plots and quantile-quantile plots are presented. These plots can be generated in

MATLABTM using the in-built functions histfit, normplot and qqplot respectively.

MATLABTM help files for these functions are available in Appendix A.

3.1.1 Histograms

The histogram is the simplest graphical representation of the distribution of a time series.

The histogram is popular because it is uncomplicated and easy to construct. The histogram

offers the advantage of consolidating large amounts of data into bins of chosen width

thus revealing the overall features of the time series. The histogram allows for a visual

interpretation of many features of the distribution including mean, standard deviation,

range, symmetry and presence of peak or heavy tails.

Data grouping in histograms is particularly attractive for comparison purposes as we

do not want to compare each and every point of the time series but only the general

characteristics. A histogram can be used as a powerful visual tool for comparing two

distributions, whether we choose to compare the distributions to a standard distribution

such as a normal distribution, or if we choose to compare them to each other. In order to
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facilitate visual comparison of conformity to a normal distribution, a bell curve may be

superimposed on the histogram as shown in Figure 3.1.

Figure 3.1: Histogram of the closed-loop error data for the dataset FC1a with superimposed
bell curve.

Peakedness and Heavytailedness

Heavytailedness refers to observed frequency in the histogram beyond that predicted

for three standard deviations on either side of the mean when compared to a normal

distribution. Peakedness means that there is a spike or peak observed in the histogram

around the mean when compared to a normal (Gaussian) distribution.

Heavytailedness and peakedness may result when two or more distributions overlap

creating an overall composite distribution. The following simulation shows how mixtures

of distributions cause heavytails and a peak in the histogram of the composite distribution.

Figure 3.2 presents the histogram for 250,000 normally distributed points with mean

0 and standard deviation 1. Figure 3.3 presents the histogram for 200,000 normally

distributed points with mean 0 and standard deviation 3. The heavy tail and the peak in

the composite distribution Figure 3.4 are a result of the overlapping of the distributions in

Figure 3.2 and Figure 3.3.
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Figure 3.2: Histogram of 250,000 normally distributed numbers with mean 0 and standard
deviation 1.

Figure 3.3: Histogram of 200,000 normally distributed numbers with mean 0 and standard
deviation 3.

21



Figure 3.4: Histogram of the composite distribution.

Disadvantages of histograms

The advantage that the histogram offers through grouping can also be a disadvantage when

applied to time series analysis. Unlike the distribution of the heights of a class of students,

time series data occur in a particular order. A histogram completely disregards this order,

and valuable information could be lost in such grouping.

Another disadvantage of histograms is the absence of a standard method of choosing bin

size. The bin size is often chosen so as to give the best possible visual representation. While

there are recommendations on choosing bin size, there is no consensus on a procedure to

choose an optimum bin size. Therefore, visual comparison of the features of the histograms

needs a thorough understanding of this limitation.

3.1.2 Normal probability plots

Normal probability plots present data with the probability of their occurrence if sampled

from a normal distribution. The normal probability plot, or the normplot, is plotted on

probability paper for easy interpretation. The y-axis does not have a linear scale, but reflects

the probabilities expected from a normal distribution for corresponding z-scores on the
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x-axis. For example, the probability of a point having a z-score of -1 or less is 0.158.

Similarly, the probability of a point having a z-score of 1 or less is 0.841. These values are

obtained from the cumulative density function of the normal distribution.

If the time series data are normally distributed, the plot will appear linear. Non-normal

distributions will introduce curvature in the plot. The normal probability plots are used

as a tool for graphical normality testing. For a homogeneous distribution, a linear normal

probability plot means that the data can be modeled using a normal distribution as the

underlying standard distribution.

The MATLABTM function normplot() has been used for generating normal probability

plots. The plot has the sample data displayed with the plot symbol ’+’. Superimposed on

the plot is a line joining the last data points in the first and third quantiles of the data. This

line is extrapolated out to the ends of the sample data to help evaluate the linearity of the

plot. ‘Normslope’, defined as the slope of this line, can be a useful statistic when deviation

from normality is negligible. For a truly normal distribution, normslope is the standard

deviation of the data set.

Figure 3.5 shows a normal probability plot for 5000 points drawn randomly from a

normal distribution of mean zero and standard deviation one. The linearity of the normplot

indicates that the data come from a normal distribution. Figure 3.6 shows the normplot for a

sample of 5000 points drawn from a standard uniform distribution. Notice that a curvature

is introduced into the normplot indicating that the sample is not normally distributed.
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Figure 3.5: Normal probability plot of 5000 numbers drawn randomly from a standard
normal distribution.

Figure 3.6: Normal probability plot of 5000 numbers randomly drawn from a standard
uniform distribution.
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3.1.3 Quantile-Quantile plots (Q-Q plots)

Q-Q plots are based on the same principle as normal probability plots. Using Q-Q plots

we can compare the distribution of a time series to any reference distribution. The input to

the Q-Q plots consists of two samples: the time series and a reference time series. If the

samples do come from the same distribution type (same shape), even if one distribution is

shifted and re-scaled from the other (different location and scale parameters), the plot will

be linear.

The MATLABTM function qqplot() has been used to generate the quantile-quantile

plots. The plot has the sample data displayed with the plot symbol ’+’. Superimposed

on the plot is a line joining the last points in the first and third quantiles of each distribution

(this is a robust linear fit of the order statistics of the two samples). This line is extrapolated

out to the ends of the sample to help evaluate the linearity of the data. The slope of

this line, defined as ‘qqslope’ is a useful statistic to compare the variability between

any two distributions. When the qqslope is one, both distributions have the same spread

(variability).

Figure 3.7 displays quantile-quantile plot of a sample X drawn from a normal

distribution and a sample Y also drawn from a standard normal distribution. The plot is

linear showing that the data sets were drawn from the same distribution.

Figure 3.8 displays quantile-quantile plot of a sample X drawn from a normal

distribution and a sample Y drawn from a uniform distribution between zero and five. A

curvature is introduced into the plot showing that the samples were not drawn from the

same distribution.

X is 5000 points from a uniform distribution between zero and five as shown in

Figure 3.9. Sample Y is 5000 points from a uniform distribution between five and fifteen as

shown in Figure 3.10. Figure 3.11 displays a quantile-quantile plot of two samples, X and

Y. If the samples do come from the same distribution, the plot will be linear as shown in the

25



Figure 3.7: Q-Q plot of 5000 numbers drawn randomly from a standard normal distribution.

Figure 3.8: Q-Q plot of 5000 numbers drawn randomly from a uniform distribution
between zero and five.
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Figure 3.9: Histogram of 5000 numbers drawn randomly from uniform distribution
between zero and five (series X).

Figure 3.10: Histogram of 5000 numbers drawn randomly from uniform distribution
between five and fifteen (series Y).

graph. Notice that the Q-Q plot can identify if the samples are from the same distribution

type even if they do not have the same scale on center and spread.

The normplots and the Q-Q plots are computationally more cumbersome than

histograms, but are great visual tools. The most attractive feature of Q-Q plots is that

they use quantiles which are based on median and inter-quartile range rather than mean

and standard deviation. They are therefore considered to be robust to extreme values.
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Figure 3.11: Q-Q plot of 5000 numbers drawn randomly from uniform distribution between
zero and five (series X) and 5000 numbers drawn randomly from uniform distribution
between five and fifteen (series Y).
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3.2 Ordered Analysis

3.2.1 Autocorrelation function (ACF)

An important guide to the properties of a time series is provided by a series of

quantities called sample autocorrelation coefficients, which measure the correlation

between observations at different intervals in the time series.

The general formula used for calculating the sample ACF is given as follows (Chatfield

1989):

The autocorrelation function (rk) as function of lag (k) is given by:

rk =
ck

c0
(3.1)

Where, ck is the auto-covariance function, given by:

ck =
1

N − k

N−k∑
j=1

(x j− x)(x j+k − x) (3.2)

N = total number of points in the time series

k = lag

x j = value at jth point in the time series

x = average of the time series

And, c0 is the variance, given by:

c0 =
1
N

N∑
j=1

(x j− x)2 (3.3)

The (N-k) observations used in the calculation of the auto-covariance function

(equation 3.2) are selected as shown in Table 3.1.

A graph of autocorrelation coefficients (rk) vs lag (k) is known as a correlogram, which

is a useful aid in interpreting the autocorrelation coefficients. A correlogram for a normally
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Table 3.1: N-k pairs of observations for lag k. Illustration for N = 8 and k = 2.

distributed data set is shown in Figure 3.12. The autocorrelation coefficient is one at

lag zero, which means that a point is completely correlated with itself. For randomly

distributed data, as can be seen from the figure, all autocorrelation coefficients at lags

greater than zero are nearly zero. The dotted lines show the 95% confidence interval on

the autocorrelation coefficients. This means that for a randomly distributed data set, the

probability of a non-zero autocorrelation coefficient occurring outside these dotted lines is

one out of twenty (5%).

Figure 3.14 shows the correlogram for the periodic function x(t)= sin (5t) shown in

Figure 3.13. The series consists of 638 points. Figure 3.14 reveals the ability of the ACF

to detect cycles in the data. When a time series has a periodic component, it reflects in the

ACF as an oscillation.

The correlogram is a fundamentally different analysis tool when compared to the

histogram. While the histogram completely disregards the order in which the time series

occur, the basis of the autocorrelation function is the order of the time series itself.

Furthermore, the correlation coefficients are nothing but normalized covariances and are,

therefore, representations of variability in the time series.
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Figure 3.12: ACF plot for 5000 numbers drawn from standard normal distribution.

Figure 3.13: Plot of x(t) = sin (5t) for t = 0 to 2π for 638 data points.
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Figure 3.14: ACF plot f(x) = sin (5t) for t = 0 to 2π for 638 data points.

The correlogram can be used to identify the features of a time series that are difficult to

capture from the raw trends. The characteristics that could be obtained from a correlogram

include:

1. Randomness in series

2. Short term correlation

3. Alternating series

4. Non-stationary (or non-homogeneous) nature

5. Periodic fluctuations

6. Outliers

While the ACF can be used to characterize the time series in all the above mentioned

ways, a major disadvantage with using ACF is a lack of uniqueness. Although a given time

series has a unique ACF, it is usually possible to find many other time series with the same

ACF (Jenkins and Watts 1968).
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Another feature of ACF is its distortion in the presence of outliers. Every outlier in

the time series will cause two extreme coefficients which will tend to depress the sample

coefficients towards zero. A comprehensive review on interpreting the correlogram is given

in Chatfield (Chatfield 1989).

3.3 GUI tool for data analysis

Closed-loop data is comprised of the time series of set point (SP), process variable (PV),

controller output (OP) and controller mode. The controller mode indicates the active

controller configuration at that time. The state of a controller at any time is defined by one

of the following four modes: manual, auto, cascade or B-cascade. These modes distinguish

control configurations and therefore expectation of data characteristics. For the analysis

of closed-loop data in a multivariable context, simultaneous comparison of SP, PV, OP

and controller mode plots is necessary. In addition, comparisons between distributions,

ACFs, or between the time series are needed. For advanced control loops, the set-point

is changing at all times. Furthermore, for advanced control loops, PV and OP constraints

come into play. While dealing with massive amounts of data, keeping track of all the trends

simultaneously becomes a tedious task.

The GUI tool developed at OSU is a convenient way to tackle the above difficulties. It

is a broad-based utility tool developed for this analysis. Figures 3.15 and 3.16 are screen

shots of some of the features of the tool. The functions used to generate the GUI tool plots

are listed in Table 3.2. The capabilities of the tool include:

• Six simultaneous plots each with an input-series choice and a plot choice.

• Input-series choices include actuating error, PV, SP, OP, ∆SP and ∆OP.

• Plot choices include: time series, histogram with superimposed bell curve, pdf,

normalized pdf, fourier transform, power spectrum, ACF, normplot, Q-Q plot and

boxplot.
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• An attractive feature of the tool that enables easy comparison is the overlay feature.

• Option for outlier removal at ±4 times the standard deviation of the data.

• Data cursor option to read the coordinates on any plot.

• Interactive plot edit tools such as zoom, pan and 3D rotate.

One of the powerful features of the tool is the overlay feature. The overlay feature

allows the superimposition of plots during various times on one another. For example,

Figure 3.15(c) shows the ACF for three months (October, November, and December)

superimposed on each other. This enables simultaneous visual analysis of various plots

during multiple periods. The differences in data characteristics during multiple periods can

thus be simultaneously analyzed. The overlay feature can be enabled or disabled using the

overlay check box as shown in the figure.

Figure 3.15: Screen shot of GUI tool main screen.
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(a) Choose period dialog (b) Choose series listbox

(c) Overlay feature is used to superimpose ACF plot for three months (October,
November, and December) on each other. Overlay feature enables simultaneous visual
analysis of various plots during multiple periods.

(d) Choose plot listbox (e) Data cursor feature

Figure 3.16: Screen shots of features in the GUI tool.
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Table 3.2: Description of the functions used in the GUI tool plots.
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3.4 Data analysis tools summary

In this chapter, unordered analysis using histograms with superimposed bell curves, normal

probability plots and Q-Q plots, and ordered analysis using the autocorrelation function

for assessing variability have been described. These tools have been incorporated into a

GUI tool that enables simultaneous plotting and comparison. Respective advantages and

limitations of each of these analysis techniques have also been presented. The next chapter

deals with the characterization of industrial closed-loop data sets using these exploratory

tools followed by discussion.
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4. CHARACTERIZATION OF CLOSED-LOOP DATA

This chapter starts with a description of the industrial closed-loop data sets that were

analyzed using the tool described in Chapter 3. The second part of the current chapter

presents representative results for some of the data sets.

In particular, there is a need to identify and characterize error variability bands over

sustained periods of time (days and weeks). The existence of such bands as discussed in

section 4.2 is indicative of assignable causes in SPC terms (section 2.3). Real business

improvements can be achieved by eliminating assignable causes. Recognition of the

existence of assignable causes is the first step in their elimination.

Methods to reveal trends in error variability have been described. The presence

of variability trends (error bands) are shown using the time series trends and the

histograms. Results using normal probability plots, Q-Q plots and the ACF are presented

to quantitatively identify the variability trends. Finally, the effect of mode changes on

actuating error distributions are presented and discussed.

4.1 Data

Archived closed-loop data from a major refinery have been obtained for data

characterization studies. These are regenerated compressed data from the plant historian at

a sample frequency of one min−1. Four sets each of flow, pressure and temperature control

loops are available for a period of one year. Each set is comprised of the time series of set

point, process variable, controller output and controller-mode. Compression factors for the

data are also available. The data sets are summarized in the matrix shown in Table 4.1. The

compression factors are summarized in Table 4.2. Figures 4.1 through 4.3 describe the
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Table 4.1: Summary of the information available in the closed-loop data sets

Filename SP PV OP Mode Comp Period
FC1a 4 4 4 4 4 Oct2003-21Mar2004
FC1b 4 4 4 4 4 22Mar2004-Sep2004
FC2 4 4 4 4 4 Oct2003-Sep2004
FC3 4 4 4 4 4 Oct2003-Sep2004
FC4 4 4 4 4 4 Oct2003-Sep2004
PC1a 4 4 4 4 4 Oct2003-21Mar2004
PC1b 4 4 4 4 4 22Mar2004-Sep2004
PC2 4 4 4 4 4 Oct2003-Sep2004
PC3 4 4 4 4 4 Oct2003-Sep2004
PC4 4 4 4 4 4 Oct2003-Sep2004
TC1a 5 5 5 4 4 Oct2003-21Mar2004
TC1b 5 5 5 4 4 22Mar2004-Sep2004
TC2 4 4 4 5 4 Oct2003-Sep2004
TC3 4 4 4 4 4 Oct2003-Sep2004
TC4 4 4 4 4 4 Oct2003-Sep2004

SP: Set point, PV: Process variable,
OP: Controller output, Mode: Controller mode
4: Data available as time series.
5: No data available.
Comp: Compression

closed-loop data in more detail. The PV in loops FC1, FC3, PC1, PC2, PC4, TC1, TC2

and TC3 is a manipulated variable in a multivariable controller. The PV in loops FC2, FC4,

and TC4 is a controlled variable in a multivariable controller. PC3 is a regulatory loop not

used for APC.
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Table 4.2: Compression factors on PV, SP and OP for each data set.

Loop Type Zero Span PV Comp SP Comp OP Comp Units

FC1 APC-MV -10 21040 50.00 - - bpd
FC2 APC-CV -5 100000 500.00 500.00 0.10 bpd
FC3 APC-MV -10 20400 50.00 50.00 0.50 bpd
FC4 APC-CV -5 13510 25.00 25.00 0.50 bpd
PC1 APC-MV -5 70 0.25 - - psi
PC2 APC-MV 0 60 0.30 0.10 0.10 psi
PC3 Regulatory loop 0 40 0.16 0.05 0.50 psi
PC4 APC-MV 0 60 0.10 0.30 0.50 psi
TC1 APC-MV 100 300 0.25 - - ◦F
TC2 APC-MV -400 2400 0.25 0.25 0.50 ◦F
TC3 APC-MV -10 840 0.50 0.25 0.25 ◦F
TC4 APC-CV 500 300 0.25 1.50 0.50 ◦F
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Figure 4.1: Description of flow loops
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Figure 4.2: Description of pressure loops
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Figure 4.3: Description of temperature loops
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4.2 Variability trends in actuating error

The time series of actuating error (PV-SP) over a period of one year for a flow loop (data

set FC2) is shown in Figure 4.4. The deviation in the error value about a mean, as often

indicated by standard deviation or inter-quartile range (IQR), is also commonly referred to

as ‘variability in error’ or ‘error spread’. From Figure 4.4, we can see that the variability

in error from Nov. 2003 to Feb. 2004 is noticeably different from the variability in the

actuating error from Mar. 2004 to May 2004. If each period of variability is interpreted as

a ‘band’, at least two different bands can be identified in Figure 4.4.

A similar result is obtained from plotting the time series for all the flow, pressure and

temperature loops. By visual inspection, it is possible to identify the presence of multiple

bands in eight of the thirteen data sets. The error variability bands and their corresponding

error variability measures (standard deviation and IQR) for all the data sets are summarized

in Table 4.3. The number of bands in column two of Table 4.3 were established empirically

by visual inspection. Later in the chapter, analogous tables generated analytically will be

presented. The mean, standard deviation and the inter-quartile range for each dataset were

calculated using MATLABTM built-in functions.

A time series that has more than one band is said to be non-stationary in nature. It will

also be referred to as a ‘mixture’ when represented as a distribution.
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Figure 4.4: Time series of actuating error, FC2 loop from Oct 1, 2003 to Sep 30, 2004.
Figure shows presence of different variability bands.
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Table 4.3: Error variability bands determined from visual observation.

Loop #Bands Band# Days Mean STD IQR Units
FC1a 1 1 173 -0.20 36.60 49.50 bpd
FC1b 1 1 187 -0.20 34.00 45.90 bpd
FC2 2 1 126 -6.60 181.50 245.00 bpd

2 234 -0.40 115.00 143.40 bpd
FC3 3 1 328 0.50 89.00 120.70 bpd

2 17 -2.20 123.10 165.00 bpd
3 15 0.80 125.60 169.20 bpd

FC4 2 1 171 1.20 19.70 26.60 bpd
2 189 0.00 59.95 82.50 bpd

PC1a 2 1 161 0.00 0.05 0.07 psi
2 12 0.00 0.09 0.13 psi

PC1b 2 1 112 0.00 0.04 0.06 psi
2 39 0.00 0.06 0.08 psi

PC2 1 1 360 -0.00 0.21 0.29 psi
PC3 3 1 64 0.00 0.02 0.02 psi

2 250 0.01 0.02 0.02 psi
3 46 -0.00 0.02 0.03 psi

PC4 1 1 360 -0.00 0.18 0.24 psi
TC2 4 1 60 -0.00 0.82 1.11 ◦ F

2 33 0.00 0.65 0.88 ◦ F
3 130 -0.01 0.61 0.82 ◦ F
4 137 -0.01 0.93 1.25 ◦ F

TC3 4 1 60 -0.01 0.48 0.65 ◦ F
2 30 0.01 0.37 0.50 ◦ F
3 171 -0.01 0.43 0.58 ◦ F
4 99 -0.02 0.45 0.61 ◦ F

TC4 1 1 360 -0.03 0.78 1.02 ◦ F
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The time series of actuating error indicates how well the loop is doing to keep the

process variable value close to the set point. On the other hand, the output time series

indicates the effort expended by the controller.

While the absolute value of the output time series does not have a context like the

actuating error time series, it is essential that the output always stays within limits or

remains ‘unsaturated.’ When the output, measured as a percentage, is above 90% or below

10%, the controller is said to be saturated. It is important to realize that when the output

of a controller is saturated, the data is characterized as open-loop (no control) rather than

closed-loop. Table 4.4 shows the percentage of the time output is saturated for each of the

loops.

Table 4.4: Percentage output saturation (OP > 90% or OP < 10%).

Loop %OP Saturation
FC1a 2.62
FC1b 0.11
FC2 0.76
FC3 50.06
FC4 0.91
PC1a 1.72
PC1b 21.04
PC2 0.61
PC3 12.73
PC4 0.10
TC1a 7.49
TC1b 0.00
TC2 0.05
TC3 0.00
TC4 0.01
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4.3 Unordered analysis results

4.3.1 Identification of variability bands using histograms

This section presents the graphical identification of error variability bands using the

‘peakedness’ and ‘heavytailedness’ in histograms.

Figures 4.5 through 4.7 show histograms of the actuating error time series for the FC4,

PC3 and TC3 data sets respectively. All three data sets span one year of plant operation

(Oct. 1, 2003 to Sep. 30, 2004). In each of the three histograms, it can be seen that the

center is located approximately at zero. This is because the actuating error is kept as close

to zero as possible by control action. A distinct feature observed in all the histograms is the

presence of “heavytailedness” and “peakedness.”

Figure 4.5: Histogram of actuating error for loop FC4 from Oct. 1, 2003 to Sep. 30, 2004.
Figure shows the presence of a peak and heavytails.
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Figure 4.6: Histogram of actuating error for loop PC3 from Oct. 1, 2003 to Sep. 30, 2004.
Figure shows the presence of a peak and heavytails.

Figure 4.7: Histogram of actuating error for loop TC3 from Oct. 1, 2003 to Sep. 30, 2004.
Figure shows the presence of a peak and heavytails.
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The peakedness and heavytailedness observed in the histograms can be explained by

considering the distributions over shorter periods of time. Figure 4.8 shows the time series

and the histogram for flow loop FC2 from Feb. 6, 2004 to Feb. 13, 2004. Figure 4.9

shows the time series and the histogram for the flow loop FC2 from Feb. 14, 2004 to Feb.

24, 2004. Both time series exhibit a single error band. Likewise, the histograms do not

exhibit heavytailedness or peakedness. Furthermore, the data in both time series are well

represented by the bell curve.

Figure 4.10 shows the time series and the histogram of the composite distribution for

the flow loop FC2 from Feb. 6, 2004 to Feb. 24, 2004. It can be seen from the figure that the

presence of two error bands in the composite time series translates into a mixed distribution

with a peak and heavy tails in the histogram. The deviation from the superimposed bell

curve on the histogram indicates that the distribution of the error time series is non-normal.

Figure 4.11 is the composite distribution for pressure loop PC3 from Dec. 14, 2003 to

Mar. 1, 2004. The mixture in the time series and the presence of a peak and heavy tails in

the histogram can be observed. These results confirm the visual observation of more than

one band in the error time series.

Figure 4.12 is the composite distribution for temperature loop TC3 from Feb. 15, 2004

to Apr. 10, 2004. In this case, the presence of bands in the time series is distinctly visible,

and so are the peak and the heavy tails in the histogram. Significant deviations from the

bell curve are also observed.

The presence of error variability bands can thus be identified from the peak and the

heavytail in the histograms. However, there is no standard way for determining either the

bin size used in the histograms or the parameters used for the superimposed bell curve. This

makes it difficult to quantify the peak and heavytail. The identification using histograms is

therefore limited in its utility.
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Figure 4.8: Actuating error time series and histogram with superimposed bell curve for the
loop FC2 from Feb. 6, 2004 to Feb. 13, 2004.

Figure 4.9: Actuating error time series and histogram with superimposed bell curve for the
loop FC2 from Feb. 14, 2004 to Feb. 24, 2004.

Figure 4.10: Actuating error time series and histogram with superimposed bell curve for
the loop FC2 from Feb. 6, 2004 to Feb. 24, 2004.
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Figure 4.11: Actuating error time series and histogram with superimposed bell curve for
the loop PC3 from Dec. 14, 2003 to Mar. 1, 2004.

Figure 4.12: Actuating error time series and histogram with superimposed bell curve for
the loop TC3 from Feb. 15, 2004 to Apr. 10, 2004.
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4.3.2 Identification of variability bands using Normslope

Deviation from normality can also be judged from the linearity of the normal probability

plots. For a distribution that satisfies the normality assumption, the probability of error

values occurring between ±1σ of mean is 68.27%. Normslope, defined as the slope of the

normal probability plot, is also the distance between the points on either side of the mean

that contain 68.27% of the population. Therefore, it is a measure of the variability of the

distribution but only considering 68.27% of the population.

The normslope can be calculated as the slope of the best linear fit of the normal

probability plot. If the data are perfectly normal, then the normslope will be equal to

the standard deviation of the data. Normslope can be used to quantify the error spread over

any period. The advantage of using normslope is that the changes in the error variability

can be assessed in engineering units. Since the normslope is based on the center 68.27% of

the distribution, the spread estimate is not effected by extreme values.

Table 4.5 shows the normslope for all the loops on a month by month basis. This

table can be used to identify the error variability bands. Each value of the normslope is an

indication of the spread in that month. As an example, consider loop FC3. As indicated

in the Table 4.5, at least three bands can be identified in FC3: Oct 2003 and Nov 2003,

where the variability in actuating error is about 130 bpd; Jan 2004 through Apr 2004,

where the variability in the actuating error is about 80 bpd; and Jun 2004 through Aug

2004, where the variability in the actuating error is about 95 bpd. A similar result is also

obtained from the visual observations. The spread estimates generated in Table 4.3 based on

visual band identification differ somewhat from the estimates produced by the normslope

technique. This is because the normslope considers only the center of the distribution while

the statistics in Table 4.3 were generated using the entire time series and may also include

outliers.
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The normslope is thus a single number, robust to extreme values, that allows for

simultaneous comparison of variability in different periods. Furthermore, the technique

lends itself to full automation.
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4.3.3 Identification of variability bands using qqslope

The qqslope can be used to compare two distributions without any reliance on a standard

model. The Q-Q plot characteristics can be used, for instance, to compare the error

distribution for each month to the composite distribution for a full year. The idea is

to evaluate the current and long-term controller performance. In this case, the annual

composite distribution can be considered as the reference or benchmark distribution.

The qqslope, analogous to normslope, is the ratio of the distance between the last points

on the least-squares line through the first and third quartiles of the sampled distribution to

the distance between the corresponding points on the least-squares line through the first

and third quartiles of the annual (or reference) distribution. This ratio will be an indication

of whether the variability of the sampled distribution is greater or smaller than the annual

(or reference) distribution.

For example, if the qqslope is greater than 1, then the sampled distribution has greater

spread than annual distribution. The qqslope ratio thus allows for comparing the spread of

the monthly distributions to the annual distribution. If the annual distribution is considered

as the ‘average’ characteristic of the loop, then the monthly distribution will determine the

deviation from the annual average.

The annual distribution can also be replaced with another distribution if it is desired

to compare the performance against a period of known good performance. The annual

distribution contains all the seasonal, cyclic changes that occur during an year and is thus a

natural composite measure. Another possible extension of qqslope could be a comparison

of several years of performance to the current year.

Table 4.6 shows the qqslope for all loops in each month using the annual distribution as

the standard. This table can be used to identify the error variability bands. Each value of

the qqslope is the ratio of the spread in that month to the variability in the annual composite

distribution.
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As an example, consider loop FC3. As indicated in the Table 4.6, at least three bands

can be identified in FC3: Oct 2003 and Nov 2003, where the variability in actuating error is

about 1.3 to 1.4 times the annual; Jan. 2004 through Apr. 2004, where the variability in the

actuating error is about 0.85 times the annual; and Jun 2004 through Aug 2004 where the

variability in the actuating error is about the same as the annual. This result is consistent

with visual observation of the FC3 error time series and the normslope results presented in

the previous section.
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4.4 Summary of unordered analysis results

Non-normality and the presence of multiple distributions are the two most important

characteristics that can be identified from histograms of the time series of actuating

error. Non-normality is indicated by deviation from the bell curve shape. The presence

of heavytail and peak indicates the presence of mixtures. Furthermore, the presence

of variability bands or mixtures is the cause of heavytailedness and peakedness in the

histograms. Non-normality and presence of mixtures are not necessarily independent

characteristics. The presence of mixtures is likely to be one of the causes of non-normality

as it causes an overlap of distributions of different spreads.

The disadvantage with the peakedness and the heavytail characteristics of the histogram

is that they are not quantifiable. The normslope is a statistic that can be used to detect error

variability bands. The normslope uses the normal probability density function to estimate

the variability in a given period. The qqslope is analogous to the normplot but can be used

to compare any two distributions without the assumption of underlying normality.

All of these methods to detect error variability bands give similar results that agree with

visual observations. However, histograms, normal probability plots, and Q-Q plots totally

disregard order in the time series. Histograms group the data into bins and sort the bins

while normal probability plots and Q-Q plots sort the numbers themselves. As a result, the

original order is lost. The next section describes ordered analysis using the autocorrelation

function in which the order of the time series is preserved.

4.5 Ordered analysis results

The autocorrelation function uses the information of the order of the time series. Therefore,

the analysis using the ACF has been termed as Ordered Analysis.
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4.5.1 Approach to ACF

In this work, the autocorrelation function is not used in the traditional sense. Although the

ACF cannot be applied to non-stationary series, it can be used to detect non-stationarity,

particularly when there are trends present in the time series. A review of ACF and its

applicability as an exploratory tool to detect non-stationary series is available in literature

(Chatfield 1989).

In addition, the ACF is a discrete function and has values only at integer lags. The

figures shown in this work, however, show ACF as a continuous function. Such a

representation is only for visual convenience.

4.5.2 Identification of variability bands using the autocorrelation function (ACF)

The shape of the autocorrelation function is a characteristic of the time series. Figure 4.13

shows the ACF of the FC4 error time series. The ACF shape resembles a damped

oscillation. Figure 4.14 shows the ACF for the PC3 error time series for which the ACF

coefficients do not reduce to zero even for very large lag values. Figure 4.15 is the ACF for

the TC2 error time series and is markedly different from the FC4 and PC3 distributions. The

above examples show that the shape of the ACF is different for different loops. Features in

the time series transform into distinct shapes of the ACF.

Of the many features of the ACF that are of interest, the number of appreciable ACF

coefficients is an important one. The ACF coefficients are appreciable when they are

statistically significant from zero (based on 95% confidence limits on the estimation of

ACF coefficients). Appreciable ACF coefficients beyond a certain lag mean there are non-

random effects in the time-series on a time scale greater than the lag. The non-zero ACF

coefficients mean that the error is not random but has a deterministic effect (special cause)

embedded in it.
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Figure 4.13: ACF for FC4, actuating error from 10/1/03 to 9/30/04.

Figure 4.14: ACF for PC3, actuating error from 10/1/03 to 9/30/04.

Figure 4.15: ACF for TC2, actuating error from 10/1/03 to 9/30/04.
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The ACF lag is markedly different for the flow, pressure and temperature loops. Even

within each loop, the ACF shape could be different from month to month as the process

and the controller effectiveness changes.

Table 4.7 shows the ACF lag for each loop for each month. The ACF lag is generated

by calculating the ACF coefficients up to a lag of 180 min for each loop and then checking

to determine the number of ACF coefficients that are appreciable. The confidence limits

for the ACF coefficients are given by 1
n ±

2√
n

(Chatfield 1989). All ACF coefficients that

are outside these limits are non-zero (or appreciable). Table 4.7 can be used to check the

randomness in error time series. If the number of appreciable ACF coefficients are high in

any period, it means that a deterministic effect is in play.

Reconsider the FC3 example. As indicated in Table 4.7, the number of appreciable

ACF coefficients are unusually high for Oct. 2003 through Dec. 2003 when compared to

the rest of the months. This indicates that there is a non-random effect in FC3 data from

Oct. 2003 to Dec. 2003. Visual observation of the error time series for FC3 from Oct.

2003 thorugh Sep. 2004 confirms the increased variability from Oct. 2003 to Dec. 2003.

The results from the ACF coefficients cannot distinguish the bands in error variability as

the normslope or the qqslope do. This might be because they consider the entire time series

with regard to order as opposed to the unordered analysis which estimate the variability

based on a portion of the data.
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The autocorrelation function is a measure of the randomness of a time series. When

there is a change in the variability of the series, the process has changed. If this change

is statistically significant, it shows up as a higher number of appreciable autocorrelation

coefficients. The number of appreciable autocorrelation coefficients can be used to detect

the presence of multiple distributions in a time series. This method, however, is different

from the ordered analysis as it considers all the data, the order in which the data occur, and

if the changes in variability are statistically significant.

The next section deals with the effect of mode changes on the actuating error

distributions.

64



4.6 Effect of controller mode change results

The identification of error variability bands using unordered and ordered techniques was

presented in the previous sections. These error variability bands indicate the presence of

assignable causes responsible for changes in the controller performance. This section deals

with the impact of controller mode change, a known assignable cause, on error variability

bands.

4.6.1 Controller modes

Operators may switch control loop configurations (by turning off an APC controller

or operating in open-loop mode) when controller performance is unsatisfactory or for

maintenance or tuning purposes. The control configurations available to the operator

depend on the nature of the loop and the control strategy. Changes in controller

configuration are known assignable causes that can produce changes in the width of error

variability bands. The controller mode indicates the active controller configuration at that

time. Error variability trends in different controller modes thus indicate the performance of

the controller in their respective configurations. A change in the controller mode implies

a change in the way the process variable is being controlled or manipulated. This change

may translate into a change in the width of error variability bands.

For the industrial closed-loop data sets used in this work, the state of a controller at any

time is defined by one of the following four modes: manual, auto, cascade or B-cascade.

Each of the controller modes is described by illustration in Figure 4.16.

Table 4.8 shows the number of days each of the loops in the individual data sets

described in Section 4.1 were in manual, auto, cascade or B-cascade mode. The table

also includes the number of error variability bands observed for each loop.

Consider a controller whose process variable is configured as an APC manipulated

variable. In cascade mode, the controller receives its set-point from an APC controller and

in auto mode the controller receives its set-point from an operator. Set-point changes made
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Figure 4.16: Illustration of typical controller configurations and corresponding controller
modes.
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Table 4.8: Number of days in each controller mode for all data sets. The number of error
bands are the same as listed in Table. 4.3

Loop Manual Auto Cascade B-Cascade Total # of Error
(Days) (Days) (Days) (Days) (Days) Bands

FC1a 0.0 16.9 156.7 0.0 173.6 1
FC1b 0.3 4.2 186.9 0.0 191.4 1
FC2 1.5 0.2 363.3 0.0 365.0 2
FC3 1.2 26.2 337.6 0.0 365.0 3
FC4 0.0 0.0 365.0 0.0 365.0 2
PC1a 0.0 16.4 157.2 0.0 173.6 2
PC1b 0.0 3.9 187.5 0.0 191.4 2
PC2 2.7 2.2 321.9 38.2 365.0 1
PC3 0.0 365.0 0.0 0.0 365.0 3
PC4 2.8 0.1 362.1 0.0 365.0 1
TC1a 0.2 173.4 0.0 0.0 173.6 -
TC1b 0.0 191.4 0.0 0.0 191.4 -
TC3 0.0 142.1 222.9 0.0 365.0 4
TC4 0.0 365.0 0.0 0.0 365.0 1

by the operator in auto mode are relatively infrequent and the process usually completes

its response to the set-point change. As a result the error variability is primarily due to

process disturbances. In cascade mode, however, the set-point is being changed by the

APC controller. A new set-point change occurs before the process completely responds

to the previous change, which in turn effects the error variability. As a result, the error

variability is attributable not only to process disturbances but also to additional variability

introduced by the APC controller.

The following four cases illustrate the effect of controller mode changes from cascade

(APC on) to auto (APC off) or vice versa on actuating error variability of APC-MVs.

Case 1 - Comparison of TC3 error variability in cascade and auto modes:

The process variable for data set TC3 is the outlet temperature of a furnace and is

configured as a manipulated variable in an APC controller. The configuration of TC3

is shown in the Figure 4.17.
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Two periods, with the controller in cascade and auto modes, respectively, are selected

for error variability comparison. Figure 4.18 shows the actuating error time series,

ACF, error histogram, and the set-point time series for loop TC3 from Oct. 1, 2003

to Oct. 6, 2003 (red) and from Oct. 21, 2003 to Oct. 26, 2003 (blue). The controller

is in auto mode during the first period (red) and in cascade mode in the second (blue).

For TC3, which is an APC-MV, the configurations in auto and cascade controller

Figure 4.17: Configuration of TC3. PV (◦F) is an APC MV. The output from the APC
controller is the set point to the TC.

modes can be described as follows:

Cascade: Output from the APC controller is the set-point to the TC loop.

Auto: Operator provides the set-point to the TC loop.

As expected, the error variability in the auto mode is less than the variability in

cascade mode for loop TC3. The constant set-point changes in cascade mode,

generated by the APC controller, introduce additional variability in the TC3 actuating

error. This is confirmed by the histogram as well as the time series in Figure 4.18.

Case 2 - Comparison of FC1a error variability in cascade and auto modes:
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Figure 4.18: TC3 cascade from Oct. 21, 2003 to Oct. 26, 2003 (blue) and auto from Oct.
1, 2003 to Oct. 06, 2003 (red). Different error variability in different controller modes.

The process variable for data set FC1a is the flow rate of a side draw from a

fractionation column. FC1a is configured as a manipulated variable in an APC

controller as shown in the Figure 4.19.

Two periods, with the controller in cascade and auto modes respectively, are selected

for error variability comparison. Figure 4.20 shows the actuating error time series,

ACF, error histogram, and the set-point time series for loop FC1a from Oct. 1, 2003

to Oct. 9, 2003 (blue) and Oct. 14, 2003 to Oct. 19, 2003 (red). The controller is in

the auto mode during the first period (blue) and in cascade mode in the second (red).

For FC1a, which is an APC-MV, the configurations in auto and cascade controller

modes can be described as follows:

Cascade: Output from the APC controller is the set-point to the FC loop.
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Auto: Operator provides the set-point to the FC loop.

Figure 4.19: Configuration of FC1a. PV (bpd) is an APC MV. The output from the APC
controller is the set point to the FC.

It can be observed from the error distribution and the actuating error time-series that

the error variability is not very different in the auto and cascade modes. In this case,

the closed-loop dynamics of the flow control loop are sufficiently fast to be completed

well within the 1 min APC sample time. Therefore, noticeable increase in variability

was not introduced in cascade mode by the APC controller as in Case 1.

Case 3 - Comparison of PC2 error variability in B-cascade and cascade modes:

The process variable for data set PC2 is the fuel gas pressure in the inner loop of

a cascade temperature controller TC for adjusting the furnace outlet temperature as

shown in the Figure 4.21. The temperature controller is an APC-MV. When the APC

controller is on, both the temperature controller and PC2 are in cascade mode. When

the APC controller is off, the temperature controller is in auto mode and PC2 is in

B-cascade mode. For PC2, the configurations in B-cascade and cascade controller

modes can be described as follows:
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Figure 4.20: FC1a auto from Oct. 1, 2003 to Oct. 9, 2003 (blue) and cascade from Oct. 14,
2003 to Oct. 19, 2003 (red). Same error variability in different controller modes.

Cascade: Output from the APC controller is the set-point to the TC loop. The output

from the TC loop is the set-point to PC2.

B-Cascade: APC controller is turned off. Regular cascade arrangement. Operator

provides the set-point to the TC loop. The output from the TC loop is the set-

point to PC2.

Figure 4.22 shows the actuating error time series, ACF, error histogram, and the set-

point time series for loop PC2 from Oct. 1, 2003 to Oct. 28, 2003 (blue) and from

Jan. 22, 2004 to Mar. 5, 2004 (red). The controller is in B-cascade mode during the

first period (blue) and in cascade mode in the second (red).
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Figure 4.21: Configuration of PC2. PV (psig) is an APC MV. The output from the APC
controller is the set point to the PC.

Figure 4.22: PC2: B-cascade from Oct. 1, 2003 to Oct. 28, 2003 (blue) and cascade from
Jan. 22, 2004 to Mar. 5, 2004 (red). Mixture indiscernible.
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It is observed from the error histogram and the actuating error time-series that error

variability is not very different in the B-cascade and cascade modes. In this case,

there is little change in the output variability of the temperature controller (set-point

to PC2) in the cascade mode when compared to the variability in auto mode. This

result means that, in this case, there was no appreciable change in the performance

of the secondary controller whether the set-point to the primary controller was set by

the operator or APC.

Case 4 - Impact of set-point variability introduced by APC on TC3 actuating error:

TC3 is an APC-MV whose configuration was described in Case 1. In this case, the

TC3 controller is in the cascade mode at all times in the period selected. Figure 4.23

shows the actuating error time series, ACF, error histogram, and the set-point time

series for loop TC3 from Feb. 15, 2004 to Feb. 17, 2004 (blue) and Feb. 17, 2004

to Feb. 28, 2004 (red). The blue and red periods are chosen such that the set-point

variability in the blue period is higher than the set-point variability in the red period.

Towards the end of the blue period, it can be seen from the time series plots of the set-

point and the actuating error that reduced set-point variability translates into reduced

error variability. This explains the presence of two error variability bands in the blue

period. The red ACF has appreciable coefficients at higher lags which indicates the

presence of a non-random effect, which in this case is the presence of outliers. The

blue ACF shows a cycle which is the evidence of a latent cycle in the data. The

time series, the histogram and the appreciable ACF coefficients all indicate greater

variability in the blue period. This result confirms the observations from previous

cases that set-point variability has translated into actuating error variability.
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Figure 4.23: Impact of set-point variability introduced by APC on TC3 actuating error.
TC3 from Feb. 15, 2004 to Feb. 28, 2004.
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Based on the four different cases presented, it is observed that set-point variability

may translate into actuating error variability. Even though set-point variability can vary

depending on APC control action (Case 4), a controller mode change generally produces a

change in the set-point variability (Cases 1,2 and 3) due to the change in the controller

configuration. Therefore, controller mode changes can have a significant impact on

actuating error variability and business analysis metrics such as process capability, Cp,

or process performance, Pp. In particular, the set-point variability could be an important

factor when assessing error variability of PVs that are APC-MVs.

4.7 Discussion of data analysis results

Actuating error, the key variable for SPC-based performance assessment, shows different

bands of variability when considered over a long period of time. These error variability

bands indicate the presence of assignable causes that are responsible for changes in

controller performance. Methods to identify error variability bands using two approaches,

ordered and unordered analysis, have been presented in this chapter. Unordered analysis

totally disregards the order of the time series and involves grouping or sorting of the data.

Histograms, normal probability plots and Q-Q plots are examples of unordered analysis.

Ordered analysis considers the order in which the time series occur. Autocorrelation

function is an example of an ordered analysis. Error variability band identification using

ordered and unordered analysis can be summarized as follows:

Histograms: Histogram with a superimposed bell curve can be used as a visual tool to

identify error variability bands. The presence of heavytails and a peak compared

to the superimposed bell curve on the histogram indicate the presence of multiple

distributions. The multiple distributions are a direct result of the presence of

variability bands. The disadvantage with the histogram is that it is difficult to quantify

the heavytail and peak characteristics. Histograms of the error distributions also

reveal that the distributions can be significantly non-normal in the presence of bands.
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While there are many reasons for non-normality, the presence of mixtures itself

introduces some degree of non-normality.

Normslope: The normslope, defined as the slope of the normal probability plot, is a

quantitative measure that can be used to detect error variability bands. If the data

are perfectly normal, then the normslope will be equal to the standard deviation of

the data. The advantage of using normslope is that the changes in the error variability

can be assessed in engineering units. The normslope is based on the center 68.27% of

the distribution. Therefore, the spread estimate is not effected by extreme values. The

normslope is a single number, robust to extreme values, that allows for simultaneous

comparison of variability in different periods.

qqslope: The qqslope, a quantitative measure analogous to normslope, is the ratio of

the distance between the last points on the least-squares line through the first and

third quartiles of the sampled distribution to the distance between the corresponding

points on the least-squares line through the first and third quartiles of the reference

distribution. This ratio will be an indication of whether the variability of the sampled

distribution is greater or smaller than the reference distribution. The qqslope can be

used to detect error variability bands without any reliance on a standard model.

ACF: The autocorrelation function, which is an ordered analysis technique, determines the

randomness of a time series. When there is a change in the variability of the series,

the process has changed. If this change is statistically significant, it shows up as a

change in the number of appreciable autocorrelation coefficients. This change can

be used to detect the presence of multiple distributions. This method, however, is

different from the ordered analysis as it considers all the data, the order in which the

data occur, and if the changes in variability are statistically significant.

Visual and quantitative methods to detect error variability bands have been presented in

the first part of this chapter. All the unordered methods to detect error variability bands give
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similar results that agree with visual observations. Histograms are easy to compute but are

limited in their utility since the heavytail and peak characteristics are difficult to automate.

Normslope and qqslope are similar techniques that are capable of full automation. For

the data sets considered, both normslope and qqslope are effective ways to detect error

variability bands. The bands identified using normslope and qqslope are in excellent

agreement with visual observations. Normslope and qqslope are also robust to outliers

since they both consider the center of the distribution.

The ACF is a complimentary tool for detecting error variability bands, deterministic

effects in the time series or latent cycles in the time series. The calculation of the ACF can

also be fully automated. The ACF, however, is not robust to outliers. The sample ACF is

also used in most of the commercial products as an engineering analysis tool to estimate

the finite impulse response of the process. The use of histograms, probability plots and

ACF for error band identification is unique in this work.

Although normslope, qqslope and the ACF can be calculated for any time scale, the

application of these techniques to smaller time periods is not recommended, as it falls

outside the realm of SPC analysis. Archived data are not suitable for an analysis on a short

time scale.

Changes in controller configuration (controller modes) are assignable causes that can

cause the performance of the controller to change. The impact of changing the controller

mode on error variability bands is presented in the second part of this chapter. The

controller mode indicates the active controller configuration at that time. Case studies on

controller mode changes show that set-point variability may translate into actuating error

variability. Even though set-point variability can vary depending on APC control action,

a controller mode change generally produces a change in the set-point variability due to

the change in the controller configuration. Therefore, controller mode changes can have

a significant impact on actuating error variability and business analysis metrics such as
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process capability, Cp, or process performance, Pp. In particular, the set-point variability

could be an important factor when assessing error variability of PVs that are APC-MVs.
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5. CONCLUSIONS AND FUTURE WORK

This work focuses on the characterization of closed-loop archived data for use in SPC-

based analysis for controller performance assessment. Twelve closed-loop industrial data

sets obtained from a petroleum refinery were used in the analysis.

The contributions of this work include:

1. Development of a graphical user interface (GUI) tool for data analysis. The

capabilities of the GUI tool include:

• Six simultaneous plots each with an input-series choice and a plot choice.

• Input-series choices include actuating error, process variable, set-point, output,

change in set-point and change in output.

• Plot choices include: time series, histogram with superimposed bell curve, pdf,

normalized pdf, fourier transform, power spectrum, ACF, normplot, qqplot and

boxplot.

• One of the powerful features of the tool is the overlay feature. The overlay

feature allows the superimposition of plots during various times on one another.

The differences in data characteristics during multiple periods can thus be

simultaneously analyzed.

• Option for outlier removal at ±4 times the standard deviation of the data.

• Data cursor option to read the coordinates on any plot.

• Interactive plot edit tools such as zoom, pan and 3D rotate.
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2. Application of the GUI tool on 12 industrial data sets for characterization studies.

The conclusions are summarized in Section 5.1.

3. Demonstration of the ability to identify error variability bands in the closed-loop data

sets using histograms, normslope, qqslope and the sample autocorrelation function.

4. Demonstration through case studies, the effect of APC controllers on the error

variability of APC manipulated variables.

Recommendations for future work are summarized in Section 5.2.

5.1 Conclusions

Actuating error variability is the key variable for controller performance assessment.

Changes in the error variability indicate changes in controller effectiveness. Different levels

of variability during different periods in the time series are termed as error variability bands.

Error variability bands are common in the actuating error time series of manipulated

variables in an advanced process controller (APC-MVs) when considered over a long

period of time. Eight of the twelve data sets analyzed are APC-MVs. Of these, five APC-

MVs (FC3, PC1, TC1, TC2 and TC3) contain multiple error variability bands.

These error variability bands imply the presence of non-homogeneity in the closed-

loop data. Since SPC-based metrics involve strong assumptions about homogeneity and

normality of data, the implications of the presence of error variability bands on SPC metrics

cannot be ignored.

Actuating error distributions for the five APC-MVs which contain error variability

bands are non-normal. While there are many reasons for non-normality, the presence of

variability bands causes some degree of deviation from normality. However, actuating

error series of APC-MVs not containing error variability bands, and other time series in

time periods devoid of bands were well approximated by the normal distribution. This

further emphasizes that the SPC performance metrics should be limited to the bands.
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Histogram, normslope, qqslope and sample ACF are the four methods proposed in

this work for the identification of error variability bands. Normslope and qqslope are

similar statistics that are capable of full automation. For all the data sets considered,

both normslope and qqslope are effective ways to detect error variability bands. The

bands identified using normslope and qqslope are in agreement with visual observations.

Normslope and qqslope are also robust to outliers since they consider the center of the

distribution. The ACF is a complimentary tool for detecting error variability bands,

deterministic effects or latent cycles in the time series. The calculation of the ACF can

also be fully automated. The ACF, however, is not robust to outliers.

Case studies also show that set-point variability as a result of APC controllers can

be translated into actuating error variability for APC-MVs which have relatively slow

dynamics (temperature loops). It is therefore not sufficient to base performance metrics

on actuating error variability alone. The closed-loop data should be used collectively to

provide greater context. The GUI tool developed at OSU as a part of this work is an

excellent tool for such simultaneous analysis and was used for all the case studies in this

work.

5.2 Future Work

The scope of this work has been primarily data-driven. Therefore, the extension of these

results to similar data sets is limited. A theoretical approach would facilitate the extension

of the results to similar control configurations. The actuating error (process variable minus

set point) distribution is a function of the joint distribution of process variable and set-

point and the relationship between process variable and set-point (through the controller

output). Analytical expressions for the error probability density function (distribution

model) generated from several possible process variable and set-point probability density

functions, will help in understanding the nature of the error distributions for different base

case process variable and set-point distributions.
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A valued addition to this work would be the study of data handling procedures.

Data compression is a major issue when using archived closed-loop data. Excessive

data compression is a concern as it could compromise closed-loop data characteristics.

More study is needed in this area to understand the effect of compression particularly on

error variability bands. Similarly, an understanding of the minimum sampling frequency

required for SPC-based analysis has several potential benefits of improved data handling.

The amount of data required would be greatly reduced with such an understanding. For

instance, one years worth of data sampled at 1 min would be 500,000+ data points. If the

sampling frequency of 2 min would achieve the same result, only 250,000+ data points

need to be handled. With hundreds of loops over long periods of time in question, using

the minimum sampling frequency greatly simplifies data handling problems.
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APPENDIX

This appendix lists MATLABTM function help for the in-built MATLABTM functions used

in the GUI tool discussed in section 3.3. The help files are taken from MATLABTM

documentation.

Histfit

HISTFIT Histogram with superimposed fitted normal density. HISTFIT(DATA,NBINS)

plots a histogram of the values in the vector DATA. using NBINS bars in the histogram.

With one input argument, NBINS is set to the square root of the number of elements in

DATA.

H = HISTFIT(DATA,NBINS) returns a vector of handles to the plotted lines. H(1) is a

handle to the histogram, H(2) is a handle to the density curve.

Boxplot

BOXPLOT Display boxplots of a data sample. BOXPLOT(X) produces a box and whisker

plot with one box for each column of X. The boxes have lines at the lower quartile, median,

and upper quartile values. The whiskers are lines extending from each end of the boxes to

show the extent of the rest of the data. Outliers are data with values beyond the ends of the

whiskers.

BOXPLOT(X,G) produces a box and whisker plot for the vector X grouped by G. G is

a grouping variable defined as a vector, string matrix, or cell array of strings. G can also be
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a cell array of several grouping variables (such as G1 G2 G3) to group the values in X by

each unique combination of grouping variable values.

BOXPLOT(...,’PARAM1’,val1,’PARAM2’,val2,...) specifies optional parameter

name/value pairs:

’notch’ ’on’ to include notches (default is ’off’). ’symbol’ Symbol and color to

use for all outliers (default is ’r+’). ’orientation’ Box orientation, ’vertical’ (default) or

’horizontal’. ’whisker’ Maximum whisker length (default 1.5). ’labels’ Character array or

cell array of strings containing labels for each column of X, or each group in G. ’colors’

A string or a three-column matrix of box colors. Each box (outline, median line, and

whiskers) is drawn in the corresponding color. Default is to draw all boxes with blue

outline, red median, and black whiskers. Colors are recycled if necessary. ’widths’ A

numeric vector or scalar of box widths. Default is 0.5, or slightly smaller for fewer

than three boxes. Widths are recycled if necessary. ’positions’ A numeric vector of box

positions. Default is 1:n. ’grouporder’ When G is given, a character array or cell array of

group names, specifying the ordering of the groups in G. Ignored when G is not given.

In a notched box plot the notches represent a robust estimate of the uncertainty about

the medians for box-to-box comparison. Boxes whose notches do not overlap indicate

that the medians of the two groups differ at the 5out to the most extreme data value

within WHIS*IQR, where WHIS is the value of the ’whisker’ parameter and IQR is the

interquartile range of the sample.

H = BOXPLOT(...) returns the handle H to the lines in the box plot. H has one column

per box, consisting of the handles for the various parts of the box. Each column contains 7

handles for the upper whisker, lower whisker, upper adjacent value, lower adjacent value,

box, median, and outliers.

Example: Box plot of car mileage grouped by country load carsmall boxplot(MPG,

Origin) boxplot(MPG, Origin, ’sym’,’r*’, ’colors’,hsv(7)) boxplot(MPG, Origin,

’grouporder’, ... ’France’ ’Germany’ ’Italy’ ’Japan’ ’Sweden’ ’USA’)
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hist

HIST Histogram. N = HIST(Y) bins the elements of Y into 10 equally spaced containers

and returns the number of elements in each container. If Y is a matrix, HIST works down

the columns.

N = HIST(Y,M), where M is a scalar, uses M bins.

N = HIST(Y,X), where X is a vector, returns the distribution of Y among bins with

centers specified by X. The first bin includes data between -inf and the first center and the

last bin includes data between the last bin and inf. Note: Use HISTC if it is more natural

to specify bin edges instead.

[N,X] = HIST(...) also returns the position of the bin centers in X.

HIST(...) without output arguments produces a histogram bar plot of the results. The

bar edges on the first and last bins may extend to cover the min and max of the data unless

a matrix of data is supplied.

HIST(AX,...) plots into AX instead of GCA.

Class support for inputs Y, X: float: double, single

fft

FFT Discrete Fourier transform. FFT(X) is the discrete Fourier transform (DFT) of vector

X. For matrices, the FFT operation is applied to each column. For N-D arrays, the FFT

operation operates on the first non-singleton dimension.

FFT(X,N) is the N-point FFT, padded with zeros if X has less than N points and

truncated if it has more.

FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the dimension

DIM.
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For length N input vector x, the DFT is a length N vector X, with elements

X(k) =
N∑

n=1

x(n)∗ exp
(
− j∗2∗π∗ (k−1)∗ (n−1)

N

)
1 ≤ k ≤ N.

The inverse DFT (computed by IFFT) is given by:

x(n) =
1
N

N∑
k=1

X(k)∗ exp
(

j∗2∗π∗ (k−1)∗ (n−1)
N

)
1 ≤ n ≤ N.

qqplot

QQPLOT Display an empirical quantile-quantile plot. QQPLOT(X) makes an empirical

QQ-plot of the quantiles of the data set X versus the quantiles of a standard Normal

distribution.

QQPLOT(X,Y) makes an empirical QQ-plot of the quantiles of the data set X versus

the quantiles of the data set Y.

H = QQPLOT(X,Y,PVEC) allows you to specify the plotted quantiles in the vector

PVEC. H is a handle to the plotted lines.

When both X and Y are input, the default quantiles are those of the smaller data set.

The purpose of the quantile-quantile plot is to determine whether the sample in X is

drawn from a Normal (i.e., Gaussian) distribution, or whether the samples in X and Y come

from the same distribution type. If the samples do come from the same distribution (same

shape), even if one distribution is shifted and re-scaled from the other (different location

and scale parameters), the plot will be linear.

normplot

NORMPLOT Displays a normal probability plot. H = NORMPLOT(X) makes a normal

probability plot of the data in X. For matrix, X, NORMPLOT displays a plot for each

column. H is a handle to the plotted lines.
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The purpose of a normal probability plot is to graphically assess whether the data in X

could come from a normal distribution. If the data are normal the plot will be linear. Other

distribution types will introduce curvature in the plot.

92



VITA

Anand Vennavelli

Candidate for the Degree of

Master of Science

Thesis: CHARACTERIZATION OF CLOSED-LOOP PROCESS VARIABLE DATA

Major Field: Chemical Engineering

Biographical:

Personal Data: Born on February, 1981 in Hyderabad, India.

Education: Graduated with Bachelor of Technology degree in Chemical Engineering
from Osmania University, Hyderabad, India, in May 2002; completed the
requirements for the Master of Science degree with a major in Chemical
Engineering at Oklahoma State University in December 2006.

Experience: Worked as project assistant at the Indian Institute of Chemical
Technology (IICT), Hyderabad, India, 2002-2003. Employed by Oklahoma
State University, School of Chemical Engineering, as a research assistant,
2003-present. Worked as a summer intern at the ConocoPhillips refinery, San
Francisco, CA as an advanced controls engineer, summer of 2006.

Professional Memberships: Student member of AICHE and ASQ.



Name: Anand Vennavelli Date of Degree: December 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: CHARACTERIZATION OF CLOSED-LOOP PROCESS VARIABLE
DATA

Pages in Study: 92 Candidate for the Degree of Master of Science

Major Field: Chemical Engineering

Scope and Method of Study: “Business analysis methods” for controller performance
assessment address management’s view of control systems as assets to be
managed. These techniques utilize a long-term (weeks or months) view of
controller performance with a business emphasis on continuous quality improvement,
identification of best practices, and allocation of limited resources for control system
maintenance. Business analysis methods are implemented using statistical process
control (SPC) and “six-sigma” principles. The focus of this thesis is on the
characterization and analysis of data used by business analysis methods for controller
performance assessment. To automate the analysis of large industrial closed-loop
data sets, a graphical user interface tool using MATLABTM has been developed.

Findings and Conclusions: This work focuses on the characterization closed-loop archived
data primarily for use in SPC-based analysis for controller performance assessment.
Plots of the closed-loop data sets for the advanced process control manipulated
variables (APC-MVs) exhibit different levels of variability when considered over
a long period of time (one year). These periods of variability are termed as
“error variability bands.” Changes in the error variability bands are attributable to
assignable causes responsible for changes in controller performance. Automatic
identification of the error variability bands provides the starting point for further
diagnosis and elimination of assignable causes that can lead to real business
improvement. This thesis presents four error variability band identification
techniques using general purpose statistical tools including histograms, normal-
probability plots, quantile-quantile plots and the sample autocorrelation function.
The performance of these methods is presented using archived refinery data
reconstructed on a one-minute sample period for flow, pressure, and temperature
loops. The impact of set-point variability on APC manipulated variables is also
illustrated.
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